

RECEIVED

By Alameda County Environmental Health 1:20 pm, Jun 08, 2016

Transmittal

Date:	June 3, 2016			Referen	ce No.: Ch	evron 90076 / 31	1977
То:		y Environmental y Parkway, Suite					
Subject:	RO#0427						
No. of Copies	Description/Title					Drawing No./ Document Ref.	Issue
1	Site Investigation Model	Report and Upo	dated Focused Si	te Concep	tual	24	
Issued for	-	mation oval/comments	☑ As requeste☐ Returned to				uotation
Sent by:	☐ Overnight co	urier 🗆 Same	e day courier	Mailed un	der separate	cover Mail e	nclosed
☐ Other: Remarks:	Alameda County FTI	Upload and Geo	<u>tracker</u>				
rtomano.							
Should y (510) 420	ou have any quest) 3347	ions or require a	dditional informa	tion, pleas	e contact Ki	iersten Hoey at	
Copy to:		orne, Chevron El ephine N. Le	MC (electronic)		2	atten LLC	١.
Complete	d by: Kierster [Please P			Signed:	an w	The state of the s	<u> </u>
Filing: (Correspondence File						

Mark Horne Project Manager Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-3964 markhorne@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 90076

4265 Foothill Boulevard

Oakland, CA

I have reviewed the attached report titled Site Investigation Report and Updated Focused Site Conceptual Model.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by GHD Services Inc, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Mark Horne Project Manager

Marl E. Man

Attachment: Site Investigation Report and Updated Focused Site Conceptual Model

Site Investigation Report and Updated Focused Site Conceptual Model

Chevron Service Station 90076 4265 Foothill Boulevard Oakland, California ACEH Case RO# 0427

Chevron Environmental Management Company

2300 Clayton Road Suite 920 Concord California 94596 311977 | 2015.5 | 04.05 | Report No 24 | June 3, 2016

Site Investigation Report and Updated Focused Site Conceptual Model

Chevron Service Station 90076 4265 Foothill Boulevard Oakland, California ACEH Case RO# 0427

Kiersten Hoey

Greg Barclay PG 6260

GREG BARCLAY No. 6260

2300 Clayton Road Suite 920 Concord California 94596 311977 | 2015.5 | 04.05 | Report No 24 | June 3, 2016

Table of Contents

1.	Introd	uction	1
2.	Site E	Background	1
	2.1	Site Description	1
	2.2	Previous Environmental Work	1
	2.3	Site Geology	2
	2.4	Site Hydrogeology	2
3.	Subsi	urface Investigation	2
	3.1	Site-specific Health and Safety Plan	2
	3.2	Permits	2
	3.3	Utility Clearance	2
	3.4	Drilling	3
	3.4.1	Soil Borings	3
	3.4.2	Monitoring Well Installation	3
	3.5	Soil Sampling	3
	3.6	Well Development and Sampling	3
	3.7	Soil Vapor Sampling	4
	3.8	Chemical Analyses	4
	3.9	Well Survey	5
	3.10	Waste Disposal	5
4.	Conc	eptual Site Model	5
	4.1	Petroleum Hydrocarbon Source	5
	4.2	Distribution of Constituents of Concern	5
	4.3	Hydrocarbon Source Remediation	5
	4.4	Light Non-Aqueous Phase Liquid (LNAPL)	6
	4.5	Petroleum Hydrocarbon Distribution in Soil	6
	4.6	Petroleum Hydrocarbon Distribution in Groundwater	7
	4.7	Dissolved Hydrocarbon Concentration Trends and Projections	8
	4.8	Petroleum Hydrocarbon Distribution in Soil Vapor	9
	4.9	Sensitive Receptors	10
	4.10	Preferential Pathway Study	11
5.	Conc	lusions	11

Figure Index

Figure 1	Vicinity Map
Figure 2	Site Plan
Figure 3	Site Plan with Underground Utilities
Figure 4	Geologic Cross-Section A-A'
Figure 5	Geologic Cross-Section B-B'
Figure 6	Maximum TPHg Concentrations in Soil, 0-5 fbg
Figure 7	Maximum TPHg Concentrations in Soil, >5-10 fbg
Figure 8	Maximum TPHg Concentrations in Soil, >10-20 fbg
Figure 9	Maximum TPHg Concentrations in Soil, >20-45 fbg
Figure 10	Maximum Benzene Concentrations in Soil, 0-5 fbg
Figure 11	Maximum Benzene Concentrations in Soil, >5-10 fbg
Figure 12	Maximum Benzene Concentrations in Soil, >10-20 fbg
Figure 13	Maximum Benzene Concentrations in Soil, >20-45 fbg
Figure 14	TPHg Concentrations in Groundwater March 8, 2016
Figure 15	Benzene Concentrations in Groundwater March 8, 2016
Figure 16	MTBE Concentrations in Groundwater March 8, 2016
Figure 17	Water Supply Well Location Map

Table Index

Table 1	Cumulative Soil Analytical Data
Table 2	Soil Analytical Data - Volatile Organic Compounds
Table 3	Soil Analytical Data - Semi-Volatile Organic Compounds
Table 4	Cumulative Soil Vapor Analytical Data
Table 5	Groundwater Monitoring and Sampling Data
Table 6	Well Construction Details

Appendices

Appendix A	Regulatory Correspondences
Appendix B	Summary of Environmental Investigation and Remediation
Appendix C	Boring Logs
Appendix D	Permits
Appendix E	Standard Field Procedures
Appendix F	Well Development Data and Groundwater Monitoring Sheets
Appendix G	Analytical Laboratory Reports
Appendix H	Well Survey Data
Appendix I	Trend Graphs and Degradation Calculations

1. Introduction

GHD Services Inc. (GHD) is submitting this Site Investigation Report and Updated Focused Site Conceptual Model for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (EMC). GHD performed the site investigation as outlined in GHD's Site Investigation Report, Updated Focused Site Conceptual Model, and Work Plan dated April 17, 2015 and GHD's Response Letter dated August 21, 2015, approved by Alameda County Environmental Health (ACEH) in letters dated June 10, 2015 and October 7, 2015 (Appendix A). The purpose of the subsurface investigation was to evaluate groundwater concentrations along the western perimeter of the site and beneath an apparent vapor source, and to collect confirmation samples along the southern margin of the site. The due date for the submittal of this report was extended to June 3, 2016 due to the City of Oakland requirements to obtain an encroachment permit and weather conditions (Appendix A). The investigation results, Focused Conceptual Site Model (CSM) and conclusions are presented below.

2. Site Background

2.1 Site Description

The site is an active Chevron-branded service station located on the western corner of the intersection of Foothill Boulevard and High Street in Oakland, California (Figures 2 and 3). Surrounding land use is mixed commercial and residential. A Westco station (former BP station, Fuel Leak Case RO0426) is located north (upgradient) across Foothill Boulevard, and a former Shell station (Fuel Leak Case RO0415) is located southeast (crossgradient) across High Street. Fremont High School is located east across the intersection of Foothill Boulevard and High Street, a single family home is located adjacent to the site to the southwest, and an apartment building is located adjacent to the site to the northwest.

Chevron purchased the subject property, developed it into a service station, and began operation in 1966. The station and all site facilities were reconstructed in 1987 into its current configuration. Dispenser and product line replacements occurred sometime in the 1980s and again in 1997. Current site facilities consist of a kiosk, five dispenser islands beneath a common canopy, and a building which appears to be a storage and restroom facility. Three 10,000-gallon double-walled fiberglass gasoline underground storage tanks (USTs) are located in a common pit, located directly the kiosk's southwest. The previous USTs were located in the same location. A former used-oil UST, located between the kiosk and gasoline UST complex, was removed in 1987 and it was not replaced.

2.2 Previous Environmental Work

The site has been an open environmental case since 1989 under ACEH jurisdiction (Fuel Leak Case RO0427 and GeoTracker Global ID T0600100339). Since 1987, a total of seven soil borings have been advanced, and six vapor probes and eleven monitoring wells have been installed. A groundwater extraction system operated between 1991 and 1993 in well C-2 and extracted approximately 10,200 gallons of groundwater. A summary of environmental investigation and remediation is presented in Appendix B.

2.3 Site Geology

The site is predominantly underlain by clays and silts to the maximum depth explored of approximately 59 feet below grade (fbg). A sand unit with an average thickness of 5 feet is encountered in several borings at depths ranging from 10 to 20 fbg, and a gravel unit is encountered in some borings between 45 to 55 fbg. Boring logs are included in Appendix C and geologic cross-sections are presented on Figures 4 and 5.

2.4 Site Hydrogeology

The site elevation is approximately 40 feet above mean sea level (msl). Topography in the area slopes gently southwest, towards the San Francisco Bay. The nearest surface water is the Oakland Inner Harbor, approximately 0.9 miles southwest. Groundwater monitoring has been ongoing since 1989. Historically, depth to groundwater in onsite wells has ranged from approximately 7 to 30 fbg, but is typically between 10 and 20 fbg; depth to water in offsite, downgradient wells has historically ranged from 20 to 44 fbg, but is typically between 20 and 25 fbg. Depth to groundwater in onsite wells C-4 and C-10 is generally a few feet shallower than the other onsite wells. Both wells are located adjacent to onsite catch basins, which may contribute to the shallow groundwater at these locations (Figure 3). Groundwater flow is typically south-southwest, with a gradient of 0.04 to 0.1.

Subsurface Investigation

To assess the groundwater concentrations along the western perimeter of the site and investigate an apparent vapor source, GHD installed monitoring well C-13. To confirm soil concentrations along the southern margin of the site, GHD advanced soil boring B-7. To further assess vapor intrusion risks to the adjacent property, GHD sampled soil vapor probes VP-5 and VP-6. Field activities are summarized below.

3.1 Site-specific Health and Safety Plan

GHD performed all work under the guidelines set forth in a comprehensive site-specific health and safety plan. The plan was reviewed and signed by all site workers and visitors, and kept onsite at all times.

3.2 Permits

GHD obtained Alameda County Public Works Agency (ACPWA) drilling permits W2016-0022 and W2016-0023, and City of Oakland excavation permit X1600099, obstruction permit OB1600063, and traffic control permit TSD-16-0008 to conduct work within the public right-of-way (ROW). All permits are included in Appendix D.

3.3 Utility Clearance

Prior to drilling, GHD contacted Underground Service Alert (USA) to mark existing underground utilities near the proposed boring locations. GHD contracted NORCAL Geophysical Consultants, Inc. (NORCAL) of Cotati, California to verify underground utility locations near the proposed locations. A metal detector, tracer cable, electronic line location equipment, and ground penetrating radar (GPR) were used by NORCAL to determine utility locations in the areas of the proposed

locations. Additionally, each boring location was hand cleared using a hand auger to 8 fbg to further ensure no underground utilities existed.

3.4 Drilling

On February 23, 2016, Vapor Tech Services (VTS) of Hayward, California (C-57 License #916085) was contracted to advance one soil boring and install one monitoring well. GHD personnel managed the drilling under the supervision of California Professional Geologist Nathan Lee, PG 8486. Standard field procedures for soil boring and monitoring well installation and soil vapor probe sampling are presented in Appendix E.

3.4.1 Soil Borings

Soil boring B-7 was advanced to 10 fbg using a hand auger (Figure 2). After the boring was completed, it was backfilled with Portland Type II/V cement. The boring log is included in Appendix C.

3.4.2 Monitoring Well Installation

Following the borehole clearance to 8 fbg, direct-push technology (DPT) was utilized to determine lithology, groundwater depth, and to collect soil samples prior to monitoring well installation. Monitoring well C-13 was advanced to 25 fbg. Following DPT advancement, 8-inch hollow-stem augers were advanced to approximately 19 fbg. The monitoring well was constructed with 2-inch diameter Schedule 40 polyvinyl chloride (PVC) and screened with a 0.020-inch factory-machine slotted PVC from 9 to 19 fbg. Monterey #2/12 sand was used to fill the annular space from 19 fbg to approximately 8 fbg, one foot above the screened interval. Approximately 1 foot of hydrated bentonite seal was placed above the sand pack. The remainder of the well annulus was backfilled with Portland Type II/V cement. A well box equipped with a traffic-rated lid was installed flush to grade with concrete. A well log is included in Appendix C.

3.5 Soil Sampling

Soil samples were collected from C-13 at approximately 3 fbg and at 5-foot intervals starting at 5 fbg to the total depth explored. Soil samples were collected from B-7 at approximately 5 fbg and 10 fbg. Soil samples above 8 fbg were collected using a slide-hammer lined with 6-inch stainless steel tubes. The 10 fbg sample from B-7 was collected from the hand auger bucket due to water in the boring. All remaining relatively undisturbed soil samples were collected from acetate lined direct push samplers. Soil was continuously logged using the American Society for Testing and Materials (ASTM) D2488-06 Unified Soil Classification System (USCS) and screened using a photoionization detector (PID). Samples collected for analyses were capped with Teflon® tape and plastic end caps. All samples were properly sealed, labeled, preserved on ice, logged on chain-of-custody forms, and released to Eurofins Lancaster Laboratories (Eurofins) of Lancaster, Pennsylvania for analysis.

3.6 Well Development and Sampling

On March 3, 2016, Blaine Tech Services, Inc. (Blaine Tech) of San Jose, California developed C-13 by alternating surging the well with a bailer and purging the well with a pump to draw groundwater into the well and remove accumulated sediments. Well development sheets are included in

Appendix F. On March 8, 2016, Blaine Tech sampled C-13 as part of routine groundwater monitoring and sampling at the site.

3.7 Soil Vapor Sampling

On February 24, 2016, GHD collected vapor samples from VP-5 and VP-6 using 100 percent laboratory certified 1-liter Summa™ canisters. Prior to collecting a sample, a closed circuit sampling train was created by attaching the sample Summa™ canister in series with the purge Summa™ canister via a steam-cleaned, stainless-steel manifold. A "shut-in" test was performed prior to connecting the sampling equipment to the vapor probe tubing. This test was performed by sealing all openings to ambient air, opening the purge Summa™ canister to establish a vacuum inside the sampling train and waiting to ensure the vacuum remained stable over time. The shut-in test reduces the potential for ambient air to dilute the soil vapor samples. Once the sampling train passed the "shut-in" test, it was connected to the probe tubing.

Using the same flow rate as is used during sampling, approximately three purge volumes were purged from the sampling tubing using the purge pump before sampling began. While sampling, the Summa™ canister's vacuum was used to draw the soil vapor through the flow controller until a negative pressure of approximately 5 inches of mercury (inHg) was observed on the vacuum gauge. In accordance with the Department of Toxic Substances Control (DTSC) *Advisory – Active Soil Gas Investigation* guidance document, dated July 2015, leak testing was performed during sampling using laboratory grade helium. The vapor probe vault, probe tubing, and entire sampling train was enclosed in a rigid shroud. A helium meter kept inside the shroud indicated a helium concentration inside the shroud was maintained above 30 percent helium. All Summa™ canister samples were labeled, logged on a chain-of-custody form, stored at ambient temperature, and shipped to Eurofins Air Toxics, Inc. (EATI) of Folsom, California for analysis

The vapor probes were also sampled for naphthalene simultaneously using sorbent tubes by Environmental Protection Agency (EPA) Method TO-17. The sampling train consisted of a sorbent tube attached to the sub-slab probe using unions and fittings. A disposable syringe was then attached to the sorbent tube to allow for vapor to be pulled through the sorbent tube. The syringe pulls the air into the sorbent tube until the desired volume has been collected. Approximately 200 milliliters of vapor was collected for each sorbent tube sample.

GHD's Standard Field Procedures for Soil Vapor Probe Installation and Soil vapor Sampling is presented in Appendix E. Laboratory analytical reports are presented in Appendix G.

3.8 Chemical Analyses

All soil samples collected were analyzed by Eurofins for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene by EPA Method 8260B
 All soil vapor samples collected were analyzed by EATI for the following:
- TPHg, BTEX, methyl tertiary butyl ether (MTBE) by EPA Method TO-15
- Naphthalene by EPA Method TO-17
- Air phase hydrocarbons (APH) Fractions (Sp) Aromatics C8-C12 by Modified TO-15 GC/MS Full Scan

- APH Fractions (Sp) Aliphatics C5-C12 by Modified TO-15 GC/MS Full Scan
- Oxygen, carbon dioxide, nitrogen, methane, and helium by ASTM D-1946 (GC/TCD)
 Laboratory analytical reports are included in Appendix G.

3.9 Well Survey

On February 29, 2016, Morrow Surveying, Inc. (Morrow) of West Sacramento, California surveyed monitoring well C-13's geographical coordinates and the top of casing elevation. Survey data is included in Appendix H.

3.10 Waste Disposal

Soil cuttings, decontamination rinsate water, and construction debris were temporarily stored onsite in sealed and labeled Department of Transportation (DOT) approved 55-gallon drums. On April 28, 2016, all drums were transported by Belshire Environmental Services to Altamont Landfill and Resource Recovery Facility in Livermore, California for disposal.

4. Conceptual Site Model

Presented below is the updated CSM incorporating the most recent investigation data.

4.1 Petroleum Hydrocarbon Source

Data collected during the 1987 UST replacements, ¹ 1997 product piping upgrades, ² and subsurface investigations indicate the primary source of hydrocarbons in soil and groundwater are from the first generation dispensers located near the High Street property boundary and Foothill Boulevard property boundary.

4.2 Distribution of Constituents of Concern

The primary constituents of concern (COCs) are TPHg, benzene, and MTBE. Secondary COCs include toluene, ethylbenzene, and xylenes. Hydrocarbon concentrations in soil and groundwater are shown on Figures 4 through 16; soil and soil vapor data are presented in Tables 1 through 4; and historical groundwater monitoring and sampling data are presented in Table 5.

4.3 Hydrocarbon Source Remediation

Primary Source Removal

In May 1987, Blaine Tech removed three steel gasoline USTs and one fiberglass used-oil UST¹. Three 10,000-gallon double-walled fiberglass fuel USTs were installed in the same excavation in June 1987. The used-oil tank was removed and not replaced. In July 1997, the dispensers and product piping were upgraded to meet new containment requirements.² The first generation

Blaine Tech Services, Inc., Product and Waste Oil Tank Removal, dated August 14, 1987

Gettler-Ryan Inc., Soil Sampling During Product Dispenser Upgrade and Partial Product Line Replacement Report, dated September 24, 1997

dispensers were removed and replaced in the current configuration sometime in the 1980s (according to historical aerial photos).³ No report of this activity was located.

Secondary Source Removal

An unspecified volume of excavated soil removed from the fuel UST pit in 1987 was reportedly aerated and reused onsite or disposed of at a landfill. During the 1997 dispenser piping upgrades, approximately 46 tons of soil was excavated and disposed of offsite.²

A groundwater extraction system in well C-2 operated from November 1991 to October 1993, and extracted approximately 10,200 gallons of groundwater.⁴

4.4 Light Non-Aqueous Phase Liquid (LNAPL)

Approximately 2 feet of LNAPL was reported in well C-2 when it was installed in 1987. Between 1989 through 2005, LNAPL was measured intermittently in C-2 at a maximum thickness of 0.17 feet in 1990, and between a sheen and 0.09 feet thereafter. No LNAPL has been detected at the site since 2005 when 0.01 feet was reported in C-2.

4.5 Petroleum Hydrocarbon Distribution in Soil

In this investigation, soil samples were collected from onsite well boring C-13 and boring B-7, advanced in the sidewalk immediately downgradient of well C-4. No TPHg, BTEX or naphthalene were detected in soil from C-13; however, MTBE was detected in saturated soil between 10 and 25 fbg at a maximum concentration of 0.51 milligrams per kilogram (mg/kg). Soil samples were collected from B-7 at 5 and 10 fbg. No hydrocarbons were detected at 10 fbg; however, 320 mg/kg TPHg and 1.2 mg/kg naphthalene were detected at 5 fbg.

Based on the distribution in soil, hydrocarbons appear to have originated primarily from the first generation fuel dispensers (Figures 4 through 13) with the highest TPHg and benzene concentrations detected in 2015 borings B1 through B4 and B6, and in 1987 borings C-A, C-2, and C-4, all located at or downgradient of the former dispensers.

To date, 53 soil samples have been collected between 0 and 10 fbg and of those, only 2 soil samples C-A at 8.5 and C-2 at 9 fbg collected in 1987, exceeded Low-Threat Underground Storage Tank Case Closure Policy (LTC) Table 1 criteria for benzene for volatilization to outdoor air on a commercial property and for direct exposure risk for utility workers. No soil samples exceeded the criteria for ethylbenzene or naphthalene. In 2015, soil samples collected from B-5 advanced in the location of the former used-oil UST were additionally analyzed for PAHs. The PAH concentrations detected in soil samples collected at 3 and 8 fbg were below the LTC commercial and utility worker direct contact criteria. Cumulative soil analytical results are presented in Tables 1 through 3. The laboratory analytical reports for soil are included in Appendix G.

Environmental Data Resource, Inc., "The EDR Aerial Photo Decade Package", 311977 – Oakland, CA, 4265 Foothill Blvd, Oakland, CA 94601, Inquiry Number: 1969259.5. dated July 2, 2007

Delta Environmental Consultants, Inc., Site Conceptual Model and Risk Based Corrective Action Plan, dated 28, 2000

State Water Control Board Resolution No. 2012-006, Low-Threat Underground Storage Tank Closure Policy (LTP), California State Water Resources Control Board, August 17, 2012.

4.6 Petroleum Hydrocarbon Distribution in Groundwater

Groundwater monitoring and sampling has been ongoing for 29 years since 1987. On March 8, 2016, Blaine Tech Services sampled all wells, including newly installed well C-13, per the established sampling schedule. Offsite wells C-7 and C-9 were not monitored and sampled because a new access agreement has not been established with the new property owner. The March 8, 2016 groundwater sampling data is summarized in Table 4.1 below and cumulative monitoring and sampling data are presented in Table 5. The analytical laboratory report is included in Appendix G and the well monitoring data sheets are included in Appendix F. Based on well construction details, C-6 through C-9 are not screened through the shallower water zone and therefore groundwater is generally deeper in these wells. Monitoring well construction details are presented in Table 6.

Table 4.1 Hydrocarbon Concentrations in Groundwater

-	Sample Date	DTW (fbg)	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве			
	Concentrations in micrograms per liter (µg/L)										
ESL Table Groundwa	e F-1a Drinkin iter ESLs	g	100	1	40	13	20	5			
C-1	03/08/16	9.9	1,300	180	4	1	2	29			
C-2	03/08/16	11.91	9,700	540	27	140	140	37			
C-3	03/08/16	19.65	55 J	< 0.5	< 0.5	< 0.5	< 0.5	290			
C-4	03/08/16	9.22	6,300	910	19	15	38	9 J			
C-5	03/08/16	18.98	81 J	3	< 0.5	0.7 J	< 0.5	6			
C-6	03/08/16	20.54	180	< 0.5	<0.5	<0.5	< 0.5	3			
C-7ª	09/25/14 ^b	25.75	1,300	15	0.5 J	15	27	8			
C-8	03/08/16	25.23	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
C-9a	03/13/14 ^b	24.82	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5			
C-10	03/08/16	7.22	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.7 J			
C-11	03/08/16	13.00	280	27	1	2	< 0.5	< 0.5			
C-13	03/08/16	12.21	<50	< 0.5	6	< 0.5	1	31			

ESLs = Environmental Screening Levels from *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater* prepared by the California Regional Water Quality Control Board – San Francisco Bay Region, Interim Final – 2016

No TPHg or benzene were detected in C-13; however, 31 micrograms per liter (μg/L) MTBE were detected in the well. As shown on Figure 14, dissolved TPHg and benzene concentrations with in the shallow water zone are centered on wells C-2 and C-4, located downgradient of the former first generation fuel dispensers. The dissolved plume is approximately 400 feet in length. Concentrations detected in wells C-6, C-8, C-9, screened in the deeper water zone, are near or below water quality objectives (WQOs). After 5 years of low or no detectable concentrations, dissolved hydrocarbons in well C-7 (screened in the deeper water zone), increased in June 2009 and have generally declined since 2011. The dissolved MTBE plume is approximately 220 feet in

J = Estimated value (the result is ≥ the Method Detection Limit and < the Limit of Quantitation)

a = No access agreement

b = Most recent sampling event

WQOs are the Environmental Screening Levels from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater prepared by the California Regional Water Quality Control Board – San Francisco Bay Region, Interim Final November 2007, revised December 2013

length, is primarily localized onsite in wells C-1 through C-4 and C-13 and is defined to below the WQO by wells C-6, C-8, C-10 and C-11.

4.7 Dissolved Hydrocarbon Concentration Trends and Projections

GHD uses the guidance provided within the EPA document Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies (November 2002) to estimate the time for groundwater concentrations to reach WQOs.

GHD estimated times for TPHg, benzene, and MTBE concentrations in wells C-1 through C-7 to achieve WQO.⁷ Times for downgradient wells C-8 and C-9, and upgradient C-10 were not calculated because concentrations have already reached the WQO. GHD used the following first order exponential decay rate calculation:⁸

$$y = be^{(ax)}$$

Where "a" is a decay constant, "b" is a concentration at time (x), y is concentration (ESL), and "x" is time.

A summary of historical maximum concentrations, the most current concentrations, and projections to meet the WQOs are presented in Table 4.2. The trend graphs and degradation calculations are presented in Appendix I.

Table 4.2 - Summary Of Degradation Rate Calculations

Well	Analyte	Maximum Concentration (μg/L)	Current Concentration (μg/L)	ESL (μg/L)	Date to Reach ESLs	Years to Reach ESL
	TPHg	20,000	1,300	100	2028	12
C-1	Benzene	2,500	180	1	Near WQO	Near WQO
	MTBE	2,500	29	5	2016	1
	TPHg	1,100,000	9,700	100	2050	34
C-2	Benzene	30,000	540	1	2046	30
	MTBE	5,200	37	5	2019	3
	TPHg	560	55	100	WQO met	WQO met
C-3	Benzene	36	< 0.5	1	WQO met	WQO met
	MTBE	400	290	5	Fluctuating	Fluctuating
	TPHg	48,000	6,300	100	2089	74
C-4	Benzene	14,000	910	1	2139	123
	MTBE	4,600	9	5	2019	3
	TPHg	110	81	100	WQO met	WQO met
C-5	Benzene	10	3	1	WQO met	WQO met
	MTBE	34	6	5	2015	1
	TPHg	11,000	180	100	WQO met	WQO met
C-6	Benzene	3,200	< 0.5	1	WQO met	WQO met
	MTBE	220	3	5	WQO met	WQO met
	TPHg	46,000	1,300	100	2020	4
C-7	Benzene	12,000	15	1	2024	8
	MTBE	190	8	5	2014	Near WQO

Fluctuating = concentrations by one to three orders of magnitude

Near WQO = WQO has been met, but concentration occasionally increase for one sampling event

WQO are the San Francisco Regional Water Quality Control Board's Environmental Screening Levels (ESLs)

EPA-Groundwater Issue; Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies; Charles J. Newell, et al., 2002.

TPHg and benzene concentrations are centered on wells C-2 and C-4, downgradient from the source area in the southern corner. Concentrations in C-2 are expected to reach WQOs within 34 years, and in C-4 within 123 years. TPHg and benzene concentrations in wells C-1 (upgradient), C-3 and C-5 (crossgradient), and C-6 and C-7 (downgradient) have either reached the WQOs or will reach WQOs in 12 years or less.

MTBE concentrations are centered on well C-3, located adjacent to the fuel USTs, and are fluctuating one to three orders of magnitude with the current concentration (290 μ g/L) the same magnitude as the historical maximum concentration (400 μ g/L). MTBE in all other wells have either reached the WQO or are expected to reach the WQO in 3 years or less.

4.8 Petroleum Hydrocarbon Distribution in Soil Vapor

Complete soil vapor results are included as Table 4. The laboratory analytical reports are included in Appendix G. Soil gas analytical results are summarized in Table 4.3 below.

Table 4.3 Soil Vapor Hydrocarbon Analytical Results - February 24, 2016

Sample ID	Depth	TPHg	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	MTBE	Naph- thalene (TO-15 / TO-17)
			Conc	entrations i	n microgram	s per cubi	c meter (µ	g/m ³)	
LTCP Soil Gas Criteria – Residential ¹		NE	85	NE	1,100	NE	NE _	NW	93
Criteria -	LTCP Soil Gas Criteria – Commercial		280	NE	3,600	NE	NE	NE	310
VP-5	5.50- 5.75	86,000	54	<33	<38	<38	<38	1,800	<91 / <5.0
VP-6	5.50- 5.75	<570	<4.5	<5.3	<6.1	<6.1	<6.1	<5.0	<15 / <5.0
VP-6 DUP	5.50- 5.75	<570	<4.4	<5.2	<6.0	<6.0	<6.0	<5.0	<14 / <5.0

1 = Low-Threat Underground Storage Tank Case Closure Policy – Soil Gas Criteria No Bioattenuation Zone, California State Water Resources Control Board, August 2012

Elevated TPHg concentrations were detected in VP-5. Benzene, ethylbenzene, and naphthalene concentrations were below the residential and commercial LTCP criteria and/or not detected. No helium was detected in any vapor probe samples. The absence of helium indicates that no ambient air entered the canisters during the sampling process and the samples are considered representative.

Aliphatic (non-carcinogenic) and aromatic (carcinogenic) hydrocarbons APH Fraction analytical data for VP-5 and VP-6 are presented in Table 4, and summarized in Table 4.4 below.

Table 4.4 Soil Vapor APH Fractionation Analytical Results - February 24, 2016

Sample ID	Depth	C5-C6 Aliphatic	>C6-C8 Aliphatic	>C8-C10 Aliphatic	>C10-C12 Aliphatic	>C8-C-10 Aromatic	>C10-C12 Aromatic	
		Concentrations in micrograms per cubic meter (µg/m³)						
LTCP Soil G - Commerci		NE	280	NE	3,600	NE	NE	
VP-5	5.50-5.75	30,000	69,000	2,200	<1,200	<860	<960	
VP-6	5.50-5.75	<91	<110	<160	<200	<140	<150	
VP-6 DUP	5.50-5.75	<90	<110	<160	<190	<140	<150	

Vapor probes VP-1, VP-3, and VP-4 are located along the southern property boundary, which are adjacent to the single family home with the basement. Soil vapor concentrations from those probes are below the LTC criteria for indoor vapor intrusion risk for both commercial and residential.

Soil vapor in VP-5 and VP-6, located along the western property boundary adjacent to the apartment building, are below LTCP criteria for residential and commercial indoor vapor intrusion risk. Oxygen concentration in VP-5 was less than 4 percent indicating there is little to no bioattenuation zone, while oxygen concentration in VP-6 was 13 percent indicating that there might be a bioattenuation zone. The apartment building is built on a vented crawl space which would allow any potential vapors to dissipate.

4.9 Sensitive Receptors

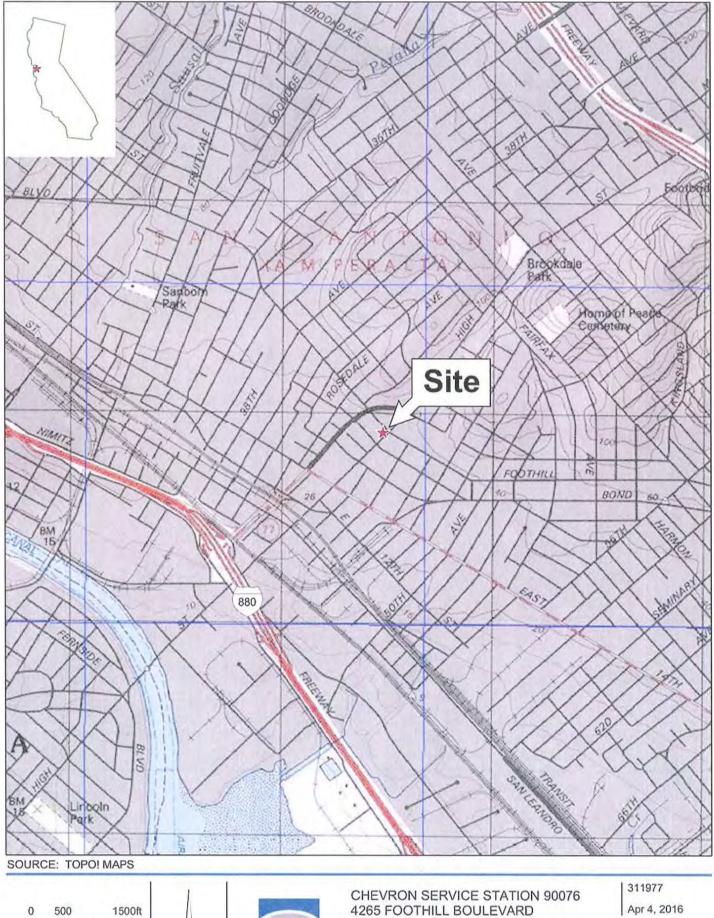
In 2015, GHD contacted Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) regardingwells within 2,000 feet of the site. Sixty-two wells were identified in the search area. Of these, two were cathodic protection wells and one was identified as an irrigation well. Of the remaining wells, 51 were identified as monitoring wells, three as test wells, two as soil vapor probes, two as borings, and one as an observation well. The irrigation well was reportedly located approximately 1,600 feet northeast of the site (crossgradient). No domestic or municipal water supply wells were identified within the search area.

The nearest surface water bodies are Peralta Creek approximately 3,700 feet northwest and the Oakland Inner Harbor located approximately 4,800 feet southwest. Based on their distances and/or direction from the site and the limited extent of the dissolved hydrocarbon plume, these water bodies are not at risk of being affected by hydrocarbons originating at the site.

The site is located in a mixed residential and commercial area. A single family home with a basement is located adjacent to the site along the southern property boundary and a single family home with a basement is located approximately 100 feet south across High Street. An apartment building is located adjacent to the western property boundary. Due to the locations of the residences, GHD completed a soil vapor assessment in February 2016. The results are discussed in Section 4.8.

In 2015, CRA completed a Google search for other potential sensitive receptors within ½-mile radius of the site including schools, childcare centers, hospitals, and eldercare centers. The nearest school is Fremont High School located approximately 100 feet east (crossgradient) across the Foothill Boulevard/High Street intersection. No TPHg or BTEX and only trace MTBE is detected in well C-10 located between the source area and the school; therefore, it does not appear the school is at risk of being affected by hydrocarbons originating at the site. Oakland Charter

Academy Middle School is located approximately 150 feet west (crossgradient). Ascend Elementary School is located approximately 2,500 feet southwest, well beyond the extent of dissolved hydrocarbons originating at the site. No childcare centers, eldercare centers, or hospitals were identified in the search area.

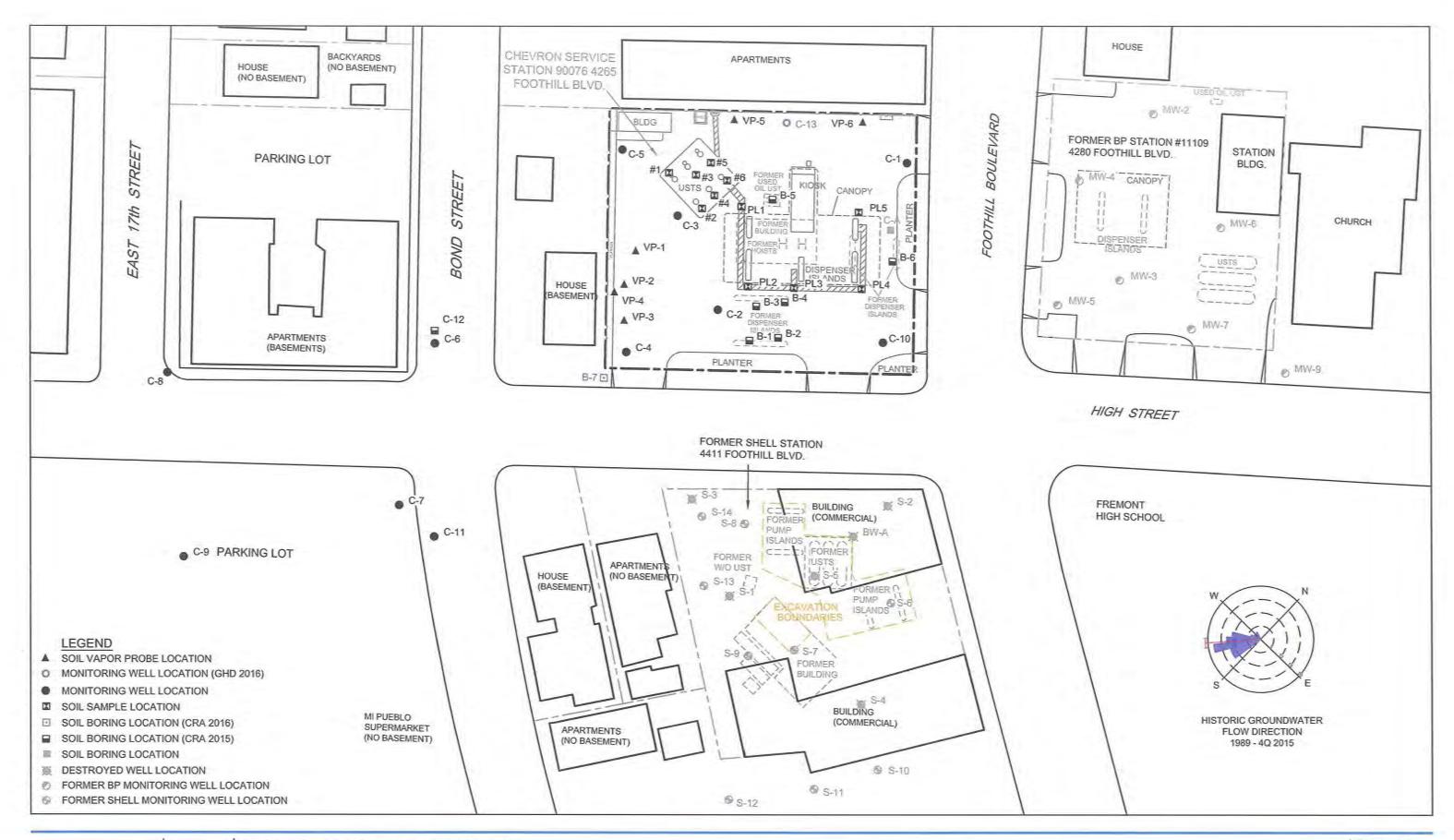

4.10 Preferential Pathway Study

In addition to the utility line details presented in CRA's September 14, 2012 *Soil Vapor Sampling, Preferential Pathway Study, and Work Plan*, GHD identified four catch basins located along the High Street and Foothill Boulevard property boundaries. These catch basins are connected to the street gutters by drain lines located no deeper than 6 inches. Utility locations and catch basins are illustrated on Figure 3. These catch basins might be contributing to the higher groundwater elevation seen in C-4 and C-10.

Conclusions

Based on GHD's evaluation of the data obtained from this current investigation, the following conclusions can be made:

- Soil vapor in VP-5 and VP-6, located along the western property boundary adjacent to the apartment building are below LTCP criteria for commercial indoor vapor intrusion risk. Soil vapor concentrations in VP-5 and VP-6 are below LTCP criteria for residential indoor vapor intrusion risk except for benzene. Oxygen concentration in VP-5 was less than 4 percent indicating there is little to no bioattenuation zone, while oxygen concentration in VP-6 was 13 percent indicating that there might be a bioattenuation zone. The apartment building is built on a vented crawl space which would allow any potential vapors to dissipate.
- Monitoring well C-13 was installed along the western site property boundary to assess the source of hydrocarbons detected in soil vapor from VP-5. No TPHg, benzene, ethylbenzene, or naphthalene were detected in soil or groundwater collected from C-13.
- Well C-13 will be monitored quarterly for 1 year, and accordingly with the existing well network thereafter.
- Soil samples were collected at 5 and 10 fbg from soil boring B-7, advanced in the sidewalk
 adjacent to the offsite residence (southwest of the site) and immediately downgradient of C-4,
 for offsite direct contact evaluation. No benzene was detected, and the 0.71 mg/kg
 ethylbenzene and 1.2 mg/kg naphthalene are below the LTP residential direct exposure criteria.
- GHD and Chevron have not been able to obtain information regarding the depth of the basement beneath the residence adjacent to the southwest (downgradient) site boundary. However, all soil vapor samples collected from vapor probes VP-1, VP-3 and VP-4, located adjacent to the house, are below the LTCP criteria for both commercial and residential indoor vapor intrusion.
- The only water supply well located within 2,000 feet is an irrigation well approximately 1,600feet northeast of the site (crossgradient).
- All previous data gaps and ACEH concerns have been addressed, with exception of locating the depth of the basement beneath the residence adjacent to the southwestern (downgradient) property boundary.


CAD File: I:\Chevron\3119-\311977 9-0076 Oakland\311977-FIGURES\311977-RPTs\311977 RPT-024\311977-2016(024)GN-EM001.dwg

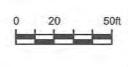
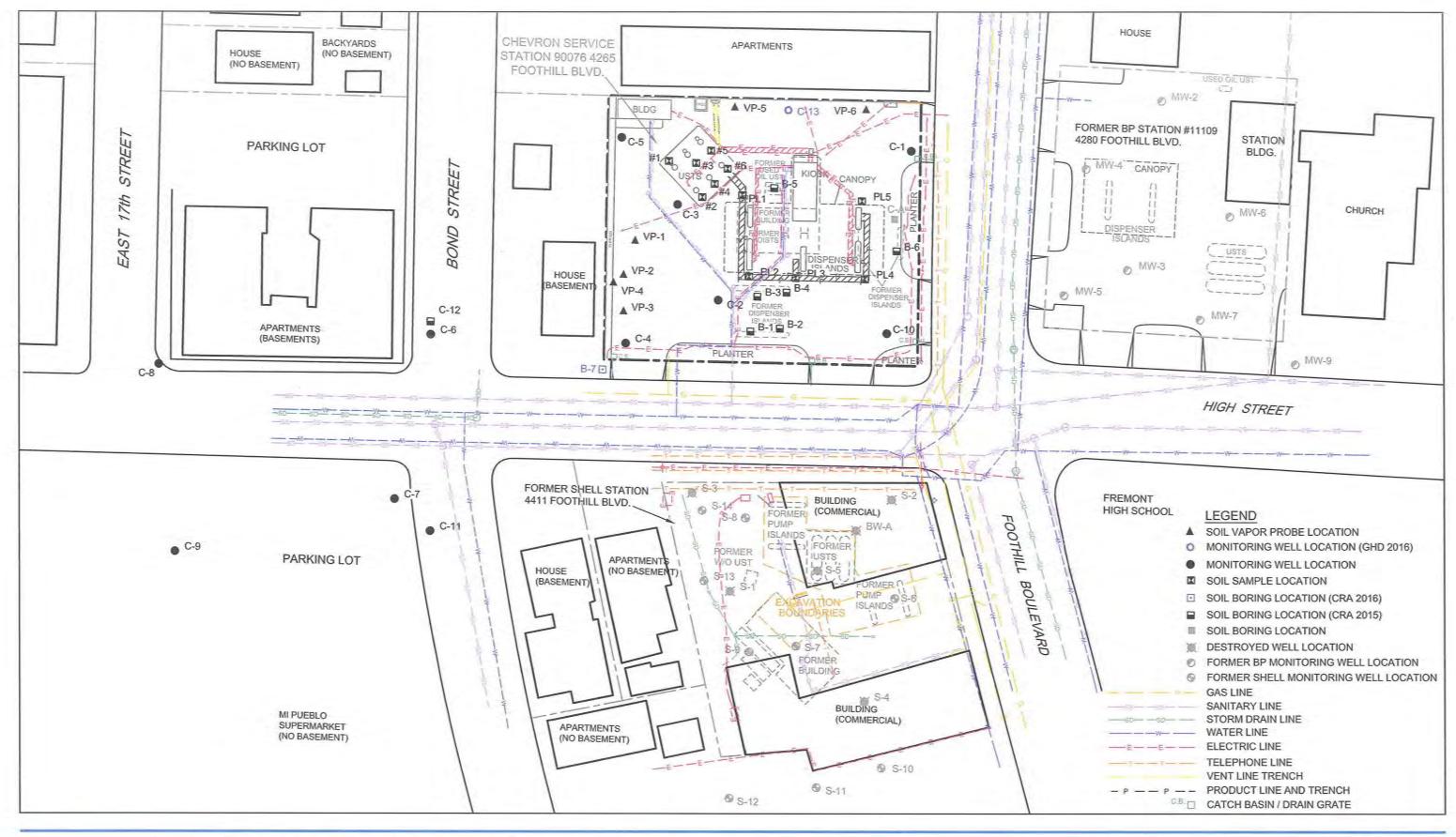

Apr 4, 2016

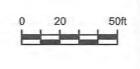
Figure 1

OAKLAND, CALIFORNIA

VICINITY MAP

SOURCE: MORROW SURVEYING .DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 2/25/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83. NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

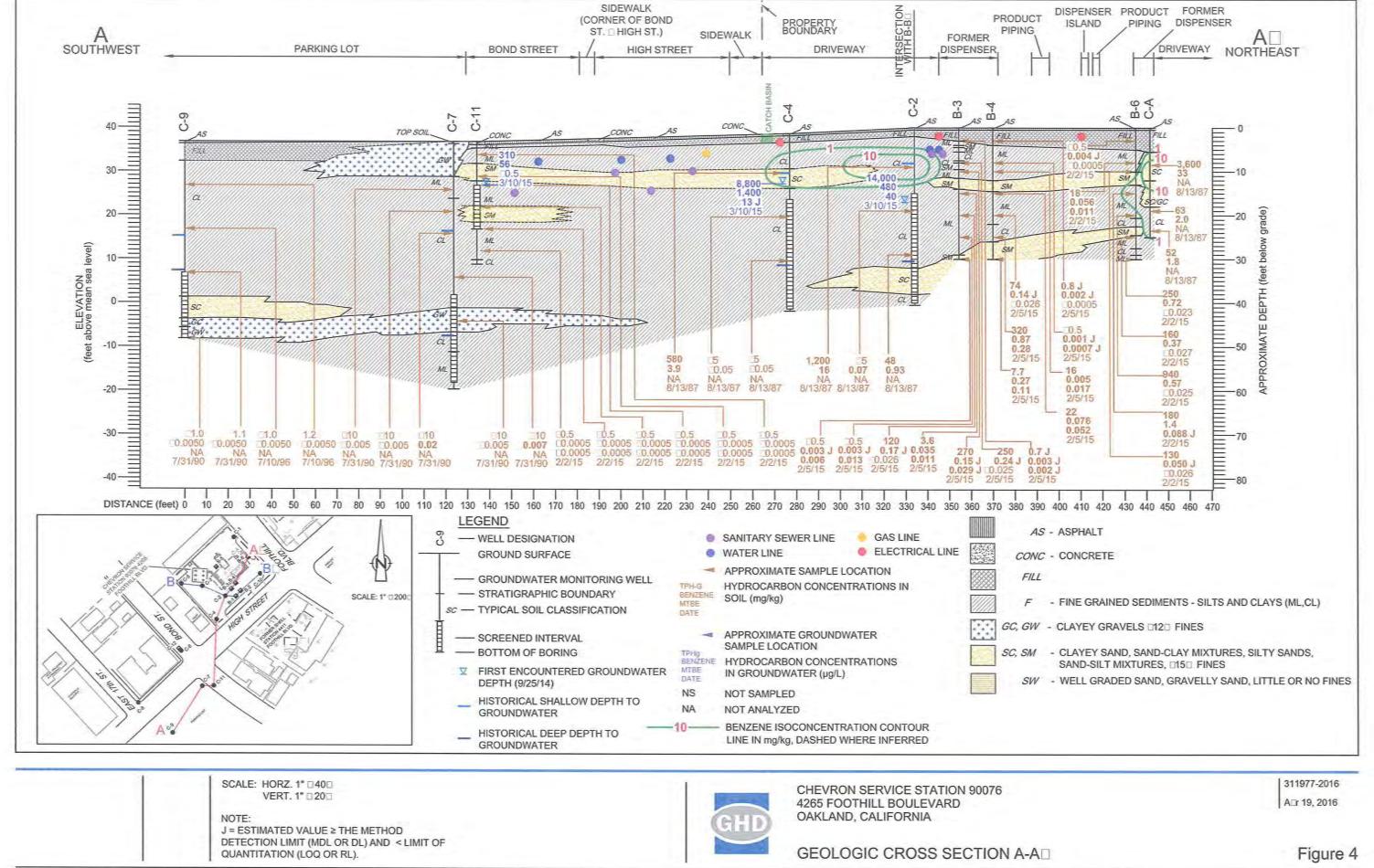


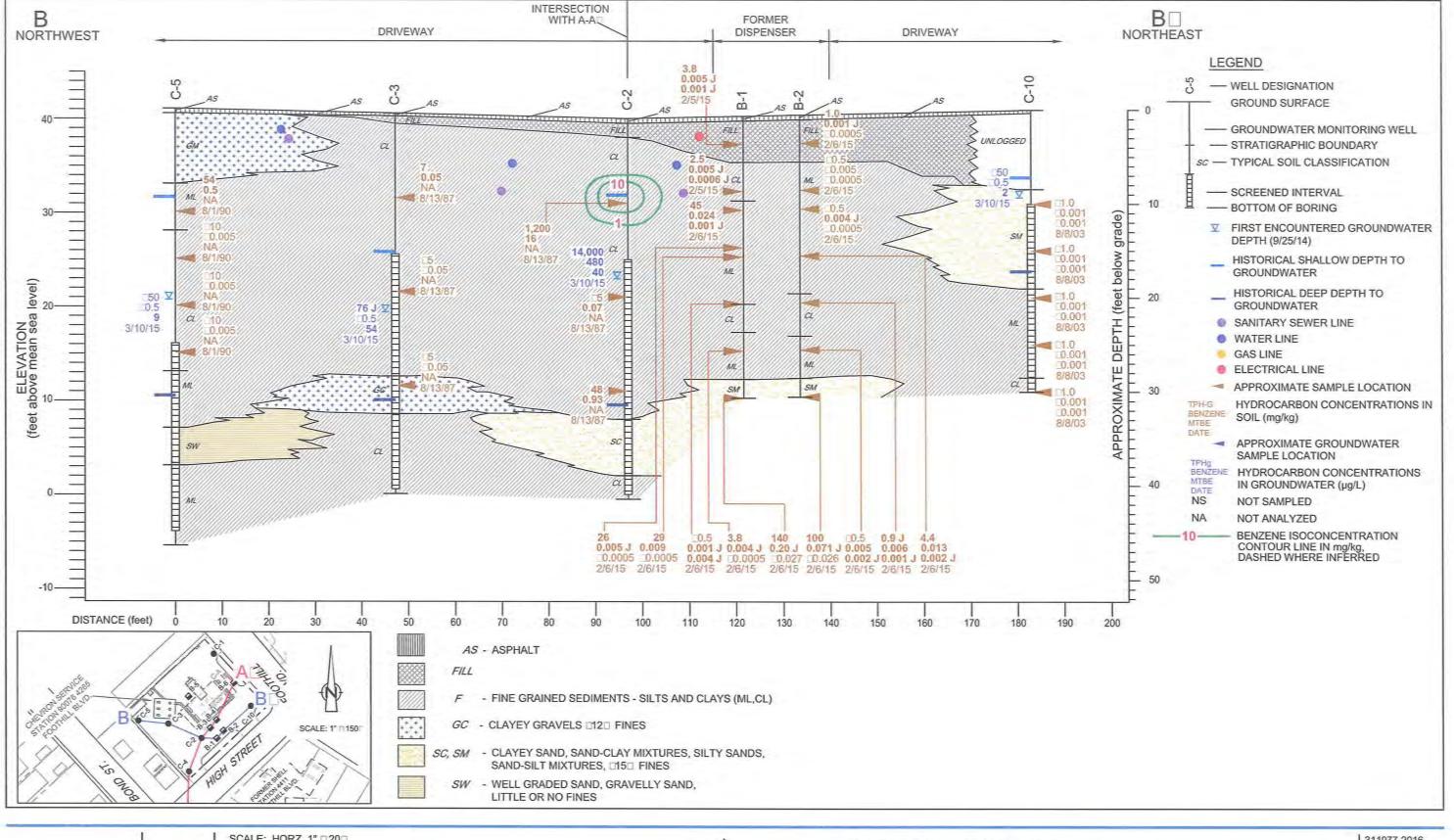

CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD

OAKLAND, CALIFORNIA

SITE PLAN

311977-2016 May 27, 2016

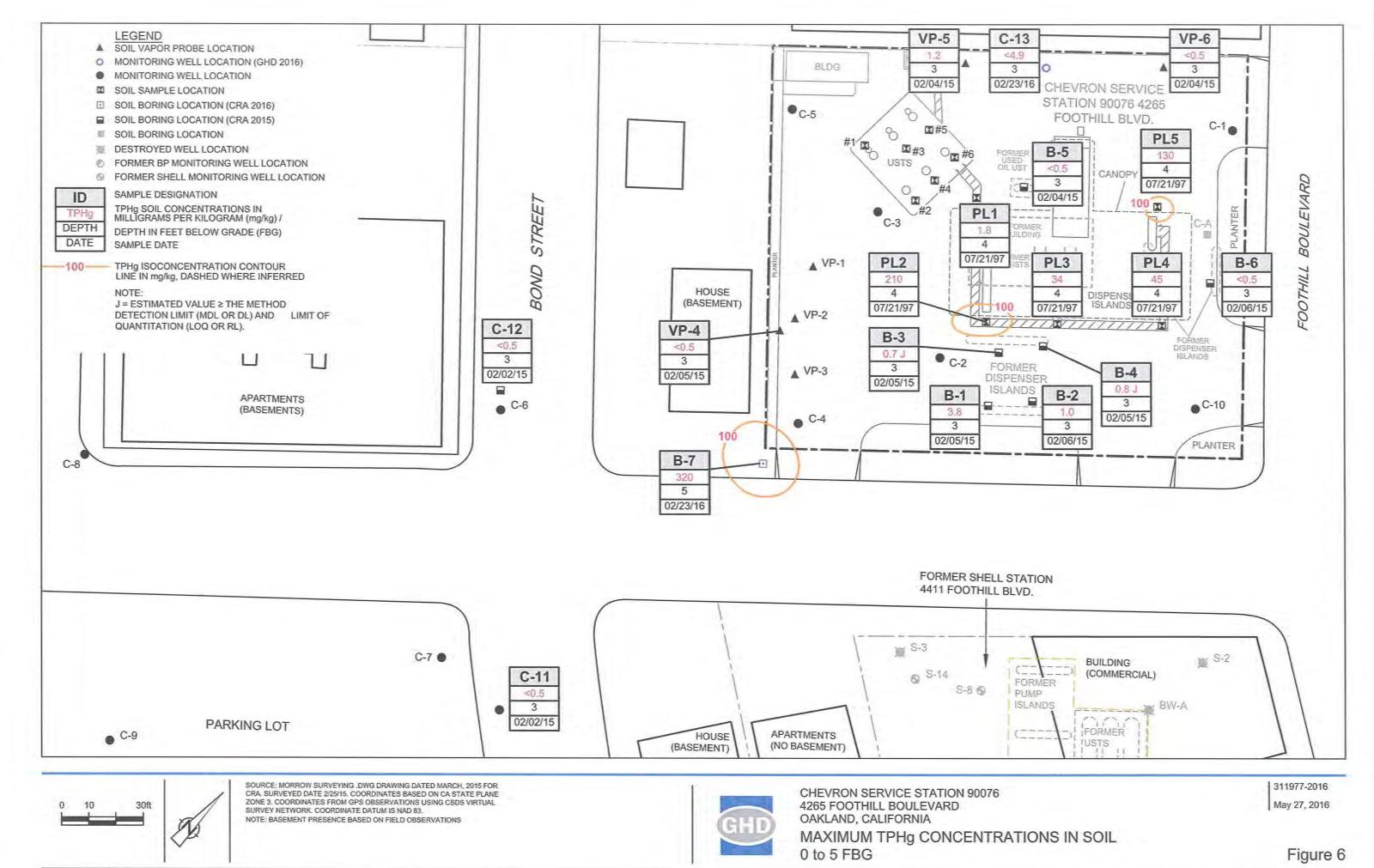


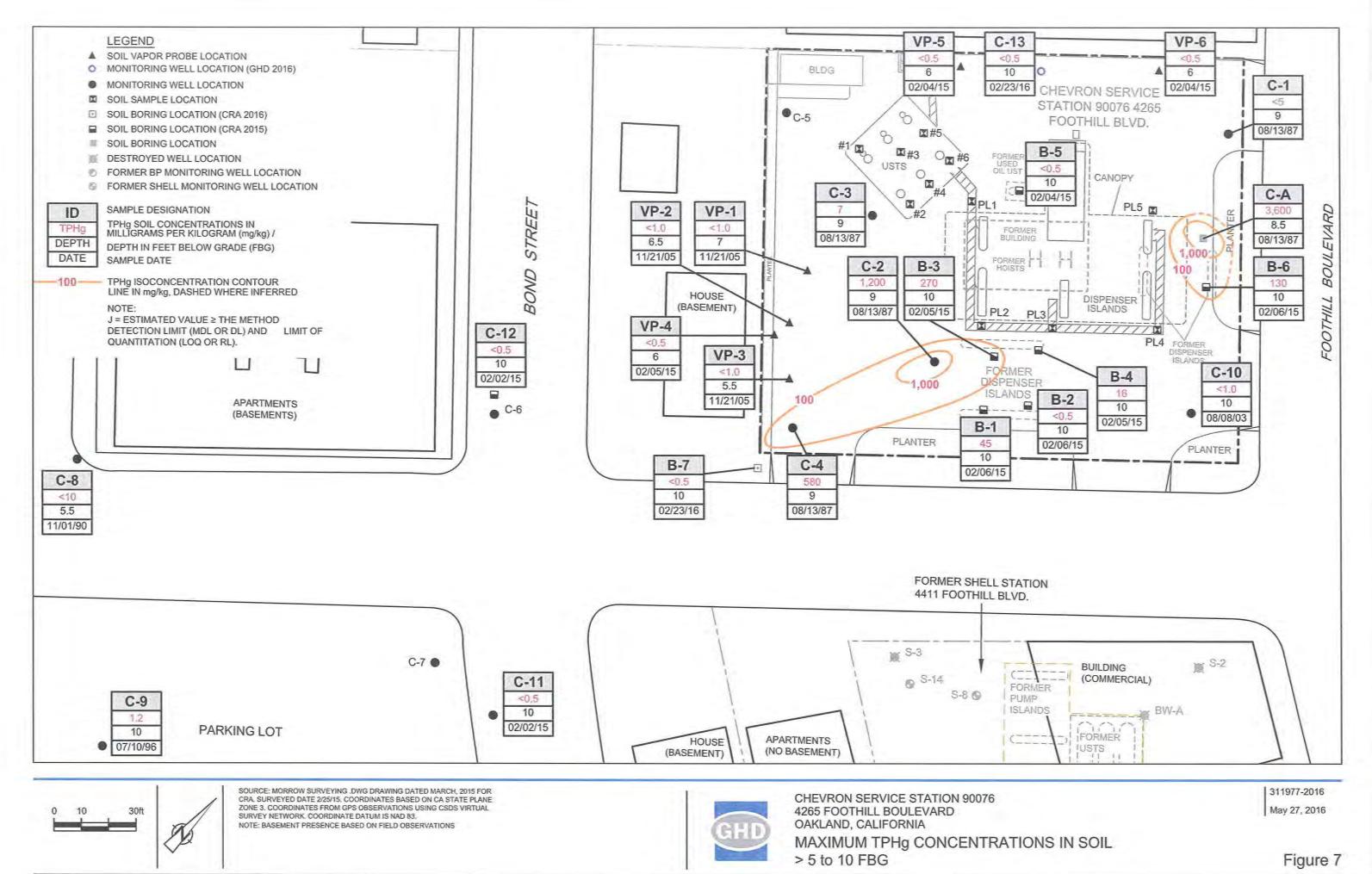

SOURCE: MORROW SURVEYING .DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 225/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83.

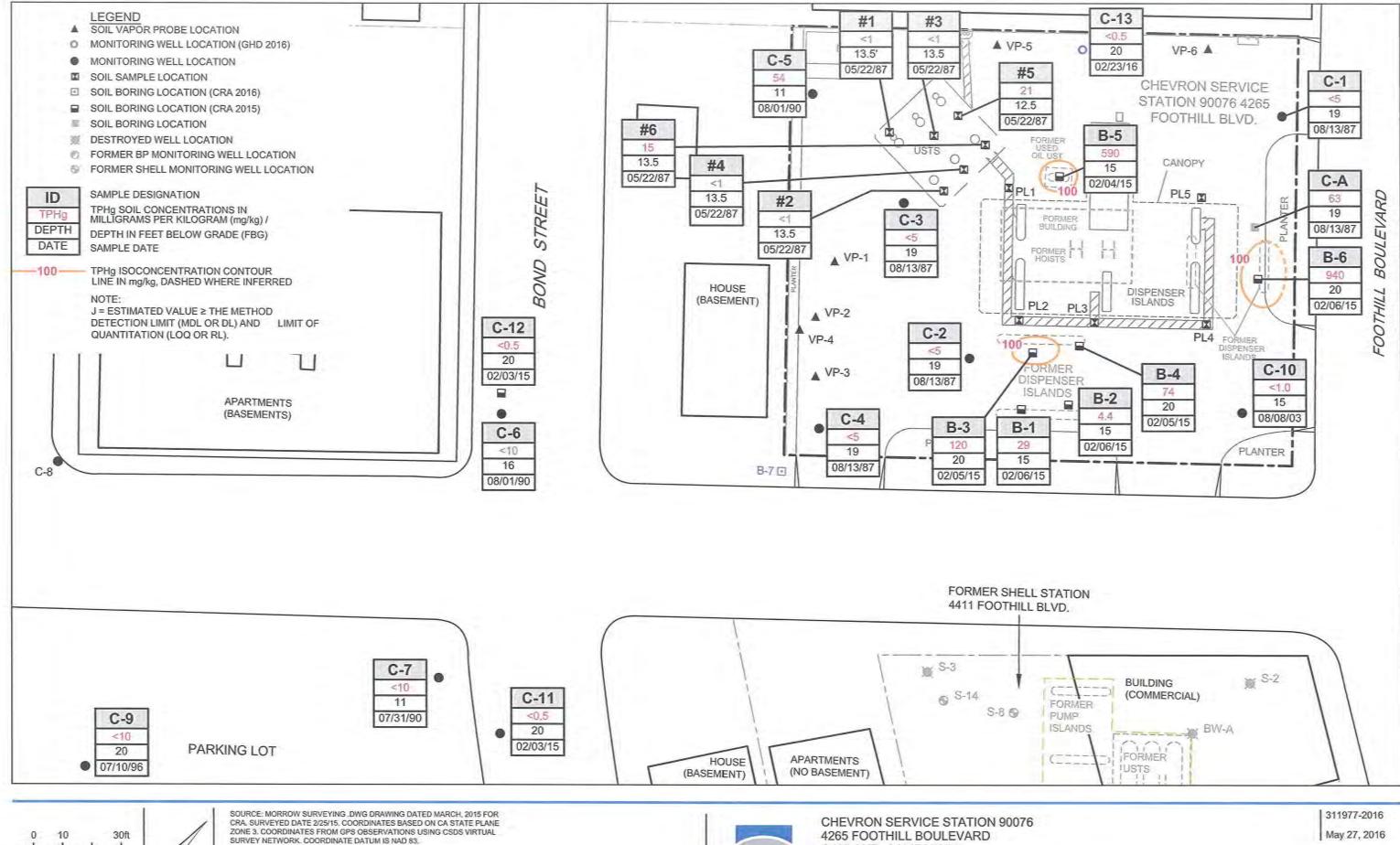
NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

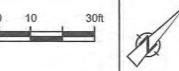
CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA SITE PLAN WITH UNDERGROUND UTILITIES

SCALE: HORZ. 1" 20 VERT. 1" 10

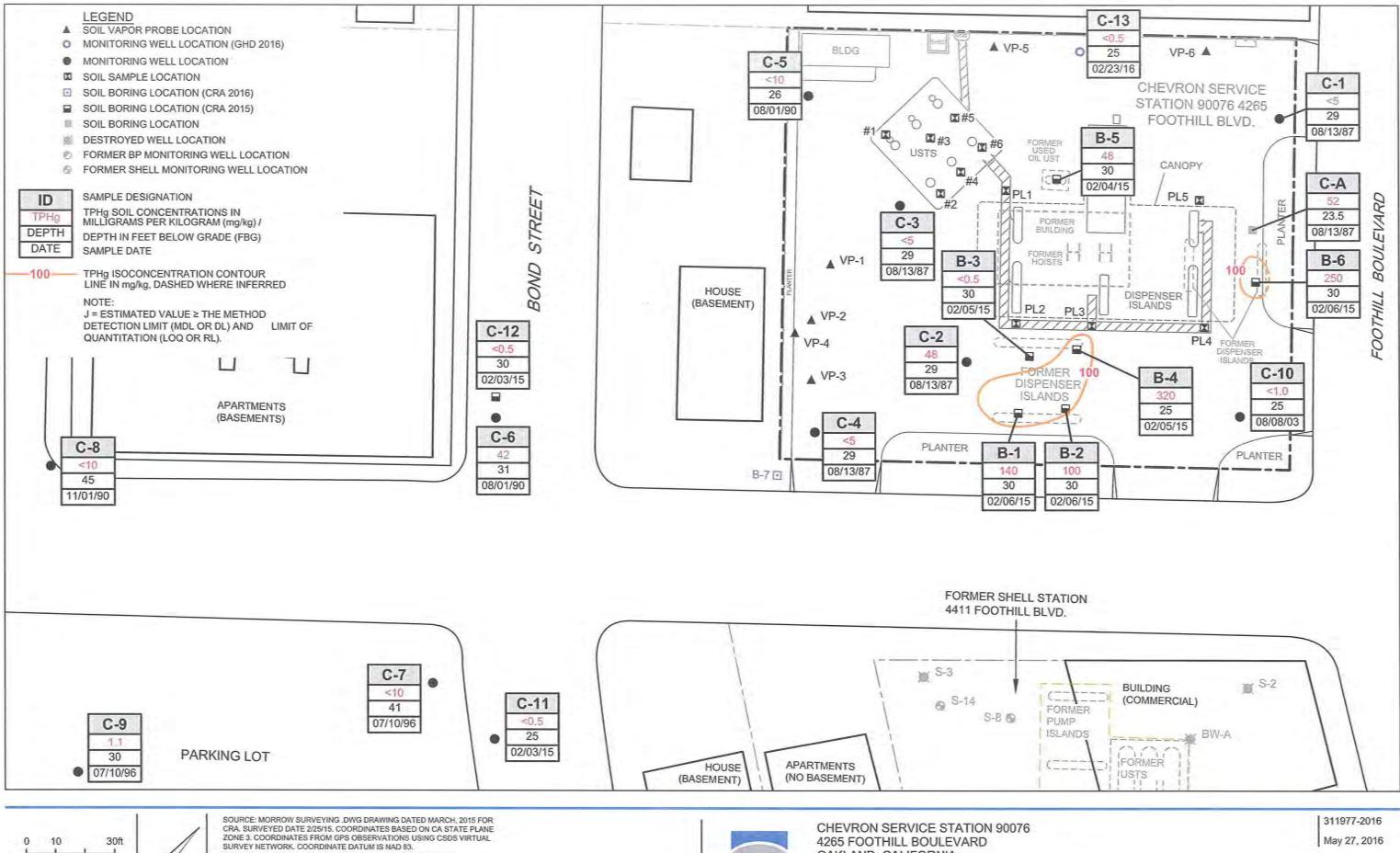

NOTE: J = ESTIMATED VALUE ≥ THE METHOD DETECTION LIMIT (MDL OR DL) AND < LIMIT OF QUANTITATION (LOQ OR RL).

