

May 30, 1996

Mr. Scott Seery Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Chevron U.S.A. Products Company 6001 Bollinger Canyon Road Building L San Ramon, CA 94583 P.O. Box 5004 San Ramon, CA 94583-0804

Marketing – Northwest Region Phone 510 842 9500

Re:

Chevron Service Station #9-0917 5820 Hopyard Road, Pleasanton, California

Dear Mr. Seery:

I am enclosing the first quarter 1996 quarterly sampling report prepared by Gettler-Ryan Inc. dated May 2, 1996, and that was conducted at the above noted site. The sampling was conducted at the site on March 28, 1996.

The groundwater samples were analyzed for the presence of TPHG, BTEX and MTBE constituents. Monitoring well MW-4 was ND for TPHG and BTEX constituents, but did show a slight presence of MTBE. Monitoring well MW-5 showed the presence of all constituents, with benzene showing an unexplained increase and MTBE unknown due to the dilution factor. Monitoring well MW-6 was ND for Toluene, Xylene and MTBE constituents, with a decrease in TPHG, Benzene and Ethylbenzene.

Note that the groundwater flow direction is now in an northerly direction while last quarter it was in a southerly direction. It appears that the regional groundwater flow/recharge is effecting the groundwater flow at the site. As noted in my letter of May 29, 1996, Chevron's consultant will review the regional geology and groundwater (as part of the proposed Work Plan), this should give us some meaning to the flow change.

Chevron will continue to monitor the site quarterly. If additional permanent wells are added later on these will be included in the monitoring program. If you have any questions call me at (510) 842-9136.

Sincerely,

CHEVRON PRODUCTS COMPANY

Philip R. Briggs

Site Assessment and Remediation Project Manager

Enclosure

May 29, 1996

Mr. Scott Seery

Chevron Service Station # 9-0917 5280 Hopyard Road, Pleasanton, California

cc. Mr. Eddie So, RWQCB-San Francisco Bay Region 2101 Webster St., Suite 500, Oakland, CA 94612

Property Owners, C & H Development Co. 3744 Mt. Diablo Blvd., Suite 301, Lafayette, CA 94549

Ms. Bette Owen, Chevron Products Co.

Job #5242,80

Mr. Kenneth Kan Chevron USA Products Company P.O. Box 5004 San Ramon, CA 94583

Re:

Chevron Service Station #9-0917

5280 Hopyard Road Pleasanton, California

Dear Mr. Kan:

This report documents the quarterly groundwater sampling event performed by Gettler-Ryan Inc. (G-R). On March 28, 1996, field personnel were on-site to monitor and sample three wells (MW-4, MW-5 and MW-6) at Chevron Service Station #9-0917 located at 5280 Hopyard Road in Pleasanton, California.

Static groundwater levels were measured on March 28, 1996. All wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the site wells. Static water level data and groundwater elevations are presented in Table 1. A potentiometric map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Quarterly Groundwater Sampling (attached). The field data sheets for this event are also attached. The samples were analyzed by GTEL Environmental Laboratories, Inc. Analytical results are presented in Table 1. The chain of custody document and laboratory analytical reports are attached.

Thank you for allowing Gettler-Ryan to provide environmental services to Chevron. Please call if you have any questions or comments regarding this report.

Sincerely,

Deanna L. Harding Project Coordinator

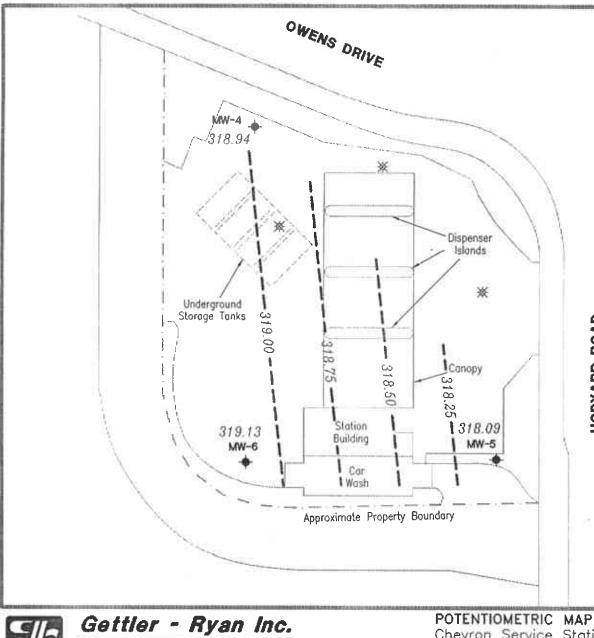
Senior Geologist, R.G. No. 5523

DLH/PLS/dlh 5242.QML

Figure 1:

Potentiometric Map

Table 1:

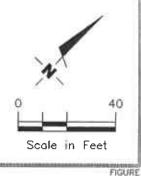

Water Level Data and Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Quarterly Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports



EXPLANATION

- Groundwater monitoring well
- Abandoned groundwater monitoring well
- 99.99Groundwater elevation in feet referenced to Mean Sea Level (MSL)
- Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of 0.01 Ft./Ft.

6747 Sierra Ct., Suite J Dublin, CA 94568

(510) 551-7555

Chevron Service Station No. 9-0917 5280 Hopyard Road Pleasanton, California

HOPYARD ROAD

DATE

March 28, 1996

REVISED DATE

JOB NUMBER 5242

REVIEWED BY

Table 1. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-0917, 5280 Hopyard Road, Pleasanton, California

Well ID/		DTW	GWE	Product Thickness*	TPH(G)	В	т	-	37	
TOC (ft)	Date	(ft)	(msl)	file (fi)	7PH(G) <	B	Т —————ррь	E	X	MTBE
										····-
MW-11/	7/12/00									
326.48	7/12/89		***		100	< 0.5	< 0.5	6	< 0.5	
	8/2/89	8.10	318.38	0	-		_			
	10/24/89	7.51	318.97	0	<50	1	< 0.5	13	< 0.5	
	3/12/90	8.41	318.07	0	140	0.8	< 0.5	1	< 0.5	
	3/26/90	8.14	318.34	0		-				
	6/22/90	8.31	318.17	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/11/90	8.14	318.35	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	4/18/91	8.02	318.34	0	77	< 0.5	< 0.5	< 0.5	< 0.5	
MW-21/										
27.53	7/17/89			0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	***
	8/2/89	9.05	318.48	Ō						
	10/24/89	9.24	318.29	Ö	<50	< 0.5	< 0.5			
	3/12/90	10.07	317.46	ő	<50	<0.5	<0.5	< 0.5	< 0.5	
	3/26/90	10.05	317.48	Ö				< 0.5	< 0.5	
	6/22/90	10.05	317.48	0						***
	9/11/90	9.68			<50	< 0.5	< 0.5	< 0.5	< 0.5	
	4/18/91		317.85	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	4/10/91	9.23	318.30	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
MW-31/										
26.47	7/17/89			**-	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	8/2/89	8.15	318.32	0						
	10/24/89	7.59	318.88	0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/12/90	8,47	318.00	0	<50	< 0.5	<0.5	<0.5	<0.5	
	3/26/90	8,83	317.64	Ö	***					
	6/22/90	8.83	317.64	ŏ	<50	0.4	< 0.5	0.8		
	9/11/90	8.41	318.06	ő	<50 <50				< 0.5	
	4/18/91	7.98	318.49	Ö	<50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
/W-4/									70.5	
127.28	9/16/91	9.59	317.69	0	< 50	-0.6	-0.5	-0.7		
	1/22/92	9.49	317.79	0		< 0.5	<0.5	< 0.5	< 0.5	
	3/26/92				<50	< 0.5	< 0.5	< 0.5	< 0.5	
		8.89	318.39	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/5/92	9.22	318.06	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/23/92	9.35	317.93	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/30/92	8.28	319.00	0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/22/93	8.25	319.03	0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/14/93	9.16	318.12	0	•••		4		***	
	7/25/93	9.10	318.18	0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/23/93	8.70	318.58	0	< 50	< 0.5	< 0.5	< 0.5	<0.5	
	12/28/93	9.90	317.38	0	<50	< 0.5	<0.5	<0.5	0.5	
	3/21/94	9.25	318.03	0	< 50	1.0	2.0	0.5	U. .5	

Table 1. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-0917, 5280 Hopyard Road, Pleasanton, California (continued)

	(continued)									
Well ID/ TOC (ft)	Date	DTW	GWE	Product Thickness*	TPH(G)	В	т	E	Х	МТВЕ
100 (11)	Date	(ft)	(msi)	(ft)	<u> </u>		ppb			>
MW-4	6/7/94	0.05	219.52		-60		-0.0	- A - P		
		9.05	318.23	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	_
(cont)	10/7/94	8.97	318.31	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/29/94	9.22	318.06	0	< 50 ²	< 0.5	1.1	0.8	2.7	
	3/6/95	9.02	318.26	0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/14/95	8.81	318.47	0	170	< 0.5	< 0.5	< 0.5	< 0.5	
	9/14/95	9.28	318.00	0	<50	1.0	< 0.5	1.6	< 0.5	
	12/16/95	7.86	319.42	0	<50	< 0.50	< 0.50	< 0.50	< 0.50	150
	3/28/96	8.34	318.94	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	53
MW-5/				-						
327.82	9/16/91	10.06	317.76	0	12,000	4,000	29	1,600	92	
	1/22/92	10.58	317.24	Ö	44,000	2,000	320	5,700	2,400	
	3/26/92	9.18	318.64	Ö	39,000	3,200	210	5,700	2,400	
	6/5/92	9.90	317.92	0	28,000	3,800	140	4,000	2,000	
	9/23/92	9.97	317.85	o O	40,000	2,000	290	2,900	1,800	
	12/30/92	8.80	319.02	ő	44,000	9,000	190	3,100	1,600	
	3/22/93	9.33	318.49	0	43,000	6,500	170			
	6/14/93	9.78	318.04	Ö		,		2,400	2,400	
	7/25/93	9.72	318.10		42.000	550		2.700		***
	9/23/93	9.72	318.40	0	43,000		45	2,700	1,100	
	12/28/93			0	44,000 ²	14,000	640	3,700	1,800	
		9.67	318.15	0	56,000	12,000	590	4,100	1,600	***
	3/21/94	9.71	318.11	0	48,000	12,000	600	4,700	1,600	
	6/7/94	9.72	318.10	0	42,000	13,000	480	3,700	1,200	
	10/7/94	9.55	318.27	0	15,000	1,100	41	950	34	
	12/29/94	9.92	317.90	0	45,000	12,000	460	3,600	1,400	
	3/6/95	9.32	318.50	0	40,000	9,700	210	3,500	700	
	6/14/95	9.41	318.41	0	42,000	8,000	170	3,700	640	
	9/14/95	10.52	317.30	0	26,000 ²	4,100	85	2,000	270	
	12/16/95	8.34	319.48	0	35,000	7,300	< 0.50	2,900	420	< 500
	3/28/96	9.73	318.09	0	30,000	5,200	160	3,500	600	<250
MW-6/										
328.48	9/16/91	10.61	317.87	0	6,200	1,300	3.9	550	78	
	1/22/92	10.30	318.18	0	18,000	2,800	48	2,000	440	
	3/26/92	9.50	318.98	0	21,000	3,300	17	2,100	300	
	6/5/92	10.34	318.14	0	14,000	2,800	9.2	1,800	270	
	9/23/92	10.56	317.92	Ö	19,000	1.000	40	1,200	230	
	12/30/92	9.75	318.71	ő	15,000	1,100	<5	1,000	230 77	
	3/22/93	9.27	319.21	ő	15,000	1,300	10	770	220	
	6/14/93	10.15	319.21		•					
	7/25/93			0	 C 400					
	1143/93	10.25	318.23	0	6,400	630	<2.5	440	6	

Table 1. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-0917, 5280 Hopyard Road, Pleasanton, California (continued)

-				Product						
Well ID/		DTW	GWE	Thickness*	TPH(G)	В	T	E	x	МТВЕ
TOC (ft)	Date	(ft)	(msl)	(ft)	<		————ррь	······································	·	>
MW-6	9/23/93	10.17	318.31	0	9,500	1.000	20	600		
(cont)	12/28/93	10.52	317.96	0	11,000	1,000 890	23	690 730	110	
(com)	3/21/94	10.28	317.50	0			31	730	48	
	6/7/94	10.28	318.20	Ö	5,700	380	10	270	22	
	10/7/94	10.42	318.06	0	5,300	600 270	4.4	370	26	***
	12/29/94	10.25	318.23	Ö	2,600		<5.0	110	<5.0	
	3/6/95	9.36	319.12	0	4,500	560	6.2	360	<5.0	
	6/14/95	10.11	319.12	0	4,100	480	15	290	20	
	9/14/95	10.11	318.21	Ö	2,800	180	6.9	110	6.6	
	12/16/95	9.27	319.21		3,1003	370	< 0.5	250	< 0.5	
	3/28/96	9.27	319.21	0	1,900	210	< 0.50	76	< 0.50	<13
	5/26/90	7.33	317.13	U	1,000	120	< 0.5	64	< 0.5	< 5.0
Trip Blank	6 (22 (20									
	6/22/90				< 50	< 0.3	< 0.3	< 0.3	< 0.6	
	9/16/91				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	1/22/92				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/26/92				<50	< 0.5	< 0.5	< 0.5	< 0.5	
TDID	6/5/92				<50	< 0.5	< 0.5	< 0.5	< 0.5	
TB-LB	9/23/92				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/30/92		***	*	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/22/93				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	7/25/93				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/23/93	**~			<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/28/93			***	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/21/94				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/7/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	10/7/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/29/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/6/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/14/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/14/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/16/95			·	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5
	3/28/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
Bailer Blank										
BB	3/22/93			***	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	7/25/93				<50	< 0.5	< 0.5	< 0.5	<0.5	
	9/23/93		***		<50	< 0.5	< 0.5	< 0.5	<0.5	***
:	12/28/93				<50	< 0.5	<0.5	<0.5	<0.5	
	3/21/94		***		<50	< 0.5	< 0.5	< 0.5	<0.5	

Table 1. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-0917, 5280 Hopyard Road, Pleasanton, California (continued)

EXPLANATION:

DTW = Depth to water

TOC = Top of casing elevation

GWE = Groundwater elevation

msl = Measurements referenced relative to mean sea level

TPH(G) = Total Purgeable Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MTBE = Methyl-teritary-butyl ether

ppb = Parts per billion

--- = Not applicable/not available

ANALYTICAL METHODS:

EPA Method 8015/5030 for TPH(G) EPA Method 8020 for BTEX & MTBE

NOTES:

Water level elevation data and laboratory analytic results prior to June 14, 1995 were compiled from Quarterly Monitoring Reports prepared for Chevron by Sierra Environmental Services.

- Product thickness was measured with an MMC flexi-dip interface probe on and after March 22, 1993.
- Wells MW-1, MW-2 and MW-3 were abandoned on April 18 and 19, 1991.
- Uncategorized compound not included in gasoline hydrocarbon concentration.
- Uncategorized compound not included in gasoline concentration. Data obtained from multiple dilutions. Dilution factor noted represents the dilution used for majority of results.

5242.TQM

STANDARD OPERATING PROCEDURE QUARTERLY GROUNDWATER SAMPLING

Gettler-Ryan field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss pevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexi-dip interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using Chevron-designated disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytic laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservative (if any), and the sample collector's initials. The water samples are placed in cooler maintained at 4 C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivery to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory-supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron USA Products Company, the purge and decontamination water generated during sampling activities is taken to Chevron's Richmond Refinery for disposal.

WELL SAMPLING FIELD DATA SHEET

SAMPLER	FICTIVE		DATE	3.28-95
ADDRESS	5280 HCD	yard RC	JOB#	5242.83
CITY	Pleasanton	CH	SS#	328 09-0917
Well Location Description	MW-4	Well Condition	_ dra	1
Well Location Descrip Well Diameter	חסוזכת ימי אי			
•	in	Hydrocarbon T	hickness C	<u> </u>
Total Depth Depth to Liquid	8.34 ft	Volume	. 2° = 0.17 3° = 0.38	6" = 1.50 12" = 5.80
# of casing \mathcal{S} χ Volume	16.66	x O=//	4" = 0.66	timated 8,5 gal.
Purge Equipment	Suction	Sampling Equip	ment Bailer	purge Volume
Did well dewater	<u> MC</u>	If yes, Time	Volume	
Starting Time Sampling Time	12:34	Purging Flow Ra	ite // >	gpm.
12:36 12:36 12:46 12:46	7,24 7,25 7,27 7,25	Spaductivity 4720 4710	Temperature 19.3 19.2 19.2 01.2	Volume 3.0-
Weather Conditions Water Color:	Parthy	'Clauny	Breizy	
Sediment Description		Na	Odor:	- JICKL
Sample 10	LA	BORATORY INFORM	IATION	
n 11111 / /	3x46m/ VOF	alrig Preservative		Analysis
		1 HC	COTEC	Ges Bixi Mile
. Comments				

WELL SAMPLING FIELD DATA SHEET

SAMPLER	F. Cline		DATE	2 752-91
ADDRESS CITY	ΔI	Jepyard Rd	JOB#	5242 85
Well ID	Messanu MW-5	Well Condition	. ss# Ofa	<u>9-0917</u>
Well Location Descri Well Diameter Total Depth Depth to Liquid # of casing Volume Purge Equipment	$\frac{2^{\prime\prime}}{24^{\prime\prime}}$		2" = 0.17 3" = 0.38 4" = 0.66 x(VF) 2" 7 #Es	6" = 1.50 12" = 5.80 timated 7/3 gail purge Volume
Did well dewater	NC	Sampling Equipme	Volume	
Starting Time Sampling Time	130 l 13:10	Purging Flow Rate		<u>3</u> gpm
Time 1303 1303 1307 1310	7:63 7:49 7:49	Conductivity 48 1969 1965 1968	Temperature 18 6 20:17 20:13	Volume 2.6 5/2 7.8 8.0
Weather Conditions Water Color:	Partly	Ckndy	Breez-	
Sediment Description		Ma		االار
Sampio JO		ABORATORY INFORMA		
N.W-5	3x 40m/licA	Rolling Preservative T	YPO Lab	Analysis 600 BTYENN
Comments	/			

WELL SAMPLING FIELD DATA SHEET

SAMPLER	F. Cline	, 		DATE		3-28-9/
ADDRESS	5280 Ho	PVav	d Rd	100 #		3-28-96
CITY	Pleasani	, ,	CA	JOB# SS#		7-0917
Well ID	naw-G		Well Condition		okay	
Well Location Descr	iption		A eff COUGITION		0149	
Well Diameter	2"	 in	Hydrocarbon Th			
Total Depth	25	fī				
Depth to Liquid	C = -	ft	Voluma Factor	2" = 0.1		1.50 12" = 5.80
# of casing 3/ Volume		_ ×	(VF)	$3^{\circ} \approx 0.3$ $4^{\circ} = 0.6$ $\times (VF) = 2.7$	6 #Estimate	
Purge Equipment	Suction	· .	_Sampling Equipm	nent Baile	°purgi Volumi	e e
Did well dewater	10	- -	If yes, Time	Voiu		
Starting Time Sampling Time	12:47	-	Purging Flow Rat	e	1,5	gpm.
72.49 12.51 12.53 12.56	7:08: 7:50: 7:50: 7:50	- - -	Conductivity 1000 4200 4250 4250	Temper 18 1 20, 3	9	Volume 3 - 6 - 9
Weather Conditions		,	Breezy		 .	
Water Color: Sediment Description	Clear	//	la ·	Odo	t; /	1/00
			RATORY INFORMA			<u> </u>
Sample ID	Container	Rafrig		.* 		
MW-G	3 KYOMINA.	<u>y</u>	Preservative:	TYPO Lab		Analysis
				- 0:720		GESBILE NITE
		<u> </u>				
Comments	/	ــــــــــــــــــــــــــــــــــــــ				
					· - · · · · · · · · · · · · · · · · · · ·	

·Fax·co	py of	Lab	-Re	port	and	COC to	Che	evroi	n Co	onta	ct: [10			(ha	in-	of-	Cus	tody-Reco
Chevron U. P.O. BOX San Ramon, FAX (415)8	5004 CA 94583	Con	Address_	6747	Sierr	COC to 9-09/ 280 //cp 242.83 er-Ryan a Ct, Ste Deanna Ha 51-7555	J, [Dubli	n 945	68		_ _ _	Chevron Laborate Laborate Samples Collection Signature	ory Name ory Relea Collecte n Date_	(Phon	•) •) niber Name) _	teni 80 67,	017h 42- 13L 15. C	1500	1 52 7800 e	
Sample Number	Leb Sample Number	Number of Containers	Matrix S = Soil A = Air W = Water C = Charseal	Type G = Grab C = Composite D = Discrete		Sample Preservation	load (Yes or No)	TPH Gas + BTEX W/MTBE (9016) (8020)	TPH Diesol (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Arometical (8020)		Extractable Organics of (8270)	Metals C2,C1,Pb,Zn,Ni (ICAP or AA)						DO NOT BILL TB-LB ANALYS Remorks
TB-C13 MW-4 MW-6 MW-5	1 2 3 4	2333	₩	7B 6	1243 1244 1310	HIL	A A	444													
	404030																				
Relinquished By Relinquished By Relinquished By	(Signature) - Wea	٥	Organia (enization Conization TEL	- 3	Oate/Time 1:10 29-96 Date/Time / 6:00 3-29-96 Date/Time	Rec Bea	elved By	(Signa	Uele turo) atory B	/ (Slanat	(ur•)	Organizati GTE Organizati	lon	J-2 Date	/Time 29-96 /Time /Time	0845	N	Turn Arc	21 le 6 0	Hre. Day∎ Day∎

Midwest Region 4211 May Avenue Wichita, KS 67209 (316) 945-2624

(800) 633-7936 (316) 945-0506 (FAX)

April 8, 1996

Deanna Harding GETTLER-RYAN 6747 Sierra Ct. Suite J Dublin, CA 94568 RECEIVED

APR 1 1 1996

GETTLER-RYAN INC.

RE: GTEL Client ID:

GTR01CHV08

Login Number:

W6030592

Project ID (number):

5242.85

Project ID (name):

CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Client Senves Manage

Dear Deanna Harding:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 03/30/96.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This report is to be reproduced only in full.

GTEL is certified by the Department of Health Service under Certification Number 1845.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Terry R. Loucks

Laboratory Director

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

GTR01CHV08

Login Number:

W6030592

Project ID (number): 5242.85

Project ID (name):

CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Method: EPA 8020 Matrix: Aqueous

GTEL Sample Number Client ID Date Sampled	W6030592-01 TB-LB	W6030592-02 MW-4 03/28/96	W6030592-03 MW-6 03/28/96	W6030592-04 MW-5 03/28/96
Date Analyzed	04/05/96	04/05/96	04/05/96	04/05/96
Dilution Factor	1.00	1.00	1.00	50.0

	Reporting					
Analyte	Limit	Units	(Concentration:		
MLBE	5.0	ug/L	< 5.0	53.	< 5.0	< 250
Benzene	0.5	ug/L	< 0.5	< 0.5	120	5200
Toluene	0.5	ug/L	< 0.5	< 0.5	< 0.5	160
Ethylbenzene	0.5	ug/L	< 0.5	< 0.5	64.	3500
Xylenes (total)	0.5	tig/L	< 0.5	< 0.5	< 0.5	600
BTEX (total)		ug/L		• •	180	9500
TPH as Gasoline	50	ug/L	< 50	< 50	1000	30000
Notes:				*	•	

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. Analyte list modified to include additional compounds. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including Update 1.

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W6030592

Project ID (number): 5242.85

Project ID (name): CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Volatile Organics

Method: EPA 8020

Matrix:

Aqueous

Conformance/Non-Conformance Summary

(X = Requirements Met

 \star = See Comments -- = Not Required , NA = Not Applicable)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, WC)
GC/MS Tune		=-	NA
Initial Calibration	F 6		- -
Continuing Calibration	X	-	E-
surrogate Recovery	Х		NA
Holding Time	χ		
Method Accuracy	X 30,50,60,600,000		
Blank Continue tion	χ	=====================================	
Blank Contamination	X		

Comments:

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W6030592

Project ID (number): 5242.85

Project ID (name): CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Volatile Organics

Method: EPA 8020

<u>Matrix:</u>

Aqueous

Surrogate Results

QC Batch No. Referen	ceSample ID	TFT	
Method: EPA 8020	Acceptability Limits:	43-136%	
040496GC10-11 MS03059	202 - Matrix Spike	82.9	
040496GC10-2 BW04049	610R1 Method Blank Water	84.1	
040496GC10-4 CV04049	62010 Calibration Verifi	75.9	
040496GC10-9 DP03059		90.3	
0305920	1 TB-LB	62.1	
0305920	2 MW-4	82.3	**************************************
0305920	3 MW-6	120.	
0305920	4 MW-5	90.8	

Notes:

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

Project ID (Number): 5242.85
Project ID (Name): Chevron SS #9-0917
5280 Hopyard Rd.
Pleasanton, CA
Work Order Number: W6-03-0592
Date Reported: 04-08-96

METHOD BLANK REPORT

Volatile Organics in Water EPA Method 8020

Date of Analysis:

QC Batch No:

Analyte	Concentration, ug/L
MTBE	< 5.00
Benzene	<0.5
Toluene	<0.5
Ethylbenzene	<0.5
Xylene (total)	<0.5
TPH as Gasoline	<50

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W6030592

Project ID (number): 5242.85

Project ID (name): CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Volatile Organics

Method: EPA 8020

Matrix:

<u>Aqueous</u>

Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits	
Analyte	Amount	Concentration	Recovery	Recovery	
EPA 8020	Units:ug/L QC	Batch: 040496GC10-4			
Benzene			101	77-123%	
Toluene	20.0	the second secon	100	77.5-122.5%	
Ethylbenzene	20.0	18.7	93.5		
Xylenes (Total) 60.0	59.9	99.8	85-115%	
TPH as Gasolin	e 500.	506.	101.	80-120%	

Notes:

QC check source: Supelco #LA12389

GTEL Client ID: Login Number:

GTR01CHV08

W6030592

Project ID (number): 5242.85

Project ID (name): CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Volatile Organics

Method: EPA 8020

Matrix: Aqueous

Duplicate Sample Results

QUALITY CONTROL RESULTS

		Original	Duplicate		Acceptability	
Analyte		 Concentration	Concentration	n RPD, %	Limits, %	
EPA 8020	Units:	QC Batch: 0	40496GC10-9	GTEL Sample ID:		Client ID: MW-5
MTBE	200000000000000000000000000000000000000	< 500.	< 500	NA	20	
Benzene		5230	5100	2.52	23.9	
		161.	155.	3.80	27.2	
Ethylbenzene		3500	3430	2.02	21.6	
Xylenes (Tota	1)	605.	591.	2.34	22.0	
TPH as Gasoli		 29600	28800	2.74	20	

Notes:

 $\ensuremath{\mathsf{NA}}$ - The concentration of the analyte is less than the reporting limit.

GTR01CHV08

QUALITY CONTROL RESULTS

Login Number:

W6030592

Project ID (number): 5242.85

Project ID (name): CHEVRON/9-0917/5280 HOPYARD RD/PLEASANTON/CA

Volatile Organics

Method: EPA 8020

Matrix: Aqueous

Matrix Spike(MS) Results

	e ID:W6030592-02 ate: 05-APR-96	MS ID:MS03059202 05-APR-96			
Units: ug/L Analyte	Sample Conc.	Spike Added	MS Conc.	MS % Rec.	Acceptability Limits %Rec.
Benzene Toluene	< 0.5 (0,000) < 0.5 (0.000)	20. 0 20.0	17:8 17:8	89.0	67-110
SESSESSEE TO THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL	< 0.5 (0.000)		17.8	89.0 86.0	68-115 65-120
Xylenes (Total)	< 0.5 (0.000)	60.0	53.2	88.7	62-119

Notes:

Values in parentheses in the sample concentration column are used for \boldsymbol{x} recovery calculations.