

February 17, 1995

Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94502

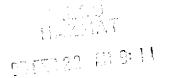
RE: Unocal Service Station #1871 96 MacArthur Boulevard Oakland, California 94410

Per the request of the Unocal Corporation Project Manager, Mr. Robert A. Boust, enclosed please find our report (MPDS-UN1871-06) dated February 6, 1995 for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2334.

Sincerely,

MPDS Services, Inc.


Jarrel F. Crider

/jfc

Enclosure

cc: Mr. Robert A. Boust

MPDS-UN1871-06 February 6, 1995

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Mr. Robert A. Boust

RE: Quarterly Data Report

Unocal Service Station #1871

96 MacArthur Boulevard Oakland, California

Dear Mr. Boust:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on January 10, 1995. Prior to sampling, the wells were each purged of between 30.5 and 42 gallons of water. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded and are presented in Table 2. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately four casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Unocal Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to

MPDS-UN1871-06 February 6, 1995 Page 2

date are summarized in Table 3. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

LIMITATIONS

Environmental changes, either naturally-occurring or artificiallyinduced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services Agency.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120. Josephinis?

Sincerely,

MPDS Services, Inc.

Sarkis A. Karkarian

Staff Engineer

Joel G. Greger, C.E.G. Senior Engineering Geologist

License No. EG 1633 Exp. Date 8/31/96

/bp

Tables 1, 2 & 3 Attachments:

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Thomas Berkins, Kaprealian Engineering, Inc.

TABLE 1
SUMMARY OF MONITORING DATA

	Ground Water		Total Well			Water Purged
Well #	Elevation (feet)	Water (feet)∳	Depth (feet)◆	(feet)	<u>Sheen</u>	(gallons)
			3			×
	(Monit	ored and Samp	oled on Jan	uary 10, 199	5)	
MW-1	68.74	12.44	24.15	0	No	30.5
MW-2	67.90 ↑	8.71	24.74	0	No	42
MW-3	67.06 \uparrow	10.42	23.70	0	No	35
	(Monit	ored and Sam	pled on Oct	ober 10, 199	4)	
MW - 1.	65.63	15.55	24.05	0	No	16
MW-2	65.13,	11.48	24.75	0	No	34
MW-3	64.50	12.98	23.70	0	No	28
	(Mon:	itored and Sa	impled on Ju	uly 13, 1994))	
MW-1	66.30	14.88	24.12	0	No	19
MW-2	65.75	10.86	24.71	0	No	32
MW-3	65.02	12.46	23.68	0	No	24
	(Moni	tored and Sa	mpled on Ap	ril 13, 1994	:)	
MW-1	66.74	14.44	24.14	O	No	21
MW-2	66.49	10.12	24.75	0	No	40
MW-3	65.46	12.02	23.74	0	No	29
			Well Ca	sing		
			Elevat			
		Well #	(feet	<u> </u>		
		MW-1	81.1	8		
		MW-2	76.6			
		MW-3	77.4	8		

- ♦ The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casings have been surveyed relative to Mean Sea Level.

TABLE 2

RECORD OF THE TEMPERATURE, CONDUCTIVITY, AND PH VALUES
IN THE MONITORING WELLS DURING PURGING AND PRIOR TO SAMPLING

(Measured on January 10, 1995)

Well #	Gallons per Casing <u>Volume</u>	<u>Time</u>	Gallons <u>Purged</u>	Casing Volumes <u>Purged</u>	Temper- ature (°F)	Conductivity ([µmhos/cm] x100)	На
MW-1	7.61	13:20	0	. 0	69.5	0.718	6.41
			7.5	0.99	69.1	0.809	6.54
			15	1.97	69.1	0.818	6.32
			22.5	2.96	69.4	0.790	6.51
		13:45	30.5	4.01	69.3	0.781	6.49
MW-2	10.42	12:10	0	0	68.9	0.597	7.24
			10.3	0.99	68.2	0.516	7.13
			21	2.02	67.9	0.523	7.02
			31.5	3.02	68.8	0.538	7.06
		12:50	42	4.03	69.4	0.535	7.08
MW-3	8.63	11:05	0	0	62.6	0.740	*
			9	1.04	68.3	0.767	*
			17	1.97	70.2	0.670	*
			26	3.01	71.9	0.680	*
		11:30	35	4.06	72.2	0.680	*

^{*} pH meter did not work (rain)