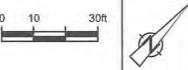



CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA


GEOLOGIC CROSS SECTION B-B

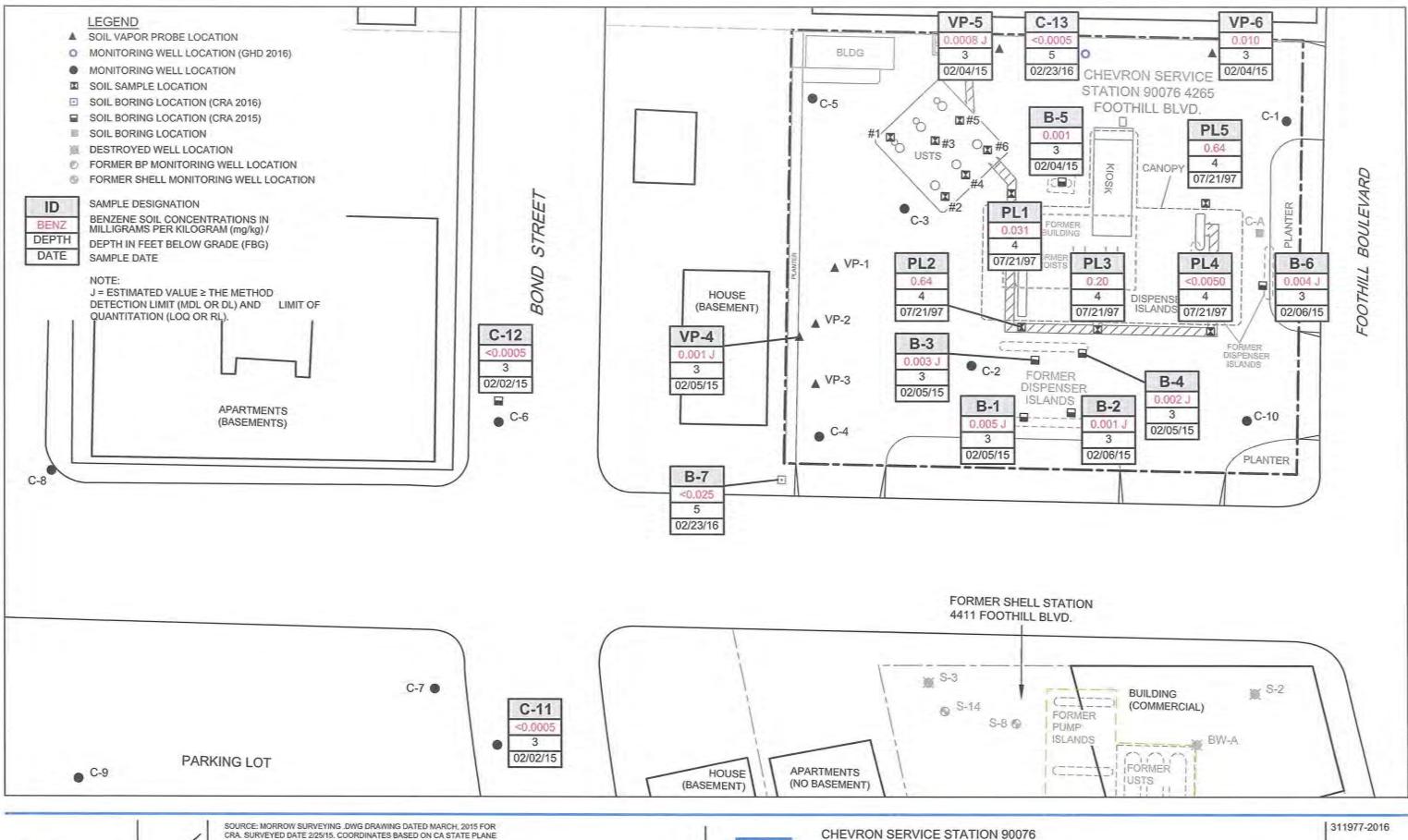
311977-2016 A : 19, 2016

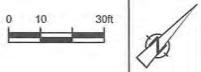



NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

OAKLAND, CALIFORNIA

MAXIMUM TPHg CONCENTRATIONS IN SOIL > 10 to 20 FBG

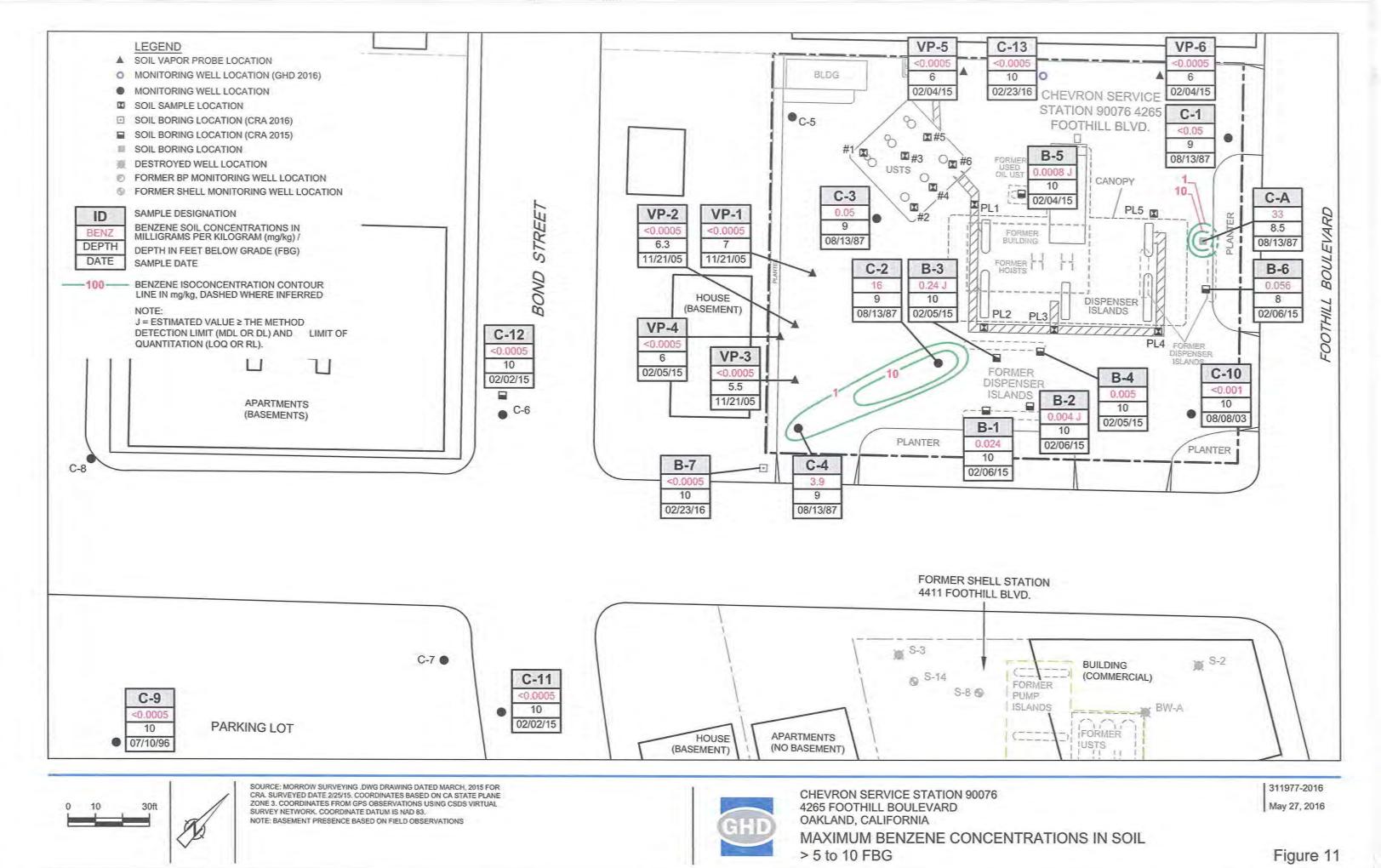


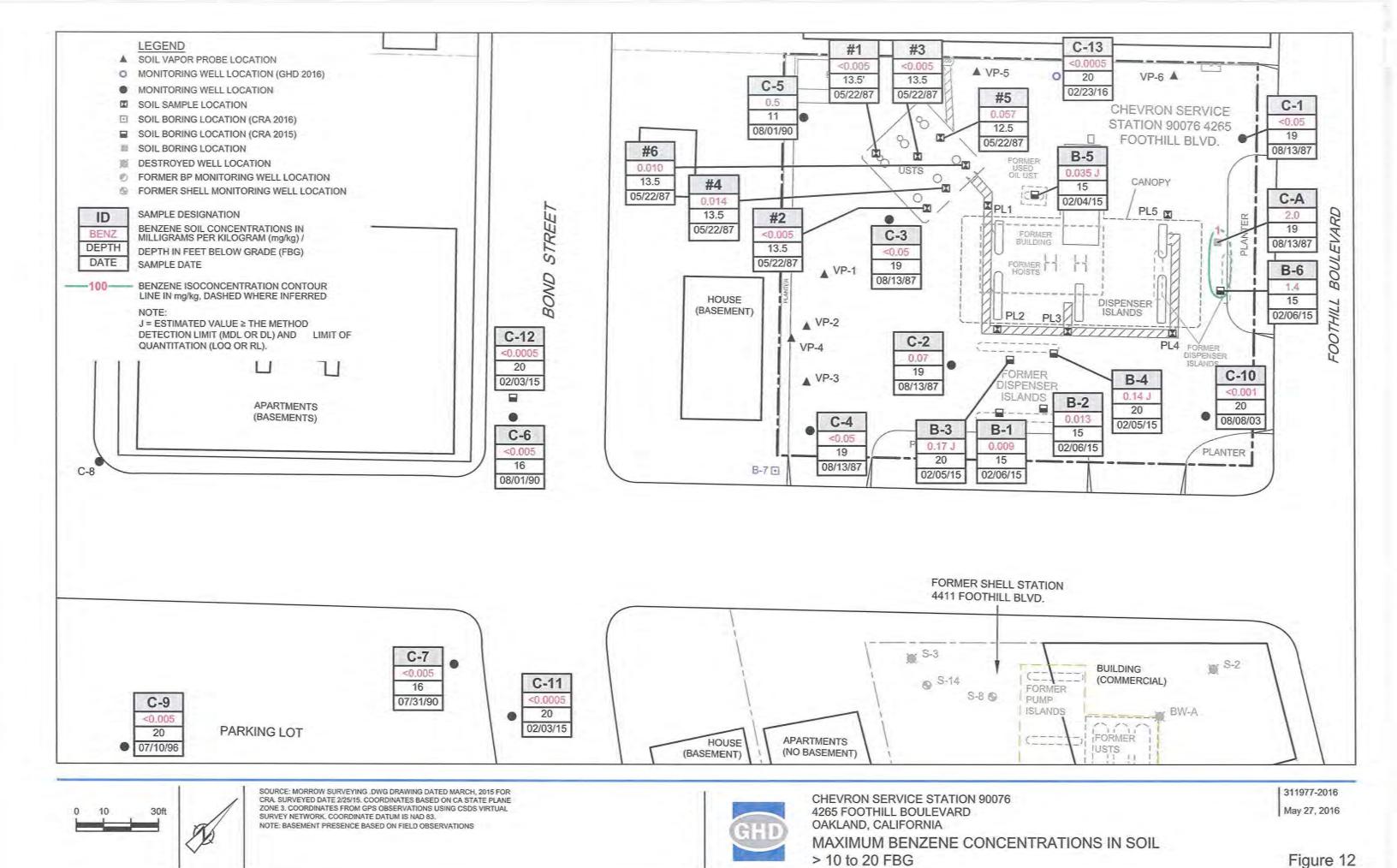

NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

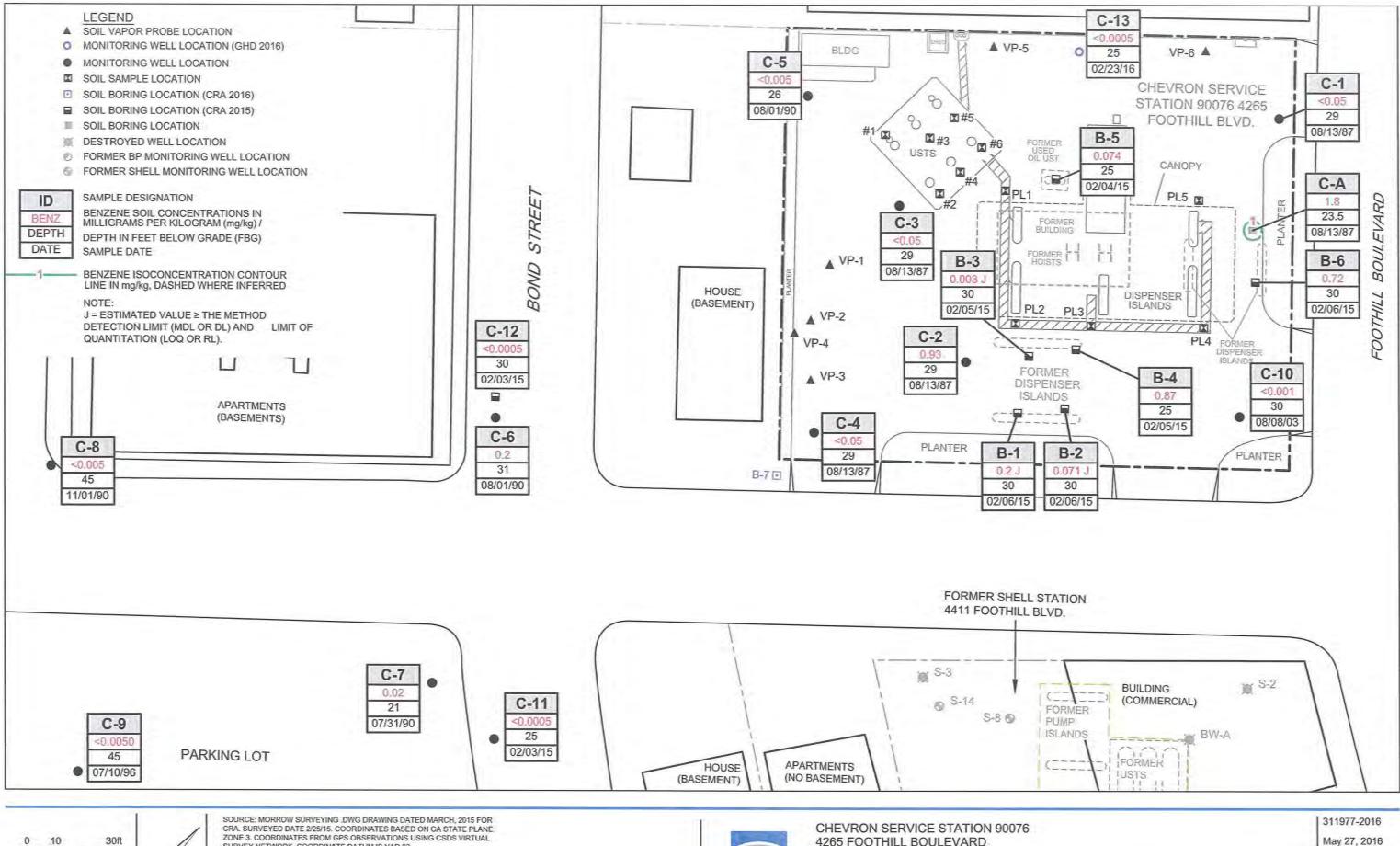
OAKLAND, CALIFORNIA

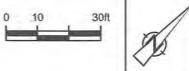
MAXIMUM TPHg CONCENTRATIONS IN SOIL > 20 to 45 FBG

SOURCE: MORROW SURVEYING. DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 2/25/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83.

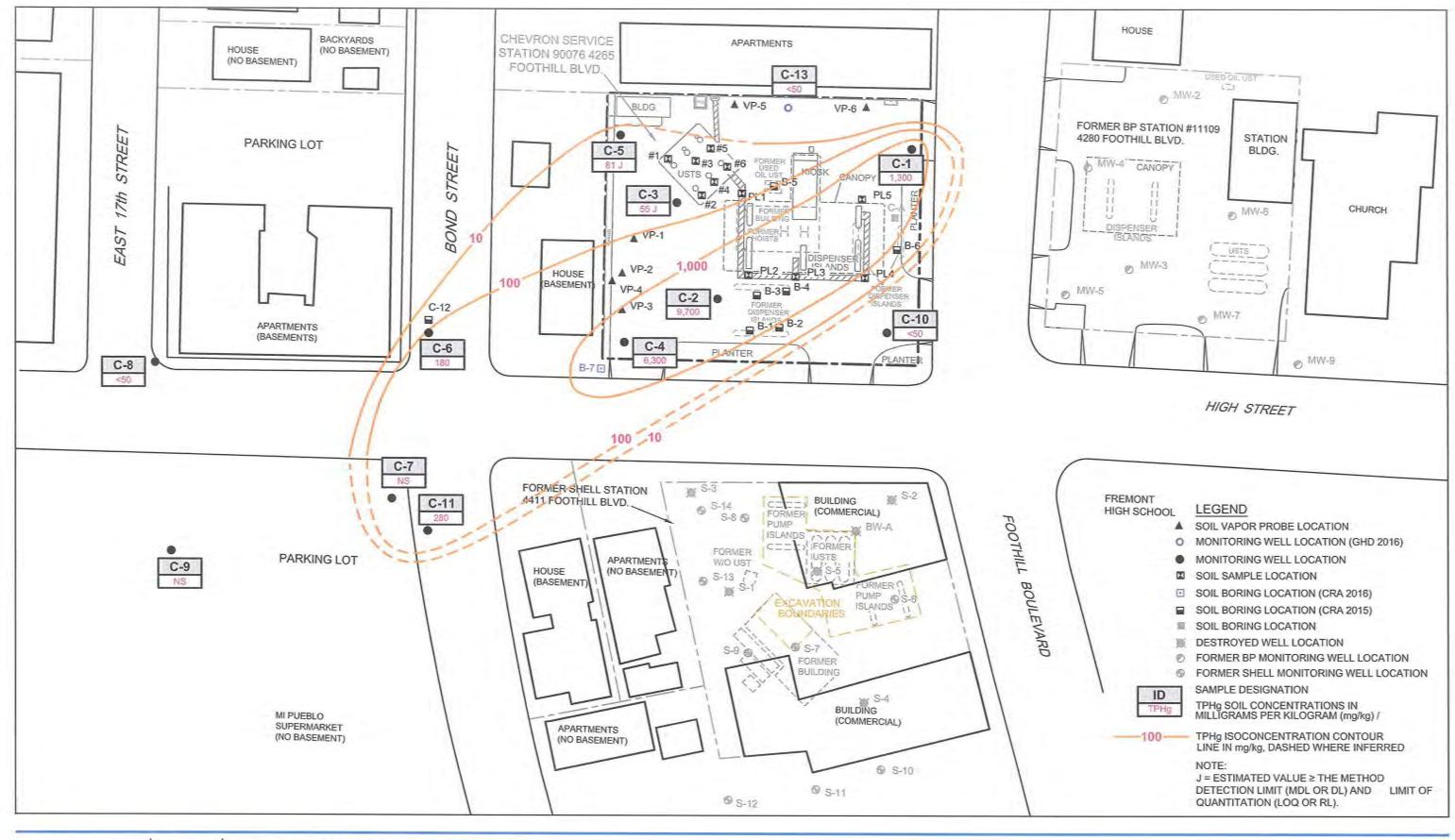

NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

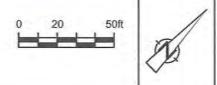



CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA


MAXIMUM BENZENE CONCENTRATIONS IN SOIL 0 to 5 FBG

May 27, 2016

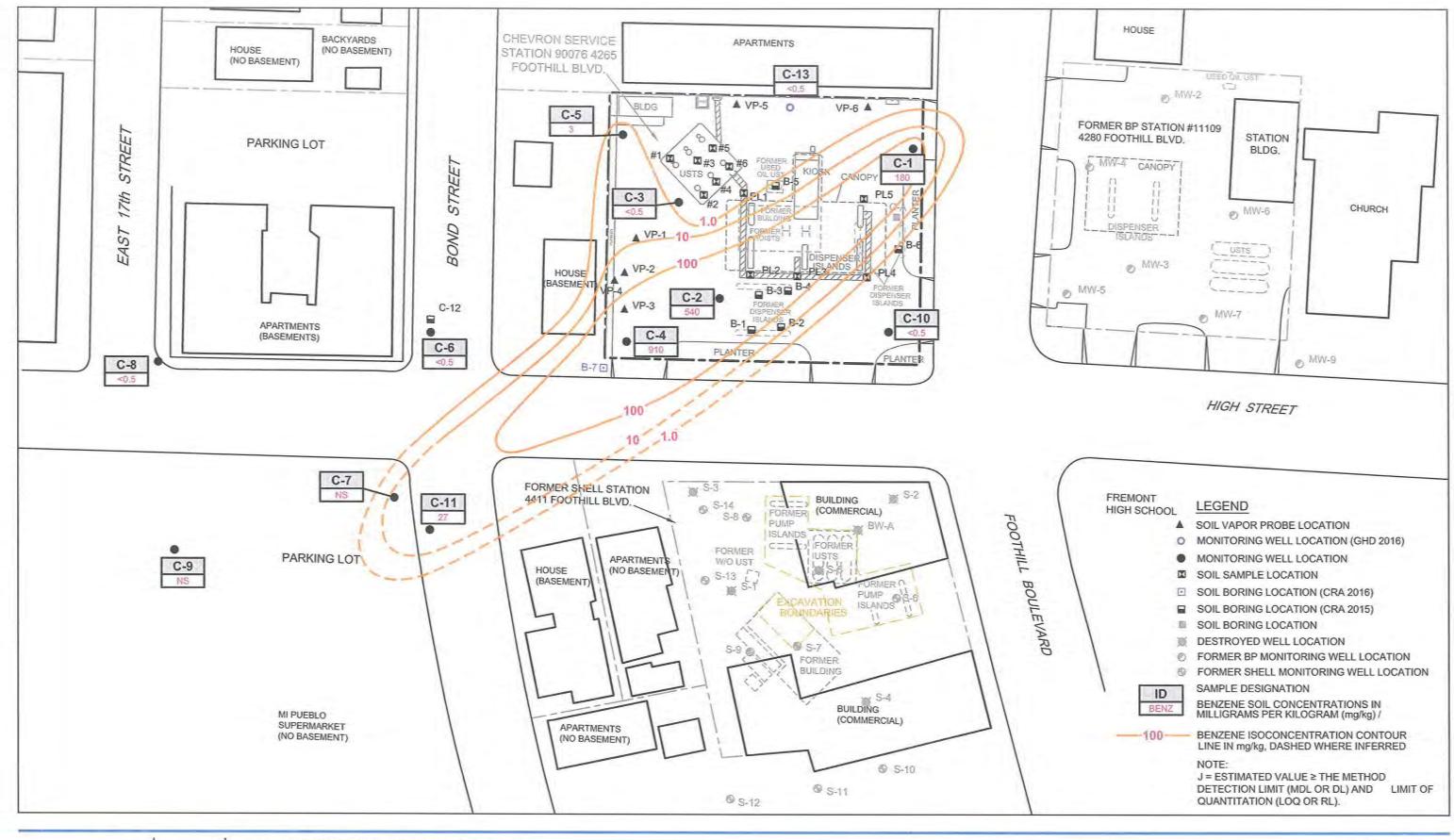

SURVEY NETWORK. COORDINATE DATUM IS NAD 83. NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

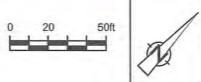


4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

MAXIMUM BENZENE CONCENTRATIONS IN SOIL > 20 to 45 FBG

May 27, 2016

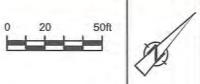

SOURCE: MORROW SURVEYING. DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 2/25/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83.


NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS.

CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

TPHg CONCENTRATION IN GROUNDWATER MARCH 8, 2016

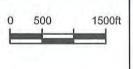
SOURCE: MORROW SURVEYING .DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 2/25/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83.


NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

BENZENE CONCENTRATION IN GROUNDWATER MARCH 8, 2016

SOURCE: MORROW SURVEYING .DWG DRAWING DATED MARCH, 2015 FOR CRA. SURVEYED DATE 2/25/15. COORDINATES BASED ON CA STATE PLANE ZONE 3. COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK. COORDINATE DATUM IS NAD 83.


NOTE: BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

MTBE CONCENTRATION IN GROUNDWATER MARCH 8, 2016

CHEVRON SERVICE STATION 90076 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA WATER SUPPLY WELL LOCATION MAP 311977-2016 May 27, 2016

Tables

Sample ID	Date	Depth (fbg)	TOG	ТРНто	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene	DIPE	TAME	TBA	ETBE	1,2-DCA	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
		(109)	4								-	Conce	ntrations	reported in r	nilligrams រុ	er kilogran	n (mg/kg)				,					
LTC - Residenti	ial- 0 to 5 fbg ^e	•		-			1.9		21			9.7	_				50.500									
LTC - Commerc	cial - 0 to 5 fbg	j ^a					8.2		89			45														
LTC - Resident	ial- Outdoor A	īr - 5 to					2.0		20			0.7														
10 fbg a		8: F4-				-	2.8		32			9.7										==	<u></u>			
LTC - Commerc 10 fbg ^a	ciai - Outdoor	AIF - 5 to					12		134			45											***			
LTC - Utility Wo	orker - 0 to 10	fbg ^a			-0.0 m		14		314			219	-				_				No	***			_	
ESL Table K-2	Direct Conta	ct																								
Commercial (M		4				-		-		-							-					1,000	No Value	320	19,000	310,000
ESL Table K-3 - Construction V									_	-		***			_		-					110	No Value	320	6,100	93,000
2046 Site Inves	timation																	***************************************								-
2016 Site Inves	·																									
C-13	02/23/16	3				<4.9	<0.0005	<0.001	<0.001	<0.001	<0.0005		****													
C-13	02/23/16	5		-		< 0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005										-					
C-13	02/23/16	10 45				< 0.5	<0.0005	<0.001	<0.001	<0.001	0.001 J	<0.001									-					
C-13 C-13	02/23/16 02/23/16	15 20				< 0.5	<0.0005	<0.001	<0.001	<0.001	0.0005 J	<0.001										ta ta				
C-13	02/23/16	25				<0.5 <0.5	<0.0005 <0.0005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	0.13 0.51	<0.001	_								_					
0-10	02/20/10	20		_		~0.0	~0,0003	~0.001	~0.001	\0.001	0.51	<0.001						_		_	_			****		
B-7	02/23/16	5				320	< 0.025	< 0.050	0.71	1.0	< 0.025	1.2						and control								
B-7	02/23/16	10		-		<0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.001	_													
2015 Site Inves	tigation																									
C-11	02/02/15	2				٠.	-0.0005	~0.004	40 004	10.004	-0.0005	10.004														
C-11	02/02/15	0		_		<0.5 <0.5	<0.0005 <0.0005	<0.001	<0.001	<0.001	<0.0005		-		-			-	-							
C-11	02/02/15	10		<u></u>		<0.5 <0.5	<0.0005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.0005			~~					-	-					_	
C-11	02/03/15	15				<0.5 <0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005 <0.0005				-		_									
C-11	02/03/15	20				<0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005						-		_							
C-11	02/03/15	25				<0.5	< 0.0005	< 0.001	<0.001	<0.001	<0.0005				-							_				~-
							0.000	0.00.	0.007	3.551	0.0000	0.007														
C-12*	02/02/15	3				<0.5	<0.0005	<0.001	< 0.001	<0.001	<0.0005	< 0.001					-									
C-12*	02/02/15	8				<0.5	<0.0005	<0.001	< 0.001	<0.001	<0.0005	<0.001														
C-12*	02/03/15	10				<0.5	<0.0005	<0.001	< 0.001	<0.001	<0.0005	<0.001														
C-12*	02/03/15	15				<0.5	<0.0005	< 0.001	<0.001	< 0.001	<0.0005	<0.001	-													
C-12*	02/03/15	20				< 0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005	< 0.001	-													
C-12*	02/03/15	25		-		<0.5	<0.0005	<0.001	< 0.001	<0.001	<0.0005	<0.001														
C-12*	02/03/15	30				<0.5	<0.0005	<0.001	<0.001	<0.001	0.0009 J	<0.001	_													
B1	02/05/15	3		_	~~	3.8	0.005 J	<0.001	<0.001	0.002 J	0.001 J	<0.001														
B1	02/05/15	8				2.5	0.005 J	<0.001	0.003 J	< 0.002 3	0.0013 0.0006 J								_							
B1	02/06/15	10				2.5 45	0.024 ^b	<0.0001 <0.0009 ^b	0.26 ^b	0.13 ^b	0.0006 J				-							~~		LULE	***	
B1	02/06/15	14				26	0.024 0.005 J	<0.0009	0.26	0.13	< 0.001 3					_										
B1	02/06/15	15				29	0.009	0.005 J	0.23	0.74	<0.0005								_				****			
٥.	02:00:10	.0				23	0.003	0.000 0	0.20	V./ **	~0.0003	0.008							_			~~			-	-

Sample ID	Date	Depth (fbg)	TOG	TPHmo	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene	DIPE	TAME	TBA	ETBE	1,2-DCA	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
									·····	-		Conce	ntrations re	eported in n	nilligrams p	er kilogram	(mg/kg)			····			***************************************			<u>></u>
LTC - Residenti	ial- 0 to 5 fbg	9			op og		1.9		21			9.7				777				net make						
LTC - Commerc	•			_			8.2		89			45			-											77
LTC - Residenti 10 fbq ^a	ial- Outdoor A	ir - 5 to	_				2.8		32			9.7					-									
LTC - Commerc	ial - Outdoor	Air - 5 to		_			12		134			45														
10 fbg ^a							12					43					-									
LTC - Utility Wo		-			AM		14		314			219				_										
Commercial (M		Ci						-														1,000	No Value	320	19,000	310,000
ESL Table K-3 - Construction W				N				-											-			110	No Value	320	6,100	93,000
B1	02/06/15	20	****			<0.5	0.001 J	<0.001	0.002 J	0.007	0.004 J	0.002 J													~	
B1	02/06/15	25	~-			3.8	0.004 J	0.001 J	0.083	0.35	<0.0005	0.066	-						_		-					
B1	02/06/15	30				140	0.20 J	<0.054	0.45	0.97	<0.027	0.49														
B2	02/06/15	3				1.0	0.001 J	<0.001	<0.001	<0.001	<0.0005	<0.001					*****		_		_					
B2	02/06/15	8			-	<0.5	< 0.0005	<0.001	<0.001	<0.001	<0.0005	<0.001														
B2	02/06/15	10		_		<0.5	0.004 J	<0.001	< 0.001	<0.001	<0.0005	<0.001										~~		***		
B2	02/06/15	15				4.4	0.013	<0.0009	0.002 J	<0.0009	0.002 J	0.001 J	_							·	-			•••		
B2	02/06/15	20				0.9 J	0.006	<0.001	0.001 J	<0.001	0.001 J	<0.001									-					
B2	02/06/15	25			==	< 0.5	0.005	<0.001	0.001 J	<0.001	0.002 J	<0.001			-		-				-					
B2	02/06/15	30		_		100	0.071 J	<0.052	0.27	1.1	<0.026	0.39														
В3	02/05/15	3				0.7 J	0.003 J	<0.001	<0.001	0.003 J	0.002 J	< 0.001														
B3	02/05/15	8				250	0.24 J	<0.050	5.1	6.9	<0.025	5.1		~~												
B3	02/05/15	10		-		270	0.15 J	<0.050	3.4	8.6	0.029 J	1.6					_									
B3	02/05/15	15				3.6	0.035	<0.001	0.020	0.009	0.011	<0.001												-		
B3 B3	02/05/15 02/05/15	20		Lands.		120	0.17 J	<0.053	4.8	13	<0.026	2.1		and and												
В3	02/05/15	25 30				<0.5 <0.5	0.003 J 0.003 J	<0.0009 <0.001	0.001 J 0.007	0.003 J 0.020	0.013 0.006	<0.0009		~~												
20		50				~0.5		\0.001	0.007	0.020	0.000	0.011			-											
B4	02/05/15	3		-		0.8 J	0.002 J	<0.001	<0.001	<0.001	<0.0005	< 0.001										-				
B4	02/05/15	8				<0.5	0.001 J	<0.001	<0.001	< 0.001	0.0007 J	<0.001													-	
B4	02/05/15	10 15				16	0.005	<0.001	0.011	0.004 J	0.017	0.013												-	-	
В4 В4	02/05/15 02/05/15	20		****		22 74	0.076 0.14 J	0.001 J <0.051	0.21 0.82	0.31 1.2	0.052 <0.026	0.23° J 0.58			-				_			mer			-	
B4	02/05/15	25 25				320	0.143	<0.051	4.3	4.0	0.026	0.35		~~											-	
B4	02/05/15	30				7.7	0.27	<0.001	0.098	0.006	0.11	0.006													-	
B5	02/04/15	3		85	68	<0.5	0.001 J	<0.0009	<0.0009	<0.0009	0.001 J	<0.0009	<0.0009	<0.0009	<0.019	<0.0009	<0.0009	<0.0009	See Table 1A	. See Table 1F	3 ND	0.712	61.8	325	68.5	365
B5	02/04/15	8		<9.9	<4.0	<0.5	< 0.0005	<0.001	<0.001	<0.001	<0.0005	<0.001	<0.001	< 0.001	< 0.020	<0.001	<0.001		See Table 1A			< 0.0324	70.5	12.4	115	58.4
B5	02/04/15	10		<10	<4.0	<0.5	0.0008 J	<0.0009	<0.0009	0.001 J	0.002 J	<0.0009	<0.0009	< 0.0009	<0.018	<0.0009	<0.0009		See Table 1A			0.0760 J	58.2	3.17	142	35.0
B5	02/04/15	15		<9.9	86	590	0.035 J	1.4	13	55	<0.025	3.2	<0.051	<0.051	<1.0	<0.051	<0.051		See Table 1A			0.0680 J	43.9	3.69	81.4	33.8
B5	02/04/15	20		<10	32	61	< 0.025	0.067 J	3.5	13.8	<0.025	1.4	<0.050	<0.050	< 0.99	<0.050	<0.050	< 0.050	See Table 1A	See Table 1E	3 ND	0.0843 J	83.9	3.77	127	39.2
B5	02/04/15	25		<9.9	9.2 J	4.1	0.074	0.002 J	0.026	0.045	0.28	0.006	<0.001	<0.001	0.23	<0.001	<0.001	<0.001	See Table 1A			0.0431 J	41.3	4.97	70.7	44.4
B5	02/04/15	30		<9.9	27	48	<0.026	0.18 J	1.8	8.1	0.055 J	0.20 J	<0.052	<0.052	<1.0	<0.052	<0.052	<0.052	See Table 1A	See Table 1E	3 ND	0.123 J	46.9	4.55	57.3	39.1
B6	02/06/15	3		_	~=	<0.5	0.004 J	<0.001	<0.001	<0.001	<0.0005	<0.001					Name .									

Sample ID	Date	Depth (fbg)	TOG	ТРНто	TPHd	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene	DIPE	TAME	TBA	ETBE	1,2-DCA	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
MARCH 12 10 10 10 10 10 10 10 10 10 10 10 10 10		(/bg/										—— Conce	ntrations r	eported in n	nilligrams p	er kilogram	(mg/kg)								***************************************	
LTC - Resident	ial- 0 to 5 fbg ^a						1.9		21	-		9.7													_	
LTC - Commerc	cial - 0 to 5 fbg	a		-		_	8.2		89			45							_							
LTC - Resident 10 fbg ^a	ial- Outdoor A	ir - 5 to					2.8		32			9.7			-			77					_	·		
LTC - Commerce 10 fbg ^a	cial - Outdoor	Air - 5 to					12		134		al.us	45	_													
LTC - Utility We	orker - 0 to 10 :	fba ^a					14		314			219														
ESL Table K-2		-																								
Commercial (M ESL Table K-3	letals) ^d																			~~	-	1,000	No Value	320	19,000	310,000
Construction V					***					-									-			110	No Value	320	6,100	93,000
B6	02/06/15	8		~~		18	0.056	0.001 J	0.020	0.004 J	0.011	0.088														
B6	02/06/15	10				130	0.050 J	<0.052	0.28	<0.052	<0.026	0.64							_							
B6	02/06/15	15				180	1.4	0.15 J	8.3	0.97	0.088 J	1.7			-				-						-	
B6 B6	02/06/15 02/06/15	20		to.as		940	0.57	0.11 J	10	0.79	<0.025	2.7			-				_							
B6	02/06/15	25 30				160 250	0.37 0.72	<0.054 0.61	0.96 3.0	0.057 J 6.7	<0.027 <0.023	0.12 J 0.99	_		_							 				
VP-4	02/05/15	3		***		<0.5	0.001 J	<0.001	<0.001	< 0.001	<0.0005	<0.001					***	La san							<u></u> .	
VP-4	02/05/15	6				<0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005	<0.001					-	YAR			***		~~			·
VP-5	02/04/15	3			~~	1,2	0.0008 J	<0.001	<0.001	<0.001	0.002 J	<0.001												ver our		
VP-5	02/04/15	6				<0.5	<0.0005	<0.001	<0.001	<0.001	0.01	<0.001						-			_					
VP-6	02/04/15	3		_		<0.5	0.010	<0.001	0.002 J	0.003 J	0.002 J	<0.001				~~										
VP-6	02/04/15	6		-		<0.5	<0.0005	<0.001	<0.001	<0.001	0.0009 J	<0.001	-					-			-					
2005 Soil Vapo	r Probe Install	ation_												-												
VP-1	11/21/05	7.0-7.5				<1.0	<0.0005	<0.001	<0.001	<0.001	0.001		<0.001	<0.001	<0.020	<0.001	<0.001	<0.001					AA. 18			
VP-2	11/21/05	6.5-7.0				<1.0	<0.0005	<0.001	<0.001	<0.001	0.002		<0.001	<0.001	<0.020	<0.001	<0.001	<0.001								
VP-3	11/21/05	5.5-6.0				<1.0	<0.0005	<0.001	<0.001	<0.001	0.002		<0.001	<0.001	<0.020	<0.001	<0.001	<0.001		and and						
2003 Well Insta	Illation Sampli	ng																								
C-10	08/08/03	10				<1.0	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.020	<0.001	<0.001	<0.001	_							
C-10	08/08/03	15				<1.0	< 0.001	<0.001	<0.001	< 0.001	<0.001		< 0.001	<0.001	<0.020	<0.001	<0.001	< 0.001								
C-10	08/08/03	20				<1.0	<0.001	< 0.001	< 0.001	< 0.001	< 0.001		<0.001	<0.001	< 0.020	<0.001	< 0.001	< 0.001			_					
C-10	08/08/03	25				<1.0	< 0.001	< 0.001	< 0.001	<0.001	<0.001	_	<0.001	<0.001	<0.020	<0.001	<0.001	< 0.001	-						_	
C-10	08/08/03	30				<1.0	<0.001	<0.001	<0.001	<0.001	<0.001	-	<0.001	<0.001	<0.020	<0.001	<0.001	<0.001	_							
1997 Dispense	r Island Upgra	de and Pr	oduct Pipi	ng Replacen	nent Sampl	ing						•														
PL1	07/21/97	4				1.8	0.031	0.016	0.023	0.19	2.5				_											
PL2	07/21/97	4				210	0.64	0.90	3.6	11	<2.5	Marie					-									
PL3	07/21/97	4				34	0.20	0.15	0.88	4.4	10															

Sample ID	Date	Depth	TOG	TPHmo	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene	DIPE	TAME	TBA	ETBE	1,2-DCA	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
		(fbg)	4				····-			····		Conce	ntrations r	reported in r	nilligrams _l	oer kilogran	n (mg/kg)									>
LTC - Resident	tial- 0 to 5 fbg	1					1.9		21	_		9.7	No. of								-					
LTC - Commerc	cial - 0 to 5 fbg	g ^a				_	8.2		89			45	W THE				-									
LTC - Resident	ial- Outdoor A	ir - 5 to					0.0		22			0.7														
10 fbg a	alai Outubaa	A					2.8		32			9.7					-						~~			
LTC - Commerce 10 fbg ^a	ciai - Outdoor	Air - 5 to					12		134			45	-													
LTC - Utility Wo	orker - 0 to 10	fbg ^a					14		314		-	219							-				<u></u>		_	
ESL Table K-2	- Direct Conta	ct																								
Commercial (M ESL Table K-3		ct				ara			-	Amenda -			•									1,000	No Value	320	19,000	310,000
Construction V	Vorker (Metals) ^d								byrns			-		-							110	No Value	320	6,100	93,000
PL4	07/21/97	4				45	<0.0050	<0.0050	0.87	3.5	10	_											~~			-
PL5	07/21/97	4			***	130	0.64	0.25	0.71	0.51	6.9														***	
1987 - 1996 We	II Installation	and Soil I	Boring San	pling																						
C-A	08/13/87	8.5				3,600	33	12		350									_							
C-A	08/13/87	19				63	2.0	0.1		2.0			ry m													
C-A	08/13/87	23.5		_		52	1.8	<0.1		0.4											_					
C-1	08/13/87	9				<5	<0.05	<0.1		<0.4					_											
C-1	08/13/87	19				<5	< 0.05	<0.1		<0.4							_									
C-1	08/13/87	29				<5	<0.05	<0.1		<0.4										·						_
C-2	08/13/87	Q				1,200	16	54		120																
C-2	08/13/87	19				1,200 <5	0.07	0.8		<0.4							_								-	
C-2	08/13/87	29				48	0.93	0.1		3		***			_				_						_	
C-3	08/13/87	q				7	0.05	40 d		0.4																
C-3	08/13/87	19				, <5	< 0.05	<0.1 <0.1		0.4 <0.4							_									
C-3	08/13/87	29				<5	<0.05	<0.1	 	<0.4			_						_							
																			_							
C-4	08/13/87 08/13/87	9 19				580	3.9	23		46			_													
C-4 C-4	08/13/87	29				<5 <5	<0.05 <0.05	<0.1 <0.1		<0.4 <0.4			-													
												_	-													
C-5 (BH-E)	08/01/90	11	-			54	0.5	1.7	8.0	4.5			_													
C-5 (BH-E)	08/01/90	16				<10	<0.005	<0.005	<0.005	0.02									Mould							
C-5 (BH-E) C-5 (BH-E)	08/01/90 08/01/90	21 26				<10 <10	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.015 <0.015		_				-11W			***	·						
					411	10	\0.003	~0.003		~ 0.015		-														
C-6 (BH-F)	08/01/90	16				<10	< 0.005	<0.005	<0.005	< 0.015																
C-6 (BH-F)	08/01/90	21				<10	<0.005	<0.005	< 0.005	<0.015					_						-				_	
C-6 (BH-F)	08/01/90	31		_	~=	42	0.2	<0.005	0.1	0.3			'				-									
C-6 (BH-F)	08/01/90	41		-		<10	<0.005	<0.005	<0.005	<0.015	~-						-					-	***		-	_
C-7 (BH-G)	07/31/90	11				<10	<0.005	<0.005	< 0.005	<0.015				and Mark	_			-			-					
C-7 (BH-G)	07/31/90	16		_		<10	<0.005	<0.005	<0.005	<0.015				****	-		_									
C-7 (BH-G)	07/31/90	21				<10	0.02	<0.005	<0.005	<0.015							-		-							

Sample ID	Date	Depth	TOG	ТРНто	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene	DIPE	TAME	TBA	ETBE	1,2-DCA	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
		(fbg)	4						DC//2C//C	Ayrenes		— Сопсе	ntrations r	reported in I	nilligrams į	oer kilogran	n (mg/kg)		1003		3/1-003		Cili Cilii Cilii			
LTC - Residenti	ial- 0 to 5 fbg	a					1.9	***	21			9.7								~~						
LTC - Commerc	cial - 0 to 5 fb	g ª					8.2		89			45														
LTC - Residenti 10 fbg ^a				-			2.8	-	32	-		9.7			-		-								_	
LTC - Commerce 10 fbg ^a	cial - Outdooi	Air - 5 to		-			12	-	134	-		45								2.02	_				· -	
LTC - Utility Wo	orker - 0 to 10	fbg ^a					14		314	No. of	~~	219							Mana	77						
ESL Table K-2 - Commercial (M	etals) ^d					-		***						. 								1,000	No Value	320	19,000	310,000
ESL Table K-3 Construction V		_				_									-u					<u> </u>		110	No Value	320	6,100	93,000
C-7 (BH-G)	07/31/90	31				<10	<0.005	<0.005	<0.005	<0.015			_		PF 791		_									-
C-7 (BH-G)	07/31/90	41				<10	0.007	<0.005	<0.005	<0.015		_														
C-8 (BH-H)	11/01/90	5.5				<10	<0.005	<0.005	<0.005	<0.005		_													_	
C-8 (BH-H)	11/01/90	40				<10	< 0.005	<0.005	<0.005	<0.005		_				***					_					
C-8 (BH-H)	11/01/90	45				<10	< 0.005	<0.005	<0.005	<0.005		_			·											
C-9	07/10/96	10				1.2	< 0.0050	<0.0050	< 0.0050	<0.0050																***
C-9	07/10/96	20		_	_	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050																
C-9	07/10/96	30				1.1	<0.0050	<0.0050	<0.0050	<0.0050																
C-9	07/10/96	45	70			<1.0	<0.0050	<0.0050	<0.0050	<0.0050																سند
1987 Undergro	und Storage	Tank Remo	val Samp	ling			•															*				
#1	05/22/87	13.5				<1	<0.005	<0.005		<0.005						-					_					
#2	05/22/87	13.5				<1	<0.005	<0.005		<0.005			_													
#3	05/22/87	13.5				<1	<0.005	<0.005		<0.005		***							_							
#4	05/22/87	13.5				<1	0.014	0.038	_	0.020																
#5	05/22/87	12.5				21	0.057	0.092		0.029					_	7.7					-	dend				
#6	05/22/87	13.5		_		15	0.010	<0.005		<0.005		N														
#7	05/21/87	9.5	100	63			0.005	0.020	<0.005	<0.005								***	ND		<u>.</u>					
#8	05/21/87	9.5	<100	<5						_						w.u.										_
,, 0	20,21,01	0.0	100	••									-						-	-	-					

	epth (fbg)	τος	ТРНто	TPHd	ТРНg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Naphthalene ——— Conce		TAME reported in r	TBA milligrams į	ETBE oer kilogran	1,2-DCA n (mg/kg)	EDB	Other VOCs	SVOCs	Pesticide s/ PCBs	Cadmium	Total Chromium	Lead	Nickel	Zinc
LTC - Residential- 0 to 5 fbg a						1.9		21			9.7							#***		· <u></u>		***** *			
LTC - Commercial - 0 to 5 fbg a						8.2		89			45													-	
LTC - Residential- Outdoor Air - : 10 fbg ^a						2.8		32			9.7														 .
LTC - Commercial - Outdoor Air 10 fbg ^a	- 5 to		-			12		134	W.2		45		-									A112			
LTC - Utility Worker - 0 to 10 fbg	j ^a			MANA	_	14		314			. 219														
ESL Table K-2 - Direct Contact Commercial (Metals) ^d ESL Table K-3 - Direct Contact					-				-												1,000	No Value	320	19,000	310,000
Construction Worker (Metals) d			_						-		_	-				_					110	No Value	320	6,100	93,000

Abbreviations/Notes:

TOG = Total oil and grease analyzed by EPA Method 8015, unless otherwise noted

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8015 unless otherwise noted

Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before 2003, analyzed by EPA Method 8020 unless otherwise noted

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B, unless otherwise noted

DIPE = di-isopropyl ether, TAME = t-amyl methyl ether, TBA = tert-butyl alcohol, ETBE = ethyl tertiary butyl ether, 1,2-DCA = 1,2-dichloroethane and EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B, unless otherwise noted.

VOC = Volatile organic compounds by EPA Method 8260B

SVOC = Semi-volatile organic compounds by EPA Method 8270C

Pesticides and polychlorinated biphenyls (PCBs) by EPA Method 8082

Cadmium, chromium, lead, nickel, and zinc by EPA Method 6010B

fbg = feet below grade

- -- = not analyzed, not established, or not applicable
- <x = Not detected at or above stated laboratory method detection limits</p>

ND = Not detected at or above stated laboratory method detection limits

- J = Estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
- * Well boring was not converted to a well due to lack of encountered water
- a = Low-Threat Underground Storage Tank Case Closure Policy Criteria (LTC) California State Water Resources Control Board (SWRCB), August 2012, Low-Threat Underground Storage Tank Policy.
- b = The recovery for the sample internal standard is outside the QC acceptance limits. The following corrective action was taken: The secondary vial leaked during re-analysis therefore the matrix effects observed in the initial analysis could not be confirmed. The values reported here are from the initial analysis.
- c = The concentration reported for Naphthalene is estimated since it exceeds the calibration range of the instrument when determined by the low level method, but is less than the quantitation limit when determined by the high level method. The result reported is from the high level determination.
- d = Environmental Screening Levels (ESLs) from the San Francisco Regional Water Quality Control Board, User's Guide, Derivation and Application of Environmental Screening Levels, December 2013

TABLE 2 SOIL ANALYTICAL DATA - VOLATILE ORGANIC COMPOUNDS (VOCs) CHEVRON STATION 90076 4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

												4203 FU		JULEVAR	D, OAKLA	ND, CALIF	OKNA						-						
Sample ID	Date	Depth (fbg)	Acetone	t-Amyl methyl ether	Вепzепе	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	2-Butanone	t-Butyl alcohol	n-Butylbenzene	sec-Butylbenzene	tert-Buty/benzene	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	2-Chloroethyl Vinyl Ether	Chloroform	Chloromethane	2-Chiorotoluene	4-Chlorotoluene	1,2-Dibromo-3-chloropropa	Dibromochloromethane	1,2-Dibromomethane	Dibromomethane	1,2-Dichlorobenzene
														Concent	rations in n	nilligrams p	er kilogran	n (mg/kg)											
B5 B5 B5 B5 B5 B5 B5	02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15	3 8 10 15 20 25 30	0.12 0.01 J <0.006 <0.35 <0.35 0.19 <0.37	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	0.001 J <0.0005 0.0008 J 0.035 J <0.025 0.074 <0.026	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	0.02 <0.004 <0.004 <0.20 <0.20 0.054 <0.21	<0.019 <0.020 <0.018 <1.0 <0.99 0.23 <1.0	<0.0009 <0.001 <0.0009 1.2 0.80 0.018 0.17	<0.0009 <0.001 <0.0009 0.47 0.27 0.007 0.075 J	<0.0009 <0.001 <0.0009 0.49 0.34 0.004 J 0.054 J	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.001	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052
Sample ID	Date	Depth (fbg)	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2Dichloroethene	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,3-Dichloropropene	2,2-Dichloropropane	1,1-Dichloropropene	cis-1,3-Dichloropropene	trans-1,3-Dichloropropent	Ethanol	Ethyl tertiary butyl ether	Ethylbenzene	Freon 113	Hexachlorobutadiene	2-Hexanone	di-Isopropyl ether	Isoropylbenzene	p-Isopropyltoluene	Methyl Tertiarty Butyl Eth	4-Methyl-2-pentanone	Methylene Chloride	Naphthalene
DE	00/04/45	2	~0.0000	~0.0000	~0.000	<0.0000	<0.0000	~0.0000	-0.0000	<0.0000	*0.0000	-0.000	-0.0000			nilligrams p	-		.0.000	-0.000	-0.000	.0.000							
B5 B5 B5 B5 B5 B5 B5	02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15	8 10 15 20 25 30	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.094 <0.10 <0.091 <5.1 <5.0 <0.10 <5.2	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.001	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.002 <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.003 <0.003 <0.003 <0.15 <0.15 <0.003 <0.16	<0.0009 <0.001 <0.0009 <0.051 <0.050 <0.001 <0.052	<0.0009 <0.001 <0.0009 1.1 0.50 0.008 0.16 J	<0.0009 <0.001 <0.0009 0.24 J 0.13 J 0.004 J <0.052	0.001 J <0.0005 0.002 J <0.025 <0.025 0.28 0.055 J	<0.003 <0.003 <0.003 <0.15 <0.15 <0.003 <0.16	0.003 J <0.002 <0.002 <0.10 <0.099 <0.002 <0.10	<0.0009 <0.001 <0.0009 3.2 1.4 0.006 0.20 J										
Sample ID	Date	Depth (fbg)	n-Propylbenzene	Styrene	,1,1,2-Tetrachloroethan	,1,2,2-Tetrachloroethan	Tetrachloroethene	Toluene	,2,3-Trichlorobenzene	,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	richlorofluoromethane	,2,3-Trichloropropane	.2,4-Trimethylbenzene	3,5-Trimethylbenzene	Vinyl Chloride	m+p-Xylene	o-Xylene									

<0.0009 <0.0009 <0.002 <0.0009 <0.0009

<0.002

< 0.002

< 0.10

< 0.099

< 0.002

<0.10

<0.001

< 0.0009

< 0.051

< 0.050

< 0.001

< 0.052

< 0.001

< 0.0009

24

13

0.040

3.2

< 0.001

< 0.0009

8.4

4.4

0.014

1.1

<0.001

< 0.0009

< 0.051

< 0.050

< 0.001

< 0.052

<0.0009 <0.0009 <0.0009 <0.0009

<0.001

0.001 J

41

11

0.033

6.3

<0.001

< 0.0009

14

2.8

0.012

1.8

<0.001

< 0.0009

< 0.051

< 0.050

<0.001

< 0.052

Notes:

B5

B5

B5

B5

В5

B5

B5

All analytes were analyzed by EPA Method 8260 Full Scan.

3

8

10

15

20

25 30 <0.0009

<0.001

< 0.0009

4.3

2.3

0.028

0.68

< 0.001

< 0.0009

< 0.051

< 0.050

< 0.001

< 0.052

<0.001

< 0.0009

< 0.051

< 0.050

< 0.001

<0.052

<0.0009 <0.0009 <0.0009 <0.0009 <0.0009

< 0.001

< 0.0009

< 0.051

< 0.050

< 0.001

< 0.052

<0.001

<0.0009

< 0.051

< 0.050

< 0.001

< 0.052

< 0.001

< 0.0009

1.4

0.067 J

0.002 J

0.18 J

02/04/15

02/04/15

02/04/15

02/04/15

02/04/15

02/04/15

02/04/15

Concentrations in milligrams per kilogram (mg/kg)

< 0.001

< 0.0009

< 0.051

<0.050

<0.001

< 0.052

< 0.001

< 0.0009

< 0.051

< 0.050

< 0.001

<0.052

<0.0009 <0.0009 <0.0009

<0.001

< 0.0009

< 0.051

<0.050

< 0.001

<0.052

< 0.001

< 0.0009

0.059 J

< 0.050

<0.001

<0.052

<x = Not detected above method detection limit</pre>

a = Low-Threat Underground Storage Tank Case Closure Policy Criteria - California State Water Resources Control Board (SWRCB), August 2012, Low-Threat Underground Storage Tank Policy.

