

# GETTLER-RYAN INC.

# TRANSMITTAL

February 23, 2001 G-R #180203

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC: M

Mr. Glen Matteucci

ERI, Inc.

73 Digital Drive, Suite 100

Novato, California 94949

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE:

Former Tosco 76 SS #0843

1629 Webster Street

Alameda, California

#### WE HAVE ENCLOSED THE FOLLOWING:

| COPIES | DATED            | DESCRIPTION                                                                           |
|--------|------------------|---------------------------------------------------------------------------------------|
| 1      | February 2, 2001 | Groundwater Monitoring and Sampling Report Fourth Quarter - Event of December 1, 2000 |

#### **COMMENTS:**

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *March 7*, 2001, this report will be distributed to the following:

cc: Ms. Eva Chu, Alameda County Dept., of Environmental Health, 1131 Harbor Bay Parkway, Alameda, CA 94502

Enclosure

3/12/01 email to D. Dewitt if of In HIs day wobstert Pacific will be coming. - Dewitt says he approvedup, soutshall be coming soon

trans/0843.dbd

#### **OUARTERLY SUMMARY REPORT**

Fourth Quarter 2000 (October - December)

#### FORMER TOSCO 76 SERVICE STATION 0843

1629 WebsteenStreet Alameda, California

City/County ID:

City of Alameda/Alameda County

Lead Agency:

Alameda County Department of Environmental Health Services

#### BACKGROUND

In 1998, Tosco Marketing Company (Tosco) removed two 10,000-gallon gasoline underground storage tanks (USTs), one 550-gallon used-oil UST, associated piping and dispensers, and excavated approximately 338 tons of soil and backfill. Laboratory analyses of samples collected during the work detected petroleum hydrocarbons and related constituents in soil and groundwater beneath the site.

During the first quarter 1999, at the request of Tosco, ERI performed a soil and groundwater investigation including the installation of four groundwater monitoring wells. Concentrations of residual benzene (0.0295 ppm) and MTBE (0.561 ppm) were detected in the soil samples collected from boring MW2. The results of the investigation indicated that dissolved petroleum hydrocarbons in groundwater were not delineated.

During fourth quarter 1999, ERI installed two off-site groundwater monitoring wells downgradient of the site. Concentrations of dissolved MTBE were detected in samples collected from newly installed off-site wells MW5 and MW6 at 3.8 ppb and 18,000 ppb, respectively.

#### RECENT QUARTER ACTIVITIES

Performed quarterly groundwater monitoring, sampling, and reporting.

#### **NEXT QUARTER ACTIVITIES**

Continue quarterly groundwater monitoring, sampling, and reporting. Submit a work plan to perform an off-site groundwater evaluation in the downgradient direction of groundwater flow from the site.

#### CHARACTERIZATION/REMEDIAL STATUS

Soil contamination delineated?

Dissolved groundwater delineated?

Free Product delineated?

Amount of gw contaminant recovered?

Amount of soil contamination recovered?

Soil remediation in progress?

Dissolved/free product remediation in progress?

Yes

No

No

**CONSULTANT:** 

Environmental Resolutions, Inc.

WP/an for HPs will be sobmitted in a I march.

224800.4OS

February 2, 2001 G-R Job #180203

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Fourth Quarter 2000 Groundwater Monitoring & Sampling Report

Former Tosco 76 Service Station #0843

1629 Webster Street Alameda, California

Dear Mr. De Witt:

This report documents the quarterly groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On December 1, 2000, field personnel monitored and sampled six wells (MW-1 through MW-6) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map are included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 6882

Singerely,

Deanna L. Harding Project Coordinator

Douglas I Lee

Senior Geologist, R.G. No. 6882

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results - Oxygenate Compounds Standard Operating Procedure - Groundwater Sampling

Attachments:

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

0843.qml





REVIEWED BY

1629 Webster Street Alameda, California

REVISED DATE

180203

PROJECT NUMBER

December 1, 2000

DATE



Gettler - Ryan Inc. 6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555

1629 Webster Street Alameda, California

PROJECT NUMBER 180203

REVIEWED BY

December 1, 2000

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

| WELL ID/   | DATE                        | DTW                 | GWE           | TPH-G               | В     | T      | E     | Х      | MTBE                      |
|------------|-----------------------------|---------------------|---------------|---------------------|-------|--------|-------|--------|---------------------------|
| TOC* (ft.) |                             | (ft.)               | (msl)         | (ppb)               | (ppb) | (ррв)  | (ppb) | (ppb)  | (ppb)                     |
| MW-1       |                             |                     |               |                     |       |        |       |        |                           |
| 16.18      | 03/05/99 <sup>1</sup>       |                     |               | 86.6 <sup>3</sup>   | ND    | 2.04   | ND    | 4.06   | $23.9^{2}$                |
| 10.10      | 06/03/99                    | 6.24                | 9.94          | ND                  | ND    | ND     | ND    | ND     | ND/ND <sup>2</sup>        |
|            | 09/02/99                    | 7.19                | 8.99          | ND                  | ND    | ND     | ND    | ND     | ND/ND <sup>2</sup>        |
|            | 12/14/99                    | 8.07                | 8.11          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 03/14/00                    | 5.47                | 10.71         | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 05/31/00                    | 6.22                | 9.96          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 08/29/00                    | 6.82                | 9.36          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 12/01/00                    | 7.54                | 8.64          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            |                             |                     |               |                     |       |        |       |        |                           |
| MW-2       | 03/05/991                   |                     |               | 34,400              | 2,070 | 7,710  | 2,340 | 8,240  | $8,460^{2}$               |
| 15.57      |                             | <br>                | 9.61          | 51,200 <sup>4</sup> | 1,820 | 7,570  | 2,510 | 7,320  | 6,460/8,800 <sup>2</sup>  |
|            | 06/03/99                    | 5.96                | 9.61<br>8.72  | 17,000 <sup>5</sup> | 1,000 | 3,100  | 1,400 | 3,700  | 4,000/3,720 <sup>2</sup>  |
|            | 09/02/99                    | 6.85                | 8.72<br>7.92  | 83,000 <sup>5</sup> | 3,000 | 22,000 | 4,500 | 17,000 | 9,100/11,000 <sup>2</sup> |
|            | 12/14/99                    | 7.65                | 10.31         | 31,000 <sup>5</sup> | 1,600 | 4,600  | 2,300 | 7,300  | 5,700/8,700 <sup>2</sup>  |
|            | 03/14/00                    | 5.26                | 9. <b>9</b> 7 | 9,970 <sup>5</sup>  | 598   | 1,030  | 487   | 2,060  | 2,500/1,670 <sup>2</sup>  |
|            | 05/31/00                    | 5.60<br>6.35        | 9.97          | 7,900 <sup>5</sup>  | 390   | 1,500  | 280   | 1,900  | 1,800/1,300 <sup>2</sup>  |
|            | 08/29/00<br><b>12/01/00</b> | 0.33<br><b>7.06</b> | 9.22<br>8.51  | 87,500 <sup>5</sup> | 1,860 | 17,400 | 5,590 | 19,400 | $6,220/3,790^2$           |
|            | 12/01/00                    | 7.00                |               | •                   | -7.   | ,      |       |        |                           |
| MW-3       |                             |                     |               | 1                   |       |        | ND    | 4.04   | 2.46 <sup>2</sup>         |
| 15.11      | 03/05/991                   |                     |               | 135 <sup>3</sup>    | ND    | ND     | ND    | 4.84   |                           |
|            | 06/03/99                    | 5.57                | 9.54          | ND                  | ND    | ND     | ND    | ND     | 5.23/12.7 <sup>2</sup>    |
|            | 09/02/99                    | 6.50                | 8.61          | NĎ                  | ND    | ND     | ND    | ND     | 13/11.0 <sup>2</sup>      |
|            | 12/14/99                    | 7.28                | 7.83          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 03/14/00                    | 4.87                | 10.24         | ND                  | ND    | ND     | ND    | ND     | 7.2/6.3 <sup>2</sup>      |
|            | 05/31/00                    | 5.58                | 9.53          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 08/29/00                    | 6.06                | 9.05          | ND                  | ND    | ND     | ND    | ND     | ND                        |
|            | 12/01/00                    | 6.76                | 8.35          | ND                  | ND    | ND     | ND    | ND     | ND                        |

Table 1
Groundwater Monitoring Data and Analytical Results

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

| WELL ID/   | DATE                  | DTW   | GWE   | TPH-G           | В      | T               | E      | X               | MTBE                         |
|------------|-----------------------|-------|-------|-----------------|--------|-----------------|--------|-----------------|------------------------------|
| TOC* (ft.) |                       | (ft.) | (msl) | (ppb)           | (ppb)  | (ppb)           | (ррв)  | (ppb)           | (ppb)                        |
|            |                       |       |       |                 |        |                 |        |                 |                              |
| MW-4       | ,                     |       |       |                 |        |                 | M      | 0.44            | 25.2 <sup>2</sup>            |
| 15.17      | 03/05/99 <sup>1</sup> |       |       | ND              | ND     | ND              | ND     | 2.44            | 23.2<br>ND/3.96 <sup>2</sup> |
|            | 06/03/99              | 5.45  | 9.72  | ND              | ND     | ND              | ND     | ND              |                              |
|            | 09/02/99              | 6.48  | 8.69  | ND              | ND     | ND              | ND     | ND              | 23/27.02                     |
|            | 12/14/99              | 7.27  | 7.90  | ND              | ND     | ND              | ND     | ND              | 200/270 <sup>2</sup>         |
|            | 03/14/00              | 4.67  | 10.50 | ND              | ND     | ND              | ND     | ND              | 46/49 <sup>2</sup>           |
|            | 05/31/00              | 5.48  | 9.69  | ND              | ND     | ND              | ND     | ND              | ND                           |
|            | 08/29/00              | 6.10  | 9.07  | ND              | ND     | ND              | ND     | ND              | $6.1/3.2^2$                  |
|            | 12/01/00              | 6.79  | 8.38  | ND              | ND     | ND              | ND     | ND              | 152/101 <sup>2</sup>         |
|            |                       |       |       |                 |        |                 |        |                 |                              |
| MW-5       |                       |       |       |                 |        |                 |        |                 | 2 7 12 2                     |
| 13.34      | 12/14/99              | 6.45  | 6.89  | ND              | ND     | ND              | ND     | ND              | $3.5/3.8^2$                  |
|            | 03/14/00              | 4.46  | 8.88  | ND              | ND     | ND              | ND     | ND              | ND                           |
|            | 05/31/00              | 5.18  | 8.16  | ND              | ND     | ND              | ND     | ND              | ND                           |
|            | 08/29/00              | 5.46  | 7.88  | ND              | ND     | ND              | ND     | ND              | ND                           |
|            | 12/01/00              | 5.95  | 7.39  | ND              | ND     | ND              | ND     | ND              | ND                           |
| MW-6       |                       |       |       |                 |        |                 |        |                 |                              |
| 14.08      | 12/14/99              | 6.64  | 7.44  | ND              | ND     | ND              | ND     | ND              | $11,000/18,000^2$            |
| 14,00      | 03/14/00              | 4.72  | 9.36  | ND <sup>7</sup> | $ND^7$ | $ND^7$          | $ND^7$ | $ND^7$          | 19,000/21,000 <sup>2,6</sup> |
|            | 05/31/00              | 5.28  | 8.80  | ND <sup>7</sup> | $ND^7$ | ND <sup>7</sup> | $ND^7$ | $\mathrm{ND}^7$ | 13,200                       |
|            | 08/29/00              | 5.39  | 8.69  | ND              | ND     | ND              | ND     | ND              | 270/400 <sup>2</sup>         |
|            |                       |       | 7.97  | ND<br>ND        | ND     | ND              | ND     | ND              | 6,330/3,640 <sup>2</sup>     |
|            | 12/01/00              | 6.11  | 1.91  | MD              | ND     | 1117            | 1110   | 1112            | 0,220,2,010                  |

# Table 1 Groundwater Monitoring Data and Analytical Results Former Tosco 76 Service Station #0843

ormer Tosco 76 Service Station 1629 Webster Street Alameda, California

| DATE                         | DTW<br>(ft.)                                                                                  | GWE<br>(msl)                                                                | TPH-G<br>(ppb)                                            | B<br>(ppb)                                                                                              | T<br>(ppb)                                                                                                                                                                                                                                                    | E<br>(ppb)                                                                           | X<br>(ppb)                                                   | MTBE<br>(ppb) |
|------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------|
|                              |                                                                                               |                                                                             |                                                           |                                                                                                         |                                                                                                                                                                                                                                                               | .vn                                                                                  | MD                                                           | $ND^2$        |
| 03/05/99 <sup>1</sup>        |                                                                                               |                                                                             | ND                                                        | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   |                                                              |               |
| 06/03/99                     |                                                                                               |                                                                             | ND                                                        | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   | ND                                                           | ND            |
|                              |                                                                                               |                                                                             | NĎ                                                        | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   | ND                                                           | ND            |
|                              |                                                                                               |                                                                             |                                                           | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   | ND                                                           | ND            |
|                              |                                                                                               |                                                                             |                                                           | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   | ND                                                           | ND            |
|                              |                                                                                               |                                                                             |                                                           | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | , ND                                                                                 | ND                                                           | ND            |
|                              |                                                                                               |                                                                             |                                                           |                                                                                                         |                                                                                                                                                                                                                                                               | ND                                                                                   | ND                                                           | ND            |
| 08/29/00<br>1 <b>2/01/00</b> |                                                                                               | <br>                                                                        | ND                                                        | ND                                                                                                      | ND                                                                                                                                                                                                                                                            | ND                                                                                   | ND                                                           | ND            |
|                              | 03/05/99 <sup>1</sup><br>06/03/99<br>09/02/99<br>12/14/99<br>03/14/00<br>05/31/00<br>08/29/00 | 03/05/99 <sup>1</sup> 06/03/99 09/02/99 12/14/99 03/14/00 05/31/00 08/29/00 | 03/05/99 <sup>1</sup> 06/03/99 12/14/99 05/31/00 08/29/00 | (ft.) (msl) (ppb)  03/05/99¹ ND 06/03/99 ND 09/02/99 ND 12/14/99 ND 03/14/00 ND 05/31/00 ND 08/29/00 ND | (ft.)     (msl)     (ppb)     (ppb)       03/05/99¹       ND     ND       06/03/99       ND     ND       09/02/99       ND     ND       12/14/99       ND     ND       03/14/00       ND     ND       05/31/00       ND     ND       08/29/00       ND     ND | 03/05/99 <sup>1</sup> ND ND ND ND ND 06/03/99 ND | 03/05/99 <sup>1</sup> ND | O3/05/99      |

#### Table 1

#### **Groundwater Monitoring Data and Analytical Results**

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

#### EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 3, 1999, were compiled from reports prepared by ERI, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

(ft.) = Feet

T = Toluene

ND = Not Detected

DTW = Depth to Water

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

(msl) = Mean sea level

MTBE = Methyl tertiary butyl ether

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- \* TOC elevations are based on USC&GS Benchmark WEB PAC 1947 R 1951; (Elevation = 14.054 feet).
- Benzene, toluene, ethylbenzene and total xylenes by EPA Method 8260A.
- <sup>2</sup> MTBE by EPA Method 8260.
- 3 Laboratory report indicates weathered gasoline C6-C12.
- Laboratory report indicates chromatogram pattern C6-C12.
- 5 Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates sample was analyzed 03/28/00 but required reanalysis at a dilution. The dilution was analyzed outside of the EPA recommended holding time.
- Detection limit raised. Refer to analytical reports.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

| WELL ID | DATE     | ETHANOL         | TBA             | MTBE       | DIPE            | ETBE              | TAME            | 1,2-DCA         | EDB             |
|---------|----------|-----------------|-----------------|------------|-----------------|-------------------|-----------------|-----------------|-----------------|
|         |          | (ppb)           | (ppb)           | (ppb)      | (ppb)           | (ррв)             | (ppb)           | (ppb)           | (ppb)           |
| MW-1    | 09/02/99 | ND              | ND              | ND         | ND              | ND                | ND              |                 |                 |
| MW-2    | 09/02/99 | $ND^1$          | ND <sup>1</sup> | 3,720      | ND <sup>1</sup> | $ND^1$            | $ND^1$          | <del></del> .   | <del></del> .   |
|         | 12/14/99 | $ND^1$          | $\mathbf{ND}^1$ | 11,000     | $ND^1$          | ND <sup>1</sup>   | ND¹             | ND¹             | ND <sup>1</sup> |
|         | 03/14/00 | $ND^{l}$        | 1,300           | 8,700      | NDi             | $ND^1$            | ND¹             | ND¹             | ND¹             |
|         | 05/31/00 | $ND^1$          | $ND^{t}$        | 1,670      | ND <sup>1</sup> | $ND^1$            | $ND^1$          | ND <sup>I</sup> | ND <sup>1</sup> |
|         | 08/29/00 | ND              | 250             | 1,300      | ND              | ND                | ND              | ND              | ND              |
|         | 12/01/00 | ND <sup>1</sup> | ND¹             | 3,790      | ND <sup>1</sup> | ND <sup>1</sup>   | ND <sup>1</sup> | ND¹             | ND¹             |
| 34111 2 | 09/02/99 | ND              | ND              | 11.0       | ND              | ND                | ND              |                 |                 |
| MW-3    | 03/14/00 |                 |                 | 6.3        |                 |                   |                 |                 |                 |
|         |          |                 |                 |            |                 | <b>&gt;</b> 7 F > | NITS            |                 |                 |
| MW-4    | 09/02/99 | ND              | ND              | 27.0       | ND              | ND                | ND              |                 | <br>            |
|         | 12/14/99 |                 |                 | 270        |                 |                   |                 |                 |                 |
|         | 03/14/00 |                 |                 | 49         |                 |                   |                 |                 |                 |
|         | 08/29/00 | <b></b>         |                 | 3.2        |                 |                   |                 | ••<br>•         |                 |
| MW-5    | 12/14/99 |                 |                 | 3.8        |                 |                   |                 |                 |                 |
| MW-6    | 12/14/99 |                 |                 | 18,000     |                 |                   |                 |                 |                 |
| 14111-0 | 03/14/00 |                 |                 | $21,000^2$ |                 |                   |                 |                 |                 |
|         | 08/29/00 |                 |                 | 400        |                 |                   |                 |                 |                 |
|         |          |                 |                 |            |                 |                   |                 |                 |                 |

#### Table 2

## **Groundwater Analytical Results - Oxygenate Compounds**

Former Tosco 76 Service Station #0843 1629 Webster Street Alameda, California

#### **EXPLANATIONS:**

#### **ANALYTICAL METHOD:**

EPA Method 8260 for Oxygenate Compounds

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

-- = Not Analyzed

ND = Not Detected

Detection limit raised. Refer to analytical reports.

Laboratory report indicates sample was analyzed 03/28/00 but required reanalysis at a dilution. The dilution was analyzed outside of the EPA recommended holding time.

# STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

| Client/<br>Facility <u>Form</u>                                   | er Tosco #0843                                  | ·                 | Job#                                                 |                             | 180203                                                  | <del></del>    |                     |
|-------------------------------------------------------------------|-------------------------------------------------|-------------------|------------------------------------------------------|-----------------------------|---------------------------------------------------------|----------------|---------------------|
|                                                                   | Webster St.                                     |                   | Date                                                 |                             |                                                         |                | <del></del>         |
|                                                                   | neda, CA                                        |                   | _                                                    | oler:                       | Vartke                                                  | 3              |                     |
| Well ID                                                           | _mw- 1                                          | Well C            | ondition:                                            | ok                          | <u> </u>                                                |                |                     |
| Well Diameter                                                     |                                                 | Hydrod<br>Thickn  | carbon                                               |                             | Amount Ba                                               |                | (Gallons)           |
| Total Depth                                                       | 20.05 ft.                                       | Volum             |                                                      |                             | 3" = 0.38                                               | 4              | " = 0.66            |
| Depth to Water                                                    | 7.54 th                                         | Factor            | (VF)                                                 | 6" = 1.                     | .50<br>                                                 | 12" = 5.80     |                     |
|                                                                   | <u>12.57</u> x                                  | VF <u>0.17</u> =  | 2,/ 2 x 3 (case                                      | volume) =                   | Estimated Po                                            | urge Volume: _ | 6.5 (gal.)          |
| Purge<br>Equipment: Bailer                                        | Disposable Bailer Stack Suction Grundfos Other: |                   | Sampling <sub>(</sub><br>uipment:                    | Disposat<br>Ba<br>Pre<br>Gr | ole Bailer<br>iler<br>essure Baile<br>ab Sample<br>her: |                | ·                   |
| Starting Time: Sampling Time: Purging Flow Rate Did well de-water | 11:35<br>11:55<br>e: / or                       | W                 | Veather Condition Vater Color: ediment Descriptions; | <i>ريزظ</i><br>کھ :ption    | <u>'</u><br>[7]}                                        |                |                     |
| Time V                                                            | Volume pH (gal.) 2 7.92 4 7.75 6.5 7.68         | 75                | s/cm 63<br>6 63                                      |                             | D.O.<br>(mg/L)                                          | ORP<br>(mV)    | Alkalinity<br>(ppm) |
|                                                                   | (#) CONTAINED                                   | LABORA<br>REFRIG. | TORY INFORMA                                         |                             | RATORY                                                  | ANAL           | YSES                |
| SAMPLE ID                                                         | 3 VDA                                           | Y Y               | HCI                                                  | SEQUOI                      |                                                         | TPHGas/Btex    | /Mtbe               |
|                                                                   |                                                 |                   |                                                      |                             |                                                         |                |                     |
|                                                                   |                                                 | ·                 |                                                      |                             | <u> </u>                                                |                |                     |
|                                                                   |                                                 |                   | ·                                                    | <u> </u>                    |                                                         |                |                     |
| COMMENTS: _                                                       |                                                 | <del></del>       |                                                      |                             |                                                         |                |                     |
|                                                                   |                                                 |                   | _                                                    |                             |                                                         |                | 9/97-fieldet.fm     |

| Well ID  Well ID  Well Condition:  Well Condition:  Well Condition:  Well Diameter  In Hydrocarbon Thickness:  Volume 2" = 0.17 3" = 0.38 Factor (VF)  Purge Equipment:  Bailer  Stack Suction Grundfos Other:  Starting Time:  Starting Time:  I Sampling Time:  I Samp |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Well ID  MW- 2  in. Hydrocarbon Thickness: O.OO (feet) (product/water):  Volume 2" = 0.17 3" = 0.38 Factor (VF) 2" = 0.17 6" = 1.50 12"  Purge Disposable Bailer Stack Sugtimer Grundfos Other:  Stack Sugtimer Grundfos Other:  Starting Time: 2:35 Weather Conditions: Use Sampling Flow Rate: 1 gpm. Sediment Description: Cold Water Color: 9myind Odd Purging Flow Rate: 1 gpm. Sediment Description: Cold Water Color: 9myind Odd  Time Volume pH Conductivity Temperature D.O. (mg/L) (2.7.3.2 2.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3.6.7.2.1 3. |                      |
| Well Diameter  2 in. Thickness: 0.00 (fest) (product/water):  Total Depth 20.25 ft. Volume 2" = 0.17 3" = 0.38 Factor (VF) 5" = 1.50 12"  Purge Disposable Bailer Sampling Equipment: Disposable Bailer Grab Sampling Grundfos Other: Starting Time: 2:35 Weather Conditions: Color: Purging Flow Rate: 1 gpm. Sediment Description: Color: Purging Flow Rate: 1 gpm. Sediment Description: Color: Time Volume pH Conductivity Temperature D.O. (mg/L) (color: 2:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| Total Depth  20.25 ft.  Thickness: 0.00 (feet) (product/water):  Volume 2" = 0.17 3" = 0.38 Factor (VF) 6" = 1.50 12"   13.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| Total Depth   20.25   ft.     Volume   2" = 0.17   3" = 0.38   12"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| Depth to Water 7.06 ft. Factor (VF) 6" = 1.50 12"    13.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Purge Disposable Bailer Equipment: Sampling Equipment: Bailer Stack Suction Grundfos Other: Disposable Bailer Pressure Bailer Grab Sample Other: Othe | 2" = 5.80            |
| Equipment: Bailer  Stack Suction Grundfos Other:  Starting Time:  Campling Time:  Campling Time:  Campling Flow Rate:  Campling Flow Ra | Volume: 7.0 (gel.)   |
| Grundfos Other:    Grab Sample Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| Sampling Time: 2:50 Water Color: 9000 Odd Purging Flow Rate: 1 gpm. Sediment Description: 2:14  Did well de-water? 10 If yes; Time: Volume: 10  |                      |
| Time   Volume   pH   Conductivity   Temperature   D.O. (mg/L)      | odor: <del>'</del>   |
| Time Volume pH Conductivity Temperature D.O.  2737 2 7.2/ 867 67.3  2.40 4.5 7.05 859 66.1  2742 7 6.98 858 66.2  LABORATORY INFORMATION  SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY  MW- 2 5 VO A Y HCL SEQUOIA (TPHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (gal.)               |
| SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY  MW- 2 5 VO A Y HCL SEQUOIA TPHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ORP Alkalinity (ppm) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYSES             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HGas/Btex/Mtbe       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |

| Client/<br>Facility <u>Form</u> e | r Tosco #0843     |                             | Job#:           | 180203                   | · · · · · · · · · · · · · · · · · · · |                                              |
|-----------------------------------|-------------------|-----------------------------|-----------------|--------------------------|---------------------------------------|----------------------------------------------|
| Address: <u>1629</u>              | Webster St.       |                             | Date:           | 12/1/0                   | <u></u>                               |                                              |
| City: Alameda, CA                 |                   |                             | Sampler:        | Varthe                   | ·                                     |                                              |
| Well ID                           |                   | Well Condition              | : <u>0</u>      | k                        | - <del></del>                         | in.                                          |
| Well Diameter                     |                   | Hydrocarbon<br>Thickness:   | 0.00 (fee       | Amount Ba                | ailed<br>ter): 💋                      | (Gallons)                                    |
| Total Depth                       | 19.90 tt.         | Volume                      | 2" = 0.17       | 3" = 0.38                | 3 4                                   | t" = 0.66                                    |
| Depth to Water                    | 6.76 m            | Factor (VF)                 | 0"              | = 1.50                   | 12 = 3.60                             | <u>.                                    </u> |
|                                   | x vi              |                             |                 | e) = Estimated Po        | irge Volume: _                        | 7.0 (gal.)                                   |
| Purge<br>Equipment: Bailer        | Disposable Bailer | Sa<br>Equipment             | mpling<br>Dispo | sable Bailer             |                                       |                                              |
| ٠.                                | Stack             |                             |                 | Bailer<br>Pressure Baile | er<br>Er                              |                                              |
| (                                 | Grundfos          |                             |                 | Grab Sample<br>Other:    |                                       |                                              |
|                                   | Other:            |                             |                 |                          |                                       |                                              |
| Starting Time:                    | 12:08             | _ Weather                   | Conditions:     | ddy                      |                                       |                                              |
| Sampling Time:                    | 12:23             | _ Water Co                  | lor:            | dean                     | Odor: <u></u> ж                       | <del>.</del>                                 |
| Purging Flow Rate                 | <u>lgpm</u>       | . Sediment                  |                 |                          |                                       |                                              |
| Did well de-water?                | שת                | _ If yes; T                 | ime:            | Volume                   | );                                    | (gal.)                                       |
|                                   | dume pH           | Conductivity  µmhos/cm  678 | Temperatur      | D.O.<br>(mg/L)           | ORP<br>(mV)                           | Alkalinity<br>(ppm)                          |
| 12:13                             | 7.83              | 685                         | 68.2            |                          |                                       |                                              |
| 12:15                             | 7 7.76            | 690                         | 65.4            |                          |                                       |                                              |
|                                   |                   |                             |                 |                          |                                       |                                              |
|                                   |                   |                             |                 |                          |                                       |                                              |
|                                   |                   | LABORATORY II               | NFORMATION      | 1                        |                                       |                                              |
| SAMPLE ID                         | (#) - CONTAINER   | REFRIG. PRESERV             |                 | ABORATORY                |                                       | YSES                                         |
| MW- 3                             | 3 VOA             | Y HC                        | SEQ             | UOIA                     | TPHGas/Btex                           | /IVRD8                                       |
| -                                 |                   |                             |                 |                          |                                       | `                                            |
|                                   |                   |                             |                 |                          |                                       |                                              |
|                                   |                   |                             |                 |                          |                                       |                                              |
| COMMENTS:                         |                   |                             | <del> </del>    | ····                     |                                       |                                              |

| Client/<br>Facility <u>Forme</u>                       | r Tosco #0843                                   |                                    | Job#: _               | 180203                                                            |                   |                     |
|--------------------------------------------------------|-------------------------------------------------|------------------------------------|-----------------------|-------------------------------------------------------------------|-------------------|---------------------|
| Address: _1629                                         | Webster St.                                     |                                    | Date: _               | 12/1/0                                                            |                   |                     |
| •                                                      | eda, CA                                         |                                    | Sampler: _            | Varthe                                                            | <del></del>       |                     |
| Well ID                                                | _MW- 4                                          | Well Condition                     | . <u>0</u>            | <u> </u>                                                          |                   |                     |
| Well Diameter                                          | in.                                             | Hydrocarbon Thickness:             | O. OGiant             | Amount Ba                                                         | ailed<br>ter):    | (Gallons)           |
| Total Depth                                            | 19.80 ft.                                       | Volume                             | $2^* = 0.17$          | 3" = 0.38                                                         | 1                 | 4" = 0.66           |
| Depth to Water                                         | 6.79 tt.                                        | Factor (VF)                        | 6" =                  | ± 1.50                                                            | 12" = 5.80        |                     |
|                                                        | 13.01_ x ve                                     | 0.17-221,                          | ( 3 (casa volume)     | = Estimated Pu                                                    | irge Volume:      | 7.0 (get.)          |
| Purge<br>Equipment: Bailer                             | Disposable Bailer Stack Suction Grundfos Other: | Sar<br>Equipment:                  | · [                   | sable Bailer<br>Bailer<br>Pressure Baile<br>Grab Sample<br>Other: |                   |                     |
| Starting Time:<br>Sampling Time:<br>Purging Flow Rate: | /;2©<br>//35<br>/ gpm.                          | Water Col                          |                       | chan                                                              | Odor: <i>™</i>    | <i>o</i>            |
| Did well de-water?                                     |                                                 | If yes; Ti                         | me:                   | Volume:                                                           | :                 | (gal.)              |
| 1:25 4                                                 | ume pH al.) 7.96 7.82 4 2.76                    | Conductivity  µmhos/cm  1105  1093 | Temperature 65.2 65.7 | D.O.<br>(mg/L)                                                    | ORP<br>(mV)       | Alkalinity<br>(ppm) |
| SAMPLE ID                                              | (#) - CONTAINER REF                             | ABORATORY IN                       | TYPE LAE              | BORATORY<br>DIA                                                   | ANA<br>TPHGas/Bte | LYSES<br>x/Mtbs     |
| COMMENTS:                                              |                                                 |                                    |                       |                                                                   |                   | 9/97-fieldet.frm    |

| Client/<br>Facility <u>Form</u> | er Tosco #0843                          |                               | _ Job#:                                       | 180203                                                                |                |                     |
|---------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|----------------|---------------------|
| Address: 1629                   | 9 Webster St.                           |                               | _ Date:                                       |                                                                       | 2              |                     |
| City: Alameda, CA               |                                         |                               | _                                             | er: <u>Varthe</u>                                                     | <b>.</b>       |                     |
| Well ID                         | MW- 5                                   | Well Cond                     | ition:                                        | ok                                                                    | <u></u>        | <del>,</del>        |
| Well Diameter                   |                                         | Hydrocarb<br>Thickness:       | on 8.50                                       | Amount B                                                              | ailed<br>ter): | (Gallons)           |
| Total Depth                     | 20.22 tr.                               | Volume                        | 2" = 0.17                                     | 3" = 0.38                                                             | 3 4            | " = 0.66            |
| Depth to Water                  | 5.95 tc                                 | Factor (VF                    | )                                             | 6" = 1.50                                                             | 12" = 5.80     |                     |
|                                 | _14.27_x                                | vFO:17 = 2.0                  | 12 X 3 (case vo                               | lume) = Estimated P                                                   | urge Volume: _ | 7. 5 (gal.)         |
| Purge<br>Equipment: Bailer      | Stack Suction Grundfos Other:           | Equipm<br>—                   | Sampling<br>nent: D                           | isposable Bailer<br>Bailer<br>Pressure Baile<br>Grab Sample<br>Other: |                |                     |
|                                 | 12;44<br>1:05<br>te: / ao               | Wate                          | her Conditions r Color:<br>nent Descriptions; | . ,                                                                   | Odor:Acc       | <del></del>         |
| 12:46 _                         | Volume pH (gal.) 2.5 3.03 7.87 7.5 7.81 | Conductivity umhos/cm 647 660 | <u>66.3</u>                                   | (mg/L)                                                                | ORP<br>(mV)    | Alkalinity<br>(ppm) |
| SAMPLE ID                       | (#) - CONTAINER                         |                               | RY INFORMAT<br>SERV. TYPE                     | ION<br>LABORATORY                                                     | ANAL           | YSES                |
| MW- 5                           | 3 VOA                                   |                               |                                               | SEQUOIA                                                               | TPHGas/Btex    | /Mtbe               |
|                                 |                                         |                               |                                               |                                                                       |                |                     |
|                                 |                                         |                               |                                               |                                                                       |                |                     |
| COMMENTS: _                     |                                         |                               |                                               |                                                                       |                | 9/97-finidat.in     |

| Client/<br>Facility <u>Form</u> | er Tosco #0843                                      |                                       | Job#:                      | 180203                                                     |              |                     |
|---------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------|------------------------------------------------------------|--------------|---------------------|
| Address: _1629                  | Webster St.                                         |                                       | Date: _                    | 12/1/0                                                     | න            |                     |
| City: Alan                      | neda, CA                                            |                                       | Sampler: _                 | Varth                                                      | <u> </u>     |                     |
| Well ID                         | MW- 6                                               | Well Condition                        | 1: OK                      |                                                            | ~            |                     |
| Well Diameter                   |                                                     | Hydrocarbon                           | 0.00 (feet)                | Amount B                                                   | ailed        | (Gallons)           |
| Total Depth                     | 20.15 ft.                                           | Thickness:                            | 2" = 0.17                  |                                                            |              | 4" = 0.66           |
| Depth to Water                  | 6.11 ft.                                            | Factor (VF)                           |                            | 1.50                                                       | 12" = 5.80   |                     |
|                                 | x v                                                 | 0.17 = 2.38                           | X 3 (case volume) :        | = Estimated Pr                                             | urge Volume: | 7.5 (gal.)          |
| Purge<br>Equipment: Bailer      | Disposable Bailer  Stack  Suction  Grundfos  Other: | Sal<br>Equipment                      | Br<br>Pr<br>G              | ble Bailer<br>alter<br>essure Baile<br>rab Sample<br>ther: |              |                     |
|                                 | 7;5'-<br>2;15'                                      | Water Co<br>Sediment                  | Conditions:<br>lor:        | 5 <i>1†</i>                                                | Odor: 🗡      | (MTBE)              |
| Did well de-water               |                                                     | If yes;                               | ime:                       | volume                                                     | :            | <u>(pal.)</u>       |
|                                 | dume pH  [31.]  7.74  7.56  7.51                    | Conductivity  µmhos/cm  744  730  733 | Temperature 66.8 66.0 66.7 | D.O.<br>(mg/L)                                             | ORP<br>(mV)  | Alkalinity<br>(ppm) |
|                                 |                                                     |                                       |                            | <del></del> -                                              |              | •                   |
|                                 |                                                     |                                       |                            |                                                            |              |                     |
| SAMPLE ID                       | (#) - CONTAINER R                                   | LABORATORY IN                         |                            | RATORY                                                     | ANAL         | YSE <b>S</b>        |
|                                 | 3 VOA                                               | Y #0(                                 | SEQUOIA                    | <del></del>                                                | TPHGas/Btex/ |                     |
|                                 |                                                     |                                       |                            |                                                            |              |                     |
|                                 |                                                     |                                       |                            |                                                            |              |                     |
| <u> </u>                        | ·                                                   |                                       |                            |                                                            |              |                     |
| COMMENTS:                       | <del></del>                                         |                                       |                            |                                                            |              |                     |
| <del></del>                     |                                                     |                                       |                            |                                                            |              | 9/97-fieldet.frm    |

6 Days

10 Doys

As Contracted

Date/11me

Date/Time

Organization

| 1     |
|-------|
| TOSCO |

Tosce Merketing Company 2005 Crow Caryon PL, Ste. 400 Sen Remon, Cattornia \$4563

Relinquished By (Signature)

Minquished By (Signature)

| Facility Number           | Tosco   | For    | mer76   | ) SS#08 | 743  |
|---------------------------|---------|--------|---------|---------|------|
| er 1985                   | 1629    | Webs   | Ter ST. | Alamed  | a,Ca |
| Consultant Project Number | 180     | 0203.  | .85     |         |      |
| Consultant Name Gett      | ler-Rya | n Inc. | (G-R In | (.)     |      |

Consul Address 6747 Sierra Court, Suite J. Dublin, CA 94568

Project Contact (Name) Deanna L. Harding (Phone) 116-551-7555 (Fax Number) 110-551-7888

Mr. David De Witt. (916) 774-2910 Contact (Nome) \_ Sequoia Analytical Laboratory Name \_ Loboratory Release Number\_ Samples Collected by (Name) Varthes Tashiran Signature.

|                  |                   |                      |                                                      | (P)                                            | ione)7        | -551-/53                                         | Jrax             | MUNIDO              | <u> </u>             |                                                  |                                                  | <del>- 1</del>                                   | Analyse                                          | To Be          | Perfor                                | med                                          |           |                                       |         |              | DO NOT BILL                             |
|------------------|-------------------|----------------------|------------------------------------------------------|------------------------------------------------|---------------|--------------------------------------------------|------------------|---------------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|---------------------------------------|----------------------------------------------|-----------|---------------------------------------|---------|--------------|-----------------------------------------|
| Sample Number 75 | Lab Sample Number | Number of Containers | Motors<br>S = Soil A = Air<br>W = Water C = Charcool | Type G = Grab<br>C = Composite<br>D = Discrete | Im•           | Sample Preservation                              | lead (Yes or No) | TPH GAS BTEX WANTEE | TPH Diesel<br>(8015) | Oil and Greams<br>(5520)                         | Purgeable Halocurbons<br>(8010)                  | Purgeable Aromotics<br>(8020)                    |                                                  | gyica.         | Hetals<br>CACTPLZn_Ni<br>(ICAP or AA) | 34c                                          |           |                                       | -       |              | TB-LB ANALYSI                           |
|                  | 01                | <del></del>          | W                                                    | B                                              |               | Hel                                              | 7                | X                   |                      |                                                  |                                                  |                                                  |                                                  |                |                                       |                                              |           |                                       | <u></u> |              | Confirm MTB<br>Hits by 826              |
| TB-LB            | 02                | 3                    | 100                                                  |                                                | 115           |                                                  | ٠.               | Х                   |                      |                                                  |                                                  |                                                  | <u> </u>                                         |                | -<br>                                 |                                              |           |                                       |         |              | Hits by 826                             |
| MW-2<br>MW-2     | 03                | 5                    | વ                                                    | ч                                              | 11 FF<br>2500 | ٠,                                               | ٠-ر              | Х                   |                      |                                                  |                                                  |                                                  | <u> </u>                                         |                | <u> </u>                              | X                                            |           |                                       |         |              |                                         |
| MW-3             | OY                | 3                    | -                                                    | 4                                              | 1222          | ٠,                                               | 45               | X                   | ļ                    | ļ                                                | -                                                |                                                  |                                                  |                | <del> </del>                          | <u>.                                    </u> |           | · · · · · · · · · · · · · · · · · · · |         |              |                                         |
| MW-4             | 05                | 3                    | -                                                    | -4                                             | 135           | ્ય                                               | <u> </u>         | X                   | ļ                    |                                                  | <del> </del> -                                   | <del> </del>                                     | -                                                |                | <del> </del>                          |                                              | ļ         |                                       |         | <del> </del> |                                         |
| HW-5             | 06                | 3                    | u                                                    | 4                                              | 1250          | 1 -                                              | 4                | X                   | -                    |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         |                | <del> </del>                          |                                              |           |                                       |         | <del> </del> |                                         |
| MW-6             | 07                | 3                    | 4                                                    |                                                | 2/2           |                                                  | 47               | X                   | -                    | _                                                | -                                                | -                                                | ╂                                                |                |                                       | <u> </u>                                     |           | <b>-</b> -                            |         |              |                                         |
|                  |                   | <u> </u>             |                                                      | <del></del>                                    | <u> </u>      | <del>                                     </del> |                  | -                   | <del> </del>         | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> | <del> </del>   | -                                     |                                              |           |                                       |         |              |                                         |
|                  |                   | <del> </del>         | <b>_</b>                                             |                                                |               | <u> </u>                                         |                  | -                   |                      | -                                                | +                                                | <del>                                     </del> | +                                                | <del> </del> - | +                                     |                                              |           |                                       |         |              |                                         |
|                  | <b> </b>          | -                    |                                                      | <del></del>                                    | <b></b>       |                                                  |                  | <del>- </del>       | -                    |                                                  | -                                                |                                                  | <del></del>                                      | <b>-</b>       | -                                     |                                              |           |                                       |         |              |                                         |
|                  |                   |                      |                                                      | <del> </del>                                   |               | <del> </del>                                     |                  | ╁╌                  | +                    | <del> </del>                                     | +                                                | 1                                                | +                                                |                |                                       |                                              |           |                                       |         |              |                                         |
|                  |                   | -                    |                                                      |                                                | -             | +                                                | -                | +                   | -                    | +                                                | 1                                                |                                                  |                                                  |                |                                       |                                              |           |                                       |         | <u> </u>     |                                         |
|                  |                   | -                    |                                                      | <del></del>                                    |               | <del></del>                                      | -                | -                   | 1                    | 1                                                |                                                  |                                                  |                                                  |                |                                       | <u> </u>                                     | <u> </u>  | <u> </u>                              |         | <u></u>      |                                         |
| Relinquished B   | (Signature)       | <br>)<br>1. ≤-       | 0                                                    | vanization<br>G-R In                           | n<br>C•       | Date/Time 4 12/1/00                              | PM R             | gelved              | By (Sig              | natural                                          | 25cm_                                            |                                                  | Organiza                                         |                | 12                                    | te/Time                                      | (62)<br>) | i                                     | Turn A  | 24           | ime (Circle Cholae)<br>4 Hre.<br>8 Hre. |

Received By (Signature)

Recleved For Laboratory By (Signature)

Date/Time

Date/Time

Organization

Organization -





December 22, 2000

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

RE: Tosco(4)/L012005

Dear Deanna Harding

Enclosed are the results of analyses for sample(s) received by the laboratory on December 1, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Latonya Pelt Project Manager

CA ELAP Certificate Number 12360





Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

Project: Project Number:

Project Manager:

Tosco(4)

Tosco (Former 76) SS#0843

Received: 12/1/00

Sampled: 12/1/00

Reported: 12/22/00

#### **ANALYTICAL REPORT FOR L012005**

Deanna Harding

|                    |                          |               | ·····        |
|--------------------|--------------------------|---------------|--------------|
| Sample Description | Laboratory Sample Number | Sample Matrix | Date Sampled |
| TB-LB              | L012005-01               | Water         | 12/1/00      |
| MW-1               | L012005-02               | Water         | 12/1/00      |
| MW-2               | L012005-03               | Water         | 12/1/00      |
| MW-3               | L012005-04               | Water         | 12/1/00      |
| MW-4               | L012005-05               | Water         | 12/1/00      |
| MW-S               | L012005-06               | Water         | 12/1/00      |
| MW-6               | L012005-07               | Water         | 12/1/00      |
|                    |                          |               |              |





| Gettler-Ryan/Geostrategies(1) | Project:         | Tosco(4)                  | Sampled:  | 12/1/00  |
|-------------------------------|------------------|---------------------------|-----------|----------|
| 6747 Sierra Court, Suite J    | Project Number:  | Tosco (Former 76) SS#0843 | Received: | 12/1/00  |
| Dublin, CA 94568              | Project Manager: | Deanna Harding            | Reported: | 12/22/00 |

# Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - San Carlos

|                                               | Batch       | Date          | Date          | Surrogate       | Reporting  |        |              | <del></del> |
|-----------------------------------------------|-------------|---------------|---------------|-----------------|------------|--------|--------------|-------------|
| Analyte                                       | Number      | Prepared      | Analyzed      | Limits          | Limit      | Result | Units        | Notes       |
| TB-LB                                         |             |               |               |                 |            | •      |              |             |
|                                               | 0100000     | 10/15/00      | L0120         | <u> 15-01</u>   |            |        | <u>Water</u> |             |
| Purgeable Hydrocarbons as Gasoline<br>Benzene | 0120069     | 12/15/00      | 12/15/00      |                 | 50.0       | ND     | ug/l         |             |
| oluene                                        | #           | "<br>"        | 17<br>18      | •               | 0.500      | ND     |              |             |
|                                               | "           | ,,            | "             |                 | 0.500      | ND     | H            |             |
| Ethylbenzene                                  | 11          |               |               |                 | 0.500      | ND     | 11           |             |
| (ylenes (total)                               |             | n<br>         | "             |                 | 0.500      | ND     | **           |             |
| fethyl tert-butyl ether                       | 11          | ***           | 11            |                 | 5.00       | ND     | 11           |             |
| urrogate: a,a,a-Trifluorotoluene              | н           | n             | n             | 70.0-130        |            | 83.9   | %            |             |
| <u>(W-1</u>                                   |             |               | <u>L01200</u> | 15-02           |            | ."     | Water        |             |
| urgeable Hydrocarbons as Gasoline             | 0120069     | 12/15/00      | 12/15/00      | / <u>// Va</u>  | 50.0       | ND     | ug/l         |             |
| enzene                                        | H           | 12, 15,00     | T 13/00       |                 | 0.500      | ND     | ug/I         |             |
| oluene                                        | It          | <b></b>       | n             |                 |            |        |              |             |
| thylbenzene                                   | "           | п             | n             |                 | 0.500      | ND     | н            |             |
| ylenes (total)                                |             | "             | **            |                 | 0.500      | ND     | r<br>R       |             |
| lethyl tert-butyl ether                       | "           | 11            | <br>H         |                 | 0.500      | ND     | #            |             |
| urrogate: a,a,a-Trifluorotoluene              | <del></del> | n             | "             | #0.0 100        | 5.00       | ND     |              |             |
| rrogale: a,a,a-1 rijiuorototuene              | *           | "             | "             | 70.0-130        |            | 79.0   | %            |             |
| <u>W-2</u>                                    |             |               | <u>L01200</u> | 5-03            |            |        | <u>Water</u> |             |
| urgeable Hydrocarbons as Gasoline             | 0120070     | 12/15/00      | 12/15/00      |                 | 20000      | 87500  | ug/l         | 1           |
| enzene                                        | н           | Ħ             | R             |                 | 200        | 1860   | t)           | -           |
| oluene                                        | T.          | н             | n             | •               | 200        | 17400  | 41           |             |
| thylbenzene                                   | **          | n             | tt            |                 | 200        | 5590   | н            |             |
| ylenes (total)                                | 14          | н             | **            |                 | 200        | 19400  | n            |             |
| lethyl tert-butyl ether                       | at .        | H             | Ħ             |                 | 2000       | 6220   | H            |             |
| rrogate: a,a,a-Trifluorotoluene               | #           | "             | 11            | 70.0-130        |            | 119    | %            |             |
| <u>IW-3</u>                                   |             |               | T 01300       | F 0.4           |            |        | ***          |             |
| rgeable Hydrocarbons as Gasoline              | 0120070     | 13/15/00      | L01200        | <del>3-04</del> | <b>500</b> |        | <u>Water</u> |             |
| enzene                                        | 0120070     | 12/15/00      | 12/15/00      |                 | 50.0       | ND     | ug/l         |             |
| bluene                                        | "<br>a      | " "           | "             |                 | 0.500      | ND     | **           |             |
|                                               | "<br>n      | "<br>H        |               |                 | 0.500      | ND     | IT           |             |
| hylbenzene                                    |             |               | 11            |                 | 0.500      | ND     | 99           |             |
| ylenes (total)                                | <b></b>     |               | #             | ,               | 0.500      | ND     | n            |             |
| ethyl tert-butyl ether                        | 17          | 17            |               |                 | 5.00       | ND     | 10           |             |
| rrogate: a,a,a-Trifluorotoluene               | ři .        | n             | H             | 70.0-130        |            | 116    | %            |             |
| W-4                                           |             |               | L01200        | <b>5_</b> ∩≮    |            |        | Water        |             |
| urgeable Hydrocarbons as Gasoline             | 0120070     | 12/15/00      | 12/15/00      | <del></del>     | 50.0       | ND     | ug/l         | •           |
| enzene                                        | 11          | 12/13/00<br>H | 12/13/00      |                 | 0.500      |        | ug/1         |             |
| luene                                         | 11          | π             | и             |                 |            | ND     | "            |             |
| hylbenzene                                    | *1          |               | #1            |                 | 0.500      | ND     | <br>U        |             |
| ylenes (total)                                |             | ;;<br>}}      | r<br>H        |                 | 0.500      | ND     |              |             |
| nene (wai)                                    |             | ••            | ••            |                 | 0.500      | ND     | **           |             |

Sequoia Analytical - San Carlos

\*Refer to end of report for text of notes and definitions.





Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

Project:

Tosco(4)

Project Number: Tosco (Former 76) SS#0843 Project Manager: Deanna Harding

Sampled: 12/1/00 Received: 12/1/00

12/22/00 Reported:

### Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - San Carlos

|                                    | Batch   | Date     | Date     | Surrogate       | Reporting |        |       |        |
|------------------------------------|---------|----------|----------|-----------------|-----------|--------|-------|--------|
| Analyte                            | Number  | Prepared | Analyzed | Limits          | Limit     | Result | Units | Notes* |
|                                    |         |          | T 0150   |                 |           |        | Water |        |
| MW-4 (continued)                   | •       |          | L0120    | <u> </u>        | 5.00      | 153    |       |        |
| Methyl tert-butyl ether            | 0120070 | 12/15/00 | 12/15/00 | <del></del>     | 5.00      | 152    | ug/l  |        |
| Surrogate: a,a,a-Trifluorotoluene  | Ħ       | n .      | н        | 70.0-130        |           | 105    | %     |        |
| <u>MW-5</u>                        |         |          | L0120    | 05-0 <u>6</u>   |           |        | Water |        |
| Purgeable Hydrocarbons as Gasoline | 0120070 | 12/15/00 | 12/15/00 | <u> </u>        | 50.0      | ND     | ug/l  |        |
| -                                  | 17      | "        | "        |                 | 0.500     | ND     | n     |        |
| Benzene                            | **      | 11       | 17       |                 | 0.500     | ND     | 11    |        |
| Toluene                            | **      |          | 11       |                 | 0.500     | ND     | H ·   |        |
| Ethylbenzene                       |         | н        | Hr.      |                 | 0.500     | ND     | m     |        |
| Xylenes (total)                    | n<br>n  |          | R        |                 | 5.00      | ND     | н     |        |
| Methyl tert-butyl ether            |         |          |          | 70.0.130        | J.00      | 114    | %     |        |
| Surrogate: a,a,a-Trifluorotoluene  | n       | n        | Ħ        | 70.0-130        |           | 117    | 70    |        |
| MW-6                               | •       |          | L0120    | <u>05-07</u>    |           |        | Water |        |
| Purgeable Hydrocarbons as Gasoline | 0120070 | 12/15/00 | 12/15/00 |                 | 50.0      | ND     | ug/l  |        |
| <del>-</del>                       | #       | "        | "        |                 | 0.500     | ND     | IT    |        |
| Benzene                            | 41      | н        | •        |                 | 0.500     | ND     | н     |        |
| Toluene                            | **      | *1       | н        |                 | 0.500     | ND     | 11    |        |
| Ethylbenzene                       | <br>17  | n        | 11       |                 | 0.500     | ND     | 17    |        |
| Xylenes (total)                    |         | <br>Pt   | <br>It   |                 | 250       | 6330   | ti    | 2      |
| Methyl tert-butyl ether            |         |          |          | 70.0.130        |           | 118    | %     |        |
| Surrogate: a,a,a-Trifluorotoluene  |         | Ħ        | er .     | <i>70.0-130</i> |           | 110    | 70    |        |



1551 Industrial Road San Carlos, CA 94070-4111 (650) 232-9600 FAX (650) 232-9612 www.sequolalabs.com

Gettler-Ryan/Geostrategies(1)
Project: Tosco(4)
Sampled: 12/1/00
6747 Sierra Court, Suite J
Project Number: Tosco (Former 76) SS#0843
Received: 12/1/00
Dublin, CA 94568
Project Manager: Deanna Harding
Reported: 12/22/00

#### MTBE Confirmation by EPA Method 8260B Sequoia Analytical - San Carlos

|                                  | Batch   | Date     | Date     | Surrogate | Reporting |        |       |                                       |
|----------------------------------|---------|----------|----------|-----------|-----------|--------|-------|---------------------------------------|
| Analyte                          | Number  | Prepared | Analyzed | Limits    | Limit     | Result | Units | Notes*                                |
| MW-4                             |         | -        | L0120    | 05-05     |           |        | Water |                                       |
| Methyl tert-butyl ether          | 0120088 | 12/20/00 | 12/20/00 |           | 4.00      | 101    | ug/l  |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | "       | n .      | "        | 76.0-114  |           | 94.4   | %     | · · · · · · · · · · · · · · · · · · · |
| MW-6                             |         |          | L0120    | 05-07     |           |        | Water |                                       |
| Methyl tert-butyl ether          | 0120088 | 12/20/00 | 12/20/00 |           | 200       | 3640   | ug/l  |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | "       | н        | n n      | 76.0-114  |           | 95.2   | %     |                                       |





|                                                     |          | 10/1/00  |
|-----------------------------------------------------|----------|----------|
| Gettler-Ryan/Geostrategies(1) Project: Tosco(4)     | ampled:  | 12/1/00  |
| Do                                                  | eceived: | 12/1/00  |
| 6/4/ Sterra Court, State 1                          |          |          |
| Dublin, CA 94568 Project Manager: Deanna Harding Re | еропеа:  | 12/22/00 |

## Volatile Organic Oxygenated Compounds by EPA Method 8260B Sequoia Analytical - San Carlos

| Analyte                          | Batch<br>Number | Date<br>Prepared | Date<br>Analyzed | Surrogate<br>Limits | Reporting<br>Limit | Result | Units | Notes* |
|----------------------------------|-----------------|------------------|------------------|---------------------|--------------------|--------|-------|--------|
| <u>MW-2</u>                      |                 |                  | L0120            | <u>05-03</u>        |                    |        | Water |        |
| Ethanol                          | 0120032         | 12/7/00          | 12/7/00          |                     | 50000              | ND     | ug/l  |        |
| 1,2-Dibromoethane                | 11              | 11               | 11               |                     | 100                | ND     | 11    |        |
|                                  | 11              | 11               | 11               |                     | 100                | ND     | Ħ     |        |
| 1,2-Dichloroethane               | *               | H                | . 19             |                     | 100                | ND     | n ·   |        |
| Di-isopropyl ether               | **              | t <del>r</del>   | 10               |                     | 100                | ND     | 11    |        |
| Ethyl text-butyl ether           |                 | #1               | п                |                     | 100                | 3790   | H     |        |
| Methyl tert-butyl ether          | <br>11          | 11               | н                |                     | 100                | ND     | n     |        |
| Tert-amyl methyl ether           |                 | "                |                  | •                   | 5000               | ND     | н     |        |
| Tert-butyl alcohol               | Pt              |                  |                  |                     | 3000               |        | 0/    |        |
| Surrogate: 1,2-Dichloroethane-d4 | W               | Ħ                | er .             | 76.0-114            |                    | 93.6   | %     |        |
| Surrogate: Toluene-d8            | H               | Ħ                | n                | 88.0-110            |                    | 100    | H     |        |





Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 12/1/00
6747 Sierra Court, Suite J Project Number: Tosco (Former 76) SS#0843 Received: 12/1/00
Dublin, CA 94568 Project Manager: Deanna Harding Reported: 12/22/00

| Total Purgeah                                                         | ole Hydrocarl     |                                  | C12), BTEX<br>ia Analytica |                                                |                                    | HS LUFT/Qualit   | Contr        | l in  |             |             |  |
|-----------------------------------------------------------------------|-------------------|----------------------------------|----------------------------|------------------------------------------------|------------------------------------|------------------|--------------|-------|-------------|-------------|--|
|                                                                       |                   | SATING OCCURRENCE OF A SATING OF |                            | AND THE RESERVE OF THE PERSON NAMED IN COMPANY |                                    |                  |              |       |             |             |  |
| Analist                                                               | Date              | Spike                            | Sample                     | QC                                             |                                    | Reporting Limit  |              | RPD   | RPD         |             |  |
| Analyte                                                               | Analyzed          | Level                            | Result                     | Result                                         | Units                              | Recov. Limits    | %            | Limit |             | Notes*      |  |
| Batch: 0120069                                                        | Date Prepa        | red: 12/15                       | <u>/00</u>                 |                                                | Extraction Method: EPA 5030B [P/T] |                  |              |       |             |             |  |
| Blank                                                                 | <u>0120069-BI</u> | <u>.K1</u>                       |                            |                                                |                                    |                  |              |       |             |             |  |
| Purgeable Hydrocarbons as Gasoline                                    | 12/15/00          |                                  |                            | ND                                             | ug/I                               | 50.0             |              |       |             |             |  |
| Benzene                                                               |                   |                                  |                            | ND                                             | <b>91</b>                          | 0.500            |              |       |             |             |  |
| Toluene                                                               | <del>"</del>      |                                  |                            | ND                                             | *1                                 | 0.500            |              |       |             |             |  |
| Ethylbenzene                                                          | <del>77</del>     |                                  |                            | ND                                             | *1                                 | 0.500            |              |       |             |             |  |
| Xylenes (total)                                                       |                   |                                  |                            | ND                                             | #1                                 | 0.500            |              |       |             |             |  |
| Methyl tert-butyl ether                                               | n                 |                                  | <u>-</u>                   | ND                                             | н                                  | 5.00             |              |       |             |             |  |
| Surrogate: a,a,a-Trifluorotoluene                                     | · "               | 10.0                             |                            | 10.1                                           | "                                  | 70.0-130         | 101          |       |             |             |  |
| LCS                                                                   | 0120069-BS        | <u> 1</u>                        |                            |                                                |                                    |                  |              |       |             |             |  |
| Benzene                                                               | 12/15/00          | 10.0                             |                            | 9.72                                           | ug/l                               | 70.0-130         | 97.2         |       |             |             |  |
| Toluene                                                               | **                | 10.0                             |                            | 10.0                                           | n T                                | 70.0-130         | 100          |       |             |             |  |
| Ethylbenzene                                                          | er e              | 10.0                             |                            | 10.5                                           | 11                                 | 70.0-130         | 105          |       |             |             |  |
| Xylenes (total)                                                       | H .               | 30.0                             |                            | 31.4                                           | n                                  | 70.0-130         | 105          |       |             |             |  |
| Surrogate: a,a,a-Trifluorotoluene                                     | "                 | 10.0                             |                            | 10.I                                           | ır                                 | 70.0-130         | 101          | •     |             |             |  |
| LCS                                                                   | 0120069-BS        | 19                               |                            |                                                | •                                  |                  |              |       |             |             |  |
| Purgeable Hydrocarbons as Gasoline                                    | 12/15/00          | 250                              |                            | 235                                            | ug/l                               | 70.0-130         | 94.0         |       |             |             |  |
| Surrogate: a,a,a-Trifluorotoluene                                     | n                 | 10.0                             |                            | 9.49                                           | "                                  | 70.0-130         | 94.9         |       |             |             |  |
| Matrix Spike                                                          | 0120069-M         | 21 Y                             | 012005-02                  |                                                |                                    |                  |              |       |             | •           |  |
| Purgeable Hydrocarbons as Gasoline                                    | 12/15/00          | 250                              | ND                         | 246                                            | 110/I                              | 60.0-140         | 98.4         |       |             |             |  |
| Surrogate: a,a,a-Trifluorotoluene                                     | "                 | 10.0                             | ND.                        | 8.00                                           | ug/l<br>"                          | 70.0-130         | 80.0         |       | <del></del> | <del></del> |  |
| No. 4.5- C. 2. D                                                      |                   |                                  |                            |                                                |                                    | •                |              |       |             |             |  |
| Matrix Spike Dup                                                      | 0120069-M         |                                  | 012005-02                  | 001                                            | a                                  | CO O 140         |              | 25.0  | 10.5        |             |  |
| Purgeable Hydrocarbons as Gasoline  Surrogate: a,a,a-Trifluorotoluene | 12/15/00          | 250                              | ND                         | 221                                            | ug/l                               | 60.0-140         | 88.4<br>86.4 | 25.0  | 10.7        |             |  |
| Surrogaie: a,a,a-1rijiuoroioiuene                                     | "                 | 10.0                             |                            | 8.64                                           | ••                                 | 70.0-130         | <i>60,4</i>  |       |             |             |  |
| Batch: 0120070                                                        | Date Prepar       |                                  | <u>/00</u>                 |                                                | Extrac                             | tion Method: EPA | 5030B        | P/T]  |             |             |  |
| Blank                                                                 | <u>0120070-BI</u> | <u>K1</u>                        |                            |                                                |                                    |                  |              |       |             |             |  |
| Purgeable Hydrocarbons as Gasoline                                    | 12/15/00          |                                  |                            | ND                                             | ug/l                               | 50.0             |              |       |             |             |  |
| Benzene                                                               | n                 |                                  |                            | ND                                             | 91                                 | 0.500            |              |       |             |             |  |
| Toluene                                                               | n                 |                                  |                            | ND                                             | 11                                 | 0.500            |              |       |             |             |  |
| Ethylbenzene                                                          | 11                |                                  |                            | ND                                             | н                                  | 0.500            |              |       |             |             |  |
| Xylenes (total)                                                       | 11                |                                  |                            | ND                                             | n                                  | 0.500            |              |       |             |             |  |
| Methyl tert-butyl ether                                               | n                 |                                  |                            | ND                                             | 10                                 | 5.00             |              |       |             |             |  |
| Surrogate: a,a,a-Trifluorotoluene                                     | π                 | 10.0                             |                            | 11.2                                           | "                                  | 70.0-130         | 112          |       |             |             |  |
| LCS                                                                   | 0120070-BS        | 1                                |                            |                                                |                                    |                  |              |       |             |             |  |
| Purgeable Hydrocarbons as Gasoline                                    | 12/15/00          | _                                |                            | 103                                            | ug/l                               | 70.0-130         |              |       |             |             |  |
| Benzene                                                               | 11                | 10.0                             |                            | 10.9                                           | H                                  | 70.0-130         | 109          |       |             |             |  |
| 6                                                                     |                   |                                  | <del></del>                |                                                |                                    |                  |              |       |             | <del></del> |  |

<sup>\*</sup>Refer to end of report for text of notes and definitions.



12/1/00

12/1/00

12/22/00



Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J

Project Number: Tosco (Former 76) SS#0843

Project Manager: Deanna Harding

Reported:

|                                    | Date              | Spike        | Sample     | QC     |       | Reporting Limit |              | RPD   | RPD      |       |
|------------------------------------|-------------------|--------------|------------|--------|-------|-----------------|--------------|-------|----------|-------|
| Analyte                            | Analyzed          | Level        | Result     | Result | Units | Recov. Limits   | <u>%</u>     | Limit | <u>%</u> | Notes |
| LCS (continued)                    | 0120070-BS        | <b>S</b> 1   |            |        |       |                 |              |       |          |       |
| Toluene                            | 12/15/00          | 10.0         |            | 10.5   | ug/l  | 70.0-130        | 105          |       |          |       |
| Ethylbenzene                       | 11                | 10.0         |            | 10.3   | "     | 70.0-130        | 103          |       |          |       |
| Xylenes (total)                    | **                | 30.0         |            | 30.8   | 91    | 70.0-130        | 103          |       |          |       |
| Surrogate: a,a,a-Trifluorotoluene  | "                 | 10.0         |            | 12.2   | "     | 70.0-130        | 122          |       |          |       |
| LCS                                | 0120070- <u>B</u> | S2           |            |        |       |                 |              |       |          |       |
| Purgeable Hydrocarbons as Gasoline | 12/15/00          | 250          |            | 176    | ug/l  | 70.0-130        |              |       |          |       |
| Benzene                            | 11                |              |            | 4.36   | **    | 70.0-130        |              |       |          |       |
| Toluene                            | 11                |              |            | 13.9   | 41    | 70.0-130        |              |       |          |       |
| Ethylbenzene                       | 11                |              |            | 3.60   | 11    | 70.0-130        |              |       |          |       |
| Xylenes (total)                    | н                 |              |            | 17.5   | **    | 70.0-130        |              |       |          |       |
| Surrogate: a,a,a-Trifluorotoluene  | n n               | 10.0         |            | 7.84   | N     | 70.0-130        | 78.4         |       |          |       |
| Matr <u>ix Spike</u>               | 0120070-M         | <u>IS1 L</u> | 012005-04  |        |       |                 |              |       |          |       |
| Purgeable Hydrocarbons as Gasoline | 12/16/00          | 250          | ND         | 275    | ug/l  | 60.0-140        |              |       |          |       |
| Surrogate: a,a,a-Trifluorotoluene  | n                 | 10.0         |            | 11.6   | π     | 70.0-130        | 116          |       |          |       |
| Matrix Spike Dup                   | 0120070-M         |              | .012005-04 |        |       | CO O 140        |              | 25.0  | 0.905    |       |
| Purgeable Hydrocarbons as Gasoline | 12/16/00          | 250          | ND         | 278    | ug/l  | 60.0-140        | <del> </del> | 25.0  | 0.505    |       |
| Surrogate: a,a,a-Trifluorotoluene  | "                 | 10.0         |            | 11.4   | "     | 70.0-130        | 114          |       |          |       |

Sequoia Analytical - San Carlos





Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 12/1/00 6747 Sierra Court, Suite J Project Number: Tosco (Former 76) SS#0843 Received: 12/1/00 Dublin, CA 94568 Project Manager: Deanna Harding Reported: 12/22/00

MIRE CONTINUES DA MERICA DE LE CONTINUES DE LA MERICA DE LA CONTINUE DEL CONTINUE DEL CONTINUE DE LA CONTINUE D

| The first state of the state of |             | _Seguo     | ia Analytics     | I-San Ca | ries 💮                             |                 |        |       |      |        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------------|----------|------------------------------------|-----------------|--------|-------|------|--------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date        | Spike      | Sample           | QC       |                                    | Reporting Limit | Recov. | RPD   | RPD  |        |  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyzed    | Level      | Result           | Result   | Units                              | Recov. Limits   | %      | Limit | %    | Notes* |  |
| Batch: 0120088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Prepar | red: 12/19 | /00              |          | Extraction Method: EPA 5030B [P/T] |                 |        |       |      |        |  |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0120088-BI  |            |                  |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/18/00    |            |                  | ND       | ug/l                               | 2.00            |        |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ħ           | 50.0       |                  | 49.1     | "                                  | 76.0-114        | 98.2   |       |      |        |  |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0120088-BI  | LK2        |                  |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/19/00    |            |                  | ND.      | ug/l                               | 2.00            |        |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ħ           | 50.0       |                  | 47.5     | n .                                | 76.0-114        | 95.0   |       |      |        |  |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0120088-BI  | <u>.K3</u> |                  |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/20/00    |            |                  | ND       | ug/l                               | 2.00            |        |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W           | 50.0       |                  | 49.4     | н                                  | 76.0-114        | 98.8   |       | •    |        |  |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0120088-BS  | <u> 1</u>  |                  |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/18/00    | 50.0       |                  | 35.5     | ug/l                               | 70.0-130        | 71.0   |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ħ           | 50.0       |                  | 48.9     | H                                  | 76.0-114        | 97.8   |       |      |        |  |
| <u>LCS</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0120088-BS  |            |                  |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/19/00    | 50.0       |                  | 43.8     | ug/l                               | 70.0-130        | 87.6   |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #           | 50.0       |                  | 49.9     | "                                  | 76.0-114        | 99.8   |       |      |        |  |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0120088-BS  | _          |                  | •        |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/20/00    | 50.0       |                  | 44.4     | ug/l                               | 70.0-130        | 88.8   |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н           | 50.0       |                  | 51.5     | r                                  | 76.0-114        | 103    |       |      |        |  |
| Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0120088-M   |            | 012120-11        |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/19/00    | 50.0       | 3.99             | 48.7     | ug/l                               | 60.0-140        | 89.4   |       |      |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 50.0       |                  | 50.6     | " # "                              | 76.0-114        | 101    |       |      |        |  |
| Matrix Spike Dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0120088-M   | SD1 L      | <u>012120-11</u> |          |                                    |                 |        |       |      |        |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/19/00    | 50.0       | 3.99             | 46.7     | ug/l                               | 60.0-140        | 85.4   | 25.0  | 4.58 |        |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n           | 50.0       | <u> </u>         | 52.8     | в.                                 | 76.0-114        | 106    |       |      |        |  |





Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

Project: Tosco(4)

Project Manager: Deanna Harding

Project Number: Tosco (Former 76) SS#0843

Sampled: Received:

Reported:

12/1/00

12/1/00 12/22/00

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kethod 8260B/Quality Control is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.11 元 1 撰 (20.1) 13 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commercial Applications   Commercial Commerc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6) TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                  | Date              | Spike      | Sample             | QC       |         | Reporting Limit |         | RPD   | RPD          |        |
|----------------------------------|-------------------|------------|--------------------|----------|---------|-----------------|---------|-------|--------------|--------|
| Analyte                          | Analyzed          | Level      | Result             | Result   | Units   | Recov. Limits   | %_      | Limit | %            | Notes* |
| D 4 L 0120022                    | Date Prepa        | made 12/7/ | na.                |          | Extract | tion Method: EP | A 5030B | [P/T] |              |        |
| Batch: 0120032                   |                   |            | <u> </u>           |          | 1141160 |                 |         |       |              |        |
| Blank                            | 0120032-B         | LIKI       |                    | ND       | ug/l    | 1000            |         |       |              |        |
| Ethanol                          | 12/7/00           |            |                    | ND       | n S/I   | 2.00            |         |       |              |        |
| 1,2-Dibromoethane                | "                 |            |                    | ND<br>ND | н       | 2.00            |         |       |              |        |
| 1,2-Dichloroethane               |                   |            |                    | ND<br>ND |         | 2.00            |         |       |              |        |
| Di-isopropyl ether               | 17                |            |                    |          | tt      | 2.00            |         |       |              |        |
| Ethyl tert-butyl ether           | H                 |            |                    | ND       |         | 2.00            |         |       |              |        |
| Methyl tert-butyl ether          | n                 |            |                    | ND       | **      |                 |         |       |              |        |
| Tert-amyl methyl ether           | n                 |            |                    | ND       |         | 2.00            |         |       |              |        |
| Tert-butyl alcohol               | 11                |            |                    | ND       |         | 100             | 107     |       | <del> </del> |        |
| Surrogate: 1,2-Dichloroethane-d4 | "                 | 50.0       |                    | 53.4     | "       | 76.0-114        | 107     |       |              |        |
| Surrogate: Toluene-d8            | "                 | 50.0       | \$ <sup>5</sup> ,  | 50.0     | ď       | 88.0-110        | 100     |       |              |        |
| LCS                              | 0120032-B         | S1         |                    |          | •       |                 |         |       |              |        |
| Methyl tert-butyl ether          | 12/7/00           | 50.0       |                    | 51.4     | ug/l    | 70.0-130        |         |       |              |        |
| Surrogate: 1,2-Dichloroethane-d4 | "                 | 50.0       |                    | 50.4     | H       | 76.0-114        | 101     |       |              |        |
| Surrogate: Toluene-d8            | "                 | 50.0       |                    | 50.7     | #       | 88.0-110        | 101     |       |              |        |
| Matrix Spike                     | 012003 <u>2-N</u> | 1S1 I      | .012 <u>006-08</u> |          |         |                 |         |       |              |        |
| Methyl tert-butyl ether          | 12/7/00           | 50.0       | 18.4               | 61.5     | ug/l    | 60.0-140        | 86.2    |       |              |        |
| Surrogate: 1,2-Dichloroethane-d4 | "                 | 50.0       |                    | 45.3     | "       | 76.0-114        | 90.6    |       |              |        |
| Surrogate: Toluene-d8            | n                 | 50.0       |                    | 48.2     | *       | 88.0-110        | 96.4    |       |              |        |
| Surrogue, Tomene-so              |                   | ••••       |                    |          |         |                 |         |       |              |        |
| Matrix Spike Dup                 | <u>0120032-N</u>  |            | <u> 1012006-08</u> |          |         | (0.0.140        | 72 6    | 25.0  | 15.8         |        |
| Methyl tert-butyl ether          | 12/7/00           | 50.0       | 18.4               | 55.2     | ug/l    | 60.0-140        |         | 23.0  | 15.0         |        |
| Surrogate: 1,2-Dichloroethane-d4 | n                 | 50.0       |                    | 44.7     | n       | 76.0-114        | 89.4    |       |              |        |
| Surrogate: Toluene-d8            | #                 | 50.0       |                    | 49.9     | Ħ       | 88.0-110        | 99.8    |       |              |        |
|                                  |                   |            |                    |          |         |                 |         |       |              |        |





Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

Project: Tosco(4)

Project Manager: Deanna Harding

Project Number: Tosco (Former 76) SS#0843

Sampled: 12/1/00

Received: 12/1/00 Reported: 12/22/00

#### **Notes and Definitions**

| #      | Note                                                 |              |
|--------|------------------------------------------------------|--------------|
| 1      | Chromatogram Pattern: Gasoline C6-C12                |              |
| 2      | MTBE was reported from second analysis.              |              |
| DET    | Analyte DETECTED                                     |              |
| ND     | Analyte NOT DETECTED at or above the reporting limit |              |
| NR     | Not Reported                                         |              |
| dry    | Sample results reported on a dry weight basis        |              |
| Recov. | Recovery                                             | MAR 1 2 2001 |
| RPD    | Relative Percent Difference                          | 2 2001       |