

GETTLER-RYAN INC.

TRANSMITTAL

January 28, 2002 G-R #180203

FEB 1 5 2002

TO:

Mr. David B. De Witt

Phillips 66 Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. Paul Blank

ERI, Inc.

73 Digital Drive, Suite 100

Novato, California 94949

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

RE:

Former Tosco 76 Service Station

#0843

1629 Webster Street Alameda, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	January 18, 2002	Groundwater Monitoring and Sampling Report Fourth Quarter - Event of December 10, 2001

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *February 12, 2002*, this report will be distributed to the following:

Ms. Eva Chu, Alameda County Dept., of Environmental Health, 1131 Harbor Bay Parkway, Alameda, CA 94502

Enclosure

Mt Pot attenuating but TPHq still elevated, especially at New 2

January 18, 2002 G-R Job #180203

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Fourth Quarter Event of December 10, 2001

Groundwater Monitoring & Sampling Report Former Tosco 76 Service Station #0843 1629 Webster Street

Alameda, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

F00 –
 Deanna L. Harding

Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1:

Potentiometric Map

framaii Vercau

Figure 2: Table 1:

Concentration Map

Table 1: Table 2:

Groundwater Monitoring Data and Analytical Results Groundwater Analytical Results - Oxygenate Compounds

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

0843.qml

Chain of Custody Document and Laboratory Analytical Reports

December 10, 2001

180203

6747 Sierra Ct., Suite J (925) 551-7555

REVIEWED BY

Former Tosco 76 Service Station #0843 1629 Webster Street

Alameda, California

REVISED DATE

PROJECT NUMBER 180203

December 10, 2001

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPH-G	В	Т	E	X	MTBE
TOC*(ft.)		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1									
16.18	03/05/99 ¹			86.6 ³	ND	2.04	ND	4.06	23.9^{2}
	06/03/99	6.24	9.94	ND	ND	ND	ND	ND	ND/ND ²
	09/02/99	7.19	8.99	ND	ND	ND	ND	ND	ND/ND ²
	12/14/99	8.0 7	8.11	ND	ND	ND	ND	ND	ND
	03/14/00	5 .47	10.71	ND	ND	ND	ND	ND	ND
	05/31/00	6.22	9. 96	ND	ND	ND	ND	ND	ND
	08/29/00	6.82	9.36	ND	ND	ND	ND	ND	ND
	12/01/00	7.54	8.64	ND	ND	ND	ND	ND	ND
	03/17/01	5.7 3	10.45	ND	ND	ND	ND	ND	ND
	05/23/01	6.43	9.75	ND	ND	ND	ND	ND	ND
	09/24/01	7.12	9.06	<50	< 0.50	< 0.50	<0.50	< 0.50	<5.0
	12/10/01	6.8 9	9.29	<50	<0.50	<0.50	<0.50	<0.50	<5.0
MW-2	03/05/991			34,400	2,070	7,710	2,340	8,240	$8,460^2$
15.57	06/03/99	5.9 6	9.61	51,200 ⁴	1,820	7,570	2,510	7,320	6,460/8,800 ²
	09/02/99	6.85	8.72	17,000 ⁵	1,000	3,100	1,400	3,700	$4,000/3,720^2$
	12/14/99	7.65	7.92	83,000 ⁵	3,000	22,000	4,500	17,000	9,100/11,000 ²
	03/14/00	5.26	10.31	31,0005	1,600	4,600	2,300	7,300	5,700/8,700 ²
	05/31/00	5.60	9.97	9,970⁵	598	1,030	487	2,060	$2,500/1,670^2$
	08/29/00	6.3 5	9.22	7,900⁵	390	1,500	280	1,900	1,800/1,300 ²
	12/01/00	7.06	8.51	87,500 ⁵	1,860	17,400	5,590	19,400	$6,220/3,790^2$
	03/17/01	5.98	9.59	4, 310⁵	371	59.0	280	682	321/433 ²
	05/23/01	6.9 7	8.60	45,400 ⁵	374	4,490	2,790	10,900	⁷ ND/406 ²
	09/24/01	7.56	8.01	76,000 ³	430	13,000	4,700	18,000	<2,000/480 ²
	12/10/01	6.52	9.05	82,000 ³	320	9,100	4,400	16,000	<2,500/270 ²
	02/02/001			1253	ND	ND.	NIP	4 04	2.46^{2}
MW-3	03/05/991			135 ³	ND	ND	ND	4.84	2.46 5.23/12.7 ²
15.11	06/03/99	5.57	9.54	ND	ND	ND	ND	ND	$\frac{5.23/12.7}{13/11.0^2}$
	09/02/99	6.50	8.61	ND	ND	ND	ND	ND	13/11.0

