RECEIVED

Infrastructure · Water · Environment · Buildings

By Alameda County Environmental Health 2:20 pm, Nov 18, 2015

ARCADIS U.S., Inc.
100 Montgomery Street, Suite 300
San Francisco, CA 94104
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

Second and Third Quarter 2013 Semi-Annual Groundwater Monitoring Report

Former BP Station #11109, 4280 Foothill Blvd Oakland, California ACEH Case #RO0000426

ENVIRONMENT

"I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Date:

October 30, 2013

Contact:

Hollis E. Phillips

Phone:

415.432.6903

Email:

Hollis.phillips@arcadis-

us.com

Our ref:

GP09BPNA.C106.N0000

Submitted by:

ARCADIS U.S., Inc

Hollis E. Phillips, PG Project Manager

Ms. Dilan Roe, P.E. Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 ARCADIS U.S., Inc.
100 Montgomery Street, Ste. 300
San Francisco, CA 94104
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

Subject:

Second and Third Quarter 2013 Semi-Annual Groundwater Monitoring Report Former BP Station #11109, 4280 Foothill Blvd, Oakland, California ACEH Case #RO0000426

Dear Ms. Roe:

ARCADIS U.S., Inc. (ARCADIS) has prepared this *Second and Third Quarter 2013 Semi-Annual Groundwater Monitoring Report* to document the results of groundwater monitoring and sampling and remediation progress at the Former BP Service Station #11109 located at 4280 Foothill Boulevard in Oakland, Alameda County, California (the Site; Figure 1).

1. Summary

A summary of the work performed at the Site during this reporting period and the proposed work for the next reporting period is provided below.

Work Performed – This Semi-Annual Reporting Period (April 1, 2013 to September 30, 2013)

- Submitted the Results of DPE Pilot Test and SPH Removal summary letter on June 28, 2013 detailing the field activities conducted in accordance with the Feasibility Study and Corrective Action Plan (ARCADIS 2011) and the subsequent Revised Proposed Pilot Study Activities letter (ARCADIS 2012).
- Submitted the ACEH Low Threat Closure Policy Checklist and Site Conceptual Model on June 28, 2013.
- Conducted Third Quarter 2013 semi-annual groundwater monitoring event on September 20, 2013 and replaced LNAPL absorbent socks in monitoring wells MW-5, MW-10, and MW-12.

ENVIRONMENT

Date:

October 30, 2013

Contact:

Arpen Shah

Phone:

415.432.6916

Email:

Arpen.Shah@arcadis-us.com

Our ref:

GP09BPNA.C106.N0000

Work Proposed – Next Semi-Annual Reporting Period (October 1, 2013 to March 31, 2013)

- Submit the Second and Third Quarter 2013 Semi-Annual Groundwater Monitoring Report contained herein.
- Prepare for semi-annual groundwater monitoring/sampling activities to be conducted in First Quarter 2014.

2. Groundwater Monitoring/Sampling Activities and Results

Third Quarter 2013 groundwater monitoring was conducted on September 20, 2013 by Broadbent & Associates, Inc. (BAI) personnel. Groundwater monitoring was conducted concurrently at the adjacent Chevron #9-0076 (ACEH Case #RO0000427) to further characterize hydrogeology in the vicinity of the Site. Prior to groundwater sampling, depth-to-water measurements were collected in wells MW-2 through MW-12 with an oil/water interface probe. A sheen was observed in monitoring wells MW-5, MW-10, and MW-12; however no measurable light nonaqueous phase liquid (LNAPL) was present. Monitoring well MW-2 was noted as dry during gauging activities; no other irregularities were noted during water level gauging. Depth-to-water (DTW) measurements on-site ranged from 10.26 ft below top of casing (bTOC) at MW-5 to 16.02 ft bTOC at MW-6. Resulting groundwater surface elevations on-site ranged from 27.07 feet above mean sea level (ft msl) at MW-8 to 33.15 ft msl at MW-9. Groundwater elevations at the adjacent Chevron site calculated using provided field forms and surveyed top of casing (TOC) values from GeoTracker varied from 5.31 ft msl (C-9) to 28.39 ft msl (C-10). DTW measurements recorded at monitoring wells C-4 and C-10 were not consistent with historical field parameter; therefore, the calculated groundwater elevations at C-4 and C-10 were not used to generate groundwater contours. Field methods used during groundwater monitoring are provided in Appendix A, and field data sheets are included in Appendix B. Groundwater elevations are summarized in Table 1, and a groundwater elevation contour map is presented in Figure 2.

Groundwater samples were collected on September 20, 2013 from wells MW-3, MW-4, MW-6, MW-7, and MW-11 using HydraSleeve™ groundwater samplers, which collect a representative sample from a specific depth interval within the monitoring well screen. Samples were not collected from wells MW-5, MW-10, and MW-12 due to the presence of sheen. No irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to TestAmerica Laboratories, Inc. (Pleasanton, California) for analysis of Gasoline-Range Organics (GRO, C6-C12) by EPA Method 8260B (MW-4, MW-7, MW-11); for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), Ethyl Tertiary Butyl Ether (ETBE), Tert-Amyl Methyl Ether

Ms. Dilan Roe October 30, 2013

ARCADIS

(TAME), Di-Isopropyl Ether (DIPE), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), Tert-Butyl Alcohol (TBA) and Ethanol by EPA Method 8260 (MW-7, MW-11); and Methyl Tertiary Butyl Ether (MTBE) by EPA Method 8260B (MW-3, MW-4, MW-6, MW-7, MW-11). No significant irregularities were encountered during analysis of the samples. The laboratory analytical report, including chain-of-custody documentation, is provided in Appendix C.

Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

3. LNAPL Removal Activities

LNAPL absorbent socks were placed in monitoring wells MW-5, MW-10, and MW-12 on May 7, 2013 to remove residual LNAPL at each location, as discussed in the *Results of DPE Pilot Test and SPH Removal* summary letter. Following gauging and sampling activities, the absorbent socks were removed from the wells and replaced. The socks appeared to have absorbed LNAPL within the wells since deployment and no measurable free product was observed in the wells. Upon removal, the absorbent sock at MW-5 was observed to be a quarter of the full length saturated with LNAPL and socks in MW-10 and MW-12 were each observed to be half saturated. Field notes from LNAPL removal activities are provided in Appendix B.

4. Discussion/Conclusions

Groundwater levels were between historic minimum and maximum elevations for all wells monitored on-site except MW-10. The water elevation at MW-10 (29.28 ft msl) was below the previous historic minimum of 29.51 (observed in March 2012), but is consistent with other data collected during the reporting period and therefore is considered usable.

The groundwater elevations observed at monitoring wells C-4 and C-10 at the adjacent Chevron station were not consistent with historical observations, and thus was not considered in contouring. Groundwater elevations calculated for the Site and the adjacent Chevron facility yielded an average horizontal gradient of approximately 0.03 ft/ft. As presented in Table 2, historical interpretation of groundwater monitoring data by previous consultants indicated a shift in the groundwater flow direction from southwest to northwest in the third quarter 2009. However, review of historical field notes and groundwater contours indicates that data at various monitoring locations have consistently been designated "anomalous" and were not considered in groundwater contouring in order to render more uniform interpretation of the

Ms. Dilan Roe October 30, 2013

ARCADIS

hydrogeology at the Site. Additionally, groundwater contouring following 2009 did not consider groundwater elevations at the adjacent Chevron station, which historically supported the interpretation that groundwater flow in the vicinity of the Site is to the southwest. Review of field measurements of DTW collected during the third quarter 2013 event indicate groundwater elevations do not vary uniformly across the Site; however, all data collected on-site was considered to be within the range of minimum and maximum water elevations, thus no data may be considered anomalous (with the exception of C-4 and C-10 at the adjacent site). Consideration of groundwater elevations at the adjacent Chevron site supports the current interpretation that the overall groundwater flow direction in the vicinity of the Site is to the southwest, as observed prior to 2009. The current groundwater elevation contour map is provided on Figure 2.

- Groundwater monitoring laboratory analytical results are summarized in Table 1 and are consistent with historical concentrations observed except the GRO concentration at MW-4. A groundwater analytical summary map is presented as Figure 3.
 - GRO was detected in three monitoring wells (MW-4, MW-7, and MW-11) ranging from 580 μg/L (MW-7) to 10,000 μg/L (MW-11).
 - Benzene was detected monitoring well MW-11 with a concentration of 120 μg/L.
 - Toluene was detected monitoring well MW-11 with a concentration of 130 μg/L.
 - Ethylbenzene was detected monitoring well MW-11 with a concentration of 320 µg/L.
 - Total Xylenes were detected monitoring well MW-11 with a concentration of 720 µg/L.
 - MTBE was detected in four monitoring wells (MW-3, MW-4, MW-6, and MW-7) ranging from 2.3 μg/L (MW-7) to 21 μg/L (MW-4)
 - ETBE, TAME, DIPE, EDB, TBA 1,2-DCA, and ethanol were below laboratory reporting limits for all wells sampled

Ms. Dilan Roe October 30, 2013

ARCADIS

5. Recommendations

ARCADIS recommends continued groundwater monitoring and sampling on a semi-annual basis in accordance with the approved schedule until the site is approved for No Further Action.

ARCADIS

Ms. Dilan Roe
October 30, 2013

6. Limitations

The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by TestAmerica Laboratories, Inc. (Pleasanton, California), and our understanding of Alameda County Environmental Health (ACEH) requirements. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARCADIS-US, Inc. and Atlantic Richfield Company. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

If you have any questions or comments regarding the contents of this report, please contact Arpen Shah by telephone (415.432.6916) or by e-mail (<u>Arpen.Shah@arcadis-us.com</u>), or contact Hollis Phillips by telephone (415.432.6903) or by e-mail (<u>Hollis.Phillips@arcadis-us.com</u>).

Sincerely,

ARCADIS

Hollis E. Phillips, P.G. (No. 6887)

Project Manager

Ms. Dilan Roe, Alameda County Environmental Health (Submitted via ACEH ftp Site)
 Mr. Ed Ralston, ConocoPhillips, 76 Broadway, Sacramento, California 95818
 Electronic copy uploaded to GeoTracker

Page:

ATTACHMENTS:

Figure 1: Site Location Map

Figure 2: Groundwater Elevation Contour Map - September 20, 2013

Figure 3: Analytical Summary Map – September 20, 2013

Table 1: Summary of Groundwater Monitoring Data: Relative Water

Elevations and Laboratory Analyses

Table 2: Historical Groundwater Flow Direction and Gradient

Appendix A: Field Methods
Appendix B: Field Data Sheets

Appendix C: Laboratory Report and Chain-of-Custody Documentation

Appendix D: GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH: Alameda County Environmental Health ft/ft: feet per foot BAI: Broadbent & Associates, Inc. gal: Gallons

BTEX: Benzene, Toluene, Ethylbenzene, Total GRO: Gasoline-Range Organics

Xylenes

1,2-DCA: 1,2-Dichloroethane LNAPL: Light Non-Aqueous Phase Liquid

DIPE: Di-Isopropyl Ether MTBE: Methyl Tertiary Butyl Ether Tert-Amyl Methyl Ether DO: Dissolved Oxygen TAME: **Tertiary Butyl Ether** DRO: **Diesel-Range Organics** TBA: 1,2-Dibromomethane TOC: Top of Casing EDB: EPA: **Environmental Protection Agency** mg/L: Micrograms per liter

ETBE: Ethyl Tertiary Butyl Ether

Figures

LEGEND:

- GROUNDWATER MONITORING WELL
- GROUNDWATER MONITORING WELL-CHEVRON

⊕ C-9

- GROUNDWATER ELEVATION (FEET ABOVE

MEAN SEA LEVEL)
GROUNDWATER ELEVATION CONTOUR LINE

(DASHED WHERE INFERRED)

0.03 GROUNDWATER FLOW DIRECTION (FOOT PER FOOT)

- * NOT USED FOR CONTOURING
- NG NOT GAUGED

NOTE:
GROUNDWATER ELEVATIONS AT ADJACENT
CHEVRON SITE CALCULATED BASED ON FIELD
DEPTH TO WATER DATA PROVIDED BY CHEVRON
AND TOP OF CASING MEASUREMENTS AVAILABLE
ON GEOTRACKER

NOTES:

 BASE MAP PROVIDED BY BROADBENT & ASSOCIATES, INC. DATED 10/26/2009, REFERENCE 06-88-646, AT A SCALE OF 1"=40".

> FORMER BP STATION #11109 4280 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA GROUNDWATER MONITORING REPORT THIRD QUARTER 2013

GROUNDWATER ELEVATION CONTOUR MAP - SEPTEMBER 20, 2013

FIGURE

Tables

March Marc	Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	Ethanol (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
1975 1976									-	-	-	-	-	-		-			-		
MAC 1979 1.02 1.08 7.08 1.03 1.03 1.03 1.03 1.0 1.	MW-1	9/16/2010					-		5,500	400	250	320	410	11	<20	<2.5	<2.5	<2.5	<500	<2.5	<2.5
WO WO WO WO WO WO WO WO	MW-2	2/5/1990		41 22	21 90	1	19 32	-	1 300	14	<0.1	q	13								
100 100								<10,000				<0.3									
1800 1807											<0.3										
1992 1971/19											-										
1986 1986 1987 1988 1977																					
No. 1998 10. 1998 1. 1998 1. 1. 1. 1. 1. 1. 1. 1																					
March Marc											<0.3										
1992 25982											-										
Marco 2009/08/2 4122 2248 1238 1238 1 1 1 1 1 1 1 1 1																					
May 2 1978 11 12 1978 1 12 1978 1 1 1 1 1 1 1 1 1																					
March Marc		2/17/1992		41.22	20.84																
Marco 444782																					
March Marc											<0.5										
May 2 7379992											-										
May 1989 992	MW-2	5/7/1992		41.22	20.84		20.38														
MW-Q 1251/1992																					
Mary 1971989																					
MW-2 7777993			а																		
MW-2 0501993				41.22										-		-			-		
MW2 1223/1901				41.22	21.93		19.29			0.9	0.7	0.7	2.6								
MW2 47/1994																					
MW2 787994																					
MW-2 1077/98																					-
MW-2 3001996														15.2							
MW-2 6001996																					-
MW-2 103/1995																					
MW-2 128/1995																					-
MW-2 021198																					
MW-2 98/1998	MW-2	3/21/1996		41.22	12.28		28.94		<50	<0.5	<1.0	<1.0	<1.0	<1.0	-	-			-		
MW/2 99/1998 - - - - - - -									<50	<0.5	<1.0	<1.0	<1.0	<10	-	-			-	-	
MW-2 12/19/19/8				41.22	13.94		27.28														
MW/2 377/1997				41.22	12.19		29.03									-			-		
MW-2 12/10/1997									-	-	-	-		-							
MW/2 37121989									-	-	-										
MW-2 6/23/1989 41/22 11/17 28.45																					-
MW-2 3/3/1999																					
MW-2 3492000									-		-	-		-		-			-		
MW-2 378/2002 41.22 10.31 30.91 - - - - - - - - -	MW-2	8/25/1999		41.22	17.72		23.50				-										
MW-2 3/8/2002 41/22 14/35 2687									-	-	-						-	-			
MW-2 3/18/2002 41.22 13.11 28.11											-			-		-			-		
MW-2 3/11/2003								-	-		-	-		-		-			-		
MW-2 3/9/2004 41.22 12.52 28.70 - 74 <0.50 <0.50 <0.50 0.83 4.7 27 <0.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50		3/11/2003					27.98		-	-	-	-		-		-	-		-		
MW-2 9/17/2004 41,22 18,05 23,17 - 59 <0.50			b					-													
MW-2 37/2005 c 41.22 2.32 38.90						 		-													<0.50 <0.50
MW-2 9/5/2006			С					-													
MW-2 3/6/2008 d 41.22 12.33 28.89	MW-2			41.22			30.76	-	79	<0.50	5.1	<0.50			<20	< 0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-2 9/6/2012									-		-			-					-		
MW-2 9/20/2013			d			ļ															
MW-2 9/20/2013 j 41.22																					
MW-3 2/5/1990			j																		-
MW-3 2/14/1991 40.74 18.52 22.22 - 320 8 <0.3 8 1													l .								
MW-3 5/13/1991 40.74 19.32 21.42 640 13 <0.3 18 1													8				-	-			
MW-3 7/24/1991 40.74 20.69 20.05						 							1	-		-		-			
MW-3 10/3/1991 40.74 19.47 21.27 - 940 21 <0.3 23 2.1														-							
								-						1		-	-		-		
101.0 101.01.001 101.1 20.10 20.20	MW-3	10/15/1991		40.74	20.46		20.28		-		-	-		-					-		

MW-3 MW-3					DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
	12/4/1991		(ft msl) 40.74	(ft) 18.29		(ft msl) 22.45	(μg/L)	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L) 	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L) 	(μg/L)
IVIVV-3	12/16/1991		40.74	18.34		22.40		_		-						-		-		
MW-3	1/6/1992		40.74	18.50		22.24	-	580	6.1	1	6.1	7.1		-		-				
MW-3 MW-3	1/22/1992		40.74 40.74	17.86 15.84		22.88 24.90		-		-			-		-					
MW-3	2/5/1992		40.74	15.84		23.21	-	-	-				-		-	-	-			
MW-3	2/12/1992		40.74	17.15		23.59		-		-										
MW-3	2/17/1992		40.74	16.18		24.56		-		-			-		1	-	-	-		-
MW-3 MW-3	4/3/1992		40.74 40.74	14.80		25.94	-	1,100		4.6								-		
MW-3	4/8/1992 4/14/1992		40.74	17.06 15.22		23.68 25.52	-	1,100	30	4.6	32	11	-		-	-	-	-		
MW-3	4/29/1992		40.74	15.90		24.84	_	-	_	_	-		-		-		-	-	-	-
MW-3	5/7/1992		40.74	16.35		24.39		-		-					-					
MW-3	7/3/1992		40.74	17.74		23.00	-	1,200	38	<2.5	24	<2.5	-	-	-	-	-	-	-	-
MW-3 MW-3	10/8/1992 12/31/1992		40.74 40.74	19.06 16.61		21.68 24.13	-	1,400 820	31 12	<0.5 4.1	25 13	13 5.9			-					-
MW-3	12/31/1992	e	40.74	16.61		24.13		960	11	3.6	10	3.8	-				-			
MW-3	4/21/1993		40.74	14.24		26.50		420	5.6	<0.5	3.9	1.4								
MW-3	4/21/1993	е	40.74	14.24		26.50		390	5	<0.5	3.7	1.5								
MW-3	7/7/1993	f	40.13	15.19		24.94		54	0.6	0.6	<0.5	<0.5	12.68	-	-		-	-		-
MW-3 MW-3	9/21/1993 12/17/1993		40.13 40.13	16.58 15.82		23.55 24.31	-	540	7.9	0.9	4.7	2.4						-		
MW-3	12/17/1993		40.13			24.51	-	500	9.8	1.5	3.3	2.1	-	-	-	-	-	-	-	
MW-3	12/23/1993	е	-	-				480	9.2	<0.5	5.4	5.3	-		-	-	-			-
MW-3	4/7/1994		40.13	28.50		11.63	-	460	20	7.4	8.9	11	18.2	-	-		-	-		-
MW-3 MW-3	4/7/1994 7/6/1994	е	40.13	28.50		11.63	-	460 300	20 10	7.7 0.6	9	11 6.4	5.54			-				
MW-3	10/7/1994		40.13	27.65		12.48		620	28	<0.5	2.2	12	31.4		-	-	-	-	-	
MW-3	1/27/1995		40.13	27.65		12.48	-	-		-			-		-	-	-	-		
MW-3	3/30/1995		40.13	26.05		14.08		300	10	6	3.4	18			-					
MW-3	6/20/1995		40.13	19.49		20.64	-	170	7.2	3.4	0.85	15	-	-	-	-	-	-	-	-
MW-3 MW-3	10/3/1995 12/6/1995		40.13 40.13	24.93 25.14		15.20 14.99	-	170 1,700	2.1 6.7	<0.50 3.1	0.81 2.8	8 210	6.7 64		-	-		-		-
MW-3	12/6/1995	e	40.13	25.14		14.99		1,700	6.1	3.1	1.7	190	53		-		-			
MW-3	3/21/1996		40.13	9.48		30.65		<50	0.5	<1.0	<1.0	1	<10							
MW-3	6/21/1996		40.13	11.60		28.53		<50	13	<1.0	<1.0	<1.0	12		1	-	-	-		-
MW-3	9/6/1996		40.13	12.23		27.90				-										
MW-3 MW-3	9/9/1996 12/19/1996		40.13	10.46		29.67	-	<250 <50	6.5 4.1	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	<50 <10	-	-			-		-
MW-3	3/17/1997		40.13	9.86		30.27	_	50	<5.0	<1.0	<1.0	<1.0	<10		-		-	-	-	-
MW-3	8/12/1997		40.13	12.11		28.02	_	<50	0.79	<1.0	<1.0	<1.0	10	-	-	-	-	-	-	-
MW-3	12/10/1997		40.13	10.90		29.23		<50	<0.5	<1.0	<1.0	<1.0	<10		-	-	-	-		-
MW-3 MW-3	3/12/1998 3/12/1998	e	40.13 40.13	10.20 10.20		29.93 29.93		<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10		-		-			
MW-3	6/23/1998	е	40.13	10.20		29.96		50	<0.5	<1.0	<1.0	<1.0	<10				-	-		
MW-3	3/31/1999		40.13	11.45		28.68		60	<1.0	<1.0	<1.0	<1.0	6.2							
MW-3	8/25/1999		40.13	12.52		27.61	-	<50	<1.0	<1.0	<1.0	<1.0	7.7	-		-				
MW-3	3/9/2000		40.13	12.39		27.74	-	<50	<0.5	0.54	<0.5	1.7	6.3				-			
MW-3 MW-3	3/8/2001 3/8/2002		40.13 40.13	10.41 9.83		29.72 30.30	-	<50 62	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.59 <1.0	7.7 11.6		-					
MW-3	3/18/2002		40.13	9.20		30.93	-							-	-	-	-	-	-	-
MW-3	3/11/2003		40.13	10.54		29.59		<50	<0.50	<0.50	<0.50	<0.50	6.7		-					-
MW-3	12/9/2003		40.13	12.88		27.25	-	<50	<0.50	<0.50	<0.50	<0.50	6.4	<20	<0.50	<0.50	<0.50	<100	-	
MW-3 MW-3	3/9/2004 9/17/2004		40.13 40.13	9.49 12.76		30.64 27.37	-	<50	<0.50	<0.50	<0.50	0.63	6.9	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	3/7/2004		40.13	7.30		32.83		<50	<0.50	<0.50	<0.50	0.52	5.1	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	9/6/2005		42.92	10.81		32.11	-	-												
MW-3	3/6/2006		42.92	8.85		34.07	-	<50	<0.50	<0.50	<0.50	<0.50	6.9	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	9/5/2006		42.92	9.86		33.06	-	-	-	-			-	-	-		-	-		
MW-3 MW-3	3/5/2007 9/7/2007		42.92 42.92	8.33 11.10		34.59 31.82	-	<50	<0.50	<0.50	<0.50	<0.50	5.4	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	3/6/2008		42.92 42.92	8.92		31.82		<50	<0.50	<0.50	<0.50	<0.50	4.2	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	9/3/2008		42.92	12.19		30.73	-	-												
MW-3	3/4/2009		42.92	8.28		34.64	-	<50	<0.50	<0.50	<0.50	<0.50	4.9	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	9/30/2009		42.92	11.60		31.32	-	<50	<0.50	<0.50	<0.50	<0.50	6.8	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3 MW-3	10/28/2009 3/23/2010		42.92 42.92	10.40 8.27		32.52 34.65		 <50	<0.50	<0.50	<0.50	<1.0	3.2	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	6/10/2010		42.92	9.40		33.52	-	<50	<0.50	<0.50	<0.50	<1.0	3.2	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	9/16/2010		42.92	11.14		31.78	-	<50	<0.50	<0.50	<0.50	<1.0	5.9	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	2/23/2011		42.92	8.71		34.21		-					0.58							
MW-3	9/28/2011		42.92	11.14		31.78		-		-			3.2		-	-				

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-3	3/8/2012	110100	(ft msl) 42.92	(ft) 11.01	5	(ft msl) 31.91	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L)	(μg/L) 	(µg/L)	(μg/L) <0.50(*)	(μg/L)	(µg/L)	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(μg/L)
MW-3	9/5/2012		42.92	11.42		31.50	-	-	-				6.5	-		-			-	-
MW-3	3/20/2013		42.92	10.30	-	32.62		-	-	-	-		2.6					-		
MW-3	9/20/2013		42.92	11.90	-	31.02		-		-	-		4.1						-	
MW-4	2/5/1990		40.11	20.75		19.36	-	620	<0.5	9	<0.5	10	-				-	-	-	-
MW-4	2/14/1991		40.11	21.73		18.38	-	180	<0.3	<0.3	0.4	2	-					-	-	
MW-4	5/13/1991		40.11	18.55		21.56		72	0.7	<0.3	<0.3	<0.3	-							
MW-4	7/24/1991		40.11	21.31		18.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-4 MW-4	10/3/1991 10/15/1991		40.11 40.11	22.57 22.88		17.54 17.23		57	<0.3	<0.3	<0.3	<0.3	-			-		-		
MW-4	12/4/1991		40.11	22.88	-	17.23		-			-							-	-	
MW-4	12/16/1991		40.11	22.59		17.52		-		-	-								-	
MW-4	1/6/1992		40.11	22.00		18.11		480	0.8	3.2	1.9	7.7	-	-			-			
MW-4	1/22/1992		40.11	21.58		18.53				-								-	-	
MW-4 MW-4	1/28/1992 2/5/1992		40.11 40.11	21.42 21.10	-	18.69 19.01	-	-			-							-		
MW-4	2/12/1992		40.11	20.74		19.37														
MW-4	2/17/1992		40.11	19.78		20.33				-										
MW-4 MW-4	4/3/1992		40.11	16.80	<u> </u>	23.31			<0.5	<0.5	<0.5	<0.5	-			-		-		
MW-4 MW-4	4/8/1992 4/14/1992		40.11 40.11	17.13 17.74	-	22.98 22.37	-	<50 	<0.5	<0.5	<0.5	<0.5						-	-	
MW-4	4/29/1992		40.11	18.56	†	21.55		_	-	-	-		-				-	-	-	
MW-4	5/7/1992		40.11	19.10		21.01		-		-			-							
MW-4	7/3/1992		40.11	20.71		19.40	-	<50	0.6	<0.5	<0.5	<0.5	-			-	-	-	-	
MW-4 MW-4	10/8/1992 12/31/1992		40.11 40.11	22.43 19.58	+	17.68 20.53		270 150	<0.5 <0.5	2.1 <0.5	2.5 <0.5	3.2 1.3						-		
MW-4	4/21/1993		40.11	17.79		22.32		<50	<0.5	<0.5	<0.5	<0.5							-	
MW-4	7/7/1993		40.11	18.44		21.67		160	1.2	5.4	3.8	19	5.51							
MW-4 MW-4	9/21/1993		40.11 40.11	20.14		19.97 20.31	-	71	<0.5	1.9	<0.5	2.1								
MW-4	12/17/1993 12/23/1993		40.11	19.80	-	20.31		<50	3.1	1.6	0.8	3.8	5.7						-	
MW-4	4/7/1994		40.11	19.12		20.99		<50	<0.5	<0.5	<0.5	<0.5	11.7						-	
MW-4	7/6/1994		40.11	19.90		20.21		62	<0.5	<0.5	<0.5	<0.5						-	-	
MW-4	10/7/1994		40.11	20.07		20.04		<50	<0.5	<0.5	<0.5	<0.5	7.38					-		
MW-4 MW-4	1/27/1995 3/30/1995		40.11 40.11	13.72 11.46	-	26.39 28.65		<50 <50	<0.5 <0.50	<0.50	<0.5 <0.50	<1.0 <1.0							-	
MW-4	6/20/1995		40.11	14.78		25.33		<50	<0.50	<0.50	<0.50	<1.0							-	
MW-4	10/3/1995		40.11	19.62		20.49		<50	<0.50	<0.50	<0.50	<1.0	5	-			-			
MW-4 MW-4	12/6/1995 3/21/1996		40.11 40.11	19.91 11.12		20.20 28.99		<50 <50	<0.50 <0.5	<0.50 <1.0	<0.50 <1.0	<1.0 <1.0	47 <10							
MW-4	6/21/1996		40.11	12.21		27.90		<50	<0.5	<1.0	<1.0	<1.0	<10			-				
MW-4	9/6/1996		40.11	12.89		27.22		-	-	-	-	-	-					-	-	
MW-4	9/9/1996					-		<50	<0.5	<1.0	<1.0	<1.0	<10					-	-	
MW-4 MW-4	12/19/1996 3/17/1997		40.11 40.11	11.01 10.42		29.10 29.69		<50	<0.5	<1.0	<1.0	<1.0	<10							
MW-4	8/12/1997		40.11	12.77		27.34	_	_	_	_	-			-				-	-	
MW-4	12/10/1997		40.11	11.22		28.89		-		-	-									
MW-4	3/12/1998		40.11	10.81		29.30		-		-		-	-				-	-		-
MW-4 MW-4	6/23/1998 3/31/1999		40.11 40.11	10.61 11.46		29.50 28.65	-	-		-								-	-	
MW-4	8/25/1999		40.11	16.16	†	23.95		-		-	-							-	-	
MW-4	3/9/2000		40.11	12.23		27.88			-	-	-							-	-	
MW-4	3/8/2001		40.11	11.04		29.07		-		-			-				-	-	-	
MW-4 MW-4	3/8/2002 3/18/2002		40.11 40.11	12.73 11.62	-	27.38 28.49		-		-								-		
MW-4	3/11/2003		40.11	13.44	t	26.67		-	-	-	-							-	-	
MW-4	12/9/2003		40.11	15.03		25.08		<250	<2.5	<2.5	<2.5	<2.5	130	<100	<2.5	<2.5	2.7	<500		
MW-4	3/9/2004		40.11	11.04	<u> </u>	29.07	-	<50	<0.50	<0.50	<0.50	<0.50	35	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-4 MW-4	9/17/2004 3/7/2005		40.11 40.11	16.75 11.02	-	23.36 29.09		<250 67	<2.5 <0.50	<2.5 <0.50	<2.5 <0.50	<2.5 <0.50	140 42	<100 <20	<2.5 <0.50	<2.5 <0.50	2.6 0.56	<500 <100	<2.5 <0.50	<2.5 <0.50
MW-4	9/6/2005		42.88	14.64	t	28.24	-	81	<0.50	<0.50	<0.50	<1.5	180	<10	<0.50	<0.50	2.8	<150	<0.50	<0.50
MW-4	3/6/2006		42.88	12.42		30.46		<100	<1.0	<1.0	<1.0	<1.0	110	<40	<1.0	<1.0	1.4	<600	<1.0	<1.0
MW-4	9/5/2006		42.88	13.81		29.07		130	<1.0	<1.0	<1.0	<1.0	190	<40	<1.0	<1.0	1.7	<600	<1.0	<1.0
MW-4 MW-4	3/5/2007 9/7/2007		42.88 42.88	10.63 14.77	-	32.25 28.11		<50 90	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	13 130	<20 <20	<0.50 <0.50	<0.50 <0.50	<0.50 1.7	<300 <300	<0.50 <0.50	<0.50 <0.50
MW-4	3/6/2008		42.88	11.30	†	31.58	-	<50	<0.50	<0.50	<0.50	<0.50	170	14	<0.50	<0.50	2.1	<300	<0.50	<0.50
MW-4	9/3/2008		42.88	16.11		26.77	-	<50	<5.0	<5.0	<5.0	<5.0	150	<100	<5.0	<5.0	<5.0	<3,000	<5.0	<5.0
MW-4	3/4/2009		42.88	10.78		32.10	-	140	<5.0	<5.0	<5.0	<5.0	110	<100	<5.0	<5.0	<5.0	<3,000	<5.0	<5.0
MW-4 MW-4	9/30/2009 10/28/2009		42.88 42.88	16.48 15.07	-	26.40 27.81	-	240	<2.0	<2.0	<2.0	<2.0	140	<40 	<2.0	<2.0	<2.0	<1,200	<2.0	<2.0
14144-14	10/20/2009		72.00	10.07	1	41.01					<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>	

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-4	3/23/2010		(ft msl) 42.88	(ft) 10.82		(ft msl) 32.06	(μg/L) 	(μg/L) <50	(μg/L) <0.50	(μg/L) <0.50	(μg/L) <0.50	(μg/L) <1.0	(μg/L) 84	(μg/L) 18	(μg/L) <0.50	(μg/L) <0.50	(μg/L) 0.88	(μg/L) <100	(μg/L) <0.50	(μg/L) <0.50
MW-4	6/10/2010		42.88	12.67		30.21			-	-	-		-	_	-	-		-	-	-
MW-4	9/16/2010		42.88	15.72		27.16		120	<0.50	<0.50	<0.50	<1.0	72	8.0	<0.50	<0.50	0.82	<100	<0.50	<0.50
MW-4 MW-4	2/23/2011 9/28/2011		42.88 42.88	11.43 15.34		31.45 27.54	-	<50 450		-			55							
MW-4	3/8/2012		42.88	15.03		27.85		150 120	-		_		62 42	-	-			-	-	
MW-4	9/5/2012		42.88	15.90		26.98		56	< 0.50	< 0.50	<0.50	<1.0	47	18	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-4	3/20/2013		42.88	13.80		29.08		<50		-	-		17							
MW-4	9/20/2013		42.88	15.69	-	27.19	-	830	-	-			21	-		-	-	-	-	
MW-5	10/3/1991		39.55	18.08	1	21.47	-	79,000	13,000	7,400	1,400	6,200	-	-	-	-	-	-	-	-
MW-5	10/15/1991		39.55	18.55		21.00		-		-	-									
MW-5	12/4/1991	g	39.55	18.44		20.98		1	-	-	-		-	-	-	-		-	-	-
MW-5 MW-5	12/16/1991 1/6/1992	g	39.55 39.55	18.66 19.12		20.88	-	-		-	-		-				-	-		
MW-5	1/22/1992	y	39.55	14.59		24.96	-	-	-	-			-							-
MW-5	1/28/1992		39.55	15.25		24.30			-	-	-		-	-	-	-			-	-
MW-5	2/5/1992	b	39.55	15.58		23.97		-	-	-										
MW-5	2/12/1992	g	39.55	15.54		24.00		-	-	-			-	-						-
MW-5 MW-5	2/17/1992 4/3/1992	b a	39.55 39.55	13.98 13.63	1	25.57 25.88					-		-					-		-
MW-5	4/8/1992	g	39.55	13.17		26.37	-	-	-	-	-	-	-		-	-	-	-		-
MW-5	4/14/1992	g	39.55	13.45		26.09				-	-							-		
MW-5	4/29/1992	g	39.55	13.75		25.73	-	-	-	-	-		-	-		-	-	-	-	-
MW-5	5/7/1992	g	39.55	16.15		23.36		-	-	-	-			-		-		-		
MW-5 MW-5	7/3/1992 9/1/1992	g	39.55 39.55	17.67 17.83	1	21.80 21.22					-		-					-		-
MW-5	10/8/1992	g	39.55	17.86		20.77	_	_	_	_	-		-	_	-	-			_	
MW-5	12/31/1992	b	39.55	15.20		24.35	-	-	-	-	-		-	-		-		-	-	-
MW-5	4/21/1993	g	39.55	12.64		26.89	-	-	-	-	-		-	-	-	-		-	-	-
MW-5	7/7/1993	g,f	39.14	12.68		25.64					-		-							
MW-5 MW-5	9/21/1993 12/17/1993	b	39.14 39.14	14.35 12.61		24.79 26.12	-				-									
MW-5	4/7/1994	9	39.14	30.00		9.14	_	66,000	3,000	1,700	250	6,800	2,002	_	-	-			_	
MW-5	7/6/1994		-	-		-	-	29,000	1,900	330	63	2,700	1,141	-		-			-	-
MW-5	10/7/1994		39.14	28.70		10.44	-	250,000	2,600	660	830	5,200	37.7	-	-	-		-	-	
MW-5	10/7/1994	е	39.14 39.14	28.70		10.44		45,000	2,900	540	260	2,600		-				-		
MW-5 MW-5	1/27/1995 3/30/1995		39.14	28.70 28.95		10.44 10.19		50,000	7,900	2,600	520	6,400	-	-					-	
MW-5	3/30/1995	е	39.14	28.95		10.19		43,000	7,900	2,500	440	6,200		-		-			-	-
MW-5	6/20/1995		39.14	22.54		16.60		34,000	5,100	1,900	300	3,700								
MW-5	6/20/1995	е	39.14	22.54		16.60		26,000	3,500	290	<25	3,300		-					-	-
MW-5 MW-5	10/3/1995 10/3/1995	е	39.14 39.14	18.84 18.84		20.30 20.30		12,000 12,000	68 46	42 39	11 10	1,600 1,600	330 320			-		-		-
MW-5	12/6/1995		39.14	19.07		20.07	-	16,000	1,200	93	51	700	600	-	-	-	-	-	-	-
MW-5	3/21/1996		39.14	7.43		31.71	-	1,500	89	28	6	250	<10	-		-			-	-
MW-5	3/21/1996	е	39.14	7.43		31.71	-	1,900	92	30	7	270	<10	-	-	-	-	-	-	-
MW-5	6/21/1996		39.14	9.87 9.87		29.27		3,500	740	150	19	400	<100			-				
MW-5 MW-5	6/21/1996 9/6/1996	е	39.14 39.14	9.87 10.52		29.27 28.62	-	2,700	680	140	20	400	<50	-		-		-	-	
MW-5	9/9/1996						-	82,000	3,100	1,700	850	9,100	<2,500		-	-	-	-		-
MW-5	9/9/1996	е	-	-		-		90,000	2,900	1,600	670	6,900	<2,500			-				
MW-5	12/19/1996		39.14	8.62		30.52	-	41,000	790	820	120	2,040	<500			-		-	-	
MW-5 MW-5	12/19/1996	е	39.14 39.14	8.62		30.52 30.92		26,000 5,500	490 1.9	430	63 <1.0	1,140 <1.0	<500							
MW-5 MW-5	3/17/1997 3/17/1997	e	39.14 39.14	8.22 8.22	1	30.92		6,600	1.9 2.5	2.4	<1.0 <1.0	<1.0 <1.0	29 28					-		
MW-5	8/12/1997	g	39.14	12.18		26.74	_	33,000	6,400	2,400	680	4,400	<1,000	-		-	-	-	-	-
MW-5	8/12/1997	e	39.14	12.18		26.74	-	36,000	6,100	2,500	720	4,500	<500	-		-		-	-	
MW-5	12/10/1997	g	39.14	10.78		28.30	-	31,000	3,000	2,500	560	5,100	500	-		-		-	-	-
MW-5 MW-5	12/10/1997	e	39.14	10.78		28.30		37,000	2,900	2,500	440	4,800	 <250							-
MW-5 MW-5	3/12/1998 6/23/1998	g	39.14 39.14	10.11 10.20	1	28.81 28.92		100,000 27,000	1,600 2,500	870 840	250 370	2,600 2,900	<250 <250					-		-
MW-5	6/23/1998	е	39.14	10.20		28.92	-	27,000	2,600	840	400	2,950	<500		-	-	-	-		<u> </u>
MW-5	8/25/1999	g	39.14	14.69		24.07		180,000	2,700	400	830	2,800	26	-		-			-	
MW-5	3/9/2000	g	39.14	14.83		23.71	-	53,000	12,000	2,600	1,900	9,100	<5.0	-		-	-		-	
MW-5	3/8/2002	g	39.14	11.45	ļ	26.19	-	33,000	8,240	1,080	1,010	2,900	34.3				-	-		-
MW-5 MW-5	3/18/2002 3/11/2003	a	39.14 39.14	8.03 9.60		31.11 29.09				-	-		-							
MW-5	12/9/2003	g a	39.14	11.44		29.09	-	-	_	-	-		-	-		-	-	-	-	
MW-5	3/9/2004		39.14	7.91		31.23		31,000	3,900	1,100	780	3,600	<50	<2,000	<50	<50	<50	<10,000	96	<50
MW-5	9/17/2004	g	39.14	12.13		27.13	-	-	-	-			-	-	-	-		-		

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-5	3/7/2005	q	(ft msl) 39.14	(ft) 8.62		(ft msl) 30.52	(µg/L)	(μg/L) 	(μg/L) 	(μg/L)	(μg/L) 	(µg/L)	(μg/L) 	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-5	9/6/2005	g	39.14	11.16		27.98	-	-	-	-	-		-					-		
MW-5	3/6/2006	g,b	39.14	8.60		30.54	-	32,000	7,500	810	1,200	2,300	<50	<2,000	60	<50	<50	<30,000	<50	<50
MW-5 MW-5	9/5/2006 3/5/2007	g b	39.14 39.14	6.16 8.34		32.98 30.80	-	90.000	10.000	4.200	1.900	7.900	 <50	<2.000	 57	<50	 <50	<30.000	<50	<50
MW-5	9/7/2007	g	39.14	15.15		23.99	-			-					-	-				
MW-5	1/14/2008	g	39.14	10.30		28.84	-	-		-	-					-			-	
MW-5 MW-5	2/27/2008 3/6/2008	g g	39.14 39.14	13.22 12.90		25.92 26.24	-			-	-						-	-		
MW-5	9/3/2008	g	39.14	12.90		26.24	-	_	-	-	-	-	-			-	-	-	-	
MW-5	3/4/2009	g	39.14	8.45		30.69	-	-		-		-	-						-	
MW-5 MW-5	4/8/2009 5/11/2009	g g	39.14 39.14	9.05 9.10		30.09 30.04	-	-		-						-	-			
MW-5	6/16/2009	g	39.14	9.15		29.99		-	-	-	-	-		-	-	-			-	
MW-5	7/22/2009	g	39.14	9.33		29.81	-	-		-										
MW-5 MW-5	8/6/2009 9/30/2009	g g	39.14 39.14	10.05 10.55		29.09 28.59	-	-		-			-						-	
MW-5	10/28/2009	g	39.14	10.55		28.66			-		-					-				
MW-5	3/23/2010		39.14	7.10		32.04	-	67,000	1,400	380	620	1,800	<5.0	<40	<5.0	<5.0	<5.0	<1,000	<5.0	<5.0
MW-5 MW-5	6/10/2010 9/16/2010	g	39.14 39.14	8.26 9.14		30.88 30.00	-			-	-					-	-			
MW-5	2/23/2011	g g	39.14	9.14 8.33		30.00	-	-		-	-		-						-	
MW-5	9/28/2011	g	39.14	10.46		28.68	-	-	-	-	-	-							-	
MW-5	3/8/2012	g	39.14	10.27		28.87	-	-		-	-					-			-	
MW-5 MW-5	9/5/2012 3/20/2013	g g	39.14 39.14	11.80 9.73	9.71	27.69 29.43	-	-		-									-	
MW-5	9/20/2013	b, i	39.14	10.26	9.71	28.88		-	-	-	-	-		-	-	-			-	
															L	L				
MW-6 MW-6	10/3/1991		41.59 41.59	20.73 21.20		20.86 20.39	-	<50	0.7	0.8	<0.3	1.3								
MW-6	12/4/1991		41.59	21.26		20.39				-						-				
MW-6	12/16/1991		41.59	21.12		20.47	-	-	-	-	-	-							-	
MW-6	1/6/1992		41.59	20.29		21.30	-	<50	<0.5	<0.5	<0.5	1.6				-			-	
MW-6 MW-6	1/22/1992 1/28/1992		41.59 41.59	20.12 20.20		21.47 21.39	-	-		-						-				
MW-6	2/5/1992		41.59	20.09		21.50	-	-	-	-	-	-	-	-					-	
MW-6	2/12/1992		41.59	19.15		22.44	-	-		-	-									
MW-6 MW-6	2/17/1992 4/3/1992		41.59 41.59	18.02 16.62		23.57 24.97			-	-	-	-	-	-		-				
MW-6	4/8/1992		41.59	17.06		24.53		<50	0.6	<0.5	0.8	<0.5				-				
MW-6	4/14/1992		41.59	17.23		24.36		-		-										
MW-6	4/29/1992		41.59	18.12		23.47	-	-												
MW-6 MW-6	5/7/1992 7/3/1992		41.59 41.59	18.52 19.71		23.07 21.88	-	<50	<0.5	<0.5	<0.5	<0.5								
MW-6	10/8/1992		41.59	21.22		20.37	-	<50	<0.5	<0.5	<0.5	<0.5							-	
MW-6	10/8/1992	е	41.59	21.22		20.37	-	<50	<0.5	<0.5	<0.5	<0.5	-	-					-	
MW-6 MW-6	12/31/1992 4/21/1993		41.59 41.59	21.33 16.45		20.26 25.14	-	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				-				
MW-6	7/7/1993		41.59	18.68		22.91	-	<50	<0.5	<0.5	<0.5	<0.5	28.96			-	-	-	-	
MW-6	9/21/1993		41.59	19.64		21.95	-	<50	<0.5	<0.5	<0.5	1.6	-				-	-	-	-
MW-6 MW-6	12/17/1993 12/23/1993		41.59	21.08	1	20.51		 <50	<0.5	0.5	 <0.5	0.6	13.95			-		-	-	
MW-6	4/7/1994		41.59	21.27	-	20.32		<50 <50	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	35.1	-		-	-	-	- -	
MW-6	7/6/1994		41.59	19.81		21.78	-	<50	<0.5	<0.5	<0.5	<0.5	-				-	-	-	
MW-6	7/6/1994	е	41.59	19.81		21.78	-	<50	<0.5	<0.5	<0.5	<0.5				-	-	-	-	
MW-6 MW-6	10/7/1994 1/27/1995		41.59 41.59	21.25 12.39		20.34 29.20		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <1.0	24.3						-	
MW-6	3/30/1995		41.59	11.34		30.25	_	<50	<0.50	<0.50	<0.50	<1.0	-			-	-	-	-	
MW-6	6/20/1995		41.59	15.12		26.47	-	<50	< 0.50	< 0.50	<0.50	<1.0								
MW-6 MW-6	10/3/1995 12/6/1995		41.59 41.59	20.68		20.91 17.82	-	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	66 45			-	-		-	
MW-6	3/21/1996		41.59	11.55		30.04		<50 <50	<0.50	<0.50	<0.50 <1.0	<1.0	45				-	-		
MW-6	6/21/1996		41.59	12.60		28.99	-	<50	<0.5	<1.0	<1.0	<1.0	<10							
MW-6	9/6/1996		41.59	13.25		28.34	-	-		-			-			-	-	-	-	
MW-6	9/9/1996 12/19/1996		41.59	11.45		30.14		<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	22 <10				-	-		
MW-6	3/17/1997		41.59	10.80		30.79	-	<50	<0.5	<1.0	<1.0	<1.0				-	-	-	-	
MW-6	8/12/1997		41.59	13.11		28.48	-	-	-	-			-				-	-	-	
MW-6	12/10/1997		41.59	13.84		27.75	-	_	-	-			-			-	-	-	-	
MW-6 MW-6	3/12/1998 6/23/1998		41.59 41.59	11.17 13.27		30.42 28.32		-		-									-	
	G/EG/1990	1				20.02		-		_		-							-	

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-6	3/31/1999		(ft msl) 41.59	(ft) 12.91		(ft msl) 28.68	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L)	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L)	(μg/L)	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(µg/L)
MW-6	8/25/1999		41.59	15.93		25.66	_	_	_	_	-		_	_				-	-	-
MW-6	3/9/2000		41.59	11.49		30.10	-	-		-										
MW-6	3/8/2001		41.59	10.81		30.78	-	-		-	-									
MW-6	3/8/2002		41.59	14.28		27.31	-	-			-		-					-		
MW-6 MW-6	3/18/2002 3/11/2003		41.59 41.59	13.10 13.63		28.49 27.96	-		-	-						-		-		
MW-6	12/9/2003		41.59	14.26		27.33	-	<50	<0.50	<0.50	<0.50	<0.50	12	<20	<0.50	<0.50	<0.50	<100		
MW-6	3/9/2004		41.59	11.87		29.72	-	<50	<0.50	<0.50	<0.50	<0.50	10	<20	<0.50	<0.50	<0.50	<100	0.58	<0.50
MW-6	9/17/2004		41.59	16.45		25.14	-	-		-	-		-	-				-		
MW-6	3/7/2005		41.59	13.65		27.94	-	<50	<0.50	<0.50	<0.50	<0.50	5.8	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-6 MW-6	9/6/2005 3/6/2006		44.37 44.37	14.23 12.89		30.14 31.48		 <50	<0.50	<0.50	<0.50	<0.50	8.1	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/5/2006		44.37	14.10		30.27		<50	<0.50	<0.50	<0.50	<0.50	0.1	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	3/5/2007		44.37	11.43		32.94	-	<50	< 0.50	< 0.50	<0.50	< 0.50	5.6	<20	< 0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/7/2007		44.37	16.00		28.37	-	-	-	-	-		-	-				-	-	
MW-6	3/6/2008		44.37	11.84		32.53		<50	<0.50	<0.50	<0.50	<0.50	1.9	<10	<0.50	<0.50	<0.50	<300	<0.50	< 0.50
MW-6 MW-6	9/3/2008		44.37 44.37	16.24 11.68		28.13 32.69	-	 <50	<0.50	<0.50	<0.50	<0.50	2.8	 <10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	3/4/2009 9/30/2009		44.37	16.83		27.54	-	<50	<0.50	<0.50	<0.50	<0.50	4.4	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	10/28/2009		44.37	15.63		28.74	-													
MW-6	3/23/2010		44.37	11.48		32.89	-	<50	<0.50	<0.50	<0.50	<1.0	1.0	<4.0	< 0.50	<0.50	<0.50	<100	< 0.50	<0.50
MW-6	6/10/2010		44.37	12.54		31.83	-													
MW-6 MW-6	9/16/2010		44.37 44.37	15.95 12.34		28.42 32.03	-	<50	<0.50	<0.50	<0.50	<1.0	0.80 <0.50	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-6	2/23/2011 9/28/2011		44.37	15.81		28.56	-	-	-	-	-		<0.50 3.4					-		
MW-6	3/8/2012		44.37	15.51		28.86	-	-			-		0.58					-		
MW-6	9/5/2012		44.37	15.88		28.49	-	ı	-	-	-		2.1	-				-		
MW-6	3/20/2013		44.37	14.36	-	30.01	-	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-6	9/20/2013		44.37	16.02	-	28.35		-	-	-			2.4	-		-	-	-		
MW-7	10/3/1991		40.64	14.93	1	25.71		360	62	13	3.4	20								
MW-7	10/15/1991		40.64	15.16		25.48	_						_	_				-	-	-
MW-7	12/4/1991		40.64	15.41		25.23	-	-	-	-	-		-	-				-		
MW-7	12/16/1991		40.64	15.21		25.43	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-7	1/6/1992		40.64	14.56		26.08	-	1,100	170	<0.5	24	23						-		-
MW-7 MW-7	1/22/1992 1/28/1992		40.64 40.64	14.63 14.73		26.01 25.91	-	-		-	-							-		-
MW-7	2/5/1992		40.64	14.58		26.06	_	_	_		-	-			-		-	-	-	-
MW-7	2/12/1992		40.64	13.94		26.70	-													
MW-7	2/17/1992		40.64	13.10		27.54	-	-	-	-	-									
MW-7	4/3/1992		40.64	12.66		27.98														
MW-7 MW-7	4/8/1992 4/14/1992		40.64 40.64	12.77 13.02		27.87 27.62	-	750	150	<0.5	23	9.9	-	-				-		
MW-7	4/29/1992		40.64	13.59		27.05		-	-	-		-	-	-	-		-	-	-	-
MW-7	5/7/1992		40.64	13.95		26.69	-	-		-										
MW-7	7/3/1992		40.64	14.73		25.91	-	660	210	<2.5	33	8	-				-			-
MW-7	10/8/1992		40.64	15.75		24.89	-	320	49	1.4	13	6.2						-		-
MW-7 MW-7	12/31/1992 4/21/1993		40.64 40.64	13.57 14.56		27.07 26.08	-	900 510	100 83	<2.5 1.2	28 10	4.3 5.8	-	-		-		- -		
MW-7	7/7/1993	f	40.84	13.40		26.92	-	1,100	160	2	27	4	10.84	-	-			- -		-
MW-7	7/7/1993	e	40.32	13.40		26.92	_	1,100	170	1.9	29	2.84	9.84				<u>-</u> -			
MW-7	9/21/1993		40.32	14.40		25.92	-	690	150	3.1	26	5.7	-	-	-	-	-	-	-	-
MW-7	9/21/1993	е	40.32	14.40		25.92		640	140	1.7	23	2.4					-	-		
MW-7 MW-7	12/17/1993 12/23/1993		40.32	13.65		26.67	-	250	64	1.2	9	1.8	7.81	-		-				
MW-7	4/7/1994		40.32	30.62		9.70	-	140	32	1.4	<0.5	<0.5	6.32	-	-			- -	-	-
MW-7	7/6/1994		40.32	16.88		23.44	-	410	94	1.3	10	3.5	<5.0	-			-	-		
MW-7	10/7/1994		40.32	25.59		14.73	-	<50	9.2	<0.5	<0.5	<0.5	<5.0	-				-		
MW-7	1/27/1995	-	40.32	9.82		30.50	-	810	570	3	60	17	-	-				-		
MW-7 MW-7	1/27/1995 3/30/1995	е	40.32 40.32	9.82 9.15		30.50 31.17	-	930 180	620 65	4 0.53	77 2	21 <1.0	-	-						
MW-7	3/30/1995 6/20/1995		40.32	9.15	1	28.94	-	2,800	980	0.53 <5.0	<5.0	<1.0 43	-	-				-		
MW-7	10/3/1995		40.32	29.95		10.37	_	<50	<0.50	<0.50	<0.50	<1.0	<5.0	-				-	-	
MW-7	12/6/1995		40.32	29.85		10.47	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0							
MW-7	3/21/1996		40.32	9.76		30.56	-	1,000	390	2	40	13	<10	-				-		
MW-7	6/21/1996		40.32	11.01		29.31	-	<250	40	<5.0	<5.0	<5.0	<50	-				-		
MW-7 MW-7	9/6/1996 9/9/1996		40.32	11.68	-	28.64	_	<250	13	<5.0	<5.0	<5.0	<50					-		
MW-7	12/19/1996		40.32	10.78		29.54	_	70	1.2	<1.0	<5.0 1	<1.0	<10					-		
MW-7	3/17/1997		40.32	9.96		30.36	-	-	-		-			-			-	-		
			•	•							•	•			•	•		•		

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
			(ft msl)	(ft)		(ft msl)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-7 MW-7	8/12/1997 12/10/1997		40.32 40.32	11.44 10.42		28.88 29.90	-	-	-	-		-		-	-			-		
MW-7	3/12/1998		40.32	9.51		30.81			-	-		-	-		-		-		-	
MW-7	6/23/1998		40.32	9.98		30.34	-													
MW-7	3/31/1999		40.32	10.38		29.94	-	-	-	-		-		-		-		-	-	
MW-7	8/25/1999		40.32	12.38		27.94	-	-	-	-		-		-	-					
MW-7	3/9/2000		40.32	8.48		31.84	-	-	-	-	-	-		-	-				-	
MW-7	3/8/2001		40.32	8.37		31.95	-	-	-											
MW-7 MW-7	3/18/2002		40.32 40.32	9.94		30.38 29.06	-			-				-				-		
MW-7	3/11/2003 12/9/2003		40.32	11.26 12.76		29.06	-	270	26	<0.50	<0.50	<0.50	8.7	<20	<0.50	<0.50	<0.50	<100		
MW-7	3/9/2004		40.32	10.91		29.41		320	49	0.73	1.8	0.59	6.9	<20	<0.50	<0.50	<0.50	<100	1.2	<0.50
MW-7	9/17/2004		40.32	13.20		27.12	-	330	17	<0.50	<0.50	<0.50	7.0	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-7	3/7/2005		40.32	8.18		32.14	-	340	41	0.79	0.79	0.73	7.2	<20	< 0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-7	9/6/2005		43.10	11.80		31.30	-	1,100	130	1.2	1.8	<1.5	16	30	0.60	<0.50	<0.50	<150	<0.50	<0.50
MW-7	3/6/2006		43.10	8.39		34.71	-	440	31	0.78	0.74	0.81	8.3	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	9/5/2006		43.10	11.45		31.65	-	2,000	260	3.1	5.9	<2.5	12	<100	<2.5	<2.5	<2.5	<1,500	<2.5	<2.5
MW-7	3/5/2007		43.10	9.31		33.79	-	2,200	110	2.2	4.0	1.8	7.6	<40	<1.0	<1.0	<1.0	<600	<1.0	<1.0
MW-7 MW-7	9/7/2007 3/6/2008		43.10 43.10	12.18 10.05		30.92 33.05	-	220 1,800	8.4 54	<0.50 1.2	<0.50	<0.50 <1.0	1.2 <1.0	<20 <20	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<300 <600	<0.50 <1.0	<0.50 <1.0
MW-7	9/3/2008		43.10	13.17	 	29.93		540	13	0.69	<0.50	<0.50	5.5	17	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	3/4/2009		43.10	8.25	1	34.85	_	720	15	0.59	0.53	<0.50	3.4	12	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	9/30/2009		43.10	12.70	İ	30.40	-	1,200	44	1.0	0.74	0.79	3.3	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	10/28/2009		43.10	11.17		31.93	1	-	-	-	-	-		-	-		-		-	
MW-7	3/23/2010		43.10	9.28		33.82	-	610	11	<0.50	<0.50	<1.0	<0.50	12	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-7	6/10/2010		43.10	10.24		32.86	-			-				-						
MW-7	9/16/2010		43.10	12.16		30.94		4,700	130	<5.0	7.4	<10	<5.0	<40	<5.0	<5.0	<5.0	<1,000	<5.0	<5.0
MW-7 MW-7	2/23/2011 9/28/2011		43.10 43.10	9.62 11.80		33.48 31.30	-	2,200 3,800	26 380	1.1 4.8	1.4 28	1.6 4.3	4.0 9.5	<4.0 13	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<250 <250	<0.50 <0.50	<0.50 <0.50
MW-7	3/8/2012		43.10	11.69		31.41	-	550	1.4	<0.50	<0.50	4.3 <1.0	2.3	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7	9/5/2012		43.10	11.60		31.50	-	830	16	1.3	0.66	1.4	3.0	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7	3/20/2013		43.10	10.88		32.22	-	-	-		3.4									
MW-7	9/20/2013		43.10	11.50	-	31.60	-	580	< 0.50	< 0.50	<0.50	<1.0	2.3	<10	< 0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-8	10/3/1991		38.18	22.37		15.81	-	<50	<0.3	0.6	<0.3	0.9		-	-					
MW-8	10/15/1991		38.18	22.70		15.48	-	-	-	-	-				-					
MW-8 MW-8	12/4/1991 12/16/1991		38.18 38.18	22.44 22.47		15.74 15.71	-	-			-				-		-			
MW-8	1/6/1991		38.18	21.94		16.24	-	<50	<0.5	<0.5	<0.5	<0.5			-					
MW-8	1/22/1992		38.18	21.44		16.74	-							-						
MW-8	1/28/1992		38.18	21.20		16.98		-	-	-										
MW-8	2/5/1992		38.18	20.88		17.30	-	-	-	-		-								
MW-8	2/12/1992		38.18	20.54		17.64	-	-	-	-		-		-					-	
MW-8	2/17/1992		38.18	19.99		18.19	-	-	-	-		-		-	-					
MW-8	4/3/1992		38.18	16.75		21.43	-			-	-			-						
MW-8 MW-8	4/8/1992 4/29/1992		38.18 38.18	16.57 18.61		21.61 19.57	-	<50	<0.5	<0.5	<0.5	<0.5	-							
MW-8	5/7/1992		38.18	18.41		19.77	-	-	-	-			-		-		-			
MW-8	7/3/1992		38.18	20.35	 	17.83		<50	<0.5	<0.5	<0.5	<0.5		-	-	-		-	-	
MW-8	10/8/1992		38.18	21.74	İ	16.44	-	-	-	-	-									
MW-8	12/31/1992		38.18	19.09		19.09	-	<50	<0.5	<0.5	<0.5	<0.5								
MW-8	4/21/1993		38.18	18.92		19.26	-	<50	<0.5	<0.5	<0.5	<0.5		-	-					
MW-8	7/7/1993		38.18	17.76	ļ	20.42	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0		-				-	
MW-8 MW-8	9/21/1993		38.18	19.71	1	18.47	-	<50	2.9	2.2	2.2	7.1	-	-			-	-		
MW-8	12/17/1993 12/23/1993		38.18	21.33	-	16.85		<50	<0.5	<0.5	<0.5	0.6	<5.0				-		-	
MW-8	4/7/1993		38.18	21.51	†	16.67	-	<50 <50	<0.5	<0.5	<0.5	<0.5	<5.0		-					
MW-8	7/6/1994		38.18	17.41	 	20.77	_	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-		-	-	
MW-8	10/7/1994		38.18	19.20	İ	18.98	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0							
MW-8	1/27/1995		38.18	12.25		25.93	-	<50	<0.5	<0.5	<0.5	<1.0								
MW-8	3/30/1995		38.18	10.35		27.83	-	<50	<0.50	< 0.50	<0.50	<1.0	-				-	-		
MW-8	6/20/1995		38.18	13.37		24.81	-	<50	<0.50	<0.50	<0.50	<1.0	-		-		-		-	
MW-8	12/6/1995		38.18	18.42		19.76	-	<50	<0.50	<0.50	<0.50	<1.0	47			-	-	-		
MW-8	6/21/1996		38.18 38.18	13.03	1	25.15	-	<50	<0.5	<1.0	<1.0	<1.0	<10				-			
MW-8 MW-8	9/6/1996 9/9/1996		38.18	13.70	1	24.48	-	<50	<0.5	<1.0	<1.0	<1.0	<10			-	-	-	-	
MW-8	12/19/1996		38.18	11.93	 	26.25		<50 <50	<0.5	<1.0	<1.0	<1.0	<10	-	-					
MW-8	3/17/1997		38.18	11.29	1	26.89	_		-					-						_
MW-8	8/12/1997		38.18	13.73	İ	24.45	-	-	-	-	-	-		-	-					
MW-8	12/10/1997		38.18	11.88	<u> </u>	26.30	-	-	-	-	-				-	-			-	
MW-8	3/12/1998		38.18	11.89		26.29	-	-	-	-	-	-	-	-	-				-	

Well ID	Date	Notes	тос	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-8	6/23/1998	Notes	(ft msl) 38.18	(ft) 11.33	DIF	(ft msl) 26.85	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L)	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L)	(μg/L)	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(µg/L)
MW-8	3/31/1999		38.18	12.68		25.50	-			-						-		-		
MW-8	8/25/1999		38.18	14.93		23.25	-	-	-											
MW-8	3/9/2000		38.18	9.14		29.04	-	-	-	-			-	-				-	-	
MW-8 MW-8	3/8/2001 3/8/2002		38.18 38.18	8.41 11.18		29.77 27.00	-	-										-		-
MW-8	3/18/2002		38.18	10.72		27.46				-						-				
MW-8	3/11/2003		38.18	10.46		27.72														
MW-8	3/9/2004		38.18	9.79		28.39	-	<50	<0.50	<0.50	<0.50	<0.50	0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8 MW-8	9/17/2004 3/7/2005		38.18 38.18	15.35 7.94		22.83 30.24	-	 <50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	9/6/2005		40.95	13.06		27.89		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20 	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	3/6/2006		40.95	9.26		31.69		<50	<0.50	<0.50	<0.50	<0.50	0.59	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	9/5/2006		40.95	12.61		28.34	-	-		-	-		-	-						
MW-8 MW-8	3/5/2007 9/7/2007		40.95 40.95	9.12 13.56		31.83 27.39		<50	<0.50	<0.50	<0.50	0.53	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	3/6/2008		40.95	9.80		31.15		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	9/3/2008		40.95	14.20		26.75	-	-	-	-			-				-			
MW-8	3/4/2009		40.95	9.51		31.44	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8 MW-8	9/30/2009 10/28/2009		40.95 40.95	14.92 13.56		26.03 27.39		-		-										
MW-8	6/10/2010		40.95	11.06		29.89	-		-	-			-	-	-			-		
MW-8	9/16/2010		40.95	14.41		26.54	-	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	9/28/2011		40.95	13.87		27.08	-	-	-	-			-					-		
MW-8 MW-8	3/8/2012 9/5/2012		40.95 40.95	13.27		27.68	-	-		-	-									
MW-8	3/20/2013		40.95	11.90		29.05	-		-	-			-	-				-		
MW-8	9/20/2013		40.95	13.88	-	27.07	-	-		-			-							
A #1**	1000000		44 ==	44.0		07.10														
MW-9 MW-9	10/3/1991 10/15/1991		41.25 41.25	14.12 14.27		27.13 26.98	-	<50	<0.3	0.4	<0.3	<0.3								
MW-9	12/4/1991		41.25	13.84		27.41			-	-	-			-		-	-			
MW-9	12/16/1991		41.25	14.18		27.07	-	-	-	-			-	-						
MW-9	1/6/1992		41.25	13.42		27.83	-	<50	<0.5	<0.5	<0.5	0.9	-	-			-	-	-	
MW-9 MW-9	1/22/1992 1/28/1992		41.25 41.25	13.75 14.76		27.50 26.49	-		-	-			-	-						
MW-9	2/5/1992		41.25	13.38		27.87	-		-	-			-					-		
MW-9	2/12/1992		41.25	11.86		29.39	-	-	-	-			-	-				-		
MW-9	2/17/1992		41.25	10.78		30.47	-	-	-	-			-			-		-		
MW-9 MW-9	4/3/1992 4/8/1992		41.25 41.25	11.63 12.25		29.62 29.00	-	<50	<0.5	<0.5	<0.5	<0.5	-	-						
MW-9	4/14/1992		41.25	12.25		28.93	-							-	-					
MW-9	4/29/1992		41.25	13.07		28.18	-	-	-	-			-					-		
MW-9	5/7/1992		41.25	14.43		26.82	-													-
MW-9 MW-9	7/3/1992 10/8/1992		41.25 41.25	13.85 14.89		27.40 26.36	-	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-							
MW-9	12/31/1992		41.25	11.90		29.35	-	<50	<0.5	<0.5	<0.5	<0.5	-	-				-		-
MW-9	4/21/1993		41.25	13.68		27.57	-	<50	<0.5	<0.5	<0.5	<0.5	-	-				-		
MW-9	7/7/1993		41.25	13.12		28.13	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0							
MW-9 MW-9	9/21/1993 12/17/1993		41.25 41.25	14.00 12.98		27.25 28.27	-	<50	<0.5	<0.5	<0.5	0.9	-							
MW-9	12/17/1993						-	<50	<0.5	<0.5	<0.5	0.9	<5.0	-	-		-	-		
MW-9	4/7/1994		41.25	13.24		28.01	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-				-		
MW-9	7/6/1994		41.25	13.77		27.48	-	<50	<0.5	<0.5	<0.5	<0.5						-		
MW-9 MW-9	10/7/1994 1/27/1995		41.25 41.25	14.60 8.47		26.65 32.78		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <1.0	<5.0	-				-		
MW-9	3/30/1995		41.25	8.19		33.06	-	<50	<0.50	<0.50	<0.50	<1.0	-	-	-	-	-	-	-	
MW-9	6/20/1995		41.25	11.25		30.00	-	<50	< 0.50	< 0.50	<0.50	<1.0	-	-				-		
MW-9	10/3/1995		41.25	14.68		26.57	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0					-		
MW-9 MW-9	12/6/1995 3/21/1996		41.25 41.25	16.07 9.60		25.18 31.65	-	<50 <50	<0.50 <0.5	<0.50 <1.0	<0.50 <1.0	<1.0 <1.0	46 <10							-
MW-9	6/21/1996		41.25	10.86		30.39	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-				-		
MW-9	9/6/1996		41.25	11.52		29.73	-	-	-	-								-		
MW-9	9/9/1996		-	-		-	-	<50	<0.5	<1.0	<1.0	<1.0	21	-				-		-
MW-9 MW-9	12/19/1996 3/17/1997		41.25 41.25	10.43 9.87		30.82 31.38		<50	<0.5	<1.0	<1.0	<1.0	<10					-		
MW-9	8/12/1997		41.25	11.44		29.81	-	-	-	-										
MW-9	12/10/1997		41.25	10.44		30.81	_					-				-		-	-	
MW-9	3/12/1998		41.25	9.50		31.75	-	-	-	-			-					-		
MW-9	6/23/1998		41.25	10.06		31.19	-	-	-	-	-		-	-			-	-	-	
MW-9	3/31/1999		41.25	9.06	1	32.19	-			-			-	-						

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO	GRO	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	MTBE (ug/L)	TBA	DIPE (ug/L)	ETBE (ug/L)	TAME (μg/L)	Ethanol	1,2-DCA (μg/L)	EDB (ug/L)
MW-9	8/25/1999		41.25	12.00		29.25	(μg/L) 	(µg/L) 	(μg/L) 	(μg/L) 	(μg/L) 	(µg/L)	(μg/L) 	(μg/L) 	(μg/L) 	(μg/L) 	(µg/L)	(μg/L) 	(µg/L)	(μg/L)
MW-9	3/9/2000		41.25	10.57		30.68		-								-				
MW-9	3/8/2001		41.25	9.73		31.52	-		-	-		-				-	-			
MW-9 MW-9	3/8/2002 3/18/2002		41.25 41.25	11.89 9.68	-	29.36 31.57		-		-	-									
MW-9	3/11/2003		41.25	9.21		32.04				-						-				
MW-9	3/9/2004		41.25	10.99		30.26		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-9	9/17/2004		41.25	13.35		27.90														
MW-9 MW-9	3/7/2005 9/6/2005		41.25 44.06	8.94 11.99		32.31 32.07		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-9	3/6/2006		44.06	8.26		35.80	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9	9/5/2006		44.06	11.63		32.43				-						-				
MW-9	3/5/2007		44.06	9.33		34.73		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9 MW-9	9/7/2007 3/6/2008		44.06 44.06	12.28 10.11		31.78 33.95	-	 <50	<0.50	<0.50	<0.50	<0.50	<0.50	 <10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9	9/3/2008		44.06	13.49		30.57	-													
MW-9	3/4/2009		44.06	8.15		35.91		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	< 0.50	<0.50	<300	<0.50	<0.50
MW-9	9/30/2009		44.06	12.98		31.08			-	-										
MW-9 MW-9	10/28/2009 3/23/2010		44.06 44.06	11.98 10.59		32.08 33.47	-	 <50	<0.50	<0.50	<0.50	<1.0	<0.50	 <4.0	<0.50	<0.50	<0.50	 <100	<0.50	<0.50
MW-9	6/10/2010		44.06	10.59	 	33.47	-	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-9	2/23/2011		44.06	9.71	1	34.35		-								-	-			
MW-9	9/28/2011		44.06	11.66		32.40	-	-		-	-	-				-	-			-
MW-9 MW-9	3/8/2012 9/5/2012		44.06 44.06	11.56 11.18	-	32.50 32.88													-	
MW-9	3/20/2013		44.06	10.00	-	34.06		-		-						-	-			
MW-9	9/20/2013		44.06	10.91		33.15	-		-		-									
MW-10	6/16/2009	g	39.78	8.60	1	31.19		_												
MW-10	7/22/2009	g	39.78	9.68		30.11														
MW-10	8/6/2009		39.78	9.48		30.30	-	-	-	-		-								
MW-10	9/30/2009	g	39.78	9.69		30.10	-													
MW-10 MW-10	10/28/2009 3/23/2010	b	39.78 39.78	8.53 7.70		31.25 32.08		62,000 59,000	8,300 6,500	5,300 4,800	3,100 2,300	12,000 9,700	<50 <100	<400 <800	<50 <100	<50 <100	<50 <100	<10,000 <20,000	<50 <100	<50 <100
MW-10	6/10/2010	g	39.78	8.93		30.86	_													
MW-10	9/16/2010	g	39.78	9.69		30.10														
MW-10	2/23/2011		39.78	7.99		31.79		61,000	7,000	5,300	2,800	12,000	<100	<800	<100	<100	<100	<50,000	<100	<100
MW-10 MW-10	9/28/2011 3/8/2012	g	39.78 39.78	10.36 10.51		29.64 29.51														
MW-10	9/5/2012	g	39.78	10.25		29.54		-	-	_	-					-			-	
MW-10	3/20/2013	g	39.78	9.48	9.47	30.31				-						-				
MW-10	9/20/2013	b, i	39.78	10.50	-	29.28		-		-										
MW-11	9/30/2009		40.04	10.55		29.49		30.000	850	1.400	1,000	3,700	27	<200	<10	<10	<10	<6,000	<10	<10
MW-11	10/28/2009		40.04	8.00		32.04		27,000	1,100	2,300	1,500	5,800	<50	<400	<50	<50	<50	<10,000	<50	<50
MW-11	3/23/2010		40.04	7.25		32.79		21,000	530	830	790	2,200	<25	<200	<25	<25	<25	<5,000	<25	<25
MW-11	6/10/2010	b	40.04	9.65		30.39				-						-				
MW-11 MW-11	9/16/2010 2/23/2011		40.04 40.04	9.42 7.60		30.62 32.44		10,000	380	260	330	 540	7.2	<40	<5.0	<5.0	 <5.0	<2,500	<5.0	<5.0
MW-11	9/28/2011		40.04	9.88	t	30.16	-	5,900	230	92	260	370	6.4	26	<2.5	<2.5	<2.5	<1,300	<2.5	<5.0 <2.5
MW-11	3/8/2012		40.04	9.71		30.33		5,000	280	170	250	380	<5.0	<40	<5.0	<5.0	<5.0	<2,500	<5.0	<5.0
MW-11	9/5/2012		40.04	10.60		29.44	-	22,000	1,000	1,600	1,200	4,500	6.2	<40	<5.0	<5.0	<5.0	<2,500	<5.0	<5.0
MW-11 MW-11	3/20/2013 9/20/2013	i	40.04 40.04	9.54 10.55	-	30.50 29.49		16,000 10,000	250 120	620 130	680 320	2,200 720	<10 <10	<80 <200	<10 <10	<10 <10	<10 <10	<5,000 <5000	<10 <10	<10 <10
IVIV#-11	3/20/2013		40.04	10.55		25.49		10,000	120	130	320	120	×10	5200	×10	<10	<10	<3000	<10	<u> </u>
MW-12	9/30/2009		40.32	11.02		29.32		-			-									
MW-12	10/28/2009		40.32	10.40		29.92	-	43,000	5,800	800	2,900	6,800	<50	<400	<50	<50	<50	<10,000	<50	<50
MW-12	3/23/2010	b	40.32	11.46 11.35	.	28.86		39,000	4,800	1,000	3,100	6,400	<25	<200	<25	<25	<25	<5,000	<25	<25
MW-12 MW-12	6/10/2010 9/16/2010	b a	40.32 40.32	11.35	 	29.87 28.80		-		-							-			
MW-12	2/23/2011	g	40.32	10.80	1	29.60	-	_	-	-		-				-	-	-		
MW-12	9/28/2011	g	40.32	11.48		28.99	-	-	-	-						-	-			
MW-12	3/8/2012	g	40.32	11.92		28.64		-		-		-				-	-			
MW-12 MW-12	9/5/2012 3/20/2013	g	40.32 40.32	11.63 10.13	10.09	29.76 30.22														
MW-12	9/20/2013	b, i	40.32	10.13		29.40	-		-	-		-			-	-	-			
				L							•		L				•			
QC-2	10/8/1992	h	-	-	1	-	-	<50 <50	<0.5	<0.5	<0.5	<0.5				-	-			
QC-2 QC-2	12/31/1992 7/7/1993	h h			<u> </u>	-		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 0.6				-				
QC-2	9/21/1993	h	-	-			-	<50	< 0.5	< 0.5	< 0.5	<0.5	-	-	-	-		-	-	
QC-2 QC-2	12/23/1993 4/7/1994	h h			t	-		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				-	-			
				•			•	.50					•	•	•			•		

Table 1 Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses CA-11109

4280 Foothill Blvd.	, Oakland, CA 94601
---------------------	---------------------

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Ethanol (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
QC-2	7/6/1994	h	-	-		-		<50	< 0.5	< 0.5	< 0.5	< 0.5	-				-			
QC-2	10/7/1994	h		-		-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5					-			
QC-2	1/27/1995	h	-	-		-	-	<50	< 0.5	0.5	< 0.5	<1.0	-	-	-					
QC-2	3/30/1995	h	-	-		-	-	<50	< 0.50	< 0.50	< 0.50	<1.0	-	-	-	-	-	-	-	
QC-2	6/20/1995	h	-	-		-	-	<50	< 0.50	< 0.50	< 0.50	<1.0					-			
QC-2	10/3/1995	h	-	-		-	-	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0	-	-					
QC-2	12/6/1995	h		-		-	-	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0				-			
QC-2	3/21/1996	h	-	-		-	-	<50	< 0.5	<1.0	<1.0	<1.0	<10	-	-					
QC-2	6/21/1996	h	-	-		-	1	<50	<0.5	<1.0	<1.0	<1.0	<10				-			

Notes:

1.2-DCA = 1.2-Dichloroethane

DIPE = Di-isopropyl ether

DO= Dissolved oxygen
DRO = Diesel range organics, range C10-C28
DTW = Depth to water in ft bgs

EDB = 1.2-Dibromomethane

ETBE = Ethyl tert butyl ether

GRO = Gasoline range organics, range C4-C12 GWE = Groundwater measured in ft

MTBE = Methyl tert butyl ether

TAME = Ter-amyl methyl ether

TBA = Ter-butyl alcohol

TOC = Top of casing measured in ft

μg/L= Micrograms per liter

ft bgs = Feet below ground surface

--- = Not analyzed/applicable/measured/ available

< = Not detected at or above reported detection limit

(a) Sample exceeded EPA recommened holding time (b) Sheen in well

(c) Well not sampled due to damage during site construction

(d) Insufficient water to sample

(e) Blind duplicate (f) TOC lowered

(g) Free product in well

(h) Trip Blank

(i) Hydrocarbon odor observed at wellhead

(i) Well is dry

GWE adjusted assuming specific gravity of 0.75 for free product

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2 Historical Groundwater Flow Direction and Gradient CA-11109

4280 Foothill Blvd., Oakland, CA 94601

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/6/2006	Southwest	0.05
9/5/2006	Southwest	0.05
2/21/2007	Southwest	0.02
9/7/2007	Southwest	0.03
3/6/2008	Southwest	0.01
9/3/2008	Southwest	0.006
3/4/2009	Southwest	0.02
9/30/2009	Northwest	0.07
10/28/2009	Northwest	0.04
3/23/2010	Northwest	0.03
6/10/2010	Northwest	0.02
9/16/2010	Northwest	0.07
2/23/2011	Northwest	0.04
9/28/2011	Northwest	0.02
3/8/2012	Northwest	0.06
9/5/2012	West-Northwest	0.04
3/20/2013	Southwest	0.03
9/20/2013	Southwest	0.03

Notes:

N/A = Not Available

ft/ft = Feet per foot

Note: All data collected following April 2006 was collected by Broadbent & Associates, Inc. The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants.

Appendix A

Field Methods

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water

is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

Parameter	Stabilization Criterion
Temperature	± 0.2 °C (± 0.36 °F)
pН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	$\pm 10 \text{ mV}$
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

HYDRASleeve[™]

Simple by Design US Patent No. 6,481,300; No. 6,837,120 others pending

Standard Operating Procedure: Sampling Ground Water with a HydraSleeve

This Guide should be used in addition to field manuals appropriate to sampling device (i.e., HydraSleeve or Super Sleeve).

Find the appropriate field manual on the HydraSleeve website at http://www.hydrasleeve.com.

For more information about the HydraSleeve, or if you have questions, contact: GeoInsight, 2007 Glass Road, Las Cruces, NM 88005, 1-800-996-2225, info@hydrasleeve.com.

Copyright, GeoInsight.

Table of Contents

Introduction	1
Applications of the HydraSleeve	1
Description of the HydraSleeve	3
Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives	4
HydraSleeve Deployment	5
Information Required Before Deploying a HydraSleeve	5
HydraSleeve Placement	6
Procedures for Sampling with the HydraSleeve	8
Measurement of Field Indicator Parameters	11
Alternate Deployment Strategies	11
Post-Sampling Activities	14
Deferences	15

Introduction

The HydraSleeve is classified as a no-purge (passive) grab sampling device, meaning that it is used to collect ground-water samples directly from the screened interval of a well without having to purge the well prior to sample collection. When it is used as described in this Standard Operating Procedure (SOP), the HydraSleeve causes no drawdown in the well (until the sample is withdrawn from the water column) and only minimal disturbance of the water column, because it has a very thin cross section and it displaces very little water (<100 ml) during deployment in the well. The HydraSleeve collects a sample from within the screen only, and it excludes water from any other part of the water column in the well through the use of a self-sealing check valve at the top of the sampler. It is a single-use (disposable) sampler that is not intended for reuse, so there are no decontamination requirements for the sampler itself.

The use of no-purge sampling as a means of collecting representative ground-water samples depends on the natural movement of ground water (under ambient hydraulic head) from the formation adjacent to the well screen through the screen. Robin and Gillham (1987) demonstrated the existence of a dynamic equilibrium between the water in a formation and the water in a well screen installed in that formation, which results in formation-quality water being available in the well screen for sampling at all times. No-purge sampling devices like the HydraSleeve collect this formation-quality water as the sample, under undisturbed (non-pumping) natural flow conditions. Samples collected in this manner generally provide more conservative (i.e., higher concentration) values than samples collected using well-volume purging, and values equivalent to samples collected using low-flow purging and sampling (Parsons, 2005).

Applications of the HydraSleeve

The HydraSleeve can be used to collect representative samples of ground water for all analytes (volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], common metals, trace metals, major cations and anions, dissolved gases, total dissolved solids, radionuclides, pesticides, PCBs, explosive compounds, and all other analytical parameters). Designs are available to collect samples from wells from 1" inside diameter and larger. The HydraSleeve can collect samples from wells of any yield, but it is especially well-suited to collecting samples from low-yield wells, where other sampling methods can't be used reliably because their use results in dewatering of the well screen and alteration of sample chemistry (McAlary and Barker, 1987).

The HydraSleeve can collect samples from wells of any depth, and it can be used for single-event sampling or long-term ground-water monitoring programs. Because of its thin cross section and flexible construction, it can be used in narrow, constricted or damaged wells where rigid sampling devices may not fit. Using multiple HydraSleeves deployed in series along a single suspension line or tether, it is also possible to conduct in-well vertical profiling in wells in which contaminant concentrations are thought to be stratified.

As with all groundwater sampling devices, HydraSleeves should not be used to collect ground-water samples from wells in which separate (non-aqueous) phase hydrocarbons (i.e., gasoline, diesel fuel or jet fuel) are present because of the possibility of incorporating some of the separate-phase hydrocarbon into the sample.

Description of the HydraSleeve

The HydraSleeve (Figure 1) consists of the following basic components:

- A suspension line or tether (A.), attached to the spring clip or directly to the top of the sleeve to deploy the device into and recover the device from the well. Tethers with depth indicators marked in 1-foot intervals are available from the manufacturer.
- A long, flexible, 4-mil thick lay-flat polyethylene sample sleeve (C.) sealed at the bottom (this is the sample chamber), which comes in different sizes, as discussed below with a self-sealing reed-type flexible polyethylene check valve built into the top of the sleeve (B.) to prevent water from entering or exiting the sampler except during sample acquisition.
- A reusable stainless-steel weight with clip (D.), which is attached to the bottom of the sleeve to carry it down the well to its intended depth in the water column. Bottom weights available from the manufacturer are 0.75" OD and are available in three sizes: 5 oz. (2.5" long); 8 oz. (4" long); and 16 oz. (8" long). In lieu of a bottom weight, an optional top weight may be attached to the top of the HydraSleeve to carry it to depth and to compress it at the bottom of the well (not shown in Figure 1);
- A discharge tube that is used to puncture the HydraSleeve after it is recovered from the well so the sample can be decanted into sample bottles (not shown).
- Just above the self-sealing check valve at the top of the sleeve are two holes which provide attachment points for the spring clip and/or suspension line or tether. At the bottom of the sample sleeve are two holes which provide attachment points for the weight clip and weight.

Figure 1. HydraSleeve components.

Note: The sample sleeve and the discharge tube are designed for one-time use and are disposable. The spring clip, weight and weight clip may be reused after thorough cleaning. Suspension cord is generally disposed after one use although, if it is dedicated to the well, it may be reused at the discretion of the sampling personnel.

Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives

It is important to understand that each HydraSleeve is able to collect a finite volume of sample because, after the HydraSleeve is deployed, you only get one chance to collect an undisturbed sample. Thus, the volume of sample required to meet your site-specific sampling and analytical requirements will dictate the size of HydraSleeve you need to meet these requirements.

The volume of sample collected by the HydraSleeve varies with the diameter and length of the HydraSleeve. Dimensions and volumes of available HydraSleeve models are detailed in Table 1.

Table 1. Dimensions and volumes of HydraSleeve models.

Diameter	Volume	Length	Lay-Flat Width	Filled Dia.
2-Inch HydraSleeves				
Standard 625-ml HydraSleeve	625 ml	< 30"	2.5"	1.4"
Standard 1-Liter HydraSleeve	1 Liter	38"	3"	1.9"
1-Liter HydraSleeve SS	1 Liter	36"	3"	1.9"
2-Liter HydraSleeve SS	2 Liters	60"	3"	1.9"
4-Inch HydraSleeves				
Standard 1.6-Liter HydraSleeve Custom 2-Liter HydraSleeve	1.6 Liters	30"	3.8"	2.3"
	2 Liters	36"	4"	2.7"

HydraSleeves can be custom-fabricated by the manufacturer in varying diameters and lengths to meet specific volume requirements. HydraSleeves can also be deployed in series (i.e., multiple HydraSleeves attached to one tether) to collect additional sample to meet specific volume requirements, as described below.

If you have questions regarding the availability of sufficient volume of sample to satisfy laboratory requirements for analysis, it is recommended that you contact the laboratory to discuss the minimum volumes needed for each suite of analytes. Laboratories often require only 10% to 25% of the volume they specify to complete analysis for specific suites of analytes, so they can often work with much smaller sample volumes that can easily be supplied by a HydraSleeve.

HydraSleeve Deployment

Information Required Before Deploying a HydraSleeve

Before installing a HydraSleeve in any well, you will need to know the following:

- The inside diameter of the well
- The length of the well screen
- The water level in the well
- The position of the well screen in the well
- The total depth of the well

The inside diameter of the well is used to determine the appropriate HydraSleeve diameter for use in the well. The other information is used to determine the proper placement of the HydraSleeve in the well to collect a representative sample from the screen (see HydraSleeve Placement, below), and to determine the appropriate length of tether to attach to the HydraSleeve to deploy it at the appropriate position in the well.

Most of this information (with the exception of the water level) should be available from the well log; if not, it will have to be collected by some other means. The inside diameter of the well can be measured at the top of the well casing, and the total depth of the well can be measured by sounding the bottom of the well with a weighted tape. The position and length of the well screen may have to be determined using a down-hole camera if a well log is not available. The water level in the well can be measured using any commonly available water-level gauge.

HydraSleeve Placement

The HydraSleeve is designed to collect a sample directly from the well screen, and it fills by pulling it up through the screen a distance equivalent to 1 to 1.5 times its length. This upward motion causes the top check valve to open, which allows the device to fill. To optimize sample recovery, it is recommended that the HydraSleeve be placed in the well so that the bottom weight rests on the bottom of the well and the top of the HydraSleeve is as close to the bottom of the well screen as possible. This should allow the sampler to fill before the top of the device reaches the top of the screen as it is pulled up through the water column, and ensure that only water from the screen is collected as the sample. In short-screen wells, or wells with a short water column, it may be necessary to use a top-weight on the HydraSleeve to compress it in the bottom of the well so that, when it is recovered, it has room to fill before it reaches the top of the screen.

Example 2" ID PVC well, 50' total depth, 10' screen at the bottom of the well, with water level above the screen (the entire screen contains water). Correct Placement (figure 2): Using a standard HydraSleeve for a 2" well (2.6" flat width/1.5" filled OD x 30" long, 650 ml volume), deploy the sampler so the weight (an 8 oz., 4"-long weight with a 2"-long clip) rests at the bottom of the well. The top of the sleeve is thus set at about 36" above the bottom of the well. When the sampler is recovered, it will be pulled upward approximately 30" to 45" HvdraSleeve has filled with before it is filled; therefore, it is full (and the top water from well screen and check valve closes) at approximately 66" (5 ½ feet) check valve has closed to 81" (6 3/4 feet) above the bottom of the well, Full which is well before the sampler reaches the top of the screen. In this example, only water from the Sample Interval screen is collected as a sample. Empty

Figure 2. Correct placement of HydraSleeve.

Incorrect Placement (figure 3): If the well screen in this example was only 5' long, and the HydraSleeve was placed as above, it would not fill before the top of the device reached the top of the well screen, so the sample would include water from above the screen, which may not have the same chemistry. The solution? Deploy the HydraSleeve with a top weight, so that it is collapsed to within 6" to Stagnant casing water in upper portion of HydraSleeve 9" of the bottom of the well. When the HydraSleeve is recovered, it will fill within 39" $(3\frac{1}{4} \text{ feet})$ to 54" $(4\frac{1}{2} \text{ feet})$ above the bottom of Full the well, or just before the sampler reaches the top of the screen, so it collects only water from Sample Interval the screen as the sample. **Empty** Figure 3. Incorrect placement of HydraSleeve.

This example illustrates one of many types of HydraSleeve placements. More complex placements are discussed in a later section.

Procedures for Sampling with the HydraSleeve

Collecting a ground-water sample with a HydraSleeve is a simple one-person operation.

Note: Before deploying the HydraSleeve in the well, collect the depth-to-water measurement that you will use to determine the preferred position of the HydraSleeve in the well. This measurement may also be used with measurements from other wells to create a ground-water contour map. If necessary, also measure the depth to the bottom of the well to verify actual well depth to confirm your decision on placement of the HydraSleeve in the water column.

Measure the correct amount of tether needed to suspend the HydraSleeve in the well so that the weight will rest on the bottom of the well (or at your preferred position in the well). Make sure to account for the need to leave a few feet of tether at the top of the well to allow recovery of the sleeve

Note: Always wear sterile gloves when handling and discharging the HydraSleeve.

I. Assembling the HydraSleeve

- 1. Remove the HydraSleeve from its packaging, unfold it, and hold it by its top.
- 2. Crimp the top of the HydraSleeve by folding the hard polyethylene reinforcing strips at the holes.
- 3. Attach the spring clip to the holes to ensure that the top will remain open until the sampler is retrieved.
- 4. Attach the tether to the spring clip by tying a knot in the tether.

Note: Alternatively, attach the tether to one (NOT both) of the holes at the top of the Hydrasleeve by tying a knot in the tether.

- 5. Fold the flaps with the two holes at the bottom of the HydraSleeve together and slide the weight clip through the holes.
- 6. Attach a weight to the bottom of the weight clip to ensure that the HydraSleeve will descend to the bottom of the well.

II. Deploying the HydraSleeve

1. Using the tether, carefully lower the HydraSleeve to the bottom of the well, or to your preferred depth in the water column

During installation, hydrostatic pressure in the water column will keep the self-sealing check valve at the top of the HydraSleeve closed, and ensure that it retains its flat, empty profile for an indefinite period prior to recovery.

Note: Make sure that it is not pulled upward at any time during its descent. If the HydraSleeve is pulled upward at a rate greater than 0.5'/second at any time prior to recovery, the top check valve will open and water will enter the HydraSleeve prematurely.

2. Secure the tether at the top of the well by placing the well cap on the top of the well casing and over the tether.

Note: Alternatively, you can tie the tether to a hook on the bottom of the well cap (you will need to leave a few inches of slack in the line to avoid pulling the sampler up as the cap is removed at the next sampling event).

III. Equilibrating the Well

The equilibration time is the time it takes for conditions in the water column (primarily flow dynamics and contaminant distribution) to restabilize after vertical mixing occurs (caused by installation of a sampling device in the well).

• Situation: The HydraSleeve is deployed for the first time or for only one time in a well

The HydraSleeve is very thin in cross section and displaces very little water (<100 ml) during deployment so, unlike most other sampling devices, it does not disturb the water column to the point at which long equilibration times are necessary to ensure recovery of a representative sample.

In most cases, the HydraSleeve can be recovered immediately (with no equilibration time) or within a few hours. In regulatory jurisdictions that impose specific requirements for equilibration times prior to recovery of no-purge sampling devices, these requirements should be followed.

• Situation: The HydraSleeve is being deployed for recovery during a future sampling event

In periodic (i.e., quarterly or semi-annual) sampling programs, the sampler for the current sampling event can be recovered and a new sampler (for the next sampling event)

deployed immediately thereafter, so the new sampler remains in the well until the next sampling event.

Thus, a long equilibration time is ensured and, at the next sampling event, the sampler can be recovered immediately. This means that separate mobilizations, to deploy and then to recover the sampler, are not required. HydraSleeves can be left in a well for an indefinite period of time without concern.

IV. HydraSleeve Recovery and Sample Collection

- 1. Hold on to the tether while removing the well cap.
- 2. Secure the tether at the top of the well while maintaining tension on the tether (but without pulling the tether upwards)
- 3. Measure the water level in the well.
- 4. In one smooth motion, pull the tether up between 30" to 45" (36" to 54" for the longer HydraSleeve) at a rate of about 1' per second (or faster).

The motion will open the top check valve and allow the HydraSleeve to fill (it should fill in about 1 to 1.5 times the length of the HydraSleeve). This is analogous to coring the water column in the well from the bottom up.

When the HydraSleeve is full, the top check valve will close. You should begin to feel the weight of the HydraSleeve on the tether and it will begin to displace water. The closed check valve prevents loss of sample and entry of water from zones above the well screen as the HydraSleeve is recovered.

- 5. Continue pulling the tether upward until the HydraSleeve is at the top of the well.
- 6. Decant and discard the small volume of water trapped in the Hydrasleeve above the check valve by turning the sleeve over.

V. Sample Collection

Note: Sample collection should be done immediately after the HydraSleeve has been brought to the surface to preserve sample integrity.

- 1. Remove the discharge tube from its sleeve.
- 2. Hold the HydraSleeve at the check valve.
- 3. Puncture the HydraSleeve just below the check valve with the pointed end of the discharge tube
- 4. Discharge water from the HydraSleeve into your sample containers.

Control the discharge from the HydraSleeve by either raising the bottom of the sleeve, by squeezing it like a tube of toothpaste, or both.

5. Continue filling sample containers until all are full.

Measurement of Field Indicator Parameters

Field indicator parameter measurement is generally done during well purging and sampling to confirm when parameters are stable and sampling can begin. Because no-purge sampling does not require purging, field indicator parameter measurement is not necessary for the purpose of confirming when purging is complete.

If field indicator parameter measurement is required to meet a specific non-purging regulatory requirement, it can be done by taking measurements from water within a HydraSleeve that is not used for collecting a sample to submit for laboratory analysis (i.e., a second HydraSleeve installed in conjunction with the primary sample collection HydraSleeve [see Multiple Sampler Deployment below]).

Alternate Deployment Strategies

Deployment in Wells with Limited Water Columns

For wells in which only a limited water column exists to be sampled, the HydraSleeve can be deployed with an optional top weight instead of a bottom weight, which collapses the HydraSleeve to a very short (approximately 6" to 9") length, and allows the HydraSleeve to fill in a water column only 36" to 45" in height.

Multiple Sampler Deployment

Multiple sampler deployment in a single well screen can accomplish two purposes:

- It can collect additional sample volume to satisfy site or laboratory-specific sample volume requirements.
- It can accommodate the need for collecting field indicator parameter measurements.
- It can be used to collect samples from multiple intervals in the screen to allow identification of possible contaminant stratification.

It is possible to use up to 3 standard 30" HydraSleeves deployed in series along a single tether to collect samples from a 10' long well screen without collecting water from the interval above the screen.

The samplers must be attached to the tether at both the top and bottom of the sleeve. Attach the tether at the top with a stainless-steel clip (available from the manufacturer). Attach the tether at the bottom using a cable tie. The samplers must be attached as follows (figure 4):

- The first (attached to the tether as described above, with the weight at the bottom) at the bottom of the screen
- The second attached immediately above the first
- The third (attached the same as the second) immediately above the second

Figure 4. Multiple HydraSleeve deployment.

Alternately, the first sampler can be attached to the tether as described above, a second attached to the bottom of the first using a short length of tether (in place of the weight), and the third attached to the bottom of the second in the same manner, with the weight attached to the bottom of the third sampler (figure 5).

Figure 5. Alternative method for deploying multiple HydraSleeves.

In either case, when attaching multiple HydraSleeves in series, more weight may be required to hold the samplers in place in the well than would be required with a single sampler. Recovery of multiple samplers and collection of samples is done in the same manner as for single sampler deployments.

Post-Sampling Activities

The recovered HydraSleeve and the sample discharge tubing should be disposed as per the solid waste management plan for the site. To prepare for the next sampling event, a new HydraSleeve can be deployed in the well (as described previously) and left in the well until the next sampling event, at which time it can be recovered.

The weight and weight clip can be reused on this sampler after they have been thoroughly cleaned as per the site equipment decontamination plan. The tether may be dedicated to the well and reused or discarded at the discretion of sampling personnel.

References

McAlary, T. A. and J. F. Barker, 1987, Volatilization Losses of Organics During Ground-Water Sampling From Low-Permeability Materials, <u>Ground-Water Monitoring Review</u>, Vol. 7, No. 4, pp. 63-68

Parsons, 2005, Results Report for the Demonstration of No-Purge Ground-Water Sampling Devices at Former McClellan Air Force Base, California; Contract F44650-99-D-0005, Delivery Order DKO1, U.S. Army Corps of Engineers (Omaha District), U.S. Air Force Center for Environmental Excellence, and U.S. Air Force Real Property Agency

Robin, M. J. L. and R. W. Gillham, 1987, Field Evaluation of Well Purging Procedures, <u>Ground-Water Monitoring Review</u>, Vol. 7, No. 4, pp. 85-93

Appendix B

Field Data Sheets

DAILY REPORT

Page ____ of ____

Project: A	readis 11109 Project No.: 09-88-646
Field Represen	ntative(s): Alex Martinez Day: Friday Date: 9/20/13
Time Onsite:	From: 0610 To: 0945; From: To: To: To:
UST E	HASP _x Safety Glasses _x Hard Hat _x Steel Toe Boots _x Safety Vest Emergency System Shut-off Switches Located _x Proper Gloves Level of Barricading Other PPE (describe)
Weather:	Sunny
Equipment In	Use: Interface probe, USZ meter, hydrasteeves, scakease
Visitors: N	lone
TIME:	WORK DESCRIPTION:
0610	Arrived onsite
0615	Set up to place hydrasleeves & gauge wells
0755	Set up to sample hydrasleeve wells
0945	Completed fieldwork e offrite.
	* Soakease were proceed in wells MW-5, 10, & 12 on 5/7/13. Upon changing the socks, all three appear to have absorbed the LNAPL (see LNAPL Recovery Sheet). Soakease appear to effectively remove LNAPL from each well. Steel canisters and new socks (4") were placed in each well. Samples were not collected.
Signature:	ally Mark

GROUNDWATER MONITORING SITE SHEET

Page _ 1 _ of _ 6

Project:	Ar	cadis	ille	9			Proje	ct No.:	09-8	8-646 Date: 9/20/13
Field Represent								vation:	A-san	
Formation recha					High	Low				
W. L. Indicator	ID #:	_		0	il/Water	Interfac	e ID#:		• 1	(List #s of all equip used.)
W	ELL ID	RECORI			W		UGING	RECOR	D	NOTES
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Depth to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ft)	
Mw-2					0704	- markets	-	Dry	18.51	
Mw-3					0642		casto	11.40	31.42	V
MW-4					0648	Peso	-	15.69	26.74	
MW-5					0713	-	-	10.26	32.07	Strong oder & Sheen
Mw-6					0623		(quite)		34.49	
Mw-7					0632		-	11.50	33,32	
Mw-8					0630	12004	-	13.88	29,95	
Mw-9					0616	(Mayo		10.91	29,47	
Mw-10					0719	-	regula	10,50	29.90	Strong odor & Sheen
Mw-11					0655	-	-	10.55		,
MW-12	1				0721	witting :		10,92	30.18	Strong oder & Sheen
¥.										
* Socks	rep	raced)n	each	well	द ८	aniste	rs ad	ided.	
			7							
				-	1					
					 					
					1				1	
				1					1	
* Device used to					Bailer	Diameter		ter Interf		r (circle one) mber Diameter

Signature:	alex	Markin	Revision: 8/19/11
------------	------	--------	-------------------

Page 2 of 6

Project:	Arcord	5 11109			Project No.:	09-53-	-646	Date:	9/20/13
Field Repre		AM							
Well ID:				-	End Time:		Total Tim	e (minutes):	
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump		Flow Cell		a:
-	Disp. Tubing	-	12V Pump		Peristaltic Pump	Other/ID#:	Hydrasie	eve (H	5)
WELL HEA	D INTEGRITY	(cap, lock, vau	t, etc.)	Comments:					
Good	Improvement Nee	eded (c	ircle one)						
PURGING/S	SAMPLING MI	ETHOD P	redetermined Wel	Il Volume Lo	w-Flow Other:	45		(circle d	one)
PREDETERMINED WELL VOLUME							LO	W-FLOW	
Casing D	Diameter Unit Volu	me (gal/ft) (cir	cle one)			Previous Low-F	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept			(ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"T(a	Initial Depth to			(ft)
Total Well Dep	ADVIS RELEGIE			(ft)		Pump In-take D			(ft)
Initial Depth to		•=X();		(ft)		Maximum Allov		a = (a-b)/8:	(ft)
TOTAL STREET	Height (WCH) = (a	082		(ft) (gal)		Low-Flow Purge Comments:	e Rate:		(Lpm)*
CONTRACTOR CONTRACTOR	Volume $(WCV) = V$ Volumes = $WCV \times V$		ime:	(gal)	■	Comments:	`		
	/olumes = WCV x 5			(gal)	I	*Low-flow purge ra	te should he within	range of instruments	used but should not
Pump Depth (if		·•	140-11-1	(ft)		8 8 85			Allowable Drawdown.
- Line - Control		G	ROUNDWAT	TER STABIL	IZATION PAR				
Time	Cumulative Vol.	Temperature	рН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal orL	℃	_	μS ormS	mg/L	mV	NTU	Odor, col	or, sheen or other
0823	1.0	21.46	7.08	0.504	4.66	131	588		
						-		<u></u>	
_						<u> </u>			
						1			
						-			
Previous Stabili	zed Parameters					<u> </u>			
	MPLETION RI	CORD	Low Flow & Pa	rameters Stable	3 Casing V	olumes & Paramet	ters Stable	5 Casing Volum	nes
1 ORGE CO	WII EET TOTT TO	_	Other:		5 casing v	olumes ee i aramei	ers otable	_5 Casing voicin	
	CAN	ADI E COLL	ECTION REC			1	SECCHEMIC	CAL PARAM	ETEDS
Donth to Water				UKD			meter	Time	Measurement
Depth to Water at Sampling:(ft)							incici	Time	Weastrement
Sample Collected Via: Disp. Bailer Dedicated Pump Tubing						DO (mg/L)	- // \		
	np Tubing Othe				16 (0.00)	Ferrous Iron (m			
	Mw-3		Sample Collection			Redox Potential			
Containers (#):	<u>3</u> VOA (<u>X</u>	preserved or	unpreserved)	Liter Ar	nber	Alkalinity (mg/l	L)		
	Other:			_ Other:		Other:			
	Other:			Other:		Other:			
Signature:	aly	m	rele			_=			Revision: 3/15/2013

Page _______ of _________

Project:	Arcad	is mos	3		Project No.:	09-88	-646	Date:	9/20/13
Field Repre	esentative:	A	M						
BOOKER AND VICTORY	Mw-4		525cc 1177-000%	- shadely	End Time:	-	Total Tim	e (minutes):	-
							1014111111		
PURGE EQ	UIPMENT	((Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	HS		
	AD INTEGRITY		lt, etc.)	Comments:					
Good	Improvement Ne	eded (c	rircle one)						
PURGING/	SAMPLING M	ETHOD P	redetermined We	Il Volume Lo	w-Flow Other:	HS		(circle d	one)
	PREDETERN	INED WEL	L VOLUME		101		LO	W-FLOW	
	Diameter Unit Volu					Previous Low-Fl			(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)		_b	Total Well Dept			(ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"	a	Initial Depth to		<u>.</u>	(ft)
Total Well Dep Initial Depth to			-	(ft)	V.	Pump In-take Do Maximum Allov	25 UT UT		(ft)
	Height (WCH) = (a	- b):		(ft)	1 1 8 9	Low-Flow Purge		I = (a-b)/6.	(It) (Lpm)*
U	Volume (WCV) = V		ume:	(gal)		Comments:	ruic.		(~p)
	Volumes = WCV x			(gal)					
Five Casing V	Volumes = WCV x 5	j:		(gal)		*Low-flow purge rai	te should be within	range of instruments	used but should not
Pump Depth (i	f pump used):			(ft)		exceed 0.25 gpm. D	rawdown should ne	ot exceed Maximum A	llowable Drawdown.
		G	ROUNDWAT	TER STABIL	IZATION PAR	AMETER REC	CORD	507	
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity	100	NOTES
(24:00)	gal or ()	℃	(6) 2	μS or mS	mg/L	mV	NTU		or, sheen or other
0855	1.0	21.19	6.92	0.399	4.41	-81	163	odor	hydrocarbon
								Dat O :	
Previous Stabili	zed Parameters								
PURGE CO	MPLETION RE	ECORD _	Low Flow & Pa	rameters Stable	3 Casing Vo	lumes & Paramet	ers Stable	5 Casing Volum	es
			▲ Other: H	S		4			
	SAN	IPLE COLL	ECTION REC	CORD			SEOCHEMIC	CAL PARAM	ETERS
Depth to Water	at Sampling:	(f	t)			Parar	neter	Time	Measurement
Sample Collect	ed Via: Disp	. Bailer	Dedicated Pump	Гubing		DO (mg/L)			
Disp. Pun	np Tubing Othe	r: HS				Ferrous Iron (mg	g/L)		
	Mw-4		Sample Collection	on Time: 035	(24:00)	Redox Potential	no reserv		
	3 voa (_X		140000000000000000000000000000000000000	Metoconinector der de la la la la la la la la la la la la la	AN ALLOCATION	Alkalinity (mg/L			
	Other:	152	11 175	Other:		Other:	di-		
	Other:			Other:		Other:			
			1						
Signature:	ali	+ m	elle						Revision: 3/15/2013

Page _______ of _______

Project:	Ar	eadis II	109		Project No.	: 09-88	-646	Date:	9/20/13
Field Repre		A							
Well ID:	Mw-				End Time	:	Total Time	e (minutes):	recentions
PURGE EQ	UIPMENT	Į.	Disp. Bailer		120V Pump		Flow Cell		
	Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	H5		
WELL HEA	AD INTEGRITY	(cap, lock, vau	It, etc.)	Comments:					
Good	Improvement Ne		rircle one)						
PURGING	SAMPLING M	ETHOD P	redetermined We	ell Volume Lov	w-Flow Other:	HS		(circle	one)
	PREDETERN			volumo 20	Tion other.		IOV	V-FLOW	one)
Casing	Diameter Unit Volu			7	ΙΠΙ	Previous Low-F	low Purge Rate:	V-I LOW	(lpm)
1" (0.04)	1.25" (0.08)		3" [(0.38)	Other:		Total Well Dept			(ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		a b	Initial Depth to			(ft)
Total Well Dep	oth (a):			(ft)		The same of the same	epth = b + (a-b)/2	:	(ft)
Initial Depth to	Water (b):			(ft)	▼	100 Per 100 Pe	wable Drawdown		(ft)
Water Column	Height (WCH) = (a	- b):	_	(ft)		Low-Flow Purg			(Lpm)*
Water Column	Volume (WCV) = V	VCH x Unit Vol	ume:	(gal)		Comments:			8
Three Casing	Volumes = WCV x	3:		(gal)	1 🛭				
Five Casing	Volumes = WCV x 5	:	1 v <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	(gal)	↓ ∄	*Low-flow purge ra	te should be within re	ange of instrument	ts used but should not
Pump Depth (i	f pump used):			(ft)	2.00.10.	exceed 0.25 gpm. D	Prawdown should not	exceed Maximum .	Allowable Drawdown.
		G	ROUNDWA	TER STABILI	ZATION PAR	AMETER RE	CORD		
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or L	℃		μS or mS	mg/L	mV	NTU	Odor, co	lor, sheen or other
0808	1.0	20.10	7.08	0.343	4.72	124	271		
				440	2 (77.76				
			*						
						1			
***								_==	
					9.				
								-33	
				L X					
Previous Stabili	zed Parameters								
PURGE CO	MPLETION RE	CORD _	Low Flow & Pa	rameters Stable	3 Casing V	olumes & Paramet	ers Stable 5	5 Casing Volum	nes
			X Other: HS	5					
	SAM	IPLE COLLI	ECTION REC	ORD			BEOCHEMICA	AL PARAM	ETERS
Depth to Water	at Sampling:			1		Parar		Time	Measurement
						DO (mg/L)		THIC	Picasarchich
Sample Collected Via: Disp. Bailer Dedicated Pump Tubing Disp. Pump Tubing Other: 14.5							- M X		
The state of the s		(1) IX	0 10"	m: 000	M	Ferrous Iron (mg			
	MW-6					Redox Potential	(mV)		
Containers (#):	3 VOA (_X_			Liter Aml	ber	Alkalinity (mg/L	.)		
[] 	Other:		-	Other:		Other:			
	Other:			_ Other:		Other:			
Signature:	ali	y M	when						Revision: 3/15/2013

Page <u>5</u> of <u>6</u>

Project:	Arc	adis III	09		Project No	: 09-80	2-146	Date	
Field Repr	resentative:	A				0 1-6	0-616	_ Date	9/20/13
5	Mw			¥	End Time	e:	_ Total Ti	me (minutes)):
PURGE E	QUIPMENT		Disp. Bailer		120V Pump		_ Flow Cell		
No.	_ Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:	(2) Part		
WELL HE	AD INTEGRIT	Y (cap, lock, vau		Comments:	r cristante r ump	Other/ID#.	113		
Good	Improvement Ne	u 12	circle one)	Comments.					100
PURGING	SAMPLING M	ETHOD P	redetermined W	ell Volume I o	w-Flow Other:	1+5		5 9 9	/ 1/2
	PREDETERI				w-riow Other.	113	т,		e one)
Casing	Diameter Unit Vol				ІПП	Pravious I ow	Flow Purge Rate	OW-FLOW	100
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Der		*	(lpm
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()	a b	Initial Depth to	Mark Colors		(fi
Total Well De	8			(ft)			Depth = b + (a-b))/2:	(fi
Initial Depth to			·	(ft)	V.		wable Drawdov		(fi
	Height (WCH) = (a			(ft)			ge Rate:		(Lpm)
	Volume (WCV) = 1		ume:	(gal)		Comments:			Val. 4 variab
	g Volumes = WCV >		/_	(gal)					
	Volumes = WCV x	5:		(gal)	₩ 🗐	*Low-flow purge r	ate should be withi	n range of instrumer	nts used but should not
Pump Depth (if pump used):			(ft)		exceed 0.25 gpm. I	Drawdown should r	ot exceed Maximum	a Allowable Drawdown.
Time	Cumulation Vol	G		TER STABILI	10-0000	AMETER RE	CORD		
(24:00)	Cumulative Vol.	Temperature °C	pН	Conductivity	DO	ORP	Turbidity		NOTES
0839	21.24.20	21.15	7.15	μS or (nS)	mg/L	mV	NTU		olor, sheen or other
		01115	1.15	0.420	4.18	-88	151	bight hyd	recarbon oder
									V V
								4	
								 	
					Laura - Aura				
Previous Stabili	zed Parameters								
PURGE CO	MPLETION RE	CORD	Low Flow & Pa	rameters Stable	3 Casing V	olumes & Paramet	am Ctable		4-9-000
			XOther: HS		3 Casing V	numes & raramet	eis Stable	_3 Casing Volun	nes
	SAM	PLECOLLE					TO CLIED IN		
Depth to Water at Sampling: (ft)								CAL PARAM	ETERS
		(ft)			·	Paran	neter	Time	Measurement
	ed Via: Disp.		edicated Pump 1	ubing		DO (mg/L)			
	p Tubing Other		-	Ferrous Iron (mg	;/L)				
	MW-7					Redox Potential	(mV)		
Containers (#):	3 VOA (X	preserved or	_unpreserved)	Liter Amb	er	Alkalinity (mg/L	.)		
	Other:Other:					Other:			
	Other:			Other:		Other:			
Signature:	ali	+ M	- Ma	N. T.					Revision: 3/15/2013

Page __6__ of __6__

Project:	Arc	adis 11	109		Project No.	:_09-85	7-646	Date	9/20/13
Field Repr	esentative:				_ = 0.0000000000000000000000000000000000	0-1-5	8-076		9/20113
Well ID:	Mw				End Time	:	Total Tir	ne (minutes):	
PURGE E	QUIPMENT		Disp. Bailer		120V Pump		Flow Cell		
	_ Disp. Tubing		12V Pump		Peristaltic Pump	Other/ID#:			
WELL HE	AD INTEGRIT			Comments:	1 oristatte 1 ump	Other/ID#,	113		
Good	Improvement Ne		ircle one)	comments.					
PURGING	/SAMPLING M	AND THE PARTY OF	Carrier Strong W.	ell Volume Lo	w-Flow Other:	ИС		27.4	
	PREDETER			a volume Lo	W-Flow Offier:	113	T C	(circle	one)
Casing	Diameter Unit Vol				1 111 1	Dravious I out I	Flow Purge Rate	W-FLOW	4
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dep		:	(lpm
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)		b	Initial Depth to			(ft
Total Well De	pth (a):			(ft)	a		epth = b + (a-b)	12.	(ft
Initial Depth to	o Water (b):			(ft)	-		wable Drawdow		(ft
Water Column	Height (WCH) = (a	- b):	(E)	(ft)	- 1	Low-Flow Purg		– (u 0)/0.	(lt,
Water Column	Volume (WCV) = V	WCH x Unit Volu	ime:	(gal)		Comments:			(Epin)
Three Casing	y Volumes = WCV x	3:		(gal)					
Five Casing	Volumes = WCV x :	5:		(gal)	↓	*Low-flow purge re	te should be within	range of instrument	ts used but should not
Pump Depth (i	f pump used):			(ft)	¥. U				Allowable Drawdown.
		G	ROUNDWAT	TER STABIL	IZATION PAR				
Time	Cumulative Vol.	Temperature	pН	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	gal or L	℃		μS or mS	mg/L	mV	NTU	Odor, co	lor, sheen or other
2180	1.0	22.00	7.11	0.563	4.29	-109	262	Hydrocarb	ion oder
					<u> </u>	-			
								-	
									-11
Previous Stabili									
PURGE CO	MPLETION RE	CORD	Low Flow & Par	ameters Stable	3 Casing Vo	lumes & Paramet	ers Stable	5 Casing Volum	es
			XOther: HS						
	SAM	IPLE COLLE	CTION REC	ORD		0	EOCHEMIC	CAL PARAM	FTFRS
Depth to Water	at Sampling:	(ft)				Paran		Time	
Sample Collecte	ed Via: Disp.	uhing			icici	Time	Measurement		
		dollig		DO (mg/L)	22.70				
Disp. Pump Tubing Other: HS Sample ID: Nw - 1\ Sample Collection Time: O S						Ferrous Iron (mg	27.03		
						Redox Potential	(mV)		
Containers (#):	3 VOA (X			Liter Aml	ber	Alkalinity (mg/L	.)		
	Other:	.,,,,,		Other:		Other:			¥1
	Other:			Other:		Other:			
Signature:	ales	m	da						Revision: 3/15/2013

Passive LNAPL Recovery Field Data Sheets

Site Name:	Arcadis 11109	_	Project No.:	09-88.	-646	
Site Location:	4280 Foothill Blvd.	Oakland	, CA			
Date :	9/20/13		Technician :	Alex N	Sanital	
Onsite Time :	0610	Weather	Conditions:		Cloudy	
Offsite Time :	0945	Ambient Te	mperature :			
	Absorbent Sock Me	easuremen	ts Upon Arı	rival		
	Parameter	MW-5	Mw-10	MW-12		
Well Diameter (inc	hes)	4	4	4		
Sock Diameter (inc		4	4	4		
s the sock saturate	ed with product? Yes or No	Yes	Yes	Yes		
If yes, leng	gth of saturation on socks (inches)	9	18	18		
Depth to LNAPL, fe	et below top of casing	Marke .	~~~	~		
Depth to water, fe	et below top of casing	10.26	10.50	10.92		
Orum #						
Drum #						
Fill Start Date	9/20/13					
s it full?	No					
f not, how full?	*					
	in drum. Placed used	See kee c	e in Lea	su Lone e	in Sagle	n lou
	Absorbent Sock Meas	surements	Prior to De	pature		
	Parameter	Mw-5	Mw-10	Mw-12		
Sock Replaced? Yes	s or No	Yes	Yes	Yes		
Sock Diameter (inc		4	4	4		
Total Sock Length (3	3	3		
Sock Length Below		2	2	2	95	
Sock Length Above	· Water * (feet)	U	1	1		
*Note: When installing sock, : abelled hazardous waste.	set the depth of sock such that 2/3 of it is above the w	vater table. Store t	he used socks in sea	aled 5-gallon bucket	s and store them in 55-gal	i drum
abelied flazardods waste.	The state of the s					
Comments/Notes:						
	-					
Signature:			Date:	9/20	0/13	

San Francisco

1220 Quarry Lane

Chain of Custody Record

Pleasanton CA 94566

nhone	025 48	1 1010	fay 025	600 3002	

TestAmerica Labora ories, Inc. COC No: Project Manager: Kristene Tidwell Site Contact/Sampler: Alex Martinez Client Contact Tel/Fax: 707-455-7290 / 707-455-7295 Lab Contact: Dimple Sharma COCs Broadbent & Associates, Inc. Carrier: 875 Cotting Lane, Suite G. Job No. Analysis Turnaround Time Vacaville, CA 95688 Calendar (C) or Work Days (W) Phone: 707-455-7290 TAT if different from Below BTEX/5 FO & EDB by 8260 SDG No. Fax: 707-455-7295 2 weeks Project Name: Arcadis 11109 1 week 4280 Foothill Blvd., Oakland, CA 2 days **GRO by 8260B** P O # GP09BPNA.C106 1 day Sample Sample Sample Date Time Type Sample Identification Matrix Cont. Sample Specific Notes: MW-3 9/20/2013 0315 GRAB AQ 3 X 9/20/2013 0350 GRAB AQ 3 X X MW-4 9/20/2013 0300 X GRAB AO 3 MW-6 9/20/2013 0835 $\mathbf{x} \mid \mathbf{x} \mid \mathbf{x}$ MW-7 GRAB AO 3 9/20/2013 0905 3 $\mathbf{x} \mathbf{x} \mathbf{x}$ MW-11 GRAB AO On Hol AQ 2 TB-11109-09202013 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Return To Client Flammable Disposal By Lab Months Non-Hazard Skin Irritant Unknown Poison B Special Instructions: Date/Time: Date/Time: Relinquished by: 9/20/15/1233 (and Alex Mourtinez Date/Time: Date/Time: Received by: Company: Relinquished by: Date/Time: Date/Time: Received by: Company: Relinquished by:

Appendix C

Laboratory Report and Chain-of-Custody Documentation

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-52469-1

Client Project/Site: BP #11109, Oakland

For:

ARCADIS U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, California 94104

Attn: Hollis Phillips

Shaema

Authorized for release by: 9/26/2013 3:10:49 PM

Dimple Sharma, Project Manager I dimple.sharma@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

-5

4

0

9

11

12

Definitions/Glossary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-52469-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Case Narrative

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Job ID: 720-52469-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-52469-1

Comments

No additional comments.

Receipt

The samples were received on 9/20/2013 12:35 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

GC/MS VOA

No analytical or quality issues were noted.

6

7

8

9

1 1

12

14

Detection Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

Client Sample ID: MW-3

TestAmerica Job ID: 720-52469-1

3

4

5

6

8

4.6

11

13

Lab Samp	le ID:	720-52	2469-1
----------	--------	--------	--------

Lab Sample ID: 720-52469-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methyl tert-butyl ether	4.1	0.50	ug/L		8260B/CA_LUFT	Total/NA
					MS	

Client Sample ID: MW-4 Lab Sample ID: 720-52469-2

Analyte Methyl tert-butyl ether	Result 21	Qualifier	0.50	MDL	Unit ug/L	Dil Fac	: D	Method 8260B/CA_LUFT MS	Prep Type Total/NA
Gasoline Range Organics (GRO) C6-C12	830		50		ug/L	•		8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-6 Lab Sample ID: 720-52469-3

Analyte	Result	Qualifier R	_ мс	L	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	2.4	0.5	0		ug/L	1	_	8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-7 Lab Sample ID: 720-52469-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
MTBE	2.3		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C6-C12	580		50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	120		10		ug/L	20	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	320		10		ug/L	20		8260B/CA_LUFT MS	Total/NA
Toluene	130		10		ug/L	20		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	720		20		ug/L	20		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C6-C12	10000		1000		ug/L	20		8260B/CA_LUFT MS	Total/NA

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Client Sample ID: MW-3 Lab Sample ID: 720-52469-1

Date Collected: 09/20/13 08:15 Matrix: Water

Date Received: 09/20/13 12:35

Method: 8260B/CA_LUFTMS	- 8260B / CA LUF	ГМЅ						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	4.1		0.50	ug/L			09/20/13 23:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		67 - 130				09/20/13 23:30	1
1,2-Dichloroethane-d4 (Surr)	90		72 - 130				09/20/13 23:30	1
Toluene-d8 (Surr)	99		70 - 130				09/20/13 23:30	1

0

7

8

9

10

12

13

12

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland TestAmerica Job ID: 720-52469-1

09/21/13 00:53

Client Sample ID: MW-4

103

Lab Sample ID: 720-52469-2 Date Collected: 09/20/13 08:50

Matrix: Water

Date Received: 09/20/13 12:35

Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	21		0.50		ug/L			09/21/13 00:53	1
Gasoline Range Organics (GRO) -C6-C12	830		50		ug/L			09/21/13 00:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130			•		09/21/13 00:53	1
1,2-Dichloroethane-d4 (Surr)	87		72 - 130					09/21/13 00:53	1

70 - 130

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland TestAmerica Job ID: 720-52469-1

Client Sample ID: MW-6 Lab Sample ID: 720-52469-3

Date Collected: 09/20/13 08:00 Matrix: Water

Date Received: 09/20/13 12:35

Method: 8260B/CA_LUFTMS -	ethod: 8260B/CA_LUFTMS - 8260B / CA LUFT MS												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Methyl tert-butyl ether	2.4		0.50		ug/L			09/21/13 01:21	1				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac				
4-Bromofluorobenzene	93		67 - 130			_		09/21/13 01:21	1				
1,2-Dichloroethane-d4 (Surr)	92		72 - 130					09/21/13 01:21	1				
Toluene-d8 (Surr)	99		70 - 130					09/21/13 01:21	1				

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Lab Sample ID: 720-52469-4

Matrix: Water

Client Sample ID: MW-7

Date Collected: 09/20/13 08:35 Date Received: 09/20/13 12:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	2.3		0.50		ug/L			09/21/13 01:49	1
Benzene	ND		0.50		ug/L			09/21/13 01:49	1
EDB	ND		0.50		ug/L			09/21/13 01:49	1
1,2-DCA	ND		0.50		ug/L			09/21/13 01:49	1
Ethylbenzene	ND		0.50		ug/L			09/21/13 01:49	1
Toluene	ND		0.50		ug/L			09/21/13 01:49	1
Xylenes, Total	ND		1.0		ug/L			09/21/13 01:49	1
Gasoline Range Organics (GRO)	580		50		ug/L			09/21/13 01:49	1
-C6-C12									
TBA	ND		10		ug/L			09/21/13 01:49	1
Ethanol	ND		250		ug/L			09/21/13 01:49	1
DIPE	ND		0.50		ug/L			09/21/13 01:49	1
TAME	ND		0.50		ug/L			09/21/13 01:49	1
Ethyl t-butyl ether	ND		0.50		ug/L			09/21/13 01:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			=		09/21/13 01:49	1
1,2-Dichloroethane-d4 (Surr)	92		72 - 130					09/21/13 01:49	1
Toluene-d8 (Surr)	103		70 - 130					09/21/13 01:49	1

3

5

7

8

9

10

12

13

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Lab Sample ID: 720-52469-5

Matrix: Water

Client Sample ID: MW-11
Date Collected: 09/20/13 09:05

Date Received: 09/20/13 12:35

Method: 8260B/CA_LUFTMS - 82	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		10		ug/L			09/21/13 02:17	20
Benzene	120		10		ug/L			09/21/13 02:17	20
EDB	ND		10		ug/L			09/21/13 02:17	20
1,2-DCA	ND		10		ug/L			09/21/13 02:17	20
Ethylbenzene	320		10		ug/L			09/21/13 02:17	20
Toluene	130		10		ug/L			09/21/13 02:17	20
Xylenes, Total	720		20		ug/L			09/21/13 02:17	20
Gasoline Range Organics (GRO)	10000		1000		ug/L			09/21/13 02:17	20
-C6-C12									
TBA	ND		200		ug/L			09/21/13 02:17	20
Ethanol	ND		5000		ug/L			09/21/13 02:17	20
DIPE	ND		10		ug/L			09/21/13 02:17	20
TAME	ND		10		ug/L			09/21/13 02:17	20
Ethyl t-butyl ether	ND		10		ug/L			09/21/13 02:17	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			=		09/21/13 02:17	20
1,2-Dichloroethane-d4 (Surr)	88		72 - 130					09/21/13 02:17	20
Toluene-d8 (Surr)	102		70 - 130					09/21/13 02:17	20

6

7

9

10

12

13

4 /

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland TestAmerica Job ID: 720-52469-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-144672/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 144672

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			09/20/13 20:15	1
MTBE	ND		0.50		ug/L			09/20/13 20:15	1
Benzene	ND		0.50		ug/L			09/20/13 20:15	1
EDB	ND		0.50		ug/L			09/20/13 20:15	1
1,2-DCA	ND		0.50		ug/L			09/20/13 20:15	1
Ethylbenzene	ND		0.50		ug/L			09/20/13 20:15	1
Toluene	ND		0.50		ug/L			09/20/13 20:15	1
Xylenes, Total	ND		1.0		ug/L			09/20/13 20:15	1
Gasoline Range Organics (GRO)	ND		50		ug/L			09/20/13 20:15	1
-C6-C12									
TBA	ND		10		ug/L			09/20/13 20:15	1
Ethanol	ND		250		ug/L			09/20/13 20:15	1
DIPE	ND		0.50		ug/L			09/20/13 20:15	1
TAME	ND		0.50		ug/L			09/20/13 20:15	1
Ethyl t-butyl ether	ND		0.50		ug/L			09/20/13 20:15	1

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93	67 - 130		09/20/13 20:15	1
1,2-Dichloroethane-d4 (Surr)	90	72 - 130		09/20/13 20:15	1
Toluene-d8 (Surr)	101	70 - 130		09/20/13 20:15	1

Lab Sample ID: LCS 720-144672/5

Matrix: Water

Analysis Batch: 144672

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.4		ug/L		98	62 - 130	 -
MTDE	25.0	24.4		ua/I		00	62 120	

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
4-Bromofluorobenzene	98	67 - 130
1,2-Dichloroethane-d4 (Surr)	87	72 - 130
Toluene-d8 (Surr)	101	70 - 130

Lab Sample ID: LCS 720-144672/7

Matrix: Water

Analysis Batch: 144672

7 ,6.0	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Ur	nit D	%Rec	Limits
Gasoline Range Organics (GRO)	500	510	ug	g/L	102	58 - 120

-C6-C12

	LCS L	.cs	
Surrogate	%Recovery 0	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	101		70 - 130

TestAmerica Pleasanton

TestAmerica Job ID: 720-52469-1

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-144672/6

Matrix: Water

Analysis Batch: 144672

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	25.6		ug/L		102	62 - 130	5	20
MTBE	25.0	25.6		ug/L		102	62 - 130	5	20
Benzene	25.0	23.4		ug/L		93	79 - 130	0	20
EDB	25.0	26.4		ug/L		106	70 - 130	3	20
1,2-DCA	25.0	23.0		ug/L		92	61 - 132	2	20
Ethylbenzene	25.0	22.8		ug/L		91	80 - 120	0	20
Toluene	25.0	23.0		ug/L		92	78 - 120	0	20
m-Xylene & p-Xylene	50.0	46.9		ug/L		94	70 - 142	0	20
o-Xylene	25.0	24.7		ug/L		99	70 - 130	1	20
TBA	500	442		ug/L		88	70 - 130	1	20
Ethanol	500	416		ug/L		83	31 - 216	4	30
DIPE	25.0	25.2		ug/L		101	69 - 134	2	20
TAME	25.0	27.7		ug/L		111	79 - 130	3	20
Ethyl t-butyl ether	25.0	26.1		ug/L		104	70 - 130	3	20

Limits

67 - 130

LCSD LCSD %Recovery Qualifier Surrogate 4-Bromofluorobenzene 96

1,2-Dichloroethane-d4 (Surr) 90 72 - 130 70 - 130 Toluene-d8 (Surr) 101

Lab Sample ID: LCSD 720-144672/8

Matrix: Water

-C6-C12

Analysis Batch: 144672

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike %Rec. RPD Added Limit Analyte Result Qualifier Unit %Rec Limits RPD 500 499 58 - 120 20 100 Gasoline Range Organics (GRO) ug/L

LCSD LCSD Surrogate %Recovery Qualifier Limits 67 - 130 96 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 89 72 - 130 70 - 130 Toluene-d8 (Surr) 102

Lab Sample ID: 720-52469-1 MS

Matrix: Water

Analysis Batch: 144672

Analysis Batch: 144672									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	4.1		25.0	29.4		ug/L		101	60 - 138
MTBE	4.1		25.0	29.4		ug/L		101	60 _ 138
Benzene	ND		25.0	23.3		ug/L		93	60 - 140
EDB	ND		25.0	26.1		ug/L		104	60 - 140
1,2-DCA	ND		25.0	23.1		ug/L		92	60 - 140
Ethylbenzene	ND		25.0	23.0		ug/L		92	60 - 140
Toluene	ND		25.0	23.1		ug/L		92	60 - 140
m-Xylene & p-Xylene	ND		50.0	47.4		ug/L		95	60 - 140
o-Xylene	ND		25.0	24.9		ug/L		99	60 - 140
ТВА	ND		500	454		ug/L		91	60 - 140

TestAmerica Pleasanton

Client Sample ID: MW-3

Prep Type: Total/NA

Page 12 of 20

TestAmerica Job ID: 720-52469-1

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-52469-1 MS **Matrix: Water**

Analysis Batch: 144672

Client Sample ID: MW-3 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		500	442		ug/L		88	60 - 140	
DIPE	ND		25.0	25.3		ug/L		101	60 - 140	
TAME	ND		25.0	27.3		ug/L		109	60 - 140	
Ethyl t-butyl ether	ND		25.0	25.9		ug/L		103	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	89		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Client Sample ID: MW-3 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 144672

Lab Sample ID: 720-52469-1 MSD

Sample Sample Spike MSD MSD %Rec. RPD RPD Result Qualifier Added Result Qualifier Limit Analyte Unit %Rec Limits Methyl tert-butyl ether 4.1 25.0 29.3 60 - 138 20 ug/L 101 0 MTBE 4.1 25.0 29.3 101 60 - 138 20 ug/L 0 25.0 ND 23.4 94 Benzene ug/L 60 - 1400 20 EDB ND 25.0 26.1 ug/L 104 60 - 140 20 1,2-DCA ND 25.0 22.9 ug/L 92 60 - 140 20 Ethylbenzene ND 25.0 22.7 ug/L 91 60 - 140 20 ND 25.0 22.8 91 20 Toluene ug/L 60 - 140 m-Xylene & p-Xylene ND 50.0 46.9 ug/L 60 - 140 20 ND 25.0 24.6 98 20 o-Xylene ug/L 60 - 140 TBA 90 ND 500 450 ug/L 60 - 140 20 Ethanol ND 500 433 ug/L 87 60 - 140 20 DIPE ND 25.0 25.2 ug/L 101 60 - 140 20 TAME ND 25.0 27.4 ug/L 110 60 - 140 20 Ethyl t-butyl ether ND25.0 25.9 103 60 - 140 20 ug/L

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	101		70 - 130

TestAmerica Pleasanton

QC Association Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

GC/MS VOA

Analysis Batch: 144672

Lab Sample ID Client Sample ID		Prep Type	Matrix	Method	Prep Batch
720-52469-1	MW-3	Total/NA	Water	8260B/CA_LUFT	
720-52469-1 MS	MW-3	Total/NA	Water	MS 8260B/CA_LUFT	
720-52469-1 MSD	MW-3	Total/NA	Water	MS 8260B/CA_LUFT MS	
720-52469-2	MW-4	Total/NA	Water	8260B/CA_LUFT MS	
720-52469-3	MW-6	Total/NA	Water	8260B/CA_LUFT MS	
720-52469-4	MW-7	Total/NA	Water	8260B/CA_LUFT MS	
720-52469-5	MW-11	Total/NA	Water	8260B/CA_LUFT MS	
LCS 720-144672/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
LCS 720-144672/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
LCSD 720-144672/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
LCSD 720-144672/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
MB 720-144672/4	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	

5

6

g

9

10

13

114

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

Lab Sample ID: 720-52469-1

Matrix: Water

Client Sample ID: MW-3 Date Collected: 09/20/13 08:15 Date Received: 09/20/13 12:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	144672	09/20/13 23:30	PDR	TAL PLS

Lab Sample ID: 720-52469-2

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 09/20/13 08:50 Date Received: 09/20/13 12:35

Client Sample ID: MW-4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	144672	09/21/13 00:53	PDR	TAL PLS

Client Sample ID: MW-6 Lab Sample ID: 720-52469-3

Date Collected: 09/20/13 08:00

Date Received: 09/20/13 12:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	144672	09/21/13 01:21	PDR	TAL PLS

Client Sample ID: MW-7 Lab Sample ID: 720-52469-4

Date Collected: 09/20/13 08:35

Date Received: 09/20/13 12:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	144672	09/21/13 01:49	PDR	TAL PLS

Client Sample ID: MW-11 Lab Sample ID: 720-52469-5

Date Collected: 09/20/13 09:05

Date Received: 09/20/13 12:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		20	144672	09/21/13 02:17	PDR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

4

5

8

10

11

13

14

Method Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland TestAmerica Job ID: 720-52469-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: BP #11109, Oakland

TestAmerica Job ID: 720-52469-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-52469-1	MW-3	Water	09/20/13 08:15	09/20/13 12:35
720-52469-2	MW-4	Water	09/20/13 08:50	09/20/13 12:35
720-52469-3	MW-6	Water	09/20/13 08:00	09/20/13 12:35
720-52469-4	MW-7	Water	09/20/13 08:35	09/20/13 12:35
720-52469-5	MW-11	Water	09/20/13 09:05	09/20/13 12:35

3

4

6

8

9

1 0

12

13

12

San Francisco

1220 Quarry Lane

Pleasanton, CA 94566 phone 925,484,1919 fax 925,600,3002 720-52469

<u>~~</u> 8	٨	9	
	° //\	neri	
		Semme 1	
4 000000	4 66 8	3 40000 8 0	
		A CONTRACTOR OF THE PARTY OF TH	AED 100 2 10 30 2 10 2 1

THE LEADER IN ENVIRONMENTAL TESTING

phone 725.404.1717 Tax 925.000.5002					A 400	- WEEK	200		AGD N	-	ATTEN OF	Ø 4											TestAmerica Laboratorie	s, mc.
Client Contact	Project Ma	mager: Kri	stene Tidwe	યા		Site	Co	ntact	t/Sam	pler: .	Alex N	1artine	z D	ate:									COC No:	ò
Broadbent & Associates, Inc.	Tel/Fax: 70	7-455-7290	707-455-1	7295		Lab	Co	ntac	t: Din	iple S	harm	ì	С	arri	er:								of COCs	
875 Cotting Lane, Suite G		Analysis T	urnaround	Time										Т				TT	T		- 1		Job No.	
Vacaville, CA 95688	Calendar	(C) or Wo	ork Days (W)		١														l	ŀ			
Phone: 707-455-7290	T/	AT if different f	rom Below											***************************************										
Fax: 707-455-7295	Dec.	2	weeks			ı		3260	8260											l			SDG №.	
Project Name: Arcadis 11109		1	week				1	P.	ò										ĺ		Į			
4280 Foothill Blvd., Oakland, CA		2	2 days				-	EDB	Ethanol by 260B										ŀ	1				
P O # GP09BPNA.C106		3	l day			ם	60B	3	Eth 260											Į	- 1			
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered Sa	GRO by 8260B	BTEX/5 FO & EDB by 8260	1,2-DCA & Etha MTBE by 8260B	•													Sample Specific Not	tes:
MW-3	9/20/2013	0315	GRAB	AQ	3				x						-									
MW-4	9/20/2013		GRAB	AQ	3	1	x		x					T	1		\top		\neg					
MW-6	9/20/2013		GRAB	AQ	3	1		十	X					\top	1	_	+							
MW-7	9/20/2013		GRAB	AQ	3	1	x	x	_					┪	+	_	+			1				
	9/20/2013									+		+		┪	+	\dashv	-	++	-					2
MW-11	9/20/2013	0.103	GRAB	AQ	3	\dashv	X	х	<u> </u>	+	-	-		╬	+-			╂		-		-	O - 77 - 13	
TB-11109-09202013				AQ	2	-		-		+-		_	-	+				\vdash	-	_		\dashv	On Hold	- 6
				ļ		4	_		_				_											٩
						ı	Ì	l	j				ı				ŀ					- [D O
				T										•				Ħ						
				T	720-52	246	9 (Chai	n of	Cus	tody			•								\dashv		
						1	***	ı	ı		1	ı	ı	1-	+	-		++				-		
				1		┪	-			-	-		+		-		-			_	_			
				<u> </u>		4						_		_				<u> </u>						
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOl	H; 6= Other					┙																		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison L		Unknown			ŀ			Disp e eturn			may I			sed it al By i		ples a		tained chive		er tha	an 1	month)	,
Special Instructions:	1 Olson L	,	Onknown				····	ле	zcum.	ro Gi	en	***************************************	UIS	spos	и ру і	LaD		An	cinve-	ror			_ Months	
																							Date/Time:	8 (
Relinquished by: Alex Martinez alley the	Company:			Date/Tin	me:/\23	s	Rece	eived	by:	_	11	w	$\frac{1}{2}$		Con	pany:	\sqrt{V}			_		I	Date/Time:	Z35
Relinquished by:	Dro≈tel Company:	sent & Ass	<i>acates</i>	Date/Ti			Rece	ived		<u> </u>	_ V _	<u> </u>	<u> </u>			نیو :pany	1	v	<u> </u>				Date/Time:	<u> </u>
	- •								-													ľ		
Relinquished by:	Company:			Date/Ti	me:		Rece	eived	by:						Con	pany:						I	Date/Time:	

Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc. Job Number: 720-52469-1

Login Number: 52469 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Mullen, Joan

Creator: Mullen, Joan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

ی

6

8

10

10

13

14

Appendix D

GeoTracker Upload Confirmation Receipts

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: Second and Third Quarter 2013 Semi-Annual Groundwater

Monitoring Report 111615

Report Type: Monitoring Report - Semi-Annually

Report Date: 10/30/2013
Facility Global ID: T0600100217
Facility Name: BP #11109

File Name: R00000426_GWM_R_2013-10-30.pdf

ARCADIS

Organization

Name:

Username: ARCADISBP

IP Address: 108.171.135.188

Submittal

Date/Time: 11/16/2015 12:24:07 PM

Confirmation

Number: 7276472628

Copyright © 2015 State of California