

PROTEOTION AL 00 JUN 33 AMIL 38

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

June 30, 2000

Mr. Larry Seto Alameda County Environmental Health Services Environmental Protection 1131 harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Summary of Site Conditions

Chevron Station #20-6145 (Former Signal Oil Station #S0800)

800 Center Street Oakland, California

Delta Project No. DG26-145

Mr. Seto:

At the request of Chevron Products Company, Delta Environmental Consultants Inc./Gettler-Ryan Inc. (GR) has prepared this response to your letter of May 22, 2000, requesting a status report on the air injection biosparge system at the subject site by June 6, 2000. GR requested an extension of the deadline until June 30, 2000, which was accepted by Alameda County Environmental Health Services (ACEHS) in a letter dated June 12, 2000. This site summary was prepared after reviewing files provided by Chevron.

Site Description

The subject site is a vacant lot located on the northeast corner of Center and Eighth Streets in the City of Oakland (Figure 1, Site Location Map, Pacific Environmental Group, Inc. [Pacific]). The subject site is situated in an area of mixed residential, commercial, industrial and transportation uses. Topography in the site vicinity is flat. The nearest surface water body appears to the Oakland Inner Harbor, situated approximately 2,200 feet south of the site.

This site was first developed as a service station in 1932. Four 1,000 gallon underground fuel storage tanks (USTs) and one waste oil UST, apparently installed in 1932 when the station was built, were reportedly removed in 1973 when the station was closed. A hydraulic hoist, two sumps, and the dispenser island were not removed. Locations of pertinent site features are shown on the attached Figure 1, Site Map (Pacific, 5/6/98).

Summary of Previous Environmental Investigations

The information discussed below was obtained from files provided by Chevron. Soil and groundwater analytical data are summarized in attached tables. Locations of the wells and borings are shown on Figure 1, Site Map and Figure 2.

Three subsurface investigations have been performed at the subject site. In 1989, Subsurface Consultants Inc. (Subsurface) drilled five soil borings (1 through 5) to depths between 4.5 and 26 feet below ground surface (bgs). Analytical tables compiled by Subsurface and laboratory reports prepared by Curtis & Tompkins, Ltd. are presented in Enclosure A. Temporary wells were installed in two of these borings. Borings 1 through 4 were installed in the vicinity of the former USTs, the dispenser island, and

Mr. Larry Seto Alameda County Environmental Health Services Environmental Protection June 30, 2000

sumps along the eastern property boundary. Concentrations up to 14,000 parts per million (ppm) of Total Petroleum Hydrocarbons as diesel (TPHd), up to 31,000 ppm of Total Petroleum Hydrocarbons as gasoline (TPHg) and up to 500 ppm of benzene were detected in soil samples collected from depths up to 15 feet bgs. One sample from 3.5 feet bgs in boring 5, situated near the hydraulic hoist, contained 16,000 ppm oil and grease. Grab groundwater samples were collected from borings 1 and 3. TPHd were not detected in either sample. The sample from boring 3 contained benzene at a concentration of 340 ppb.

In 1995, Groundwater Technology Inc. (GTI) drilled three soil borings (SB-1 through SB-3) to 12 feet bgs and installed four groundwater monitoring wells (MW-1 through MW-4) to 15 feet bgs. A table of analytical results by GTI is included in Enclosure B. Concentrations of TPHg (up to 14,000 ppm) and benzene (up to 120 ppm) were detected in soil samples collected at 5 and 10 feet bgs in borings SB-1, SB-2 and MW-1. Benzene or TPHg were not detected in soil samples from borings SB-3 or MW-2 through MW-4 with the exception of benzene at 0.24 ppm in the sample from boring MW-3 at 10 feet bgs.

In 1996, Pacific advanced nine GeoProbe borings (P-1 through P-9) to depths up to 26 feet bgs and installed three additional groundwater monitoring wells (MW-5 though MW-7) to 15 feet bgs. A table of analytical results prepared by Pacific is included in Enclosure C. Five soil vapor points were installed to depths of 6 feet bgs in 1997. Soil samples from borings P-1, P-7, P-8 and MW-5 through MW-7 did not contain detectable concentrations of gasoline or benzene. Borings P-2 and P-3 contained detectable concentrations of TPHg (up to 4,000 ppm) and benzene (up to 28 ppm). It appears that soil samples from borings P-4, P-5, P-6 and P-9 were not analyzed. Grab groundwater samples were collected from all GeoProbe borings. TPHg (58 to 800,000 ppb) were detected in every grab sample except the one collected from boring P-9. Benzene (460 to 13,000 ppb) was detected in grab samples from borings P-1 through P-7.

In 1997, Pacific installed 5 soil vapor points (SV-1 through SV-5) to depths up to 12 feet bgs. A table of analytical results prepared by Pacific is included in Enclosure D. Petroleum hydrocarbons were detected in soil samples collected from all of the soil borings at concentrations up to 8,000 ppm of TPHg and 52 ppm of benzene. Soil vapor samples from these borings contained TPHg up to 50,000 micrograms per liter (μ g/l) and 65 μ g/l of benzene. The highest hydrocarbon concentrations were detected in soil vapor samples collected between 6 and 10 feet bgs.

In 1999, Chevron contracted GR to remove the dispenser island, sumps, hydraulic hoist, building foundations, trash enclosure, yard lights and asphalt remaining at the site. This work was initiated in September 1999 by GR. At that time, GR encountered one 1,000 gallon UST in the area of the former fuel UST pit along the western property boundary, adjacent to Center Street. One 550-gallon waste oil UST was encountered in front of the existing station building situated along the eastern property boundary. One buried 55-gallon steel drum, apparently used as some sort of UST, was encountered in the vicinity of the hydraulic hoist inside the station building. At that time, work at the site was discontinued and discussions between Chevron and the property owner over UST ownership were initiated. The USTs were not removed, and compliance samples were not collected. Locations of the USTs are shown on the attached Figure 2, Site Plan.

Quarterly Monitoring

Quarterly monitoring and sampling at the site began in 1995. To date there have been a total of 16 sampling events. A table of analytical results prepared by Blaine Tech Services, Inc. is included in Enclosure E. TPHg and benzene have been consistently detected in wells MW-1 and MW-3. Data from the most recent available sampling event (January 2000) indicate TPHg in wells MW-1 and MW-3 at

Mr. Larry Seto Alameda County Environmental Health Services Environmental Protection June 30, 2000

concentrations of 7,270 and 1,650 ppb, respectively. Benzene concentrations in these wells were 366 and 496 ppb, respectively. A review of historical data for these wells did not reveal readily apparent decreasing concentration trends. Methyl tert butyl ether (MtBE) has been detected in wells MW-1, MW-3 and MW-4 by EPA Method 8020, but does not appear to have been confirmed by EPA Method 8260. Groundwater samples have not been analyzed for oxygenates other than MtBE. The dissolved hydrocarbon plume appears to be delineated to the east, south and west.

Subsurface Conditions

Soil encountered during the subsurface investigations consisted predominantly of silty sand grading downward in the borings to sand, with lesser amounts of sandy silt and sandy clay. Historical monitoring data indicate that depth to groundwater beneath the site varies from approximately 6 to 11 feet bgs. Groundwater flow has been predominantly toward the southwest, with a relatively flat gradient of approximately 0.002.

Sensitive Receptors

A sensitive receptor survey for this site was not present in the files provided by Chevron, a survey of wells in the site vicinity, or of subsurface utilities in the streets adjacent to the site that might act a preferential pathways were not available.

Discussion

Impacted soil beneath the site appears to be adequately defined. Impacted soil has been encountered under most of the site. Highest concentrations of residual hydrocarbons were encountered in the vicinity of the former UST pit and dispenser island, at depths between 7 and 12 feet bgs (groundwater fluctuation zone). Impacted soil was also encountered in the vicinity of both the hydraulic hoist and the sumps.

The dissolved hydrocarbon plume appears to be mostly defined. Hydrocarbons were not detected in wells MW-2 and MW-4 through MW-7. However, given the strong tendency toward a southwesterly flow direction, there appears to be a gap in the delineation downgradient of the dispenser island. Two groundwater samples collected downgradient of the dispense islands by Pacific in 1996 with GeoProbe borings contained concentrations of TPHg and benzene up to 2,100 and 530 ppb, respectively. In addition, there are no wells upgradient of the former UST pit along Center Street.

Remedial Activities

Pacific has previously proposed installation of a biosparge air injection system at this site. The Work Plan was approved by ACEHS in a letter dated April 19, 2000. Based on observations from the most recent site activities, it appears that this system was never installed. During demolition activities at the site in 1999, GR did not observe any indication that the air sparge piping or sparge points had been installed.

Recommendations

Based on our review of the data provided to GR, we propose the following recommendations:

1. Analyze groundwater samples from the next quarterly monitoring and sampling event for oxygenates (MtBE, TAME, DIPE, ETBE, ethanol, TBA), 1,2-dichloroethane (1,2-DCA) and ethylene dibromide (EDB) by EPA Method 8260. Analysis of these compounds by EPA Method 8260 will be discontinued if they are not detected.

Mr. Larry Seto Alameda County Environmental Health Services Environmental Protection June 30, 2000

- 2. If elevated concentrations of oxygenates are detected by EPA Method 8260, evaluate the need for downgradient delineation of the dissolved plume by installing one offsite well across the intersection of Center and Eighth Streets from the subject site. 0.k.
- 3. Perform a sensitive receptor survey. This should including a review of Department of Water Resources files for wells in the vicinity and a review of the subsurface utilities in the immediate vicinity of the site. 0.10,
- 4. Complete removal of the USTs. During the course of these activities, impacted soil at the site could be excavated to groundwater (approximately 10 feet bgs) to remove the residual hydrocarbon mass that appears to continue to impact groundwater. $\theta_{\ell} k$,
- 5. Monitor and sample the groundwater for a period of at least one year to evaluate concentration trends following removal of impacted soil. θ_{I}/c ,

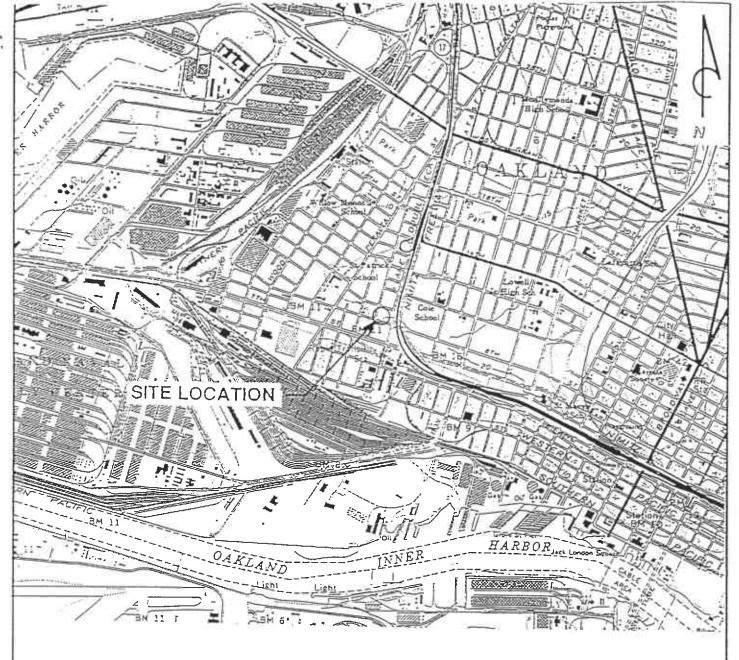
No. 5577

Please contact us at 916.631.1300 if you have questions regarding this report.

Sincerely,

Gettler-Ryan Inc

Stephen J. Carter Senior Geologist


R.G. 557

Greg A Gurss

Sr. Project Manager

Attachments: Figure 1. Site Location Map

Figure 1. Site Map Figure 2. Site Plan Tables of Analytical Data

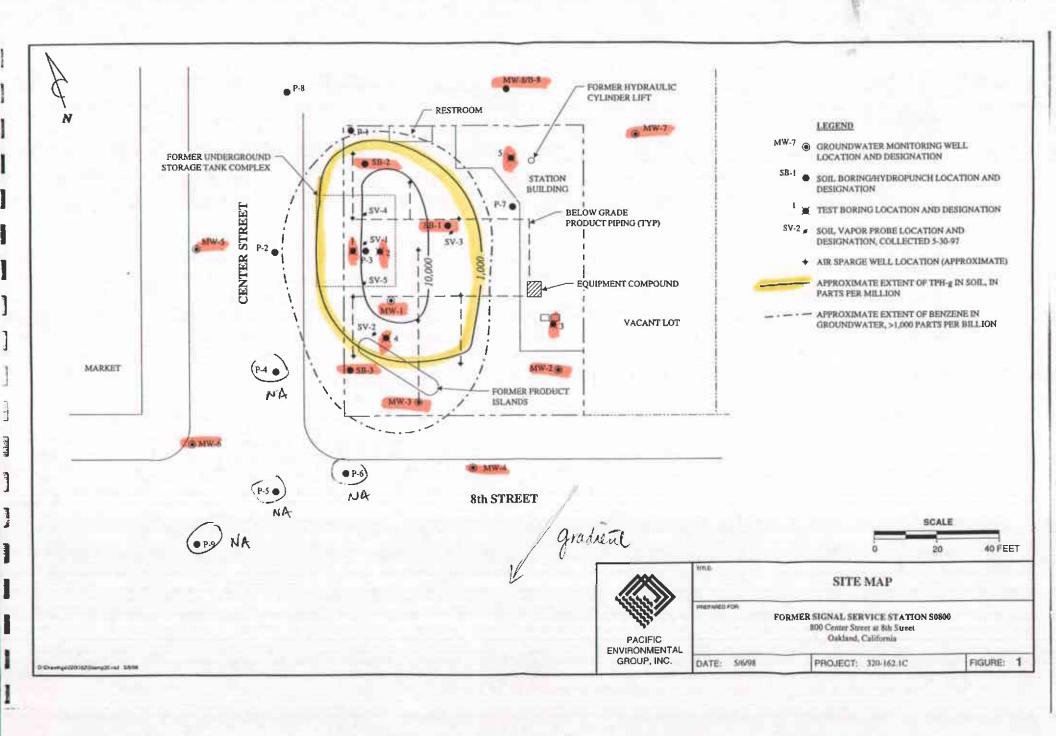
QUADRANGLE LOCATION

REFERENCES:

USGS 7.5 MIN. TOPOGRAPHIC MAP TITLED: OAKLAND WEST, CALIFORNIA

DATED: 1959 REVISED: 1980

CHEVRON U.S.A. SERVICE STATION S0800 800 Center Street at Eighth Street


Oakland, California

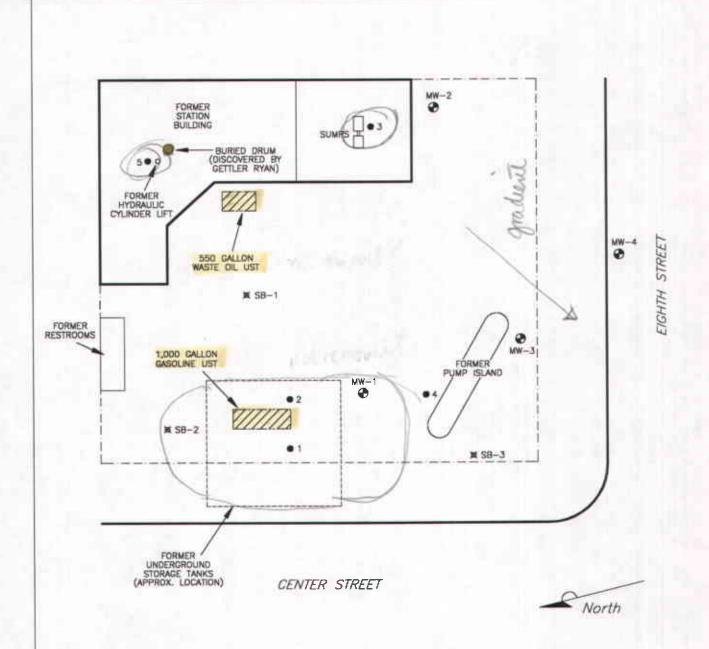
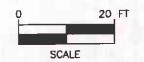

SITE LOCATION MAP

FIGURE:

PROJECT:

320-162.1A



LEGEND:

TEST BORING LOCATION
 MW-1 MONITORING WELL LOCATION

₩ SB-1 SOIL BORING LOCATION

UST'S DISCOVERED BY GETTLER RYAN (SEPT. 1999)

NOTE: FIGURE ADAPTED FROM GROUNDWATER TECHNOLOGY SITE PLAN DATED 11/9/95.

FIGURE 2

SITE PLAN

FORMER CHEVRON SERVICE STATION NO. 206145

800 CENTER STREET

OAKLAND, CA.

PROJECT NO. DRAWN BY M.L 6/30/00 FILE NO. DR26145B JRB REVISION NO. REVIEWED BY 10/30/00

ENCLOSURE A

Subsurface Consultants, Inc. Laboratory Analytical Tables and Curtis & Tompkins, Ltd. Laboratory Reports, 1989

The results of the analytical tests on the soil, sump sludge and groundwater samples are presented below.

Table 1. SOIL ANALYSES

Boring No.	Sample Depth (feet)	Total Po Hydroc: (pp: TVH		Benzene (ppm)	Toluene (ppm)	Ethyl- Benzene (ppm)	Total Xylenes (ppm)
1	10	2100	6800	50	220	46	240
	15	2400	NT	32	200	60	290
2	7	4100	14000	50	450	130	540
2	11.5	31000	NT ³	500	2800	760	3700
3	10.5	100	ND	ND ⁴	2	2	7
3	12.5	950	220	ND	44	32	130
4	7.5	5400	5100	57	250	140	610
4	10.5	5800	NT	92	360	1100	670
Boring	Depth	TOG	Cadmi		omium	Lead	Zinc
No.	feet	(ppm)	(ppm		opm)	(ppm)	(ppm)
3	3.5	ND	0.7		18	18	19
5⁵	3.5	16,000	NT		VT	NT	N T

Parts per million

Table 2. GROUNDWATER ANALYSES

Boring No.	тVн <u>(рр</u> m)	TEH (ppm)	Benzene (ppm)		Ethyl- Benzene (ppm)		Other EPA 624 Chemicals (ppm)
1	2600	ND	13	41	22	140	NT
3	43	ND	0.34	4.2	1.1	2.5	ND

² As gasoline

 $^{^{3}}$ NT = not tested

⁴ ND = Not detected, see analytical test reports for detection limits

⁵ Boring 5 identified as HA on Laboratory Test Reports

Table 3. SUMP WASTE ANALYSES

Test	Concentration (ppb)1
Volatile Organics (EPA 8240)	ND
Semi Volatile Organics (EPA 8270	0)
Pyrene	32
Butylbenzylphthalate	21
Other (EPA 8270 chemicals)	ND

Selected Heavy Metals	Concentration (ppm)4	TTLC (ppm)	STLC ³ (ppm)
Cadmium	2.2	100	1
Chromium	10	2500	560
Lead	1400	1000	5
Zinc	180	5000	250

Parts per billion Total Threshold Limit Concentration

Soluble Thr shold Limit Concentration

Parts per million

LABORATORY NUMBER: 18154

CLIENT: SUBSURFACE CONSULTANTS

JOB NUMBER: 272.012

JOB LOCATION: CENTER STREET

DATE RECEIVED: 08/30/89

DATE ANALYZED: 09/11/89

DATE REPORTED: 09/13/89

PAGE 2 OF 14

Total Volatile Hydrocarbons (TVH) by EPA 8015 Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 602/8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	TVH AS GASOLINE	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
18154-1	BORING #1	2,600	13	41	22	140

QA/QC SUMMARY

%RPD 3 %RECOVERY 89

LABORATORY NUMBER: 18154

CLIENT: SUBSURFACE CONSULTANTS

JOB NUMBER: 272.012

JOB LOCATION: CENTER STREET

DATE RECEIVED: 08/30/89

DATE ANALYZED: 09/11/89 DATE REPORTED: 09/13/89

PAGE 3 OF 14

Total Volatile Hydrocarbons (TVH) by EPA 8015 Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 602/8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT	ID			TVH AS GASOLIN	BENZENE E	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
					(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
18154-4 18154-5 18154-6 18154-7	BORING BORING BORING BORING	1 2	ē @	10 15 7 11.5	2,100 2,400 4,100 31,000	50 32 50 500	220 200 450 2,800	46 60 130 760	240 290 540 3,700
18154-8 18154-9 18154-11 18154-12		3	® 8 8	10.5 12.5 7.5 10.5	100 950 5,400 5,800	ND(1) ND(5) 57 92	2 44 250 360	2 32 140 1,100	7 130 610 670

ND = None Detected; Limit of detection is indicated in parentheses.

QA/QC SUMMARY %RPD <1 %RECOVERY 96

LABORATORY NUMBER: 18154

CLIENT: SUBSURFACE CONSULTANTS

JOB #: 272.012

LOCATION: CENTER STREET

DATE RECEIVED: 08/30/89

DATE ANALYZED: 09/07/89 DATE REPORTED: 09/13/89

PAGE 6 OF 14

Extractable Petroleum Hydrocarbons in Soils & Wastes EPA 8015 (Modified) Extraction Method: EPA 3550

LAB ID	CLIENT ID	GASOLINE (mg/Kg)	KEROSENE (mg/Kg)	DIESEL (mg/Kg)	OTHER (mg/Kg)
18154-4	BORING 1 @ 10	6,800	ND(100)	ND(100)	ND(100)
18154-6	BORING 2 @ 7	14,000	ND(100)	ND(100)	ND(100)
18154-8	BORING 3 @ 10.	5 ND(10)	ND(10)	ND(10)	ND(10)
18154-9	BORING 3 @ 12.	5 220	ND(10)	ND(10)	ND(10)
18154-10	BORING 3 @ 3.5	ND(10)	ND(10)	ND(10)	ND(10)
18154-11	BORING 4 @ 7.5	5,100	ND(100)	ND(100)	ND(100)

ND = Not Detected; Limit of detection in parentheses.

QA/QC SUMMARY

Duplicate: Relative % Difference 11
Spike: % Recovery 95

LAB NUMBER: 18154

CLIENT: SUBSURFACE CONSULTANTS

PROJECT # : 272.012

LOCATION: CENTER STREET

DATE RECEIVED: 08/30/89
DATE ANALYZED: 09/13/89

DATE REPORTED: 09/14/89

PAGE 7 OF 14

ANALYSIS: OIL AND GREASE

METHOD: SMWW 503E

LAB ID	SAMPLE ID	RESULT	UNITS	DETECTION LIMIT
18154-10	BORING 3 @ 3.5	ND	mg/Kg	50
18154-13	BORING HA @ 3.7	16,000	mg/Kg	50

ND = NONE DETECTED.

QA/QC SUMMARY

THE RPD, %

RECOVERY, %

82

DATE RECEIVED: 08/30/89 LABORATORY NUMBER: 18154-14 DATE ANALYZED: 09/13/89 CLIENT: SUBSURFACE CONSULTANTS DATE REPORTED: 09/14/89 JOB #: 272.012 - CENTER STREET SAMPLE ID: SUMP PIT

PAGE 9 OF 14

EPA METHOD 8240: VOLATILE ORGANICS IN SOILS & WASTES

	Result	Detection
COMPOUND	ug/kg	Limit
COMPOUND	49,149	ug/kg
3. 3.	ND	1000
chloromethane	ND	1000
bromomethane	ND	1000
vinyl chloride	ND	1000
chloroethane	=	500
methylene chloride	ND	500
trichlorofluoromethane	ND	500
1,1-dichloroethene	ND	500
1,1-dichloroethane	ND	
trans-1,2-dichloroethene	ND	500
chloroform	ND	500
1,2-dichloroethane	ND	500
1,1,1-trichloroethane	ND	500
carbon tetrachloride	ЙD	500
bromodichloromethane	ЙD	500
1,2-dichloropropane	ND	500
cis-1,3-dichloropropene	ND	500
trichloroethylene	ND	500
dibromochloromethane	ND	500
1,1,2-trichloroethane	ND	500
benzene	ND	500
trans-1,3-dichloropropene	ND	500
	ND	1000
2-chloroethylvinyl ether	ND	500
bromoform	ND	500
1,1,2,2-tetrachloroethane	ND	500
tetrachloroethylene	ND	500
toluene	ND	500
chlorobenzene	ND	500
ethyl benzene	MD	300
Non-Priority Hazardous Pollutant S	Substances List	Compounds
2001000	ND	1000
acetone carbon disulfide	ND	500
	ND	1000
2-butanone	ND	1000
vinyl acetate	ND	1000
2-hexanone	ND	1000
4-methyl-2-pentanone	ND	500
styrene	ND	500
total xylenes	ND	200
QA/QC SUMMARY: SURROGATE RECOVERIES	ዕለ ዩ	
1,2-Dichloroethane-d4	99 %	
Toluene-d8	99 %	
nfluorobongono	98 %	

Bromofluorobenzene

98 %

LABORATORY NUMBER: 18154-14 CLIENT: SUBSURFACE CONSULTANTS

JOB #: 272.012

SAMPLE ID: SUMP PIT

DATE RECEIVED: 08/30/89 DATE EXTRACTED: 09/05/89 DATE ANALYZED: 09/08/89 DATE REPORTED: 09/14/89

PAGE 10 OF 14

RESULT

EPA METHOD	8270: BASE/NEUTRAL	AND ACID EXTRACTABLES	IN SOILS & WASTES
	METHOD: EPA 3580 -		
		RESULI	LOD

NATE COMPOSITION	mg/kg	mg/kg
ACID COMPOUNDS	шд, ид	
Phenol	ND	10
2-Chlorophenol	ND	10
2-Nitrophenol	ND	50
2,4-Dimethylphenol	ND	10
2,4-Dichlorophenol	ND	10
4-Chloro-3-methylphenol	ND	20
2,4,6-Trichlorophenol	ND	10
2,4-Dinitrophenol	ND	50
4-Nitrophenol	ND	50
2-Methyl-4,6-dinitrophenol	ND	50
Pentachlorophenol	ND	50
BASE/NEUTRAL COMPOUNDS		
N-Nitrosodimethylamine	ND	10
Bis(2-chloroethyl)ether	ND	10
1,3-Dichlorobenzene	ND	10
1,4-Dichlorobenzene	ND	10
1,2-Dichlorobenzene	ND	10
Bis(2-chloroisopropyl)ether	ND	10
N-nitrosodi-n-propylamine	ND	10
Hexachloroethane	ND	10
Nitrobenzene	ND	10
Isophorone	ND	10
Bis(2-chloroethoxy)methane	ND	10
1,2,4-Trichlorobenzene	ND	10
Naphthalene	ND	10
Hexachlorobutadiene	ND	10
Hexachlorocyclopentadiene	ND	10
2-Chloronaphthalene	ИD	10
Dimethyl phthalate	ND	10
Acenaphthylene	ИД	10 10
2,6-Dinitrotoluene	ИD	10
Acenaphthene	ND	10
2,4-Dinitrotoluene	ИD ND	10
Fluorene	ND	10
Diethyl phthalate	ND	10
4-Chlorophenylphenyl ether	ND	10
N-Nitrosodiphenylamine	ND	10
1,2-Diphenylhydrazine	ND	10
4-Bromophenylphenyl ether	110	

LABORATORY NUMBER: 18154-14

SAMPLE ID: SUMP PIT

EPA 8270 PAGE 11 OF 14

BASE/NEUTRAL COMPOUNDS	RESULT mg/kg	LOD mg/kg
Azobenzene Hexachlorobenzene Phenanthrene Anthracene Dibutylphthalate Fluoranthene Benzidine Pyrene Butylbenzylphthalate Benzo (a) anthracene 3,3'-Dichlorobenzidine Chrysene Bis (2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	ND N	10 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20
HSL COMPOUNDS		
Aniline Benzoic Acid 2-Methylphenol 4-Methylphenol 2,4,5-Trichlorophenol Aniline Benzyl Alcohol 4-Chloroaniline 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Dibenzofuran 4-Nitroaniline	ND N	10 50 10 10 50 10 10 10 10

LABORATORY NUMBER: 18154-14

SAMPLE ID: SUMP PIT

EPA 8270 PAGE 12 OF 14

COMPOUND	RESULT mg/kg	LOD mg/kg
CHLORINATED PESTICIDES		
alpha-BHC beta-BHC gamma-BHC delta-BHA Heptachlor Aldrin Heptachlor Epoxide Endosulfan I pp-DDE Dieldrin Endrin Endrin Endosulfan II pp-DDD Endrin Ketone Endosulfan Sulfate pp-DDT Chlordane Toxaphene Methoxychlor	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 10 10 10 10 10 10 10 10 10 10 50 50
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	ND ND ND ND ND ND	50 50 50 50 50 50

ND = None Detected, Limit of Detection (LOD) appears in far right column

LABORATORY NUMBER: 18154-10 CLIENT: SUBSURFACE CONSULTANTS

PROJECT #: 272.012

LOCATION: CENTER STREET SAMPLE ID: BORING 3 @ 3.5

DATE RECEIVED: 08/30/89 DATE ANALYZED: 09/05/89 DATE REPORTED: 09/14/89

PAGE 13 OF 14

Metals in Soils & Wastes Digestion Method: EPA 3050

ANALYSIS	RESULT	UNITS	DETECTION LIMIT	METHOD
Cadmium	0.7	mg/Kg	0.5	EPA 6010
Chromium	18	mg/Kg	0.5	EPA 6010
Lead	18	mg/Kg	2.5	EPA 7420
Zinc	19	mg/Kg	0.5	EPA 6010

QA/QC:

QA/QC:	=======	
	RPD, %	RECOVERY, %
Cadmium	<1	92
Chromium	<1	94
Lead	3	100
Zinc	3	90

LABORATORY NUMBER: 18154-14 CLIENT: SUBSURFACE CONSULTANTS

PROJECT #: 272.012

LOCATION: CENTER STREET SAMPLE ID: SUMP PIT

DATE RECEIVED: 08/30/89 DATE ANALYZED: 09/05/89 DATE REPORTED: 09/14/89

PAGE 14 OF 14

Metals in Soils & Wastes Digestion Method: EPA 3050

ANALYSIS	RESULT	UNITS	DETECTION LIMIT	METHOD
Cadmium	2.2	mg/Kg	0.5	EPA 6010
Chromium	10	mg/Kg	0.5	EPA 6010
Lead	1,400	mg/Kg	2.5	EPA 7420
Zinc	180	mg/Kg	0.5	EPA 6010
	/	1		

Mayerdons werk

No STLL No
or TILC Test Completed.

Not needed.

Ω	۱,	O	C	*

X, X		
# = = = = = = = = = = = = = = = = = = =		
	RPD, %	RECOVERY, %
Cadmium	<1	92
Chromium	<1	94
Lead	3	100
Zinc	3	90

ENCLOSURE B

Analytical Results Table Prepared by Groundwater Technology, Inc. in 1995

TABLE 1 Analytical Results of Soil Samples (Results expressed as milligrams per kilogram)

Former Signal Service Station No. S0800 800 Center Street Oakland, California

						
Sample ID	Sample Depth (ft)*	Benzene	Toluene	Ethyi- benzene	Total	TPH-g⁵
MW-1-5	5	0.091				
MW-1-10	10	 		 		11
MW-2-5	5	 -		 	1,300	14,000
	 			<0.0050	< 0.0050	< 1.0
		<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0
 	5	<0.0050	<0.0050	< 0.0050	<0.0050	<1.0
MW-3-10	10	0.24	0.010	0.016	0.019	< 1.0
MW-4-5	5	< 0.0050	<0.0050	<0.0050		
MW-4-10	10	<0.0050	< 0.0050	 		<1.0
SB-1-5	5	0.34		<u> </u>		<1.0
SB-1-10	10					87
SB-2-5	5				1,100	8,100
			4.8	5.1	26	240
		28	440	150	630	4,700
		<0.0050	0.019	0.0087	0.049	<1.0
SB-3-10	10	<0.0050	<0.0050	< 0.0050	<0.0050	<1.0
COMP	N/A	0.036	1.5	0.75		13
	MW-1-5 MW-1-10 MW-2-5 MW-2-10 MW-3-5 MW-3-10 MW-4-5 MW-4-10 SB-1-5 SB-1-10 SB-2-5 SB-2-10 SB-3-5 SB-3-10	Sample ID Depth (ft)* MW-1-5 5 MW-1-10 10 MW-2-5 5 MW-2-10 10 MW-3-5 5 MW-3-10 10 MW-4-5 5 MW-4-10 10 SB-1-5 5 SB-1-10 10 SB-2-5 5 SB-3-10 10	Sample ID Depth (ft)* Benzene MW-1-5 5 0.091 MW-1-10 10 120 MW-2-5 5 <0.0050	Sample ID Depth (ft)* Benzene Toluene MW-1-5 5 0.091 0.49 MW-1-10 10 120 800 MW-2-5 5 <0.0050	Sample ID Depth (ft)* Benzene Toluene Ethyfbenzene MW-1-5 5 0.091 0.49 0.14 MW-1-10 10 120 800 270 MW-2-5 5 <0.0050	Sample ID Depth (ft)* Benzene Toluene Ethylbenzene Total Xylenes MW-1-5 5 0.091 0.49 0.14 1.9 MW-1-10 10 120 800 270 1,300 MW-2-5 5 <0.0050

^a feet below surface grade ^b total petroleum hydrocarbons as gasoline

ENCLOSURE C

Analytical Results Tables Prepared by Pacific Environmental Group in 1996

Table 1 Soil Analytical Data Total Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE)

Former Signal Service Station 50800 800 Center Street at 8th Street Oakland, California

	Sample		TPPH as			Ethyl-		
Well	Depth	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE
Number	(feet)	Sampled	(ppm)	(mgq)	(ppm)	(mga)	(maa)	(וחכם)
P-1	6	03/22/95	ND	ND	ND	ND	ND	ND
	10		510	ND	18	9.7	46	ND
	17		ND	מא	ND	800.0	0.009	ND
P-2	6	03/22/96	4,000	ND	120	71	330	ИD
P-3	10	03/22/96	13,000	38	780	280	1,400	ND
	16		5,400	41	310	110	1,400	NO
	20		260	3.7	21	6,2	27	ND
P-7	6	03/22/95	ND	ND	ND	ND	ND	ND
	10		1	В	ND	ND	ПD	ND
	15		13	ND	0.31	0.15	0.71	GN
P-8	6	03/22/96	ND	ND .	ND	ND	ND	ND
	12		ND	ND	ND	0.0066	ND	ND

ТРРН

= Total purgeable petroleum hydrocarbons = Methyl t-butyl ether

мтве

ррт

= Parts per million

ND

= Not detected

See certified analytical reports for detection limits.

Specific Gravity ASTM D-854

Cooper Testing Lab

Job#:	049-022			Date:	12/24/96		
Client:	Pacific En	vironmenta	l	Ву:	DC		
Project:	320-162.1	В					
Boring:		MW-7	MW-7				
Sample:							
Depth, ft.:		5.5	15.5	. <u>.</u>			
Soil		brown	prown				
Classification	on:	clayey	clayey				
(visual)		SAND	SAND				
,							i
Wt. of Pycr	nometer						
Soil & Wate		343.26	314.5		İ		
Temp. cent		19	19				
Wt. of Pycr							
& Water, g		302.31	274.61				
Wt. Dry So	il, gm:	64.49	63.28				
Temp. Cor							
Factor:		1	11				
Specific G	ravity:	2.74	2.71	ERR	ERR	ERR	ERR

Remarks: The temperature correction factor is shown as 1 if the

weight of the pycnometer is taken from the lab

temperature correction curve.

	(COOPER TESTI	NG LABS			.,					
	MOISTURE D	ENSITY - POR	OSITY DAT?	A SHEET		1					
Job # 049-022 Client Pacific Environmental Project/Location 320-162.1B Date 12/24/96											
Boring #	MW-7	MW - 7									
Depth (ft)	5.5	15.5									
Soil Type	brown clayey SAND	brown clayey SAND									
Specific Gravity	2.74	2.71				PRINCIPLE APPLACE					
Volume Total cc	233,588	290.633									
Volume of Solids	155.156	194.509									
Volume of Voids	78.432	96.124									
Void Ratio	0.506	0.494									
Porosity %	33.6%	33.1%									
Saturation %	98.6%	98.7%									
Moisture %	18.2%	18.0%									
Dry Density (pcf)	113.6	113.2									
		Remar}	s								

Table 1 Soil Analytical Data Total Petroleum Hydrocarbons (TPPH as Gasoline and BTEX Compounds)

Former Signal Service Station S0800 800 Center Street at 8th Street Cakland, California

Well/		Sample	TPPH as			Ethyl-	
Boring	Date	Depth	Gasoline	Benzene	Toluene	benzene	Xylenes
Number	Sampled	(feet)	(ppm)	(mgg)	(ppm)	(bbw)	(ppm)
MVV-5	12/18/95	5	<1.0	<0.0050	0,016	0.0083	0,046
		10	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
		15	<1.0	<0.0050	<0.0050	<0,0050	<0.0050
MW-6	12/18/96	5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
		10	<1.0	<0.0050	<0.0050	<0,0050	<0.0050
<u>.</u>		15	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MW-7	12/18/96	5	<1.0	<0.0050	<0.0050	<0.0050	<0,0050
ļ		10	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050
		15	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MVV-8/B-8	12/18/96	5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
		10	<1.0	<0.0050	< 0.0050	<0.0050	< 0.0050
		15	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
TPPH	= Total pu	rgeable pel	roleum hydr	ocarbons	·		
mqq	= Parts pe	r million	<u>.</u>	<u></u>			

Table 2 **Groundwater Analytical Data** Total Petroleum Hydrocarbons

(TPPH as Gasoline, BTEX Compounds, MTBE, and TRPH)

Former Signal Service Station S0800 800 Center Street at 8th Street Oakland, California

		TPPH as			Ethyl-			
Boring	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TRPH
Number	Sampled	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)
P-1	03/22/96	320,000	7,700	52,000	7,300	31,000	ND	NA
P-2	03/22/96	800,000	13,000	72,000	15,000	76,000	ND.	NA
P-3	03/22/96	69,000	460	9,500	2,000	9,000	NA	NA
P-4	03/26/96	12,000	6,900	16,000	2,700	11,000	ND	NA
P-5	03/26/96	1,900	ND)^A	470	ND	ND	ND	NA
P-6	03/26/96	2,100	530	ND	ND	ND	ND	NA
P-7	03/22/96	160,000	8,400	28,000	3,200	16,000	ND	ND
P-8	03/22/96	58	ND	4.1	0.55	2.9	ND	NA
P-9	03/26/96	ND	ND	ND	ND	ND	ND	NA

= Methyl t-butyl ether MTBE

= Total recoverable petroleum hydrocarbons TRPH

= Parts per billion ppb = Not detected ND NΑ = Not anlayzed

= Originally reported by Sequoia Analytical as 8,900 ppb MTBE; 8260 analysis indicated that MTBE was not present in the sample. GC results should be regarded as coelution of another compound in the sample in the retention window for MTBE.

See certified analytical reports for detection limits.

ENCLOSURE D

Analytical Results Tables Prepared by Pacific Environmental Group in 1997

Table 3 Analytical Soil Data

Former Signal Service Station 0800 800 Center Street at Eighth Street Oakland, California

Soil Sample	Sample	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
ID	Date	Depth	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SV-1	5/30/97	3	<1.D	<0.005	.005	<0.005	<0,005
		6	2,100	<2.5	46	57	300
		8.5	7,600	5.2	*360	140	720
SV-2	5/30/97	3,5	<1.0	≲0 .005	<0,005	1 <0.005	<0.005
		6	11	20.005	0.009	D.01	0.057
		9	8,00@	12	<i>6</i> 420	150	710
SV-3	5/30/97	3	1.4	40.0 05	0.029	0.014	0,1
		6	. 84	13	0.28	1.4	1.9
		9	8 200	5.4	130	83	340
		_			₹\$\$		
SV-4	5/30/97	3	× 1.0	0.0 05	0,0058	<0.005	0.01
				<0.005	<0.005	<0.005	<0.005
	. Sign		10.000	86	470	210	960
	, a 198	7					
SV-5	5/30/97	3.1000	. < 1.0	<0.005	<0.005	<0.005	<0.005
			1.0	<0,005		<0.005	< 0.005
		9	7,900	20			690

mg/kg = Maigrains per kilograms TPH-g = Total petroleum hydrocarbons calculated as gasoline

Table 2 Physical Soil Data

Formet Signal Service Station 0800 800 Center Street at Elghth Street Oakland, California

		Sample	Total 🔏	Air 🚓	Waler				Soil
Sample	Sample	Depth	Porosity	- A A A A A		Saturation	pН	Fac	Density
ID	Date	feet	77	90	%	%		%	g/cc
SV-1	5/30/97	2.5	44.75 &	36	8.8	19.67	6.31	NT	0.068
04-1	3/45/37	6	ງ9.5 2 ຊື່	43	3521	89.1	NT	NT	0.275
		8.5	NT.	NE	NT	NT	NT	0.12	NT
		9.5	33,6	0.15	33.6	99.57	6.8	NT	0.26
	5 10 0 10 7	3	NT	ANT	at Pin	NT	7.53	NT	NT
SV-2	5/30/97	3.5	NT	NT 4	estant	NT	NT	0.083	NT
		9	NT	N			NT	0.067	NT
		10	34.02	0.95	33.	97.21	7.03	NT	0.257
SV-3	5/30/97	3.5	46	30	18	1 5601	7.58	NT	0.126
	0,00,0,					769 TO.	4	1	
Overali Av	/erages =		39.65	14.3	25.34	68.11	7.07	0.09	0.197
	_	(to 3.5 feet) =	45.57*	33*	12.4*	27.34	6,99*	NT.	0.097*
	one Average		43.4	23.4	20	47.9	6.99	TWO'S TO	0.158
UT - Nat		· · · · · · · · · · · · · · · · · · ·						ir ir	

NT = Not tested

Soil Density = Dry density x moisture %

g/cc = grams per cubic centimeter

Foc = Fraction of organic carbon

^{* =} These values were used to calculate the soil vapor model risk and the construction worker RBSL

Table 1 Soil Vapor Data

Enrmer Signal Service Station 0800 800 Center Street at Eighth Street Oakland, California

Sample	Sample	Sample	Benzene	oluene & Et	hylbenzene	Xylenes	TPH-g	0,	CO,
JD	Date	Depth		(µg/\/\)		(jig/L)	(μg/L)	%	%
SV-1	5/30/97	3	0.17	1.6	0.75	5.3	360	20.97	0,87
Q V - 1	0,50,0,	6	65	<i>-</i> 320	84	430	50,000	18.97	1.00
		9	32.	230	340	1,400	24,000	20.97	0.07
			- V						
SV-2	5/30/97	3	NĎ	0.11	0.11	0.53	11	15.97	6.00
		6	22	100	194	66	27,000	18.97	2.20
		9	NT	≠ <mark>N</mark> T	N. Carlotte	NT	NT	20.97	0.10
	44-548		AID.	0 5 / 2		12	<u></u> 180	. NT	N'
SV-3	5/30/97	3	ND	0.54%		5.25	83	NT	N ⁻
		6	ND	0.42	U20049	100	OD S	NT	N'
		8	6,5	54			3,400	141	14
SV-4	5/30/97	3	ND	0.034	0.17	0.48	<u>a</u> 71.€	A NT	N
Q V-4	3/30/37	6	ND	0.08	0.48	1.4	270	NT NT	N
		9	17	150	36	160	5,400	TU	N
		J	•						
SV-5	5/30/97	3	ND	0.015	0.009	0.071	الله الله الله الله الله الله الله الله	N	N
•	<u>-</u> – – – •	6	0.84	6,1	0.79	3.3	660	NT	N
		9	11	84	24	110	<u> </u>	NT	N

μg/L = Micrograms per liter

TPH-g = Total petroleum hydrocarbons calculated as gasoline

O₁ = Oxygen

CO₂ = Carbon dioxide

ENCLOSURE E

Analytical Results Tables
Prepared by
Blain Tech Services, Inc.
First Quarter 2000 Monitoring and Sampling Report

Vertical Measu	rements are	e in feet.			Anal	ytical results a	re in parts per	billion (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	MTBE	CUB (cfu/ml)
MW-1				···						-	
10/27/1995	15.69	10.54	5.15		170,000	19,000	34,000	4800	26,000		
2/20/1997	15.64	8.96	6.68		18,000	870	3500	470	2100	<250	
4/24/1997	15.64	7.30	8.34		76,000	4600	16,000	1600	8300	1000	
7/23/1997	15.64	5.90	9.74		37,000	2700	8000	870	6100	<250	
10/29/1997	15.64			Inaccessible		_					
1/28/1998	15.64	9.30	6.34		10,000	380	2000	300	1500	<25	
5/11/1998	15.64	8.72	6.92		17,000	880	3100	380	2300	<250	
7/16/1998	15.64	7.23	8.41		29,000	2700	6800	890	3900	<1000	
8/4/1998	15.64	6.90	8.74	**	_						<1.0 x 10 ¹
9/3/1998	15.64	6.43	9.21	**/+						_	4.1×10^{3}
10/21/1998	15.64	5.59	10.05	***	_	_					4.7×10^{2}
11/4/1998	15.64	5.64	10,00		_25.000	1900	5900	810	4300	<125	
1/26/1999	15.64	6.86	8.78		<50	<0.5	<0.5	<0.5	<0.5	<2.0	
5/6/1999	15.64	8.17	7.47		8050	515	1840	256	1190	300	
5/6/1999	15.64	8.17	7.47	Confirmation Run						<20	
8/21/1999	15.64	13.27	237		4 <u>6,500</u>	2530	8700	1010	5300	<1250	
8/21/1999	15. 6 4	13.27	2.37	Confirmation Run						<40	
10/28/1999	15.64	5.46	10.18		<u>31,600</u>	1580	6100	794	4400	1270	
1/31/2000	15.64	7.49	8.15		7270	366	1280	171	935	<12.5	

^{**} Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.
***Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measu	rements are	e in feet.			Anal	ytical results a	re in parts per	billion (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	мтве	CUB (cfu/ml)
MW-2							•				
10/27/1995	15.77	10.60	5.17		<50	<0.5	<0.5	<0.5	<0.5		
2/20/1997	15.72	8.51	7.21		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
4/24/1997	15.72	7.82	7.90		83*	<0.5	· <0.5	<0.5	<0.5	<2.5	
7/23/1997	15.72	5.92	9.80		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/29/1997	15.72	5.13	10.59		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
1/28/1998	15.72	9.21	6.51		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
5/11/1998	15.72	8.82	6.90	Sampled annually		_	_				
7/16/1998	15.72	7.37	8.35				·				
8/4/1998	15.72	7.03	8.69	**			_				1.9 x 10 ¹
9/3/1998	15.72	6.44	9.28	**/+							3.0×10^{2}
10/21/1998	15.72	5.51	10.21	***							8.8×10^{2}
11/4/1998	15.72	5.60	10.12	.							
1/26/1999	15.72	6.87	8.85		<50	<0.5	<0.5	<0.5	<0.5	<2.0	
5/6/1999	15.72	8.20	7.52					***			
8/21/1999	15.72	13.21	2.51								
10/28/1999	15.72	6.35	9.37							•	
1/31/2000	15.72	7.25	8.47		<50	<0.5	0.541	<0.5	<0.5	<2.5	

^{*} Chromatogram pattern indicates an unidentified hydrocarbon.

** Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.

^{***}Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measur	ements are	e in feet.			Anal	tical results a	re in parts per	billion (ppb)			
DATE	Well Head Elev.	Ground Water Elev	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	МТВЕ	CUB (cfu/ml)
MW-3											
10/27/1995	15.46	10.37	5.09		33,000	11,000	1700	2300	4200		
2/20/1997	15.42	8.37	7.05		260	56	<1.0	7.6	5.9	<5.0	
4/24/1997	15.42	7.29	8.13	· ·	1400	310	28	76 ·	75	74	
7/23/1997	15.42	5.84	9.58		37,000	10,000	1500	2700	4200	2500	
10/29/1997	15.42	5.09	10.33		53,000	12,000	1200	3000	3100	2500	
1/28/1998	15.42	8.94	6.48		210	43	1.5	1.7	3.9	10	
5/11/1998	15. 4 2	8.49	6.93		59	11	<0.5	2.1	<0.5	<2.5	
7/16/1998	15.42	7.14	8.28		260	90	4.8	18	5.7	<10	
8/4/1998	15.42	6.88	8.54	*					_		8.5×10^2
9/3/1998	15.42	6.34	9.08	*/+							2.4 x 10 ³
10/21/1998	15.42	5.62	9.80	**							6.0×10^{1}
11/4/1998	15.42	5.60	9.82		73,000	17,000	3800	4900	8100	<250	
1/26/1999	15.42	6.70	8.72		32,400	10,200	1850	2650	3140	715	
1/26/1999	15.42	6.70	8.72	Confirmation Run						<500	
5/6/1999	15.42	7.97	7.45		3160	668	89.6	180	123	<200	
5/6/1999	15.42	7.97	7.45	Confirmation Run		•			_	<10	
8/21/1999	15.42	7.95	7.47		53,800	9700	2040	2880	5000	<1250	
8/21/1999	15.42	7.95	7.47	Confirmation Run						<40	
10/28/1999	15.42	5.37	10.05		7 <u>1,300</u>	14,000	3420	4320	8360	<1000	
1/31/2000	15.42	7.16	8.26	- <	(1650)) 496	4 9.1	134	82.6	<12.5	

^{*} Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.

^{**} Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measu	rements are	e in feet.			Anal	ytical results a	re in parts per	billion (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	МТВЕ	CUB (cfu/ml)
MW-4		-									·
10/27/1995	14.45	9.37	5.08		66	6.8	<0.5	<0.5	<0.5		
2/20/1997	14.40	8.12	6.28		54	<0.5	<0.5	<0.5	7.4	39	
4/24/1997	14.40	7.29	7.11		· 54	1.4	<0.5	0.65	3.0	100	
7/23/1997	14.40	5.80	8.60		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/29/1997	14.40	5.74	8.66	Inaccessible						_	
11/13/1997	14.40	4.97	9.43		<50	<0.5	0.79	<0.5	<0.5	<2.5	
1/28/1998	14.40	8.88	5.52		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
5/11/1998	14.40	8.40	6.00	Sampled biannually							
7/16/1998	14.40	7.08	7.32		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
8/4/1998	14.40	6.28	8.12	*							1.8 x 10 ⁴
9/3/1998	14.40	6.32	8.08	*/+							1.4×10^4
10/21/1998	14.40	5.64	8.76	**							8.6 x 10⁴
11/4/1998	14.40	5.61	8.79	w=							
1/26/1999	14.40	6.71	7.69		<50	<0.5	<0.5	<0.5	<0.5	<2.0	
5/6/1999	14.40	8.15	6.25								
8/21/1999	14.40	8.13	6.27		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/28/1999	14.40	4.14	10.26		**						
1/31/2000	14.40	7.07	7.33		<50	<0.5	<0.5	<0.5	<0.5	<2.5	

^{*} Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.
** Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measu	rements are	e in feet.			Anal	ytical results a	re in parts per	billion (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	МТВЕ	CUB (cfu/ml)
MW-5											
1/3/1997					<50	<0.5	<0.5	<0.5	<0.5		
2/20/1997	15.03			Inaccessible				_			
4/24/1997	15.03	·		Inaccessible		'					
4/30/1997	15.03	7.06	7.97		<50	<0.5	<0.5	< 0.5	<0.5	<2.5	-
7/23/1997	15.03	**		Inaccessible				_			
10/29/1997	15.03	_		Inaccessible							
1/28/1998	15.03	8.83	6.20		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
5/11/1998	15.03	·		Inaccessible		 '					
7/16/1998	15.03	7.28	7.75		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
8/4/1998	15.03			Inaccessible							
11/4/1998	15.03			Inaccessible							
1/26/1999	15.03			Inaccessible						_	
5/6/1999	15.03		_	Inaccessible							
8/21/1999	15.03	6.74	8.29		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/28/1999	15.03	4.60	10.43								
1/31/2000	15.03	7.39	7.64		<50	<0.5	<0.5	<0.5	<0.5	<2.5	

Vertical Measu	rements are	e in <u>feet.</u>			Analytical results are in parts per billion (ppb)								
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	MTBE	CUB (cfu/ml)		
MW-6		· · · · · · · · · · · · · · · · · · ·							· ···· -				
1/3/1997					<50	<0.5	<0.5	<0.5	<0.5				
2/20/1997	14.73	8.11	6.62	-	800	310	23	11	28	<12			
4/24/1997	14.73	7.13	7.60	<u>_:</u>	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
7/23/1997	14.73	5.73	9.00		<50	<0.5	<0.5	<0.5	<0.5	<2.5			
10/29/1997	14.73	4.98	9.75		<50	<0.5	<0.5	<0.5	<0.5	<2.5			
1/28/1998	14.73	8.19	6.54		160	38	<0.5	<0.5	<0.5	<2.5			
5/11/1998	14.73	8.08	6.65		1700	490	72	39	52	<25			
7/16/1998	14.73	7.04	7.69		<50	<0.5	<0.5	<0.5	<0.5	<5.0			
8/4/1998	14.73	6.89	7.84	*							8.6×10^3		
9/3/1998	14.73	6.24	8.49	*/+							2.9×10^3		
10/21/1998	14.73	5.46	9.27	**							1.8×10^{3}		
11/4/1998	14.73	5.52	9.21		<50	<0.5	<0.5	<0.5	<0.5	<2.5			
1/26/1999	14.73	6.49	8.24	_	<50	<0.5	<0.5	<0.5	<0.5	<2.0			
5/6/1999	14.73	7.91	6.82		<50	<0.5	<0.5	<0.5	<0.5	<5.0			
8/21/1999	14.73	7.93	6.80		<50	<0.5	<0.5	<0.5	<0.5	<5.0			
10/28/1999	14.73	5.27	9.46		<50	<0.5	<0.5	<0.5	<0.5	<5.0			
1/31/2000	14.73	7.16	7.57		<50	<0.5	<0.5	<0.5	<0.5	<2.5			

^{*} Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.

^{**}Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measu	rements are	e in feet.		Analytical results are in parts per billion (ppb)							
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	MTBE	CUB (cfu/ml)
MW-7							<u>-</u>			-	
1/3/1997					<50	<0.5	<0.5	<0.5	<0.5		
2/20/1997	16.36	8.86	7.50	_	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
4/24/1997	16.36	7.59	8.77		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
7/23/1997	16.36	6.09	10.27		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/29/1997	16.36	5.28	11.08		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
1/28/1998	16.36	9.10	7.26		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
5/11/1998	16.36	9.11	7.25	Sampled annually				_			
7/16/1998	16.36	8.00	8.36								
8/4/1998	16.36	7.32	9.04	*				_			1.5 x 10 ³
9/3/1998	16.36	6.65	9.71	*/+							6.5×10^2
10/21/1998	16.36	5.96	10.40	**							4.8×10^{3}
11/4/1998	16.36	5.89	10.47								
1/26/1999	16.36	8.25	8.11		<50	<0.5	<0.5	<0.5	0.5	<2.0	
5/6/1999	16.36	8.47	7.89								
8/21/1999	16.36	8.51	7.85								
10/28/1999	16.36	6.04	10:32					·			
1/31/2000	16.36	7.57	8.79		<50	<0.5	<0.5	<0.5	<0.5	<2.5	***

^{*} Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.
**Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.

⁺ See Table of Additional Analyses.

Vertical Measu	Measurements are in feet. Analytical results are in parts per billion (ppb)										
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	МТВЕ	CUB (cfu/ml)
TRIP BLA	ANK										
2/20/1997					<50	<0.5	<0.5	<0.5	<0.5	<2.5	_
4/24/1997					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
7/23/1997					<50	<0:5	<0.5	<0.5	<0.5	<2.5	
10/29/1997					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
1/28/1998					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
5/11/1998					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
7/16/1998					<50	<0.5	<0.5	<0.5	<0.5	<5.0	
11/4/1998					<50	<0.5	<0.5	<0.5	<0.5	<2.0	
1/26/1999					<50	<0.5	<0.5	<0.5	<0.5	<2.0	
5/6/1999					<50	<0.5	<0.5	<0.5	<0.5	<5.0	
1/31/2000					<50	<0.5	<0.5	<0.5	<0.5	<2.5	

ADDITIONAL ANALYSES

Analytical values are in parts per billion (ppb)

						Pre-purge	Post-purge	Pre-purge	
DATE	Notes	Total Alkalinity	Ferrous Iron	Nitrate as Nitrate	Sulfate	D.O. (mg/L)	D.O. (mg/L)	O.R.P. (mV)	O.R.P. (mV)
MW-1					<u> </u>		· · · · · · · · · · · · · · · · · · ·		
9/3/1998		230,000	9800	<1000	6100	2.3	1.6	, -90	-103
MW-2				•					
9/3/1998	·	390,000	7400	<1000	21,000	2.8	2.5	-206	-163
MW-3									
9/3/1998		830,000	45,000	<1000	10,000	3.1	0.7	-124	-99
MW-4						,			
9/3/1998					-	2.6	1.1	-190	-206
MW-6									
9/3/1998	-	94,000	62	28,000	47,000	2.6	3.2	-148	-167
MW-7									
9/3/1998		170,000	120	7800	57,000	2.7	3.2	-207	-229

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on February 20, 1997.

Earlier field data and analytical results are drawn from the January 24, 1997 Groundwater Technology, Inc. report.

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl t-Butyl Ether

ND = Not detected at or above the minimum quantitation limit. See laboratory reports for minimum quantitation limits.

CUB = Contaminate Utilizing Bacteria