TABLE 3 SOIL ANALYTICAL DATA - SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) **CHEVRON STATION 90076** 4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	Acenaphthene	Acenaphthylene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene *	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	4-Bromophenyl- phenylether	Butylbenzylphthalate	Di-n-buty/phthalate	Carbazole	4-Chloro-3-methylphenol	4-Chloroaniline	Bis (2-Chloroethoxy) metha	Bis (2-Chloroethyl) ether	2-Chloronaphthalene	2-Chiorophenol	4-Chlorophenyl-phenylethe	2,2'-oxybis (1-Chloropropar.	Chrysene	Dibenz (a,h) anthracene	Dibenzofuran	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3'-Dichlorophenol	2,4-Dichlorophenol
B5 B5 B5 B5 B5 B5 B5	02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15	3 8 10 15 20 25 30	<0.003 <0.003 <0.003 <0.004 <0.003	<0.003 <0.003 <0.003 <0.004 <0.003	<0.003 <0.003 <0.003 <0.004 <0.003	0.006 J <0.003 <0.003 <0.004 <0.003	0.007 J <0.003 <0.003 <0.004 <0.003	0.008 J <0.003 <0.003 <0.004 <0.003	0.006 J <0.003 <0.003 <0.004 <0.003	0.005 J <0.003 <0.003 <0.004 <0.003	<0.017 <0.017 <0.017 <0.018 <0.017	<0.066 <0.067 <0.073 <0.067	<0.066 <0.066 <0.067 <0.073 <0.067	<0.017 <0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.017 <0.018 <0.017	kilogram <0.017 <0.017 <0.017 <0.017 <0.018 <0.017 <0.017	<0.007 <0.007 <0.007 <0.007 <0.008 <0.007	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	0.008 J <0.003 <0.003 <0.004 <0.003	<0.003 <0.003 <0.003 <0.004 <0.003	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.10 <0.099 <0.10 <0.11 <0.10	<0.017 <0.017 <0.017 <0.018 <0.017
Sample ID	Date	Depth (fbg)	Diethyl phthalate	2,4-Dimethylphenol	Dimethylphthalate	4,6-Dinitro-2-methylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	bis (2-Ethylhexyl) phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadien	Hexachloroethane	Indeno (1,2,3-cd) pyrene	Isophorone	2-Methylnaphthalene	2-Methylphenol	4-Methylphenol	Naphthalene	2-Nitroaniline	3-Nitroanaline	4-Nitroanaline	Nitrobenzene	2-Nitrophenol	4-Nitrophenol	N-nitroso-di-n-propylamine	
B5 B5 B5 B5 B5 B5 B5	02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15	3 8 10 15 20 25 30	<0.066 <0.066 <0.067 <0.073	<0.017 <0.017 <0.017 <0.018 <0.017	<0.066 <0.066 <0.066 <0.067 <0.073 <0.067 <0.067	<0.17 <0.17 <0.17 <0.018 <0.17	<0.30 <0.30 <0.30 <0.33 <0.30	<0.066 <0.067 <0.073 <0.067	<0.017 <0.017 <0.017 <0.018 <0.017	<0.066 <0.067 <0.073 <0.067	0.013 J <0.003 <0.003 <0.004 <0.003	<0.003 <0.003 <0.003 <0.004 <0.003	<pre>< < 0.003 < < 0.003 < < 0.003 < < 0.003 < < 0.004 < < 0.003</pre>	<0.017 <0.017 <0.017 <0.017 <0.018 <0.017	<0.17 <0.17 <0.17 <0.17 <0.18 <0.17	<0.033 <0.033 <0.033 <0.037 <0.033	0.053 0.006 J <0.003 <0.003 <0.004 <0.003		0.009 J <0.003 <0.003 0.18 0.011 J 0.009 J	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.003 <0.003 0.19 0.008 J 0.006 J	<0.017 <0.017 <0.017 <0.018 <0.017	<0.066 <0.066 <0.067 <0.073 <0.067	<0.066 <0.067 <0.073 <0.067	<0.017 <0.017 <0.017 <0.018 <0.017	<0.017 <0.017 <0.017 <0.018 <0.017	<0.17 <0.17 <0.17 <0.18 <0.17	<0.017 <0.017 <0.017 <0.018 <0.017	
Sample ID	Date	Depth (fbg)	N-Nitrosodiphenylamir	Di-n-octylphthalate	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	1,2,4-Trichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol																,			
B5 B5 B5 B5 B5	02/04/15 02/04/15 02/04/15 02/04/15 02/04/15 02/04/15	3 8 10 15 20 25	<0.017 <0.017 <0.017 <0.018	<0.066 <0.066 <0.067 <0.073	centation <0.033 <0.033 <0.033 <0.033 <0.037	0.099 0.007 J <0.003 0.004 J <0.004	<0.017 <0.017 0.91 0.81 1.1	0.16 0.015 J <0.003 0.003 J <0.004	<0.017 <0.017 <0.017 <0.017 <0.018	<0.017 <0.017 <0.017 <0.017 <0.018	<0.017 <0.017 <0.017 <0.018		·																	

B5

02/04/15 30 <0.017 <0.067 <0.033 <0.003 2.0 0.004 J <0.017 <0.017 <0.017

in soil are as follows:

Commercial Direct Contact (0-5 fbg): 0.68 mg/kg

Commercial Volatilization to Outdoor Air (5-10 fbg): NA

Utility Worker Direct Contact (0-10 fbg): 4.5 mg/kg

		Probe	TOU		T. (Ethyl-	<i>m,p-</i>	0-	****	Naph-	Naph-		Aliphatic F	lydrocarbon	ıs		matic carbons		Nitrate		0//	
Sample ID	Date	Depth (fbg)	TPHg	Benzene 1	ı oıuene	benzene		Xylenes	MTBE	thalene	thalene (TO-17)	C5 - C6	>C6 - C8	>C8 - C10	>C10 - C12	>C8 - C10	>C10 - C12	02	as Nitrogen	CO ₂	CH₄	He
		-					С	oncentrati	ons are	in microg	rams per	cubic me	ter (µg/m³)		l			Report	ted in %	Volume	
LTC - Soil Gas No Bioattenus (02<4%) ^a		Residential	NE NE	85 280	NE NE	1,100 3,600	NE NE	NE NE	NE NE	93 310	93 310	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE
LTC - Soil Ga		Residential	NE	85,000	NE	1,100,000	NE	NE	NE	93,000	93,000	NE	NE	NE	NE	NE	NE	NE	NE	NE.	NE	NE
Bioattenuatio (02>4%) ^a	n Zone	Commercial	NE	280,000	NE	3,600,000	NE	NE	NE	310,000	310,000	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2016 Vapor S VP-5	ampling 2/24/16	5.50-5.75	86,000	54	<33	<38	<38	<38	1,800	<91	<5.0	30,000	69,000	2,200	<1,200	<860	<960	1.5	76	17	5.2	<0.13
VP-6 VP-6 DUP	2/24/16 2/24/16	5.50-5.75 5.50-5.75	<570 <570	<4.5 <4.4	<5.3 <5.2	<6.1 <6.0	<6.1 <6.0	<6.1 <6.0	<5.0 <5.0	<15 <14	<5.0 <5.0	<91 <90	<110 <110	<160 <160	<200 <190	<140 <140	<150 <150	13 13	81 81	6.20 6.1	<0.00028 <0.00028	<0.14 <0.14
2015 Vapor S VP-1	ampling 02/17/15	5.25-5.75	<470	<3.7	<4.4	<5.0	<5.0	<5.0	<4.2	<24	<4.2	<75	<65	<130	<160	<110	<130	10	83	7.2	<0.00023	<0.12
VP-2	02/17/15	5.25-5.75									Not:	sampled D	ue to Wate	er in the Tubi	ng	1	;	1				
VP-3	02/17/15	5.25-5.75	<490	<3.8	<4.5	<5.2	8.0	5.7	<4.3	<25	4.5	<78	<98	<140	<170	<120	<130	5.5	85	9.5	<0.00024	<0.12
VP-4	02/17/15	5.50-5.75	<470	<3.7	<4.4	<5.0	<5.0	<5.0	<4.2	<24	<4.2	<75	<95	<140	<160	<110	<130	4.3	88	7.4	<0.00023	<0.12
VP-5 VP-5 DUP	02/17/15 02/17/15	5.50-5.75 5.50-5.75	23,000 25,000	220 220	130 130	16 16	41 42	17 16	1,500 1,500	<25 <24	10 	7,600 7,600	11,000 11,000	1,000 940	230 170	<120 <110	<130 <130	2.5 2.4	78 77	12 12	7.9 8.0	<0.12 0.22
VP-6	02/17/15	5.50-5.75	62,000	92	150	61	170	86	<20	<110	4.3	24,000	10,000	2,900	<760	<540	<600	6.1	94	0.10	0.0035	<0.11
2012 Vapor S																						
VP-2	08/13/12	5.25-5.75	<3,400	<54	<63	<73	<73	<73	<60	<350		<1,100	6,600	<2,000	<2,300	<1,600	<1,800	1.9	82	15	0.77	<0.084
VP-3 VP-3 DUP	08/13/12 08/13/12	5.25-5.75 5.25-5.75	<160 <160	<2.5 <2.5	<3.0 <3.0	<3.4 <3.4	<3.4 <3.4	<3.4 <3.4	<2.8 <2.8	<16 <16		<51 <51	<65 <65	<92 <92	<110 <110	<78 <78	<87 <87	3.1 2.8	84 84	13 13	0.00016 <0.00016	<0.079 <0.079

Notes:

TPHg, Benzene, toluene, ethylbenzene, m,p-xylene, o-xylene, MTBE, and naphthalene by Modified EPA Method TO-15

Oxygen (O2), methane (CH4), and carbon dioxide (CO2) analyzed by ASTM D-1946M

Aliphathic Hydrocarbons (C5-C6 Pentane + Hexane; >C6-C8 Heptane; >C-8-C10 Decane; and >C10-C12 Dodecane) by Modified EPA Method TO-15 APH

Aromatic Hydrocarbons (>C8-C10 1,2,3-TMB and >C10-C12 1,2,4,5-TMB) by Modified EPA Method TO-15 APH

TPHg = Totally petroleum hydrocarbons as gasoline

MTBE = Methyl tertiary butyl ether

ESL = Environmental screening levels

<x = Not detected above method detection limit

fbg = Foot below grade

fbg = Feet below grade

DUP = Field duplicate

bold = concentrations detected at or above Soil Gas ESLs

a = Table E-2 - Shallow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater prepared by the California Regional Water Quality Control Board - San Francisco Bay

Region, Interim Final November 2007, revised May 2008.

b = Field duplicate collected simultaneously with original sample NE = Not established

							HYDROCARBONS		F	RIMAR	YVOCS		ADDITIONAL VOCS	7	FIELD	PARAMETE	RS	GE	NERAL (HEMIST	RY
Location	Date	TOC	DTW	GWE	NAPLT	LNAPL REMOVED	ТРН-GRO	В	ī	E	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-1	04/28/1989	35.42	20.05	15.37	0.00	0.00	940	30	1.3	11	13		-		1.4		-	-2-			
C-1	08/08/1989	35.42	24.07	11,35	0.00	0.00	820	45	2.0	13	13		400		4.	-				-	-
C-1	12/21/1989	35.42	22.81	12.61	0.00	0.00	-2.	-	-	-	-				-		-	-	-	-	-
C-1	08/27/1990	35.42	22.12	13.30	0.00	0.00	440	15	1.0	6.0	13				-	4.	-	-	-		5
C-1	11/04/1990	35.42	25.56	9.86	0.00	0.00				-	-		3.	-	*	191		-			-
C-1	06/18/1991	35.42	21.64	13.78	0.00	0.00	74	5.6	0.6	1.9	1.3		16.11		4	- 2	2				
C-1	09/19/1991	35,42	24.58	10.84	0.00	0.00	150	7.1	<0.5	2.3	3.0	3-	-			3	-				
C-1	12/20/1991	35.42	26.17	9.25	0.00	0.00	250	10	<0.5	3.7	1.6		-		-			- 2	1.5	-	-
C-1	03/18/1992	35.42	18.25	17.17	0.00	0.00	190	16	<0.5	8.5	3		(4)	100	34	-					-
C-1	07/14/1992	35.42	27.61	7.81	0.00	0.00	20,000	480	2,200	510	2,900			-	*		2.0	~		-	-
C-1	10/08/1992	35.42	24.44	10.98	0.00	0.00	360	34	4.6	19	12	-	-		4	-	-	- 6		-	-
C-1	01/08/1993	35.42	19.68	15.74	0.00	0.00	120	9.1	0.5	5.1	1.8		1.5		17	*				-	-
C-1	04/14/1993	35.42	16.38	19.04	0.00	0.00	190	74	0.6	1.0	2.0	-	-		140		-	-			
C-1	07/16/1993	35.42			0.00	0.00		-	-	-			-		-	7.	-	-	-	-	2
C-1	07/27/1993	35.42	9.39	26.03	0.00	0.00	300	12	< 0.5	5.0	2.0	-	9-			2-					-
C-1	09/21/1993	38.41	21.42	16.99	0.00	0.00	360	12	1.2	5.8	3.7	=						-		-	
C-1	01/28/1994	38.41	19.57	18.84	0.00	0.00	370	24	1.0	13	4.0			-	-	-	E	-	-5	-	-
C-1	03/17/1994	38.41	16.85	21.56	0.00	0.00	460	42	<0.5	6.7	3.7		3		-	-4	-	-	-	-	-
C-1	06/16/1994	38.41	17.83	20.58	0.00	0.00	320	20	0.7	8.7	3.0			-	2	-	-			•	2
C-1	09/22/1994	38.41	20.26	18.15	0.00	0.00	380	24	0.6	8.8	1.9	-	-	-6		-	-	-			0.0
C-1	12/15/1994	38.41	15.82	22,59	0.00	0.00	280	23	7.6	7.B	13				*		-	-	-	-1	-
C-1	03/30/1995	38.41	12.02	26.39	0.00	0.00	2,200	890	8.9	15	<5.0		150	-	147					-	-

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	Gi	ENERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ť	ш	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissalved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nirate (as N)	Suifate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-1	06/20/1995	38.41	14.40	24.01	0.00	0.00	690	140	<2.0	9.4	2.8	1-1	-			9,0		2 -		1.5	-
C-1	09/20/1995	38.41	13.82	24.59	0.00	0.00	730	27	78	26	130	9	= 1	-		4.		-			-
C-1	12/06/1995	38.41	20.60	17.81	0.00	0.00	220	16	<0.5	7.2	1.7	11	2-	-						-5	-
C-1	03/21/1996	38.41	11.65	26.76	0.00	0.00	640	170	<2.0	6.7	<2.0	35	· ·	-	-	-		-		-	-
C-1	06/21/1996	38.41	14.25	24,16	0.00	0.00	640	140	<1.2	8.7	2.0	23	2		-	-	-				
C-1	09/06/1996	38.41	16.75	21.66	0.00	0.00	460	24	0.56	10	2.4	43	- 25		-	· .		2	F-	. 4	-
C-1	12/19/1996	38.41	13.98	24.43	0.00	0.00	790	120	22	13	19	<25			-		-		-	. 5	*
C-1	03/17/1997	38.41	12.78	25,63	0.00	0.00	2,200	660	<10	15	<10	110		*		-	20			10	
C-1	06/11/1997	38.41	15.16	23.25	0,00	0.00	1,500	130	<2.0	16	3.4	130	241	-	114	0-1-	-			12	-
C-1	09/17/1997	38.41	16.94	21.47	0.00	0.00	910	160	23	13	49	180		1.4	8.8	101	104	2.0	1.1	<1.0	12
C-1	12/11/1997	38.41	13.18	25.23	0.00	0.00	2,000	270	7.0	53	7.4	460	9-11	-	1.9	-2.	540	-	-	1,2	-
C-1	03/12/1998	38.41	9.49	28.92	0.00	0.00	3,100	1,300	<20	42	<20	760		1.7	3.6	171	171	550	3.0	<1.0	6.6
C-1	06/23/1998	38.41	10.22	28.19	0.00	0.00	1,300	650	6.9	22	6,5	290		-		-		1.0		(-1)	
C-1	09/01/1998	38.41	16.98	21.43	0.00	0.00	270	6.0	<2.5	<2.5	<2.5	950			4	-	3.0	-		1.2	
C-1	12/30/1998	38.41	16.12	22.29	0.00	0.00	2,020	578	<5.0	<5.0	<5.0	1,720		- 2	-	4.		-	-	.2	
C-1	03/31/1999	38.41	13.88	24.53	0.00	0.00	2,140	776	5.89	<5.0	5,15	1,170	3.00	6.5	1.8	99	89	382	2,52014	0.418	8.23
C-1	06/14/1999	38.41	15.32	23.09	0.00	0.00	1,450	524	<5.0	<5.0	<5.0	1,360 ² /1,150		-5	3	-	-	-	-	+	-
C-1	09/30/1999	38.41	16.11	22.30	0.00	0.00	79	1.12	< 0.5	1.07	< 0.5	677		-			-				
C-1	12/22/1999	38.41	15.04	23.37	0.00	0.00	501	157	4.45	<2.5	4.81	744		0.95	2.0	-95	-128	568	0.19	<0.1	-11
C-1	03/09/2000	38.41	7.13	31.28	0.00	0.00	3,300	2,500	-28	37	<25	1,700		1.8	2.4	-47	-38	520	0.84	0.54	15
C-1	06/23/20003	38.41	12.55	25.86	0.00	0.00	2,2004	1,000	6.9	5.7	9.3	1,900		-		-					
C-1	09/05/20003	38.41	17.13	21.28	0.00	0.00	<200	8.3	<2.0	<2.0	<2.0	1,000		1.74	2.66	105	59	520	0.41	1.6	10

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	Ē	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nifrate (as N)	Suifate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-1	12/04/2000	38.41	16.93	21.48	0.00	0.00	1,400	600	<5.0	<5.0	<5.0	1,500			3-0	20				4	
C-1	03/08/20013	38.41	7.96	30.45	0.00	0.00	2,570	1,040	7.93	12.0	<5.00	1,470				-				-	+
C-1	06/07/20013	38.41	12.96	25.45	0.00	0.00	750 ⁴	220	5.6	4.8	2.6	2,5005					-	12	141	-	
C-1	09/13/20013	38.41	18.50	19.91	0.00	0.00	670 ⁶	<5.0	<5.0	<5.0	<5.0	660			-	-		14	141	~	
C-1	12/13/20013	38.41	15.39	23.02	0.00	0.00	1,100	340	2.1	0.95	7.9	630		-	-	- 4:	-	14.		-	
C-1	03/08/20023	38.41	10.06	28.35	0.00	0.00	3,600	1,400	9.5	17	6.5	1,900					-		+		
C-1	06/19/20023	38.41	13.49	24.92	0.00	0.00	1,300	220	3.4	2.7	<3.0	1,400	G.	-	-	240	(-)	100	-1-1		
C-1	09/11/20023	38.41	17.23	21.18	0.00	0.00	400	22	<0.50	<0.50	<1.5	780		1-2	-	-	-	4	-		
C-1	12/11/20023	38.41	18.60	19.81	0.00	0.00	180	4.2	< 0.50	1.1	<1.5	350			-	-9.	-2	-	13	-	
C-1	03/11/20033	38.41	12.60	25.81	0.00	0.00	3,500	1,100	9.1	12	8.0	1,600			4	-	-	4	+	5.	-
C-1	06/10/2003 ^{3,7}	38.41	12.68	25.73	0.00	0.00	1,600	350	2	3	3	1,300	· •			-				-	-
C-1	09/09/2003 ^{3,7}	38.41	16.75	21.66	0.00	0.00	290	4	<1	1	1	710	<100			-	-	-2			
C-1	12/09/2003 ^{7,8}	38.41	17.68	20.73	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	200	<50	14	44		-			-	+
C-1	03/09/20047	38.41	7.80	30.61	0.00	0.00	7,100	2,000	15	23	10	1,100	<50	0	2	- 5	-			-	
C-1	06/08/20047	38.41	11.12	27.29	0.00	0.00	2,300	840	6	5	4	1,100	<50		*-	-	-			*	
C-1	09/08/2004	38.41	14.30	24.11	0.00	0.00	150	110	2	0.5	1	730	<50				-	-		6	
C-1	12/06/20047	38,41	13.26	25.15	0.00	0.00	2,100	480	4	2	2	530	<50	104	-	12	-	-			-
C-1	03/07/2005	38.41	6.48	31.93	0.00	0.00	4,100	1,200	9	10	5	1,100	<100		-		-	14.	1,4	-	-
C-1	06/06/2005	38.41	8.85	29.56	0.00	0.00	3,400	990	8	9	5	1,100	<100	-	-	-	-	(4	*		
C-1	09/06/2005	38.41	11.42	26.99	0.00	0,00	1,100	83	2	0.9	1	810	<50		-	~	-	1.4		-	-
C-1	12/05/2005	38.41	10.98	27.43	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	78	<50	-	-		-	-		-	
C-1	03/06/20067	38.41	7.77	30.64	0.00	0.00	3,700	880	10	8	7	1,300	<50		-	-	-				

							HYDROCARBONS		F	RIMAR	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	трн.с.в.о	В	Ť	Ē	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissalved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft -	ft-amsi	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-1	06/05/2006 ^T	38.41	8.90	29.51	0.00	0.00	380	7	<0.5	<0.5	<0.5	960	<50	4	- 2	-	-	4-	-	-	
C-1	09/05/20067	38.41	11.09	27.32	0.00	0.00	260	<0.5	<0,5	<0.5	<0.5	390	<50		-			-	-	-	
C-1	12/04/2006	38.41	10.92	27.49	0.00	0.00	270	20	<0.5	<0.5	<0.5	250	<50	-		-	1.4	-	-	-	- 2-
C-1	03/05/2007	38.41	9.78	28.63	0.00	0.00	2,000	370	5	2	2	820	<50	-	-4	- 61	-		-	0.0	4.5
C+1	06/04/2007	38.41	9,40	29.01	0.00	0.00	180	<0.5	<0.5	<0.5	< 0.5	320	<50	-	4	3		+	4	-	-2
C-1	09/07/2007	38.41	10.55	27.86	0.00	0.00	120	<0.5	<0.5	<0.5	< 0.5	72	<50	-	-			1			
C-t	12/06/2007	38.41	12.15	26.26	0.00	0.00	170	<0.5	<0.5	<0.5	<0.5	58	<50	-	9		-	-			-
C-1	03/06/2008 ⁷	38.41	8.28	30,13	0.00	0,00	3,400	790	8	4	4	610	<50	-				$[\sigma_{\sigma}]$	*		2.
C-1	06/05/20087	38.41	10.11	28,30	0.00	0.00	210	<0.5	<0.5	< 0.5	<0.5	290	<50	91		18	* *	2			
C-1	09/03/20087	38.41	12.90	25.51	0.00	0.00	130	<0.5	<0.5	<0.5	<0.5	110	<50	2	12	-	*	-			Ε.
C-1	12/03/20087	38.41	13.85	24.56	0.00	0.00	70	<0.5	<0.5	<0.5	<0.5	29	<50		3			9			
C-1	03/04/2009	38.41	7.65	30.76	0.00	0.00	1,400	200	3	0.90	2	240	<50	-	-	-	1.4		*		-
C-1	06/09/20097	38.41	10.52	27.81	0.00	0.00	280	2	<0.5	<0.5	<0.5	230	<50		-	-	2.0	-		= =	7.
C-1	09/30/2009	38.41	13.84	24.57	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	78	<50	4.	-	-		3			
C-1	03/22/20107	38.41	8.34	30.07	0.00	0.00	1,000	290	4	2	2	99	<50			*			-	3.	-
C-1	09/16/2010	38.41	12.70	25.71	0.00	0.00	170	<0.5	<0.5	<0.5	<0.5	20	<50				-		-		
C-1	03/08/2011	38.41	8.00	30.41	0.00	0.00	2,000	280	5	2	3	74	<50	4	2 -	-	-	E ± cr	-	19	
C-1	09/28/2011	38.41	12.13	26.28	0.00	0.00	52 J	<0.5	< 0.5	<0.5	<0.5	6	<50	10.2	-	-		-	-	- 2	-
C-1	03/08/2012	38.41	13.02	25.39	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	62	<50	-	-	-				3.	
C-1	09/20/2012	38,41	13.12	25.29	0.00	0.00	<50	<0.5	< 0.5	<0.5	<0.5	2	<50	*		-	•	200	-		-
C-1	03/20/2013	38.41	9.74	28.67	0.00	0.00	210	18	0.6 J	<0.5	<0.5	37	<50	-		= ±	100	1-1		4	
C-1	09/18/2013	38.41	12.50	25,91	0.00	0.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	4	<50	04	-		-	-		-	-

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

							HYDROCARBONS		- 1	PRIMAR	Y VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ī	E	×	MTBE by SW8260	ETHANOL,	Dissolved axygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Suffate
	Units	ħ.	ft	ft-ams/	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-1	03/13/2014	38.41	12.13	26.28	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	12	<50			-	-				
C-1	09/25/2014	38.41	14.17	24.24	0.00	0.00	430	<0.5	<0.5	<0.5	<0.5	9	<50		4		-				
0-1	03/10/2015	40.69	13.29	27.40	0.00	0.00	650	28	0.6 J	<0.5	<0.5	27	<50		4.0				-	4	-
C-1	06/19/2015	40.69	12.28	28,41	0.00	0.00	-	-	0.0 0	-0.0		-	8		- 2			-			
	09/15/2015	40.69	16.70	23.99	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	13	<50		-	-3					
C-1	12/22/2015	40.69	15.67	25.02	0.00	0.00	-50	~0.5	~0.0	×0.0	×0.5	10									
							4 200	180	4	1	2	29	<50								
C-1	03/08/2016	40.69	9,92	30.77	0.00	0.00	1,300	100	,	4	2	25	100								
C-2	04/28/1989	35.18	26.44	8.74	0.00	0.00	120,000	30,000	22,000	3,000	17,000				-	-	-				-
C-2	08/08/1989	35.18	29,90	5.29	0.01	0.00	12	-	-		6.	W 6.	-	-	5	-	-	3	8	-	-
C-2	12/21/1989	35.18	29.32	5.86	0.00	0.00	-	-	-		3	3	2	-	12.	-	4.			-	-
C-2	08/27/1990	35.18	29.55	5.77	0.17	0.00	1.2	-			(-)	-			3	-		6		-	-
C-2	11/04/1990	35.18	30.47	4.71	0.00	0.00	1.5	-	-2	4		2	-	-	-	-		*		· -	- 6
C-2	06/18/1991	35.18	28.33	6.90	0.06	0.00		-	-	-2		4	-		-	-	4	*	-	-	-
C-2	09/19/1991	35.18	29.39	5.84	0.06	0.00		-	4		4	-		-		-					-
C-2	12/20/1991	35.18	29.23	5.95	0.00	0.00	170,000	20,000	10,000	2,800	19,000	-			-		-		-		-
C-2	03/18/1992	35.18	13.60	21.58	0.09	0.00			-	-		T	1.4	-	-	-		-	4	-	-
C-2	07/14/1992	35.18			0.00	0.00	140	-	-		1	-					~	-		-	-
C-2	10/08/1992	35.18	-		0.00	0.00	7.9					4.				-	-	4		-	-
C-2	01/08/1993	35.18	24.20	10.98	Sheen	0.00	79,000	14,000	7,200	3,500	16,000	- 3		-	-		-	-			-
C-2	04/14/1993	35.18		÷	0.00	0.00							(4)		-		-	let-		-	-
C-2	07/16/1993	35.18	30.15	5.03	0.00	0.00	2,200	440	73	24	350	1.2	-	-	-	-	-				

							HYDROCARBONS			RIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DТW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ţ	E	x	MTBE by SW6260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	galions	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	millivolts	millivolts	µg/L	μg/L	µg/L	µg/L
C-2	09/21/1993	37.47	26.29	11.18	0.00	0.00	11,000	2,300	300	270	910	-	-		-			160			
C-2	01/28/1994	37.47	23.96	13.51	0.00	0.00	49,000	11,000	3,900	1,600	12,000	-					-	-	-		
C-2	03/17/1994	37.47	25.99	11.48	0.00	0.00	16,000	3,300	1,000	220	3,500		2.	-	_	-	-	-1	141		-
C-2	06/16/1994	37.47	23.92	13.55	0.00	0.00	20,000	4,800	1,500	520	4,300	-2		-			. 5	30	4	-	
C-2	09/22/1994	37.47	25.62	11.85	0.00	0.00	35,000	5,600	850	1,700	7,300	1.2	9	-	- 4	-	-	6	200	- 2	-
C-2	12/15/1994	37.47	21.16	16.31	0.00	0.00	96,000	9,000	3,500	3,300	13,000		-		-		-			-	
C-2	03/30/1995	37.47	17.18	20.29	0.00	0.00	100,000	9,400	3,700	3,900	14,000	-	4	-	-	-		- 25	40		14
C-2	06/20/1995	37.47	18.95	18.52	0.00	0.00	93,000	6,400	1,900	2,900	11,000	0.41						50	60		100
C-2	09/20/1995	37.47	18.20	19.27	0.00	0.00	58,000	6,600	330	1,600	5,500	1.2	19.1	-	- 2			60	72.0	-	
C-2	12/06/1995	37.47	24.76	12.71	0.00	0.00	40,000	5,000	86	1,800	3,700	<500	14.7	4	-		3 ÷ 0	6	14-	100	-
C-2	03/21/1996	37.47	16.17	21.30	0.00	0.13	2.0	-	-3			-5	+	-	- 6		12		-	-	1.4
C-2	06/21/1996	37.47	18.15	19.34	0.02	0.03			-	-			-	-			-	-	140		
C-2	09/06/1996	37.47	21.14	16.36	0.04	0.08		4.			-	2		-			. =	2	-	-0	
C-2	12/19/1996	37.47	17.55	19.94	0.03	0.05		-		4.1	-	-	5	100	-	- 20	12	30			-
C-2	03/17/1997	37.47	18.59	18.88	0.00	0.00	58,000	4,800	1,200	1,800	6,300	3,400				+		+1	-	-8	10.2
C-2	06/11/1997	37.47	21.30	16.17	0.00	0.00	40,000	5,500	720	1,400	4,100	3,100	4.	-		-	-				
C-2	09/17/1997	37.47	23.14	14.33	0.00	0.00	30,000	4,800	220	1,200	1,800	3,200		1.3		150		560	4.7	<1.0	<1.0
C-2	12/11/1997	37.47	17.21	20.26	0.00	0.00	76,000	6,100	1,300	2,200	8,000	3,800	2.7	- 27	= 5	-	-	-	12.0		
C-2	03/12/1998	37.47	14.17	23,30	0.00	0.00	45,000	6,000	1,400	1,800	5,900	2,700	142	1.1	1.1	176	174	420	3,5	<1.0	<1.0
C-2	06/23/1998	37.47	14.82	22.65	0.00	0.00	1,100,000	6,800	5,100	13,000	38,000	<1,000			-			-	3	-	-
C-2	09/01/1998	37.47	21.78	15.69	0.00	0.00	9,700	300	8.2	6.2	250	3,700	-		-6	10.4	-	-	-		4
C-2	12/30/1998	37.47	21.86	15.61	0.00	0.00	110,000	4,790	1,300	841	5,570	2,420	-					2.	-	=	

							HYDROCARBONS		- 1	PRIMARY	vocs		ADDITIONAL VOCS	1	FIELD	PARAMETE	RS	G	ENERAL C	HEMIST	RY
Location	Date	тос	DTW	GWE	NAPLT	LNAPL REMOVED	трн.бко	В	1	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-2	03/31/1999	37.47	16.90	20.57	0.00	0.00	48,000	4,800	1,110	1,520	5,450	2,160	-	1.5	1.6	151	157	456	2,100 ¹⁴	0.118	19.7
C-2	06/14/1999	37.47	20.15	17.32		0.00	56,400	5,380	671	1,300	3,960	2,480/2,6302		4	-	-	-				
C-2	09/30/1999	37.47	22.97	14.50	0.00	0.00	22,100	623	<100	529	1,250	2,430			-		-			-	-
C-2	12/22/1999	37.47	21.00	16.47	0.00	0.00	10,200	1,750	102	222	963	1,980	74	0.6	0.65	-90	-84	782	1.0	5.34	5.38
C-2	03/09/2000	37.47	12.20	25.27	0.00	0.00	26,000	4,800	930	1,200	4,400	1,800	12	1.0	1.6	-68	-70	450	0.31	<0.1	0.39
C-2	06/23/20003	37.47	18.94	18.53	0.00	0.00	29,0004	3,400	360	440	2,500	2,800							-	-	
C-2	09/05/20003	37.47	20.46	17.01	0.00	0.00	35,0004	3,800	54	980	750	5,200		1.31	1.85	65	44	690	0.34	<1.0	<1.0
C-2	12/04/2000	37,47	20.93	16.54	0.00	0.00	16,0004	2,500	120	360	1,100	2,100		4.47	-	- 9			=	- 3	-
C-2	03/08/20013	37.47	16.94	20.53	0.00	0.00	42,300	3,930	828	2,010	5,180	1,660							-	-	-
C-2	06/07/20013	37.47	19.34	18.13	0.00	0.00	15,0004	3,400	150	700	1,300	1,900		-	-		-	-	-	-	-
C-2	09/13/20013	37.47	22.19	15.28	0.00	0.00	9,600	1,200	<50	120	160	2,200			-					-	-
C-2	12/13/20013	37.47	17.60	19.87	0.00	0.00	33,000	3,200	430	1,300	3,700	1,400	-			-					-
C-2	03/08/20023	37.47	14.29	23.18	0.00	0.00	26,000	2,900	390	1,200	2,800	1,100	3.0	· i		- 2	-5				
C-2	06/19/20023	37.47	19.11	18.36	0.00	0.00	19,000	3,000	100	720	1,100	1,400	-	-	-			9	2	~ ~	-
C-2	09/11/20023	37.47	20.68	16.79	0.00	0.00	10,000	1,400	23	120	78	1,800	1.00	- 4	-		-	-	-	-	-
C-2	12/11/20023	37,47	22.11	15.36	0.00	0.00	8,700	1,300	24	100	250	1,900	8			-			-	-	-
C-2	03/11/2003	37.47	14.61	22.86	0.00	0.00	23,000	2,000	280	1,100	2,100	990	65	4	.5			-	-	=	-
C-2	06/10/2003 ^{3,7}	37.47	17:11	20.36	0.00	0.00	14,000	1,300	91	450	720	480				-					*
C-2	09/09/2003 ^{3,7}	37.47	21,14	16.33	0.00	0.00	6,800	1,100	9	83	47	1,300	<200	*	3	-			-	-	-
C-2	12/09/2003 ⁷	37.47	19.20	18.27	0.00	0.00	22,000	1,100	120	570	1,000	460	<250		3 -	-		-	-	-	-
C-2	03/09/20047	37.47	11.82	25.65	0.00	0.00	24,000	1,800	420	820	2,100	480	<250		-	-		0	-	-	-
C-2	06/08/20047	37.47	16.42	21.05	0.00	0.00	1,200	180	5	1	10	170	<50	-2	-					4	-

							HYDROCARBONS		- 1	PRIMAR	Y VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	тРН-GRO	В	Ť	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-2	09/08/2004 ⁷	37 47	13.16	24.32	0.01	0.00	16,000	340	13	290	200	170	<250	2						-	-
C-2	12/06/20047	37.47		23.36"	0.01	0.00	13,000	730	130	340	570	280	<100	-	-	- 3		-		-	-
C-2	03/07/2005	37.47	10.57	26.91"	0.01	0.00	18,000	2,200	470	770	2,000	420	<250	247			14	4			
C-2	06/06/2005 ⁷	37.47	12.69	24.78	0.00	0.00	9,800	940	79	300	490	200	<100	34		- 2	1-	50		-	
C-2	09/06/2005	37.47	14.78	22.69	0.00	0.00	9,300	380	8	89	76	170	<100	-	- 4	1.2		200	6		
C-2	12/05/2005	37.47	14.22	23.25	0.00	0.00	8,300	190	8	68	67	56	<50					40	8.0		
C-2	03/06/2006 ⁷	37.47	9.74	27.73	0.00	0.00	1,900	41	5	13	43	6	<50					3	20		
C-2	06/05/2006 ⁷	37.47	9.75	27.72	0.00	0.00	8,800	680	99	200	460	170	<50	-	-	-	1-	-		-	
C-2	09/05/2006	37.47	11.96	25.51	0.00	0.00	8,200	1,200	24	170	65	65	<100	-1		12.		328		11.5	-
C-2	12/04/2006 ⁷	37.47	12.43	25.04	0.00	0.00	9,500	1,800	38	140	94	94	<100			-	4	4			-
C-2	03/05/2007	37.47	10.61	26.86	0.00	0.00	15,000 11	1,900	30011	57011	1,30011	25011	<250 ¹¹			-	-	-		-	
C-2	06/04/2007	37.47	10,34	27,13	0.00	0.00	6,200	410	16	76	100	110	<50			-	-		.2.0	-	-
C-2	09/07/2007	37.47	11.65	25.82	0.00	0.00	6,400	240	6	71	82	.67	<50			-	14.	2.		-	
C-2	12/06/2007	37.47	18.40	19.07	0.00	0.00	7,300	200	12	47	79	56	<50	2.	-	2		4.			
C-2	03/06/20087	37.47	9.47	28.00	0.00	0.00	18,000	2,400	340	850	1,600	260	<100					*			
C-2	06/05/2008	37.47	11.07	26.40	0.00	0.00	5,800	530	18	47	80	100	<250	4.	-	3		91		-	-
C-2	09/03/2008	37,47	13,20	24.27	0.00	0.00	5,600	340	10	81	48	63	<50	-			(+	~	-	-	
C-2	12/03/2008	37.47	14.61	22.86	0.00	0.00	9,600	1,100	58	250	210	220	<130					4,0			
C-2	03/04/2009	37.47	11.69	25.78	0.00	0.00	9,200	640	94	250	670	73	<130					4		-	-
C-2	06/09/20097	37.47	11.27	20.20	0.00	0.00	9,100	590	20	77	45	110	<50							-	
C-2	09/30/2009 ⁷	37.47	16.54	20.93	0.00	0.00	7,800	290	9	11	24	200	<50					-	-		-
C-2	03/22/20107	37.47	9.63	27.84	0.00	0.00	14,000	990	120	460	750	120	<130			-				-	

							HYDROCARBONS		F	RIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	NAPLT	LNAPL REMOVED	TPH-GRO	В	Т	E	x	MTBE by SW8280	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinily, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	millivolts	millivolts	µg/L	μg/L	µg/L	μg/L
C-2	09/16/2010	37.47	12.90	24.57	0.00	0.00	7,400	170	8	52	35	29	<50					-	-		
C-2	03/08/2011	37.47	8.12	29.35	0.00	0.00	6,600	830	58	280	330	75	<100			-			-	10	
C-2	09/28/2011	37.47	14.86	22.61	0.00	0.00	7,200	320	10	83	52	50	<250	-	-	-	-				
C-2	03/08/2012	37.47	12.22	25.25	0.00	0.00	7,300	570	44	180	260	40	<500			-	-	-	19-		
C-2	09/20/2012	37.47	13.06	24.41	0.00	0.00	6,800	260	6	36	170	69	<50	-	~	- 2		-		-	-
C-2	03/20/2013	37.47	12.71	24.76	0.00	0.00	8,100	500	17	61	63	48	<130	-			-	-			
C-2	09/18/2013	37.47	14.90	22.57	0.00	0.00	15,000	230	13	150	290	42	<50		-	4.5	-	2.1	40		-
C-2	03/13/2014	37.47	12.45	25.02	0.00	0.00	13,000	640	41	230	180	45	<50					4			
C-2	09/25/2014	37.47	17.95	19.52	0.00	0.00	4,800	69	2	3	17	47	<50			-	-			-	
C-2	03/10/2015	40.05	17.04	23.01	0.00	0.00	14,000	480	22	120	120	40	<500	-	-	-	-	-	91	-	
C-2	06/19/2015	40.05	16.83	23.22	0.00	0.00	4	-			-	-	-	-		*			4		
C-2	09/15/2015	40.05	17,69	22.36	0.00	0.00	6,100	75	<3	<3	5	30	<250	-	+	-	8	4.	-	-	*
C-2	12/22/2015	40.05	15.00	25.05	0.00	0.00	7,700	270	10	67	32	24	<250			- 5	-	+	3.0		
C-2	03/08/2016	40.05	11.91	28.14	0.00	0.00	9,700	540	27	140	140	37	<250		•	-		-	-3"	•	•
C-3	04/28/1989	35.28	28.00	7.28	0.00	0.00	<500	1.7	<0.5	<0.5	<0.5	40	4					-	4		
C-3	08/08/1989	35.28	30.00	5.28	0.00	0.00	<500	1.0	<0.5	<0.5	<0.5	2.	-	-	-	-	-	=	3	•	*
C-3	12/21/1989	35.28	30.53	4.75	0.00	0.00		•	~			•			*	-0	-				-
C-3	08/27/1990	35.28	29.68	5.60	0.00	0.00	<50	< 0.3	<0.3	<0.3	<0.6			4.0	-		12	-	-		-
C-3	11/04/1990	35.30	30.36	4.94	0.00	0.00	-	-	-	-	-	+:		-	-		-	-	-	-	-
C-3	06/18/1991	35,30	28.46	6.84	0.00	0.00	52	1.1	<0.5	<0.5	1.2	-	144	-	-	-		~	330		-
C-3	09/19/1991	35.30	29.33	5.97	0.00	0.00	73	1.2	<0.5	<0.5	<0.5			-				9			
C-3	12/20/1991	35.30	29,77	5.53	0.00	0.00	<50	0.7	<0.5	<0.5	<0.5	-5	= 1	-	-		120	-	1-		

							HYDROCARBONS		F	PRIMARY	/ VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL C	CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	T.	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iran	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-3	03/18/1992	35.30	25.75	9.55	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-								~	
C-3	07/14/1992	35.30	27.87	7.43	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5				-				4	-	-
C-3	10/08/1992	35.30	28.55	6.75	0.00	0.00	<50	<0.5	<0.5	<0.5	0.5			1=	-		100			-	
C-3	01/08/1993	35.30	25.85	9.45	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5			-	-		19.		14.0		-
C-3	04/14/1993	35.30	23.96	11.34	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	0.5	14			- 1				-	
C-3	07/16/1993	35.30	25.64	9.66	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-				-	-		- 40		
C-3	09/21/1993	38.37	26.22	12.15	0.00	0.00	<50	0.7	<0.5	< 0.5	<0.8	-	a a	120	-	Len	- 4	- (4-	-		
C-3	01/28/1994	38.37	25.66	12.71	0.00	0.00	<50	2.0	<0.5	<0.5	1.0					1.	2	.2	1,2,1		
C-3	03/17/1994	38.37	24.95	13.42	0.00	0.00	<50	2.8	<0.5	0.6	1.5		(4)			- 8	.2			-	
C-3	06/16/1994	38.37	24.31	14.06	0.00	0.00	<50	1.4	<0.5	<0.5	< 0.5				-	-	-	-		-	
C-3	09/22/1994	38.37	25.04	13,33	0.00	0.00	<50	0.6	<0.5	<0.5	< 0.5			- 3	-	-	-	-		-	-
C-3	12/15/1994	38.37	22.22	16.15	0.00	0.00	<50	2.6	1.7	0.82	4.5	-		18	-	-	150				
C-3	03/30/1995	38.37	18.42	19.95	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5			-		-	-	13	- 6		-
C-3	06/20/1995	38.37	19.79	18.58	0.00	0.00	110	2.2	<0.5	<0.5	1.2	-	-	1,20	4	- 2	-2		-		
C-3	09/20/1995	38.37	18.95	19.42	0.00	0.00	560	21	80	23	120			. *	+		-	12	-	-	
C-3	12/06/1995	38.37	24.16	14.21	0.00	0.00	<50	0.73	<0.5	<0.5	0.67	<2.5	1.5			-	:				
C-3	03/21/1996	38.37	17.85	20.52	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<2.5					-	-	-3		=
C-3	06/21/1996	38.37	19.78	18.59	0.00	0.00	57	<0.5	<0.5	<0.5	<0.5	<2.5			*	-	-	- 2-	-		
C-3	09/06/1996	38.37	21.63	16.74	0.00	0.00	<50	0.9	<0.5	<0.5	<0.5	<2.5				+	-	9			-
C-3	12/19/1996	38.37	22.30	16.07	0.00	0.00	310	36	. 33	6.5	28	<2.5	1.2	-		-	-	-	12		-
C-3	03/17/1997	38.37	18.95	19.42	0.00	0.00	54	1.1	<0.5	< 0.5	0.76	<2.5	,14	-					9	**	-
C-3	06/11/1997	38.37	21.15	17.22	0.00	0.00	120	1.1	<0.5	<0.5	<0.5	<2.5					-	. 2			

							HYDROCARBONS			PRIMAR)	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	G	ENERAL (CHEMIST	RY:
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-бко	В	T	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsi	ft	gallons	µg/L	µg/L	μg/L	µg/L	pg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-3	09/17/1997	38.37	22.41	15.96	0.00	0.00	240	19	19	6.6	40	13		2.1	0.8	59	67	340	0.012	100	33
C-3	12/11/1997	38.37	22.26	16.11	0.00	0.00	<50	1.8	<0.5	<0.5	0.5	<2.5		-	-		-	-		-	
C-3	03/12/1998	38.37	18.35	20.02	0.00	0.00	72	6.3	<0.5	0.64	3.1	2.6		2.8	2.5	165	163	260	0.14	88	32
C-3	06/23/1998	38.37	19.04	19.33	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	14	-		-	-	0	-		
C-3	09/01/1998	38.37	19.97	18.40	0.00	0.00	200	6.8	0.31	0.52	2.0	<2.5		-	-	- Z		4	-		
C-3	12/30/1998	38.37	21.31	17.06	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.0		4		-					
C-3	03/31/1999	38.37	17.77	20.60	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	12.6	¥'	4.1	3.3	101	89	256	<500 ¹⁴	18.4	72
C-3	06/14/1999	38.37	18.25	20.12	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	4.	-							
C-3	09/30/1999	38.37	21.19	17.18	0.00	0.00	79.2	3.04	0.794	< 0.5	1.04	6.17		-	2,0	1.2	1.2	-	-	III (6	1.4
C-3	12/22/1999	38.37	22.32	16.05	0.00	0.00	<50	1.53	1.08	<0.5	0.66	12	4.0	0.98	1.48	69	107	402	0.013	67.7	37.6
C-3	03/09/2000	38.37	17.10	21.27	0.00	0.00	99	6.9	0.8	0.89	3.8	12	2.0	3.3	1.6	110	97	390	0.12	60	38
C-3	06/23/2000	38.37	19.15	19.22	0.00	0.00	<50	<0.50	<0.50	<0.50	<0.50	<2.5		41	-		-	-	-		
C-3	09/05/2000	38.37	20.84	17.53	0.00	0.00	52 ⁴	4.3	< 0.50	< 0.50	0.93	29		3.79	2.53	202	203	430	0.011	52	40
C-3	12/04/2000	38.37	21.20	17.17	0.00	0.00	70 ⁴	4.0	<0.50	< 0.50	0.71	25	-	2	-	2		•			
C-3	03/08/2001	38.37	17.67	20.70	0.00	0.00	<50.0	0.873	< 0.500	<0.500	< 0.500	3.24				-	-	-	-	- 8	94
C-3	06/07/2001	38.37	18.90	19.47	0.00	0.00	1404	16	0.67	1.4	3.8	30	-		-	-		-			
C-3	09/13/2001	38,37	21.01	17.36	0.00	0.00	<50	< 0.50	<0.50	< 0.50	<0.50	<2.5	1-1-	-	-			20	4		
C-3	12/13/2001	38.37	19.80	18,57	0.00	0.00	<50	1.2	<0.50	< 0.50	<1.5	15	-2	-		100	9	4	3.0	5	-
C-3	03/08/2002	38.37	17.78	20.59	0.00	0.00	82	5.4	<0.50	< 0.50	<1.5	68	3.5	□ € · □		-6		*	0		
C-3	06/19/2002	38.37	18.40	19.97	0.00	0.00	74	2.1	< 0.50	< 0.50	<1.5	77	-	-	-	65		-	-		
C-3	09/11/2002	38.37	20.17	18.20	0.00	0.00	110	4.7	<0.50	< 0.50	<1.5	76		-	-	-		-			
C-3	12/11/2002	38.37	21.75	16.62	0.00	0.00	79	1.5	<0.50	< 0.50	<1.5	96			+	+	- 5	30	-	-	4

							HYDROCARBONS		1	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	Ē	X	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	μg/L	µg/L	µg/L
C-3	03/11/2003	38.37	19.07	19.30	0.00	0.00	<50	2.1	<0.50	<0.50	<1.5	18	-	14				38-		-	
C-3	06/10/2003	38.37	19.08	19.29	0.00	0.00	86	2	<0.5	<0.5	<0.5	93	-	-	-	-		-	4.0		-
C-3	09/09/2003	38.37	20.70	17.67	0.00	0.00	<50	2	<0.5	<0.5	<0.5	160	<50	6-3-		12.	-				4
C-3	12/09/2003	38.37	21.05	17.32	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	0.9	<50	4.		P-	-	-			
C-3	03/09/2004	38.37	16.25	22.12	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-	-			40		-	200
C-3	06/08/2004	38.37	18.50	19.87	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50			- 6	18	-			
C-3	09/08/2004	38.37	20.01	18.36	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	22	<50			-					
C-3	12/06/2004	38.37	19.30	19.07	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	4.1	-,1	1.2	2	>-	-	-	1
C-3	03/07/2005	38.37	18.02	20.35	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	40	-	-			100	-	-
C-3	06/06/2005	38.37	19.08	19.29	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<50	-				8	-	-	-
C-3	09/06/2005	38.37	18.15	20.22	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-		-	-			-	
C-3	12/05/2005	38.37	17.85	20,52	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<50	0	-			2.0			-
C-3	03/06/2006	38.37	17.93	20.44	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50	1.6	- 2	-5.	-	4	3-		1
C-3	06/05/2006	38.37	15.35	23.02	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	65	<50		-	- 4.	19	2	-		-
C-3	09/05/2006	38.37	18.42	19.95	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50		-			-	3.0	-	-
C-3	12/04/2006	38.37	18.29	20.08	0.00	0.00	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5	<50	-	-		13	-0.0		-	
C-3	03/05/2007	38.37	14.74	23,63	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-	-	0.5	-	-	3		+
C-3	06/04/2007	38.37	15.68	22.69	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-	-						
C-3	09/07/2007	38.37	18.51	19.86	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-		-		-	-		-
C-3	12/06/2007	38.37	19.41	18.96	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	-	- 2	2	-	20.0			
C-3	03/06/2008	38.37	15.95	22.42	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	1	<50		-	0		20,0	4.0	-	
C-3	06/05/20087	38.37	17.48	20.89	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	0.6	<50	- 2	-	96					7

							HYDROCARBONS		- 1	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL C	HEMIST	RY
Location	Date	тос	DTW	GWE	NAPLT	LNAPL REMOVED	PH-GRO	В	ī	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissalved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nirate (as N)	Sulfate
	Units	ft:	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	μg/L	µg/L
C-3	09/03/2008 ⁷	38.37	18.98	19.39	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0,5	<50		-		-	-		-	
C-3	12/03/2008 ⁷	38.37	20.18	18.19	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	14	-		-		-	-	
C-3	03/04/2009	38.37	16.52	21.85	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	1	<50		-			-	63	-	-
C-3	06/09/20097	38.37	17.62	26,82	0.00	0.00	140	<0.5	<0.5	<0.5	<0.5	240	<50	-		-	-2		-	-	-
C-3	09/30/20097	38.37	19.83	18.54	0.00	0.00	120	<0.5	<0.5	<0.5	<0.5	130	<50		-						-
C-3	03/22/2010 ⁷	38.37	16.84	21.53	0.00	0.00	<50	0.6 J	<0.5	< 0.5	<0.5	4	<50							-	-
C-3	09/16/2010	38.37	19.92	18.45	0.00	0.00	80 J	<0.5	<0.5	<0.5	<0.5	390	<50							-	-
C-3	03/08/2011	38.37	16.10	22.27	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<50						-	-	-
C-3	09/28/2011	38.37	18.76	19.61	0.00	0.00	100	0.8 J	<0.5	<0.5	0.5 J	300	<50	-			-	-		140	14
C-3	03/08/2012	38.37	19.24	19.13	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	170	<50	12	-		-		-	-	-
C-3	09/20/2012	38,37	20.17	18.20	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<50			-	-			-	-
C-3	03/20/2013	38.37	19.17	19.20	0.00	0.00	74 J	<0.5	<0.5	<0.5	<0.5	400	<50		- 2						-
C-3	09/18/2013	38.37	19.90	18.47	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50			-				-	-
C-3	03/13/2014	38.37	19.00	19.37	0.00	0.00	87 J	<0.5	<0.5	<0.5	< 0.5	140	<50	-	-	-	-		-	4	-
C-3	09/25/2014	38.37	21.72	16.65	0.00	0.00	89 J	<0.5	<0.5	<0.5	<0.5	360	<50		-	-			-	-	-
C-3	03/10/2015	40.62	21,16	19.46	0.00	0.00	76 J	<0.5	<0.5	<0.5	<0.5	54	<50	4	4	-	-	-	-	-	3
C-3	06/19/2015	40,62	20.83	19.79	0.00	0.00	4-6	-			4:	-	2	1	-2-	-			-		-
C-3	09/15/2015	40.62	21.86	18.76	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	390	<50			*	9	-	-		3
C-3	12/22/2015 15	40.62	21.71	18.91	0.00	0.00						-			-		- 6	-	**		£
C-3	03/08/2016	40.62	19.65	20.97	0.00	0.00	55 J	<0.5	<0.5	<0.5	<0.5	290	<50			-			*:	- 2	-
C-4	01/12/1989	33.45	29.49	3.96	0.00	0.00							la la								-

							HYDROCARBONS		- 1	RIMAR	Vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS.	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	NAPLT	NAPL REMOVED	PH-GRO	В	т	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as GaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft.	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-4	04/12/1989	33.45	27.44	6.01	0.00	0.00							-			-	-		-		
C-4	04/28/1989	33.45	29.49	3.96	0.00	0.00	20,000	6,300	550	230	1,500						- 6-	-			-
C-4	08/08/1989	33.45	29.55	3.90	0.00	0.00	8,000	7,500	340	88	1,000					-			-	-	-2
C-4	12/21/1989	33.45	30.02	3.43	0.00	0.00	0,000	1,000	-		-	-	0.4			2	-		-	-	
C-4	08/27/1990	33.48	29.02	4.46	0.00	0.00	26,000	10,000	280	410	1,400	-						-			-
C-4	11/04/1990	33,48	29.81	3.67	0.00	0.00	-						7			-					
C-4	06/18/1991	33.48	27.45	6.03	0.00	0.00	34,000	14,000	410	450	1,300	-	4						- 53	-	
C-4	09/19/1991	33.48	28.65	4.83	0.00	0.00	16,000	7,400	90	110	460			-					14.		-
C-4	12/20/1991	33.48	28.84	4.64	0.00	0.00	24,000	12,000	120	260	740	- 2	-			2	- 2			-	
C-4	03/18/1992	33.48	24.43	11.05	0.00	0.00	48,000	6,000	1,300	1,300	2,400	-					-	19	-		-
C-4	07/14/1992	33.48	26.89	6.59	0.00	0.00	40,000	14,000	920	550	2,400	-	-	-	-	-	-	-	43	-	-
C-4	10/08/1992	33.48	27.79	5.69	0.00	0.00	29,000	13,000	190	110	1,400	-	-				-	3	9.		
C-4	01/08/1993	33.48	23.50	9.98	0.00	0.00	25,000	7,000	630	860	1,800	-	2-4			-	-	-2	-		-
C-4	04/14/1993	33.48	21.13	12.35	0.00	0.00	27,000	6,300	1,000	900	1,400	-	9	-			*	5	-	-	-
C-4	07/16/1993	33.48	23.96	9.52	0.00	0.00	28,000	7,800	1,100	830	2,100				4.0	-	-	-	-	-	-
C-4	09/21/1993	36.49	25.51	10.98	0.00	0.00	30,000	9,600	130	390	1,300					-		- 5	1.4		-
C-4	01/28/1994	36.49	23.31	13.18	0.00	0.00	18,000	7,800	440	260	1,200		-	-	-	-	2	1-1	4.	-	-
C-4	03/17/1994	36.49	21.35	15.14	0.00	0.00	32,000	7,800	820	820	1,800		14	-	-	-	-	9		*	
C-4	06/16/1994	36.49	22.50	13.99	0.00	0.00	25,000	7,600	710	600	1,800			+			-	5	-		3
C-4	09/22/1994	36.49	23.93	12.56	0.00	0.00	25,000	7,800	140	600	1,100		-	-		-	- 50	-	-		-
C-4	12/15/1994	36.49	19.02	17.47	0.00	0.00	38,000	7,600	460	1,200	2,000		-				-	19	2.	-	-
C-4	03/30/1995	36.49	14.86	21.63	0.00	0.00	41,000	8,700	1,600	1,800	3,000	-		1.9			*		-	*	

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

							HYDROCARBONS		1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	Gi	ENERAL C	HEMIST	RY
Location	Date	тос	DTW	GWE	NAPLT	NAPL REMOVED	TPH-GRO	В	Ţ	E	X	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissalved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-4	06/20/1995	36.49	16.90	19.59	0.00	0.00	29,000	6,000	890	960	1,800	-	-								
C-4	09/20/1995	36.49	16.20	20.29	0.00	0.00	12,000	6,900	510	290	1,300	-	Q	-	141	-	-	-	-	-	-
C-4	12/06/1995	36.49	23.12	13.37	0.00	0.00	13,000	3,900	42	30	250	<250	2	-	- 6-		1.0	4	-	-	E
C-4	03/21/1996	36.49	14.10	22.39	0.00	0.00	39,000	4,800	640	1,000	1,800	<1,000			- 2		-	4	15		
C-4	06/21/1996	36.49	16.95	19.54	0,00	0.00	26,000	4,400	640	960	1,800	2,000		~		-		. 5.5		-	- 4
C-4	09/06/1996	36.49	20.13	16.36	0,00	0.00	23,000	500	200	230	1,000	3,100	9	1	14.			100	-		-2
C-4	12/19/1996	36.49	16.92	19.57	0.00	0.00	23,000	4,900	320	1,100	2,000	<250	-	(4)	4					-	-
C-4	03/17/1997	36.49	17.40	19.09	0.00	0.00	30,000	5,800	700	1,400	2,200	1,700	54	*	3	- 2			-	-	-
C-4	06/11/1997	36.49	18.34	18.15	0.00	0.00	29,000	4,400	520	790	1,800	2,000			-	0.00				-	
C-4	09/17/1997	36.49	21.46	15.03	0.00	0.00	17,000	4,300	140	940	1,100	4,600	-	0.6	0.2	102	107	540	5.9	<1.0	<1.0
C-4	12/11/1997	36.49	16.65	19,84	0.00	0.00	12,000	2,500	130	300	1,000	1,400	.0		-			-	3.0	-	- 2
C-4	03/12/1998	36.49	16.59	19.90	0.00	0.00	46,000	11,000	1,500	2,300	5,000	3,400	-	1.5	2.6	173	175	550	1.3	<1.0	27
C-4	06/23/19983	36.49	17.02	19.47	0.00	0.00	27,000	1,600	160	180	690	100				*	-		-	-	-
C-4	09/01/1998	36.49	21.45	15.04	0.00	0.00	520	14	2.3	<0.5	4.8	61	25		- 4	- 1	-4	(4)	-	-	
C-4	12/30/1998	36.49	21.42	15.07	0.00	0.00	122	14.1	1.86	<1.0	3.61	349		0+0		-		(+)			
C-4	03/31/1999	36.49	15.20	21.29	0.00	0.00	20,300	4,450	443	1,000	2,130	1,320	-	1.8	2.2	170	176	492	1,56014	0.191	<1.0
C-4	06/14/1999	36.49	21.80	14.69	0.00	0.00	1,820	183	7.14	36.7	56.5	280 ² /291			-	*	*	-	-	-	3
C-4	09/30/1999	36.49	19.81	16.68	0,00	0.00	1,030	11.6	2.14	29.2	68.7	91.5	7		-	-		\sim	-	-	
C-4	12/22/1999	36.49	20.27	16.22	0.00	0.00	217	4.45	0.765	2.82	8.21	70.2	-	6.8	5.68	-25	14	739	0.87	1.85	39.6
C-4	03/09/2000	36.49	13.36	23.13	0.00	0,00	8,300	2,600	270	510	1,400	650	-	1.1	1.9	-13	-39	530	<0.01	<0.1	4.5
C-4	06/23/20003	36.49	19.40	17.09	0.00	0.00	55 ⁴	1.2	<0.50	< 0.50	<0.50	250	12	- 2.	3	-				•	
C-4	09/05/20003	36.49	21.43	15.06	0.00	0.00	1104	5.4	< 0.50	< 0.50	1.1	52		2.22	2.02	105	138	530	< 0.010	<1.0	29

						_21	HYDROCARBONS		1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIST	rry
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	трн.ско	8	Ť	Ē	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sufate
	Units	ft.	ft	ft-amsl	ft	gallons	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
0-4	12/04/2000	36.49	21.78	14.71	0.00	0.00	<50	<0.50	0.56	< 0.50	1.1	22	-	-		-		-			-
C-4	03/08/20013	36.49	16,62	19.87	0.00	0.00	9,080	2,260	229	395	1,060	718	,			-	5	2	-	-	-
C-4	06/07/20013	36.49	19.60	16.89	0.00	0.00	8004	75	4.3	22	33	340	ia.	-							
C-4	09/13/20013	36,49	21.71	14.78	0.00	0,00	<50	0.68	< 0.50	< 0.50	< 0.50	18	- 2	1,5	-		-2.			4	-
C-4	12/13/20013	36.49	17.95	18.54	0.00	0.00	5,800	1,400	43	21	470	540	50	- 2	- 2						-
C-4	03/08/20023	36.49	16.78	19.71	0.00	0.00	7,000	1,300	67	280	390	610	- 5				2.				-5
C-4	06/19/20023	36.49	18.80	17.69	0.00	0.00	3,100	130	6.5	29	55	250		12		*		-		-	
C-4	09/11/20023	36,49	20.30	16,19	0.00	0.00	820	6.2	1.0	2.2	2.5	26	14					-	2.	-	-
C-4	12/11/20023	36.49	21.97	14.52	0.00	0.00	<50	0.74	<0.50	<0.50	<1.5	9.3	8	18				-	-	-	
C-4	03/11/20033	36.49	18.39	18.10	0.00	0.00	5,500	490	12	100	210	330	9		2	-			-	-	-
C-4	06/10/2003 ^{3,7}	36.49	18.75	17.74	0.00	0.00	3,300	370	15	120	200	200			-		-5	-	-	3	
C-4	09/09/2003 ^{3,7}	36.49	20.79	15,70	0.00	0.00	690	8	0.8	5	5	30	<50	-	-			-		-	
C-4	12/09/2003 ^{7,9}	36.49	20.30	16.19	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	57	<50			-	-	0	4.	- 2	-
C-4	03/09/20047	36.49	13.46	23.03	0.00	0.00	15,000	1,600	73	520	460	230	<250	- 2			*		1	2	-
C-4	06/08/20047	36.49	17.02	19,47	0.00	0.00	550	120	2	0.7	5	93	<50				-		-	-	-
C-4	09/08/20047	36,49	17.58	18.91	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	37	<50			*	-	-	-		-
C-4	12/06/20047	36.49	16.78	19.71	0.00	0.00	7,000	1,600	39	230	260	180	<50				-	~	-61	-	2.
0-4	03/07/2005	36.49	12.16	24.33	0.00	0.00	9,500	2,100	67	330	160	170	<250			-					-
C-4	06/06/2005	36,49	13.63	22.86	0.00	0.00	7,700	2,000	39	280	130	130	<250	-0	-	-		-	*		π.
C-4	09/06/2005 ⁷	36.49	15.70	20.79	0.00	0.00	3,600	830	10	79	21	110	<50	17		-	-2	-	(-)	-	-
C-4	12/05/2005	36.49	16.45	20.04	0.00	0.00	4,400	1,000	11	80	23	120	<250	-	-		-	-	-	-	-
C-4	03/06/20067	36,49	12.95	23.54	0.00	0.00	10,000	2,400	92	240	170	130	<500					-	-	-	

							HYDROCARBONS		- 1	PRIMAR	Y VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Dele	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	83	ī	E	х	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft.	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	pg/L	µg/L	µg/L
C-4	06/05/2006 ⁷	36.49	11.02	25.47	0.00	0.00	16,000	3,300	160	350	370	150	<500		3-	-	-	2	-	4	=
C-4	09/05/2006	36,49	12,60	23.89	0.00	0.00	9,600	1,400	29	200	78	81	<100		-	-		~	~	-	-
C-4	12/04/2006	36.49	13.20	23.29	0.00	0.00	13,000	1,800	40	150	99	100	<250			_	-	-	-	4	
C-4	03/05/2007	36.49	10.65	25.84	0.00	0.00	11,000	2,800	58	230	270	100	<500	-	-	-			-		
C-4	06/04/2007	36.49	11.54	24.95	0.00	0.00	13,000	3,500	87	300	230	94	<250	1.2	-	-	1.6			12.	1.2
C-4	09/07/2007	36.49	12.50	23.99	0.00	0.00	5,100	1,000	24	70	43	39	<130	-	- 5-						-
C-4	12/06/2007	36.49	12.42	24.07	0.00	0.00	9,900	2,000	65	210	210	74	<130		-	-		4	4	4	- 6
C-4	03/06/2008	36.49	10.14	26.35	0.00	0.00	17,000	3,500	210	510	510	77	<250	-	-	-		-	-	-	
C-4	06/05/20087	36,49	11,58	24.91	0.00	0.00	12,000	3,500	120	300	240	76	<250	(*)	-		-2.	8	-	-	3
C-4	09/03/20087	36.49	12.47	24.02	0.00	0.00	13,000	3,400	72	210	130	73	<250		-	-	÷	*	+	-	- 52
C-4	12/03/2008	36.49	14.08	22,41	0.00	0.00	12,000	2,600	55	200	160	60	<250			-	-6		-		+
C-4	03/04/2009	36.49	12.48	24.01	0.00	0.00	14,000	2,500	78	350	340	58	<250			-	-	-		- 4	-
C-4	06/09/20097	36.49	11.55	24.94	0.00	0.00	13,000	2,500	69	260	140	55	<100		-				2,0	-	
C-4	09/30/20097	36.49	12.25	24.24	0.00	0.00	10,000	1,900	40	140	87	44	<100		7.		-	0	-	-	-
C-4	03/22/20107	36.49	10.37	26.12	0.00	0.00	13,000	2,500	74	260	260	46	<50			-	*			- 2	
C-4	09/16/2010	36.49	11.75	24.74	0.00	0.00	9,700	1,300	33	160	120	27	<100		,	*		9	-	-	-
C-4	03/08/2011	36.49	9.90	26.59	0.00	0.00	9,200	1,900	42	190	130	24	<250	-	-	-	-		-		
C-4	09/28/2011	36.49	10.83	25.66	0.00	0.00	8,200	1,300	24	94	65	25	<250	1,4	-	-	-	=	-	92	-
C-4	03/08/2012	36,49	13.74	22.75	0.00	0.00	8,800	1,600	36	130	90	21	<500	~	-			*	-	-	-
C-4	09/20/2012	36.49	12.10	24.39	0.00	0.00	10,000	1,300	34	150	95	17	<500	- 2	-		-	•	-	-	74
C-4	03/20/2013	36.49	8.97	27,52	0.00	0.00	6,300	1,300	33	110	60	20	<100			-				-	- 3
C-4	09/18/2013	36.49	9.73	26.76	0.00	0.00	6,900	740	15	65	57	5	<50						-		-

							HYDROCARBONS		- 1	PRIMAR	y vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIS ¹	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	1	E	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sufate
	Units	ft.	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	μg/L
C-4	03/13/2014	36.49	9.97	26.52	0.00	0.00	10,000	1,400	40	150	84	13	<100						-		-
C-4	09/25/2014	36.49	12.00	24.49	0.00	0.00	6,400	1,300	19	34	31	18	<250					-		-	-
C-4	03/10/2015	38.69	11.42	27.27	0.00	0.00	8,800	1,400	30	99	50	13 J	<1,000	-	-	-		-	-		-
C-4	06/19/2015	38.69	11.78	26.91	0.00	0.00	-	4			-	-	3			-	-			-	
C-4	09/15/2015	38.69	12.10	26,59	0.00	0.00	8,200	730	12	42	29	7	<250				2.	-	23		-9
C-4	12/22/2015	38.69	11.66	27.03	0.00	0.00	7,600	490	11	49	37	7	<250	1.2			2	0	2.		-
C-4	03/08/2016	38.69	9.22	29.47	0.00	0.00	6,300	910	19	15	38	9 J	<500				-			*	
C-5	08/27/1990	35,50	29.83	5,67	0.00	0.00	<50	<0.3	<0.3	<0.3	<0.6	-		_	4	*					100
C-5	11/14/1990	35.50	30.56	4.94	0.00	0.00	1-	2	+	1.2	-	*	4-		-	-	-		= 1	-	- 2
C-5	08/18/1991	35.50	28.52	6.98	0.00	0.00	<50	< 0.5	<0.5	<0.5	-	- 0	8	1,2		-	4	12	6	*	
C-5	09/19/1991	35.50	29.51	5.99	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	*	*				~	7	*		-
C-5	12/20/1991	35.50	29.96	5.54	0.00	0.00	<50	< 0.5	< 0.5	<0.5	<0.5	*	4	4	-	-	-	100	5	-	
C-5	03/18/1992	35.50	25.92	9.58	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	*	16				-	-	= 1	3-	3
C-5	07/14/1992	35.50	28.00	7.50	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-				*	-6				
C-5	10/08/1992	35.50	28.65	6.85	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	*	- 4		3	•					*
C-5	01/08/1993	35.50	26.02	9.48	0.00	0.00	<50	<0,5	<0.5	<0.5	<0.5	*	-81		-	-	-	\approx	\sim	-	-5
C-5	04/14/1993	35.50	24.04	11.46	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5			-				-	-	-	-
C-5	07/16/1993	35.50	25.21	10.29	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-		-	-		-	-			
C-5	09/21/1993	38.50	26.36	12.14	0.00	0.00	60	10	8.1	1.9	9.4		9		3	-	-	-	*	30	*
C-5	01/28/1994	38.50	25,90	12.60	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-		-	-		-	.5	~	-2"	
C-5	03/17/1994	38.50	24.50	14.00	0.00	0.00	<50	< 0.5	< 0.5	< 0.5	<0.5	-	-			-			-	4	-

							HYDROCARBONS			RIMAR	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL C	HEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	1	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nifrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	pg/L	μg/L	µg/L
C-5	06/16/1994	38.50	24.40	14.10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-		-		-	-				
C-5	09/22/1994	38.50	25.16	13.34	0.00	0.00	<50	<0,5	<0.5	<0.5	<0.5	-	-			-	-	-			-
C-5	12/15/1994	38.50	22.89	15.61	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-		-	8	-		=	-	-	
C-5	03/30/1995	38.50	18.54	19.96	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5		14.	-		-			140	-	38.
C-5	06/20/1995	38.50	20.13	18.37	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	5.		-	-	-	-	1.0	-	-	ě
C-5	09/20/1995	38.50	24.34	14.16	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	-	-					-			-
C-5	12/06/1995	38.50	24.10	14.40	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	<2.5			-	-	-	-	18		
C-5	03/21/1996	38.50	18.40	20.10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5						-		-	
C-5	06/06/1996	38.50	21.90	16.60	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<2.5		-	2	- 6	-6	4	1-2-1		
C-5	06/21/1996	38.50	20.27	18.23	0.00	0.00	<50	<0.5	< 0.5	< 0.5	< 0.5	8.7			~	- 2					
C-5	12/19/1996	38.50	21.15	17.35	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5	-	-	-	*	200	æ.	-	-	-
C-5	03/17/1997	38.50	19.84	18.66	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5				-	140	12	-	20	
C-5	06/11/1997	38.50	21.60	16.90	0.00	0.00	<50	< 0.5	<0.5	< 0.5	<0.5	<2.5	14	-		-	-	-		**	
C-5	09/17/1997 12	38.50	27.83	10.67	0.00	0.00			-	-	-	-	10		-	-		.3			
C-5	12/11/1997	38.50	21.00	17.50	0.00	0.00			-		-	-	-			-	-	3	*		-
C-5	03/12/1998	38.50	16.42	22.08	0.00	0.00	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5	· ·	1.7	1.9	70	169	210	0.074	69	74
C-5	06/23/1998	38.50	16.98	21.52	0,00	0.00		~	-	-	-	-	99	14	-			-	-	-	9
C-5	09/01/1998	38.50	20.42	18.08	0.00	0.00	-	100			-	-	1.2		-1	-	_2	(2	-	*	
C-5	12/30/1998	38.50	20.79	17.71	0.00	0.00				-			Carrier .	. 2			- 4				
C-5	03/31/1999	38,50	17.05	21.45	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	15		12.8	6.7	92	97	254	<500 ¹⁴	16,7	69.7
C-5	06/14/1999	38.50	17.48	21.02	0.00	0.00	3.00					-	,			-	-	13	-	-	
C-5	09/30/1999	38.50	18.73	19.77	0.00	0.00	0.0				200	-	-	-						-	

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL C	CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	тен.ско	В	ī	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nirate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-5	12/22/1999	38.50	22.18	16.32	0.00	0.00		-			-6-		-	-			-	-6		-	-
C-5	03/09/2000	38.50	16.98	21.52	0.00	0.00	<50	<0.5	<0.5	<0.5	0.87	3.5	-	2.8	3.6	120	118	230	0.39	60	74
C-5	06/23/2000 12	38.50	19.65	18.85	0.00	0.00					1 -	-	-2-	4	-					-	
C-5	09/05/2000	38.50	20.47	18.03	0.00	0.00	-		-		- 2	-		(-	3-5	-	-2	-	- 6	4.	
C-5	12/04/2000	38.50	21,46	17.04	0.00	0.00	2		-			5	12.00	-	4.	4.		4		~	
C-5	03/08/2001	38.50	17.53	20.97	0.00	0.00	<50.0	<0.500	<0.500	<0.500	< 0.500	5.15	-							-	
C-5	06/07/2001 12	38.50	19.50	19.00	0.00	0.00				-	19			- (4	-					÷.	-
C-5	09/13/2001 12	38.50	21.43	17.07	0.00	0.00		2.0			-	-		-	-3		3.	0	1.	-	-
C-5	12/13/2001 12	38.50	19.84	18.66	0.00	0.00		-	1.4	-	-			0.4	4	-	-	-		~ :	-
C-5	03/08/2002	38.50	18.18	20.32	0.00	0.00	<50	<0.50	<0.50	<0.50	<1.5	3.5			*	-	-	-		-	-
C-5	06/19/2002 12	38.50	18.88	19.62	0.00	0.00					-		74	-	-	-	-			+	-
C-5	09/11/2002 12	38.50	20.56	17.94	0.00	0.00			-		~	4.		- 4	40					-	+
C-5	12/11/2002 12	38.50	21.82	16.68	0.00	0.00						9.		1.0		-	-				
C-5	03/11/2003	38.50	18.96	19.54	0.00	0.00	<50	<0.50	<0.50	<0.50	<1.5	3.2		-	-	- 2		-		2.	
C-5	06/10/2003 12	38.50	18.87	19.63	0.00	0.00									-	140	14		-	-	
C-5	09/09/2003 12	38.50	20.68	17.82	0.00	0.00			-	2	-	-			-2	12			1	-	
C-5	12/09/2003 12	38.50	20.25	18.25	0.00	0.00		-		-	+4			-	· .			4	=	-	-
C-5	03/09/20047	38.50	16.68	21.82	0.00	0.00	<50	< 0.5	<0.5	<0.5	< 0.5	1	<50		-	-	-				*
C-5	06/08/2004 12	38.50	19.34	19.16	0.00	0.00			-	-	-	-	-4		~	-	-	-		-	
C-5	09/08/2004 12	38.50	20.10	18.40	0.00	0.00			-				-	-	-		-	-	11.00	-	
C-5	12/06/2004 12	38.50	19.75	18.75	0.00	0.00	-			-	-				-	-	-		12	4.	-
C-5	03/07/20057	38.50	18.15	20.35	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50		-	3		9.			

							HYDROCARBONS			PRIMAR	/ Vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL	CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-сво	В	T	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
-	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-5	06/06/2005 12	38.50	19.36	19.14	0.00	0.00	-	-	-		-		æ	-	-		-	-			-
C-5	09/06/2005 12	38.50	18.26	20.24	0.00	0.00	-	-		-	-				-		-				-
C-5	12/05/2005 12	38.50	17.91	20.59	0.00	0.00									4.5		-			-	-
C-5	03/06/2006 ⁷	38.50	18.20	20.30	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50	3.0	-	.3	13.				-
C-5	06/05/2006 12	38.50	15.87	22.63	0.00	0.00	1		-	- 2			- 0	. 49	-	-	0		-	-	4
C-5	09/05/2006 12	38.50	18.78	19.72	0.00	0.00				-	-	-		-5.							5
C-5	12/04/2006 12	38.50	18.71	19.79	0.00	0.00						1.0	-			-				-	-
C-5	03/05/2007	38.50	16.27	22.23	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	1	<50	-	2	- 3	-	×	-	-	-
C-5	06/04/2007 12	38.50	16.27	22.23	0.00	0.00		12	-	-	-	-	100			-	-			-	-
C-5	09/07/2007 12	38.50	18.91	19.59	0.00	0.00	4.00	*	-	1.6		100	12	-	3	-		-	~	8	2
C-5	12/06/2007 12	38.50	19.35	19.15	0.00	0.00					-	-	-		-	-	-			-	-
C-5	03/06/2008 ⁷	38.50	15.84	22,66	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	0.7	<50		-	9.0	~		0	-	-
C-5	06/05/2008 12	38.50	17,41	21.09	0.00	0.00		-	4.		-		2		•	-				10	
C-5	09/03/2008 12	38.50	19.31	19.19	0.00	0.00		-8		- 6		-	Υ.		-		-			*	-
C-5	12/03/2008 12	38.50	20.41	18.09	0.00	0.00				1.5				-	-	1 -				-	-
C-5	03/04/2009	38.50	16.41	22.09	0.00	0.00	<50	< 0.5	<0.5	<0.5	<0.5	2	<50					-	-	~.	9
C-5	06/09/2009 ⁷	38,50	18.33	12.17	0.00	0.00	3		-	2	-2	-	1.5	-	-	3.	-	-	100	-	-
C-5	09/30/2009 ⁷	38,50	19.95	18.55	0.00	0.00		•		-			-		*	-				-	
C-5	03/22/2010 ⁷	38.50	16.34	22.16	0.00	0.00	<50	1	<0.5	< 0.5	<0.5	3	<50		*	-				-	-
C-5	09/16/2010 12	38.50	19.20	19.30	0.00	0.00	• • •		121	-	-	14		-	-	-		48		-7.	
C-5	03/08/2011 12	38.50	16.80	21.70	0.00	0.00	110	3	< 0.5	2	2	3	<50	-	-		-		-	4	-
C-5	09/28/2011 12	38.50	9.41	29.09	0.00	0.00	2.			1.5	-					-	-			-	-

							HYDROCARBONS		1	PRIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL C	CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ť	E	×	MTBE by SW8280	ETHÀNOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-5	03/08/2012 12	38.50	20.00	18.50	0.00	0.00	96 J	10	0.7 J	3	3	34	<50				-	-			-
C-5	09/20/2012 12	38.50	20.22	18.28	0.00	0.00								-				-	-		~
C-5	03/20/2013	38.50	18.23	20.27	0.00	0.00	<50	6	<0.5	1	< 0.5	13	<50	-	1.4	-	-	_	-	-	-
C-5	09/18/2013 12	38.50	20.29	18.21	0.00	0.00					-		-	-	-	1.5			-	3	-
C-5	03/13/2014 12	38.50	20.26	18.24	0.00	0.00	64 J	4	<0.5	0.5 J	<0.5	4	<50	-	-	-		- 2	-		-
C-5	09/25/2014 12	38.50	21.09	17.41	0.00	0.00					-		-			19			-	-	-
C-5	03/10/2015	41.11	20.35	20.76	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	9	<50			-5			-	18	-
C-5	06/19/2015	41.11	20.63	20.48	0.00	0.00	9.1			2					4			÷	-	4	-
C-5	09/15/2015	41.11	21.30	19.81	0.00	0.00	9.1	· -	2.	- 1	-	.0.,	(2:1	-	1,4	4			4.5	4	-
C-5	12/22/2015 15	41.11	21.04	20.07	0.00	0.00	-		-				1.5	-	-	1.7		0		-	-
C-5	03/08/2016	41.11	18.98	22.13	0.00	0.00	81 J	3	<0.5	0.7 J	<0.5	6	<50	•	•	•				*	-
C-6	08/27/1990	32.40	44.11	-11.71	0.00	0.00	7,200	2,100	6.0	41	300					5.		0	-2.	12	-
C-6	11/14/1990	32.40	44.03	-11.63	0.00	0.00	-2-7				-	-	8	-0	-	-	2.0	-	- 5	-	-
C-6	06/18/1991	32.40	43.49	-11.09	0.00	0.00	4,400	2,500	18	160	77	-	2	•	•		2	*			-
C-6	09/19/1991	32.40	34.32	-1.92	0.00	0.00	3,100	1,600	8.3	73	8.0		*			17	5.40		-	-	-
C-6	12/20/1991	32,40	41.35	-8.95	0.00	0.00	4,400	1,300	3.2	74	10	-	49	=	-	-	-	-		-	~
C-6	03/18/1992	32.40	40.69	-8.29	0.00	0.00	9,800	3,200	34	250	500	-	-	-	17	-	1.4	-	-6	. 2	*
C-6	07/14/1992	32.40	38.89	-6.49	0.00	0.00	6,500	2,200	100	96	240	-	-		- 4:	-	3				*
C-6	10/08/1992	32.40	38.67	-6.27	0.00	0.00	1,800	1,000	3.1	15	41	-	2.00	-	14	4		-	-	-	-
C-6	01/08/1993	32.40	37.81	-5.41	0.00	0.00	5,200	1,600	6.8	63	120	-	-		-			*		18	*
C-6	04/14/1993	32.40	34.70	-2.30	0.00	0.00	11,000	1,800	13	110	200			-	1.7			-	-	-	-

							HYDROCARBONS		1	RIMAR	Y VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	Ē	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	pg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-6	07/16/1993	32.40	33.87	-1.47	0.00	0.00	4,800	820	10	41	57	- 2	- Ac	- 2	- 20			4			- 2
C-6	09/21/1993	35.40	33.98	1.42	0.00	0.00	4,100	1,200	<50	75	130				-			-			-
C-6	01/28/1994	35.40	33.86	1.54	0.00	0.00	3,100	930	14	40	34	-		-	_	-		-			
C-6	03/17/1994	35.40	32.31	3.09	0.00	0.00	5,100	950	18	61	83	-	.0.	-	4	-	4.		-		
C-6	06/16/1994	35.40	31.50	3.90	0.00	0.00	3,800	970	6.4	52	62		.5.7		-0-	-2		-	-	- 4	
C-6	09/22/1994	35.40	31.22	4.18	0.00	0.00	4,100	980	7.8	43	48				-			-			-
C-6	12/15/1994	35.40	31.40	4.00	0.00	0.00	5,000	1,400	<20	73	61	-	4	-	-	-	-	40			10.0
C-6	03/30/1995	35.40	26.38	9.02	0.00	0.00	5,500	1,700	<13	120	97		4-1	6-1-		-	4-				
C-6	06/20/1995	35.40	25.01	10.39	0.00	0.00	1,700	470	<10	29	16		3-6	-	-	-2.	1.4	-		-	
C-6	09/20/1995	35.40	24.05	11.35	0.00	0.00	3,500	770	<5.0	45	17		14	14	- 2	12	4	144	100		
C-6	12/06/1995	35.40	28.12	7.28	0.00	0.00	3,100	710	<10	41	20	<50	540		-	~	-	~			
C-6	03/21/1996	35.40	23.12	12.28	0.00	0,00	1,400	330	<2.5	15	8.1	19		-	-		-	(4)	- 2-		
C-6	06/21/1996	35.40	23.50	11.90	0.00	0.00	2,200	560	<5.0	18	<5.0	77								- 5	
C-6	09/06/1996	35.40	24.83	10.57	0.00	0.00	2,800	720	<10	13	<10	160	- 8			1.5	- 2	130	4		
C-6	12/19/1996	35.40	24.50	10.90	0.00	0.00	830	320	<2.5	<2.5	<2.5	14			5.			4		-	
C-6	03/17/1997	35.40	22.59	12.81	0.00	0.00	2,200	500	<10	25	<10	<50			-			-		-	
C-6	06/11/1997	35.40	23.76	11.64	0.00	0.00	3,000	570	<5.0	29	10	220	beo.			-		(4)		-	-
C-6	09/17/1997	35.40	24.74	10.66	0.00	0.00	1,400	330	<5.0	<5.0	<5.0	76		1.5	1.2	-57	-48	620	1.1	<1.0	18
C-6	12/11/1997	35.40	24.65	10.75	0.00	0.00	1,600	230	<5.0	7.3	6.4	46	4	4.		-	-2		-	-	-
C-6	03/12/1998	35.40	27.12	8.28	0.00	0.00	980	300	<5.0	15	12	49	0.00	14.1	11.3	173	174	200	0.11	14	14
C-6	06/23/19983	35.40	27.92	7.48	0.00	0.00	220	35	<0.5	2.5	1.1	<2.5	(4)	-	-	-	-		-		-
C-6	09/01/1998	35.40	31.60	3.80	0.00	0.00	1,800	370	2.8	19	5	44				4.5	. +	-			

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

							HYDROCARBONS			PRIMARY	y vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ť	E	X	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sufate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	hB/L	μg/L	µg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-6	12/30/1998	35.40	31.82	3.58	0.00	0.00	1,600	244	<1.0	8.53	<1.0	54.9	. 2						-	-	
C-6	03/31/1999	35.40	26.06	9.34	0.00	0.00	741	92.2	<1.0	6.60	<1.0	27.9	54	9.8	8.4	162	168	534	<500 ¹⁴	0.849	45.3
C-6	06/14/1999	35.40	29.68	5.72	0.00	0.00	434	110	<1.0	5.76	1.46	13/6.962		1-		-	-	2			
C-6	09/30/1999	35.40	23.06	12.34	0.00	0.00	481	92.7	<1.0	3.69	<1.0	32.9					4.	-	-	-	
C-6	12/22/1999	35.40	22,55	12.85	0.00	0.00	1,310	158	2.16	5.5	1.41	113	-	1.02	1.22	-65	-60	614	0.36	0.421	32
C-6	03/09/2000	35.40	20.03	15.37	0.00	0.00	470	120	0.74	5.0	2.5	36		5.4	1.6	-113	-35	540	0.26	0.14	24
C-6	06/23/20003	35.40	22.15	13.25	0.00	0.00	1,7004	210	<5.0	<5.0	5.8	64	29			-	-	100			-
C-6	09/05/2000 ³	35.40	27.05	8.35	0.00	0.00	7404	99	0.60	5.1	2.2	80	14	1.90	2.73	45	31	550	0.18	<1.0	38
C-6	12/04/2000	35.40	25.15	10.25	0.00	0.00	4504	31	0.71	<0.50	< 0.50	54	6	1.4		2	2.	4	-	-	3
C-6	03/08/20013	35.40	23.84	11.56	0.00	0.00	1,550	228	3.93	19.9	32.5	46.2	4	-				-	-		- 30
C-6	06/07/20013	35.40	25.73	9.67	0.00	0.00	3604	21	1.8	2.4	3.8	100								-	
C-6	09/13/20013	35.40	23.80	11.60	0.00	0.00	950	180	<5.0	5.9	<5.0	170	-	-	-		-		-		-
C-6	12/13/20013	35,40	25.19	10.21	0.00	0.00	2,000	170	0.86	6.4	4.1	77	-			-				-	-
C-6	03/08/20023	35.40	21.08	14.32	0.00	0.00	600	33	0,91	1.8	<1.5	90	2		3-		-			~	
C-6	06/19/20023	35,40	24,62	10.78	0.00	0.00	370	11	<0.50	<0.50	<1.5	88				*	-			4	
C-6	09/11/20023	35.40	29.00	6.40	0.00	0.00	490	16	0.50	<0.50	<1.5	120	1.5	- 8	-21	-	-	-	-		
C-6	12/11/20023	35.40	24.18	11.22	0.00	0.00	430	17	<0.50	<0.50	<1.5	100	(8)	1,9,1		-		=	-	- 3	=
C-6	03/11/20033	35,40	27.70	7.70	0.00	0.00	410	8.8	0.88	<0.50	<1.5	120		4					-	-	
C-6	06/10/2003 ^{3,7}	35.40	21.60	13,80	0.00	0.00	460	10	<0.5	< 0.5	<0.5	100	-	÷	-	-			-		-
C-6	09/09/2003 13	35.40			0.00	0.00		-		-9		-			-		2.6	-	-	-	
C-6	12/09/2003 ^{7,9}	35.40	25.89	9.51	0.00	0.00	1,700	69	< 0.5	3	0.6	83	<50	-			-	-	-	-	
C-6	03/09/20047	35.40	19.51	15.89	0.00	0.00	6,800	280	1	10	4	96	<50	1.4.1	-			.0.	2.0	-	-

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	E	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous from	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	μg/L	μg/L	μg/L	µg/L
C-6	06/08/2004	35.40	20.83	14.57	0.00	0.00	560	13	<0.5	<0.5	0.5	68	<50		,		5	8	-	-	-
C-6	09/08/2004	35.40	21.88	13.52	0.00	0.00	290	16	<0.5	<0.5	< 0.5	50	<50			-		4	-	-	
C-6	12/06/2004	35.40	21.34	14.06	0.00	0.00	290	18	<0.5	0,5	<0.5	44	<50	-				18			
C-6	03/07/2005	35.40	18.27	17.13	0.00	0.00	2,500	150	0.7	5	2	71	<50			-	12	Ga.	4		-
C-6	06/06/2005	35.40	18.52	16.88	0.00	0.00	1,900	110	<1	3	2	59	<100						4		-
C-6	09/06/2005	35.40	20.38	15.02	0.00	0.00	800	16	<0.5	0.5	0.6	51	<50	-		- 8	-	.00			
C-6	12/05/20057	35.40	20.06	15.34	0.00	0.00	540	15	<0.5	<0.5	0.6	45	<50			-		•			-
C-6	03/06/2006 ⁷	35.40	18.76	16.64	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<50	14		-	-	05	-2	- 2	=
C-6	06/05/20067	35.40	17.80	17.60	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	0.7	<50		100		-		-		~
C-6	09/05/2006	35.40	20.00	15.40	0.00	0.00	1,200	17	<0.5	0.7	0.8	29	<50		-	-		-9	2		-
C-6	12/04/2006	35.40	20.91	14.49	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<50	190			-	3	-		
C-6	03/05/2007	35.40	18.95	16,45	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-			-			2.0	3.7
C-6	06/04/2007	35.40	18.36	17.04	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	3	<50				2	4.	4	4	*
C-6	09/07/2007	35.40	21.05	14.35	0.00	0.00	<50	<0.5	<0,5	<0.5	< 0.5	<0.5	<50		-			3			-
C-6	12/06/2007	35.40	21.87	13.53	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<50			-	-	4	-	-	-
C-6	03/06/2008 ⁷	35.40	21.68	13.72	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<60	-	-	-		17	~		. =
C-6	06/05/2008 ⁷	35.40	21.25	14.15	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	2	<50	1.5	-0		2.	~			-
C-6	09/03/2008	35.40	21.40	14.00	0.00	0.00	56	0.8	<0.5	<0.5	<0.5	5	<50			-		-			
C-6	12/03/2008	35.40	22.18	13.22	0.00	0.00	120	2	<0.5	< 0.5	<0.5	5	<50				*				
C-6	03/04/2009	25.40	21.82	13.58	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	12	<50			-	3		2	2.0	-
C-6	06/09/2009 ⁷	35.40	20.33	25.07	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-1	<50		,		-	. 2			-
C-6	09/30/20097	35.40	21.72	13.68	0.00	0.00	790 J	4	<0.5	<0.5	<0.5	8	<50				-	-		*	•

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

							HYDROCARBONS			PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	PH-GRO	В	т	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nirrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-6	03/22/2010 ⁷	35.40	18.30	17.10	0.00	0.00	270	<0.5	<0.5	<0.5	<0.5	8	<50		-	_	-			-	
C-6	09/16/2010	35.40	20.92	14.48	0.00	0.00	210	<0.5	<0.5	<0.5	<0.5	5	<50		-	-	-			-	
C-6	03/08/2011	35.40			0.00	0.00	-	-		-	_		-		-	140					-
C-6	09/28/2011	35.40	20.69	14.71	0.00	0.00	59 J	<0.5	<0.5	<0.5	< 0.5	4	<50		4.	- 2	-	4	1.2		-
C-6	03/08/2012	35.40	21.23	14.17	0.00	0.00	1,700	2	<0.5	<0.5	0.8 J	6	<50		-	- 2					
C-6	09/20/2012	35.40	21.76	13.64	0.00	0.00	2,700	2	<0.5	<0.5	<0.5	10	<50		1.00	9			-		-
C-6	03/20/2013	35.40	19.79	15.61	0.00	0.00	120	<0.5	<0.5	<0.5	<0.5	3	<50		-					-	
C-6	09/18/2013	35.40	21.68	13.72	0.00	0.00	1,700	1	<0.5	<0.5	< 0.5	7	<50		-	9.9					2
C-6	03/13/2014	35.40	21.10	14.30	0.00	0,00	120	<0.5	<0.5	<0.5	< 0.5	4	<50		-	-	-	. 4		160	-
C-6	09/25/2014	35.40	22.67	12.73	0.00	0.00	100	<0.5	<0.5	<0.5	<0.5	4	<50		₹1	-3		-	6	-	-
C-6	03/10/2015	37.94	21.81	16.13	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50		-		-	-	-	-	-
C-6	06/19/2015	37.94	22.36	15.58	0.00	0.00				4		- 0	44	-	-					-	
C-6	09/15/2015	37.94	23.18	14.76	0.00	0.00	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5	<50		2.	-3	-		1.2	6	
C-6	12/22/2015	37.94	22.78	15,16	0.00	0.00	62 J	<0.5	<0.5	<0.5	<0.5	3	<50		-	- 3	-	-6		-	
C-6	03/08/2015	37.94	20,54	17.40	0.00	0.00	180	<0.5	<0.5	<0.5	<0.5	3	<50						17		
C-7	08/27/1990	32.17	44.23	-12.06	0.00	0.00	110	26	0.8	4.0	6.0			•	-		2.		14	ă.	
C-7	11/14/1990	32.17	44.11	-11.94	0.00	0.00	-		4					1.30	-	-	-		-	+	
C-7	06/18/1991	32.17	42.05	-9.88	0.00	0.00	23,000	5,700	420	1,000	2,800			- +	*			12		\sim	-
C-7	09/19/1991	32.17	41.72	-9.55	0.00	0.00	26,000	4,600	330	970	2,400	-				-	-		-	-	-
C-7	12/20/1991	32.17	41.67	-9,50	0.00	0.00	33,000	5,500	270	1,000	2,100				-		-			-	-
C-7	03/18/1992	32.17	41.20	-9.03	0.00	0.00	27,000	5,800	410	1,300	3,300			-	-	-	-		4.5		-

TABLE 5
GROUNDWATER MONITORING AND SAMPLING DATA
CHEVRON SERVICE STATION 90076
4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

_							HYDROCARBONS			PRIMARY	/ VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	T	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nirate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-7	07/14/1992	32.17	39.77	-7.60	0.00	0.00	46,000	12,000	720	1,700	4,600		Ge -				. 2.		-	-	-
C-7	10/08/1992	32.17	39.14	-6.97	0.00	0.00	22,000	6,800	370	1,300	3,200				-	-					
C-7	01/08/1993	32.17	38.50	-6.33	0.00	0.00	36,000	7,600	540	1,700	4,200	-			-	-	-	-	ė.	-	
C-7	04/14/1993	32.17	35.93	-3.76	0.00	0.00	23,000	3,100	450	670	1,900				2		14	4		-	-
C-7	07/16/1993	32.17	35.38	-3.21	0.00	0.00	19,000	3,200	330	550	1,800		-				. 3:				
C-7	09/21/1993	35.19	35.46	-0.27	0.00	0.00	17,000	2,700	160	410	760	-				-	-	-			
C-7	01/28/1994	35.19	35.45	-0.26	0.00	0.00	14,000	1,800	210	390	1,000	-	V			2.0					
C-7	03/17/1994	35.19	33.24	1.95	0.00	0.00	17,000	1,600	210	410	1,200	-	*	-		1	-	-	1,23		
C-7	06/16/1994	35.19	33.07	2.12	0.00	0.00	12,000	1,600	180	410	1,200	-		100	-	- 6		19			-
C-7	09/22/1994	35.19	32.74	2.45	0.00	0.00	10,000	1,700	110	320	580	· ·			*						
C-7	12/15/1994	35.19	31.92	3.27	0.00	0.00	10,000	1,200	120	280	710	-	4	- 8	.20	-	-	13	-		-
C-7	03/30/1995	35.19	27.60	7.59	0.00	0.00	4,600	460	73	160	460	-	.4	- 2	2		-				
C-7	06/20/1995	35.19	27.87	7.32	0.00	0.00	26,000	4,400	450	900	2,400		-	-		-	-9	1.3	14		~
C-7	09/20/1995	35.19	28.08	7.11	0.00	0.00	9,400	610	81	250	800	-	G4 11		2-	-	-6	- 3-	-		
C-7	12/06/1995	35.19	30.62	4.57	0.00	0.00	1,200	110	12	25	71	34	- 4			-	-5		-	-	-
C-7	03/21/1996	35.19	27.85	7.34	0.00	0.00	17,000	1,300	160	410	1,300	<100						-	-		
C-7	09/06/1996	35.19	28.35	6.84	0.00	0.00	15,000	3,400	<50	460	850	<250		-		- 2	-2-	100	1.20		2.
C-7	12/19/1996	35.19	29.11	6.08	0.00	0.00	530	9	0.5	0.85	3.4	<2.5	1.2	- 2		-		-	-		
C-7	03/17/1997	35.19	27.14	8.05	0.00	0.00	4,600	310	46	110	310	98					~	-	-		-
C-7	06/11/1997	35.19	28.05	7.14	0.00	0.00	420	15	<0.5	3.3	5.1	<2.5			2.0	-	-	-	-		-
C-7	09/17/1997	35.19	29.00	6.19	0.00	0.00	1,400	120	11	31	84	54		0.6	0.4	126	115	600	4.8	<1.0	18
C-7	12/11/1997	35.19	29.26	5.93	0.00	0.00	210	10	<0.5	0.97	1.6	<2.5				-	- 6	-			

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	NAPLT	LNAPL REMOVED	TPH-GRO	В	T	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nirale (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
0.7	03/12/1998	35.19	24.92	10.27	0.00	0.00	68	<0.5	<0.5	<0.5	<0.5	<2.5		2.2	2.1	167	167	460	0.16	<1.0	29
C-7	05/12/1996	35.19	25.30	9.89	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5		-		-				-	
C-7	09/01/1998	35.19	26.27	8.92	0.00	0.00	570	24	1.4	8.4	22	24				-			7.0		-
C-7	12/30/1998	35.19	26.52	8.67	0.00	0.00	<50	4.85	1.26	<0.5	1.29	167				-					-
C-7	03/31/1999	35,19	24.76	10.43	0.00	0.00	53,1	<0.5	<0.5	<0.5	<0.5	<2.0		2.0	1.8	137	135	486	<50014	<0.1	29.4
C-7	06/14/1999	35.19	25.44	9.75	0.00	0.00	109	4.43	<0.5	<0.5	<0.5	<2.5/<2.02	4			-		-			-
C-7	09/30/1999	35.19	26.87	8.32	0.00	0.00	2,400	282	26.3	120	236	126	Ψ.			-	- 4				-
C-7	12/22/1999	35.19	27.77	7.42	0.00	0.00	3,840	162	18.1	44.7	85.3	141	b•o	1.8	1.5	20	-60	400	1.6	0.434	16.9
C-7	03/09/2000	35.19	25.57	9.62	0.00	0.00	13,000	2,700	110	700	1,500	<130	14	0.7	2.5	10	-13	610	2.1	<0.1	5.5
C-7	06/23/2000	35.19	25.66	9.53	0.00	0.00	1904	3.4	<0.50	<0.50	1.6	7.3	60		3.	-	-	-	-	-	-
C-7	09/05/2000	35.19	26.75	8.44	0.00	0.00	4,2004	330	26	120	200	190		1.77	1.46	133	46	590	1.8	<1.0	12
C-7	12/04/2000	35,19	27.16	8.03	0.00	0.00	2,6004	550	<5.0	73	62	<25		-	*			-		-	
C-7	03/08/2001	35,19	25.43	9.76	0.00	0.00	1,180	39,2	2.41	15.5	30.8	10.3	1-	-		-				-	-
C-7	06/07/2001	35,19	25.39	9.80	0.00	0.00	2,6004	440	14	110	130	56		•	-		-	*		-	-
C-7	09/13/2001	35.19	26.61	8.58	0.00	0.00	23,000 ⁶	670	<100	150	210	<500	9	-	100	-	-	-		-	-
C-7	12/13/2001	35.19	26.69	8,50	0.00	0.00	2,400	160	5.8	42	54	<10	Ψ.		4	4					-
C-7	03/08/2002	35.19	24.80	10.39	0.00	0.00	3,900	380	21	110	160	<20	-	-	-	-	4.5	2.1		- 5-	-
C-7	06/19/2002	35.19	27.41	7.78	0.00	0.00	3,600	440	8.5	87	73	<10	18	4.	-	-	-6.	*			*
C-7	09/11/2002	35.19	25.78	9.41	0.00	0.00	11,000	1,800	18	360	380	<10				~	*	-		-	
C-7	12/11/2002	35.19	30.75	4.44	0.00	0.00	6,000	1,100	9.3	190	190	<10	~	-		-				•	
C-7	03/11/2003	35.19	26.90	8.29	0.00	0.00	4,900	940	13	150	160	<25	-	-	-			-		-	
C-7	06/10/20037	35.19	30.91	4.28	0.00	0.00	3,100	500	7	83	77	4	*	4	-		-				

							HYDROCARBONS		Ŧ	RIMAR	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL C	CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	T	E	x	MTBE by SW3260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsi	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-7	09/09/2003	35.19	31.81	3.38	0.00	0.00	3,900	310	9	110	130	5	<50		-				¥		
C-7	12/09/2003	35.19	28.45	6.74	0.00	0.00	170	0.8	<0.5	<0.5	<0.5	5	<50	8	-	4		3	-	-	-
C-7	03/09/20047	35.19	24.46	10.73	0.00	0.00	80	<0.5	<0.5	<0.5	<0.5	4	<50	-	-	-	-	4			
C-7	06/08/2004	35.19	26.96	8.23	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	6	<50	80		2.	. 4.		104	-	
C-7	09/08/2004	35.19	25.20	9.99	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	7	<50	-		- 2	-9				-
C-7	12/06/2004	35.19	24.91	10.28	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	7	<50			-		-			1.4
C-7	03/07/2005	35.19	23.43	11.76	0.00	0.00	590	9	0.7	4	6	7	<50	-		-	-	-			
C-7	06/06/20057	35.19	21.88	13.31	0.00	0.00	<50	< 0.5	<0.5	< 0.5	< 0.5	6	<50	-	-			2,1	-	= 5	
C-7	09/06/2005	35.19	23.59	11.60	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	9	<50	-	14	-6	-	*		-	-
C-7	12/05/2005	35.19	23.75	11.44	0.00	0.00	<50	0.6	<0.5	< 0.5	<0.5	9	<50	10		0.5.	1.5	4		-	-
C-7	03/06/20067	35.19	21.39	13.80	0.00	0.00	<50	<0.5	< 0.5	<0.5	< 0.5	7	<50	200	-			-	-	-	
C-7	06/05/2006	35.19	20.41	14.78	0.00	0.00	<50	<0.5	<0,5	<0.5	<0.5	4	<50	-			14	-		-	
C-7	09/05/20067	35,19	22.81	12.38	0.00	0.00	<50	< 0.5	<0.5	<0.5	<0.5	2	<50	-		1.5		2	*		1.0
C-7	12/04/20067	35.19	23.35	11.84	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	3	<50	33-	-					*	10
C-7	03/05/2007	35.19	22.72	12.47	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	2	<50	7	-	Ē.		-	-		
C-7	06/04/2007	35.19	20.95	14.24	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-4	<50	17.	-	-	-	-	-	-	-
C-7	09/07/2007	35.19	23.48	11.71	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	5	<50		-	-	- 3	2,1	-	-	-
C-7	12/06/2007	35.19	24.32	10.87	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	5	<50			-	74		-		
C-7	03/06/2008 ⁷	35.19	23.29	11.90	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	6	<50	-	-		9	-		- ÷	
C-7	06/05/2008 ⁷	35.19	23.27	11.92	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	6	<50	-		- 2	-	-		-	
C-7	09/03/20087	35.19	24.61	10.58	0.00	0.00	<50	< 0.5	< 0.5	<0.5	<0.5	4	<50	-	-			-	-	-	
C-7	12/03/20087	35.19	25.22	9.97	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	4	<50	-		-5-	-		9		

						-	HYDROCARBONS		- 1	RIMAR	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	ENERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	NAPLT	NAPL REMOVED	трн.бко	В	न	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reducilon potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nirale (as N)	Sufate
	Units	ft	ft	ft-amsi	ft	gallons	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	μg/L	µg/L	µg/L
C-7	03/04/2009	35,19	23.55	11.64	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	3	<50	1.2.7		-			~	-	
C-7	06/09/2009 ⁷	35.19	23.45	11.74	0.00	0.00	3,300 J	12	3	60	120	11	<50		4	-	2			-	- 2
C-7	09/30/2009 ⁷	35.19	24.85	10.34	0.00	0.00	260	<0.5	<0.5	<0.5	<0.5	13	<50		-	-	-	4.1			
C-7	03/22/2010 ⁷	35.19	22.39	12.80	0.00	0.00	2,800	150	4	79	120	11	<50		-	-			-	2.	
C-7	09/16/2010	35.19	24.00	11.19	0.00	0.00	1,900	30	1	28	55	9	<50		-3						-
C-7	03/08/2011	35,19	21.16	14.03	0.00	0.00	4,200	620	5	190	140	5	<100			3			-	-	
C-7	09/28/2011	35.19	23.81	11.38	0.00	0.00	4,500	670	5	170	110	5	<100	-						-	-
C-7	03/08/2012	35.19	24.00	11.19	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	7	<50	4.0	4.	-		-		-	~
C-7	09/20/2012	35.19	24,72	10.47	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	8	<50		-	- 2	*	4	-		1.0
C-7	03/20/2013	35.19	23.59	11.60	0.00	0.00	1,700	24	2	37	76	8	<50		3-	-	~	-	-	100	-
C-7	09/18/2013	35.19	25.00	10.19	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	9	<50	-	-	-			-	2 1	-
C-7	03/13/2014	35.19	24,90	10.29	0.00	0.00	2,700	38	0.6 J	19	19	9	<50		14				-	-	-
C-7	09/25/2014	35,19	25.75	9.44	0.00	0.00	1,300	15	0.5 J	15	27	8	<50		9-	-				- 3	-
C-7	03/10/2015 13	35.19	-		3		-		-						3	-	-		-	-	5
C-7	06/19/2015 13	35.19					1.5				-	-	~			-	-	+	-	4.	
C-7	09/15/2015 13	35.19	-		13	-	15	-		-	-	-	-	-	-		-	9.1	-	- 2	5.1
C-7	12/22/2015 13	35.19		-	-	9	15	-	-	-	-		la.	9	3	-	-	-2-	-	-	- 6
C-7	03/08/2016 ¹³	35.19		*	-	•		-			•	•				*					4
C-8	11/14/1990	30.68	43.29	-12.61	0.00	0.00	<50	<0.3	<0.3	<0.3	<0.6		, e-			-	-		2	-2	
C-8	06/18/1991	30.68	42.62	-11,94	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-				-	-		2	5-	
C-8	09/19/1991	30.68	41.72	-11.04	0.00	0.00	<50	<0.5	< 0.5	< 0.5	< 0.5	-	1.45				-		4	-	-

							HYDROCARBONS		- 1	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	rry
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	Е	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nifrate (as N)	Sulfate
	Units	ft.	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	m≣volts	millivolts	μg/L	µg/L	µg/L	µg/L
C-8	12/20/1991	30.68	40.98	-10.30	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-				-		~	-	-	-3
C-8	03/18/1992	30.68	40.02	-9.34	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5		4	-				100	-		
C-8	07/14/1992	30.68	39.02	-8.34	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-	-	-		-	-	-	-		
C-8	10/08/1992	30.68	38.68	-8.00	0.00	0.00	<50	<0.5	<0.5	<0.5	1.1	-	1.0	1.0		-		2	-	-	30
C-8	01/08/1993	30.68	38.07	-7.39	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5					-	-5	-		-	-
C-8	04/14/1993	30.68	35.99	-5.31	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5					-	44.5		4	-	-
C-8	07/16/1993	30.68	35.32	-4.64	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	-	19					-	(-)	-	
C-8	09/21/1993	34.68	35.30	-0.62	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.8		(*			-	-	80	4	-	-
C-8	01/28/1994	34.68	35.61	-0.93	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5		-			-		100		30	
C-8	03/17/1994	34.68	34.37	0.31	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-		-		-	3	-63	-	-	-
C-8	06/16/1994	34.68	33.36	1.32	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5		14	-1-		-					-
C-8	09/22/1994	34.68	32.82	1.86	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5		4			-	. 2		145		-
C-8	12/15/1994	34.68	32,36	2.32	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	-			1.40	-		-			
C-8	03/30/1995	34.68	29.24	5.44	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	-		-	9	-	9	-	1.0		-
C-8	06/20/1995	34.68	28.34	6.34	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	- 2			-		-5	-	-		-
C-8	09/20/1995	34.68	29.48	5.20	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5						-		1.2		-
C-8	12/06/1995	34.68	30.92	3.76	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2,5		1,40		- 4	-2.	-	14.	- 2	-
C-8	03/21/1996	34.68	28.65	6.03	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<2.5					2	*	1		-
C-8	06/21/1996	34.68	27,90	6.78	0.00	0.00	<50	<0.5	<0.5	<0,5	< 0.5	<2.5		4		-	-		-		-
C-8	09/06/1996	34.68	28.70	5.98	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	-	-			-			-	-
C-8	12/19/1996	34.68	29.70	4.98	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	- G			- E	=		-	-	-
C-8	03/17/1997	34.68	27.76	6.92	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	<2.5	- 4	-2-					-	*	=

							HYDROCARBONS		- 1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GI	ENERAL C	HEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-ско	В	Ī	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (es N)	Suifate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-8	06/11/1997	34.68	28.81	5.87	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	15		-				-		
C-8	09/17/1997 12	34.68	29.36	5.32	0.00	0.00	-	-	-	-		-				-	_		-		-
C-8	12/11/1997	34.68	29.80	4.88	0.00	0.00					-	-			-		-		-	-	=
C-8	03/12/1998	34.68	25.73	8.95	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	2.6	5	1.0	1.1	171	169	110	0.16	7,4	8.2
C-8	06/23/1998	34.68	26.30	8.38	0.00	0.00					-				200	5.	-0	-	14	50	
C-8	09/01/1998	34.68	26.51	8.17	0.00	0.00				-	-	-				4.	-		-		
C-8	12/30/1998	34.68	26.89	7.79	0.00	0.00	-		-	-	-	-	/+	54.	~			-	-	-	-
C-8	03/31/1999	34.68	26.36	8.32	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	11.8		1.8	1.5	149	132	264	<500 ¹⁴	17	71
C-8	06/14/1999	34.68	26.03	8.65	0.00	0.00		-		-	140		0.00	100	30.	- 4	2:		8	-	
C-8	09/30/1999	34.68	27.28	7.40	0.00	0.00	- 2		10.5	2	1 4	-	-	1.4	4	3-	-	-			
C-8	12/22/1999	34.68	28.20	6.48	0.00	0.00	-		2	0.0		-	-		10	5	-		-	7	-
C-8	03/09/2000	34.68	26.33	8.35	0.00	0.00	<50	<0.5	<0.5	<0.5	1.8	<2.5		2.7	3,3	141	160	270	0.24	29	35
C-8	06/23/2000 12	34.68	26.19	8.49	0.00	0.00		•						4.			-	12	-2	-	-
C-8	09/05/2000	34.68	26.97	7.71	0.00	0.00	-	-	6	-	-	- 5-		-	-	-	-			2	-
C-8	12/04/2000	34.68	27.42	7.26	0.00	0.00		-	7		3		-2							-	-
C-8	03/08/2001	34.68	26.10	8.58	0.00	0.00	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50		-	-		-			-	
C-8	06/07/2001 12	34.68	25.79	8.89	0.00	0.00	- 3	4)	141	-	-	-	44-1	-	1.		-		-	~	-
C-8	09/13/2001 12	34.68	26.81	7.87	0.00	0.00	- •			-	-				5	-				*	
C-8	12/13/2001 12	34.68	27.16	7.52	0.00	0.00			-		-	- 2	-6	-		-			7	\times	-
C-8	03/08/2002	34.68	25.30	9.38	0.00	0.00	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5	-£			-				-	~
C-8	06/19/2002 12	34.68	24.93	9.75	0.00	0.00				-		-		-	-	2	-	-	1-	-	-
C-8	09/11/2002 12	34.68	25.92	8.76	0.00	0.00				-	- 2	-				-	-			5.	-

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	1	E	x	MTBE by SW8260	ETHANOL.	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinīty, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Suffate
	Units	ft	tt	ft-amsl	ft	gallons	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-8	12/11/2002 12	34.68	27,31	7.37	0.00	0.00	-					-	-	~	-	- 6	-3	-8			-
C-8	03/11/2003	34.68	25.79	8.89	0.00	0.00	<50	<0.50	<0.50	<0.50	<1.5	<2.5		-	-	-		-		-	-
C-8	06/10/2003 12	34.68	25.28	9.40	0.00	0.00	-		-	-	-							-3	4.		-
C-8	09/09/2003 12	34.66	26.11	8.57	0.00	0.00		-	-						*			-	-		
C-8	12/09/2003 12	34.68	28.51	6.17	0.00	0.00	-		-		-	-	54					19	4	-	-
C-8	03/09/2004	34.68	23.98	10.70	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-		-		18			
C-8	06/08/2004 12	34.68	25.27	9.41	0.00	0.00					10		4			0-0	:				
C-8	09/08/2004 12	34.68	25.83	8.85	0.00	0.00			-		-	-		15	***	2	2	90	4	20	8
C-8	12/06/2004 12	34.68	25.06	9.62	0.00	0.00	1-1				1.61	-		-		-				4	
C-8	03/07/2005	34.68	23.35	11.33	0.00	0.00	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	<50	-	-	-	-	88	\sim	=	-
C-8	06/06/2005 12	34.68	22.84	11.84	0.00	0.00								-		-				-	
C-8	09/06/2005 12	34.68	24.91	9.77	0.00	0.00	- 2-	-	-		1-0		-	-			-	-3			
C-8	12/05/2005 12	34.68	24.16	10.52	0.00	0.00					-	- 2	4.		-		-	-			*
C-8	03/06/2006 ⁷	34.68	22.55	12.13	0.00	0.00	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<50				10	-		-	
C-8	06/05/2006 12	34.68	21.60	13.08	0.00	0.00							14		-			-	-		
C-8	09/05/2006 12	34.68	23.75	10.93	0.00	0.00	0.00		-			-		-				179	-4.		- 0
C-8	12/04/2006 12	34.68	23.97	10.71	0.00	0.00				-	1,-0	-		1.0:	430		-	1.4	4		
C-8	03/05/2007	34.68	23.05	11.63	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50					19			-
C-8	06/04/2007 12	34.68	22.11	12.57	0.00	0.00	-	3-		-	-					-	- 5	4	4	-	
C-8	09/07/2007 12	34.68	24.07	10.61	0.00	0.00	3-6	-		-		-		-				4-	-		÷
C-8	12/06/2007 12	34.68	24.38	10.30	0.00	0.00		-	-		-			.,4	*	- 5	2.0	. 2	-	2	*
C-8	03/06/20087	34.68	23.36	11.32	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	- 2				. 4	8	**	-

							HYDROCARBONS		9	PRIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	TRY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ĭ	E	X	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidallon reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-8	06/05/2008 12	34.68	23.06	11.62	0.00	0.00	2			-	-	- 6		-	4.	- 2		-		-	-
C-8	09/03/2008 12	34.68	24.93	9.75	0.00	0.00	-		- 2	4		-	-						-	-	-
C-8	12/03/2008 12	34.68	25.70	8.98	0.00	0.00					-	*			-	-			1141	-	
C-8	03/04/2009	34.68	23.98	10.70	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50			-2 -		. 2			
C-8	06/09/2009 12	34.68	23.85	12.83	0.00	0.00	-		-			4		G	-	- 6:	4				-
C-8	09/30/2009 12	34.68	25.40	9.28	0.00	0.00		-		-						- 3-				-	*
C-8	03/22/2010	34.68	I.e.	-	0.00	0.00	4			-5	-	-	9		4.		-	-	.+		-
C-8	09/16/2010 12	34,68	24.34	10.34	0.00	0.00	3	-	-		100	-	-	4	-		-	4.		-	0
C-8	03/08/2011 12	34.68	21.42	13.26	0.00	0.00	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5	<50		71	11,40	2, 11	-	-01	3	
C-8	09/28/2011 12	34.68	23.27	11.41	0.00	0.00					-	-			4	-	-		ė	~	-
C-8	03/08/2012 12	34.68	24.22	10.46	0.00	0.00	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5	<50			5.				~	
C-8	09/20/2012 12	34.68	25.01	9.67	0.00	0.00	-2		-			-	100			-	- 4		-	-	-
C-8	03/20/2013	34.68	23.93	10.75	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	<0.5	<50		4.		-	14	1.4	-	
C-8	09/18/2013 12	34.68	25.19	9.49	0.00	0.00	-	-	-		-	2	14	2	6	-		- =		-	•
C-8	03/13/2014 12	34.68	25.01	9.67	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<50				-			-	-
C-8	09/25/2014 12	34.68	25.87	8.81	0.00	0.00			-		-19-11	-	45	4	~	- 6-	-		-	-	
C-8	03/10/2015	37.22	25.06	12.16	0.00	0.00	<50	1	<0.5	<0.5	<0.5	< 0.5	<50	-	-	-	-			-	2
C-8	06/19/2015	37.22	25.03	12.19	0.00	0.00	-		-	-	-			-	4	-	-	100	-	-	
C-8	09/15/2015	37.22	26.11	11.11	0.00	0.00	46	3.3			1.	-		.=		-	-	-		2.	-
C-8	12/22/2015 15	37.22	26.78	10.44	0.00	0.00		-	2			-	- 4		~		=	1,4	100	-	-
C-8	03/08/2016	37.22	25.23	11.99	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50		4.					-	-

							HYDROCARBONS		- 1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	G	ENERAL C	CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	Ē	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-9	08/13/1996		28.27		0.00	0,00	ND	ND .	ND	ND	ND	ND		-	-					-	
C-9	09/06/1996		28.47		0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5				-					
C-9	12/19/1996	30.68	29.29	1.39	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5									
C-9	03/17/1997	30.68	27.57	3.11	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5			Ξ.		-				
C-9	06/11/1997	30.68	28.27	2.41	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5	1.0	-	6	-			-	5	-
C-9	09/17/1997 12	30.68	28.63	2.05	0.00	0.00	-	-0.0	-0.0		-0.0	-2.0	-					40			
C-9	12/11/1997	30.68	29.43	1.25	0.00	0.00					_	-		-		-	-			-	
C-9	03/12/1998	30.68	25.62	5.06	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5		2.5	2.5	172	168	230	0.048	59	58
C-9	06/23/1998	30.68	26.15	4.53	0.00	0.00		-		-		-		-2	-	-	2				
C-9	09/01/1998	30.68	26.38	4.30	0.00	0.00	12	-	_	100	-	-	. + -					-		-	-
C-9	12/30/1998	30.68	26.75	3.93	0.00	0.00	-	-			-	-				-	-		4.0	-	
C-9	03/31/1999	30.68	25.33	5.35	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	12.5		2.1	2.3	154	142	236	<500 ¹⁴	18	72.7
C-9	06/14/1999	30.68	26,52	4.16	0.00	0.00								-		. 2.		4		-	
C-9	09/30/1999	30.68	26.79	3.89	0.00	0.00			-2	4		-2			- 2	2	-	4	-		-
C-9	12/22/1999	30.68	27.69	2.99	0.00	0.00						-			4	-	-	40		-	
C-9	03/09/2000	30.68	26.04	4.64	0.00	0.00	<50	<0.5	<0.5	<0.5	0.75	<2.5		2.5	3.7	108	138	190	0.79	100	73
C-9	06/23/2000	30.68	25.85	4.83	0.00	0.00	18	-		-	-			14.	-	-	-	2.			-
C-9	09/05/2000	30.68	26.69	3.99	0.00	0.00		4.0	-		-	-	-		- 2	4.2		-		-	-
C-9	12/04/2000	30.68	27.07	3.61	0.00	0,00			- 2		-				-			-		-	
C-9	03/08/2001	30.68	25.75	4.93	0.00	0.00	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	.9	-	-	-		3		-	
C-9	06/07/2001 12	30.68	25.50	5.18	0.00	0.00	14			4.5	-		-2	-	-			-		-	-
C-9	09/13/2001 12	30.68	26.55	4.13	0.00	0.00					-	-		140		11.2	-	-	6		-6

							HYDROCARBONS		F	RIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-ско	В	Ī	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iran	Mirate (as N)	Sufate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-9	12/13/2001 12	30.68	26.77	3.91	0.00	0.00				-			-5		-	- 8	18	-	-3	-	-
C-9	03/08/2002	30.68	25.00	5.68	0.00	0.00	<50	< 0.50	<0.50	<0.50	<1.5	<2.5		~		-				-	
C-9	06/19/2002 12	30.68	24.67	6.01	0.00	0.00		14		-	4-1									7.	-
C-9	09/11/2002 12	30.68	25.70	4.98	0.00	0.00		-	-	-	1.2	-	. 2:		2		- 2		-	3-	3
C-9	12/11/2002 12	30.68	27.07	3.61	0.00	0.00	7						- 22			-	=	4			-
C-9	03/11/2003	30.68	24.48	6.20	0.00	0.00	<50	<0.50	<0.50	<0.50	<1.5	<2.5	\$						-	-	13
C-9	06/10/2003 12	30.68	25.00	5.68	0.00	0.00				-			4				-				-
C-9	09/09/2003 12	30.68	25.80	4.88	0.00	0.00		-		13		4	1.0	-		- 4	4	-	-	=	-
C-9	12/09/2003 12	30.68	28,22	2.46	0.00	0.00	17	5		-	9-2	-	-	-		-	-		-		
C-9	03/09/2004	30.68	23.86	6,82	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	2			2	95	-		-
C-9	06/08/2004 12	_10	25.21	_10	0.00	0.00						-	G.	-	-			-			
C-9	09/08/2004 12	_10	25.61	_10	0.00	0.00	Ca.	4		-	-	-									
C-9	12/06/2004 12	_10	24.77	_10	0.00	0.00		5		69	- 9.		1.4			~	8	-	3	-	-
C-9	03/07/2005	_10	23.18	10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<50				*	-2			-
C-9	06/06/2005 12	_10	22.65	_10	0.00	0.00		-	-		40		7.0					-	-	-	-
C-9	09/06/2005 12	_10	24.58	_10	0.00	0.00	1.4	-		-			-				-	~	~		-
C-9	12/05/2005 12	10	23.80	10	0.00	0.00	-69	9	-		1.50	- 0	-2:	-	Ξ	-	Ξ.	- 2-	4	3-	
C-9	03/06/2006 ⁷	_10	22.44	_10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50				- 6		*		4
C-9	06/05/2006 12	10	21.54	_10	0.00	0.00		-	+				9					61			-
C-9	09/05/2006 12	_10	23,49	_10	0.00	0.00		-	= ÷	-			19	-	-	*		-		-	-
C-9	12/04/2006 12	10	23.72	_10	0.00	0.00	4			-	-		-			-		65		-	-
C-9	03/05/2007	_10	22.97	_10	0.00	0.00	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<50		-			-	360		

						7	HYDROCARBONS		- 1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL C	HEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	трн.сво	В	1	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	n	gallons	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-9	06/04/2007 12	10	21.89	_10	0.00	0.00							-	-		-				2-0	
C-9	09/07/2007	_10	23.76	_10	0.00	0.00				-			-				-	4	-	-	12
C-9	12/06/2007 12	_10	24.17	_10	0.00	0.00		1.0									-			1	- 3
C-9	03/06/2008 ⁷	_10	23.18	_10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	1,50			-				-
C-9	06/05/2008 12	10	23.11	_10	0.00	0.00	12	-				-				-	-6	543		7-4-	
C-9	09/03/2008 12	_10	24.91	10	0.00	0.00					-			-							~
C-9	12/03/2008 12	_10	25.51	_10	0.00	0.00		140		4			•				-			-	
C-9	03/04/2009	_10	23.92	10	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<50	-			677	æ	140	-	-
C-9	06/09/2009 12	_10	23.68	_10	0.00	0.00			-	-						-		-	-		
C-9	09/30/2009 12	_10	25.41	_10	0.00	0.00		- 3		-		-	+	-	-	-	-	140	-		-
C-9	03/22/2010 ⁷	_10	22.37	_10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	-		-	-2	14	4.		-
C-9	09/16/2010 12	_10	24.30	10	0.00	0.00		Gen.	-	4			(+				-	. 2	4	-	
C-9	03/08/2011 12	10	21.71	10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	1.4		-	-				-
C-9	09/28/2011 12	_10	23.36	10	0.00	0.00	9		-			*	-			-	-	100	-61	-	-
C-9	03/08/2012 12	_10	24.44	_10	0.00	0.00	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<50		-	+	==:	-		•	-
C-9	09/20/2012 12	_10	24.92	10	0.00	0.00				1.4	-	-		-	-	-	3	6	4		-
C-9	03/20/2013	_10	23.36	_10	0.00	0.00	190	7	<0.5	2	2	<0.5	<50	(2.)		= =	=	3	+	-	-
C-9	09/18/2013 12	10	25.37	_10	0.00	0.00										-		-	-	-	-
C-9	03/13/2014 12	_10	24.82	_10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	15	-	-	-	-			-
C-9	09/25/2014 12	_10	25.92	_10	0.00	0.00	-	-	2	-4	4.0		-	-	**	-			-	*	-
C-9	03/10/2015 13		-	-		-			-	-		-	-			*					*
C-9	06/19/2015 13			-				-			-	-	3.4						-		3.0

						219	HYDROCARBONS		- 1	PRIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	Ť	E	x	МТВЕ Бу ЅW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nifrate (as N)	Sulfate
	Units	ft	ft	ft-amsi	ft	gallons	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	pg/L	µg/L	µg/L	millivolts	millivolts	µg/L	μg/L	µg/L	pg/L
C-9	09/15/2015 ¹³		-	-		- 6	54.0	2 1	-		-	-		-	-	-	-3	-	-	-	
C-9	12/22/2015 13		-	2		-					7			-	-	-	- 6	4	-		-
C-9	03/08/2016 13			9-	*				-	-		-		-	-				1,00		-
C-10	09/09/2003 ^{7,8}		17.18	- 40	0.00	0.00	<50	<0.5	<0.5	<0.5	0.5	14	<50		~		4	, Q			
C-10	12/09/2003		14.24	-	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	2	<50	1-		-	-	0.0	-		
C-10	03/09/2004	38.37	9.70	28.67	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	15	<50		-		2.00	1.2	-21		4
C-10	06/08/2004	38.37	11.70	26.67	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	44	<50	1 -	2.0	-	-	- 3			-
C-10	09/08/20047	38.37	13.00	25.37	0.00	0.00	<50	< 0.5	<0.5	<0.5	<0.5	2	<50	-			-			-	-
C-10	12/06/2004	38.37	12.53	25.84	0.00	0.00	<50	<0,5	<0.5	<0.5	<0.5	3	<50	-	-	-	-	. =	4	-	-
C-10	03/07/2005	38.38	7.84	30.54	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	140	<50	-				-		-	+
C-10	06/06/20057	38.38	9.62	28.76	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	390	<50	1.2	-	-	4		4	-	*
C-10	09/06/20057	38.39	11.58	26.81	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	190	<50	-2	*		-			*	*
C-10	12/05/20057	38.39	10.88	27.51	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	67	<50				-	-	191		
C-10	03/06/20067	38.39	7.37	31.02	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	280	<50	10	-	-	-	4	-		-
C-10	06/05/20067	38.39	9.25	29.14	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	280	<50	-		-	3	8	4	2	-
C-10	09/05/2006	38.39	10,38	28.01	0.00	0.00	<50	3	3	2	16	63	<50	1.81	-23	-	-	1,4.	4		3.
C-10	12/04/2006	38.39	10.65	27.74	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	93	<50						4		-
C-10	03/05/2007	38.39	8.97	29.42	0.00	0.00	<50	<0.5	<0.5	<0.5	<0,5	100	<50	-			-	-	100	-	-
C-10	06/04/2007	38.39	9,80	28.59	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	48	<50	-			-	-	4.	-	-
C-10	09/07/2007	38.39	11.20	27.19	0.00	0.00	<50	<0.5	< 0.5	< 0.5	<0.5	18	<50	-		-		-2	4		-
C-10	12/06/2007	38.39	10.53	27.86	0.00	0.00	<50	<0.5	< 0.5	<0.5	<0.5	19	<50						-	-	-

							HYDROCARBONS		-	PRIMAR	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	NAPLT	LNAPL REMOVED	трн.ско	В	Ī	E	x	MTBE by SW6260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Suifate
	Units	ft.	ft	ft-amsl	ft	gallons	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	pg/L	µg/L	millivolts	millivolts	μg/L	µg/L	µg/L	µg/L
C-10	03/06/2008 ⁷	38.39	8.75	29.64	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	43	<50					-		-	-3
C-10	06/05/2008	38.39	9.95	28.44	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	25	<50		2		-				-
C-10	09/03/2008 ⁷	38.39	11.41	26.98	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	12	<50	-	-					-	
C-10	12/03/2008	38.39	11.26	27.13	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	8	<50	1,40	-	-		6	4	-	
C-10	03/04/2009	38.39	7.16	31.23	0.00	0.00	<50	<0.5	<0.5	< 0.5	< 0.5	6	<50	44.		-	-4		-		
C-10	06/09/20097	38.39	9.66	28.73	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	30	<50			-					-
C-10	09/30/20097	38.39	10.92		0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	9	<50		-						
C-10	03/22/2010 ⁷	38.39	7.47	30.92	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	17	<50	100	-5-	-	54.	= 1		-	=
C-10	09/16/2010	38.39	10.17	28.22	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	12	<50	1.5	15	11.2	24-	8	6.1	12.	- 6
C-10	03/08/2011	38.39	8.50	29.89	0.00	0.00	<50	<0.5	<0.5	<0.5	< 0.5	7	<50	+	4	-					=
C-10	09/28/2011	38.39	10.02	28.37	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	6	<50	-	-				-	2	
C-10	03/08/2012	38.39	12.80	25.59	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	5	<50		4	-5		-	-	2	
C-10	09/20/2012	38.39	10.94	27.45	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	0.8 J	<50			-	-	1,7	9.0	-	
C-10	03/20/2013	38.39	9.29	29.10	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	4	<50		-,2	-	4		2 -	-	
C-10	09/18/2013	38.39	10.00	28.39	0.00	0.00	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<50			-		4	3		3
C-10	03/13/2014	38.39	9.10	29.29	0.00	0.00	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50			-	4				
C-10	09/25/2014	38.39	10.29	28.10	0.00	0.00	<50	<0.5	< 0.5	<0.5	<0.5	0.9 J	<50	-						-	-
C-10	03/10/2015	40.96	9.30	31.66	0.00	0.00	<50	<0,5	<0.5	<0,5	< 0.5	2	<50	200	-			4	100	-	-
C-10	06/19/2015	40.96	10.00	30.96	0.00	0.00	-	-	-		*		-	-	-	4	3-400			3	
C-10	09/15/2015	40.96	10.89	30.07	0.00	0.00	<50	<0.5	< 0.5	<0.5	<0.5	0.6 J	<50	•	-	- 1	3		2-0		-
C-10	12/22/2015 15	40.96	8.08	32.88	0.00	.0.00	4-	-	-	-	121	25	4-0	0-1		-	-	-		-	-
C-10	03/08/2016	40.96	7.22	33.74	0.00	0.00	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.7 J	<50						100		-

							HYDROCARBONS			PRIMARY	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	тРН-GRO	В	T	E	x	MTBE by SW8Z60	ETHÀNOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft.	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
C-11	03/10/2015	36.79	9.95	26.84	0.00	0.00	310	56	1	1	0.9 J	<0.5	<50		-	-	3-63	+	-	-	
C-11	06/19/2015	36.79	12.43	24.36	0.00	0.00	1,000	180	15	34	8	< 0.5	<50	~	+	-		-	2.0	141	
C-11	09/15/2015	36.79	15.88	20.91	0.00	0.00	1,300	170	3	12	2	<0.5	<50		-	-			-	-	-
C-11	12/22/2015	36.79	16.58	20.21	0.00	0.00	420	15	0.5 J	<0.5	<0.5	<0.5	<50	-	-	2	2	**	4	-	-
C-11	03/08/2016	36.79	13.00	23.79	0.00	0.00	280	27	1	2	<0.5	<0.5	<50	•	•					-	
C-13	03/08/2016	42,02	12.21	29,81	0.00	0.00	<50	<0.5	6	<0.5	1	31	<50						-		1,2
QA	12/13/2001	100					<50	<0.50	<0.50	<0.50	<1.5	<2.5		-	-	-	4.	¥.	100	-	
QA	03/08/2002	-		-	14.		<50	<0.50	<0.50	<0.50	<1.5	<2.5		-	-	-	4	-		-	3
QA	06/19/2002						<50	<0.50	<0.50	<0.50	<1.5	<2.5	-			- 5		~	2.	2	-
QA	09/11/2002						<50	< 0.50	<0.50	< 0.50	<1.5	<2.5	.0		-		-			-	+
QA	12/11/2002	-					<50	<0,50	<0.50	<0.50	<1.5	<2.5	8	6	G.	-	-	-	3	-	
QA	03/11/2003	4			di.		<50	<0.50	<0.50	<0.50	<1.5	<2.5			3					-	
QA	06/10/20037	12	= -	-			<50	<0.5	<0.5	<0.5	<0.5	<0.5			-		-	-			
QA	09/09/2003		-3	-			<50	<0.5	<0.5	<0.5	<0.5	<0.5			-	-	-	5.	-	-	
QA	12/09/2003				-	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5		3	-		*		11.4	3.	
QA	03/09/20047	~		-	4.		<50	< 0.5	< 0.5	<0.5	<0.5	<0.5	1-2-		-		+	*		-	
QA	06/08/20047		-		4	-	<50	<0.5	<0.5	<0.5	<0.5	<0.5	r@	-	-		-	-	-		
QA	09/08/2004						<50	< 0.5	<0.5	<0.5	<0.5	<0.5	-	-	3			141	***	-	
QA	12/06/20047		20		2.		<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	1.4	1.4	-	-					

							HYDROCARBONS		-	PRIMAR'	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-сясо	В		E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidalion reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sufate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	millivolts	milivolts	µg/L	µg/L	µg/L	µg/L
QA	03/07/2005	14	-				<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	- 6	-	-	-	-	-	
QA	06/06/2005		-				<50	<0.5	<0.5	<0.5	<0.5	<0.5		31	1.0	-	1.4	-			-
QA	09/06/20057			-	-		<50	<0.5	<0.5	<0.5	<0.5	< 0.5						2.			
QA	12/05/2005	(*)			-		<50	<0.5	<0.5	<0.5	<0.5	<0.5	1.6	3		-	-	-	-	-	-
QA	03/06/2006 ⁷	-	-	-2	-		<50	<0.5	<0.5	<0.5	<0.5	<0.5	4.	-3	- 2	-61					4
QA	06/05/20067						<50	<0.5	<0.5	<0.5	< 0.5	< 0.5		-			-	-			
QA	09/05/2006 ⁷				-		<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5	140	-			- 5	200	-		
QA	12/04/2006	0+0	-				<50	< 0.5	<0.5	<0.5	<0.5	< 0.5	12.0	8	==	5.4	-	-	(3.1	-	
QA	03/05/2007	.01	1.5	-			<50	<0.5	<0.5	<0.5	< 0.5	<0.5		-				-			
QA	06/04/2007	+	3-	-			<50	<0.5	<0.5	<0.5	<0.5	<0.5	10	-	-	-	-	-	4.0	-	1.2
QA	09/07/2007	·	-9-		-		<50	<0.5	<0.5	<0.5	< 0.5	<0.5		-	-	-					
QA	12/06/2007	-	-	-		-	<50	<0.5	<0.5	<0.5	<0.5	<0.5				-	. 5.			-	
QA	03/06/20087		-	-			<50	<0.5	<0.5	<0.5	<0.5	< 0.5	4								
QA	06/05/20087	-		-			<50	<0.5	< 0.5	<0.5	<0.5	<0.5		7	*	-	-	-	-	-	-
QA	09/03/20087						<50	<0.5	<0.5	<0.5	<0.5	<0.5	31			-		-	-	÷	-
QA	12/03/2008						<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5		-				=1	-	-	
QA	06/09/2009 ⁷	-		-			<50	<0.5	<0.5	<0.5	<0.5	<0.5	.2.	9.	- 6		~	-	(3)		0.5
QA	09/30/20097	-				1.7	<50	<0.5	<0.5	<0.5	<0.5	<0.5						~		*	-
QA.	03/22/20107	-		-	-		<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5	-		-		4		4	-	14
QA	09/16/2010		2.				<50	<0.5	<0.5	<0.5	<0,5	<0,5	<50		-		4	-	1.0	-	
QA	03/08/2011	-	-				<50	< 0.5	<0.5	<0.5	<0.5	< 0.5	-	-			-	-			-
QA	09/28/2011	-	-				<50	<0.5	< 0.5	< 0.5	<0.5	< 0.5	4	-			~	-	54.0	- 3	-

							HYDROCARBONS		F	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	NAPL REMOVED	трн.ско	В	T	Ē	x	MTBE by SW9260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	ft	gallons	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	μg/L	μg/L	µg/L	μg/L
QA	03/08/2012						<50	<0.5	<0.5	<0.5	<0.5	<0.5	4	-						-	
QA	09/20/2012	-				-	<50	<0.5	<0.5	<0.5	<0.5	<0.5		-	-	-	-	~	-	-	-
QA	03/20/2013	-				-	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-		-	-	-	2	1=1		-
QA.	09/18/2013	-	-	-		-	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-						-	-	-
QA	03/13/2014	-			-		<50	<0.5	<0.5	<0.5	<0.5	<0.5	4.		4	-	-2	+	- 2-	-	-
QA	09/25/2014		-		.2.		<50	<0.5	<0.5	<0.5	< 0.5	<0.5	6							3	-
QA	03/10/2015	-	-				<50	<0.5	<0.5	< 0.5	<0.5	<0.5	· · · · · · · · · · · · · · · · · · ·		-	44.	-		2		-
QA	06/19/2015			-			<50	<0.5	<0.5	< 0.5	<0.5	<0.5	4						-	1.0	
QA	09/15/2015	-	-	-		10.40	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5	9.7	-	-	-	-	2.7	-	4	
QA	12/22/2015	-	-5.			-	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	€					7		-	- <
QA	03/08/2016	-			-	*	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-			•		*	-	•	*
Trip Blank	04/28/1989				10-1		<500	<0.5	<0.5	<0.5	<0.5		150	-				12	.5	-	4
Trip Blank	08/08/1989	2.	-	-		-	<500	<0.5	<0.5	<0.5	<0.5	*	4	-	-	-			(5)		9
Trip Blank	08/27/1990	-		-			<50	< 0.3	< 0.3	< 0.3	<0.6	-0	-			-		-		-	1.0
Trip Blank	11/14/1990	-			0		<50	< 0.3	<0.3	< 0.3	<0.6	-	(2)	-					•		
Trip Blank	06/18/1991	+		2.			<50	<0.5	<0.5	<0.5	<0.5			-			1	Ψ.	-	-2	
Trip Blank	09/19/1991	-					<50	<0.5	<0.5	<0.5	<0.5		-	1.4	- 2	*		4	-	-	-
Trip Blank	12/20/1991					-	<50	< 0.5	<0.5	<0.5	<0.5	1.5	*		3				-	-	-
Trip Blank	03/18/1992	15	-				<50	< 0.5	<0.5	<0.5	<0.5	-	(5)			1.4	-	-		•	
Trip Blank	07/14/1992			-			<50	<0.5	<0.5	<0.5	<0.5		*		-		15		3		-
Trip Blank	10/08/1992	-	-				<50	<0.5	<0.5	<0.5	< 0.5			1.44		4.1	-	-	-		-

							HYDROCARBONS			PRIMAR)	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location	Date	TOC	DTW	GWE	LNAPLT	LNAPL REMOVED	TPH-GRO	В	ī	E	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reducition potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nirate (as N)	Sufate
	Units	ft	ft	ft-amsl	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
Trip Blank	01/08/1993	C.	-				<50	<0.5	<0.5	<0.5	<0.5	-	-		*		-				-
Trip Blank	04/14/1993	-		-			<50	<0.5	<0.5	<0.5	< 0.5	-	-	4-0				14			
Trip Blank	07/16/1993		-	-			<50	<0.5	<0.5	<0.5	<0.5					-		-			-
Trip Blank	09/21/1993				2	-	<50	<0.5	<0.5	<0.5	<0.8		100	-	-	-	44.			2.	
Trip Blank	01/28/1994					-	<50	<0.5	<0.5	<0.5	<0.5	-2-	Ga.				-				-
Trip Blank	03/17/1994		4.	-	1.4		<50	<0.5	<0.5	<0.5	<0.5								3		
Trip Blank	06/16/1994		300			-	<50	<0.5	<0.5	<0.5	<0.5	-	144	-	2.0		-				-
Trip Blank	09/22/1994		-	-			<50	<0.5	<0.5	<0.5	< 0.5						02	6	100	-	2.1
Trip Blank	12/15/1994		-	1.0	-		<50	<0.5	<0.5	<0.5	< 0.5		10	100	-	-		4			-
Trip Blank	03/30/1995	4.		-			<50	<0.5	<0.5	< 0.5	< 0.5	-	4		-	-		-	1.	-	-
Trip Blank	06/20/1995		41	9-			<50	<0.5	<0.5	<0.5	< 0.5	-	-	-	-	-	-5	12	-	2-0	-
Trip Blank	09/20/1995		10	-		-	<50	<0.5	<0.5	<0.5	<0.5		**	-			-	-			
Trip Blank	12/06/1995	114		-		-	<50	<0.5	<0.5	<0.5	<0.5	-	-2				- 5-	.Ac.	1		-
Trip Blank	03/21/1996		4.0	-			<50	<0.5	<0.5	<0.5	<0.5	<2.5	7.4	-8		-	12	5	-		-
Trip Blank	06/21/1996	-60	21	-			<50	< 0.5	< 0.5	<0.5	<0.5	<2.5	173	-	-	-	-	-	-	-	
Trip Blank	09/06/1996			-			<50	<0.5	< 0.5	<0.5	< 0.5					-		8:	-		-
Trip Blank	12/19/1996	4	-	14		3-	<50	<0,5	<0.5	<0.5	<0.5	<2.5	.=	1.0	-20	-	=	1-	4-	-	
Trip Blank	03/17/1997	100	-	4			<50	<0.5	< 0.5	<0.5	<0.5	<2.5				-	3	-	-		3
Trip Blank	06/11/1997		-	1.4		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5	· ·				1.5		15		
Trip Blank	09/17/1997	-	-				<50	<0.5	<0.5	< 0.5	<0.5	<2.5	1-		-	-		-	-	-	-
Trip Blank	12/11/1997						<50	<0.5	<0.5	<0.5	<0.5	<2.5	-			-	-	-	-2.	-	2
Trip Blank	03/12/1998	-54					<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5	. 2		-	*	-	-	-	*	

							HYDROCARBONS		1	PRIMARY	VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIS	TRY
Location	Date	TOC	DTW	GWE	NAPLT	NAPL REMOVED	TPH-GRO	В	Ī	E	×	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous iron	Nirate (as N)	Sulfate
	Units	ft	ft	ft-amsi	ft	gallons	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	µg/L
Tan Dinak	ac malunna						<50	<0.5	<0.5	<0.5	<0.5	<2.5	15				-	-			-
Trip Blank	06/23/1998	-		•			<50	<0.5	<0.5	<0.5	<0.5	<2.5									
Trip Blank	09/01/1998							<0.5		<0.5	<0.5	<2.0							0.		
Trip Blank	12/30/1998			-			<50 <50	<0.5	<0.5	<0.5	<0.5	<2.0		-							- 2
Trip Blank	03/31/1999	-	3				<50	<0.5	<0.5	<0.5	<0.5	<2.5									
Trip Blank	06/14/1999	-					<50	<0.5	<0.5	<0.5	<0.5	<2.5									
Trip Blank	12/22/1999											<2.5									
Trip Blank	06/23/2000	-	1.50	-		-	<50	<0.50	<0.50	<0.50	<0.50					-		-0			
Trip Blank	09/05/2000	-	*				<50	<0.50	<0.50	<0.50	<0.50	<2.5	*			*			-		
Trip Blank	12/04/2000	1.4				-	<50	< 0.50	< 0.50	<0.50	<0.50	<2.5	~	-		-	-	-	-		
Trip Blank	03/08/2001	17	-				<50.0	<0.500	<0.500			<2,50				-	-		-	>	-
Trip Blank	06/07/2001		*			-	<50	<0.50	<0.50	< 0.50	<0.50	<2.5	2	-	-	- 0	-	9			-
Trip Blank	09/13/2001			*			<50	< 0.50	<0.50	<0.50	<0.50	<2.5	-		-					*-	-

Abbreviations and Notes:

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

(ft-amsl) = Feet above mean sea level

ft = Feet

µg/L = Micrograms per liter

						HYDROCARBONS		. 3	PRIMAR)	vocs		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL (CHEMIST	RY
Location Date	тос	DTW	GWE	LNAPLT	LNAPL REMOVED	трн-сво	В	ī	Ē	x	MTBE by SW8260	ETHANOL	Dissolved oxygen, prepurge	Dissolved oxygen, postpurge	Oxidation reduction potential, prepurge	Oxidation reduction potential, postpurge	Alkalinity, total (as CaCO3)	Ferrous Iron	Nirate (as N)	Sulfate
Units	ft	ft	ft-amsl	ft	gallons	pg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	millivolts	millivolts	µg/L	µg/L	µg/L	pg

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

MTBE = Methyl tert-butyl ether

- -- = Not available or not applicable
- <x = Not detected above laboratory method detection limit</p>
- J = Estimated value between method detection limit and laboratory reporting limit
- *TOC elevation for C-10 was surveyed on September 26, 2003, by Virgil Chavez Land Surveying. The benchmark for this survey was a City of Oakland No. 1589, a cut square in the sidewalk at the mid-return at the west corner of High Street and Foothill Blvd., (Benchmark Elevation = 38.54 feet, NGVD 29).
- "GWE corrected for the presence of LNAPL; correction factor; [(TOC DTW) + (LNAPLT x 0.80)].
- 1 Confirmation run
- 2 Sample was analyzed past hold-time, the results should be considered as estimated.
- ORC present in well.
- 4 Laboratory report indicates gasoline C6-C12.
- 5 Laboratory report indicates sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- 6 Laboratory report indicates hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- 7 BTEX and MTBE by EPA Method 8260.
- 8 Well development performed.
- ORC removed from well.

Location	Date	TOC	DTW	GWE ft-amsl	ft	gallons	µg/L	B µg/L	µg/L	Ε μg/L	µg/L	≥ μg/L	μg/L	µg/L	μg/L	millivolts	millivolts	µg/L	µg/L	µg/L	μg
					VAPLT	APL REMOVED	H-GRO					TBE by SW8260	HANOL	ssolved oxygen, prepurge	ssolved oxygen, postpurge	dation reduction potential, prepurge	kidation reduction potential, postpurge	kalinity, total (as CaCO3)	arrous Iron	trate (as N)	ulfata
							HYDROCARBONS		- 3	PRIMARY	/ VOCS		ADDITIONAL VOCS		FIELD	PARAMETE	RS	GE	NERAL C	HEMIST	RY

10 TOC has been altered; unable to determine an accurate GWE.

11 Laboratory confirmed result.

12 Sampled annually.

13 Inaccessible

14 Analyzed in part per billion (ppb)

15 Sampled semi-annually

TABLE 6 WELL CONSTRUCTION DETAILS CHEVRON STATION 90076 4265 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

	Well ID	Top of screen	Bottom of Screen	Screen Length	Diameter	Slot Size	Installation Date
	C-1	15	40	25	3	0.020	08/13/87
	C-2	15	40	25	3	0.020	08/13/87
	C-3	15	40	25	3	0.020	08/13/87
	C-4	15	40	25	3	0.020	08/13/87
	C-5	25	45	20	2	0.020	08/01/90
	C-6	35	55	20	2	0.020	08/01/90
	C-7	35	55	20	2	0.020	07/31/90
	C-8	39	59	20	2	0.020	11/01/90
	C-9	30	45	15	2	0.020	07/10/96
	C-10	10	30	20	2	0.010	08/08/03
1	C-11	10	20	10	2	0.020	02/03/15
	C-13	9	19	10	2	0.020	2/23/16

Appendix A Regulatory Correspondences

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

June 10, 2015

Mr. Mark Horne
Chevron Environmental Management Company
6101 Bollinger Canyon Rd.
San Ramon, CA 94583
(sent via electronic mail to: markhome@chevron.com)

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Loi & Josephine Le Loi V Le et al. 4265 Foothill Bvd. Oakland, CA 94601

Subject:

Modified Work Plan Approval; Fuel Leak Case No. RO0000427 and GeoTracker Global ID T0600100339, Chevron #9-0076, 4265 Foothill Blvd, Oakland, CA 94601

Dear Mr. Horne and Mr. and Ms. Le:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the Site Investigation Report, Updated Focused Site Conceptual Model, and Work Plan, dated April 17, 2015 and the First Semi-Annual 2015 Groundwater Monitoring and Sampling Report, dated May 8, 2015. The reports were prepared and submitted on your behalf by Conestoga-Rovers & Associates (CRA). Thank you for submitting the reports.

The referenced work plan proposes to install one groundwater monitoring well along the "western" property line in order to evaluate groundwater concentrations along that perimeter, and beneath an apparent vapor source, as documented at recently installed vapor wells VP-5 and VP-6.

ACEH has previously evaluated the data and more recently collected data presented in the above-mentioned reports, in conjunction with the case files, and the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on ACEH staff review, we have determined that the site meets all General Criteria, but fails to meet the Media-Specific Criteria for Groundwater, the Media-Specific Criteria for Vapor Intrusion to Indoor Air, and the Media-Specific Criteria for Direct Contact (see Geotracker for a copy of the updated LTCP checklist).

Based on ACEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: mark.detterman@acqov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- Work Plan Modifications The referenced work plan proposes a series of actions with which ACEH
 is in general agreement of undertaking; however, ACEH requests several modifications to the
 approach. Please submit a report by the date specified below.
 - a. Vicinity Basement / Foundation Depths The depth of basements in the vicinity of the subject site, in particular the basement of the immediately downgradient house, have not been determined or documented; thus it is uncertain if vapor wells VP-1 to VP-4, installed along the "southern" property perimeter to a depth of 5 to 6 feet below grade surface (bgs) sufficiently evaluate the potential for vapor intrusion at a depth of 5 feet below the building foundation. This is an outstanding request from previous directive letters. Existing vapor data appears to indicate that soils in the upper five feet along the "southern" property perimeter do not appear to be a significant source of vapor to the residential basement;

Mr. Horne and Mr. and Ms. Le RO0000427 June 10, 2015, Page 2

however, the vertical migration of vapor from groundwater to a basement does not appear to have been evaluated. This may be important at this location due to the proximal location of this basement relative to well C-4, the groundwater well with the highest groundwater concentrations at the site (downgradient well C-4 recent contained concentrations of 8,800 micrograms per liter (µg/l) Total Petroleum Hydrocarbons as gasoline [TPHg], and 1,400 µg/l benzene in March 2015, utilizing a 25-foot long screen interval).

Please determine and report on the depth of this basement, and evaluate the appropriateness of vapor wells VP-1 to VP-4 to evaluate the potential for vapor intrusion into the basement from groundwater in conjunction with the LTCP requirement for the collection of vapor samples five feet beneath existing foundations. Please provide this data to ACEH in the report requested below, or alternatively in an effort to incorporate these actions into pending work, please communicate the need for additional data collection or additional vapor wells along the "southern" margin of the site prior to the commencement of the proposed field activities to address this apparent data gap.

- b. Vapor Well Resampling (VP-5 and VP-6) It appears appropriate to request the resampling of vapor wells VP-5 and VP-6, by previously approved Standard Operating Procedures, in conjunction with the installation of the new groundwater monitoring well. This is in general conformance with Department of Toxic Substances Control (DTSC) guidance for multiple vapor sampling events. ACEH anticipates that this action would occur approximately six months after the initial sampling, would provide seasonal vapor fluctuation data, and may provide an additional line of evidence in regards to the potential for vapor intrusion to the immediately adjacent residential apartment building.
- c. Offsite Direct Contact Evaluation Based on older soil analytical data from well C-4 (3.9 milligrams per kilogram [mg/kg] benzene collected at a depth of nine feet bgs in 1987), if similar or representative of concentrations in soil beneath the offsite residence, soil adjacent or beneath the residence would not meet the residential Direct Contact Media-Specific Criteria. ACEH notes that no product odor was noted in the bore log for C-4 above this approximate depth, and additionally, more recent soil samples collected from bores VP-1 to VP-4, indicate non-detectable concentrations above approximately 7.5 feet. However, more recent data at deeper than 7.5 feet has not been collected. While ACEH anticipates that the degradation of benzene concentrations near C-4 will have occurred in the intervening years, please evaluate the appropriateness of confirmation soil samples in this area of the site. Similar to comments above, please provide this evaluation in the report requested below, or alternatively communicate the need for additional data collection along the "southern" margin of the site prior to the commencement of the proposed field activities to address this apparent data gap.
- d. Vicinity Well Survey Thank you for including a copy of the 1990 well survey in the referenced investigation report. In order to verify that no additional wells, as vertical conduits or sensitive receptors, have been installed in the intervening 25 years, please update, using Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) databases, the well survey for the since and vicinity. Please plot and list any deeper domestic, irrigation, cathodic protection, or other wells found within 2,000 feet of the subject site. Please be aware that well construction details, but not well addresses are considered confidential by the State. Therefore, please do not include the addresses in your report.
- Quarterly Groundwater Monitoring Please monitor recently installed wells on a quarterly basis for a minimum period of one hydrologic cycle. Please additionally include groundwater sampling and analysis from wells C-2, C-4, C-6, and C-7 in to the quarterly program. Depth-to-water measurements are requested from all wells, including non-sampled wells. Please submit quarterly groundwater monitoring reports by the dates identified below.

Mr. Horne and Mr. and Ms. Le RO0000427 June 10, 2015, Page 3

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention, and in Attachment 1, and schedule:

- August 21, 2015 Site Investigation Report and Updated Focused Site Conceptual Model File to be named RO427_SWI_R_vyyy-mm-dd
- November 20, 2015 Third Quarter 2015 Groundwater Monitoring Report File to be named: RO427_GWM_R_vyyy-mm-dd
- February 26, 2016 Fourth Quarter 2015 Groundwater Monitoring Report File to be named: RO427_GWM_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/Index.html.

If your email address does not appear on the cover page of this notification, ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark determan@accov.org.

Sincerely.

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou, email,

c=US

Date: 2015.06.10 12:03:42 -07'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Enclosures: Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Nathan Lee, Conestoga-Rovers & Assoc., 5900 Hollis Street, Suite A, Emeryville, CA 94608 (sent via electronic mail to NLee@craworld.com)

Kiersten Hoey, Conestoga-Rovers & Assoc., 5900 Hollis Street, Suite A, Emeryville, CA 94608; (sent via electronic mail to KHoey@craworld.com)

Dilan Roe, ACEH (Sent via E-mail to: dilan.roe@acgov.org)

Mark Detterman, ACEH, (sent via electronic mail to mark detterman@acgov.org)

Geotracker, Electronic File

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). SWRCB website for more information these requirements OIT (http://www.waterboards.ca.gov/water_lssues/programs/ust/electronic_submirtal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SUBJECT: Electronic Report Upload (ftp) Instructions

SECTION: Miscellaneous Administrative Topics & Procedures

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh lontoxic@acquv.org
 - In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to Itp://alcoftp1 acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the fip site.
 - With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh loptoxic@acqov org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

October 7, 2015

Mr. Mark Horne
Chevron Environmental Management Company
6101 Bollinger Canyon Rd.
San Ramon, CA 94583
(sent via electronic mail to: markhome@chevron.com)

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Loi & Josephine Le Loi V Le et al. 4265 Foothill Bvd. Oakland, CA 94601

Subject:

Work Plan Addendum Approval; Fuel Leak Case No. RO0000427 and GeoTracker Global ID T0600100339, Chevron #9-0076, 4265 Foothill Blvd, Oakland, CA 94601

Dear Mr. Horne and Mr. and Ms. Le:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the Second Quarter 2015 Groundwater Monitoring and Sampling Report, dated August 18, 2015, and the Response Letter, dated August 21, 2015. These documents were prepared and submitted on your behalf by GHD Services, Inc (GHD). Thank you for submitting the documents.

Based on ACEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide 72-hour advance written notification to this office (e-mail preferred to:

TECHNICAL COMMENTS

 Work Plan Addendum Approval – The Response Letter proposed several modifications to the scope of work contained in the previously approved Site Investigation Report, Updated Focused Site Conceptual Model, and Work Plan, dated April 17, 2015. ACEH is in general agreement that the proposed modifications are appropriate and are anticipated to expedite site and risk characterization of the site under the Low Threat Closure Policy. Please submit a report by the date specified below.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention, and in Attachment 1, and schedule:

 December 18, 2015 – Site Investigation Report and Updated Focused Site Conceptual Model File to be named RO427_SWI_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm.

Mr. Horne and Mr. and Ms. Le RO0000427 October 7, 2015, Page 2

If your email address does not appear on the cover page of this notification, ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Should you have any questions, please contact me at (510) 567-6876 or send me an electronic mail message at mark detterman@acgov.org.

Sincerely,

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou, email, c=US Date: 2015.10.07 15:38:50 -07'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Nathan Lee, Conestoga-Rovers & Assoc., 5900 Hollis Street, Suite A, Emeryville, CA 94608 (sent via electronic mail to NLee@craworld.com)

Dilan Roe, ACEH (Sent via E-mail to: dilan roe@acqov org)

Mark Detterman, ACEH, (sent via electronic mail to mark detterman@acqov org)

Geotracker, Electronic File

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests. regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please SWRCB website for more information these requirements (http://www.walerboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's fit site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

Please do not submit reports as attachments to electronic mail.

Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.

It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.

Signature pages and perjury statements must be included and have either original or electronic signature.

Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.

Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer

monitor.

Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

1) Obtain User Name and Password

a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.

i) Send an e-mail to deh loptoxic@acgov.org

In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org

- (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
- b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.

Enter your User Name and Password. (Note: Both are Case Sensitive.)

Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the fite site.

- With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs

Send email to deh loptoxic@acqov.org notify us that you have placed a report on our ftp site.

b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)

The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.

d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Weir, Carissa

From:

Lee, Nathan

Sent:

Friday, December 11, 2015 4:52 PM

To:

Weir, Carissa

Subject:

FW: Former Chevron 90076 - RO 0274 - Extension Request

Server and STRATA please

Nathan Lee. P.G.

GHD

T: +1 925 849 1003 | M: +1 510 385 2499 | E: nathan.lee@qhd.com 2300 Clayton Road Suite 920 Concord California 94520 United States | www.ghd.com WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

From: Detterman, Mark, Env. Health [mailto:Mark.Detterman@acgov.org]

Sent: Friday, 11 December 2015 4:36 PM

To: Lee, Nathan

Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Nathan and Mark,

I have updated Geotracker with the requested date of May 6, 2016. Please use this email to document the change.

Mark Detterman

Senior Hazardous Materials Specialist, PG, CEG

Alameda County Environmental Health

1131 Harbor Bay Parkway Alameda, CA 94502

Direct: 510.567.6876 Fax: 510.337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Lee, Nathan [mailto:Nathan.Lee@qhd.com]

Sent: Friday, December 11, 2015 3:19 PM

To: Detterman, Mark, Env. Health
Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Mark,

GHD Services Inc. (GHD) on behalf of Chevron Environmental Management Company (EMC), would like to request an extension for the Site Investigation Report and Updated Focused Site Conceptual Model that was requested by Alameda County Environmental Health's (ACEH) in their letter dated October 7, 2015. Due to the time required to obtain the necessary permits from the City of Oakland and subcontractor availability below are the scheduled dates of field activities:

January 14, 2016 - Utility locate

February 23, 2016 - Soil boring advancement

Therefore, an extension of May 6, 2016 for the Site Investigation Report and Updated Focused Site Conceptual Model is requested, based on the time required to obtain the City of Oakland permits and subcontractor availability. This extension takes into account the two weeks that is required to obtain results from the laboratory. This requested extension date is dependent on City of Oakland not requiring any additional information in the permitting process.

Thanks,

Nathan Lee. P.G.

GHD

T: +1 925 849 1003 | M: +1 510 385 2499 | E: nathan,lee@qhd.com
2300 Clayton Road Suite 920 Concord California 94520 United States | www.ghd.com
WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

This e-mail has been scanned for viruses

Lee, Nathan

From: Detterman, Mark, Env. Health <Mark.Detterman@acgov.org>

Sent: Thursday, 5 May 2016 3:18 PM

To: Lee, Nathan

Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Nate and Mark,

I have extended the delivery date to June 3rd per your request and the problems you encountered. If you need to document the extension you can use this email to do so.

Mark Detterman

Senior Hazardous Materials Specialist, PG, CEG Alameda County Department of Environmental Health 1131 Harbor Bay Parkway

Alameda, CA 94502 Direct: 510.567.6876 Fax: 510,337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Lee, Nathan [mailto:Nathan.Lee@ghd.com]

Sent: Wednesday, April 27, 2016 3:42 PM

To: Detterman, Mark, Env. Health Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Mark,

GHD Services Inc. (GHD) on behalf of Chevron Environmental Management Company (EMC), would like to request an extension for the *Site Investigation Report and Updated Focused Site Conceptual Model* that was requested by Alameda County Environmental Health's (ACEH) in their letter dated October 7, 2015. This extension is requested, due to the amount of rain that was received during the time the soil vapor sampling event was scheduled to take place. Based on the California Environmental Protection Agency Department of Toxic Substances Control (DTSC) *Active Soil Gas Investigations* dated July 2015, GHD had to wait the designated amount of time to allow the soils to dry, prior to sampling. The amount of wait time after a rain event stated by DTSC, is approximately five days of dry weather. GHD had to delay the soil vapor sampling event based on weather conditions. As the sampling was delayed, the analytical results were also delayed from when GHD originally expected the results. Therefore, due to the delay in receipt of analytical data, an extension of June 3, 2016 for the *Site Investigation Report and Updated Focused Site Conceptual Model* is requested.

Thanks,

Nathan Lee. P.G.

GHD

T: +1 925 849 1003 | M: +1 510 385 2499 | E: nathan.lee@ghd.com 2300 Clayton Road Suite 920 Concord California 94520 United States | www.ghd.com WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION From: Detterman, Mark, Env. Health [mailto:Mark.Detterman@acgov.org]

Sent: Friday, 11 December 2015 4:36 PM

To: Lee, Nathan

Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Nathan and Mark,

I have updated Geotracker with the requested date of May 6, 2016. Please use this email to document the change.

Mark Detterman

Senior Hazardous Materials Specialist, PG, CEG Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Direct: 510.567.6876 Fax: 510.337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Lee, Nathan [mailto:Nathan.Lee@ghd.com]

Sent: Friday, December 11, 2015 3:19 PM

To: Detterman, Mark, Env. Health Cc: MarkHorne@chevron.com

Subject: RE: Former Chevron 90076 - RO 0274 - Extension Request

Mark,

GHD Services Inc. (GHD) on behalf of Chevron Environmental Management Company (EMC), would like to request an extension for the *Site Investigation Report and Updated Focused Site Conceptual Model* that was requested by Alameda County Environmental Health's (ACEH) in their letter dated October 7, 2015. Due to the time required to obtain the necessary permits from the City of Oakland and subcontractor availability below are the scheduled dates of field activities:

January 14, 2016 - Utility locate

February 23, 2016 - Soil boring advancement

Therefore, an extension of May 6, 2016 for the Site Investigation Report and Updated Focused Site Conceptual Model is requested, based on the time required to obtain the City of Oakland permits and subcontractor availability. This extension takes into account the two weeks that is required to obtain results from the laboratory. This requested extension date is dependent on City of Oakland not requiring any additional information in the permitting process.

Thanks,

Nathan Lee. P.G.

GHD

T: +1 925 849 1003 | M: +1 510 385 2499 | E: nathan.lee@ghd.com 2300 Clayton Road Suite 920 Concord California 94520 United States | www.ghd.com WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION This e-mail has been scanned for viruses

Appendix B
Summary of Environmental Investigation
and Remediation

Appendix B

Summary of Environmental Investigation and Remediation Chevron Service Station 90076

May 1987 Tank Removal and Replacement

In May 1987, Blaine Tech Services removed three (8,000-, 6,000-, and 3,000-gallon) steel fuel underground storage tanks (USTs) and one 1,000-gallon fiberglass used-oil UST. An unknown volume of excavated backfill material was aerated and reused onsite. Additional impacted soil was disposed of at a Chevron approved, non-hazardous landfill. Three 10,000-gallon double-walled fiberglass USTs were installed in the same excavation in June 1987. The used-oil UST was not replaced. Soil samples were collected beneath the former fuel USTs and use-oil UST. Details are available in Blaine Tech's August 14, 1987 *Product and Waste Oil Tank Removal*.

July 1987 Excavation

On July 8, 1987, during excavation work to install a sign along Foothill Boulevard, petroleum hydrocarbon odors and a small amount of water with product sheen was reported in the excavated pit at 11 feet below grade (fbg). Details are available in Weiss Associates' (Weiss) December 18, 1990 Subsurface Investigation Report.

August 1987 Well Installation

In August 1987, Pacific Environmental Group, Inc. (PEG) oversaw the advancement of soil boring C-A and drilling/installation of 3-inch diameter groundwater monitoring wells C-1 through C-4. Light non-aqueous phase liquid (LNAPL) at a measured thickness of greater than 2.0 feet was reported in well C-2. As a result, well C-2 was not sampled. Details are available in PEG's September 23, 1987 Soil and Groundwater Investigation Report.

July/August 1990 Monitoring Well Installation

In July and August 1990, Weiss oversaw the drilling /installation of 2-inch diameter wells C-5 through C-7. Well C-8 was subsequently installed in November 1990. No hydrocarbons were detected in soil samples collected from C-8. Weiss also conducted a well survey within a one-half mile radius of the site. Forty wells were identified within the search area. Of these, two were cathodic protection wells, one was identified as irrigation well and one other identified as industrial. The remaining 36 wells were identified as monitoring wells. The irrigation well was reported less than 0.75 miles upgradient of the site. No domestic or municipal water supply wells were identified within the search area. Based on depth to water measurements, Weiss suggested that groundwater beneath the site may be perched. Depth to water in onsite well C-4 and offsite well C-6 differed by approximately 14 feet in 1990. Details are available in Weiss's December 18, 1990 Subsurface Investigation Report.

November 1991 Groundwater Extraction

In an attempt to achieve hydraulic control of dissolved-phase hydrocarbons, Weiss began operating a groundwater extraction system in well C-2 in November 1991. The system operated until October 1993 and extracted approximately 10,200 gallons of impacted groundwater. System operations were terminated due to noise complaints from the neighbors and low flow rates. Details were obtained from Weiss's July 30, 1993 Monthly Monitoring Report.

July 1996 Well Installation

PEG oversaw the drilling/installation of 2-inch diameter well C-9 on July 10, 1996, downgradient of C-7, in the Albertson's supermarket parking lot (currently, a Mi Pueblo Supermarket). Details are available in PEG's October 2, 1996 Off-Site Monitoring Well Installation Report.

July 1997 Product Line Upgrades

In July 1997, Gettler-Ryan (G-R) collected soil samples during partial product piping replacement in conjunction with dispenser and UST containment upgrades. Soil was excavated beneath the dispensers to accommodate new

containment requirements and beneath the product piping. Compliance soil samples PL1 through PL5 were collected at approximately 4 fbg. Approximately 46 tons of soil were excavated and disposed of offsite. Details are available in G-R's September 24, 1997, Soil Sampling During Product Dispenser Upgrade and Partial Product Line Replacement Report.

1998-2000 Site Conceptual Model and Risk-Based Corrective Action (RBCA) Plan

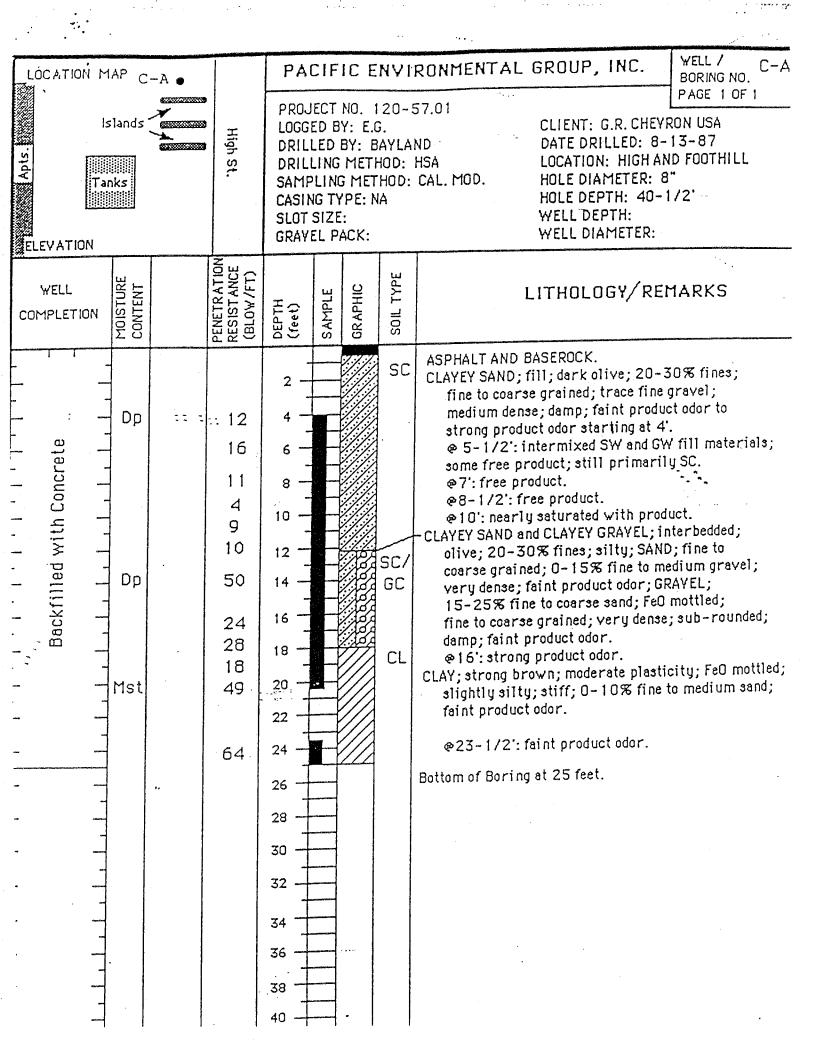
In May 1998, Delta Environmental Consultants, Inc. (Delta) completed a RBCA evaluation using analytic results from previous soil and groundwater assessment activities. This was followed by a site conceptual model (SCM) and proposed RBCA plan. The SCM indicated that the primary potential exposure receptors are current and future residents of properties near the intersection of High and Bond Streets and, possibly, workers and customers in the Albertson's parking lot. The only complete exposure pathway would be hydrocarbon volatilization from groundwater to outdoor and indoor air. Secondary potential exposure pathways are hydrocarbon volatilization from soil or direct dermal contact. A Tier 2 RBCA analysis was performed and showed that onsite and offsite representative concentrations exceeded the site-specific target levels for benzene. Delta concluded the adjacent residence with a basement may be at risk for benzene inhalation and recommended that site specific soil vapor samples be collected to evaluate current soil vapor levels. Delta also recommended continued use of oxygen releasing compound to enhance bioremediation and a continuation of over-purging C-1 through C-4. Details are available in Delta's July 28, 2000 Site Conceptual Model and Risk-Based Corrective Action Plan.

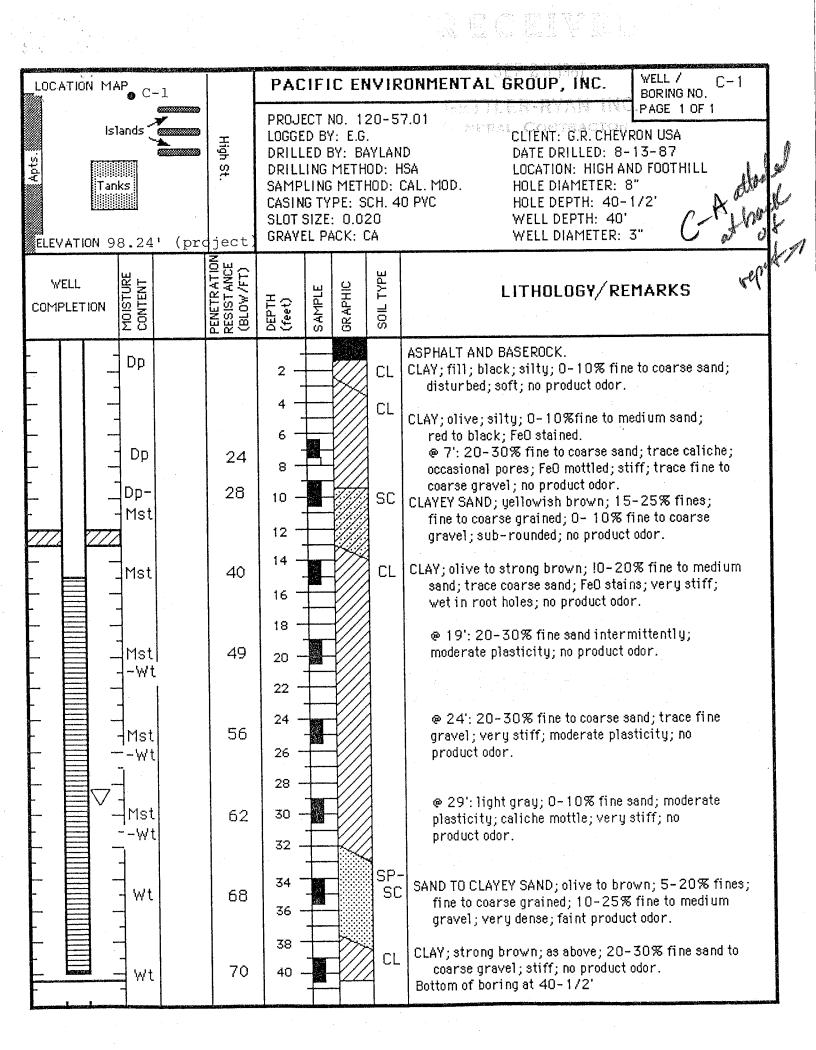
August 2003 Well Installation

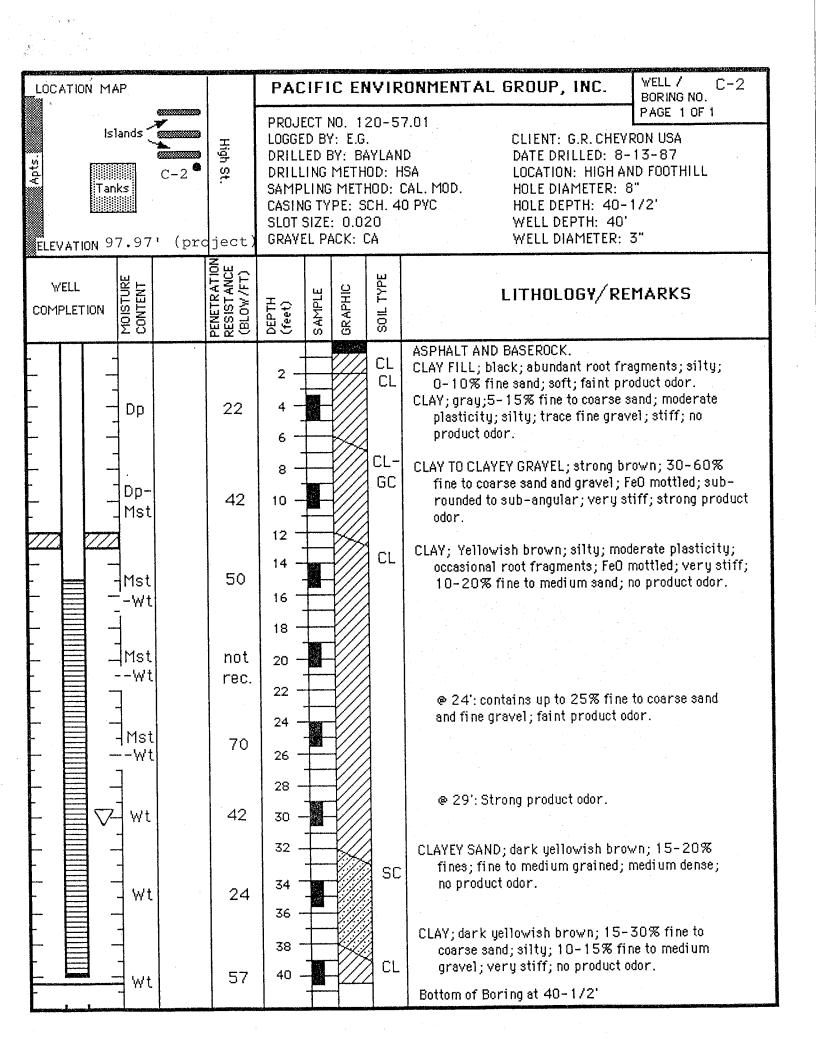
In August 2003, Cambria Environmental Technology, Inc (Cambria) oversaw the drilling/installation of monitoring well C-10 in the eastern corner of the site to further evaluate subsurface conditions onsite and possible offsite impacts from the adjacent station. Details are available in Cambria's October 8, 2003 Well Installation Report/Site Summary.

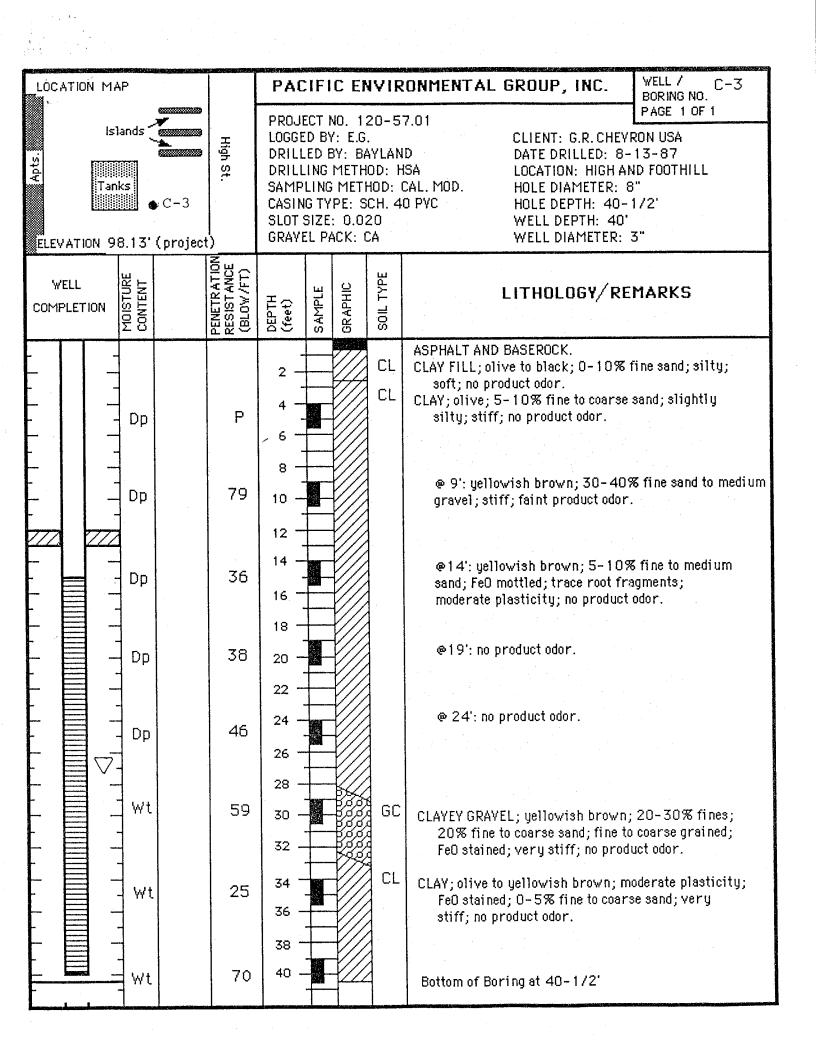
November 2005 Vapor Probe Installation

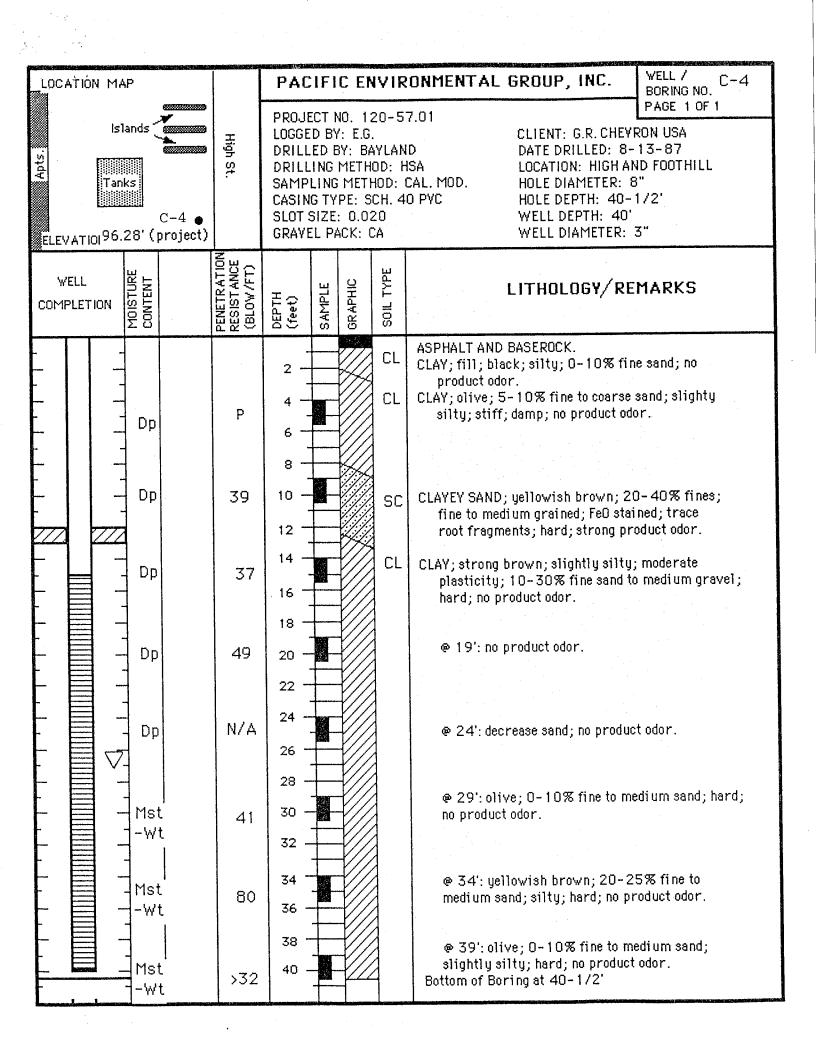
In November 2005, Cambria oversaw the installation of soil vapor probes VP-1, VP-2, and VP-3 on the southern corner of the site to determine soil vapor concentrations along the downgradient property boundary. No formal report was submitted to the agency, detailing the work; however details of this investigation were submitted to ACEH on July 12, 2012.

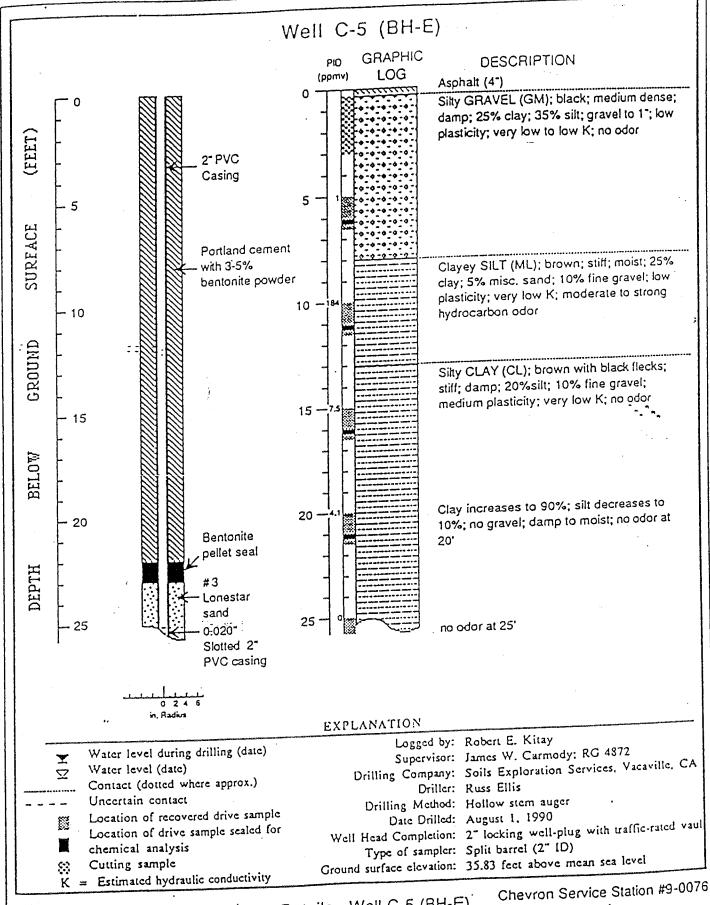

August 2012 Soil Vapor Sampling and Preferential Pathway Study

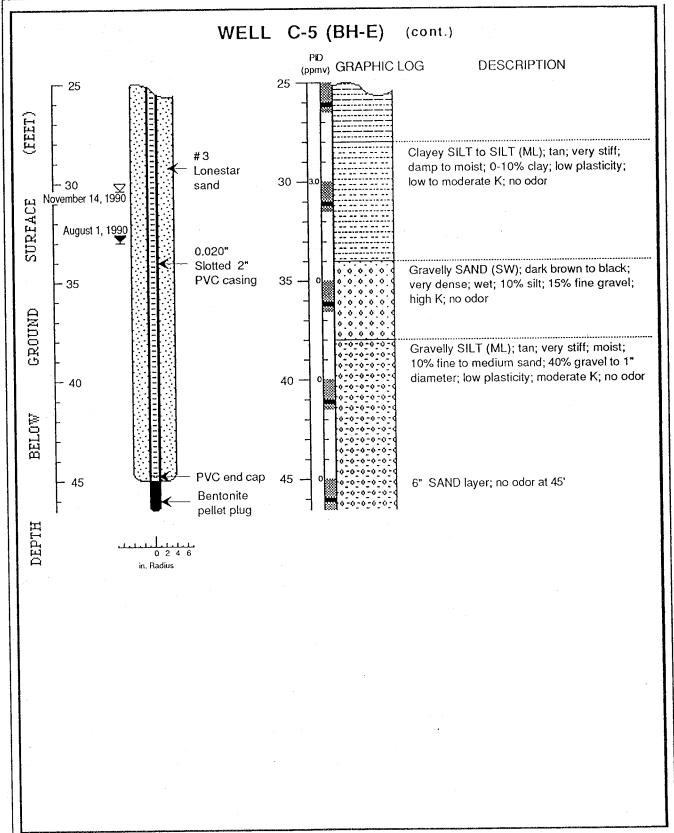

In August 2012, Conestoga-Rovers & Associates (CRA) collected soil vapor samples from vapor probes VP-1, VP-2, and VP-3 to assess vapor conditions downgradient of well C-2. Hydrocarbons were only detected in the sample from VP-1. CRA also conducted a preferential pathway study. Based on historic groundwater monitoring and sampling data and depth of water, electrical, natural gas, and telecommunication utilities, it is unlikely that these utilities serve as preferential pathways. Sanitary sewer and storm drain lines are generally gravity fed, installed at depths deeper than 10 fbg, and backfilled with native material (permeability likely similar to native soils). Based on this, although it is possible that the deeper sanitary sewer and/or storm drain lines may act as a preferential pathway during high groundwater conditions, these conditions are not typical. Additional information is available in CRA's September 14, 2012 Soil Vapor Sampling, Preferential Pathway Study, and Work Plan.

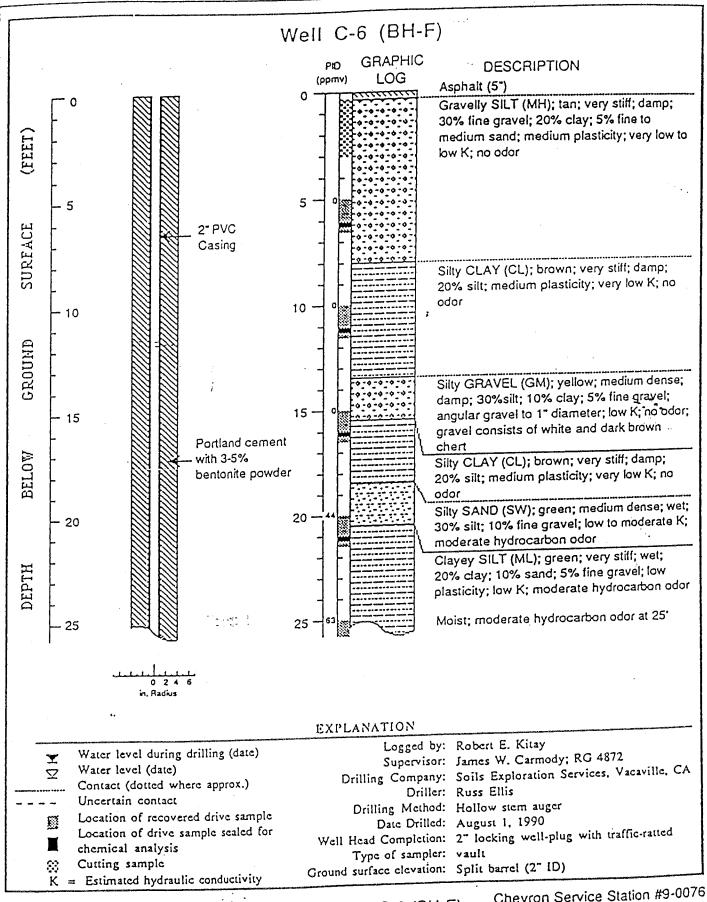

February 2015 Subsurface Investigation


In February 2015, CRA advanced soil borings B-1 through B-6 to assess the first generation dispensers, including the area of former boring C-A and the former used-oil UST areas. To further evaluate dissolved hydrocarbon concentrations in shallow groundwater downgradient, CRA installed offsite monitoring well C-11 to 20 fbg, adjacent to well C-7. CRA attempted to install a shallow well adjacent to offsite well C-6, but no water was encountered, so a well was not installed. To assess potential vapor intrusion risks to adjacent properties, CRA installed soil vapor probes VP-4, VP-5, and VP-6 along the southern and western property boundaries. Additional information is available in CRA's April 15, 2015 Site Investigation Report, Updated Focused Site Conceptual Model, and Work Plan.

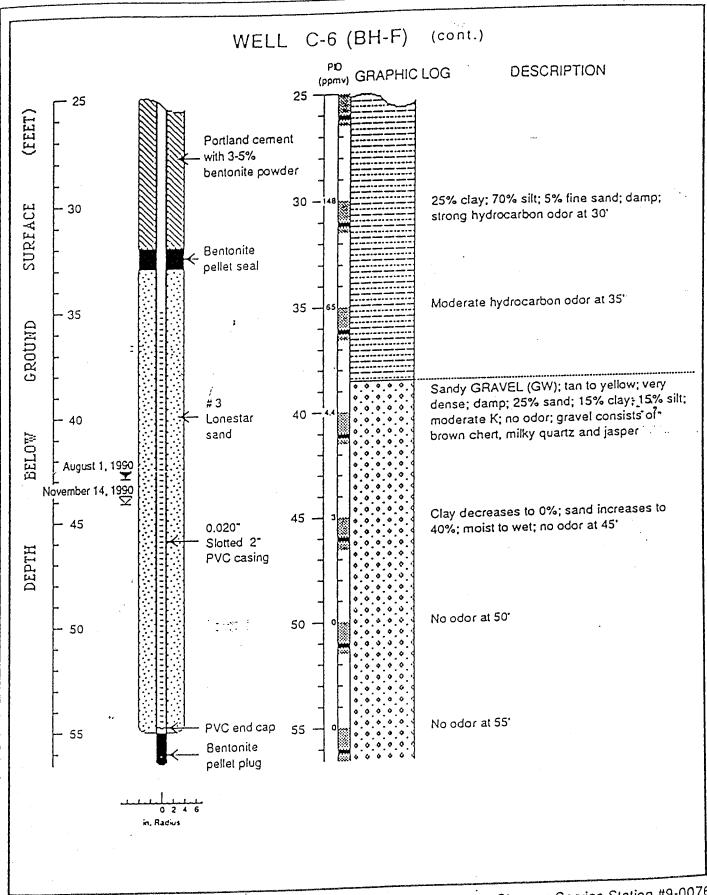

Appendix C
Boring Logs

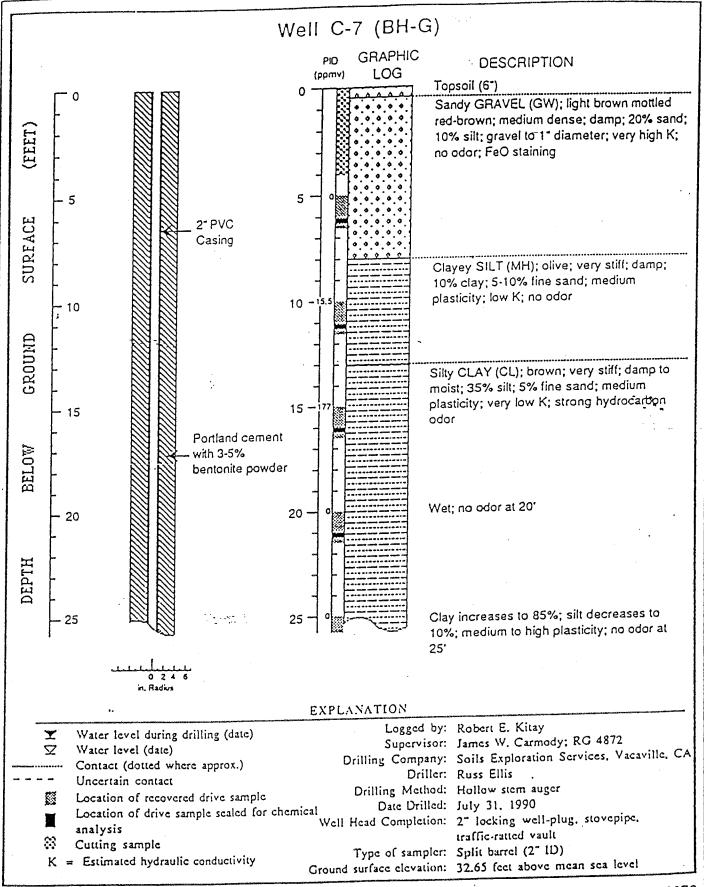


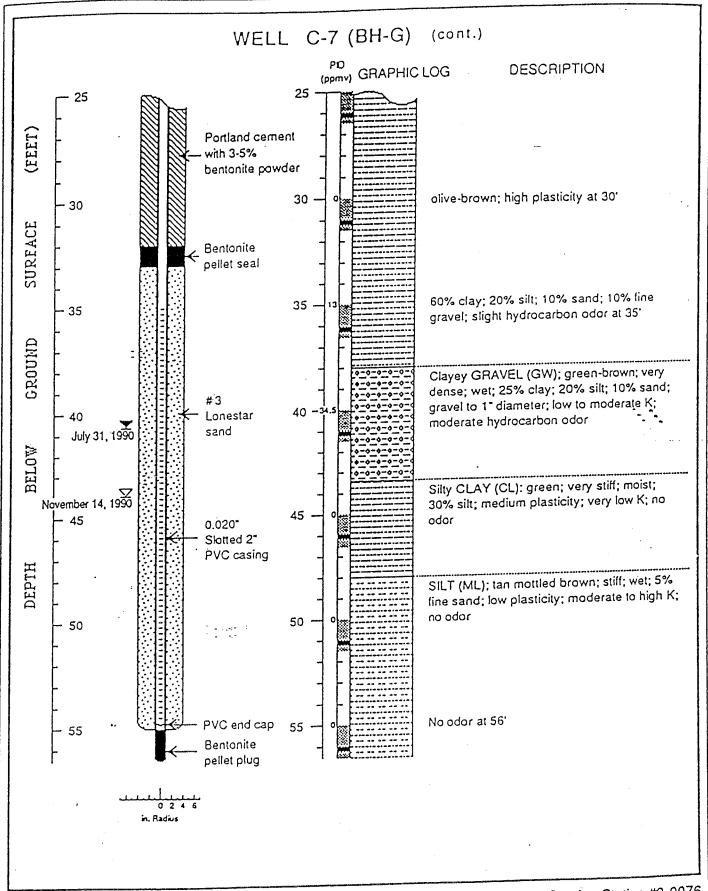


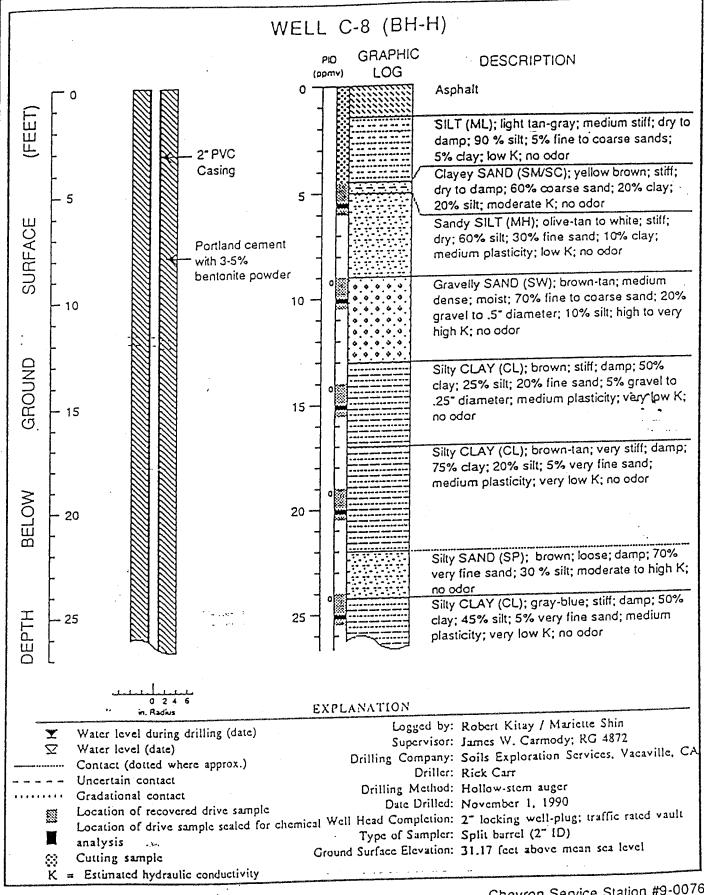

Well Construction and Boring Log Details - Well C-5 (BH-E)

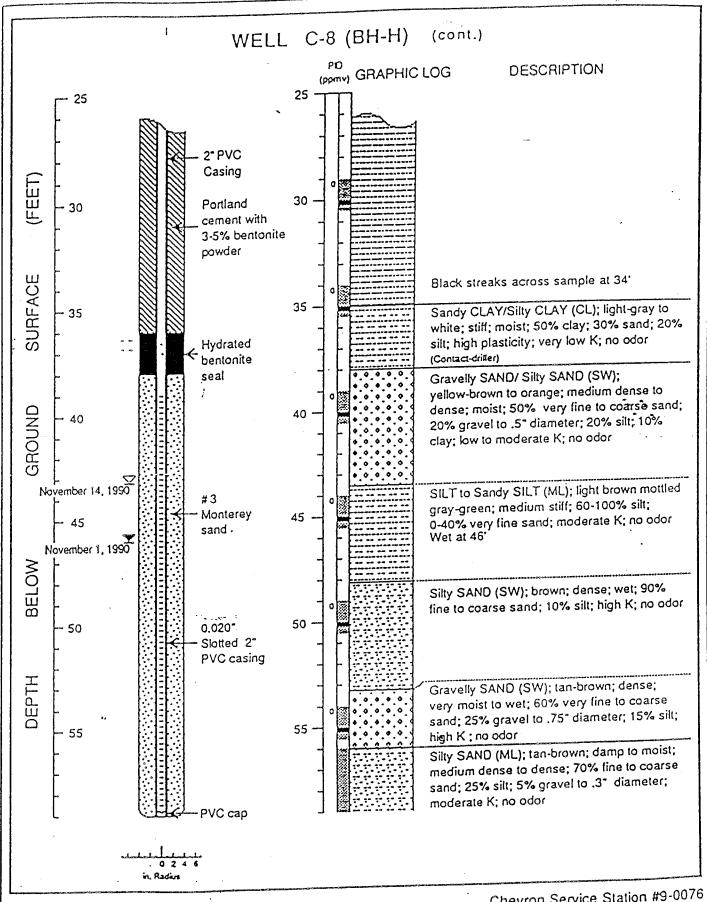
Oakland, California

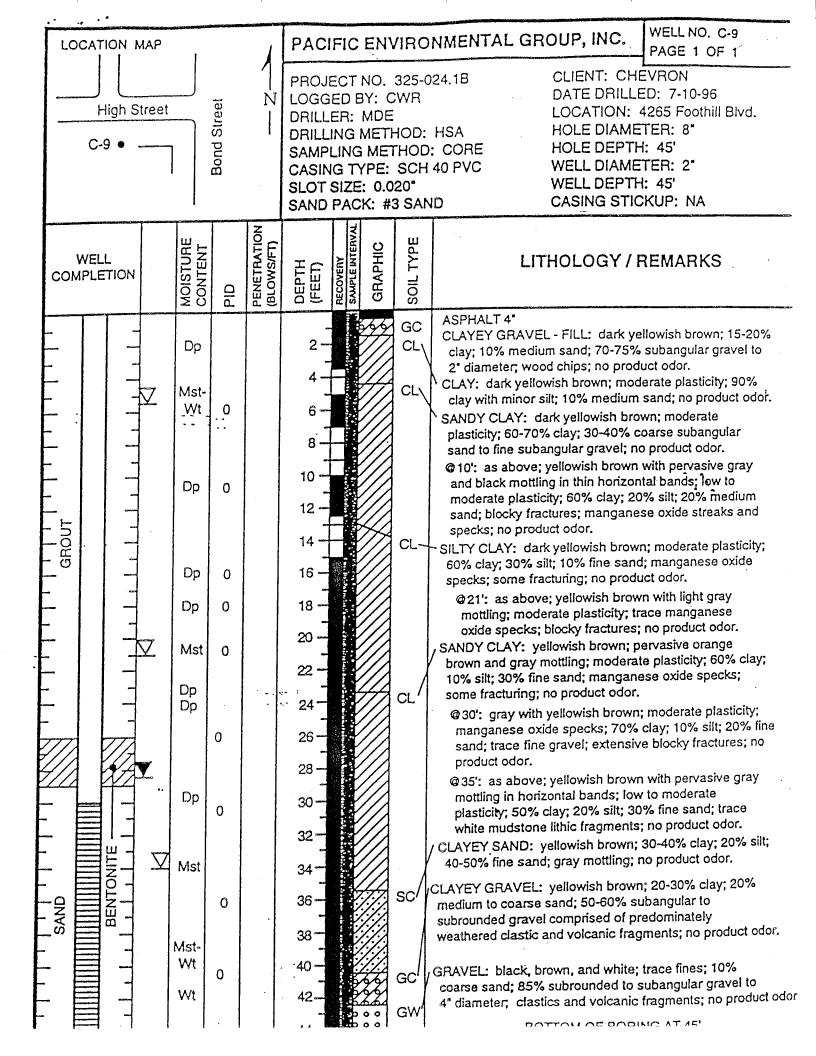



Well Construction and Boring Log Details - Well C-5 (BH-E)


Well Construction and Boring Log Details - Well C-6 (BH-F)


Well Construction and Boring Log Details - Well C-6 (BH-F)


Well Construction and Boring Log Details - Well C-7 (BH-G)


Well Construction and Boring Log Details - Well C-7 (BH-G)

Boring Log and Well Construction Details - Well C-8 (BH-H)

Boring Log and Well Construction Details - Well C-8 (BH-H)

PAGE 1 OF 2

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax: 510-420-9170

CLIENT NAME Chevron Environmental Management Company **BORING/WELL NAME** C-10 08-Aug-03 JOB/SITE NAME 9-0076 **DRILLING STARTED** DRILLING COMPLETED 08-Aug-03 4265 Foothill Boulevard, Oakland CA LOCATION **PROJECT NUMBER** 31J-1977 WELL DEVELOPMENT DATE (YIELD) 09-Sep-03 **DRILLER** Gregg Drilling **GROUND SURFACE ELEVATION** 38.69 ft above msl 38.37 ft above msl **DRILLING METHOD** Hollow-stem auger TOP OF CASING ELEVATION **BORING DIAMETER SCREENED INTERVALS** 10 to 30 fbg DEPTH TO WATER (First Encountered) 24.00 fbg (08-Aug-03) **LOGGED BY** I. Robb **REVIEWED BY** 17.18 fbg (09-Sep-03) B. Foss **DEPTH TO WATER (Static) REMARKS** Well installed with limited access drill rig (no blow counts available)

CONTACT DEPTH (fbg) PID (ppm) BLOW EXTENT U.S.C.S. DEPTH (fbg) GRAPHIC LOG SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Vac cleared to 8 fbg Concrete Portland Type I/II Bentonite Seal 8.0 WELL LOG (PID) 1:\CHEVRON\3119-\311977~1\311977~4\9-0076~1\9-0076\GPJ DEFAULT\GDT 2/10\09 9.0 Monterey Sand Silty SAND with clay: Light Brown; dry; 50% sand, 35% NA silt, 15% clay; low plasticity, low permeability. C-10@ 10' SM 10 10.5 14.0 Silty Clayey SAND: Light Brown; dry; 40% sand, 35% NA silt, 20% clay, 5% gravel; moderate plasticity, low C-10@ 15' SM permeability. 15.5 Y 19.0 Clayey Sandy SILT: Light Brown; dry; 40% silt, 35% NA clay, 20% sand, 5% gravel; high plasticity, low C-10@ 20' Continued Next Page

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 LOCATION 4265 Foothill Boulevard, Oakland, California PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Hollow-stem auger and Direct Push **BORING DIAMETER** 3" and 8" **LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME C-11 02-Feb-15 **DRILLING STARTED** 03-Feb-15 DRILLING COMPLETED _ WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA 10 to 20 fbg **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** 14.50 fbg **DEPTH TO WATER (Static)** NA

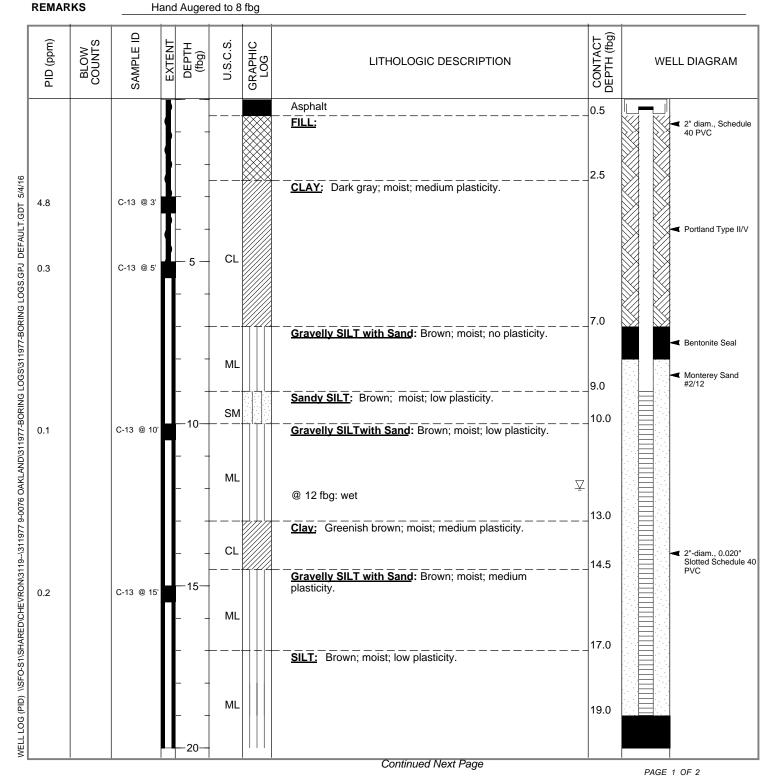
	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
T.GDT 3/18/15	0.1		C-11 @ 3'			ML SM		Concrete FILL: Roadbase SILT: Tannish brown, reddish oxidation; dry to moist; fine trace sand, fine gravels, medium plasticity. SILT with sand: Tannish brown; dry; fine sand; low plasticity. Silty SAND with gravel: Tannish brown; dry; fine to coarse sand, fine rounded to subanular gravels.	0.8 1.5 4.0 5.0	2" diam., Schedule 40 PVC
NG LOGS.GPJ DEFAUL	0.0		C-11 @ 8'		 -10 	SM		Silty SAND: Tannish brown; dry; fine to medium sand. SILT: Brown; moist; fine sand; low plasticity.	10.0	■ Bentonite Seal ■ Monterey Sand #3
WELL LOG (PID) \(\)\SFO-S1\SHARED\CHEVRON\3119-\311977 9-0076 OAKLAND\311977-BORING LOGS\311977-BORING LOGS\GPJ DEFAULT.GDT 3/18/15	0.1		C-11 @ 15'		 -15- 	ML SM		Silty SAND: Brown, reddish oxidation; moist to wet; fine to coarse sand.	14.5	2"-diam., 0.020" Slotted Schedule 40 PVC
0076 OAKLAND\3118	0.1		C-11 @ 20'		 20 	. ML		SILT with sand: Brown; moist; fine sand, organics; low plasticity.	19.0	■ Monterey Sand #3
ED\CHEVRON\3119\311977 9-(0.1		C-11 @ 25'		 25 	ML CL_		SILT: Brown; moist; fine to medium sand; medium plasticity. CLAY: Brown; moist; fine trace sand; low plasticity	27.0 28.0	Portland Type I/II Bottom of Boring
/ELL LOG (PID) \\SFO-S1\SHAR										@ 28 fbg

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California LOCATION PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

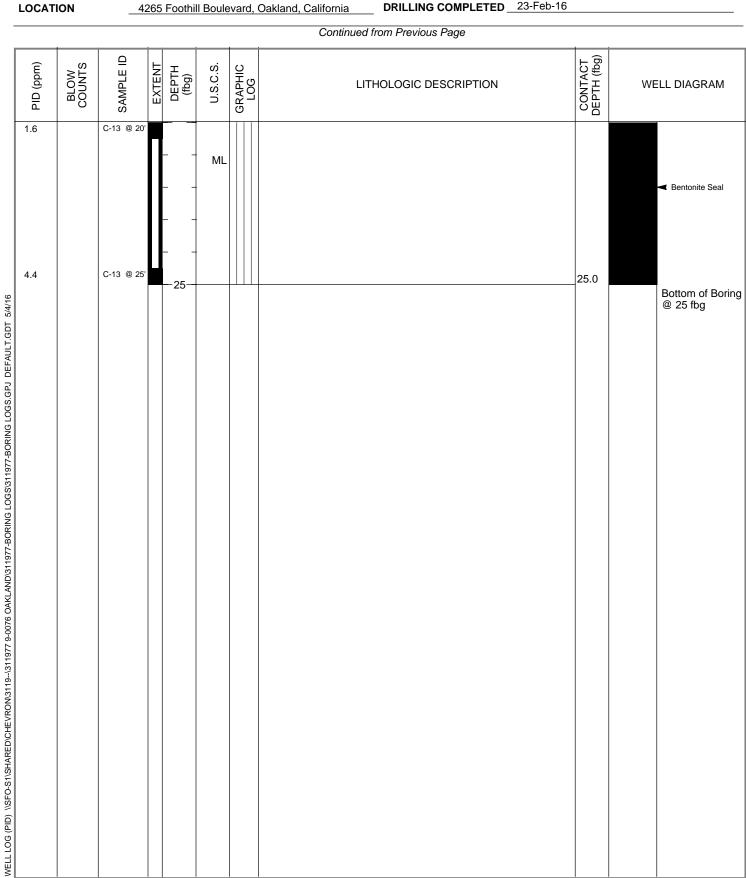
BORING/WELL NAME C-12 02-Feb-15 **DRILLING STARTED** 03-Feb-15 DRILLING COMPLETED _ WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NA **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** NA **DEPTH TO WATER (Static)** NA


PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0.0		C-12 @ 3'					Concrete FILL: Roadbase SILT: Dark gray brown; dry; medium plasticity.	0.8	Concrete Concrete
		0-12 @ 3		 - 5 -	ML 		SILT with sand: Tannish brown; dry; fine sand, fine trace gravels; low plasticity.	5.0	
0.0 0.0 0.0		C-12 @ 8'		 10	ML		Silty SAND: Light brown; dry; fine to coarse sand, fine gravels, angular to rounded.	9.5	
WELL LOG (PID) \(NSFO-S1/SHARED\CHEVRON\311977\9-\0311977\9-0076\OAKLAND\311977-BORING\LOGS\311977-BORING\LOGS\311977-BORING\LOGS\311977-BORING\CLOGS\311977-BOR				 	SM			15.0	
1977-BORING LOG		C-12 @ 15'		15 			<u>CLAY with sand:</u> Brown; dry; fine to coarse sand, fine gravels; low plasticity.		■ Portland Type I/II
9-0076 OAKLAND\31		C-12 @ 20'		 20 	. CL				
7RON/3119/311977 (0.000)		C-12 @ 25'		 25			<u>SILT:</u> Brown; moist; fine to medium sand; medium plasticity.	24.0	
O-S1/SHARED/CHEV 0.0		C-12 @ 30'			ML		@ 29 fbg: Dry; low plasticity.	30.0	Bottom of Boring @ 30 fbg
WELL LOG (PIU) NSF) 50 lbg

GHD Services Inc. 2300 Clayton Road Suite 920 Concord, CA 94520 Telephone: 925-849-1000 Fax: 925-849-1040

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 LOCATION 4265 Foothill Boulevard, Oakland, California **PROJECT NUMBER** 311977 **DRILLER** Vapor Tech Servies C-57, #916085 Hollow-stem auger and Direct Push **DRILLING METHOD BORING DIAMETER** 3" and 8" LOGGED BY B. Yifru N. Lee, PG# 8486 **REVIEWED BY**

BORING/WELL NAME C-13 23-Feb-16 **DRILLING STARTED** DRILLING COMPLETED 23-Feb-16 WELL DEVELOPMENT DATE (YIELD) 03-Mar-16 **GROUND SURFACE ELEVATION** 42.47 ft above msl 42.02 ft above msl TOP OF CASING ELEVATION **SCREENED INTERVALS** 9 to 19 fbg **DEPTH TO WATER (First Encountered)** 12.00 fbg **DEPTH TO WATER (Static)** NA



JOB/SITE NAME

GHD Services Inc. 2300 Clayton Road Suite 920 Concord, CA 94520 Telephone: 925-849-1000 Fax: 925-849-1040

Chevron Environmental Management Company	BORING/WELL NAME	C-13
90076	DRILLING STARTED	23-Feb-16
4265 Foothill Boulevard, Oakland, California	DRILLING COMPLETED	23-Feb-16

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California LOCATION PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME 05-Feb-15 **DRILLING STARTED** 06-Feb-15 DRILLING COMPLETED _ WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NA **SCREENED INTERVALS** 11.00 fbg **DEPTH TO WATER (First Encountered) DEPTH TO WATER (Static)** NA

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	DEPTH (fbg)	WELL DI	AGRAM
3.7		B1 @ 3'	1	 			Asphalt FILL: Sandy silt; grayish black; dry; low plasticity.	0.9		o∪ o d ca	oncrete
0.1		B1 @ 8'		 	CL		CLAY with sand: Gray brown; dry; fine sand, trace fine trace gravel; low to medium plasticity. SILT with sand: Reddish brown; dry; fine to medium	9.0			
0.1 45.2 99.8 4.3		B1 @ 10'		10 L	ML		sand, fine gravels; low plasticity.	⊉			
99.8		B1 @ 15'		15 	ML		Sandy SILT: Brown; dry; fine to coarse sand, fine rounded to subrounded gravels; low plasticity.	14	1.5	▼ Pc	ortland Type I/II
4.3		B1 @ 20'		 20 	CL		CLAY: Brown; dry; fine sand; low to medium plasticity.	20			
219.3		B1 @ 25		 25 	ML		Sandy SILT: Light brown, reddish oxidation; dry; fine sand; low plasticity. SILT: Brown, greenish discoloration; dry; fine sand; low to medium plasticity.	26	3.0		
1703		B1 @ 30'		 L-30-	SM		Silty SAND: Brown; moist; fine sand.	28		Bot @ 3	tom of Boring 30 fbg

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California LOCATION PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME 06-Feb-15 **DRILLING STARTED** 06-Feb-15 DRILLING COMPLETED _ WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NΑ **SCREENED INTERVALS** 28.00 fbg **DEPTH TO WATER (First Encountered) DEPTH TO WATER (Static)** NA

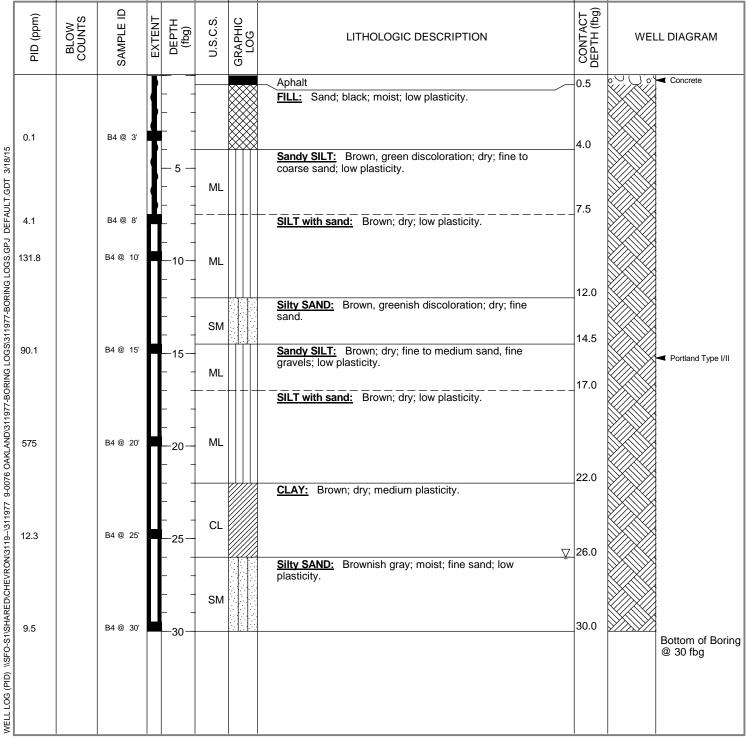
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0.1		B2 @ 3'	1				Aphalt FILL: Sandy silt; black; dry; low plasticity.	5.0	Concrete
3PJ DEFAULT.GDT 3/1 0 9		B2 @ 8'	} 	5 L - 	ML		SILT with sand: Dark gray; dry; fine sand, fine angular gravel, medium plasticity.	9.5	
WELL LOG (PID) \(\text{NSFO-S1\General BARED\CHEVRON3119\Gamma11977}\) 9-0076 OAKLAND\Gamma11977-BORING LOGS\(\text{G1D}\) 1977-BORING LOGS\(\text{G1D}\) 1977-BORING LOGS\(\text{GPJ}\) DEFAULT\(\text{GDT}\) 0 0		B2 @ 10'		-10- 	ML		Sandy SILT: Grayish brown; dry; fine sand; low plasticity.	14.5	
11977-BORING LOGS/3		B2 @ 15'		15 	ML		Sandy SILT with gravel: Brown; dry; fine to coarse sand, fine gravels; low plasticity.	19.0	Portland Type I/II
7 9-0076 OAKLAND\3		B2 @ 20'		20 	CL		CLAY with sand: Brown; dry; trace fine sand; low to medium plasticity. Sandy SILT: Grayish brown; dry; fine sand; low plasticity.	22.5	
SHEVRON3119\31197 90 O		B2 @ 25'		 25 	ML ML		SILT with sand: Brown, greenish discoloration; dry; fine sand; low to medium plasticity.	25.0 728.0	
O) NSFO-S1/SHARED/C		B2 @ 30'		30	SM		Silty SAND: Brown; moist; fine sand.	_30.0	Bottom of Boring @ 30 fbg
WELL LOG (PIC									

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 LOCATION 4265 Foothill Boulevard, Oakland, California PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME 05-Feb-15 **DRILLING STARTED** 05-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NΑ **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** 22.00 fbg **DEPTH TO WATER (Static)** NA

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
1.6		B3 @ 3'	1	 	ML_		Aphalt FILL: Clay with trace gravel; black; dry; medium plasticity. SILT with sand: Dark gray; dry; fine sand, fine angular gravel; medium plasticity.	3.0		Concrete
DEFAULT.GDT 3/18/ 78/ 78/		B3 @ 8'		- 5 - 	SM ML		Silty SAND with gravel: Dark gray; dry. SILT with sand: Dark gray; dry; fine sand, low plasticity. CLAY with sand: Greyish brown; dry; fine sand; fine gravels; low to medium plasticity. SILT with sand: Grayish brown; dry; fine sand; low	-4.5 -5.5 -7.5 -8.0		
ORING LOGS. GPJ I		B3 @ 10'		 10 	ML SM ML		plasticity. Silty SAND with gravel: dry; fine sand. SILT: Reddish brown, geen discoloration; dry; fine sand; low plasticity. Silty SAND with gravel: Brown; dry; fine sand; fine	9.5		
ORING LOGS/311977-B		B3 @ 15'		 -15 	SM		gravel; non plastic. SILT with gravel: Grayish brown; dry; fine sand; medium gravel; low plasticity.	14.0		✓ Portland Type I/II
776 OAKLAND\311977-B & & &		B3 @ 20'		 20	ML		SILT with sand: Brown; dry; fine sand; low plasticity.	18.0		
WELL LOG (PID) \(\sigma \)SFO-S1\SHARED\(CHEVRON\311977 \)9-0076 OAKLAND\\311977-BORING LOGS\\311977-BORING LOGS\\311977-BORIN		B3 @ 25'		 -25- 	ML		<u>SILT:</u> Reddish brown; moist; fine sand; medium plasticity.			
PID) SFO-S1/SHARED/CI		B3 @ 30'			SM		Silty SAND: Reddish brown; moist; fine, loose sand.	29.0		Bottom of Boring @ 30 fbg
WELL LOG										



Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California **LOCATION** PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER** LOGGED BY O. Yan **REVIEWED BY** N. Lee, PG# 8684 REMARKS Hand augered to 8 fbg

BORING/WELL NAME 05-Feb-15 **DRILLING STARTED** 05-Feb-15 **DRILLING COMPLETED** WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** NA TOP OF CASING ELEVATION NA **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** 26.00 fbg **DEPTH TO WATER (Static)** NA

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 LOCATION 4265 Foothill Boulevard, Oakland, California PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME 04-Feb-15 **DRILLING STARTED** 04-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NA **SCREENED INTERVALS** 16.00 fbg **DEPTH TO WATER (First Encountered) DEPTH TO WATER (Static)** NA

	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
	0.1		B5 @ 3'			ML		Asphalt SILT with sand: Brown; moist; fine sand; medium plasticity.	0.5	Concrete
JLT.GDT 3/18/15					 - 5 - 	CL		CLAY: Dark gray; dry; fine sand, trace gravel; low to medium plasticity.	7.0	
OGS.GPJ DEFA	0.0		B5 @ 8'		- - -10-	GM		Silty GRAVEL with sand: Brown; dry; fine to coarse sand, fine subangular to rounded gravels. SILT with sand: Brown, black mottling, green discoloration; dry; fine sand; low plasticity.	9.0	
3\311977-BORING L					 	ML SM		Silty SAND: Brown; moist; fine to coarse sand, fine gravels, subrounded to rounded.	12.0	
1977-BORING LOGS	2,700		B5 @ 15'		15 	ML		SILT with sand: Brown; moist; fine sand; low plasticity.	16.5	Portland Type I/II
0076 OAKLAND\31	384		B5 @ 20'		 20 	ML	_ + _	Sandy SILT: Brown; moist; fine to medium sand; low plasticity.	20.0	
KON/3119\311977 9-	81		B5 @ 25'		 25	ML		SILT with sand: Brown, oxidation staining; dry; low plasticity.	23.0	
-S1\SHARED\CHEVF	3.3		B5 @ 30'		 - 30	SM_		Silty SAND: Brown; moist; fine sand.	29.0 30.0	Bottom of Boring
WELL LOG (PID) \(\)\SFO-S1\SHARED\CHEVRON\3119-\311977 9-0076 OAKLAND\311977-BORING LOGS\311977-BORING LOGS\GPJ DEFAULT.GDT 3/18/15										@ 30 fbg

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 LOCATION 4265 Foothill Boulevard, Oakland, California PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Direct push 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Hand augered to 8 fbg

BORING/WELL NAME 06-Feb-15 **DRILLING STARTED** 06-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION NA NΑ **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** 22.50 fbg **DEPTH TO WATER (Static)** NA

	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL D	IAGRAM
/18/15	0.1		B6 @ 3'	1	 - 5 -			Asphalt FILL: Silt with sand; black.	5.0		Concrete
.GPJ DEFAULT.GDT 3	5.5		B6 @ 8'	I N	 L -	ML		SILT with sand: Dark gray; dry; fine sand; medium plasticity.	10.0		
311977-BORING LOGS	657		B6 @ 10'		10 	SM		Silty SAND: Light brown, greenish discoloration; dry; fine to medium sand. SILT with sand: Light brown; dry; fine sand; low to medium plasticity.	13.0		
311977-BORING LOGS	3,667		B6 @ 15'		15 	ML		Sandy SILT: Grayish brown; dry; fine to medium sand; low plasticity.		P P	ortland Type I/II
977 9-0076 OAKLAND\	1,588		B6 @ 20'		20 	CL		CLAY with sand: Grayish brown; dry; fine sand; low to meium plasticity. Silty SAND: Brownish gray; moist; fine sand; trace fine gravel.	20.5 <u>7</u> 22.5		
D\CHEVRON\3119\311	1,888		B6 @ 25'		 25 	ML		SILT with sand: Brown; moist; fine sand; low to medium plasticity. CLAY with sand: Brownish gray; moist; fine sand; low	24.5		
WELL LOG (PID) NSFO-S1/SHARED\CHEVRON\3119-\311977 9-0076 OAKLAND\311977-BORING LOGS\311977-BORING LOGS\GPJ DEFAULT\GDT 3/18/15	97.8		B6 @ 30'		 _ 30	CL ML		plasticity. Sandy SILT: Brownish gray; moist; fine sand; low plasticity.	29.0		ttom of Boring 30 fbg
WELL LOG										PACE 1 OF	

REMARKS

GHD Services Inc. 2300 Clayton Road Suite 920 Concord, CA 94520 Telephone: 925-849-1000 Fax: 925-849-1040

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California LOCATION PROJECT NUMBER 311977 **DRILLER** Vapor Tech Servies C-57, #916085 **DRILLING METHOD** Hand auger 3" **BORING DIAMETER LOGGED BY** B. Yifru **REVIEWED BY** N. Lee, PG# 8486

BORING/WELL NAME B7

DRILLING STARTED 23-Feb-16

DRILLING COMPLETED 23-Feb-16

WELL DEVELOPMENT DATE (YIELD) NA

GROUND SURFACE ELEVATION NA

TOP OF CASING ELEVATION NA

SCREENED INTERVALS NA

DEPTH TO WATER (First Encountered) 6.00 fbg

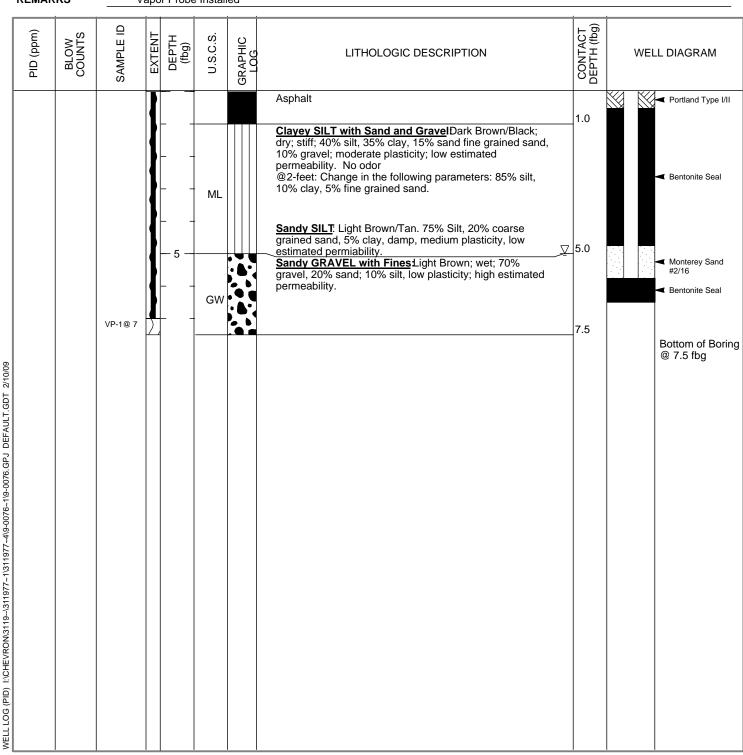
DEPTH TO WATER (Static) NA

PID (ppm)	BLOW	SAMPLE ID	EXTENT DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
DEFAULT.GDT 5/4/16				ML		Concrete Sandy SILT: Dark brown; moist; fine sand; no plasticity. @ 4.5 fbg: color change to light brown.		Concrete Concrete
RING LOGS/311977-BORING LOGS.GPJ		B6 @ 5'	- 5 	ML SP		@ 6 fbg: wet @ 6.5 fbg: Greenish motling. Poorly Graded SAND with Silt: Greenish gray; wet. Sandy SILT: Greenish gray; wet; low plasticity.		▼ Portland Type II/V
WELL LOG (PID) \\SFO-S1\SHARED\CHEVRON\3119-\311977 9-0076 OAKLAND\311977-BORING LOGS\311977-BORING LOGS.GPJ DEFAULT.GDT 5/4/16 C C C C C C C C C C C C C		B6 @ 10'	10				10.0	Bottom of Boring @ 10 fbg

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME JOB/SITE NAME LOCATION

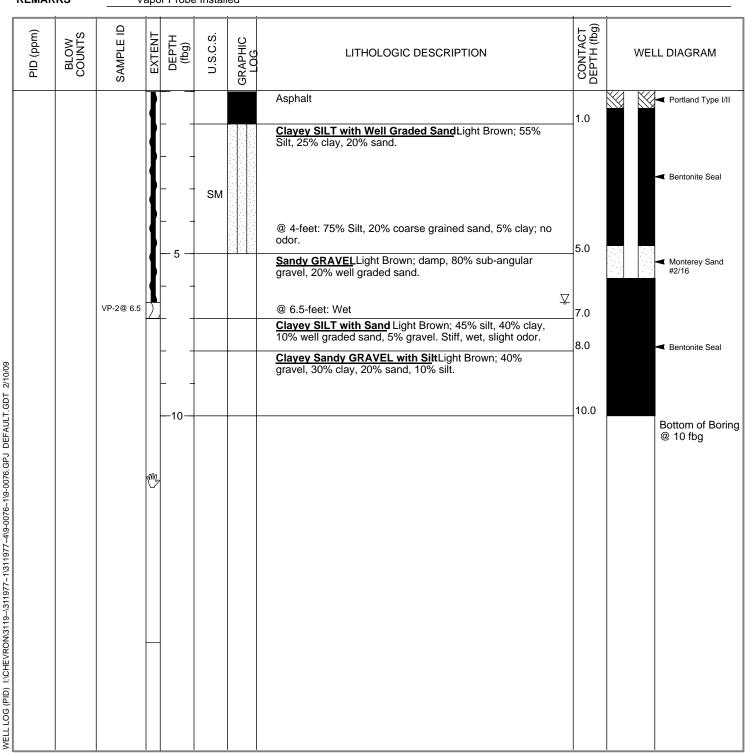
Chevron Environmental Management Company	BORING/WELL NAME	C-10
9-0076	DRILLING STARTED	08-Aug-03
4265 Foothill Boulevard, Oakland CA	DRILLING COMPLETED	08-Aug-03


							Continued from Previous Page			
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
				 	SC		permeability.	_20.5		2"-diam., 0.010" Slotted Schedule 40 PVC
0	NA	C-10@ 25'		 25 	SC		Clayey Sandy SILT: Light Brown; dry; 40% silt, 35% clay, 20% sand, 5% gravel; high plasticity, low permeability.	24.0		
0	NA	C-10@ 30'		30	 CL 		Silty CLAY: Light Brown; dry; 65% clay, 35% silt; high plasticity, low permeability.			Bottom of Boring @ 30 fbg
WELLEGO (TP) : WILVANIA 197-1919 1977-1919 1977-1919 1977-1919 1970 1970 1970 1970 1970 1970 1970										
10000000000000000000000000000000000000										

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax: 510-420-9170

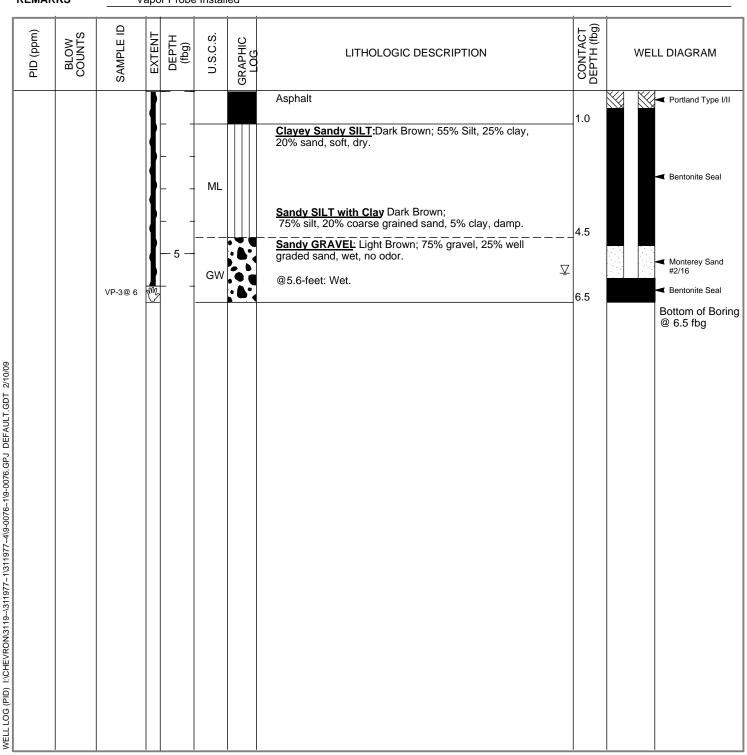
CLIENT NAME Chevron Environmental Management Company **BORING/WELL NAME** VP-1 21-Nov-05 **JOB/SITE NAME** 9-0076 **DRILLING STARTED** DRILLING COMPLETED 22-Nov-05 4265 Foothill Boulevard, Oakland CA LOCATION **PROJECT NUMBER** 31J-1977 WELL DEVELOPMENT DATE (YIELD) NA **DRILLER** Cambria **GROUND SURFACE ELEVATION** NA Hand Auger NA **DRILLING METHOD** TOP OF CASING ELEVATION NA **BORING DIAMETER** 3" **SCREENED INTERVALS LOGGED BY** DEPTH TO WATER (First Encountered) 5.00 fbg (21-Nov-05) C. Evans **REVIEWED BY DEPTH TO WATER (Static)** B. Foss PG #7445 NA **REMARKS** Vapor Probe Installed



Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax: 510-420-9170

CLIENT NAME Chevron Environmental Management Company **BORING/WELL NAME** VP-2 21-Nov-05 **JOB/SITE NAME** 9-0076 **DRILLING STARTED** DRILLING COMPLETED 22-Nov-05 4265 Foothill Boulevard, Oakland CA LOCATION **PROJECT NUMBER** 31J-1977 WELL DEVELOPMENT DATE (YIELD) NA **DRILLER** Cambria **GROUND SURFACE ELEVATION** NA Hand Auger NA **DRILLING METHOD** TOP OF CASING ELEVATION NA **BORING DIAMETER** 3" **SCREENED INTERVALS LOGGED BY** DEPTH TO WATER (First Encountered) 6.50 fbg (21-Nov-05) C. Evans **REVIEWED BY** B. Foss PG #7445 **DEPTH TO WATER (Static)** NA **REMARKS** Vapor Probe Installed



Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax: 510-420-9170

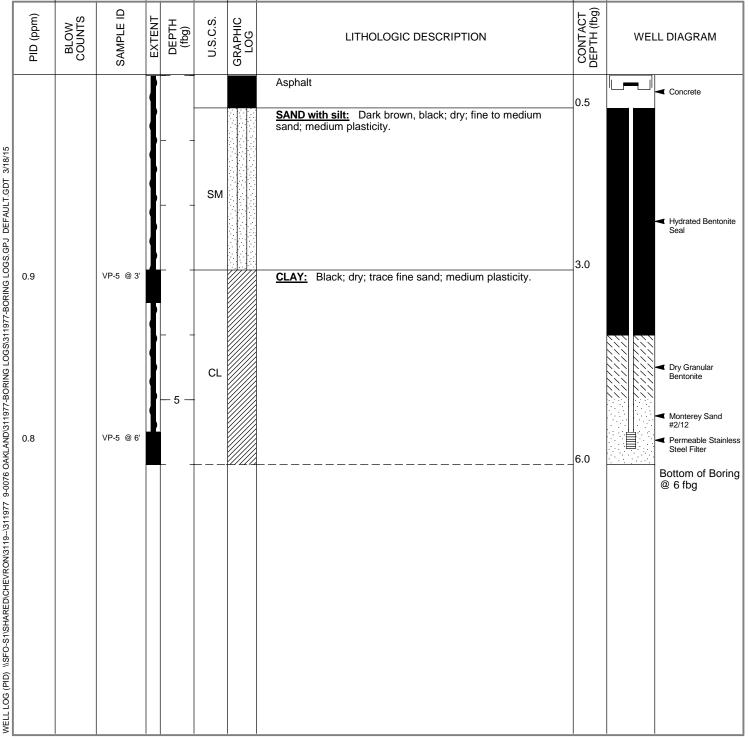
CLIENT NAME Chevron Environmental Management Company **BORING/WELL NAME** VP-3 21-Nov-05 JOB/SITE NAME 9-0076 **DRILLING STARTED** DRILLING COMPLETED 22-Nov-05 4265 Foothill Boulevard, Oakland CA LOCATION PROJECT NUMBER 31J-1977 WELL DEVELOPMENT DATE (YIELD) NA **DRILLER** Cambria **GROUND SURFACE ELEVATION** NA **DRILLING METHOD** Hand Auger NA TOP OF CASING ELEVATION NA **BORING DIAMETER** 3" **SCREENED INTERVALS LOGGED BY** C. Evans DEPTH TO WATER (First Encountered) 5.60 fbg (21-Nov-05) **REVIEWED BY** B. Foss PG #7445 **DEPTH TO WATER (Static)** NA **REMARKS** Vapor Probe Installed

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California **LOCATION** PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 Hand auger **DRILLING METHOD** 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 REMARKS Water encountered at approximately 6.5 fbg.

VP-4 **BORING/WELL NAME** 05-Feb-15 **DRILLING STARTED** 05-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** NA TOP OF CASING ELEVATION NA **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** NA **DEPTH TO WATER (Static)** NA

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW GRAPHIC LOG EXTENT DEPTH (fbg) U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt Concrete 0.5 SILT: Black; dry; fine sand; low plasticity. WELL LOG (PID) \\SFO-S1\SHARED\CHEVRON\\3119-\311977 9-0076 OAKLAND\\311977-BORING LOGS\\311977-BORING LOGS\\GRING \Text{A} ML Hydrated Bentonite Seal 3.0 VP-4 @ 3' 0.0 Sandy SILT: Brown; moist; fine to medium sand; low ML Dry Granulated Bentonite 5.0 5 Silty SAND with gravel: Brown; moist; fine to coarse Monterey Sand sand, fine gravel. #2/12 VP-4 @ 6' SM 0.0 Permeable Stainless 6.0 Bottom of Boring @ 6 fbg

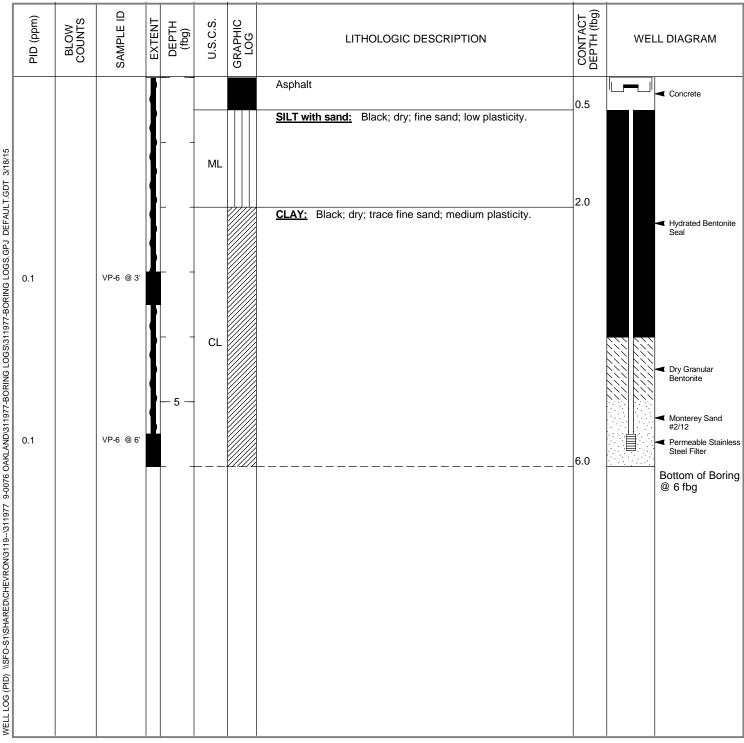


Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 4265 Foothill Boulevard, Oakland, California **LOCATION** PROJECT NUMBER 311977 **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Hand auger 3" **BORING DIAMETER LOGGED BY** O. Yan N. Lee, PG# 8684 **REVIEWED BY REMARKS** Water not encountered.

VP-5 **BORING/WELL NAME** 04-Feb-15 **DRILLING STARTED** 04-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** NA TOP OF CASING ELEVATION NA **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** NA **DEPTH TO WATER (Static)** NA



Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 90076 4265 Foothill Boulevard, Oakland, California **LOCATION** 311977 PROJECT NUMBER **DRILLER** Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLING METHOD** Hand auger 3" **BORING DIAMETER LOGGED BY** O. Yan **REVIEWED BY** N. Lee, PG# 8684 **REMARKS** Water not encountered.

VP-6 **BORING/WELL NAME** 04-Feb-15 **DRILLING STARTED** 04-Feb-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION** NA TOP OF CASING ELEVATION NA **SCREENED INTERVALS DEPTH TO WATER (First Encountered)** NA **DEPTH TO WATER (Static)** NA

Appendix D Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/14/2016 By jamesy

Permit Numbers: W2016-0022 to W2016-0023

Permits Valid from 02/23/2016 to 02/23/2016

Application Id:

1452209473870

City of Project Site:Oakland

Site Location: Project Start Date:

4265 Foothill Boulevard 02/23/2016

Completion Date: 02/23/2016

Assigned Inspector:

Contact Lindsay Furuyama at (925) 956-2311 or Lfuruyama@groundzonees.com

Applicant:

GHD Services Inc. - Charley McLean

Phone: 925-849-1017

Property Owner:

2300 Clayton Road, Suite 920, Concord, CA 94596 Josephine Le

Phone: --

4265 Foothill Boulevard, Oakland, CA 94601

Phone: --

Client:

Chevron Environmental Management Company

6001 Bollinger Canyon Road, San Ramon, CA 94583

\$662.00

Receipt Number: WR2016-0014

Total Amount Paid: Paid By: CHECK

Total Due:

\$662.00 PAID IN FULL

Payer Name : GHD Services Inc.

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 1 Boreholes

Driller: Vapor Tech Services - Lic #: 916085 - Method: Hand

#

Work Total: \$265.00

Specifications

Permit Issued Dt

Expire Dt

01/14/2016 05/23/2016

Hole Diam

4.00 in.

Max Depth

10.00 ft

Number

Boreholes

W2016-0022

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section, All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a

Alameda County Public Works Agency - Water Resources Well Permit

Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Work Total: \$397.00

Well Construction-Monitoring-Monitoring - 1 Wells

Driller: Vapor Tech Services - Lic #: 916085 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth
			ld		Diam.		
W2016- 0023	01/14/2016	05/23/2016	C-13	8.00 in.	2.00 in.	6.00 ft	25.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

Alameda County Public Works Agency - Water Resources Well Permit

appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

City of Oakland

Planning and Building Department

250 Frank H, Ogawa Plaza 510-238-4774

0.00 70.00	
70,00	
809.00	
19.90	
36.01	
0.00	
70.00	
70.00	
12.50	
22.80	
	19.90 36.01 0.00 70.00 70.00

Payer Name: CONESTOGA-ROVERS & ASSOCIATES INC.

SubTotal: 710.31 Total: 710.31 Check 710.31 Number: 11922

1/14/2016 10:54 #0586001 /77/24

Thank You

CITY OF OAKLAND

250 FRANK H. OGAWA PLAZA . 2ND FLOOR . OAKLAND, CA 94612

Planning and Building Department www.oaklandnet.com

PH: 510-238-3891

FAX: 510-238-2263

TDD: 510-238-3254

OB1600063

Obstruction

Filed Date: 1/14/2016

Permit No: Job Site:

4265 FOOTHILL BLVD

Schedule Inspection by calling: 510-238-3444

Parcel No:

035 235200801

District:

Project Description:

Soil boring(s) ON SIDEWALK along HIGH ST between FOOTHILL BLVD and BOND ST.

BLOCK 125' of SIDEWALK per TSD-16-0008. NO IMPACT ON TRAFFIC ALLOWED.

NOTE: disregard start/end dates shown below. They are listed only for invoicing purposes. Actual dates (Friday - 1/15/16 AND Tuesday - 2/23/16) are either non-consecutive or do not

include weekend(s). NO WEEKEND WORK.

Comply with all terms, conditions and restrictions stated in the Traffic Control Plan. Any/all changes need prior written approval. Provide original Traffic Control Plan at each renewal.

Contact: 925 849-1017

Related Permits:

X1600099

	<u>Name</u>	Applicant	Address	<u>Phone</u>	License #
Owner:	LE LOI V ETAL		4265 FOOTHILL BLVD OAKLAND, CA		
Contractor-	C MCLEAN	Х	2316 TRIPALDI WAY HAYWARD, CA	(415) 378-0415	
Employee:					
Contractor:	VAPOR TECH SERVICES		2316 TRIPALDI WAY HAYWARD, CA	(415) 378-0415	916085

Work Information

Start Date: 01/15/2016

Technology Enhancement Fee

Obstruction Permit Type:

Short Term (Max 14 Days)

End Date: 01/16/2016

Number of Meters (Metered Area):

Length Of Obstruction (Unmetered Area): 125

TOTAL FEES TO BE PAID AT FILING: \$275.40

Application Fee

\$70.00 \$12.60 Records Management Fee

\$22.80 **Short Term Permits** \$170.00

Permit Issued By Plans Checked By Date Finalized By Date

Permit No: 081600063

Parcel No: 035 235200801

Job Site: 4265 FOOTHILL BLVD

Page 2 of 2

LICENSED CONTRACTOR'S DECLARATION

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

CONSTRUCTION LENDING AGENCY DECLARATION I hereby affirm under penalty of perjury that there is a

construction	lending	agency	for	the	performance	of	the	work	for				
which this permit is issued (Section 8172, Civil Code).													
Service Service Control		ASSESSED AND ASSESSED A			111000000000000000000000000000000000000								
Lender's Nam	e												

WHITE SHEET STATE OF SHEET STATE OF SHEET STATE OF SHEET SHEET STATE OF SHEET	
Branch Designation	
Landar's Address	

WORKERS' COMPENSATION DECLARATION

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS (\$100,000), IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

- I hereby affirm under penalty of perjury one of the following declarations:
- ☐ I have and will maintain a certificate of consent to self-insure for workers' compensation, issued by the Director of Industrial Relations as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
- ☐ I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
- I certify that, in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that, if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

RRP ACKNOWLEDGMENT

EPA's Lead Renovation, Repair and Painting Rule (RRP Rule) requires that firms performing renovation, repair, and painting projects that disturb lead-based paint in homes, child care facilities and pre-schools built before 1978 have their firm certified by EPA or use certified renovators who are trained by EPA-approved training providers and follow lead-safe work practices. As the contractor preparing to do work on a Pre-1978

building, I have read the explanation of the RRP Rule and will ensure that any paint disturbing work will be done by or supervised by an RRP certified individual(s). Failure to follow this rule may result in enforcement action by the EPA. For additional information on complying with lead safety requirements, contact the Alameda County Healthy Homes Department at (510) 567-8280 or 1-800-253-2372 or visit http://www.achhd.org.

HAZARDOUS MATERIALS DECLARATION

- I hereby affirm that the intended occupancy \(\sum \text{WILL}\) \(\sum \text{WILL}\) NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, and 25534 of the Health and Safety Code, as well as filing instructions were made available to you).
- I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection purposes.
- I hereby agree to save, defend, indemnify and keep harmless the City of Oakland and its officials, officers, employees, representatives, agents, and volunteers from all actions, claims, demands, litigation, or proceedings, including those for attorneys' fees, against the City in consequence of the granting of this permit or from the use or occupancy of the public right-of-way, public easement, or any sidewalk, street or sub-sidewalk or otherwise by virtue thereof, and will in all things strictly comply with the conditions under which this permit is granted I further certify that I am the owner of the property involved in this permit or that I am fully authorized by the owner to access the property and perform the work authorized by this permit.

Name	
Signature	
☐ Contractor, or ☐ Contractor's Agent	Date

NOTICE: No activities related to the approved work, including storage/use of materials, is allowed within the public right-of-way without an encroachment permit. Dust control measures shall be used throughout all phases of construction.

CITY OF OAKLAND

250 FRANK H. OGAWA PLAZA . 2ND FLOOR . OAKLAND, CA 94612

Planning	and	Building	g De	part	ment
www.oak	land	net.cor	n		

PH: 510-238-3891

FAX: 510-238-2263

TDD: 510-238-3254

Permit No:

X1600099

OPW - Excavation

Filed Date: 1/14/2016

Job Site:

4265 FOOTHILL BLVD

Schedule Inspection by calling: 510-238-3444

Parcel No:

035 235200801

District:

Project Description:

Soil boring(s) along HIGH ST between FOOTHILL BLVD and BOND ST.

Obstruction permit needed for impact on 125' of SIDEWALK per TSD-16-0008.

If working within 25' feet of a monument you must comply with State Law 8771, contact the

Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compliance.

Call PWA INSPECTION prior to start: 510-238-3651. 4th FLOOR.

Related Permits:

	Name	Applicant	Address	<u>Phone</u>	License #
Owner:	LE LOI V ETAL		4265 FOOTHILL BLVD OAKLAND, CA		
Contractor-	C MCLEAN	X	2316 TRIPALDI WAY HAYWARD, CA	(415) 378-0415	
Employee: Contractor:	VAPOR TECH SERVICES		2316 TRIPALDI WAY HAYWARD, CA	(415) 378-0415	916085
Contractor.	VALOR TECTISERVICES		2310 INITACOI WAI HATWAND, CA	(413) 376 0413	510005

PERMIT DETAILS: Building/Public Infrastructure/Excavation/NA

General Information

Excavation Type: Private Party

Special Paving Detail Required:

Tree Removal Involved:

Date Street Last Resurfaced:

Worker's Compensation Company Name:

Holiday Restriction (Nov 1 - Jan 1): Limited Operation Area (7AM-9AM) And (4PM-6PM):

Worker's Compensation Policy #:

Key Dates

Approximate Start Date; Approximate End Date:

TOTAL FEES TO BE PAID AT FILING: \$434.91

Application Fee

Plans Checked By

\$70.00 \$19.90

Excavation - Private Party Type

\$309.00

Records Management Fee

\$36.01

Technology Enhancement Fee

Permit Issued By

Date

Finalized By

Permit No: X1600099

Parcel No: 035 235200801

Job Site: 4265 FOOTHILL BLVD

Page 2 of 2

LICENSED CONTRACTOR'S DECLARATION

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

CONSTRUCTION LENDING AGENCY DECLARATION

I hereby affirm under penalty of perjury that there is a construction lending agency for the performance of the work for which this permit is issued (Section 8172, Civil Code).

Lender's Name	
Branch Designation	
Landar's Address	

WORKERS' COMPENSATION DECLARATION

WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS (\$100,000), IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.

I hereby affirm under penalty of perjury one of the following declarations:

	1	have	and	will	ma	intair	a	CE	rtifica	ite c	of	conse	nt	to	self-in	sure
for	W	orkers		omper	sati	on,	issu	ied	by	the		Directo	or	of	Indus	trial
Rela	tior	s as		provid	led	for	by	Sec	tion	3700	0	the	La	bor	Code,	for
the	perf	orma	nce o	of the w	ork	for w	hich	thi	s per	mit is	iss	sued.				

	have	and w	/ill main	tain	worker	s' cor	npen	sation	insurance,	a:
require	d by	Section	3700 of	the	Labor	Code,	for	the	performance	0
the wor	k for v	which this	permit is	issue	d.					

I certify that, in the perform	ance of the work for which this
permit is issued, I shall not empl	loy any person in any manner so
as to become subject to the	workers' compensation laws of
California, and agree that, if I	should become subject to the
workers' compensation provisions	of Section 3700 of the Labor
Code, I shall forthwith comply with those	provisions.

RRP ACKNOWLEDGMENT

EPA's Lead Renovation, Repair and Painting Rule (RRP Rule) requires that firms performing renovation, repair, and painting projects that disturb lead-based paint in homes, child care facilities and pre-schools built before 1978 have their firm certified by EPA or use certified renovators who are trained by EPA-approved training providers and follow lead-safe work practices. As the contractor preparing to do work on a Pre-1978

building, I have read the explanation of the RRP Rule and will ensure that any paint disturbing work will be done by or supervised by an RRP certified individual(s). Failure to follow this rule may result in enforcement action by the EPA. For additional information on complying with lead safety requirements, contact the Alameda County Healthy Homes Department at (510) 567-8280 or 1-800-253-2372 or visit http://www.achhd.org.

HAZARDOUS MATERIALS DECLARATION

I hereby affirm that the intended occupancy \(\bigcup \text{WILL} \) \(\bigcup \text{WILL NOT} \) use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, and 25534 of the Health and Safety Code, as well as filing instructions were made available to you).

I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection purposes.

I hereby agree to save, defend, indemnify and keep harmless the City of Oakland and its officials, officers, employees, representatives, agents, and volunteers from all actions, claims, demands, litigation, or proceedings, including those for attorneys' fees, against the City in consequence of the granting of this permit or from the use or occupancy of the public right-of-way, public easement, or any sidewalk, street or sub-sidewalk or otherwise by virtue thereof, and will in all things strictly comply with the conditions under which this permit is granted I further certify that I am the owner of the property involved in this permit or that I am fully authorized by the owner to access the property and perform the work authorized by this permit.

lame	
ignature	
Contractor, or Contractor's Agent	Date

NOTICE: No activities related to the approved work, including storage/use of materials, is allowed within the public right-of-way without an encroachment permit. Dust control measures shall be used throughout all phases of construction.

CITY OF OAKLAN

PUBLIC WORKS DEPARTMENT • 250 FRANK H. OGAWA PLAZA • SUITE 4344 • OAKLAND, CALIFORNIA 94612-2033

Transportation Services Division

OFFICE:(510) 238-3467

FAX:

(510) 238-7415

TDD:

(510) 839-6451

Walk-in		
Customer	No.	
And the second section		

From: Jwatson Date: 1/12/2016

Re: Traffic Engineering Analysis Fee

OPW	Receipt #:		

Permit Application #	Utility Co. Job#	Work Location	Contractor Name	Charge To Credit Card #	No. of Hours
walk-in	16-0008	High Street /Foothill Blvd	Charley Mclean		1
			Total Hou	urs	1
			Permit Review Fe	ee (\$/hour)	\$169.00
			Total		\$169.00

Cost Center No.	W045		
Organization No.	30265		
Account No.	45119		
Fund No.	2415		
Project No.	A167560	APPROVED BY:	Date:
		Joe Wang	

APPLICATION FOR TRAFFIC CONTROL PLAN

Public Works Agency Transportation Services Division

Transportation Services Fee: \$169/hour (Check or Money Order Only)

Check the box that apply:

New Application (Utility, Excavation)

Renewal Application

New Development w/ Mgmt Plan

or of distant.

2 5.1 " bette

off north

in Posta

City of Oakland Project

Please Read the Following	Statements	Below:
---------------------------	------------	--------

- Processing time for a Traffic Control Application is a minimum of 10 business days.
- 2. Traffic Control review is scheduled only on Tuesdays and Thursdays from 8:30am thru 11:30am by appointment only.
- 3. A scheduled appointment by phone or email with a TSD staff member is necessary to discuss the second discussion discuss the second discussion discussion discuss the second discussion discussion discuss the second discussion discussion discuss the second discussion discussion
- 4. Please call ahead to confirm that the traffic control application is ready for pickup @ 510-238-3467.
- 5. Businesses and residences adjacent to the work area must be provided 72 hour advance notice:
- A completed traffic control application may be faxed to (510) 238-7415.
- 7. Incomplete traffic control applications will not be processed and returned to applicant immediately:
- 8. The initial approval for a traffic control plan is 1 month, the renewal submittal may be approved up to 3 months. 2008 150.
- 9. The traffic control provision dates cannot be changed or extended if work has already commenced.
- 1 4.27 24 10. After receiving TSD approval of the traffic control application, contractor shall proceed to the Permit Center to "Obstruction obtain an obstruction permit. 1 1/1 15 15 15

Contact Person: Charley McLean Phone: 925-849-1017 Name of Company. GHD Services Inc. (GHD) Fex: 925-849-1040 Address of Company: 2300 Clayton Rd, Suite 920, Concord, California 94520 Describe type of work to be performed: geophysical survey (1 day), soll boring (1 day) Location of work: High Street Between Foothill Blvd And Bond St Work date (s): 1/15/16, 2/23/16 Work Hours: DEMON-Fil Sat-Sun 8am 5 pm

Please Follow these Steps in Order to Complete a Traffic Control Plan:

- A. Drawing Area: The full width of all effects adjacent to the site MUST be included in the drawing Include the entire block in which your work is located for every street that is adjacent to your elle.
- B. Include Street Names, Direction of Traffic on the Street, and North Arrow
- C. Show Existing Number of Lanes in all Directions (with any pavement arrows)

D. Check the Box(s) that Apply: All checked items MUST be shown on the drawing

Lane Closine Street Closures (must provide defour plan)

Use of Median Uso Parking Lane

Sidewalk Closure

and the to be (must provide pedestrian walk way) ...

- E. Show All Dimensions of street widths (curb to curb), lane widths, sidewalk widths, and work area dimension. " Dinia. (Note: Traffic Control Application / Plans missing the above information will not be accepted or processed.)
- F. Show the Name and Locations of all advanced warning devices, flaggers, delineators, warning and construction signs to be used.

RENEWAL PROCESS: Resubmit a completed Traffic Control Application with the old approved plan (with the necessary modifications / changes to the plans).

FOR MELP in preparing a traffic control plan, see Temporary Traffic Control Pocket Reference Guide 2007, Work Area Traffic Control Handbook 2006, or the California Manual on Uniform Traffio Control (MUTCD) 2003, Chapter 6. http://www.dol.ca.gov/hg/ljaffons/slantech/mutcdsupp/ca_mutcd.htm For City wabsite: http://www.eaklandpw.com/Page648.aspx

" Name the streets that are the boundaries of your work area.

250 Frank H. Ogawa Plaza, Sulta 4344

Oakland, CA 94612-2033

(610) 238-3488 FAX (510) 298-7416

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Project Name: _ Project Number:

Project Number: TSD-16-0008 Reviewed By: J.Watson

Date: 1/12/2016

Permit good from 1/15/2016

and 2/23/2016

ADD NEW SUBSECTION TO READ: SP 7-10,1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Works Construction, 2006 Edition (Include this paragraph for p-jobs, excavation permits or obstruction permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

Standard traffic control devices shall be placed at the construction zone according to the latest edition of the Work Area Traffic Control Handbook or Manual on Uniform Traffic Control Devices (MUTCD), Chapter 6 – "Traffic Controls for Construction and Maintenance Work Zone," or as directed by the Engineer.

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with suitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing work unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of 5 ½ feet of unobstructed sidewalk shall be maintained at all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a condition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and reopened to travel. Emergency access shall be provided at all times.

Street Name Limits	Obstruction	North	South	East	West	
	Period	Bound	Bound	Bound	Bound	
High Street Bond Street and Foothill	Mon. – Fri. 9AM – 4PM	Sidewalk closure	N/A	N/A	N/A	

The Contractor Shall Also include all check item:

1.	Design a construction traffic control plan and submit (2) copies to the Engineer for approval prior to starting any
	work.
3	

 Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within 3 days of completion of work or the final pavement lift.

Provide advance notice to Oakland Police at (510) 777-3333 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs) when a single lane of traffic or less is provided on any street.

Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.

 For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify the Traffic Management Center 24 hours in advance of any work.

Flagger control is required. Certified Flagger is required.

- Pedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
 Pedestrian traffic shall be maintained and guided through the project at all times.
- 9. Provide advance notice to Business and Residence within 72-hours.

10. Allow all traffic movement at intersection.

Nothing specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

PROVER DAL WORL WITE IN SEC.	«224 Shoulder Work Ahead	GHD 5900 Holis Street Suite A Emeryville CA 94608 TRAFFIC CONTROL SITE MAP MPH. 35 TL SS BS DRAWN BY LOTE PROJECT NUMBER
Footbill Blvd 6	<u>+</u>	
Taper Length Each Lane Cone Spacing Sign Marging Shifting Shoulder Taper Tanggard Shearing 125 FT 63 FT 42 FT 12 FT 150 FT 180 FT 50 FT 65 FT 15 FT 150 FT 180 FT 50 FT 65 FT 15 FT 150 FT 224 FT 127 FT 167 FT 40 FT 850 FT 540 FT 270 FT 180 FT 40 FT 50 FT 550 FT 660 FT 330 FT 220 FT 55 FT 100 FT 1000 FT 660 FT 330 FT 220 FT 55 FT 100 FT 1000 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT 660 FT	C30A Shoulder Closed	HINON THE CONTROL OF
Thefit Speed Taper Thefit Speed Taper MPH Merging 25 MPH 125 FT 30 MPH 125 FT 40 MPH 320 FT 40 MPH 540 FT 45 MPH 540 FT 50 MPH 540 FT 50 MPH 540 FT 55 + MPH 660 FT 65 + MPH 660 FT		9 (110)
Staging Area 4265 Roothill Blvd Work Hours am to pm 24 Hour Cortect Mike Franceschi (916) 605-7514 LEGEND C24 Shoulder Work Ahead C30A Shoulder Closed	High Street	DIRECT TRAFFIC CONTROL PO BOX 1822 DIAMOND SPRINGS CA 95619 PHONE (530) 677-9239 FAX (530) 672-1185 MOBLE: (916) 606-7514 1DTC@SBCGLOBALNET SSRES77.8939

Appendix E Standard Field Procedures

Attachment E STANDARD FIELD PROCEDURES FOR HAND AUGER BORING AND SAMPLING

This document presents standard field procedures for drilling and sampling soil borings using a hand auger. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Professional Geologist (PG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay, or gravel)
- Approximate percentage of each grain size category
- Color
- Approximate water or product saturation percentage
- Observed odor and/or discoloration
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy)
- Estimated permeability

Soil Boring and Sampling

Hand-auger borings are typically drilled using a hand-held bucket auger to remove soil to the desired sampling depth. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the augered hole. The vertical location of each soil sample is determined using a tape measure. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Augering and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling, and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4oC on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are collected from the open borehole using bailers. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

The borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

Attachment E

STANDARD FIELD PROCEDURES FOR SOIL BORING AND MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing, and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the ASTM D2488-06 Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG).

Soil Boring and Sampling

Prior to drilling, the first 8 feet of the boring are cleared using an air or water knife and vacuum extraction or hand auger. This minimizes the potential for impacting utilities. Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe®. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in

protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized.

Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

Attachment E STANDARD FIELD PROCEDURES FOR SOIL VAPOR PROBE INSTALLATION AND SAMPLING

This document presents GHD Services, Inc.'s (GHD's) standard field procedures for soil vapor probe installation and sampling. These procedures are designed to comply with Federal, State, and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil vapor samples are collected and analyzed to assess whether vapor-phase subsurface contaminants pose a threat to human health or the environment.

Shallow Soil Vapor Probe Installation

The shallow soil vapor probe method for soil vapor sampling utilizes a hand auger or drill rig to advance a boring for the installation of a soil vapor sampling probe. Soil vapor probes facilitate the collection of in-situ vapor samples. Once the boring is advanced to the final depth, #2/12 filter pack is poured through a tremie pipe to fill the bottom 6 inches of the boring. A permeable, stainless-steel probe tip is connected to ¼-inch outside diameter Teflon tubing via a push-to-connect fitting. The probe tip is then placed approximately 6 inches from the bottom of the boring and covered by 6 inches of #2/16 filter sand. A 12 inch layer of dry granular bentonite is placed on top of the filter pack. Pre-hydrated granular bentonite is then poured to fill the borehole. The tube is labeled, capped, and placed within a traditional well box finished flush to grade. Soil vapor samples will be collected no sooner than 48 hours after installation of the soil vapor probe to allow adequate time for representative soil vapors to accumulate. Soil vapor sample collection will not be scheduled until after a minimum of three consecutive precipitation-free days and irrigation onsite has ceased.

Purging

At least three purge volumes of vapor are removed from the soil vapor probe prior to sampling. The purge volume is defined as the amount of air within the probe and tubing. Purging is performed using the vacuum of a dedicated Summa canister, a flow regulator set to the same flow rate used for sampling, and vacuum gauges. Immediately after purging, soil vapor samples will be collected using the appropriate size Summa canister with attached flow regulator and sediment filter.

Sampling Soil Vapor Probes

Samples collected using a SUMMA™ canister will have the SUMMA™ canister connected to the sampling tube of each vapor probe. Prior to collecting soil vapor samples, the initial vacuum of the canisters is measured and recorded on the chain-of-custody. The vacuum of the SUMMA™ canister is used to draw the soil vapor through the flow controller until a negative pressure of approximately 5 inches of mercury is observed on the vacuum gauge and recorded on the chain-of-custody. The flow controllers should be set to 100-200 milliliters per minute. Field duplicates should be collected for every day of sampling and/or for every 10 samples collected.

In accordance with the Department of Toxic Substances Control (DTSC) *Advisory – Active Soil Gas Investigation* guidance document, dated April 2012, leak testing is necessary during sampling. Helium is recommended, although shaving cream is acceptable. Helium is pumped into a shroud that contains the entire sampling apparatus and the soil vapor probe well vault. A helium meter is used to quantify the percentage helium in the shroud during sampling.

Samples collected for TO-17 analysis will be collected using a TO-17 Sorbent Tubes connected to the sampling tube of each vapor probe. A 60 cc syringe will be used to draw the sample into the sorbent tubes. Field duplicates should be collected for each day of sampling and/or for every 10 samples collected.

A leak test will be performed prior to connecting the sampling equipment to the vapor tubing. The test is performed by inserting the sorbent tube into the tube holder on the syringe assembly, turning the valve into the 'off' position, pulling the plunger of the syringe. If the plunger does not move or immediately returns to the starting position, the system is leak tight and is ready for sampling.

Vapor Sample Storage, Handling, and Transport

Samples are stored and transported under chain-of-custody to a state-certified analytic laboratory. Samples should never be cooled due to the possibility of condensation within the canister.

Soil Vapor Probe Destruction

The soil vapor probes will be preserved until they are no longer needed for risk evaluation purposes. At that time, they will be destroyed by extracting the tubing, hand augering to remove the sand and bentonite, and backfilling the boring with neat cement. The boring will be patched with asphalt or concrete, as appropriate.

Appendix F Well Development Data and Groundwater Monitoring Sheets

WELL GAUGING DATA

Project #	166303-	682	Date 3/03	12016	Client	Chevron	7:
							- 16 - 7

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or POS	Past Developme TD- Notes
C-13	1254	2					15.53	18.94	-	18.94
		FOR								7444.03 7444.03 7444.03 7444.03
						T. I.				
	2/%	14 (17)								1.1
111111111111111111111111111111111111111	4			10.	3 1/4 /	See A	1000			27,1
Wey N				79.0	110		THINN			
133111										
					1					
					Y.					

The Holling the Soft of the following whether with the

WELL DEVELOPMENT DATA SHEET

Project #: 160303-6R2	Client: Chevron						
Developer: 602	Date Developed: 3/03/ 2016						
Well I.D. <i>C-13</i>	Well Diameter: (circle one) (2) 3 4 6						
Total Well Depth: Before 1884 After 18.94	Depth to Water: Before 15.53 After Dewatered						
Reason not developed:	If Free Product, thickness:						
Additional Notations:							
Volume Conversion Factor (VCF): Well dia. $\{12 \times (d^2/4) \times \pi\} / 231$ $2''$ where 3° $12 = \ln f$ foot $4''$ $d = \text{diameter (in.)}$ $6''$ $\pi = 3.1416$ $10''$ $231 = \text{in 3/gal}$ $12''$	VCF 0.16 0.37 0.65 1.47 4.08 6.87						
0.5 X	10 5.0						

Purging Device:

1 Case Volume

☐ Electric Submersible

⊠ Bailer
☐ Suction Pump

Positive Air Displacement

gallons

Type of Installed Pump

Other equipment used 2" sure Block

Specified Volumes

TIME	TEMP (F)	pH	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	. NOTATIONS:
1300	Beg	in swabb	ing well	for a	15 min	
1318	Begin	purge w	middle Bur	& pump -		Agitate bottomw/pump
1320	68.2	7.32	3949	>1000	0.5	It. brown w/ oder
1322	68.2	7.84	3423	>1000	1-0	on hard bottom
1326		well de	watering	(a)	1.4	TD = 18.94.
1330	Resu	me pure	e w/ di	Sp. buile	-	
1332	68.1	7.530	3263	>1000	1.5	
1335		well de		0	1.8	TP = 18.94
1400		Regarged	DTW	= 18.10		
1420		Regented		= 18.08		
1425	Res	ume pa		disp. 6	ailer	
1427	68.2	Contract of the contract of th	3321	71000	2.0	
1429		well d	evulved	0	2.1	TD = 18.99
Did Well Dew	rater? Vas	If yes, note abo	ve.	Gallons Actually	y Evacuated:	2.1

WELLHEAD INSPECTION CHECKLIST

Page 1 of 1

ell cited - SECURABL BY DESIGN (12° or less)	"MONITORING WELL" (12"or tess)	Water Bailed From Wellbox	Welibox Components Cleaned	Cap	nician .	Other Action	Well Not	Repair
cted - rective ion dired WELL IS SECURABL BY DESIGI (12°or less)	CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"cr tess)	Bailed From	Components		Lock			
×			Cleaned	Replaced	Replaced	Taken (explain below)	(explain below)	Order Submitted
	×				3410			
			1.					
	1	-						

SOURCE RECORD BILL OF LADING
FOR PURGEWATER RECOVERED FROM
GROUNDWATER WELLS AT CHEVRON FACILITIES IN
THE STATE OF CALIFORNIA. THE PURGE- WATER
WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR
AND HAULED TO THEIR FACILITY IN SAN JOSE,
CALIFORNIA FOR TEMPORARILY HOLDING PENDING
TRANSPORT BY OTHERS TO FINAL DESTINATION.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE TECH), 1680 Rogers Ave. San Jose CA (408) 573-0555). BLAINE TECH. is authorized by Chevron Environmental Management Company (CHEVRON EMC) to recover, collect, apportion into loads, and haul the purgewater that is drawn from wells at the CHEVRON EMC facility indicated below and to deliver that purgewater to BLAINE TECH for temporarily holding. Transport routing of the purgewater may be direct from one CHEVRON EMC facility to BLAINE TECH; from one CHEVRON EMC facility to BLAINE TECH via another CHEVRON EMC facility; or any combination thereof. The well purgewater is and remains the property of CHEVRON EMC.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-0076	5	1	me	y Roberts		
CHEVRON #			C	hevron Engine	eer	
4265	Foothill	Blude	1	oakland,	CA	
street numbe	r stree	street name		city	state	

WELL I.D. GALS.	WELL I.D. GALS.
C-13 1 2-1	
	J.
T	1
added equip. rinse water / Og	any other adjustments /
TOTAL GALS. RECOVERED 3.0	loaded onto BTS vehicle # 23
BTS event # time 160303- G/22	1450 date 3 163 1/6
Transporter signature	2
***********	******
REC'D AT	time date
Unloaded/received by signature	

TEST EQUIPMENT CALIBRATION LOG

EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myson L altrumete II	6219885	3/03/2016 Q1250	7.0 10.0 4.0 pt	7.00	405	68.8 F	6R
			3400 ws	3899	çes	68.3°F	CAR
					. *		

March 24, 2016

Chevron Environmental Management Company Mark Horne 6101 Bollinger Canyon Rd. San Ramon, CA 94583

> First Quarter 2016 Monitoring at Chevron Service Station 90076 4265 Foothill Blvd. Oakland, CA

Monitoring performed on March 8, 2016

Blaine Tech Services, Inc. Groundwater Monitoring Event 160308-BW1

This submission covers the routine monitoring of groundwater wells conducted on March 8, 2016 at this location. Ten monitoring wells were measured for depth to groundwater (DTW). Ten monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air displacement pumps, or stainless steel, Teflon, or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

UC. 740684

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to Blaine Tech of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Dustin Becker

Blaine Tech Services, Inc. Senior Project Manager

attachments:

SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Wellhead Inspection Form

Bill of Lading Calibration Log

CC:

GHD

Attn: Nathan Lee

2300 Clayton Rd., Suite 920

Concord, CA 94520

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing product.

TRADITIONAL PURGING & SAMPLING

Evacuation

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

Parameter Stabilization

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

Sample Collection

All samples are collected using disposable bailers.

Sample Containers

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

Dewatered Wells

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

Measuring Recharge

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

Dissolved Oxygen Measurements

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated

as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

Oxidation Reduction Potential Measurements (ORP)

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

LOW FLOW SAMPLING USING SAMPLE-PRO BLADDER PUMP

Calibration

Calibrate YSI Flow Cell as per manufacturer's specifications. Thoroughly rinse probe and cup between parameters. Calibration order as follows:

- pH (use 3-point calibration of 7, 4, 10)
- 2. Specific Conductance
- 3. Temperature

Purging & Sampling Collection

- Insert new bladder into Sample-Pro pump housing.
- Remove dedicated PE tubing from the well or start with new PE tubing cut to the required length.
- Attach the PE tubing to the Sample-Pro Bladder Pump.
- Gently lower the Sample-Pro Bladder Pump, and PE tubing into the well, placing the Sample-Pro Bladder Pump intake at the specified screened interval. Take care to minimize disturbance to the water column.
- Direct effluent line into YSI 556 Flow Cell.
- 6. Set Sample-Pro Bladder Pump speed at 100 500 ml/min.
- 7. Collect water quality parameter measurements for temperature, pH, conductivity, turbidity, DO and ORP every 3-5 minutes.
- Monitor drawdown during purging with electronic water level meter. Record water level with each parameter measurement. MAXIMUM DRAWDOWN IS 0.33 FEET.
- Collect parameter measurements until stability is achieved. Stability is defined as three consecutive measurements where:

Temp ± 1° Celsius pH ± 0.1 Conductivity ± 3%

- Sample may be collected once one system has been removed and stability readings have been achieved after the system volume has been removed.
- 11. Disconnect effluent line from YSI 556 Flow Cell.
- 12. Sample through effluent line while maintaining constant flow rate.
- 13. Remove Sample-Pro Bladder Pump, and PE tubing from well.
- 14. Detach and reinstall dedicated PE tubing in well.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading or Non-Hazardous Waste Manifest to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label. Field documentation is contemporaneous.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment such as hose reels, pumps and bailers is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level

indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

Blaine Tech Services, Inc.

WELL GAUGING DATA

Project #	160308	BWI	Date	3/8	16	Client	Che	oron	
	+ 40, 41	1			Tel Politica				
Site	4265	Foothill	Blo	d. 0	akland	1	Multi-		

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
C-1	0852	3					9.9z	37.94		
C-2	0856	3					11:91	36.31		
C-3	0848	3					19,65	39.16		
c-4	0900	3					9.22	36.40		
C-5	0904	2_					18:98	44.13		
C-6	0840	2					20.54	53.58		
4 -7	* (lnable	to A	cuess@	Chent	Request	- No Ac	ess Agreet	25	
C-8	0830	2					Aleks etima Allien Arbeit	55.99		
C-9	*un	able	o Acc	05@C	hent Re	quest - 1	Un Access	4grenent		
C-10	0844	2					7.22	79.83		
	0835	2					13.00	19.62		
C-13	0908	2					12-21	18.98	レ	
30,000			17	ar (1)		0123	447044		494.5	
N.		1	4							10.10
			1		311					11111
				3 4					N	7 1
1000				41111111111111111111111111111111111111						

CHEVRON WELL MONITORING DATA SHEET

Project #	: 16030	18-BW1		Station #: 9-0076					
Sampler:	BW			Date: 3/8/16					
Weather:	Chem			Ambient Air Temperature: 60°F					
Well I.D.	: C-(4	Well Diameter: 2 (3) 4 6 8					
Total We	ell Depth:	4.	37.94	Depth to Wate	1:9.92 31.94	ŧ			
Depth to	Free Produ	ıct:	- Control of the Cont	Thickness of F	ree Product (feet	:): ~			
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW wit	h 80% Red	charge [(F	でも、02 Height of Water	Column x 0.20)+DTW]: 15.	52			
Purge Meth	od: Bailer Disposable Bailer Positive Air L Electric Subm	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	XDisposable Bailer Extraction Port Dedicated Tubing : ter Multiplier Well Di	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT			
/0.4 1 Case Volum	_(Gals.) X _ ne Sp	3 ecified Volum	= 31.2 nes Calculated Vo	Gals. 2" 3"	0.04 · 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or \(\mu S\))	Turbidity (NTUs)	Gals. Removed	Observations			
1155	66.2	6.88	819	69	10.4	ODOR			
*	Demater	96	15.0 gallon	S		L A			
1435	67.1	690	907	14	,				
	dewater?	(Yes)	No	Gallons actual	ly evacuated: /c	5.0			
	Date: 3/		Sampling Time		Depth to Water:				
Sample I.	D.: C	- (Laboratory:	Laucaster Othe				
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other:	See COC				
Duplicate	I.D.:	,	Analyzed for:			Other:			
D.O. (if r	eq'd):		Pre-purge:	mg/ _I	Post-purge:	mg			
O.R.P. (it	freq'd):	*	Pre-purge:	mV	Post-purge:	m\			

Project #	: 16030	8- BW1		Station #: 9-0076								
Sampler:	BW			Date: 3/8/16								
Weather	Clear	-		Ambient Air Temperature: 60° F								
Well I.D	: C-2			Well Diameter: 2 (3) 4 6 8								
Total We	ell Depth:	36.31		Depth to Wate	er: 11.91							
Depth to	Free Produ	ict:	_	Thickness of I	ree Product (fee	et): —						
Referenc		(PVC)	Grade	D.O. Meter (if		YSI HACH						
DTW wi	th 80% Rec	charge [(He	ight of Water	Column x 0.20	را) + DTW]: ال	.79						
Purge Meth	Bailer Disposable Bailer Positive Air D (Electric Subm (Gals.) X	ailer .' P. Displacement E nersible O	Vaterra Peristaltic Extraction Pump Other = 27.3	Other Well Diame 1" 2"	XDisposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier 0.65 1.47						
1 Case Volum		ecified Volumes	Providence and the Control of the Co		0.37 Othe	er radius ² * 0.163						
Time	Temp (°F)	рН	Cond. (mS or μ S)	Turbidity (NTUs)	Gals. Removed	Observations						
1225	64.1	6.90	826	128	9.1	ODOR/SHEEN						
	& Den	while 6	10.0.ga	(ons								
1450	65.2	6.97	903	24	_	DOOR/SHEEN						
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	10.0						
Sampling	Date: 3/	8/16 5	Sampling Time	e: 1450	Depth to Wate	r: 12.36						
Sample I				Laboratory:	Lancaster Ot	her						
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other: (1)	ee COC							
Duplicate	e I.D.:	. 1	Analyzed for:	TPH-G BTEX	MTBE OXYS	Other:						
D.O. (if 1	eq'd):		Pre-purge:	mg/	mg/							
O.R.P. (i				e: mV Post-purge:								

Project #:	1603	08-BW		Station #: 9	-0076						
Sampler:	BW			Date: 3/8/16							
Weather:	Clew			Ambient Air Temperature: 60°F							
Well I.D.:	C-3			Well Diameter	: 2 3 4	6 8					
Total Well I	Depth:	39.10	9	Depth to Water	: 19.65						
Depth to Fre	e Produ	ict:	-	Thickness of F	ree Product (feet)): ~					
Referenced t	o:	(PVC)	Grade	D.O. Meter (if	req'd): y	SI HACH					
DTW with 8	0% Rec	charge [(H	19,51 Height of Water	Column x 0.20)+DTW]: 23	3.55					
Pos	posable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	X Disposable Bailer Extraction Port Dedicated Tubing	meter Multiplier					
7.2 (G. 1 Case Volume	als.) X	3 ecified Volun	= Z1.6	Gals. 1" 2"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163					
Time Te	mp (°F)	pН	Cond. (mS or μ S)	Turbidity (NTUs)	Gals. Removed	Observations					
1130 6	7.0	7.02	716	20	7.2						
1133 6	7.8	6-79	913.	19	14.4						
* 0	evale	60	16.0 ga(1.00.5			*					
1420 6	7.2	6.88	917	10							
Did well dev	vater?	Yes	No	Gallons actuall	y evacuated: /	6.0					
Sampling Da	ite: 3/	8/16	Sampling Time	: 1420.	Depth to Water:	20.1Z					
Sample I.D.:	C	3		Laboratory:	Lancaster Othe	r					
Analyzed for	r: TPH	-G BTEX	MTBE OXYS	Other:	See COC	-247					
Duplicate I.I	D.:		Analyzed for:			Other:					
D.O. (if req'o	d):		Pre-purge:	mg/L	Post-purge:	mg/L					
O.R.P. (if red			Pre-purge:		1						

Project a	4: 1603	08-BW		Station #: 9-0076								
Sampler	: BW)		Date: 3/8/16								
Weather	: Overc	ast		Ambient Air Temperature: 60° €								
Well I.D).; c-	4		Well I	Diameter:	2 3 4	6 8					
Total W	ell Depth:	36.40		Depth	to Water	: 9.22						
Depth to	Free Produ	uct:	James 1	Thick	ness of F	ree Product (feet)	· -					
Referen	ced to:	(PVC)	Grade	D.O. N	Meter (if	req'd): Ys	HACH -					
DTW w	ith 80% Red	charge [(H	27,0% eight of Water	Colum	n x 0.20)	+DTW]: [4,	66					
Purge Met	hod: Bailer Disposable B Positive Air I Electric Subm	ailer / Displacement	Waterra Peristaltic Extraction Pump Other	Samplin	Other:							
[0 - [1 Case Volu	(Gals.) X me Sp	3 ecified Volum	= 30-3 es Calculated Vo		Well Diamete 1" 2" 3"	r Multiplier Well Diar 0.04 : 4" 0.16 6" 0.37 Other	noter Multiplier 0.65 1.47 radius ² * 0.163					
Time	Temp (°F)	рН	Cond. (mS of µS))	223023	bidity TUs)	Gals. Removed	Observations					
1250	65.1	7.04	865	3.	0	10.1						
	Krewal	ved@	15.0 gallo	NS.			*					
						449						
1510	66.2	6.98	936	1	4	-	•					
Did well	dewater?	(Yes)	No	Gallor	s actuall	y evacuated: (5	5.6					
	n 1	ello	Sampling Time	e: 151	0	Depth to Water:	11.88					
Samplin	g Date: 3	BILL	2.2 19 to 4. 10 y 142 10 10 10 y	the state of the s	· .	Doput to Hater.	11100					
		-4 .		Labora		Lapicaster Other						
Sample l	.D.: C	-4 .	MTBE OXYS		atory:	Lancaster Other						
Sample l Analyze	D.: C	-4 .	×	Labora	atory:	Lancaster Other						
Sampling Sample I Analyzed Duplicat D.O. (if	D.: Cod for: TPH	-4 .	MTBE OXYS	Labora Other: TPH-G	atory:	Lancaster Other						

Project #	4: 16031	08-BW1		Station #: 9-0076								
Sampler	: BW			Date: 3/8/16								
Weather	: Overco	154		Ambient Air Temperature: ७०° €								
Well I.D).: C-5	5		Well Diameter: (2) 3 4 6 8								
Total W	ell Depth:	44,13		Depth	to Water	: 18.98						
Depth to	Free Prod	uct:		Thickr	ess of F	ree Product (feet)	i. —					
Reference	ced to:	(PVC)	Grade	D.O. N	leter (if	req'd): Y	SI HACH					
DTW wi	ith 80% Re	charge [(H	25.15 leight of Water	Colum	n x 0.20) + DTW]: Z4	01					
Purge Met	Bailer Disposable B	Bailer ! Displacement	Waterra Peristaltic Extraction Pump Other = [Z=0]	Samplin Gals.		Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier Well Diag 0.04 4" 0.16 6"	meter <u>Multiplier</u> 0.65 1.47					
1 Case Volu		pecified Volum	The second distribution of the second distributi		3"	0.37 Other	radius ² * 0.163					
Time	Temp (°F)	pН	Cond. (mS or µS)	100 A D	bidity TUs)	Gals. Removed	Observations					
1315	4.0	7,08	743	31	9	4.0	Cloudy					
1317	65.5	697	7(3.	12	7	8.0	cloudy					
1319	66.0	695	709	(10	5	12.0	cloudy					
	dewater?	Yes	(No)			y evacuated: /2						
TIME	g Date: 3/8	1	Sampling Time		20	Depth to Water:	19.04					
Sample 1	(.D.: C	. 5		Labora	atory:	Lancaster Other	r					
Analyze	d for: TPF	I-G BTEX	MTBE OXYS	Other:		See COC						
Duplicat	e I.D.:		Analyzed for:	TPH-G		3000 P. 1	ther:					
D.O. (if	req'd):		Pre-purge:		mg/L	Post-purge:	mg					
				e: mV Post-purge: m								

Project	#: 1603	108-BW		Station #:	9-0076						
Sample	r: Bu)		Date:	5/8/16	i i i i i i i i i i i i i i i i i i i					
Weathe	r: Clea	~		Ambient Air Temperature: 60° =							
Well I.I	D.: C-6			Well Diameter: (2) 3 4 6 8							
Total W	ell Depth:	53.58		Depth to Water: 20.54							
Depth to	o Free Prod	uct:	pint.	Thickness of	Free Product (feet):					
Referen		(PVC)	Grade	D.O. Meter (if rea'd): v	'SI HACH					
DTW w	rith 80% Re	charge [(H	33.04 eight of Water	Column x 0.2	0) + DTW]: B	27.15					
Purge Mei	Bailer Disposable B	Bailer ./ Displacement nersible	Waterra Peristaltic Extraction Pump Other	Sampling Metho Othe	XDisposable Bailer Extraction Port Dedicated Tubing	ameter <u>Multiplier</u> 0.65					
5. 3 1 Case Volu	(Gals.) X	3 pecified Volume	$= \frac{15.9}{\text{Calculated Vo}}$	_ Gals. 2"	0.16 6" 0.37 Other	1.47 radius ² * 0.163					
Time	Temp (°F)		Cond. (mS of µS))	Turbidity (NTUs)	Gals. Removed	Observations					
0950	66.7	6.93	750	58	5.3						
1,10,414	t Dewa	tered 6	7.0 gall	ows							
1340	67.1	696	781	20							
Did well	dewater?	Yes	No	Gallons actua	lly evacuated: 7	٥,					
Sampling	g Date: 3/4	8/16 5	Sampling Time	: 1340	Depth to Water:	21.06					
Sample I	.D.: C	-6.	1	Laboratory:	Lancaster Other						
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other:	See COC						
Duplicate	e I.D.:	. 1	Analyzed for:	TPH-G BTEX		ther:					
O.O. (if 1	req'd):		Pre-purge:	mg/	Post-purge:	mg/L					
D.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV					
77	9 9 Part 14	41 12 13	1 1 1 1 1 1		1 6						

Project #: 160308 - BW1	Station #: 9-0076							
Sampler: Bw	Date: 3/8/16							
Weather: Overcost	Ambient Air Temperature: 60° F							
Well I.D.: C-7	Well Diameter: 2 3 4 6 8							
Total Well Depth:	Depth to Water:							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH							
DTW with 80% Recharge [(Height of Water	r Column x 0.20) + DTW]:							
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other (Gals.) X =	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47							
1 Case Volume Specified Volumes Calculated Volumes Cond.								
Time Temp (°F) pH (mS or μS)	Turbidity (NTUs) Gals. Removed Observations							
X Unable to Access per Client	No Access Agreement							
* No Sample Collected.	J							
Did well dewater? Yes / No	Gallons actually evacuated:							
Sampling Date: Sampling Tim	ne: Depth to Water:							
Sample I.D.:	Laboratory: Lancaster Other							
Analyzed for: TPH-G BTEX MTBE OXYS	Other:							
Duplicate I.D.: Analyzed for:	TPH-G BTEX MTBE OXYS Other:							
D.O. (if req'd): Pre-purge	mg/L Post-purge: mg/							
y y	Post-purge:							

Project	#: 160	308-BW1		Station #: 9-007-6								
Sample	r: BW			Date: 3/8/16								
Weathe	r: Clear			Ambient Air Temperature: 60°F								
Well I.I	D.: C-8			Well Diameter	: (2) 3 4	6 8						
Total W	ell Depth:	55.90	7	Depth to Wate	r: 25.23							
Depth to	Free Prod	uct:	g*****	Thickness of F	ree Product (fee	t):						
Referen	ced to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH						
DTW w	ith 80% Re	charge [(I-	ろう。そら Ieight of Water	Column x 0.20)+DTW]: 31.	38						
Purge Met	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	iameter Multiplier						
4.9 1 Case Vol	(Gals.) X _ me S _I	3 pecified Volum	= 14.7 Calculated Vo	Gals. 1"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47						
Time	Temp (°F)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations						
1004	67.4	6.93	1214	163	5.0							
1006	67.1	6.85	1274.	121	10.0							
1008	66-9	6.90	1298	124	15.0							
Did well	dewater?	Yes	"(No)	Gallons actual	y evacuated: /	5.0						
Samplin	g Date: 3	8/16	Sampling Time	e: /0/0	Depth to Water:	: 75.64						
Sample)	I.D.: C	-8 .		Laboratory:	Lancaster Othe							
Analyze	d for: TPH	I-G BTEX	MTBE OXYS	Other:	See COC							
Duplicat	e I.D.:		Analyzed for:	GA :	MTBE OXYS (Other:						
D.O. (if	req'd):		Pre-purge:	mg/L	Post-purge:	mg/						
O.R.P. (if req'd):		Pre-purge:	mV	Post-purge:	mV						
	X-5					Accessed the second sec						

Project #: 160308 · BW1	Station #: 9-6076
Sampler: BW	Date: 3/8/16
Weather: Overcast	Ambient Air Temperature: 60° F
Well I.D.: C-9	Well Diameter: 2 3 4 6 8
Total Well Depth:	Depth to Water:
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVE Grade	D.O. Meter (if req'd): YSI HACH
DTW with 80% Recharge [(Height of Wat	er Column x 0.20) + DTW]:
Purge Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Electric Submersible Other (Gals.) X Specified Volumes Calculated	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 Wolume 3" 0.37 Other radius 2* 0.163
Cond.	Turbidity
Time Temp (°F) pH (mS or μS)	(NTUs) Gals. Removed Observations
* Unable to Access per Client-	No Access Agreement
* No Songle Collected	
Did well dewater? Yes / No	Gallons actually evacuated:
Sampling Date: Sampling Ti	me: Depth to Water:
Sample I.D.:	Laboratory: Lancaster Other
Analyzed for: ТРН-G ВТЕХ МТВЕ ОХУS	Other:
Duplicate KD.: Analyzed for	r: TPH-G BTEX MTBE OXYS Other:
D.O. (if req'd): Pre-purg	ge: mg/L Post-purge: mg/
O.R.P. (if req'd): Pre-purg	ge: mV Post-purge: mV
The second secon	

Project	#: 160	308-134	اب	Station #:	9-0076						
Sample	: Bu)		Date: 3/8/16							
Weather	: Ches	~		Ambient Air Temperature: 60°F							
Well I.I).: C-11	0		Well Diameter	: 2 3 4	6 8					
Total W	ell Depth:	29.8	3	Depth to Water	r: 7.22						
Depth to	Free Produ	uct:	_	Thickness of F	ree Product (feet)): —					
Referen	ced to:	(PVC)	Grade	D.O. Meter (if	req'd):	SI HACH					
DTW w	ith 80% Red	charge [(H	22.61 leight of Water	Column x 0.20) + DTW]: //. 7	74					
Purge Met	Bailer Disposable B	ailer .' Displacement	Waterra Peristaltic Extraction Pump Other	Other:	✓ Disposable Bailer Extraction Port Dedicated Tubing						
اط. 5 I Case Volu	(Gals.) X me Sp	3 ecified Volum	= 10.8 Calculated Vo	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163					
Time	Temp (°F)	pН	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations					
1100	68.7	7,57	596	87	3.6						
1102	69.0	728	620.	96	7.2						
1104	G.4	7.19	673	102	11.0						
Did well	dewater?	Yes	(No)	Gallons actuall	y evecuated:	11.0					
	- 1		Sampling Time								
		1-10 .	Jamping Tim	Laboratory:	Depth to Water:						
Sample 1			and the second	Other:	See Coc						
	d for: TPH	-G BTEX	MTBE OXYS	Oulet.	200						
Analyze			Analyzed for:			other:					
Analyzed Duplicat D.O. (if	e I.D.:				MTBE OXYS O						

Project F	F: 1603	308-BL	01	Station #: 9 - 00 +6								
Sampler	: BW			Date: 3/8/16								
Weather	: Clec	~		Ambient Air Temperature: 58° F								
Well I.D	.: C-	11		Well Diameter: (2) 3 4 6 8								
Total W	ell Depth:	19.62		Depth to Water	r: 13.00							
Depth to	Free Produ	uct:	-	Thickness of F	ree Product (fe	et):						
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH						
DTW wi	th 80% Red	charge [(H	leight of Water	Column x 0.20) + DTW]:	14.32						
Purge Metl	od: Bailer Disposable B Positive Air I Electric Subm	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier						
l Case Volu	(Gals.) X me Sp	3 ecified Volum	= 3.3 nes Calculated Vo		0.04 4" 0.16 6" 0.37 Othe	0,65 1,47 er radius ² * 0,163						
Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations						
0915	65.4	6.75	895	71000	1.1							
0917	66.0	6.72	901 .	71000	Z. Z							
0919	66.2	6.70	906	71000	3.3	DTW 15.39						
		flety										
Did well	dewater?	Yes	No	Gallons actuall	y evacuated:	3.3						
Sampling	Date: 3	8/16	Sampling Time	e: 0930.	Depth to Water	r: 14.20 ·						
Sample I		-11 .		Laboratory:	Lancaster Otl							
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other: Se	· COC							
Duplicate	e I.D.:	7	Analyzed for:		ATBE OXYS	Other:						
D.O. (if 1	eq'd):	The second second	Pre-purge:	mg/L	Post-purge:	mg						

Project	#: 160	308-BL	۵۱	Station #:	9-0076						
Sample	r: Bu)		Date: 3/8/16							
Weathe	r: Clea	~		Ambient Air Temperature: 60° =							
Well I.I	D.: C-1	3		Well Diamete	er: 2 3 4	6 8					
Total W	ell Depth:	189	18	Depth to Wat	er: /2,2/						
Depth to	Free Prod	uct:	_	Thickness of	Free Product (fe	et): _					
Referen	ced to:	(PVC)	Grade	D.O. Meter (i	f req'd):	YSI HACH					
DTW w	ith 80% Re	charge [(H	6.77 leight of Water	Column x 0.2	0) + DTW]: (3.56					
Purge Met	Bailer Disposable B	ailer / Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Othe	Disposable Bailer Extraction Port Dedicated Tubing	Diarneter Multiplier					
/, / I Case Volu	(Gals.) X ime Sp	3 ecified Volum	= 3.3 es Calculated Vo	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 er radius ² * 0.163					
Time	Temp (°F)	рН	Cond. (mS o(µS)	Turbidity (NTUs)	Gals. Removed	Observations					
1030	66.7	7-31	1617	71000	1.1						
1032	67.8	7.31	7049.	71000	2.2						
1036	67.8	7.36	2096	71000	3.3	not soze					
	dewater?	Yes	No		lly evacuated:	3.3					
	g Date: 3/9	1	Sampling Time	: 1400	Depth to Water	r: 16.92 (depertue)					
Sample 1	.D.: C	13 .		Laboratory:	Lancaster Otl	her					
Analyze	d for: TPH	-G BTEX	MTBE OXYS	Other:	See (oc						
Duplicat	e I.D.:	10	Analyzed for:		MTBE OXYS	Other;					
D.O. (if	req'd):		Pre-purge:	mg	Post-purge:	mg/L					
).R.P. (i	freq'd):		Pre-purge:	m	Post-purge:	mV					

CHAIN OF CUSTODY FORM

ement Company # 6111 Bollinger Canvon Rd. San Ramon, CA 94583 COC \ of 2

	hevron Site Number: 90076			Chevron Consulta		Chevron Consultant: GHD					ANALYSES REQUIRED							
Chevron Site Global	ID: T060010	0339		Address: 2300 Clar	yton Rd., Site 920.	Concord, CA	17	17	-	-	-				17			
Chevron Site Addres			kland, CA	Consultant Contac	Consultant Contact: Nathan Lee Consultant Phone No. 925-849-1003		НХОСП		i			C YTINI		& GREASE []			H =HCL T= Thiosulfate N =HNO ₃ B = NaO	
Chevron PM Phone	No.: (925) 79	90-3964		Consultant Projec	t No. 16030	8-BW1	Ħ	SCREEN				KAL		80			S = H ₂ SO₄ O = Other	
Retail and Termin Construction/Reta		Unit (RTBU)) Job	Sampling Company: Blaine Tech Services Sampled By (Print): Bricen Weeks Sampler Signature: Burney		OXYGENATEST				TTC STC	EPA 310.1 ALKALINITY		EPA 413.1 OIL			O. I.		
(WBS ELEMENTS SITE ASSESSMENT: A1L SITE MONITORING: OML THIS IS A LEGAL DO	OOSITE NU REMEDIATION OPERATION	IMBER-0- W INPLEMENTAT MAINTENANCE &	BS ION: R5L MONITORING: M1L ST BE FILLED OUT	Lancaster Laboratories Lancaster, PA Lab Contact: Amek Carter 2425 New Holland Pike, Lancaster, PA 17801 Phone No: (717)656-2300	Other Lab	Temp, Blank Check Time Temp. 0800 4°C. 1000 4°C. 1200 4°C. 1400 4°C. 1400 4°C. 1400 4°C.	BJGC/MS BTEX KI MTBE	B GROM DROC	18 BTEX CI MTBE CI	6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS CI TTL	EPA150.1 PH []	SMZ510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH 🗅	0 ETHANOL	5 TPH-0 🗆	Special Instructions Must meet lowest detection limits possibl for 8260 empounds.	
	SAMPL	E ID					826 G L	801	802	601	3010	150.	5106	418	9260	801		
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA 82601 TPH-G []	EPA 8015B	EPA 8021B	EPA	EPA	EPA	SMZ	EPA	EPA 8260	EPA 8015	Notes/Commen s	
C-1	WG		160308	1435	6	UGA	X	×							X			
C-2	Wh			1450	6	VOA	×	×						1	X			
C-3	WG			1420	6	VOA	X	1						1	X			
C-4	WG			1510	6	VOA	X	X							×			
C-S	WG			1320	6	VOA	×	X							×			
C-6	wa			1340	6	VOA	×	X				11			×			
C-8	WG			1010	6	VOA	>	×	1						7			
C-10	WG			1110	6	VOA	×	7	100						×			
- 11	WG			0930	6	VOA	×	X							×			
2-13	WG		1	1400	6	VOA	×	×							X			
Relinquished By	Comp	375 31	1 Date/Time; 18/16@1645	Relinquished To	Company 375	Date/Time 3/8/16@ 164	5		Sta	ndare urs[]		Othe	er 🗆	ursD		48 hour		
25 Fre				I m H + 1 + me	C	Date/Time			Sar	mole	Integ	rity:	Che	ck by	lab c	n arriva	(i)	
Relinquished By	Comp	pany [Date/Time	Relinquished To	Company	Daterriffe			Inta			On I			Ter			

	nevion	Environ	mentai iviana	agement Compar	IV M OTTT DOI	illiger carryon	Nu.	Sai	INC	anno	111,	ANIAI	VCC	e pr	QUI		2 of 2
Chevron Site Number				Chevron Consulta	nt: GHD		14	1+				MINA	130	SINC	-QUII	NEU	Preservation Code
Chevron Site Global I	D: T060010	0339		Address: _2300 Cla	yton Rd., Site 920, C	Concord, CA											H=HCL T=
Chevron Site Address	: 4265 Foo	othill Blvd., Oa	kland, CA	Consultant Contac	ct: Nathan Lee		-	0				0					Thiosulfate
Chevron PM: Dave P	Dove Patter Mark Horne			Consultant Phone No. 925-849-1003		HVOCI					FN	1	& GREASE			N=HNO ₃ B = NaC	
Chevron PM Phone 1	lo.: (925) 79	90-3964		Consultant Project No. 160308-Bus		₹	SCREEN				KALI	13	L & G			S = H ₂ SO ₄ O = Other	
Retail and Termin		Unit (RTBU)	Job	Sampling Compar	ny: Blaine Tech Se	ervices	US:	웃			0	1 AL		.1 OIL			
☑ Construction/Retail Job		Sampled By (Print Sampler Signature			OXYGENATESI	ORO 🛘			тте 🗆 зте	EPA 310.1 ALKALINITY		EPA 413.1					
(WBS ELEMENTS SITE ASSESSMENT: A1L SITE MONITORING: OML THIS IS A LEGAL DOG	OOSITE NU REMEDIATION OPERATION	IMBER-O-WI IN IMPLEMENTAT MAINTENANCE &	ION: RSL & MONITORING: M1L ST BE FILLED OUT	Lancaster Laboratories Lancaster, PA Lab Contact: Amek Carter 2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	Other Lab	Temp. Blank Check Time Temp. 0%00 4°L 1906 4°L 1200 4°C 1400 4°C 1400 4°C	EPA 8260B/GC//MS TPH-G IT BTEX IN MTBEIX OXX	O'N DRO E	18 BTEX O MTBE D	EPA 6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS [] TITL	EPA150.1 PH []	SM2510B SPECIFIC CONDUCTIVITY	EPA418.1 TRPH D) ETHANOL	5 TPH-0 🗆	Special Instructions Must meet lowest detection limits possib for 8250 cmpounds.
	SAMPL	EID					826 G E	801	802	601	3010	150.	510	418	3260	80.1	
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA	EPA 8015B	EPA 8021B	EPA	EPA(EPA	SM2	EPA	EPA 8260	EPA 8015	Notes/Commer s
QA	TB		160308	0800	2	USA	×	×									
														31	H	+	
Relinquished By	Comp	875	Date/Time: 3/8/16 (C) 1/645	Marchoo	Company BTS	Date/Time 3/8/16@	164	5	Sta Ho	narot indare urs 🗆	de	Othe				48 hou	
Relinquished By	Com	pany [Date/Time	Relinquished To	Company	Date/Time			Sar		Integ	on I		ox by	Ter	n arriva	10
Relinquished By	Comp	pany [Date/Time	Relinquished To	Company	Date/Time								(COC	#	

WELLHEAD INSPECTION CHECKLIST

Client		heuron					Date	3/	8/16	
Site Address	4265	Footh	Il Blod.		Daklans	<u>d</u>				
Job Number	160308-BW1 Techn					nician	BW			
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Impected (explain below)	Repair Order Submilled
C-1							-	X		
C- Z								X		
C-3								X		
C-4								X		
C.S								X		
C-6	9							*		
C-7	* Unasbl	e to ac	uss @ C1	rent -	No Acc	e-55	Agreem	ent		
C-8							9	×		
C-9	& Unas	el to A	ccesse Cl	ent-	No Ac	ess Ac	verent			
C-10	X	×	×				-			
C-11	1 *	×	×							
C-13	×	×	×							
	-							-		-
P-32/000-111-12	1									
tol to his and a second										
NOTES:	C-6, C-	8 : C	hristy Bo	7	C-1:	Chris	ty Bo	*	75	
NOTES: C-2: Vanit C-5 12/2 7	missing Talks Shi	2/2 Bolts	., 2/3	7/2 7	abs St	rpped	, c-4 ·	2/z To	ibs Shi	bbrg
C-Z 15	Slip Cap	3", no	lock							
BLAINE TECH SE	RVICES INC.		SAN JOSE SAG	CRAMENTO	LOS ANGELE	S SAN	DIEGO		www.bfainet	ech com

SOURCE RECORD BILL OF LADING
FOR PURGEWATER RECOVERED FROM
GROUNDWATER WELLS AT CHEVRON FACILITIES IN
THE STATE OF CALIFORNIA. THE PURGE- WATER
WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR
AND HAULED TO THEIR FACILITY IN SAN JOSE,
CALIFORNIA FOR TEMPORARILY HOLDING PENDING
TRANSPORT BY OTHERS TO FINAL DESTINATION.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE TECH), 1680 Rogers Ave. San Jose CA (408) 573-0555). BLAINE TECH. is authorized by Chevron Environmental Management Company (CHEVRON EMC) to recover, collect, apportion into loads, and haul the purgewater that is drawn from wells at the CHEVRON EMC facility indicated below and to deliver that purgewater to BLAINE TECH for temporarily holding. Transport routing of the purgewater may be direct from one CHEVRON EMC facility to BLAINE TECH; from one CHEVRON EMC facility to BLAINE TECH via another CHEVRON EMC facility; or any combination thereof. The well purgewater is and remains the property of CHEVRON EMC.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-0076		Mark Horne			
CHEVRON#		Chevron Engir			
4715 FOOTLI 1	Blud	Dakland	CA		
street number	street name	city	state		

WELL I.D. GALS.	WELL I.D. GALS.
C-1 / 15	C-11 1 4
(-2 / 10	C-13 1 4
C-3 , 16	1
L-4 / 15	
C-5 , 12	
C-6 17	
C-8 , 15	
C-10 , 11	1
added equip. rinse water 1 5	any other adjustments /
TOTAL GALS. RECOVERED //4	loaded onto BTS vehicle # 94
BTS event# t	ime date /530 3 / 8 / 1/4
Transporter signature	(Say)
* * * * * * * * * * * * * * * * * * * *	*******
REC'D AT BIS- SS	time date //630 3 / 5 //6
Unloaded/received by signature	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	ME 4265 FX	thill Blud.	Oakland	PROJECT NUM	MBER 160308 -	BWI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myron-L Ulmetr II	6215733	3/8/16	PH 7,10,4 Coul 39000/_	3900/2		19.2°C	Ė
Hach 21000 Turbiduetr	151100045330	3/8/16	100 ntu	10 Inte	ok	~/A	包

Appendix G Analytical Laboratory Reports

3/11/2016 Mr. Belew Yifru GHD 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: CHEVRON 90076

Project #: 311977 Workorder #: 1602576

Dear Mr. Belew Yifru

The following report includes the data for the above referenced project for sample(s) received on 2/29/2016 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kyle Vych

WORK ORDER #: 1602576

Work Order Summary

CLIENT: Mr. Belew Yifru BILL TO: Accounts Payable

GHD

5900 Hollis Street

Suite A

Emeryville, CA 94608

PHONE: 510-420-0700

FAX: 510-420-9170

DATE RECEIVED: 02/29/2016 DATE COMPLETED: 03/11/2016

Chevron U.S.A. Inc.

6001 Bollinger Canyon Road

L4310

San Ramon, CA 94583

NWENV00900760 P.O. #

> PROJECT# 311977 CHEVRON 90076

CONTACT: Kyle Vagadori

FRACTION#	NAME	TEST
01A	VP-5	Modified TO-17 VI
02A	VP-6	Modified TO-17 VI
03A VP-6 DUP		Modified TO-17 VI
04A	Lab Blank	Modified TO-17 VI
05A	CCV	Modified TO-17 VI
06A LCS		Modified TO-17 VI
06AA	LCSD	Modified TO-17 VI

CERTIFIED BY:

03/11/16 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc., certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified EPA Method TO-17 (VI Tubes) GHD Workorder# 1602576

Three TO-17 VI Tube samples were received on February 29, 2016. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport.

Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may over-ride the laboratory modifications.

Requirement	TO-17	ATL Modifications		
Initial Calibration	%RSD =30% with 2<br allowed out up to 40%	VOC list: %RSD =30% with 2 allowed out up to 40% SVOC list: %RSD</=30% with 2 allowed out up to 40%</td		
Daily Calibration	%D for each target compound within +/-30%.	Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene within +/-40%D		
Audit Accuracy	70-130%	Second source recovery limits for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene = 60-140%.		
Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterized or performance previously verified, single tube sampling may be appropriate. Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.		
Analytical Precision =20% RPD</td <td colspan="3"><30% RPD for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene.</td>		<30% RPD for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene.		

Receiving Notes

The ice/coolant included in the sample shipment melted during transit, therefore the temperature at receipt was greater than 6 °C. Analysis proceeded.

The TO-17 VI tube for sample VP-6 was received with the cap loose on one side of the tube. Due to exposure to the environment, reported analyte concentrations are considered to be estimated.

Analytical Notes

A sampling volume of 0.200 L was used to convert ng to ug/m3 for the associated Lab Blank.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in blank (subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: VP-5
Lab ID#: 1602576-01A
No Detections Were Found.

Client Sample ID: VP-6
Lab ID#: 1602576-02A
No Detections Were Found.

Client Sample ID: VP-6 DUP Lab ID#: 1602576-03A No Detections Were Found.

Client Sample ID: VP-5 Lab ID#: 1602576-01A EPA METHOD TO-17

File Name: Dil. Factor:	18030307 Date of 1.00			Collection: 2/24/16 2:14:00 PM Analysis: 3/3/16 03:34 PM		
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)		
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube						
Surrogates		%Recovery		Method Limits		
Naphthalene-d8		75		50-150		

Client Sample ID: VP-6 Lab ID#: 1602576-02A EPA METHOD TO-17

File Name: Dil. Factor:	18030308 Date of		e of Collection: 2/24 e of Analysis: 3/3/16	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	5.0	Not Detected	Not Detected
Air Sample Volume(L): 0.200				
Container Type: TO-17 VI Tube				No.
Surrogates		%Recovery		Method Limits
Naphthalene-d8		79		50-150

Client Sample ID: VP-6 DUP Lab ID#: 1602576-03A EPA METHOD TO-17

File Name: Dil. Factor:	18030309 Date of 1.00	Extraction: NADate of Collection: 2/24/16 1:11:00 PM Date of Analysis: 3/3/16 05:57 PM					
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)			
Naphthalene	1.0	5.0	Not Detected	Not Detected			
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube							
Surrogates		%Recovery		Method Limits			
Naphthalene-d8		81		50-150			

Client Sample ID: Lab Blank Lab ID#: 1602576-04A EPA METHOD TO-17

DII. Factor:	18030306 Date of 1.00		of Collection: NA of Analysis: 3/3/16 02:13 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)		
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200						
Container Type: NA - Not Appl	icable					
				Method		
Surrogates		%Recovery		Limits		
Naphthalene-d8		81		50-150		

Client Sample ID: CCV Lab ID#: 1602576-05A EPA METHOD TO-17

La sa Asia and Asia		
File Name:	18030302	Date of Extraction: NADate of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/3/16 10:27 AM

Compound%RecoveryNaphthalene79

Air Sample Volume(L): 1.00 Container Type: NA - Not Applicable

Surrogates%RecoveryMethod LimitsNaphthalene-d88650-150

Client Sample ID: LCS Lab ID#: 1602576-06A EPA METHOD TO-17

File Name:	18030303	Date of Extraction: NADate of Collect	tion: NA	
Dil. Factor:	1.00	이 보스트 경우 전혀 보는 사람들이 가입니다 하다면 하고 하는 것이 다른 하지만 하지 않는 것 같아 주시에 하셨다면 하다.		
Compound		%Recovery	Method Limits	
Naphthalene		87	70-130	
Air Sample Volume(L): 1.00 Container Type: NA - Not Appli	icable			
Surrogates	Icable	%Recovery	Method Limits	
Naphthalene-d8		85	50-150	

Client Sample ID: LCSD Lab ID#: 1602576-06AA EPA METHOD TO-17

File Name:	18030304	Date of Extraction: NADate of Collect	ion: NA
Dil. Factor:	1.00	Date of Analys	is: 3/3/16 12:16 PM
			Method
Compound		%Recovery	Limits
Naphthalene		87	70-130
Air Sample Volume(L): 1.0	0		
Container Type: NA - Not	Applicable		
			Method
Surrogates		%Recovery	Limits
Naphthalene-d8		85	50-150

TO-17 SAMPLE COLLECTION

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630

(916) 985-1000 FAX (916) 985-1020 Page 1 of 1

Collected by Company_Address_23	SOO CLAYTOURD # 42	Email City CONICOR	NATHAN LE	E Q G H D - C *A Zip 945	P.O. #	et#_3119			Turn Aroun Time: Normal	Units: □ ppm □ ppb\ □ μg/n	v / 13.		
Lab I.D.	25 849 1003 Field Sample I.D. (Lo	Fax	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start Time (hr:min)	End Time (hr:min)	Pre-Test Flow Rate	Post-Te	I Valume I	Indoor/Outde % RH Ten	oor	Outdoor Air	Soil Vapor
014	VP-5	S	0147211	2/24/16	14:14	14:15			200m4		C	3 0	
02A	VP-6		0143655		13:11	13:12			200at		C	ם	120
03A	VP-6 DUP		0145589	4	13:11	13:12			Zoonl			3 0	3 23 0
			0.2 4			10 -					C		
											_) [-
								114			C	3 0	1
											_	3 0	-
											-		-
											_		1
Relinquishe	ed by: (signature) Date/	129/16	Hecelve Hecelve	ed by: (signatured by:)(signatured by:)(signatured by:)(signatured by:)	DCATIO Date/Tie	N 2/24 me 2-29	12016	lotes:					
Lab	Shipper Name	Air B	ill #	Ten	np (°C)	Condition		Custody Sea	ils Intact?	Work	TO LET WATER		
Use Only	GATE Olo	(C) Table		12-0	25	SOR		Yes No	None	160	25	76	

3/11/2016 Mr. Belew Yifru GHD 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: CHEVRON 90076

Project #: 311977

Workorder #: 1602578A

Dear Mr. Belew Yifru

The following report includes the data for the above referenced project for sample(s) received on 2/29/2016 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kyle Vych

WORK ORDER #: 1602578A

Work Order Summary

CLIENT: Mr. Belew Yifiu BILL TO: Accounts Payable

GHD Chevron U.S.A. Inc.

5900 Hollis Street 6001 Bollinger Canyon Road Suite A L4310

Emeryville, CA 94608 San Ramon, CA 94583

PHONE: 510-420-0700 P.O. # NWENV00900760

FAX: 510-420-9170 PROJECT # 311977 CHEVRON 90076

DATE RECEIVED: 02/29/2016 CONTACT: Kyle Vagadori DATE COMPLETED: 03/11/2016

RECEIPT FINAL FRACTION# PRESSURE NAME TEST VAC./PRES. VP-5 01A TO-15 6.9 "Hg 14.8 psi 02A VP-6 TO-15 8.4 "Hg 14.9 psi VP-6-DUP 8.2 "Hg 03A TO-15 14.9 psi Lab Blank TO-15 04A NA NA CCV 05A TO-15 NA NA LCS NA 06A TO-15 NA

TO-15

NA

NA

	flecce flages		
CERTIFIED BY:	0 00	DATE: 03/11/16	

Technical Director

LCSD

06AA

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291,
TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935
Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015.
Eurofins Air Toxics Inc., certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 GHD Workorder# 1602578A

Three 1 Liter Summa Canister (100% Certified) samples were received on February 29, 2016. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample VP-5 due to the presence of high level non-target species.

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP-5 Lab ID#: 1602578A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	8.7	17	28	54
Methyl tert-butyl ether	8.7	510	31	1800
TPH ref. to Gasoline (MW=100)	870	21000	3600	86000

Client Sample ID: VP-6 Lab ID#: 1602578A-02A No Detections Were Found.

Client Sample ID: VP-6-DUP Lab ID#: 1602578A-03A

No Detections Were Found.

Client Sample ID: VP-5 Lab ID#: 1602578A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3030720	Date of Collection: 2/24/16 2:01:00		
Dil. Factor:	17.4	Date of Analysis: 3/7/16 11:45 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	8.7	17	28	54

Benzene	8.7	1/	28	54
Ethyl Benzene	8.7	Not Detected	38	Not Detected
Toluene	8.7	Not Detected	33	Not Detected
m,p-Xylene	8.7	Not Detected	38	Not Detected
o-Xylene	8.7	Not Detected	38	Not Detected
Methyl tert-butyl ether	8.7	510	31	1800
Naphthalene	17	Not Detected	91	Not Detected
TPH ref. to Gasoline (MW=100)	870	21000	3600	86000

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: VP-6-DUP Lab ID#: 1602578A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3030717	Date of Collection: 2/24/16 12:35:00		
Dil. Factor:	2.77	Date of Analysis: 3/7/16 10:29 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.4	Not Detected	4.4	Not Detected
Ethyl Benzene	1.4	Not Detected	6.0	Not Detected
Toluene	1.4	Not Detected	5.2	Not Detected
m,p-Xylene	1.4	Not Detected	6.0	Not Detected
o-Xylene	1.4	Not Detected	6.0	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.0	Not Detected
Naphthalene	2.8	Not Detected	14	Not Detected
TPH ref. to Gasoline (MW=100)	140	Not Detected	570	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	110	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 1602578A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030707 1.00	Date of Collection: NA Date of Analysis: 3/7/16 01:10 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.50	Not Detected	1.6	Not Detected	
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected	
Toluene	0.50	Not Detected	1.9	Not Detected	
m,p-Xylene	0.50	Not Detected	2.2	Not Detected	
o-Xylene	0.50	Not Detected	2.2	Not Detected	
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected	
Naphthalene	1.0	Not Detected	5.2	Not Detected	
TPH ref. to Gasoline (MW=100)	50	Not Detected	200	Not Detected	
Container Type: NA - Not Applicab	le			8	
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		103		70-130	
Toluene-d8		105		70-130	
4-Bromofluorobenzene		103		70-130	

Client Sample ID: CCV Lab ID#: 1602578A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3030702	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/7/16 10:11 AM

Compound	%Recovery	
Benzene	99	
Ethyl Benzene	94	
Toluene	96	
m,p-Xylene	96	
o-Xylene	95	
Methyl tert-butyl ether	102	
Naphthalene	78	
TPH ref. to Gasoline (MW=100)	100	

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	106	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCS Lab ID#: 1602578A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030703 Date of Collection 1.00 Date of Analysis:		tion: NA sis: 3/7/16 10:36 AM
Compound		%Recovery	Method Limits
Benzene		100	70-130
Ethyl Benzene		96	70-130

97

70-130

70-130

70-130

70-130

60-140

 m,p-Xylene
 98

 o-Xylene
 99

 Methyl tert-butyl ether
 99

 Naphthalene
 100

 TPH ref. to Gasoline (MW=100)
 Not Spiked

Container Type: NA - Not Applicable

Toluene

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	106	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: LCSD Lab ID#: 1602578A-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3030704	Date of Collection: NA		
Dil. Factor:	1.00	Date of Analys	is: 3/7/16 11:00 AM	
Compound	o	%Recovery	Method Limits	
Benzene		97	70-130	
Ethyl Benzene		96	70-130	
Toluene		95	70-130	
m,p-Xylene		96	70-130	
o-Xylene		98	70-130	
Methyl tert-butyl ether		103	70-130	
Naphthalene		103	60-140	
TPH ref. to Gasoline (MW=100)		Not Spiked		
Container Type: NA - Not Applicable	9			
			Method	
Surrogates -		%Recovery	Limits	
1,2-Dichloroethane-d4		106	70-130	
Toluene-d8		104	70-130	
4-Bromofluorobenzene		102	70-130	

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with
all applicable local, State, Federal, national, and international laws, regulations and ordinances of
any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping
of these samples. Relinquishing signature also indicates agreement to hold harmless, defend,

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

	collection, han	Air Toxics Limited dling, or shipping of					y kind, related to the				ige	of
	nager NATHAN LEE	Bonne		Projec	ct Info:				Around me:	Lab Usa Press	Only urized by	
	by: (Print and Sign) BELEW Y/FRC			P.O. #	-4.				ormal	Date:		
Company_	G-H1) Email NATHA	No LEE OGI		Project	# 3119	77		Q R			urization	C
Address 2	300 CLAYTOR RD City CONCORD Sta	te <u>CA</u> Zip <u>98</u>	520				1100016			Fless		
Phone	925 849 1003 Fax	_		Project	Name_C'H	CVICE	N 90016	S	pecity		N ₂ H	
Lab I.D.	Field Sample I.D. (Location)	Can #		ate llection	Time of Collection	An	alyses Reques	ted	Canis	ter Pres	Ssure/Vac	Final
0(A-	VP-5	33735	2/25	4/16	1401		LSAMPLE		~30	-5		(psi)
our	VP-6	34637	1 .	4/16	12:35		ty, BTEX, M		-29.5			
64K	VP-6-DUP	37213			12:35	AND,	NAPHTHALE		-30	-7		
						4	TO-15					
							(SP) AROMA					
							(SP) ALIPHA					
							CIZ BYTO			-		
						02	CO2, N2, C	Hu				
							HELIOM B					
						ASTI	4 D-1946		7			
13	2/24/2016 9	eived by: (signate to the signate to	CAT	LAD	2/24/2	016	Notes:					
Relinquish	ed by: (signature) Date/Time Red	eived by: (signat	200 340 3 3 3 3 3 3 3	45°200=2				V-1-27		111111111111111111111111111111111111111		
Lab _	Shipper Name Air Bill #	gil ereni - beli religio delle i	emp (°(C)	Condition		Custody Sea)	Work	Order #	
Use	GATL DIO		MA		1000		Yes No	No	ne	160	2578	A

3/11/2016 Mr. Belew Yifru GHD 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: CHEVRON 90076

Project #: 311977

Workorder #: 1602578B

Dear Mr. Belew Yifru

The following report includes the data for the above referenced project for sample(s) received on 2/29/2016 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 APH are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kyle Vych

WORK ORDER #: 1602578B

Work Order Summary

CLIENT: Mr. Belew Yifru

BILL TO: Accounts Payable

GHD

Chevron U.S.A. Inc. 6001 Bollinger Canyon Road

5900 Hollis Street Suite A

L4310

Emeryville, CA 94608

San Ramon, CA 94583

PHONE:

510-420-0700

P.O. # NWENV00900760

FAX:

510-420-9170

PROJECT # 311977 CHEVRON 90076

DATE RECEIVED:

02/29/2016

CONTACT: Kyle Vagadori

DATE COMPLETED: 03/11/2016

FRACTION#	NAME	TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
01A	VP-5	Modified TO-15 APH	6.9 "Hg	14.8 psi
01B	VP-5	Modified TO-15 APH	6.9 "Hg	14.8 psi
02A	VP-6	Modified TO-15 APH	8.4 "Hg	14.9 psi
02B	VP-6	Modified TO-15 APH	8.4 "Hg	14.9 psi
03A	VP-6-DUP	Modified TO-15 APH	8.2 "Hg	14.9 psi
03B	VP-6-DUP	Modified TO-15 APH	8.2 "Hg	14.9 psi
04A	Lab Blank	Modified TO-15 APH	NA	NA
04B	Lab Blank	Modified TO-15 APH	NA	NA
05A	CCV	Modified TO-15 APH	NA	NA
05B	CCV	Modified TO-15 APH	NA	NA

CERTIFIED BY:

Meidi Jayes

NATE: 03/11/16

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015.

Eurofins Air Toxics Inc., certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified TO-15 & VPH Fractions GHD Workorder# 1602578B

Three 1 Liter Summa Canister (100% Certified) samples were received on February 29, 2016. The laboratory performed analysis via EPA Method TO-15 and Air Toxics VPH (Volatile Petroleum Hydrocarbon) methods for the Determination of VPH Fractions using GC/MS in the full scan mode. The method involves concentrating up to 0.5 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis. This method is designed to measure gaseous phase aliphatic and aromatic compounds in ambient air and soil gas collected in stainless steel Summa canisters. Air Toxics VPH method is a hybrid of EPA TO-15, MADEP APH and WSDE VPH methods. Chromatographic peaks were identified via mass spectrum as either aliphatic or aromatic petroleum hydrocarbons and included in the appropriate range as defined by the method. The volatile Aliphatic hydrocarbons are collectively quantified within the C5 to C6 range, C6 to C8 range, C8 to C10 range and the C10 to C12 range. Additionally, the volatile Aromatic hydrocarbons are collectively quantified within the C8 to C10 range and the C10 to C12 range. The Aromatic ranges refer to the equivalent carbon (EC) ranges.

Aliphatic data is calculated from the Total Ion chromatogram which has been reprocessed in a duplicate file differentiated from the original by the addition of an alphanumeric extension. The Aromatic calculation also uses the information contained in the associated Extracted Ion file.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample VP-5 due to matrix interference.

The C6-C8 Aliphatic Hydrocarbon result in sample VP-5 is reported as biased high due to an unknown hydrocarbon coeluting with surrogate 1,2-Dichloroethane-d4. Since there was no resolution between the unknown and the surrogate, the peak area originating from 1,2-Dichloroethane-d4 could not be discounted and thus was unavoidably included in the calculation for this analytical fraction. The unknown hydrocarbon was classified and reported in the C6-C8 Aliphatic range.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.

UJ- Non-detected compound associated with low bias in the CCV N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP-5 Lab ID#: 1602578B-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	170	9300	560	30000
>C6-C8 Áliphatic Hydrocarbons (ref. to Heptane)	170	17000	710	69000
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	170	380	1000	2200

Client Sample ID: VP-5

Lab ID#: 1602578B-01B No Detections Were Found.

Client Sample ID: VP-6

Lab ID#: 1602578B-02A No Detections Were Found

Client Sample ID: VP-6

Lab ID#: 1602578B-02B No Detections Were Found.

Client Sample ID: VP-6-DUP

Lab ID#: 1602578B-03A No Detections Were Found.

Client Sample ID: VP-6-DUP

Lab ID#: 1602578B-03B No Detections Were Found.

Client Sample ID: VP-5 Lab ID#: 1602578B-01A

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030720a 17.4	Date of Collection: 2/24/16 2:01:00 F Date of Analysis: 3/7/16 11:45 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	170	9300	560	30000
>C6-C8 Aliphatic Hydrocarbons (ref. to Heptane)	170	17000	710	69000
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	170	380	1000	2200
>C10-C12 Aliphatic Hydrocarbons (ref. to Dodecane)	170	Not Detected	1200	Not Detected

Client Sample ID: VP-5 Lab ID#: 1602578B-01B

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030720c Date of Collection: 2/24/16 2 17.4 Date of Analysis: 3/7/16 11:4			
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
>C8-C10 Aromatic Hydrocarbons	170	Not Detected	860	Not Detected
>C10-C12 Aromatic Hydrocarbons	170	Not Detected	960	Not Detected

Client Sample ID: VP-6 Lab ID#: 1602578B-02A

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: DII. Factor:	3030716a 2.80	Date of Collection: 2/24/16 12:35:00 PM Date of Analysis: 3/7/16 10:02 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	28	Not Detected	91	Not Detected	
>C6-C8 Aliphatic Hydrocarbons (ref. to Heptane)	28	Not Detected	110	Not Detected	
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	28	Not Detected	160	Not Detected	
>C10-C12 Aliphatic Hydrocarbons (ref. to Dodecane)	28	Not Detected	200	Not Detected	

Client Sample ID: VP-6 Lab ID#: 1602578B-02B

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name:	3030716c	Date of Collection: 2/24/16 12:35:00		
Dil. Factor:	2.80	Date of Analysis: 3/7/16 10:02 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
>C8-C10 Aromatic Hydrocarbons	28	Not Detected	140	Not Detected
>C10-C12 Aromatic Hydrocarbons	28	Not Detected	150	Not Detected

Client Sample ID: VP-6-DUP Lab ID#: 1602578B-03A

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030717a 2.77	7.77	Date of Collection: 2/24/16 12:35:00 PM Date of Analysis: 3/7/16 10:29 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	28	Not Detected	90	Not Detected	
>C6-C8 Aliphatic Hydrocarbons (ref. to Heptane)	28	Not Detected	110	Not Detected	
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	28	Not Detected	160	Not Detected	
>C10-C12 Aliphatic Hydrocarbons (ref. to Dodecane)	28	Not Detected	190	Not Detected	

Client Sample ID: VP-6-DUP Lab ID#: 1602578B-03B

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name:	3030717c	Date of Collection: 2/24/16 12:35:00			
Dil. Factor:	2.77	Date of Analysis: 3/7/16 10:29 PM			
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount	
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
>C8-C10 Aromatic Hydrocarbons	28	Not Detected	140	Not Detected	
>C10-C12 Aromatic Hydrocarbons	28	Not Detected	150	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1602578B-04A

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3030707a 1.00	Date of Collection: NA Date of Analysis: 3/7/16 01:10 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	10	Not Detected	32	Not Detected	
>C6-C8 Aliphatic Hydrocarbons (ref. to Heptane)	10	Not Detected	41	Not Detected	
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	10	Not Detected	58	Not Detected	
>C10-C12 Aliphatic Hydrocarbons (ref. to Dodecane)	10	Not Detected	70	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1602578B-04B

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name: DII. Factor:	3030707c 1.00	Date of Collection: NA Date of Analysis: 3/7/16 01:10 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
>C8-C10 Aromatic Hydrocarbons	10	Not Detected	49	Not Detected	
>C10-C12 Aromatic Hydrocarbons	10	Not Detected	55	Not Detected	

Client Sample ID: CCV Lab ID#: 1602578B-05A

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name:	3030705a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/7/16 11:45 AM

Compound	%Recovery	
C5-C6 Aliphatic Hydrocarbons (ref. to Pentane + Hexane)	110	
>C6-C8 Aliphatic Hydrocarbons (ref. to Heptane)	98	
>C8-C10 Aliphatic Hydrocarbons (ref. to Decane)	114	
>C10-C12 Aliphatic Hydrocarbons (ref. to Dodecane)	79	

Client Sample ID: CCV Lab ID#: 1602578B-05B

MODIFIED METHOD TO-15 GC/MS FULL SCAN

File Name:	3030705c	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/7/16 11:45 AM

Compound	%Recovery	
>C8-C10 Aromatic Hydrocarbons	106	
>C10-C12 Aromatic Hydrocarbons	102	

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend,

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

272			of samples. D.0	aim, demand, or act D.T. Hotline (800) 46 bject Info:	lion, of any kind, related 57-4922	Turn	Around	Lab Us	e Only	of [
Collected b	by: (Print and Sign) BELEW VIFRU	No LEE OGI	P.O. (2011) 520 Proj	# iect # _3119	77 EVRON 900	ØN	ormal ush	Date:	urization	
	Field County 15 (Leachler)	O #	Date	Time	Analyses De	aucata d			ssure/Vac	of a contract of
Lab I.D.	Field Sample I.D. (Location)	Can #	of Collection	on of Collection	Analyses Re	questeo	Initial	Final	Receipt	Final (psi)
O(A	VP-5	33735	2/24/16	1401	ALL SAN	1PLES	"30	-5		
out	VP-G	34637	2/24/10	12:35	TPHG, BTE	X, MTBE	-29.5	-7		
SH	VP-6-DUP	37813	2/24/10	12:35	AND NAPHTH		-30	-7		
					BY TO-15					
					APH (Sp) AR					
					APH (Sp) ALI					
					CS-CIZ BY	TOIS				
					02,002,1	la.CHA		-1-		
					AND HELIUM					
					ASTM D-19					
45	2/24/2016 8	eived by: (signate ECURE LC	CATIO	U 2/24/2	30 Notes:	140				
	Shipper Name Air Bill #	eived by: (signat	ure) Date/			y Seals Int	act?	Work	Order #	
Lab Use	GATL DIO	A STATE OF THE PARTY OF THE PAR	MA	Noon	Yes	No Sh	-	Sept Same	2578	E .

3/11/2016 Mr. Belew Yifru GHD 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: CHEVRON 90076

Project #: 311977

Workorder #: 1602578C

Dear Mr. Belew Yifru

The following report includes the data for the above referenced project for sample(s) received on 2/29/2016 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kyle Vych

WORK ORDER #: 1602578C

Work Order Summary

CLIENT:

Mr. Belew Yifru

BILL TO:

Accounts Payable

GHD

Chevron U.S.A. Inc.

5900 Hollis Street Suite A 6001 Bollinger Canyon Road

L4310 San Ramon, CA 94583

PHONE:

510-420-0700

Emeryville, CA 94608

P.O. #

NWENV00900760

FAX:

510-420-9170

PROJECT #

311977 CHEVRON 90076

DATE RECEIVED:

02/29/2016

CONTACT:

Kyle Vagadori

DATE COMPLETED: 03

03/11/2016

FRACTION#	NAME	TEST	RECEIPT VAC./PRES.	FINAL PRESSURE
01A	VP-5	Modified ASTM D-1946	6.9 "Hg	14.8 psi
02A	VP-6	Modified ASTM D-1946	8.4 "Hg	14.9 psi
03A	VP-6-DUP	Modified ASTM D-1946	8.2 "Hg	14.9 psi
04A	Lab Blank	Modified ASTM D-1946	NA	NA
04B	Lab Blank	Modified ASTM D-1946	NA	NA
05A	LCS	Modified ASTM D-1946	NA	NA
05AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Mide Jinger

DATE: 03/11/16

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291,
TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935
Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015.
Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563

LABORATORY NARRATIVE Modified ASTM D-1946 GHD Workorder# 1602578C

Three 1 Liter Summa Canister (100% Certified) samples were received on February 29, 2016. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
percent values by values can differ from 100%		Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VP-5 Lab ID#: 1602578C-01A

	Rpt. Limit	Amount (%)
Compound	(%)	
Oxygen	0.26	1.5
Nitrogen	0.26	76
Carbon Dioxide	0.026	17
Methane	0.00026	5.2

Client Sample ID: VP-6 Lab ID#: 1602578C-02A

	Rpt. Limit	Amount (%)
Compound	(%)	
Oxygen	0.28	13
Nitrogen	0.28	81
Carbon Dioxide	0.028	6.2

Client Sample ID: VP-6-DUP

Lab ID#: 1602578C-03A

	Rpt. Limit	Amount (%)
Compound	(%)	
Oxygen	0.28	13
Nitrogen	0.28	81
Carbon Dioxide	0.028	6.1

Client Sample ID: VP-5 Lab ID#: 1602578C-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10030708 2.61		Date of Collection: 2/24/16 2:01:00 PM Date of Analysis: 3/7/16 07:37 PM it Amount (%)	
Compound		Rpt. Limit (%)		
Oxygen		0.26	1,5	
Nitrogen		0.26	76	
Carbon Dioxide		0.026	17	
Methane		0.00026	5.2	
Helium		0.13	Not Detected	

Air Toxics

Client Sample ID: VP-6 Lab ID#: 1602578C-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10030709	Date of Collection: 2/24/16 12:35:00 PM
Dil. Factor:	2.79	Date of Analysis: 3/7/16 08:01 PM

Compound	Rpt. Limit (%)	Amount (%)
Oxygen	0.28	13
Nitrogen	0.28	81
Carbon Dioxide	0.028	6.2
Methane	0.00028	Not Detected
Helium	0.14	Not Detected

Client Sample ID: VP-6-DUP Lab ID#: 1602578C-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10030710 2.77		Date of Collection: 2/24/16 12:35:00 PM Date of Analysis: 3/7/16 08:32 PM	
Compound		Rpt. Limit (%)	Amount (%)	
Oxygen		0.28	13	
Nitrogen		0.28	81	
Carbon Dioxide		0.028	6.1	
Methane		0.00028	Not Detected	
Helium		0.14	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1602578C-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Dil. Factor:	1.00	Date of Analysis: 3/7/16 11:57 AM
File Name:	10030704	Date of Collection: NA

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.10	Not Detected	
Nitrogen	0.10	Not Detected	
Carbon Dioxide	0.010	Not Detected	
Methane	0.00010	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1602578C-04B

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10030703c	Date of Colle	ction: NA
Dil. Factor:	1.00	Date of Anal	ysis: 3/7/16 11:34 AM
10 11 11 11		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.050	Not Detecte

Client Sample ID: LCS Lab ID#: 1602578C-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10030702	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 3/7/16 11:10 AM	

		Method		
Compound	%Recovery	Limits		
Oxygen	97	85-115		
Nitrogen	91	85-115		
Carbon Dioxide	98	85-115		
Methane	100	85-115		
Helium	101	85-115		

Client Sample ID: LCSD Lab ID#: 1602578C-05AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Dil. Factor:	1.00	Date of Analysis: 3/7/16 09:08 PM
	2.2	그 아이에 가는 그 그 이 경우 아이들이 어떤 모모기를 모고 있다고 있다.
File Name:	10030711	Date of Collection: NA

Compound	%Recovery	Method Limits
Oxygen	99	85-115
Nitrogen	92	85-115
Carbon Dioxide	100	85-115
Methane	98	85-115
Helium	102	85-115

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

CHAIN-	OF-CUSTODY RECORD and indemnify collection, hand	Air Toxics Limited dling, or shipping o	against any clai of samples. D.O.	im, demand, or act T. Hotline (800) 46	tion, of any kind, related to t 37-4922	he		Pa	ige	of
Project Manager NATHAN LEE Collected by: (Print and Sign) BELEW VIFAU #				Project Info: P.O. #		Turn Around Time: Normal Rush		Pressurized by: Date: Pressurization Gas:		
Company G-H-i) Email NATHAN LEE OGHID . Address 2300 CLAYTOR RD City CONCORD State CA Zip 9K SZE		10 Com SZO Proje								
Phone	925 849 1003 Fax		Proje	ct Name_CH	EVRON 90076	5	pecify		N ₂ H	
Lab I.D.	Field Sample I.D. (Location)	Can #	Date of Collection	Time of Collection	Analyses Reque	sted	Canis	ter Pre	Ssure/Vac	Design votes
0(A-	VP-5	33735	7.1.	1401	ALL SAMPE		-30	-5		Final (psi)
6UA	VP-6		2/24/16		TPHG, BTEX,		-29.5	-		
OHK	VP-6-DUP	37813	2/24/16	12:35	AND NAPHTHAL		-30	-7		
					BY TO-15	1				
					APH (Sp) AROM					
					APH(SP) ALIPH		1-5			
					CS-CIZ BYTE	015				
					02, CO2, N2,	CHU				
					AND HELIOM I					
					ASTM D-194					
Relinquish	2/24/2016 Sed by: (signature) Date/Time Ref.	eived by: (signate of the content of	CATURL MARIENTO	2/24/2 me 2-29 12	30 Notes:					
Lab	Shipper Name Air Bill #	Ti	emp (°C)	Condition	Custody S	eals Int	act?	Work	Order #	
Use Only	GATL DIO	= = = = = = = = = = = = = = = = = = = =	MA	Noon	Yes N	o No	ne	160	2578	(k

Analysis Report

2425 New Holland Pike. Lancaster, PA 17601 + 717-656-2300 + Fax; 717-656-2681 + www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: March 09, 2016

Project: 90076

Submittal Date: 02/26/2016 Group Number: 1635198 PO Number: 0015195461 Release Number: HORNE State of Sample Origin: CA

G 12 G 2 1 (0222 G 1 G 1)	
C-13-S-3-160223 Grab Soil 8260260	
C-13-S-5-160223 Grab Soil 8260261	
C-13-S-10-160223 Grab Soil 8260262	
C-13-S-15-160223 Grab Soil 8260263	
C-13-S-20-160223 Grab Soil 8260264	
C-13-S-25-160223 Grab Soil 8260265	
B-7-S-5-160223 Grab Soil 8260266	
B-7-S-10-160223 Grab Soil 8260267	

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

Electronic Copy To CRA Attn: Nathan Lee Electronic Copy To Chevron Attn: GHD EDD

2425 New Holland Pike, Lancaster, PA 17601 * 717-656-2300 * Fax: 717-656-2681 * www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-13-S-3-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260260

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 09:45

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

F0133

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles :	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.07
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.07
10237	Methyl Tertiary Buty	1 Ether	1634-04-4	N.D.	0.0005	0.005	1.07
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1.07
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.07
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.07
GC Vo	Latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soil Co	711/727	n.a. due to sample foam	N.D. ing.	4.9	9.7	243.19

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Modified

Laboratory Sample Analysis Record Method CAT Analysis Name Trial# Batch# Analysis Analyst Dilution No. Date and Time Factor 10237 VOCs 8260 BTEX/MTBE/Naph SW-846 8260B B160621AA 03/02/2016 15:31 Linda C Pape 1:07 Soil 00374 GC/MS - Bulk Soil Prep SW-846 5035A 201605840241 Mitchell R Washel 02/27/2016 12:53 n.a. Modified 00374 GC/MS - Bulk Soil Prep SW-846 5035A 2 201605840241 02/27/2016 12:53 Mitchell R Washel n.a. Modified 06646 GC/MS HL Bulk Sample Prep 201605840241 02/27/2016 12:50 SW-846 5035A Mitchell R Washel n.a. Modified 01725 TPH-GRO N. CA soil C6-C12 16061A31A SW-846 8015B a. 03/02/2016 13:56 Marie D 243.19 modified Beamenderfer 01150 GC - Bulk Soil Prep 201605840241 SW-846 5035A 02/27/2016 12:51 Mitchell R Washel n.a.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-13-S-5-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260261

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 09:50

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

F0135

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.02
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.02
10237	Methyl Tertiary B	utyl Ether	1634-04-4	N.D.	0.0005	0.005	1.02
10237	Naphthalene	1.67	91-20-3	N.D.	0.001	0.005	1.02
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.02
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.02
GC Vol	latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soi	1 C6-C12	n.a.	N.D.	0.5	1.0	26.12

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/01/2016	22:22	Sara E Johnson	1.02
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:47	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16061A31A	03/02/2016	23:15	Marie D Beamenderfer	26.12
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:48	Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-13-S-10-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260262

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 10:00

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

01310

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene	71-43-2	N.D.	0.0005	0.005	1.02
10237	Ethylbenzene	100-41-4	N.D.	0.001	0.005	1.02
10237	Methyl Tertiary Butyl Ethe	1634-04-4	0.001 J	0.0005	0.005	1.02
10237	Naphthalene	91-20-3	N.D.	0.001	0.005	1.02
10237	Toluene	108-88-3	N.D.	0.001	0.005	1.02
10237	Xylene (Total)	1330-20-7	N.D.	0.001	0.005	1.02
GC Vol	Latiles SW-84	6 8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soil C6-C12	n.a.	N.D.	0.5	1.0	26,23

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/01/2016	22:44	Sara E Johnson	1.02
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:44	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1.	16061A31A	03/02/2016	23:51	Marie D Beamenderfer	26.23
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:45	Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 * 717-656-2300 * Fax; 717-656-2681 * www.LancasterLabs.com

Sample Description: C-13-S-15-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260263

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 10:05

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

01315

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	0.96
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	0.96
10237	Methyl Tertiary B	utyl Ether	1634-04-4	0.0005 J	0.0005	0.005	0.96
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	0.96
10237	Toluene		108-88-3	N.D.	0.001	0.005	0.96
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	0,96
GC Vo	latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soi	1 C6-C12	n.a.	N.D.	0.5	1,1	26.26

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/01/2016 23:0	7 Sara E Johnson	0.96
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016 12:	3 Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016 12:	3 Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016 12:	2 Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16061A31A	03/03/2016 00:	3 Marie D Beamenderfer	26.26
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016 12:	2 Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-13-S-20-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260264

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 10:15

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

01320

			F11-0 MARKET A	Result	Detection Limit*	Quantitation	Dilution Factor
GC/MS Vo	olatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237 Be	enzene		71-43-2	N.D.	0.0005	0.005	0.98
10237 Et	chylbenzene		100-41-4	N.D.	0.001	0.005	0.98
10237 Me	ethyl Tertiary	Butyl Ether	1634-04-4	0.13	0.0005	0.005	0.98
10237 Na	aphthalene		91-20-3	N.D.	0.001	0.005	0.98
10237 To	oluene		108-88-3	N.D.	0.001	0.005	0.98
10237 Xy	ylene (Total)		1330-20-7	N.D.	0.001	0.005	0.98
GC Volat	tiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725 TF	PH-GRO N. CA so	oil C6-C12	n.a.	N.D.	0.5	1,0	25.46

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/01/2016	23:29	Sara E Johnson	0.98
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:39	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16062A31A	03/03/2016	21:08	Jeremy C Giffin	25,46
01150	GC = Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:39	Mitchell R Washel	n.a.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Sample Description: C-13-S-25-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260265

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 10:45

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

01325

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.07
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.07
10237	Methyl Tertiary But	yl Ether	1634-04-4	0.51	0.028	0.28	55.07
10237	Naphthalene	STORY OF THE OWNER.	91-20-3	N.D.	0.001	0.005	1.07
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.07
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.07
GC Vo	latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N, CA soil	C6-C12	n.a.	N.D.	0.5	1.1	27.2

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
	Christian Carrier	Commence of the second second	

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/02/2016	00:15	Sara E Johnson	1.07
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	Q160631AA	03/03/2016	14:28	Anita M Dale	55.07
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:33	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16062A31A	03/03/2016	21:44	Jeremy C Giffin	27.2
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1.	201605840241	02/27/2016	12:34	Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: B-7-S-5-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260266

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 14:15

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

FOB75

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene	71-43-2	N.D.	0.025	0.25	50.4
10237	Ethylbenzene	100-41-4	0.71	0.050	0.25	50.4
10237	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.025	0.25	50.4
10237	Naphthalene	91-20-3	1.2	0.050	0.25	50.4
10237	Toluene	108-88-3	N.D.	0.050	0.25	50.4
10237	Xylene (Total)	1330-20-7	1.0	0.050	0.25	50.4
GC Vol	atiles SW-84	6 8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soil C6-C12	n.a.	320	110	220	5393.74

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Crial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	Q160601AA	02/29/2016	17:30	Angela D Sneeringer	50.4
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	3	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	4	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:31	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:23	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	3	201605840241	02/27/2016	12:24	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16062A31A	03/03/2016	19:20	Jeremy C Giffin	5393.74
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1.	201605840241	02/27/2016	12:32	Mitchell R Washel	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:26	Mitchell R Washel	n.a.
01150	GC - Bulk Soil Frep	SW-846 5035A Modified	3	201605840241	02/27/2016	12:27	Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: B-7-S-5-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260266

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 14:15

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

FOB75

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	4	201605840241	02/27/2016	12:27	Mitchell R Washel	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	5	201605840241	02/27/2016	12:29	Mitchell R Washel	n.a.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 - Fax: 717-656-2681 - www.LancasterLabs.com

Sample Description: B-7-S-10-160223 Grab Soil

Facility# 90076 CRAW

4265 Foothill Blvd-Oakland T0600100339

LL Sample # SW 8260267

LL Group # 1635198

Account # 10880

Project Name: 90076

Collected: 02/23/2016 14:40

by BY

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 02/26/2016 09:30 Reported: 03/09/2016 10:56

F0710

03/09/2016 10:56

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles S	W-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1
10237	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.0005	0.005	1
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1
10237	Toluene		108-88-3	N.D.	0.001	0.005	1
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1
GC Vo	latiles S	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soil C6	-C12	n.a.	N.D.	0.5	1.0	25.69

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Samp	le Anal	ysis	Record
-----------------	---------	------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B160613AA	03/01/2016	23:52	Sara E Johnson	1
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201605840241	02/27/2016	12:53	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:23	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	16062A31A	03/03/2016	22:19	Jeremy C Giffin	25.69
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201605840241	02/27/2016	12:24	Mitchell R Washel	n.a.

2425 New Holland Pike, Lancaster, PA 17601 * 717-656-2300 * Fax: 717-656-2681 * www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 03/09/2016 10:56 Group Number: 1635198

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	POÖ
	mg/kg	mg/kg	mg/kg
Batch number: B160613AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene Xylene (Total)	Sample number(s): N.D. N.D. N.D. N.D. N.D. N.D.	8260261-8260265,82 0.0005 0.001 0.0005 0.001 0.001 0.001	60267 0.005 0.005 0.005 0.005 0.005
Batch number: B160621AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene Xylene (Total)	Sample number(s): N.D. N.D. N.D. N.D. N.D. N.D.	8260260 0.0005 0.001 0.0005 0.001 0.001	0.005 0.005 0.005 0.005 0.005
Batch number: Q160601AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene Xylene (Total)	Sample number(s): N.D. N.D. N.D. N.D. N.D. N.D.	8260266 0.025 0.050 0.025 0.050 0.050	0.25 0.25 0.25 0.25 0.25 0.25
Batch number: Q160631AA Methyl Tertiary Butyl Ether	Sample number(s): N.D.	8260265 0.025	0.25
Batch number: 16061A31A TPH-GRO N. CA soil C6-C12	Sample number(s): N.D.	8260260-8260263 0.5	1.0
Batch number: 16062A31A TPH-GRO N. CA soil C6-C12	Sample number(s): N.D.	8260264-8260267 0.5	1.0

LCS/LCSD

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: B160613AA	Sample numbe	r(s): 8260:	261-8260265,82	60267					
Benzene	0.0200	0.0212	0.0200	0.0191	106	9.6	80-120	1.1	30
Ethylbenzene	0.0200	0.0216	0.0200	0.0194	108	97	80-120	11	30
Methyl Tertiary Butyl Ether	0.0200	0.0201	0.0200	0.0188	101	94	72-120	7	30
Naphthalene	0.0200	0.0198	0.0200	0.0185	99	93	53-120	7	30
Toluene	0.0200	0.0213	0.0200	0.0191	107	95	80-120	11	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Group Number: 1635198

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 03/09/2016 10:56

Analysis Name	LCS Spike Added mg/kg	LCS Conc mg/kg	LCSD Spike Added mg/kg	LCSD Conc mg/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Xylene (Total)	0.0600	0.0638	0.0600	0.0579	106	96	80-120	10	30
Batch number: B160621AA	Sample numbe	r(s): 8260:	260						
Benzene	0.0200	0.0176	0.0200	0.0203	88	102	80-120	14	30
Ethylbenzene	0.0200	0.0176	0.0200	0.0205	88	103	80-120	15	30
Methyl Tertiary Butyl Ether	0.0200	0.0170	0.0200	0.0186	85	93	72-120	9	30
Naphthalene	0.0200	0.0170	0.0200	0.0186	85	93	53-120	9	30
Toluene	0.0200	0.0178	0.0200	0.0203	89	101	80-120	13	30
Xylene (Total)	0.0600	0,0533	0.0600	0.0608	89	101	80-120	13	30
Batch number: Q160601AA	Sample numbe	r(s): 8260	266						
Benzene	1.00	0.894	1.00	1.00	89	100	80-120	12	30
Ethylbenzene	1.00	0.862	1.00	0.970	86	97	80-120	12	30
Methyl Tertiary Butyl Ether	1.00	0.947	1.00	1.07	95	107	72-120	12	30
Naphthalene	1.00	0.802	1.00	0.919	80	92	53-120	14	30
Toluene	1.00	0.868	1.00	0.981	87	98	80-120	12	30
Xylene (Total)	3.00	2.57	3.00	2.91	86	97	80-120	12	30
Batch number: Q160631AA	Sample numbe	r(s): 8260	265						
Methyl Tertiary Butyl Ether	1.00	1.03	1.00	1.00	103	100	72-120	3	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 16061A31A	Sample numbe	r(s): 8260	260-8260263						
TPH-GRO N. CA soil C6-C12	11	9.27	11	9.28	84	84	63-120	O	30
Batch number: 16062A31A	Sample numbe		and the second s						
TPH-GRO N. CA soil C6-C12	11	10.39	11	8.45	94	77	63-120	21	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260 BTEX/MTBE/Naph Soil

Batch number: B160613AA

	D	12-D	-4 T -8	4-B	
826026	1 105	101	101	99	
826026	2 103	94	101	99	
826026	3 101	96	103	101	
826026	4 103	96	103	100	
826026	5 101	94	101	98	
826026	7 104	95	100	98	
Blank	104	100	100	100	
LCS	103	98	103	102	
LCSD	103	101	102	102	
Limits	: 50-141	54-135	52-141	50-131	

Analysis Name: VOCs 8260 BTEX/MTBE/Naph Soil Batch number: B160621AA

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1635198 Client Name: ChevronTexaco

Reported: 03/09/2016 10:56

	D	1 2-D - 4	T -8	4-B
8260260	103	101	102	98
Blank	100	99	102	98
LCS	103	102	103	101
LCSD	101	100	103	100
Limits:	50-141	54-135	52-141	50-131

	D	1 2-D	- 4	T - 8	4-B	
8260266	82	84		80	85	
Blank	96	100		94	95	
LCS	89	92		88	95	
LCSD	116	109		112	127	
Limits:	50-141	54-135		52-141	50-131	

Analysis Name: TPH-GRO N. CA soil C6-C12 Batch number: 16061A31A

	T	-F	
8260260	90		
8260261	82		
8260262	86		
8260263	85		
Blank	99		
LCS	107		
LCSD	114		
Timite.	50-142		

Analysis Name: TPH-GRO N. CA soil C6-C12

Batch number: 16062A31A

	T	-F	
8260264	84		
8260265	85		
8260266	292*		
8260267	89		
Blank	96		
LCS	109		
LCSD	100		
the state of the s			

Limits: 50-142

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Chevron California Region Analysis Request/Chain of Custody

eurofins Lancaster Labo	ratories			ct.# <u>1</u>		80	Fo	r Euro Group In	fins L # ((anca o 3	ster L S \ everse	abora G & side co	stories Sa mespon	Envir emple of with c	ronme # 8	antal u	se o	1260-	-6	7	
	formatio		51b-	0)	(4)	Matrix	in.	T	(5)			A	naly	ses	Requ	iest	ed		1	
Facility # CHEVRON 90076 Site Address 4265 FOOTHILL BL Chevron PM MARK HORNE Consultant/Office CLONCORD Consultant Project Mgr. NATHAN LEE Consultant Phone # 9258491003 Sampler RELEW VIERU		WBS OAKL Lead Cons	AMD ultant 4 D	3		□ Sediment □	Potable Ground NPDES Surface		Number of Containers	+MTBE 8021	8015 🔀 8260	8015 without Silica Gel C	TPH-DRO 8015 with Silica Gel Cleanup	8260 Full Scan	Oxygenates	Method	Dissolved Lead Method	NAPHTHALENE BY 8260		Results in Dry Weight J value reporting need Must meet lowest dete limits possible for 826i compounds 8021 MTBE Confirmal Confirm highest hit by Confirm all hits by 826 Runoxy's on i	ded oction o tion 8260 60 highest hit
2 Sample Identification	Soil Depth	Col	lected Time	Grab	Composite	Soil	Water	ē	Total	BTEX -	TPH-GRO	TPH-DRO	TPH-D	3260 F		Total Lead	Dissolv	NA		(6) Remarks	
C-13-3		zhalu	09.45	X		X		Ť		X	-	-		-		Ť Į,		X		PLEASE SEA	
C-13-5			0950	T		T				1	1	1		\exists		E 17				RESULTS TO	
C-13-10			1000	11		П				1	П									NATHAM, LEE	
C-13-15			10:05	IT		П				П										NATHAN, LECE	GIIO W
C-13-20	1		1045	IT	7	T				П										1	
C-13-25			10:45	П	1											[1]					
B-7-5		11	14:15	II		П				П							124				
B-7-10		4	14.40	1		J				4	4							3	-		
				10.5						Date			Time			Receiv	ad b			Date Time	. 6
7) Turnaround Time Requested (Standard 5 day	TAT) (plea	se circle) 4 day		1	uished 3	7			_	-	/23	116		:30		58	Cl	IRE LOC	ATIE	N 2/23/16	16:30
72 hour 48 hour	۲.	24 hour		Relind	quished	N. S.		1		Date 7	p	0/16	Time ()	L; 0,		Receiv	2/	Sta	-	Date Time	205
Data Package (circle if required) Type I - Full Type VI (I	Raw Data)	7		a		A	Commer	U	prior		FIL	3.Kp	Time	539	3	Receiv	1	X		Date Time	
EDD (circle if required) EDFFLAT (default) Other:				-	IPS.		_ F	edEx		<u> </u>		her					C	At &	5	2-26.19	770
LOFFLAT (deladit) Other: _					Te	emp	erature (Jpon	Rec	eipt	00	5-1.	.9	°C		Cu	stoc	y Seals Inta	act?	Yes/	No

Sample Administration Receipt Documentation Log

Doc Log ID;

137586

Group Number(s): 1635198

Client: CA Office

Delivery and Receipt Information

Delivery Method:

BASC

Arrival Timestamp:

02/26/2016 9:30

Number of Packages:

4

Number of Projects:

2

State/Province of Origin;

CA

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

Yes '

Sample Date/Times match COC:

Yes

Custody Seal Intact: Samples Chilled: Yes

VOA Vial Headspace ≥ 6mm: Total Trip Blank Qty: N/A 0

Paperwork Enclosed:

Yes Yes

Air Quality Samples Present:

No

Samples Intact: Missing Samples: Yes No

Extra Samples:

No

No No

Unpacked by Timothy Cubberley (6520) at 11:05 on 02/26/2016

Samples Chilled Details

Thermometer Types: DT =

Discrepancy in Container Qty on COC:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	Thermometer ID	Corrected Temp	Therm, Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT131	1.1	DT	Wet	Y	Bagged	N
2	DT131	0.8	DT	Wet	Υ.	Bagged	N
3	DT131	1.5	DT	Wet	Y	Bagged	N
4	DT131	1.9	DT	Wet	Y	Bagged	N"

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meg	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

basis concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: March 23, 2016

Project: 90076

Submittal Date: 03/12/2016 Group Number: 1640133 PO Number: 0015195461 Release Number: HORNE State of Sample Origin: CA

Client Sample Description	Lancaster Labs (LL) #
C-1-W-160308 NA Water	8283742
C-2-W-160308 NA Water	8283743
C-3-W-160308 NA Water	8283744
C-4-W-160308 NA Water	8283745
C-5-W-160308 NA Water	8283746
C-6-W-160308 NA Water	8283747
C-8-W-160308 NA Water	8283748
C-10-W-160308 NA Water	8283749
C-11-W-160308 NA Water	8283750
C-13-W-160308 NA Water	8283751
QA-T-160308 NA Water	8283752

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories-environmental/resources/eertifications/.

Electronic Copy To	CRA	Attn: Nathan Lee
Electronic Copy To	Chevron	Attn: Anna Avina
Electronic Copy To	Blaine Tech Services, Inc.	Attn: Dustin Becker
Electronic Copy To	Chevron	Attn: Report Contact

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 - www.LancasterLabs.com

Sample Description: C-1-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283742

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 14:35

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC1

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	ug/l	
10945	Benzene	71-43-2	180	5	1.0	10
10945	Ethanol	64-17-5	N.D.	50	250	1
10945	Ethylbenzene	100-41-4	1	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	29	0.5	1	1
10945	Toluene	108-88-3	4	0.5	1	1
10945	Xylene (Total)	1330-20-7	2	0.5	1	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	ug/1	
01728	TPH-GRO N. CA water C6-C12	n.a.	1,300	50	100	1.

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160755AA	03/16/2016 04:4	7 Hu Yang	1
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1.	F160761AA	03/17/2016 03:4	1 Hu Yang	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1.	F160755AA	03/16/2016 04:4	7 Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F160761AA	03/17/2016 03:4	1 Hu Yang	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 19:5	7 Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 19:5	7 Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-2-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283743

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 14:50

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC2

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	540	3	5	5
10945	Ethanol	64-17-5	N.D.	250	1,300	5
10945	Ethylbenzene	100-41-4	140	3	5	5
10945	Methyl Tertiary Butyl Ether	1634-04-4	37	3	5	5
10945	Toluene	108-88-3	27	3	5	5
10945	Xylene (Total)	1330-20-7	140	3	5	5
GC Vo	latiles SW-846	8015B	ug/l	ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	9,700	250	500	5

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160755AA	03/16/2016 05:30	Hu Yang	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160755AA	03/16/2016 05:30	Hu Yang	5
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/19/2016 03:19	Jeremy C Giffin	5
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/19/2016 03:19	Jeremy C Giffin	5

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Sample Description: C-3-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283744

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 14:20

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10

Reported: 03/23/2016 21:37

FBOC3

CAT No.	Analysis Name	CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l		ug/l	ug/l	
10945	Benzene	71-43-2	N.D.		0.5	1	1
10945	Ethanol	64-17-5	N.D.		50	250	1
10945	Ethylbenzene	100-41-4	N.D.		0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	290		0.5	1	(1)
10945	Toluene	108-88-3	N.D.		0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.		0.5	1	1
GC Vol	latiles SW-846	8015B	ug/l		ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	55	J	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 00:46	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 00:46	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 20:25	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 20:25	Jeremy C Giffin	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-4-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283745

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 15:10

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC4

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	910	5	10	10
10945	Ethanol	64-17-5	N.D.	500	2,500	10
10945	Ethylbenzene	100-41-4	15	5	10	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	9 J	5	10	10
10945	Toluene	108-88-3	19	5	10	10
10945	Xylene (Total)	1330-20-7	38	5	10	10
GC Vo	latiles SW-846	8015B	ug/l	ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	6,300	250	500	5

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 04:03	Hu Yang	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 04:03	Hu Yang	10
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/19/2016 03:46	Jeremy C Giffin	5
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/19/2016 03:46	Jeremy C Giffin	5

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-5-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283746

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 13:20

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC5

CAT No.	Analysis Name	CAS Number	Resul!	t	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l		ug/1	ug/l	
10945	Benzene	71-43-2	3		0.5	1	1
10945	Ethanol	64-17-5	N.D.		50	250	1
10945	Ethylbenzene	100-41-4	0.7	J	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	6		0.5	1	1
10945	Toluene	108-88-3	N.D.		0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.		0.5	1	1
GC Vo	Latiles SW-846	8015B	ug/l		ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	81	J	50	100	1.

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 01:0	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 01:0	Hu Yang	1
01728	TPH-GRO N: CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 20:5	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 20:5	Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-6-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283747

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 13:40

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC6

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/1	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethanol	64-17-5	N.D.	50	250	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	3	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vo	Latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	180	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1.	F160761AA	03/17/2016 01:29	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 01:29	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 21:48	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 21:48	Jeremy C Giffin	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-8-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283748

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 10:10

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBOC8

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethanol	64-17-5	N.D.	5.0	250	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vo	Latiles SW-846	8015B	ug/l	ug/l	ug/1	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 01:51	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 01:51	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 22:16	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 22:16	Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-10-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283749

LL Group # 1640133

Account

Project Name: 90076

Collected: 03/08/2016 11:10

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 03/12/2016 09:10

Reported: 03/23/2016 21:37

FB010

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	ug/1	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethanol	64-17-5	N.D.	50	250	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	0.7 J	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 02:13	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 02:13	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 22:43	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 22:43	Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-11-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283750

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 09:30

by BW

Chevron

6001 Bollinger Canyon Rd L4310

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

San Ramon CA 94583

FB011

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	ug/l	
10945	Benzene	71-43-2	27	0.5	1	1
10945	Ethanol	64-17-5	N.D.	50	250	1
10945	Ethylbenzene	100-41-4	2	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10945	Toluene	108-88-3	1	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vo	latiles SW-846	8015B	ug/l	ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	280	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 02:	35 Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 02:		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 23:	11 Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 23:	11 Jeremy C Giffin	1

Analysis Report

ug/l

1

100

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-13-W-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283751

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 14:00

by BW

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

ug/1

50

Submitted: 03/12/2016 09:10 Reported: 03/23/2016 21:37

FBO13

GC Volatiles

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethanol	64-17-5	N.D.	50	250	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	31	0.5	1	1
10945	Toluene	108-88-3	6	0.5	1	1
10945	Xylene (Total)	1330-20-7	1	0.5	1	1

ug/l

N.D.

General Sample Comments

CA ELAP Lab Certification No. 2792

01728 TPH-GRO N. CA water C6-C12

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SW-846 8015B

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/ETOH Water	SW-846 8260B	1	F160761AA	03/17/2016 02:57	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/17/2016 02:57	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016 23:38	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016 23:38	Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Sample Description: QA-T-160308 NA Water

Facility #90076 BTST

4265 Foothill-Oakland T0600100339

LL Sample # WW 8283752

LL Group # 1640133

Account # 10991

Project Name: 90076

Collected: 03/08/2016 08:00

Chevron

6001 Bollinger Canyon Rd L4310

Submitted: 03/12/2016 09:10

San Ramon CA 94583

Reported: 03/23/2016 21:37

FBOQA

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/1	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	F160761AA	03/16/2016	21:51	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160761AA	03/16/2016	21:51	Hu Yang	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16077C20A	03/18/2016	19:02	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16077C20A	03/18/2016	19:02	Jeremy C Giffin	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron

Reported: 03/23/2016 21:37

Group Number: 1640133

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	ug/1	ug/l	ug/l
Batch number: F160755AA	Sample number(s):	8283742-8283743	
Benzene	N.D.	0.5	1
Ethano1	N.D.	50	250
Ethylbenzene	N.D.	0.5	1
Methyl Tertiary Butyl Ether	N.D.	0.5	1
Toluene	N.D.	0.5	1
Xylene (Total)	N.D.	0.5	1
Batch number: F160761AA	Sample number(s):	8283742,8283744-8	283752
Benzene	N.D.	0.5	1
Ethanol	N.D.	50	250
Ethylbenzene	N.D.	0.5	1
Methyl Tertiary Butyl Ether	N.D.	0.5	1
Toluene	N.D.	0.5	1
Xylene (Total)	N.D.	0.5	3
Batch number: 16077C20A	Sample number(s):	8283742-8283752	
TPH-GRO N. CA water C6-C12	N.D.	50	100

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/1	LCSD Spike Added ug/l	LCSD Conc ug/1	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max	
Batch number: F160755AA	Sample numbe	r(s): 8283	742-8283743							
Benzene	20	17.76			89		78-120			
Ethanol	500	411.4			82		47-155			
Ethylbenzene	20	17.86			89		78-120			
Methyl Tertiary Butyl Ether	20	16.49			82		75-120			
Toluene	20	18.27			91		80-120			
Xylene (Total)	60	53.97			90		80-120			
Batch number: F160761AA	Sample numbe	r(s): 8283	742,8283744-82	83752						
Benzene	20	18.73	20	17.79	94	89	78-120	5	30	
Ethanol	500	468.36	500	466.87	94	93	47-155	0	30	
Ethylbenzene	20	18.18	20	17.57	91	88	78-120	3	30	
Methyl Tertiary Butyl Ether	20	17.31	20	17.02	87	85	75-120	2	30	
Toluene	20	18.42	20	18.16	92	91	80-120	1	30	
Xylene (Total)	60	54.45	60	53.11	91	89	80-120	2	30	
	ug/l	ug/l	ug/l	ug/l						

Batch number: 16077C20A

Sample number(s): 8283742-8283752

^{*-} Outside of specification

**-This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Environmental

Quality Control Summary

Client Name: Chevron

Reported: 03/23/2016 21:37

Group Number: 1640133

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max	
TPH-GRO N. CA water C6-C12	1100	999.73	1100	1013.96	91	92	77-120	1	30	

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/1	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/1	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: F160755AA	Sample numb	er(s): 8283	3742-8283	743 UNSPK:	P282944					
Benzene	N.D.	20	17.5	20	17.37	87	87	78-120	1	30
Ethanol	N.D.	500	406.72	500	439.12	81	88	47-155	8	30
Ethylbenzene	N.D.	20	17.71	20	17.39	89	87	78-120	2	30
Methyl Tertiary Butyl Ether	N.D.	20	15.44	20	15.43	77	77	75-120	0	30
Toluene	N.D.	20	17.93	20	17.55	90	88	80-120	2	30
Xylene (Total)	N.D.	60	53.54	60	52.29	89	8.7	80-120	2	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX/MTBE/ETOH Water Batch number: F160755AA

	D	1 2-D	- 4	T - 8	4-B
8283742	91	97		98	93
8283743	92	97		97	95
Blank	93	98		97	89
LCS	90	96		98	93
LCS MS	93	102		100	94
MSD	90	100		97	94
Limits:	80-116	77-113		80-113	78-113

Analysis Name: BTEX/MTBE/ETOH Water

	D	1 2-D	- 4	T	- 8	4-B
8283744	93	99		97		90
8283745	93	98		97		90
8283746	94	96		98		92
8283747	91	96		98		91
8283748	94	102		96		91
8283749	93	98		96		88
8283750	93	99		97		91
8283751	96	99		95		91
8283752	93	97		97		89
Blank	92	96		96		8.9
LCS	93	96		97		93
LCSD	92	99		97		94

^{*-} Outside of specification

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

77-113

Quality Control Summary

78-113

80-113

Client Name: Chevron

Reported: 03/23/2016 21:37

80-116

Group Number: 1640133

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 16077C20A

	T	-F	
8283742	102		
8283743	97		
8283744	77		
8283745	86		
8283746	89		
8283747	84		
8283748	75		
8283749	91		
8283750	81		
8283751	90		
8283752	90		
Blank	91		
LCS	98		
LCSD	86		

Limits:

Limits:

63-135

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

CHAIN OF CUSTODY FORM

Chevron Site Number		Environi	mental	iwana	Gement Compan Chevron Consultar		iniger carryon	12.		1 110	ario	,, ,	ANAL	YSE	S RE	QUI		<u> </u>
					And the state of t			H	17					- 1		H	-	Preservation Codes
Chevron Site Global ID: 10600100339 Chevron Site Address: 4265 Foothill Blvd., Oakland, CA Chevron PM: Dave Patter Work Horne Chevron PM Phone No.: (925) 790-3964 IX Retail and Terminal Business Unit (RTBU) Job IX Construction/Retail Job					Address: _2300 Clayton Rd., Site 920, Concord, CA Consultant Contact: Nathan Lee Consultant Phone No. 925-849-1003 Consultant Project No I 6 0 3 0 8 ~ B \(\text{Nathan Lee} \) Sampling Company: _Blaine Tech Services Sampled By (Print): Brian Weeks Sampler Signature:			OXYGENATES HVOC	Š			דוכם אוכם	EPA 310.1 ALKALINITY []		EPA 413.1 OIL & GREASE □			H=HCL T= Thiosulfate N=HNO3 B = NaOH S = H2SO4 O = Other 10991 1640133
(WBS ELEMENTS SITE ASSESSMENT: A1L SITE MONITORING: OML THIS IS A LEGAL DOG	OOSITE NU : REMEDIATION OPERATION CUMENT. AL	JMBER-0- WI ON IMPLEMENTAT MAINTENANCE 8	ION: R5L MONITORII		Lancaster Laboratories Lancaster, PA Lab Contact: Amek Carter 2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	Other Lab	Temp. Blank Check Time Temp. 0800 4°C. 1000 4°C. 1200 4°C. 1400 4°C. 1400 4°C.	3/GC/MS RTEX RL MTREM	3 GROM DRO	18 BTEX O MTBE O	EPA 6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS [] TT	EPA150.1 PH □	SM2510B SPECIFIC CONDUCTIVITY	EPA418.1 TRPH □	3 ETHANOL	5 TPH-D 🗆	Special Instructions Must meet lowest detection limits possible for 8260 empounds.
SAMPLE ID				(1)			8260	80158	8021B	601	3010	150.	510	418	8260	EPA 8015	100	
Field Point Name	Matrix	Top Depth		ate mdd)	Sample Time	# of Containers	ainers Container Type	EPA 8260	EPA	EPA	EPA	EPA	EPA	SM2	EPA	EPA 8260	EPA	Notes/Comment s
C-1	WG		1603	80%	1435	6	UGA	1	X					l'it	1	X		
C-2	WG		- 1		1450	6	VOA	×	×					44		X		
C-3	WG				1420	6	VOA	×	Y						0.00	X		
C-4	WG				1510	6	UGA	X	X							×		
C-5	WG	17.7			1320	6	VOA	1×	X							×	+ 6	
C-6	wa				1340	6	VOA	×	X							X		
6-9	WG				1010	6	VOA	1	X	1	- 5					×		
C-10	WG	-		-	1110	6	VOA .	×	×				+ 1			×		
C-11	WG				0930	6	VOA	×	X							X		
C-13	WG		1	,	1400	6	VOA	×	×							×		
Relinquished By Company Date/Time: 3/8/16/2 it4/5 Relinquished By Company Date/Time Mo				1645 e M	Relinquished To Company Date/Time 3/6/16/0 1645 Relinquished To Company Date/Time					Turnaround Time: Standard⊠ 24 Hours□ 48 hours□ 72 Hours□ Other□ Sample Integrity: (Check by lab on arrival)								
Relinquished By Company Date/Time					Relinquished To Company Date/Time / State Abo ELLE 3/12/16 09/0						Intact: Y On Ice: Y Temp: 3.5							

Obstant Obs March	nevron	Environi	nentai mana	gement Compan	nt CUD	migor ouriyon	144.5	Jai	1116	11110	11,	ANAL	YSE	SRE	QUI		2 of 2_								
Chevron Site Number: 90076							14	17						1			Preservation Codes								
Chevron Site Global ID: T0600100339				Address: 2300 Clayton Rd., Site 920, Concord, CA													H=HCL T=								
Chevron Site Address: 4265 Foothill Blvd., Oakland, CA				Consultant Contact: Nathan Lee				0			Н	EPA 310.1 ALKALINITY		ASE [Thiosulfate N =HNO ₃ B = NaOH								
Chevron PM: Dave Pa	etterps W	ierk Horni	2	Consultant Phone No. 925-849-1003				HC Screen			2.1	TINI		GRE			N = HNO ₃ B = NaOH S = H ₂ SO ₄ O =								
Chevron PM Phone No.: (925) 790-3964				Consultant Project No. 160308-BW1								LKA		413.1 OIL & GREASE			Other								
⊠ Retail and Terminal Business Unit (RTBU) Job ⊠ Construction/Retail Job				Sampling Company: Blaine Tech Services				Ĭ		1	STLC [0.1		3.1			10991								
				Sampled By (Print): Brian Weeks				ORO 🗆				A 310					1640133								
				Sampler Signature	new.	2	OXYGENATESE	OR			CO	EP,		EPA			8283742-								
Charge Code: NWRTB-0098247-0-OML NWRTB 00SITE NUMBER-0-WBS (WBS ELEMENTS: SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L THIS IS A LEGAL DOCUMENT, ALL FIELDS MUST BE FILLED OUT				Lancaster	Other Lab	Temp. Blank Check Time Temp.	č				тти	1 1	SM2510B SPECIFIC CONDUCTIVITY	_ H			Special Instructions								
				Laboratories		0800 4°C	EPA 8260B/GC/MS TPH-G口 BTEX 域 MTBE域	GROY DRO	0	Mg, Mn,							Must meet lowest detection limits possible for 8260 empounds.								
				☑ Lancaster, PA Lab Contact: Amek		1000 4°C 1200 4°C 1400 4°C 1600 4°C			MTBE																
				Carter											TOL										
CORRECTLY AND COMPLETELY. SAMPLE ID			2425 New Holland Pike.	GR				X	ETHANOL						TPH-D	Notes/Comment									
			Lancaster, PA 17601 Phone No: (717)656-2300	EPA 8015B					EPA 418.1 TRPH																
								805	4418					EPA 8260	EPA 8015										
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	Sample Time	Sample Time	Sample Time	Sample Time	Sample Time	Sample Time	Sample Time	Sample Time	# of Containers	Container Type	EPA	EP		EPA	EPA	EPA	SMS	EPA	EPA	EP/	Notes/Comment s
QA	TB		160308	0800	2	UAA	×	X																	
															H	\pm	+								
												1.1													
							V.		-	2			Į.			4									
								H					-												
Relinquished By	Com	pany [Date/Time: 08/8/16 60 1645	Relinquished To Company Date/Time				Turnaround Time: Standard⊠ 24 Hours□ 48 hours□ 72						urs□ 72											
merpu	20			Mentos	Company	3/8/16@ Date/Time	164	>	Ho	urs		Othe		ck hy	lah	on arriv	/al)								
Relinquished By	Com	rang.	Sate/Time of	Retinquished To	Company	Daterrale					-	- 4				mp: _3									
Relinquished By Gompany Date/Time				Relinquished To Company Date/Time					inta	act:_	_	On	ice;		COC										
Training and an arrival and the arrival arriva				Mysto Abe	16																				

SHIPPED WA WAS

Sample Administration Receipt Documentation Log

Doc Log ID:

139258

Group Number(s): 1640133

Client: Chevron

Delivery and Receipt Information

Delivery Method:

UPS

Arrival Timestamp:

03/12/2016 9:10

Number of Packages:

1

Number of Projects:

1

State/Province of Origin:

CA

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

Yes

Sample Date/Times match COC:

Yes

Custody Seal Intact:

Yes

VOA Vial Headspace ≥ 6mm:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2 HCI

Paperwork Enclosed: Samples Intact:

Yes Yes Trip Blank Type:

Missing Samples:

No No

Extra Samples: Discrepancy in Container Qty on COC:

No

Air Quality Samples Present:

No

Unpacked by Krista Abel (3058) at 09:41 on 03/12/2016

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler # Thermometer ID

Corrected Temp

Therm. Type

ce Type Ice Present? Wet

Ice Container

Elevated Temp?

1

DT131

3.5

DT

Bagged

N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
10	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meg	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter
	loca than		

less than

greater than

parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For ppm aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantifation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

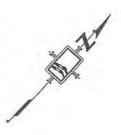
V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

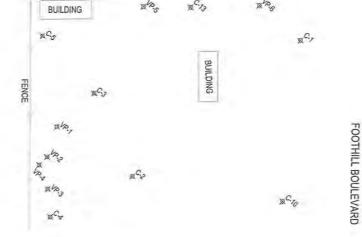
Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.


This report shall not be reproduced except in full, without the written approval of the laboratory.


Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Appendix H
Well Survey Data

DESC	NERTHING	EASTING	LATITUDE	LONGITUDE	EL PIC	EL RIM	
C-1 C-2 C-3 C-4 C-5	2109146. 1 2109012. 1 2109034. 7 2108958. 9 2109039. 9	6066918. 3 6066799. 7 6066745. 6 6066778. 1 6066697. 3	37, 7745271		40, 62 38, 69	41, 22 41, 41 39, 56	
C-6 C-7 C-8 C-9 C-10	2108897, 0 2108807, 1 2108769, 3 2108700, 9 2109063, 5	6066598. 6 6066677. 3	37, 7739615	-122 2124750	N/A 37. 82 N/A	38. 04 37. 72 36. 98	
E-11	2109808.1	5066772.0	37. 7739656	-122 2123831	36.79	37.43	
0-13	2109115.2	6066753. 5	37. 7749080	-122 2124666	42, 02	42.47	
VP-1 VP-2 VP-3 VP-4 VP-5 VP-6	2109003, 6 2106985, 4 2106970, 7 2106978, 4 2109095, 8 2109145, 1						

FENCE

×C.

HIGH STREET

WC,

×C7

1255 Starboard Drive
West Sacramento ~ CA ~ 95691
Phone: 916-372-8124
Fax: 916-372-8538
Email: matt@morrowsurveying.comwww.morrowsurveying.com

DATE: March, 2015 DATE SURVEYED: 2-25-15, 2-29-16 SF SCALE: 1"=40' SHEET 1 OF 1 FIELD BOOK: DRAWING NO.: 0857-184 DRAWN BY: MM

BASIS OF COORDINATES & ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK.

COORDINATE DATUM IS NAD 83.

REFERENCE GEOID IS GEOID03.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.

Monitoring Well Exhibit Prepared for: GHD

PROJECT

4265 Foothill Blvd. City of Oakland Alameda County California

Appendix I Trend Graphs and Degradation Calculations

TABLE 1: SUMMARY OF DEGRADATION CALCULATIONS
Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

Well	Analyte	Maximum Concentration (μg/L)	Current Concentration (µg/L)	WQO (µg/L)	Half Life (years)	Date to Reach WQO	Years to Reach
C-1	TPHg	20,000	1,300	100	10.45	May 2028	12
	Benzene	2,500	180	1	1.66	Jan 2014	Near WQO
	MTBE	2,500	29	5	1.72	Jul 2016	0
C-2	TPHg	1,100,000	9,700	100	6.31	Feb 2050	34
	Benzene	30,000	540	1	4.13	May 2046	30
	MTBE	5,200	37	5	2.32	May 2019	3
C-3	TPHg	560	55	100	31.56	WQO met	WQO met
	Benzene	36	<0.5	1	5.29	WQO met	WQO met
	MTBE	400	290	5	Fluctuating	Fluctuating	Fluctuating
C-4	TPHg	48,000	6,300	100	14.79	Dec 2089	74
	Benzene	14,000	910	1	14.25	Feb 2139	123
	MTBE	4,600	9	5	3.45	Nov 2019	3
C-5	TPHg	110	81	100	3.49	May 2011	WQO met
	Benzene	10	3	1	0.74	Dec 2014	WQO met
	MTBE	34	6	5	1.33	Apr 2015	1
C-6	TPHg	11,000	180	100	3.87	Jan 2013	WQO met
	Benzene	3,200	< 0.5	1	1.59	Jun 2010	WQO met
	MTBE	220	3	5	2.86	Oct 2009	WQO met
C-7	TPHg	46,000	1,300	100	2.78	Apr 2020	4
	Benzene	12,000	15	1	3.36	Apr 2024	8
	MTBE	190	8	5	13.10	Jan 2014	Near WQO

Notes and Abbreviations:

TPHg =Total Petroleum Hydrocarbons as Gasoline

MTBE =Methyl Tertiary Butyl Ether

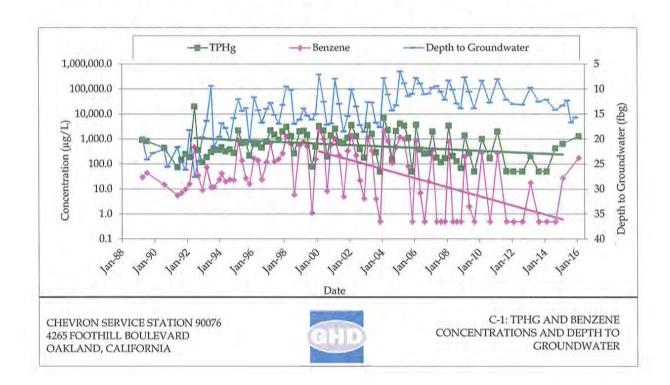
WQO =Water quality objective

μg/L =Micrograms per liter

<X =Not detected above laboratory reporting limit of X

All trends begin at the highest detectable concentration

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA


 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 Constant: 5.00E+05 4.96E+20 b -1.82E-04 Constant: -1.14E-03 a Starting date for current trend: 7/14/1992 3/9/2000

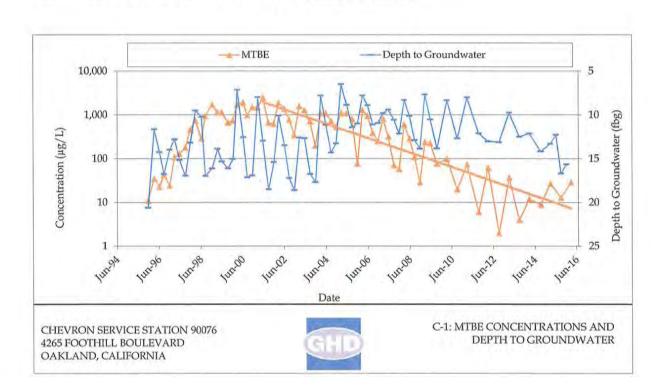
Calculate

Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 10.45 1.66

Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ May 2028 Jan 2014

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days


Given	Constituent	Methyl Tertiary Butyl Ether
Water Quality Objective (WQO):	У	5
Constant:	b	1.18E+21
Constant:	a	-1.10E-03
Starting date for current trend:		6/7/2001

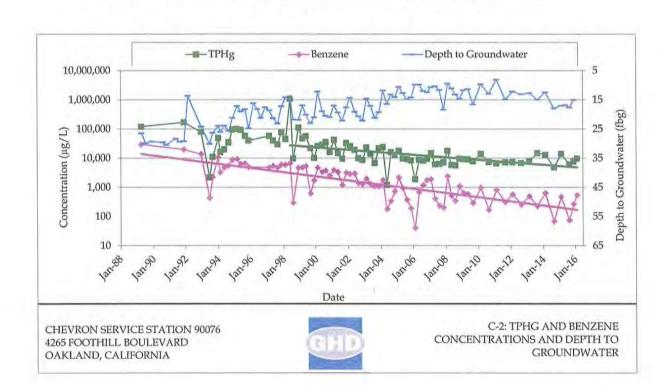
Calculate
Attenuation Half Life (years): (-ln(2)/a)/365.25

1.72

Estimated Date to Reach WQO: (x = ln(y/b) / a)

Jul 2016

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA


 $y = b e^{ax}$ ===> $x = \ln(y/b) / a$ where: $y = \text{concentration in } \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 Constant: b 1.46E+09 4.77E+10 Constant: -3.01E-04 -4.60E-04 a Starting date for current trend: 4/28/1989 4/28/1989

Calculate

Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 6.31 4.13

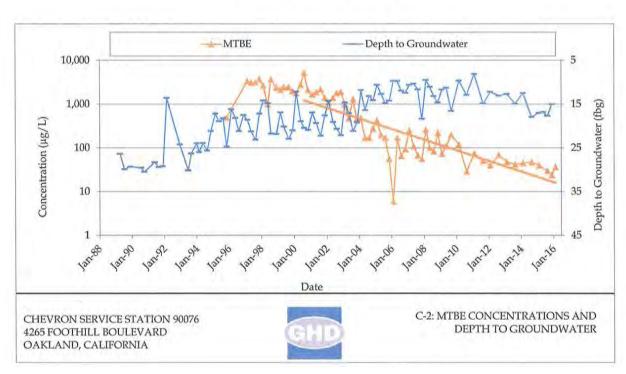
Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ Feb 2050 May 2046

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Constituent

Given


Water Quality Objective (WQO):
Constant:
Const

Calculate

Attenuation Half Life (years): (-ln(2)/a)/365.25 2.32

Estimated Date to Reach WQO: (x = ln(y/b) / a) May

May 2019

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

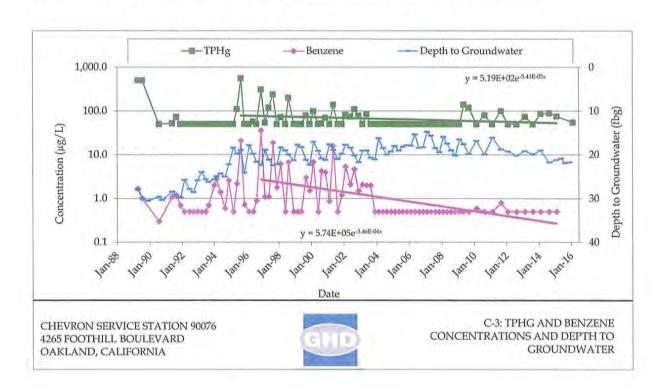
> Total Petroleum Hydrocarbons as

Constituent Gasoline (TPHg)

Water Quality Objective (WQO): y
Constant: b

Constant: a Starting date for current trend:

100 1 6.49E+02 9.04E+05 -6.01E-05 -3.58E-04 9/20/1995 12/19/1996


Benzene

Calculate

Given

Attenuation Half Life (years): (-ln(2)/a)/365.25 31.56 5.29

Estimated Date to Reach WQO: (x = ln(y/b) / a) WQO met WQO met

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / a

where: $y = \text{concentration in } \mu g/L$ b = concentration at time (x) a = decay constantx = time (x) in days

Methyl Tertiary Butyl Ether

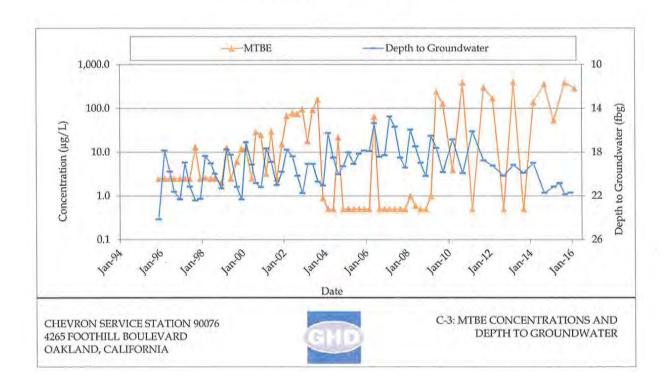
Constituent

Water Quality Objective (WQO): y
Constant: b

Constant: a

Starting date for current trend:

5 9.37E-52 2.92E-03

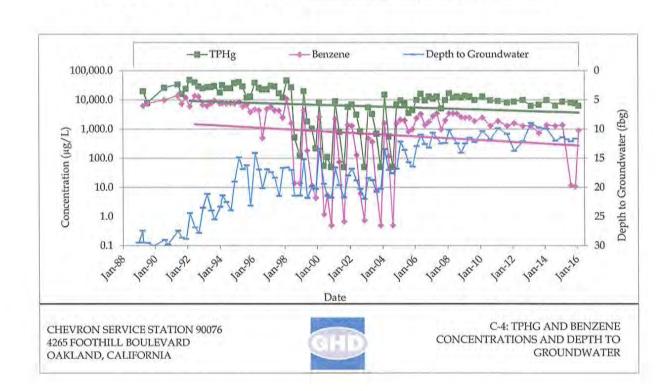

Calculate

Given

Attenuation Half Life (years): (-ln(2)/a)/365.25 Fluctuating

Estimated Date to Reach WQO: (x = ln(y/b) / a)

Fluctuating


Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 Constant: 7.34E+05 1.13E+05 b Constant: -1.28E-04 -1.33E-04 a Starting date for current trend: 3/18/1992 7/14/1992

Calculate
Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 14.79 14.25

Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ Dec 2089 Feb 2139

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> $x = \ln(y/b) / a$ where: $y = \text{concentration in } \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Constituent

Given

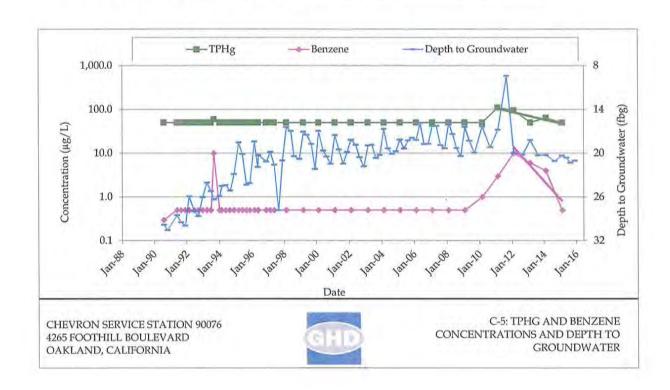
Water Quality Objective (WQO):
Constant:
Const

Calculate

Attenuation Half Life (years): (-ln(2)/a)/365.25 3.45

Estimated Date to Reach WQO: (x = ln(y/b) / a) Nov 2019

Depth to Groundwater 10,000 5 1,000 10 Depth to Groundwater (fbg) Concentration (µg/L) 100 15 10 25 1 Date C-4: MTBE CONCENTRATIONS AND CHEVRON SERVICE STATION 90076 DEPTH TO GROUNDWATER 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA


Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 Constant: b 4.11E+11 6.83E+46 Constant: -5.44E-04 -2.57E-03 a Starting date for current trend: 3/8/2011 3/18/2012

Calculate
Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 3.49 0.74

Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ May 2011 Dec 2014

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Methyl Tertiary
Constituent

Given

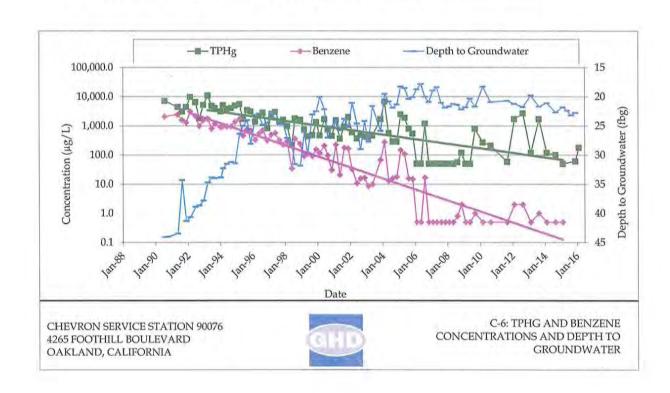
Water Quality Objective (WQO):
Constant:

Calculate

Attenuation Half Life (years): (-ln(2)/a)/365.25 1.33

Estimated Date to Reach WQO: (x = ln(y/b) / a) Apr 2015

Depth to Groundwater - MTBE 100.0 5 Depth to Groundwater (fbg) 15 10.0 Concentration (µg/L) 25 1.0 35 0.1 Date C-5: MTBE CONCENTRATIONS AND CHEVRON SERVICE STATION 90076 DEPTH TO GROUNDWATER 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA


Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> $x = \ln(y/b) / a$ where: $y = \text{concentration in } \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 7.33E+20 Constant: b 6.32E+10 Constant: -4.91E-04 -1.19E-03 a Starting date for current trend: 4/14/1993 3/18/1992

Calculate
Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 3.87 1.59

Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ Jan 2013 Jun 2010

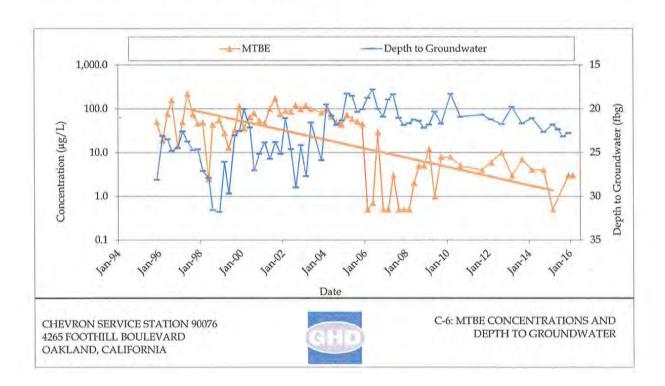
Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Constituent Butyl Ether

Given

Water Quality Objective (WQO):
Constant:
Constant:
Constant:
Constant:
a
-6.62E-04
Starting date for current trend:


Methyl Tertiary
Butyl Ether

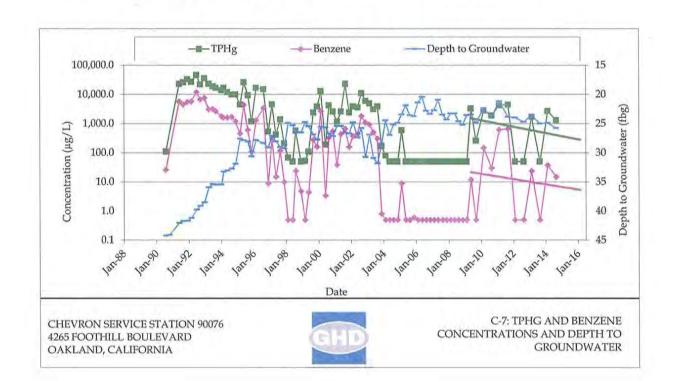
1.74E+12
-6.62E-04
9/6/1996

Calculate

Attenuation Half Life (years): (-ln(2)/a)/365.25 2.86

Estimated Date to Reach WQO: (x = ln(y/b) / a) Oct 2009

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA


 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Total Petroleum Hydrocarbons as Constituent Gasoline (TPHg) Benzene Given Water Quality Objective (WQO): 100 Constant: ь 1.07E+15 1.40E+11 Constant: -6.83E-04 -5.65E-04 Starting date for current trend: 9/30/2009 9/30/2009

Calculate

Attenuation Half Life (years): $(-\ln(2)/a)/365.25$ 2.78 3.36

Estimated Date to Reach WQO: $(x = \ln(y/b)/a)$ Apr 2020 Apr 2024

Chevron Service Station 9-0076, 4265 Foothill Boulevard, Oakland, CA

 $y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

Constituent Butyl Tertiary
Butyl Ether

Given

Water Quality Objective (WQO): y 5

Constant: b 2.09E+03

Constant: a -1.45E-04

Starting date for current trend: 9/13/2001

Calculate

Attenuation Half Life (years): (-ln(2)/a)/365.25 13.10

Estimated Date to Reach WQO: (x = ln(y/b) / a) Jan 2014

Depth to Groundwater ----MTBE 1,000.0 15 100.0 20 Depth to Groundwater (fbg) Concentration (µg/L) 25 10.0 30 1.0 35 0.1 Date C-7: MTBE CONCENTRATIONS AND CHEVRON SERVICE STATION 90076 **DEPTH TO GROUNDWATER** 4265 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA