

Chevron Products Company

6001 Bollinger Canyon Road Building I, Room 1110

San Ramon, CA 94583-0904

July 29, 1998

Ms. Eva Chu Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Project Manager
Site Assessment & Remediation
Phone 925 842-9136
Fax 925 842-8370

PO Box 6004

Philip R. Briggs

Re: Former Chevron Service Station # 9-1723 9757 San Leandro Blvd.

San Leandro, California

Dear Ms. Chu:

Enclosed is a copy of the Tier 2 RBCA Analysis and Closure Request, dated July 7, 1998, that was conducted by our consultant Cambria Environmental Technology, Inc. (Cambria) at the above noted site. The objective of the RBCA analysis was to address potential human health risks associated with residual petroleum hydrocarbons beneath the site.

To evaluate the risk associated with BTEX compounds in soil vapor beneath the site, soil vapor site-specific target levels (SSTLs) were calculated. Reevaluation of the risk associated with BTEX compounds in ground water using the most recent ground water monitoring data was also conducted.

As shown in the attached Closure Request report the current ground water concentrations beneath the site are less than the SSTL for benzene volatilization from ground water to indoor air. Also the soil vapor samples beneath the site, except for one sample, are less than the calculated Tier 2 SSTL for soil vapor. However, as noted in the report, this one sample that exceeded the SSTL may be anomalous.

As indicated by the Tier 2 RBCA, the risk associated with the site-specific ground water and soil vapor BTEX concentrations is less than the target risk level. Petroleum hydrocarbon concentrations in ground water are decreasing and therefore, the residual risk to human health is a minimum.

Based on the review of site conditions, Cambria believes this site should be classified as a low-risk ground water case. Their RBCA analysis indicates that petroleum hydrocarbons beneath the site present no significant risk to human health. The localized hydrocarbon concentrations are decreasing and low in the ground water. Therefore, no engineered

July 29, 1998 Ms. Eva Chu Former Chevron Service Station #9-1723 Page 2

remedial action is necessary at the site and passive bioremediation is an acceptable remedial alternative for residual hydrocarbons beneath the site.

Chevron concurs with Cambria recommendation to discontinue ground water monitoring, abandoning site wells, and granting full closure of the site. This recommendation is based on the following:

- The UST's have been removed.
- SPH's have never been detected at the site.
- The site has been characterized and ground water monitoring data suggest that dissolved hydrocarbons are limited to the site vicinity and the plume is shrinking.
- The presence of residual hydrocarbons in ground water does not pose a significant health risk to future site occupants.

If you have any questions or comments, call Mr. Peter McKereghan, Cambria at (510) 420-0700 or me at (925) 842-9136.

Sincerely

CHEVRON PRODUCTS COMPANY

Philip R. Briggs

Site Assessment and Remediation Project Manager

Enclosure

Cc. Mr. Chuck Headlee RWQWB- San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, CA 94612

> Trustees of the Estate of Mr. Ron Hothem Pacific American Management Co. 369 Broadway San Francisco, CA 94133

July 29, 1998 Ms. Eva Chu Former Chevron Service Station #9-1723 Page 3

Cc. (cont)

Dr. Eric J. McHuron, CEG, CEA President McHuron Geosciences 1670 8th Avenue San Francisco, CA 94122

Mr. Peter F. McKereghan, C.H.G. Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 (Less report)

Ms. Bette Owen, Chevron

Mr. Curtis Peck, Chevron CRTC/RIC100/10-35

The 100,000 ppbV benzene detected is at 5' bgs Unless they are doing a tracement, we cam away all 5V sample allected July 7, 1998 home 3' bgs. Med Rmp (no basement do add'l nisk welvation)

Mr. Phil Briggs Chevron Products Company 6001 Bollinger Canyon Road, Bldg. L San Ramon, CA 94583-0804

Re: Tier 2 RBCA Analysis and Closure Request

Former Chevron Service Station 9-1723 9757 San Leandro Boulevard Oakland, California

Dear Mr. Briggs:

This report presents the results of a Tier 2 risk-based corrective action (RBCA) analysis conducted by Cambria Environmental Technology, Inc., (Cambria) for the above-referenced site (Attachment A). The objective of the RBCA analysis was to address potential human health risks associated with residual petroleum hydrocarbons beneath the site. The site background and the results of our analysis are summarized below.

SITE BACKGROUND

The site is a former Chevron service station located in a primarily commercial and industrial area at 9759 San Leandro Boulevard in Oakland, California. The site is currently used for automobile and trailer parking. To date, ten ground water monitoring wells have been installed and twenty-nine soil borings have been drilled at the site, including six soil borings that were advanced in October 1997 to collect soil vapor samples. The results of the soil vapor sampling were presented in a Cambria report dated January 5, 1998, and are summarized in Attachment A.

CAMBRIA

ENVIRONMENTAL

TECHNOLOGY, INC.

1144 65TH STREET,

SUITE B

OAKLAND,

CA 94608

PH: (510) 420-0700

_

Fax: (510) 420-9170

Site Setting, Geology, and Hydrology: The site is essentially flat, approximately 25 feet (ft) above mean sea level, and is located about one-mile east of San Francisco Bay. Site stratigraphy is comprised primarily of alluvial plain and stream channel deposits of low-permeability clayey silt, silt, and sandy silts of low to moderate permeability, with occasional gravel lenses of moderate to high estimated permeability. Historically, depth to ground water has ranged from about 5 to 11 ft below ground surface (bgs), and is currently about 9 ft bgs. Ground water generally flows to the west beneath the site. Ground water monitoring data are presented in Attachment B.

Hydrocarbon Distribution in Soil: The highest hydrocarbon concentrations detected in soil samples collected during previous investigations were 1,800 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHg) and 99 ppm benzene. These samples were collected in the vicinity of the former underground storage tanks (USTs).

Hydrocarbon Distribution in Ground Water: Ground water has been gauged and analyzed since November 1993. TPHg and benzene have been detected in site wells in steadily decreasing concentrations over time. For example, the maximum benzene concentration was 2,000 ppb in well MW-8 on November 12, 1993, but decreased to 5.3 ppb in this well on May 1, 1998. The maximum benzene concentration detected during the most recent ground water monitoring event was 19 ppb in well MW-5 (Attachment B).

Hydrocarbon Distribution in Soil Vapor: To assess hydrocarbon concentrations in soil vapor near the former USTs, where the highest concentrations of hydrocarbons in soil and ground water have been detected, Cambria advanced six soil vapor borings and collected soil vapor samples. Boring locations and soil vapor concentrations are presented in Attachment A.

Benzene was detected in all soil vapor samples collected from borings SV-1 through SV-6. Borings SV-5 and SV-6 were advanced adjacent to borings SV-1 and SV-2. The highest benzene concentration reported was 100,000 parts per billion by volume (ppbv) in the soil vapor sample collected 5 ft bgs from SV-5. However, the benzene soil vapor concentration at 5 ft depth from adjacent boring SV-1 was 410 ppbv, and benzene concentration in two samples collected at 3 ft bgs from SV-1 were 96 and 94 ppbv, respectively. The second highest benzene concentration reported was 3,100 ppbv in SV-2 (SVD-2) at 8 ft bgs. Borings SV-1, SV-2, SV-5, and SV-6 were advanced in the location of the former USTs. Soil vapor benzene concentrations appear to be localized in the vicinity of the former USTs. Benzene concentrations detected in soil vapor samples from borings SV-3 and SV-4 were less than 5 ppbv (Attachment A).

RISK ASSESSMENT

1

Cambria's risk assessment followed the guidelines set forth by the American Society for Testing and Materials (E-1739-95)¹ and, in general, used input parameter values that were consistent with a RBCA analysis conducted by Chevron Research and Technology Company (CRTC) prior to collecting soil vapor data at the site. The results of CRTC's RBCA analysis are presented in Attachment C. This section presents a summary of the previous RBCA analysis, the results of our Tier 2 RBCA analysis, and a discussion of the soil vapor data. As shown in Attachment C, results of previous RBCA analysis indicate that BTEX compounds in ground water beneath the site do not pose a significant risk to occupants of an on-site building. Concentrations of petroleum hydrocarbons in ground water beneath the site have continued to decrease since this RBCA analysis was conducted, therefore this conclusion is still valid (Attachment B). However, historical BTEX soil concentrations exceeded the calculated site-specific target level (SSTL) of 0.45 mg/kg for the volatilization of benzene from subsurface soil to indoor air pathway. This SSTL is based on the theoretical partitioning between the sorbed and vapor phases of benzene in soil, which often results in an overestimation of actual soil vapor concentrations. Therefore, to more accurately assess the potential risk of on-site receptors to volatilized BTEX compounds beneath the site, Cambria collected soil vapor samples in October 1997 (Attachment A).

Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, E 1739-95 (Revised December 1996): American Society of Testing and Materials, 100 Bart Harbor Drive, West Conshohocken, PA 19428.

To evaluate the risk associated with BTEX compounds in soil vapor beneath the site, we calculated soil vapor SSTLs. We also reevaluated the risk associated with BTEX compounds in ground water using the most recent ground water monitoring data. In general, the input parameter values used in our Tier 2 RBCA analysis are consistent with the values used in the previous RBCA analysis (Attachment C). Specifically, Tier 2 input parameter values include:

- Depth to ground water, which was updated to reflect the shallow water table observed in February 1998 (5 ft bgs; Attachment B); and
- A cancer slope factor for benzene of 0.1 kg-day/mg to be consistent with Cal-EPA guidelines.

Table 1 - Conceptual Site Model for Risk Assessment

Item		Comment
Contaminant Source Media:	Soil and Ground Water	Hydrocarbons have been detected in soil, ground water, and soil vapor beneath the site.
Potential Chemicals of Concern (COC):	Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)	All chemicals detected in representative samples.
Representative Source Concentrations in Ground Water (mg/L):	benzene: 0.046 toluene: 0.004 ethylbenzene: 0.007 xylenes: 0.011	Maximum average BTEX concentrations detected in ground water during the previous for quarters (July 1997 through May 1998) (Monitoring Well MW-8; Attachment B).
Representative Source Concentrations in Soil Vapor (mg/m³):	benzene: 2.3 toluene: 0.22 ethylbenzene: 0.97 xylenes: 0.48	95% UCL of the mean of BTEX concentrations detected in soil vapor (Attachment A).
Target Carcinogenic Risk Level:	Commercial: 1x10 ⁻⁵	Conservative target risk level, considering a commercial receptor scenario on site.
Non-Carcinogenic Hazard Quotient:	1.0	Consistent with ASTM default value.
Benzene Slope Factor:	0.1 (mg/kg/day) ⁻¹	Defined by Cal-EPA.

Selection of Representative Concentrations

COCs in Ground Water: For the representative COC concentrations in ground water, we calculated the mean BTEX concentrations detected during the previous four quarters (i.e. July 1997 through May 1998). In the case of non-detections, the concentration was assumed to be one-half of the detection limit value. As shown

Mr. Phil Briggs July 7, 1998

CAMBRIA

in Attachment B, the highest ground water concentrations have been consistently detected in monitoring well MW-8.

COCs in Soil Vapor: For the representative COC concentrations in soil vapor, we calculated the 95% upper confidence level (UCL) of the mean BTEX concentrations detected in soil vapor during the October 1997 site investigation.

The conceptual site model (CSM) is summarized in Table 1 and results of the Tier 2 RBCA analysis are presented in Table 2.

Table 2 - Tier 2 Results

Exposure Scenario	Target Risk Level	Cal-EPA SSTL	cocc	Calculated Risk Level	Result
Benzene volatilization from ground water to indoor air	1E-05	0.59	0.046	8 × 10 ⁻⁷	Site-specific source concentration is less than SSTL
Intrusion of benzene in soil vapor to outdoor air	1E-05	470	2.3	5 x 10 ⁻⁸	Site-specific soil vapor concentration is less than soil vapor SSTL
Intrusion of benzene in soil vapor to indoor air	1E-05	19	2.3	1 x 10 ⁻⁶	Site-specific soil vapor concentration is less than soil vapor SSTL

SSTL - Site-Specific Target Level

COCC - Chemical of Concern Concentration (Benzene)

Ground water concentrations are in mg/l, and soil vapor concentrations are mg/m3

DISCUSSION

As shown in Table 2, current ground water concentrations beneath the site are less than the SSTL for benzene volatilization from ground water to indoor air. Similarly, with the exception of one sample, SV-5-5.0, all benzene concentrations in soil vapor samples collected beneath the site in October 1997 (Attachment A) are less than the calculated Tier 2 SSTL for soil vapor of 19 mg/m³, which is equivalent to a concentration of about 5,800 ppby benzene.

Benzene was detected at a concentration of 410 ppbv in the soil vapor sample collected at 5 ft depth from boring SV-1, which is less than 5 ft west of the SV-5 sample containing 100,000 ppbv benzene. In addition, benzene concentrations of 96 ppbv and 94 ppbv were detected in two samples collected at 3 ft depth from boring SV-1. Hence, the elevated level of benzene reported in sample SV-5-5.0 may be anomalous.

Mr. Phil Briggs July 7, 1998

CAMBRIA

LOW RISK GROUND WATER CASE CRITERIA

The California Regional Water Quality Control Board - San Francisco Bay Region (RWQCB) released guidelines for clean-up of low risk ground water sites impacted by petroleum hydrocarbons. According to the RWQCB, a low-risk ground water site has the following characteristics:

- The leak has stopped and the hydrocarbon source has been removed;
- Ground water is less than 50 ft deep;
- The site is adequately characterized;
- The hydrocarbon plume is defined and stable or decreasing;
- No water wells or other sensitive receptors are likely to be impacted;
- No preferential pathways exist at the site;
- The site presents no significant risk to human health; and
- The site presents no significant risk to the environment.

The leak has stopped and the hydrocarbon source has been removed: Results of a ground-penetrating radar survey and subsequent soil boring investigation conducted in 1988 by Groundwater Technology, Inc., indicated that USTs were no longer present beneath the site.

Ground water is less than 50 ft deep: Historically, ground water depth has been between 5 and 11 ft bgs. The most recent average depth to ground water is at about 9 ft bgs (Attachment B).

The site is adequately characterized: The lateral and vertical extent of hydrocarbons in soil has been well-defined by the soil borings drilled around the former tank pit and across the site. To date, ten ground water monitoring wells have been installed and twenty-nine soil borings have been drilled at the site, including six soil borings that were advanced in October 1997 to collect soil vapor samples for this risk assessment (Attachment A). Decreasing hydrocarbon concentrations in ground water from on- and off-site monitoring wells indicate a shrinking plume (Attachment B).

The hydrocarbon plume is stable or decreasing: As discussed earlier, hydrocarbon concentrations are decreasing in the source area and perimeter wells, indicating a shrinking plume.

No water wells or other sensitive receptors are likely to be impacted: In May 1996, Flour Daniel GTI conducted a survey of water wells immediately southwest of the site. Two wells, P2 and P3, were identified within 250 ft downgradient (west) of the site (Attachment E). Well P2 is located about 100 ft west of the

Mr. Phil Briggs July 7, 1998

CAMBRIA

former Chevron site and was reported to be completed to a depth of 602 ft and screened from 160 to 225 ft bgs (Groundwater Technology, Inc., 1988). As of 1996, this well was operative and on standy service for fire emergencies. Well P3 is located about 230 ft west of the site and, as of 1996, supplied water for industrial purposes. Two other wells were identified during a well survey conducted by Groundwater Technology, Inc., in 1988. Well L1 is located more than 500 ft north of the site and is completed to a depth of 950 ft. Well completion records indicate the gravel pack of this well extends from the ground surface to 950 ft bgs. Well J1 is located more than one-half mile west-northwest of the site and is completed to a depth of 448 ft. Well seal and construction details were not available for well J1 (Groundwater Technology, Inc., 1988). Results of the well surveys are presented in Attachment E.

With the exception of one suspect detection, no hydrocarbons have been detected in off-site monitoring well MW-9 since its installation in November 1993. Well MW-9 is located about 200 ft downgradient (west) of the source area (the former USTs), in the vicinity of well P2. Hydrocarbons have been detected in off-site monitoring well MW-2 and site perimeter monitoring well MW-6, which are also located downgradient of the site, however TPHg and benzene concentrations have been less than 400 and 20 ppb, respectively (Attachment B). Based on these data and that the industrial supply wells are screened in deeper water-bearing zones, it is not likely that an off-site water supply well would be impacted by the hydrocarbons beneath the site.

No preferential pathways exist at the site: No preferential lithologic pathways that would affect downgradient hydrocarbon migration have been identified at the site.

The site presents no significant risk to human health: As indicated by the Tier 2 RBCA, the risk associated with the site-specific ground water and soil vapor BTEX concentrations is less than the target risk level. Hydrocarbon concentrations in ground water are decreasing and, therefore, the residual risk to human health is a minimum.

The site presents no significant risk to the environment: No potential exposure pathways that would adversely impact surface water, wetlands, or other sensitive receptors have been identified in the vicinity of the site. Therefore, there is no risk to the environment.

CASE CLOSURE JUSTIFICATION AND RECOMMENDATIONS

Based on our review of site conditions, we believe this site should be classified as a low-risk ground water case. Cambria's ASTM RBCA analysis indicates that petroleum hydrocarbons beneath the site present no significant risk to human health. The localized hydrocarbon concentrations are decreasing, and the hydrocarbon concentrations in ground water are low. Therefore, no engineered remedial action is necessary at the site and passive bioremediation is an acceptable remedial alternative for residual hydrocarbons beneath the site.

Several ground water monitoring wells have not been monitored since August 1994 (MW-1, MW-4, MW-7, and MW-10). Among the wells that are currently monitored, hydrocarbons have generally been detected at low concentrations in wells MW-2, MW-5, MW-6, MW-8, and MW-9 (Attachment B). Therefore, Cambria recommends discontinuing ground water monitoring, abandoning site wells, and granting full closure of the site. This recommendation is supported by the following considerations:

- The USTs have been removed;
- SPHs have never been detected at the site;
- The site has been characterized and ground water monitoring data suggest that dissolved hydrocarbons are limited to the site vicinity and the plume is shrinking;
- The presence of residual hydrocarbons in ground water do not pose a significant health risk to future site occupants.

CLOSING

We appreciate this opportunity to provide consulting services to Chevron Products Company and we look forward to working with you in the future. Please call if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

Peter F. McKereghan, C.H.G.

Principal Hydrogeologist

Attachments:

A - Soil Vapor Survey Results

B - Ground Water Monitoring Data

C - CRTC RBCA Analysis

D - Cambria Tier 2 RBCA Analysis

E - Well Survey Results

Mo HGS4

Mo HGS4

Mo HGS4

MO HGS4

MO HGS4

MYDRO
GEOLOGIST

OT CAUSOST

I:\9-1723 Oakland\RBCA\RBCA.wpd

Attachment A

Soil Vapor Survey Results

SOURCE: U.S.G.S. TOPOGRAPHIC QUADRANGLE SAN LEANDRO, CALIFORNIA 7.5 MINUTE SERIES 1959, PHOTREVISED 1980

SITE LOCATION

SCALE 1:24,000

0 2,000 4,000 SCALE FEET

Table 1. Analytic Data for Soil Vapor Samples-Former Chevron Service Station 9-1723, 9757 San Leandro Boulevard, Oakland, California

eport and Map ID Chain of Custody and Field ID		Date	Depth (ft)	Benzene	Toluene parts per bil	Ethylbenzene lion by volume	m, p -Xylenes	o- Xylene	Comments
SV-1-3.0	SV-1-3.0	10/06/97	3.0	96	5.1	6.2	14	5.2	
SV-1-3.0(duplicate)	SV-1-3.0(duplicate)	10/06/97	3.0	94	5.6	6.3	14	5.4	Laboratory Duplicate
SV-1-5.0	SV-1-5.0	10/06/97	5.0	410	4.6	260	25	3.3	Laboratory Dupiteme
SV-2-3.0	SV-2-3,0	10/06/97	3:0	970°	12	190	410	82	
SV-2-5.0	SV-2-5.0	10/06/97	5.0	420	6.0	120	240	46	
SV-2-8.0**	SVD-2-8.0*	10/06/97	8.0	3,100	1,200	2,900	9,200	3,200	
SV-3-3.0	SV-3-3.0	10/06/97	3.0	4.9	5.6	6.4	21	8.2	
SV-3-5.0	SV-3-5.0	10/06/97	5.0	3.6	2.1	2.7	9.0	3.2	
SV-4-3.0	SV-4-3.0	10/06/97	3.0	1.8 [©]	4.8	6.0	23	· 8.4	
SV-4-5.0	SV-4-5.0	10/06/97	5.0	2.0	10	6.0	22	8.2	
SV-5-5.0	\$VD-1-5.0*	10/06/97	5.0	100,000	1,500	4,600	1,200	<950	
SV-6-5.0	SVD-2-5.0*	10/06/97	5.0	580	120	490	2,200	980	

Abbreviations / Notes

Benzene, toluene, ethylbenzene, and xylenes by analytical method TO-14

average = 268.175

ately represent the data.

116 ppb- AWO(B-level - 10-5)

< x = not detected above x parts per billion by volume

Chain of Custody and field sample identifications were changed to more accurately represent the data.

*Incorrectly labeled during field operations

-SVD-2-8.0 corresponds to soil vapor location SV-2 at 8 ft.

-SVD-1-5.0 corresponds to soil vapor location SV-5 at 5 ft.

-SVD-2-5.0- corresponds to soil vapor location SV-6 at 5 ft.

** An additional soil vapor sample was taken at SV-2-8.0 and was not included in table due to sampling equipment failures during field sampling. The analytic results for this sample are inluded on page 8 of Attachment A.

EXPLANATION

MW-1 + Monitoring Well Location

SV-1 - Soil Vapor Sample Locations

SB-1
Soil Boring Location

CAMBRIA Environmental Technology, Inc.

Former Chevron Service Station No. 9-1723 9757 San Leandro Boulevard Oakland, California

P:/PROJECT/CHEVRONS-1723/FIGURES/SOL-VPR.DWG

Soil Vapor Sample Locations

FIGURE

1

11/20/97

Attachment B

Ground Water Monitoring Results

Vertical Mea	asurements	are in feet.			Analytic	al results are in	parts per billi	on (ppb)			
DATE	Well Head Elev.	Ground Water Elev,	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	МТВЕ
MW-1			_								
11/02/93	20.92	10.68	10.24			**	••				•
02/10/94	20.92					**	derina	**			
05/12/94	20.92										
08/26/94	20.92					,					
NO LONG	ER MONI	TORED OR	SAMPLEI	0							
MW-2										٧,	
11/02/93	21.31	10.83	10.48								
02/10/94	21.31							••			
05/12/94	21.31	11.94	9.37		390	6.8	2.0	6,3	14		
08/26/94	21.31			Sampled blannually							
02/01/95	21.31	13.76	7.55	<u></u>	78	10	1.2	<0.5	0.51		
08/02/95	21.31	11.53	9.78		100	3.5	<0.5	2.6	4 .1		
01/31/96	21.31	14.38	6.93		<50	<0.5	<0.5	<0.5	<0.5		<2.5
08/01/96	21.31	11.49	9.82		73	<0.5	<0.5	<0.5	<0.5		610
12/17/96	21.31	12.75	8.56						••		
02/20/97	21.31	12.30	9.01		280	6.7	0.56	1.5	2.9		11
05/02/97	21.31	11.78	9.53								
07/23/97	21.31	11.23	10.08		<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/04/98	21.31	16.06	5.25		<50	1.1	<0.5	<0.5	<0.5	**	5.6
									•	18°	
MW-4										:	
11/02/93			10.23	••						**	
02/10/94											
05/12/94	-4		==								
08/26/94											•

NO LONGER MONITORED OR SAMPLED

Vertical Mea	asurements	are in feet.			Analytic	al results are in	parts per billi	on (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	мтве
MW-5										•	
11/02/93	21.84	11.15	10.69		790	43	3.4	22	12	<400	
02/10/94	21.84	13,10	8.74	••	1400	52	3.0	50	40		
05/12/94	21.84	12.40	9.44		1800	87	6.2	77	66		
08/26/94	21.84	**	A.								
11/11/94	21.84	13.50	8.34		380	` 18	<1.0	18	11	**	
02/01/95	21.84	14.32	7.52		570	36	0,59	21	11		
05/18/95	21.84	12.87	8.97		590	29	1.0	16	9.8		
08/02/95	21.84	11.98	9.86		210	9.2	<0.5	4.0	1.2		
11/01/95	21.84	11.58	10.26		210	5.6	<0.5	1.9	<0.5		<2.5
01/31/96	21.84	14.72	7.12		1200	50	<5.0	19	29	*,	<25
05/16/96	21.84	14.22	7.62	••	440	14	<0.5	17	8.6		11
08/01/96	21,84	11.66	9,98		58	1.4	<0.5	<0.5	<0.5		2.5
12/17/96	21.84	13.13	8.71	••	300	9.7	<0.5	11	6.3	<u></u>	6.9
02/20/97	21.84	12.81	9.03		350	6.7	<0.5	4.3	1.9	**	5.0
05/02/97	21.84	12.50	9.34		270	4.8	<0.5	3.5	1.3		7.3
07/23/97	21.84	11.70	10.14		290	3.4	<0.5	<0.5	<0.5		3.1
11/04/97	21.84	11.69	10.15		180	3.8	<0.5	1.5	<0.5		8.6
02/04/98	21.84	16.54	5.30		140	4.3	<0.5	8.5	<0.5	+-	<2.5
05/01/98	21.84	12.77	9.07	••	1200	19	<1.0	9.7	1.7		25

Vertical Mea	surements	are in feet.			Analytic	al results are in	parts per billic	on (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	МТВЕ
MW-6											
11/02/93	21.71	10.93	10.78	••	300	19	1.8	2.5	5.0	<400	
02/10/94	21.71	12.86	8.85	••	200	10	0.9	2.0	4.0	**	**
05/12/94	21.71	12.08	9.63		210	10	1.1	1.2	3.1		
08/26/94	21.71	10.82	10.89	**	310	16	1.4	2.3	7.1		
11/11/94	21.71	13.25	8.46		<50	1.3	<0.5	<0.5	1.0		
02/01/95	21.71	14.02	7.69		<50	1.9	<0.5	<0.5	0.51		
05/18/95	21.71	12.43	9.28	••	<50	8.2	<0.5	<0.5	<0.5		**
08/02/95	21.71	11.64	10.07		<50	2.3	<0.5	<0.5	<0.5		
11/01/95	21.71	11.31	10.40		<50	<0.5	<0.5	<0.5	<0.5		<2.5
01/31/96	21.71	13.63	8,08		<50	0.98	<0.5	<0.5	<0.5	~ <u></u>	<2.5
05/16/96	21.71	13.91	7.60		<50	1.6	<0.5	<0.5	<0.5	-	<2.5
08/01/96	21.71	11.56	10.15		<50	0.82	<0.5	<0.5	<0.5		<2.5
12/17/96	21.71	13.26	8.45	••	63	2.6	<0.5	<0.5	<0.5		<2.5
02/20/97	21.71		•	Inaccessible							
05/02/97	21.71	**	R-	Inaccessible			**	₹-			
05/29/97	21.71	11.72	9,99		120	1.8	<0.5	<0.5	<0.5		2.6
07/23/97	21.71	11.31	10.40		<50	<0.5	<0.5	<0.5	<0.5		<2.5
11/04/97	21.71	11.38	10.33		63	1.2	<0.5	<0.5	<0,5		<2.5
02/04/98	21.71	16.19	5.52		<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/01/98	21.71	12.40	9.31		<50	<0.5	<0.5	<0.5	<0.5		<2.5

Vertical Mea	surements	are in feet.			Analytic	al results are in	parts per billi	on (ppb)			
DATE	Well Head Elev.	Ground Water Elev,	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	МТВ
MW-7											
11/02/93	20.95	10.88	10.07								-
02/10/94	20.95										-
05/12/94	20,95								**		-
08/26/94	20.95					٠.	48				-
NO LONG	ER MONI	TORED OR	SAMPLE)							
			·							ч.	
MW-8											
11/02/93	21.84	11.02	10.82		15,000	2000	440	420	1400	<400	-
02/10/94	21.84	12.97	8.87		6500	1200	380	250	7900		•
05/12/94	21.84	12.19	9.65		30,000	1400	2900	800	3800		-
08/26/94	21.84	10.90	10.94		17,000	720	200	330	930		-
11/11/94	21.84	13.38	8.46		6800	250	170	190	650		-
02/01/95	21.84	14.36	7.48		330	68	2.8	2.7	4.3		-
05/18/95	21.84	12.54	9.30		540	120	12	11	23	**	-
08/02/95	21.84	11.73	10.11	••	1100	150	9.7	20	40		-
11/01/95	21.84	11.36	10.48		1700	120	15	16	39		<5.0
01/31/96	21.84	14.64	7.20		57	5.3	<0.5	<0.5	<0.5		<2.5
05/16/96	21.84	13.99	7.85		2100	260	43	56	130		64
08/01/96	21.84	11.59	10.25		1100	45	0.92	8.9	25		7.4
12/17/96	21.84	12.95	8.89		2000	280	30	51	88		22
02/20/97	21.84			Inaccessible						1.2 ₁	-
05/02/97	21.84			Inaccessible							-
05/29/97	21.84	11.79	10.05	••	3400	280	31	53	120		<50
07/23/97	21.84	11.48	10.36		760	20	2.2	2.6	5,0		9,7
11/04/97	21.84	11.49	10.35	₩₩	1100	150	13	22	39		49
02/04/98	21.84	16.29	5.55		270	6.8	<0.5	3.3	<0.5		<2.5
05/01/98	21.84	12.62	9.22		190	5.3	<0.5	<0.5	0.75		2,8

Vertical Mea	surements	are in feet.			Analytic	al results are in	parts per billi	on (ppb)	·		
DATE	Well Head Elev,	Ground Water Elev,	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE
MW-9											
11/02/93	20.55	10.53	10.02	**				••			
02/10/94	20.55										**
05/12/94	20.55	11.60	8.95		<50	<0.5	<0.5	<0.5	<0.5	, 	
08/26/94	20.55		••	Sampled biannually							
02/01/95	20.55	13.35	7.20	••	<50	<0.5	<0.5	<0.5	<0.5		
08/02/95	20.55	11.22	9.33		<50	<0,5	<0.5	<0.5	<0.5		
01/31/96	20.55	14.10	6.45	••	<50	<0.5	<0.5	<0.5	<0.5		<2.5
08/01/96	20.55	11.20	9.35		<50	<0,5	<0.5	<0,5	<0.5	••	<2.5
12/17/96	20.55	12.29	8.26		- -						
02/20/97	20.55	12.09	8.46		55*	1.1	<0.5	<0.5	<0.5		<2.5
05/02/97	20.55	11.45	9.10					•• .		**	•-
07/23/97	20.55	10.95	9.60		<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/04/98	20.55	15.51	5.04	••	<50	<0.5	<0.5	<0.5	<0.5	==	<2.5
MW-10											
11/02/93	21.25	10.93	10.32	••						**	
02/10/94	21.25										
05/12/94	21.25										
08/26/94	21 25						**				

NO LONGER MONITORED OR SAMPLED

^{*} Chromatogram pattern indicates an unidentified hydrocarbon.

Vertical Mea	asurements	are in feet.			Analytic	al results are in	parts per billi	on (ppb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	МТВЕ
TRIP B	LANK										
02/10/94		**			<50	<0.5	<0.5	<0.5	<0.5		
05/12/94					<50	<0.5	<0.5	<0.5	<0.5		
08/26/94	••		••		<50	<0.5	<0.5	<0.5	<0.5		
11/11/94					<50	· <0.5	<0.5	<0.5	<0.5		
02/01/95					<50	<0.5	<0.5	<0.5	<0.5		
05/18/95					<50	<0.5	<0.5	<0.5	<0.5		
08/02/95					<50	<0.5	<0.5	<0.5	<0.5	••	
11/01/95				•	<50	<0.5	<0.5	<0,5	<0.5		
01/31/96					<50	<0.5	<0.5	<0.5	<0.5	·	<2.5
05/16/96					<50	<0.5	<0.5	<0.5	<0.5		<2.5
08/01/98			••		<50	<0.5	<0.5	<0.5	<0.5		<2.5
12/17/96				••	<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/20/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/02/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
07/23/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/04/98	•••	* 44			<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/01/98	**				<50	<0.5	<0.5	<0.5	<0.5		<2.5

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on November 1, 1994.

Earlier field data and analytical results are drawn from the September 14, 1994 Groundwater Technology, Inc. report.

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons MTBE = Methyl t-Butyl Ether

RRM engineering contracting firm

Former Chevron Station 9-1723 9757 San Leandro Street Oakland, California

GROUNDWATER ELEVATION CONTOUR MAP, MAY 1, 1998

1 PROJECT: DAC04

TABLE E-2
TIER 2 RBCA - POTENTIAL HEALTH RISKS VIA INHALATION OF INDOOR BENZENE VOLATILIZED FROM GROUND WATER
INTO ON-SITE COMMERCIAL BUILDING

VOC Inhalation Equation: CDI (mg/kg-day) = $C_a \times IR \times FC \times EF \times ED$) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW _c = Body Weight (Carcinogenie Effects) (kg) =	70
C _a = Chemical Concentration in Air (mg/m ³)	BW _{nc} = Body Weight (Nonearcinogenic Effects) (kg) =	70
IR = Inhalation Rate (m³/day) =	20	AT _c = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Sou	1	AT_{ac} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year):	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard Index =	1

-	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	HI = 1
Chemical	(mg/m³)	CDI	CDI	Slope Factor	Dose	Cancer	Quotient	Contr	ibution	RBSL	RBSL
		(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	mg/kg-day	Risk	ł	Cancer	Hazard	mg/L	mg/L
Benzene	1.1E-04	7.7E-06	2.2E-05	1.0E-01	1.7E-03	8E-07	1.3E-02	100%	100%	5.94E-01	3.61E±00
Toluene	9.6E-06	6.7 E -07	1.9E-06		1.1E-01		1.7E-05		0%	_	-2:35E+02
Ethylbenzene	1.7E-05	1.2E-06	3.4E-06		2.9E-01		1.2E-05		0%	Į.	6.00E+02
Xylenes	2.4E-05	1.7E-06	4.8E-06		2.0E-01		2.4E-05		0%		-4.59E+02
TOTAL						8E-07	1.3E-02	100%	100%		

Notes: Blank means no data available or not determined. Excess cancer risk = Carcinogenic CDI x Stope factor. Hazard quotient = Noncarcinogenic CDI / Reference dose.

these of are defent from another table & 2 (totaladment C)

TABLE E-4 POTENTIAL HEALTH RISKS VIA INHALATION OF AMBIENT BENZENE FROM SOIL GAS ONSITE COMMERCIAL SCENARIO

VOC Inhalation Equation: CDI (mg/kg-day) = $C_a \times IR \times FC \times EF \times ED$) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW _c = Body Weight (Carcinogenic Effects) (kg) =	70
C_a = Chemical Concentration in Air (mg/m ³)		BW _{nc} = Body Weight (Noncarcinogenic Effects) (kg) =	70
IR = Inhatation Rate (m³/day) =	2E+01	AT_c = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Source =	1	AT _{nc} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year) =	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard Index =	1

	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	HI = 1
Chemical	(mg/m³)	CDI	CDI	Slope Factor	Dose	Cancer	Quotient	Contr	ibution	RBSL*	RBSL*
		(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	mg/kg-day	Risk		Cancer	Hazard	mg/m³	mg/m³
Benzene	7.0E-06	4,9E-07	1.4E-06	1,0E-01	1.7E-03	5E-08	8.0E-04	100%	100%	4.73E+02	1,25E+03
Toluene	6.1E-07	4.2E-08	1.2E-07		1.1E-01		1.1E-06		0%		9.24E+05
Ethylbenzene	2.4E-06	1.7E-07	4.7E-07		2.9E-01		1.6E-06		0%		6.18E+05
Xylenes	1.1E-06	7.9E-08	2.2E-07	,	2.0E-01	٠	1.1E-06		0%		9.09E+05
TOTAL					·	5E-08	8.0E-04	100%	100%	-	

Notes:

Commercial exposure parameters are the USEPA standard default values.

* RBSL for soil gas

these #5 also different from Table E-4 in Attachment

TABLE E-6 POTENTIAL HEALTH RISKS VIA INHALATION OF BENZENE MIGRATED INTO COMMERCIAL BUILDING VIA FOUNDATION CRACKS ESTIMATED FROM MEASURED SOIL GAS LEVELS

VOC Inhalation Equation: CDI (mg/kg-day) = $C_a \times IR \times FC \times EF \times ED$) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW _c = Body Weight (Carcinogenic Effects) (kg) =	70
$C_a = Chemical Concentration in Air (mg/m3)$		BW _{ac} = Body Weight (Noncareinogenic Effects) (kg) =	70
IR = Inhalation Rate (m3/day) =	2E+01	AT _c = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Source =	1	AT _{ne} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year) =	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard Index =	1

	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	III = 1
Chemical	(mg/m³)	CDI	CDI	Slope Factor	Dose	Cancer	Quotient	Contr	ibution	RBSL*	RBSL*
	,	(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	mg/kg-day	Risk		Cancer	Hazard	mg/m³	mg/m³
Benzene	1.7E-04	1.2E-05	3.4E-05	1.0E-01	1.7E-03	1E-06	2.0E-02	100%	100%	1.90E±01	1.16E+02
Toluene	7.7E-08	5.4E-09	1.5E-08		LTE-01		L4E-07		-0%		1.62E+06
Ethylbenzene	2.5E-07	1.7E-08	4.9E-08		2.9E-01		1.7E-07		0%		5.80E+06
Xylenes	1.4E-07	9.5E-09	2.6E-08		2.0E-01		L3E-07		0%		3.62E+06
TOTAL		•				1E-06	2.0E-02	100%	100%		

Notes: Blank means no data available or not determined.

Excess cancer risk = Carcinogenic CDI x Slope factor,

Hazard quotient = Noncarcinogenic CDI / Reference dose.

why are these conce dypar from rext page

^{*} RBSL for soil gas

Attachment C

CRTC RBCA Analysis

RBCA

SUMMARY REPORT

☐ TIER 1 / ■ TIER 2 RBCA SITE EVALUATION

PREPARED FOR

Former Chevron Station #9-1723 SITE NAME

9757 San Leandro Street, Oakland CA

LOCATION

Chevron Research and Technology Co., Curtis A. Peck, Lead Hydrogeologist

PREPARED BY

March 17, 1997

REVIEWED BY

DATE

RECASIMMARY REPOR

Site Name:

Former Chevron Station #9-1723

Date Completed:

3/7/97

Site Location:

9757 San Leandro St., Oakland CA

Completed By:

Curt Peck, CRTC Hydrogeologist Page 1 of 2

TIER 1 / TIER 2 RBCA REPORT INDEX ■ = ENCLOSED Tier 1 Tier 2 1.0 EXECUTIVE SUMMARY 1.1 Tier I Executive Summary Checklist B) 1.2 Tier 2 Executive Summary Checklist **(**u) 1.3 Executive Summary Discussion (u) 1.4 Baseline Exposure/Control Strategy Flowchart 2.0 SITE HISTORY (u) 2.1 Site Description (u) 2.2 Site Ownership & Activity Record □ (u) 2.3 Past Releases or Source Areas □ (u) 2.4 Summary of Current & Completed Site Activities 🔲 (u) 2.5 Summary of Potential Near-Term Site Activities 3.0 SITE ASSESSMENT INFORMATION (u) 3.1 Regional Hydrogeologic Conditions (u) 3.2 Hydrogeologic Site Conditions (u) 3.3 Beneficial Use Summary (u) 3.4 Well Inventory Survey (u) 3.5 Ecological Assessment Summary 4.0 BASELINE EXPOSURE ASSESSMENT Q (u) 4.1 Site Classification Summary B (u) 4.2 Baseline Exposure Flowchart □ (u) 4.3 Tier 2 Exposure Factor Checklist 4.4 Tier 2 Exposure Pathway Screening * 4.5 Tier 2 Exposure Scenarios & Risk Goals 5.0 SITE PARAMETERS 屬 (u) 5.1 Site Parameter Checklist for RBSLs \square (u) 5.2 Summary of Media Investigation and Chemical Analyses □ (u) 5.3 Summary of Source Zone Characteristics 🛚 (u) 5.4 Surface Soil Concentration Data Summary 🕮 (u) 5.5 Subsurface Soil Concentration Data Summary \blacksquare (u)5.6 Groundwater Concentration Data Summary 5.7 Tier 2 Exposure Pathway Transport Parameters 6.0 TIER 1 RISK-BASED SCREENING LEVEL EVALUATION 6.1 Tier I RBSL Evaluation: Surface Soil 6.2 Tier I RBSL Evaluation: Subsurface Soil 6.3 Tier I RBSL Evaluation: Groundwater

⁼ Required for Tier 2 Evaluation only

⁽u) = For Tier 2, update Tier I version as needed.

RECA SUMMARY REPORT

Site Name:

Former Chevron Station #9-1723

Date Completed: 3/7/97

Site Location:

9757 San Leandro St., CA

Completed By: Curt Peck, CRTC

		$\mathbf{B} = E$	NCLOSED
		Tier 1	Tier 2
7.0 NATURAL ATTENUATION FACTORS			
7.1 Tier 2 NAF Calculation Methods & Results	*		
8.0 TIER 2 BASELINE RISK CALCULATION			
8.1 Tier 2 Exposure Concentration & Intake Calculation	*		
8.2 Tier 2 Pathway Risk Calculation	*		M
8.3 Tier 2 Baseline Risk Summary Table	*		#
9.0 TIER 2 SSTL EVALUATION			
9.1 Surface Soil SSTL Values			•
9.2 Subsurface Soil SSTL Values	*		
9.3 Groundwater SSTL Values			
10.0 TIER 1 / TIER 2 CORRECTIVE ACTION ASSESSMENT			
10.1 Exposure Control Flowchart			□ (N)
10.2 Soil Remediation Technology Screening Matrix			□ (u)
10.3 Groundwater Remediation Technology Screening Matrix		0	□ (u)
ATTACHMENTS			
ATTACHMENTS Figure 1 Site Location Map	1 1	0	= (u)
Figure I Site Location Map	Н	0	■ (u)
Figure 2 Extended Site Map Figure 3 Site Plan View			(u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos		0	□(u) ■ (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map		0	(u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map		0	(u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s)		0	(u) (u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps	17-21	0	(u) (u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps	17-21	0	(u) (u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps Figure 8 Time Series Groundwater Data	17-21	0	(u) (u) (u) (u) (u) (u)

^{* =} Required for Tier 2 Evaluation only

⁽u) = For Tier 2, update Tier I version as needed.

Worksheet 1.2

Site Name:

Former Chevron Station #9-1723

Date Completed:

3/7/97

Site Location:

9757 San Leandro, St., Oakland CA

Completed By:

Curt Peck, CRTC

Page 1 of I

TIER 2 SSTL CALCULATION METHOD (OR O TO SELECT)	ECKLIST
STL Calculation Option NAF Calculat	tion Method
	ransport Modeling:
Option 2: Individual Constituent SSTL Values RBCA	Spreadsheet System
Option 3: Cumulative Constituent SSTL Values	
Empirical N	NAF Calculation
ITE DATA INVENTORY	SEE EMENICATION
ource Zone Investigation Complete: Exposure Pathway Information Con	npiled:
Surface Soil (e.g., 23 ft BGS) Air Pathway	□ Surface Water Pathway
Substitute Bon (e.g., > 5 it Boo)	☐ Land Use Classification
Groundwater Soil Pathway	(on-site and off-site)
TIER 1 WORKSHEETS 1.3 - 4.2 AND 5.2 - 5.6 HAVE BEEN UPDATED TO INCLUDE NEW TIER 2 INFO	DRMATION.
A grant of the state of the sta	
ASKS COMPLETED	海州区域,其间延伸的特征。这
- 100 C D I MARKET	2 Final Corrective Action
Tier 1 Interim Tier 2 Interim Corrective Action Tier 3	3 Evaluation
	Action Date Implemente
	Action Date Implemente
Classification No. Scenario Description Prescribed Interim	
TIER 2 CORRECTIVE ACTION CRITERIA Fier 2 SSTI	Other Applica
TIER 2 CORRECTIVE ACTION CRITERIA	Other Applica
TER 2 CORRECTIVE ACTION CRITERIA Fier 2 SSTI Affected Medium Exceeded Applicable Excess Risk Limits (specif	Other Applica fy value) Exposure Lim
TIER 2 CORRECTIVE ACTION CRITERIA Fier 2 SSTI Exceeded: Applicable Excess Risk Limits (specifindiv. Total Hazard Yes No Risk Risk Index	fy value) Other Applical Exposure Lim
TIER 2 CORRECTIVE ACTION CRITERIA Fier 2 SSTI Affected Medium Exceeded: Indiv. Total Hazard Yes No Risk Risk Index Surface Soil (< 3ft BGS)	fy value) Other Applical Exposure Lim
TIER 2 CORRECTIVE ACTION CRITERIA Affected Medium Exceeded: Applicable Excess Risk Limits (specifindiv. Total Hazard Yes No Risk Risk Index Surface Soil (≤ 3ft BGS) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	fy value) Other Applical Exposure Lim
TIER 2 CORRECTIVE ACTION CRITERIA Affected Medium	fy value) Other Applical Exposure Lim
Affected Medium Fier 2 SSTI Exceeded: Applicable Excess Risk Limits (specifind) Indiv. Total Hazard Yes No Risk Risk Index Surface Soil (≤ 3ft BGS)	fy value) Other Applical Exposure Lim
TER 2 CORRECTIVE ACTION CRITERIA Affected Medium	fy value) Other Applical Exposure Lim
TIER 2 CORRECTIVE ACTION CRITERIA Affected Medium	fy value) Other Applical Exposure Lim
Affected Medium Fier 2 SSTI Affected Medium Exceeded: Applicable Excess Risk Limits (specify Indiv. Total Hazard Hazard Yes No Risk Risk Index Surface Soil (< 3ft BGS) Subsurface Soil (> 3ft BGS) Groundwater 10-5 10-5 10-5 10-5 10-5 10-5 10-5 10-	fy value) Other Applical Exposure Lim
Affected Medium Fier 2 SSTI Exceeded: Applicable Excess Risk Limits (specify lindiv). Total Hazard Hazard Risk lindex Surface Soil (< 3ft BGS) Subsurface Soil (> 3ft BGS) Groundwater 10-5 10-5 10-5 10-5 10-5 10-5 10-5 10-	fy value) Hazard Quotent Outher Applical Exposure Lim (specify, if any

ALL WORKSHEETS ENGLOSED IN THIS REPORT ARE IDENTIFIED ON THE TABLE OF CONTENTS FORM

RBCA SUMMARY REPORT

Worksheet 1.3

Site Name:

Former Chevron Station #9-1723

Date Completed:

3/17/97

Site Location:

9757 San Leandro St., Oakland CA

Completed By:

Curt Peck, CRTC

Page 1 of 2

EXECUTIVE SUMMARY DISCUSSION

Instructions: Provide brief description of site history, hydrogeologic conditions, ecological assessment, possible exposure pathways, RBSL / SSTL results, and the scope of work for proposed corrective action activity. Address proposed methods, implementation schedule, cost, and anticipated risk reduction at or near the site.

SITE DESCRIPTION AND HISTORY

Worksheets 2.1 - 2.5
 Figures 1 - 4

Briefly discuss site chronology, operations, features of potential concern, and future plans for site use.

N/A

SITE ASSESSMENT INFORMATION

GEOLOGIC AND HYDROGEOLOGIC SUMMARY

Worksheets 3.1 - 3.4
 Figures 5 and 6

Briefly describe regional site features, climate, vadose zone soils, and groundwater depth, quality, and use.

N/A

BASELINE EXPOSURE ASSESSMENT

COMPLETE EXPOSURE PATHWAYS AND APPLICABLE RECEPTORS

Worksheets 4.1 - 4.5

Discuss current or potentially complete pathways for human or ecological exposure to site constituents.

There are no current complete exposure pathways. Potentially complete future exposure pathways include:

- 1) Onsite commercial worker inhalation of indoor air (Vapor intrusion to buildings from subsurface soil)
- 2) Onsite commercial worker inhalation of indoor air (Vapor intrusion to buildings from groundwater)

There are no identified complete ecological exposure pathways

ECOLOGICAL ASSESSMENT SUMMARY

Worksheet 3.5

Discuss potentially sensitive ecological receptors and habitat in the vicinity of site, if any,

Potentially sensitive ecological receptors are not known.

Worksheet 1.3

Site Name:

Former Chevron Station #9-1723

Date Completed: 3/1

3/17/97

Site Location:

9757 San Leandro St., Oakland CA

Completed By: Cu

Curt Peck, CRTC

Page 2 of 2

EXECUTIVE SUMMARY DISCUSSION Continued

TIER 1 RESL OR TIER 2 SSTL EVALUATION

COMPARISON TO SOURCE MEDIA CONCENTRATIONS

Worksheets 5.1 - 5.7
 Figures 7 and 8

For complete pathways, compare representative source concentrations to applicable RBSL or SSTL values.

Calculated SSTL soil concentration at a 1 x 10⁻⁵ risk level for exposure to benzene vapors from soil was 0.45 mg/Kg. The calculated SSTL groundwater concentration at a 1 x 10⁻⁵ risk level for exposure to benzene vapors from groundwater was 6.7 mg/L Representative arithmetic soil benzene concentration of 5.8 mg/Kg exceeded the SSTL for soil. The representative arithmetic groundwater benzene concentration of 0.137 mg.L was below the SSTL for groundwater.

Should reg

QUALITATIVE UNCERTAINTY ASSESSMENT

• Worksheets 4.2, 4.4, and 5.1 - 5.7

Discuss uncertainty / conservatism of the site data and calculation methods used in deriving RBSL or SSTL values.

The potential for human health or ecological exposure to hydrocarbon impacted soil, air and groundwater is minimal at this site because the calculated SSTL values maintain a degree of conservatism that would be protective of human health and the environment. The SSTL values were calculated for a 1 x 10^{-5} Target Risk (commercial worker) and it is very unlikely that this property would ever be residential. The vapor inhalation equations contained in this software package tend to err on the conservative side of default parameters and it is likely that generated values represent maximum expected risks. The arithmetic average of the soils data is highly biased by the 99 mg/Kg sample result in SB-10 and is one of the main reasons that the site exceeds the 1 x 10^{-5} Target Risk value.

PROPOSED CORRECTIVE ACTION

Worksheets 10.1 - 10.3

Describe rationale for proposed action (i.e., no action, interim action, final action, on tier upgrade), considering site classification and land use. Discuss basis for remedy selection, if applicable.

Based on the results of this risk based site review, the vapors from benzene in the capitlary zone of the site soils may pose a potential future health threat to future commercial workers at the site. Because excavation of the site is not warranted, it is recommended that the site have institutional controls placed on it to reduce the future commercial worker exposure to calculated benzene vapors from site soils. These controls may range from limiting development directly over the impacted soils to placement of a vapor barrier beneath any future site development. In addition, the groundwater monitoring data indicates a stable to shrinking BTEX plume and the residual groundwater contamination does not pose a health threat to potential future occupants through the vapor inhalation pathway. Additionally, natural attenuation of residual hydrocarbons will continue to decrease contaminant concentrations.

Continued groundwater monitoring on a semi-annual to annual basis of site wells MW-2, -5, -6, -8, -9 and MW-11 is recommended.

REFERENCE DOCUMENTS

Appendices

List the document sources for the data cited in this report.

- 1) Blaine Tech Groundwater Monitoring Reports submitted 1/24/97
- 2) Fluor-Daniel GTI Soil Analytical Results 5/15/96 Report
- 3) Fluor-Daniel GTI Soil Physical Parameter Results 5/15/96 Report
- 4) Arithmetic Groundwater Concentration Calculations C. Peck 3/97

Site Name:

Former Chevron Station #9-1723

Date Completed 3/7/97

Site Location: 9757 San Leandro St., Oakland CA

Completed By: Curt Peck, CRTC

Page I of I

EXPOSURE CONTROL FLOWCHART

Instructions: Identify remedial measures to be implemented to prevent exposure, as follows:

• Step 1 - Baseline Exposure: Identify applicable sources, transport mechanisms, and receptors as shown on Worksheet 4.2 (= applicable to site).

• Step 2 - Remedial Measures: Fill in shut-off valves () to indicate removal / treatment action, containment measure, or institutional controls to be used to "shut off" exposure pathway.

• Step 3 - Remedial Technology Options: For each complete pathway, identify category of corrective measure to be applied and list possible technology options in space provided (see options list in RBCA Guidance Manual).

Site Name

Former Chevron Station #9-1723

Date Completed 3/7/97

Site Location

9757 San Leandro St., Oakland CA

Completed by

Curl Peck, CRTC

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check baxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (= applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

MAKE ZAPF NOT ITALICS

Site Name:

Former Chevron Station #9-1723

Date Completed:

3/7/97

Site Location:

9757 San Leandro St., Oakland CA

Completed By:

Curt Peck, CRTC

Page 1 of 2

		TIER 2	EXPOSURE	PATH	IWAY SCRE	ENING				
Instructions: Expa 1) Source Medium: designated pathway.	Compare maxim			source	medium to applicab	le Tier I RBSL	value for		Risk-Based Screening Level	
2) Transport Mecho c) constituent transp	unism: Transport in the source to	is active at site if: a) receptor could occur	relevant source mediu under current or antic	m is affe cipated fu	cted, b) exposure med dure ușe.	lium or receptor	exists, and		Point of Exposure	
3) Exposure Mediu applicable Tier 1 e federal water quality	xposure limit for a	inder steady-state tra ir, groundwater, or s	insport conditions (e.g. soil. Surface water co	., air), co oncentral	ompare measured CO tions should be comp	C concentration ared to applical	at POE to ble state or	(Constituent of Concern	
4) Complete Pathwo	ny: For screening,	pathway considered c	omplete if "Yes" repo	rted in Co	olumn A <u>and</u> either Co	olumn B or C.		NM = 1	Vot Measured	
	A) SOURCE	MEDIUM	B) TRANS	SPORT M	ECHANISM	C) E	XPOSURE M	EDIUM	COMPLETE PATHWAY?	
PATHWAY	Туре	Pathway Tier 1 RBSL Exceeded?	_Туре	Active at Site?		Туре	Exposure Limit Exceeded at POE?		(Check if yes & specify status)	
AIR EXPOSURE PAT	HWAYS	(TO SELECT)			(0-0)	THE LIVE	二、以及方数	设定当6 .4	以資源開於是	
Surface Soils: Vapor Inhalation and Dust Ingestion	Surface Soil	☐ Yes ☐ No	Volatilization /Dust Transport	■ No	Yes - Current Yes - Future	Ambient Air	■ NM □	No 🖸 Yes	Current Potential	
2) Subsurface Soils: Volatilization to Ambient Alr	Subsurface Soil	☐ Yes ☐ No	Volatilization	■ No	Yes - Current Yes - Future	Ambient Air	■ NM □	No 🚨 Yes	Current Potential	
3) Subsurface Soils: Volatilization to Enclosed Space	Subsurface Soil	☐ Yes ■ No	Volatilization	□ No	Yes - Corrent Yes - Future	Indoor Air	□ NM I	■ No □ Yes	Current Potential	
4) Groundwater: Volatifization to Ambient Air	Groundwater	☐ Yes ☐ No	Volatilization	■ No	Yes - Current Yes - Future	Ambient Air	■NM □	No 🗖 Yes	Current Potential	
5) Groundwater: Volatilization to Enclosed Space	Groundwater	☐ Yes ■ No	Volatilization	-🗆 No	Yes - Current	Indoor Air	□ NM I	■ No □ Yes	Current Potential	
GROUNDWATER EX	POSURE PATHW	AYS	0.0	15	TARRES	非现代的	5.期中4月	PERSONAL STREET	直接规则监视证据	
5) Soil: Leaching to Groundwater: Ingestion	Surface or Subsurface Soils	☐ Yes ☐ No	Leaching /Groundwater Flow	■ No	Yes - Current Yes - Future	Groundwater	■ NM □	No 🚨 Yes	Current Potential	
7) Dissalved or Free- Phase Groundwater Plume: Ingestion	Groundwater	☐ Yes ☐ No	Groundwater Flow	, ■ No	Yes - Current Yes - Future	Groundwater	■NM □	No 🚨 Yes	Current Potential	
SOIL EXPOSURE PA	THWAY			10000	The Provinces	Editor, Ca	reselvati.	公司制度	THE LINE	
Surface Soils: Dermail Contact /Ingestion	Surface Soil	☐ Yes ☐ No	Direct Contact	□ No	Yes - Current Yes - Future	Soil	■им □	No □ Yes	Current Potential	

RECA SUMMARY REPORT

Worksheet 4.4

Site Name:

Former Chevron Station #9-1723

Date Completed: 3/7/97

	A) SOURC	E MEDIUM	B) TR/	ANSPORT MECHANISM	C) EX	PATHWAY?	
PATHWAY	Pathway Tier 1 Type RBSL Exceeded?		Туре	Active at Site?	Туре	(Check if yes & specify status)	
SURFACE WATER P.	ATHWAYS				- 6	· by Edit below 5 12 12 1	(23 months)
9) Soil: Leaching to Groundwater Discharge to Surface Water: Recception or Fish	Surface or Subsurface Soils	☐ Yes ■ No	Leaching /Groundwater Flow	No Yes - Current Yes - Future	Surface Water	■NM □ No □ Yes	Current D Potentia
10) Groundwater Plume: Discharge to Surface Water: Recrention or Fish	Groundwater	☐ Yes ■ No	Groundwater Flow	No Yes · Current Yes · Future	Surface Water	■NM □ No □ Yes	Current Potentia
11) Soil: Leaching to Stormwater / Discharge to Surface Water: Recreation or Fish	Surface Soils	Yes No	Overland Flow	■ No	Surface Water	■ NM □ No □ Yes	Current D Potentia

Worksheet 4.5

Site Name: Site Location: Former Chevron Station #9-1723

3/7/97 Date Completed:

9757 San eandro St., Oakland CA

Completed By:

Curt Peck, CRTC

Page I of I

TIER 2 EXPOSURE SCENARIOS AND RISK GOALS

Instructions: For each exposure pathway, indicate i) Point of Exposure (POE) location (on-site, off-site, or both), ii) applicable exposure scenario at each POE (residential or commercial industrial), and

				TAR	GET RKSK	S AT PO	E
DISTANCE		×	Cons	vidual stituent fects	Cumula Constit Effec	uent	Other Exposure Limit
EXPOSURE FROM SOURCE		OSURE RIO AT POE	Indiv. <u>Risk</u>	<u>H</u> Q	Additive <u>Risk</u>	HI	(specify if applicable)
AIR EXPOSURE PATHWAYS	T IS WAS	COMPLETE (provi	de data)	D NOT	COMPLETE	(aldp to n	ext pathway)
On-Site POE: 0 ft	☐ Residential	Commercial	10 ⁻⁵	_1.0	_		Q PEL/TL
Off-Site POEft	☐ Residential	l Commercial /Industrial					□ PEL/TU
GROUNDWATER EXPOSURE PA	THWAYS I	COMPLETE (provi	de data) T	NOT CO	MPLETE (ald	p to next	pathway)
On-Site POE: 0 ft	☐ Residential	Commercial		_		1.	□ MCL
Off-Site POEft	☐ Residential	Commercial /Industrial					– □ MCL
SOIL EXPOSURE PATHWAY		COMPLETE (pro	vide data)	E NOT C	OMPLETE (s	dp to nex	t pathway)
On-Site POE: (at source)	☐ Residential	Commercial	10-5	_1.0			
Off-Site POE (at source)	☐ Residential	l Commercial /Industrial			0		<u> </u>
SURFACE WATER EXPOSURE P	ATHWAYS [COMPLETE (pro	vide data)	M NOT C	OMPLETE (s	kip to nex	t pathway)
On-Site POE: ft	☐ Recreational	(specify exp.		-			<u> </u>
Off-Site POEft	☐ Recreational	limit only) I Ecological (specify exp. limit only)			\vdash	-	
ADDITIONAL INFORMATION:							
If exposure limit is specified limits, water quality criteria,	provide referentetc.):	nce for concentrat	ion limit	s to be ap	oplied to eac	h COC ((e.g., OSHA
				12	6		

RECA SIMMARY. REPORT

Site Name: Site Location:

Former Chevron Station #9-1723 9757 San Leandro St., Oakland CA Date Completed:

3/7/97 Completed By:

Curt Peck, CRTC

Page I of I

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier I evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (■).

Note: * Confirm conservatism of these values for Tier 1 evaluation.

δ	Provide site-	specific meas	urement or e	stimate for	Tier 2	evaluation.
-3	4 4 4 1 100 0100 0	Shoosse sureday	me contract As a		T 141 -	D. I WY WAS GOVED TO DE

Soil Para	umeters	Defa	ult Value Used	Site-Specific Value Us	ed
	soil type		sandy soil	sandy clay/ silt	*§
Θ_T	Soil porosity	Q	0.38 (dim)	W 0.42	§
Θws	water content - vadose zone		0.12 (dim)	0.133	§
e _{as}	air content - vadose zone $(=\Theta_T - \Theta_{ws})$		0.26 (dim)	0.287	
⊖ _{wcap}	water content - capillary fringe		0.342 (dim)	■ 0.378	
⊖ _{acap}	air content - capillary fringe (= Θ_T - Θ_{wcap})		0.038 (dim)	■ 0.042	
ρς	Soil density		1.7 g/cm ³	W 2.03	§
foc	mass fraction of organic carbon in soil		0.01 (dim)	0.0014	ş
Ls	Depth to contaminated soil		100 cm	91 cm	§
Lgw	Depth to groundwater	□.	300 cm	280 cm 🗸	§
hcap	capillary zone thickness		5 cm	28 cm /	
hv	vadose zone thickness (= Lgw - hc)		295 cm	252 cm V	
pН	Soil/water pH		6.5	·	
Groundy	water Parameters				
1	Water infiltration rate		30 cm/yr		§
Vgw	groundwater velocity		82.0 ft/yr	<u> </u>	*§
δ _{gw}	groundwater mixing zone depth		200 cm	D	*§
DF	aquifer dilution factor (= I + $V_{gw} \delta_{gw} / (1W)$)		12.1		
Surface l	Parameters				
Uair	Amb. air velocity in mixing zone		225 cm/s	, 🗅	*§
δ_{air}	Mixing zone height		200 cm		*§
A	Contaminated Area	8	2250000 cm ²		
w	Width of Contaminated Area		1500 cm	0	§
d	Thickness of Surficial Soils		100 cm		§
Pe	Particulate areal emission rate		2.17E-10 g/cm ² -s	o	§
Building	Parameters				
Lerack	Foundation crack thickness		15 cm	D	
η	Foundation crack fraction		0.01 (dim)	D	
Lbr	Building Volume/Foundation Area Ratio (res.)		200 cm	D	
Lh _c	Building Volume/Foundation Area Ratio (com./ind.)		300 cm	o	
ER	Building vapor volume exchange rate (res.)		12 dy ⁻¹	o	
ERc	Building vapor volume exchange rate (com./ind.)		20 dy ⁻¹	o	

Discussion: Provide rationale for default parameter revision; discuss additional site-specific features of note; etc.

(continue on next page if needed)

RBCA SITE ASSESSMENT

Tier 2 Worksheet 5.5

Completed By: Curt Peck

SCREEN 7.3 SUBSURFACE SOILS CONCENTRATION

CALCULATOR

UC

TIER 2 SUBSURFACE SOIL CONCENTRATION DATA SUMMAR (e.g., >3 FT BGS)

Site Location: 9757 San Leandro St., Oakland CA Date Completed: 2/27/1996

Site Name: Former Chevron Station #9-1723

		Analytical Method			Det	ected Concentrat	lone
CONSTITU	ENTS DETECTED	Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Maximum Conc. (mg/kg)	Mean Conc. (mg/kg)	UCL on Mean Conc. (mg/kg)
71-43-2	Benzene	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	38	34	9.9E+01	5.7E-01	1.2E+00
100-41-4	Ethylbenzene	ACTIVITIES DE OSTUM	36	30	1.5E+02	6.7E-01	1.8E+00
108-88-3	Toluene	SOC-03	36	28	6.8E+01	2.0E-01	5.0E-01
1330-20-7	Xylene (mixed isomers)	E III R S.OE OS	36	34	2.5E+02	1.9E+00	4.9E+00

Calculated Distribution	Default Detection	
of Data	Limit	Sample Name
	(mo/L)	Date Sampled

Lognormal	0.005
Lognormal	0.005
Lognormat	0.005
Lognormal	0.005

Serial: g-303-ydx-938

Software: GSI RBCA Spreadsheet

Version: v 1.0

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Soil concentrations used were from both 51 +16 bgs.
10' bgs samples are below 6wE.

L Percentile (must be 0 9 or 0 95)

Analytical Data (Up to 50 Data Points)

363	2	3	4	5	6	7	8	9	10	311	12	13	14	15	18	17	18	19	20	21	22
0.00	(S. 1558	S-102	5. 120									form 0.3	ima#1	fmat 1	Insul 1	(mañ l	(mall)	formall 1	fmm# 1	(mad)	(mg/L)
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(inpc)	(mgr.)	(mg/L)	(mg/L)	ABIANA (mgr.)	(mg/L)	RACTOR	(myr.)	Jean III
88-1910	01.07 RAS	an Aus	UA MAN	NULL SE	27 MA	2/4/04	24 Jak	AH ISA	2/2/0A	00-9-10	1/4/0A	1/1/04	API AUC	AARA	4/4/04	2/2/00	Ara/on/i	4/4/05	Anuna	471/08	20000
ELECTRONIC	NAME OF	Separation 1	INDUSTRAL .	IENERAL.	DE MINAGE	187.3341	COMPLEXES.	TE SHOOT	100.4002	I I I I I I I I I I I I I I I I I I I				Name and Park	The Carlo		MINISTRACTOR				A REAL PROPERTY.
mail van	0.78	10.54	0.50	0.028	10	第0.37四	77	1.3	ND S	0.78	1 0.0054	0.04	3.8	3.7	123,50	0.01	0.012	197	10	1019	7.4
0.44	018	0.60	10.82	0.038	17	NO	0.58	1.6	100		ND	0.16	11.7,4	1.6.6	14(4)	0.0051	0.04	- NO	NO.		D.av.

23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
fmmA t	(mall)	Imad 1	(molt)	tonal 1	fmat 1	I from)	(mg/L)	(mg/L)	(mn/L)	(ma/L)	Imo/LV	(mož.)	(moft.)	(ma/L)	(mg/L)
1881188	SHAPETH .	変む多に対	Take Albert	THE PROPERTY.	PERMISSIFI	THE STREET	Green Market	2273975	TERRITOR .	THE PERSON NAMED IN	THE REAL PROPERTY.	The Supple	TWO IS	THE REAL PROPERTY.	NAME OF TAXABLE PARTY.
58-14-5	68-14-10	86-75-5	8B-15-10	9B-16-5	88 15 10	SB47410	98-18-10	58-19-10	88-20-10	88-21-5	88-22-5	188-22-10	SEE-23-10	and the same	2450 611
4/4/76	44.98	4/3/96	4/3/96	4/3/96	4/3/96	4/3/98	4.4706	U3/25	4/3/98	4/2/96	4/2/56	情况35	一人がある	Sald bulle	
		-		-		THE REAL PROPERTY.		rancous and	THE REAL PROPERTY.	III DOMESTICA	THE REAL PROPERTY.	orana de la companione de	name and	and the same	\$10.00E-104
0.066/	2055	NO.0118	110/17/00	0,15	開日至田		15.4		3,835		0.027	1072	2.5%		
13.0.007	經對其語	NO.	53	0.00002	20 4	14.89	经经济	15人	100 July 1	3415	0.02	国际准	0.40	Parties of	201 201 011
100 COS 10	型鐵鐵	0.008	117 68 15	進100世	(15)	ESPANATE I	P. MARSHA	ND	500	MHX EAR	0.0091	0.47.8	0.50 %	EN EGALO	STATISTICS OF
0.067	11182 12	0.15	1260	0.026	270 音	160 K	0765 A FI	11.5年	斯姆	SEMPER	0.0155	140.39	THE REAL PROPERTY.	Section 1	100

.

e e e

RBCA SITE ASSESSMENT

Tier 2 Worksheet 5.5

Site Name: Former Chevron Station #9-1723 Completed By: Curt Peck Site Location; 9757 San Leandro St., Oakland Coate Completed: 2/27/1998

1 of 1

SCREEN 7.1 GROUNDWATER CONCENTRATION CALCULATOR

Choose

TIER 2 GROUNDWATER CONCENTRATION DATA SUMMARY

		Analytical Method			Det	ected Concentrat	lons
CONSTITUE	Name	Typical Detection	No. of Samples	No. of Detects	Maximum Conc. (mg/L)	Meen Conc. (mg/L)	UCL on Mean Conc. (mg/L)
71-43-2	Benzene	WINDS X 06/04 (1990)	38	37	2.0E+00	2.9E-02	5.5E-02
100-41-4	Ethylbenzene	5 5 6 5 CO4	38	28	8.0E-01	7.1E-03	1.4E-02
108-88-3	Toluene	建筑成岛岛岛中非洲	38	23	2.9E+00	2.5E-03	5.1E-03
		16.05-04	38	29	7.9E+00	1.0E-02	2.3E-02

Calculated Default Distribution Detection of Data Limit (mg/L)

Well Name Date Sampled

| Lognormal | 0.0005 | Lognormal | 0.0005 | Lognormal | 0.0005 | Lognormal | 0.0005 |

Serial: g-303-ydx-938

Software: GSI RBCA Spreadsheet

Version: v 1.0

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

NUCL Percentile

05% (must be 0.9 or 0.95)

Analytical Data (Up to 50 Data Points)

1.	2	3	.4:	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
N8B-11	68-50	68-24		100	KE ALL	MW-8	MW/5	MW-5	MW-5	MWASI	MW-S	MW-5	I MW-5	84W-5	MW-5	MVV-S	MW-61	M(W-b)	MW-6	MW/e	MW.6
444/98	11/3/98	14/2/04	到過到對於	HOPETER	Par Carlo	111/2/03	2710/94	6/12/94	1.1/1.1/04	102/1/982	5/18/95	1 erz/95 (11/1/95	[11/31/00]	15/16/96	11 801 7963	HILL(2/ND)	温水和料	NECT COM	#IA98/94	With 1/04
TOTAL ST	177 077 121 5	16:16:33:16	电影测度	MAN INTE	排 期 [182]	0.043	0.000	0,067	ECONTR.	0.036	0.029	0.0002	0.0056	0.03	0.014	0.0014	80.019	0.010	0.01	0.0/6	0.0013
0,18	0.021	C31		認為計畫	11000	0.0224	0.06	0/27//	10.018	0.021	10,016	0.004 #	10.0010	0.010	0.017	TO NO	0.0025	0.002	0.0012	0.0023	ND
00.07	0.03	NO.	the ball		10 10 10 10	0.0034	0.003	0.0008	0,001	0.0006	8.0.001	NO	UKND S	NO E	属物を	WATER BY	0.0018	0.0000	0.0011	0.0014	S ND

23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
(mg/L) MW-8 2/1/95	(mg/L) Myy-8 Mrtkes	(mg/L) MW-a	(mg/L) (MW-8), (1/1/95)	(mg/L) (MW-5) 1/31/56	(mg/L) [MW-6] [8/18/98]	(mg/L) MW-d 871/98	(mg/L) MW-8 11/2/93	(mg/L) MW-8 2/10/14	(mg/L) MW-B Sn 2/64	(mg/L) M/V-8	(mg/L) MV/-6	(mg/L) MW-8 27198	(mg/L) MW-B Britins	(mg/L)	(mg/L) MW-8	(mg/L)	(mg/L) MW-8 5/16/08	(mg/L) MW-8 6/17/6	(mg/L)	(mg/L)
(0,0019) N/NO (4) N/D) 10,0005	10082 80 80 80	100001 1501 1501 1501	ND ND NO	0.001) NO NO	10.0016 - NO - - NO -	(0.0008) - NO - MO - NO	0.421 - 0.43 - 1.43	0.28 0.28 0.88 7.0	1,4 10,8 2.9	0.72 0.33 0.8 0.93	0.25 0.19 0.17 0.55	0.068 83027 0.0028 0.0043	0.011 (0.011 (0.012)	0.15 0.02 0.0097 0.004	0.012 0.016 0.015 0.035	19/00% (NB / NO (NB)	0.25 0.056 - 0.048 - 0.13	0.0089 0.0089 0.0009		
									*					10			÷			

\$ 6 <u>26</u>

SUMMARY REPOR

Site Name:

Former Chevron Station #9-1723

Date Completed:

3/7/97

Site Location:

9757 San Leandro St., Oaldand CA

Completed By:

Curt Peck, CRTC

Page 1 of 2

TIER 2 EXPOSURE PATHWAY TRANSPORT PARAMETERS

Instructions: For complete exposure pathways, provide site-specific values for transport parameters. In absence of direct measurements, default values may be selected for some parameters, as shown below. If no default value shown, site-specific value must be provided.

RANSI	PORT PARAMETER	SITE-SPECIFIC VALUE (INPUT VALUE BELOW)	(■ TO SELECT)		
-	AMETERS	S. COMOLON-HEETINGS.			
Sair	Air mixing zone height (cm)		■ 200		
U _{air}	Ambient air velocity in mixing zone (cm/sec)		■ 225		
Pe	Soil particulate areal emission rate (g/cm²-sec)		■ 2.17E-10		
σ_{y}	Transverse air dispersion coeff. (m)		100		
σ_z	Vertical air dispersion coeff. (m)		= 10		
management of the second	DWATER PARAMETERS	公司李明的区域图片的	は最近が出る。		
δ_{gw}	Groundwater mixing zone depth (cm)	150 cm	□ 200		
[Water infiltration rate (cm/yr)	0.3	□ 30		
Vgw	Groundwater Darcy velocity (ft/yr)	100			
K	Saturated hydraulic conductivity (cm/sec)				
grad	Lateral groundwater flow gradient (dim)				
(BC) _i	Available biodegradation capacity of electron acceptors for constituent <i>i</i>				
x	Distance to POE from point of maximum COC concentration in groundwater (ft)	0			
α_{x}	Longitudinal groundwater dispersion coeff. (cm)		■ 10% of x		
α_{γ}	Transverse groundwater dispersion coeff. (cm)		■ 33% of α _x		
α,	Vertical groundwater dispersion coeff. (cm)		■ 5% of α ₂		
SOIL PA	RAMETERS	* REAL PROPERTY	September 1		
hcap	Capillary zone thickness (cm)	28 cm	□ 5		
h _v	Vadose zone thickness (cm)	252 cm	·		
$\rho_{\rm s}$	Soil bulk density (g/cm ³)	2.03	1.7		
foc _s	Fraction organic carbon in soil leaching zone (dir	0.0014	□ 0.01		
foc _{gw}	Fraction organic carbon in water-bearing unit (di	0.0014	□ 0.001		
Lgw	Depth to groundwater (cm)	280 cm			
Θ_T	Soil porosity (dim)	0.42	□ 0.38		
	Soil volumetric water content (dim)	0.133			
⊖ _{wcap}	Capillary zone	0.378	□ 0.342		
Θws	Vadose zone	0.133	□ 0.12		
Θ _{wcrac}	Foundation crack	0.133	□ 0.12		

RECASUM MARY REPORT

Site Name:

Date Completed:

Site Location: Completed By:

Page 2 of 2

TRANSPORT PARAMETER	SITE-SPECIFIC VALUE (INPUT VALUE BELOW)	DEFAULT VALUE (■ TO SELECT)
SOIL PARAMETERS (Continued)	一一种所以《中经验集团经验制度》的	
Soil volumetric air content (dim)	0.287	
Θ _{acap} •Capillary zone	0.042	0.038
⊖ _{as} •Vadose zone	0.287	0.26
⊖ _{acrack} •Foundation crack	0.287	□ 0.26
d Thickness of surficial soil zone (cm)	91 cm	□ 100 cm
BUILDING PARAMETERS	A-19/00元代表的数型制度的现在分词	建物的 和类似于
		Resid. Ind.
L _b Building volume/area ratio (cm)		□ 200 ■ 300
ER Building air exchange rate (dy-1)		□ 12 ■ 20
L _{crack} Foundation crack thickness (cm)		= 15
n Foundation crack fraction		■ 0.01

Additional Information:	•				
		4	5.80	80	

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Former Chevron Station #9-1723

Completed By: Curt Peck

Site Location: 9757 San Leandro St., Oakland CA Date Completed: 2/27/1996

1 of 1

		BASELIN	IE CARCINO	GENIC RISK			BASEL	INE TOXIC E	FFECTS	
9	Individual COC Risk		Cumulative COC Risk		Risk Limit(s) Exceeded?	Hazard (Quotient	Hazar	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Target Value Risk			Maximum Value	Applicable Limit	Total Value	Applicable Limit	
AIR EXPOSURE	PATHWAYS			1.1		a name field	异群 医洗线	2000年1月		的特別能
Complete:	1.3E-4	1.0E-5	0.0E+0	N/A	, 🔳	0.0E+0	1.0E+0	0.0E+0	N/A	
GROUNDWATE	R EXPOSURE P	ATHWAYS	₹ 18	1100000	4. 化平均值	all rail!	40年			苏色温温 片
Complete:	0.0E+0	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
SOIL EXPOSUR	E PATHWAYS		·	Telephone and the second	2000年前最				原標制部	San Property
Complete:	0.0E+0	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
CRITICAL EXPO	SURE PATHWA	Y (Select M	aximum Value	s From Compl	ete Pathways)					
	1.3E-4	1.0E-5	0.0E+0	N/A	-	0.0E+0	1.0E+0	0.0E+0	N/A	
2375 ALMN 378000E	COMPACTOR DENSE AND ADDRESS OF THE PERSON SECURITIES AND ADDRESS OF THE PERSON SECURI	W0028502510	尼维尼和福姆納	THE PERSON NAMED IN	CASH PARK HARD	建一种企业	为大数000000000000000000000000000000000000	A CONTRACTOR	MEDICAL PROPERTY	STORY BEING

NOTE: Calculated Risk is for Arithmetic Average of Soil (5.8mg/Kg) and Groundwater (0.51 mg/L).

Serial: g-303-ydx-90

Software: GSI RBCA Spreadsheet

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version: v 1.0

RBCA TIER 1/TIER 2 EVALUATION

Site Name: Former Chevron Station #9-1723 Former Chevron Station #9-1728b Identification: 9-1723ra Site Location 9757 San Leandro St. Oakland 9757 San Leandro St. OaklandDate Completed 2/27/96 Completed By Curt Peck Software: GSI RSCA Spreadsheet

Version: v 1.0

				Completed By	Curt Peck		NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.						
DEF		ULT PARA							940 004000004				
Espoaure			Residential		Commerc	int/industrint	Surface	CONTRACTOR		Commercia	Construction		
premeter	Definition (Units)	Adult	(1-6yra)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Chronic			
Te	Averaging time for carcinogens (yr)	70						Exposure duration (yr)	30	25	1		
Tn	Averaging time for non-carcinogens (yr)	30	8	16	25	1	A	Contaminated soll area (cm^2)	2.2E+06		1.0E+06		
w	Body Weight (kg)	70	15	35	70		W	Length of affected soil parallel to wind (cm)	1.5E+03		1.0E+03		
		30	6	16	25	1	W.gw	Length of affected soil parallel to groundwater (cn	1.5E+03				
ED C	Exposure Duration (yr)	350			250	180	Ualr	Ambient air velocity in mixing zone (cm/s)	2.3E+02				
F	Exposure Frequency (days/yr)				250		delta	Air mixing zone height (cm)	2.0E+02				
F.Dem	Exposure Frequency for dermal exposure	350			1		Lss	Definition of surficial soils (cm)	9.1E+01				
Flgw	Ingestion Rate of Water (Vday)	2	122		•	100	Pe	Particulate areal emission rate (g/cm^2/s)	2.2E-10				
Ra	Ingestion Rate of Soil (mg/day)	100	200		50	100	1.0	Lauringle sugar animaton rate (Acre, Sal	and in				
Redi	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4E+01	,	07-32-00-22-020-2	The state of the s	Value				
fla.in	Inhalation rate indoor (m^3/day)	15			20 .		Photograph of the latest services	Definition (Units)					
Ra.out	Inhelation rate outdoor (m^3/day)	20			20	20	delta.gw	Groundwater mixing zone depth (cm)	1.5E+02				
9A	Skin surface area (dermal) (cm*2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	1	Groundwater Infiltration rate (cm/yr)	3.0E-01				
SAndi	Adjusted dermal area (cm*2-yr/kg)	2.1E+03			1.7E+03	1000	Ugw	Groundwater Darcy velocity (cm/yr)	3.0E±03				
M SWHOL	Soil to Skin adherence factor	1					Ugw.tr	Groundwater Transport velocity (cm/yr)	3.0E+02				
mm .		FALSE			FALSE		Ks	Saturated Hydraulic Conductivity(cm/s)					
AAFs	Age adjustment on soil ingestion				FALSE		grad	Groundwater Gradient (cm/cm)					
AAFd	Age adjustment on skin surface area	FALSE			FACOG		Sw	Width of groundwater source zone (cm)					
CXXX	Use EPA tox data for air (or PEL based)	TRUE					Sd	Depth of groundwater source zone (cm)					
TWMCL7	Use MCL as exposure limit in groundwater?	FALSE		100			00.7510						
5/42-5520117							BC.	Biodegradation Capacity (mg/L)	FALSE				
							BIO7	is Bloattenuation Considered					
							phi.eff	Effective Porosity In Water-Bearing Unit	3.8E-01				
							foc.sat	Fraction organic carbon in water-bearing unit	1.4E-03				
dately of Even	sed Persons to	Residential			Commerc	let/industriel							
	ogure Pathways	-			Chronic	Constrctn	Soll	Definition (Units)	Value				
							hc	Capillary zone thickness (cm)	1.0E±02				
Groundwater i		FALSE			FALSE		tay	Vadose zone thickness (cm)	2.8E+02				
GW.I	Groundwater Ingestion	FALSE			FALSE		tho	Soil density (g/cm^3)	2.03				
GW.v	Volatifization to Outdoor Air				TRUE		foc	Fraction of organic carbon in vadosa zone	0.0014				
gw.b	Vapor Intrusion to Buildings	FALSE			INUE		phi	Soil porosity in vadose zone	0.42				
Soll Pathways							F2 (22)	Depth to groundwater (cm)	3.9E+02				
S.v	Votatiles from Subsurface Soits	FALSE			FALSE		Lgw	(17.) 전략 기계 (17.) 등 1. (1.) 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의	9.1E+01	171			
SS.v	Volatiles and Particulate Inhalation	FALSE			FALSÉ	FALSE	Ls	Depth to top of affected soll (cm)					
5S.d	Direct Ingestion and Dermal Contact	FALSE			TAUE	FALSE	Leubs	Thickness of affected subsurface solls (cm)	2.9E+02				
8.1	Leaching to Groundwater from all Solls	FALSE			FALSE		pН	Soll/groundwater pH	6.5	2004000	2007000000000		
5.b	Intrusion to Buildings - Subsurface Solls	FALSE			TRUE			5	capillary	vadose	foundation		
3.0	attrastar to principle. Generalises cons	,,,,,,,,					phl.w	Volumetric water content	0.374	0.133	0.133		
					-6		phi.s.	Volumetric air content	0.042	0.287	0.287		
							(#11/1000)						
							Building	Definition (Units)	Residential	Commercial			
							Lb	Building volume/area ratio (cm)	2.0E+02	3.0E+02			
					Comme	clet/industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04			
Matrix of Rec	eptor Distance	THE RESERVE THE PERSON NAMED IN COLUMN 2 I	dential	-		On-Site	Lark	Foundation crack thickness (cm)	1.5E+01				
and Location	on- or off-ells	Distance	On-Site		Distance	Un-Sits	000010	Foundation crack fraction	0.01				
							eta	Poundation crack fraction	0.01				
BW	Groundwater receptor (cm)		FALSE			FALSE							
S	inhalation receptor (cm)		FALSE			FALSE	200-1-1200	5777745					
-							Dispersive 7		2 33000	2 20			
Matrix of							Parameters	Definition (Units)	Residential	Commercial	1		
DOUGH TO WAS A STATE OF THE PARTY OF THE PAR		Individual	Cumulative	7.			Groundwate	A TO LEGISTED TO MANUAL TO THE					
Terget Risks		manatumit.					ax	Longitudinal dispersion coefficient (cm)					
	25/77 22	4 02 40					ay	Transverse dispersion coefficient (cm)					
TRab	Target Risk (class A&B carcinogens)	1.0E-05					-	Vertical dispersion coefficient (cm)					
TRo	Target Risk (class C carcinogens)	1.0E-05					az Manan	Terribal dispersion commission forty					
THO	Target Hazard Quotient	1.0E+00					Vapor	William Committee on the Committee of th					
Opt	Calculation Option (1, 2, or 3)	2					dcy	Transverse dispersion coefficient (cm)					
Time	BBCA Tier	2					dez	Vertical dispersion coefficient (cm)					

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Former Chevron Station #9-1723 Site Location: 9757 San Leandro St., Oakland CA Completed By: Curt Peck Date Completed: 2/27/1996

1 of 1

		BASELI	NE CARCINO	GENIC RISK			BASEL	INE TOXIC E	FFECTS	
	Individual COC Risk Cumul			e COC Risk	Risk Limit(s) Exceeded?	Hazard :	Quotient	Hazar	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
AIR EXPOSURE	PATHWAYS					- 1	1200	2.74.8.40	4.1000000000000000000000000000000000000	in the law of the
Complete:	2.7E-5	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
GROUNDWATER	R EXPOSURE PA	THWAYS						100	A. 1810	2 to 12 to
Complete:	0.0E+0	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
SOIL EXPOSURI	E PATHWAYS					- 対位数	Y E ST		British 198	
Complete:	0.0E+0	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
								- service to the service of	NAME OF STREET	CONTRACTOR VILLA
CRITICAL EXPO	SURE PATHWA	Y (Select M	ximum Value	From Comple	te Pathways)	位出版書	學問題		ENS MANU	
	2.7E-5	1.0E-5	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	

NOTE: Calculated Risk is for 95% UCL of Geometic Mean of Soil (1.2 mg/Kg) and Groundwater (0.055 mg/L).

Serial: g-303-ydx-93

Software: GSI RBCA Spreadsheet

Version: v 1.0

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

RBCA SITE ASSESSMENT

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration										
CONSTITUENT	in Groundy value (mg/L)	vater note	In Surface value (mg/kg)		in Subsurfac value (mg/kg)	e Soll note					
Benzene	5.1E-1	AVG			5.8E+0	AVG					
Ethylbenzene	1.7E-1	AVG			1.1E+1	AVG					
Toluene	3.2E-1	AVG			5.2E+0	AVG					
Xylene (mixed isomers)	1.2E+0	AVG			3.2E+1	AVG					

Site Name: Former Chevron Station #9-1723 Site Location: 9757 San Leandro St., Oakland CA Completed By: Curt Peck Date Completed: 2/27/1996

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

why wasn't uch used for coc conc.

47		RBCA SITE	TE ASSESSMENT						Tier 2 Worksheet 9.2				
	ormer Chevron Station #9-1723 : 9757 San Leandro St., Oakland C	Α	Completed B Date Comple	y: Curt Peck ted: 2/27/1998	9								1 OF 1
	JBSURFACE SOIL SSTL (> 3 FT BGS)			1.0E-5 1.0E-5 1.0E+0		•	sure limit? sure limit?		Calcu	lation Option:	2		
				SSTL	Results For Compl	ete Exp	osure Pa	sthways ("x" if (complete)				
CONSTITUE	Representative Concentration		Soil Leaching to Groundwater			Soil Volatilization to		Soil Volalifization to Outdoor Air		Applicable 99TL	SSTL Exceeded ?	Required CRF	
	Name -	(mg/kg)	Residential: (on-site)		Régulatory(MCL): (on-site)		dential: site)	Commercial: (on-site)	Residential: (on-site)	Commercial: (on-site)	(mg/kg)	"II" Il yes	Only if "yes" is
	Benzene	5.8E+0	NA	NA	NA	1	VA.	4.5E-1	NA	NA	4.5E-1		1.3E+01
	Ethylbenzene	1.1E+1	NA	NA	NA	1	NA	>Res	NA	NA	>Res		<1
108-88-3		5.2E+0	NA	NA	NA		NA	5.3E+1	NA	NA	5.3E+1		<1
-	Xylene (mixed Isomers)	3.2E+1	NA	NA	NA		NA	>Res	NA	NA	>Res		<1

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0 Serial: g-303-ydx-938

		RBC	SITE ASS	ESSMENT		Tier 2 Worksheet 9.3								
	ormer Chevron Station #9-1723 9757 San Leandro St., Oakland C	Α	Completed B Date Comple	y Curt Peck ted 2/27/199	6							1 OF 1		
G	ROUNDWATER SSTL V	ALUES		(Class A & B) Firsk (Class C)		☐ MCL exposure limit? ☐ PEL exposure limit?			Calculation Option: 2					
			Target H	Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" If Complete)										
Representative Concentration CONSTITUENTS OF CONCERN			Groundwater Ingestion				ater Volatilization Indoor Air		ter Volatilization utdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF		
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Plesidential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial (on-site)	(mg/L	• III • If yes	Only if "yes" left		
71-43-2	Benzene	5.1E-1	NA	NA	NA	NA	6.7E+0	NA	NA	6.7E+0		<1		
100-41-4	Ethylbenzene	1.7E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1		
108-88-3		3.2E-1	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1		
1330-20-7	Xylene (mixed isomers)	1.2E+0	NA	NA	NA	NA	>Sol	NA	NA	>Sol		<1		

Software: GSI RBCA Spreadsheet Version: v 1.0

Serial: g-303-ydx-938

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Attachment D

Cambria Tier 2 RBCA Analysis

TABLE E-1
TIER 2 RBCA - ESTIMATION OF INDOOR AIR CONCENTRATION OF BENZENE VOLATILIZATION FROM GROUND WATER VIA FOUNDATION CRACKS

ONSITE PARKING STRUCTURE - COMMERCIAL SCENARIO

		POINT OF EXPOSURE AT SOURCES		H (2)	Dan	Darre	D_{cap}^{eff} (3)	$D_s^{eff}(4)$
		Mean concentration from well MW-8	mg/L	cm ³ /cm ³	cm²/s	cm ² /s	cm ² /s	cm ² /s
		Benzese	4.6E-02	2.20E-01	9.30E-02	1.10E-05	2.48E-05	8.3E-03
		Toluene	4.0E-03	2.60E-01	8.50E-02	9.40E-06	2.06E-05	7.5E-03
		Ethylbenzene	7.0E-03	3.20E-01	7.60E-02	8.50E-06	1.71E-05	6.7E-03
		Xylenes	1.1E-02	2.90E-01	7.20E-02	8.50E-06	1.71E-05	6.4E-03
		Notes:			Ō			- 3
(1)	VF _{Mag} =	Volatilization factor from ground water to enclosed space vapor	or (mg/m³)/(n	ng/L.)				
	-	$VF_{wesp} = \{H \times [(D_{wi}^{eff}/L_{GW}) / (ER \times L_{B})] \times 1E+03 (L/m^{3})\} / (ER \times L_{B}) = (E+03) (L/m^{3}) = (E+03) (L/m^{3$	1+ (Duy eff /	L _{GW}) / (ER x	L _B)] x {(D _{ws}	$^{\rm eff}/{ m L_{GW}}$ / (D _{erack} eff / L _{erack}	Jη)]}
(2)	H =	Henry's law constant (cm ³ /cm ³) =	Chemical-sp	ecific				
(3)	$D_{ws}^{ \text{eff}} =$	Effective diffusion between GW & soil surface (cm ² /s) =						
		$D_{ws}^{eff} = (h_{cap} + h_v) [(h_{cap} / D_{cap}^{eff}) + (h_v / D_c^{eff})^{-1}]$						
	h _{cap} =	Thickness of capillary fringe (cm) =	28	0.9 feet			64	CONC
	$h_v =$	Thickness of vadose zone (cm) =	124				GW	COVIC
(4)	$D_{cap}^{ \text{eff}} =$	Effective diffusion through capillary fringe (cm ² /s) =	Chemical-sp	ecific			-Fire	Altr. 11
		$D_{uup}^{ aff} = D^{air} \; x \; (\theta_{acup}^{ \ 3.33} / \; \theta_T^{ 2}) + [D^{water} \; x \; (1/H) \; x \; (\theta_{wc4p}^{ \ 3.33} / \; \theta_T^{ 2})$	²)				for	carc. attenu
	Dan =	Diffusion coefficient in air (cm²/s) =	Chemical-sp	ecific				1 - 1
	$\theta_{acap} =$	Volumetric air content in capillary fringe soil (cm³/cm³) =	0.042				un p	rearc
	$\theta_T =$	Total soil porosity (cm³/cm³) =	0.42				- 51	
	D ^{water} =	Diffusion coefficient in water (cm ² /s) =	Chemical-sp	ecific			LI o	
	θ _{weap} =	Volumetric water content in capillary fringe soil (cm³/cm³) =	0.378				the C	lakeo/
(5)	D _s eff =	Effective diffusion in soil - vapor concentration (cm ² /s) =	Chemical-sp	ecific			the C to ke	(1.000
		$D_{\epsilon}^{\text{eff}} = D^{\text{nir}} \times (\theta_{na}^{3.33} / \theta_{T}^{2}) + [D^{\text{water}} \times (1/H) \times (\theta_{ma}^{3.33} / \theta_{T}^{2})]$					tole	mp-t
	θ_ =	Volumetric air content in vadose zone soil (cm³/cm³) =	0.287				0.	/
	$\theta_{ws} =$	Volumetric water content in vadose zone soil (cm³/cm³) =	0.133					
	$L_{GW} =$	Depth to ground water = $h_{cap} + h_{e}$ (cm)	152	5 ft				
	ER =	Enclosed space air exchange rate (1/s) =	0.00023	commercial				
	$L_B =$	Height of room at foundation level, about 9 feet (cm)		commercial				
11	Dereck eff =	Effective diffusion coefficient through cracks (cm ² /s) =	D_s^{eff}					
(0)	CLECK							

0.287

0.133

15

0.01

GW Canc. Used in equations accounting
for attenuation, etc. to resulting
in predicted conc. on indoor air (C mean)
the Cintour becomes the concentration
to ke up t into Table E.Z. (RBCA)

 $D_{ws}^{eff}(5)$

cm²/s

1.3E-04

1.1E-04

9.2E-05

9.2E-05

 $D_{crack}^{eff}(6)$

cm²/s

8.3E-03

7.5E-03

6.7E-03

6.4E-03

(mg/m³)/(mg/L)

2.4E-03

2.4E-03

2.5E-03

2.2E-03

mg/m³

4111404

9.56E-06

1.73E-05

2.45E-05

 $\eta =$

(7) Clodos = C gx X VFmap

Volumetric air content in vadose zone soil (cm³/cm³) =

Thickness of foundation/wall (cm) =

Volumetric water content in vadose zone soil (cm³/cm³) =

Area fraction of cracks in foundation/wall (cm²/cm²) =

TABLE E-2 TIER 2 RBCA - POTENTIAL HEALTH RISKS VIA INHALATION OF INDOOR BENZENE VOLATILIZED FROM GROUND WATER INTO ON-SITE COMMERCIAL BUILDING

VOC Inhalation Equation: CDI (mg/kg-day) = Cax IR x FC x EF x ED) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW _c = Body Weight (Carcinogenic Effects) (kg) =	70
C _a = Chemical Concentration in Air (mg/m	3)	BW _{ss} = Body Weight (Noncarcinogenic Effects) (kg) =	70
IR = Inhalation Rate (m³/day) =	20	AT _s = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Sou	1	AT _{ac} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year)	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard Index =	l

	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	HI = 1
Chemical	(mg/m ³)	(mg/m ³) CDI		Slope Factor	Dose	Cancer	Quotlent	Contr	ibution	RBSL	RBSL
		(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	mg/kg-day	Risk		Cancer	Hazard	mg/L	mg/L
Benzene	1.1E-04	7.7E-06	2.2E-05	1.0E-01	1.7E-03	8E-07	1.3E-02	100%	100%	5.94E-01	3.61E+00
Toluene	9 6E-06	6.7E-07	1.9E-06		1 IE-01		1.7E-05		0%		2.54E+05
Ethylbenzene	1.7E-05	1.2E-06	3.4E-06		2.9E-01		1.2E-05		0%		.7.50E+05
Xylenes	2 4E-05	1 7E-06	4.8E-06		2 0E-01		2 4E-05		0%		5.46E+05
TOTAL						8E-07	1.3E-02	100%	100%		

Notes: Blank means no data available or not determined. Excess cancer risk = Careinogenic CDI x Slope factor. Hazard quotient = Noncareinogenic CDI / Reference dose.

From previous puese calculations

TABLE E-3
TIER 2 RBCA - AMPHENT AIR CONCENTRATIONS OF BENZENE FROM SOIL GAS - ONSITE COMMERCIAL SCENARIO

	CHEMICAL	•	C _{sed} mg/kg	C _{soligas}	H (3)	k _{ec} cm³/g	k, cm³/g	D ^{eir} cm²/s	D ^{water} cm ² /s	D, eff (4) cm²/s	AA/SG Factor (1) Unitless	Cinton (2)
	Benzene		NA NA	2.3E+00	2.20E-01	3.80E+01	5E-02	9.30E-02	1.10E-05	8.3E-03	3.0E-06	7.0E-06
	Toluene		NA.	2.2E-01	2.60E-01			8.50E-02	9.40E-06	7.5E-03	2.8E-06	6.1E-07
	Ethylbenzene		NA	9.7E-01	3.20E-01	1.29E+03	2E+00	7.60E-02	8.50E-06	6.7E-03	2.5E-06	2.4E-06
	Xylenes		NA	4.8E-01	2.90E-01	2.40E+02	3E-01	7.20E-02	8.50E-06	6.4E-03	2.3E-06	1.1E-06
tes:	,		,									

Notes

VP_{aumb} = ASTM Volatilization factor from subsurface soil to ambient air (mg/m³)/(mg/kg), using soil concentration (mg/kg) to estimate ambient air concentration (mg/m³).

 $VF_{samb} = \{(H \times \rho_s) / (\theta_{wx} + [k_s \times \rho_s] + [H \times \theta_{sa}])\} \times 1E + 03 \text{ (cm}^3 - kg/m^3 - g) \times 1 / \{1 + ([U_{six} \times \delta_{six} \times L_s] / [D_x^{eff} \times W])\}$ The VF_{samb} has 2 factors:

- a) The factor "{ $(H \times \rho_s) / (\theta_{ws} + [k_s \times \rho_s] + [H \times \theta_{ms}]$ } (g/cm³) x 10³ (cm³-kg/m³-g)" (in unit of kg/m³) multiplied by C_{soil} (mg/kg) will give soil gas concentration (mg/m³) at source;
- b) The rest of the VP tank equation is the attenuation factor between ambient air concentration and soil gas concentration (AA/SG Factor) (unitless), equivalent to for ASTM default scenario,
- (1) AA/SG Factor = 1 / (1 + ([$U_{air} \times \delta_{air} \times L_s$] / [$D_s^{eff} \times W$]))

The product of Factor (a) and soil concentration can be replaced with the actually measured soil gas concentration at source.

			Annual Control of the	
(2)	CAmbina	Castless x AA/SG Factor		
(3)	H =	Henry's law constant (cm ³ /cm ³) =	Chemical-specific	
	$\rho_s =$	Soil bulk deasity (g/cm³) =	2	Measured soil gas conc. are used
	$\theta_{as} =$	Volumetric air content in vadose zone soil (cm³/cm³) =	0.287	to l
	$\theta_{ws} =$	Volumetric water content in vadose zone soil (cm³/cm³) =	0.133	and w/ attenuation factors accounted
	k, =	Soil-water sorption coefficient (cm 3 /g) = $k_{ne} \times l_{\infty} =$	Chemical-specific	and with worth
	k _{oc} =	Carbon-water sorption coefficient (cm3/g) =	Chemical-specific	for, the predicted Confloor lambient
	f₀c =	Fraction of organic carbon in soil (g/g) =	0.0014	for practed allow stampingst
(4)	$D_s^{\text{eff}} =$	Effective diffusion in soil - vapor concentration (cm ² /s) =	Chemical-specific	0014801000000
		$D_{x}^{eff} = D^{air} \times (\theta_{xx}^{3.33} / \theta_{T}^{2}) + [D^{water} \times (1/H) \times (\theta_{xx}^{3.33} / \theta_{T}^{2})]$		and the contract of
	D ^{uir} =	Diffusion coefficient in air (cm ³ /s) =	Chemical-specific	is derived. The Combinant is
	D ^{water} =	Diffusion coefficient in water (cm ² /s) =	Chemical-specific	
	$\theta_T =$	Total soil porosity (cm ³ /cm ³) =	0.42	used in table Et as the site
	$U_{mir} =$	Wind speed in the mixing zone (cm/s) =	225	
	$\delta_{air} =$	Ambient air mixing zone height (cm) =	200	specific carc.
	L, =	Depth to subsurface soil sources (cm)	91 Soil gas sample collected at 3 feet bgs	V
	W =	Width of source area perpendicular to wind direction (cm)	1500	

TABLE E-4 POTENTIAL HEALTH RISKS VIA INHALATION OF AMBIENT BENZENE FROM SOIL GAS ONSITE COMMERCIAL SCENARIO

VOC Inhalation Equation: CDI (mg/kg-day) = C_x x IR x FC x EF x ED) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW ₄ = Body Weight (Carcinogenic Effects) (kg) =	70
$C_a = Chemical Concentration in Air (mg/m3)$		BW _{ss} = Body Weight (Noncarcinogenic Effects) (kg) =	70
IR = Inhalation Rate (m³/day) =	2E+01	AT _s = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Source =	1	AT _{se} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year) =	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard Index =	1

	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	HI = 1
Chemical	(mg/m³)	CDI	CDI	Slope Factor	Dose	Cancer	Quotient	Contr	ibution	RBSL*	RBSL*
		(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	mg/kg-day	Risk		Cancer	Hazard	mg/m³	mg/m³
Benzene	7.0E-06*	4.9E-07	1.4E-06	1.0E-01	1.7E-03	5E-08	8.0E-04	100%	100%	4 73E+02	1 25E+03
Toluene	- 6.1E-07	4.2E-08	1.2E-07		1.1E-01		1.1E-06		0%		2.54E+05
Fihylbenzene	2.4E-06	1.7E-07	4.7E-07		2.9E-01		1,6E-06		0%		7.50E+05
Xylenes	1.1E-06	7.9E-08	2.2E-07		2.0E-01		1.1E-06		0%		5 46E+05
TOTAL						5E-08	8.0E-04	100%	100%		

Notes:

Commercial exposure parameters are the USEPA standard default values.

* RBSL for soil gas

TABLE E-5 TIER 2 RBCA - INDOOR AIR CONCENTRATIONS OF BENZENE MIGRATED INTO COMMERCIAL BUILDINGS VIA FOUNDATION CRACKS

Cindoor (2) mg/m³

> THE ST 7.7E-08 2.5E-07

1.4E-07

			ESTIN	AATED FE	ROM MEA	SURED SO	IL GAS	LEVELS				
		CHEMICAL	C_{sell}	C_{sellpes}	H (3)	k_{ec}	k,	Dair	Dwater	D, eff (4)	D _{crack} eff (5)	IA/SG Factor (1)
			mg/kg	mg/m³	_cm³/cm³	cm ³ /g	cm³/g	cm ² /s	cm ² /s	cm ² /s	cm ² /s	Unitless
		Benzene	NA	2.3E+00	2.20E-01	3.80E+01	5E-02	9.30E-02	1.10E-05	8.3E-03	8.3E-03	7.5E-05
		Toluene	NA	2.2E-01	2.60E-01	1.35E+02	2E-01	8.50E-02	9.40E-06	7.5E-03	3.6E-05	3.5E-07
		Ethylbenzene	NA	9.7E-01	3.20E-01	1.29E+03	2E+00	7.60E-02	8.50E-06	6.7E-03	2,6E-05	2.6E-07
		Xylenes	NA	4.8E-01	2.90E-01	2.40E+02	3E-01	7.20E-02	8.50E-06	6.4E-03	2.9E-05	2.8E-07
Notes:		NOT ALL ROYALS COME TO SEE ON TO VICE AND THE SECOND TO	0 10 400	- Participa		100-10-02-	NEW TOTAL	-5-7717				
$VF_{seep} =$		tion factor from subsurface soil to enclosed space vapor										
		$(k_s) / \theta_{ws} + (k_s \times \rho_s) + (H \times \theta_{ss}) \times 1E+03 \text{ (cm}^3-\text{kg/m}^3-\text{g)} \times 1E+03 \text{ (cm}^3-\text{kg/m}^3-\text{kg/m}^3-\text{g)} \times 1E+03 \text{ (cm}^3-\text{kg/m}^3-$	I(D, eff / L,)/(ER x L	n)])/{1+	(D, ett / L) /	ER x La)] x [(D, en /	L _s) / (D _{enek}	"/Lemb) n)	1)	
	The VF _{sesp} has 2		87		15						8	
	1) The factor "[(I	$H \times ps$) / $\theta ws + (k_s \times p_s) + (H \times \theta_{ss})$] (g/cm ³) $\times 10^3$ (cm ³ -)	kg/m³-g)"	(in unit of I	cg/m³) multi	plied by C ₁₀	(mg/kg)	will give so	oil gas conce	ntration (my	y/m³) at source;	
	2) The rest of the	VP_{assp} equation is the attenuation factor between indoor	air concer	ntration and	soil gas cor	centration (A/SG Fa	ctor) (unitle	ss), equivale	nt to for AS	TM default see	nario.
(1)	IA/SG Factor =	$\{[(D_s^{eff}/L_s)/(ER \times L_B)]\}/\{1+\{(D_s^{eff}/L_s)/(ER \times L_B)\}\}$	u)] x [(D,*	"/L,)/(De	nek / Lenck	η)]]						
		The product of Factor (1) and soil concentration can be	e replaced	with the act	ually measu	red soil gas	concentra	ation at sour	ce.			
(2)	Cladoor	Csolgas x IA/SG Factor										
(3)	H =	Henry's law constant (cm³/cm³) =		Chemical-s	pecific							
	$\rho_{\text{e}} =$	Soil bulk density (g/cm ³) =		2								
	$\theta_{ns} =$	Volumetric air content in vadose zone soil (cm³/cm³) =	£.	0,287								
	$\theta_{w_{0}} =$	Volumetric water content in vadose zone soil (cm³/cm³) =	0.133								
	$\mathbf{k}_{\varepsilon} =$	Soil-water sorption coefficient $(crn^3/g) = k_{oc} \times f_{oc} =$		Chemical-s	pecific							
	k _{oc} =	Carbon-water sorption coefficient (cm ³ /g) =		Chemical-s	pecific							
	$f_{oc} =$	Fraction of organic carbon in soil (g/g) =		0.0014								
(4)	$D_s^{eff} =$	Effective diffusion in soil - vapor concentration (cm²/s)) =	Chemical-s	pecific							
• •		$D_s^{\text{eff}} = D^{\text{air}} \times (\theta_{as}^{3.33} / \theta_T^2) + [D^{\text{wear}} \times (1/H) \times (\theta_{as}^{3.33} / \theta_T^2)]$	θ_{r}^{2})									
	Dair =	Diffusion coefficient in air (cm ² /s) =		Chemical-s	pecific							
	Dweler =	Diffusion coefficient in water (cm ² /s) =		Chemical-s	pecific							
	$\theta_{\rm T}$ =	Total soil porosity (cm³/cm³) =		0.42	- 10 C C C C C C C C C C C C C C C C C C							
	L _s =	Depth to subsurface soil sources (cm) 91 Soil gas sample collected at 3 feet bgs										
	ER =	Enclosed space air exchange rate (1/s) =		0.00023		industrial		_				

300

0.287

0.133

0.01

15

 D^{eff}

Height of room at foundation level (cm)

Thickness of foundation/wall (cm) =

Effective diffusion coefficient through cracks (cm²/s) =

Volumetric air content in vadose zone soil (cm³/cm³) =

Area fraction of cracks in foundation/wall (cm²/cm²) =

Volumetric water content in vadose zone soil (cm³/cm³) =

 $D_{crack}^{eff} = D^{nir} \times (\theta_{acrack}^{3.33} / \theta_T^{2}) + [D^{water} \times (1/H) \times (\theta_{wcrack}^{3.33} / \theta_T^{2})$

 $L_B =$

 $\theta_{acrack} =$

 $\theta_{\text{wentek}} =$

L_{crack} =

 $\eta =$

(5)

TABLE E-6 POTENTIAL HEALTH RISKS VIA INHALATION OF BENZENE MIGRATED INTO COMMERCIAL BUILDING VIA FOUNDATION CRACKS ESTIMATED FROM MEASURED SOIL GAS LEVELS

VOC Inhalation Equation: CDI (mg/kg-day) = Cx x IR x FC x EF x ED) / (BW x AT)

	RME		RME
CDI = Chronic Daily Intake (mg/kg-day)		BW = Body Weight (Carcinogenic Effects) (kg) =	70
C _u = Chemical Concentration in Air (mg/m ³)		BW = Body Weight (Noncarcinogenic Effects) (kg) =	70
IR = Inhalation Rate (m³/day) =	2E+01	AT _c = Averaging Time (Carcinogenic Effects) (days) =	25,550
FC = Fraction from Contaminated Source =	1	AT _{nc} = Averaging Time (Noncarcinogenic Effects) (days) =	9,125
EF = Exposure Frequency (days/year) =	250	TR = Target Excess Cancer Risk =	1E-05
ED = Exposure Duration (years) =	25	THI = Target Hazard index =	1

	Concentration	Carcinogenic	Noncarcinogenic	Cal-EPA	Reference	Excess	Hazard	RME -	% Risk	1.00E-05	HI = 1
Chemical	(mg/m³) CD1		CDI	Slope Factor	Dose	Cancer	Quotient	Contribution		KBSL*	RBSL*
		(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ¹	mg/kg-day	Risk		Cancer	Hazard	mg/m³	mg/m³
Benzene	1.76-04	1.2E-05	3 4E-05	1 0E-01	1.7E-03	1E-06	2.0E-02	100%	100%	1.90E+01	8 69E-03
Toluene	7.7E-08	5.4E-09	1.5E-08		L1E-01		1.4E-07		0%		9.36E+03
Ethylbenzene	2.5E-07	1.7E-08	4.9E-08		2.9E-01		1.7E-07		0%	- 9	2.76E+04
Xylenes	1.4E-07	9.5E-09	2,6E-08		2.0E-01		1.3E-07		0%		2.01E+04
TOTAL						1E-06	2.0E-02	100%	100%		

Notes: Blank means no data available or not determined. Excess cancer risk = Carcinogenic CDI x Slope factor.

Hazard quotient = Noncarcinogenic CDI / Reference dose

^{*} RBSL for soil gas

Attachment E

Well Survey Results

1.0 INTRODUCTION

This report is submitted by Fluor Daniel GTI, Inc. (Fluor Daniel GTI) to summarize the methods and results of additional environmental assessment work conducted on April 1-4, and May 3, 1996, at the former Chevron Service Station Number 9-1723 located at 9757 San Leandro Boulevard, Oakland, California (Figure 1). All work was conducted in accordance with Groundwater Technology's Work Plan for Additional Soil and Groundwater Assessment, dated December 6, 1994, and the subsequent Addendum, dated February 22, 1996, approved by the Alameda County Health Care Services, Department of Environmental Health (DEH). This work included conducting a background review of the site and immediate vicinity, directing an underground utility locator service in determining if proposed boring locations were free of underground obstructions, determining the locations and status of water pumping wells on the former Gerber facility immediately adjacent the site, obtaining necessary permits, developing a health and safety plan for field activities, drilling and sampling twenty-three soil borings, obtaining "grab" groundwater samples from three of these borings, and preparation of this report.

2.0 ADDITIONAL ASSESSMENT WORK

2.1 Background Review/Permitting/Site-Specific Health and Safety Plan

Fluor Daniel GTI conducted a technical review of all relevant information available prior to proceeding with site assessment work. Chevron provided Fluor Daniel GTI with documentation of service station configuration for the years 1947, 1966 and 1968. This documentation was used to determine locations of soil borings in the present scope of work (Figure 2).

A soil boring permit was obtained from the Alameda County Flood Control and Water Conservation District, Zone 7 agency. A copy of this permit is included in Appendix A.

Following a complete review of site conditions, Fluor Daniel GTI prepared a site-specific Health and Safety Plan as required by the Occupational Safety and Health Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The document was reviewed and signed by all Fluor Daniel GTI personnel and subcontractors prior to commencement of work at the site.

2.2 Water Well Survey

On May 3, 1996, Fluor Daniel GTI conducted a field survey of water wells on the former Gerber facility immediately southwest of the site. A pump and two wells were identified within 250 feet hydrologically downgradient of the site (P1 and P2-3, respectively, as denoted on Figure 3). Based on field observations, pump P1 served to supply city water to a 200,000-gallon above-ground water storage

tank which was used to store process water at the former Gerber facility (Figure 3). P2 is an operative pumping well on standby status and is used to draw water from a well located in a pump house in the event of a fire emergency (R. Hothem, pers. communication, 1996). P3 is a currently operating pumping well used to extract water for industrial purposes (R. Hothem, pers. communication, 1996). Information on well construction and pumping rates is not available; however, a previous report by Groundwater Technology for the Gerber facility suggests well P2 may extend approximately 600 feet below ground surface (BGS) and be screened from 160 to 225 feet BGS (Groundwater Technology,

2.3 Soll Borings

Inc., 1988).

On April 1-4, 1996, Fluor Daniel GTI supervised the drilling of soil borings SB-1 through SB-23 to depths of 5-15 feet BGS utilizing a truck-mounted drill rig equipped with 8-inch outside-diameter (O.D.) hollow-stem augers. All drilling equipment was steam cleaned prior to drilling each boring, and sampling equipment was washed in an Alconox (detergent) solution and rinsed with water between sampling intervals. All soil generated from the borings was placed on and covered with plastic sheeting. Soil and rinsate water were temporarily stored on site pending removal. On April 25, 1996, stockpiled soil and rinsate water were removed by integrated Wastestream Management, Inc. of Milpitas and disposed of at Chevron contract disposal/recycling facilities..

2.4 Soil Sampling

Soil samples were collected from boreholes SB-1 through SB-23 at 5-foot intervals during drilling, beginning at approximately 5 feet BGS. Samples were collected using a 2.5-inch O.D. split-spoon sampler, lined with three 2-inch-diameter by 6-inch-long brass sample tubes. The sampler was driven 18 inches ahead of the augers at each sample point. Soil samples were field screened for hydrocarbon vapors using a photo-lonization detector (PID). Soil was logged using the Unified Soil Classification System by a Fluor Daniel GTI field geologist working under the supervision of a California registered geologist (Appendix B). One sample tube from each 5-foot interval was sealed, labeled and placed on ice in an insulated container for transport under chain-of-custody manifest to Sequoia Analytical (Sequoia), a California state-certified analytical lab in Sacramento.

Soil samples collected from each boring were selected for laboratory analyses on the basis of lithology, first occurrence of groundwater and PID readings. Samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX), and total petroleum hydrocarbons-as-gasoline (TPH-G), using U.S. Environmental Protection Agency (EPA) methods 5030/8020/modified 8015. In addition, soil samples obtained from former hydraulic lift and waste-oil tank areas (borings SB1-4) were analyzed for total oil and grease via EPA method 418.1. The soil stockpile composite sample was also analyzed for halogenated volatile organics using EPA method 8010.

underground fuel-storage tanks still remained from the two service stations, which once occupied the southeast corner of the property.

WORK STEPS

RISK ASSESSMENT EVALUATION

A risk assessment was conducted by determining the locations and uses of groundwater wells within a one half mile radius of the site, identifying surface water bodies, and evaluating the hydrogeological setting. The risk assessment targets well construction and completion, well use (whether industrial, domestic, irrigation, or municipal), the distance of the wells from site, and their direction from site relative to the groundwater-gradient direction.

The well survey found a total of 9 wells within a one-half-mile radius of the site and five additional wells just beyond the one-half mile radius (Figure 3). Of the 14 wells identified, all are used for industrial purposes. Based on the available data, only three of the wells appear to be of concern, one of these three wells, (P2), installed by Gerber Products, is located on site and is completed to a depth of 602 feet. The, well is screened from 160 to 225 feet below the ground surface. No sanitary seal information could be obtained on this well. A second well (L1) located upgradient from the site, is completed to a depth of 950 feet and the screen interval is unknown. This well is of concern because the records indicate that the gravel pack for the well extends from the surface to a depth of 950 feet. The third well (J1) is located just beyond one-half

mile downgradient from the site. J1 is completed to a depth of 448 feet, and the seal and construction details were not available.

The approximate rate at which groundwater movement occurs was calculated to determine the time that would be required for contaminated groundwater to impact nearby wells. The groundwater velocity (v) was determined by using the known hydraulic gradient (dh/dl) and assumed values for the hydraulic conductivity (K) and porosity (n) for the sandy-gravel and clay aquifer encountered beneath the site. The calculation for groundwater velocity is as follows:

$$v = \underbrace{K}_{n} \underbrace{dh}_{d1}$$

Where:
$$K = 10$$
 feet/day (assumed)
 $n = 30$ percent = 0.3 (assumed)
 $\frac{dh}{dl} = 0.002$ (measured)

Substituting these values into the equation yields a groundwater velocity of 0.06 feet per day which equates to 24.3 feet per year.

The closest surface water body to the site is the San Francisco Bay (approximately 2 miles). It is unlikely that the contamination at the site will pose a threat to water quality in the bay. The site is characterized as a "B3" site by the California Regional Water Quality Control Board (CRWQCB) which means that the extent of groundwater impact is unknown in a limited groundwater use area.

A survey was conducted from listed data published by the CRWQCB for other PRPs in the vicinity of the site. The published list stated locations of leaks reported in Alameda County. No other PRPs were identified in the vicinity of the site from the list. However, it should be noted that a property map of the site vicinity indicates that Standard Brands Company once occupied property directly upgradient from the site, across San Leandro Boulevard. - what went

GROUND-PENETRATING RADAR (GPR) SURVEY

In order to locate, or confirm the absence of underground storage tanks at the locations of the two former gasoline stations, a GPR survey was conducted on May 12 and May 16, 1988. The GPR survey was conducted using Geophysical Survey Systems, Inc. (GSSI) SIR^{TM} System-3 Subsurface Interface Radar equipment. A 300-megahertz transducer system was used to transmit and receive radar impulses providing the optimum configuration for locating underground tanks at this site.

During the two-day survey, 3,600 feet of radar transects were run over a grid pattern covering an area 290 feet by 70 feet in plan. Following review of the radar data collected on May 12, additional transects were run on May 16, 1988 to provide additional information regarding subsurface anomalies detected during the initial survey.

Analysis of radar data indicated the presence of several utility pipes at an approximate depth of 2- to 3-feet below the ground surface. Radar data from one area indicated a weak

anomaly resembling the type of anomalies created by underground fuel tanks and their associated fill material (Figure 4). The location and size of this anomaly appeared consistent with the location for underground tanks based on review of historic aerial photographs of the site. The boring for MW-8 was drilled at the location of the anomaly to determine if any tanks were, in fact, still present. Metal debris was discovered just beneath the asphalt surface and was underlain by native soil to completion depth at 20 feet. Based on this information, and further review of radar data, GTI has concluded that the existence of underground fuel tanks in the area surveyed is unlikely.

SOIL BORINGS AND SAMPLING

On May 18 and 19, 1988, four soil borings for installation of wells MW-5, MW-6, MW-7, and MW-8, were drilled in the southeast corner of the property in the vicinity of the two former gas stations (Figure 2). The boring locations were chosen after reviewing the results of the GPR survey and the Phase I The borings were drilled with a truck-Site Investigation. mounted drill rig using 7.5-inch, outside- diameter (0.D.), hollow-stem augers. The borings were completed to a depth of 20 feet so that data collected would be consistent with wells installed in the Phase I investigation (also 20 feet). A field geologist was present to maintain a complete lithologic log of each boring (Appendix I) and to collect soil samples. Photoionization detector (PID) readings were obtained at each sample point and noted on the drill logs. A PID is a field screening device which detects the presence of volatile organic compounds by the ionization of organic molecules via ultraviolet radiation. All excavated soil from the drilling was placed in metal drums, labeled, and stored on the site pending the results of laboratory analyses.

