

July 28, 2000

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

Mr. Barney Chan Alameda County Health Care Services **Environmental Health Services** 11311 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Site Conceptual Model and Risk-Based Corrective Action Plan

Former Chevron Station No. 9-0076

4265 Foothill Boulevard Oakland, California

Delta Project No. DG90-076

Dear Mr. Chan:

Delta Environmental Consultants, Inc. has been authorized by Chevron USA Products Company to prepare and forward this Site Conceptual Model and Risk Based Corrective Action Plan addressing the petroleum hydrocarbon concentrations in soil and groundwater at the subject site.

If you have any questions concerning this project, please contact Jim Brownell at (916) 638-2765.

DELTA ENVIRONMENTAL CONSULTANTS, INC.

James R. Brownell, R.G.

California Registered Geologist No. 5078

JRB (Lrp001.0076.doc)

Ms. Erica Myan – Albertson's, Inc.
Ms. Barbara Sieminski – Gettler-Ryan, Inc. CC:

Welk Matheway

SITE CONCEPTUAL MODEL

and

RISK BASED CORRECTIVE ACTION PLAN

Former Chevron Station No. 9-0076 4265 Foothill Boulevard Oakland, California Delta Project No. DG90-076

July 28, 2000

Prepared For:

Mr. Tom Bauhs Chevron U.S.A. Products Company P.O. Box 6004 San Ramon, CA 94583

Prepared By:

DELTA ENVIRONMENTAL CONSULTANTS, INC.

3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 (916) 638-2085

> Berijamin I. Heningburg Project Geologist

James R. Brownell, R.G.

No. 5078 EXP. 8/31/00

OF CALIFOR

California Registered Geologist No. 5078

TABLE OF CONTENTS

1.0 INTRODUCTIO	N	7							
2.0 SITE DESCRIP	TION								
2.1 Genera	2.1 General1								
2.2 Previou	s Environmental Work	2							
2.3 Ground	water Monitoring and Sampling	3							
2.4 Evaluat	ion of Intrinsic Bioremediation								
2.5 Geolog	y & Hydrology								
	TUAL MODEL								
3.1 Release	e Scenario and Plume Characterization								
3.2 Potentia	al Receptors								
3.3 Other E	nvironmental Issues	e							
4.0 RISK-BASED C	ORRECTIVE ACTION (RBCA)								
4.1 Site Pa	rameters								
4.2 Results	of RBCA Analysis	7							
4.3 Discuss	sion	8							
5.0 RECOMMENDA	ATIONS								
APPENDICIES									
Appendix AAppendix B	Alameda County Heath Care Agency Letters Soil Data								
Appendix CAppendix D	Soil Boring Logs and Well Completion Diagrams Well Survey within ½ Mile								
Appendix E	System Operation Data								
Appendix F	Oakland RBCA Eligibility Checklist and Tier I RBSLs Table								
Appendix GAppendix H	Groundwater Data Cross Sections								

1.0 INTRODUCTION

Delta Environmental Consultants, Inc. (Delta) has been authorized by Chevron U.S.A. Product Company (Chevron) to review investigative work conducted at Chevron Station No. 9-0076 and to prepare a Site Conceptual Model (SCM) for Chevron Service Station #9-0076 located at 4265 Foothill Boulevard, Oakland, California (Figure 1 and 2). The purpose of this work was to evaluate whether the implementation of further environmental investigation and/or remediation of soil and groundwater is warranted at the site. This report was prepared based on information supplied by Chevron, and describes site hydrogeological conditions and distribution of contaminants in space and time, identifies potential current and future receptors, and recommends the most appropriate action plan for the site.

This report was prepared in response to a letter issued by Alameda County Health Care Services Agency (ACHCSA) letter dated May 8, 2000, requesting information concerning the following items:

- 1) Shallow soil contamination in the vadose zone indicated by increased TPHg, BTEX, and MTBE concentrations in groundwater monitoring well samples collected during the period 12/99 to 3/00. During this period groundwater elevation increased significantly in wells.
- 2) Performance of a Risk-based Corrective Action (RBCA) analysis to evaluate if benzene concentrations in C-4 pose a risk to nearby residences under the volatilization to indoor air exposure pathway.
- 3) Evaluation of the anticipated natural attenuation rate of TPHG and BTEX in C-7.
- 4) Evaluation of the effectiveness and process used to employ bioremedial enhancement chemicals.

A copy of the ACHSA letter dated May 8, 2000 is included as Appendix A.

2.0 SITE DESCRIPTION

2.1 General

The subject site is situated on the northwestern corner of Foothill Boulevard and High Streets in Oakland, California (Figure 1). The subject site is currently operated as Loi Le Chevron. The service station facilities include a kiosk, service islands, three 10,000-gallon gasoline underground storage tanks (USTs), and product lines. Locations of the site features are shown on Figure 2.

The site vicinity is used for transportation, commercial, and residential purposes. The subject site is bound by Foothill Boulevard to the northeast, High Street to the southeast, and residential properties to the southwest and northwest. A BP service station is located approximately 80-feet from the northeast boundary of the subject site, across Foothill Boulevard. A Shell service station is located approximately 80-feet from the southeast boundary of the subject site, across High Street. A residence with a basement is located approximately 40-feet from the southwest boundary of the

(dy)

subject site. A storage facility is located approximately 40-feet from the southwest boundary of the subject site. An apartment building is located approximately 20-feet from the northwest boundary of the subject site. Other buildings situated across Foothill Boulevard, High Street or Bond Street to the southwest are used for residential and commercial purposes. The site vicinity is shown on Figure 2.

2.2 Previous Environmental Work

- July 1987 The station was remodeled and three steel USTs and one fiberglass used oil tank were removed from the site. Soil samples collected beneath these tanks contained low or non-detectable concentrations of hydrocarbons. The excavation, based on available data, included the removal of the fill materials associated with the tanks. Three steel USTs were replaced with 10,000-gallons double walled fiberglass tanks. The waste oil tank basin was intact and placed back into the excavation.
- March 1989 A soil gas survey was conducted at the former Mobile service station #10-H69 located at 4280 Foothill Boulevard, Oakland California. This site is located approximately 80-feet from the northeast boundary of the subject site, across Foothill Boulevard. Concentrations of hydrocarbons were detected in soil samples collected from 12 of the 16 locations. The highest concentrations were reported in samples collected from locations southeast of the former dispenser island along the southeastern property boundary and the sample down gradient to the former underground used oil tank location along the northeast boundary.
- August 1987 Five soil borings (C-A and C-1 through C-4) were advanced and C-1 through C-4 were completed as groundwater monitoring wells. Concentrations of hydrocarbons were detected in soil samples collected from four of the five borings, with the highest concentrations being found in samples collected from approximately 10 feet below grade in C-A and C-2. Concentrations of hydrocarbons were detected in all groundwater samples collected. Soil analytical results are shown in Appendix B. Well construction diagrams and soil borings logs are shown in Appendix C.
- August 1990 Three groundwater monitoring wells (C-5 through C-7) were installed to further assess the cross gradient and down gradient extent of hydrocarbons. Concentrations of hydrocarbons in soil samples collected were below method detection limits with a few negligible exceptions. Concentrations of hydrocarbons were detected in groundwater samples collected from monitoring wells C-6 and C-7.
- November 1990 One groundwater monitoring well (C-8) was installed to further assess the
 extent of dissolved hydrocarbons in groundwater. Soil and groundwater samples collected and
 analyzed in the lab did not contain concentrations of hydrocarbons above method detection limits.
 Well locations are shown on Figure 2.
 - December 1990- A search of registered wells within ½-mile of the site was conducted in 1990 by the County of Alameda Public Works Agency using their computer database. Forty wells were located within a ½-mile radius of the subject site. Most of these wells are monitoring or cathodic protection wells. No drinking water wells, and only one irrigation well were identified. The irrigation well is located more than ¾ mile northwest (upgradient) of the subject site. The well locations are shown in Appendix D.

- November 1991 In an attempt to obtain hydraulic capture of dissolved hydrocarbons, a groundwater extraction system began extracting groundwater from C-2. System operation data are shown in Appendix E.
- February 1992 One used oil tank located west of the station building was removed (Waste Oil Tank Removal Observation Report, GeoStrategies Inc., March 26, 1992).
- <u>September 1993</u> Groundwater monitoring wells C-1 through C-8, MW-2 through MW-9, and S-1 through S-3 associated with the Chevron, BP and Shell stations respectively, were surveyed to the City of Oakland Bench Mark #1589.
- October 1993 The groundwater extraction system was turned off due to low flow rate and noise complaints from the neighbors. The groundwater extraction system had removed a total of 10,200-gallons of hydrocarbon-impacted groundwater as of July 16, 1993.
- July 1996 One groundwater monitoring well (C-9) was installed down gradient in the Lucky's parking lot to further assess the extent of dissolved hydrocarbons in groundwater. Concentrations of hydrocarbons in soil samples collected were below laboratory reporting limits except for TPHg, which was reported at 1.2 ppm at 10 feet below surface grade (bsg). Groundwater samples collected onsite and analyzed in the lab did not contain concentrations of hydrocarbons above laboratory reporting limits.
- July 1997- Soil samples (PL1-4 through PL5-4) were collected in product line trenches during EPA upgrade activities. Concentrations of hydrocarbons were detected in soil samples collected from trenches, with the highest concentrations being found in the sample collected from approximately 4 feet below grade at location PL-2. Sample concentrations are shown in Appendix B. Soil sample locations are shown on Figure 3.
- May 1998 A Risk Based Corrective Action (RBCA) site assessment was conducted using analytical results from soil and groundwater assessment activities. Output tables from RBCA assessments are included in Appendix F.

2.3 Groundwater Monitoring and Sampling

Monitoring and sampling of site wells was begun in April 1989. During the period of April 1989 to June 2000, depth to shallow groundwater beneath the site fluctuated between 9 and 30 feet bsg. The groundwater flow direction fluctuated between west and southwest, and the gradient was approximately 0.04 to 0.05. Groundwater monitoring and sampling data are summarized in well data and analytical results included in Appendix G.

On-site well C-2 has contained petroleum hydrocarbons at concentrations up to 30,000 ppb of benzene and 3,800ppb of MTBE. Hydrocarbon concentrations in this well have decreased significantly (to current levels of 3,400 and 2,800) since groundwater monitoring began, and especially upon addition of the oxygen release compound (ORC) in June 1998. Hydrocarbon concentrations in groundwater samples from C-5 have not been above laboratory reporting limits except for two dates when low MTBE concentrations were detected. Hydrocarbon concentrations have decreased in on-site wells C-3 and C-4. However, it appears that increased dissolved hydrocarbon concentrations

from hydrocarbon-impacted soil in the vicinity of these wells have occurred during periods of shallow groundwater. Hydrocarbon concentrations have increased in on-site well C-1. It appears that a trend of increased groundwater elevations beneath the site may have contributed to increased dissolved hydrocarbon concentrations from hydrocarbon impacted shallow soil in the vicinity of this well. Historically, downgradient off-site wells C-6 through C-9 have contained hydrocarbon concentrations up to 12,00 ppb of benzene and 590 ppb of MTBE. Hydrocarbon concentrations have decreased significantly (to current levels of 120 and 64) since groundwater monitoring begAn, and especially upon addition of the ORC in June 1998.

MTBE (up to 3,800 ppb by DHS LUFT Method) was reported to be present in wells C-1 through C-9 with the highest concentration reported for on-site well C-2. However, the MTBE presence was not confirmed by EPA Method 8260 analysis, which is more accurate in regards to MTBE detection. The reported MTBE concentrations appear to be false detections due to interference on the EPA 8020 analysis from other gasoline compounds (most likely 2-methyl pentane and 3-methyl pentane).

2.4 Evaluation of Intrinsic Bioremediation

The most recent evaluation of intrinsic bioremediation was performed for the subject site in March 1999 by Chevron Research and Technology Company. The observed trends for indicator parameters of alkalinity, dissolved iron (ferrous), and dissolved oxygen versus total BTEX in the site wells suggested that intrinsic bioremediation is occurring at the subject site. Dissolved oxygen levels were considerably lower near the source areas and sulfate concentrations were considerably higher near non-source areas, which is consistent with the expected consumption of dissolved oxygen and sulfates during the biodegradation of the BTEX compounds.

2.5 Geology & Hydrology

The site is located on the nearly flat-lying surface of the East Bay plain, approximately 1-mile northeast of the Oakland Estuary. The Hayward Fault and the Oakland Hills are located approximately 1.5-miles northeast of the site. The regional geology consists primarily of Quaternary deposits (Qu), deposits of alluvial sands, silts, clays, and gravel deposited in the eastern portion of the San Francisco Bay Basin. The geologic map (Radbruch, 1969) indicates that an old stream channel emerges from the moderately sloping area approximately 500 feet northeast of the site. This suggests that former stream deposits may occur near or below the site.

The site is located at approximately 35 feet above mean sea level. The local topography slopes gently to the southwest. The nearest surface water is the Brooklyn Basin Tidal Canal, a channel connecting the Oakland inner harbor on the San Francisco Bay with the San Leandro Bay, about 0.75 miles southwest of the site. The boring logs indicate that the subject site is underlain by clayey sand alluvium interbedded with course sand and silty clays and gravel to the total depth explored of 59.0 feet bsg. Groundwater was encountered beneath the site at a depths ranging from 43 to 26 feet bsg geologic cross section maps and cross sections are included in Appendix H.

3.0 SITE CONCEPTUAL MODEL

The site conceptual model was prepared based on the site assessment and groundwater monitoring and sampling data collected at the site to date. A pictorial representation of the dissolved hydrocarbons in groundwater is shown in Figure 4.

3.1 Release Scenario and Plume Characterization

During station remodeling in 1987, three steel fuel USTs and one fiberglass waste oil tank were removed. The three USTs were replaced with 10,000-gallons double-wall fiberglass tanks. The used oil tank was intact and therefore placed back into its original basin. The site has been used as a Chevron retail fuel station since, 1987. There are several environmental problem sites (potential secondary off-site sources of contamination) in the vicinity of the subject site. Environmental investigations conducted at the site indicated that soil and shallow groundwater beneath the subject site have been impacted by petroleum hydrocarbons. Groundwater beneath the subject site has been impacted by Total Purgable Hydrocarbons (C6-C12), BTEX and MTBE as indicated by the DHS LUFT Method results of monitoring well samples. Hydrocarbon impacted soil (up to 3,600 ppm of TPHg) was present in the vicinity of soil boring C-A and monitoring well C-2 has historically contained over two feet of floating hydrocarbons.

Groundwater beneath the subject site has been monitored and sampled since April 1989 through the network of nine groundwater monitoring wells. During this period of time a groundwater depth ranged from 9 to 30 feet bsg, and a groundwater flow direction was consistently to the west or south west. Hydrocarbon impacted groundwater (up to 22,000 ppb of TPHg, up to 800 ppb benzene) has been present beneath the southeast section of the subject site (well C-2) and south (downgradient) of the site, beneath High and Bond Streets (wells C-4, C-6 and C-7). Hydrocarbon concentrations have decreased in wells C-3 and C-5. Monitoring wells C-5, C-8, and C-9 have reported only low levels of MTBE, with the exception of one anomalous report of from C-5 in September 1993. Hydrocarbon concentrations have been increasing in well C-1 since April 1993. The ORC was installed in wells C-2, C-4, and C-6 in June 1998, a decrease in hydrocarbon concentrations occurred in C-2 and C-4 due to the installation of the ORC. Monitoring well C-6 did not response to the ORC. The lateral extent of the subject site plume has been generally delineated except to the northeast (vicinity of well C-1). The plume migration appears to be slow to stable and limited by natural processes. A pictorial representation of residual hydrocarbons in soil is shown in Figure 5.

3.2 Potential Receptors

The hydrocarbon plume extends beneath the south and southeastern portions of the subject site (parking lot), beneath High and Bond Streets, and possibly beneath the residential buildings and commercial parking lot on the south side of Bond Street. However, only MTBE at low concentrations is present at the downgradient most part of the plume. Most of this area is paved with asphalt or

concrete. The nearest residential building is located downgradient and inside of the plume. The potential exposure receptors are current and future residents of properties bound by the intersection of High and Bond Streets and possibly in the Lucky's parking lot along the southern side of High Street, and current and future site visitors (clients, motorists, pedestrians). **Codes Zone Sent Street**

The potential capability of C-4. No water producing wells are located at the cite or in the immediate site visitify; therefore, groundwater ingestion is not a valid pathway.

Potential exposure medium is indeed air in residential buildings. The major exposure pathway is hydrocarbon volatilization from groundwater to ambient and indoor air. Based on the groundwater depth (9 to 30 feet bsg) and a presence of hydrocarbons in the vadose zone, a dermal contact with hydrocarbons in the vadose zone, a dermal contact with

3.3 Other Environmental Issues

The lateral extent of hydrocarbon impacted groundwater has been delineated in the downgradient direction of the subject site. An underground utility survey has not been conducted at the site. The dissolved hydrocarbon plume at the subject site extends beneath the public streets (Hill and Bond), in the area where underground utilities are likely to be present. However, based on the groundwater depth (9 to 30 feet bsg), underground utility trenches do not appear to be a likely factor in plume migration in the subject site vicinity

) needs

4.0 RISK-BASED CORRECTIVE ACTION (RBCA)

Under Tier 2, Site-Specific Target Levels (SSTLs) for soil and/or groundwater cleanup goals are determined on the basis of site-specific information and/or points of exposure. Simple analytical models are employed in conjunction with additional site data to calculate Tier 2 SSTL values in a manner consistent with EPA-recommended practices. Modeling and calculation procedures are streamlined so as to represent a minor incremental effort relative to Tier 1.

Both the Tier 1 Risk Based Screening Levels (RBSL) and Tier 2 SSTL values represent concentration limits for constituents within the source zone. However, SSTLs differ from RBSLs in three significant ways i) site specific data are used to calculate risk based cleanup goals ii) human exposure to affected media may be assumed to occur not at the source zone, but at a separate point of exposure (POE and iii) the effects of natural attenuation of constituent concentrations during lateral transport from the source to an POE may be considered in the SSTL calculations. If site constituents concentrations exceed SSTL values subsequent actions may involve I) remediation to site specific Tier 2 clean up goals, ii) further evaluation per Tier 3 of the RBCA process, or iii) interim response measures targeted at principal risk sources.

4.1 Site Parameters

The complete exposure pathways are those that could pose a reasonable potential for contaminant contact with a human or environmental receptor. Under Tier 2 RBCA onsite and offsite receptors apply. Based on land usage along the edge of the plume a residential scenario was evaluated for the site. There are no water supply wells within the plume. Therefore, groundwater ingestion or subsurface soil leaching to groundwater as exposure pathways were not considered a complete pathway. The surface soil (< 3-feet) is not impacted. The site is currently paved and will remain paved in the future. Therefore, direct ingestion and dermal contact were not considered a complete pathway. The down gradient edge of the plume extends beneath the residential buildings. Therefore, the only complete exposure pathway identified is volatilization to into of air from the groundwater (residential receptor).

Two separate risk scenarios for residential indoor air inhalation were calculated. One, representing onsite conditions, using soil and groundwater data from wells C-2, C-3, C-4, and C-5; and the second, representing offsite conditions using soil and groundwater data from wells C-6, C-7, C-8, and C-9. Arithmetic averages for soil and groundwater data for the most recent sampling events were used in the RBCA analysis.

4.2 Results of RBCA Analysis

Based on the RBCA analysis, onsite and offsite representative concentrations exceed the SSTLs for benzene. The representative onsite concentration for benzene in soil is 1.2 mg/kg with a SSTL of 0.0063 mg/kg. To pass the indoor air exposure pathway onsite the representative concentrations of benzene in indoor air would have to be reduced below 0.0063 mg/kg. The representative onsite

concentration for benzene in groundwater is 0.79 mg/l with a SSTL of 0.045mg/l. To pass the indoor air exposure pathway onsite the representative onsite concentration for benzene in groundwater would have to be reduced below 0.045mg/l. The representative offsite concentration in soil is 0.021mg/kg with a SSTL of 0.0036 mg/kg. To pass the indoor air exposure pathway offsite the representative concentrations of benzene would have to be reduced below 0.0036 mg/kg. The representative offsite benzene concentration in groundwater is 0.23 mg/l with a SSTL of 0.045mg/l. To pass the indoor air exposure pathway offsite the representative concentrations of benzene would have to be reduced below 0.045 mg/l. Pertinent data used in the RBCA analysis are presented in Appendix E.

4.3 Discussion

The subject site has been impacted by petroleum hydrocarbons beneath the former product Hydrocarbon impacted soil has not been completely removed from site. Hydrocarbon impacted groundwater has been present in the eastern portion of the site and in the downgradient (eastern and southeastern) vicinity of the subject site. The lateral extent of dissolved hydrocarbon plume has been delineated except upgradient to the northeast.). concentrations have decreased in well C-3. Monitoring wells C-5, C-8, and C-9 have contained only low levels of MTBE, with the exception of one anomalous report from C-5 in September 1993. Hydrocarbon concentrations have been increasing in well C-1 since April 1993. ORC was installed in wells C-2, C-4, and C-6 in June 1998, a decrease in hydrocarbon concentrations occurred in C-2 and C-4 due to the installation of the ORC. Monitoring well C-6 did not respond to the ORC. Shallow soil contamination in the vadose zone is indicated by increased TPHg, BTEX and MTBE concentrations in groundwater monitoring well samples collected during the period 1999 to March 2000. During this period, groundwater elevation increased in the wells.