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

***************************************			950500000000000000000000000000000000000			
<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>
rana	1151 - 11	22222	= = = = = = = = = = = = = = = = = = = 			
1/10/95	MW-1	810 /	16	18	59	250
	MW-2	850 /	3.8	ND	8.5	1.3
	MW-3	310 /	4.6 /	ND	3.5	2.1
10/10/94	MW-1	52,000	1,000	810	3,300	12,000
• •	MW - 2	2,300	340	ND	25	ND
	MW-3	4,300	11	ND	12	ND
7/13/94	MW-1	35,000	550	150	1,400	5,700
7713731	MW-2	2,000	490	ND	17	13
	MW-3	1,800**	16	16	ND .	21
4/13/94	MW-1	51,000	1,000	2,600	3,200	15,000
1, 10, 71	MW-2	550	71	ND	5.1	1.3
	MW-3	4,200	210	ND	36	53
1/20/94	MW-1	92,000	1,200	3,000	3,400	17,000
_,,	MW-2	820	97	ND	12	ND
	MW-3	4,200	11	ND	21	15
10/19/93	MW-1	67,000	1,400	2,600	2,900	5,000
,,	MW-2	670	24	1.1	7.7	23
	MW-3	3,800	42	ND	50	56
7/16/93	MW-1	29,000	590	560	980	4,200
,,,,	MW-2	510*	17	0.6	3.2	2.5
	K-WM	4,000*	1,100	28	52	70
4/29/93	MW-1	100,000	850	2,000	4,300	19,000
, ,	MW-2	1,500	290	ND	33	11
	MW-3	4,500	1,700	ND	200	140
1/25/93	MW-1	120,000	2,100	4,600	4,900	22,000
• •	MW-2	2,100	56	1.1	90	140
	MW-3	2,300	80	1	55	52

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

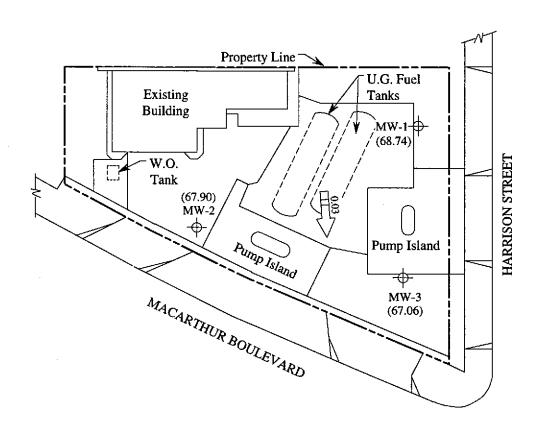
<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>
11/03/92	MW-1	260,000	2,300	4,600	3,700	17,000
	MW-2	140	2.2	ND	ND	2
	MW-3	2,100	120	15	38	200

- * Primarily due to the presence of discrete peaks not indicative of gasoline.
- ** Sequoia Analytical Laboratory reported that they hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

ND = Non-detectable.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: Laboratory analyses data prior to October 19, 1993, were provided by GeoStrategies, Inc.



Base modified from 7.5 minute U.S.G.S. Oakland East and West Quadrangles (both photorevised 1980)

O 2000 4000
Approx. scale feet

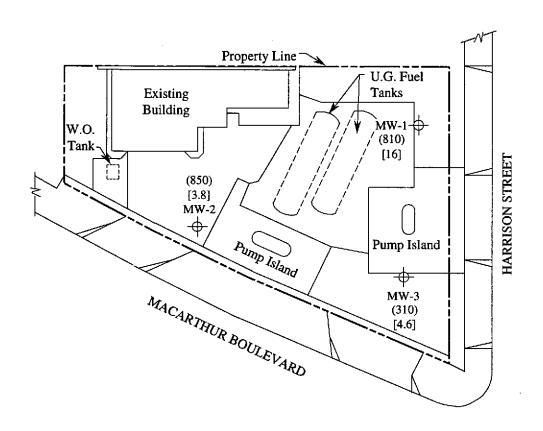
UNOCAL SERVICE STATION # 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA LOCATION MAP

LEGEND

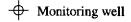
→ Monitoring well

() Ground water elevation in feet above Mean Sea Level

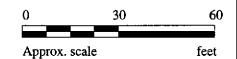
Direction of ground water flow with approximate hydraulic gradient



GROUND WATER FLOW DIRECTION MAP FOR THE JANUARY 10, 1995 MONITORING EVENT



UNOCAL SERVICE STATION # 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA


FIGURE

LEGEND

- () Concentration of TPH as gasoline in $\mu g/L$
- [] Concentration of benezene in μ g/L

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON JANUARY 10, 1995

SERVICES, INCORPORATED

UNOCAL SERVICE STATION # 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA FIGURE

2

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedissian Client Project ID: Matrix Descript: Unocal #1871, 96 MacArthur Blvd., Oakland

Water

EPA 5030/8015/8020

Sampled: Received:

Jan 10, 1995

Analysis Method: EPA 5030 First Sample #: 501-0443 Reported:

Jan 10, 1995 Jan 24, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons $\mu \mathrm{g/L}$	Benzene μg/L	Toluene μg/L	Ethyl Benzene μg/L	Total Xylenes $\mu \mathrm{g}/\mathrm{L}$
501-0443	MW-1	810 🗸	16	18	59	250
501-0444	MW-2	850	3.8	ND	8.5	1.3
501-0445	MW-3	310	4.6	ND	3.5	2.1

Detection Limits:	50	0.50	0.50	0.50	0.50	
			_			

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Client Project ID: Unocal #1871, 96 MacArthur Blvd., Oakland Sampled: Jan 10, 1995 Water

Received:

Jan 10, 1995

Attention: Avo Avedissian

Matrix Descript: Analysis Method: First Sample #:

EPA 5030/8015/8020

Reported:

Jan 24, 1995

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

501-0443

Sample Number	Sample Description	Chromatogram Pattern	DL Mult. Factor			Surrogate Recovery, % QC Limits: 70-130	
501-0443	MW-1	Gasoline	1.0	1/13/95	HP-2	115	
501-0444	MW-2	Gasoline	1.0	1/13/95	HP-2	105	
501-0445	MW-3	Gasoline	1.0	1/13/95	HP-2	105	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8 Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedissian Client Project ID:

Unocal #1871, 96 MacArthur Blvd., Oakland

Matrix: Liquid

QC Sample Group: 5010443-45

Reported:

Jan 24, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene	-	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	
MS/MSD					
Batch#:	5010430	E040400	5040400	5040400	
Dattii#.	2010430	5010430	5010430	5010430	
Date Prepared:	1/13/95	1/13/95	1/13/95	1/13/95	
Date Analyzed:	1/13/95	1/13/95	1/13/95	1/13/95	
Instrument I.D.#:	HP-2	H P- 2	HP-2	HP-2	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike					
% Recovery:	100	100	105	107	
	100	100	100	107	
Matrix Spike					
Duplicate %					
Recovery:	105	105	115	111	
Relative %					
Difference:	4.9	4.9	9.1	3.7	
LCS Batch#:	11.00011005	11 00011005	41.00044005	41 00044885	
LOS DAIGH#;	1LCS011395	1LCS011395	1LCS011395	1LCS011395	
Date Prepared:	1/13/95	1/13/95	1/13/95	1/13/95	
Date Analyzed:	1/13/95	1/13/95	1/13/95	1/13/95	
Instrument i.D.#:	HP-2	HP-2	HP-2	HP-2	
LCS %					
Recovery:	96	96	104	102	
Hebbyery.	30	30	104	102	

SEQUOIA ANALYTICAL, #1271

71-133

% Recovery Control Limits:

Signature on File

Alan B. Kemp Project Manager Please Note:

72-128

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

71-120

72-130

CHAIN OF CUSTODY

SAMPLER			UNOC	ALIP	57L	city: OAK	ywp		ANALYSES REQUESTED					TURN AROUND TIME:		
NICHOLAS	PERROW		ADDRI	ESS: _	96	CITY: OAK MACARTM NO. OF CONT.	in Bu	H-GAS	TPH- DIESEL	50	10					REGULAR
SAMPLE ID NO.	DATE	TIME	WATER	GRAB	СОМР	NO. OF CONT.	SAMPLIN	HH	TE	TOG	8010					REMARKS
MW-1	1/10/95			<u> </u>		2V04s	WE(c	010	143	AB
MW-Z MW-3	11	1:10pm	~	~		11	11	~						5010	444	
MW-3	11	11:55	~	V		41	4							5010	445	✓
							ļ	<u> </u>							<u> </u>	
					_										<u> </u>	
	·		<u> </u>					-		 	-				<u> </u>	
		*-			-			-							_	-
									-					<u> </u>		4
					<u> </u>	5050/50 21/		1 75/2022					AN -		N	
RELINGUISI	IED BY:	DATE/I	IME		F	RECEIVED BY:		ATE/TIME	1. HAVE	ALL SAMP	LES RECEN	VED FOR AN	VALYSIS B	EEN STORE	D ON ICE?	ING SAMPLES FOR ANALYSES:
COLOR LANGE CO.	,	1.1. la		ISIGN	ATURE	3		10 10 5	2. WILL 5	SAMPLES A	EMAIN REI	RIGERATE	D UNTIL A	NALYZED?	1 16	 ≥S
ISJENATURE!		3:201	P.	SUC.	ATURE	elley		10/45 20 pm	3. DID A	VY SAMPI	ES RECEIVE	D FOR AN	ALYSIS HA	VE HEAD S	PACE?	alo
SIGNATURE	1			SIGN	AIUKE	·			J. D. A.	iii orani u	LO INCOLIVE		- C1 913 /1A	TE TIESTE C		
(SIGNATURE)					ATURE				1							AGED7 UCS
(SIGNATURE)				(SIGN	ATURE	<u> </u>			R	dre:	ley	Sa	neple	_ Cont	LE: Tol	DATE: 1/10/95

Note: All water containers to be sampled for TPHG/BTEX, 8010 & 8240 are preserved with HCL. All water containers to be sampled for Lead or Metals are preserved with HNO3. All other containers are unpreserved.