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	GWE	TPH-G	В	T	E	X	MTBE
TOC*(fi.)		(fi.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-3	12/14/99	7.2 8	7.83	ND	ND	ND	ND	ND	ND
(cont)	03/14/00	4.8 7	10.24	ND	ND	ND	ND	ND	$7.2/6.3^2$
	05/31/00	5. 58	9.53	ND	ND	ND	ND	ND	NĎ
	08/29/00	6.0 6	9.05	ND	ND	ND	ND	ND	ND
	12/01/00	6.7 6	8.35	ND	ND	ND	ND	ND	ND
	03/17/01	5.09	10.02	ND	ND	ND	ND	ND	ND
	05/23/01	5 .72	9.39	ND	ND	ND	ND	ND	ND
	09/24/01	6.34	8.7 7	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	12/10/01	6.31	8.80	<50	<0.50	<0.50	<0.50	<0.50	<5.0
MW-4	03/05/991	-		ND	ND	ND	ND	2.44	25.2 ²
15.17	06/03/99	5.45	9.72	ND	ND	ND	ND	ND	$ND/3.96^{2}$
	09/02/99	6,48	8.69	ND	ND	ND	ND	ND	23/27.0 ²
	12/14/99	7 .27	7.90	ND	ND	ND	ND	ND	$200/270^2$
	03/14/00	4.67	10.50	ND	ND	ND	ND	ND	46/49 ²
	05/31/00	5.48	9.69	ND	ND	ND	ND	ND	ND
	08/29/00	6. 10	9.07	ND	ND	ND	ND	ND	$6.1/3.2^2$
	12/01/00	6.7 9	8.38	ND	ND	ND	ND	ND	152/101 ²
	03/17/01	5.01	10.16	ND	ND	ND	ND	ND	ND
	05/23/01	5.78	9.39	ND	ND	ND	ND	ND	ND
	09/24/01	6.42	8.75	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	12/10/01	6.41	8.76	<50	<0.50	<0.50	<0.50	<0.50	$1,700/1,300^2$
				·		•			
MW-5	12/14/99	6.4 5	6.89	ND	ND	ND	ND	ND	3.5/3.8 ²
13.34	03/14/00	4,4 6	8.88	ND	ND	NĎ	ND	ND	ND
	05/31/00	5.18	8.16	ND	ND	ND	ND	ND	ND
	08/29/00	5.46	7.88	ND	ND	ND	ND	ND	ND
	12/01/00	5. 95	7.39	ND	ND	ND	ND	ND	ND
	03/17/01	5.36	7.98	ND	ND	ND ·	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results

									
WELL ID/	DATE	DTW	GWE	TPH-G	В	Т	E	X	MTBE
TOC*(ft.)		(ft.)	(msl)	(ррв)	(ppb)	(ppb)	(ppb)	(ррь)	(ррб)
MW-5	05/23/01	5.0 9	8.25	ND	ND	ND	ND	ND	ND
(cont)	09/24/01	5.5 8	7.76	<50	< 0.50	<0.50	< 0.50	<0.50	<5.0
	12/10/01	5.51	7.83	<50	<0.50	<0.50	<0.50	<0.50	<5.0
MW-6	12/14/99	6 .64	7. 44	ND	ND	ND	ND	ND	11,000/18,000 ²
14.08	03/14/00	4.72	9.36	ND ⁷	ND ⁷	ND ⁷	ND ⁷	ND ⁷	19,000/21,000 ^{2,6}
	05/31/00	5.28	8.80	ND^7	\mathtt{ND}^7	ND ⁷	ND ⁷	ND^7	13,200
	08/29/00	5.39	8.69	ND	ND	ND	ND	ND	270/400 ²
	12/01/00	6.11	7.97	ND	ND	ND	ND	ND	6,330/3,640 ²
	03/17/01	6.02	8.06	18,700 ⁵	2,950	989	1,040	3,000	$10,200/11,500^2$
	05/23/01	5 .82	8.26	ND ⁷	ND ⁷	ND ⁷	ND ⁷	ND ⁷	4,660 ⁸
	09/24/01 ¹⁰	6.59	7.49	<50	< 0.50	< 0.50	<0.50	< 0.50	160/190 ⁹
	12/10/01	6.50	7.58	<50	<0.50	<0.50	<0.50	<0.50	3,200/2,400 ²
Trip Blank	03/05/99 ¹	- -	***	ND	ND	ND	ND	ND	ND^2
TB-LB	06/03/99			ND	ND	ND	ND	ND	ND
	09/02/99			ND	ND	ND	ND	ND	ND
	12/14/99			ND	ND	ND	ND	ND	ND
	03/14/00			ND	ND	ND	ND	ND	ND
	05/31/00			ND	ND	ND	ND	ND	ND
	08/29/00			ND	ND	ND	ND	ND	ND
	12/01/00			ND	ND	ND	ND	ND	ND
	03/17/01			ND	ND	ND	ND	ND	ND
	05/23/01			ND	ND	ND	ND	ND	ND
	09/24/01			<50	< 0.50	<0.50	<0.50	<0.50	<5.0
	12/10/01			<50	< 0.50	<0.50	<0.50	<0.50	<5.0

Table 1

Groundwater Monitoring Data and Analytical Results

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 3, 1999, were compiled from reports prepared by ERI, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

(ft.) = Feet

T = Toluene

ND = Not Detected

DTW = Depth to Water

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

(msl) = Mean sea level

MTBE = Methyl tertiary butyl ether

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations are based on USC&GS Benchmark WEB PAC 1947 R 1951; (Elevation = 14.054 feet).
- B,T,E,X by EPA Method 8260.
- ² MTBE by EPA Method 8260.
- Laboratory report indicates weathered gasoline C6-C12.
- Laboratory report indicates chromatogram pattern C6-C12.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates sample was analyzed 03/28/00 but required reanalysis at a dilution. The dilution was analyzed outside of the EPA recommended holding time.
- Detection limit raised. Refer to analytical reports.
- Laboratory did not perform analysis for MTBE by EPA Method 8260 as requested on the Chain of Custody for 8020 MTBE hits.
- MTBE by EPA Method 8260 was analyzed past the EPA recommended holding time.
- Due to laboratory error, MW-6 was not analyzed within the EPA recommended holding time.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

WELLID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ррь)	(ppb)	(ppb)	(ppb)	(ppb)	(ррь)	(ppb)	<u>(ppb)</u>
MW-1	09/02/99	ND	ND	ND	ND	ND	ND		-
MW-2	09/02/99	ND¹	ND ¹	3,720	ND	ND ¹	ND1		
	12/14/99	ND¹	ND ¹	11,000	ND ¹	ND ¹	ND	ND ¹	ND ¹
	03/14/00	ND ¹	1,300	8,700	אס ^י	ND ¹	ND	ND	ND ¹
	05/31/00	ND ¹	ND ¹	1,670	ND	ND ¹	ND'	ND ¹	ND ¹
	08/29/00	ND	250	1,300	ND	ND	ND	ND	ND
	12/01/00	ND ¹	ND1	3,790	ND ¹	ND	ND	ND ¹	ND ¹
	03/17/01	ND ¹	ND1	433	14.8	ND,	ND	ND ¹	ND ¹
	05/23/01	ND ¹	ND1	406	ND ¹	ND	ND	ND'	ND'
	09/24/01	<50,000	<5,000	480	<100	<100	<100	<100	<100
	12/10/01	<12,000	<500	270	<25	<25	<25	<25	<25
MW-3	09/02/99	ND	ND	11.0	ND	ND	ND		**
	03/14/00			6.3					
						110	3173		
MW-4	09/02/99	ND	ND	27.0	ND	ND	ND		
	12/14/99			270					
	03/14/00			49				**	
	08/29/00			3.2					
	12/10/01	<7,100	<290	1,300	<14	<14	<14	<14	<14
3438/ 5	12/14/00			3.8				_	
MW-5	12/14/99			3.8				<u></u>	

Table 2 Groundwater Analytical Results - Oxygenate Compounds

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	1,2-DCA (ppb)	EDB (ppb)
		NAVA.	WPO	(Pre-2)	WP-	121200/			
MW-6	12/14/99			18,000					
	03/14/00			$21,000^2$					
	08/29/00			400			_		
	03/17/01	ND	ND ¹	11,500	ND'	ND ^t	ND^1	219	ND ¹
	05/23/01 ³								
	09/24/014	<1,000	<100	190	<2.0	<2.0	<2.0	<2.0	<2.0
	12/10/01	<12,000	<500	2,400	<25	<25	<25	<25	<25

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

EXPLANATIONS:

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

-- = Not Analyzed

ND = Not Detected

Detection limit raised. Refer to analytical reports.

Laboratory report indicates sample was analyzed 03/28/00 but required reanalysis at a dilution. The dilution was analyzed outside of the EPA recommended holding time.

Laboratory did not perform analyzsis for oxygenates as requested on the Chain of Custody, on all 8020 MTBE hits.

Laboratory report indicates sample was analyzed past the EPA recommended holding time.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Phillips 66 Company, the purge water and decontamination water generated during sampling activities is transported to Phillips 66 - San Francisco Refinery, located in Rodeo, California.

Client/ Facility #_0 8	43		·	Job#: _	1802	03	
Address: 16	29 Webster	cst.	· 	Date: _	12-10-	01	
City: _A\A	MEDA, CA	\		Sampler: _	Joe		
Well ID		We	ell Condition:). K.		
Well Diameter		-	drocarbon	<i>A</i>	Amount Ba	وتنتي	
Total Depth	20.05		ickness:	2" = 0.17	1product/wat 3" = 0.38		(gal.)
Depth to Water	6.89	1	actor (VF)		= 1.50		= 0.66
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	*	Sarr	pling pment: (Estimated Purposable Bailer Pressure Bailer Grab Sample	iler	<u>7</u> 10-11
Purging Flow Rat	1 155 P. m. (1) te: 16	355)	Water Cold Sediment	or:C Description:	lear Volum	Odor No	
	Volume pH (gal.) 2.5 7.91 5 7.48 7 7.56	عثر	upos/cm X	71.3 71.5 71.9	(mg/L)	ORP (mV)	Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABO REFRIG.	RATORY IN		BORATORY	ANAL	rses
Mw-1	BYOA	Y	HCL	5	eq.	TPHG, BT	ey,mtbe
	,						
COMPAGE	2" capt pad	lask	1		· · · · · · · · · · · · · · · · · · ·		
COMMENTS: _	- Cay 7 pas	1 veic	<u> </u>	<u>-</u>			.
		•					

Client/ Facility # 0 8	43		Job)#:	1803	203	
Address: 16	29 Webster	<u>s</u> +	Dat	e: <u>1</u>	2-10-	01	
City: AlA	MEDA, CA	<u> </u>	San	npler:			
Well ID	Mw-2	Wel	l Condition:	0.			
Well Diameter		Hyd	rocarbon	>	Amount Ba	ailed	
Total Depth	20.25		kness: 49		product/wa		1001.1
Depth to Water	6.52	4 -	lume 2" = zor (VF)	0.17 6 = 1.5		12° = 5,80	= 0.66
	13.73 ×	vf <u>.0.17</u>	= 2.33 x 3 (cas	sa volume) = E	stimated Pu	irga Volume: _	7 (gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipmen	nt: Disp Baile Pres	osable Ba er sure Baîle o Sample	iler	,
	4:28 4:51 p.m. (164 e: 0.50	<u>7)</u>	Weather Conditi Water Color: Sediment Descri If yes; Time: _	<u> </u>		Odor_ y	es
	Columne (gal.) 2 \(7.17 \) \(7.18 \) \(7.72 \)	- <u>- 3</u> 3	68 6	5.1 5.7 5.6	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABOR REFRIG.	ATORY INFORM	ÍATION LABOR	ATORY	AMAI	YSES
Mw-21	FORE	Υ	HCL	Seq		1	EX, MTBE
	240A	11	G .	11		18)0x4	3,8260
			······································			/- /5	.,,