Increased concentrations of dissolved hydrocarbons in groundwater beneath the site reflect a trend that is consistent with an increase in groundwater elevation. Historical analyses of soil samples collected onsite support the conclusion that residual hydrocarbons remain in soil approximately 3 to 10 feet bsg. Analyses of soil from locations C-A, C-2, and C-4, and PL-1, PL-2, PL-3 and PL-4 all reported concentrations of TPHG and benzene ranging from 3,600 parts per million (ppm) to 1.8 ppm and benzene ranging from 33 ppm to 0.64 ppm. Benzene was not detected in soil sample PL-4.

Benzene concentrations in C-4 have been evaluated using RBCA analysis to evaluate whether concentrations pose a risk to nearby residences under the exposure pathway, volatilization to indoor air. Using the Tier 2 evaluation it has been determined based on the RBCA analysis, onsite and offsite representative concentrations exceed the SSTLs for benzene. As indicated above, to pass the indoor air exposure pathway offsite, the representative concentrations of benzene would have to be reduced to below 0.0036 mg/kg and the indoor air exposure pathway offsite representative concentrations of benzene would have to be reduced below 0.045 mg/l. Soil vapor samples are (Shellan) needed from subsurface soil adjacent to the residence located immediately down gradient of C-4 to evaluate current soil vapor levels. The RBCA exposure pathway model for exposure to benzene

identified this residence to have potential threats to human health and environment based on current use of the site and its vicinity. The intrinsic bioremediation of soil and ground water in the vicinity of wells C-1 through C-4, C-6 and C-7 was evaluated using recent groundwater data. The observed trends for indicator parameters of alkalinity, dissolved iron (ferrous), nitrate, sulfate, dissolved oxygen and oxygen-reduction potential (ORP) versus total BTEX in the site wells suggested that intrinsic bioremediation is occurring at the subject site. Additionally, there has been an anticipated increase in bioremediation parameter values at this site due to increased groundwater elevations.

5.0 RECOMMENDATIONS

The use of ORC as a method of enhanced bioremediation has been effective in wells C-2 and C-3. We propose the use of this compound in the future as part of the overall remediation process of this site. At this time, we propose that the following remediation alternatives be considered at this site in order to remove hydrocarbon source areas and stabilize and reduce offsite migration of the plume.

- 1. Perform a soil vapor survey in the vicinity of the site to include locations downgradient of wells C-9. / Immeliately adjacent to refuse the lines.
- 2. Over-purging wells C1- through C-4 periodically.
- Install ORC in wells C-2 through C-4 and C-6 prior to the next scheduled quarterly monitoring of this site.

GENERAL NOTES: BASE MAP FROM U.S.G.S. OAKLAND EAST, CA 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1980

SCALE 1:24,000

FIGURE 1 SITE LOCATION MAP

CHEVRON SERVICE STATION NO. 9-0076 4265 FOOTHILL BOULEVARD OAKLAND, CA.

PROJECT NO	DRAWN BY
DG90-076	M.L. 7/20/00
FILE NO	PREPARED BY
DG90076A	BIH
REVISION NO	REVIEWED BY

HIGH STREET

LEGEND:

SOIL SAMPLE LOCATION

AREA OF EXCAVATION

FIGURE 3

PRODUCT LINE SOIL LOCATION MAP CHEVRON SERVICE STATION NO. 9-0076 4265 FOOTHILL BOULEVARD

OAKLAND, CA.

PROJECT NO.	DRAWN BY
DG90-076	M.L. 7/28/00
FILE NO.	PREPARED BY
DG90076D	BIH
REVISION NO.	REVIEWED BY
1	

FOOTHILL BOULEVARD

APPENDIX A

Alameda County Health Care Services Letters

PHONE CONVERSATION RECORD

Date: 7/24/00 Time: /320
Person Contacted: Barney Chan ACHCSA
Phone: (510) 567-6700 Project No. DG-90076
Project Name/Location Former Cheyron Station #9-0876, GAKLAND, CA
Contacted By: Boy Heningberg StAH Geologist
NOTES: I called Barney Chair concerning his letter to
Mr. Brett Hunter, dated May 8, 2000. We (acht) had
bean regrested to submit a response to that letter
NUT 7/21/08.
I intermed has about the short lead time we had to
evaluate the dated and respect to the letter. I
told him that we were preparing a Site Carceptoal Model
and MBCA plan for this site and that we could have
the regent to hun by mid week of 7/24/08. He responded
"I will be listing towarding to seeing the report
before 1/28/00" I told him that he usular
END '
Bu Chy

June 9, 2000

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Former Chevron Station #9-0076, 4265 Footbill Boulevard, Oakland, CA.

Mr. Chan:

At the request of Chevron Products Company, Delta Environmental Consultants, Inc. (Delta) and Gettler-Ryan Inc. (GR) have prepared this response to your letter of May 8, 2000. You requested a written response to the observations noted in your letter, including a determination if residential properties near well C-4 are at risk from volatilization to indoor air, and an evaluation for the need to replace Oxygen Releasing Compound (ORC) in wells C-2 and C-4.

Delta and GR will review Chevron's file for this site and prepare a Site Conceptual Model. The Risk-Based Corrective Action (RBCA) Evaluation prepared for this site in May 1999 will be re-evaluated to include the recent monitoring and sampling data. The need to add additional ORC, ORC injection or other types of bioremediation will be evaluated. The revised RBCA and ORC evaluation will be included in the SCM, which will be submitted to you by July 24, 2000.

As you have requested, future quarterly monitoring and sampling reports for this site will be accompanied by a letter that provides an evaluation of the data, and will include conclusions and recommendations.

Please call GR at 916.631.1300 if you have questions or comments.

Sincerely,

Gettler-Ryan Inc.

Stephen J. Carter, K.G.

Senior Geologist

Greg A. Gurss Sr. Project Manager

cc:

Mr. Tom Bauhs, Chevron Products Company, PO Box 6004, San Ramon, CA 94583

Mr. Jim Brownell, Delta Environmental Consultants, Inc., 3164 Gold Camp Drive, Suite 200,

Rancho Cordova, CA 95670

Ms. Karen Petryna, Equiva Services LLC, PO Box 7869, Burbank, CA 91501-7869

Mr. Dave DeWitt, Tosco Marketing Company, 2000 Crow Canyon Place, Suite 400, CA 94583

Ms. Erica Myran, Albertons's Inc., PO Box 20, Boise, 1D 83726

Oakland, ch #9-0076, letter l

DG90076B.3C01

Careg (Tenss Caethlu-Kyan (916) 631-1317

ALAMEDA COUNTY **HEALTH CARE SERVICES**

AGENCY

DAVID J. KEARS, Agency Director

May 8, 2000 StID # 103

Mr. Brett Hunter Chevron USA Products 6001 Bollinger Canyon Rd., Bid L P.O. Box 6004 San Ramon, CA 94583-0804

ENVIF ENVIRONMENTAL PROTECTION 1131 Herbor Bey Farkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337**-333**5

Re: Former Chevron Service Station 9-0076, 4265 Foothill Blvd., Oakland CA 94601

Dear Mr. Hunter:

I have received and reviewed the April 28, 2000 1" Quarter 2000 Monitoring report for the above site as prepared by Blaine Tech Services. This report documents the March 9, 2000 sampling event. It appears that conditions at this site have changed from that when our office concurred with groundwater monitoring only as the recommended remedial approach. Significant changes have occurred in groundwater elevation, contaminant concentrations and bio-indicator measurements. This situation may have been recognized had your consultant provided a recommendation and conclusion section within their quarterly reports. Our office has on several occasions requested this information from you to no avail.

The following observations are of particular concern:

- From 12/99 to 3/00, groundwater elevation has increased significantly in wells, no well exhibiting a greater change than C-1, which increased nearly 8'. The resulting increase in TPHg, BTEX and MTBE is indicative of shallow soil contamination.
- There has been an increase in benzene concentration in well C-4, the well closest to the nearby residences. Please determine if this presents a risk to the these residents under the exposure pathway, volatilization to indoor air.
- The concentration of TPHg and BTEX in C-7 increased significantly, indicating that natural attenuation may not be occurring as anticipated.
- The concentration of dissolved oxygen in wells C-2 and C-4, the well with ORC socks, is not any higher than the non-ORC wells, indicating that these socks are spent. Please evaluate the need to add additional ORC socks, ORC injection or other type of enhanced bioremediation chemical. You are aware that Equiva Services is considering some type of chemical oxidant addition to address their own TPH release, a potential off-site source to this Chevron site.

Please respond to this letter in writing within 30 days or no later than June 9, 2000.

S.

Mr. Brett Hunter 4265 Foothill Blvd., Oakland 94601 May 8, 2000 StJD # 103 Page 2.

You may contact me at (510) 567-6765 if you have any questions.

Sincerely,

Barney M. Chan

Hazardous Materials Specialist

Bans Un Cha

C: B. Chan, files

Ms. K. Petryna, Equiva Services LLC, P.O. Box 7869, Burbank, CA 91501-7869

Mr. D. Dewitt, Tosco Oil Co., 2000 Crow Canyon Place, Suite 400, San Ramon, CA 94583

Ms. Barbara Russell, American Stores Properties, Inc., 299 South Main St., Szlt Lake City, UT 84111-2203

stat4265Foothill

TABLE 1 Summary of Analytical Results

Groundwater Samples (Sample Date: 9/1/87)

<u>Well</u>	Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes <u>(ppb)</u>
C-1	22,000	800	1,000	2,900
C-2	(floating	product	detected)	
C-3	250	11	8	7
C-4	3,200	520	66	130
Detection Limits	50	1	1	1

Boring	Depth <u>(feet)</u>	Gasoline (ppm)	Benzene (ppm)	Toluene (ppm)	Xylenes.
C-A	8.5-10.0	3,600	33	12	350
	19.0-20.5	63	2.0	0.1	2.0
	23.5-25.0	52	1.8	nd	0.4
C-1	9.0-10.5	nd	nd	nd	nd
	19.0-20.5	nd	nd	nd	nd
	29.0-30.5	nd	nd	nd	nd
C-2	9.0-10.5	1,200	16	54	120
	19.0-20.5	nd	0.07	0.8	nd
	29.0-30.5	48	0.93	0.1	3
C-3	9.0-10.5	7	0.05	nd	0.4
	19.0-20.5	nd	nd	nd	nd
	29.0-30.5	nd	nd	nd	nd
C-4	9.0-10.5	580	3.9	23	46
	19.0-20.5	nd	nd	nd	nd
	29.0-30.5	nd	nd	nd	nd
Detection	n Limits	5	0.05	0.1	0.4

Notes: nd - not detected

ppb - parts per billion
ppm - parts per million

Table 1. Analytical Results - Chevron Service Station #9-0076, 4265 Foothill Boulevard, Oakland, California.

Sample Name	Depth (ft)	Date	TPHg <	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ	Lead
				<u> </u>		77			
PL1-4	4.0	07/21/97	1.8	0.031	0.016	0.023	0.19	2,5	***
PL2-4	4.0	07/21/97	210	0.64	0.90	3.6	11	<2.5	
PL3-4	4.0	07/21/97	34	0.20	0.15	0.88	4.4	10	
PL4-4	4.0	07/21/97	45	< 0.0050	< 0.0050	0.87	3.5	10	
PL5-4	4.0	07/21/97	130	0.64	0.25	0.71	0.51	6.9	
SP1-(A-D)*		07/21/97	431	0.034	0.045	0.29	0.93		220(14², 0.67³)
SP2-(A-D)		07/21/97	<1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050		36

EXPLANATION:

TPHg = Total Petroleum Hydrocarbons as gasoline

MTBE = Methyl t-Butyl Ether

ppm = Parts per million

--- = Not analyzed/not applicable

1 = Gasoline and unidentified hydrocarbons > C8

1 = STLC extract result

3 = TCLP extract result

* = Sample was also analyzed for Halogenated Volatile Organics by EPA Method 8010 - all compounds were not detected.

ANALYTICAL METHODS:

TPHg = EPA Method 8015 Mod.

Benzene, toluene, ethylbenzene, xylenes, and MTBE = EPA Method 8020

Lead = EPA 6010

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1271)

1219.02

Results of Soil Analyses - Chevron Service Station #9-0076, 4265 Foothill Boulevard, Oakland, California TABLE 2.

Soil Boring (Well ID)	Sample Depth	Date Sampled	Analytical Lab	Analytic Method	Sat/ Unsat	TPH-G <	8 parts per	E million (mg	τ 3/kg)	x
BX-E	11.0	08/01/90	GTEL	8015/8020	Unsat	54".	0.5	0.8	1.7	, ,
(C-5)	16.0	08/01/90	GTEL	8015/8020	Unsat	<10.	<0.005	<0.005	0.008	4.5 0.02
	21.0	08/01/90	GTEL	8015/8020	Unsat	<10°	<0.005	<0.005	<0.005	<0.015
	26.0	08/01/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
3H-F	16.0	08/01/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
(C-6)	21.0	08/01/90	GTEL * !	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
4	31.0	08/01/90	GTEL 📑	8015/8020	Unsat	42	0.2	0.1	<0.005	0.3
•	41.0	08/01/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
IH-G	11.0	07/31/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
(C-7)	16.0	07/31/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
	21.0	07/31/90	GTEL	8015/8020	Unsat	<10	0,02	<0.005	<0.005	<0.015
	31.0	07/31/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.015
	41.0	07/31/90	GTEL	8015/8020	Unsat	<10	0.007	<0.005	<0.005	<0.015
вк-н	5.5	11/01/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	40 005	-0.005
(C-8)	40.0	11/01/90	GTEL	8015/8020	Unsat	<10	<0.005	<0.005	<0.005	<0.005
	45.0	11/01/90	GTEL	8015/8020	Sat	<10 <10	<0.005	<0.005	<0.005 <0.005	<0.005 <0.005

Abbreviations:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

E = Ethylbenzene

T = Toluene

X = Xylenes

Sat = Saturated soil sample

Unsat = Unsaturated soil sample
<n = Not detected at detection limit of n ppm

Analytical Laboratory:

GTEL = GTEL Environmental Laboratories, Concord, California

Analytic Methods:

8015 = Modified EPA Method 8015 for TPH-G

8020 = EPA Method 8020 for BETX

Table 1 Soil Analytical Data Total Petroleum Hydrocarbons (TPPH as Gasoline and BTEX Compounds)

Chevron Service Station 9-0076 4265 Foothill Boulevard at High Street Oakland, California

Sample ID	Sample Depth (feet)	Date Sampled	TPPH as Gasoline (ppm)		Benzene (ppm)	Toluene (ppm)	Ethyl- benzene (ppm)	Xyienes (ppm)
C-9	10	07/10/96	1.2	а	ND	ND	ND	ND
	20		ND		ND	ND	ND	ND
	30		1,1	a	ND	ND	ND	ND
	45		ND		ND	ND	ND	ND
TPPH	= Total pur	geable petro	leum hydro	car	bons			
ppm	= Parts per	million						
ND	= Not detec	cted						
a.	Unidentified	d hydrocarbo	ons <c8< td=""><td></td><td></td><td></td><td></td><td></td></c8<>					

FOOTHILL BOULEVARD

· SOIL GAS SAMPLE LOCATION

Chamon Station

FIGURE 1. Sample Locations

ENVIRONMENTAL SERVICES, INC.

This map is integral to a written report and should be viewed in that context.

MOBIL SERVICE STATION #10-H69 4280 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

TABLE 1

LABORATORY RESULTS

FLAME IONIZATION DETECTOR ANALYSIS

CONCENTRATIONS IN MICROGRAMS-PER-LITER

SAMPLE	PENTANE/	BENZENE	TOLUENE	ETHYL- BENZENE	m- & p- XYLENE	o- XYLENE	TOTAL VOLATILES ²
						10	
1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2	573	1.2	21	13	9.6	8.9	4,643
3	5,497	150	291	345	181	63	
4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
5	13	<1.0	4.3	<1.0	<1.0	<1.0	136
6	<1.0	·· <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
7	3.8	<1.0	<1.0	<1.0	<1.0	<1.0	30
8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
9 .	2.4	<1.0	3.3	2.4	<1.0	<1.0	119
10	4.5	<1.0	<1.0	<1.0	<1.0	<1.0	89
11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
12	6.5	<1.0	6.3	<1.0	<1.0	<1.0	
13	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	19 /
14	10	3.0	112	64	291	120	
15	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	25
16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
FIELD	CONTROL S	AMPLES					
17	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
18	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
LABORA	TORY SYRI	NGE BLANK	<u>s</u>				
BM1-1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUPLIC	ATE ANALY	<u>ses</u>					
10	4.5	<1.0	<1.0	<1.0	<1.0	<1.0	89
10 10R	4.1	<1.0	<1.0	<1.0	<1.0	<1.0	
TOK	74 + J.	74.0	~1.0				

¹CONCENTRATIONS BASED ON RESPONSE FACTOR OF MTBE

²CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS, AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE

APPENDIX C

Soil Boring Logs and Well Completion Diagrams

Well Construction and Boring Log Details - Well C-5 (BH-E)

Chevron Service Station #9-0076 Oakland, California

Well Construction and Boring Log Details - Well C-6 (BH-F)

Chevron Service Station #9-0076 Oakland, California

Well Construction and Boring Log Details - Well C-6 (BH-F)

Well Construction and Boring Log Details - Well C-7 (BH-G)

Well Construction and Boring Log Details - Well C-7 (BH-G)

Boring Log and Well Construction Details - Well C-8 (BH-H)

Boring Log and Well Construction Details - Well C-8 (BH-H)

Figure 4. Wells Within Approximately 1/2 Mile of Chevron Service Station #9-0076, 4265 Foothill Boulevard, Oakland, California

TARIF 1	Wells Within a One-half Mile	Radius of Chevron S	s #90076, 42	65 Foothill Blvd.,	Oakland, California

٠.

Well ID	Ouner	Well Location	Date Orilled	Well Use
1	PG&E	S/S Vicksburg 38 ft east of 48th	1975	Cathodic Protection
2	PG&E	39th/Foothill Blvd.	Jan. 1975	Cathodic Protection
3	Craig Levitt	1033 44th Ave.	Oct. 1988	Honitoring
4-6	Peterson Properties	1066 47th Ave.	Mar. 1989	Monitoring
7-12	Clorox Co.	860-42nd Ave.	Aug. 1982 - Oct. 1983	Monitoring
13-16	Commercial Fueling Sys.	4301 San Leandro St.	Oct. 1986	Monitoring
17-23	Clorox Co.	850-42nd St.	Sept. 1986	Monitoring
24-30	Exxon Station #7-3006	720 High St.	Sept. 1987	Monitoring
31-34	B.P. Oil	4280 Foothill Blvd.	April 1989	Monitoring
35	Nat'l Lead Co.	4801 San Leandro St.	1923	Industrial
36-38	Shell Oil Co.	3750 E. 14th Avenue	1990	Monitoring
39	Trust for Public Land	1601 39th Avenue	1977	Irrigation
40	Robert Hekeboll	45th/Coliseum/High St.	1989	Monitoring

- . . -: - :

. .

Table 1. Performance Summary, Chevron Service Station 9-0076, 4265 Fooothill Boulevard, Oakland, California (continued)

DATE	GALLONS IN TANK THIS DATE	GALLONS PUMPED BETWEEN READINGS	DAYS BETWEEN READINGS	AVERAGE GALLONS PUMPED PER DAY	TOTAL GALLONS SINCE START-UP	COMMENTS
01/18/93	0	o	40	0.0	4,300	Tank drained, system reserted.
03/08/93	1,500	1500	49	30.6	5,800	Tank sampled, pump off.
04/07/93	0	0	30	0.0	5,800	Tank drained system restarted.
04/29/93	1,500	1500	22 ¹	68.2	7,300	Tank sampled, pump off.
05/25/93	0	0	26 "	0.0	7,300	Tank drained, system restarted automatically
06/11/93	1,400	1400	17	82.4	8,700	Tank sampled.
06/16/93	1,500	100	5	20.0	8,800	Tank drained, system restarted automatically
07/01/93	750	750	15	50.0	9,550	tank at a time y a your trade and a deconder to be to
07/16/93	1,400	650	15	43.3	10,200	Tenk sampled.
08/09/93	0	0	24	0.0	10,200	Tank drained, system restarted automatically
08/24/93	700	700	15	46.7	10,900	Tank a a milea, system restarted adjoint leatty
09/08/93	1,100	400	15	26.7	11,300	
09/30/93	1,500	400	22	18.2	11,700	Tank sampled.
10/25/93	0	0	25	0.0	11,700	Tank sampled. Tank drained, system restarted automatically

Table 1. Performance Summary, Chevron Service Station #9-0076, 4265 Fooothill Boulevard, Oakland, California

DATE	GALLONS IN TANK THIS DATE	GALLONS PUMPED BETWEEN READINGS	DAYS BETWEEN READINGS	AVERAGE GALLONS PUMPED PER DAY	TOTAL GALLONS SINCE START-UP	COMMENTS
11/18/91	0	0	0	0.0	0.0	System start-up
11/19/91	0	0	1	0.0	0.0	Pump not running, restarted.
1/20/91	0	0	1	0.0	0.0	Pump not running, restarted.
11/22/91	160	160	2 .	80.0	160	Pump not running, restarted.
11/26/91	188	28	4	7.0	188	Pump not running, restarted.
2/03/91	250	62	7	8.9	250	Pump not running, restarted.
12/05/91	250	0	2	0.0	250	Pump not running, restarted.
12/06/91	257	7	1	7.0	257	Pump not running, pulled pump for repair.
01/03/92	281	24	28	0.9	281	Reinstall and restart pump after cleaning.
01/09/92	287	6	6	1.0	287	Pump not running on arrival, restarted.
1/22/92	369	82	13	6.3	369	Pump not running on arrival, restarted.
01/28/92	375	6	6	1.0	375	Pump removed from well.
04/28/92	375	0	91	0.0	375	Pump replaced with QED, system restarted, controller failure.
05/07/92	375	0	9	0.0	375	System restarted
05/18/92	948	573	11	52.1	948	·
05/27/92	1,270	322	9	35.8	1,270	System shut-off for draining.
06/05/92	1,300	30	9	3.3	1,300	Tank sampled.
06/24/92	0.0	0	19	0.0	1,300	Tank drained, system restarted.
06/25/92	25	25	29	0.9	1,325	System float switch repaired.
07/06/92	339	314	11	28.5	1,639	
08/04/92	. 800	461	29	15.9	2,100	
08/27/92	1,500	700	23	30.4	2,800	Tank full, pump off.
09/09/92	•	0	13	0.0	2,800	Tank Sampled, tank full,
	-				•	pump off.
10/20/92	0	0	41	0.0	2,800	Pump restarted. Compressor tank auto drain valve installed.
11/30/92	1,500	1500	41	: 36.6	4,300	Tank full, pump off.
12/09/92	·	0	9	0.0	4,300	Tank sampled.

⁻⁻ Table 1 continues on next page--

APPENDIX F

Oakland RBCA Eligibility Checklist and Tier I RBSLs Table

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Chevron SS# 9-0076 Job Identification: 346495 Software: GSI RBCA Spreadsheet Site Location: 4265 Foothill Blvd, Oakland Date Completed: 7/20/00 Version: 1.0.1 Completed By: Curtis A. Peck 5/98, modified by M.K. 3/99 and B.S. 7/00 NOTE; values which differ from Tier 1 default values are shown in bold italics and underlined. Exposure Commercial/Industrial Residential Surface Adult Parameter Definition (Units) (1-6yrs) (1-16 yrs) Chronic Constrcto Parameters Definition (Units) Residential Constrctn ATC Averaging time for carcinogens (yr) 70 Contaminated soil area (cm^2) A 2.2E+06 1.0E+06 ΑTα Averaging time for non-carcinogens (yr) 30 6 16 25 w Length of affect, soil parallel to wind (cm) 1.5E+03 1.0E+03 BW Body Weight (kg) 70 15 35 70 W.gw Length of affect, soil parallel to groundwater (cm. 1.5E+03 ED Exposure Duration (yr) 30 6 16 25 Ambient air velocity in mixing zone (cm/s) Uair 2.3E+02 Averaging time for vapor flux (yr) 30 25 della Air mixing zone height (cm) 2.0E+02 ΕF Exposure Frequency (days/yr) 350 250 180 Lss Thickness of affected surface soils (cm) Exposure Frequency for dermal exposure 350 EF.Dem 250 Pe Particulate areal emission rate (g/cm^2/s) 6.9E-14 **IRgw** Ingestion Rate of Water (L/day) 2 1 iRs Ingestion Rate of Soil (mg/day) 100 200 50 100 **IRadi** Adjusted soil ing. rate (mg-yr/kg-d) 1.1E+02 **Groundwater Definition (Units)** 9.4E+01 Value Inhalation rate indoor (m^3/day) IRa.in 15 20 Groundwater mixing zone depth (cm) 2.0E+02 IRa.out Inhalation rate outdoor (m^3/day) 20 20 10 Groundwater infiltration rate (cm/yr) 3.0E+01 Skin surface area (dermal) (cm^2) 5.8E+03 2.0E+03 5.8E+03 Groundwater Darcy velocity (cm/yr) 5.8E+03 Ugw 2.5E+03 SAadj Adjusted dermal area (cm^2-yr/kg) 2.1E+03 1.7E+03 Ugw.tr Groundwater seepage velocity (cm/yr) 6.6E+03 Soil to Skin adherence factor 1 Κs Saturated hydraulic conductivity(cm/s) AAFs Age adjustment on soil ingestion FALSE FALSE grad Groundwater gradient (cm/cm) AAFd Age adjustment on skin surface area FALSE FALSE Sw Width of groundwater source zone (cm) Use EPA tox data for air (or PEL based)? TRUE tox Sd Depth of groundwater source zone (cm) owMCL? Use MCL as exposure limit in proundwater? FALSE phi.eff Effective porosity in water-bearing unit 3.8E-01 Fraction organic carbon in water-bearing unit foc.sat 1.0E-03 BIO? Is bigattenuation considered? FALSE BC. Biodegradation Capacity (mg/L) Matrix of Exposed Persons to Residential Commercial/Industrial Complete Exposure Pathways Chronic Constrctn Soll Definition (Units) Value Ouldoor Air Pathways: hc Capillary zone thickness (cm) 6.1E+01 SS.v Volatiles and Particulates from Surface Soils FALSE FALSE FALSE hv Vadose zone thickness (cm) 5.4E+02 S.v Volatilization from Subsurface Soils FALSE FALSE Soil density (g/cm^3) фо 1.7 GW.v Volatilization from Groundwater **FALSE** FALSE foc Fraction of organic carbon in vadose zone 0.01 Indoor Air Pathways: phi Soil porosity in vadose zone 0.38 S.b Vapors from Subsurface Soils TRUE FALSE Lgw Depth to groundwater (cm) 6.0E+02 GW.b Vapors from Groundwater TRUE FALSE Ls Depth to top of affected subsurface soil (cm) 1.2E+02 Thickness of affected subsurface soils (cm) Soil Pathways: Lsubs 4.9E+02 SS.d Direct Ingestion and Dermal Contact FALSE FALSE FALSE Soil/groundwater pH pΗ 6.5 Groundwater Pathways: capillary vadose foundation GW.I Groundwater Ingestion **FALSE FALSE** phi.w Volumetric water content 0.342 0.12 S.I Leaching to Groundwater from all Soils FALSE FALSE ohl.a Volumetric air content 0.038 0.26 0.26 Building Definition (Units) Residential Commercial Ш Building volume/area ratio (cm) 2.0E+02 3.0E+02 Matrix of Receptor Distance Residential Commercial/Industrial ER Building air exchange rate (s^-1) 1.4E-04 2.3E-04 and Location On- or Off-Site Distance On-Site Distance On-Site Lork Foundation crack thickness (cm) 1.5E+01 Groundwater receptor (cm) FALSE GW FALSE eta Foundation crack fraction 0.01 Inhalation receptor (cm) FALSE FALSE Transport Matrix of Parameters Definition (Units) Residential Commercial Target Risks Individual Cumulative Groundwater TRab Target Risk (class A&B carcinogens) 1.0E-06 Longitudinal dispersivity (cm) ax TRc Target Risk (class C carcinogens) 1.0E-05 Transverse dispersivity (cm) ау THQ Target Hazard Quotient 1.0E+00 az Vertical dispersivity (cm) Calculation Option (1, 2, or 3) Opt 2 Vapor Tier **RBCA Tier** 2 dcy Transverse dispersion coefficient (cm)

dcz

Vertical dispersion coefficient (cm)

RBCA CHEMICAL DATABASE

Physical Property Data

CAS			Molect Weig (g/mo	ht		oeff	usion icients in wate (cm2/s		log (Kod log(Ko (@ 20 - 2 log(i/k	d) (5 C)	•	_aw Consta (0 - 25 C)	nt	Vapor Pressur (@ 20 - 25 (mm Hg	C)	Solubility (@ 20 - 25 ((mg/L)		acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		ref	, ,	ref	pKa	pKb	ref
71-43-2	Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	A	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	A	1		
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	A			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330-20-7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			
					<u>k</u>															

Site Name: Chevron SS# 9-0076

Site Location: 4265 Foothill Blvd, Oakl Completed By: Curtis A. Peck 5/98, mo Date Completed: 7/20/2000

Software version: 1.0.1

RBCA	CHEM	ICAL	DAT	AB/	ASE
-------------	------	------	-----	-----	-----

Toxicity Data

		eferer Dose g/kg/c)			Slope Factor: ng/kg/i	ŝ		EPA Weight	İs
CAS Number Constituent	Oral RfD_oral		Inhalation RfD_inhal	ref	Oral SF_oral	ref	Inhalation SF_inhal	ref	of Evidence	Constituent Carcinogenic?
71-43-2 Benzene	-		1.70E-03	R	-2:90E-02	A	1.00E-01	Α	Α	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	15-1				D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	(6.4		•			FALSE
108-88-3 Toluene	2,00E-01	A,R	1.14E-01	A,R	-		-		D	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	A	-		-		D	FALSE

Software version: 1.0.1

Site Name: Chevron SS# 9-0076

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Site Location: 4265 Foothill Blvd, Oa Completed By: Curtis A. Peck 5/98, Date Completed: 7/20/2000

Maximum CAS Contaminant Level Number Constituent MCL (mg/L) reference		taminant Level	Permissible Exposure Limit PEL/TLV		Relative Absorption Factors		Detection Groundwater (mg/L)		Limits Soil (mg/kg)		Half Life (First-Order Decay) (days)		
	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	re
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002		0.005	S	720	720	Н
100-41-4 Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	Ċ	0.005	Š	228	228	H
1634-04-4 Methyl t-Butyl Ether	1	,	1.44E+02	ACGIH	1	0.5		_		_	360	180	Н
108-88-3 Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	s	28	28	Н
1330-20-7 Xylene (mixed isomers)	1.00E+01	•		ACGIH	1	0.5	0.005	č	0.005	-	360	360	Н

Site Name: Chevron SS# 9-0076

Site Location: 4265 Foothill Blvd, Oakland

Completed By: Curtis A. Peck 5/9 Date Completed: 7/20/2000

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Repr	esentative COC	Conce	ntration	
CONSTITUENT	in Groundy	vater	in Surface	Soil	in Subsurfac	e Soil
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note
Benzene	7.9E-13	Arith			1.2E+0	Arith
Ethylbenzene	2.0E-1	Arith			6.5E-1	Arith
Methyl t-Butyl Ether	6.3E-1	Arith			6.4E+0	Arith
Toluene	1.0E-1	Arith			4.5E+0	Arith
Yulana (miyad isomers)	6 6E-1	Arith			1 1F+1	Arith

Site Name: Chevron SS# 9-0076 Site Location: 4265 Foothill Blvd, Oakland Completed By: Curtis A. Peck 5/98, modified by U.K. Date Completed: 7/20/2000

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Chevron SS# 9-0076	Site Location: 4265 Foothill Blvd,	Oakla

Completed By: Curtis A. Peck 5/ Date Completed: 7/20/2000

4 OF 9

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

SUBSURFACE SOLS:	Exposure Concentration				
VAPÖR INTRUSION TO BUILDINGS	Source Medium Subsurface Soil Conc.	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1)/(2)	4) Exposure Multiplier (IRxEFxED)(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)
Constituents of Concern	(mg/kg)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	1.2E+0	3.2E+1	3.8E-2	8.8E-2	3.3E-3
Ethylbenzene	6.5E-1	3.2E+1	2.0E-2	2.1E-1	4.2E-3
Methyl t-Butyl Ether	6.4E+0	5.9E+1	1.1E-1	2.1E-1	2.2E-2
Toluene	4.5E+0	3.8E+1	1.2E-1	2.1E-1	2.4E-2
Xylene (mixed isomers)	1.1E+1	7.0E+1	1.6E-1	2.1E-1	3.2E-2

NOTE: ABS = Dermal absorption factor (dim)

BW = Body weight (kg)

EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day)

AF = Adherance factor (mg/cm^2) AT = Averaging time (days)

CF = Units conversion factor ED = Exposure duration (yrs)

IR = Inhalation rate (m^3/day)

POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

@ Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

P	RΟ	Α	SII	13	ASS	ESS	ME	т	ī

Tier 2 Worksheet 8.1

Site Name: Chevron SS# 9-0076	3	Site Location: 4265 Foothi	II Blvd, Oakland Completed By	: Curtis A. Peck 5/98, modifie	Date Completed: 7/20/2000	5 OF
		TIER 2 EXPO	SURE CONCENTRATION AND	INTAKE CALCULATION		-
GROUNDWATER:	Exposure Concentration	territoria de la compositiva de la comp	PMMS (A Period America Box as well to be the confidence before before the Arthur Arthur Arthur Arthur Arthur A	on the particular and the second section of the second		TOTAL PATHWAY INTAKE (mg/kg-day)
VAPOR INTRUSION TO BUILDINGS	(Sum intake values from subsurface					
	Groundwater Conc.	Receptor	Indoor Air: POE Conc. (mg/m^3) (1)/(2)	(IRxEFxED)(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	& groundwater routes.)
Constituents of Concern	(mg/L)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	7.9E-1	3.9E+2	2.0E-3	8.8E-2	1.8E-4	3.5E-3
Ethylbenzene	2.0E-1	3.9E+2	5.2E-4	2.1E-1	1.1E-4	4.3E-3
Methyl t-Butyl Ether	6.3E-1	4.8E+2	1.3E-3	2.1E-1	2.7E-4	2.2E-2
Toluene	1.0E-1	4.0E+2	2.6E-4	2.1E-1	5.4E-5	2.4E-2
Xylene (mixed isomers)	6.6E-1	4.3E+2	1.5E-3	2.1E-1	3.2E-4	3.3E-2

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor EO = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
---	---	--	---

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

		RBCA SITE	ASSESSMENT				Tier 2 Wor	ksheet 8.2	
Site Name: Chevron SS# 9-00	076	Site Location: 4265 F	oothill Blvd, Oakland		Completed By	: Curtis A. Peck 5/98, mo	odified b Date Completed	: 7/20/2000	2 (
			TIER 2 PAT	THWAY RISK	CALCULATIO	N			
Laringer za								egner inner dir	
Landy A printer & Francisco Control Manufacture Manufacture Manufacture Manufacture Manufacture & Ma	A CO. STOCK A CO. S.	AL SOLD AND A SHARE AND	CARCINOGENIC R		and the contraction of the contr	ertika titi ke kuli an kita () i ta antaun disakutukutukutu di period (TOXIC EFFECTS		an ing natural year, in a sign direction of
	genic (3) Inhalation g/day) Slope Factor	` '	Risk (2) x (3) Intake		Total Toxicant (6) Inhalation Rate (mg/kg/day) Reference Dose		dual COC otient (5) / (6)		
Constituents of Concern	Classification	Residential	(mg/kg-day)^-1	Residential		Residential	(mg/kg-day)	Residential	
Benzene	- A	3.5E-3	1.0E-1	3.5E-4		8.1E-3	1.7E-3	4.8E+0	
thylbenzene	D					4.3E-3	2.9E-1	1.5E-2	
lethyl t-Butyl Ether						2.2E-2	8.6E-1	2.6E-2	
oluene	<u> </u>					2.4E-2	1.1E-1	2.1E-1	
(ylene (mixed isomers)	D]		[<u> </u>	3.3E-2	2.0E+0	1.6E-2	<u> </u>
		Total Pathway	Carcinogenic Risk =	3.5E-4	0.0E+0	Total Pat	thway Hazard Index = [5.1E+0	0.0E+0
•		- -	•		•	-	•		

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Serial: G-225-ZRX-486

Site Name: Chevron SS# 9-0076

Completed By: Curtis A. Peck 5/98, modified by U.K. 3/99 and B.S. 7/00

Site Location: 4265 Foothill Blvd, Oakland

Date Completed: 7/20/2000

1 of 1

TIER 2 BASELINE RISK SUMMARY TABLE												
			BASELINI	E CARCINOGI	NIC RISK			BASEL	NE TOXIC E	FECTS		
						Risk	Risk					
						Limit(s)				Limit(s)		
		Individual	-		COC Risk	Exceeded?		Quotient	Hazard	d Index	Exceeded?	
ļ	EXPOSURE	Maximum	Target	Total	Target		Maximum	Applicable	Total	Applicable		
	PATHWAY	Value	Risk	Value	Risk		Value	Limit	Value	Limit		
	(allegaterals)/412/s	KANSUKSEN			1920 (History 1937)							
l	Complete:	NC	1.0E-6	NC	N/A	■	NC	1.0E+0	NC	N/A		
	Mje(e)(e)Rezalja (574)	OSUREPATH	W. K.									
				0.55.4	b 17.6		105.0	4.0=.0			Arithma	
ĺ	Complete:	3.5E-4	1.0E-6	3.5E-4	N/A		4.8E+0	1.0E+0	5.1E+0	N/A	•	
	4011 572 4993	7:01111/372°	namentu een milaisa		Control of the Control							
١	Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A		
	Silaiten der er eren - Negle element i seksisk					oninem il alegam vienne rachini vienne il					and a minit	
	(e):(6()/(j))//;¥£=1;			and the same of the same					6.5			
ı	Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A		
				<u> </u>	<u> </u>	<u>I </u>	i <u> </u>				L	
		AND DATE	and the second of the second			Jennya an ang aisa. I	Colored and the second	interest in alternative in the second of the feet and of	desident de la constant de la consta	ome was quarter as a superior of the superior		
N	West and the point of the property of the prop		2011、1965年1月1日 (1965年) 2011年1日 - 1965年1日 (1965年)			CDHESSES TO	egy had deeper an older a			Section 11.		
		3.5E-4	1.0E-6	3.5E-4	N/A		4.8E+0	1.0E+0	5.1E+0	N/A		
	Rass from a an of voscious business	te production and in the experience was	1904 and a group of the state o	no en el como estado el maso secundo al meca estados	Varrenra ada noministrari est industri us			minoraranian makamatan in handi. 1943 metaki	Automotive Control of the control of			
L												

Software: GSI RBCA Spreadsheet

Version: 1.0.1

		RBCA SITE	ASSESSIV	ENT					7	ler 2 Worksh	eet 9.2	
	nevron SS# 9-0076			•	eck 5/98, modified	by U.K. 3/99 a	nd B.S. 7/00					
Site Location:	4265 Foothill Blvd, Oakland		· · · · · · · · · · · · · · · · · · ·	led: 7/20/200								1 OF 1
SU	BSURFACE SOIL SSTL (> 0 FT BGS)	VALUES	li de la companya de			☐ MCL exposure limit? Calculation Option ☐ PEL exposure limit?			culation Option	: 2		
				SSTLI	Results For Compl	lete Exposure P	athways ("x" if	Complete)				
CONSTITUEN	ITS OF CONCERN	Representative Concentration	Soi	Leaching to	Groundwater		latilization to		platilization to	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential: (on-site)	Commercial: (on-site)	(mg/kg)	*■* If yes	Only if "yes" left
71-43-2	Benzene	1.2E+0	NA	NA	NA	3.6E-3	NA	NA	NA	3.6E-3		3.3E+02
100-41-4	Ethylbenzene	6.5E-1	NA	NA	NA	4.4E+1	NA	NA	NA	4.4E+1		<1
1634-04-4	Methyl t-Butyl Ether	6.4E+0	NA	NA	NA	2.5E+2	NA	NA	NA	2.5E+2		<1
108-88-3	Toluene	4.5E+0	NA	NA	NA	2.1E+1	NA	NA	NA	2.1E+1		<1
1330-20-7	Xylene (mixed isomers)	1.1E+1	NA	NA	NA	>Res	NA	NA	NA	>Res		<1
			>Res	indicates risk	-based target con	centration grea	ter than constitu	ent residual sa	turation value			

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

Version: 1.0.1

		RBCA	SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9.3	, <u>, , , , , , , , , , , , , , , , , , </u>
Site Name: Ch	nevron SS# 9-0076		Completed E	ly: Curtis A. Po	ck 5/98, modified	by U.K. 3/99 a	nd B.S. 7/00	_				
Site Location:	4265 Foothill Blvd, Oakland	··	Date Completed: 7/20/2000									1 OF 1
<u> </u>	GROUNDWATER SSTL VA	ALUES	Target Risk (Class A & 8) 1.0E-6					Calculation Option: 2				
				SSTL	. Results For Com	plete Exposure	Pathways ("x" If (Complete)				<u> </u>
Representative Concentration CONSTITUENTS OF CONCERN			Groundwater Ingestion			Groundwater Volatilization to Indoor Air		Groundwater Volatilization to Outdoor Air		Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"■" If yes	Only if "yes" left
71-43-2	Benzene	7.9E-1	NA.	NA	NA	4.5E-2	NA	NA	NA	4.5E-2		1.8E+01
100-41-4	Ethylbenzene	2.0E-1	, NA	NA	NA	>Sol	NA	NA	NA	>Sol		<1
1634-04-4	Methyl t-Butyl Ether	6.3E-1	. NA	NA	NA	2.0E+3	NA NA	NA	NA	2.0E+3		<1
108-88-3	Toluene	1.0E-1	. NA	NA	NA	2.2E+2	NA	NA	NA	2.2E+2		<1
1330-20-7	Xylene (mixed isomers)	6.6E-1	NA	NA	NA	>Sol	NA	NA	NA	>Sol		<1
			 -	>Sol	indicates risk-bas	sed larget conc	entration greater t	han constituent	solubility			

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-225-ZRX-486

ified

SCREEN 7.1 GROUNDWATER CONCENTRATION CALCULATOR

offsite

Calculated	Default
Distribution	Detection
of Data	Limit

(mg/L)

Lognormal	0.5
Normal	0.5
Lognormal	2.5
Normal	0.5
Lognormal	0.5

Analytical Data (Up to 50 Data Points)

3

2

(mg/L)	J. 6 (10 (10 (10 (10 (10 (10 (10 (10 (10 (10									
(rigit)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Well Name	C6	C6	C6	C7	C7	C7	C7	C8	C8	C8
Date Sampled 9/30/99	12/22/99	3/9/00	6/23/00	9/30/00	12/22/09	3/9/00	6/23/00	8/11/97	3/1/2/98	3/31/99

0.0927	0.152	10.12	0.21	0.282	0.162	2.7	0.0034	ND:	ND 1	ND I
0.00369	0.0055	0.005	ND	0.12	0.0447	0.7	ND	ND)	ND	ND
0.0329	0.113	0.036	0.064	0.126	0.141	ND	0.0073	ND	0.0026	0.0118
ND	0.00216	0.00074	ND	0.0263	0.0181	0.11	ND	NO:	ND	ND
ND =	0.00141	0.0025	0.0058	0.236	0.0853	1.5	0.0016	INE	NID	ND

11

E 3.78 C.23 V

12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
										8					
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
C8	C9	(Q()	C9	CO				學能够		施金额			34 Gard		
3/9/00	6/11/97	3/12/98	3/31/99	3/9/00	A SAFE			製體體		BOMBE					
-		- WEST	- PAGE	III Service	1										
3(P) (NP) (NP) (NP)	ND ND	ND ND	ND	ND ND						MILES EN					
INID	ND	NID	ND 0.0125	ND ND						S. 10 (1)					
(00)	ND ND	ND.	ND	ND											1010
0.0018	ND T	(819)	ND	0.00075	d Los			明							

i.

1990

.

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

(mg/L) (m

.

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Calculations

	11 *					
	Data	Transformed Data				
		Coeff.				
Mean	Std. Dev.	Variation	Mean	Std. Dev.		
3.58E-01	6.29E-01	1.76E+00	-1.68E+00	1.29E+00		
2.11E-01	1.67E-01	7.90E-01	-2.22E+00	1.65E+00		
5.03E-01	5.99E-01	1.19E+00	-2.13E+00	2.15E+00		
1.82E-01	1.07E-01	5.90E-01	-2.40E+00	1.87E+00		
2.24E-01	3.60E-01	1.61E+00	-3.18E+00	2.57E+00		

ONSITE RISK-BASED LEVEL AND SITE SPECIFIC TARGET LEVEL SUMMARY

Chevron Station No. 9-0076 4265 Foothill Boulevard Oakland, California

Chemical of Concern	Exposure Pathway	Representative Concentrations (mg/kg)	SSTL (mg/kg)	SSTL Exceed?	CRF_
SOIL					
Benzene	Volatilization to indoor air (residential)	1.2	0.0036	Yes	330
Toluene	Volatilization to indoor air (residential)	4.5	21	No	NA
Ethylbenzene	Volatilization to indoor air (residential)	0.65	44	No	NA
Total Xylenes	Volatilization to indoor air (residential)	11	>Res	No	NA
MTBE	Volatilization to indoor air (residential)	6.4	250	No	NA
GROUNDWATER	···	(mg/L)	(mg/L)		
Benzene	Volatilization to indoor air (residential)	0.79	0.045	Yes	18
Toluene	Volatilization to indoor air (residential)	0.1	220	No	NA
Ethylbenzene	Volatilization to indoor air (residential)	0.2	>Sol	No	NA
Total Xylenes	Volatilization to indoor air (residential)	0.66	>Sol	No	NA
MTBE	Volatilization to indoor air (residential)	0.63	2,000	No	NA

CRF = Constituent reduction factor.

SSTL = Site specific target level.

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

>Sol = indicates risk-based target concentration greater than solubility.

>Res = indicates risk-based target concentration grater than consituents residual saturation value.

NA = Not Applicable.

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Chevron SS# 9-0076 offsite
Site Location: 4265 Foothill Blvd, Oakland
Date Completed: 7/20/00
Completed By: Curtis A. Peck 5/98, modified by U.K. 3/99 and B.S. 7/00

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure			Residential			ial/Industrial	Surface				
arameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn		Definition (Units)	Residential	Constrctn	
Tc	Averaging time for carcinogens (yr)	70					A	Contaminated soil area (cm^2)	2.2E+06	1.0E+06	
Tn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
W	Body Weight (kg)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm	1.5E+03		
D	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Averaging time for vapor flux (yr)	30			25	1	della	'Air mixing zone height (cm)	2.0E+02		
F	Exposure Frequency (days/yr)	350			250	180	Lss	Thickness of affected surface soils (cm)	2.02.02		
F.Derm	Exposure Frequency for dermal exposure	350			250	100	Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
gw	Ingestion Rate of Water (L/day)	2			1		1.0	ranculate area emission rate (gruin 2/8)	0.9C-14		
is.	Ingestion Rate of Soil (mo/day)	100	200		50	100					
∖s ≷adi	Adjusted soil ing, rate (mg-yr/kg-d)	1.1E+02	200		9.4E+01	100					
								r Definition (Units)	Value	-	
la in	Inhalation rate indoor (m^3/day)	15	:		20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
la.out .	Inhalation rate outdoor (m^3/day)	20	*		20	10	1	Groundwater infiltration rate (cm/yr)	3.0E+01		
Α ,	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
Aadj	Adjusted dermal area (cm^2-yr/kg)	2.1E+03	•		1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
1	Soil to Skin adherence factor	1					Ks	Saturated hydrautic conductivity(cm/s)			
AFs	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
AFd	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
X	Use EPA tox data for air (or PEL based)?	TRUE					Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					phl.eff	Effective porosity in water-bearing unit	3.BE-01		
							toc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bioattenuation considered?	FALSE		
							BC	Blodegradation Capacity (mg/L)	.,		
atrix of Exp	osed Persons to	Residential			Commerci	lai/Industrial		olooogidadaani capataiy (iligib)			
	oosure Pathways				Chronic	Constrctn	Soli	Definition (Units)	Value		
utdoor Air P							hc	Capillary zone thickness (cm)	6.1E+01	•	
S.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	5.4E+02		
i.v	Volatilization from Subsurface Soils	FALSE			FALSE	TALOL	rho	Soil density (g/cm*3)	1.7		
W.V	Volatilization from Groundwater	FALSE			FALSE		fec	Fraction of organic carbon in vadose zone	0.01		
ndoor Air Pa					THEOL		phi	Soil peresity in vadose zone	0.38		
i.b	Vacors from Subsurface Soils	TRUE			FALSE		Lgw				
SW.b	Vapors from Groundwater	TRUE			FALSE		Lgw Ls	Depth to groundwater (cm)	6.0E+02		
ioil Pathway:		INCE			FALSE		Lsubs	Depth to top of affected subsurface soil (cm)	1.2E+02		
SS.d	Direct Ingestion and Dermal Contact	FALSE			541.0E	F-1 0=		Thickness of affected subsurface soils (cm)	4.9E+02		
		LALDE			FALSE	FALSE	ρН	Soil/groundwater pH	6.5		
Groundwater	-								capillary	vadose	found:
€W.i	Groundwater Ingestion	FALSE			FALSE		phl.w	Volumetric water content	0.342	0.12	0.1
š.l	Leaching to Groundwater from all Solls	FALSE			FALSE		phi.a	Volumetric air content	0.038	0.26	0.2
							Building Lb	Definition (Units)	Residential	Commercial	
latrix of Rec	eptor Distance	Resid	iential		Commerc	ial/Industrial	ER.	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
	On- or Off-Site	Distance	On-Site	•	Distance	On-Site	_ ER Lork	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
3W	Groundwater receptor (cm)	District.	FALSE		DISTRICT	FALSE		Foundation crack thickness (cm)	1.5E+01		
S S	inhalation receptor (cm)		FALSE				eta	Foundation crack fraction	0.01		
•	imalanui receptor (cm)		FALSE			FALSE					
							Transport				
Matrix of							Parameters	Definition (Units)	Residential	Commercial	
arget Risks		Individual	Cumulative				Groundwate		Desiration	Commissions	
Rab	Target Risk (class A&B carcinogens)	1.0E-06		-			ax	Longitudinal dispersivity (cm)			
rRc	Target Risk (class C carcinogens)	1.0E-05									
HQ	Target Hazard Quotient	1.0E+00					ay	Transverse dispersivity (cm)			
		2					az	Vertical dispersivity (cm)			
Opt	Calculation Option (1, 2, or 3)	_			-		Vapor				
101	KBCA HEF	2									
Tier	RBCA Tier	2					dcy dcz	Transverse dispersion coefficient (cm) Vertical dispersion coefficient (cm)			

E	В	CA	CH	EΜ	ICA	L D	ıΑ٦	ΓAΙ	3A8	ŝΕ
---	---	----	----	----	-----	-----	-----	-----	-----	----

Physical Property Data

CAS			Molect Weig (g/mo	ht		oeffi	ision cients in wate (cm2/s		log (Kod log(Ko (@ 20 - 2 log(l/k	d) 25 C)	-	Law Consta 20 - 25 C)	nt	Vapor Pressur (@ 20 - 25 (mm Hg	e C)	Solubility (@ 20 - 25 (mg/L)	,	acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		ref		ref	pKa	pKb	ref
71-43-2	Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	A		•	
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	Α			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330-20-7	Xylene (mixed isomers)	A	106.2	5	7.20E-02	A	8.50E-06	A	2.38	A	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			

Site Name: Chevron SS# 9-0076 offsite

Site Location: 4265 Foothill Blvd, Oakl Completed By: Curtis A. Peck 5/98, mo Date Completed: 7/20/2000

Software version: 1.0.1

R	BCA	CHEMI	ICAL	DAT	'ABA	\SE
---	-----	-------	------	-----	------	------------

Toxicity Data

		eferen Dose ıg/kg/d	1			Slope Factor ng/kg/	s		EPA Weight	ls
CAS	Oral		Inhalation		Oral		Inhalation		of	Constituent
Number Constituent	RfD_oral	ref	RfD_inhal	ref	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	1.00E-01	Α	Α	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		• -		D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	•		-			FALSE
108-88-3 Toluene	2.00E-01	A,R	1.14E-01	A,R	-		-		D	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	A	-		-		D	FALSE
	į									

Site Name: Chevron SS# 9-0076 offsite Site Location: 4265 Foothill Blvd, Oa Completed By: Curtis A. Peck 5/98, Date Completed: 7/20/2000

Software version: 1.0.1

CAS	Con	Maximum taminant Level	Permiss Expos Limit PEI	ure	Abs	elative orption actors	Dete Groundw (mg/L	/ater	Limits Soi (mg/l	-	(First-O	lf Life rder Decay) lays)	
Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	ref
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002		0.005	s	720	720	H
100-41-4 Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	н
1634-04-4 Methyl t-Butyl Ether			1.44E+02	ACGIH	1	0.5					360	180	H
108-88-3 Toluene	. 1.00E+00	.56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	s	28	28	H
1330-20-7 Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	s	360	360	н
		3											

Site Name: Chevron SS# 9-0076 offsite Site Location: 4265 Foothill Blvd, Oakland

Completed By: Curtis A. Peck 5/9 Date Completed: 7/20/2000

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SQURGE MEDIA

(Complete the following table)

	Representative COC Concentration										
CONSTITUENT	in Groundy	vater	in Surface	Soil	in Subsurfac	e Soil					
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note					
Benzene	2.3E-1	Arith			2.1E-2	Arith					
Ethylbenzene	5.5E-2	Arith			1.1E-2	Arith					
Methyl t-Butyl Ether	3.4E-2	Arith				Arith					
Toluene	9.8E-3	Arith			2.5E-3	ND's					
Xviene (mixed isomers)	1 1F-1	Arith	1		2.7E-2	Arith					

Site Name: Chevron SS# 9-0076 offsite Site Location: 4265 Foothill Blvd, Oakland Completed By: Curtis A. Peck 5/98, modified by U.K. Date Completed: 7/20/2000

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Chevron SS# 9-0076 offsite Site Location: 4265 Foothill Blvd, Oakland Completed By: Curtis A. Peck 5/98, modified by U.K. 3/99 and B.S. 7/00

Date Completed: 7/20/2000

1 of 1

		BASELINI	E CARCINOGE	NIC RISK			BASELI	NE TOXIC E	FFECTS	
	Individual	COC Risk	Cumulative	COC Risk	Risk Limit(s) Exceeded?	Hazard	Quotient	Hazar	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
OUTDOOR AIR	EXPOSURE PAT	HWAYS	TOWN BEAUTIES	The Brief of	PER SOLD	ed of the	Howital Ha	ictes)	es inche hi	11007010000
Complete:	NC	1.0E-6	NC	N/A	=	NC	1.0E+0	NC	N/A	•
NDOOR AIR EX	POSURE PATHY	VAYS				SEA CHEST	37611385 E-1014	(A) (1987年)	SEM THE TO	His day
Complete:	1.1E-5	1.0E-6	1.1E-5	N/A	•	1.5E-1	1.0E+0	1.5E-1	N/A	
SOIL EXPOSUR	E PATHWAYS					HE GROSS			STORY STU	
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	
GROUNDWATE	R EXPOSURE PA	THWAYS	-30,000,000			8 TE 18 TE				
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	
		10.10				una diakaye	CENTE ATTOM	A STATE OF THE STA	Type and the same	THE SECTION
HATTIE SALIES 21	SURE PATHWA	(MI Select WE)	dmum Values F			HISTORY OF		经制建设化		11/15/21/201
	1.1E-5	1.0E-6	1.1E-5	N/A	18	1.5E-1	1.0E+0	1.5E-1	N/A	

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: 1.0.1

Е	Rί	Δ	SIT	485	F٩	SM	ΕK	ī

Tier 2 Worksheet 8.1

Site	Name:	Chevron	SS# 9	9-007	6 offsite

Site Location: 4265 Foothill Blvd, Oakland Completed By: Curtis A. Peck 5/98, modifie Date Completed: 7/20/2000

5 OF 9

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION
--

GROUNDWATER:	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-d	
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum intake values from subsurface & groundwater routes.)	
		Receptor	Indoor Air: POE Conc. (mg/m^3) (1)/(2)	(IRxEFxED)/(BWxAT) (m*3/kg-day)	(mg/kg-day) (3) X (4)		
	Groundwater Conc.			,			
Constituents of Concern	(mg/L)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential	
Benzene	2.3E-1	3.9E+2	5.9E-4	8.8E-2	5.2E-5	1.1E-4	
Ethylbenzene	5.5E-2	3.9E+2	1.4E-4	2.1E-1	2.9E-5	1.0E-4	
Methyl t-Butyl Ether	3.4E-2	4.8E+2	7.2E-5	2.1E-1	1.5E-5	1.5E-5	
Toluene	9.8E-3	4.0E+2	2.5E-5	2.1E-1	5.1E-6	1.8E-5	
Xylene (mixed isomers)	1.1E-1	4.3E+2	2.7E-4	2.1E-1	5.5E-5	1.3E-4	

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm*2/day)

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI R8CA Spreadsheet Version: 1.0.1

			TIER 2 PAT	HWAY RISK (odified b Date Completed		2	
					J. LEGO E. T. T. C.	•	**	-		
nicologica da Stalogia de Statista.				TCHELT	(H) FOR EDITE (A	THWA GENERALINES		raine de la compa		
			CARCINOGENIC RI			TOXIC EFFECTS				
Constituents of Concern	(1) EPA Carcinogenic Classification	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site Residential	(3) Inhalation Slope Factor (mg/kg-day)^-1	(4) Individual COC Risk (2) x (3) On-Site Residential		(5) Total Toxica Intake Rate (mg/kg On-Site Residential	nt (6) Inhalation	(7) Individual COC Hazard Quotient (5) / (6) On-Site Residential		
Benzene	A	1.1E-4	1.0E-1	1.1E-5		2.6E-4	1.7E-3	1.5E-1	ı <u> </u>	
thylbenzene	D					1.0E-4	2.9E-1	3.5E-4		
lethyl t-Butyl Ether					• • • • • • • • • • • • • • • • • • • •	1.5E-5	8.6E-1	1.7E-5		
oluene	D					1.8E-5	1.1E-1	1.6E-4	·	
ylene (mixed isomers)						1.3E-4	2.0E+0	6.7E-5	· · · · · · · · · · · · · · · · · · ·	
•		Total Pathway Carcino	egenic Risk = [1.1E-5	0.0E+0	Total Pa	nthway Hazard Index =	1.5E-1	0.0E+0	

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Chevron SS# 9-0076 offsite Site Location: 4265 Foothill Blvd, Oakland Completed By: Curtis A. Peck 5/98, modified by U.K. 3/99 and B.S. 7/00

Date Completed: 7/20/2000

1 of 1

	BASELINE CARCINOGENIC RISK				BASELINE TOXIC EFFECTS					
EXPOSURE PATHWAY	Individual COC Risk		Cumulative COC Risk		Risk Limit(s) Exceeded?	Hazard Quotient		Hazard Index		Toxicity Limit(s) Exceeded?
	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
OUTDOOR AIR	EXPOSURE PAT	HWAYS	HALL BUILD	The Brief of	PER SOLD	gonien - a	# ortion	ictes)	ESTATE DA	(# pag/arc201)
Complete:	NC	1.0E-6	NC	N/A	=	NC	1.0E+0	NC	N/A	•
NDOOR AIR EX	POSURE PATHY	VAYS				SEATTERN STATE	SHELL SECTION	(A) (1987年)	STATE THE TAX	HERRIN
Complete:	1.1E-5	1.0E-6	1.1E-5	N/A	•	1.5E-1	1.0E+0	1.5E-1	N/A	
SOIL EXPOSUR	E PATHWAYS						State of the state		S (CSS)	
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	-
GROUNDWATE	R EXPOSURE P	ATHWAYS	=3 1.78 (X) (X)			8 77 - TROUBS				
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	
HRITTO ALL EXCI	STURE PATRIWA	V (Salart Max	dmum Valuos F	rom Complay	B (Horse V		F. Jr. 102	GB111255	TIERS WAY SO	3) (0000)
Managar Con-	1.1E-5	1.0E-6	1.1E-5	N/A	1	1.5E-1	1.0E+0	1,5E-1	N/A	

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: 1.0.1

		RBCA SITE	ASSESSM	ENT						•	lier 2 Worksh	eet 9.2	
Site Name: Ch	nevron SS# 9-0076 offsite		Completed B	y: Curtis A. Pe	eck 5/98, modified	by U.K.	. 3/99 an	d B.S. 7/00		**	· · · ·		
Site Location:	4265 Foothill Blvd, Oakland		Date Comple	ted: 7/20/2000)								1 OF 1
su	BSURFACE SOIL SSTL (> 0 FT BGS)	VALUES	Target	(Class A & B) Risk (Class C) azard Quotient	1.0E-5		•	sure limit? sure limit?		Са	culation Option	: 2	
		· · ·		SSTL F	Results For Compl	ete Exp	osure Pa	ithways ("x" if	Complete)	<u></u>			
CONSTITUEN	ITS OF CONCERN	Representative Concentration	Soil	Leaching to (Groundwater	x		atilization to loor Air		Volatilization to Outdoor Air	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Soil Leaching to Groundwater			dential: -site)	Commercial: (on-site)	Residentia (on-site)	: Commercial: (on-site)	(mg/kg)	•■• If yes	Only if "yes" teft	
71-43-2	Benzene	? 2.1E-2	NA	NA	NA	3.6	E-3	NA	NA	NA	3.6E-3		6.0E+00
100-41-4	Ethylbenzene	1.1E-2	NA	NA	NA	4.4	E+1	NA	NA	NA	4.4E+1		<1
1634-04-4	Methyl t-Butyl Ether	0.0E+0	NA	NA	NA	2.5	E+2	NA	NA	NA	2.5E+2		<1
·108-88-3	Toluene	2.5E-3	NA	NA	NA	2,1	E+1	NA	NA	NA	2.1E+1		<1
1330-20-7	Xylene (mixed isomers)	2.7E-2	NA	NA	NA	>F	₹es	NA	NA	NA	>Res		<1
			>Res	indicates risk	-based target con	centratio	on greate	er than constitu	ent residual	saturation value			

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-225-2RX-488

		RBCA	SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9.3	
	nevron SS# 9-0076 offsite 4265 FoothIII Blvd, Oakland		·	y: Curtis A. Pe eted: 7/20/2000	eck 5/98, modified	by U.K. 3/99 ar	nd B.S. 7/00					1 OF 1
	GROUNDWATER SSTL VA	LUES	Target Risi Target	k (Class A & B) Risk (Class C) lazard Quotient	1.0E-6 1.0E-5	☐ MCL expo			Cal	culation Option	; 2	r Oi r
				SSTL	. Results For Com	piete Exposure	Pathways ("x" if	Complete)				
CONSTITUEN	ITS OF CONCERN	Representative Concentration		Groundwater	Ingestion		iter Volatilization ndoor Air		er Volatilization tdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"E" If yes	Only if "yes" left
71-43-2	Benzene	2.3E-1	NA	NA	NA	4.5E-2	NA.	NA	NA	4.5E-2		5.0E+00
100-41-4	Ethylbenzene	5.5E-2	NA	NA	NA NA	>Sol	NA	NA	NA	>Sol		<1
1634-04-4	Methyl t-Butyl Ether	3.4E-2	, NA	NA	NA	2.0E+3	NA	NA	NA.	2.0E+3		<1
108-88-3	Toluene	9.8E-3	. NA	NA	NA	2.2E+2	NA	NA	NA	2.2E+2		<1
1330-20-7	30-20-7 Xylene (mixed isomers) 1.1E-1		NA	NA	NA	>Sol	NA	NA	NA	>Sol		<1

>Sol Indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

SCREEN 7.1
GROUNDWATER
CONCENTRATION
CALCULATOR

Calculated Default
Distribution Detection
of Data Limit
(mg/L)

Lognormal	0.5
Normal	0.5
Lognormal	2.5
Normal	0.5
Lognormal	0.5

Choose UCL Percentile

95%

Analytical Data (Up to 50 Data Points)

1 2 3 4 5 6 7 8 9 10 11

	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Well Name	C6	C6	C6	C6	C7	C7	C7	C7	Cit	CB	C8
Date Sampled	9/30/99	12/22/99	3/9/00	6/23/00	9/30/00	12/22/99	3/9/00	6/23/00	8/11/97	3/12/98	3/31/99
	rente de la company								DIFF COMME		
	0.0927	0.152	0.005	0.21 ND	0.282	0.162	2.7	0.0034 ND	ND.	ND MD	ND N

0,002	DISKS SAFER	III III III II AAAAAAAA	BORDA NO. FOREIGN	III CALONINI	- WILVER	100114	- U.DOS-E	A London	THE RESERVE OF THE PERSON NAMED IN	
0.00369	0.0055	0.005	ND	0.12	0.0447	0.7	ND	ND	NO	ND
0.0329	0.113	0.036	0.064	0.126	0.141	ND	0.0073	ND.	0.0028	0.0118
ND	0.00216	0,00074	ND	0.0263	0.0181	0.11	NE	ND	ND AV	ND
ND.	0.00141	0.0025	0.0058	0.236	0.0853	1:5	0.0016	NO	ND	ND

E 3.78 2.23 V

12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
										1					
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
(OB	(C9	C9	G9	© 9											
3/9/00	6/11/197	3/12/98	3/31/99	3/9/00						信温的		機器機			
ND ND ND ND DOMB	20 20 20 20 20 20	ND NP ND NB NB	ND ND 0.0125 ND ND	ND NO ND ND 0.00075											

.

28 29 31 33 34 35 36 37 38 39 41 43 (mg/L)
44 45 46 47 48 49 50

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

	Data		Transform	ned Data
		Coeff.		
Mean	Std. Dev.	Variation	Mean	Std. Dev.
3.58E-01 2.11E-01 5.03E-01	6.29E-01 1.67E-01 5.99E-01	1.76E+00 7.90E-01 1.19E+00	-1.68E+00 -2.22E+00 -2.13E+00	1.29E+00 1.65E+00 2.15E+00

5.90E-01

1.61E+00

-2.40E+00

-3.18E+00

1.87E+00

2.57E+00

1.82E-01

2.24E-01

1.07E-01

3.60E-01

Calculations

OFFSITE RISK-BASED SCREENING LEVEL AND SITE SPECIFIC TARGET LEVEL SUMMARY

Chevron Station No. 9-0076 4265 Foothill Boulevard Oakland, California

Chemical of		Representative Concentrations	SSTL	SSTL	
Concern	Exposure Pathway	(mg/kg)	(mg/kg)	Exceed?	CRF
SOIL Benzene	Volatilization to indoor air (residential)	0.021	0.0036	Yes	6
Toluene	Volatilization to indoor air (residential)	0.0025	21	No	NA
Ethylbenzene	Volatilization to indoor air (residential)	0.011	44	No	NA
Total Xylenes	Volatilization to indoor air (residential)	0.027	>Res	No	NA
MTBE	Volatilization to indoor air (residential)	0	250	No	NA
GROUNDWATER		(mg/L)	(mg/L)		
Benzene	Volatilization to indoor air (residential)	0.23	0.045	Yes	5
Toluene	Volatilization to indoor air (residential)	0.0098	220	No	NA
Ethylbenzene	Volatilization to indoor air (residential)	0.055	>Sol	No	NA
Total Xylenes	Volatilization to indoor air (residential)	0.11	>Sol	No	NA
MTBE CRF = Constituent reduction factor	Volatilization to indoor air (residential)	0.034	2,000	No	NA
SSTL = Site specific target level.			,	/	
mg/kg = Milligrams per kilogram. mg/L = Milligrams per liter.					
	concentration greater than solubility.				
>Res = indicates risk-based target NA = Not Applicable.	concentrtion grater than consituents residual saturation value.		/		
		10	08 -	7 Tier	1

March 31, 1999 Richmond, California

Response to Comments
RBCA Evaluation
Indoor Inhalation from Soil and Groundwater
Chevron Service Station #9-0076
4265 Foothill Boulevard
Oakland, California

Mr. Phil Briggs: San Ramon, California

This letter serves to respond to Mr. Barney Chan's, Alameda County Health Care Services Department, request for further clarification on the previously submitted risk assessment for the above site.

Regarding the RBCA, the concerns that where recounted for County risk assessor, Ms Madhuila Logan are addressed with the attached revised ASTM RBCA calculations. Specifically:

- The California slope factor of 0.1, not the default of 0.029 is used in these calculations.
- Two separate risk scenarios for residential indoor air inhalation were calculated. One, representing
 onsite conditions, using soil and groundwater data from wells C-2, C-3, C-4 and C5, the other,
 representing offsite conditions, using soil and groundwater data from wells C-6, C-7, C-8 and C-9.
- The estimated risk associated with residential exposure to indoor air inhalation for the onsite data set is 4.1e-4. The estimated risk associated with residential exposure to indoor air inhalation for the offsite data set is 9.0e-6. Both values are above the 1e-6 estimated risk value considered acceptable for residential exposure. These results show a higher risk value than the previously submitted assessment primarily because an arithmetic average of the soil and groundwater concentration data was used (rather than a 95% upper confidence limited geometric mean of the data). Using the arithmetic mean rather than the geometric mean for log normally distributed data such as this is not an entirely appropriate use of the tool. The use of California slope factor also raises the risk values but to a lesser degree.
- The two spoils samples, SPIA-D and SP2-A-D were removed from screen 7.3.
- Arithmetic averages for soil and groundwater data for the four quarters of 1997 and the first quarter of 1998 where used in the GSI evaluation.

Regarding the charts of bio-parameters versus BTEX concentrations, I would agree that a chart of BTEX vrs dissolved oxygen and RED-OX potential would be a useful tool and I will plot these when more DO data is available.

The concentrations for the specific parameters used in the graphs were derived from the 3/12/98 sampling event. They are the actual measured values except for the BTEX values, which are the sum of the B, T, E, and X value for the particular well.

Please contact me at 242-5953 with any questions or comments.

rmas Kelmser

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Chevron #9-0076 Onsite (Arittols Identification: #9-0076

Software: GSI RBCA Spreadsheet

Site Location: 4265 Foothill Blvd, Oakland CADate Completed: 5/21/1998

Completed By: Curtis A. Peck modified by U.K. 3/99

Version: 1.0.1

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure	Definition (Units) Adult Averaging line for carringges (vr) 70		Residential		Commercia	I/Industrial	Surface				
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrcts	
ATC	Avaraging time for carcinogens (yr)	70					A	Contaminated soil area (cm^2)	2.2E+06	1.0E+06	
ATn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.5E+03	1.0E+03	
BW	Body Weight (kg)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm)	1.5E+03		
ED	Exposure Duration (yr)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
1	Averaging time for vapor flux (yr)	30	•		25	i	delta	Air mixing zone height (cm)	2.0E+02		
EF	Exposure Frequency (days/yr)	350			250	180	Lss	Thickness of affected surface soils (cm)	1.DE+02		
EF.Derm	Exposure Frequency for dermal exposure	350			250	100	Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
IRgw	Ingestion Rate of Water (Uday)	2			1			Total of the state	0.02		
IRs	Ingestion Rate of Soil (mg/day)	100	200		50	100	*				
lRadi	Adjusted soit ing. rate (mg-yr/kg-d)	1.1E+02	200		9.4E+01	100	Groundwater	r Definition (Units)	Value		
IRa.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
IRa.out	Inhalation rate outdoor (m^3/day)	20			20	10	Oper Per	Groundwater infiltration rate (cm/yr)	3.0E+01		
SA.	Skin surface area (dermal) (cm*2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
SAadi	Adjusted dermal area (cm^2-yr/kg)	2,1E+03		2.06+03	1.7E+03	5,66703	Ugw.tr	Groundwater seepage velocity (cm/yr)	6.6E+03		
M M					1.76703		-		0.05,703		
m AAFs	Soil to Skin adherence factor	1			CALCE		Ks	Saturated hydraulic conductivity(cm/s)			
AAFd AAFd	Age adjustment on soit ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
lox	Use EPA tox data for air (or PEL based)?	TRUE					Sd.	Depth of groundwater source zone (cm)	0.05.04		
gwMCL?	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Effective porosity in water-bearing unit	3.8E-01		
							foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO7	Is bioaltenuation considered?	FALSE		
							BC	Biodegradation Capacity (mg/L)			
	osed Persons to	Residential				i/Industrial					
	osure Pathways				Chronic	Constrctn	Soil	Definition (Units)	Value		
Outdoor Air P	•						hc	Capillary zone thickness (cm)	6.1E+01		
SS.v	Volatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone Ihickness (cm)	5,4E+02		
\$.v	Volatilization from Subsurface Soils	FALSE			FALSE		tho	Soil density (g/cm^3)	1.7		
GW.v	Volatilization from Groundwater	FALSE			FALŞE		foc	Fraction of organic carbon in vadose zone	0.01		
indoor Air Pai							phi	Soil porosity in vadose zone	0.38		
S.b	Vapors from Subsurface Soils	TRUE			FALSE		Lgw	Depth to groundwater (cm)	6.0E+02		
GW.b	Vapors from Groundwater	TRUE			FALSE		Ls	Depth to top of affected subsurface soil (cm)	1.2E+02	•	
Soil Pathways	N, e						l.sub\$	Thickness of affected subsurface soils (cm)	4.9E+02		
SS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	pΗ	Soil/groundwater pH	5.5		
Groundwater	Pathways:							•	capillary	vadose	foundati
GW.i	Groundwater Ingestion	FALSE			FALSE		phi,w	Volumetric water content	0.342	0.12	0.12
S.I	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.038	0.26	0.26
	•						•				
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
	eptor Distance		lential			al/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
	On- or Off-Site	Distance	On-Site		Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1.5E+01		
GW	Groundwater receptor (cm)		FALSE			FALSE	eta	Foundation crack fraction	0.01		
S	Inhalation receptor (cm)		FALSE			FALSE					
							_				
							Transport	Professional Control	B # # #		
Matrix of								Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative				Groundwate				
TRab	Target Risk (class A&B carcinogens)	1.0E-06	_				ax	Longitudinal dispersivity (cm)			
TRe	Target Risk (class C carcinogens)	1.0E-05					ay	Transverse dispersivity (cm)			
THQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
Opt	Calcutation Option (1, 2, or 3)	2					Vapor				
Tier	RBCA Tier	2				•	dcy	Transverse dispersion coefficient (cm)			
1							dcz	Vertical dispersion coefficient (cm)			

Physical Property Data

			Molect Weig			oeff	ision icients In wate	ər	log (Kor log(K (@ 20 - 2	d)	•	Law Consta 20 - 25 C)	nt	Vapor Pressur (@ 20 - 25		Solubility (@ 20 - 25				
CAS			(g/mo		(cm2/s		(cm2/s		lag(I/k		(<u>atm-m3</u>)	•		(mm Hg)	(mg/L)	•	acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		ref		ref	рКа	pKb	Г€
71-43-2	Benzene	A	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	Α			
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	.7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	Α			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3,00E+01	4	5.15E+02	29			
4000 00 7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			

Site Name: Chevron #9-0076 Onsite (Arith Av Site Location: 4265 Foothill Blvd, Oakla Completed By: Curtis A. Peck modifiedDate Completed: 5/21/1998

Software version: 1.0.1

Toxicity Data

			eferen Dose ig/kg/d				Slope Factor: ng/kg/d	s **		EPA Weight	ls
CAS		Oral		Inhalation		Oral		Inhalation		of	Constituent
Number C	Constituent	RfD_oral	ref l	RfD_inhal	ref	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2 E	Benzene	-		1.70E-03	R	2.90E-02	Α	1.00E-01	Α	Α	TRUE
100-41-4 E	Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		*		, D	FALSE
1634-04-4 N	Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R			-			FALSE
108-88-3 T	Toluene	2.00E-01	A,R	1.14E-01	A,R	_		-		D	FALSE
1330-20-7 3	Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	À	_				D	FALSE

Site Name: Chevron #9-0076 Onsite (ArSite Location: 4265 Foothill Blvd, OalCompleted By; Curtis A. Peck modifDate Completed: 5/21/1998

Software version: 1.0.1

Miscellaneous Chemical Data

CAS	Maximum Contaminant Level		Permiss Expos Limit PEI	ure	Abs	lative orption ictors	Dete Groundv (mg/L	vater	Limits Soi (mg/k	ŧ	(First-O	if Life rder Decay) lays)	
Number Constituent	MCL (mg/L) reference		(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	ref
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	Н
100-41-4 Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
1634-04-4 Methyl t-Butyl Ether			1.44E+02	ACGIH	1	0.5					360	180	Н
108-88-3 Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	Н
1330-20-7 Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	C	0.005	S	360	360	Н

Site Name: Chevron #9-0076 Onsite (ArSite Location: 4265 Foothill Blvd, Oakland CA

Completed By: Curtis A. Peck mcDate Completed: 5/21/1998

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration										
CONSTITUENT	in Grounds	in Surface	Soil	in Subsurface Soi							
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note					
Benzene	3.1E+0	Arith	i	•	1.2E+0	Arith					
Ethylbenzene	7.9E-1	Arith			6.5E-1	Arith					
Methyl t-Butyl Ether	1.6E+0	Arith	ì		6.4E+0	Arith					
Toluene	1.5E+0	Arith			4.5E+0	Arith					
Xulene (mived isomers)	2 1F+0	Arith			1.1E+1 i	Arith					

Site Name: Chevron #9-0076 Onsite (Arith Avg) Site Location: 4265 Foothill Blvd, Oakland CA	Completed By: Curtis A. Peck modified by U.K. 3/99 Date Completed: 5/21/1998

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Chevron #9-0076 Onsite (Arith Avg)	Site Location: 4265 Foothill Blvd, Oakland CA	Completed By: Curtis A. Peck mDate Completed: 5/21/1998
	TIER 6 EVECOURE 60MOENTO 4 TIGH 4 MG	WEAR ON OUR ITION

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

SUBSURFACE SOILS:	Exposure Concentration										
VAPOR INTRUBION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rat						
Constituents of Concern		Receptor	Indoor Ale: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWrAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)						
	Subsurface Soil Conc. (mg/kg)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential						
Benzene	1.2E+0	3.2E+1	3.9E-2	8.8E-2	3.4E-3						
Ethylbenzene	6.5E-1	3.2E+1	2.0E-2	2.1E-1	4.2E-3						
Methyl t-Butyl Ether	6.4E+0	5.9E+1	1.1E-1	2.1E-1	2,2E-2						
Toluene	4.5E+0	3.8E+1	1.2E-1	2.1E-1	2.4E-2						
Xylene (mixed isomers)	1.1E+1	7.0E+1	1.5E-1	2.1E-1	3.2E-2						

NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Paint of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Inhalation rate (m^3/day)	
			•	

Software: GSI RBCA Spreadsheet

Serial: G-303-YDX-938

4 OF 9

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Chevron #9-0076	Onsile (Arith Avg)	Site Location: 4265	Foothill Blvd, Oakland C Complete	d By: Curtis A. Peck modified	by Date Completed: 5/21/1998	5 OF
		TIER 2	EXPOSURE CONCENTRATION A	AND INTAKE CALCULATION		
INDOOR AIR EXPOSURE PATHWA	YS)	artige military artige policy.	(CHECKED IF PATHWAY IS	ACTIVE)		and the Commence of the Commen
GROUNDWATER:	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-day)
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m	^3/L) 3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum intake values from subsurface
	İ	Receptor	Indeor Air: POE Cong. (mg/m^3) (c. (nig/m^3) (1) / (2) (IRxEFxED)/(BWxAT) (m^3/kg-day) (mg/kg-day) (3) X (4)		£ groundwater routes.)
		ĺ .	ĺ			
	Groundwater Conc.		}			
Constituents of Concern	{mg/L)	On-Sile Residential	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	3.1E+0	3.9E+2	7.8E-3	8.8E-2	6.9E-4	4.1E-3
Ethylbenzene	7.9E-1	3.9E+2	2.0E-3	2.1E-1	4.2E-4	4.6E-3
Methyl I-Butyl Ether	1.6E+0	4.8E+2	3.4E-3	2.1E-1	7.0E-4	2.3E-2
Toluene	1.5E+0	4.0E+2	3.7E-3	2.1E-1	7.7E-4	2.5E-2
Xylene (mixed isomers)	2.1E+0	4.3E+2	4.8E-3	2.1E-1	9.9E-4	3.3E-2

	NOTE:	ABS = Dermal absorption factor (dim) AF ≃ Adherance factor (mg/cm^2) AT ≃ Averaging lime (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
i				•	

Software: GSI RBCA Spreadsheet Version: 1.0,1

Serial: G-303-YDX-938

RBCA SITE ASSESSMENT Tier 2 Worksheet 8.2 2 QF 4 Site Name: Chevron #9-0076 Onsite (Arith A Site Location: 4265 Foothill Blvd, Oakland CA Completed By: Curtis A. Peck modified by U.KDate Completed: 5/21/1998 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS (CHECKED IF PATHWAYS ARE ACTIVE) TOXIC EFFECTS CARCINOGENIC RISK (6) Inhalation (7) Individual COC (4) Individual COC (5) Total Toxicant (2) Total Carcinogenic (3) Inhalation Risk (2) x (3) Intake Rate (mg/kg/day) Reference Dose Hazard Quotient (5) / (6) (1) EPA Intake Rate (mg/kg/day) Slope Factor On-Site On-Sile On-Site On-Site Carcinogenio (mg/kg-day)^-1 Residential Residential Classification Residential Residential (mg/kg-day) Constituents of Concern 9.6E-3 1.7E-3 5.7E+0 Benzene Α 4.1E-3 1.0E-1 4.1E-4 Ethylbenzene Ð 4.6E-3 2.9E-1 1.6E-2 2.7E-2 8.6E-1 Methyl t-Butyl Ether 2,3E-2 2.2E-1 2.5E-2 1.1E-1 Toluene D Xylene (mixed isomers) 2.0E+0 1.6E-2 Ď 3.3E-2 Total Pathway Hazard Index = 5.9E+0 0.0E+0 0.0E+0 Total Pathway Carcinogenic Risk = 4.1E-4

Software: GSI RBCA Spreadsheel

Serial: G-303-YDX-938

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Serial: G-303-YDX-938

Site Name: Chevron #9-0076 Onsite (Arith Avg) Site Location: 4265 Foothill Blvd, Oakland CA Completed By: Curtis A. Peck modified by U.K. 3/99

Date Completed: 5/21/1998

1 of 1

<u> </u>	BASELINE CARCINOGENIC RISK BASELINE TOXIC EFFECTS											
	Individual	COC Risk		e COC Risk	Risk Limit(s) Exceeded?	Hazard	Quotient		d Index	Toxicity Limit(s) Exceeded?		
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit			
OUTDOOR!AIR!	EXPOSURE PAT	HWAYS (A)	ar an englaga (Al	(12) er (Betront)	t de la serie	toografial Cyste	e de la Melle pare	e alexional de tra	(ANTEGRADICAL)	Ar Saras		
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A			
INDOOR AIR EX	POSURE PATH	WAYS.		400000								
Complete:	4.1E-4	1.0E-6	4.1E-4	N/A		5.7E+0	1.0E+0	5.9E+0	N/A	•		
SOIL EXPOSUR	E.PATHWAYS:	Únicada e		14000			144223		e in the second	district of		
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A			
GROUNDWATE	R EXPOSURE P	ATHWAYS 👢	27.07.1									
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A			
,	I		· · · · · · · · · · · · · · · · · · ·	.t				Mar				
CRITICAL EXPO	SURE PATHWA	Y (Select Ma	kimum Values	From Complete	a Pathways) 🤻				er en en en	de de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co		
	4.1E-4	1.0E-6	4.1E-4	N/A		5.7E+0	1.0E+0	5.9E+0	N/A			
							100		(14/34/23/34/47)	tyrotestest with		

Software: GSI RBCA Spreadsheet

	· · · · · · · · · · · · · · · · · · ·	RBCA SITE	ASSESSM	ENT					T	ier 2 Workshe	et 9.2	
	evron #9-0076 Onsite (Arith Avg) 4265 Foothill Blvd, Oakland CA	-		y: Curtls A. Pe led; 5/21/1998	ck modified by U	J.K. 3/99		<u>-</u>				1 OF 1
Target Risk (Class A & B) 1.0E-6												
CONSTITUEN	TS OF CONCERN	Representative Concentration	Soi	SSTL R			re Pathways ("x" if t I Volatilization to Indoor Air	Soil Vo	ilatilization to tdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential; (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residenti (on-site		Residential: (on-site)	Commercial; (on-sile)	(mg/kg)	"■" If yes	Only if "yes" left
71-43-2	Benzene	1.2E+0	NA	NA	NA	3.6E-3	3 NA	NA	NA	3.6E-3	-	3.4E+02
100-41-4	Ethylbenzene	6.5E-1	NA	NA	NA	4.4E+	1 NA	NA	NA	4.4E+1		<1
1634-04-4	Methyl t-Butyl Ether	6.4E+0	NA	NA	NA	2.5E+	2 NA	NA	NA	2.5E+2		<1
	Toluene	4.5E+0	NA	NA	NA	2.1E+	1 NA	NA	NA	2.1E+1		<1
1330-20-7	Xylene (mixed isomers)	1.1E+1	NA	NA	NA	>Res	NA _	NA	NA	>Res		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software; GSI RBCA Spreadsheet

Serial: G-303-YDX-938

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version; 1,0.1

	······································	RBCA	SITE ASS	ESSMENT	!					Tier 2 Wo	rksheet 9,3	
	evron #9-0076 Onsile (Arith Avg) 4265 Foothill Blvd, Oakland CA		•	y: Curtis A. Pe ted: 5/21/1998	ck modified by L	J.K. 3/99						1 OF 1
G	ROUNDWATER SSTL VAL	.UES	Target	(Class A & B) Risk (Class C) azard Quolient	1.0E-5	☐ MCL expo			Cal	culation Option	: 2	
CONSTITUEN	TS OF CONCERN	Representative Concentration		SSTL Groundwater		Groundwa	Pathways ("x" if of the state o	Groundwale	er Volatilization	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mgre)	Residential; (on-site)		Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"=" If yes	Only if "yes" left
71-43-2	Benzene	3.1E+0	NA	NA	· NA	4.5E-2	NA	NA	NA	4.5E-2	H	6.9E+01
100-41-4	Ethylbenzene	7.9E-1	NA	NA	NA	>Sol	NA	NA	NA	>Sol		<1
1634-04-4	Methyl t-Butyl Ether	1.6E+0	NA	NA	NA	2.0E+3	NA	NA	NA	2.0E+3		<1
108-88-3	Toluene	1.5E+0	NA	NA	NA	2.2E+2	NA ·	NA	NA	2.2E+2		<1
1330-20-7	Xylene (mixed isomers)	2.1E+0	NA	NA	NA	>Sol	NA	NA	NA	>Sol		<1

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-303-YDX-938

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

SCREEN 7.1
GROUNDWATER
CONCENTRATION
CALCULATOR

Choose UCL Percentile

95%

Analytical Data (Up to 50 Data Points)

		1	2	3	4	5	6	7	8	9	10	- 11	12	13
Default														
Detection		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Limit	Well Name	C-6	C-6	C-6	C-6	C-6	C-7.	C-7	C-7	C-7	9 C-7	6-8	C -8	C-8
(mg/L)	Date Sampled		********	***************************************	***************************************	***************************************	**********	*********	**********	**********	***********		6/1/1997	#######
0.0005		200 S	0.57	- 0133 W	**0.2359	MED VARE	0.31	W0.015#	機関のは248	N-0'01%	WE WOUND WAS	MAND MA	DE NO.	ozona kana
0.0005		0.025	0.029	0.005	0.0073	0.015	0511	0.0033	0.031	0.00097	ND'	ND	S ND	Bunk
0.0025		0.05	0.22	0.076	0.046	0.049	0.098	WND	10.054	ND	iii ND iii	BIND 特	MENDES	100 M
0.0005		0.0114	0.005	0.005	0.005	0,005	0.046	ND ND	¥0.011	国 ND	ND I	ND	MD	
0.0005		0.01	0.01	0.005	20,0064	展0.012号	少0:31基	0.0051	W0.084	₩0.0016	國 ND 國	SEND W	SAME NO SAME	

14	15	16	17	18	19	20
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CONTRACTOR.	STORY OF STREET	CONTRACTOR OF THE PARTY OF THE	Charles Continue	MARKS STATE OF	CARDINGS AND ARE	HIDDRAMASCOS:
C-8	C-8	C-9	C-9	C-9	C-9	C-9
**********	***************************************	***************************************	*********	***********	*********	***************************************
Land State of the	I-≪ND and	ND.	E ND	第四月	建筑型	MANDE
257/4586	ND W	ND D	HIND		高級	MIND
Division to the	0.0026	ND:	SEND TO		NACO SE	END.
	E ND	WIND W	ND NO	- A 100 TO 100	DIES SAIL	MIND
	ND 1	ND	企UND 信	医性 国系	的根据特别	MND.

**

3

SCREEN 7.1 GROUNDWATER CONCENTRATION CALCULATOR

Choose UCL Percentile

95%

Analytical Data (Up to 50 Data Points)

		,	2	J	7			8	
Default									
Detection		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Limit	Well Name	C-6	C-6	C-6	C-6	C-6	C-7	C-7	C-7
(mg/L)	Date Sampled	***************************************	************	*********	***************************************	***********	***************************************	#######	***************************************
0.0005		0:5	0.57	0.33	0.23	基本0.35 数	# 0.31 d	線0.015線	月0月2日
0.0005		// 0.025	0.029	0.005	0.0073	0.015	0.11	0.0033	0.031
0.0025		0.05	0.22	0.076	0.046	(40.049)	\$0.0985	PMND 密	0.054
0.0005		0.01	0.005	0.005	0.005	0.005	0:046	III ND	0.011
0.0005		0.01	0.01	泰0:005	0.0064	0.012	U= 0:31	¥0.0051#	0.084

Physical Property Data

			Molect			ooff	ision icients In wat	or	log (Ko log(K (@ 20 - :	d)	-	_aw Consta :0 - 25 C)	nt	Vapor Pressur (@ 20 - 25	е	Solubility				
CAS			(g/mo		(cm2/s		(cm2/s	3.50	log(l/k		(atm-m3)	**		(mm Hg		(mg/L)	•	acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		ref		ref	pKa	pKb	- 1
71-43-2	Benzene	A	78.1	5	9.30E-02	A	1.10E-05	A	1.58	A	5.29E-03	2.20E-01	A	9.52E+01	4	1.75E+03	Α			
100-41-4	Ethylbenzene	A	106.2	5	7.60E-02	A	8.50E-06	A	1.98	A	7.69E-03	3.20E-01	A	1.00E+01	4	1,52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9,41E-05	7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	Α			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9,40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330-20-7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	A	7.00E+00	4	1.98E+02	5			

Software version; 1.0,1

Site Name: Chevron #9-0076 Offsite

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Site Location: 4265 Foothill Blvd, Oakla Completed By: C.A.Peck, U.Kelmser ___ Date Completed: 3/30/1999

									-			
-1	-7-	•	\sim L	1 - 1	17-2		- 1			-	·	-
. •	-1-				ш	а	.,	- 4	Δ	-	. 1	-

Toxicity Data

		eferen Dose g/kg/d				Slope Factor ng/kg/	s		EPA Weight	!s
CAS Number Constituent	Oral RfD_oral		Inhalation RfD_inhal	ref	Oral SF_oral	ref	Inhalation SF_inhal	ref	of Evidence	Constituent Carcinogenic?
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	1,00E-01	Α	A	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		_		D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	_		•			FALSE
108-88-3 Toluene	2.00E-01	A,R	1.14E-01	A,R	+		_		Ð	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	Α	-		-		D	FALSE

Site Name: Chevron #9-0076 Offsite Site Location: 4265 Foothill Blvd, OalCompleted By: C.A.Peck, U.Kelmser Date Completed: 3/30/1999

Software version: 1.0.1

•			•	_		_	_		_
-1			381		 			- 1	
	-1				 * *			- 7 -	T-1=
		_	481	_11		DA			_

Miscellaneous Chemical Data

CAS		Maximum taminant Level	Permiss Exposi Limit PEI	1L6	Abs	lative orption ictors	Dete- Groundw (mg/L	ater	Limits Soi (mg/k	l	(First-Or	lf Life der Decay) ays)	
Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	re
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	C	0.005	S	720	720	H
100-41-4 Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
1634-04-4 Methyl t-Butyl Ether			1.44E+02	ACGIH	1	0.5					360	180	H
108-88-3 Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1,47E+02	ACGIH	1	0.5	0,002	Ç	0.005	S	28	28	H
1330-20-7 Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	Н

Site Name: Chevron #9-0076 Offsite

Site Location: 4265 Foothill Blvd, Oakland CA

Completed By: C.A.Peck, U.KelmsDate Completed: 3/30/1999

Software version: 1.0.1

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

Representative COC Concentration in Subsurface Soil in Surface Soil in Groundwater CONSTITUENT value (mg/kg) note value (mg/kg) note_ value (mg/L) note 2.1E-2 Arith Arith 1.5E-1 Benzene 1.1E-2 Arith Arith 1.4E-2 Ethylbenzene 3.8E-2 Arith Methyl t-Butyl Ether ND's 2.5E-3 5.6E-3 Arith Toluene 2.7E-2 Arith Arith 2,8E-2 Xylene (mixed isomers)

Site Name: Chevron #9-0076 Offsite Site Location: 4265 Foothill Blvd, Oakland CA Completed By: C.A.Peck, U.Kelmser Date Completed: 3/30/1999

Е	В	С	A	1	ij	AG	7	SS	П	П	П

3.8E+1

7.0E+1

Tier 2 Worksheet 8.1

0.0E+0 1.3E-5

8.0E-5

Site Name: Chevron #9-0076 (Offsite	Site Location: 4265 Foothill Blv	vd, Oakland CA Completed By:	C.A.Peck, U.KelmDate Complete	d: 3/30/1999 4 O
		TIER 2 EXPOSURE CONC	ENTRATION AND INTAKE CALCU	JLATION	
INDOOR AIR EXPOSURE PATHWA	Y5 4 (\$) . (\$)		(CHECKED IF PATHWAY IS ACTIVE	and the second second second second	in protessing the Authorities
SUBSURFACE SOILS:	Exposure Concentration				
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	Average Daily Intake Rate
		Receptor	Indeo Air; POE Conc. (mg/m²3) (1) / (2)	(IRxEFxED)(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
	Subsurface Soil Conc				
Constituents of Concern	(mg/kg)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	2.1E-2	3.2E+1	6.5E-4	8.8E-2	5.7E-5
Ethylbenzene	1.1E-2	3.2E+1	3.3E-4	2.1E-1	6.8E-5
Methyl t-Butyl Ether	0.0E+0	5.9E+1	0.0E+0	2.1E-1	0.0E+0
Tuliana	255.3	2.05.4	C E C E	2454	1255

6.5E-5

3,9E-4

	NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF ≃ Exposure frequencey (days/yr) ET ≃ Exposure time (hrs/day) IR ≃ Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
-				·	

Software: GSI RBCA Spreadsheel

2.1E-1

2.1E-1

Serial: G-303-YDX-938

@ Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

2.5E-3

2.7E-2

Toluene

Xylene (mixed isomers)

Version; 1,0,1

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

	Site Location: 4265 Foothill Blvd,	Oakland C Completed By	: C.A.Peck, U.Kelmser
			

Date Completed: 3/30/1999

5 OF 9

TIED 1	EVENCTION	CONCENTRATION A	AND INTAKE CALCULATION
HERZ	EXPUSURE	CONCENTRATION	AND INTAKE CALCULATION

GROUNDWATER:	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg <
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Alr: POE Conc. (mg/m³3) (1) / (2)	4) Exposure Multiplier (IRxEFxEDY(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)	(Sum intake values from subsurfa & groundwater routes.)
Constituents of Concern	Groundwaler Conc. (mg/L)	On-Site Residenlial	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	1.5E-1	3.9E+2	3.8E-4	8.8E-2	3.3E-5	9.0E-5
Ethylbenzene	1.4E-2	3.9E+2	3.7E-5	2.1E-1	7.6E-6	7.6E-5
Methyl t-Butyl Ether	3.8E-2	4.8E+2	8.0E-5	2.1E-1	1.6E-5	1,6E-5
Toluene	5.6E-3	4.0E+2	1.4E-5	2.1E-1	2.9E-6	1.6E-5
Xylene (mixed isomers)	2.8E-2	4,3E+2	6.5E-5	2.1E-1	1,3E-5	9.3E-5

NOTE: ABS = Dermal absorption factor (dim) BW = Body weight AF = Adherance factor (mg/cm^2) CF = Units convers AT = Averaging time (days) ED = Exposure dur.	on factor ET = Exposure time (hrs/day) SA = Skin exposure area (c	cm^2/day)
--	---	-----------

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-303-YDX-938

No. 3		RBCA SITE ASSESSMENT						Tier 2 Wor	ksheet 8.2		
Site Name: Chevron #9-0076	Offsite	Site Location: 4	1265 Foothill B	lvd, Oakland CA	<u> </u>	Completed By:	C.A.Peck, U.Kelmser	Date Completed	Date Completed: 3/30/1999		
				TIER 2 PAT	HWAY RISK	CALCULATIO	N				
NDOOR AIR EXPOSURE PATHW	AYS PONETON	Mile Winner	(electricate the	A. 64 (A. 64	en en en en	(CHECKED IF PA	ATHWAYS ARE ACTIVE)	, if it both the		act roya	
				ARCINOGENIC R				TOXIC EFFECTS			
	(1) EPA	, ,	arcinogenic (mg/kg/day)	(3) Inhalation Slope Factor		dual COC 2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/day	(6) Inhalation Reference Dose	(7) Individual COC Hazard Quotient (5) / (6)		
Constituents of Concern	Carcinogenic Classification	1 1			On-Site Residential		On-Sile Residential	(mg/kg-day)	On-Site Residential		
Benzene	Α	9.0E-5		1.0E-1	9.0E-6		2.1E-4	1.7E-3	1.2E-1		
Elhylbenzene	D						7.6E-5	2.9E-1	2.7E-4		
Methyl t-Butyl Ether							1.6E-5	8.6E-1	1.9E-5		
Toluene	Ď	-					1.6E-5	1.1E-1	1.4E-4		
Xylene (mixed isomers)	D						9.3E-5	2.0E+0	4.7E-5		
		Total Path	way Carcino	genic Risk = [9.0E-6	0.0E+0	Total Path	vay Hazard Index =	1.2E-1	0.0E+0	

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-303-YDX-938

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Serial: G-303-YDX-938

Site Name: Chevron #9-0076 Offsite

Completed By: C.A.Peck, U.Kelmser

Site Location: 4265 Foothill Blvd, Oakland CA

Date Completed: 3/30/1999

1 of 1

			TIER 2	BASELIN	IE RISK SU	MMARY TA	BLE						
BASELINE CARCINOGENIC RISK BASELINE TOXIC EFFECTS													
					Risk					Toxicity			
					Limit(s)					Limit(s)			
	Individual	COC Risk	Cumulativ	e COC Risk	Exceeded?	Hazard	Quotient	Hazar	d Index	Exceeded?			
EXPOSURE	Maximum	Target	Total	Target		Maximum	Applicable	Total	Applicable				
PATHWAY	Value	Risk	Value	Risk		Value	Limit	Value	Limit				
OUTDOOR'AIR!	EXPOSURE PAT	HWAYS 🕪 👊	150,000	i kiri kupa da	Adal netusa	1.423-3 1. 834.	*** *********************************	MARKS CA	HERONOLDA	H GOET			
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A				
INDOOR AIR EX	POSURE PATH	NAYS 🚁 🥦	aliyesiye ya aliyed	Signatur Contacts		A GOLD THE STATE OF	Sales De Royal	es averes es a	Aleksali Aleksa	er, all sales			
Complete:	9.0E-6	1.0E-6	9.0E-6	N/A		1.2E-1	1.0E+0	1.2E-1	N/A				
SOIL EXPOSUR	E PATHWAYS .	ti (k. Salan e sa)			are grant and a		tagen and the						
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A				
GROUNDWATE	R EXPOSURE P	ATHWAYS 🔠		3.4044	eller over			4. 1944.00					
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	•			
		I				<u> </u>							
CRITICALIEXPO	SURE PATHWA	Y (Select Ma)	(imum Values	rom Complete	Pathways)	ALLEGO CAST (C.)	garbay ay	lone il 14	0.0400	Color S			
	9.0E-6	1.0E-6	9.0E-6	N/A		1.2E-1	1.0E+0	1.2E-1	N/A				
a ga ig sa yay an	. Str a to situation 7.	St. 2004)	o Goodanga fa Shaffa	western allest	an an an an an an an an an an an an an a	ere a satar As	15 Aug 15 pag 1 a g Aire	e de la Carlo de l	secretaria	galvaren i			

Software: GSI RBCA Spreadsheet

	7.	RBCA SITE	ASSESSMENT							Tier 2 Worksheet 9.2					
Sile Name: Ch	evron #9-0076 Offsite	•	Completed By; C,A.Peck, U.Kelmser												
Site Location:	4265 Foothill Blvd, Oakland CA	<u> </u>	Date Completed: 3/30/1999 1									1 OF 1			
su	BSURFACE SOIL SSTL V. (> 3.3 FT BGS)	ALUES	Target	Target Risk (Class A & B) 1.0E-6								2			
	SSTL Results For Complete Exposure Pathways ("x" if Complete)														
CONSTITUEN	TS OF CONCERN	Representative Concentration	Soil Leaching to Groundwater X				Soil Volatilization to X Indoor Air			Soit Volatilization to Outdoor Air		Applicable SSTL	SSTL Exceeded ?	Required CRF	
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory (MCL): (on-sile)		sidential; on-site)	Commercial: (on-site)		lential: sile)	Commercial: (on-site)	(mg/kg)	- III - If yes	Only if "yes" left	
71-43-2	Benzene	2.1E-2	NA	NA	NA	:	3.6E-3	NA	N	IA	NA	3.6E-3		6.0E+00	
100-41-4	Ethylbenzene	1.1E-2	NA	NA	NA	4	.4E+1	NA	N	IA	NA	4.4E+1		<1	
1634-04-4	Methyl t-Butyl Ether	0.0E+0	NA	NA	NA	2	.5E+2	NA	N	IΑ	NA	2.5E+2		<1	
108-88-3	Toluene	2.5E-3	NA NA NA			2	!.1E+1	NA	N	iA	NA	2.1E+1		<1	
1330-20-7	Xylene (mixed isomers)	2.7E-2	NA	NA	NA		>Res	NA	N	IA	NA	>Res		<1	

>Res_indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet Version: 1,0,1

Serial: G-303-YDX-938

		RBCA	SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9.3		
Site Name: Ch	evron #9-0076 Offsite		Completed By: C.A.Peck, U.Kelmser									4054	
Site Location:	4265 Foothill Blvd, Oakland CA		Date Comple	led: 3/30/1999)							1 OF 1	
			Target Risk	(Class A & B)	1.0E-6	☐ MCL expo	sure limit?		Cale	culation Option	: 2		
G	ROUNDWATER SSTL V	ALUES	Target	Risk (Class C)	1.0E-5	☐ PEL expos	sure limit?						
			Target H	Target Hazard Quotient 1.0E+0									
•				SSTL	. Results For Com	plete Exposure	Pathways ("x" if C	Complete)					
CONSTITUEN	ITS OF CONCERN	Representative Concentration		Groundwater	Ingestion		ter Volatilization ndoor Air	1	er Volatilization Itdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF	
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-sile)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"■" If yes	Only if "yes" left	
71-43-2	Benzene	1.5E-1	NA	NA	NA	4.5E-2	NA	NA	NA	4.5E-2	Ħ	3.0E+00	
100-41-4	Ethylbenzene	1452	NA	NA	NA	>Sol	NA	NA	NA	>Sot		<1	
1634-04-4	Methyl t-Butyl Ether	3.8E-2	NA	NA	NA	2.0E+3	NA	NA .	NA	2.0E+3		<1	
108-88-3	Toluene	5.6E-3	NA NA NA		2.2E+2	NA	NA	NA	2.2E+2		<1		
1330-20-7	Xylene (mixed isomers)	2.8E-2 NA NA NA					NA	NA	NA	>Sol		<1	
				>Sol	indicates risk-bar	sed target conc	entration greater th	nan constituent	solubility				

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-303-YDX-938

SCREEN 7.3
SUBSURFACE SOILS
CONCENTRATION
CALCULATOR

UCL Percentile

Analytical Data (Up to 50 Data Points)

		1	2	3	4	5	6	7	В	9	10	11	12
Default Detection		(N)	6 N3	form Bank	tora the sale	Comment of the Comment	form Benk	(the)	(martiem)	(man flow)	tene (ke)	(malka)	(mallen)
	3	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Limit	Sample Name	c-6-16	c-6-21	c-6-31.	c-6-41	c-7-11	c-7-16	c-7-21	c-7-31	c-7-41	c.8.5.5	c-8-40	c-8-45
(mg/kg)	Date Sampled		灣電影	學問題學	機器體	機能能	德路思		調整條約	意思問題	於翻翻	激酶組織	類的問題
0.005	5	nd 🔆	and re-	5 0.2 at	24nd	guendaes	起模nd與整	用0.02图	wind.	0.007	海區nd陽高	MANUAL	侧
0.005	٤	nd	A And Ad	0.150	nd in	igi nd Mis	a nd	nd N	nd No	all and	nd	建产nd 系统	.nd
2.5	MIBE	写版談題	THE REAL PROPERTY.	SAMPLE	NO STATE	Charles 2	建物接近	AG (55372	多数医测力	The Street	从表现特色	1000 DE	
0.005	7	nd*	nd9%	nd w	and ,	rs nd Fs	idend in	all nd	# nd4#	- nd	a nd life	nd	W ind
0.0015	p	nd	nd 🖳	0.313	nd 👬	at nd T	nd 🥞	and a	Wnd -	nd	nd s	a nd	is nd

APPENDIX F

Oakland RBCA Eligibility Checklist and Tier I RBSLs Table

Cumulative Table of Well Data and Analytical Results

DATE Head Walter To SPH SPH SPH Notes Removed Vertical Measurements are in feet.					Volumetric M	leasurements a	re in gallons.	Апаі	Analytical results are in parts per billion (ppb)								
C-1		Well	Ground	Depth			Total		· •								
C-1 04/28/89 35.42 15.37 20.05	DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE			
04/28/99 35.42 15.37 20.05		Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene					
04/28/99 35.42 15.37 20.05	C-1																
12/21/89	04/28/89	35.42	15.37	20.05	••				940		1.3	11	13				
08/27/90 35.42 13.30 22.12	08/08/89	35.42	11.35	24.07				••	820	45	2.0	13	13	••			
11/04/90 35.42 9.86 25.56	12/21/89	35.42	12.61	22.81				••									
06/18/91 35.42 13.78 21.64	08/27/90	35.42	13.30	22.12					440	15	1.0	6.0	13				
06/18/91 35.42 13.78 21.64	11/04/90	35.42	9.86	25.56				••									
09/19/91 35.42 10.84 24.58			13.78	21.64				••	74	5.6	0.6	1.9	1.3				
12/20/91 35.42 9.25 26.17			10.84	24.58					150	7.1	<0.5	2.3	3.0				
03/18/92 35.42 17.17 18.25 190 16 <0.5		35.42	9.25	26.17				••	250	10	<0.5	3.7	1.6				
07/14/92 35.42 7.81 27.61 20,000 480 2200 510 2900 10/08/93 35.42 10.98 24.44 <			17.17	18.25	**			••	190	16	<0.5	8.5	2.9				
10/08/92 35.42 10.98 24.44 360 34 4.6 19 12 01/08/93 35.42 15.74 19.68 .				27. 6 1	••				20,000	480	2200	510	2900	••			
01/08/93 35.42 15.74 19.68 120 9.1 0.5 5.1 1.8			10.98	24.44		••			360	34	4.6	19	12				
04/14/93 35.42 19.04 16.38		35.42	15.74	19.68					120	9.1	0.5	5.1	1.8				
07/16/93 35.42									190	74	0.6	1.0	2.0				
07/27/93 35.42 26.03 9.39 360 12 <0.5					••			••									
09/21/93 38.41 16.99 21.42 360 12 1.2 5.8 3.7 01/28/94 38.41 18.84 19.57			26.03	9.39	••				300	12	<0.5	5.0	2.0	••			
01/28/94 38.41 18.84 19.57						**	••		360	12	1.2	5.8	3.7				
03/17/94 38.41 21.56 16.85				19.57					370	24	1.0	13	4.0				
06/16/94 38.41 20.58 17.83				16.85					460	42	<0.5	6.7	3.7				
09/22/94 38.41 18.15 20.26				17.83					320	20	0.7	8.7	3.0				
12/15/94 38.41 22.59 15.82									380		0.6	8.8	1.9				
03/30/95 38.41 26.39 12.02									280		7.6	7.8	13	••			
06/20/95 38.41 24.01 14.40							••	••	2200	890	8.9	15	<5.0				
09/20/95 38.41 24.59 13.82					••				690	140	<2.0	9.4	2.8				
12/06/95 38.41 17.81 20.60									730	27	78	26	130				
03/21/96 38.41 26.76 11.65 640 170 <2.0									220	16	<0.5	7.2	1.7	11			
06/21/96 38.41 24.16 14.25 640 140 <1.2									640	170	<2.0	6.7	<2.0				
09/06/96 38.41 21.66 16.75 460 24 0.56 10 2.4 43 12/19/96 38.41 24.43 13.98 790 120 22 13 19 <25							••	••									
12/19/96 38.41 24.43 13.98 790 120 22 13 19 <25					••			••				10					
03/17/97 38.41 25.63 12.78 2200 660 <10							••										
06/11/97 38.41 23.25 15.16 1500 130 <2.0																	
09/17/97 38.41 21.47 16.94 * 910 160 23 13 49 180																	
737.77.57																	
	12/11/97	38.41	25.23	13.18	**	••	1.5		2000	270	7.0	53	7.4	460			

CONTINUED ON NEXT PAGE

^{*} See Table of Additional Analyses.

Cumulative Table of Well Data and Analytical Results

Vertical Measurements are in feet.					Volumetric M	Analytical results are in parts per billion (ppb)							
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-1 (CONT'E))	···		•									
03/12/98	38.41	28.92	9.49				*	3100	1300	<20	42	<20	760
06/23/98	38.41	28.19	10.22					1300	650	6.9	22	6.5	290
09/01/98	38.41	21.43	16.98		••			270	6.0	<2.5	<2.5	<2.5	950
12/30/98	38.41	22.29	16.12	••	••			2020	578	<5.0	<5.0	<5.0	1720
03/31/99	38.41	24.53	13.88	**			*	2140	776	5.89	<5.0	5.15	1170
06/14/99	38.41	23.09	15.32					1450	524	<5.0	<5.0	<5.0	1150
06/14/99	38.41	23.09	15.32				Confirmation run						1360**
09/30/99	38.41	22.30	16.11	••			**	79	1.12	<0.5	1.07	<0.5	677
12/22/99	38.41	23.37	15.04		**		*	501	157	4.45	<2.5	4.81	744

^{*} See Table of Additional Analyses.

** Samples were analyzed past hold-time, the results should be considered as estimated.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Anal	ytical resul	ts are in p	arts per	oillion (ppl)
	Well	Ground	Depth			Total							
DATE	Head	Water	То	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-2							· · · · · · · · · · · · · · · · · · ·						
04/28/89	35.18	8.74	26.44					120,000	30,000	22,000	3000	17,000	
08/08/89	35.18	5.29	29.90	0.01									
12/21/89	35.18	5.86	29.32				••						
08/27/90	35.18	5.77	29.55	0.17	••		••						
11/04/90	35.18	4.71	30.47	**	**	**				••		**	
06/18/91	35.18	6.90	28.33	0.06			••	**					
09/19/91	35.18	5.84	29.39	0.06									
12/20/91	35.18	5.95	29.23					170,000	20,000	10,000	2800	19,000	
03/18/92	35.18	21.58	13.60	0.09			**						
07/14/92	35.18	••			**		**						
10/08/92	35.18		**	•-						••	••	••	•-
01/08/93	35.18	10.98	24.20	Sheen		••		79,000	14,000	7200	3500	16,000	
04/14/93	35.18	••											
07/16/93	35.18	5.03	30.15					2200	440	73	24	350	
09/21/93	37.47	11.18	26.29		••		••	11,000	2300	300	270	910	
01/28/94	37.47	13.51	23.96					49,000	11,000	3900	1600	12,000	•-
03/17/94	37.47	11.48	25.99			**		16,000	3300	1000	220	3500	
06/16/94	37.47	13.55	23.92					20,000	4800	1500	520	4300	
09/22/94	37.47	11.85	25.62	••			**	35,000	5600	850	1700	7300	
12/15/94	37.47	16.31	21.16					96,000	9000	3500	3300	13,000	
03/30/95	37.47	20.29	17.18	••	••	••		100,000	9400	3700	3900	14,000	
06/20/95	37.47	18.52	18.95				••	93,000	6400	1900	2900	11,000	
09/20/95	37.47	19.27	18.20				••	58,000	6600	330	1600	5500	••
12/06/95	37.47	12.71	24.76		**	••		40,000	5000	86	1800	3700	<500
03/21/96	37.47	21.30	16.17	0.00	0.132	0.130	••						
06/21/96	37.47	19.34	18.15	0.02	0.026	0.156	**						
09/06/96	37.47	16.36	21.14	0.04	0.079	0.235							
12/19/96	37.47	19.94	17.55	0.03	0.050	0.285				••			
03/17/97	37.47	18.88	18.59			0.285	•-	58,000	4800	1200	1800	6300	3400
06/11/97	37.47	16.17	21.30		••	0.285		40,000	5500	720	1400	4100	3100
09/17/97	37.47	14.33	23.14	••		0.285	*	30,000	4800	220	1200	1800	3200
12/11/97	37.47	20.26	17.21			0.285		76,000	6100	1300	2200	8000	3800

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric N	leasurements a	re in gallons.	Analy	tical resul	ts are in բ	oarts per l	oillion (pp	b)
	Well	Ground	Depth			Total							
DATE	Head	Water	То	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-2 (CONT'E))	···											
03/12/98	37.47	23.30	14.17			0.285	*	45,000	6000	1400	1800	5900	2700
06/23/98	37.47	22.65	14.82			0.285	ORC Installed	1,100,000	6800	5100	13,000	38,000	<1000
09/01/98	37.47	15.69	21.78			0.285		9700	300	8.2	6.2	250	3700
12/30/98	37.47	15.61	21.86			0.285		110,000	4790	1300	841	5570	2420
03/31/99	37.47	20.57	16.90			0.285	*	48,000	4800	1110	1520	5450	2160
06/14/99	37.47	17.32	20.15			0.285	Sheen	56,400	5380	671	1300	3960	2480
06/14/99	37.47	17.32	20.15			0.285	Confirmation run					••	2630**
09/30/99	37.47	14.50	22.97			0.285		22,100	623	<100	529	1250	2430
12/22/99	37.47	16.47	21.00			0.285	*	10,200	1750	102	222	963	1980

^{*} See Table of Additional Analyses.
** Samples were analyzed past hold-time, the results should be considered as estimated.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Anal	ytical result	s are in p	arts per b	illion (ppl	o)
	Well	Ground	Depth			Total		··					
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH.	Benzene :	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-3													
04/28/89	35.28	7.28	28.00	w *-			••	<500	1.7	<0.5	<0.5	<0.5	
08/08/89	35.28	5.28	30.00	46	••			<500	1.0	<0.5	<0.5	< 0.5	
12/21/89	35.28	4.75	30.53						••	••			
08/27/90	35.28	5.60	29.68			••		<50	<0.3	<0.3	<0.3	<0.6	
11/04/90	35.30	4.94	30.36			••							
06/18/91	35.30	6.84	28.46					52	1.1	<0.5	<0.5	1.2	• ••
09/19/91	35.30	5.97	29.33			**		73	1.2	<0.5	<0.5	<0.5	
12/20/91	35.30	5.53	29.77			••		<50	0.7	<0.5	<0.5	<0.5	
03/18/92	35.30	9.55	25.75					<50	<0.5	<0.5	<0.5	< 0.5	
07/14/92	35.30	7.43	27.87		••	••		<50	<0.5	<0.5	<0.5	< 0.5	••
10/08/92	35.30	6.75	28.55					<50	<0.5	<0.5	< 0.5	0.5	
01/08/93	35.30	9.45	25.85					<50	<0.5	<0.5	<0.5	<0.5	
04/14/93	35.30	11.34	23.96					<50	<0.5	<0.5	<0.5	<0.5	
07/16/93	35.30	9.66	25.64					<50	<0.5	<0.5	<0.5	< 0.5	••
09/21/93	38.37	12.15	26.22		••	••		<50	0.7	<0.5	<0.5	<0.8	4-
01/28/94	38.37	12.71	25.66					<50	2.0	<0.5	<0.5	1.0	
03/17/94	38.37	13.42	24.95				••	<50	2.8	<0.5	0.6	1.5	
06/16/94	38.37	14.06	24.31				**	<50	1.4	<0.5	<0.5	<0.5	
09/22/94	38,37	13.33	25.04					<50	0.6	<0.5	<0.5	<0.5	
12/15/94	38.37	16.15	22.22			••	••	<50	2.6	1.7	0.82	4.5	••
03/30/95	38.37	19.95	18.42	••		••	••	<50	<0.5	<0.5	<0.5	<0.5	
06/20/95	38.37	18.58	19.79				••	110	2.2	<0.5	< 0.5	1.2	
09/20/95	38.37	19.42	18.95		••	••		560	21	80	23	120	
12/06/95	38.37	14.21	24.16					<50	0.73	<0.5	< 0.5	0.67	<2.5
03/21/96	38.37	20.52	17.85					<50	<0.5	<0.5	<0.5	< 0.5	<2.5
06/21/96	38.37	18.59	19.78			••	••	57	<0.5	<0.5	< 0.5	< 0.5	<2.5
09/06/96	38.37	16.74	21.63	**	••	••	••	<50	0.9	<0.5	<0.5	<0.5	<2.5
12/19/96	38.37	16.07	22.30	••				310	36	33	6.5	28	<2.5
03/17/97	38.37	19.42	18.95					54	1.1	<0.5	<0.5	0.76	<2.5
06/11/97	38.37	17.22	21.15					120	1.1	<0.5	<0.5	<0.5	<2.5
09/17/97	38.37	15.96	22.41	••			*	240	19	19	6.6	40	13
12/11/97	38.37	16.11	22.26					<50	1.8	<0.5	<0.5	0.5	<2.5

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Anal	tical resul	ts are in p	arts per b	illion (ppł	<u>)</u>
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-3 (CONT'I	D)												
03/12/98	38.37	20.02	18.35				*	72	6.3	<0.5	0.64	3.1	2.6
06/23/98	38.37	19.33	19.04			••		<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/01/98	38.37	18.40	19.97					200	6.8	0.31	0.52	2.0	<2.5
12/30/98	38.37	17.06	21.31			•-	*	<50	<0.5	<0.5	<0.5	<0.5	<2.0
03/31/99	38.37	20.60	17.77					<50	<0.5	<0.5	<0.5	<0.5	12.6
06/14/99	38.37	20.12	18.25					<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/30/99	38.37	17.18	21.19					79.2	3.04	0.794	<0.5	1.04	6.17
12/22/99	38.37	16.05	22.32			••	*	<50	1.53	1.08	<0.5	0.66	12

^{*} See Table of Additional Analyses.

Vertical Mea	asureme <u>nts</u>	are in feet.			Volumetric N	Measurements a	re in gallons.	Analy	tical result	s are in p	arts per b	illion (ppl	٥)
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene ⁻	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline		I	Benzene		
C-4													
01/12/89	33.45	3.96	29.49				••						
04/12/89	33.45	6.01	27.44										
04/28/89	33.45	3.96	29.49					20,000	6300	550	230	1500	
08/08/89	33.45	3.90	29.55		••	••		8000	7500	340	88	1000	
12/21/89	33.45	3.43	30.02			**						••	
08/27/90	33.48	4.46	29.02					26,000	10,000	280	410	1400	
11/04/90	33.48	3.67	29.81			••	••	•					
06/18/91	33.48	6.03	27.45			**		34,000	14,000	410	450	1300	
09/19/91	33.48	4.83	28.65					16,000	7400	90	110	460	
12/20/91	33.48	4.64	28.84			**	-•	24,000	12,000	120	260	740	
03/18/92	33.48	11.05	24.43					48,000	6000	1300	1300	2400	••
07/14/92	33.48	6.59	26.89					40,000	14,000	920	550	2400	
10/08/92	33.48	5.69	27.79			••		29,000	13,000	190	110	1400	•-
01/08/93	33.48	9.98	23.50					25,000	7000	630	860	1800	
04/14/93	33.48	12.35	21.13			••		27,000	6300	1000	900	1400	
07/16/93	33.48	9.52	23.96			==		28,000	7800	1100	830	2100	
09/21/93	36.49	10.98	25.51			••	••	30,000	9600	130	390	1300	
01/28/94	36.49	13.18	23.31			••		18,000	7800	440	260	1200	•-
03/17/94	36.49	15.14	21.35					32,000	7800	820	820	1800	
06/16/94	36.49	13.99	22.50				•-	25,000	7600	710	600	1800	
09/22/94	36.49	12.56	23.93		••	••		25,000	7800	140	600	1100	
12/15/94	36.49	17.47	19.02			**	••	38,000	7600	460	1200	2000	
03/30/95	36.49	21.63	14.86		••		••	41,000	8700	1600	1800	3000	•-
06/20/95	36.49	19.59	16.90			••		29,000	6000	890	960	1800	••
09/20/95	36.49	20.29	16.20					12,000	6900	510	290	1300	
12/06/95	36.49	13.37	23.12					13,000	3900	42	30	250	<250
03/21/96	36.49	22.39	14.10	••		••		39,000	4800	640	1000	1800	<1000
06/21/96	36.49	19.54	16.95	••				26,000	4400	640	960	1800	2000
09/06/96	36.49	16.36	20.13					23,000	500	200	230	1000	3100
12/19/96	36.49	19.57	16.92			••		23,000	4900	320	1100	2000	<250
03/17/97	36.49	19.09	17.40			••		30,000	5800	700	1400	2200	1700
06/11/97	36.49	18.15	18.34					29,000	4400	520	790	1800	2000
09/17/97	36.49	15.03	21.46				*	17,000	4300	140	940	1100	4600
12/11/97	36.49	19.84	16.65					12,000	2500	130	300	1000	1400

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric N	leasurements a	re in gallons.	Analy	tical resul	ts are in p	arts per b	illion (ppl	<u>)</u>
-	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline		E	Benzene		
C-4 (CONT'E	D)				•								
03/12/98	36.49	19.90	16.59				*	46,000	11,000	1500	2300	5000	3400
06/23/98	36.49	19.47	17.02			••	ORC Installed	27,000	1600	160	180	690	100
09/01/98	36.49	15.04	21.45					520	14	2.3	<0.5	4.8	61
12/30/98	36.49	15.07	21.42				**	122	14.1	1.86	<1.0	3.61	349
03/31/99	36.49	21.29	15.20		**		*	20,300	4450	443	1000	2130	1320
06/14/99	36.49	14.69	21.80					1820	183	7.14	36.7	56. 5	291
06/14/99	36.49	14.69	21.80				Confirmation run						280**
09/30/99	36.49	16.68	19.81				••	1030	11.6	2.14	29.2	68.7	91.5
12/22/99	36.49	16.22	20.27				*	217	4.45	0.765	2.82	8.21	70.2

^{*} See Table of Additional Analyses.

^{**} Samples were analyzed past hold-time, the results should be considered as estimated.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Anal	ytical result	s are in p	arts per b	illion (ppl)
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene [*]	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-5			·								-		
08/27/90	35.50	5.67	29.83					<50	< 0.3	<0.3	< 0.3	<0.6	
11/14/90	35.50	4.94	30.56			••						••	
06/18/91	35.50	6.98	28.52	••				<50	<0.5	<0.5	<0.5	<0.5	
09/19/91	35.50	5.99	29.51				••	<50	<0.5	<0.5	<0.5	<0.5	
12/20/91	35.50	5.54	29.96				••	<50	<0.5	<0.5	<0.5	<0.5	
03/18/92	35.50	9.58	25.92					<50	<0.5	<0.5	<0.5	<0.5	
07/14/92	35.50	7.50	28.00					<50	<0.5	<0.5	<0.5	<0.5	
10/08/92	35.50	6.85	28.65	••			••	<50	<0.5	<0.5	<0.5	<0.5	
01/08/93	35.50	9.48	26.02					<50	<0.5	< 0.5	<0.5	<0.5	
04/14/93	35.50	11.46	24.04			••	**	<50	<0.5	< 0.5	<0.5	<0.5	
07/16/93	35.50	10.29	25.21					<50	<0.5	<0.5	< 0.5	<0.5	
09/21/93	38.50	12.14	26.36				**	60	10	8.1	1.9	9.4	
01/28/94	38.50	12.60	25.90					<50	<0.5	<0.5	<0.5	<0.5	
03/17/94	38.50	14.00	24.50	••				<50	<0.5	<0.5	<0.5	<0.5	
06/16/94	38.50	14.10	24.40			••	**	<50	<0.5	<0.5	<0.5	<0.5	
09/22/94	38.50	13.34	25.16		**			<50	<0.5	<0.5	<0.5	<0.5	
12/15/94	38.50	15.61	22.89					<50	<0.5	<0.5	<0.5	<0.5	
03/30/95	38.50	19.96	18.54				••	<50	<0.5	<0.5	<0.5	<0.5	
06/20/95	38.50	18.37	20.13					<50	<0.5	<0.5	<0.5	<0.5	
09/20/95	38.50	14.16	24.34				••	<50	<0.5	<0.5	<0.5	<0.5	
12/06/95	38.50	14.40	24.10		**			<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/21/96	38.50	20.10	18.40	••				<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/21/96	38.50	18.23	20.27		••	••	••	<50 <50	<0.5	<0.5	<0.5	<0.5	8.7
	38.50	16.60	21.90				••	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
06/06/96		17.35	21.15		••			<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
12/19/96	38.50		19.84	**			••	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
03/17/97	38.50	18.66	21.60				•	<50 <50	<0.5	<0.5	<0.5	<0.5 <0.5	<2.5
06/11/97	38.50	16.90		**		••	Compled applied						~Z.J
09/17/97	38.50	10.67	27.83	••	••		Sampled annually		••	••	••		••
12/11/97	38.50	17.50	21.00		••		*	 .EO	-0 E	 -0 E	-0 E	-0 E	-0 E
03/12/98	38.50	22.08	16.42		••	••		<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/23/98	38.50	21.52	16.98	••	••		••					••	
09/01/98	38.50	18.08	20.42	••	**			••	**	**	••	••	••
12/30/98	38.50	17.71	20.7 9				**	••	4.5		••	**	

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Analy	tical resul	ts are in p	arts per b	oillion (ppl	0)
	Well	Ground	Depth			Total							
DATE	Head	Water	То	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline		·····	3enzene		
C-5 (CONT'	D)												
03/31/99	38.50	21.45	17.05	••			*	<50	<0.5	<0.5	<0.5	<0.5	15
06/14/99	38.50	21.02	17.48	••		••	••				••		••
09/30/99	38.50	19.77	18.73				••		••				
12/22/99	38.50	16.32	22.18		**				4.6				

^{*} See Table of Additional Analyses.

Vertical Mea	asurement <u>s</u>	are in feet.			Volumetric N	leasurements a	re in gallons.	Anal	ytical resu	ts are in p	arts per t	oillion (ppl)
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-6													
08/27/90	32.40	.11.71	44.11					7200	2100	6.0	41	300	••
11/14/90	32.40	.11.63	44.03	**	-•								
06/18/91	32.40	-11.09	43.49					4400	2500	18	160	77	**
09/19/91	32.40	-1.92	34.32					3100	1600	8.3	73	8.0	
12/20/91	32.40	-8.95	41.35		••			4400	1300	3.2	74	10	
03/18/92	32.40	-8.29	40.69					9800	3200	34	250	500	
07/14/92	32.40	-6.49	38.89					6500	2200	100	96	240	
10/08/92	32.40	-6.27	38.67		••		**	1800	1000	3.1	15	41	
01/08/93	32.40	-5.41	37.81		••			5200	1600	6.8	63	120	
04/14/93	32.40	-2.30	34.70				••	11,000	1800	13	110	200	
07/16/93	32.40	-1.47	33.87	••				4800	820	10	41	57	
09/21/93	35.40	1.42	33.98	••				4100	1200	<50	75	130	••
01/28/94	35.40	1.54	33.86			••		3100	930	14	40	34	••
03/17/94	35.40	3.09	32.31	••		••		5100	950	18	61	83	
06/16/94	35.40	3. 9 0	31.50					3800	970	6.4	52	62	
09/22/94	35.40	4.18	31.22				••	4100	980	7.8	43	48	
12/15/94	35.40	4.00	31.40					5000	1400	<20	73	61	••
03/30/95	35.40	9.02	26.38				••	5500	1700	<13	120	97	
06/20/95	35.40	10.39	25.01	••				1700	470	<10	29	16	
09/20/95	35.40	11.35	24.05	••				3500	770	<5.0	45	17	••
12/06/95	35.40	7.28	28.12				••	3100	710	<10	41	20	<50
03/21/96	35.40	12.28	23.12					1400	330	<2.5	15	8.1	19
06/21/96	35.40	11.90	23.50	**				2200	560	<5.0	18	<5.0	77
09/06/96	35.40	10.57	24.83		••			2800	720	<10	13	<10	160
12/19/96	35.40	10.90	24.50	••				830	320	<2.5	<2.5	<2.5	14
03/17/97	35.40	12.81	22.59	**				2200	500	<10	25	<10	<50
06/11/97	35.40	11.64	23.76			**		3000	570	<5.0	29	10	220
09/17/97	35.40	10.66	24.74		••		*	1400	330	<5.0	<5.0	<5.0	76
12/11/97	35.40	10.75	24.65	••		••		1600	230	<5.0	7.3	6.4	46
03/12/98	35.40	8.28	27.12				*	980	300	<5.0	15	12	49
06/23/98	35.40	7.48	27.92				ORC Installed	220	35	<0.5	2.5	1.1	<2.5
09/01/98	35.40	3.80	31.60	••	••	••	••	1800	370	2.8	19	4.8	44
12/30/98	35.40	3.58	31.82			••	•-	1600	244	<1.0	8.53	<1.0	54.9

^{*} See Table of Additional Analyses.

Vertical Mea	Elev. Elev. Water Thick (CONT'D) 31/99 35.40 9.34 26.06 14/99 35.40 5.72 29.68 14/99 35.40 5.72 29.68				Volumetric M	leasurements a	re in gallons.	Anai	ytical resul	ts are in p	arts per b	illion (pp	b)
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-6 (CONT'	D)												
03/31/99	35.40	9.34	26.06			••	*	741	92.2	<1.0	6.60	<1.0	27.9
06/14/99	35.40	5.72	29.68	4.77		••		434	110	<1.0	5.76	1.46	13
06/14/99	35.40	5.72	29.68	**			Confirmation run						6.96**
09/30/99	35.40	12.34	23.06					481	92.7	<1.0	3.69	<1.0	32.9
12/22/99	35.40	12.85	22.55		••	**	*	1310	158	2.16	5.5	1.41	113

^{*} See Table of Additional Analyses.
** Samples were analyzed past hold-time, the results should be considered as estimated.

Vertical Mea	surements	are in feet.			Volumetric N	<u>leasurements a</u>	re in gallons.	Anal	ytical resu	Its are in p	arts per l	oillion (ppl	<u>) </u>
	Well	Ground	Depth			Total			1.		•		
DATE	Head	Water	То	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-7	::												
08/27/90	32.17	.12.06	44.23	••				110	26	8.0	4.0	6.0	
11/14/90	32.17	-11. 9 4	44.11		••								
06/18/91	32.17	-9.88	42.05				••	23,000	5700	420	1000	2800	
09/19/91	32.17	-9.55	41.72			••		26,000	4600	330	970	2400	
12/20/91	32.17	-9.50	41.67	••		••		33,000	5500	270	1000	2100	
03/18/92	32.17	·9.03	41.20			••	••	27,000	5800	410	1300	3300	
07/14/92	32.17	-7.60	39.77			••		46,000	12,000	720	1700	4600	••
10/08/92	32.17	-6.97	39.14	••		••		22,000	6800	370	1300	3200	
01/08/93	32.17	-6.33	38.50	••				36,000	7600	540	1700	4200	
04/14/93	32.17	-3.76	35.93			**		23,000	3100	450	670	1900	••
07/16/93	32.17	-3.21	35.38		••			19,000	3200	330	550	1800	
09/21/93	35.19	-0.27	35.46				••	17,000	2700	160	410	760	
01/28/94	35.19	-0.26	35.45					14,000	1800	210	390	1000	
03/17/94	35.19	1. 9 5	33.24					17,000	1600	210	410	1200	
06/16/94	35.19	2.12	33.07					12,000	1600	180	410	1200	
09/22/94	35.19	2.45	32.74					10,000	1700	110	320	580	
12/15/94	35.19	3.27	31.92				••	10,000	1200	120	280	710	
03/30/95	35.19	7.59	27.60					4600	460	73	160	460	
06/20/95	35.19	7.32	27.87		••			26,000	4400	450	900	2400	
09/20/95	35.19	7.11	28.08				••	9400	610	81	250	800	
12/06/95	35.19	4.57	30.62		••		••	1200	110	12	25	71	34
03/21/96	35.19	7.34	27.85	••				17,000	1300	160	410	1300	<100
06/21/96	35.19	7.77	27.42			••		14,000	1300	210	500	1700	590
09/06/96	35.19	6.84	28.35			••	••	15,000	3400	<50	460	850	<250
12/19/96	35.19	6.08	29.11	••	••			530	8.6	0.5	0.85	3.4	<2.5
03/17/97	35.19	8.05	27.14				••	4600	310	46	110	310	98
06/11/97	35.19	7.14	28.05	**		••	••	420	15	<0.5	3.3	5.1	<2.5
09/17/97	35.19	6.19	29.00		••		*	1400	120	11	31	84	54
12/11/97	35.19	5.93	29.26	••				210	10	<0.5	0.97	1.6	<2.5
03/12/98	35.19	10.27	24.92			••	*	68	<0.5	<0.5	<0.5	<0.5	<2.5
06/23/98	35.19	9.89	25.30			*-	••	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/01/98	35.19	8.92	26.27	**		•-		570	24	1.4	8.4	22	24
12/30/98	35.19	8.67	26.52	••				<50	4.85	1.26	<0.5	1.29	167

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric M	leasurements a	re in gallons.	Anal	ytical resul	ts are in p	arts per b	illion (ppl	၁)
	Well	Ground	Depth			Total							
DATE	Head	Water	То	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-7 (CONT'E	D)												
03/31/99	35.19	10.43	24.76			**	*	53.1	<0.5	<0.5	<0.5	< 0.5	<2.0
06/14/99	35.19	9.75	25.44					109	4.43	<0.5	<0.5	<0.5	<2.5
06/14/99	35.19	9.75	25.44				Confirmation run					••	<2.0**
09/30/99	35.19	8.32	26.87					2400	282	26.3	120	236	126
12/22/99	35.19	7.42	27.77	**	**	••	*	3840	162	18.1	44.7	85.3	141

^{*} See Table of Additional Analyses.

** Samples were analyzed past hold-time, the results should be considered as estimated.

Vertical Measurements are in feet.					Volumetric Measurements are in gallons.			Analytical results are in parts per billion (ppb)					
	Well	Ground	Depth			Total							
DATE	Head	Water	Τ̈́o	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
C-8													
11/14/90	30.68	-12.61	43.29					<50	<0.3	<0.3	<0.3	<0.6	
06/18/91	30.68	-11.94	42.62				••	<50	<0.5	<0.5	<0.5	<0.5	
09/19/91	30.68	-11.04	41.72					<50	<0.5	<0.5	<0.5	<0.5	
12/20/91	30.68	-10.30	40.98	==	. .			<50	<0.5	<0.5	<0.5	<0.5	
03/18/92	30.68	-9.34	40.02				••	<50	< 0.5	<0.5	<0.5	<0.5	**
07/14/92	30.68	-8.34	39.02			••	**	<50	< 0.5	<0.5	< 0.5	<0.5	**
10/08/92	30.68	-8.00	38.68					<50	<0.5	<0.5	< 0.5	1.1	
01/08/93	30.68	-7.39	38.07					<50	<0.5	<0.5	<0.5	<0.5	
04/14/93	30.68	-5.31	35.99					<50	<0.5	<0.5	< 0.5	<0.5	
07/16/93	30.68	4.64	35.32					<50	<0.5	<0.5	<0.5	<0.5	
09/21/93	34.68	-0.62	35.30		••			<50	<0.5	<0.5	< 0.5	<0.8	
01/28/94	34.68	.0.93	35.61	••				<50	<0.5	<0.5	< 0.5	<0.5	
03/17/94	34.68	0.31	34.37					<50	<0.5	<0.5	<0.5	<0.5	
06/16/94	34.68	1.32	33.36	••				<50	<0.5	<0.5	<0.5	<0.5	
09/22/94	34.68	1.86	32.82	**				<50	<0.5	<0.5	< 0.5	<0.5	
12/15/94	34.68	2.32	32.36	••			••	<50	<0.5	<0.5	<0.5	<0.5	
03/30/95	34.68	5.44	29.24				**	<50	<0.5	<0.5	< 0.5	< 0.5	
06/20/95	34.68	6.34	28.34					<50	<0.5	< 0.5	<0.5	<0.5	
09/20/95	34.68	5.20	29.48	••	••		••	<50	<0.5	< 0.5	<0.5	<0.5	
12/06/95	34.68	3.76	30.92			4.0	••	<50	<0.5	<0.5	<0.5	< 0.5	<2.5
03/21/96	34.68	6.03	28.65			4.0		<50	<0.5	< 0.5	<0.5	<0.5	<2.5
06/21/96	34.68	6.78	27.90	••	**		••	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/06/96	34.68	5.98	28.70	••		••	**	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/19/96	34.68	4.98	29.70			**		<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/17/97	34.68	6.92	27.76	••			••	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/11/97	34.68	5.87	28.81	**				<50	<0.5		<0.5	<0.5	<2.5
	34.68	5.32	29.36			••	Sampled annually						
09/17/97 12/11/97	34.68	5.32 4.88	29.80		**								
		4.66 8.95	29.80 25.73				*	<50	<0.5		<0.5	<0.5	2.6
03/12/98	34.68		26.30			••			٠٠.٥		٠٠.٥	-0.0	
06/23/98	34.68	8.38	26.50 26.51				•• ••		•••	••			
09/01/98	34.68	8.17			••	••							
12/30/98	34.68	7.79	26.89	**	••		••	••					•-

^{*} See Table of Additional Analyses.

Vertical Mea	surements	are in feet.			Volumetric Measurements are in gallons.			Analytical results are in parts per billion (ppb)					
	Well	Ground	Depth	****		Total							
DATE Head Elev.	Head	Water Elev.	To Water	SPH Thickness	SPH Removed	SPH Removed	Notes	TPH-	Benzene Toluene		Ethyl Xylene	Xylene	MTBE
	Elev.							Gasoline			Benzene		
C-8 (CONT'	D)												
03/31/99	34.68	8.32	26.36				*	<50	<0.5	<0.5	<0.5	<0.5	11.8
06/14/99	34.68	8.65	26.03				••						**
09/30/99	34.68	7.40	27.28			**	**			••	••		
12/22/99	34.68	6.48	28.20					••			••	••	

Vertical Measurements are in feet.					Volumetric Measurements are in gallons.			Analytical results are in parts per billion (ppb)						
	Well	Ground	Depth			Total								
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl∙	Xylene	MTBE	
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene			
C-9			· · · · · · · · · · · · · · · · · · ·		<u>-</u>									
08/13/96			28.27				••	ND	ND	ND	ND	ND	ND	
09/06/96			28.47			••		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
12/19/96	30.68	1.39	29.29					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
03/17/97	30.68	3.11	27.57					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
06/11/97	30.68	2.41	28.27				••	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
09/17/97	30.68	2.05	28.63				Sampled annually							
12/11/97	30.68	1.25	29.43	••									•-	
03/12/98	30.68	5.06	25.62	••			*	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
06/23/98	30.68	4.53	26.15		••			••						
09/01/98	30.68	4.30	26.38				**							
12/30/98	30.68	3.93	26.75								••	••		
03/31/99	30.68	5.35	25.33				¥	<50	<0.5	<0.5	<0.5	<0.5	12.5	
06/14/99	30.68	4.16	26.52	•		••								
09/30/99	30.68	3.89	26.79			**								
12/22/99	30.68	2.99	27.69				••	••						

^{*} See Table of Additional Analyses.

Vertical Measurements are in feet.				Volumetric Measurements are in gallons.			Analytical results are in parts per billion (ppb)						
	Well	Ground	Depth			Total					•		
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
TRIP BLANI	K												
04/28/89						••		<500	< 0.5	<0.5	<0.5	<0.5	
08/08/89					••		· ·	<500	<0.5	< 0.5	<0.5	<0.5	
08/27/90	••		**				**	<50	<0.3	< 0.3	<0.3	<0.6	
11/14/90			••		••			<50	<0.3	< 0.3	< 0.3	<0.6	
06/18/91						••		<50	<0.5	< 0.5	<0.5	<0.5	
09/19/91								<50	<0.5	< 0.5	<0.5	<0.5	
12/20/91								<50	<0.5	<0.5	<0.5	<0.5	
03/18/92						••		<50	<0.5	<0.5	<0.5	<0.5	
07/14/92			••	**	• •			<50	<0.5	<0.5	<0.5	<0.5	
10/08/92								<50	<0.5	<0.5	<0.5	<0.5	
01/08/93		••						<50	<0.5	<0.5	<0.5	<0.5	**
04/14/93							••	<50	<0.5	< 0.5	<0.5	<0.5	
07/16/93								<50	<0.5	<0.5	<0.5	<0.5	
09/21/93			••					<50	<0.5	<0.5	<0.5	<0.8	
01/28/94			**			**		<50	<0.5	<0.5	<0.5	<0.5	
03/17/94		••		**	••			<50	<0.5	<0.5	<0.5	<0.5	
06/16/94							••	<50	<0.5	<0.5	<0.5	<0.5	
09/22/94		••						<50	<0.5	<0.5	<0.5	<0.5	
12/15/94		••			••			<50	<0.5	< 0.5	<0.5	<0.5	
03/30/95	••			••			••	<50	<0.5	<0.5	< 0.5	<0.5	••
06/20/95		••			••			<50	<0.5	<0.5	<0.5	<0.5	
09/20/95			••					<50	<0.5	<0.5	<0.5	<0.5	
12/06/95				••		••	**	<50	<0.5	<0.5	<0.5	<0.5	
03/21/96							••	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/21/96		••						<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/06/96							••	<50	<0.5	<0.5	<0.5	<0.5	
12/19/96		••			••		••	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
03/17/97				••		••	••	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
06/11/97		••						<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
09/17/97							••	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
				••	-	••		<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
12/11/97		••	••		••	••		<00	~U.5	~U. O	~0.5	~0. 3	~2.5

Vertical Measurements are in feet.					Volumetric Measurements are in gallons.			Analytical results are in parts per billion (ppb)					
	Well	Ground	Depth			Total							
DATE	Head	Water	To	SPH	SPH	SPH	Notes	TPH-	Benzene	Toluene	Ethyl-	Xylene	MTBE
	Elev.	Elev.	Water	Thickness	Removed	Removed		Gasoline			Benzene		
TRIP BLANI	K (CONT'D)												
03/12/98				••				<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/23/98	••			••			••	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/01/98		••	••					<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/30/98		**				**		<50	<0.5	<0.5	<0.5	<0.5	<2.0
03/31/99		••			••			<50	<0.5	<0.5	<0.5	< 0.5	<2.0
06/14/99						••		<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/22/99								<50	<0.5	<0.5	<0.5	<0.5	<2.5

ADDITIONAL ANALYSES

Analytical values are in parts per million (ppm) unless otherwise noted

		Total	· ·						<u> </u>
DATE	Notes	Alkalinity	Ferrous	Nitrate as	Sulfate	D.O.	D.O.	ORP	ORP
	· · · · · · · · · · · · · · · · · · ·	mg CaCO₃/L	Iron	Nitrate	: - -	Pre-Purge	Post-Purge	Pre-Purge	st-Purge
C-1		_							
09/17/97		2.0	1.1	<1.0	12	1.4	8.8	101	104
03/12/98		550	3.0	<1.0	6.6	1.7	3.6	171	171
03/31/99		382	2520*	0.418	8.23	6.5	1.8	99	89
12/22/99		568	0.19	<0.1	11	0.95	2.0	-95	-128
C-2									
09/17/97		560	4.7	<1.0	<1.0	1.3	••	150	
03/12/98		420	3.5	<1.0	<1.0	1.1	1.1	176	174
03/31/99		456	2100*	0.118	19.7	1.5	1.6	151	157
12/22/99	*-	782	1.0	5.34	5.38	0.6	0.65	-90	-84
C-3									
09/17/97		340	0.012	100	33	2.1	8.0	59	
03/12/98		260	0.14	88	32	2.8	2.5	165	163
03/31/99	••	256	<500*	18.4	72	4.1	3.3	101	89
12/22/99	••	402	0.013	67.7	37.6	0.98	1.48	69	107
C-4									
09/17/97		540	5.9	<1.0	<1.0	0.6	0.2	102	107
03/12/98		550	1.3	<1.0	2.7	1.5	2.6	173	175
03/31/99		492	1560*	0.191	<1.0	1.8	2.2	170	
12/22/99	••	739	0.87	1.85	39.6	6.8	5.68	.25	14
C-5									
03/12/98		210	0.074	69	74	1.7	1.9	70	169
03/31/99		254	<500*	16.7	69.7	12.8	6.7	92	
QQ, Q1, JJ		25.							

^{* (}ppb) Parts per billion.

ADDITIONAL ANALYSES

Analytical values are in parts per million (ppm) unless otherwise noted

					, , ,				
DATE	Notes	Total Alkalinity mg CaCO ₃ /L	Ferrous Iron	Nitrate as Nitrate	Sulfate	D.O. Pre-Purge	D.O. Post-Purge	ORP Pre-Purge	ORP st-Purge
C-6									
09/17/97		620	1.1	<1.0	18	1.5	1.2	-57	-48
03/12/98		200	0.11	14	14	14.1	11.3	173	174
03/31/99	••	534	<500*	0.849	45.3	9.8	8.4	162	168
12/22/99		614	0.36	0.421	32	1.02	1.22	-65	-60
C-7									
09/17/97		600	4.8	<1.0	18	0.6	0.4	126	115
03/12/98		460	0.16	<1.0	29	2.2	2.1	167	167
03/31/99	••	486	<500*	< 0.1	29.4	2.0	1.8	137	135
12/22/99		400	1.6	0.434	16.9	1.8	1.5	20	-60
C-8									
03/12/98		110	0.16	7.4	8.2	1.0	1.1	171	169
03/31/99		264	<500*	17	71	1.8	1.5	149	132
C-9									
03/12/98		230	0.048	59	58	2.5	2.5	172	168
03/31/99	••	236	<500*	18	72.7	2.1	2.3	154	142

^{* (}ppb) Parts per billion.

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on November 1, 1994.

Earlier field data and analytical results are drawn from the September 27, 1994 Groundwater Technology, Inc. report.

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl t-Butyl Ether

ND = Not detected at or above the minimum quantitation limit. See laboratory reports for minimum quantitation limits.

D.O. = Dissolved Oxygen

O.R.P. = Oxydation Reduction Potential

А

NORTH

A.

SOUTH

NOTE: SEE FIGURE 3 FOR LOCATION OF SECTION

FILL

APPROXIMATE SCALE: 1" = 30" HORIZONTAL

1" = 10' YERTICAL

(3X EXAGGERATION)

CLAY

SAND, GRAYEL, CLAYEY SAND AND GRAYEL

HYDROCARBON CONCENTRATIONS (PPM) ARE SHOWN AT THE APPROXIMATE DEPTHINTERYAL ANALYZED.

PACIFIC ENVIRONMENTAL GROUP INC

CHEYRON USA SERVICE STATION #0076 FOOTHILL BOULEVARD AND HIGH STREET OAKLAND, CALIFORNIA

CROSS-SECTION A-A'

FIGURE 4 PROJECT NO.

120-57.01

LEGEND

PRIMARILY FINE-GRAINED DEPOSITS - CL and SM

PRIMARILY COARSE-GRAINED DEPOSITS - SC, SW, SP, GC and GM

S-3 GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION (SHELL)

C-2 GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION (CHEVRON)

GP-2 GEOPROBE SOIL BORING LOCATION AND DESIGNATION

PROJECTED ONTO LINE OF SECTION IN FEET

T FIRST ENCOUNTERED WATER LEVEL AT TIME OF DRILLING

▼ STATIC WATER LEVEL, 6-20-94

916 PHOTO IONIZATION DETECTOR LEVEL IN PARTS PER MILLION

APPROXIMATE LEVEL OF GROUNDWATER PRIOR TO GRAB SAMPLING, 6-27-95

PACIFIC ENVIRONMENTAL GROUP, INC.

SCALE
HORIZONTAL: 1° = 50°
VERTICAL: 1° = 10°

SHELL SERVICE STATION
4411 Foothill Boulevard at High Street
Oakland, California

GEOLOGIC CROSS-SECTION B-B*

1 1

FIGURE:

PROJECT: 305-131.1B

LEGEND

PRIMARILY FINE-GRAINED DEPOSITS - CL and SM

PRIMARILY COARSE-GRAINED DEPOSITS - SC, SW, SP, GC, GW and GP

S-2 GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION (SHELL)

C-7 GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION (CHEVRON)

GP-1 GEOPROBE SOIL BORING LOCATION AND DESIGNATION

proj PROJECTED ONTO LINE OF SECTION IN FEET

▼ STATIC WATER LEVEL, 6-20-94

1916 PHOTO IONIZATION DETECTOR LEVEL IN PARTS PER MILLION

PACIFIC ENVIRONMENTAL GROUP, INC.

SCALE HORIZONTAL: 1" = 50" VERTICAL: 1" = 10"

SHELL SERVICE STATION 4411 Foothill Boulevard at High Street Oakland, California

GEOLOGIC CROSS-SECTION A-A'

FIGURE: 3 PROJECT:

305-131.1B