

200

ANNUAL GROUNDWATER MONITORING AND PRODUCT RECOVERY PROGRESS REPORT

ARAMARK UNIFORM SERVICES, INC. 330 CHESTNUT STREET OAKLAND, CALIFORNIA

PREPARED FOR

ARAMARK UNIFORM SERVICES, INC. SCHAUMBURG, ILLINOIS

PREPARED BY

RMT, INC. MARINA DEL REY, CA

MARCH 1997

Kevin Bate Project Engineer

James W Van Nortwick, Jr., Ph.D. P.E.

Project Manager

RMT, Inc. - Los Angeles

4640 ADMIRAJTY WAY SUITE 301 MARINA DEL REY, CA 90292-6621

310/578-1241 310/821-3280 FAX

TABLE OF CONTENTS

Section	<u>n</u>	<u>]</u>	Page
1.	INTRO 1.1 1.2 1.3	DDUCTIONFormer Diesel Fuel UST AreaFormer Diesel Fuel Dispenser and Mop Oil UST AreaPurpose and Scope	1 1
2.	GROU 2.1 2.2 2.3 2.4 2.5	JNDWATER MONITORING ACTIVITIES Static Water Level Measurements Groundwater Sample Collection Groundwater Flow Chemical Analyses of Groundwater Disposal of Purged Groundwater	8 6 6
3.	PROD	UCT RECOVERY ACTIVITIES	. 12
List of Table 2 Table 3	2	Static Water Level Measurements (February 18, 1997)	9
List of	Figure	<u>es</u>	
Figure Figure		Site Plan	4 7
List of	Apper	<u>ndices</u>	
Appen Appen Appen	dix B	Groundwater Sample Collection Data Laboratory Report Product Recovery Observations Alameda County Health Care Services Agency Letter	

FINAL

Section 1

INTRODUCTION

1.1 Former Diesel Fuel UST Area

ARAMARK Uniform Services, Inc., (ARAMARK) owns and operates an industrial laundry facility located at 330 Chestnut Street in Oakland, California. A 2,000-gallon underground diesel fuel storage tank was formerly maintained at this facility to supply fuel for the operation of a boiler. The diesel fuel storage tank was removed from the facility in December 1988 and a tank closure documentation report was submitted to the Alameda County Environmental Health Department (ACEHD). Based on the information presented in the tank documentation report, the ACEHD requested that ARAMARK conduct post-closure sampling activities to determine whether the soil and groundwater surrounding the underground storage tank had been impacted by petroleum hydrocarbons.

Remedial investigation activities were conducted by RMT from March 1989, through November 1992, and included the advancement of soil borings and four groundwater monitoring wells (RAO-1 through RAO-4) in the vicinity of the former excavation area. The results of chemical analyses performed on groundwater samples collected from monitoring wells RAO-1 and RAO-2 identified the presence of total petroleum hydrocarbons (TPH) and benzene, toluene, and xylenes (BTX) and free-product was consistently observed in the groundwater monitoring well located within the former underground storage tank excavation (RAO-3). Because the results of the sampling activities indicated that the extent of petroleum hydrocarbon contamination was limited to the former tank excavation, a product recovery canister was installed in December 1992. To date, the product recovery system has recovered approximately 8,297-mL of free-product, however, the quantity of product recovered each sampling interval has significantly decreased. In addition, with the exception of the chemical analyses performed on groundwater samples collected during February 1995, the presence of TPH or BTX has not been identified in any groundwater sample collected since May 1993.

1.2 Former Diesel Fuel Dispenser and Mop Oil UST Area

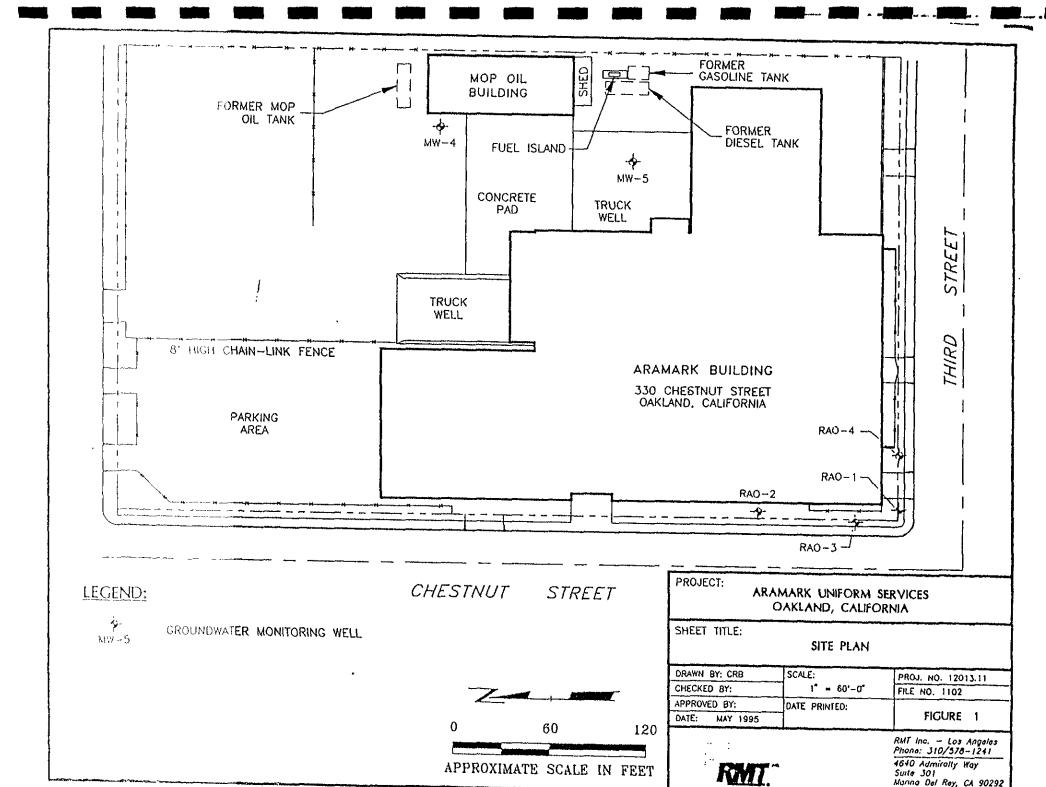
Two single walled, steel, underground petroleum hydrocarbon storage tanks were maintained at this facility to supply fuel for the delivery vehicles. In addition, an underground mop oil

ARAMARK SERVICES, INC.

FINAL

storage tank was also maintained at the facility. RMT, Inc. (RMT), was retained by ARAMARK to document the removal and disposal of the underground storage tanks and perform soil sampling as required by the ACEHD. Tank removal activities were conducted during the period of September 1993 through January 1994. The results of the chemical analyses performed on the soil samples collected from the floor of the former diesel fuel dispenser vault excavations, the former mop oil tank excavation, and in the vicinity of the eastern section of the loading dock identified the presence of petroleum hydrocarbons.

In response to the request from the ACEHD, ARAMARK engaged the services of RMT, Inc., to conduct soil and groundwater sampling activities in the vicinity of the former diesel fuel dispenser vaults and mop oil tank. Field activities were conducted on May 5, 1995 and included the advancement of two soil borings and the installation of two groundwater monitoring wells; MW-4 located in the vicinity of the former underground mop oil storage tank and MW-5 located in the vicinity of the former diesel fuel dispenser vaults (See Figure 1). Although the results of the chemical analyses performed on groundwater samples collected from the monitoring wells during 1995 identified the presence of total petroleum hydrocarbons at concentrations generally below 2mg/L, TPH-SS and TPH-D concentrations have been below detection limits throughout 1996 and during the 1997 sampling event. In addition, the presence of BTEX has never been identified at concentrations above the method detection limit in either monitoring well. A site plan showing the location of the former diesel fuel tanks and the mop oil tank is presented in Figure 1.


1.3 Purpose and Scope

The purpose of this report is to summarize the results of the groundwater monitoring activities conducted on February 18, 1997, at the ARAMARK facility. Groundwater monitoring activities were conducted in accordance with revised sampling requirements stipulated in a letter from Ms Jennifer Eberle of the Alameda County Health Care Services Agency, dated November 12, 1996 (Appendix D) and telephone conversations between Ms. Eberle and Kevin Bate of RMT conducted on November 8, 1996 and March 14, 1997. The scope of work conducted during the groundwater investigation included the following:

ARAMARK SERVICES, INC.

FINAL

- Measurement of the depth to groundwater in monitoring wells RAO-1, RAO-2, RAO-3, RAO-4, MW-4, and MW-5,
- The measurement of free product thickness in RAO-3, if present, and removal thereof. If no
 free product is present a sample of the groundwater is to be collected from RAO-3. Upon
 removal of free product and/or sample collection, the application of a 5-percent solution of
 hydrogen peroxide to the well.
- The purging and sampling of monitoring wells RAO-2, RAO-4, MW-4 and MW-5, and
- The chemical analyses of groundwater samples collected from monitoring wells RAO-2, RAO-4, MW-4 and MW-5.

Section 2

GROUNDWATER MONITORING ACTIVITIES

Groundwater sampling activities were conducted on February 18, 1997, and included obtaining static water level measurements and groundwater samples from monitoring wells RAO-2, RAO-4, MW-4 and MW-5. Groundwater samples were not collected from product recovery well RAO-3 due to the presence of free product.

2.1 Static Water Level Measurements

Prior to collecting groundwater samples, the depth to groundwater was measured in each monitoring well using an electronic water level indicator.

2.2 Groundwater Sample Collection

Groundwater samples were collected from monitoring wells RAO-2, RAO-4, MW-4 and MW-5. Prior to sampling, each monitoring well was purged using a designated disposable bailer. A minimum of three well casing volumes (casing and sand pack volume) were extracted from each well before collecting groundwater samples. The temperature, pH, and conductivity of the extracted groundwater was measured and recorded at least once per well casing volume. The well casing volume was determined by measuring and recording the static water level and calculating the well volume.

After each monitoring well had recharged to within 80 percent of its pre-purge volume (approximately 15-min) groundwater samples were collected utilizing a disposable Teflon bailer equipped with a Teflon stopcock, and dispensed directly into 40-mL borosilicate vials with Teflon septa and screw caps. All samples were preserved using hydrochloric acid and stored on ice pending transport to a commercial independent California-certified laboratory according to USEPA protocol, including chain-of-custody procedures. Groundwater sample collection data are presented in Appendix A.

ARAMARK SERVICES, INC.

FINAL

2.3 Groundwater Flow

Static water level measurements obtained on February 18, 1997, are summarized in Table 1 and the water table map generated from the water level data is presented in Figure 2. The groundwater flow direction is southwest with a gradient of approximately 0.01-ft/ft.

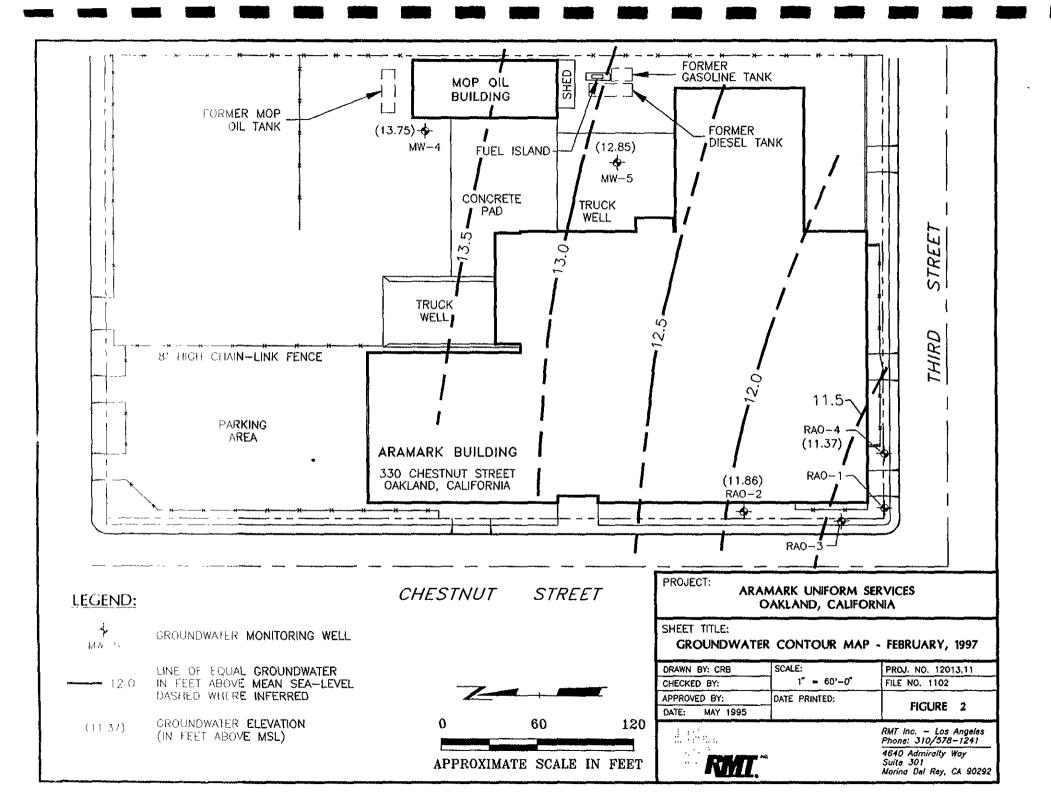


Table 1
Static Water Level Measurement

Monitoring Well Location	TOC Elevation (ft above MSL)	Depth to Water (ft below TOC)	Groundwater Elevation (ft above MSL)
RAO-1	19.08		
RAO-2	19.57	7.61	11.96
RAO-4	19.30	7.93	11.37
MW-4	22.69	8.94	13.75
MW-5	21.09	8.24	12.85

2.4 Chemical Analyses of Groundwater

Groundwater samples collected from product recovery well RAO-2 and RAO-4 were analyzed for the presence of BTEX and TPH-D using EPA SW-846 Method 8020 and Method 8015M, respectively and groundwater samples collected from monitoring wells MW-4 and MW-5 were analyzed for the presence of TPH-D, TPH-K, and TPH-SS using EPA SW-846 Method 8015M. The results of the laboratory analyses are summarized in Table 2 (diesel fuel UST Area) and Table 3 (former diesel fuel dispenser and mop oil UST area) and a copy of the laboratory report is included in Appendix B. All laboratory analyses were conducted by BC Laboratories, Inc., of Bakersfield, California.

FINA

Table 2

Chemical Analyses of Groundwater (Former Diesel Fuel UST Area)

Sample Location	Sampling Date			Parameter (ug/L))	-
		Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D
RAO-1	02-01-96	<0.5	<0.5	<0.5	<0.5	820
	08-02-95	<0.5	<0.5	<0.5	<0.5	<50
	05-05-95	<0.5	<0.5	<0.5	<0.5	<50
	02-03-95	<0.5	<0.5	<0.5	<0.5	560
	11-18-94	<1.0	<1.0	<1.0	<1.0	<50
	08-12-94	<1.0	<1.0	<1.0	<1.0	<50
	04-28-94	<1.0	<1.0	<1.0	<1.0	<50
i	01-29-94	<1.0	<1.0	<1.0	<1.0	<50
	11-11-93	<0.5	<0.5	<0.5	<0.5	<50
	08-02-93	<0.3	<0.3	<0.3	<0.5	<10
	05-11-93	0.4	0.5	<0.3	1.0	<10
RAO-2	02-18-97	<0.3	<0.3	<0.3	<0.6	<200
	11-14-95	<0.5	<0.5	<0.5	<0.5	870
	08-02-95	<0.5	<0.5	<0.5	<0.5	<50
	05-05-95	<0.5	<0.5	<0.5	<0.5	<50
	02-03-95	<0.5	<0.5	<0.5	<0.5	<50
	11-18-94	<1.0	<1.0	<1.0	<1.0	<50
	08-12-94	<1.0	<1.0	<1.0	<1.0	<50
	04-28-94	<1.0	<1.0	<1.0	<1.0	<50
	01-29-94	<1.0	<1.0	<1.0	<1.0	<50
	11-11-93	<0.5	<0.5	<0.5	<0.5	<50
	08-02-93	<0.3	<0.3	<0.3	<0.5	<10
	05-11-93	0.4	1.0	<0.3	1.0	56

Table 2 (Continued)

Chemical Analyses of Groundwater (Former Diesel Fuel UST Area)

Sample Location	Sampling Date	Parameter (ug/L)									
		Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D					
RAO-3	11-15-96	0.33	<0.3	0.61	<0.6	24,000					
	08-06-96	0.45	<0.3	<0.3	<0.6	11,000					
	05-10-96•	1.8	<0.3	3.0	5.5	2,000,000					
	02-01-96 •	16	<0.5	55	<0.5	1,700,000					
RAO-4	02-18-97	<0.3	<0.3	<0.3	<0.6	<200					
	11-14-95	<0.5	<0.5	<0.5	<0.5	800					
	08-02-95	<0.5	<0.5	<0.5	<0.5	<50					
	05-05-95	<0.5	<0.5	<0.5	<0.5	<50					
	02-03-95	<0.5	<0.5	<0.5	<0.5	<50					
	11-18-94	<1.0	<1.0	<1.0	<1.0	<50					
	08-12-94	<1.0	<1.0	<1.0	<1.0	<50					
	04-28-94	<1.0	<1.0	<1.0	<1.0	<50					
	01-29-94	<1.0	<1.0	<1.0	<1.0	<50					
	11-11-93	<0.5	<0.5	<0.5	<0.5	<50					
	08-02-93	<0.3	<0.3	<0.3	<0.5	<10					
	05-11-93	<0.3	<0.3	<0.3	<0.5	<10					

a = Free product was identified in product recovery well RAO-3

Table 3

Chemical Analyses of Groundwater (Former Dispenser and Mop Oil UST Area)

Sample Location	Sampling Date		Parameter (ug/L)											
		Benzene	Toluene	Ethyl	Xylenes	TPH-SS	ТРН-К	TPH-D						
			•	Benzene										
MW-4	02-18-97	-	_	-	-	<200	<200	<200						
	11-15-96	_	_	_	_	-	-	<200						
	08-06-96	<0.3	<0.3	<0.3	<0.6	<200	<200	<200						
	05-10-96	<0.3	<0.3	<0.3	<0.3	<200	<200	<200						
	02-01-96	<0.5	<0.5	<0.5	<0.5	<500	<500	<500						
	11-14-95	<0.5	<0.5	<0.5	<0.5		-	1,100						
	08-02-95	_	_	_	_		_	180						
	05-05-95		_	-				500						
MW-5	02-18-97	_	_	_	-	<200	<200	<200						
	11-15-96		-	-	-		-	<200						
	08-06-96	<0.3	<0.3	<0.3	<0.6	<200	<200	<200						
	05-10-96	<0.3	<0.3	<0.3	<0.3	<200	<200	350						
	02-01-96	<0.5	<0.5	<0.5	<0.5	840a	<500	<500						
	11-14-95	<0.5	<0.5	<0.5	<0.5			2,100						
	08-02-95	<0.5	<0.5	<0.5	<0.5	-		380						
	05-05-95	<0.5	<0.5	<0.5	<0.5	_	_	1,100						

a = The chromatogram does not resemble the stoddard hydrocarbon standard.

2.5 <u>Disposal of Purged Groundwater</u>

Groundwater extracted during monitoring well purging activities was contained in 55-gal DOT-approved drums, labeled with the date, generator's name, site location, source, and stored on-site pending off-site disposal.

Section 3

PRODUCT RECOVERY ACTIVITIES

In December 1992, a product recovery system, consisting of a removable canister (a buoy sheathed by a semi-permeable hydrophobic membrane atop a product storage sump) was installed in monitoring well RAO-3 located in the vicinity of the former diesel fuel UST excavation. During the period from December 1992 through May 1995, approximately 6,202mL of free-product was recovered, however, product recovery activities conducted during the period from June 1995 through October 1995 did not result in the recovery of any additional free product. Based on these findings, in November 1995, the ACEHD requested that ARAMARK collect groundwater samples from the product recovery well to determine the groundwater quality in the vicinity of the former diesel fuel UST excavation, however, it was agreed that the sampling activities would be postponed until the residual petroleum hydrocarbon buildup on the well screen and in the surrounding sand pack could be remediated. With ACEHD approval, RMT added approximately 15-gallons of a dilute solution (5%) of hydrogen peroxide (H2O2) to product recovery RAO-3 on a monthly basis during the period between November 1995 and January 1996 to help remove the residual petroleum hydrocarbons present within the well packing. Product recovery activities conducted during the third and fourth quarter of 1996 resulted in the recovery of approximately 30-mL and 15mL of free-product, respectively.

Approximately 400-mL of free product was recovered from the product recovery well during the first quarter activities (January through March, 1997). A total of 8,297-mL of free-product has been recovered since product recovery operations began (December 1992). A dilute solution (5-percent) of hydrogen peroxide is now added to the well on a monthly basis. A summary of the product recovery operations is presented in Appendix C.

APPENDIX A GROUNDWATER SAMPLE COLLECTION DATA

GROUNDWATER SAMPLING INFORMATION

Project Name: Aramark - OAKLAND
Project Number: 12013.14
Sampling Date: February 18, 1997

Monitoring Well Location	Purge Number	Purge Volume (gal)	Temp (°F)	рН	Turbidity (NTU)	DTW (ft-bgs)	Cond (μS/cm)
RAO-2	1	{	68-1	7.17	78.6	7.61	2.13
	2	3	68.3	7.15	84.9		2.14
	3	5	68.3	7-14	110		2-14
			n en k				
RAO - 4	1	l	67.7	7.10	10.4	7 .93	2.79
	2	3	68-0	7.09	33.6		2.78
	3	5	68-2	7.10	38-9		2-78
mw-4	1		68.2	6.82	106	8.94	1.37
	2		DRY (E) O	negallo			
	3						
	*		-	<u>-</u>			
mw-5	1		68.4	6.91	231	8.24	1.22
	2		PRY DE	resili	~		
	3						
						ing and the second seco	
	1						
	2						
	3						
	1						
	2						
	3						

APPENDIX B

LABORATORY REPORT

February 28, 1997

TARIQ AHMAD
RMT INC.
4640 ADMIRALITY WAY
SUITE 301
MARINA DEL REY, CA 90292

Subject: Laboratory Submission No.: 97-01869 Samples Received: 02/20/97

Dear Mr. Ahmad:

The samples(s) listed on the Chain of Custody report were received by BC Laboratories, Inc. on 02/20/97.

Enclosed please find the analytical data for the testing requested. If you have any questions regarding this report please contact me at (805)327-4911, ext. 250.

Any unused sample will be stored on our premises for a minimum of 30 days (excluding bacteriologicals) at which time they will be disposed unless otherwise requested at the time of sample receipt. A disposal fee of \$5 per sample may apply for solid sample matrices.

Please refer to submission number 97-01869 when calling for assistance.

Sincerely,

Cheryl Ferguson Project Manager

BC Laboratories, Inc.

	3			Since 1	1878						6			18	ی) ر	2 C	1							oucer		OF.	
	در سالگا افغانستان اورازی	Cur	tis &	< Tor	npki	ns, l	_td.	Genero	al Analy	tical l	Labor	atorie	?S	_		A 11	. .	^ r	_ ,	n li	Č		د دار	SHEET.			חכ
		2495 Da						(714)252		Fa	x (7 14)	2 52-970	31	U	H	411	<u>N-</u> '	10	<u> </u>	<u>نار</u>	3	1177		Y [7]	EC	V!	70
	Sample ID	Depth	Date	Time	Samplo Type	Container Type	Total Number Of Containers	# 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			\$\$] \$\ \$\ \$\				 			\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$					LABA	leid Note	98:	
	mw-4	_	WHI	1 =	WATER		4			4																	
. J-	MW-5	† - • - • - • - • - • • • • • • • • • •	Kirent		''		ίι			4											\bot						
.3	RAO - 2		(1)		4		Ŋ			< □						↓.					-		<u> </u>		<u> </u>		
Ų.	MW-5 RAO-2 RAO-4	1		- i	•		1,	$\square X$								_					_				<u> </u>		
C)	BLANK	T	l _t		11														1		_	\downarrow					
										_		$\perp \downarrow$		4		4	$\bot \downarrow$	_ _	-		-	ļ	<u> </u>		*********		
Ti.		PICEN	(<u>)</u>	ļ	<u> </u>		<u></u>			_		┷				_ _				-	+	ļ					
•											 _ _	11	_	$\downarrow \downarrow$	_	\bot		_ _		┞╼┞		-	 				
										}		1		1.							-					. 277. 7	
											 	$\downarrow \downarrow$	_	\bot	_	_	 -			 	-	-	 		·		
				_		ļ	ļ				 		_			_	1	-	-	\vdash		┼	 				
						<u> </u>		. _ -			 				-	+	-			╁╼╁		┪—	2/20	12 / 21	10 1	. 111	
		ļ		·	<u> </u>	<u> </u>		 	 		 	- -	-	-		-	-			╂╼┼	- -	┨—	2/19	11/10	.102 Vr.240	uq i vid	
					_	-	-	.	╁╁╂			-{{	-	1-1			+			+		-			r -2.		
						 	-	┼-┤-				+				- -	-	-	╁	╁╍┠	+	╅╾	1		'	<u> </u>	
				-		 			 		┼╌┼╌	++			┝╼┼		+-'	-		1-	+	+	-				
	} ·			} ~-		1	-	+-	┼╌╁╼╀	-	╁╾┼╴	+		-{			-			1	十	-					
	Relinguished 8	- <u>- }</u>) <u>(re)</u>)ate Tiene	Rec	eived By:	(Signature	<u> </u>	Pate/Tyrie	1011	AROBA	TORY	NOT	ES:				<u></u>					DATE (ATA N	EEDEO	BY:	
	1		سررسید	>\/\!\	52 te	WW	leim	on gl	Date/Time 2/30 9/10/		di.	tCe	cИ	 2.St	a fo	oth	23 W	C+ e					D7 17 62 1	27,117.11			
	Relimposhed B	L (Elgrafic)ato/ I Ime	Flee	eived By:	Signature	}	Data/Time		તેંલ સ્ટ	tce eerv	red Her	fax.	181 181	97(व 1) भ	5019°	JOD Jun.		<u> </u>	unti	sample ess sp	ecified a	n chain o	of 30 day custody y sample	· wille "a	rchive
	Reliaguished B	y (Si g natu	re) (Date/Time	Rec	ssived By:	(Signature)	Date/Time													\$	5/samp	le / monti	will be c	harged	
	SEND ANA					1=	At	mi	40	GLIENT JOB I.D.:																	
	ADDRESS				•						CLIENT P.O. NO.: C&T QUOTE NO.:																
	CITY					STATE:	Z1	P CODE:		_	SAMPL	ING LO	CAT	ION: _	4	RI	411	14	ek		<u>-(</u>	<u> 2</u>	4166	AN	10		
										_				•			·										
	PHONE NUMBER FAX NUMBER:								1	COLLECTOR:																	

YELLOW COPY - Collector

WHITE COPY · Onginal (Accompanies Samples)

PINK COPY - Project Manager

Form # COC0293

BC LABORATORIES IN	PC LARORATORIES INC. SAMPLE RECEIPT FORM - Rev. No. 3-09/96																			
LAB NUMBER: 97-1869 TIME RECEIVED:9:504 W DATE RECEIVED: 2/20/97 RECEIVED BY: JIM																				
SHIPPING SPEC	IFIC	ΔΤΙ	ONS	<u> </u>		17 Y	T		=		sні	PPI	vĠ (CON	TAI	NEF	₹			
Shirping Stro	_	~			•			. C L.	\.r	4					В	ox [3		_	
Federal Express UPS																				
BC Lab Field Service 🗵 Othe	r 🗆	(Spe	cify)													=				
						PLE						,								
lce Chest ID lce Chest ID			ice C	nest ID			ice (Chest!	D		l	e Che	st ID			lce	Chest	ID		
Temperature 5 °C Temperature		_•c	Temp	eratur	•	°c	Tem	peratu	re		_°C 7	empe	eture		°°	Ter	nperat	<u> </u>		_°c
Ice Blue Ice	57 T	No	one (<u></u>		If ten	npera	ature	is n	ot be	twee	n 2 a	and 6	°C	pleas	se ex	plain	:		
100 100 100 1	,	•			_															-
Custody Seals: Ice Chest	(Cont	ainer	s 🗆		Non	e)XJ													
All samples received? Yes		,	A 11		1aa :-		γ > • V a	্ষ্টো	No	. —	1	Desci	rintio	n ma	itch (coc	? Ye	7 5	No	
All samples received? Yes	No ∟	J	All s																	
	-			SA	MP	LE C	ON	TAI	NER	S_										
Sample #	1	2	3	4	8	<u>a</u>	7	8	•	10	11	12	13	14	16	16	17	18	19	20
OT GENERAL MINERAL/ GENERAL PHYSICAL			<u> </u>																	
PT PE UNPRESERVED			 																	\square
QT INORGANIC CHEMICAL METALS													-				<u> </u>			
PT INORGANIC CHEMICAL METALS										ļ										
PT CYANIDE										-	-		\vdash			-				
PT NITROGEN FORMS			-							 					†					
PT TOTAL SULFIDE				1																
202. NITRATE / NITRITE 100ml TOTAL ORGANIC CARBON															ļ	<u> </u>	ļ			
QT TOX														<u> </u>	ļ			<u> </u>	<u> </u>	-
PT CHEMICAL OXYGEN DEMAND			<u> </u>	ļ				ļ <u>.</u>		-	-				-	-		-	<u> </u>	-
100ml PHENOLICS	ļ	<u> </u>	-	<u> </u>	-	×			-	-	-		-		!	 				
40ml VOA VIAL TRAVEL BLANK	2,	3	13	3	X		\vdash													
40ml VOA VIAL VOA SET (3 VIALS, 1TB)	1	-		 													<u> </u>		 	
QT EPA 413.1, 413.2, 418.1											<u> </u>	<u> </u>	 	<u> </u>		├	├	 	 	┼
PT ODOR			ļ	ــــ		ļ	 			-	├		├	├──	┼─	├-	 	-		\vdash
RADIOLOGICAL	 			├	-	-		-	-		 	_	 	 	 	1				
BACTERIOLOGICAL	ļ	1-	-	 	 		\vdash	 	•											
PT EPA 504 QT EPA 508/608/8080												ļ		<u> </u>	 	 -		ļ	 	+
QT EPA 515.1/8150						<u> </u>	<u> </u>		<u> </u>	_	-	-	-	 	-	┼		-	-	+-
QT EPA 525	<u> </u>	<u> </u>	 	 	 	 		-	-	-	 	-	 	+-	-	\vdash	+	 	 	\top
QT EPA 525 TRAVEL BLANK	 	-	 	+	-	-	-	-	-	-	+	1								
100ml EPA 547	+	+-	1	 	1	1	-	1											 	╀
100ml EPA 531.1 QT EPA 548												_	<u> </u>		-	 	-	-	┼—	+-
QT EPA 549								<u> </u>	<u> </u>	-	+-	 	-		-	┼─	+	-	+-	+
QT EPA 632	 		-	 	 	 	-	-	-	-	-	-	-	-	-	+-		-	1	1
QT EPA 8015M	-	-	-	-	-	-		-	+	-	+	-	1	-		-				<u> </u>
at aa/ac	X	+~	又	1	1	 	-		 	1									 	+
I OZ JAR	1														<u> </u>	-	-		+	
32 OZ JAR									ļ	ļ		<u> </u>	-	-	<u> </u>	1-	-		+-	-
SOIL SLEEVE			ļ	ļ	ļ	-	<u> </u>	 	-	-	+-	-	-		-	-	+-	 	\dagger	\top
PCB VIAL	-	-		-	-	1	-	-	┼	+-	+-	+	-	+-	1	1				
PLASTIC BAG	-	-	+-	-	+	+	-	†	1	1		T						1		1
	 	-	\dagger	1										-	-	4	-	-	 	+-
					<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>	!		<u>!</u>	<u> </u>		

Completed by:

Purgeable Aromatics and Total Petroleum Hydrocarbons

RMT INC.

Date Reported: 02/26/97

4640 ADMIRALITY WAY

Date Received: 02/20/97

SUITE 301

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD 310-578-1241 Laboratory No.: 97-01869-1

Sample Description: ARAMARK-OAKLAND: MW-4 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected: 02/18/97

Date Extracted-8015M(d): 02/23/97

Date Analyzed-8015M(d): 02/24/97

<u>Constituents</u>	Analysis Results	Reporting <u>Units</u>	Practical Quantitation <u>Limit</u>
Total Petroleum Hydrocarbons (diesel) Surrogate % Recovery	None Detected 93.	μg/L %	200. 57-137

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

Stuart G Buttram Department Supervisor

Total Petroleum Hydrocarbons

Page

RMT INC.

4640 ADMIRALITY WAY

SUITE 301

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD

310-578-1241

Sample Description:

ARAMARK-OAKLAND: MW-4 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected: 02

02/18/97

03/24/97

02/20/97

Laboratory No.: 97-01869-LADD'N

Date Extracted-8015M(d): 02/23/97

Date Analyzed-8015M(d): 03/13/97

Date Reported:

Date Received:

<u>Constituents</u>	Analysis Results	Reporting 	Practical Quantitation <u>Limit</u>
Total Petroleum Hydrocarbons (Kerosene) Total Petroleum	None Detected	μg/L	200.
Hydrocarbons (Stoddard) Surrogate % Recovery	None Detected 100.	μg/L %	200. 57 , 137

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

California D.G.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

Page 1

Purgeable Aromatics and Total Petroleum Hydrocarbons

RMT INC.

4640 ADMIRALITY WAY

SUITE 301

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD

310-578-1241

Sample Description: ARAMARK-OAKLAND: MW-5 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected: 02/18/97

Date Reported: 02/26/97

Date Received: 02/20/97 Laboratory No.: 97-01869-2

Date Extracted-8015M(d): 02/23/97

Date Analyzed-8015M(d): 02/24/97

<u>Constituents</u>	Analysis Results	Reporting 	Practical Quantitation <u>Limit</u>
Total Petroleum Hydrocarbons (diesel) Surrogate % Recovery	None Detected 103.	μg/L %	200. 57-137

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

Stewns Stuart G. Buttram Department Supervisor

Total Petroleum Hydrocarbons

Page

RMT INC.

4640 ADMIRALITY WAY

SUITE 301

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD

310-578-1241

Sample Description:

ARAMARK-OAKLAND: MW-5 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected;

02/18/97

Laboratory No.: 97-01869-2ADD'N

Date Extracted-8015M(d): Date Analyzed-8015M(d) !

Date Reported:

Date Received:

02/23/97

03/24/97

02/20/97

03/17/97

Constituents	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Total Petroleum Hydrocarbons (Kerosene)	None Detected	μg/L	200.
Total Petroleum Hydrocarbons (Stoddard) Surrogate % Recovery	None Detected 106.	μg/L	200. 57-137

TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

California D.O H.S. Cert #1136

<u> Buttram</u> Department Supervisor

Purgeable Aromatics and Total Petroleum Hydrocarbons

RMT INC.

Date Reported: 02/25/97

4640 ADMIRALITY WAY

Date Received: 02/20/97

SUITE 301

Laboratory No.: 97-01869-3

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD

310-578-1241

Sample Description:

ARAMARK-OAKLAND: RAO-2 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected: 02/18/97

Date Extracted-8020: 02/22/97

Date Analyzed-8020: 02/22/97

Date Extracted-8015M(d): 02/23/97

Date Analyzed-8015M(d): 02/24/97

<u>Constituents</u>	Analysis <u>Results</u>	Reporting Units	Practical Quantitation <u>Limit</u>
Benzene	None Detected	μg/L	0.3
Toluene	None Detected	μg/L	0.3
Ethyl Benzene	None Detected	μg/L	0.3
Total Xylenes	None Detected	μg/L	0.6
Surrogate % Recovery	78.	8	70-130
Total Petroleum		/-	
Hydrocarbons (diesel)	None Detected	μ g/L	200.
Surrogate % Recovery	101.	%	57-137

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

Stuart G. Buttram Department Supervisor

Page 1

Purgeable Aromatics and Total Petroleum Hydrocarbons

RMT INC.

Date Reported: 02/25/97

4640 ADMIRALITY WAY

Date Received: 02/20/97

SUITE 301

Laboratory No.: 97-01869-4

MARINA DEL REY, CA 90292

Attn: TARIQ AHMAD

310-578-1241

Sample Description: ARAMARK-OAKLAND: RAO-4 SAMPLED BY T. AHMAD

Sample Matrix:

WATER

Date Collected: 02/18/97

Date Extracted-8020: 02/22/97 Date Analyzed-8020: 02/22/97

Date Extracted-8015M(d): 02/23/97

Date Analyzed-8015M(d): 02/24/97

Constituents	Analysis Results	ReportingUnits	Practical Quantitation <u>Limit</u>
Benzene	None Detected	$\mu { t g}/{ t L}$	0.3
Toluene	None Detected	μg/L	0.3
Ethyl Benzene	None Detected	μg/L	0.3
Total Xylenes	None Detected	μ g/L	0.6
Surrogate % Recovery	78.	ક	70-130
Total Petroleum	W	/T	200.
Hydrocarbons (diesel)	None Detected	μg/L	
Surrogate % Recovery	80.	ક	57-137

TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015 TEST METHOD: Individual constituents by EPA Method 5030/8020.

Stuart G Buttram Lepartment Supervisor

X/May

Page

1

Purgeable Aromatics and Total Petroleum Hydrocarbons

RMT INC.

Date Reported: 02/25/97

4640 ADMIRALITY WAY

Date Received: 02/20/97 Laboratory No.: 97-01869-5

SUITE 301

MARINA DEL REY, CA 90292

Attn: TARIO AHMAD

310-578-1241

Sample Description: ARAMARK-OAKLAND: BLANK

Sample Matrix:

WATER

Date Collected: 02/18/97

Date Extracted-8020: 02/22/97

Date Analyzed-8020: 02/22/97

<u>Constituents</u>	Analysis Results	Reporting 	Practical Quantitation Limit
Benzene	None Detected	$\mu {f g}/{f L}$	0.3
Toluene	None Detected	μg/L	0.3
Ethyl Benzene	None Detected	$\mu g/ ext{L}$	0.3
Total Xylenes	None Detected	μg/L	0.6
Surrogate % Recovery	80.	ક	70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

Stuart G. Buttram Department Supervisor

APPENDIX C

PRODUCT RECOVERY OBSERVATIONS

	Product Recovery Observations						
Sampling	Volume of	Volume of	Depth to		Thickness		
Date	Product	Water Removed	* •	Water	of Product		
	Removed	(mL)	(ft-bgs)	(ft-bgs)	(ft)		
	(mL)						
12-03-92	0	20	8.65	8.67	0.02		
12-04-92	0	0	8.61	8.63	0.02		
12-08-92	18	0	8.52	8.52	0.00		
12-09-92	10	0	8.2 4	8.24	0.00		
12-10-92	0	3	8.02	8.02	0.00		
12-14-92	30	200	8.28	8.29	0.01		
12-15-92	0	0	8.32	8.32	0.00		
12-16-92	0	0	8.52	8.52	0.00		
12-18-92	18	0	8.63	8.66	0.03		
12-21-92	10	0	8.39	8.42	0.03		
12-22-92	20	30	8.56	8.58	0.02		
12-23-92	18	0	8.35	8.37	0.02		
12-24-92	22	0	8.42	8.53	0.11		
12-28-92	15	0	8.53	8.64	0.01		
12-29-92	20	0	8.58	8.60	0.02		
12-30-92	18	0	8.22	8.24	0.02		
01-04-93	23	18	8.45	8.47	0.02		
01-05-93	12	0	8.28	8.30	0.02		
01-06-93	10	0	8.05	8.48	0.43		
01-07-93	8	0	8.64	8.66	0.02		
01-08-93	3	10	8.36	8.37	0.01		
01-11-93	8	0	8.02	8.16	0.14		
01-12-93	13	8	7.68	8.06	0.38		
01-13-93	45	0	7.64	8.04	0.40		
01-14-93	4 0	0	8.00	8.32	0.32		
01-15-93	40	0	7.98	8.30	0.32		
01-18-93	48	0	8.00	8.11	0.11		
01-19-93	50	0	8.00	8.22	0.22		
01-20-93	11	0	8.00	8.02	0.02		
01-21-93	5	40	7.84	8.00	0.16		
01-22-93	450	42	7 74	7 98	0 24		
02-04-93	25	500	7.99	8.45	0 46		
03-25-93	380	70	8 11	8.20	0.09		
04-09-93	500	18	8.11	8 20	0.09		
04-23-93	210	60	7 49	7 51	0.02		
05-03-93	560	90	8 54	8.58	0 04		
05-11-93	38	114	8.35	8.45	0.10		

Sampling Volume of Depth to Depth to Thickness						
Sampling Date	Product	Water Removed		Water	of Product	
Date	Removed	(mL)	(ft-bgs)	(ft-bgs)	(ft)	
	(mL)	(1112)	(ii Dgo)	(10 263)	(2.9	
05-20-93	1	0	8.39	8.42	0.03	
06-02-93	5	65	8.37	8.41	0.04	
06-02-93	100	0	8.46	8.57	0.14	
07-09-93	150	0	8.20	8.25	0.05	
11-11-93	40	80	7.98	7.91	0.07	
12-10-93	20	25	8.62	8.59	0.03	
01-29-94	0	0	8.76	8.76	0.00	
01-29-94	0	0	8.63	8.63	0.00	
05-03-94	1,976	658	8.93	9.15	0.22	
05-03-94	6	565	8.85	8.85	0.00	
06-21-94	1	540	8.50	8.52	0.02	
06-21-94	5	400	8.69	8.71	0.02	
07-08-94	26	500	8.61	8.61	0.00	
07-14-94	0	400	8.73	8.73	0.00	
07-20-94	20	500	8.60	8.62	0.02	
07-26-94	60	560	8.68	8.71	0.03	
08-02-94	21	500	8.46	8.50	0.04	
08-12-94	30	640	7.74	7.79	0.05	
08-18-94	0	550	9.24	9.24	0.00	
08-25-94	0	550	8.78	8.78	0.00	
08-31-94	0	550	8.74	8.74	0.00	
09-09-94	150	3 <i>7</i> 5	7.74	7.76	0.02	
09-15-94	0	525	8.93	8.93	0.00	
09-22-94	5	305	8.97	8.99	0.02	
09-30-94	0	420	8.86	8.86	0.00	
10-07-94	0	550	8.74	8.74	0.00	
10-14-94	0	520	8.80	8.80	0.00	
10-21-94	0	520	8.88	8.88	0.00	
10-28-94	0	525	8.90	8.90	0.00	
11-04-94	0	550	8 00	8 00	0.00	
11-09-94	0	520	7 99	7 99	0 00	
11-18-94	80	430	8 05	8.15	0.10	
11-25-94	130	300	8 00	7.99	0.01	
11-30-94	30	260	7 94	7.95	0.01	
12-09-94	30	480	8.03	8 07	0.04	
12-16-94	30	120	7.96	7 99	0.03	
12-22-94	20	500	8.06	8.09	0 03	
12-29-94	80	360	7 71	7.73	0 02	

FINAL

Sampling	mpling Volume of Volume of Depth to Depth to				
Date	Product	Water Removed	Product	Water	Thickness of Product
	Removed	(mL)	(ft-bgs)	(ft-bgs)	(ft)
	(mL)	and the second			
01-06-95	25	500	7.57	7.60	0.03
01-13-95	50	70	7. 55	7.54	0.01
01-20-95	5	510	7.53	7.54	0.01
01-26-95	30	500	7.38	7.41	0.03
01-31-95	30	320	7.47	7.48	0.01
02-09-95	20	210	7.63	7.63	0.00
02-14-95	20	175	7.62	7.64	0.02
02-24-95	30	310	7.85	7.89	0.04
03-03-95	20	340	7.75	<i>7.</i> 78	0.03
03-09-95	30	510	7.31	7.34	0.03
03-17-95	10	510	7.28	7.29	0.01
03-24-95	15	485	7.23	7.24	0.01
03-31-95	15	475	7.47	7. 4 8	0.01
04-07-95	35	285	7.61	7.62	0.01
04-14-95	20	280	7.68	7.69	0.01
04-21-95	20	290	<i>7.7</i> 5	<i>7.7</i> 3	0.02
04-28-95	4 0	420	7.65	7.68	0.03
05-06-95	20	360	7.70	7.71	0.01
05-12-95	20	390	<i>7.7</i> 0	<i>7.7</i> 0	0.00
05-19-95	10	370	7.90	7.90	0.00
05-26-95	10	380	7.8 0	7.80	0.00
06-02-95	0	240	<i>7.</i> 86	7.86	0.00
06-09-95	0	330	7.80	7.80	0.00
06-16-95	0	170	7.87	7.87	0.00
06-23-95	0	300	7.99	7.99	0.00
06-30-95	0	300	7.88	7.88	0.00
07-07-95	0	280	7.82	7.82	0.00
07-14-95	0	290	7.86	7.86	0.00
07-21-95	0	540	7.90	7.90	0.00
07-28-95	0	500	7 92	7.92	0 00
08-04-95	0	480	7.86	7 86	0 00
08-11-95	0	530	7 88	7.88	0.00
08-18-95	0	520	7 86	7.86	0.00
08-25-95	0	500	7 90	7.90	0.00
09-05-95	0	310	8.15	8 15	0 00
09-12-95	υ	400	8.10	8 10	0 00
09-19-95	0	390	8.20	8.20	0.00
09-26-95	0	380	8.25	8 25	0.00

Sampling Volume of Volume of Depth to Depth to Thickness						
Sampling	Volume of	Volume of				
Date	Product	Water Removed	t	Water	of Product	
T.	Removed	(mL)	(ft-bgs)	(ft-bgs)	(ft)	
	(mL)					
10-03-95	0	385	8.15	8.15	0.00	
10-10-95	0	230	8.42	8.42	0.00	
10-17-95	0	240	8.39	8.39	0.00	
10-24-95	0	250	8.40	8.40	0.00	
10-31-95	0	255	8.44	8.44	0.00	
11-07-95	0	260	8.42	8.42	0.00	
11-14-95	0	400	8.43	8.43	0.00	
11-21-95	0	420	8.48	8.48	0.00	
11-28-95	0	480	8.50	8.50	0.00	
12-05-95	0	400	8.55	8.55	0.00	
12-15-95	0	550	8.40	8.40	0.00	
12-22-95	0	490	8.36	8.36	0.00	
12-29-95	0	<i>57</i> 0	7.85	7.85	0.00	
01-05-96	0	560	7.82	7.82	0.00	
01-12-96	0	480	7.52	7.52	0.00	
01-19-96	0	460	7.54	7.54	0.00	
01-26-96	0	450	7.53	7.53	0.00	
02-01-96	400	1000	7.03	7.12	0.09	
02-09-96	275	480	7.34	7.36	0.02	
02-16-96	<i>7</i> 5	400	7.35	7.37	0.02	
02-23-96	100	360	7.33	7.36	0.03	
03-01-96	100	350	7.32	7.34	0.02	
03-08-96	90	360	7.34	7.36	0.02	
03-15-96	95	355	7.35	7.37	0.02	
03-22-96	90	360	7.33	7.35	0.02	
03-29-96	80	350	7.34	7.36	0.02	
04-05-96	90	355	7.44	7.47	0.03	
04-12-96	<i>7</i> 0	360	7.48	7.50	0.02	
04-19-96	<i>7</i> 5	350	<i>7</i> .58	7.60	0.02	
04-26-96	60	500	7.7 1	7 75	0.01	
05-03-96	50	460	7 75	7 76	0 01	
05-10-96	0	100	7 76	7.76	0	
05-17-96	0	480	7 78	7.78	0	
05-24-96	0	490	7.90	7.90	0	
05-31-96	10	1 95	7.60	7.60	0	
06-08-96	0	490	7 72	7.72	0	
06-14-96	10	490	7 72	7.72	0	
06-21-96	0	480	7.74	7.7 1	0	
00 21 30						

FINAL

Product Recovery Observations

	Sampling Volume of Volume of Depth to Depth to Thickness						
	Sampling	Volume of	Volume of		• •		
	Date	Product	Water Removed	Product	Water	of Product	
1		Removed	(mL)	(ft-bgs)	(ft-bgs)	(ft)	
		(mL)			16.		
	06-28-96	0	490	<i>7.7</i> 6	7.76	0	
	07-05-96	0	485	<i>7.7</i> 5	<i>7.7</i> 5	0	
	07-12-96	0	495	<i>7.7</i> 6	<i>7.7</i> 6	0	
	07-19-96	10	400	7.90	7.90	0	
	07-26-96	0	425	7.85	7.85	0	
	08-02-96	0	420	7.90	7.90	0	
	08-16-96	0	430	7.82	7.82	0	
	08-30-96	0	450	7.80	7.80	0	
	09-13-96	10	550	8.15	8.15	0	
	09-27-96	0	500	8.20	8.20	0	
	10-11-96	0	525	8.30	8.30	0	
	10-25-96	5	545	8.28	8.28	0	
	11-08-96	0	500	8.26	8.26	0	
	11-22-96	0	525	8.10	8.10	0	
	12-06-96	0	500	8.20	8.20	0	
	12-23-96	0	540	7.92	7.92	0	
_	01-03-97	10	510	7.46	7.46	0	
	01-16-97	50 ∫ 4D(500	7.36	7.38	0.02	
	01-31-97	240	250	7.13	7.17	0.04	
	02-14-97	100	300	7.25	7.26	0.01	
	Total to Date	8,297					

St

APPENDIX D

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY LETTER

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

November 12, 1996 STID 692 page 1 of 2 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, #250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Attn: Phil Krejci Aramark Uniform Services Inc. 1827 Walden Office Square Suite 200 Schaumburg IL 60173

RE: Aramark (formerly known as Aratex) site #516, 330 Chestnut St., Oakland CA 94607

Dear Mr. Krejci,

I understand that you have replaced Mr. Robert Robbins as our Aramark environmental contact. Since our last letter, dated 11/6/95, the following documents have been received in this office:

- 1) "Groundwater Monitoring and Product Recovery Progress Report," prepared by RMT, dated December 1995;
- 2) "Groundwater Monitoring and Product Recovery Progress Report," prepared by RMT, dated March 1996;
- "Groundwater Monitoring and Product Recovery Progress Report," prepared by RMT, dated May 1996; and
- "Groundwater Monitoring and Product Recovery Progress Report," prepared by RMT, dated August 1996.

Upon evaluation of the data, it appears that a reduction in sampling frequency/analytes is warranted. Wells RAO1, RAO2, and RAO4 should be sampled/monitored annually for TPH-d and BTEX. Annual sampling/monitoring should occur in the first quarter (January through March), so as to account for the seasonal high groundwater table. Well RAO3 should continue to be sampled (for TPH-d and BTEX) quarterly, if no free product is present. If free product is present, the thickness should be evaluated. Removal of free product should continue weekly, when present Wells MW4 and MW5 may also be sampled/monitored annually for TPH-ss, TPH-k, TPH-d, and BTEX, assuming the 4th quarter results are similar to the previous quarters

As per a telecon with Kevin Bate of RMT today, RAO3 will be remediated/oxygenated on a quarterly basis with a solution of 3.5 to 4.5% hydrogen peroxide. This well was reportedly remediated/oxygenated between 11/95 and 1/96, in an attempt to unclog the well screen. The volume of the product removed in February 1996 was greatly augmented. However, the product

November 12, 1996 STID 692 Phil Krejci page 2 of 2

removed since May 1996 has greatly decreased. It is possible, if not likely, that the well screen has again become clogged with the viscous petroleum hydrocarbon compound.

Sampling reports may be submitted annually, and should include potentiometric maps. However, free product removal updates should be submitted quarterly, along with RAO3 sampling results.

If you have any questions, please contact me directly at 510-567-6761; our fax number is 510-337-9335. Your consultant is encouraged to submit reports on double-sided paper in order to save precious trees.

Sincerely

Jennifer Eberie

Hazardous Materials Specialist

Kevin Bate, RMT, 4640 Admiralty Way, Suite 301, Marina Del Rey, CA 90292-6621 Samuel Niemann, The Wetlands Co., LLC, PO Box 40998, Indianapolis IN 46240-0998 CC: J. Eberle/file

je.692-C