Client/ Facility #_0_	843			Job#:	1803	203	
Address: 16	,29 Webste	cst.	······.	Date:	12-10-	- 0	
City: ALA	MEDA, C	<u> </u>		Sampler:	50 e		
Well ID	Mw-3		al Condition:	0.	k.		
Well Diameter	2 in	_	drocarbon	·	Amount Ba	ailed	
Total Depth	19.90 +		ckness:	# - 0.17	(product/wa		[gel]
Depth to Water	6.31	1	ACCOT (VF)	2" = 0.17 6" = 1	.50 .50	12" = 5.80	= 0.66
·	13.59	x vf <u>.0.1</u>	$1 = \frac{2.31}{x}$	3 (case volume) =	Estimated Pa	irga Volume:	7 (01)
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:			Ba Pr Gr	sposable Ba iler essure Balle ab Sample	ਬ	*
Purging Flow Ra Did well de wat		opm.	Sediment i	or:Cle Description: me:	• •	Odor: M	
Time	Volume pH (gal.)	يضر	uductivity ⁽⁷⁾ nhos/cm (0 , 6	Temperature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
2:17	5 7.60 7 7:60		0.11)1.0)1.d		-	
		LABO	RATORY IN	ORMATION			·
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV.	TYPE LABO	PRATORY	ANAL	YSES
MW-3	HOYE	Y	HCL	Se	4.	TPHG, BT	ex,mtbe
-							
COMMENTS:	2" cap .	r padl	ock		· _ · · · ·		
		1	-				
	·	•	1	•			<u> </u>

Date: 12-10-01 Sampler: 50 e Intion: 0, 100 Intion: 100 Amount Bailed 100 Intion: 100 100 Intitute:
Amount Bailed in (product/water): 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.50 12" = 5.80 Sampling Equipment: Disposable Bailer Pressure Bailer Grab Sample
Amount Bailed in (product/water): 2 = 0.17
in (product/weter): [gel] 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.50 12" = 5.80 - 28 x 3 (case volume) = Estimated Purga Volume: [gel] Sampling Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample
2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.50 12" = 5.80 - 28 x 3 (case volume) = Estimated Purga Volume:
6° = 1.50 12° = 5.80 - 28 x 3 (case volume) = Estimated Purga Volume: 7 Ignl Sampling Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample
Sampling Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample
Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample
· · · · · · · · · · · · · · · · · · ·
r Color: Clea C Odor: N & N & N & N & N & N & N & N & N & N
Temperature D.O. ORP Allcatinity (mg/L) (mV) (ppm)
72.4
4 71.9
Y INFORMATION
CL Seq. TPHG.BTEX,MTBE
77 77 77 77 77 77 77 77 77 77 77 77 77

Client/ Facility # <u>0</u> 8	343		Job	#: _	1803	203	
Address: 16	29 Webste	cst.	Date	e:	2-10-	01	
City: A A	MEDA, C	4	•		Joe		
Well ID	Mw-5		ell Condition:	0.	<u>k</u> ·		
Well Diameter		-	drocarbon		Amount B	ailed	
Total Depth	20.22		ickness:	is	(product/wa		(0#1)
Depth to Water	5.51	- 1	olume 2" = actor (VF)	0.17 6 = 1		12" = 5,80	= 0.66
	_14.71_x	VF <u>Ø.1</u>	1 = 250 × 3 (cas	e Volume) =	Estimated Pr	orge Volume: _	7.5 lost 1
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipmen	Ba Pro Gr	sposable Ba iler essure Baile ab Sample	er .	y
Purging Flow Ra Did well de-water			Water Color: Sediment Descri If yes; Time:	iption:		·	•
Time 3	Volume pH (g-L)	200	nductivity 1 ² Tem nhos/cm x	45	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
2:34	$\frac{25}{5}$ $\frac{7.27}{2}$		1/2	2/		<u> </u>	·
7:41	7.5 7.36	<u> </u>	17	71.8			
	<u> </u>			·			
		LABO	RATORY INFORM	is TION		<u>.</u>	
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE		RATORY	ANAL	YSES.
Mw-5	3404	Y	HCL	. Se	4.	TPHG. BT	ex,mtbe
					· · · · · · · · · · · · · · · · · · ·		
							•
COMMENTS: _		<u> </u>		•			
					-		
		•	•	•			-

Client/ Facility # <u>0 8</u>	43		Jot)#:	1803	203	
Address: 16	29 Webste	cst.			12-10-		
_	MEDA; C		•	npler:			
Well ID	MW-G	W	ell Condition:	0.	<u>k</u> .		·
Well Diameter	2 _{in}	Ну	drocarbon		Amount B	ailed	
Total Depth	20.15 +		ickness:	<u>in.</u>	(product/wa		10=1
Depth to Water	6.50 4	4	olume 2° =	6 = 1		12" = 5,80	= 0.66
	13.65	المعربة VF	1 = 2.32 × 3 tc=	se volume) =	Estimated Po	nge Volume: _	7 (00)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	7	Sampling Equipme	nt: Di Ba Pr Gr	sposable Ba iler essure Baile ab Sample	iller	,
Purging Flow Rat	4:0 4:208.m (162 e:	<u>o)</u>	Weather Condit Water Color: _ Sediment Desc If yes; Time:	<u> </u>	a (Odor:	:/d
		•	• •	•			
Time \	Volume pH (gal.)	Con شر	nductivity 🗸 . Ten nhos/cm 🛠	L	D.O. (mg/L)	ORP (mV)	Allalinity (ppm)
Time \		7	ntros/cm / 5,75	- F			Alkalinity (ppm)
11:08	(gal.)	7	1002 (1002)	- F			▼ .
Time \	(gal.)	7	ntros/cm / 5,75	- F			▼ .
Time \	(gal.)	7	1002 (1002)	- F			▼ .
Time \ 4'.08	(gal.) 2.5 7.25 7.36 7.26	LABO	RATORY INFORM	71.6 71.5 71.7 71.7	(mg/L)		▼ .
11:08	(gal.) 2.5 7.25 7.30 7.26 (f) - CONTAINER	LABO REFRIG.	RATORY INFORM	7/. 6 7/. 5 7/. 7 AATION LABO	(mg/L)	(mV)	(ppm)
#:08 4:10 4:12 SAMPLE ID	(gal.) 2.5 7.25 7.36 7.26	LABO	RATORY INFORM	71.6 71.5 71.7 71.7	(mg/L)	(mV)	(ppm)
#:08 4:10 4:12 SAMPLE ID	(gal.) 2.5 7.25 7.30 7.26 (f) - CONTAINER	LABO REFRIG.	RATORY INFORM	7/. 6 7/. 5 7/. 7 AATION LABO	(mg/L)	(mV)	(ppm)
#:08 4:10 4:12 SAMPLE ID MW-6	(gal.) 2.5 7.25 7.30 7.26 (f) - CONTAINER	LABO REFRIG.	RATORY INFORM	7/. 6 7/. 5 7/. 7 AATION LABO	(mg/L)	(mV)	(ppm)
# 08 4:10 A:12 SAMPLE ID	(gal.) 2.5 7.25 7.30 7.26 (f) - CONTAINER	LABO REFRIG.	RATORY INFORM	7/. 6 7/. 5 7/. 7 AATION LABO	(mg/L)	(mV)	(ppm)

$\Delta I = I$	•		. 1 1	. 🔼 '
(Lhai	ከ一八	†{ :1:	いいいけつし	/-Record
VIIUI	I) V		19194:	

Total Mathering Company 2000 Con Corpor PL, But. 400 - Sanfaron, Calibral philal

929M12 121 140 40 10 47 40	
Foolity Humber TOSCO (Former) SS #0843 Foolity Address 1629 Webster Street, Alameda, CA	Contact (Horne) MR. Dave DeWitt (Phone) 925-277-2384
Consultant Project Humber 180203.85	Laboratory Name Seguoia Analytical
Consultant Home Gettler-Ryan Inc. (G-R Inc.)	Laboratory Release Number
Address 6747 SIERRA COURT, SUITE J. DUBLIN. CA 94568	Samples Collected by (Name) TOE A TENIAN
Project Contact (Name) Deanna L. Harding	Collection Data 12 10-01
(Phone) (925) 551 ± 7555 (Fox Humber, 925=551-7899	Signature 55

٠.		ļ	🖁					<u> -</u>			·	-	Anolye	e To B	• Perto	rmed		·			DO NOT BILL
CII2066	Lob Sample Number	Number of Containers	Medric S = Sol A = Air W = Webs C = Charcool	hype G = Grab C = Composite O = Discrete	Tru-	Semple Preservation	End (Yes or No.)	THE GAS STEX WASTEE	1PH Disest (8015)	Oil and Graces (5520)	Purpeoble Holocurbora (5010)	Purpadála Aramatica (8020)	Purquote Organica (8240)	Extractable Organics (8270)	Media CAC,Pb.Zn.Ni (ICAP or Ak)	(8) 0x y s	<u>-</u>				BOAY'S - MYBE, TBA, DIPE, ETBE TAME, 1,2DCA EDB, Ethanol
TB-LB	01	vot	3	Ç-		HCL	Y	V								<u> </u>				<u> </u>	
mw-l	OL	yo.A-	1	,	1355	1	,	1								<u> </u>	-		1 2		RUN 8 OXY'S BY 8260 ON AU. 8020
WW.Z	Uh	√6.4	,	1	1651	1	1	1								<u> </u>		-	<u> </u>		мтен низ. —
MW-3	04	Aor	,	1	1430	,	1	<u></u>		·			<u> </u>					<u> -</u> _	ļ		<u>.</u>
mw-4	OS	4	1	/	1507	1	ş	<u>/</u>					<u> </u>	<u> </u>	ļ <u>-</u>	<u> </u>			ļ	<u> </u>	
MW-5	06	4	/	1	1550	1.	1	<u> </u>		<u> </u>	<u>. </u>		<u> </u>	<u> </u>	ļ <u></u>			<u> </u>	 	ļ 	
MW-6	07	"	1		1620	,	1	<u>/</u>				ļ <u>.</u>	 	ļ	├ —	ļ <u>. </u>		- -	ļ	 -	<u> </u>
								<u> </u>		<u> </u>	<u> </u>	<u> </u>	_	}	ļ.—	-	-	 		-	
									<u> -</u>			<u> </u>	. 	<u> </u>	 		<u> </u>	┤─	 	+-	<u> </u>
								<u> </u>	<u> </u>	ļ	 	\vdash	 	 		 		17	╂─	╂	
	·	<u> </u>								 	-	<u> </u>	 	-	 -		-	-	 	-	
		1	 					ļ		 		-	 	╄	 	┨		ļ		-├	
			<u> </u>	<u> </u>			 		_	 		-	-{	 	 		-		 	┪	
Rollingulohed By	(Signoture)	<u></u>	, , -	onizotion R Inc		 - - 0-0	O Rec	alved 8	y (sign	, , ,) Bu		Organiza		12	100		:	Tum A	24	me (Circle Choles) Hrs.
Relinquished By				nelfatina	_	ote/Time	<u> </u>	selved B		•	By (Slon		Oldobjea	tion .		to/Time	• •			6 10	Days Days Days Introdud
			j		ı		ı	4				•									

27 December, 2001

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

RE: Tosco(1)

Sequoia Report: L112066

Enclosed are the results of analyses for samples received by the laboratory on 12/10/01 19:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Richard G. Yee For Latonya Pelt

Project Manager

CA ELAP Certificate #2360

1551 Industrial Road San Carlos CA 94070 (650) 232-9600 FAX (650) 232-9612 www.sequoialabs.com

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	L112066-01	Water	12/10/01 00:00	12/10/01 19:00
MW-1	L112066-02	Water	12/10/01 13:55	12/10/01 19:00
MW-2	L112066-03	Water	12/10/01 16:51	12/10/01 19:00
MW-3	L112066-04	Water	12/10/01 14:30	12/10/01 19:00
MW-4	L112066-05	Water	12/10/01 15:03	12/10/01 19:00
MW-5	L112066-06	Water	12/10/01 15:50	12/10/01 19:00
MW-6	L112066-07	Water	12/10/01 16:20	12/10/01 19:00

Sequoia Analytical - San Carlos

Rulye

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) \$\$#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B Sequoia Analytical - San Carlos

		1	J				**		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (L112066-01) Water Sampled:	12/10/01 00:00	Received:	12/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1120073	12/18/01	12/18/01	EPA 8021B	
Benzene	ND	0.50		n	n	н	r	H	
Toluene	ND	0.50	Ħ	0	н	#	*	H.	
Ethylbenzene	ND	0.50	n	n	н	II.	**		•
Xylenes (total)	ND	0.50	**		n	#	u	lt.	
Methyl tert-butyl ether	ND	5.0	#		li .	D.	n	U	
Surrogate: a,a,a-Trifluorotoluene		88.3 %	70-	-130	H	rr	"	н	
MW-1 (L112066-02) Water Sampled: 1	2/10/01 13:55	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1120073	12/18/01	12/18/01	EPA 8021B	
Benzene	ND	0.50	n		н		*		
Toluene	ND	0.50	н	u	н	19	н	•	
Ethylbenzene	ND	0.50	Ħ	n	u	11	**	11	
Xylenes (total)	ND	0.50	Ħ	**	Ħ	11		11	
Methyl tert-butyl ether	ND	5.0	н	п	II.	H	#	п	
Surrogate: a,a,a-Trifluorotoluene		94.1 %	70-	-130	"	,,	"	n	·
MW-2 (L112066-03) Water Sampled: 1	2/10/01 16:51	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	82000	25000	ug/l	500	1120072	12/18/01	12/18/01	EPA 8021B	P-02
Benzene	320	250	"	я	и	н		Ħ	
Toluene	9100	250	n	₩	u	н	*	tr	
Ethylbenzene	4400	250	tr	**	H	**		н	
Xylenes (total)	16000	250		Ħ	н	w	я	*	
Methyl tert-butyl ether	ND	2500	*	#			Ħ	7	
Surrogate: a,a,a-Trifluorotoluene		97.2 %	70-	-130	11	#	n	77	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (L112066-04) Water Sampled: 1	12/10/01 14:30	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1120073	12/18/01	12/18/01	EPA 8021B	
Benzene	ND	0.50	и		*	n	17	n	
Toluene	ND	0.50	11	11	**	Ħ	11	h	
Ethylbenzene	ND	0.50	10		10	"	H	н	
Xylenes (total)	ND	0.50	**	77		11	n	ı	
Methyl tert-butyl ether	ND	5.0	**	Ħ	я	и	n .	"	
Surrogate: a,a,a-Trifluorotoluene		86.6 %	70	-130	*	n	tr	"	
MW-4 (L112066-05) Water Sampled: J	2/10/01 15:03	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/i	1	1120073	12/18/01	12/18/01	EPA 8021B	
Benzene	ND	0.50	Ħ		11	•	,,	17	
Toluene	ND	0.50	н	**	h	n	**	п	
Ethylbenzene	ND	0.50	н	4	н	11	н	н	
Xylenes (total)	ND	0.50	н	19	H	11	N	H	
Methyl tert-butyl ether	1700	100	н	20	"	h	н .		M-04
Surrogate: a,a,a-Trifluorotoluene		72.1 %	70	-130	n	п	"	re .	
MW-5 (L112066-06) Water Sampled: 1	2/10/01 15:50	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1120073	12/18/01	12/18/01	EPA 8021B	
Benzene	ND	0.50	n	H			11	18	
Toluene	ND	0.50	h	Ħ	11	#	11	н	
Ethylbenzene	ND	0.50	Ħ		11	"	M	n	
Xylenes (total)	ND	0.50	и	n	н	II	N	u	
Methyl tert-butyl ether	ND	5.0	п	в.	н	н			
Surrogate: a,a,a-Trifluorotoluene		86.0 %	70	-130	п	"	"	"	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (L112066-07) Water Sampled:	12/10/01 16:20	Received: 1	2/10/01	19:00					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	1120073	12/18/01	12/18/01	EPA 8021B	-
Benzene	ND	0.50	•	Ħ	ŧr	11	"	H	
Toluene	ND	0.50	n	и	10	H	**	n	
Ethylbenzene	ND	0.50	п	н	**	п	н		
Xylenes (total)	ND	0.50	•	N	10	H	n		
Methyl tert-butyl ether	3200	100	π	20	11	н	н	Ħ	M-04
Surrogate: a,a,a-Trifluorotoluene		72.0 %	70	-130	#	#	n	"	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (L112066-03) Water	Sampled: 12/10/01 16:51	Received: 1	2/10/01 1	9:00					
Ethanol	ND	12000	ug/l	25	1120078	12/20/01	12/20/01	EPA 8260B	
1,2-Dibromoethane	ND	25	19	н	и	tr	11	**	
1,2-Dichloroethane	ND	25	19	n	н	11	H	U	
Di-isopropyl ether	ND	25	п	11	н	II .	H	н	
Ethyl tert-butyl ether	ND	25]1		,,	H	H.	H	·
Methyl tert-butyl ether	270	25	n	ș f	lt .	u	₩	π	
Tert-amyl methyl ether	ND	25	н	n		#	n		
Tert-butyl alcohol	ND	500	н	Ħ	tı .	v	11	,,	
Surrogate: 1,2-Dichloroethane	?-d4	88.0 %	70-	130	"	"	"	"	
Surrogate: Toluene-d8		88.6 %	70-	130	#	"	n	п	
MW-4 (L112066-05) Water	Sampled: 12/10/01 15:03	Received: 1	2/10/01 1	19:00					
Ethanol	ND	7100	ug/l	14.28	1120078	12/20/01	12/20/01	EPA 8260B	
1,2-Dibromoethane	ND	14	*	п	π		11	#	
1,2-Dichloroethane	ND	14	11	н	Ħ	11	н	н	
Di-isopropyl ether	ND	14		**	**	n	11	T T	
Ethyl tert-butyl ether	ND	14	P	я	11	•t	•	*	
Methyl tert-butyl ether	1300	14	tr	#	н		*		
Tert-amyl methyl ether	ND	14	**	w	n	н		11	
Tert-butyl alcohol	ND	290	10	0	п		н	н	
Surrogate: 1,2-Dichloroethane		92.0 %	70-	-130	"	**	n	27	
Surrogate: Toluene-d8		98.4 %	70-	-130	**	n	n	Te	
MW-6 (L112066-07) Water	Sampled: 12/10/01 16:20	Received: 1	2/10/01	19:00					
Ethanol	ND	12000	ug/l	25	1120078	12/20/01	12/20/01	EPA 8260B	
1,2-Dibromoethane	ND	25	n n	н	u	n	h	**	
1,2-Dichloroethane	ND	25	ii.	n	**	н	н	*	
Di-isopropyl ether	ND	25	71	#1	"	*1	**	#1	
Ethyl tert-butyl ether	ND	25	**		**	H	11	D	
Methyl tert-butyl ether	2400	25	ii .	**	n	н	ħ	51	
Tert-amyl methyl ether	ND	25	**	11	19	11	**	ь .	
Tert-butyl alcohol	ND	500	"	11		*	u	"	
Surrogate: 1,2-Dichloroethane	?-d4	87.6%	70-	-130	"	"	"	**	
Surrogate: Toluene-d8		99.8 %	70-	-130	"	#	**	"	

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1120072 - EPA 5030B (P/T)										7700
Blank (1120072-BLK1)	<u> </u>	•		Prepared	& Analyza	d: 12/18/	01			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l						-	
Benzene	ND	0.50	" .							
Toluene	ND	0.50	**							
Ethylbenzene	ND	0.50	н							
Xylenes (total)	ND	0.50	н							-
Methyl tert-butyl ether	ND	5.0	#							
Surrogate: a,a,a-Trifluorotoluene	8.26		"	10.0		82.6	70-130			
LCS (1120072-BS1)				Prepared	& Analyze	ed: 12/18/	01			
Benzene	9.81	0.50	ug/I	10.0		98.1	70-130			
Toluene	8.98	0.50	н	10.0		89.8	70-130			
Ethylbenzene	8.69	0.50	н	10.0		86.9	70-130			
Xylenes (total)	25.8	0.50	Ħ	30.0		86.0	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.1		"	10.0		101	70-130		-	
LCS (1120072-BS2)				Prepared	& Analyze	ed: 12/18/	01			
Purgeable Hydrocarbons as Gasoline	290	50	ug/l	250		116	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.31		"	10.0		93.1	70-130			· -
Matrix Spike (1120072-MS1)	Soi	rce: L11207	8-03	Prepared	& Analyze	ed: 12/18/	01			
Benzene	9.59	0.50	ug/l	10.0	ND	95.9	60-140			
Toluene ·	8.85	0.50	•	10.0	ND	88.5	60-140			
Ethylbenzene	8.58	0.50	H .	10.0	ND	85.8	60-140			
Xylenes (total)	25.8	0.50	h	30.0	ND	86.0	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.68		"	10.0		96.8	70-130	·····		
Matrix Spike Dup (1120072-MSD1)	Sou	rce: L11207	8-03	Prepared	& Analyze	ed: 12/18/	01			
Benzene	11.6	0.50	ug/l	10.0	ND	116	60-140	19.0	25	
Toluene	10.7	0.50	"	10.0	ND	107	60-140	18.9	25	
Ethylbenzene	10.4	0.50	н	10.0	ND	104	60-140	19.2	25	
Xylenes (total)	30.8	0.50	. 11	30.0	ND	103	60-140	17.7	25	
Surrogate: a,a,a-Trifluorotoluene	9.32		P)	10.0		93.2	70-130		· · · · ·	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes				
Batch 1120073 - EPA 5030B (P/T)					-									
Blank (1120073-BLK1)				Prepared	& Analyzo	ed: 12/18/	01							
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l											
Benzene	ND	0.50	ш											
Toluene	ND	0.50	Ħ											
Ethylbenzene	ND	0.50	N											
Xylenes (total)	ND	0.50	n											
Methyl tert-butyl ether	ND	5.0	H											
Surrogate: a,a,a-Trifluorotoluene	8.79		ěT .	10.0		87.9	70-130							
LCS (1120073-BS1)				Prepared	& Analyz	ed: 12/18/	01							
Benzene	11.3	0.50	ug/l	10.0		113	70-130							
Toluene	11.2	0.50	ti	10.0		112	70-130							
Ethylbenzene	11,2	0.50	PI	10.0		112	70-130							
Xylenes (total)	33.8	0.50	Ħ	30.0		113	70-130							
Surrogate: a,a,a-Trifluorotoluene	9.05		n	10.0		90.5	70-130		<u> </u>					
LCS (1120073-BS2)				Prepared & Analyzed: 12/18/01										
Purgeable Hydrocarbons as Gasoline	278	50	ug/l	250		111	70-130							
Surrogate: a,a,a-Trifluorotoluene	8.52		n	10.0		85.2	70-130	•						
Matrix Spike (1120073-MS1)	So	urce: L11206	6-02	Prepared	& Analyz	ed: 12/18/	01							
Benzene	10.9	0.50	ug/l	10.0	ND	109	60-140							
Toluene	10.8	0.50	n	10.0	ND	108	60-140							
Ethylbenzene	10.8	0.50	н	10.0	ND	108	60-140							
Xylenes (total)	32.8	0.50	p	30.0	ND	109	60-140							
Surrogate: a,a,a-Trifluorotoluene	9.10		"	10.0		91.0	70-130							
Matrix Spike Dup (1120073-MSD1)	Soi	ırce: L11206	6-02	Prepared	& Analyz	ed: 12/18/	/01							
Benzene	9.19	0.50	ug/l	10,0	ND	91.9	60-140	17.0	25					
Toluene	9.03	0.50	n	10.0	ND	90.3	60-140	17.9	25					
Ethylbenzene	8.99	0.50	₩	10.0	ND	89.9	60-140	18.3	25					
Xylenes (total)	27.1	0.50	**	30.0	ND	90.3	60-140	19.0	25					
Surrogate: a,a,a-Trifluorotoluene	8.67		rr	10.0		86.7	70-130							

6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (Former) SS#0843, Alameda, CA

Project Manager: Deanna Harding

Reported: 12/27/01 07:27

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1120078 - EPA 5030B [P/T]												
Blank (1120078-BLK1)				Prepared	& Analyz	ed: 12/20/0	01	•				
Ethanol	ND	500	ug/l									
1,2-Dibromoethane	ND	1.0										
1,2-Dichloroethane	ND	1.0										
Di-isopropyl ether	ND	1.0										
Ethyl tert-butyl ether	ND	1.0	*									
Methyl tert-butyl ether	ИD	1.0	н									
Tert-amyl methyl ether	ND	1.0	**									
Tert-butyl alcohol	ND	20	H									
Surrogate: 1,2-Dichloroethane-d4	41.9		"	50.0		83.8	70-130					
Surrogate: Toluene-d8	50.1		**	50.0		100	70-130					
LCS (1120078-BS1)				Prepared	& Analyz	ed: 12/20/	01					
Methyl tert-butyl ether	55.0	1.0	ug/l	50.0		110	70-130					
Surrogate: 1,2-Dichloroethane-d4	43.5		н	50.0	·	87.0	70-130					
Surrogate: Toluene-d8	52.6		"	50.0		105	70-130					
Matrix Spike (1120078-MS1)	So	urce: L11206	5-06	Prepared	& Analyz	ed: 12/20/	01					
Methyl tert-butyl ether	52.9	1.0	ug/l	50.0	ND	106	60-140					
Surrogate: 1,2-Dichloroethane-d4	41.6		"	50.0		83.2	70-130					
Surrogate: Toluene-d8	55.8		"	50.0		112	70-130					
Matrix Spike Dup (1120078-MSD1)	So	Source: L112065-06 Prepared & Analyzed: 12/20/01										
Methyl tert-butyl ether	54.1	1.0	ug/l	50.0	ND	108	60-140	1.87	25			
Surrogate: 1,2-Dichloroethane-d4	42.2		"	50.0		84.4	70-130					
Surrogate: Toluene-d8	55.5		17	50.0		111	70-130					

1551 Industrial Road San Carlos CA 94070 (650) 232-9600 FAX (650) 232-9612 www.sequoialabs.com

Gettler-Ryan/Geostrategies(1)

Project: Tosco(1)

6747 Sierra Court, Suite J

Project Number: Tosco (Former) SS#0843, Alameda, CA

Reported: 12/27/01 07:27

Dublin CA, 94568

Project Manager: Deanna Harding

Notes and Definitions

M-04 MTBE was reported from second analysis.

P-02 Chromatogram Pattern: Weathered Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference