Ms. eva chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Quarterly Groundwater Monitoring Report Third Quarter 2001

ARCO Service Station No. 6041 7249 Village Parkway Dublin, California Cambria Project # 438-1643

Dear Ms. chu:

On behalf of ARCO, Cambria Environmental Technology, Inc. (Cambria) is submitting the attached report which presents the results of the third quarter 2001 groundwater monitoring program at ARCO Service Station No. 6041, located at 7249 Village Parkway, Dublin, California. The monitoring program complies with the ACHCSA requirements regarding underground tank investigations.

Please call if you have any questions.

Sincerely,

Cambria Environmental Technology, Inc.

Ron Scheele, RG

Senior Project Manager

R Selvel

Attachment: Quarterly Groundwater Monitoring Report, Third Quarter 2001

cc: Mr. Paul Supple, ARCO, PO Box 6549, Moraga, California 94570

Ms. Karen Petryna, Equiva Services, LLC, PO Box 7869, Burbank, California 91510-7869

Oakland, CA San Ramon, CA Sonoma, CA

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

Quarterly Groundwater Monitoring Report

Third Quarter 2001

Nox of the

ARCO Service Station No. 6041 7249 Village Parkway Dublin, California Cambria Project # 438-1643

Prepared For:

Mr. Paul Supple ARCO

October 26, 2001

Prepared By:
Cambria Environmental Technology, Inc.
6262 Hollis Street
Emeryville, California 94608

Written by:

Sara Dwight

Staff Environmental Scientist

Ron Scheele, RG

Senior Project Manager

CAMBRIA

Date:

October 26, 2001

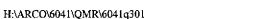
Quarter:

3rd Quarter, 2001

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.:	6041	Address:	7249 Village Parkway, Dublin, California
ARCO Environ	mental Engineer/l	Phone No.:	Paul Supple / (925) 299-8891
Consulting Co.	./Contact Person:		Cambria Environmental Technology, Inc. / Ron Scheele, RG
Consultant Pro	ject No.:		438-1643
Primary Agend	:y/Regulatory ID N	0.:	ACHCSA

WORK PERFORMED THIS QUARTER (THIRD - 2001):


- 1. Submitted quarterly groundwater monitoring report for second quarter, 2001.
- 2. Performed quarterly groundwater monitoring and sampling on July 17, 2001.
- 3. Performed soil sampling during station upgrade and over-excavation activities in July and August 2001.
- 4. Installed two tank backfill wells.

WORK PROPOSED FOR NEXT QUARTER (FOURTH - 2001):

- 1. Prepare and submit quarterly groundwater monitoring report for third quarter 2001.
- 2. Perform quarterly groundwater monitoring and sampling for fourth quarter 2001.
- 3. Prepare and submit Underground Storage Tank, Piping Removal, and Well Abandonment Report.
- 4. Install remediation piping during station upgrade activities.

MONITORING:

Current Phase of Project:	Interim Remediation
Frequency of Groundwater Sampling	Quarterly: MW-1, MW-3, VW-2, Shell MW-6, Shell MW-7
	Semi-annual: MW-2 (1 st /3 rd Quarters)
Frequency of Groundwater Monitoring	Quarterly
Is Free Product (FP) Present On-site:	No
Bulk Soil Removed to Date :	3,208 cubic yards of TPH impacted soil
Water Wells or Surface Waters,	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	Performed temporary groundwater extraction and soil over-
	excavation
Average Depth to Groundwater:	9.32 feet
Groundwater Flow Direction and Gradient	0.003 ft/ft toward south-southwest

CAMBRIA

Date:

October 26, 2001

Quarter:

3rd Quarter, 2001

DISCUSSION:

Based on field measurements collected on July 17, 2001, groundwater beneath the site flows towards the south-southwest at a gradient of 0.003 ft/ft. This is consistent with the historic groundwater flow direction and gradient.

Hydrocarbon concentrations detected this quarter are consistent with the previous sampling event with the exception of wells MW-2 and MW-3, which showed increases in MTBE. The maximum TPHg, benzene, and MTBE concentrations were detected in well MW-3 at 21,000, 1,500, and 82,000 micrograms per liter (µg/L), respectively.

Station upgrade activities conducted during the third quarter included underground storage tank and product piping removal, over-excavation of TPH-impacted soil, and the installation of new underground storage tanks, piping, and dispensers. Underground storage tank and product piping sampling occurred on July 27, 2001.

Six mobile DVE events have been performed at the site since November 22, 2000. The final DVE event was performed in the second quarter 2001, and site DVE remediation effectiveness will be assessed after the completion of the fourth quarter groundwater sampling event and station upgrade activities.

— Baid if cooded access after 3rd after

ATTACHMENTS:

Figure 1 - Groundwater Elevation Contour and Analytical Summary Map

event in last opt

- Table 1 Historical Groundwater Elevation and Analytical Data
- Table 2 Groundwater Flow Direction and Gradient
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain-of-Custody Documentation
- Appendix C Field Data Sheets

EXPLANATION

OIL CHANGERS

(FORMER SHELL SITE)

ELEV TPHg Bergielli MTBE

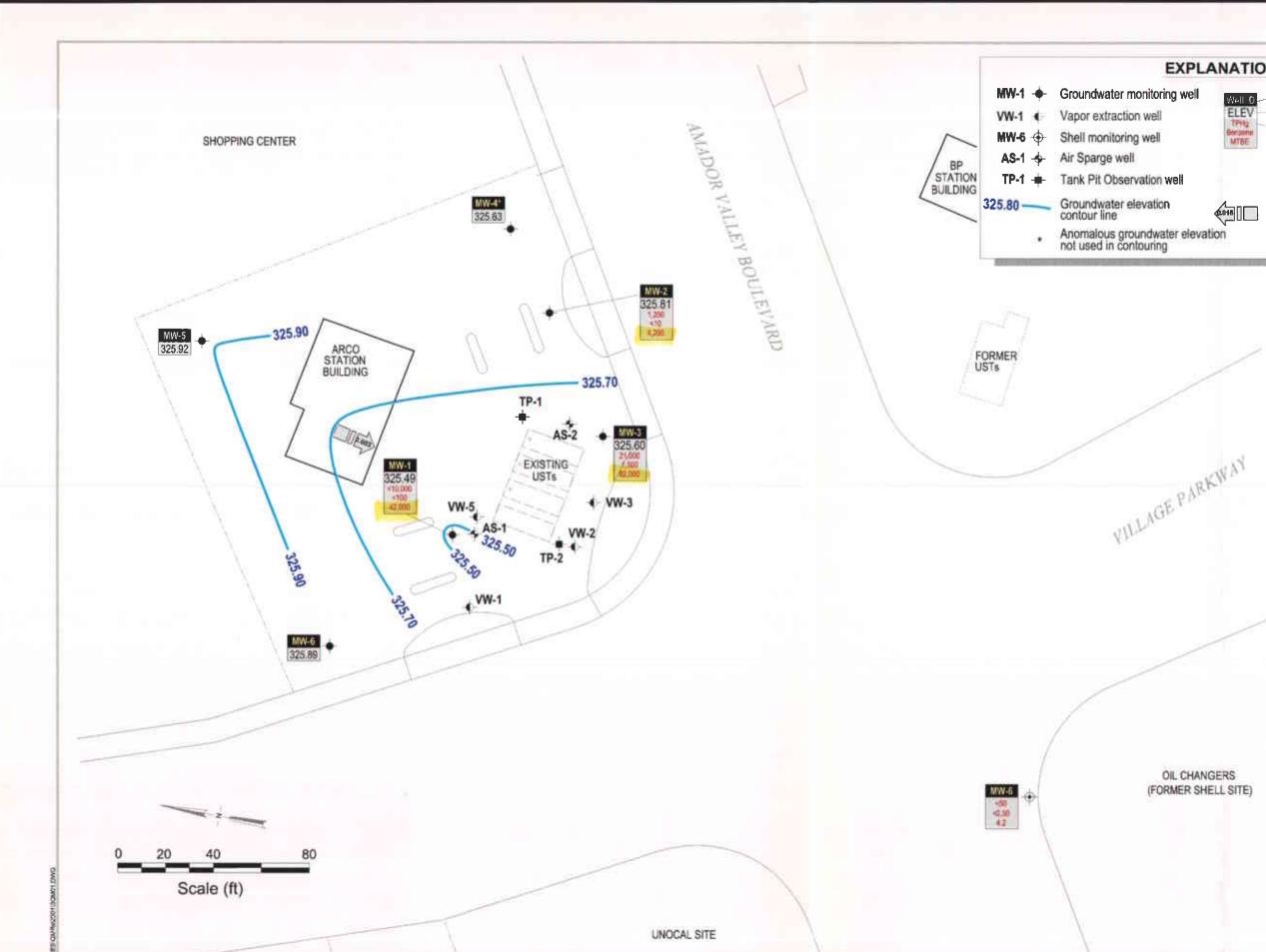
- Well Designation

Groundwater Elevation

Concentration of total petroleum hydrocarbons as gasoline, benzene, and MTBE in groundwater in micrograms per liter (ug/l). Samples collected on 07/17/01

MW-7 <50 <0.50 <2.5

Approximate goundwater flow direction and gradient



ARCO Service Station 6041
7249 Village Parkway
Dublin, California

FIGURE

FORMER

MARKET

CHIROPRACTOR'S

OFFICE

Table 1 Historical Groundwater Elevation and Analytical Data **Petroleum Hydrocarbons and Their Constituents** 1995 - Present**

		TOC	Depth	FP	Groundwater		TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	to Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	$(\mu g/L)$	$(\mu g/L)$	(μg/L)	$(\mu g/L)$	(μg/L)	(mg/L)	(P/NP)
				0.00	220.02	02-15-95	820	15	<1	5.2	1.4				
MW-1	02-15-95	336.56	8.53	0.00	328.03	02-13-93	640	12	<1 <1		<1				
MW-1	05-24-95	336.56	9.00	0.00	327.56	03-24-93	780	2	<1	7.3	2	2,500			
MW-1	08-25-95	336.56	10.30	0.00	326.26	11-28-95	570	2.2	<0.5		0.9	2,500			
MW-1	11-28-95	336.56	11.01	0.00	325.55			2.2	<0.3 <7		7	3,400			
MW-1	02-26-96	336.56	7.35	0.00	329.21	03-13-96	1,100	26 8.5	<1		<1	3,400			
MW-1	05-23-96	336.56	8.73	0.00	327.83	05-23-96	560				2	5,600			
MW-1	08-23-96	336.56	10.25	0.00	326.31	08-23-96	860	<l< td=""><td><1</td><td></td><td>1.5</td><td>6,200</td><td></td><td></td><td></td></l<>	<1		1.5	6,200			
MW-1	03-21-97	336.56	9.35	0.00	327.21	03-21-97	520	12	<0.5		<50	7,400			
MW-1	08-20-97	336.56	10.75	0.00	325.81	08-20-97	<5,000	<50	<50		<50 <50	8,500			
MW-1	11-21-97	336.56	11.10	0.00	325.46	11-21-97	<5,000	<50	<50 <0.5		<0.5	8,900		1.71	P
MW-1	02-12-98	336.56	7.05	0.00	329.51	02-12-98	210	<0.5				18,000			
MW-1	07-31-98	336.56	10.04	0.00	326.52	07-31-98	<20,000	<200	<200						
MW-1	02-17-99	336.56	8.50	0.00	328.06	02-17-99	<20,000	<200	<200			16,000			P
MW-1	08-24-99	336.56	10.40	0.00	326.16	08-24-99	190	<0.5	4.4		1.1	15,000			
MW-1	03-01-00	336.56	8.85	0.00	327.71	03-01-00	310	20				80,000	CO 700		
MW-1	08-18-00	336.56	9.35	0.00	327.21	08-18-00	<10,000	<100				48,400	63,700		
MW-1	12-27-00	336.56	10.81	0.00	325.75	12-27-00	<10,000	309				44,400			
MW-1	02-09-01	336.56	10.65	0.00	325.91	02-09-01	2,820	368				23,300			P
DUP	02-09-01	NR	NR	NR	NR	02-09-01	3,490	432				31,800			_
MW-1	04-17-01	336.56	11.09	0.00	325.47	04-17-01	2,900	66.0				46,500		0.63	P
DUP	04-17-01	NR	NR	NR	NR	04-17-01	2,600	70.1	<20.0			•			
MW-1	07-17-01	336.56	11.07	0.00	325.49	07-17-01	<10,000	<100	<100	130	520	42,000		0.69	P
		22422	6.55	0.00	220.05	00 15 05	720	110	1.7	25	66				
MW-2	02-15-95	334.80	6.75	0.00	328.05	02-15-95	730								
MW-2	05-24-95	334.80	6.88	0.00	327.92	05-24-95	370								
MW-2	08-25-95	334.80	7.91	0.00	326.89	08-25-95	150								
MW-2	11-28-95	334.80	9.06	0.00	325.74	11-28-95	<50								
MW-2	02-26-96	334.80	6.65	0.00	328.15	03-13-96	350								
MW-2	05-23-96	334.80	6.90	0.00	327.90	05-23-96	540								
MW-2	08-23-96	334.80	8.45	0.00	326.35	08-23-96	180	0.8	2	2. 0.7	2.6	4,000			
H:VARCC	0\6041\Data\	6041q301					1 of 6								

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		TOC	Depth	FP	Groundwater		ТРН			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	to Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(P/NP)
MW-2	03-21-97	334.80	7.28	0.00	327.52	03-21-97	410	90	<1	14	4	3,800			
MW-2	08-20-97	334.80	8.87	0.00	325.93	08-20-97	<5,000	< 50	<50	<50	< 50	3,100	- -		
MW-2	11-21-97	334.80	9.28	0.00	325.52	11-21-97	<2,000	<20	<20	<20	<20	2,600	_ =		
MW-2	02-12-98	334.80	5.90	0.00	328.90	02-12-98	310	54	< 0.5	6.2	1.1	3,800		3.76	P
MW-2	07-31-98	334.80	8.12	0.00	326.68	07-31-98	6,100	52	220	110	1100	7,700		2.96	P
MW-2	02-17-99	334.80	7.18	0.00	327.62	02-17-99	<5,000	<50	<50	<50	<50	4,200		1.0	P
MW-2	08-24-99	334.80	8.68	0.00	326.12	08-24-99	200	1.8	16	3.0	32	3,100			P
MW-2	03-01-00	334.80	7.02	0.00	327.78	03-01-00	760	24	12	13	59	6,300		1.92	P
MW-2	08-18-00	334.80	7.75	0.00	327.05	08-18-00	<500	<5.00	<5.00	<5.00	< 5.00	1,610	1,980	2.03	P
MW-2	12-27-00	334.80	8.85	0.00	325.95	Not Sample	d: Well sar	npled dur	ing first a	nd third qua	arters				
MW-2	02-09-01	334.80	8.50	0.00	326.30	02-09-01	<50.0	_				9.11		0.53	P
MW-2	04-17-01	334.80	9.12	0.00	325.68	Not Sample	d: Well sar	npled dur	ing first a	nd third gu	arters				
MW-2	07-17-01	334.80	8.99	0.00	325.81	07-17-01	1,200	<10				4,200		0.69	P
DUP	07-17-01	NR	NR	NR	NR	07-17-01	3,500	<10	<10	<10	<10	3,500			
					*** 00	00 15 05	100	1.4	-0.5	6.3	<0.5				
MW-3	02-15-95	335.53	8.55	0.00	326.98	02-15-95	100		<0.5						
MW-3	05-24-95	335.53	8.17	0.00	327.36	05-24-95	110	8	<0.5			20.000			
MW-3	08-25-95	335.53	9.27	0.00	326.26	08-25-95	210					•	15 000		
MW-3	11-28-95	335.53	9.91	0.00	325.62	11-28-95	81	1.5	<0.5			0.500	15,000		
MW-3	02-26-96	335.53	8.42	0.00	327.11	03-13-96	16,000	1,600					- -		
MW-3	05-23-96	335.53	7.70	0.00	327.83	05-23-96	6,500	690				•			
MW-3	08-23-96	335.53	9.25	0.00	326.28	08-23-96	1,700					-			
MW-3	03-21-97	335.53	8.72	0.00	326.81	03-21-97	100					6,600			
MW-3	08-20-97	335.53	9.73	0.00	325.80	08-20-97	<5,000					-			
MW-3	11-21-97	335.53	10.10	0.00	325.43	11-21-97	<5,000					•			מי
MW-3	02-12-98	335.53	6.68	0.00	328.85	02-12-98	110					•			
MW-3	07-31-98	335.53	7.98	0.00	327.55	07-31-98	<10,000					•			
MW-3	02-17-99	335.53	8.40	0.00	327.13	02-17-99	<20,000	<200	<200	<200	<200	23,000		1.0) P

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

					6 1		TOLL	_		Dilani	Total	MTBE	MTBE	Dissolved	Purged/
		TOC	Depth	FP	Groundwater	T	TPH	ъ	mata a	Ethyl-		8021B*	8260	Oxygen	Not Purged
Well	Date	Elevation	to Water		Elevation	Date			Toluene	benzene	Xylenes			(mg/L)	(P/NP)
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(µg/L)	(μg/L)	_(μg/L)	(µg/L)	(μg/L)	(IIIg/L)	
MW-3	08-24-99	335.53	9.45	0.00	326.08	08-24-99	200	0.6	5.6	0.6	1.7	22,000			P
MW-3	03-01-00	335.53	8.32	0.00	327.21	03-01-00	320	32	1.0	6.1	4	58,000		2.42	
MW-3	08-18-00	335.53	8.35	0.00	327.18	08-18-00	<10,000	<100	<100	<100	<100	46,200	55,600	1.59	P
DUP	08-18-00	NR	NR	NR	NR	08-18-00	<10,000	<100	<100	<100		45,500	51,700		
MW-3	12-27-00	335.53	9.75	0.00	325.78	12-27-00	29,700	1,620	1,730	<250	6,230	62,600		1.59	
MW-3	02-09-01	335.53	9.61	0.00	325.92	02-09-01	29,300	2,590	3,530	440	7,080	85,500		0.51	
MW-3	04-17-01	335.53	9.94	0.00	325.59	04-17-01	16,400	1,680	<25.0	310	2,290	48,700		0.41	
MW-3	07-17-01	335.53	9.93	0.00	325.60	07-17-01	21,000	1,500	<100	1,100	690	82,000		0.51	P
MW-4	02-15-95	334.22	7.85	0.00	326.37	02-15-95	<50	<0.5	<0.5	<0.5	<0.5				
MW-4	05-24-95	334.22	6.68	0.00	327.54		ed: well sa	mpled sen	ni-annuall	y, during th	e first and	third quarte	ers		
MW-4	08-25-95	334.22	6.93	0.00	327.29	08-25-95	<50	_	<0.5	<0.5	<0.5	<3			
MW-4	11-28-95	334.22	8.21	0.00	326.01		ed: well sa	mpled sen	ni-annuall	y, during tl	ne first and	third quarte	ers		
MW-4	02-26-96	334.22	6.65	0.00	327.57	03-13-96	<50		<0.5		< 0.5	<3			
MW-4	05-23-96	334.22	6.47	0.00	327.75	Not sampl	ed: well sa	mpled sen	ni-annuall	y, during tl	ne first and	third quarte	ers		
MW-4	08-23-96	334.22	7.66	0.00	326.56	Not sampl	led: well no	t part of s	ampling p	rogram					
MW-4	03-21-97	334.22	6.84	0.00	327.38	Not sampl	led: well no	t part of s	ampling p	rogram					
MW-4	08-20-97	334.22	8.32	0.00	325.90	Not samp	led: well no	t part of s	ampling p	rogram					
MW-4	11-21-97	334.22	8.65	0.00	325.57	Not samp	led: well no	t part of s	ampling p	rogram					
MW-4	02-12-98	334.22	6.35	0.00	327.87	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	07-31-98	334.22	6.84	0.00	327.38	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	02-17-99	334.22	7.50	0.00	326.72	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	08-24-99	334.22	9.50	0.00	324.72	Not samp	led: well no	ot part of s	ampling p	orogram					
MW-4	03-01-00	334.22	6.93	0.00	327.29	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	08-18-00	334.22	7.03	0.00	327.19	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	12-27-00	334.22	8.10	0.00	326.12	Not samp	led: well no	ot part of s	ampling p	огодгат					
MW-4	02-09-01	334.22	7.9 7	0.00	326.25	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	04-17-01	334.22	8.90	0.00	325.32	Not samp	led: well no	ot part of s	ampling p	rogram					
MW-4	07-17-01	334.22	8.59	0.00	325.63	Not samp	oled: well n	ot part o	f samplin	g program	ı				

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		TOC	Depth	FP	Groundwater		TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	_
Well	Date	Elevation	to Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
MW-5	02-15-95	335.87	7.80	0.00	328.07	02-15-95	<50	<0.5	<0.5	<0.5	<0.5			_	
MW-5	05-24-95	335.87	8.10	0.00	327.77	Not sample									
MW-5	03-24-95	335.87	9.43	0.00	326.44	Not sample		-	_	_	_				
MW-5	11-28-95	335.87	10.12	0.00	325.75	Not sample		-	_						
MW-5	02-26-96	335.87	6.73	0.00	329.14	03-13-96	<50	<0.5	<0.5			<3		_	
MW-5	05-23-96	335.87	7.87	0.00	328.00	Not sample									
MW-5	08-23-96	335.87	9.46	0.00	326.41	Not sample		_							
MW-5	03-23-90	335.87	8.23	0.00	327.64	Not sample		_		_					
MW-5	08-20-97	335.87	9.92	0.00	325.95	Not sample									
MW-5	11-21-97	335.87	10.18	0.00	325.69	Not sample		-	_						
MW-5	02-12-98	335.87	6.45	0.00	329.42	Not sample		_							
MW-5	07-31-98	335.87	8.98	0.00	326.89	Not sample		-							
MW-5	02-17-99	335.87	7.65	0.00	328.22	Not sample									
MW-5	08-24-99	335.87	8.10	0.00	327.77	Not sample									
MW-5	03-01-00	335.87	7.31	0.00	328.56	Not sample									
MW-5	08-18-00	335.87	8.65	0.00	327.22	Not sample		_							
MW-5	12-27-00	335.87	9.80	0.00	326.07	Not sample		_							
MW-5	02-09-01	335.87	9.65	0.00	326.22	Not sample		-		_					
MW-5	04-17-01	335.87	9.92	0.00	325.95	Not sample		_	_						
MW-5	07-17-01	335.87	9.95	0.00	325.92	Not sample	ed: well n	ot part of	samplin	g program	l		*		
s erre c	00 15 05	225.04	7.01	0.00	328.03	02-15-95	<50	<0.5	<0.5	<0.5	<0.5		_	_	
MW-6	02-15-95	335.84	7.81	0.00	328.03 327.49	Not sample									
MW-6	05-24-95	335.84	8.35		327.49	Not sample		-	-	-	_				
MW-6	08-25-95	335.84	9.71	0.00		Not sample		•	-	_					
MW-6	11-28-95	335.84	10.28	0.00	325.56 329.24	03-13-96	:u: well sa <50	_	_			3	_	-	
MW-6	02-26-96	335.84	6.60	0.00		Not sample							-		
MW-6	05-23-96	335.84	8.05	0.00	327.79	Not sample		-	_	-	or quarrer				
MW-6	08-23-96	335.84	9.58	0.00	326.26	Not sample		_							
MW-6	03-21-97	335.84	8.39	0.00	327.45	Not sample		-							
MW-6	08-20-97	335.84	9.98	0.00	325.86	not sample		л рап от 9	sampung j	program					
H:\ARCC	D\6041\Data\	6041q301					4 of 6								

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

···		TOC	Depth	FP	Groundwater		TPH		*	Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	to Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
MW-6	11-21-97	335.84	10.31	0.00	325.53	Not sample	ed: well no	t part of s	ampling p	rogram					
MW-6	02-12-98	335.84	3.15	0.00	332.69	Not sample									
MW-6	07-31-98	335.84	9.29	0.00	326.55	Not sample									
MW-6	02-17-99	335.84	7.72	0.00	328.12	Not sample	ed: well no	t part of s	ampling p	rogram					
MW-6	08-24-99	335.84	9.65	0.00	326.19	Not sample	ed: well no	t part of s	ampling p	rogram					
MW-6	03-01-00	335.84	7.35	0.00	328.49	Not sample		_							
MW-6	08-18-00	335.84	8.65	0.00	327.19	Not sample	ed: well no	t part of s	ampling p	rogram					
MW-6	12-27-00	335.84	9.83	0.00	326.01	Not sample	ed: well no	t part of s	ampling p	rogram					
MW-6	02-09-01	335.84	9.62	0.00	326.22	Not sample	ed: well no	t part of s	ampling p	тодтат					
MW-6	04-17-01	335.84	10.03	0.00	325.81	Not sample	ed: well no	t part of s	ampling p	годтат					
MW-6	07-17-01	335.84	9.95	0.00	325.89	Not sampl	led: well n	ot part of	sampling	g program	1				
17117 A	03-21-97	NR	8.22	0.00	NR	03-21-97	150	8.9	<0.5	<0.5	0.6	270		_	
VW-2	03-21-97	NR NR	9.16	0.00	NR	08-20-97				f sampling					
VW-2	11-21-97	NR NR	8.27	0.00	NR	11-21-97	<200		_			180		=	
VW-2		NR NR	6.65	0.00	NR.	02-12-98	200	19						•	
VW-2	02-12-98 07-31-98	NR NR	7.01	0.00	NR	07-31-98				f sampling		_,			
VW-2	07-31-98	NR NR	7.01 8.47	0.00	NR	02-17-99	_		_	f sampling					
VW-2		NR NR	8.20	0.00	NR	08-24-99	-		_	f sampling					
VW-2	08-24-99	NR NR	8.20 8.72	0.00	NR	03-24-99	_			f sampling					
VW-2	03-01-00			0.00	NR	08-18-00	<250		-			537	_	- 1.59) NP
VW-2	08-18-00	NR NB	8.40	0.00	NR NR	Not sample			~2.50	\	, ,,,,,,	55.			
VW-2	12-27-00	NR ND	8.95		NR NR	Not sample									
VW-2	02-09-01	NR	8.87	0.00	NR NR	Not sample									
VW-2	04-17-01	NR	9.00	0.00	NR NR	Not sample		•							
VW-2	07-17-01	NR	8.97	0.00	NK	rot sampie	ա, արա	1 y							

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		TOC	Depth	FP	Groundwater		TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	to Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)_	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
Shell MW-6	12-27-00	NR	9.13	0.00	NR	12-27-00	74.7	<0.500	< 0.500	< 0.500	< 0.500	<2.50		1.30	P
DUP	12-27-00	NR	NR	NR	NR	12-27-00	79.3	< 0.500	< 0.500	< 0.500	< 0.500	<2.50			
Shell MW-6	02-09-01	NR	9.05	0.00	NR	02-09-01	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		1.29	P
Shell MW-6	04-17-01	NR	10.17	0.00	NR	04-17-01	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		0.95	P
Shell MW-6	07-17-01	NR	9.50	0.00	NR	07-17-01	<50	<0.50	< 0.50	<0.50	< 0.50	4.2		1.03	P
Shell MW-7	12-27-00	NR	6.45	0.00	NR	12-27-00	<50.0	< 0.500	0.696	< 0.500	0.795	<2.50		1.33	P
Shell MW-7	02-09-01	NR	6.39	0.00	NR	02-09-01	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		1.13	P
Shell MW-7	04-17-01	NR	7.22	0.00	NR	04-17-01	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		1.12	P
Shell MW-7	07-17-01	NR	6.93	0.00	NR	07-17-01	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5		1.05	P

Notes:

TOC: top of casing

ft-MSL: elevation in feet, relative to mean sea level

TPH: total petroleum hydrocarbons, California DHS LUFT Method

BTEX: benzene, toluene, ethylbenzene, total xylenes by EPA method 8021B. (EPA method 8020 prior to 03/01/00).

MTBE: Methyl tert-butyl ether

EPA: United States Environmental Protection Agency

*: EPA method 8020 prior to 03/01/00

μg/L: micrograms per liter mg/L: milligrams per liter

NR: not reported; data not available or not measurable

- -: not analyzed or not applicable
- <: denotes concentration not present at or above laboratory detection limit stated to the right.
- **: For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 6041, Dublin, California, (EMCON, February 26, 1996).

DUP: duplicate

Table 2 Groundwater Flow Direction and Gradient

Average	Average
Flow Direction	Hydraulic Gradient
NR	NR
East-Southeast	0.002
Northwest	0.006
North	0.006
East	0.012
Flat Gradient	Flat Gradient
Flat Gradient	Flat Gradient
South-Southeast	0.005
South-Southwest	0.001
South-Southwest	0.002
East	0.024
Northwest	0.01
Southeast	0.007
South-Southwest	0.013
South-Southeast	0.005
South-Southeast	0.002
West-Southwest	0.003
West-Southwest	0.003
South-Southwest	0.015
South-Southwest	0.003
	NR East-Southeast Northwest North East Flat Gradient Flat Gradient South-Southeast South-Southwest East Northwest South-Southwest South-Southeast South-Southeast South-Southeast South-Southwest South-Southeast South-Southeast South-Southeast South-Southwest West-Southwest South-Southwest

APPENDIX A SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with tap water. During field sampling, equipment surfaces that were placed in the well or came into

contact with groundwater during field sampling were washed with detergent and double rinsed with tap water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated after each use. A bottom-filling, clear disposable bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged, otherwise non-purge groundwater samples were collected. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or disposable bailer was used to purge standing water in the casing and gravel pack from the monitoring well. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level

sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 240-gallon truck-mounted tank to Integrated Waste Management's Milpitas storage facility for disposal.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A disposable bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the disposable bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs or ice until received by the laboratory. At the time of

sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory. Samples that required overnight storage prior to shipping to the laboratory were kept cool (4°C) in a refrigerator.

Samples were transferred from Cambria to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from Cambria to laboratories performing the selected analyses routinely occurred within two to three days of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document sampling activities in the field
- Labels to identify individual samples
- Chain-of-custody record sheets for documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- Client's name
- Location
- Name of sampler
- Date and time
- Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- Calculated and actual purge volumes
- Purging equipment used
- Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well-designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record

The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to Cambria with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

- Date scheduled
- Site-specific instructions
- Specific analytical parameters

- Well number
- Well specifications (expected total depth, depth of water, and product thickness)

APPENDIX B

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

July 25, 2001

Ron Scheele Cambria Environmental - Emeryville 6262 Hollis Street Emeryville, CA 94608 RE: ARCO / P107360

Enclosed are the results of analyses for samples received by the laboratory on 07/19/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Angelee Cari Client Services Representative

CA ELAP Certificate Number 2374

Cambria Environmental - Emeryville 6262 Hollis Street

Emeryville CA, 94608

Project: ARCO

Project Number: 6041/Dublin Project Manager: Ron Scheele Reported: 07/25/01 16:40

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	P107360-01	Water	07/17/01 07:15	07/19/01 15:00
MW-2	P107360-02	Water	07/17/01 06:00	07/19/01 15:00
MW-3	P107360-03	Water	07/17/01 06:35	07/19/01 15:00
Shell MW-6	P107360-04	Water	07/17/01 16:40	07/19/01 15:00
Shell MW-7	P107360-05	Water	07/17/01 17:30	07/19/01 15:00
DUP	P107360-06	Water	07/17/01 00:00	07/19/01 15:00

6262 Hollis Street Emeryville CA, 94608 Project: ARCO

Project Number: 6041/Dublin Project Manager: Ron Scheele Reported: 07/25/01 16:40

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (P107360-01) Water									
	ND	10000		200	1070580	07/24/01	07/24/01	EPA	
Gasoline (C6-C12)	ND	10000	ug/I	200	10/0500	07/24/01	07/24/01	8015M/8020M	
Benzene	ND	100	**	**	"	**	u	**	
Toluene	ND	100	**	**	11	n	IÍ	#	
Ethylbenzene	130	100	*1	п	н	11	tt	II .	
Xylenes (total)	520	100	"	**	"	IJ	**	п	
Methyl tert-butyl ether	42000	500	11	**			**		_
Surrogate: a,a,a-Trifluorotolu	iene	103 %	65	-135	н	ji.	"	n	
Surrogate: 4-Bromofluoroben		95.0 %	65	-135	"	n	ď	v	
MW-2 (P107360-02) Water	Sampled: 07/17/01 06:00	Received: 0	7/19/01	15:00					
Gasoline (C6-C12)	1200	1000	ug/l	20	1070580	07/24/01	07/24/01	EPA 8015M/8020M	
Benzene	ND	10	**	п	п	11	II .	11	
Toluene	ND	10	n	н	II .	11	n	п	
Ethylbenzene	ND	10	n	**	#	H	Ц	н	
Xylenes (total)	ND	10	n	•	**	**	II .	**	
Methyl tert-butyl ether	4200	50	**	"		**			
Surrogate: a,a,a-Trifluorotolu	iene	102 %	65	-135	n	"	n	n	
Surrogate: 4-Bromofluoroben		96.0 %	65	-135	"	"	u	"	
MW-3 (P107360-03) Water	Sampled: 07/17/01 06:35	Received: 0	7/19/01	15:00					
Gasoline (C6-C12)	21000	10000	ug/l	200	1070580	07/24/01	07/24/01	EPA 8015M/8020M	
Benzene	1500	100	11	11	**	n .	11	п	
Toluene	ND	100	п	н	"	11	ır	u	
Ethylbenzene	1100	100	ц	II .	n	Ħ	**	Ħ	
Xylenes (total)	690	100	Ħ	II	II	**	•	Ħ	
Methyl tert-butyl ether	82000	500	**	11			**	"	
Surrogate: a,a,a-Trifluorotoli	iene	102 %	65	-135	н	"	"	"	
Surrogate: 4-Bromofluoroben		95.0 %	65	-135	n	н	"	"	

6262 Hollis Street Emeryville CA, 94608 Project: ARCO

Project Number: 6041/Dublin Project Manager: Ron Scheele Reported: 07/25/01 16:40

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma

		porting	*7	P01 - 41-	Datah	D	Amalumad	Method	Note
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	WELHOU	11000
Shell MW-6 (P107360-04) Water	Sampled: 07/17/01 16:40	Receiv	ved: 07/1	9/01 15:00)				
Gasoline (C6-C12)	ND	50	ug/l	1	1070580	07/24/01	07/24/01	EPA 8015M/8020M	
Benzene	ND	0.50	**	**	**	**	11	"	
Toluene	ND	0.50	**	11	**	11	u	11	
Ethylbenzene	ND	0.50	**	н	11	11	Ħ	11	
Xylenes (total)	ND	0.50	n	tf	n	n	**	ш	
Methyl tert-butyl ether	4.2	2.5	U	H	H	II <u></u>	Ħ		
Surrogate: a,a,a-Trifluorotoluene		101 %	65-	135	"	"	n	"	
Surrogate: 4-Bromofluorobenzene	9	4.3 %	65-	135	н	"	n	n	
Shell MW-7 (P107360-05) Water	Sampled: 07/17/01 17:30	Recei	ved: 07/1	9/01 15:00	}				
Gasoline (C6-C12)	ND	50	ug/l	1	1070580	07/24/01	07/24/01	EPA 8015M/8020M	
Benzene	ND	0.50	н	"	II .	**	**	"	
Toluene	ND	0.50	**	и	п	**	**	"	
Ethylbenzene	ND	0.50	"	II .	II .	"	†1	et .	
Xylenes (total)	ND	0.50	"	"	u	II	n	н	
Methyl tert-butyl ether	ND	2.5	**	н	11	#	"	H	
Surrogate: a,a,a-Trifluorotoluene		100 %	65-	135	п	ir	""	н	
Surrogate: 4-Bromofluorobenzene	9	93.0 %		135	"	"	н	"	
DUP (P107360-06) Water Samp	led: 07/17/01 00:00 Recei	ved: 07	/19/01 15	:00			<u>.</u>		
Gasoline (C6-C12)	3500	1000	ug/l	20	1070580	07/24/01	07/24/01	EPA 8015M/8020M	
Benzene	ND	10	n n	**	**	II	"	П	
Toluene	ND	10	II .	11	11	ш	11	п	
Ethylbenzene	ND	10	u	II .	11	н	n	ш	
Xylenes (total)	ND	10	**	II	II .	**	**	r(
Methyl tert-butyl ether	3500	50		II .	II		**	**	
Surrogate: a,a,a-Trifluorotoluene		107 %	65-	135	,,	"		n	
Surrogate: 4-Bromofluorobenzene	9	98.3 %	65-	135	,,	#	"	"	

6262 Hollis Street Emeryville CA, 94608 Project: ARCO

Project Number: 6041/Dublin Project Manager: Ron Scheele

Reported: 07/25/01 16:40

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	2100011	Lindi	CHID							
Batch 1070580 - EPA 5030, waters										
Blank (1070580-BLK1)		<u>-</u> .		Prepared of	& Analyz	ed: 07/24/	01			
Gasoline (C6-C12)	ND	50	ug/l							
Benzene	ND	0.50	н							
Toluene	ND	0.50	n							
Ethylbenzene	ND	0.50	н							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	**							
Surrogate: a,a,a-Trifluorotoluene	305		"	300		102	65-135			
Surrogate: 4-Bromofluorobenzene	284		"	300		94.7	65-135			
LCS (1070580-BS1)				Prepared	& Analyz	ed: 07/24/	01			
Gasoline (C6-C12)	2350	50	ug/l	2750		85.5	65-135			
Benzene	37.6	0.50	u	33.0		114	65-135			
Toluene	199	0.50	п	198		101	65-135			
Ethylbenzene	41.6	0.50	H	46.0		90.4	65-135			
Xylenes (total)	215	0.50	**	230		93.5	65-135	,		
Methyl tert-butyl ether	64.7	2.5	**	52.5		123	65-135			
Surrogate: a,a,a-Trifluorotoluene	342	 	**	300		114	65-135			
Surrogate: 4-Bromofluorobenzene	303		"	300		101	65-135			
Matrix Spike (1070580-MS1)	Sou	rce: P10735	9-04	Prepared	& Analyz	ed: 07/24/	01			
Gasoline (C6-C12)	3160	50	ug/l	2750	410	100	65-135			
Benzene	44.3	0.50	н	33.0	ND	134	65-135			
Toluene	232	0.50	н	198	ND	117	65-135			
Ethylbenzene	47.4	0.50	11	46.0	ND	103	65-135			
Xylenes (total)	226	0.50	•	230	ND	98.3	65-135			
Methyl tert-butyl ether	67.4	2.5	**	52.5	ND	128	65-135			
Surrogate: a,a,a-Trifluorotoluene	357		"	300		119	65-135			
Surrogate: 4-Bromofluorobenzene	303		"	300		101	65-135			

6262 Hollis Street Emeryville CA, 94608 Project: ARCO

Project Number: 6041/Dublin Project Manager: Ron Scheele Reported: 07/25/01 16:40

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1070580 - EPA 5030, waters										
Matrix Spike Dup (1070580-MSD1)	Sou	ırce: P10735	9-04	Prepared	& Analyz	k Analyzed: 07/24/01				
Gasoline (C6-C12)	3100	50	ug/l	2750	410	97.8	65-135	1.92	20	
Benzene	42.5	0.50	Ħ	33.0	ND	129	65-135	4.15	20	
Toluene	226	0.50	**	198	ND	114	65-135	2.62	20	
Ethylbenzene	45.9	0.50	**	46.0	ND	99.8	65-135	3.22	20	
Xylenes (total)	223	0.50	"	230	ND	97.0	65-135	1.34	20	
Methyl tert-butyl ether	66.4	2.5	н	52.5	ND	1 26	65-135	1.49	20	
Surrogate: a,a,a-Trifluorotoluene	35 <i>I</i>		"	300		117	65-135			
Surrogate: 4-Bromofluorobenzene	309		#	300		103	65-135			

6262 Hollis Street

Emeryville CA, 94608

Project: ARCO

Project Number: 6041/Dublin

Project Manager: Ron Scheele

Reported:

07/25/01 16:40

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

ARCO	Prod	ucts	Comp	any <)	LTA!		Task Ord	der No.	ı. 10	041	مر اودر	ורי	27	กก						C	hain of Custody	<u>'</u>
ARGO Facili ARGO epgil		Six			y ecility)	0.0	Telephone	e no. 유크스 _ 144	3-261	Project (Consul Telepho (Consul	manage Itani) one no. Itani)	er	س کولا دری د	32°)si	Fax (Cod	no. nsultar	(UT) 11) 5/0	<u>S.</u>	hee.	2295	Laboratory name Sequeic Contract number	
COPSUMMENT	FEB FEE	-	Eni				1	Address (Consultan	· 67		4.1	/. <	<u>ک</u>	1.	Fm	ارد ت _{ا ش} خ	أردنيا	le .	Ca				
	m bi			Matrix		Preser	- AAAA		<u>u</u>			8015 	in Pa	ORE	O have been a second			em. VOAD	60 HT/00		Ammana Article dort entitiere	Method of shipment	
Sample I.D.	Lab no	Container 110.	Seil	Water	Other	lc _e	A cid	Sampling date	7 - 82411 F 624 auth Buildines	BTEX 602/EPA 8020	BTEXTEN NET OF EPIC MENSOR	TPH Modified Gas Diese	Oi and Greas	1PH 2PA 416 1/SM	OF IS AN	EPA 624/8240	EPA 625/9270	TCLF S	CAMPINE STATE	Lead On OHS LEAD EPA 74207421	gggggggggggggggggggggggggggggggggggggg	Special detection	
		4		X)	λ	7-17-11	7'15		ス	Pl	073	(Q)	0				_			Limitreporting	
MW-1		L ₁		X		入	X	7-17-0			×	No. of Control				2		<u> </u>	_			Lowest possible	
MW	 	4		\		×	X	7-17-01	6:35		×				(,,				ļ				
5 heli 17) _V	Ī	ч	<u> </u>	X		X	X		4:40		×				4				ļ			Special QA/QC	
Shefifin	2	1		Y		۶.	٨	7-1701			×	<u></u>			t	<u> </u>						-	
DUP		4		<i>y</i>		X.	X	7-17-61	111111111111111111111111111111111111111		X				(0		ļ	ļ			_	
VCI							_			<u></u>								ļ	↓_			Remarks	
									\$*1Au									<u> </u>				4	
-																ļ <u>.</u>	ļ	<u> </u>	_			-	
								000000000000000000000000000000000000000			<u> </u>								-		_	-	
							<u></u>					ļ	<u> </u>			<u> </u>							
								Landstone	Ů(X.ER	L. 3	OD	SEA	LSI	NTA	T L	<u> </u>						
												ļ	1	1	i i	ΤE	l l					Lab number	
								ļ	:00	LER	TEM	PER.	1		3,7		ي- ا					Turnaround time	
_						<u> </u>	_				_		ļ				<u> </u>	_		-		Priority Rush	
																	<u> </u>		***			1 Business Day	
Condition							Data	<u>-</u>	Time		perature eived by		ed:						,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			Rush 2 Business Days	
Helinques H€linques	· 34			70		<u></u>	7-// Date		17:65 Time	a Rego	-		ple Na	ice D		<u> </u>	(h	150	<u></u>		and the state of t	Expedited 5 Business Days	[]
Relingues			×	*		<u>ں</u>	Date	19-01	///C		orved tr	ř ř				***************************************	Date			Time		Standard 10 Business Days	*

