Jennifer



Alameda County
Department of Environmental Health
80 Swan Way, Room 200
Oakland, California 94621

Attention:

Mr: Barney Chan

Reference:

**UNOCAL Service Station No. 1871** 

96 MacArthur Boulevard

Oakland, California

Mr. Chan:

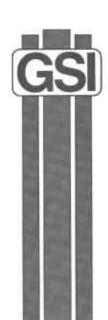
As requested by Mr. Robert A. Boust of UNOCAL Corporation, we are forwarding a copy of the Quarterly Monitoring Report dated August 27, 1993 prepared for the above referenced location. This report presents the results of third quarter 1993 groundwater monitoring and sampling.

If you have questions or comments, please call.

GeoStrategies Inc. by,

Project Manager

CMG/rmt


**Enclosure** 

cc: Mr. Robert A. Boust, UNOCAL Corporation

Mr. Paul Supple, ROUX Associates

Mr. Lester Feldman, Regional Water Quality Control Board

:ellenu\868final.wp



### **QUARTERLY MONITORING REPORT**

UNOCAL Service Station No. 1871 96 MacArthur Boulevard Oakland, California



August 27, 1993

UNOCAL Corporation P.O. Box 5155 San Ramon, California 94583

Attn: Mr. Robert A. Boust

Re: QUARTERLY MONITORING REPORT

UNOCAL Service Station No. 1871

96 MacArthur Boulevard

Oakland, California

Mr. Boust:

This Quarterly Monitoring Report has been prepared by GeoStrategies Inc. (GSI) and presents the results of the 1993 third quarter sampling for the above referenced site (Plate 1).

There are currently three monitoring wells at the site, Wells MW-1, MW-2 and MW-3 (Plate 2). These wells were installed in 1992 by ROUX Associates.

### **CURRENT QUARTER SAMPLING RESULTS**

Depth-to-water measurements were obtained in each monitoring well on July 16, 1993. Static groundwater levels were measured from the surveyed top of each well casing and recorded to the nearest  $\pm 0.01$  foot. Water-level elevations were referenced to Mean Sea Level (MSL) and are presented in Table 1. Water-level data were used to construct a quarterly potentiometric map (Plate 3). Shallow groundwater flow direction was to the southwest with an approximate hydraulic gradient of 0.02.

Each well was checked for the presence of floating product. Floating product was not observed in the wells this quarter. Floating product has never been observed in these wells. The field data sheets are included in Appendix A.

786880-4

UNOCAL Corporation August 27, 1993 Page 2

Groundwater samples were collected on July 16, 1993. Samples were analyzed for Total Petroleum Hydrocarbons calculated as Gasoline (TPH-Gasoline) according to EPA Method 8015 (Modified), and for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) according to EPA Method 8020. The groundwater samples were analyzed by Anametrix Inc., a California State-certified laboratory located in San Jose, California. The laboratory analytical report and Chain-of-Custody form are included in Appendix B. These data are summarized and included with the historical groundwater quality database presented in Table 2. A chemical concentration map for benzene is presented on Plate 4. Groundwater sampling field methods and procedures are included in the initial GSI report for the site, dated January 28, 1993.

UNOCAL Corporation August 27, 1993 Page 3

If you have questions or comments, please call.

GeoStrategies Inc. by,

Ellen (. festerenul

Ellen C. Fostersmith

Geologist

Stephen J. Carter Project Manager

R.G. 5577

ECF/SJC:rt

Plate 1. Vicinity Map

Plate 2. Site Plan

Plate 3. Potentiometric Map

Plate 4. Benzene Concentration Map

Appendix A:

Field Data Sheets

Appendix B:

Laboratory Analytical Report and Chain-of-Custody

No. 5577

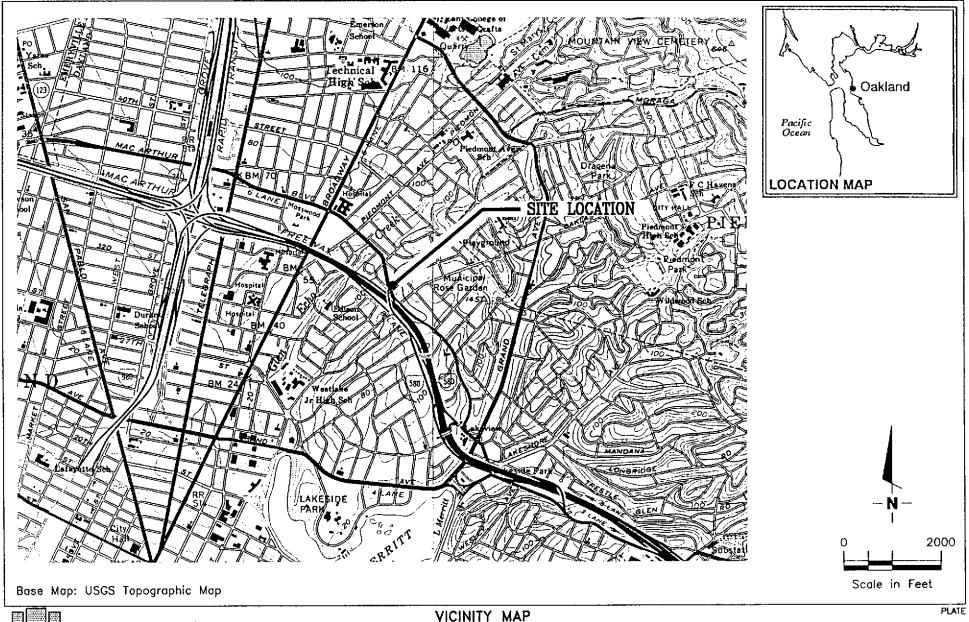
Form

QC Review:

786880-4

TABLE 2
HISTORICAL GROUNDWATER QUALITY DATABASE

| SAMPLE<br>DATE | SAMPLE<br>POINT | TPH-G<br>(PPB) | BENZENE<br>(PPB) | TOLUENE<br>(PPB) | ETHYLBENZENE<br>(PPB) | XYLENES<br>(PPB) |
|----------------|-----------------|----------------|------------------|------------------|-----------------------|------------------|
| 03-Nov-92      | MW-1            | 260000         | 2300             | 4600             | 3700                  | 17000            |
| 25-Jan-93      | MW-1            | 120000         | 2100             | 4600             | 4900                  | 22000            |
| 29-Apr-93      | MW-1            | 100000         | 850              | 2000             | 4300                  | 19000            |
| 16-Jul-93 🖊    | MW-1            | 29,000 🏑       | 590 🗸            | 560              | 980                   | 4200             |
| 03-Nov-92      | MW-2            | 140            | 2.2              | <0.5             | <0.5                  | 2                |
| 25-Jan-93      | MW-2            | 2100           | 56               | 1.1              | 90                    | 140              |
| 29-Apr-93      | MW-2            | 1500           | 290              | <5               | 33                    | 11               |
| 16-Jul-93 🗸    | MW-2            | 510*√          | 17 √             | 0.6              | 3.2                   | 2.5              |
| 03-Nov-92      | MW-3            | 2100           | 120              | 15               | 38                    | 200              |
| 25-Jan-93      | MW-3            | 2300           | 80               | 1.0              | 55                    | 52               |
| 29-Apr-93      | MW-3            | 4500           | 1700             | < 25             | 200                   | 140              |
| 16-Jul-93 🏏    | MW-3            | 4000* √        | 1100 √           | 28               | 52                    | 70               |


TPH-G = Total Petroleum Hydrocarbons calculated as Gasoline.

PPB = Parts Per Billion.

Notes: 1. All data shown as <x are reported as ND (none detected).

2. Laboratory values are reported in units of  $\mu g/l$ , which for practical purposes are synonymous with parts per billion (ppb).

Concentrations reported as gasoline are primarily due to the presence of discrete peaks not indicative of gasoline.



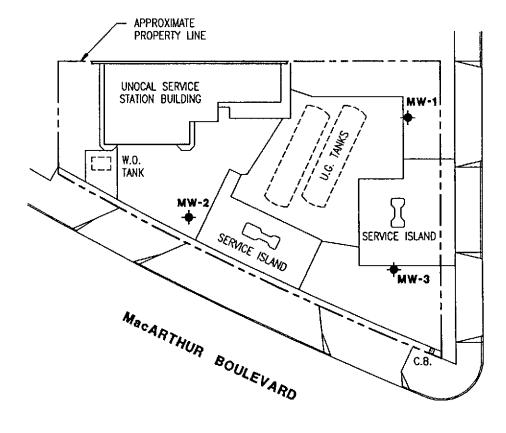
JOB NUMBER

7868

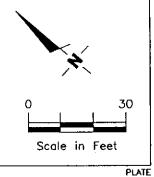
GeoStrategies Inc.

UNOCAL Service Station #1871 96 MacArthur Boulevard Oakland, California

DATE


REVISED DATE

REVIEWED BY cer


12/92

### **EXPLANATION**

Groundwater monitoring well



STREET HARRISON

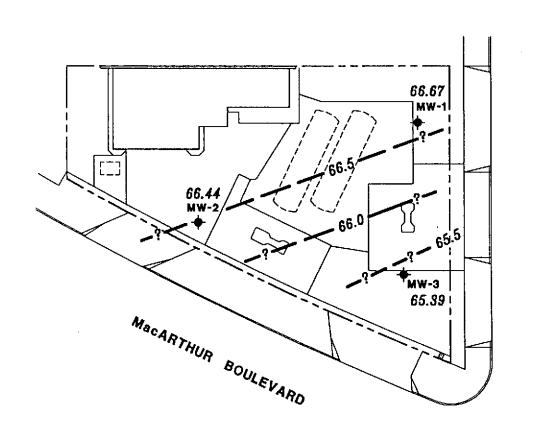


Base Map:

UNOCAL Waste Oil Tank Replacement plan dated 04-14-92 and ROUX Assoc Well Location Fig. 4 dated 05/92



7868


GeoStrategies Inc.

SITE PLAN UNOCAL Service Station #1871 96 MacArthur Boulevard Oakland, California

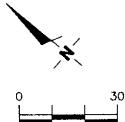
REVISED DATE

REVIEWED BY

DATE 8/93



#### **EXPLANATION**


Groundwater monitoring well

99.99 Groundwater elevation in feet referenced to Mean Sea Level (MSL) measured on July 16, 1993

Groundwater elevation contour. Approximate Gradient = 0.02

> Contours may be influenced by irrigation practices and/or site NOTES: 1. construction activities.

Flow Citacition



Scale in Feet

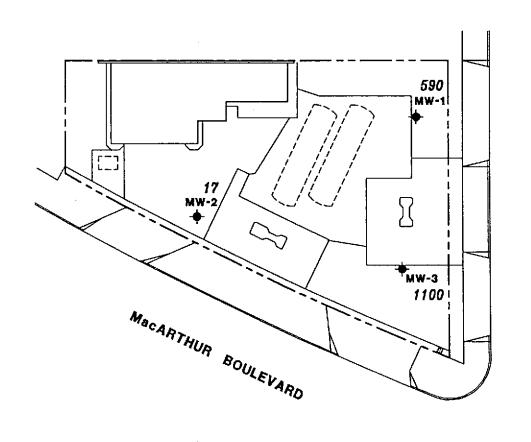
PLATE

Base Map:

UNOCAL Waste Oil Tank Replacement plan dated 04-14-92 and ROUX Assoc Well Location Fig. 4 dated 05/92

GeoStrategies Inc.

POTENTIOMETRIC MAP UNOCAL Service Station #1871 96 MacArthur Boulevard Oakland, California

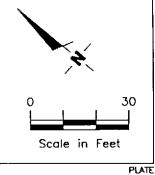

STREET

HARRISON

REVIEWED BY

DATE 8/93

JOB NUMBER 786880-4 REVISED DATE




### **EXPLANATION**

Groundwater monitoring well

5.00 Benzene concentration in ppb sampled on July 16, 1993

Not Detected (See laboratory reports for detection limits)



Base Map:

UNOCAL Waste Oil Tank Replacement plan dated 04–14–92 and ROUX Assoc Well Location Fig. 4 dated 05/92



GeoStrategies Inc.

BENZENE CONCENTRATION MAP UNOCAL Service Station #1871 96 MacArthur Boulevard Oakland, California

STREET

HARRISON

4

JOB NUMBER 786880-4 REVIEWED BY

DATE 8/93

REVISED DATE

4

# APPENDIX A FIELD DATA SHEETS

General and Environmental Contractors

OBSERVATION WELL
DAILY MONITOR RECORD

| COMPANY                                | Unoca)                         | Avthur                                  |                | JOB #<br>DATE 7- A | 16-93    |
|----------------------------------------|--------------------------------|-----------------------------------------|----------------|--------------------|----------|
| LOCATION                               | Oakland                        |                                         |                |                    |          |
| CITY                                   | Carlana                        |                                         |                | TIME               |          |
| WELL                                   | DEPTH TO LIQUID (DTH) OR (DTW) | HYDROCARBON<br>BEFORE                   | THICKNESS (HT) | AMOUNT PUMPED      | COMMENT  |
| MW-1                                   | 14,51                          | **************************************  | 24'            |                    |          |
| MW-Z                                   | 10:17                          |                                         | 25'            |                    |          |
| MW-3                                   | 12.09                          | - · · · · · · · · · · · · · · · · · · · | 24.1           |                    |          |
| <del> </del>                           |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                | <del></del>                             |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        | Measurin                       | e point                                 | 700            | of casing (        | <u>a</u> |
|                                        |                                | ) <u> </u>                              | F              |                    |          |
|                                        | Mark.                          |                                         |                |                    |          |
| ************************************** |                                |                                         | <del></del>    |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |
| ·                                      |                                |                                         |                |                    |          |
| PRODUCT TANK:                          | TOTAL                          |                                         |                | FLOWMETER          |          |
|                                        | WATER                          | <del></del>                             | <del></del>    | OTHER              |          |
| COMPONTS                               |                                |                                         |                |                    |          |
|                                        |                                |                                         |                |                    |          |

General and Environmental Contractors

### WELL SAMPLING FIELD DATA SHEET

| COMPANY                                       | Unocal #1                                      | 87)          | JOB #<br>DATE                                                                                                                      | 868                 |
|-----------------------------------------------|------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| LOCATION                                      | 96 Mac /                                       | Prthur       | DATE <u>7</u>                                                                                                                      | -14-93              |
| CITY                                          | Oakland                                        | CH           |                                                                                                                                    |                     |
| Vell ID.                                      | MW-1                                           | Well Cond    | lition <u>Kay</u>                                                                                                                  |                     |
| Vell Diameter                                 | 411                                            |              | bon Thickness                                                                                                                      |                     |
| otal Depth                                    | <u>24'</u><br>14.51                            | Factor (VF)  | 2" = 0.17 6" = 1.<br>3" = 0.38 8" = 2.<br>4" = 0.66 10" = 4.                                                                       | 50 12" = 5.80<br>60 |
| epth to Liquid-  # of casing volumes          | x 9,49                                         | .1.6         | (26) = (Estimated Purge Volume)                                                                                                    |                     |
|                                               | nt                                             |              |                                                                                                                                    | •                   |
| Sampling Equipm                               | ntent                                          | Bailer       |                                                                                                                                    |                     |
|                                               | T-0777-31-11-11-11-11-11-11-11-11-11-11-11-11- |              |                                                                                                                                    | <del> </del>        |
| Starting Time<br>Estimated<br>Purge<br>Volume |                                                |              | ow Rate $\frac{\int \cdot \zeta}{\text{gpm.}} = \begin{pmatrix} \text{Anticipated} \\ \text{Purging} \\ \text{Time} \end{pmatrix}$ |                     |
| Time                                          | рН                                             | Conductivity | Temperature                                                                                                                        | Volume              |
| 12:35                                         | 6.65                                           | 999          | 23.3                                                                                                                               | <u></u>             |
| 12:40                                         | 6.59                                           | 980          | 22,4                                                                                                                               | 12                  |
| 12:45                                         | Ce. 47                                         | 997          | 21,7                                                                                                                               | 18                  |
| 12:50                                         | Co.60                                          | 1001         | 21.8                                                                                                                               | 24                  |
| 12:56                                         | 6.57                                           | 100C         | 21.8                                                                                                                               | 31,2                |
| oid well dewater?                             | No                                             | If yes, time | Volum                                                                                                                              | .e                  |
| Sampling Time                                 | 13:00                                          | Weather Cond | litions                                                                                                                            |                     |
| analysis (                                    | ' i/)   <i>\\X</i> ~                           |              | les Used                                                                                                                           |                     |
|                                               |                                                |              |                                                                                                                                    |                     |
|                                               | Number                                         |              |                                                                                                                                    |                     |

General and Environmental Contractors

# WELL SAMPLING FIELD DATA SHEET

| COMPANY                        | Unoca I                              | 7/ /87/                  | JOB #                                                                    | 9868<br>7-14-93 |
|--------------------------------|--------------------------------------|--------------------------|--------------------------------------------------------------------------|-----------------|
| LOCATION                       | 96                                   | MacArthur                | DATE                                                                     | 7-16-93         |
| CITY                           |                                      | Mac Arthur<br>Catland CH | TIME                                                                     |                 |
|                                |                                      |                          |                                                                          |                 |
| Well ID.                       | MW-Z                                 | Well Cond                | lition                                                                   |                 |
| Well Diameter                  | 4"                                   | in. Hydrocarl            | oon Thickness                                                            | ft              |
| Total Depth                    | 25'                                  | ft. Volume Factor        | $2^{\circ} = 0.17$ $6^{\circ} = 1$<br>$3^{\circ} = 0.38$ $8^{\circ} = 2$ | .50 12" = 5.80  |
| Depth to Liquid-               | 10.17                                | ft. (VF)                 | 4" = 0.66 10" = 4                                                        | .10             |
| (# of casing volumes)          | x 14.83                              | x(VF) 0.6                | =(Estimate<br>Purge<br>Volume                                            | d) 9.8 49 gal   |
| Purging Equipment              |                                      | Suction                  | , : ••• <b></b>                                                          | •               |
| Sampling Equipment             | ·· · · · · · · · · · · · · · · · · · | Barles                   |                                                                          |                 |
| samping Equipment              |                                      |                          |                                                                          |                 |
|                                |                                      |                          |                                                                          |                 |
| Starting Time<br>Æstimated     |                                      |                          | ow Rate                                                                  |                 |
| (Estimated)<br>Purge<br>Volume | gal. / (1                            | urging<br>Flow<br>Rate   | gpm. = Purging                                                           | min_            |
| Time                           | рН                                   | Conductivity             | Temperature                                                              | Volume          |
| 11:22                          | 7.95                                 | 810                      | 21.9                                                                     | _10             |
| 11:24                          | 7.43                                 | 765                      | 22,0                                                                     | 20              |
| 11:24                          | 7,3 <b>5</b>                         | 733                      | 21.7                                                                     | 30              |
| 11:28                          | 7.33                                 | 742                      | 20.6                                                                     | 40              |
| 11:30                          | 7.34                                 | 741                      | 20.8                                                                     | <u> 50</u>      |
| Did well dewater?              | No                                   | If yes, time             | Volur                                                                    | ne              |
| Sampling Time                  | 11:35                                | Weather Cond             | ditions                                                                  |                 |
| Analysis (as                   | BITE                                 | Bott                     | les Used                                                                 |                 |
| Chain of Custody No            | umber                                |                          |                                                                          |                 |
| COMMENTS                       |                                      |                          |                                                                          |                 |
|                                |                                      |                          |                                                                          |                 |
| FOREMAN                        |                                      |                          | ASSISTANT                                                                |                 |

General and Environmental Contractors

## WELL SAMPLING FIELD DATA SHEET

| 96 Mar<br>Oakland<br>NIW-3<br>4" in<br>24' ft | Well Condition  Hydrocarbor  Volume   2"                                      | JOB # DATE TIME onOlcay                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N1W-3  9" in 29' ft  12.09 ft                 | Well Conditi Hydrocarbor Volume 2"                                            | on Olcay                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9" in 24' ft 12.09 ft                         | Hydrocarbor                                                                   | ′ _                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9" in 24' ft 12.09 ft                         | Volume   2"                                                                   | Thickness                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.09 ft                                      | Volume 2" Factor 3"                                                           |                                                                                                                                                            | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                               |                                                                               | = 0.17 6" = 1.5<br>= 0.38 8" = 2.6                                                                                                                         | 0 12" = 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | . (VF)   4"                                                                   | = 0.66 10" = 4.1                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11.91                                         | $x(VF) = O \cdot U$                                                           | = (Estimated Purge Volume)                                                                                                                                 | 7.9 37 ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sucti                                         | (v)                                                                           |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Baver                                         |                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pН                                            |                                                                               | Temperature                                                                                                                                                | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                                             | •                                                                             |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.05                                          | 968                                                                           | 2 23.1                                                                                                                                                     | 450 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 696                                           | 695 Te5                                                                       | 23.2                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| G-26                                          | 977                                                                           | 352.2                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| G175                                          | 971                                                                           | 23 · O                                                                                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.76                                          | 973                                                                           | 23 ·C                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No 1                                          | If yes, time                                                                  | Volume                                                                                                                                                     | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25:22                                         | Weather Conditi                                                               | ions                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIYE                                          | Bottles                                                                       | Used                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ber                                           |                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                               |                                                                                                                                                            | · - <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               | Bayer  38 22  40 22  40 Flow Rate  PH  7.05  6.26  6.26  6.76  No 2.22  13148 | Bayer  38 22 Purging Flow  Wal. / (Purging) Flow Rate  PH Conductivity  7.05 948  6.76 977  6.76 977  6.77 971  6.77 973  No If yes, time Pottles  Bottles | Bayler    Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Bayler   Ba |

# APPENDIX B LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY FORM

1961 Concourse Drive Suite E San Jose. CA 95151 Tel: 408-452-8192 Fax: 408-452-8198

MR. TOM PAULSON GETTLER RYAN/GEOSTRATEGIES 2150 W. WINTON AVENUE HAYWARD, CA 94545 Workorder # : 9307160
Date Received : 07/16/93
Project ID : 9868.80
Purchase Order: 9868.80

The following samples were received at Anametrix, Inc. for analysis:

| ANAMETRIX ID | CLIENT SAMPLE ID |
|--------------|------------------|
| 9307160- 1   | MW-1             |
| 9307160- 2   | MW-2             |
| 9307160- 3   | MW-3             |
| 9307160- 4   | TB               |

This report consists of 6 pages not including the cover letter, and is organized in sections according to the specific Anametrix laboratory group or section which performed the analysis(es) and generated the data. The Report Summary that precedes each section will help you determine which Anametrix group is responsible for those test results, and will bear the signatures of the department supervisor and the chemist who have reviewed the analytical data. Please refer all questions to the department supervisor who signed the form.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234. A detailed list of the approved fields of testing can be obtained by calling our office, or the DHS Environmental Laboratory Accreditation Program at (415)540-2800.

If you have any further questions or comments on this report, please give us a call as soon as possible. Thank you for using Anametrix.

Sarah Schoen, Ph.D. Laboratory Director 7-26-93

### REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. TOM PAULSON
GETTLER RYAN/GEOSTRATEGIES

2150 W. WINTON AVENUE HAYWARD, CA 94545

Workorder # : 9307160
Date Received : 07/16/93
Project ID : 9868.80
Purchase Order: 9868.80
Department : GC

Sub-Department: TPH

#### SAMPLE INFORMATION:

| ANAMETRIX<br>SAMPLE ID | CLIENT<br>SAMPLE ID | MATRIX | DATE<br>SAMPLED | METHOD   |
|------------------------|---------------------|--------|-----------------|----------|
| 9307160- 1             | MW-1                | WATER  | 07/16/93        | TPHgBTEX |
| 9307160- 2             | MW-2                | WATER  | 07/16/93        | TPHgBTEX |
| 9307160- 3             | MW-3                | WATER  | 07/16/93        | TPHgBTEX |
| 9307160- 4             | TB                  | WATER  | 07/12/93        | трндвтех |

#### REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. TOM PAULSON GETTLER RYAN/GEOSTRATEGIES 2150 W. WINTON AVENUE

HAYWARD, CA 94545

Workorder # : 9307160 Date Received : 07/16/93 Project ID : 9868.80 Purchase Order: 9868.80

Department : GC Sub-Department: TPH

### QA/QC SUMMARY :

- The concentrations reported as gasoline for samples MW-2 and MW-3 are primarily due to the presence of discrete peaks not indicative of gasoline.

Cheugh Brenes Department Supervisor

harlen Burd 7.26.93
Date

# ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192

Anametrix W.O.: 9307160 Project Number: 9868.80 Matrix : WATER Date Released: 07/26/93

Date Sampled : 07/12 & 16/93

|                                                                                           | Reporting<br>Limit | Sample<br>I.D.#<br>MW-1                | Sample<br>I.D.#<br>MW-2 | Sample<br>I.D.#<br>MW-3                | Sample<br>I.D.#<br>TB      | Sample<br>I.D.#<br>BL2101E2 |
|-------------------------------------------------------------------------------------------|--------------------|----------------------------------------|-------------------------|----------------------------------------|----------------------------|-----------------------------|
| COMPOUNDS                                                                                 | (ug/L)             | -01                                    | -02                     | -03                                    | -04                        | BLANK                       |
| Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes<br>TPH as Gasoline<br>% Surrogate Rec |                    | 590 √<br>560<br>980<br>4200<br>29000 √ | 101%                    | 1100<br>28<br>52<br>70<br>4000<br>111% | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND  |
| Instrument I.<br>Date Analyzed<br>RLMF                                                    |                    | HP4<br>07/21/93<br>250                 | HP4<br>07/21/93<br>1    | HP4<br>07/22/93<br>25                  | HP4<br>07/21/93<br>1       | HP4<br>07/21/93<br>1        |

ND - Not detected at or above the practical quantitation limit for the method.

Anametrix control limits for surrogate p-Bromofluorobenzene recovery are 61-139%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Charleson Barch 7.26.93 Analyst Date

Chengl Balma 7/26 152 Supervisor Date

TPHg - Total Petroleum Hydrocarbons as gasoline is determined by GCFID using modified EPA Method 8015 following sample purge and trap by EPA Method 5030.

BTEX - Benzene, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA Method 8020 following sample purge and trap by EPA Method 5030.

RLMF - Reporting Limit Multiplication Factor.

### ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192

Anametrix W.O.: 9307160 Matrix : WATER

Project Number: 9868.80 Date Released: 07/26/93

Date Sampled : N/A

|                  | Reporting<br>Limit | Sample<br>I.D.#<br>BL2201E2 | <br>· | <br> |
|------------------|--------------------|-----------------------------|-------|------|
| COMPOUNDS        | (ug/L)             | BLANK                       |       |      |
|                  |                    |                             | <br>  | <br> |
| Benzene          | 0.5                | ND                          |       |      |
| Toluene          | 0.5                | ИD                          |       |      |
| Ethylbenzene     | 0.5                | ND                          |       |      |
| Total Xylenes    | 0.5                | ND                          |       |      |
| TPH as Gasoline  | 50                 | ND                          |       |      |
| % Surrogate Reco | overy              | 90%                         |       |      |
| Instrument I.    | o                  | HP4                         |       |      |
| Date Analyzed    |                    | 07/22/93                    |       |      |
| RLMF             |                    | . 1 ·                       |       |      |

- ND Not detected at or above the practical quantitation limit for the method.
- TPHg Total Petroleum Hydrocarbons as gasoline is determined by GCFID using modified EPA Method 8015 following sample purge and trap by EPA Method 5030.
- BTEX Benzene, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA Method 8020 following sample purge and trap by EPA Method 5030.
- RLMF Reporting Limit Multiplication Factor.

Anametrix control limits for surrogate p-Bromofluorobenzene recovery are 61-139%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

railem Buch 7.26.93

### TOTAL VOLATILE HYDROCARBON MATRIX SPIKE REPORT EPA METHOD 5030 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : 9868.80 MW-2
Matrix : WATER
Date Sampled : 07/16/93
Date Analyzed : 07/21/93

Anametrix I.D.: 07160-02
Analyst : @mB
Supervisor : \( \sigma \)
Date Released : 07/26/93
Instrument I.D.: HP4

| COMPOUND                                   | SPIKE<br>AMT<br>(ug/L)       | SAMPLE<br>CONC<br>(ug/L)  | REC<br>MS<br>(ug/L)          | %REC<br>MS               | REC<br>MD<br>(ug/L)          | %REC<br>MD               | RPD                  | %REC<br>LIMITS                       |
|--------------------------------------------|------------------------------|---------------------------|------------------------------|--------------------------|------------------------------|--------------------------|----------------------|--------------------------------------|
| BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES | 20.0<br>20.0<br>20.0<br>20.0 | 17.0<br>0.6<br>3.2<br>2.5 | 31.7<br>18.9<br>22.1<br>20.4 | 74%<br>91%<br>95%<br>89% | 32.3<br>19.4<br>22.9<br>21.4 | 76%<br>94%<br>98%<br>95% | 2%<br>3%<br>4%<br>5% | 45-139<br>51-138<br>48-146<br>50-139 |
| p-BFB                                      |                              |                           |                              | 100%                     |                              | 105%                     |                      | 61-139                               |

<sup>\*</sup> Quality control established by Anametrix, Inc.

### TOTAL VOLATILE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 5030 WITH GC/PID ANAMETRIX, INC. (408) 432-8192

Anametrix I.D.: ML2101E3
Analyst: CMB
Supervisor: M
Date Released: 07/26/93
Instrument I.D.: HP4 Sample I.D. : LAB CONTROL SAMPLE
Matrix : WATER
Date Sampled : N/A
Date Analyzed : 07/21/93

| COMPOUND                                            | SPIKE<br>AMT.<br>(ug/L)      | LCS<br>(ug/L)                | REC<br>LCS               | %REC<br>LIMITS                       |
|-----------------------------------------------------|------------------------------|------------------------------|--------------------------|--------------------------------------|
| Benzene<br>Toluene<br>Ethylbenzene<br>TOTAL Xylenes | 20.0<br>20.0<br>20.0<br>20.0 | 18.3<br>19.1<br>19.6<br>19.0 | 92%<br>96%<br>98%<br>95% | 52-133<br>57-136<br>56-139<br>61-139 |
| P-BFB                                               |                              |                              | 109%                     | 61-139                               |

<sup>\*</sup> Limits established by Anametrix, Inc.

|                                                            |                      | -                | 9307160              | 1 (19)            | :45ma                      |
|------------------------------------------------------------|----------------------|------------------|----------------------|-------------------|----------------------------|
| Gettler - R                                                | 1 1                  | - <u>E-M</u>     | VIRONMENTAL DO       | 52                | 37 Chain of Custod         |
| COMPANY                                                    | Unoc                 | a) H             | - 1811               | _                 | JOB NO.                    |
| JOB LOCATION _                                             | <u> </u>             | Mac A            | thur S               | Siree t           |                            |
| CITY                                                       | Dakl                 | and C            |                      | PHONE             | f                          |
| AUTHORIZED                                                 | Tom                  | Paulson          | DATE                 | 7-16-93 P.O. NO   | 9868,80                    |
| SAMPLE<br>ID                                               | NO. OF<br>CONTAINERS | SAMPLE<br>MATRIX | DATE/TIME<br>SAMPLED | ANALYSIS REQUIRED | SAMPLE CONDITION<br>LAB ID |
| MW-1                                                       | ₹                    | Liquid           |                      | THE Cas BIXE      |                            |
| MW-Z                                                       | 3                    |                  | ////35               |                   | (2)                        |
| MW-3                                                       | 3                    |                  | 22:21                |                   | (3)                        |
| TB                                                         | 2                    | 1                |                      | <u> </u>          | $=$ $\overline{(4)}$       |
|                                                            |                      |                  |                      |                   |                            |
| <del></del>                                                |                      |                  |                      |                   |                            |
|                                                            |                      |                  | _                    |                   |                            |
|                                                            |                      |                  |                      |                   |                            |
|                                                            |                      |                  |                      |                   |                            |
|                                                            |                      | -                |                      | -                 |                            |
|                                                            | -                    |                  | - /                  |                   |                            |
| 1 X                                                        |                      | •                |                      |                   |                            |
|                                                            |                      |                  |                      |                   |                            |
| RELINQUISHED EX                                            |                      |                  |                      |                   |                            |
| NECHAROISHEN DA                                            |                      | *                | RECI                 | EIVED BY:         |                            |
| RELINCOISHED                                               | Ulle                 | 7-16-93          | RECI                 | EIVED BY:         |                            |
| M                                                          | w                    | 7-16-93<br>=-    | ins _                | EIVED BY:         |                            |
| RELINQUISHED BY                                            | Y:                   | 7-16-93<br>=     | RECE                 | EIVED BY:         |                            |
| RELINQUISHED BY                                            | Y:                   | 7-16-93          | RECE                 |                   | - 7/10/23 17:              |
| RELINQUISHED BY                                            | Y: Z                 |                  | RECE                 | EIVED BY LAB:     | - 7/10/23 17:              |
| RELINQUISHED BY                                            | Y: Z                 | 7-16-93<br>      | RECE                 | EIVED BY:         |                            |
| RELINQUISHED BY                                            | Y: Z                 | Aname            | RECE                 | EIVED BY LAB:     | - 7/10/23 17:              |
| RELINQUISHED BY                                            | Y: Z                 |                  | RECE                 | EIVED BY LAB:     | - 7/10/23 17:              |
| RELINQUISHED BY  RELINQUISHED BY  DESIGNATED LAB  REMARKS: | Y: Z                 | Aname            | RECE                 | EIVED BY LAB:     |                            |
| RELINQUISHED BY                                            | Y: Y: SORATORY:      | Aname            | RECE TOLY            | EIVED BY LAB:     |                            |

ORIGINAL