APPENDIX C FIELD DATA SHEETS

WELL DEPTH MEASUREMENTS

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
MW-1	447		11.07		17.5	
MW/Z	4:48		8.99		14.1	
MW/3			9.93		14.7	
MWJY	4:40		8.59			
MW-5	4:32		9.95			
MW-6	435		9.95			
Shell MWS6	4.25		9.50		22.70	
Shell MW-7	4.20		6.93		16.30	
VW-2	4:30		8.97		9.D	
			· · · · · · · · · · · · · · · · · · ·			

Project Name: Acco 6041	Project Number: 438-/643
Measured By:	7 () () () () () () () () () (
Weastrett By:	Date: 07-17-01

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: MW-1		
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:		
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc		
Dublin	Disposable bailer	Technician(s): sq		
Initial Depth to Water: /1.07	Total Well Depth: 17.50	Water Column Height: 6 43		
Volume/ft: 0.65	1 Casing Volume: 4.17	3 Casing Volumes: 125		
Purge/No Purge:				
Purging Device: Submersible Pump	Did Well Dewater?: 10	Total Gallons Purged: 12		
Start Purge Time: 6:55	Stop Purge Time: 7: 01	Total Time: /4 mins		

1 Casing Volume = Water column height x Volume/ft.

1 Casing Volume = Water column height x Volume/ft.

2"
0.16
4"
0.65
6"
1.47

Time	Casing Volume	Temp. C	pН	Cond. uS	Comments
7:00	Lj	16.8	7.59	1529	
7:05	8	16.9	7.54	1720	
7:10	12	16-9	7.20	1782	
	-				
	,				
					00= 0.69m3/

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-1	7-17-01	7.75	4 VOA	HCL	TPHg, BTEX, MTBE	8020
	•					
				-		

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: MV-Z		
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:		
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc		
Dublin	Disposable bailer	Technician(s): 5C		
Initial Depth to Water: 3.99	Total Well Depth: 14.10	Water Column Height: 5, 1]		
Volume/ft: 0.65	1 Casing Volume: 3.32	3 Casing Volumes: 9.96		
Purge/No Purge:				
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged: 100		
Start Purge Time: 5:40	Stop Purge Time: 5:54	Total Time: 14 ming		

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	pН	Cond. uS	Comments
5:45	4	16.5	7.3/	1370	
5:50	. 3	16.7	7.20	1815	
5:45 5:50 5:55	10	16.3	7.35	1872	

					DO = .69 mg/
					00-01/43/2

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW.2	7-17-01	6:00	4 VOA	HCL	TPHg, BTEX, MTBE	8020
DWP -	·					

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: MW- 3	
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:	
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc	
Dublin	Disposable bailer	Technician(s): 54	
Initial Depth to Water: 9.93	Total Well Depth: /4.70	Water Column Height: 4.77	
Volume/ft: 0. 65	1 Casing Volume: 3. 10	3 Casing Volumes: 9-30	
Purge/No Purge: Mucse			
Purging Device: Submersible Pump	Did Well Dewater?: no	Total Gallons Purged: 9	
Start Purge Time: 6: 15	Stop Purge Time: 6:29	Total Time: 14 mins	

1 Casing Volume = Water column height x Volume/ft. 2" 0.16
2" 0.65
4" 0.65
6" 1.47

Time	Casing Volume	Temp. C	pH	Cond. uS	Comments
6:20	3	16.8	7.25	1720	
6:25	6	16.5	7.62	1785	
6:30	q	16.3	7.65	1769	
				1	
					DO =0.51ms/2

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW. 3	7-17-01	6:35	4 VOA	HCL	TPHg, BTEX, MTBE	8020
					-	

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: V41-2	
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:	
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc	
Dublin	Disposable bailer	Technician(s): 54	
Initial Depth to Water: 8.97	Total Well Depth: 9.00	Water Column Height: 0.03	
Volume/ft:	1 Casing Volume:	3 Casing Volumes:	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:	
Start Purge Time:	Stop Purge Time:	Total Time:	

1 Casing Volume = Water column height x Volume/ft. 2" 0.16
- 4" 0.65
- 6" 1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
		Insuff	icent h	iater	
			o(a San	ple	
		10	Sample	taken	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
			4 VOA	HCL	TPHg, BTEX, MTBE	8020
	•					

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: Shell MW-6	
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:	
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc	
Dublin	Disposable bailer	Technician(s): 59	
Initial Depth to Water: 9,50	Total Well Depth: 22.70	Water Column Height: /3.2	
Volume/ft: 0.65	I Casing Volume: 8.58	3 Casing Volumes: 25, 24	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?: 10	Total Gallons Purged: 26	
Start Purge Time: 4:00	Stop Purge Time: 4: 29	Total Time: 24 mins	

 I Casing Volume = Water column height x Volume/ft.
 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp. C	PH	Cond. uS	Comments
4:10	9	16.5	7.39	3999	
4:20	18	16.9	7.53	3999	
4:30	26	16.7	7.55	3999	
				-	
					- DO - / A3
			1		DO = 1.03,

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Stell MW-6	7-17-01	4: 40	4 VOA	HCL	TPHg, BTEX, MTBE	8020
	•					

Project Name: ARCO 6041	Cambria Mgr: Darryk Ataide	Well ID: Shell MW-7	
Project Number: 436 - 1610	Date: 7-17-01	Well Yield:	
Site Address: 7249 Village Pkwy,	Sampling Method:	Well Diameter: "pvc	
Dublin	Disposable bailer	Technician(s): 55	
Initial Depth to Water: 6.93	Total Well Depth: /6.30	Water Column Height: 9.37	
Volume/ft: 0.66	1 Casing Volume: 1.49	3 Casing Volumes: 19.27	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?: 40	Total Gallons Purged: 18	
Start Purge Time: 4:55	Stop Purge Time: 5:15	Total Time: 24 mins	

| Casing Volume = Water column height x Volume/ft. | Well Diam. | Volume/ft (gallons) | 2" | 0.16 | | 0.65 | | 0.65 | | 0.67 | | 0.65 | | 0.67 | |

Time	Casing Volume	Temp. C	pН	Cond. uS	Comments
5:00	Ь	16.5	729	1927	
5:10	12	16.5	7.50	1950	
5:20	18	16.5	7.58	2017	
					DO-1.05mg//

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Shell mw-	7-17-01	<i>5:</i> 30	4 VOA	HCL	TPHg, BTEX, MTBE	8020
	•					