Additional Supplemental Site Investigation Completion Report Proposed Aspire Charter High School 1009 66th Avenue Oakland, Alameda County, California

DTSC Site Code: 204147-11

January 23, 2006 003-09155-00

Prepared for Aspire Public Schools 426 17th Street, Suite 200 Oakland, California 94612-2820

Prepared by
LFR Levine Fricke
4190 Douglas Boulevard, Suite 200
Granite Bay, California 95746

January 23, 2006

003-09155-00

Mr. Michael Hall
California Environmental Protection Agency
Department of Toxic Substances Control
School Property Evaluation and Cleanup Division
5796 Corporate Avenue
Cypress, California 90630

Subject:

Supplemental Site Investigation Completion Report, Proposed Aspire Charter High

School, 1009 66th Avenue, Oakland, Alameda County, California

DTSC Site Code: 204147-11

Dear Mr. Hall:

LFR Inc. (LFR) has prepared this Supplemental Site Investigation (SSI) Completion Report for the second SSI sampling event on behalf of Aspire Public Schools for the Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, Alameda County, California ("the Site"). The Site is located on the western side of 66th Avenue between East 14th Street to the north and San Leandro Street to the south.

A Preliminary Environmental Assessment (PEA) and Initial Supplemental Site Investigation were performed at the Site by CSS Environmental, Inc. Additional investigation at the Site has been requested by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). The purpose of this SSI Completion Report is to present a summary of the work conducted at the Site to date, delineate the extent of affected soil and groundwater on the Site, and provide information to aid in making a decision about any further action, if any, that may be necessary.

If you have any questions or comments concerning this SSI Completion Report, please call either of the undersigned at (916) 786-0320.

Sincerely,

Zata D. Flemon Lita D. Freeman, P.G., R.E.A. II

Senior Associate Geologist

Alan Gibbs, P.G., C.HG., R.E.A. II

Principal Hydrogeologist

Enclosure

CONTENTS

ACF	RONYMS AND ABBREVIATIONS	V
CER	RTIFICATION	I
1.0	INTRODUCTION	1
	1.1 Supplemental Site Investigation Objectives	1
	1.2 Scope of Work	2
	1.3 SSI Report Format	2
2.0	SUMMARY OF SITE BACKGROUND	2
	2.1 Site Description and Location	3
	2.2 Preliminary Environmental Assessment	3
3.0	SAMPLING ACTIVITIES AND RESULTS	14
	3.1 Summary of Activities	14
	3.1.1 Boring Clearance	17
	3.2 Soil Matrix Sampling and Analysis	17
	3.2.1 Sample Locations and Rationale	. 17
	3.2.2 Sample Collection Procedures	. 18
	3.2.3 Sample Handling Procedures	. 20
	3.2.4 Soil Matrix Analytical Procedures	. 20
	3.2.5 Soil Matrix Analytical Results	. 21
	3.3 Groundwater Sampling and Analysis	. 24
	3.3.1 Sample Locations and Rationale	. 24
	3.3.2 Sample Collection Procedures and Collection of Duplicate Samples	. 24
	3.3.3 Sample Handling Procedures	. 25
	3.3.4 Groundwater Analytical Procedures	. 25
	3.3.5 Groundwater Analytical Results	. 26
	3.4 Disposal of Investigation-Derived Wastes	. 27
	3.5 Discussion of Results	. 27
1.0	RISK EVALUATION	. 36

	4.1 Pre-SSI Risk Evaluation and Endangerment Determination
	4.2 Post SSI Risk Assessment
	4.3 Post SSI Ecological Risk Assessment
5.0	QUALITY ASSURANCE PROJECT PLAN (QAPP) IMPLEMENTATION39
6.0	HEALTH AND SAFETY PLAN IMPLEMENTATION41
7.0	FIELD VARIANCES41
8.0	CONCLUSIONS AND RECOMMENDATIONS
	8.1 Analytical Results
	8.2 Human Health Screening Evaluation
	8.3 Conclusion
9.0	REFERENCES44
TABI	LES
1	SSI Analytical Results for Selected Compounds in Soil
2	SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil
3	SSI Analytical Results for Selected Compounds in Groundwater
4	SSI Analytical Results for Field Blanks
FIGU	RES
1	Site Vicinity Map
2	Site Plan
3	Site Plan with PEA and SSI Sampling Locations
4A	Gasoline-Affected Soil 0 - 1 Foot
4B	Gasoline-Affected Soil 1 - 5 Feet
4C	Detail Gasoline-Affected Soil 1 - 5 Feet
4D	Gasoline-Affected Soil 5 - 15 Feet
4E	Detail Gasoline-Affected Soil 5 - 15 Feet
4F	Gasoline-Affected Soil 15 - 24 Feet
5A	Diesel-Affected Soil 0 - 6 Feet
5B	Detail Diesel-Affected Soil 6 - 24 Feet

Page ii

- 6A Motor Oil-Affected Soil 0 1 Foot
- 6B Detail Motor Oil-Affected Soil 0 1 Foot
- 6C Motor Oil-Affected Soil 1 5 Feet
- 6D Motor Oil-Affected Soil 5 24 Feet
- 7A SVOC-Affected Soil 0 1 Foot
- 7B SVOC-Affected Soil 1 6 Feet
- 7C SVOC-Affected Soil 6 24 Feet
- 8A Arsenic-Affected Soil 0 1 Foot
- 8B Arsenic-Affected Soil 1 5 Feet
- 8C Arsenic-Affected Soil 5 15 Feet
- 8D Arsenic-Affected Soil 15 24 Feet
- 9A Lead-Affected Soil 0 1 Foot
- 9B Lead-Affected Soil 1 5 Feet
- 9C Lead-Affected Soil 5 10 Feet
- 9D Lead-Affected Soil 10 24 Feet
- 10A PCB-Affected Soil 0 1 Foot
- 10B PCB-Affected Soil 1 5 Feet
- 10C PCB-Affected Soil at 5 24 Feet
- 10D Detail PCB-Affected Soil Manufacturing/Office Building
- 10E Detail PCB-Affected Soil At/Around Boring 2C
- 11A Benzene-Affected Soil 0 6 Feet
- 11B Detail Benzene-Affected Soil 0 6 Feet
- 11C Benzene-Affected Soil 6-24 Feet
- 11D Detail Benzene-Affected Soil 6-24 Feet
- 12A MTBE-Affected Soil 0 6 Feet
- 12B Detail MTBE-Affected Soil 0 6 Feet
- 12C MTBE-Affected Soil 6 24 Feet
- 12D Detail MTBE-Affected Soil 6 24 Feet
- 13 PEA Groundwater Data
- 14 Additional SSI Groundwater Data
- 15 Geologic Cross-Section A A' with Groundwater Analytical Results

SSI v1[1].doc:lfr

16 Apparent Boundaries of Impacted Soil

APPENDICES

- A Analytical Results Tables from Preliminary Environmental Assessment and Supplemental Site Investigation by CSS Environmental Services, Inc.
- B California Environmental Protection Agency, Department of Toxic Substances Control Additional SSI Work Plan Approval Letter and LFR's Responses
- C Alameda County Public Works Agency Drilling Permits
- D Standard Operating Procedures for Drill Rigs
- E Site Photographs and Field Notes
- F Laboratory Reports and Chain-of-Custody Documents
- G Tronoff Associates Survey Data
- H Sample Handling Procedures
- I Boring Logs for Nested Groundwater Monitoring Wells
- J Risk Evaluation Data Tables

ACRONYMS AND ABBREVIATIONS

ACC Environmental Consultants, Inc.

 μ g/dl micrograms per deciliter

 μ g/l micrograms per liter, approximately equivalent to parts per billion

ASTM American Society for Testing and Materials

bgs below ground surface

Cal/OSHA California Occupational Safety and Health Administration

CCR California Code of Regulations

CDE California Department of Education

CERCLA Comprehensive Environmental Response, Compensation and Liability

Act

CFR Code of Federal Regulations

cm²/day square centimeters per day

CSS Environmental, Inc.

COPCs Contaminants of Potential Concern

DHS California Department of Health Services

DTSC California Environmental Protection Agency, Department of Toxic

Substances Control

Environ Environ Corporation

ESA Environmental Site Assessment

HSC California Health and Safety Code

HSP Health and Safety Plan

kg kilogram LFR LFR Inc.

m³/day cubic meters per day m³/hr cubic meters per hour

mg milligrams

mg/cm² milligrams per square centimeter

mg/day milligrams per day

mg/kg milligrams per kilogram, approximately equivalent to parts per million

mini-RAM miniature real-time aerosol monitor
PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls

PCE tetrachloroethene

pCi/l picoCuries per liter of air

PEA Preliminary Environmental Assessment

Aspire Public Schools

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

RME Reasonable Maximum Exposure

SAP Sampling and Analysis Plan
SSI Supplemental Site Investigation
SVOCs semi-volatile organic compounds

U.S. EPA United States Environmental Protection Agency

UCL Upper Confidence Limit

USGS United States Geological Survey

UST underground storage tank
VOCs volatile organic compounds

CERTIFICATION

LFR Inc. has prepared this Supplemental Site Investigation (SSI) Completion Report for the second SSI sampling event on behalf of Aspire Public Schools in a manner consistent with the level of care and skill ordinarily exercised by professional geologists and environmental scientists. This SSI Completion Report was prepared under the technical direction of the undersigned California Professional Geologists and Registered Environmental Assessors II.

Lota D. Leeman

11 Z 3/06 Date

Lita D. Freeman, P.G., R.E.A. II

Senior Associate Geologist

California Professional Geologist No. 7368

California Registered Environmental Assessor II No. 20106

Alan Gibbs, R.E.A./II, R.G., C.HG.

Principal Hydrogeologist

California Professional Geologist No. 4827

California Registered Environmental Assessor II No. 20009

* A professional geologist's or registered environmental assessor's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

LFR Inc. (LFR) has prepared this Supplemental Site Investigation (SSI) Completion Report for the second SSI sampling event ("the Additional SSI") on behalf of Aspire Public Schools ("Aspire") for the property located at 1009 66th Avenue, in Oakland, Alameda County, California ("the Site"; Figure 1). This SSI Completion Report summarizes the previous site characterization and remedial work performed at the Site and presents data obtained during the Additional SSI.

The 2.51 acre site is located in an area of commercial, industrial, government and multi-family residential developments. The Site is located on the western side of 66th Avenue between East 14th Street to the north and San Leandro Street to the south (Figure 2). Aspire plans to construct a charter high school on the Site.

The Site has been used for manufacturing and warehouse storage in the past. The Site is currently developed with a manufacturing building and a warehouse building. Landscaping areas and paved parking areas and driveways surround the on-site buildings.

CSS Environmental Services, Inc. (CSS) conducted a Preliminary Environmental Assessment (PEA) at the Site under the oversight of the California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC) to fulfill the California Department of Education (CDE) requirements related to new school sites. The PEA was performed in conformance with the PEA work plan (CSS 2005a) prepared by CSS and approved by the DTSC; the results of the PEA were summarized by CSS in a draft PEA report (CSS 2005b).

Based on the results of the PEA, DTSC requested that additional investigation be performed at the Site to help define the extent of affected soil and groundwater. CSS prepared a SSI work plan (CSS 2005c) that was approved by the DTSC for implementation; the results of the SSI by CSS ("the Initial SSI") were presented in a draft SSI report (CSS 2005d).

DTSC requested that additional soil and groundwater samples be collected from the Site to further define the lateral and vertical extent of affected soil and groundwater encountered at the Site during the PEA and Initial SSI. LFR presented the proposed scope of work for the Additional SSI in the Additional SSI Work Plan dated December 13, 2005 (LFR 2005).

1.1 Supplemental Site Investigation Objectives

The PEA and Initial SSI revealed the presence of petroleum hydrocarbons (gasoline, diesel and motor oil), semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), metals, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), dioxins in soil and groundwater at the Site. The

SSI v1[1].doc:lfr Page 1

findings of the PEA and Initial SSI are summarized in Section 2.2 of this Additional SSI Completion Report.

The objective of this Additional SSI was to better define the extent of affected soil and groundwater at the Site and evaluate potential impacts to future site users.

1.2 Scope of Work

As noted above, soil and groundwater samples collected from the Site during the PEA and Initial SSI were analyzed for various compounds of potential concern (COPCs). The PEA and Initial SSI sampling locations are shown on Figure 3.

Results of the PEA and Initial SSI are summarized in Section 2.2 of this SSI Completion Report and presented on Figures 4 series through 12 series.

Based on the results of the PEA and the Initial SSI performed at the Site, LFR conducted a sampling and analysis program to establish the extent of affected soil and groundwater at the Site. The Additional SSI field investigation consisted of collecting soil and groundwater samples for analysis to assess environmental conditions at areas identified in the PEA and Initial SSI.

The scope of work completed during the Additional SSI is presented below and sampling locations for the Additional SSI are shown on Figure 13.

LFR also retained Tronoff Associates to resurvey sampling locations from the PEA and Initial SSI, where possible, and the groundwater monitoring wells as discussed in Section 3.1 of this report. The scale, sampling locations and groundwater monitoring well locations presented on figures in this report are approximate since correct survey data was not available during preparation of this report. Tronoff Associates also located and marked two control points across the street to facilitate relocating sampling points and areas requiring remedial action in the future.

1.3 SSI Report Format

The Additional SSI Completion Report is formatted in general accordance with DTSC's recommended SSI report outline. Section 2.0 of this report summarizes work completed to date by other consultants and Section 3.0 summarizes work completed at the Site by LFR.

2.0 SUMMARY OF SITE BACKGROUND

The following section provides a summary of the site description, location and background.

2.1 Site Description and Location

Site Description

The 2.51-acre site is located on the western side of 66th Avenue between East 14th Street to the north and San Leandro Street to the south (Figure 2). The area around the Site is developed with a mixture of commercial, industrial, government and multifamily residential buildings. The Site is bound by 66th Avenue on the east, industrial buildings on the south, and residential buildings on the north and west.

Two structures are currently located on the Site. One structure (denoted as the "Manufacturing Building" on Figure 2) has been used for office space and manufacturing and encompasses approximately 27,000 square feet with a second story providing additional office and storage space. The Manufacturing Building is located on the southeastern portion of the Site. The second structure (denoted as the "Warehouse Building") is located on the northern portion of the Site and is approximately 5,000 square feet in size.

The Site has been used for manufacturing and warehousing. Past operations at the Site included manufacturing of specialty magnets, power supplies, and components used in high-energy physics and repairing and rebuilding of motors, generators, transformers and specialty magnets.

Eight groundwater monitoring wells are located on the Site. Five of these wells were installed during previous investigations for a former gasoline UST. LFR installed three nested groundwater monitoring wells during the Additional SSI.

No groundwater production wells are located on the Site. East Bay Municipal Utility District provides drinking water and sanitary sewer services.

Site Location

The Site is located approximately 10 feet above mean sea level, according to the United States Geological Survey (USGS) Oakland East, California Quadrangle 7.5 minute topographic map. The local topography is relatively flat.

Based on the United States Geological Survey (USGS; 1980) Oakland East Quadrangle, California, 7.5-minute topographic map, the Site is located in Section 16 in Township 2 South, Range 3 West (Mt. Diablo Base and Meridian). The approximate geographic coordinates of the Site are latitude 37.758390° North and longitude 122.197595° West.

2.2 Preliminary Environmental Assessment

LFR obtained information on prior assessments at the Site from our review of various documents, including the following reports:

SSI v1[1].doc:lfr

- Phase I ESA report of the Site issued by Environ Corporation (Environ) titled,
 "Phase I Environmental Assessment, Pacific Electric Motor, Co., 1009-66th Avenue, Oakland California," dated July 2, 1997
- Phase I ESA of the Site issued by ACC Environmental Consultants, Inc. (ACC) titled, "Phase I Environmental Assessment, 1009 66th Avenue, Oakland, California," dated November 22, 2000
- PEA work plan for the Site, issued by the DTSC and CSS titled, "Preliminary Environmental Assessment Workplan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California," dated March 4, 2005 (CSS 2005a)
- Draft PEA report issued by DTSC and CSS titled, "Draft Preliminary Endangerment Assessment Report, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California," dated April 11, 2005 (CSS 2005b)
- Draft Supplemental Site Investigation (SSI) Completion Report titled, "Draft -Supplemental Site Investigation (SSI) Workplan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California," dated May 24, 2005 (CSS 2005c)
- Draft SSI report prepared by CSS titled, "Draft Supplemental Site Investigation (SSI) Summary Report, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California," dated October 6, 2005 (CSS 2005d)

Site History

Information obtained by LFR from the Phase I Environmental Site Assessment (ESA) reports prepared by Environ and ACC indicate that the first documented land use was residential (Environ 1997 and ACC 2000). A 1947 aerial photograph showed a house and several small buildings present on the Site. The first industrial development of the Site was in about 1948 when the two buildings currently present on the Site were constructed by Pacific Electric Motor (PEM). PEM occupied the Site from 1948 to 2001.

The manufacturing building currently present on the Site was shown on the 1950 aerial photograph according to Environ's Phase I ESA report (Environ 1997). Portions of the Site were paved and the area behind the building was vegetated in the 1950 aerial photograph.

The warehouse building and a gasoline shed initially appear on the Site in the 1957 photograph (Environ 1997). The gasoline shed is visible on the Site in each of the aerial photographs taken between 1957 and the mid-1990s and reviewed by Environ. The warehouse building is still present on the northern portion of the Site. Environ noted several square objects along the southern border of the Site and on the property

adjacent to the south in the 1957 aerial photograph; however, no conclusions were drawn regarding these objects (Environ 1997).

Following acquisition of the Site by Modad Properties in 2001, the on-site buildings were occupied by Bay Area Powder Coatings. Bay Area Powder Coatings has declared bankruptcy and ceased operations at the Site; however, some equipment belonging to this company is still present on the Site. There are no details as to the specific processes of Bay Area Powder Coatings.

Landeros Iron Works, who subleased from Bay Area Powder Coatings, operated in the outdoor area southwest of the warehouse building. Their operations appear to be primarily welding and metal structure fabrication.

The proposed future use of the Site assumes the removal of the existing buildings, mitigation of affected soil and groundwater, as required, and redevelopment of the Site as a school campus.

Documented releases of hazardous materials at the Site by PEM include PCBs, presumably from their repair and service of transformers and other electrical equipment, and petroleum hydrocarbon compounds from the former UST.

By the time of the 1996 aerial photograph, the gasoline shed had been demolished and soil stockpiles were visible on the northern portion of the Site (Environ 1997). An area of lighter paving is visible at the former location of the gasoline shed in this photograph.

The aerial photographs appear to depict several instances of staining on pavement across the Site, according to Environ's Phase I ESA (Environ 1997).

Housekeeping and hazardous materials and waste use, generation, and storage issues were identified from a review of the Phase I ESA reports prepared for the Site in 1997 and 2000 (Environ 1997 and ACC 2000) and during a site reconnaissance conducted by CSS, Aspire, and DTSC personnel on January 20, 2005. These issues included:

- Bay Area Air Quality Management District permits indicate the past use by PEM
 of a varnish impregnator, two varnish dip tanks, a paint spray booth, two natural
 gas-fired burn-out ovens, a paint spray booth, an abrasive blast machine, and a
 natural gas-fired bake oven (Environ 1997).
- Past wastewater discharges included sanitary wastewater, wastewater from steam cleaning operations, drill press water, air compressor condensate, and boiler blowdown (Environ 1997).
- Two sumps containing oily water were observed on-site (Site Walk, 2005). In 1995, PEM was informed by the East Bay Municipal Utility District (EBMUD) that a steam-cleaning sump was found to contain trace concentrations of PCBs (Environ 1997).

SSI vI[1].doc:lfr

- Various 55-gallon and 5-gallon drums are present; many of these drums are unlabeled (site walk 2005).
- Old equipment, vehicles, vehicle parts, pallets, and miscellaneous junk are present around the Site (site walk 2005).
- Stained surfaces are present inside the manufacturing building and in the drum storage area (site walk 2005).

Soil cuttings produced during the geotechnical investigation by LFR were placed in 55-gallon drums. These drums are also present on the Site.

Information regarding prior assessments and remedial actions at the Site is presented in Section 2.3 of this Completion Report.

The Site is currently listed as an open Leaking UST (LUST) case with the Alameda County Health Care Services Agency (ACHCSA).

Past Activities by Pacific Electric Motor

Past activities at the Site by PEM included: 1) manufacturing of specialty magnets, power supplies and components; and 2) the repair of motors, generators, transformers, and magnets. A 2,000-gallon gasoline UST was reportedly installed at the Site in 1975. In addition, a former shed in the fueling area may have stored vehicle lubricants and oil for vehicle maintenance.

Additional information on past operations at the Site is presented in Section 2.1 of this Completion Report.

Excavation of PCB-Affected Soil

PEM conducted investigations and soil removal action for PCBs in 1992 and 1993 at the direction of the ACHCSA. Soils near the northwestern corner were reportedly impacted by the historic storage of transformers by PEM. This work included removing and disposing of approximately 400 cubic yards of PCB-affected soil from the northwestern corner of the Site, and approximately 4 cubic yards of PCB-affected soil from an off-site area located adjacent to the Site's northwestern corner.

The maximum concentration of PCBs detected prior to soil removal from these two areas was reportedly 113,713 milligrams per kilogram (mg/kg), although this result is anecdotal. The highest documented concentration of PCBs was 45,470 mg/kg (as Aroclor-1260). The cleanup objective established by the ACHCSA for this removal action was 1 mg/kg total PCBs. PCBs were not detected at concentrations at or above the laboratory reporting limit in a HydropunchTM groundwater sample collected from the area. Following remediation activities, PEM received a "No Further Action" letter for PCBs from the ACHCSA.

Removal of UST and Excavation of Petroleum Hydrocarbon-Affected Soil

PEM removed the 2,000-gallon gasoline UST, and associated pump island, piping, storage shed and appurtenances in 1995. The UST was reportedly in good condition with no holes evident; however, free phase gasoline product was observed on the water surface in the tank excavation. Gasoline at a maximum concentration of 10,000 mg/kg and benzene at a maximum concentration of 73 mg/kg were detected in soil samples collected from the excavation stockpile. Analysis of groundwater samples collected in 1995 revealed the presence of gasoline at concentrations up to 81 milligrams per liter (mg/L) and benzene at a maximum concentration of 3,100 micrograms per liter (μ g/L).

PEM performed a number of subsequent investigations and removal actions for soil and groundwater under the lead of the ACHCSA. Subsequent investigations and removal actions included:

- 1995 Approximately 1,500 cubic yards of soil was removed in two excavation iterations and stockpiled on the northwestern portion of the Site. Approximately 116,000 gallons of petroleum hydrocarbon impacted groundwater was pumped from the excavation. Site investigation work during this time also included advancing direct push borings (between excavation iterations) in an attempt to define the lateral and vertical extent of gasoline constituents. A dewatering sump used during soil excavation was later converted to an 8-inch diameter well during backfilling operations (thought to be WAC-1). Backfill reportedly consisted of clean imported material. Reports indicate that the stockpiled excavated soils were removed for disposal in 1997 (W.A. Craig, various reports).
- June 1997 A soil and groundwater investigation was completed and included the installation of groundwater monitoring wells MW-1 through MW-3 as shown on Figure 2 (Environ July 17, 1997).
- September 1998 Additional soil and groundwater investigation was performed and included advancing two soil borings within the backfill of the former UST excavation area and installing groundwater monitoring well MW-4 (PES Environmental 1998).
- April 2002 A 30 feet by 70 feet by 9 feet deep excavation for the remediation of petroleum hydrocarbon-affected soils was completed to the southwest of the original UST remedial excavation (Decon Environmental Services 2002a).
- May 2002 Approximately 65,000 gallons of petroleum hydrocarbon-affected groundwater was removed from the excavation. Additional over-excavation was performed southeast of the 30 feet by 70 feet excavation. During backfill operations, an 8-inch diameter extraction well was installed (EW-1). The excavation was backfilled with an unspecified depth of drain rock. Approximately

SSI v1[1].doc:lfr

250 pounds of oxygen releasing compound (ORC) slurry was mixed into the gravel fill. Clean excavated native soil and imported Class II base rock comprised the balance of backfill. Approximately 219 tons of petroleum hydrocarbon-affected soil was disposed of at an off-site facility (Decon Environmental Services 2002b)

• June 2002 – A total of 25 soil borings were advanced to a depth of 13 feet in the area of the former gasoline UST. Each of these borings was backfilled with 8 pounds of ORC followed by neat cement. ORC socks were also installed in wells MW-1 and WAC-1 (Decon Environmental Services 2002a and 2002b).

Periodic groundwater monitoring of wells MW-1 through MW-4 was performed between June 1997 to May 2003. Groundwater samples were collected from well EW-1 between December 2002 to May 2003 (PES Environmental 2003). Analysis of groundwater samples collected from well MW-4 in May 2003 revealed gasoline at concentrations up to 530 mg/L, benzene at a maximum concentration of 24,000 μ g/L, and methyl tertiary-butyl ether (MTBE) at concentrations up to 42,000 μ g/L.

Over the four most recent monitoring events, the only detected petroleum hydrocarbon compound in monitoring wells MW-2 and MW-3 has been MTBE at trace concentrations (maximum $16 \mu g/L$).

The Site is currently listed as an open LUST case with the ACHCSA.

Preliminary Environmental Assessment and Initial Supplemental Site Investigation

The most recent site investigation was performed by CSS in 2005. The investigation consisted of collecting and analyzing soil vapor, soil, and groundwater samples for various COPCs. Tables prepared by CSS presenting analytical results are included in Appendix A of this Completion Report. LFR noted discrepancies between analytical data sheets provided for our review and the tables prepared by CSS. Therefore, LFR prepared corrected tables for soil samples (see Tables 1 and 2 in Appendix A). Groundwater data collected during the PEA and Initial SSI are presented in Table 3 in Appendix A. The PEA and Initial SSI sampling locations are shown on Figure 3. The results of the investigation are summarized below.

• Soil Vapor: In accordance with the PEA work plan, probes were advanced to a maximum depth of 5 feet below ground surface (bgs) at 17 locations to allow collection of soil vapor from target depths of 3 to 5 feet bgs. A soil vapor sample was not collected from location 2C due to shallow groundwater in the probe.

The soil vapor samples were analyzed for VOCs by modified U.S. EPA Method 8260B. Methane and hydrogen sulfide were measured in the field using hand-held instruments.

Analysis of the soil vapor samples revealed tetrachloroethene (PCE) in one sample (at the 3 feet bgs deep sample from probe 4B) at a concentration of 1.1 μ g/L. This

probe was advanced in the former pressure wash equipment area inside the manufacturing building.

Benzene was detected in the sample collected from boring 2B at a concentration of 9.3 μ g/L at 4 feet bgs, 0.14 μ g/L in the sample from location 2A2 collected at 5 feet bgs, and 0.23 μ g/L in the sample from location 2B2 collected at 5 feet bgs. Toluene was detected at 1.7 μ g/L, ethylbenzene at 1.6 μ g/L, total xylenes at 6.7 μ g/L and MTBE at 1.3 μ g/L in the sample from location 2B. MTBE was present at 1.3 μ g/L in the soil vapor sample collected from location 2B2.

Methane was detected, by handheld field instruments, in sample 2A2 at 0.32 %v and at 0.25%v in sample 2B2. No detection for methane was found at the other soil vapor sample locations. Methane is considered hazardous solely based on its explosive property (i.e., it is non-toxic). The concentrations of methane detected at the Site were far below the lower explosive limit of 5 percent.

Hydrogen sulfide was not detected in any of the soil vapor samples.

 Soil: The soil investigation consisted of advancing probes across the Site to allow collection of soil samples. Soil samples were collected for chemical analysis from depths of 24 feet bgs or less.

Chemicals detected in soil samples included petroleum hydrocarbons, various SVOCs and PAHs, various metals, various VOCs, PCBs, and dioxins. Tables 1 and 2 present the analytical results of the compounds detected in soil samples collected from the Site. Duplicate soil samples were collected from locations noted as 6A-0.5' (duplicate sample for 1A-0.5'), 6B-0.5' (duplicate sample for 1B-0.5'), 6C-0.5' (duplicate sample for 2B-3.5'), 7B-3.5' (duplicate sample for 2B-3.5'), 7B-5' (duplicate sample for 2B-3.5'), and 7B2-3.5' (duplicate sample for 2B2-3.5'). Compounds detected in on-site soil are noted below.

Petroleum Hydrocarbons: Gasoline (carbon range C4-C12) was detected in soil at concentrations ranging up to 2,780 mg/kg (maximum concentration present in the sample from the 10 foot depth at boring 2BN(37'). Diesel (carbon range C13-C22) was detected in one soil sample at a concentration of 639 mg/kg. This sample was collected at the 5 foot depth from boring 5C, located near the stormwater collection sump near the southeastern corner of the Site. Motor oil (carbon range C23-C40) was detected at concentrations ranging up to 22,524 mg/kg. The highest motor oil concentration was detected in the 0.5 foot depth sample from boring 2B2N(20'). Additional information on distribution of petroleum hydrocarbons is presented below.

- Gasoline in Soil: Gasoline-affected soil was identified at various sampling locations across the Site as noted below:
 - o upper 1 foot as shown on Figure 4A

SSI v1[1].doc:lfr

- o 1 foot to 5 feet depth as shown on Figure 4B and 4C
- o 5 feet to 15 feet depth as shown on Figure 4D and 4E
- o 15 feet to 24 feet depth as shown on Figure 4F

Gasoline was detected at concentrations at or greater than 100 mg/kg at depths of 5 feet to 15 feet in the area adjacent to the south-southeast corner of the warehouse and at a depth of 5 feet in boring 4BS(20') located inside the manufacturing building.

- Diesel in Soil: Diesel-affected soil was identified at one location on the Site as noted above and shown on Figures 5A and 5B. The concentration of diesel (639 mg/kg) in this sample (5C at 5 feet bgs) was greater than 500 mg/kg. Diesel was not detected in the borings advanced around boring 5C.
- Motor Oil in Soil: Motor oil-affected soil was identified at several locations on the Site as noted below:
 - o upper 1 foot as shown on Figure 6A and 6B
 - 1 foot to 5 feet depth as shown on Figure 6C
 - o 5 feet to 24 feet depth as shown on Figure 6D

Motor oil was detected in three on-site locations at concentrations greater than 500 mg/kg as follows:

- o upper 2 feet across the central portion of the Site and the 2 feet to 5 feet depth in the area of borings 2B and 2B2 near the center of the Site
- o the 2 feet to 5 feet depth below the concrete floor of the manufacturing building in the area of boring 4BS(20')
- o at the 5 foot depth in boring 5C (near the sump at the southeastern corner of the Site

SVOCs: SVOCs were detected in soil at a number of locations as presented in Table 2. The SVOCs benzo(a)pyrene, benzo(a)anthracene and benzo(k)fluoranthene were detected in the former UST soil excavation area (location 2B-2), immediately outside of the excavation limits (at location 2B) and near the stormwater collection sump located near 66th Avenue (at location 5C). Additional information on distribution of SVOCs in soil is presented below.

SVOCs-affected soil was identified at several locations on the Site as noted below:

- o upper 1 foot as shown on Figure 7A
- o 1 foot to 6 feet depth as shown on Figure 7B
- 6 feet to 24 feet depth as shown on Figure 7C

SVOCs were detected in shallow soil (surface to 2 feet) across the central portion of the Site at concentrations that pose a health risk to future occupants of the proposed school campus. The SVOCs are associated with the motor oil identified in these areas.

Metals: Title 22 metals detected in on-site soil include arsenic, barium, chromium, cobalt, copper, hexavalent chromium, lead, nickel, vanadium, and zinc.

Antimony, beryllium, cadmium, mercury, molybdenum, selenium, silver, and thallium were not detected in any of the samples analyzed for Title 22 metals.

Metals detected at concentrations of concern were limited to arsenic and lead, as discussed below.

- Arsenic in Soil: Arsenic-affected soil was identified at several locations on the Site. The maximum concentration of arsenic was 117 mg/kg detected in the shallow soil sample (0.5 foot depth) from boring 2AS(20') located inside the warehouse. Arsenic concentrations were generally less than 50 mg/kg; arsenic distribution across the Site are shown on the following figures:
 - o upper 1 foot as shown on Figure 8A
 - o 1 foot to 5 feet depth as shown on Figure 8B
 - o 5 feet to 15 feet depth as shown on Figure 8C
 - o 15 feet to 24 feet depth as shown on Figure 8D

Arsenic was detected in shallow soil (surface to 2 feet) at several locations above the background level of 7 mg/kg, including:

- o upper 2 feet beneath the concrete floor of the warehouse, below the pavement in the area northwest of the warehouse, in the central portion of the Site in the area of boring 2B (motor oil-affected soil and SVOCs-affected soil also present at this location), and in the area of borings 2CN, 2CN(10') and 2CE located near the center of the Site's southern border
- o at the 5 foot depth beneath the concrete floor of the warehouse in the area of boring 2A

SSI v1[1].doc:tfr

- Lead in Soil: Lead-affected soil was identified at several locations on the Site as noted below; the maximum concentration of lead detected in soil at the Site was 398 mg/kg (at 0.5 feet in boring 5C):
 - o upper 1 foot as shown on Figure 9A
 - o 1 foot to 5 feet depth as shown on Figure 9B
 - o 5 feet to 10 feet depth as shown on Figure 9C
 - o 10 feet to 24 feet depth as shown on Figure 9D

Lead was detected at concentrations of greater than 255 mg/kg in shallow soil (surface to 2 feet) beneath the pavement at the eastern end of Site (borings 5A and 5C).

Organic Compounds (VOCs, PCBs, and Dioxins): Various VOCs, PCBs, and dioxins were detected in on-site soils as noted below.

<u>VOCs</u>: VOC detections were limited to benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds and the fuel oxygenates MTBE and tert butyl alcohol (TBA). No other VOCs were above the laboratories reporting limit by U.S. EPA Method 8260. BTEX compounds, MTBE and TBA were found at locations 2B and 2B3.

PCBs: PCBs (as PCB 1260) were detected at eight locations with concentrations ranging up to 69.7 mg/kg. The highest concentration was detected in the soil sample collected at the 0.5 foot depth in boring 4B, located immediately adjacent to the former equipment pressure wash room. The next highest concentration of PCBs was 21.3 mg/kg present in the soil sample collected at the 0.5 foot depth from boring 1C near the northwestern corner of the Site.

The distribution of PCBs in soil is as follows:

- o upper 1 foot as shown on Figure 10A
- 1 foot to 5 feet depth as shown on Figure 10B
- 5 foot to 24 feet depth as shown on Figure 10C

PCBs were detected in shallow soil (surface to 2 feet) at several locations above the proposed action level of 0.37 mg/kg, including:

o upper 2 feet beneath the concrete floor of the manufacturing building in areas of borings 4B, 4BE(10') and 3BW(10')

- o upper 2 feet and at 5 feet in area of the sump located at the center of the Site's southern border in the area of boring 2C
- o upper 2 feet at the northwestern end of the Site near borings 1B and 1C

<u>Dioxin</u>: Dibenzodioxins and dibenzofurans were detected in the soil samples collected at the 0.5 foot depth from boring 4B2 and 4C.

Duplicate Samples: According to information provided by CSS, the soil sample designated 6A-0.5' is a duplicate of soil sample 1A-0.5'; 6B-0.5' is a duplicate of 1B-0.5'; 6C-0.5' is a duplicate for 1C-0.5'; 7B-3.5' is a duplicate for 2B-3.5'; 7B-5' is a duplicate for 2B-5' and 7B-2-3.5' is duplicate for 2B-2-3.5'.

• Groundwater: The groundwater investigation consisted of collecting water samples from soil borings and the five on-site groundwater monitoring wells.

Chemicals detected in groundwater samples included petroleum hydrocarbons, various SVOCs and PAHs, various metals, various VOCs, and PCBs as shown in the tables prepared by CSS and included in Appendix A. In addition, tables showing analytical results for groundwater samples collected during routine groundwater sampling events are included in Appendix A. Selected compounds detected in groundwater at the Site during the PEA are shown on Figure 13 and compounds detected in groundwater samples collected from the Site are summarized below.

Petroleum Hydrocarbons: Gasoline and motor oil were detected in groundwater samples collected from the Site; however, diesel was not detected in the groundwater samples at concentrations at or above the laboratory reporting limits.

Gasoline was detected in groundwater samples collected from three of the on-site groundwater monitoring wells with the highest concentration reported as 152.2 mg/L in well MW-4. Gasoline was not detected in "grab" groundwater samples collected from soil borings advanced on the Site during the PEA and Initial SSI.

Motor oil was detected at one location (2C) with a concentration of 2.2 mg/L. This location is near the stormwater collection and pumping sump.

SVOCs: SVOCs were detected in the sample collected from monitoring well MW-4 and in the duplicate sample (designated MW-5) collected from well MW-4. Well MW-4, located adjacent to the former UST soil excavation area, has historically had the highest contaminate concentrations in groundwater. The SVOCs detected in the groundwater samples collected from MW-4 were naphthalene at 382 μ g/L and 1-methylnaphthalene at 44 μ g/L.

Metals: Arsenic, barium, cobalt, chromium, molybdenum, nickel, vanadium, and zinc were detected in groundwater samples collected from the Site. Antimony,

SSI vI[1].doc:lfr

beryllium, cadmium, mercury, selenium, silver, and thallium were not detected in any of the samples analyzed for Title 22 metals.

Organic Compounds (VOCs, PCBs, and Dioxins): Various VOCs, PCBs, and dioxins were detected in groundwater samples collected from the Site as noted below.

<u>VOCs</u>: VOC detections were limited to BTEX compounds and the fuel oxygenate MTBE. No other VOCs were above the laboratories reporting limit by U. S. EPA Method 8260. BTEX compounds were detected at MW-4. MTBE was also detected in the sample collected from well MW-2 at 12 μ g/L and in the sample from well EW-1 at 8 μ g/L. EW-1 is the 8-inch diameter polyvinyl chloride (PVC) conduit used to dewater the former UST tank pit soil excavation.

<u>PCBs</u>: PCBs (as PCB 1260) were detected in groundwater samples collected at two locations; 1A at a concentration of 2.0 μ g/L and 1C at a concentration of 1.7 μ g/L. Boring 1A was located in the former PCB remediation area. Boring 1C is located approximately 150 feet west of boring 1A.

Human Health Screening Evaluation

A human health screening evaluation was performed using the data collected during the PEA and Initial SSI. A conceptual site model developed during the human health screening evaluation is presented in Figure 12.

The human health screening evaluation identified various COPCs at the Site, including gasoline, diesel, motor oil, SVOCs (benzo(a)pyrene, benzo(a)anthracene and benzo(k)fluoranthene), arsenic, lead, and PCBs in soil, and benzene in groundwater.

Further investigation conducted at the Site to help delineate the lateral and vertical extent of affected soil and groundwater is detailed in Section 3.0 of this report.

Agency Determination

Based on their review of the draft SSI completion report, DTSC requested additional investigative work on the Site to help delineate the amount and extent of affected soil and groundwater in selected on-site areas.

3.0 SAMPLING ACTIVITIES AND RESULTS

3.1 Summary of Activities

This Additional SSI was conducted by LFR in accordance with LFR's Additional SSI Work Plan dated December 13, 2005. As described in the Additional SSI Work Plan, a

sampling and analysis program was implemented at the Site to help further delineate the amount and extent of chemically-affected soil and groundwater on the Site and provide information to aid in making a decision about any further action, if any, that may be necessary. Borings advanced by LFR during the Additional SSI are designated with a "SB" prefix (i.e. SB-3) on the figures included with this report.

On December 12, 2005, DTSC issued a letter with their comments on the draft SSI Additional SSI Work Plan dated November 18, 2005. DTSC's letter and responses to DTSC's comments are presented in Appendix B.

Pre-field work activities and field work activities for the Additional SSI are described below.

Pre-field work activities consisted of the following:

- Identifying underground utilities on and near the Site by notifying Underground Service Alert, a public utility locating service, and conducting a site visit with a private underground utility subcontractor, as described below in Section 3.1.1.
- Preparing a site-specific Health and Safety Plan (HSP) to address hazards associated with implementing the proposed sampling plan. Section 11.0 discusses implementation of the HSP.
- Obtaining a drilling permit from Alameda County Public Works Agency (ACPWA) for advancing the soil borings and installing the nested groundwater monitoring wells. The ACPWA permit numbers for this project are W2005-1151 through W2005-1154; a copy of the permit is presented in Appendix C.

Field work activities consisted of the following:

- Advancing direct-push borings between December 12, 2005 and December 15, 2005 and on January 5, 2006 and collecting soil and "reconnaissance" groundwater samples from selected depths for chemical analysis. Direct-push drilling rigs used during the Additional SSI are described in Appendix D.
- Advancing three hollow-stem auger borings on December 19 and 20, 2005 and installing three nested groundwater monitoring wells in the borings. The hollowstem augered drilling rig used during the Additional SSI is described in Appendix D.
- Developing the nested groundwater monitoring wells on December 23, 2005 to allow collection of representative groundwater samples.
- Collecting groundwater samples from each of the three nested groundwater monitoring wells on December 27, 2005.
- Surveying the locations of the soil borings and groundwater monitoring wells.
- Collecting quality assurance (QA)/quality control (QC) samples as described in Section 3.2.2.3 of this report.

SSI vIII1.doc:lfr Page 15

During the scoping meeting with DTSC on November 9, 2005, LFR presented a draft figure showing a total of 37 proposed borings. LFR's review of additional data following the scoping meeting indicated the need to place a boring at location 5C for a total of 38 proposed boring locations.

However, as discussed during the scoping meeting, a number of the proposed borings were located in areas that would likely be excavated to address affected soil (see Figure 16 for areas where affected soil will likely be excavated). However, cleanup goals will not be established until the Site has been fully characterized and contamination is delineated across all media. The actual limits of the proposed excavations may be revised based upon the results of investigations performed at the Site.

LFR retained Transglobal Environmental Geochemistry (TEG), Vironex, Inc. (Vironex) and Precision Sampling (Precision) to collect soil and groundwater samples using direct-push drill rigs. BC² Environmental, Inc. (BC²) was retained by LFR to install three nested groundwater monitoring wells using a drill rig equipped with hollow-stem augers. Standard operating procedures for these drill rigs are presented in Appendix D. These companies are state-licensed drilling contractors.

Photographs documenting the Additional SSI and copies of pages from the field logbook for the Additional SSI are presented in Appendix E.

Laboratories used by LFR during this SSI included the following:

- TEG mobile laboratory for analysis of soil samples for gasoline, diesel and motor
 oil using U.S. EPA Method 8015 Modified, and BTEX and MTBE using U.S.
 EPA Method 8260. Samples to be analyzed for gasoline, BTEX and MTBE will be
 collected using U.S. EPA Method 5035.
- Curtis and Tompkins, Ltd. (Curtis and Tompkins) fixed laboratory for gasoline, diesel and motor oil using U.S. EPA Method 8015 Modified; BTEX and MTBE using U.S. EPA Method 8260; SVOCs and PAHs using U.S. EPA Method 8270C; arsenic and lead using EPA Method 6010B; and PCBs using U.S. EPA Method 8082A. Samples to be analyzed for gasoline, BTEX and MTBE will be collected using U.S. EPA Method 5035.
- Chemical and Environmental Laboratories, Inc. (C&E Laboratories) fixed laboratory for arsenic and lead using U.S. EPA Method 6010B.

Copies of analytical data sheets and chain-of-custody documents are presented in Appendix F.

LFR retained Tronoff Associates to survey the sampling locations and the nested groundwater monitoring wells included in this Additional SSI. Tronoff Associates also resurveyed sampling locations, where possible, and previously installed groundwater

monitoring wells since many of these locations appeared to be incorrectly located on sampling maps provided to LFR. Copies of survey data provided by Tronoff Associates are presented in Appendix G.

3.1.1 Boring Clearance

LFR marked the proposed boring locations on the Site using white marking paint as required by state and federal regulations. Underground Service Alert, a public utility locating service, was notified of the location and nature of the field work 48 hours before fieldwork began. In addition, LFR retained Subtronics, a private underground utility locating service, to identify underground utilities before fieldwork began.

3.2 Soil Matrix Sampling and Analysis

This section describes LFR's soil sampling and analysis procedures utilized during the Additional SSI.

Total sample recovery was not always achieved due to loose, gravely, or dry soil types, or very stiff or very soft clays. Therefore, soil samples from some proposed sampling depths were not collected for analysis (see Section 7.0 of this report for variances to the proposed sampling plan).

3.2.1 Sample Locations and Rationale

Sampling locations are shown on Figure 3. Soil boring identification numbers, sampling dates, and sample depths for those samples collected and analyzed during the Additional SSI are presented in Tables 1, 2 and 3.

In general, the sampling rationale for the Additional SSI performed at the Site is as follows:

- Western Portion of the Site: Soil samples were collected from this area of the Site to help evaluate the concentrations and distribution of arsenic
- Footprint of Warehouse Building: Soil samples were collected from borings advanced within and around the footprint of the warehouse building to help delineate the extent of arsenic-affected soil as well as petroleum hydrocarbons-affected soil (impacted by leakage from the UST formerly located adjacent to the east of this building)
- Central Portion of the Site: Soil and groundwater samples were collected from borings advanced across the central portion of the Site (i.e. south of the warehouse and west of the manufacturing/office building and encompassing the former fueling shed and UST location) to evaluate the extent of petroleum hydrocarbons, BTEX,

SSI v1f11.doc:tfr

MTBE, naphthalene and/or arsenic in soil and groundwater

- Southern Portion of the Site: Soil samples were collected from borings along the southern border of the Site to help delineate PCBs detected in this area; a stormwater collection sump and pump are located near boring 2C
- Manufacturing/Office Building: Soil and groundwater samples were collected from boring inside this building to help delineate PCBs and motor oil in the area of the former equipment pressure wash room

3.2.2 Sample Collection Procedures

Soil samples were obtained in disposable acetate or butyrate sample tubes advanced beneath the subsurface inside a stainless-steel sample probe using the direct-push drilling rigs. Upon recovery from the sample probe, retrieved soil samples were cut to a desired length (typically 6 to 8 inches) using a clean knife or appropriate cutting device (see Section 3.2.2.2 of this report for decontamination procedures). The length selected for each tube was based the amount of soil needed for the specified analyses to be performed on that sample.

After recovery of the acetate tubes, the tubes were capped on both ends with Teflon sheets and plastic caps and labeled properly. Section 3.2.3 of this report describes the soil sample handling procedures.

Soil samples to be analyzed for VOCs were collected using an Encore sampling device and U.S. EPA Method 5035.

3.2.2.1 Soil Description

Collected soil samples and the soil cuttings brought to the ground surface (as drilling proceeded with the hollow-stem augered drill rig) were logged at the Site nearly continuously by an LFR geologist. The number of blows ("blow count") required to drive the sampler one vertical foot into the soil at the bottom of the boring at each sampling interval was recorded on the boring logs during installation of the nested groundwater monitoring wells using the hollow-stem augered drill rig.

Soil types were documented by CSS during the PEA and SSI and soils were classified according to the Unified Soil Classification System during the Additional SSI and LFR's geotechnical investigation (LFR April 2005). LFR's geotechnical investigation included drilling cone penetration test probes on the Site. The near-surface soils encountered in the borings completed consisted of very soft to medium-stiff, slightly plastic, silty clay, which extends to depths ranging from approximately 4 to 5 feet bgs. Fill material extending to depths of approximately 9 to 11 feet bgs was encountered in the central portion of the Site (in the area of the former UST excavation) and consisted of sandy to clayey gravel that is medium to very dense.

Page 18
SSI v1[1].doc:lfr

Soils underlying the near-surface soils and existing fill consist of silty clay and clayey silt with occasional layers of sandy clay or clayey sand. These soils were encountered to the maximum depth explored in borings (21.5 feet bgs) and CPT probes (50 feet bgs). Based on data collected during LFR's geotechnical investigation, the sediments are soft to very stiff. The clayey sediments are medium to very stiff. The predominantly granular layers, consisting of clayey sand units, are medium dense.

3.2.2.2 Decontamination

Non-disposable drilling and sampling equipment brought to the Site by drilling subcontractors was cleaned with high-pressure hot water (steam cleaned) prior to mobilizing to the Site.

Sampling equipment used during field work that had the potential to come into contact with affected media was properly decontaminated before and after each use to assure the quality of samples collected. Disposable equipment intended for one-time use will not be decontaminated, but will be packaged for appropriate disposal. Equipment decontamination was performed using the following procedures:

- non-phosphate detergent and tap water wash, in a 5-gallon plastic bucket, using a brush
- initial deionized/distilled water rinse, in a 5-gallon plastic bucket
- final deionized/distilled water rinse in a 5-gallon plastic bucket

3.2.2.3 Collection of Field Blank Samples, Equipment Blank Samples and Duplicate Samples

The QA/QC program was implemented in accordance with LFR's Additional SSI work plan. The QC samples collected during field work for this project included duplicate soil samples, equipment rinsate blanks, and field blanks. In addition, trip blanks (also referred to as travel blanks) were obtained from C&T and transported to and from the Site in ice-cooled chests when soil and/or groundwater samples were being collected for VOC analysis. The QC samples collected for this project are described below. Analytical results for the QC samples are presented in Section XX of this report and summarized

Field Blanks. Field blanks were collected by pouring distilled water into appropriate sample containers once per field day. Their purpose is to evaluate the presence of chemicals for which environmental samples are being analyzed in the water used for equipment decontamination. The field blank samples were stored and processed in the same manner as the other aqueous samples.

Field blanks were collected daily during sampling activities between December 12, 2005 and December 15, 2005, December 27, 2005 and on January 5, 2006.

SSI v1[1].doc:lfr

Equipment Rinsate Blanks. Equipment rinsate blanks (equipment blanks) were collected from water rinsed over any reusable equipment (e.g., a sampling shoe or drive sampler) after decontamination was completed. Distilled water was poured over or through the sampling equipment and collected in the appropriate sample container. Equipment blank samples were labeled, stored, and submitted to the analytical laboratory using the same procedures as those for field samples.

Equipment rinsate blanks were collected daily during sampling activities between December 12, 2005 and December 15, 2005, December 27, 2005 and on January 5, 2006.

Duplicate Samples. The PEA work plan required that one field duplicate (or split) sample be collected for every 10 discrete samples. Such duplicates help evaluate the precision of analytical procedures and methods employed by the laboratory. Duplicate soil samples were collected immediately below the depth interval of the primary soil sample or from a boring located adjacent to the original boring.

Duplicate soil samples were collected from the Site during sampling activities between December 12, 2005 and December 15, 2005 and January 5, 2006.

3.2.3 Sample Handling Procedures

The sample tubes were sealed at each end with Teflon sheets and fitted with plastic end caps. After collection, each soil sample tube was labeled with the time and date of collection, depth, the collector's initials, the analytical method to be performed, LFR's project number and name, and a unique sample identification number.

Samples being analyzed by TEG in the on-site mobile laboratory were delivered directly to the analyst for processing; the remaining samples were placed in an ice-chilled cooler for transport to C&T. Both analytical laboratories are certified by the State of California to perform the requested analyses.

Additional information on sample handling procedures is presented in Appendix H.

3.2.4 Soil Matrix Analytical Procedures

Soil samples collected from the Site were analyzed in accordance with the Additional SSI Work Plan. The analytical methods and results for each sample are presented in Tables 1, 2 and 3. Soil samples were analyzed using one or more of the following methods:

- gasoline, diesel and motor oil using U.S. EPA Method 8015 Modified; samples analyzed for gasoline were collected using U.S. EPA Method 5035
- BTEX/MTBE using U.S. EPA Method 8260; samples analyzed for BTEX/MTBE were collected using U.S. EPA Method 5035

- PCBs using U.S. EPA Method 8082A
- SVOCs using U.S. EPA Method 8270C
- arsenic and lead using U.S. EPA Method 6010B

Soil samples collected during this Additional SSI and submitted to C&T are being held by C&T for possible future analysis.

3.2.5 Soil Matrix Analytical Results

Soil sample results are discussed below and presented in Tables 1 and 2.

3.2.5.1 Gasoline

Gasoline (carbon range C4-C12) was detected in soil at concentrations ranging up to 4,900 mg/kg (maximum concentration present in the sample from the 10 foot depth at boring SB-11). Gasoline was detected at a concentration of 1,700 mg/kg in the sample collected from the 15 foot depth from boring SB-11 with no deeper samples collected from this boring. However, concentrations of gasoline were less than 100 mg/kg in soil samples collected during the Additional SSI from nearby borings (SB-6, SB-8 and SB-9) at depths of 15 feet and/or 20 feet bgs.

- Gasoline-affected soil was identified at various sampling locations across the Site as noted below:
 - o upper 1 foot as shown on Figure 4A
 - o 1 foot to 5 feet depth as shown on Figures 4B and 4C
 - o 5 feet to 15 feet depth as shown on Figures 4D and 4E
 - o 15 feet to 24 feet depth as shown on Figure 4F

3.2.5.2 **Diesel**

Diesel (carbon range C10-C24) was detected in 15 soil samples collected during the Additional SSI. The diesel concentrations were below 500 mg/kg (with highest concentration reported at 170 mg/kg) except for the sample collected at the 15 foot depth from boring 4BS(20').

- Diesel-affected soil was identified at the locations shown on Figures 5A and 5B.
- Diesel was detected at a concentration of 1,200 mg/kg in the 15 foot depth from boring 4BS(20'), located inside the manufacturing/office building. Diesel concentrations were less than 79 mg/kg in the shallow soil samples (collected at

SSI v1[1].doc:lfr Page 21

depths of 10 feet bgs and less) from this boring; deeper soil samples were not collected from this boring during the Additional SSI. This data was submitted informally to DTSC on January 13, 2005 with the recommendation that additional sampling (i.e. confirmation sampling) be performed in this area, as appropriate, during the removal action to address motor oil-affected soil in this area. DTSC concurred with our assessment in an email sent on January 17, 2005.

3.2.5.3 *Motor Oil*

Motor oil (carbon range C23-C40) was detected at concentrations ranging up to 5,500 mg/kg. The highest motor oil concentration was detected in the 0.5- to 1-foot depth sample from boring SB-28.

- Motor oil-affected soil was identified at several locations on the Site as noted below:
 - o upper 1 foot as shown on Figure 6A and 6B
 - o 1 foot to 5 feet depth as shown on Figure 6C
 - o 5 feet to 24 feet depth as shown on Figure 6D

3.2.5.4 Semi-Volatile Organic Compounds

The SVOCs benzo(a)pyrene, benzo(a)anthracene and benzo(k)fluoranthene were detected in SB-27 and SB-29 with maximum concentrations of 110 μ g/kg for benzo(a)pyrene, 95 μ g/kg for benzo(a)anthracene and 140 μ g/kg for benzo(k)fluoranthene.

SVOCs-affected soil was identified at several locations on the Site as noted below:

- upper 1 foot as shown on Figure 7A
- o 1 foot to 6 feet depth as shown on Figure 7B
- 6 feet to 24 feet depth as shown on Figure 7C

3.2.5.5 Metals

Soil samples collected from the Site during the Additional SSI were analyzed for arsenic and lead, as discussed below.

• Arsenic: Arsenic was detected in a number of soil samples analyzed during the Additional SSI with the maximum concentration detected at 140 mg/kg in the

shallow samples (0.5- to 1-foot depth) from borings SB-18 and SB-19. Arsenic distribution across the Site are shown on the following figures:

- o upper 1 foot as shown on Figure 8A
- o 1 foot to 5 feet depth as shown on Figure 8B
- 5 feet to 15 feet depth as shown on Figure 8C
- o 15 feet to 24 feet depth as shown on Figure 8D
- Lead: Two soil samples collected during the PEA and Initial SSI were analyzed for lead during the Additional SSI to evaluate the vertical extent of lead. These samples were collected from the 5 foot depth from borings 5ASE(10') and 5CESE(20'). Lead was detected in both of these samples at a concentration of 6 mg/kg. Lead-affected soils identified on the Site are shown on the following figures:
 - o upper 1 foot as shown on Figure 9A
 - o 1 foot to 5 feet depth as shown on Figure 9B
 - o 5 feet to 10 feet depth as shown on Figure 9C
 - o 10 feet to 24 feet depth as shown on Figure 9D

3.2.5.6 Polychlorinated Biphenyls

PCBs (as PCB 1260) were detected in a number of soil samples collected during the Additional SSI. The highest concentration was detected in the soil sample collected at the 0.5- to 1-foot depth in boring SB-49, located west of boring 2C and the stormwater collection sump.

The distribution of PCBs in soil is as follows:

- o upper 1 foot as shown on Figure 10A
- o 1 foot to 5 feet depth as shown on Figure 10B
- o 5 foot to 24 feet depth as shown on Figure 10C
- o inside the manufacturing/office building as shown on Figure 10D
- o at and around boring 2C as shown on Figure 10E

SSI v1[1].doc:lfr

3.2.5.7 Volatile Organic Compounds

Soil samples collected from various borings during the Additional SSI were analyzed for VOCs including BTEX and MTBE. The maximum concentrations were: benzene at 36,000 μ g/kg, toluene at 170,000 μ g/kg, ethylbenzene at 110,000 μ g/kg, xylenes at 400,000 μ g/kg and MTBE at 32,000 μ g/kg.

- The distribution of benzene in soil is shown on the following figures:
 - o upper 6 feet as shown on Figures 11A and 11B
 - o 6 feet to 24 feet depth as shown on Figures 11C and 11D
- MTBE was detected in soil at several locations, including:
 - o upper 6 feet as shown on Figures 12A and 12B
 - o 6 feet to 24 feet depth as shown on Figures 12C and 12D

3.3 Groundwater Sampling and Analysis

This section describes groundwater sampling and analysis procedures utilized during the Additional SSI.

3.3.1 Sample Locations and Rationale

Groundwater affected with petroleum hydrocarbons and VOCs was identified in the area of the former UST. Additional borings were advanced by LFR to further delineate the extent of affected groundwater. "Reconnaissance" groundwater samples were collected from borings SB-19, SB-22, SB-33 and SB-35.

In addition, LFR installed three nested groundwater monitoring wells (designated NW-1, NW-2 and NW-3 on Figure 14) with screened casing placed at three separate depths to establish depths of free groundwater and zones of affected groundwater. Well construction details are shown on Figure 15 and well construction logs are presented in Appendix I.

The purpose of collecting the reconnaissance groundwater from soil borings and nested groundwater monitoring wells was to evaluate the extent of the petroleum hydrocarbons in groundwater.

3.3.2 Sample Collection Procedures and Collection of Duplicate Samples

Groundwater samples were collected using disposable bailers and decanting the groundwater from the bailer into laboratory supplied containers. After labeling, the

groundwater samples were sealed in plastic bags and placed in an ice-chilled cooler for transport to C&T. The three nested groundwater monitoring wells were developed on December 23, 2005 and groundwater samples were collected from the wells on December 27, 2005.

Section 3.3.3 of this report describes the groundwater sample handling procedures.

The QA/QC program was implemented in accordance with LFR's Additional SSI work plan. The QC samples collected during field work for this project included duplicate groundwater samples. Duplicate groundwater samples were collected from borings SB-19 (designated SB-19DUP), SB-22 (designated SB-22DUP), SB-35 (designated SB-35DUP) and from the deep zone from nested well NW-2 (DUP1/NW-2D). These duplicate samples were analyzed for petroleum hydrocarbons and VOCs (BTEX, MTBE and/or naphthalene).

In addition, field blank, equipment rinsate blank and trip blank samples were collected during the groundwater sampling event on December 27, 2005.

Analytical results for the QC samples are discussed in Section 5.0 of this report.

3.3.3 Sample Handling Procedures

Groundwater samples were decanted into laboratory supplied containers. The containers were sealed and each container was labeled with the time and date of collection, depth, the collector's initials, the analytical method to be performed, LFR's project number and name, and a unique sample identification number.

The groundwater samples collected during the Additional SSI were placed in an icechilled cooler for transport to C&T. C&T is certified by the State of California to perform the requested analyses.

Additional information on sample handling procedures is presented in Appendix H.

3.3.4 Groundwater Analytical Procedures

Groundwater samples collected from the Site were analyzed in accordance with the Additional SSI Work Plan. The analytical methods and results for each sample are presented in Table 3. Groundwater samples were analyzed using one or more of the following methods:

- gasoline, diesel and motor oil using U.S. EPA Method 8015 Modified; samples analyzed for gasoline were collected using U.S. EPA Method 5035
- BTEX/MTBE using U.S. EPA Method 8260; samples analyzed for BTEX/MTBE were collected using U.S. EPA Method 5035
- naphthalene (an SVOC) using U.S. EPA Method 8270C

SSI v1[1].doc:lfr

3.3.5 Groundwater Analytical Results

The groundwater investigation consisted of collecting water samples from soil borings SB-19, SB-22, SB-33 and SB-35 and the three nested groundwater monitoring wells NW-1, NW-2 and NW-3.

Chemicals detected in groundwater samples included petroleum hydrocarbons, BTEX, MTBE and naphthalene as shown in Table 3. Compounds detected in groundwater at the Site during the Additional SSI are shown on Figures 14 and 15 and summarized below.

3.3.5.1 Gasoline

Gasoline (carbon range C5-C12) was detected in "reconnaissance" groundwater samples at a maximum concentration of 2.2 mg/l (in boring SB-19) and in the groundwater samples from the nested groundwater monitoring wells at a maximum concentration of 120 mg/l (in the intermediate zone of well NW-2).

3.3.5.2 **Diesel**

The maximum concentration of diesel (carbon range C10-C24) detected in the "reconnaissance" groundwater samples was 0.680 mg/l (in boring SB-19) and the maximum concentration of diesel detected in the groundwater samples from the nested groundwater monitoring wells was 7.3 mg/l (in the shallow zone of well NW-2).

3.3.5.3 *Motor Oil*

The "reconnaissance" groundwater sample from boring SB-22 contained the highest concentration of motor oil (carbon range C24-C36) at 1.8 mg/l and the groundwater sample from the shallow zone of nested well NW-2 contained the highest concentration of motor oil (2.6 mg/l).

3.3.5.4 Semi-Volatile Organic Compounds

Naphthalene was detected in only one of the "reconnaissance" groundwater samples. This sample, collected from boring SB-19, contained naphthalene at a concentration of $13 \mu g/l$.

3.3.5.5 Volatile Organic Compounds

The highest concentrations of BTEX and MTBE were detected in the "reconnaissance" groundwater sample from SB-19. Analysis of the groundwater sample from this boring revealed the following: benzene at 25 μ g/l, toluene at 120 μ g/l, ethylbenzene at 69 μ g/l, xylenes at 410 μ g/l and MTBE at 1,100 μ g/l.

The highest concentrations of BTEX and MTBE were detected in the groundwater sample from the intermediate zone of nested well NW-2. Analysis of groundwater samples from this zone revealed the following: benzene at 2,200 μ g/l, toluene at 24,000 μ g/l, ethylbenzene at 2,100 μ g/l, xylenes at 8,600 μ g/l and MTBE at 120,000 μ g/l.

3.4 Disposal of Investigation-Derived Wastes

The waste produced during the Additional SSI is being stored on the Site in appropriately labeled 55-gallon drums pending completion of disposal arrangements. The waste, consisting of rinsate, soil cuttings and purged groundwater, will be disposed of at appropriate off-site facilities.

3.5 Discussion of Results

Data collected during the PEA, Initial SSI and Additional SSI are used in the following discussion of COCs identified on the Site.

3.5.1 Gasoline in Soil

Gasoline was not detected at concentrations above 100 mg/kg in soil samples collected from the Site at depths of less than 4.5 feet bgs. Soil with gasoline detected at concentrations at or above 100 mg/kg is present at two on-site locations, as noted below:

- inside the manufacturing/office building in the soil samples collected at the 5-foot bgs depth from boring 4BS(20'), at the 4.5 to 5-foot depth from boring SB-32, and at the 4.5 to 5-foot depth and the 9.5 to 10-foot depth from boring SB-34 as shown on Figures 4A through 4D
 - the lateral and vertical extent of gasoline-affected soil in this area appears to be defined by the following soil samples:
 - > the 4.5 to 5-foot soil samples from borings SB-33, SB-35 and SB-37
 - > the 9.5 to 10-foot soil samples from borings SB-33, SB-35 and SB-37
 - > the 14.5 to 15-foot soil samples from borings SB-33, SB-35 and SB-37
- the central area of the Site (in the area around and south of the former UST); generally, the affected soil extended from a depth of approximately 5 feet bgs to a depth of approximately 10 feet bgs with one soil sample (taken at a depth of 15-feet bgs from boring 2B) also containing gasoline at a concentration above 100 mg/kg; see Figures 4E and 4F

SSI v1[1].doc:ifr Page 27

- o the lateral extent of gasoline-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - northern edge: boring 2A
 - ➤ eastern edge: borings 2B2S(20'), 2B2E(20'), 2A2S(20') and 2A2W(20')
 - > southern edge: borings 2CN(20'), 2CE(10') and 2CE(20')
 - western edge: borings 2B3, SB-41 and SB-22
- The vertical extent of gasoline-affected soil in this area appears to be defined by soil samples collected at the 15-foot depth from borings SB-7, SB-17, SB-19, SB-20, SB-21, SB-22 and SB-24 and at the 20-foot depth from borings 2B, SB-8 and SB-9.

3.5.2 Diesel in Soil

Diesel-affected soil (concentrations detected at or above 500 mg/kg) was identified in two on-site locations, as noted below:

- the southeastern corner of the Site in the soil sample collected at the 5-foot depth bgs from boring 5C as shown on Figure 5A
 - o the lateral extent of diesel-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northeastern edge: boring 5CNE(4')
 - > southeastern edge: boring 5CSE(10')
 - western edge: boring 5CW(10')
 - o the vertical extent appears to be defined by the soil sample collected at the 10-foot depth bgs from boring SB-38
- inside the manufacturing/office building in the soil samples collected at the 14.5 to 15-foot bgs depth from boring 4BS(20') as shown on Figures 5A and 5B; diesel was not detected in shallower soil samples collected from this boring with the exception of the 9.5 to 10-foot depth bgs (diesel detected at a concentration of 79 mg/kg); deeper soil samples were not collected from this boring; the lateral and vertical extent to the southwest appears to be defined by soil samples collected from boring SB-32, located approximately 10 feet from boring 4BS(20'), at depths of 9.5 to 10-foot depth bgs and the 14.5 to 15-foot depth bgs

3.5.3 Motor Oil in Soil

Motor oil was detected at concentrations at or above 500 mg/kg in the areas noted below:

- the shallow soil (5 feet bgs and less) in the central portion of the Site (in the area west of the manufacturing/office building and south of the warehouse building) as shown on Figures 6A, 6B, 6C and 6D
 - o the lateral extent of motor-oil-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: borings 2BN(37') and SB-10
 - > eastern edge: borings SB-4, SB-45 and SB-46
 - ➤ southern edge: borings 2CE(20'), 2CN(20') and SB-24
 - ➤ western edge: borings 2B3, SB-19, SB-20, SB-21, SB-22
 - o the vertical extent appears to be generally defined by the soil sample collected at the 5-foot depth bgs from borings located within the central portion of the Site
- the soil at the 3.5-foot depth bgs from boring 2B2 in the central portion of the Site as shown on Figure 6C
 - o the lateral extent of motor-oil-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 2B2N(20')
 - eastern edge: boring 2B2E(20')
 - southern edge: boring SB-27
 - ➤ western edge: boring 2BW(20')
 - o the vertical extent appears to be generally defined by the soil sample collected at the 5-foot depth bgs from surrounding borings (2B2N(20'), 2B2E(20'), SB-27 and 2BW(20')
- the soil at the 5-foot depth bgs from boring 2B in the central portion of the Site as shown on Figures 6A, 6B, 6C and 6D

SSI v1[1].doc:lfr

the lateral extent of motor-oil-affected soil in this area appears to be defined by soil samples collected from the following borings:

northern edge: boring 2BN(20')

southern edge: boring 2BS(20')

➤ western edge: boring 2BW(20')

- o the vertical extent appears to be defined by the deeper soil samples collected from this boring (at the 10-, 15-, 20-, and 24-foot depth bgs
- inside the manufacturing/office building at boring 4BS(20') at 3.5 and 4-foot depths bgs as shown on Figure 6C
 - o the lateral extent of motor-oil-affected soil in this area appears to be generally defined by soil samples collected from the following borings:

northeastern edge: boring SB-33

southeastern edge: borings SB-34 and SB-37

southwestern edge: boring SB-32 and SB-35

- o the vertical extent appears to be defined by the deeper soil samples collected from this boring at the 10- and 15-foot depth bgs
- the southeastern corner of the Site at boring 5C (the 5-foot depth bgs) as shown on Figure 6D
 - o the lateral extent of motor-oil-affected soil in this area appears to be generally defined by soil samples collected from the following borings:

> northeastern edge: boring 5CNE(4')

southeastern edge: boring 5CSE(10')

western edge: boring 5CW(10')

o the vertical extent appears to be defined by the soil samples collected at the 10- and 15-foot depth bgs from boring SB-38

3.5.4 Semi-Volatile Organic Compounds in Soil

SVOCs, including benzo(a)pyrene, benzo(a)anthracene and benzo(k)fluoranthene, were primarily detected in two on-site locations as noted below:

- the shallow soil (5 feet bgs and less) in the central portion of the Site and appeared to be associated with the petroleum hydrocarbons detected in this area as shown on Figures 7A, 7B and 7C
 - o the lateral extent of SVOC-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: borings 2BN(37') and SB-11
 - > eastern edge: borings SB-3, SB-4, SB-13, SB-14 and SB-27
 - southern edge: borings SB-24, SB-29 and 2C
 - western edge: borings SB-20, SB-21 and 2BN(20')
 - o the vertical extent of SVOC-affected soil appears to be defined by deeper soil samples collected from the borings within the central portion of the Site
- the shallow soil (5 feet bgs and less) at the southeastern corner of the Site as shown on Figures 7A, 7B and 7C
 - o the lateral extent of SVOC-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 5CNE(4')
 - southeastern edge: boring 5CSE(10')
 - > southwestern edge: boring 5CW(10')
 - o the vertical extent of SVOC-affected soil at this location is defined by the 10- and 15-foot deep soil samples collected from this boring

3.5.5 Metals in Soil

Metals detected at concentrations of concern were limited to arsenic (background level at 7 mg/kg) and lead (cleanup goal for school sites at 255 mg/kg), as discussed below.

Arsenic: The majority of the soil samples in which arsenic was detected at concentrations greater than 7 mg/kg were collected from a depth of 1 foot bgs at the following locations:

- within the footprint of the warehouse as shown on Figures 8A, 8B and 8C
 - o the lateral extent is within the perimeter of the warehouse

SSI v1[1].doc:lfr

- o the vertical extent of arsenic-affected soil appears to limited to the fill material/native soil interface as samples of native soil collected at depths of approximately 4- to 5-feet bgs generally contained arsenic at concentrations less than 7 mg/kg except at 2A where the sample from the 5-foot depth contained arsenic at 66 mg/kg (no deeper samples were collected from this boring)
- the shallow soil (less than 4.5 feet to 5 feet bgs) in the central portion of the Site (outside the footprints of the on-site buildings) as shown on Figures 8A through 8D
 - o the lateral extent of arsenic-affected soil appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 2BN(20')
 - eastern edge: boring SB-4
 - > southern edge: extends to southern border of the Site
 - western edge: borings 2B3 and SB-40
 - the vertical extent of arsenic-affected soil is generally defined by the 4.5- to 5-foot depth bgs soil samples from this area except at 2C where the sample from the 5-foot depth contained arsenic at 31 mg/kg (no deeper samples were collected from this boring)
- the shallow soil (less than 4.5 feet to 5 feet bgs) at boring 1BS(10') located at the western portion of the Site as shown on Figures 8A and 8C
 - o the lateral extent of arsenic-affected soil appears to be defined to the north by soil samples collected from boring 1B
 - o the vertical extent of arsenic-affected soil is defined by the 5-foot soil sample collected from boring 1BS(10')
- the shallow soil (less than 4.5 feet to 5 feet bgs) at boring 1C located at the western portion of the Site as shown on Figures 8A and 8C
 - o the lateral extent of arsenic-affected soil appears to be defined by the following borings:
 - > northern edge: boring 1CN(10')
 - > southeastern edge: boring 1CSE(10')

- > southwestern edge: boring 1CSW(10')
- o the vertical extent of arsenic-affected soil is defined by the 5-foot soil sample collected from boring 1C

Lead: Lead-affected soil was identified at two locations as noted below:

- at the northeastern corner of the Site at borings 5A and 5ASE(10') as shown on Figures 9A and 9C
 - o the lateral extent is defined by the following borings:
 - > northern edge: boring 5AN(10')
 - > southeastern edge: boring 5ASE(20')
 - southwestern edge: boring 5ASW(10')
 - o the vertical extent of lead-affected soil appears to limited to the upper 5 feet at this location based on soil samples collected at a depth of 5 feet bgs from borings 5A and 5ASE(10')
- at the southeastern corner of the Site at borings 5C and 5CESE(20') as shown on Figures 9A and 9C
 - o the lateral extent is defined by the following borings:
 - > northern edge: boring 5CNE(4')
 - > southeastern edge: boring 5CSE(10')
 - > southwestern edge: boring 5CW(10')
 - o the vertical extent of lead-affected soil appears to limited to the upper 5 feet at this location based on soil samples collected at a depth of 5 feet bgs from borings 5C and 5CESE(20')

3.5.6 Polychlorinated Biphenyls in Soil

PCBs were detected at concentrations greater than 0.37 mg/kg (total PCBs) at several locations as noted below:

• the shallow soil (5 feet bgs and less) at boring 1B on the western portion of the Site as shown on Figures 10A and 10C

SSI v1[1].doc:lfr

- the lateral extent of PCB-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - northeastern edge: boring 1BNE(10')
 - southern edge: boring 1BS(10')
 - northwestern edge: boring 1BNW(10')
- o the vertical extent of PCB-affected soil at this location appears to be defined by the 5 foot soil sample collected from boring 1B
- the shallow soil (5 feet bgs and less) at boring 1C on the western portion of the Site as shown on Figures 10A and 10C
 - o the lateral extent of PCB-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 1CN(10')
 - southeastern edge: boring 1CSE(10')
 - southwestern edge: boring 1CSW(10')
 - o the vertical extent of PCB-affected soil at this location appears to be defined by the 5 foot soil sample collected from boring 1C
- the shallow soil (5 feet bgs and less) at boring 3B on the inside the manufacturing/office building as shown on Figures 10A and 10C
 - o the lateral and vertical extent of PCB-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 3BN(10')
 - > eastern edge: borings 3BE(10') and 3BE(20')
 - > southern edge: borings 3BS(10') and 3BS(20')
 - western edge: boring 3BW(10')
- the shallow soil (5 feet bgs and less) at boring 4B located inside the manufacturing/office building as shown on Figure 10D
 - o the lateral and vertical extent of PCB-affected soil in this area appears to be defined by soil samples collected from the following borings:

Page 34 SSI vIIII.doc:lfr

- ➤ northern edge: borings 4BN(10'), 4BE(10') and 4BE(20')
- > eastern edge: boring SB-36
- ➤ southern edge: borings 4BS(10') and 4BS(20')
- western edge: boring 4BW(10')
- o the vertical extent of PCB-affected soil at this location appears to be defined by the 5 foot soil sample collected from boring 4B
- the shallow soil (5 feet bgs and less) at boring 2C located on the southern border of the Site at a stormwater collection sump as shown on Figure 10E
 - o the lateral and vertical extent of PCB-affected soil in this area appears to be defined by soil samples collected from the following borings:
 - > northern edge: boring 2CN(10')
 - eastern edge: boring 2CE(10')
 - > southern edge: southern border of the Site
 - western edge: not defined
 - o the vertical extent of PCB-affected soil at this location appears to be between 5 feet bgs and 14 feet bgs since a 10-foot sample was not recovered from this location due to poor soil conditions

3.5.7 Volatile Organic Compounds in Soil

The VOCs benzene and MTBE were detected in the central portion of the Site and appeared to be associated with the petroleum hydrocarbons detected in this area (generally benzene and MTBE were detected in soil samples that also contained gasoline). The distribution of benzene is shown on Figures 11A through 11D and the distribution of MTBE is shown on Figures 12A through 12D.

3.5.8 Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

Petroleum hydrocarbons (gasoline, diesel and motor oil) and VOCs (BTEX, MTBE and naphthalene) were detected in "reconnaissance" groundwater samples collected from two areas during the PEA at the Site as shown on Figure 13 and in groundwater samples collected from nested groundwater monitoring wells installed during the Additional SSI as shown on Figure 14. These results are discussed below.

SSI v1[1].doc:lfr Page 35

Reconnaissance Groundwater Samples: Petroleum hydrocarbons and VOCs were detected in reconnaissance groundwater samples collected from the central area of the Site. The highest concentrations of petroleum hydrocarbons and VOCs are noted below:

- gasoline and BTEX were detected at the highest concentrations in boring 2BN(20')-GW-1, located just south of the warehouse and downgradient of the former UST
- MTBE was present at the highest concentration in boring 2BN(37')-GW-1, located adjacent to the southern wall of the warehouse and downgradient of the former UST
- diesel was detected at the highest concentration in boring SB-19, located to the southwest of boring 2BN(20')-GW-1
- motor oil was detected at the highest concentration in boring SB-22, located to the southwest of boring 2BN(20')-GW-1
- the VOC naphthalene was detected at the highest concentration in boring 2BN(20')-GW-1

Nested Well Groundwater Samples: Gasoline, diesel, motor oil, BTEX and/or MTBE were detected in groundwater samples collected from the nested groundwater monitoring wells. The highest concentrations of petroleum hydrocarbons and VOCs were present in the groundwater samples collected from the intermediate zone in nested well NW-2. This well is located on the western edge of the area excavated to remove petroleum hydrocarbon-affected soil. The intermediate zone in nested well NW-2 corresponds to the depth interval (approximately 7.5- to 10-feet bgs) in which the highest concentrations of petroleum hydrocarbons were detected in soil.

4.0 RISK EVALUATION

A health risk evaluation was first performed following the guidance presented in *Preliminary Endangerment Assessment Guidance Manual* (CalEPA 1994) using the data collected as part of the site characterization. These sampling events were conducted at the Site in March 2005, August 2005, December 2005 and January 2006.

The PEA risk evaluation process included assessing exposure and toxicity assessment considering the maximum concentration of each selected COPC and quantifying estimates of potential health risks, assuming residential conditions. Consistent with CalEPA and USEPA risk assessment policy, the potential for exposures to produce carcinogenic and noncarcinogenic health effects were each characterized.

Page 36 SSI v1[1].doc:lfr

After the initial site characterization, additional soil samples were collected and analyzed. The risk evaluation was updated incorporating the additional data. The following presents a summary of the initial and updated risk evaluation.

Tables presenting the pre-SSI and post-SSI risk evaluation data are presented in Appendix J.

4.1 Pre-SSI Risk Evaluation and Endangerment Determination

The data from the initial evaluation was evaluated considering maximum detected concentrations in soil, groundwater and soil vapor. Each detected compound was evaluated with the exception of metals. Metals are naturally occurring and were only evaluated if present above background concentrations.

Carcinogenic Effects

An estimate of the potential excess incremental cancer risk associated with exposure to a carcinogen (i.e., the incremental probability that an individual will develop cancer over the course of a lifetime) is obtained by multiplying the estimated chronic daily intake of the carcinogen by the chemical-specific cancer slope factor (CSF) for the appropriate exposure route. The estimated excess cancer risks for each chemical and exposure route are then summed to estimate the total excess cancer risk for the exposed individual.

As indicated, the total excess cancer risk posed by the presence of chemicals in soil is 3×10^{-3} . The majority of this total risk is attributable to the presence of arsenic, chromium IV, benzene, PAHs, and PCBs at the Site.

Noncarcinogenic Effects

To assess the noncarcinogenic effects of chemicals, the estimated chronic daily intake of a chemical is divided by the oral or inhalation RfDs. The resulting ratio, referred to as the Hazard Quotient (HQ) is an estimate of the likelihood that noncarcinogenic effects will occur as a result of that specific chemical exposure. A hazard quotient less than or equal to 1 indicates that the predicted exposure to that chemical should not result in an adverse noncarcinogenic health effects (USEPA 1989). Consistent with CalEPA risk assessment guidance, the chemical-specific HQs are added together, to provide the Hazard Index (HI). A total, multichemical, multipathway HI of less than or equal to 1 indicates that potential noncancer health effects are not likely to occur.

Table J-6 presents the estimated noncancer HIs for future on-site residents, both children and adults. As indicated, the total HI is 117. The majority of the total noncancer hazard is attributable to PCBs. Other chemicals that contribute to the noncancer hazard include arsenic and vanadium.

SSI v1[1].doc:lfr

Health Effects of Lead in Soil

As previously described, the reference dose approach, which is used for assessing potential noncarcinogenic effects, is not used to evaluate exposure to lead. Rather, the DTSC has developed specific guidance for evaluating exposure and the potential for adverse health effects resulting from exposure to lead in the environment using a model based on absorbed doses and estimated blood-lead concentrations. The guidance is implemented using a spreadsheet, obtained from DTSC, in which a multipathway algorithm is used for estimating blood-lead concentrations in children and adults.

Potential health affects associated with lead exposure was evaluated using LEADSPREAD. The maximum concentration of lead detected in soil (398 mg/kg) was used to represent lead exposure. The 99th percentile blood lead level associated with exposure to lead from both the Site and background sources in air, food and drinking water was 12.9 μ g/dl for children (the most sensitive receptors), a level that is above the target concentration of 10 μ g/dl. Therefore, the 99th percentile blood lead level associated with exposure to lead from both the Site and background sources in air, food and drinking water is at a level that above the target concentration of 10 μ g/dl.

4.2 Post SSI Risk Assessment

The risk evaluation was updated incorporating the revised maximum detected COPCs, and per DTSC comment, a TPH risk evaluation. The data was first evaluated to select revised maximum concentrations and new COPCs if applicable. No additional COPCs were identified at the Site. However, the following COPCs had revised maximum concentrations in soil: benzene, ethylbenzene, xylenes, toluene, acenaphthylene, and arsenic. The risks and hazards for these compounds were revised. The maximum lead concentration did not change and the lead evaluation was not revised.

In addition to revising the risk and hazard index estimates, a TPH risk evaluation was performed. The TPH evaluation followed the methodology presented by the Massachusetts Department of Environmental Protection (MADEP, October 2002). TPH is evaluated for its non-carcinogenic adverse health affects considering carbon chain length fractions and presence of saturated bonds within the carbon chains. Gasoline is assumed to be represented by fractions containing 4 to 12 saturated carbon molecules. Diesel is assumed to be represented by 40 percent 12 to 22 saturated carbon molecules fraction and 60 percent 12 to 22 aromatic carbon molecule fractions. The maximum detected TPH as gasoline concentrations was 4,900 mg/kg and the maximum detected TPH as diesel concentration was 1,200 mg/kg. The maximum diesel concentration was assumed to be 720 mg/kg aromatic and 480 saturated or aliphatic carbon fractions. The results of the non-carcinogenic risk evaluation with the revised data and TPH evaluation are presented in the tables in Appendix J.

The total estimated risk using the post-SSI data is greater than the pre-SSI estimates. The revised cancer risk is 9×10^{-3} . As with the pre-SSI risk, the majority of this total

Page 38 SSI v1[1].doc:lfr

risk is attributable to the presence of arsenic, chromium IV, benzene, PAHs, and PCBs at the Site. The increase in the risk estimate is primarily due to the increase in the maximum detected arsenic concentration.

The revised hazard index is 128 (see Table J-13). Gasoline estimated hazard was 3, which is greater than the target of 1. Diesel hazard estimate, considering both the saturated and aromatic fractions, is 1.

Based on the results of both the pre and post SSI risk evaluation, maximum concentrations of both carcinogenic and non-carcinogenic COPCs are present at levels which could be a health concern.

4.3 Post SSI Ecological Risk Assessment

The Site is located at an elevation of approximately 15 feet above mean sea level and the surface topography in the site vicinity slopes gradually toward the south-southwest. The nearest body of surface water is Lion Creek, located approximately 250 feet south of the Site. San Leandro Bay, connected to San Francisco Bay, is located approximately 4,500 feet southwest of the Site.

The compounds detected in the Site's soil and groundwater would not be likely to impact ecological resources in Lion Creek or San Francisco Bay due to the relatively flat gradient of groundwater beneath the Site and site vicinity, the distances from the Site to these surface water bodies, and natural attenuation that is expected to occur for the petroleum hydrocarbons detected in soil and groundwater.

5.0 QUALITY ASSURANCE PROJECT PLAN (QAPP) IMPLEMENTATION

The QA/QC program was implemented in accordance with the Additional SSI work plan; collection of field blanks, equipment blanks, trip blanks, and duplicate samples are discussed above in Sections 3.2.2.3 and 3.3.2. The primary QC features of the QA/QC program include the collection and analysis of field quality control samples, field and laboratory audits, and data validation. QC samples collected in the field included field duplicate samples, field blanks, equipment rinsate blanks and duplicate soil and groundwater samples. In addition, trip blanks (also referred to as travel blanks) were included in the QA/QC program when soil and/or groundwater samples were collected for VOC analysis. The results of the field QA/QC procedures and the laboratory QA/QC procedures are described below.

Field Blanks. Field blanks collected during the Additional SSI were designated "FB" followed by the collection date (i.e. FB121205). Field blanks were collected during each day of field work (December 12 through 15, 2005, December 27, 2005, and January 5, 2005).

SSI v1[1].doc:lfr

Gasoline, motor oil, SVOCs, VOCs, arsenic and PCBs were not detected in the field blank samples at concentrations at or above their respective laboratory reporting limits. Diesel was detected at a concentration of 0.075 mg/l in FB121305 (collected on December 13, 2005) and at a concentration of 0.053 mg/l in FB121505 (collected on December 15, 2005). The concentrations of diesel detected in these field blank samples are at and just slightly above the laboratory reporting limit.

The results of the field blank samples indicate that the deionized and/or distilled water used for equipment decontamination may have contained a trace amount of petroleum hydrocarbons quantified as diesel by the laboratory.

Equipment Rinsate Blanks. Equipment rinsate blanks collected during the Additional SSI were designated "EB" followed by the collection date (i.e. EB121205). Equipment rinsate blanks were collected during each day of field work (December 12 through 15, 2005, December 27, 2005, and January 5, 2005).

Gasoline, motor oil, SVOCs, VOCs, arsenic and PCBs were not detected in the equipment rinsate blank samples at concentrations at or above their respective laboratory reporting limits. Diesel was detected at a concentration of 0.052 mg/l in EB121505 (collected on December 15, 2005). The concentration of diesel detected in this equipment rinsate blank sample is just slightly above the laboratory reporting limit. As noted above, diesel was detected in the field blank sample collected on December 15, 2005 indicating that the deionized and/or distilled water used for equipment decontamination on this day may have contained petroleum hydrocarbons quantified as diesel by the laboratory.

The results of the equipment rinsate blank samples indicate that the decontamination procedures were adequate for the sampling program.

Duplicate Samples. The duplicate soil and groundwater samples collected during the Additional SSI are included on Tables 1, 2 and 3. The duplicate soil samples are denoted with a "D" suffix on Tables 1 and 2 and the duplicate groundwater samples are denoted with a "DUP" preffix on Table 3.

Consistent analytical data for the original and duplicate soil and groundwater samples indicate that laboratory analytical procedures were adequate for the sampling program.

Laboratory QA/QC Procedures. QA/QC procedures established by the analytical laboratory were employed for this project. LFR performed a data validation on the analytical results associated with this PEA using U.S. EPA Level III guidelines. No laboratory data validation issues were noted, and no data were rejected.

The data for these QC samples were reviewed as part of the data validation, along with laboratory QC results. Each sample was analyzed for the specified suite of analyses presented in the PEA work plan. Data from each of the analyses were evaluated in the following areas:

Page 40 SSI v1[1].doc:lfr

- data completeness
- holding times
- blanks
- system monitoring compounds (surrogates [organic analyses only])
- laboratory control standards
- matrix spike/matrix spike or sample duplicates
- field duplicates/confirmatory samples
- · compound identification and quantification

6.0 HEALTH AND SAFETY PLAN IMPLEMENTATION

LFR prepared a site-specific Health and Safety Plan (HSP) for use during the Additional SSI. A copy of the HSP is presented in the Additional SSI Work Plan. The HSP addresses the following:

- identified and described potentially hazardous substances that may be encountered during field operations
- specified personal protective equipment (PPE) and clothing for site activities
- outlined measures that were to be implemented in the event of an emergency

LFR personnel reviewed the HSP before fieldwork began. All on-site personnel were required to sign the site safety briefing form.

During fieldwork, appropriate Level D PPE was worn by all personnel within the work zone. Operator breathing zone photoionization detector (PID) readings were obtained on a regular basis as required by the HSP. PID readings did not exceed ambient levels (1.0 parts per million). Based on these measurements, an upgrade to Level C PPE was not required.

No incidents or emergency actions occurred during fieldwork.

7.0 FIELD VARIANCES

The following is a summary of variances from the Additional SSI work plan that occurred during site activities:

• A soil sample was not collected from the 0.5- to 1-foot depth in boring SB-11 due to loose, gravely, or dry soil types; however, a sample was collected from immediately below the concrete floor slab (upper 6 inches of baserock below the concrete floor slab).

SSI vI[I].doc:lfr

- A soil sample was not collected from the 10- to 10.5-foot depth bgs in boring SB-31 due to saturated soils. A sample was collected at the 14- to 14.5-foot depth bgs in this boring.
- A groundwater sample was not collected from SB-37 since no free groundwater was encountered in this boring. Groundwater samples were collected from nearby borings SB-33 and SB-35.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Analytical Results

Analytical results of soil samples collected during the PEA, Initial SSI and Additional SSI indicate the presence of soil with gasoline, diesel, motor oil, SVOCs, arsenic, lead, PCBs, and VOCs at concentrations of concern. The areas of affected soil that will require remedial action (likely excavation) are shown on Figure 16 and include the following:

- the shallow soil (5 feet bgs and less) in the central portion of the Site (in the area west of the manufacturing/office building and south of the warehouse building); shallow soil in this area is affected with motor oil, SVOCs, arsenic and VOCs
- the deeper soil (approximately 5- to 15-foot depth interval) in the central portion of the Site (in the area west of the manufacturing/office building and south of the warehouse building); soil at this depth is affected with gasoline, motor oil and VOCs
- the deeper soil (approximately 5- to 15-foot depth interval) inside the manufacturing/office building at and around boring 4BS(20'); soil at this location is affected with gasoline, diesel and motor oil
- the deeper soil (approximately 5- to 10-foot depth interval) at the southeastern corner of the Site at and around boring 5C; soil at this location is affected with diesel, motor oil and SVOCS
- the shallow soil (generally from below the concrete slab to less than 4.5 feet) within the footprint of the warehouse; soil at this location is affected with arsenic; soil deeper than 5 feet at boring 2A is affected with arsenic
- the shallow soil (generally from the surface to less than 4.5 feet bgs) on the western portion of the Site at and around boring 1BS(10'); soil at this location is affected with arsenic
- the shallow soil (generally from the surface to less than 4.5 feet bgs) on the western portion of the Site at and around boring 1B; soil at this location is affected with PCBs

Page 42 SSI v1[1].doc:lfr

- the shallow soil (generally from the surface to less than 4.5 feet bgs) on the western portion of the Site at and around boring 1C; soil at this location is affected with arsenic and PCBs
- the shallow soil (generally from the surface to less than 4.5 feet bgs) on the eastern portion of the Site at and around borings 5A, 5ASE(10'), 5C and 5CESE(20'); soils at these locations are affected with lead
- the shallow soil (generally from the surface to less than 4.5 feet bgs) inside the manufacturing/office building at and around borings 3B and 4B; soils at these locations are affected with PCBs
- the shallow and deeper soil (generally from the surface to less than 14 feet bgs) along the southern border of the Site at the stormwater collection sump at and west of borings 2C, 2CW(10'), 2CW(20'), SB-48, SB-49 and SB-50; soils at these locations are affected with PCBs; soil at 5 feet in boring 2C is also affected with arsenic

In addition, analytical results of groundwater samples collected during the PEA and Additional SSI indicate the presence of gasoline, diesel, motor oil and PCBs beneath the Site. The petroleum hydrocarbons were detected in the central area of the Site and inside the manufacturing/office building. PCBs were detected in groundwater at the western end of the Site.

8.2 Human Health Screening Evaluation

Based on the analytical results of the soil sampling investigation, a human health screening evaluation was conducted for site COPCs. The total estimated cancer risk for all carcinogenic COPCs, considering all complete exposure pathways, is 9×10^{-3} . This is above the DTSC 1×10^{-6} threshold. The total estimated hazard index for all noncarcinogenic endpoints for the COPCs is 128, which is above the threshold of 1.0.

8.3 Conclusion

The purpose of the PEA, Initial SSI and Additional SSI was to evaluate whether a release or threatened release of hazardous substances, which pose a threat to human health or the environment, exists at the Site, and to evaluate that potential risk, if any, to human health or the environment. The current site conditions do appear to pose a health threat under unrestricted use redevelopment, based on the results of the site investigation conducted for the Site. Therefore, preparation of a removal action work plan is recommended to evaluate appropriate cleanup actions.

SSI v1[1].doc:lfr Page 43

9.0 REFERENCES

- ACC Environmental Consultants, Inc. 2000. Phase I Environmental Assessment, 1009 66th Avenue, Oakland California. November 22.
- CSS Environmental Services, Inc. 2005a. Preliminary Environmental Assessment Workplan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland California. March 4.
- ———. 2005c. Draft -Supplemental Site Investigation (SSI) Workplan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California. May 24.
- 2005d. Draft Supplemental Site Investigation (SSI) Summary Report, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, California. October 6.
- Decon Environmental Services, Inc. 2002a. Remediation Project Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. July 9.
- ———. 2002b. Remediation Project Report Addendum for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. October 2.
- Environ Corporation. 1997. Phase I Environmental Assessment, Pacific Electric Motor, Co., 1009-66th Avenue, Oakland, California. July 2.
- LFR Levine Fricke. 2005. Additional Supplemental Site Investigation Work Plan,
 Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, Alameda
 County, California, DTSC Site Code 204147-11. December 13.
- PES Environmental, Inc. 2003. Second Quarter 2003 Groundwater Monitoring Report for Pacific Electric Motor, Co., 1009 66th Avenue, Oakland, CA 94612. July 31.
- -----. 1998. Transmittal Results of Additional Soil and Groundwater Investigation for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. November 11.
- W.A. Craig, Inc. 1995a. Final Closure Plan for Underground Storage Tank Removal for Pacific Electric Motor, Co., 1009 66th Avenue, Oakland, CA 94612. March 14.

Page 44

 1995b. Attached soil and water sample results, and next phase of work due to contamination in the soil and pit water, correspondence to ACEHS via facsimile (510) 337-9335. March 31.
 1995c. Subsurface Environmental Investigation for Pacific Electric Motor, Co., 1009 66th Avenue, Oakland, CA 94612. May 16.
 1997. Excavation and Sampling Report for Pacific Electric Motor, Co., 1009 66th Avenue, Oakland, CA 94612. May 12.
 1998. Transmittal Results of Additional Soil and Groundwater Investigation for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612.

SSI v1[1].doc:lfr Page 45

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL=0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL=5 mg/Kg	TPH (oil range) C24-C40 RL=50 mg/Kg	PCB RL = 0.002-0.050 mg/Kg	Arsenic RL = 0.97-5 mg/Kg	Lead RL = 5 mg/Kg	Nickel RL = 1 mg/Kg	Hexavalent Chromium RL=0.5 mg/Kg
					ND	ND	ND	8	
1 @ 0.5 PEA	March-05	ND	ND	84	0.203	ND	ND	37	
1 @ 5 PEA	March-05	ND	ND	ND	The second secon				
A DESCRIPTION OF THE PERSON OF	August 12, 2005				ND				
A-N(10') 0.5'	August 12, 2005				ND ND				
A-N(10') 5'	August 12, 2005				ND ND				
A-SE(10') 0.5' A-SE(10') 5'	August 12, 2005				ND ND				
A-SW(10') 0.5'	August 12, 2005				ND ND				
A-SW(10') 5'	August 12, 2005					MD	2	ND	
		ND	ND	ND	0.716	ND 5	ND	51	
8 @ 0.5 PEA	March-05 March-05	ND ND	ND	ND	ND				
8 @ 5 PEA		1,75			ND	<5 <5			
3-NE(10') 0.5'	August 12, 2005 August 12, 2005				ND	7			
3-NE(10') 5'	August 12, 2005				ND	<5			7
3-NW(10') 0.5'	August 12, 2005				ND ND	11			
3-NW(10') 5'	August 12, 2005				ND ND	<5			
3-S(10') 0.5'	August 12, 2005						2	ND	
3-S(10') 5'		E195	ND	133	21.34	8	3	32	
C @ 0.5 PEA	March-05	ND ND	ND	ND	ND	ND			
C @ 5 PEA	March-05	ND	- 110		ND	<5			
C-N(10') 0.5'	August 12, 2005				ND	<5			
C-N(10') 5'	August 12, 2005				ND	<5			
C-SE(10') 0.5'	August 12, 2005				ND	<5			
C-SE(10') 5'	August 12, 2005				ND	<5			
C-SW(10') 0.5'	August 12, 2005				ND	<5			
C-SW(10') 5'	August 12, 2005					<5 <5			
C-S(20') 0.5'	August 11, 2005 August 11, 2005						100	24	3.02
C-S(20') 5'						12	3	21	
4 @ 0.5' PEA	March-05	ND				66	3		
A @ 5' PEA	March-05	0.4				- 11		_	
A-N(10') 0.5'	August 11, 2005			_		ND			
A-N(10') 5'	August 11, 2005					22			
A-S(10') 0.5'	August 11, 2005					ND			
A-S(10') 3' A-E(10') 0.5'	August 11, 2005					27		+	
A-E(10') 0.5'	August 11, 2005					ND			
A-E(10') 3'	August 11, 2005					47 ND			
A-W(10') 0.5'	August 11, 2005	+				ND 37	-		
A-W(10') 5'	August 11, 2005 August 11, 2005					<5			
A-N(20') 0.5'	August 11, 2005					117			
A-N(20') 5'	August 11, 2005					<5			
A-S(20') 0.5'	August 11, 2005					10			
A-S(20') 5'	August 11, 2005					<5			
A-E(20') 0.5'	August 11, 2005					88			
A-E(20') 5' A-W(20') 0.5'	August 11, 2005					<5			
A-W(20') 5'	August 11, 2005					35			_
AW(40') 0.5'	March-05					3.7			
AW(40') 4.0'	March-05					31			
ANW(40') 0.5'	March-05					3.1			
ANW(40') 4.0'	March-05								
AN(50') HOLD	March-05					13			
AW(50') 0.5'	March-05					73			

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL = 0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL = 5 mg/Kg	TPH (oil range) C24-C40 RL=50 mg/Kg	PCB RL = 0.002-0.050 mg/Kg	Arsenic RL = 0.97-5 mg/Kg	Lead RL = 5 mg/Kg	Nickel RL=1 mg/Kg	Hexavalent Chromium RL = 0.5 mg/Kg
			0.000	1.202	ND	5	30	17	
4-2 @ 0.5 PEA	March-05	ND	ND	1,307 ND	ND	ND	ND	ND	
4-2 @ 5 PEA	March-05	ND	ND	1,110					
A-2N(20') 0.5'	August 25, 2005	ND	ND	ND ND					
A-2N(20') 5'	August 25, 2005	ND	ND	ND ND					
A-2N(20') 7.5'	August 25, 2005	ND	ND ND	893					
A-2S(20') 0.5'	August 25, 2005	ND	ND ND	ND					
A-2S(20') 5'	August 25, 2005	ND	ND	ND					
A-2S(20') 7.5'	August 25, 2005	ND	ND	386					
A-2E(20') 0.5'	August 25, 2005	ND	ND	ND					
A-2E(20') 5'	August 25, 2005	ND	ND	ND					
A-2E(20') 7.5'	August 25, 2005	ND ND	ND	1,212					
A-2W(20') 0.5'	August 25, 2005	ND ND	ND	ND					
A-2W(20') 5'	August 25, 2005	ND ND	ND	ND				7	
A-2W(20') 7.5'	August 25, 2005	-		1,560	ND	19	18	28	
B @ 0.5 PEA	March-05	ND	ND	847	ND	5	4	81	
B @ 5 PEA	March-05	1.2	ND	ND ND	NA NA	6	2	80	
B @ 10 PEA	March-05	943.0	ND	ND ND	NA NA	ND	ND	80	
B @ 15 PEA	March-05	544.0	ND	ND	NA NA	NA	NA 2	43	
B @ 20 PEA	March-05	4.5	ND ND	ND	0.068	ND	2	(14)	
B @ 24 PEA	March-05	12.0	ND	545		ND			
B-N(20') 0.5'	August 11, 2005	ND	ND ND	ND ND					
B-N(20') 5'	August 11, 2005	0.6	ND ND	ND					
B-N(20') 7.5'	August 11, 2005	1,040.8	ND ND	ND ND					
B-N(20') 10'	August 11, 2005	877.4	ND	798		ND			
B-S(20') 0.5'	August 25, 2005	ND ND	ND	ND					
B-S(20') 5'	August 25, 2005	ND ND	ND	ND					
B-S(20') 7.5'	August 25, 2005	ND ND	ND	7,415		6			
B-W(20') 0.5'	August 25, 2005	ND ND	ND	ND					
B-W(20') 5'	August 25, 2005	2.8	ND	ND					
B-W(20') 7.5'	August 25, 2005	926.6	ND	ND		13			
B-W(20') 10'	August 25, 2005	928.0 ND	ND	ND		13			
B-N(37') 0.5'	August 24, 2005	7.1	ND	ND					
B-N(37') 5'	August 24, 2005 August 24, 2005	2,019.0	ND	ND					
B-N(37') 7.5'	August 24, 2005	2,780.8	ND	ND					
B-N(37') 10'	August 24, 2005	7.5	ND	ND			14	18	
B-N(37') 15'			ND	1,319	0.1	5	14	21	
2B2 @ 0.5 PEA	March-05	ND	ND	1,467	ND	5	10		
2B2 @ 3.5 PEA	March-05	ND		22,524		ND			
B2-N(20') 0.5'	August 25, 2005	0.3	ND ND	446					
2B2-N(20') 5'	August 25, 2005	979.5	ND ND	ND					
B2-N(20') 7.5'	August 25, 2005	2,507.4	ND	ND					
2B2-N(20') 10'	August 25, 2005	907.1	ND	1,139				-	
2B2-S(20') 0.5'	August 25, 2005	ND ND	ND	ND					
2B2-S(20') 5'	August 25, 2005	ND ND	ND	ND			+		
2B2-S(20') 7.5'	August 25, 2005	ND 0.1	ND	1,386			+		
2B2-E(20') 0.5'	August 11, 2005	ND	ND	ND					
2B2-E(20') 5'	August 11, 2005	ND ND	ND	ND			_		1
2B2-E(20') 7.5'	August 11, 2005	ND NO						42	
2B-3S(0.5') 0.5'	August 12, 2005	+			0.051	4	ND	43	
2B3 @ 0.5 PEA	March-05	ND				8	2	18	
THE STATE OF THE S	March-05	ND			ND	*			(
2B3 @ 5 PEA		125.0					- Var	0	
2B3 @ 15 PEA	March-05	78.55	NW.	1,346	0.428	17	11	13	
2C @ 0.5 PEA	March-05	ND	ND ND	491	2.1	31	ND	1.5	

C-N(10') 0.5' C-N(10') 5' C-N(10') 7.5'HOLD C-N(10') 10'HOLD C-E(10') 0.5' C-E(10') 5'	August 25, 2005 August 25, 2005 August 25, 2005 August 25, 2005 August 11, 2005								RL=0.5 mg/Kg
C-N(10') 5' C-N(10') 7.5'HOLD C-N(10') 10'HOLD C-E(10') 0.5' C-E(10') 5'	August 25, 2005 August 25, 2005 August 25, 2005				0.19	17			
C-N(10') 7.5'HOLD C-N(10') 10'HOLD C-E(10') 0.5' C-E(10') 5'	August 25, 2005 August 25, 2005				ND	ND			
C-N(10') 10'HOLD C-E(10') 0.5' C-E(10') 5'	August 25, 2005								
C-E(10') 0.5' C-E(10') 5'									
C-E(10') 5'	August II. Zinia	ND	45	ND	ND	67			
		ND	ND	ND	ND	מא			
	August 11, 2005 August 11, 2005	ND	ND	ND					
C-E(10") 7.5°		21.3	ND	ND					
C-E(10') 10'	August 11, 2005	ND ND	ND	ND		21			
C-N(20') 0.5'	August 25, 2005	ND	ND	ND					
C-N(20') 5'	August 25, 2005	ND ND	ND	ND					
C-N(20') 7.5'	August 25, 2005	11.2	ND	ND					
C-N(20') 10'	August 25, 2005	11.2	. 125		4.2				
CW(10') 0.5-1.0	December 13, 1995				3.2				
CW(10') 4.5-5.0	December 13, 1995				0.089				
CS(10') 9.5-10.0	January 5, 2006	ND	ND	ND	8.1	16			
C-W(20') 0.5'	August 25, 2005	ND	.,,,,,,		2.9	<5			
CW(20') 4.5-5.0	December 13, 1995				6.2				+
CW(20') 9.5-10.0	January 5, 2006	ND	ND	ND				-	
C-W(20') 5'	August 25, 2005	ND	93	ND		63			1
C-E(20') 0.5'	August 24, 2005		ND	ND		<5			
C-E(20') 5'	August 24, 2005	ND	ND	ND					
C-E(20') 10'	August 24, 2005	ND	ND						
BA @ 0.5 PEA	March-05	ND			0.042				
BA @ 5 PEA	March-05	ND			0 063		,	26	
		ND	ND	ND	0.987	3	5 2	32	
BB @ 0.5 PEA	March-05	ND ND	ND	ND	0.720	ND		32	+
3B @ 5 PEA	March-05	ND			ND				+
B-N(10') 0.5	August 12, 2005				ND				
B-N(10') 5'	August 12, 2005				ND				
B-S(10') 0.5'	August 12, 2005				ND			-	
B-S(10') 5'	August 12, 2005				0.340				
B-E(10') 0.5'	August 12, 2005				ND				
B-E(10') 5'	August 12, 2005				ND				+
B-W(10') 0.5'	August 12, 2005				ND				
B-W(10') 5'	August 12, 2005					ND			_
B-N(20') 0.5'	August 23, 2005								+
B-N(20') 5'HOLD	August 23, 2005								
B-S(20') 0.5'HOLD	August 23, 2005								
B-S(20') 2'HOLD	August 23, 2005				ND				+
B-E(20') 0.5'	August 23, 2005								
B-E(20") 5"HOLD	August 23, 2005								
B-W(20') 0.5'HOLD	August 23, 2005								+
B-W(20') 5'HOLD	August 23, 2005					ND	9	ND	1.77
C @ 0.5 PEA	March-05	ND	ND	ND	0227		51	29	
	March-05	ND	ND	ND	ND	ND		16	
C @ 5 PEA			ND	ND	ND	5	9		
A @ 0.5 PEA	March-05	ND		ND	ND	ND	ND	42	
A @ 5 PEA	March-05	ND	ND			ND	1:	5	
B @ 0.5 PEA	March-05	ND	ND ND	ND ND	69.68 0.108	ND 5	ND	ND	

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL=0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL = 5 mg/Kg	TPH (oil range) C24-C40 RL = 50 mg/Kg	PCB RL = 0.002-0.050 mg/Kg	Arsenic RL = 0.97-5 mg/Kg	Lead RL=5 mg/Kg	Nickel RL = 1 mg/Kg	Hexavalent Chromium RL = 0.5 mg/Kg
IB-N(10') 0.5'	August 12, 2005	 			ND				
B-N(10') 5'	August 12, 2005				ND				
B-S(10') 0.5'	August 12, 2005				0.230				
B-S(10') 5'	August 12, 2005				ND				
B-E(10') 0.5'	August 12, 2005				0.840				
B-E(10') 4.5'-5.0'	December 13, 1995	1			<0.0097/<0.019				
B-W(10') 0.5'	August 12, 2005	1			0.040				
B-W(10') 5°	August 12, 2005	 			ND				
	August 23, 2005	1							
B-N(20') 0.5'HOLD	August 23, 2005	1							
B-N(20') 5'HOLD	August 23, 2005	ND	ND	64	0.002				
B-S(20') 0.5'	August 23, 2005	23.5	ND	2,679	0.0022				
B-S(20') 3.5'	August 23, 2005	12.6	ND	890	0.0002				
B-S(20') 4'		99.6	ND	2,499	0.0002				
B-S(20') 5'	August 23, 2005	77.0	79 H	17 LY					
BS(20') 9.5-10.0'	January 5, 2006 January 5, 2006		1,200 H	160 LY					
BS(20') 14.5-15.0			1,400 11		ND				
B-E(20') 0.5'	August 23, 2005								
B-E(20') 5'HOLD	August 23, 2005	-			0.0001				
B-W(20') 0.5'	August 23, 2005								
B-W(20') 5'HOLD	August 23, 2005		NIP	ND	ND	ND	11	14	
IC @ 0.5 PEA	March-05	ND	ND	ND	ND	ND	ND	26	
IC @ 5 PEA	March-05	ND	ND				320	170	
5A @ 0.5 PEA	March-05	ND	ND	ND	ND	7	320	44	1
SA @ 5 PEA	March-05	ND	ND	ND	ND	ND		178	
5A-N(10') 0.5'	August 24, 2005						90	178	
5A-N(10') 5' HOLD	August 24, 2005								ND
5A-S2 0.5'	August 24, 2005	1							ND
	August 24, 2005						301	184	
5A-SE(10") 0.5"	August 24, 2005	1					6		
5A-SE(10') 5'	August 24, 2005						154		
5A-SE(20') 0.5'		-							
5A-SE(20') 5' HOLD	August 24, 2005						159	176	
5A-SW(10') 0.5'	August 24, 2005								
SA-SW(10') 5' HOLD	August 24, 2005								
5A-N(20') 0.5'HOLD	August 24, 2005								
5A-N(20') 5' HOLD	August 24, 2005								
5A-SW(20") 0.5'HOLD	August 24, 2005								
5A-SW(20') 5' HOLD	August 24, 2005			0/20191	Day -		398	179	
SC @ 0.5 PEA	March-05	ND	ND	ND	ND	4	398	11.7	
SC @ 5 PEA	March-05	NĐ	639	1,556	ND	ND		75	
C-NE(4') 0.5'	August 24, 2005	ND	ND	ND			81	13	
C-NE(4') 5'	August 24, 2005	ND	ND	ND				124	
C-SE(10') 0.5'	August 24, 2005	ND	ND	ND			28	124	-
C-SE(10') 5'	August 24, 2005	ND	ND	ND					
C-SE(10') 5 C-ESE(20') 0.5'HOLD	August 24, 2005						271		
C-ESE(20') 5'	August 24, 2005						6	440	
	August 24, 2005	ND.	ND	ND			191	227	
C-W(10') 0.5'	August 24, 2005	ND ND	ND	ND					
C-W(10') 5'		, AD	114/						
SC-WNW(20') 0.5'HOLD	August 24, 2005								
SC-WNW(20') 5'HOLD	August 24, 2005								
C-NE(23') 0.5'HOLD	August 24, 2005 August 24, 2005						The second second		

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL = 0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL=5 mg/Kg	TPH (oil range) C24-C40 RL=50 mg/Kg	PCB RL=0.002-0.050 mg/Kg	Arsenic RL ≈ 0.97-5 mg/Kg	Lead RL=5 mg/Kg	Nickel RL = 1 mg/Kg	Hexavalent Chromium RL = 0.5 mg/Kg
SA @ 0.5 PEA	March-05	ND	ND	ND	ND	19	19	18	
B @ 0.5 PEA	March-05	ND	ND	ND	0.825	ND	12	ND	
C @ 0.5 PEA	March-05	ND	ND	ND	1.51	ND	ND	ND	9
B @ 5 PEA	March-05				ND	3	2	24	
B-2 @ 3.5 PEA	March-05				0.087	3	84	24	
B-3 @ 5 PEA	March-05				ND	ND	ND	17	
Hank 12/12/05 (TEG)	December 12, 2005	<1.0		< 50		< 0.25			
Blank 12/13/05 (TEG)	December 13, 2005	<1.0		< 50		< 0.25			
Blank 12/13/05 (C&T)	December 13, 2005	< 0.20			< 0.0095/ < 0.019				
Blank 12/14/05 (TEG)	December 14, 2005	<1.0	< 10	<50		< 0.25			
Blank 12/15/05 (TEG)	December 15, 2005	<1.0		< 50					
B-3-0 5-1 0	December 12, 2005			3,400					
3B-3-4 5-5 0	December 12, 2005		3.2 HYJ	15 J					
B-4-0.5-1.0	December 12, 2005			< 50		4.8			
B-4-1.0-1.5 dup	December 12, 2005			< 50		3,5			
B-4-4 5-5 0	December 12, 2005			<50		3.6			
B-5-0.5-1 0	December 13, 2015					69			
B-5-4.5-5.0	December 13, 2005					4.6			
B-6-0.0-0 5	December 13, 1995					60			
B-6-4.5-5.0	December 12, 2005	12							
B-6-9.5-10.0	December 12, 2005	450							
B-6-14.5-15.0	December 12, 2005	180							
B-7-5.0-5.25	December 12, 2005	<1.0							
B-7-dup-5.25-5 55	December 12, 2005	<1.0							
B-7-9.5-10.0	December 12, 2005	1,000							
B-7-14.5-15.0	December 12, 2005	49							
B-8-0.0-0.5	December 13, 1995				1	3.9			
SB-8-4 5-5 0	December 12, 2005	<1.0							
B-8-9 5-10.0	December 12, 2005	210		1 111					
SB-8-14.5-15.0	December 12, 2005	2,300	:00	1,800					
SB-8-19.5-20.0	December 12, 2005	<1.0				130			
B-9-0.5-1.0	December 12, 2005					130			
B-9-4.5-5.0	December 12, 2005	84							
B-9-9.5-10.0	December 12, 2005	3,700							-
B-9-14.5-15.0	December 12, 2005	370							
B-9-19.5-20.0	December 12, 2005	- 11				7.3			
B-10-0.0-0.5	December 13, 1995			180		1+3			
B-10-0.5-1.0	December 12, 2005	66		100					
B-10-4.5-5.0 B-10-9.5-10.0	December 12, 2005 December 12, 2005	55 3,200						†	
		2,300			+				
B-10-14.5-15 ₁ 0	December 12, 2005 December 12, 2005	1,500							
B-10-19-5-20-0	December 12, 2005	1,500		70					
B-11-5.0-5.5 B-11-9 5-10.0	December 12, 2005	4,900	177	70					
B-11-9 5-10.0 B-11-14.5-15.0	December 12, 2005	1,700			1				
B-13-0.5-1.0	December 12, 2005	1,700		1,700				T	
B-13 4.5-5.0	December 12, 2005		2.4 HYJ	16 J					
B-14 0 5-1 0	December 12, 2005		D ▼1117	1,800					
B-14 4 5-5 0	December 12, 2005		<1.0 J	<5.0 J					
B-17-0.5-1 0	December 13, 1995		41.03	590		71			
B-17-4.5-5 ₁ 0	December 13, 1995	< 0.19	<1.0 J	<50 J		3.9		T	
B-17-9.5-10.0	December 13, 1995	200	71-01	1307					
B-17 9.5-10.0 B-17dup-10.0-10.5	December 13, 1995	150							
B-17 14.5-15 0	December 13, 1995	68							
B-17 14.5-15 0 B-18-0.5-1.0	December 13, 1995	00				140			
B-18-4.5-5.0	December 13, 1995				1	5.5			
B-19-0.5-1.0	December 13, 1995			81	1	140			

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL = 0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL = 5 mg/Kg	TPH (oil range) C24-C40 RL=50 mg/Kg	PCB Rt = 0.002-0.050 mg/Kg	Arsenic RL = 0.97-5 mg/Kg	Lead RL=5 mg/Kg	Nickel RL=1 mg/Kg	Hexavalent Chromium RL = 0.5 mg/Kg
SB-19-4.5-5.0	December 13, 1995	<1.0				6.9			
B-19-9.5-10.0	December 13, 1995	3,100							
B-19-14.5-15.0	December 13, 1995	<1.8							
B-20-0.5-1.0	December 14, 2005		-	160		110			
B-20dup-1.0-1.5	December 14, 2005			<50		11			
B-20-4.5-5.0	December 14, 2005	<1.0				5.0			
B-20dup-5.0-5.5	December 14, 2005	<1.0				5.2			
B-20-9.5-10.0	December 14, 2005	600							
B-20-14.5-15.0	December 14, 2005	<1.0							
B-21-0.5-1.0	December 14, 2005			61					
B-21-4.5-5.0	December 14, 2005	<1.0							
B-21-9.5-10.0	December 14, 2005	1,200							
B-21-14.5-15.0	December 14, 2005	<1.0				rie.			
B-22-0.5-1.0	December 14, 2005		## 4	<50		98			
B-22-4.5-5.0	December 14, 2005	<1.0				6.0			
B-22-9.5-10.0	December 14, 2005	<1.0							
B-22-14.5-15.0	December 14, 2005	<1.0							
B-22dup-15.0-15.5	December 14, 2005	<1.0				4.9			
B-24-0.5-1.0	December 12, 2005		**	80					-
B-24dup-1.0-1.5	December 12, 2005					3.4 5.8			
B-24-4.5-5.0	December 12, 2005	< 0.17				3.8			
B-24-9.5-10.0	December 12, 2005	590.0							
B-24-14.5-15.0	December 12, 2005	0.82							
B-25-0.5-1.0	December 12, 2005		.#1	1,800		110			
B-26-0.5-1.0	December 12, 2005			820		5.7			-
B-26-4.5-5.0	December 12, 2005		9.9 HY	7.0 L		3.7			
B-27-0.5-1.0	December 12, 2005			3,100	-				
B-27-4.5-5.0	December 12, 2005		12 HYJ	60					
B-28-0.5-1.0	December 12, 2005			5,500 2,300	_				
B-29-0.5-1.0	December 12, 2005			140 LJ					
B-29-4.5-5.0	December 12, 2005		85 HYJ	3,700		3.5			
B-30-0.5-1.0	December 12, 2005		33 HYJ	96 LJ		19			
B-30-4.5-5.0	December 12, 2005		33 H1J	9013	<0.0095/<0.019 J				
B-31-14.5-15.0	December 13, 1995				<0.0096/<0.019 J				
B-31dup-14.0-14.5	December 13, 1995	140 H Y			40.0000 40.0104				
B-32-4.5-5.0	December 14, 2005 December 14, 2005	31 H Y							
B-32-9.5-10.0 (TEG) B-32-9.5-10.0 (C&T)	December 14, 2005	31 H Y	160 H L	52 L					
	December 14, 2005	30 H Y	100 H L	37 L					
B-32dup-10.0-10.5 B-32-14.5-15.0	December 14, 2005	3.9 H Y	53 H L	22 L					
B-33-4.5-5.0	December 15, 2005	<1.0	project (\$15), \$40						
B-33-9.5-10.0	December 15, 2005	<1.0		< 50					
B-33-14.5-15.0	December 15, 2005	<1.0		< 50					
B-34-4.5-5.0	December 14, 2005	250							
B-34-9.5-10.0	December 14, 2005	210	(**	< 50					
B-34-14.5-15.0	December 14, 2005	27	**	<50					
B-35-4.5-5.0	December 14, 2005	<1.1							
B-35-9.5-10.0	December 14, 2005	<1.0		<50					
B-35-14.5-15.0	December 14, 2005	< 0.92	(= <u>n</u>)	<50					
B-36-0.5-1.0	December 15, 2005				0.022				
B-36-4.5-5.0	December 15, 2005				< 0.012/ < 0.024				
B-37-4.5-5.0	December 15, 2005	<1.0							
B-37-9.5-10.0	December 15, 2005	<1.0		< 50					
3-37-14.5-15.0	December 15, 2005	<1.0	#	< 50					
3-38-9.5-10.0 (TEG)	December 14, 2005		< 10	58					
3-38-9.5-10.0 (C&T)	December 14, 2005		< 0.99	<4.9					
38dup-10.0-10.5	December 14, 2005		< 10	< 50					

Sample ID & Location	Date Sampled	TPH (gasoline range) C4-C12 RL = 0.1-10 mg/Kg	TPH (diesel range) C22-C23 RL=5 mg/Kg	TPH (oil range) C24-C40 RL=50 mg/Kg	PCB RL=0.002-0.050 mg/Kg	Arsenic RL=0.97-5 mg/Kg	Lead RL=5 mg/Kg	Nickel RL = 1 mg/Kg	Hexavalent Chromium RL=0.5 mg/Kg
B-38-14.5-15.0 (TEG)	December 14, 2005		11	<50					
B-38-14.5-15.0 (C&T)	December 14, 2005		<1.0	< 5.0					
B-39-4.5-5 0	December 12, 2005	21							
B-39-9.5-10.0	December 12, 2005	1,400							
B-39-14.5-15.0	December 12, 2005	8.8							
B-39-19.5-20.0	December 12, 2005	<1.0							
B-40-0 5-1 0	December 13, 1995					1,9			
B-40-4 5-5 0	December 13, 1995					5.7			
B-41-9.5-10.0	December 15, 2005	<1.0							
B-41-14.5-15.0	December 15, 2005	<1.0							
B-42-0 5-1.0	December 15, 2005		-	910 J					
B-42-4.5-5.0	December 15, 2005		-	78 J					
B-43-0.5-1.0	December 15, 2005		_	1,600					
B-43-4.5-5.0	December 15, 2005		44	< 50					
B-44-0-5-1.0 (01/01/06)	December 15, 2005		170 J	1200 J					
B-44-0.5-1.0 (12/22/06)	December 15, 2005		23 H	3,300					
B-44-4.5-5.0	December 15, 2005		27 J	58 LJ					
B-45-0.5-1.0	December 15, 2005		39	170 L					
B-45-4.5-5.0	December 15, 2005		<1.0	< 5.0					
B-46-0.5-1.0	December 15, 2005		<1.0	7					
B-46-4.5-5 0	December 15, 2005		<1.0	< 5.0					
B-47-0.5-1.0	January 5, 2006				< 0.0097/ < 0.019				
B-47-4.5-5 0	January 5, 2006				0.021				
B-47-5.0-5.5DUP	January 5, 2006				0.070				
B-47-9.5-10.0	January 5, 2006				0.017				
B-48-0.5-1.0	January 5, 2006				< 9.5/ < 19				
B-48-4 5-5.0	January 5, 2006				1.1				
B-48-9.5-10.0	January 5, 2006				0.057				
B-49-0.5-1.0	January 5, 2006				15 q				
B-49-4.5-5.0	January 5, 2006				1.3				
B-49-5.0-5.5DUB	January 5, 2006				1.3				
B-49-9.5-10.0	January 5, 2006				0.190				
B-50-0.5-1.0	January 5, 2006				9				
B-50-4.5-5.0	January 5, 2006				1.400				
B-50-9.5-10.0	January 5, 2006				0.490				

Notes:

mg/Kg - milligrams per kilogram

μg/Kg - micrograms per kilogram

NA - Not analyzed for constituent

ND - Not detected at the indicated reporting limit

PCB - Polychlorinated Biphenyls

PEA - Preliminary Environmental Assessment

RL - Reporting limit

TPH - Total Petroleum Hydrocarbons

-- = Analysis not requested

H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard

L = Lighter hydrocarbons contributed to the quantitation

J = Estimated concentration

q = draft result - ending instrument QC not yet analyzed

Table 2
SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil
Proposed Charter School Site
1009 66th Avenue, Oakland, California

								1009 001	tii revenue,	Oakiano, C						SVOCs						
					VOC	Cs										3100						
Sample ID & Location	Date Sampled	Benzene RL = 2-200 µg/Kg	foluene RL = 2 µg/Kg	Ethylbenzene RL = 2-200 µg/Kg	Xylene RI. = 2-200 µg/Kg	MTBE RL = 2 µg/Kg	Isopropylbenzene RL = 2 µg/K8	Chlorobenzene RL = 2 µg/Kg	1,4-Dichlorobenzene RL = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	1-Methylnaphthalene RL = 250-2500 µg/Kg	Acenaphthylene RL = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene RL = 250-2500 µg/Kg	Phenanthrene RL = 250-2500 µg/Kg	Anthracene RL = 250-2500 µg/Kg	Fluoranthene R1 = 250-2500 µg/Kg	Pyrene RL = 250-2500 µg/Kg	Benzo(a)Anthracene RL = 250-2500 mg/Kg	Z Chrysene © RL = 250-2500 µg/Kg	Benzo(k)Fluoranthene RL = 250-2500 mg/Kg	Benzo(a)Pyrene RL = 250-2500 mg/Kg
	March-05	+								ND	ND	ND	ND	ND	924	ND	492	442	ND	ND	ND	ND
1A @ 0.5 PEA										ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
IA @ 5 PEA	March-05	1								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
IB @ 0.5 PEA	March-05		_							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IB @ 5 PEA	March-05	-					_			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IC @ 0.5 PEA	March-05						_			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IC @ 5 PEA	March-05						_		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A @ 0.5 PEA	March-05							_		-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A @ 5 PEA	March-05									.ND	ND			77,112	ND	ND	ND	ND	ND	ND	ND	ND
2A-2 @ 0.5 PEA	March-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2 @ 5 PEA	March-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,901	3,666	2.05	2,812	3.978	3.623
2A-2N(20') 0.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2N(20') 5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2N(20') 7.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,944	2,360	0.885	1,058	2.729	3.556
2A-2S(20') 0.5'	August 11, 2005	ND	ND	ND	10	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2S(20') 5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2S(20') 7.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	629	ND	507	0.711	0.865
2A-2E(20') 0.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2E(20') 5'	August 11, 2005	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2A-2E(20') 7.5'	August 11, 2005	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,228	3,105	1.799	2,330	4.71	4.184
2A-2W(20') 0.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
2A-2W(20') 5'	August 11, 2005	ND	ND_	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2A-2W(20') 7.5'	August 11, 2005	ND	ND			70,000	72,000	1	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.647	4.534
2B @ 0.5 PEA	March-05	NA	NA	NA	NA	NA	NA	NA	NA ND	ND	ND	ND	ND	ND	ND	ND	428	744	ND	4,045	3.982	3.160
2B @ 5 PEA	March-05	139	13	31	101	19	ND	ND ND	ND	5,357	2,762	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B @ 10 PEA	March-05	7,622	37,378	14,044	52,141	206	ND NA	NA NA	NA NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B @ 15 PEA	March-05	NA NE	NA ND	NA ND	NA ND	NA 22	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
2B @ 20 PEA	March-05	ND NA	ND NA	ND NA	ND NA	NA NA	NA.	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND		ND
2B @ 24 PEA	March-05	NA ND	NA ND		70	ND	ND	ND	ND	2,925	2,049	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
2B-N(20') 0.5'	August 11, 2005	ND 80	ND 2	6 ND	43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND
2B-N(20') 5'	August 11, 2005	15,989	131,071	50,655	178,481	ND	5,630	ND	ND	13,279	11,123	338	58	274	ND	ND	ND ND	ND ND	ND	ND	ND	ND
2B-N(20') 7.5' 2B-N(20') 10'	August 11, 2005 August 11, 2005	21,332	124,917	36,934	131,524	ND	3,644	ND	ND	3,699	4,290	ND	ND	ND	ND	ND	3,106	5,758	1.074	1,185	4.3	6.163
2B-S(20') 0.5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
2B-S(20') 5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2B-S(20') 7.5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,784	ND	21,940		16.162	20,080	35.126	48.390
2B-W(20') 0.5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B-W(20') 5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B-W(20') 7.5'	August 25, 2005	ND	ND	22	4	ND	4	ND	ND	ND 2.025	ND 1,880	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B-W(20') 10'	August 25, 2005	6,897	36,448	20,217	75,610	ND	1,993	ND	ND	3,035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B-N(37') 0.5'	August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1410	1,100	-								

Table 2
SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil
Proposed Charter School Site
1009 66th Avenue, Oakland, California

								1009 66t	h Avenue,	Oakland, C	California											
					voc	74			_							SVOCs						
Sample ID &		= 2-200 µg/Kg	uene = 2 µg/Kg	Ethylbenzene RL= 2-200 µg/Kg	lene = 2-200 µg/Kg	BE = 2 µg/Kg	opropylbenzene L = 2 μg/Kg	Chlorobenzene RL = 2 µg/Kg	4-Dichlorobenzene L = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	1-Methylnaphthalene RL = 250-2500 µg/Kg	Acenaphthylene RL = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene RL = 250-2500 µg/Kg	Phenanthrene RL = 250-2500 µg/Kg	Anthracene RL = 250-2500 µg/Kg	Fluoranthene RL = 250-2500 µg/Kg	Pyrene RL = 250-2500 µg/Kg	Benzo(a)Anthracene RL = 250-2500 mg/Kg	Chrysene RL = 250-2500 µg/Kg	Benzo(k)Fluoranthene RL = 250-2500 mg/Kg	Benzo(a)Pyrene RL = 250-2500 mg/Kg
Location	Date Sampled	Ber	15 A	显显	χ×	R R	8 5		7. 2	2 &	** CE	~ ~										
2B-N(37') 5'	August 25, 2005	338	248	103	258	369	4	ND	ND ND	9,124	4,420	ND	ND	ND	2,967	2,713	ND	5,390	ND	ND	ND	ND ND
2B-N(37') 7.5'	August 25, 2005	4,491	56,239	32,215	114,565	10,928	4,035 4,495	ND ND	ND	10,175	6,886	ND	ND	ND	3,815	3,566	ND	7,161	ND	ND ND	ND ND	ND
2B-N(37') 10'	August 25, 2005	21,876	114,263	40,696	137,722 762	5,422 4,439	13	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND			
2B-N(37') 15'	August 25, 2005	1,306	813	235		-				ND	ND	ND	ND	ND	377	ND	4,485	9,455	2.5	ND	15.919	9.525
2B2 @ 0.5 PEA	March-05	NA	NA	NA	NA	NA	NA ND	NA ND	NA ND	ND	ND	ND	ND	ND	666	ND	584	1,844	ND	ND	ND CO.542	ND 66 028
2B2 @ 3.5 PEA	March-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	46,416	59,680	32.864	46,152	63.542	66.928 0.729
2B2-N(20') 0.5'	August 25, 2005	2	7	ND	6	15	ND 1,851	ND	ND	2,430	1,556	ND	ND	ND	ND	ND	550	798	ND	631	0.504 ND	ND
2B2-N(20') 5'	August 25, 2005	7,682	49,063	19,817	73,228	3,357 12,897	5,550	ND	ND	5,656	4,008	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND
2B2-N(20') 7.5'	August 25, 2005	22,361	130,173	51,813	175,229 77,800	7,679	1,786	ND	ND	1,332	1,060	ND	ND	ND	ND	ND	ND	ND 6,890	2.122	3,458	7.05	8.341
2B2-N(20') 10'	August 25, 2005	9,106	45,812 ND	19,519 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	597	ND	2,734 ND	ND	ND	ND	ND	ND
2B2-S(20') 0.5'	August 25, 2005	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2B2-S(20') 5' 2B2-S(20') 7.5'	August 25, 2005 August 25, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
2B2-E(20') 0.5'	August 11, 2005	29	94	13	47	ND	ND	ND	ND	5,017	3,230	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2B2-E(20') 5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2B2-E(20') 7.5'	August 11, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				3,185	ND	ND	ND	ND	ND	ND	ND
2B-3 @ 5 PEA	March-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,103	ND	140	1,12				
2B-3 @ 15 PEA	March-05	ND	1,770	1,772	5,937	ND	ND	ND	ND			-			LITT.	NID	ND	ND	ND	ND	ND	ND
	March-05									ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2C @ 0.5 PEA 2C @ 5 PEA	March-05									ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
	March-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		12000	ND	ND
3A @ 0.5 PEA		ND	ND	, tu	1.00					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
3A @ 5 PEA	March-05	-								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3B @ 0.5 PEA	March-05	-					-	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
3B @ 5 PEA	March-05	_					+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3C @ 0.5 PEA	March-05						_	-	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3C @ 5 PEA	March-05						-		-			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4B @ 0.5 PEA	March-05								1	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4B @ 5 PEA	March-05						7.00	10	120	ND	IND	1.0		-								-
4B-S(20') 5'	August 23, 2005	ND	ND	ND	ND	ND	ND	12	128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4C @ 0.5 PEA	March-05								-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4C @ 5 PEA	March-05				-	-	-	1		TO TO THE	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5A @ 0.5 PEA	March-05	NA	NA	NA	NA	NA	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5A @ 5 PEA	March-05	NA	NA	NA	NA	NA	ND	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5C @ 0.5 PEA	March-05	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND ND	ND 4,702	ND	6,474	55,310	10,046	28,320	26,074	10.21	9,572	4.868	3.316
5C @ 5 PEA	March-05	NA	NA.	NA	NA	NA	ND	ND	ND	1,146	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND
5C-NE(4') 5'	August 24, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5C-SE(10') 5'	August 24, 2005	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5C-W(10') 5'	August 24, 2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0				-							

Table 2
SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil
Proposed Charter School Site
1009 66th Avenue, Oakland, California

								1009 661	n Avenue,	Oakland, C	Allivinia					SVOCs						
					VOC	Cs .									T	svocs						
Sample ID & Location	Date Sampled	Benzene RL = 2-200 µg/Kg	Toluene RL = 2 µg/Kg	Ethylbenzene RL= 2-200 µg/Kg	Xylene RL = 2-200 µg/Kg	MTBE RL = 2 µg/kg	Isopropylbenzene RL = 2 µg/Kg	Chlorobenzene RL = 2 µg/Kg	1,4-Dichlorobenzene RL = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	1-Methylnaphthalene RL = 250-2500 µg/Kg	Acenaphthylene RL = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene C RL = 250-2500 µg/Kg	Phenanthrene CI RL = 250-2500 µg/Kg	Anthracene TRL = 250-2500 µg/Kg	Fluoranthene Fluor	Z Pyrene Et = 250-2500 µg/Kg	Benzo(a)Anthracene CRL = 250-2500 mg/Kg	Chrysene	Benzo(k)Fluoranthene Z RL = 250-2500 mg/Kg	Z Benzo(a)Pyrene RL = 250-2500 mg/Kg
6A @ 0.5 PEA	March-05									ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
6B @ 0.5 PEA	March-05							-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6C @ 0.5 PEA	March-05	7247	1 00	74	100	10	ND	ND	ND	ND	ND	ND	ND	ND	318	ND	ND	480	ND	ND	3.561	2.531
7B @ 5 PEA	March-05	ND	19	41	122	19	ND	ND	100	ND	ND	ND	ND	ND	382	ND	4,690	6,492	ND	ND	2.415	ND ND
7B-2 @ 3.5 PEA	March-05									ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7B-3 @ 5 PEA	March-05			-50	- F O	< 5.0																
Blank 12/12/05 (TEG)	December 12, 2005	< 5.0	< 5.0	<5.0	<5.0	<5.0													-			
Blank 12/13/05 (TEG)	December 13, 2005	< 5.0	< 5.0	<5.0	<5.0	<4.0																-0.077
Blank 12/13/05 (C&T)	December 13, 2005	<1.0	<1.0	<1.0	<1.0	<5.0	_		<340	< 67		< 67	<67	<67	<67	<67	<67	< 67	< 0.067	< 67	< 0.067	< 0.067
Blank 12/14/05 (TEG)	December 14, 2005	< 5.0	< 5.0	< 5.0	<5.0	<5.0		-	<340	<67		<67	<67	<67	<67	< 67	< 67	< 67	< 0.067	< 67	< 0.067	< 0.067
Blank 12/15/05 (TEG)	December 15, 2005	< 5.0	<5.0	<5.0	< 5.0	< 3.0			<17,000	<3,400		<3,400	<3,400	<3,400	<3,400	<3,400	<3,400	<3,400	< 3.4	<3,400	< 3.4	<3.4
SB-3-0.5-1.0	December 12, 2005				_				<330	<67		<67	< 67	<67	< 67	<67	<67	< 67	< 0.067	<67	< 0.067	< 0.067
SB-3-4.5-5.0	December 12, 2005			-					<660	<130		<130	< 130	<130	<130	<130	<130	<130	< 0.130	<130	< 0.130	< 0.130
SB-4-0.5-1.0	December 12, 2005							1	<340	<68		<68	<68	< 68	< 68	<68	< 68	<68	< 0.068	<68	< 0.068	< 0.068
SB-4-0.5-1.0 dup	December 12, 2005						_		<330	<67		< 67	<67	<67	<67	< 67	< 67	< 67	< 0.067	<67	< 0.067	< 0.067
SB-4-4.5-5.0	December 12, 2005	1000			440	<5.0		1	1,000												_	
SB-6-4.5-5.0	December 13, 1995	< 5.0	< 5.0	< 5.0	45,000	<5.0		1													-	
SB-6-9.5-10.0	December 12, 2005	< 5.0	< 5.0	1,000		<5.0												-	-			
SB-6-14.5-15.0	December 12, 2005	4,600	1,300	3,900	20,000	37	_	_											_		-	
SB-7-5.0-5.25	December 12, 2005	20	<5.0	14	43	28		-													-	
SB-7-dup-5.25-5.55	December 12, 2005	18	< 5.0	13	48	<5.0													-	-	-	
SB-7-9.5-10.0	December 12, 2005	1,600	14,000	22,000	110,000	<5.0															-	_
SB-7-14.5-15.0	December 12, 2005	3,000	420	990	5,100 320	<5.0													_	-		_
SB-8-4.5-5.0	December 12, 2005	< 5.0	89	2,100	2,700	<5.0	1													-		-
SB-8-9.5-10.0	December 12, 2005	230	< 5.0	44,000	225,000	<5.0	1										-	-	-	-	-	-
SB-8-14.5-15.0	December 12, 2005	10,000	89,000 <5.0	<5.0	190	<5.0													-	-		-
SB-8-19.5-20.0	December 12, 2005	< 5.0		2,900	5,000	1,400													+	-	-	_
SB-9-4.5-5.0	December 12, 2005	2,300	<5.0 170,000	63,000	370,000	<5.0	1					1					-			+		1
SB-9-9.5-10.0	December 12, 2005	72.000.00	19,000	6,200	36,000	2,600	1						-						+	-		1
SB-9-14.5-15.0	December 12, 2005	5,400	290	130	620	1,100											-	-		+	_	1
SB-9-19.5-20.0	December 12, 2005	<5.0 3,400	1,700	1,500	5,000	7,500										-		-	-	+		1
SB-10-4.5-5.0	December 12, 2005	5,800	72,000	59,000	370,000	3,200											-	-	-	+	+	1
SB-10-9.5-10.0	December 12, 2005	9,500	85,000	42,000	250,000	1,600										-	-	-	-	-		
SB-10-14.5-15.0	December 12, 2005	9,300	50,000	27,000	140,000	7,900										1000	7.023		- 244	<67	<67	<67
SB-10-19.5-20.0	December 12, 2005	500	1,300	1,100	4,600	1,300			<330	< 67		<67	<67	< 67	< 67	<67	< 67	<67	<67	<0/	(0)	207
SB-11-5.0-5.5	December 12, 2005	36,000	140,000	110,000	400,000	32,000									-		-		-	1	1	
SB-11-9.5-10.0	December 12, 2005 December 12, 2005	12,000	54,000	31,000	190,000	51,000									-		4130	<130	<130	<130	<130	<130
SB-11-14.5-15.0 SB-13-0.5-1.0	December 12, 2005	12,000	54,000	21,000					<670	<130		<130	<130	<130	<130	<130	< 130	< 130	130	~150	130	7.50

Table 2 SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil Proposed Charter School Site 1009 66th Avenue, Oakland, California

										Ouklailo, C						SVOCs						
					voc	`s																
Sample ID &	Date Sampled	Benzene RL = 2-200 µg/Kg	oluene R = 2 µg/Kg	Ethylbenzene RL = 2-200 µg/Kg	Xylene RL = 2-200 µg/Kg	MTBE RL = 2 µg/Kg	Isopropylbenzene RL = 2 µg/Kg	Chlorobenzene RL = 2 µg/Kg	1,4-Dichlorobenzene RL = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	1-Methylnaphthalene RL = 250-2500 µg/Kg	Acenaphthylene RL = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene RL = 250-2500 µg/Kg	Phenanthrene RL = 250-2500 µg/Kg	Anthracene RL = 250-2500 µg/Kg	Fluoranthene RL = 250-2500 µg/Kg	Pyrene RL = 250-2500 µg/Kg	Benzo(a)Anthracene RL = 250-2500 mg/Kg	A Chrysene S RL = 250-2500 µg/Kg	Rt = 250-2500 mg/Kg	S RL = 250-2500 mg/Kg
		T was							< 330	<66		<66	<66	<66	<66	<66	<66 <13,000	<66 <13,000	<66 <13,000	<13,000	<13,000	<13,000
SB-13-4.5-5.0	December 12, 2005 December 12, 2005								<67,000	<13,000		<13,000	<13,000	<13,000	<13,000	<13,000 <66	<66	<66	<66	<66	<66	<66
SB-14-0.5-1.0	December 12, 2005								<330	<66		<66	<66	<66	<66	< 00	<00	V00	700			
SB-14-4.5-5.0	December 13, 1995	1.5	< 0.94	< 0.94	22.7	<3.8									_							
SB-17-4.5-5.0	December 13, 1995	1,200 CJ	6,600	4,600	25,600	<500																
SB-17dup-10.0-10.5 SB-17-9.5-10.0	December 13, 1995	1,200 CJ	4,500	5,900	28,200	< 500																
SB-17-14.5-15.0	December 13, 1995	800	4,200	1,300	8,700	< 500																
SB-17-14.5-15.0 SB-19-4.5-5.0	December 13, 1995	< 5.0	53	41	140	< 5.0																
SB-19-9.5-10.0	December 13, 1995	6,500	61,000	58,000	340,000	< 5.0						-										
SB-19-14.5-15.0	December 13, 1995	< 5.0	< 5.0	<5.0	110	< 5.0							-	- 277	< 67	<67	<67	<67	<67	<67	<67	<67
SB-20-0.5-1.0	December 14, 2005	1							<340	<67		<67	<67	<67	<68	<68	<68	< 68	<68	<68	< 68	< 68
SB-20-0.3-1.0 SB-20dup-1.0-1.5	December 14, 2005								<340	<68		< 68	<68	< 68	<67	<67	<67	<67	<67	<67	<67	<67
SB-20-4.5-5.0	December 14, 2005	< 5.0	27 J	27 J	59	< 5.0			<330	<67		<67	<67	<67	(6)	701	501					
SB-20dup-5.0-5.5	December 14, 2005	< 5.0	<5.0 J	<5.0 J	52	<5.0																
SB-20-9.5-10.0	December 14, 2005	4,300	7,700	11,000	65,000	< 5.0																
SB-20-14.5-15.0	December 14, 2005	< 5.0	29	29	60	< 5.0								<66	<66	<66	<66	<66	<66	< 66	<66	<66
SB-21-0.5-1.0	December 14, 2005								<330	< 66		< 66	<66	<67	<67	<67	<67	<67	<67	<67	<67	<67
SB-21-4.5-5.0	December 14, 2005	<5.0	25	69	300	< 5.0			<340	< 67		< 67	<67	(0)								
SB-21-9.5-10.0	December 14, 2005	4,600	< 5.0	24,000	140,000	< 5.0						_	-	-								
SB-21-14.5-15.0	December 14, 2005	< 5.0	< 5.0	< 5.0	250	< 5.0				_			-	+								
SB-22-4.5-5.0	December 14, 2005	< 5.0	< 5.0	< 5.0	41	< 5.0				_		-										
SB-22-9.5-10.0	December 14, 2005	< 5.0	88	< 5.0	200	< 5.0						-										
SB-22-14.5-15.0	December 14, 2005	< 5.0	< 5.0	< 5.0	36	< 5.0				-		-	-									
SB-22dup-15.0-15.5	December 14, 2005	< 5.0	< 5.0	< 5.0	37	< 5.0				-		<66	<66	<66	<66	<66	<66	< 66	<66	<66	< 66	<66
SB-24-0.5-1.0	December 12, 2005								<330	<66		_	<67	<67	<67	<67	< 67	<67	<67	< 67	<67	< 67
SB-24-4.5-5.0	December 12, 2005	< 0.85	< 0.85	< 0.85	< 0.85	< 3.4			<330	<67		<67	207	207								
SB-24-9.5-10.0	December 12, 2005	2,400 CJ	< 250	22,000	55,700	<1,000	_	-	-	-		+	-								-	
SB-24-14.5-15.0	December 12, 2005	370	11	5.3	29.8	<3.1	_	_	0.923.692.0		-	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	
SB-27-0.5-1.0	December 12, 2005								<8,300	<1,700	-	<1,700	<1,300		<1,300	<1,300	<1,300	<1,300	<1,300	<1,300	<1,300	
SB-27dup-1.0-1.5	December 12, 2005								<6,700	<1,300	-	<67	<67	<67	<67	<67	160	170	<67	100	86	69
SB-27-4.5-5.0	December 12, 2005								<340	< 67		<1,700	<1,700		<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	
SB-29-0.5-1.0	December 12, 2005								<8,300	<1,700	-	<66	<66	<66	<66	< 66	190	190	95	150	140	110
SB-29-4.5-5.0	December 12, 2005					1500 WEG		-	<330	< 66		700	1 100									
SB-32-4.5-5.0	December 14, 2005	<100	<100	< 100	< 100	<400			+	-	+	-										+
SB-32-9.5-10.0	December 14, 2005	<25	<25	<25	<25	<100	+	+	+	-												-
SB-32dup-10.0-10.5	December 14, 2005	<25	<25	<25	<25	<100	-	-	-		-											-
SB-32-14.5-15.0	December 14, 2005	< 0.97	< 0.97	< 0.97	< 0.97	<3.9	-	+	-	+												
SB-33-4.5-5.0	December 15, 2005	< 5.0	<5.0	< 5.0	< 5.0	<5.0	-	-	<340	< 68	1-	< 68	< 68	< 68	< 68	< 68	< 68	< 68	< 68	< 68	< 68	< 68
SB-33-9.5-10.0	December 15, 2005	< 5.0	< 5.0	< 5.0	32	< 5.0			< 340	< 00												1/24/2006

Table 2

SSI Analytical Results for Volatile and Semi-Volatile Organic Compounds in Soil

Proposed Charter School Site

1009 66th Avenue, Oakland, California

			SVOCs																			
					VOC	S																
Sample ID &	Date Sampled	Benzene RL = 2-200 µg/Kg	Toluene RL = 2 µg/Kg	Ethylbenzene RL = 2-200 µg/Kg	Xylene RL = 2-200 µg/Kg	MTBE RL = 2 µg/Kg	isopropylbenzene RL = 2 µg/Kg	Chlorobenzene RL = 2 µg/Kg	1,4-Dichlorobenzene RL = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	1-Methylnaphthalene RL = 250-2500 µg/Kg	Acenaphthylene Rt = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene RL = 250-2500 µg/Kg	Phenanthrene RL = 250-2500 µg/Kg	Anthracene RL = 250-2500 µg/Kg	Fluoranthene RL = 250-2500 µg/Kg	Pyrene RL = 256-2500 µg/Kg	Benzo(a)Anthracene RL = 250-2500 mg/Kg	Chrysene RL = 250-2500 µg/Kg	Benzo(k)Fluoranthene RL = 250-2500 mg/Kg	Benzo(a)Pyrene RL = 250-2500 mg/Kg
SB-33-14.5-15.0	December 15, 2005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0								_								
SB-34-4.5-5.0	December 14, 2005	< 5.0	< 5.0	< 5.0	130	< 5.0																
SB-34-9.5-10.0	December 14, 2005	< 5.0	< 5.0	< 5.0	54	< 5.0					_											
SB-34-14.5-15.0	December 14, 2005	< 5.0	28	< 5.0	42	< 5.0							_									
SB-35-4.5-5.0	December 14, 2005	< 5.3	< 5.3	<5.3	< 5.3	<21																
SB-35-9.5-10	December 14, 2005	< 5.2	< 5.2	< 5.2	< 5.2	<21																
SB-35-14.5-15.0	December 14, 2005	<4.6	<4.6	<4.6	<4.6	<18																
SB-37-4.5-5.0	December 15, 2005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0																
SB-37-9.5-10.0	December 15, 2005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0			_		_											-
SB-37-14.5-15.0	December 15, 2005	< 5.0	< 5.0	< 5.0	<5.0	< 5.0			+240	<67		< 67	<67	<67	<67	< 67	< 67	<67	< 67	<67	< 67	< 67
SB-38-9.5-10.0	December 14, 2005							_	<340 <330	<67		<67	< 67	<67	<67	< 67	<67	<67	<67	< 67	<67	< 67
SB-38-14.5-15.0	December 14, 2005							-	<330	V07	-											
SB-39-4.5-5.0	December 12, 2005	120	610	330	1,700	97		-														
SB-39-9.5-10.0	December 12, 2005	1,100	50,000	23,000	150,000	< 5.0		-		_												
SB-39-14.5-15.0	December 12, 2005	<5.0	110	< 5.0	300	< 5.0																-
SB-39-19.5-20.0	December 12, 2005	< 5.0	47	37	120	<5.0	_	-													+	+
SB-41-9.5-10.0	December 15, 2005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	-	-												-	+	-
SB-41-14.5-15.0	December 15, 2005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0			1								1					

NOTES:

mg/Kg - milligrams per kilogram μg/Kg - micrograms per kilogram

NA - Not analyzed for constituent

ND - Not detected at the indicated reporting limit

PEA - Preliminary Environmental Assessment

RL - Reporting limit

C = Presence confirmed, but RPD between columns exceeds 40%

q = draft result - ending instrument QC not yet analyzed

Table 3
SSI Analytical Results
for Selected Compounds in Groundwater
Proposed Charter School Site
1009 66th Avenue, Oakland, California

				VOC	s				TPH		PCBs		Arsenic				
Sample ID &		VOCs RL = 0.010-0.100 mg/L	Benzene RL = 0.5-25 μg/L	Toluene RL = 0.005-0.025 mg/L	nzene 005-0.025 mg/L	Xylene RL = 0.005-0.025 mg/L	MTBE RL = 0.005 mg/L	TPH (gasoline range) C7-C12 RL = 0.1 mg/L	TPH (diesel range) C10-C24 RL = 0.5 mg/L	TPH (oil range) C24-C40 RL = 1.0 mg/L	PCBs RL = 0.2 - 0.0098 mg/L	Naphthalene RL = 0.010-0.100 mg/L	1-Methylnaphthalene RL = 0.010-0.100 mg/L	Acenaphthylene RL = 0.010 mg/L	Acenaphthene RL = 0.010 mg/L	Fluorene RL = $0.010 \mu \text{g/L}$	
Location	Date Sampled August 11, 2005	7 1									0.0045						-
1A-N(42') GW1											0.0071						
1B-W(37') GW1	August 11, 2005 August 11, 2005	-									ND		_				
1C-W(68') GW1 1C-SW(20') GW2	August 24, 2005										ND						
10-311(20) 0112	ringus ari, accor									NID		ND	ND	ND	ND	ND	
2A-2W(4') GW1	August 12, 2005	ND	ND	ND	ND	ND		ND	ND	ND		1410	3120				
ER-ETT(4) OTT	· · · · · · · · · · · · · · · · · · ·								NID.	ND		2.365	487	ND	ND	ND	
2B-N(20') GW1	August 12, 2005	ND	28.496	29.456	4.719	15.529	ND	221.13	ND			0.293	57	ND	ND	ND	
2B-N(37') GW1	August 25, 2005	ND ¹	10.754	13.534	3.428	9.903	7.007	146.57	ND	ND		0.275					
2B-14(37) G 11 1	i i i garanti anti anti							2.450		NID		ND	ND	ND	ND	ND	
2B-2E(20') GW1	August 12, 2005	ND	ND	ND	ND	ND		ND	ND	ND		110	1.0				
								0.150	NID	ND		ND	ND	ND	ND	ND	
2C-E(10') GW1	August 12, 2005	ND	ND	0.004	5	14		0.160	ND	ND		-					
								ND	ND	ND		ND	ND	ND	ND	ND	
2C-W(20') GW2	August 24, 2005	ND	ND	ND	ND	ND		ND	ND	IND.				-			
					***	410	1.1	2.2	0.680 L Y	<0.3 J		0.013					
SB-19-GW	December 14, 2015		0.025	0.120	69	410 480	1.1	2.7	0.860 H L Y	0.430 J						-	
SB-19-GWDUP	December 14, 2015		0.034	0.150	88	480	1.1	2.7	0.000 11 2 1							-	-
			-0.005	*0.005	< 0.005	< 0.005	< 0.002	< 0.050	0.420 HJY	1.8 J		< 0.0098			-	-	+
SB-22-GW	December 15, 2005	_	< 0.005	<0.005	< 0.005	< 0.005	< 0.002	< 0.050	0.260 HJY	0.3 J		< 0.0099		-	_	_	-
SB-22-GWDUP	December 15, 2005	_	<0.005 <0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.050	0.560 HY	0.570 J		< 0.017	_			_	+
SB-33-GW	December 15, 2005	-	< 0.005	0.0059	< 0.50	1.1	< 0.002	< 0.050	0.570 HY	< 0.3		< 0.010			-		-
SB-35-GW	December 15, 2005 December 15, 2005		< 0.005	< 0.005	<.50	0.54	< 0.002	< 0.050	0.6 HY	< 0.3				-	-	-	1
SB-35-GWDUP	December 15, 2005		20,000									_	-	-			
SB-36-0.5-1.0	December 15, 2005										22						
SB-36-4.5-5.0	December 15, 2005										<12/<24		+	1			
30-30-4.3-3.0									0.000	0.420		1	-	1			
NW-1 S	December 27, 2005		< 0.005	< 0.005	< 0.005				0.320	0.420 <0.3			1				
NW-1 I	December 27, 2005		< 0.005	< 0.005	< 0.005		0.008	< 0.050	0.089	<0.3			1				
NW-1 D	December 27, 2005		< 0.005	< 0.005	< 0.005			< 0.050	<0.050 7.3	2.6							
NW-2 S	December 27, 2005		0.570	0.570	0.062	1.2	1.6	7	7.2 HLY	1.6 LY							
NW-2 I	December 27, 2005		2.2	24	2.1	8.6	120	120	0.820 HLY	0.530 LY							
NW-2 D	December 27, 2005		0.300	0.013	< 0.0025		1.6	1.4	0.820 HLY	0.870 LY							
NW-3 S	December 27, 2005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	₹0.030	0.570 1121	0.070.203			-				

				VOC	Cs				TPH		PCBs			Arsenic			
Sample ID & Location	Date Sampled	VOCs RL = 0.010-0.100 mg/L	Benzene RL = 0.5-25 <i>µg/</i> L	Toluene RL = 0.005-0.025 mg/L	Ethylbenzene RL = 0.005-0.025 mg/L	Xylene RL = 0.005-0.025 mg/L	MTBE RL = 0.005 mg/L	TPH (gasoline range) C7-C12 RL = 0.1 mg/L	TPH (diesel range) C10-C24 RL = 0.5 mg/L	TPH (oil range) C24-C40 RL = 1.0 mg/L	PCBs RL = 0.2 - 0.0098 mg/L	Naphthalene RL = 0.010-0.100 mg/L	1-Methylnaphthalene RL = 0.010-0.100 mg/L	Acenaphthylene RL = 0.010 mg/L	Acenaphthene RL = 0.010 mg/L	Fluorene RL = 0.010 µg/L	
VW-3 I	December 27, 2005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.050	0.095 Y	< 0.3		-	-				
VW-3 D	December 27, 2005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.050	0.910 HY	0.780 LY		-	-				
DUP-1 (NW-2D)	December 27, 2005		0.320	0.011	< 0.005	0.160	1.5	1.6	0.820	0.460		-	-				

Page 2 of 2

NOTES:

- 1. VOC Isopropylbenzene detected at 166.9 µg/L
- 2. Only SVOCs with detections are reported in this table; all other SVOCs ND.

mg/kg - milligrams per kilogram

μg/kg - micrograms per kilogram

ND - Not detected at the indicated reporting limit

PCB - Polychlorinated Biphenyls

PEA - Preliminary Environmental Assessment

RL - Reporting limit

SVOC - Semivolatile Organic Compound

TPH - Total Petroleum Hydrocarbons

VOC - Volatile Organic Compound

Y = Sample exhibits chromatographic pattern which does not resemble standard

L = Lighter hydrocarbons contributed to the quantitation

H = Heavier hydrocarbons contributed to the quantitation

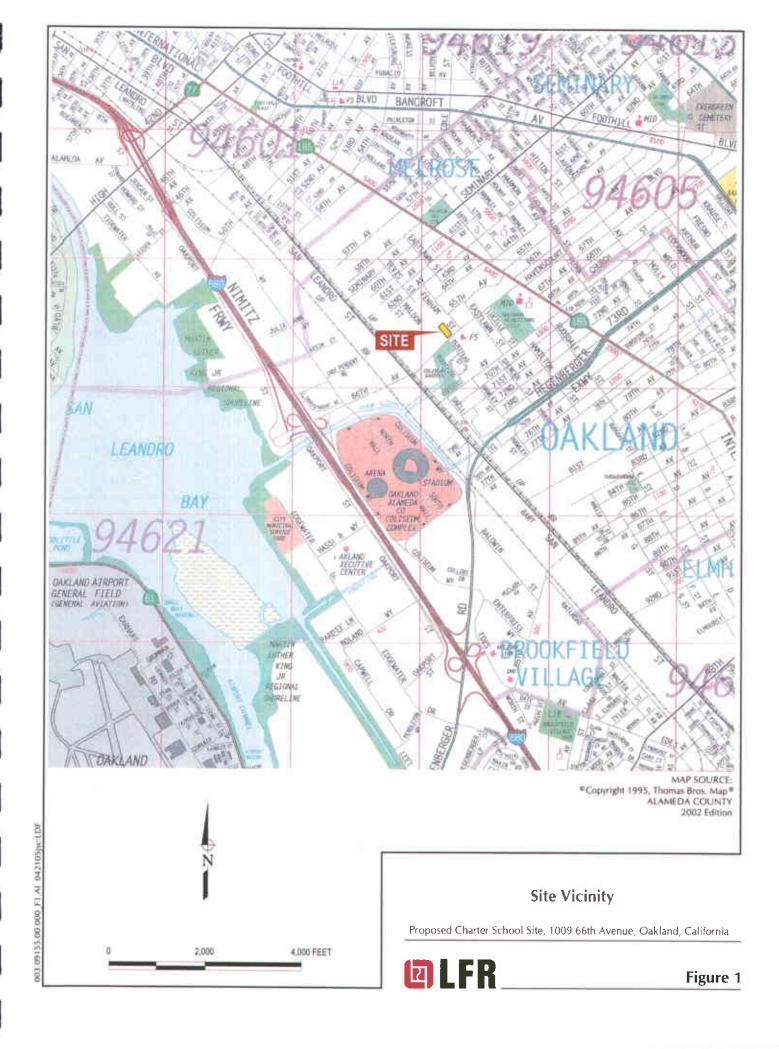
J = Estimated concentration

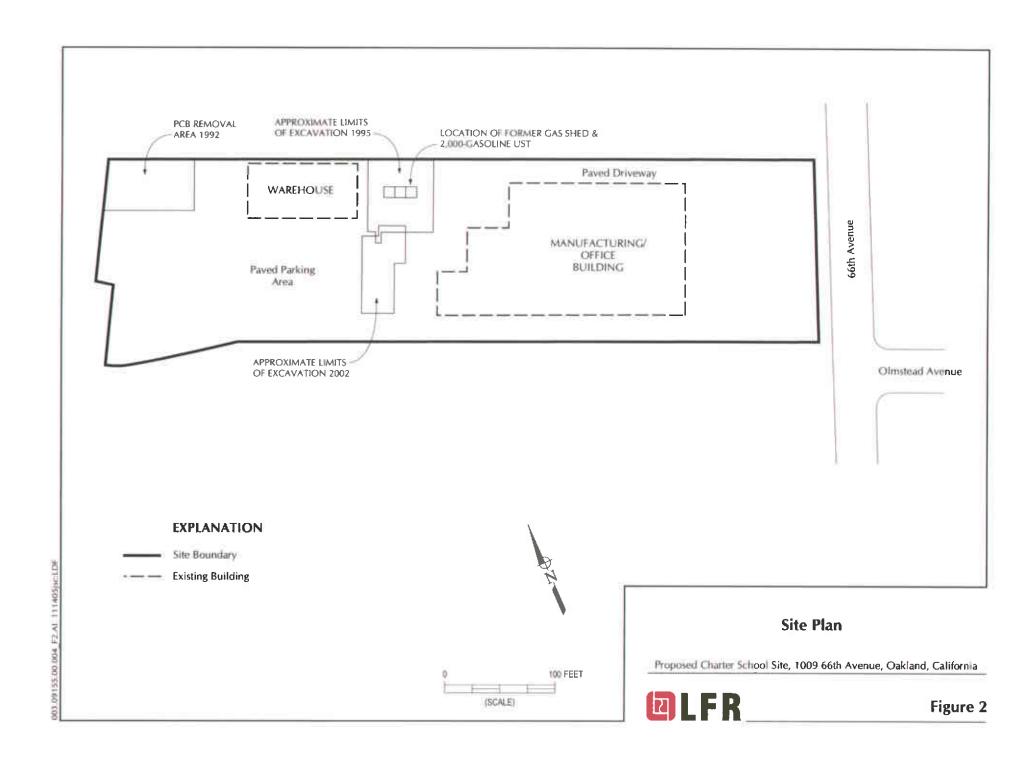
Table 4 SSI Analytical Results for Field Blanks Proposed Charter School Site 1009 66th Avenue, Oakland, California

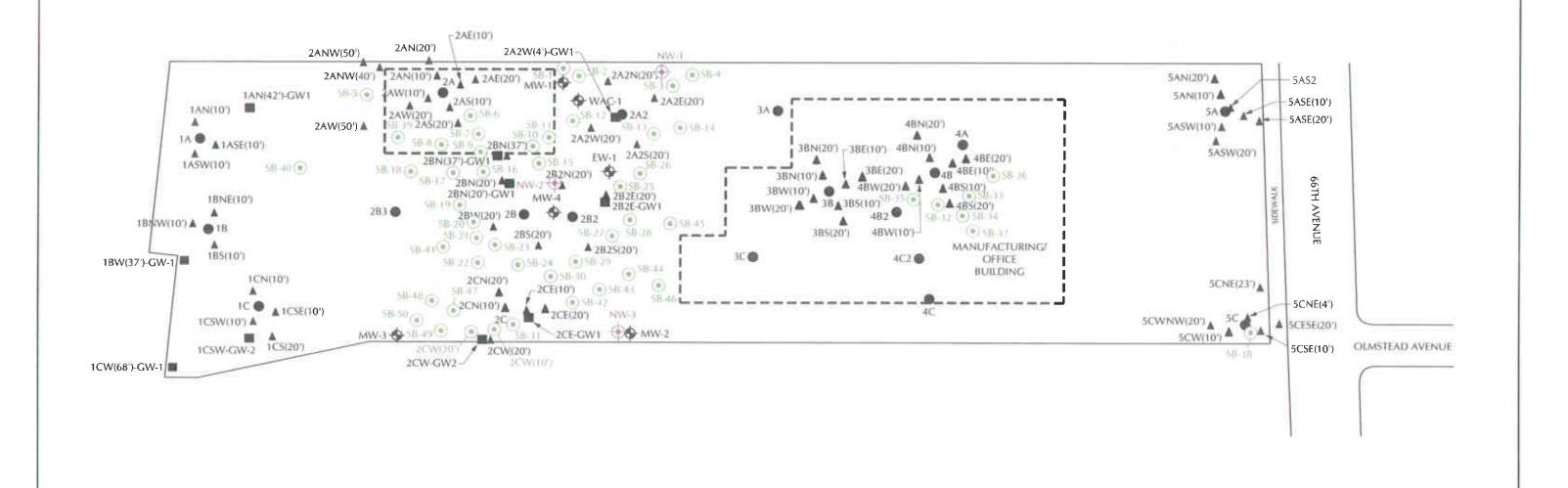
		_			r		VOCs						SVOCs											
Sample ID &	Date Sampled	TPH (gasoline range) C7-C12 R1 = 0.1 ug/l	TPH (diesel range) C10-C24 RL = 0.5 ug/L	TPH (oil range) C24-C40 RL = 1.0 ug/L	PCBs RL = 0.2 · 0.0098 mg/L	Arsenic RL = 5.0 ug/L	Benzene RL = 2-200 µg/Kg	Toluene RL = 2 µg/Kg	Ethylbenzene RL = 2-200 µg/Kg	Xylene RL = 2-200 µg/Kg	MTBE RL = 2 µg/Kg	Naphthalene RL = 250-2500 µg/Kg	Acenaphthylene RL = 250-2500 µg/Kg	Acenaphthene RL = 250-2500 µg/Kg	Fluorene RL = 250-2500 µg/Kg	Phenanthrene RL = 250-2500 µg/Kg	Anthracene RL = 250-2500 µg/Kg	Fluoranthene RL = 250-2500 µg/Kg	Pyrene RL = 250-2500 µg/Kg	Benzo(a)Anthracene RL = 250-2500 mg/Kg	Chrysene RL = 250-2500 µg/Kg	Benzo(k)Fluoranthene RL = 250-2500 mg/Kg	Benzo(a)Pyrene RL = 250-2500 mg/Kg	
Location	Date samples												-17	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	
FB121205	December 12, 2005	< 50			< 5.0		<.50	< .50	< .50	<.50	<2.0	<12	<12	<9.6	<9.6	<9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	
EB121205	December 12, 2005	<50			< 5.0		<.50	< .50	<.50	<.50	< 2.0	< 9.6	< 9.6	C9.0	27.0									
TB121205	December 12, 2005	< 50					< .50	<.50	< .50	<.50	<2.0													
FB121305	December 13, 2005	<50	75 Y	<300	<.49/<.98	< 5.0	<.50	<.50	<.50	<.50	<2.0													
EB121305	December 13, 2005		< 50	<300	<.5/<1.0	< 5.0	<.50	<.50	<.50	<.50	<2.0					-								
TB121305	December 13, 2005						<.50	<.50	<.50	<.50	<2.0													
			- 60	<300		<5.0	<.50	<.50	< .50	<.50	<2.0	< 9.5	< 9.5	< 9.5	< 9.5	< 9.5	<9.5	< 9.5	< 9.5	< 9.5	< 9.5	< 9.5	<9.5 <9.6	
FB121405	December 14, 2005	<50	<50 <50	<300		< 5.0	<.50	< .50	< .50	< .50	<2.0	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6	<9.6	< 9.6	₹9.0	
EB121505	December 14, 2005	<50 <50	< 30	<300			< .50	< .50	<.50	<.50	<2.0									-	-		_	
TB121405	December 14, 2005	< 30												5.5%		40.7	< 9.7	<9.7	<9.7	< 9.7	<9.7	<9.7	<9.7	
FB121505	December 15, 2005	< 50	53 HY	<300	<.48/<.96		<.50	<.50	<.50	< .50	< 2.0	< 9.7	<9.7	< 9.7	< 9.7	<9.7	<9.7	<9.7	< 9.7	<9.7	<9.7	< 9.7	< 9.7	
EB121505	December 15, 2005	<50	52 HY	< 300	<.48/<.96		<.50	<.50	<.50	< .50	<2.0	< 9.7	< 9.7	< 9.7	<9.7	<9.7	×9.1	- C2.1						
TB121505	December 15, 2005	< 50					<.50	<.50	<.50	<.50	<2.0													
	0.000		- FO	<300			<.50	<.50	<.50	<.50	<2.0								-	-		-	+-	
FB122705	December 27, 2005	<50 <50	<50 <50	<300			<.50	<.50	<.50	< .50	<2.0					-		-		-		+	+-	
EB122705	December 27, 2005	<50	< 30	V300			<.50	< .50	<.50	< .50	<2.0					-	-	-			-			
TB122705	December 27, 2005	<50					<.50	<.50	<.50	<.50	< 2.0					-	-	-	+	-				
TB2 122705	December 27, 2005	V.30																						
FB010506	January 3, 2006	< 50		<300	<0.47/<0.94				-		-	-	-	-						ļ				
EB010506	January 3, 2006	< 50		<300	<0.47/<0.94						-													

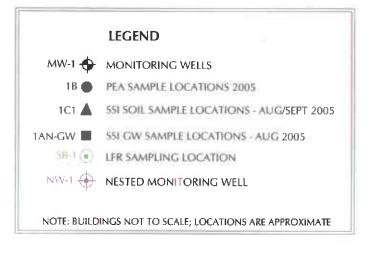
NOTES:

mg/Kg - milligrams per kilogram

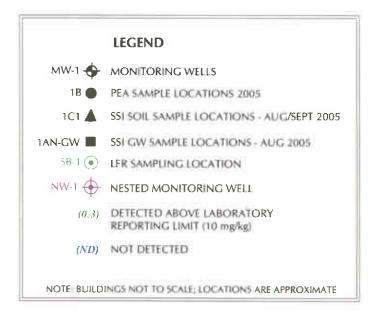

µg/Kg - micrograms per kilogram


NA - Not analyzed for constituent


RL - Reporting limit

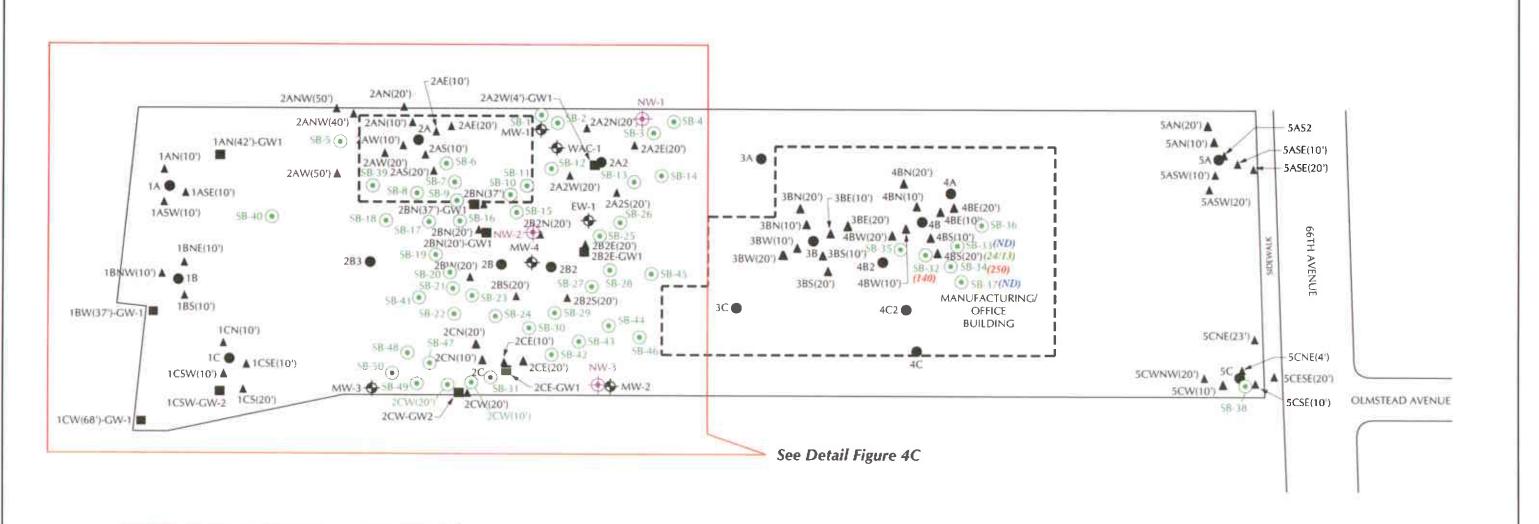

H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard

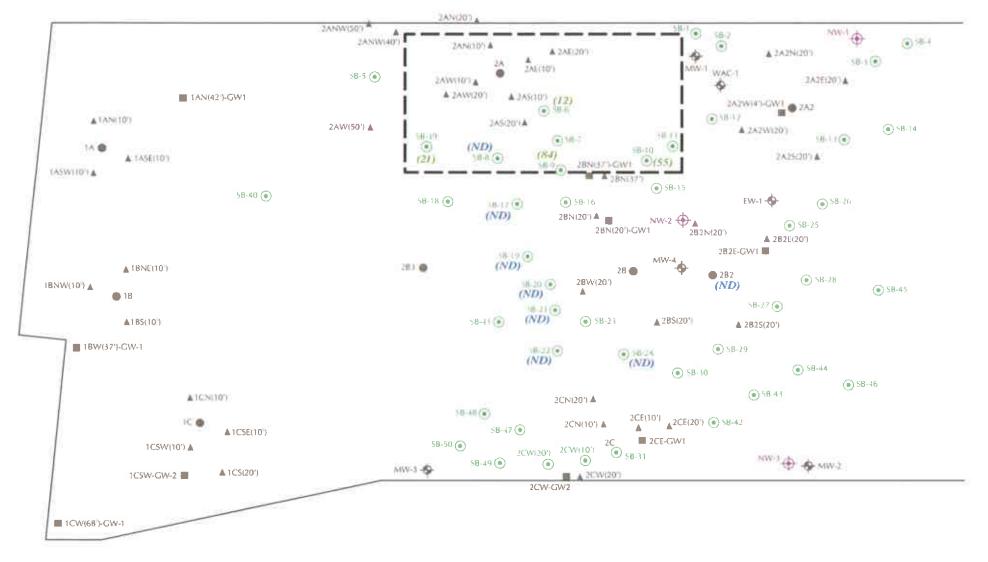


Site Plan with LFR SSI Sampling Locations

Proposed Charter School 5ite, 1009 66th Avenue, Oak and, Ca iforn a



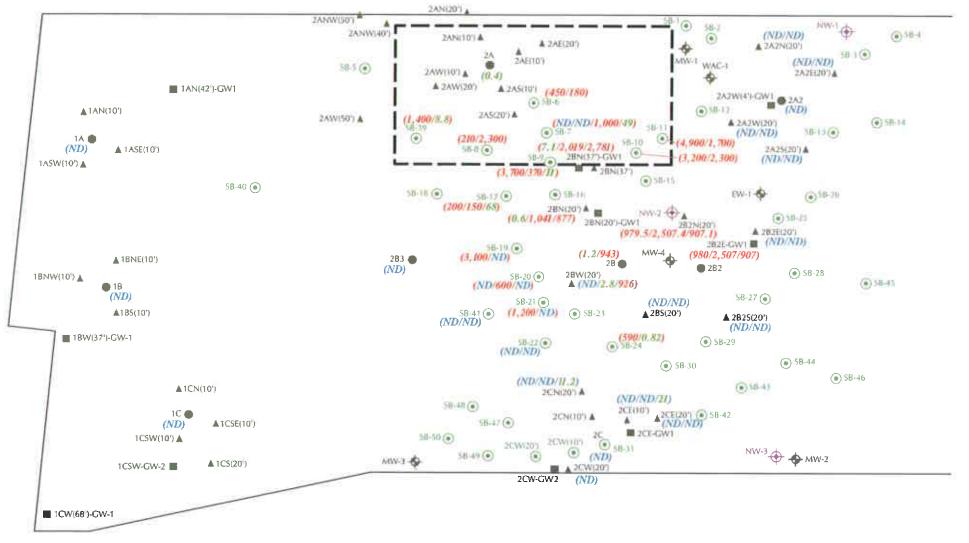
Gasoline-Affected Soil 0 - 1 Foot



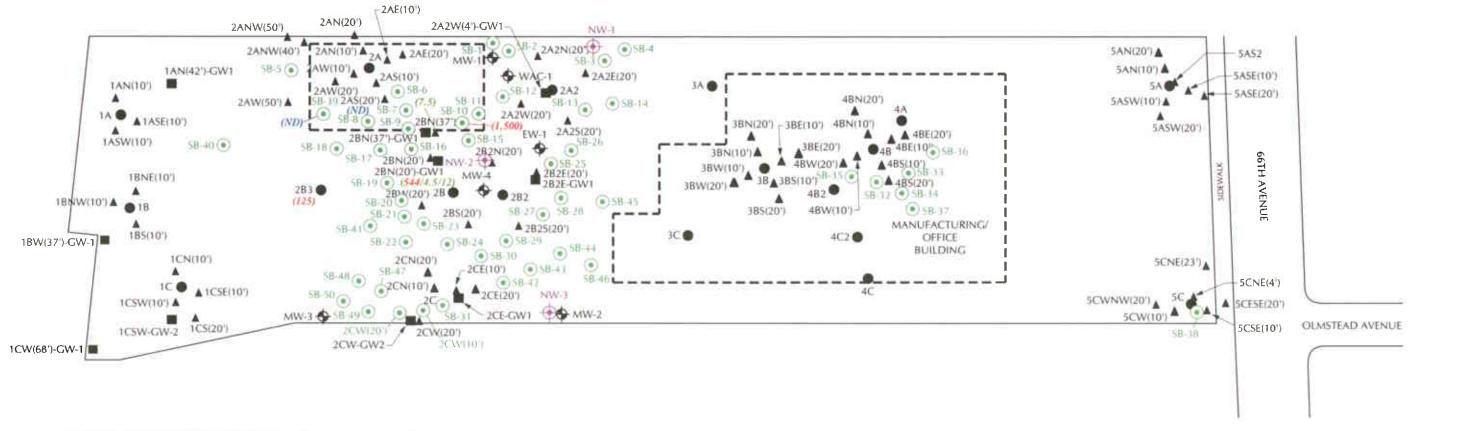
Gasoline-Affected Soil 1 - 5 Feet

(APPROXIMATE SCALE: 1" = 35")

Detail Gasoline-Affected Soil 1-5 Feet

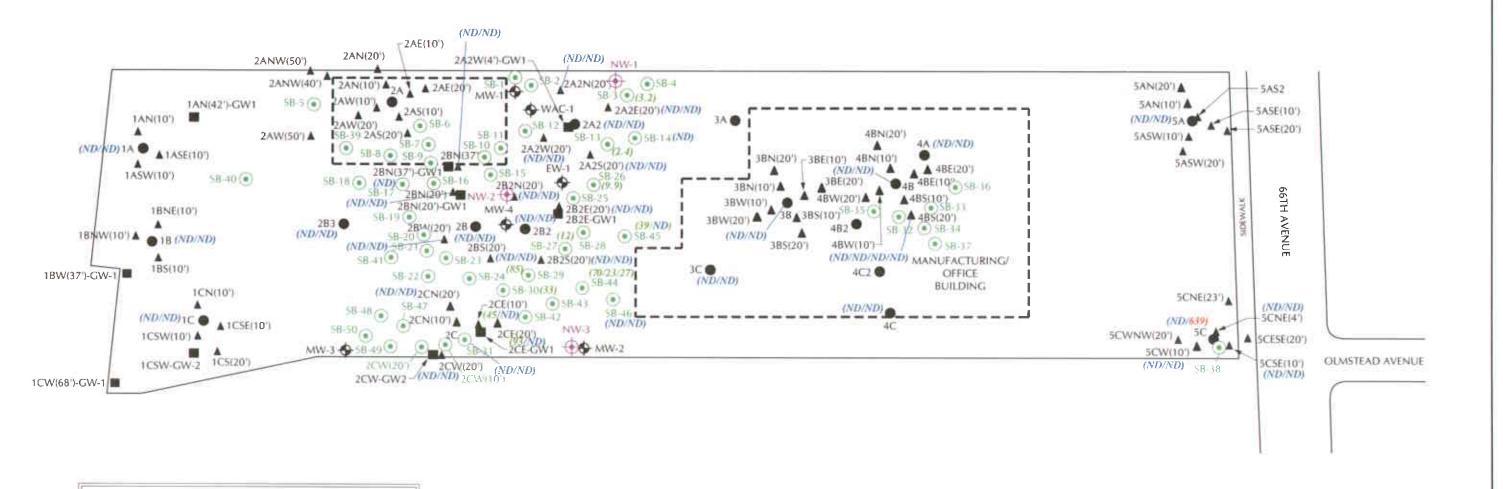


Gasoline-Affected Soil 5 - 15 Feet

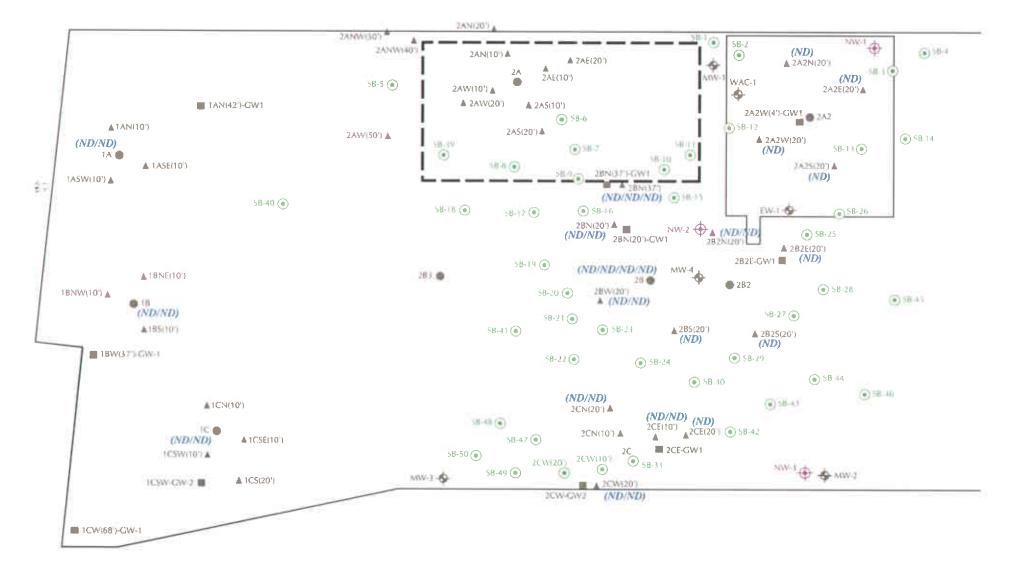


(APPROXIMATE SCALE: 1"=35")

Detail Gasoline-Affected Soil 5-15 Feet



Gasoline-Affected Soil 15 - 24 Feet



Diesel-Affected Soil 0 - 6 Feet

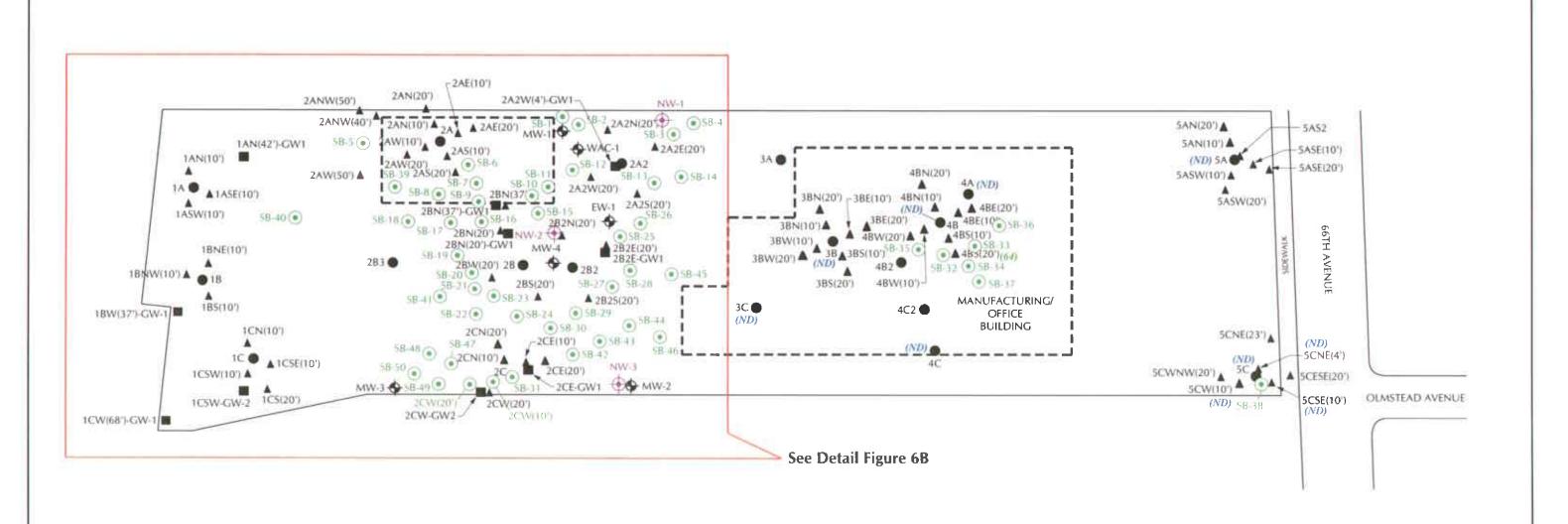
LEGEND MW-I MONITORING WELLS 1B PEA SAMPLE LOCATIONS 2005 TCT ▲ 55F5OIL SAMPLE LOCATIONS - AUG/SEPT 2005 IAN-GW SSI GW SAMPLE LOCATIONS - AUG 2005 SB-1 LFR PROPOSED SAMPLING LOCATION NW-1 NESTED MONITORING WELL ND NOT DETECTED ND/ND NOT DETECTED AT MULTIPLE DEPTHS NOTE: BUILDINGS NOT TO SCALE: LOCATIONS ARE APPROXIMATE

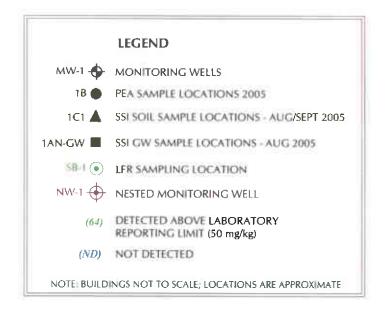
NOT DEPICTED, SAMPLE NOS. 485(20") AND SB-38 LOCATED EAST-OFF MAP:

4B5(20') 9.5'-10.0' = 79 mg/kg 14.5'-15.0' - 1,200 mg/kg 5B-38 9.5'-10.0' = NO

NOT DEPICTED, SAMPLE NO. 58-32 LOCATED 10' SOUTHWEST OF 485(20'):

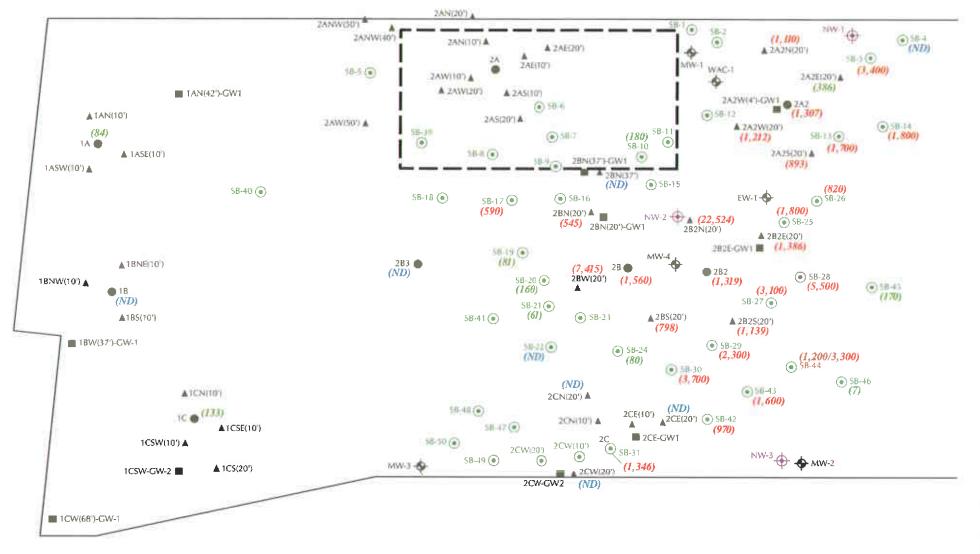
SB-32 9.5'-10.0' = 160 mg/kg 14.5'-15.0' = 53 mg/kg


Detail Diesel-Affected Soil 6-24 Feet

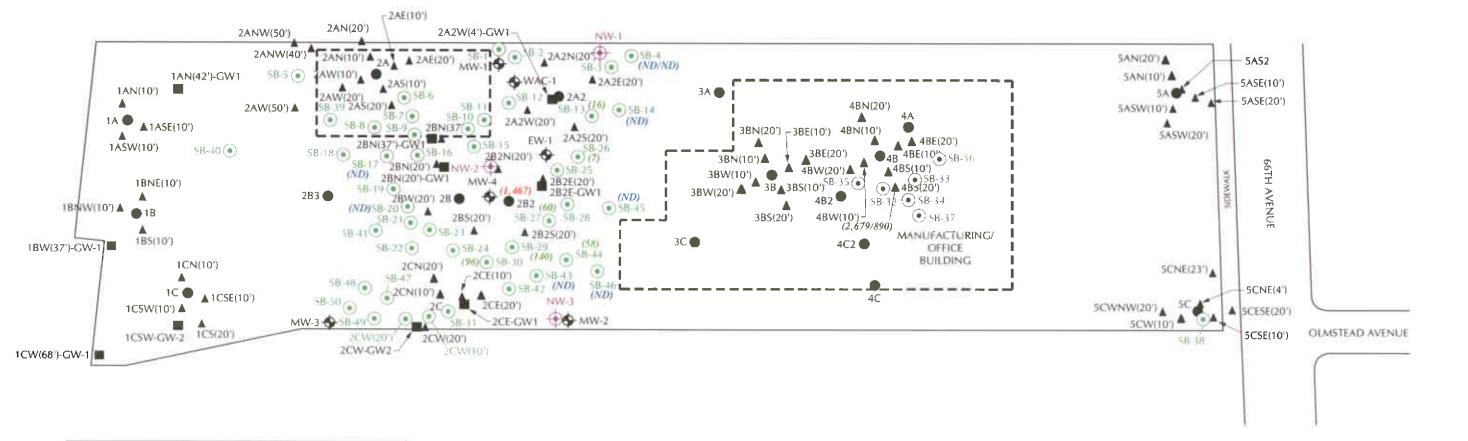

Proposed Charter School Site, 1009 66th Avenue, Oakland, California

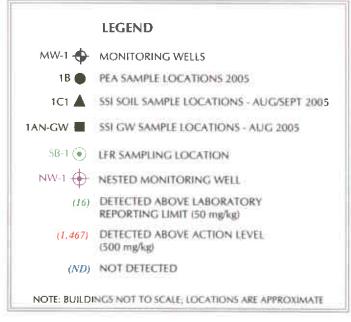
35 FEET

(APPROXIMATE SCALE: 1"=35")



Motor Oil-Affected Soil 0 - 1 Foot

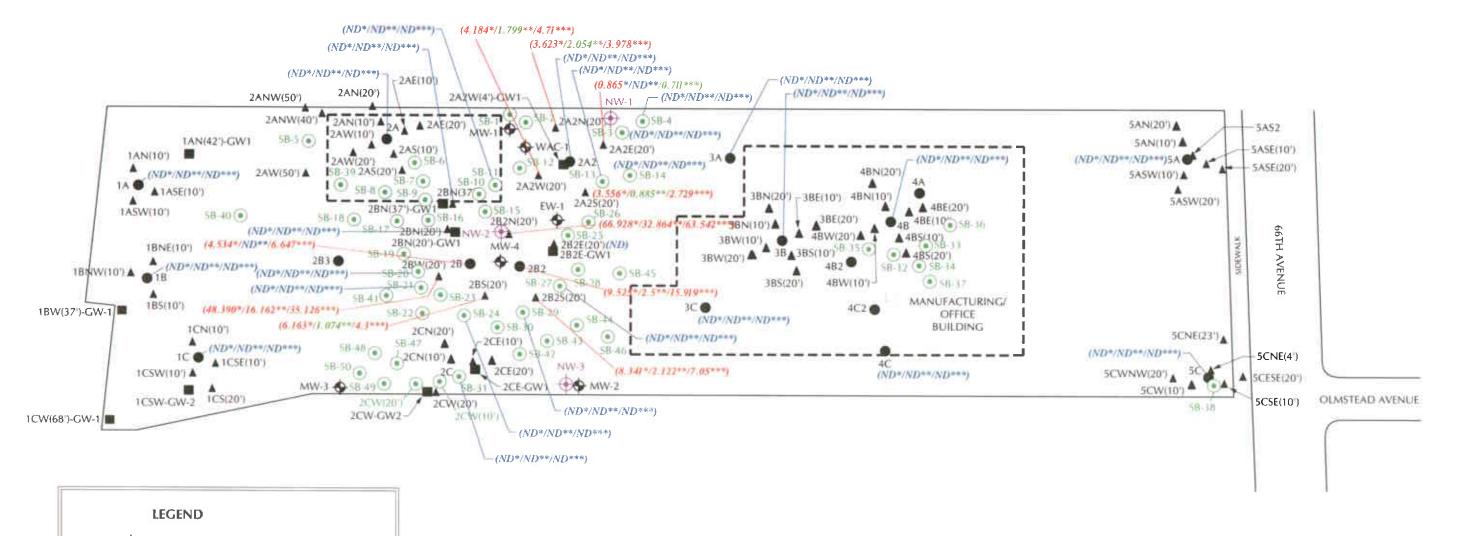

Detail Motor Oil-Affected Soil 0-1 Foot


Proposed Charter School Site, 1009 66th Avenue, Oakland, California

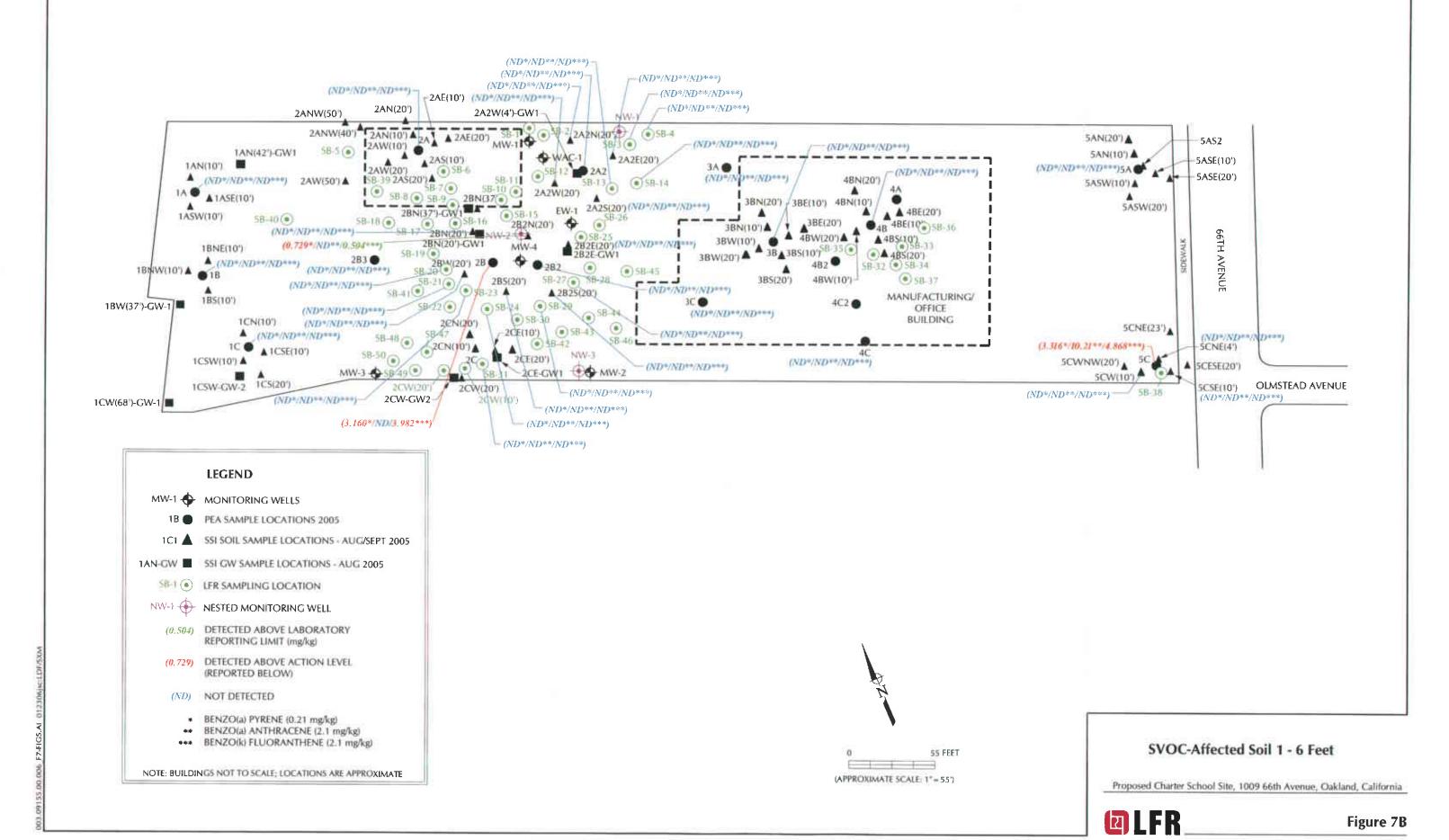
35 FEET

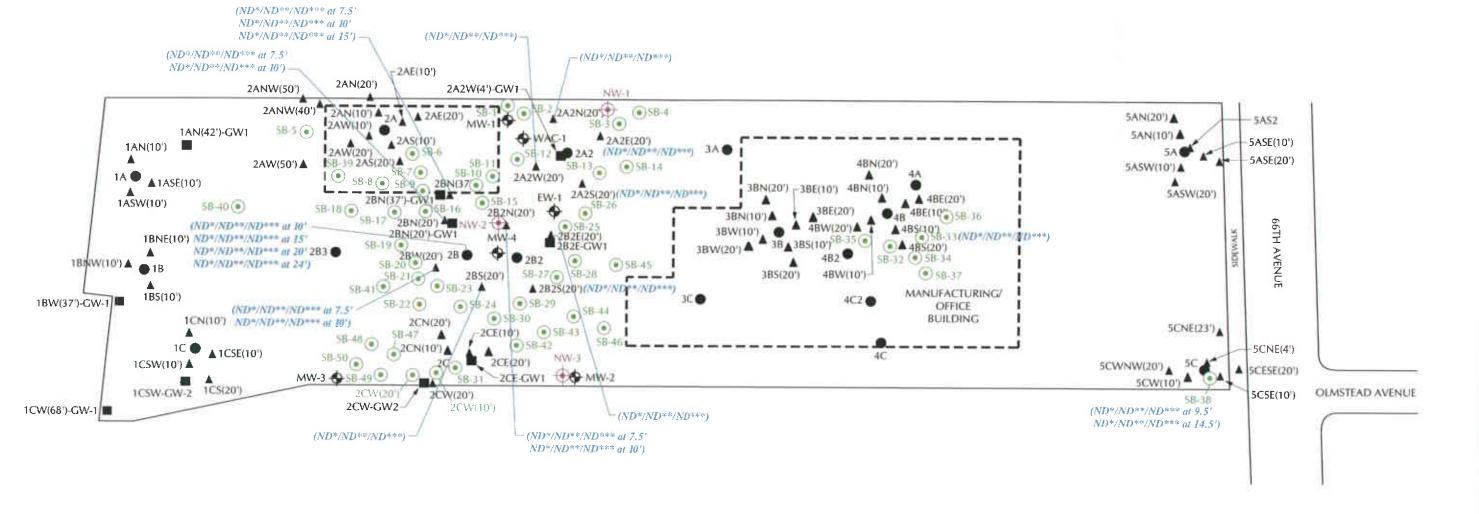
(APPROXIMATE SCALE: 1"=35")

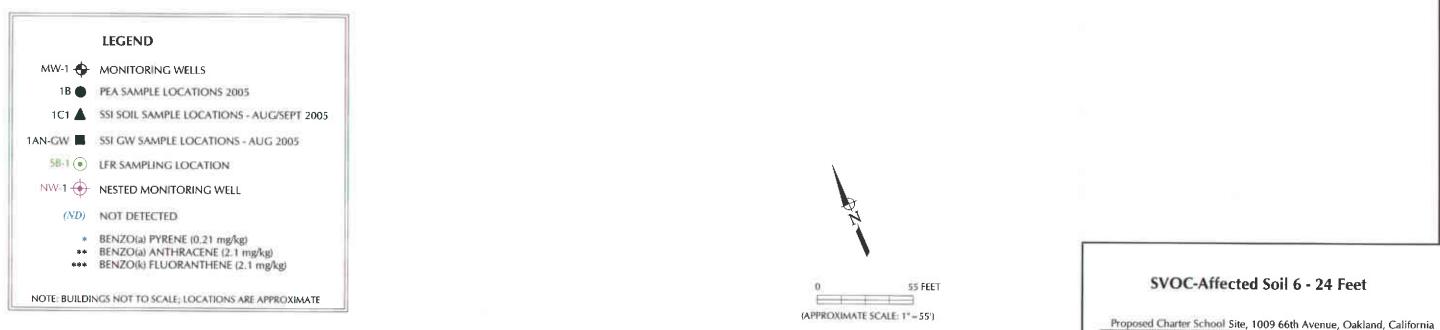
Motor Oil-Affected Soil 1 - 5 Feet



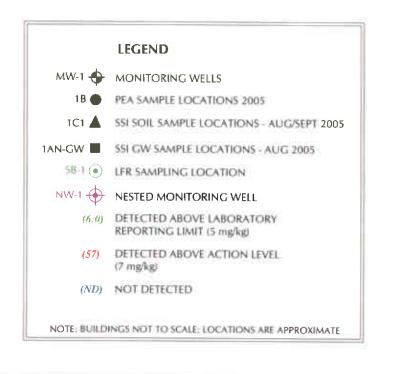
Motor Oil-Affected Soil 5 - 24 Feet

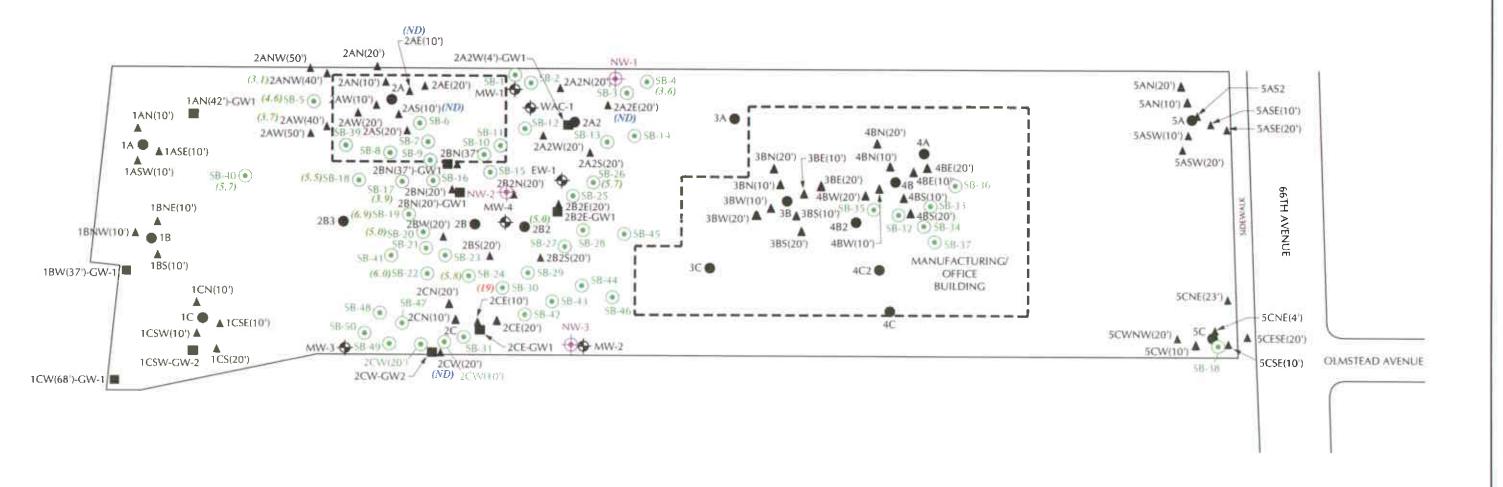




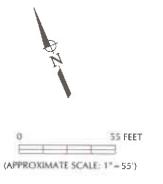


SVOC-Affected Soil 0 - 1 Foot



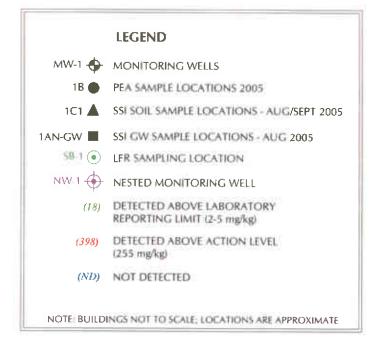

LFR

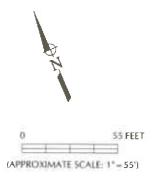
Arsenic-Affected Soil 0 - 1 Foot



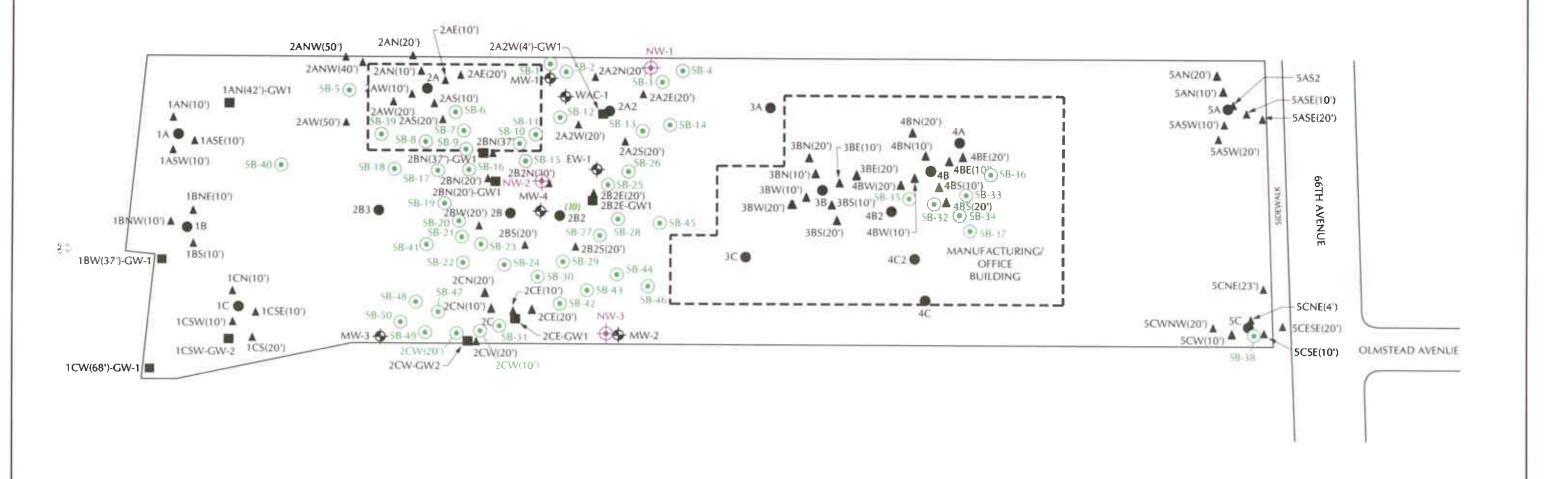
Arsenic-Affected Soil 1 - 5 Feet

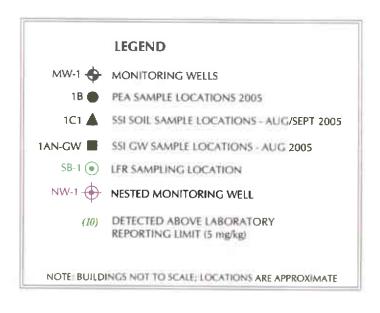
Arsenic-Affected Soil 5 - 15 Feet

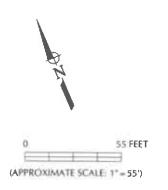




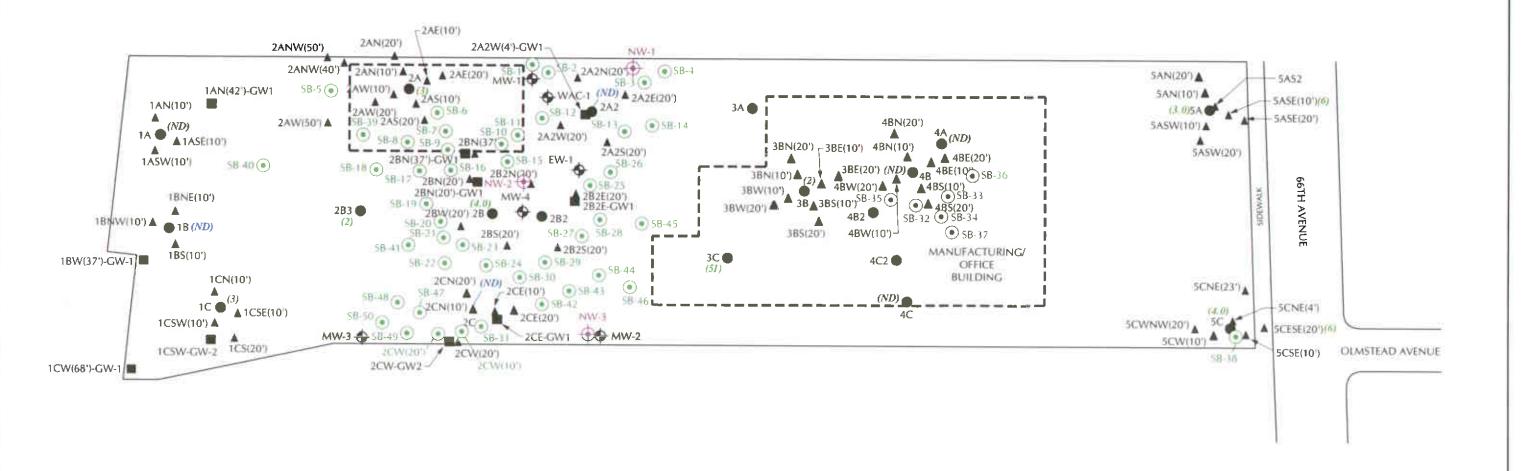
Arsenic-Affected Soil 15 - 24 Feet





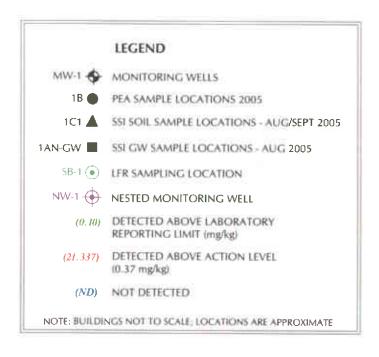


Lead-Affected Soil 0 - 1 Foot

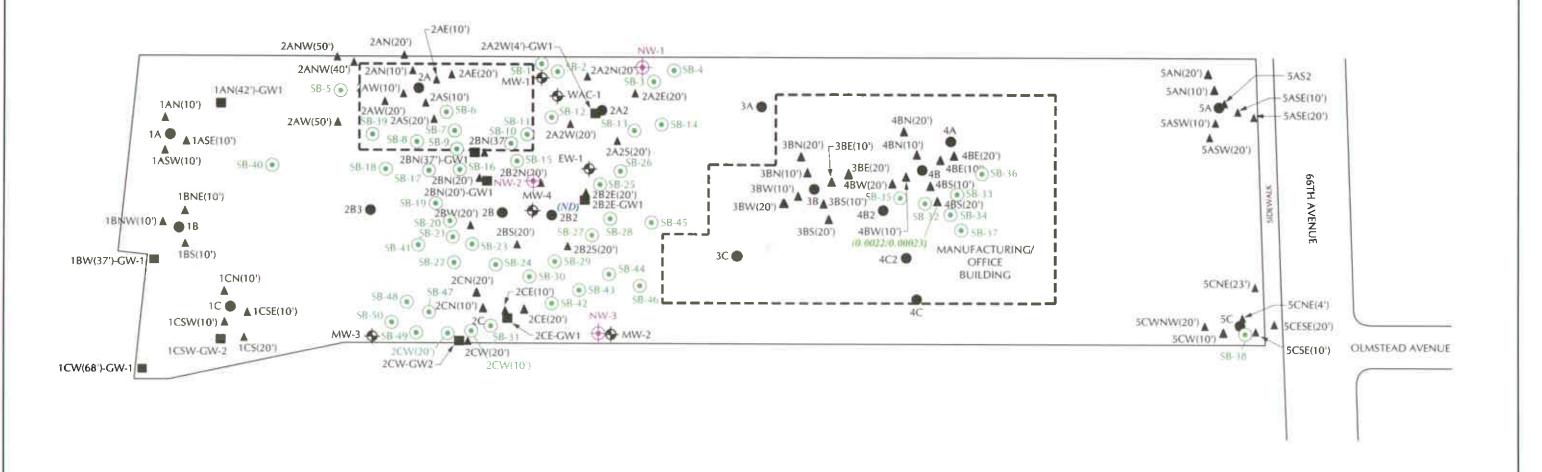


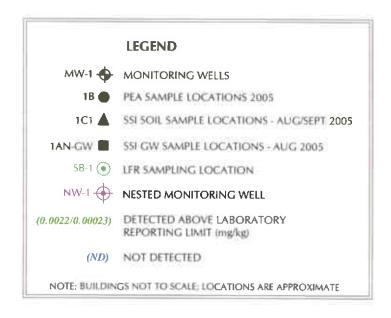
Lead-Affected Soil 1 - 5 Feet

Lead-Affected Soil 5 - 10 Feet



Lead-Affected Soil 10 - 24 Feet

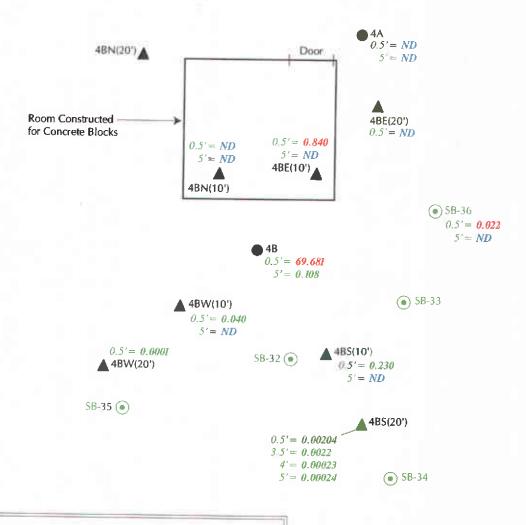


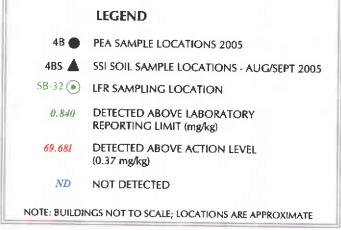

PCB-Affected Soil 0 - 1 Foot

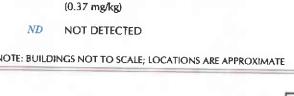
Proposed Charter School Site, 1009 66th Avenue, Oakland, California

Figure 10A

PCB-Affected Soil 1 - 5 Feet






PCB-Affected Soil at 5-24 Feet

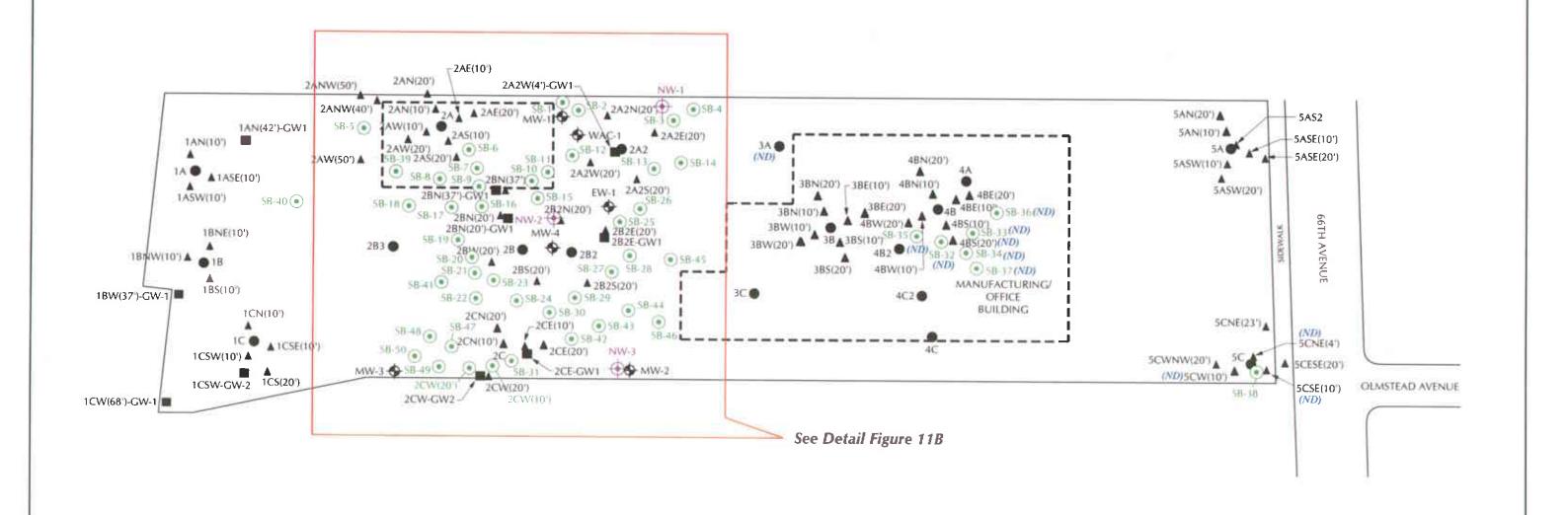
● SB-37

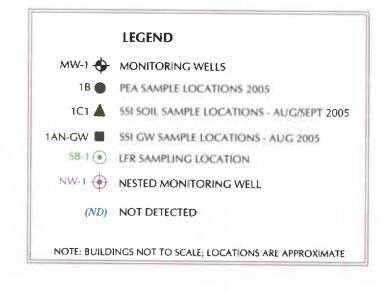
10 FEET

(APPROXIMATE SCALE: 1" = 10")

Detail PCB-Affected Soil Manufacturing/Office Building

Proposed Charter School Site, 1009 66th Avenue, Oakland, California

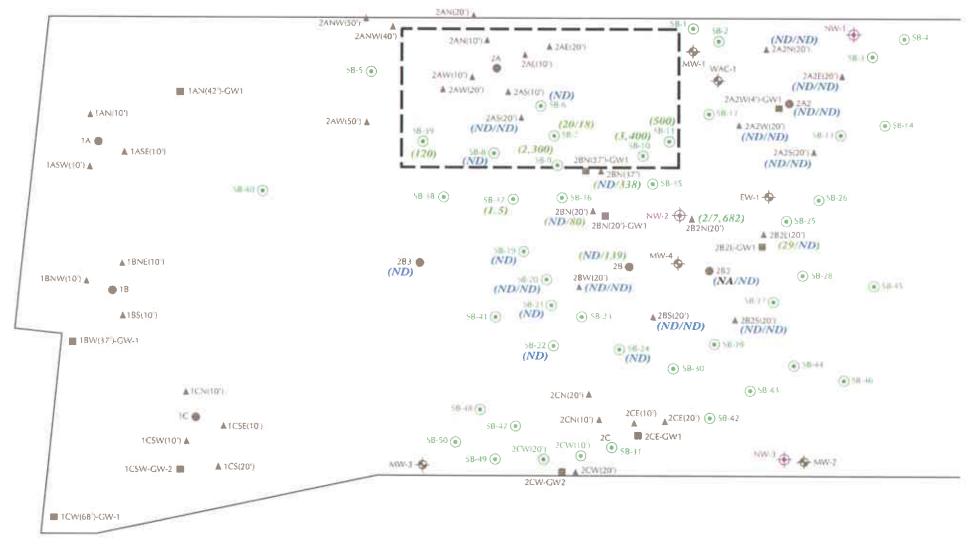

Figure 10D


(APPROXIMATE SCALE: 1" = 16')

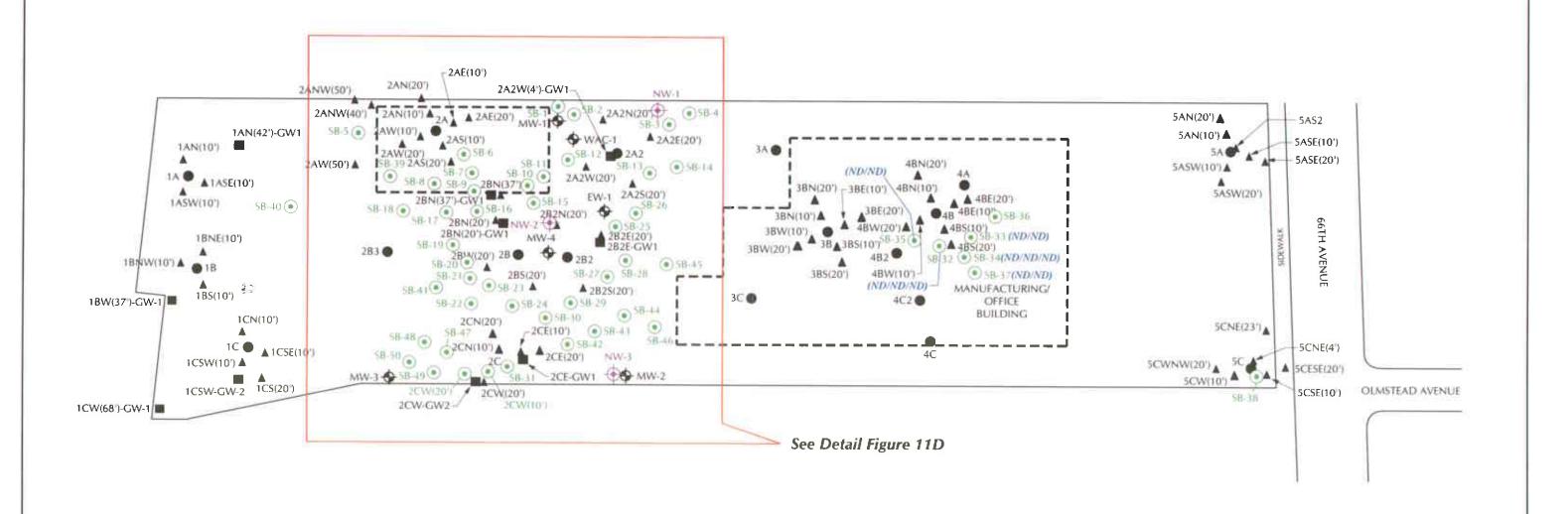
DLFR

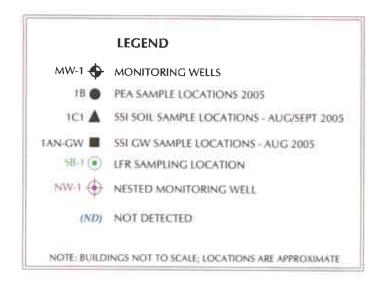
Figure 10E

NOTE: BUILDINGS NOT TO SCALE; LOCATIONS ARE APPROXIMATE



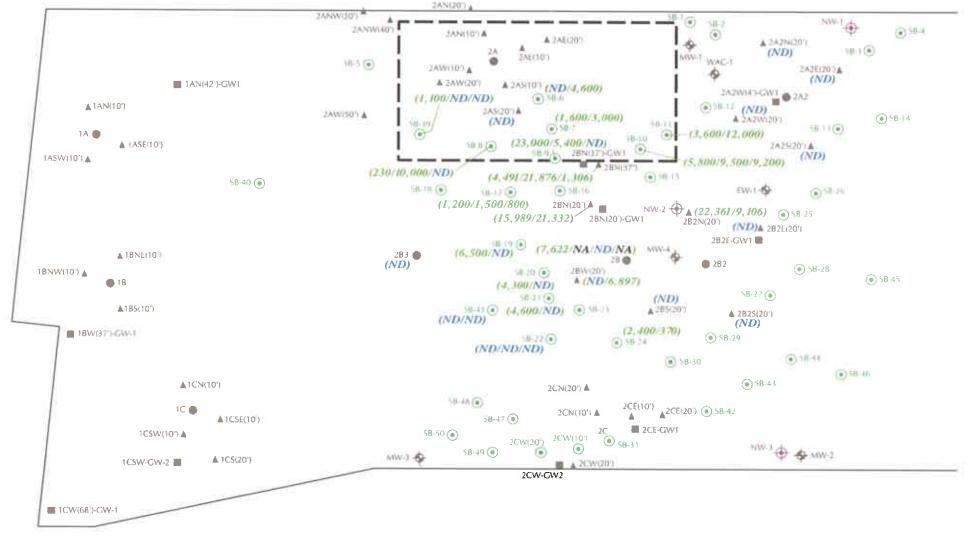
Benzene-Affected Soil 0 - 6 Feet


Detail Benzene-Affected Soil 0-6 Feet

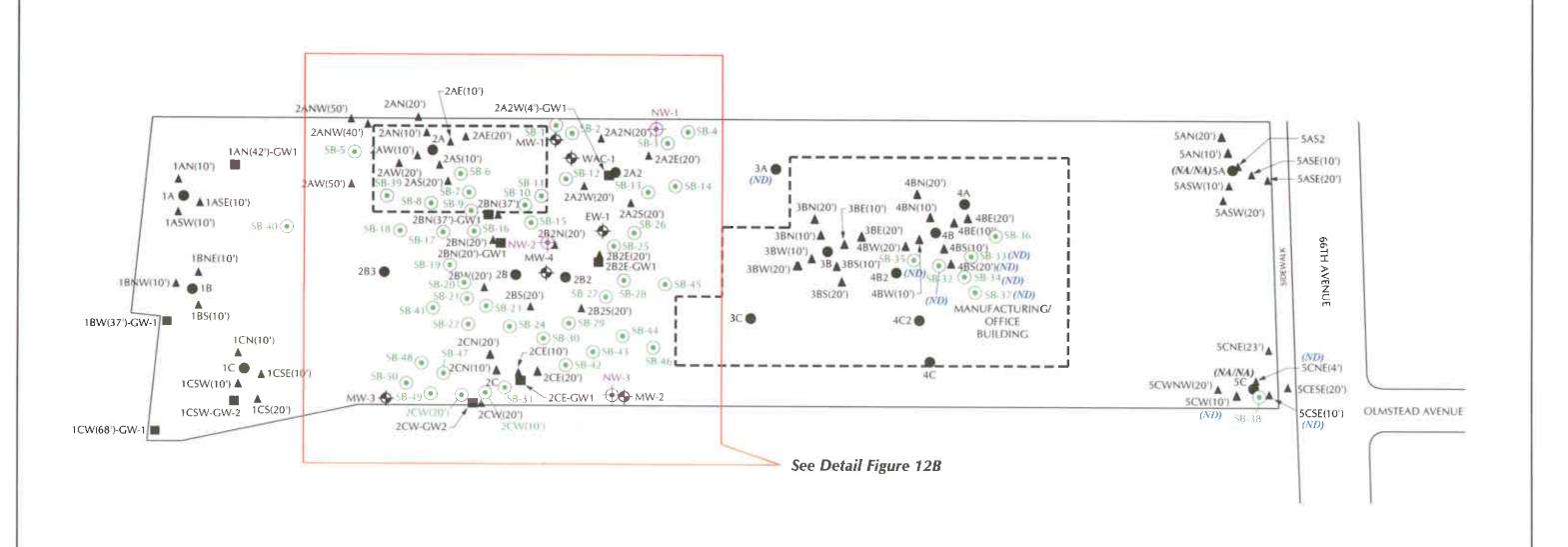

Proposed Charter School Site, 1009 66th Avenue, Oakland, California

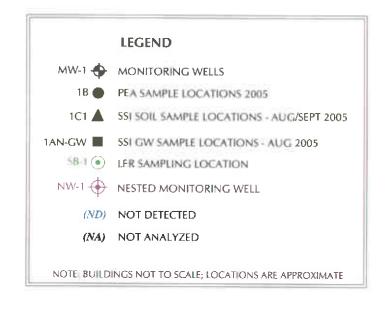
35 FEET

(APPROXIMATE SCALE: 1"-35")



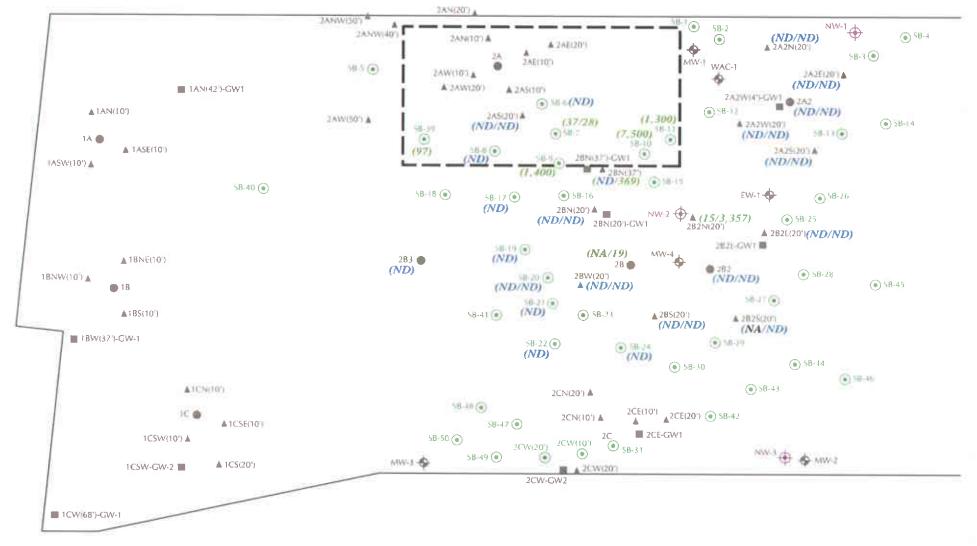
Benzene-Affected Soil 6 - 24 Feet



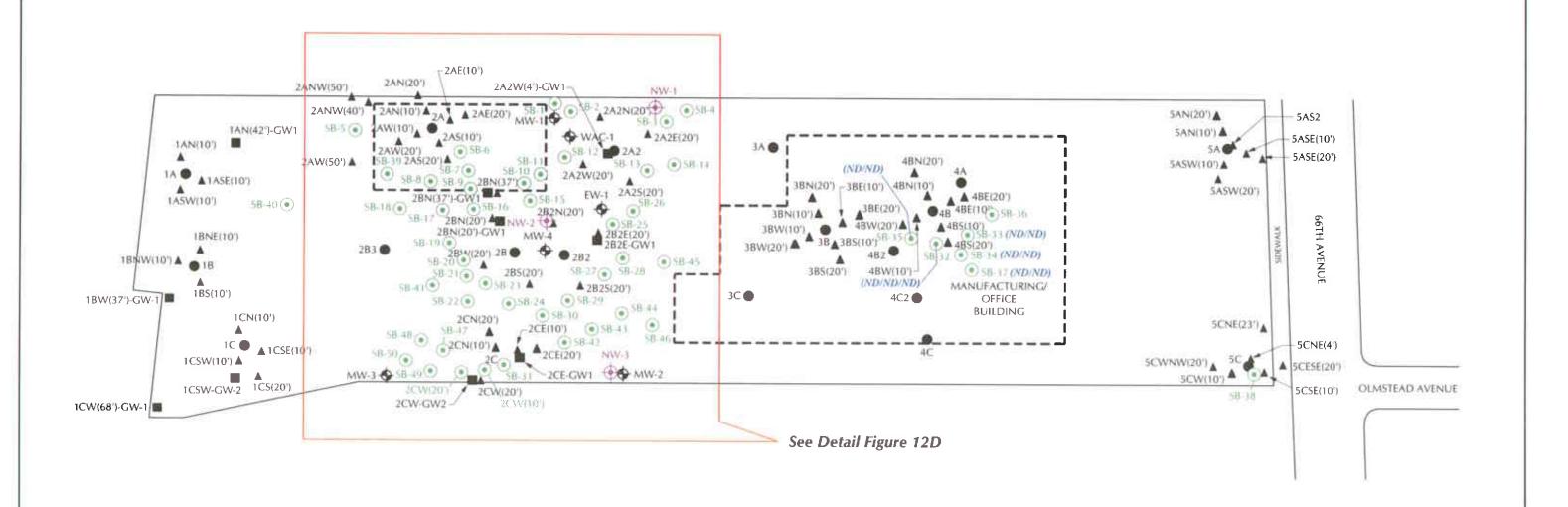

0 35 FEET

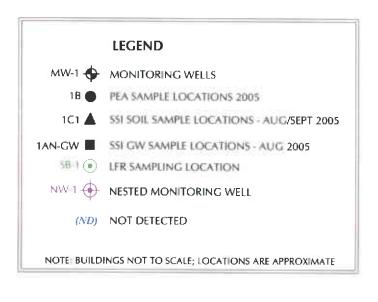
(APPROXIMATE SCALE: 1" = 35")

Detail Benzene-Affected Soil 6-24 Feet



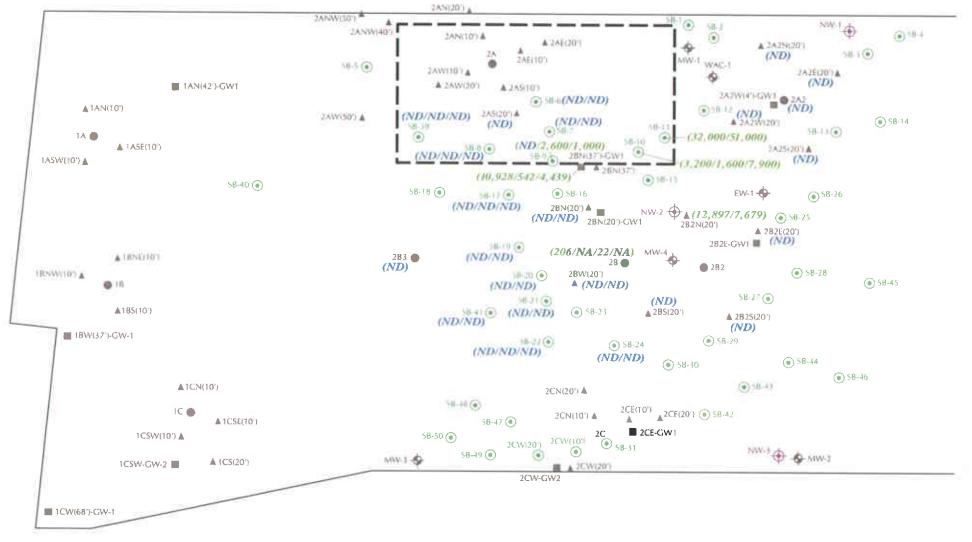
MTBE-Affected Soil 0 - 6 Feet



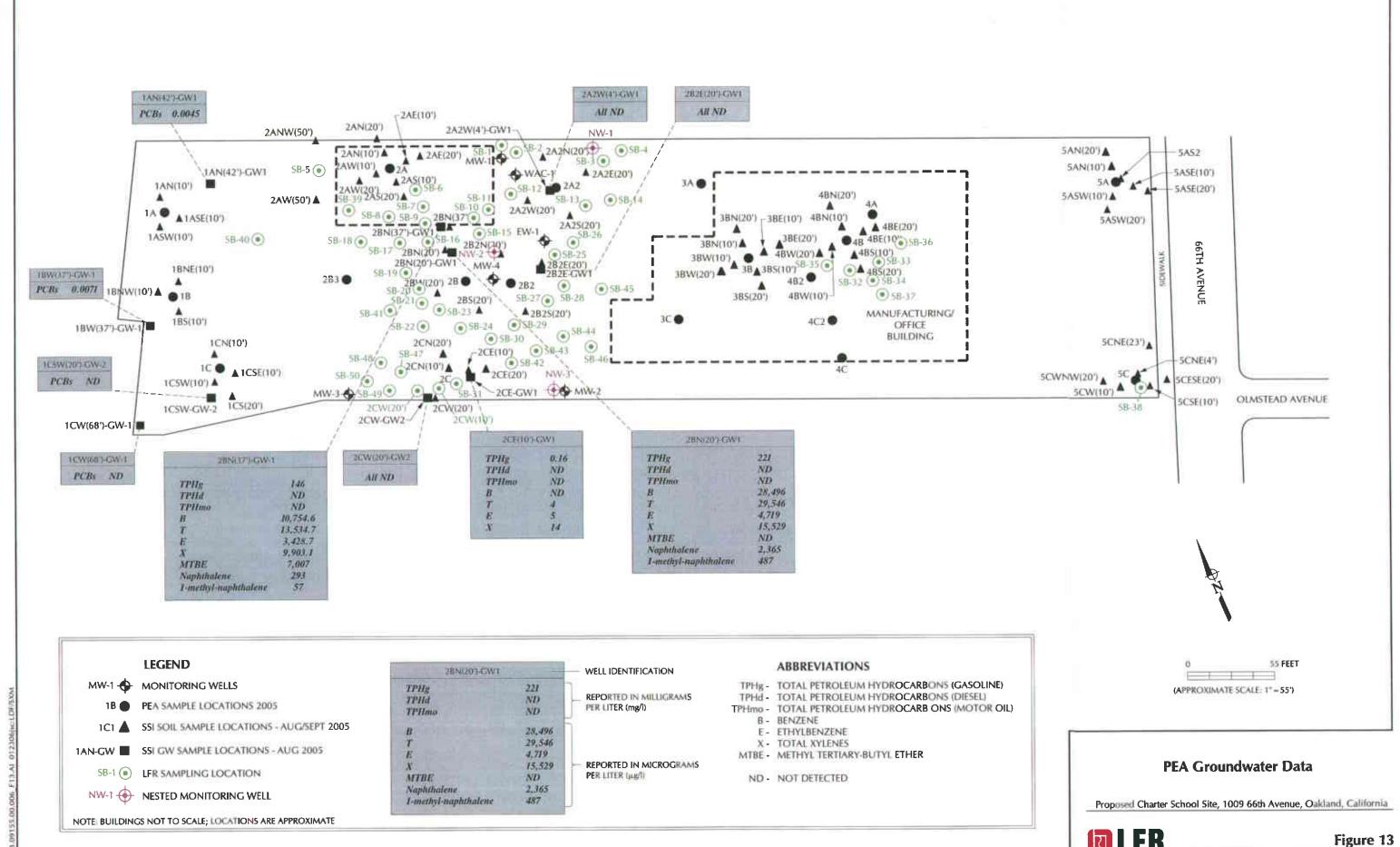

Proposed Charter School Site, 1009 66th Avenue, Oakland, California

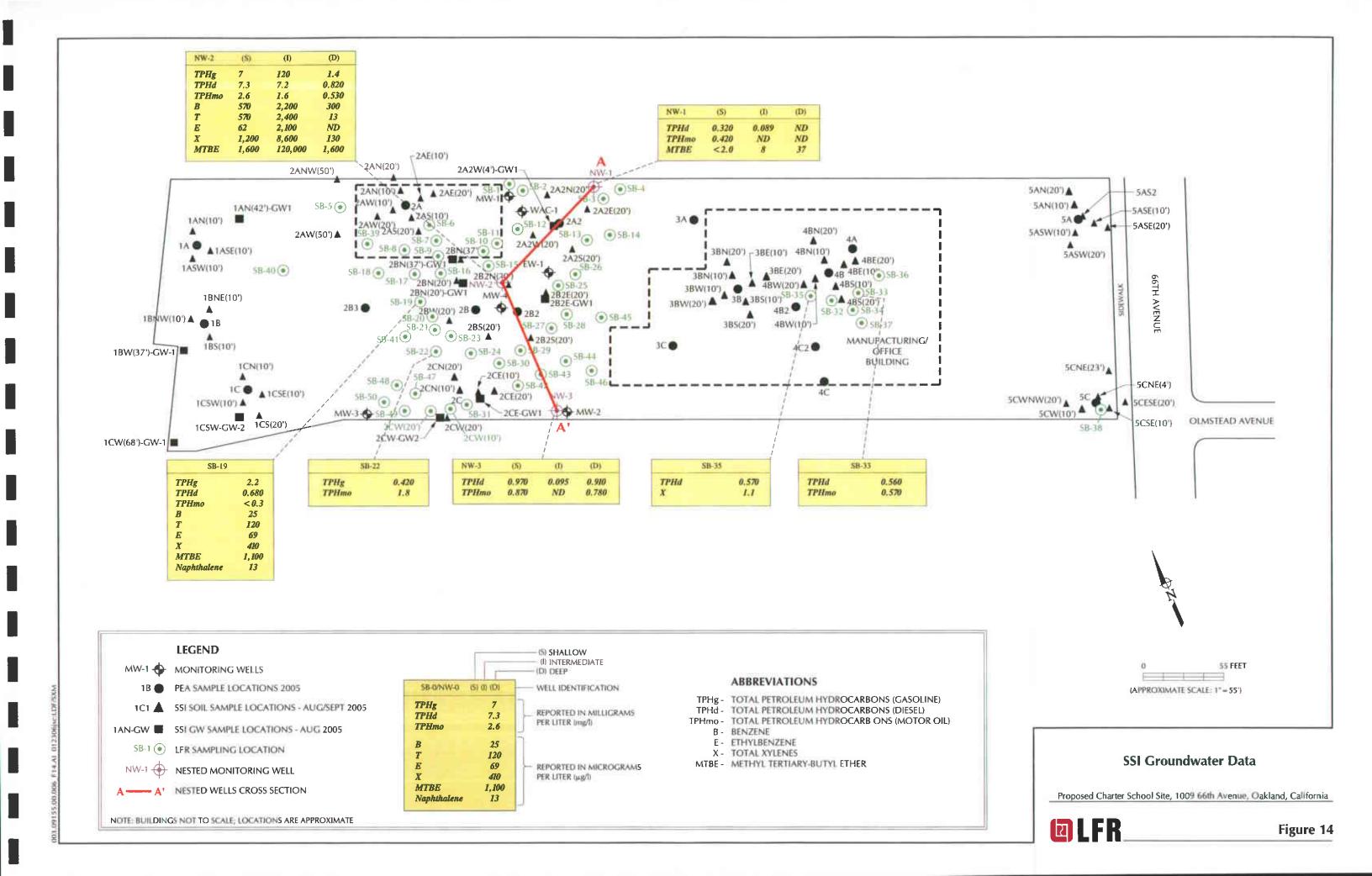
35 FEET

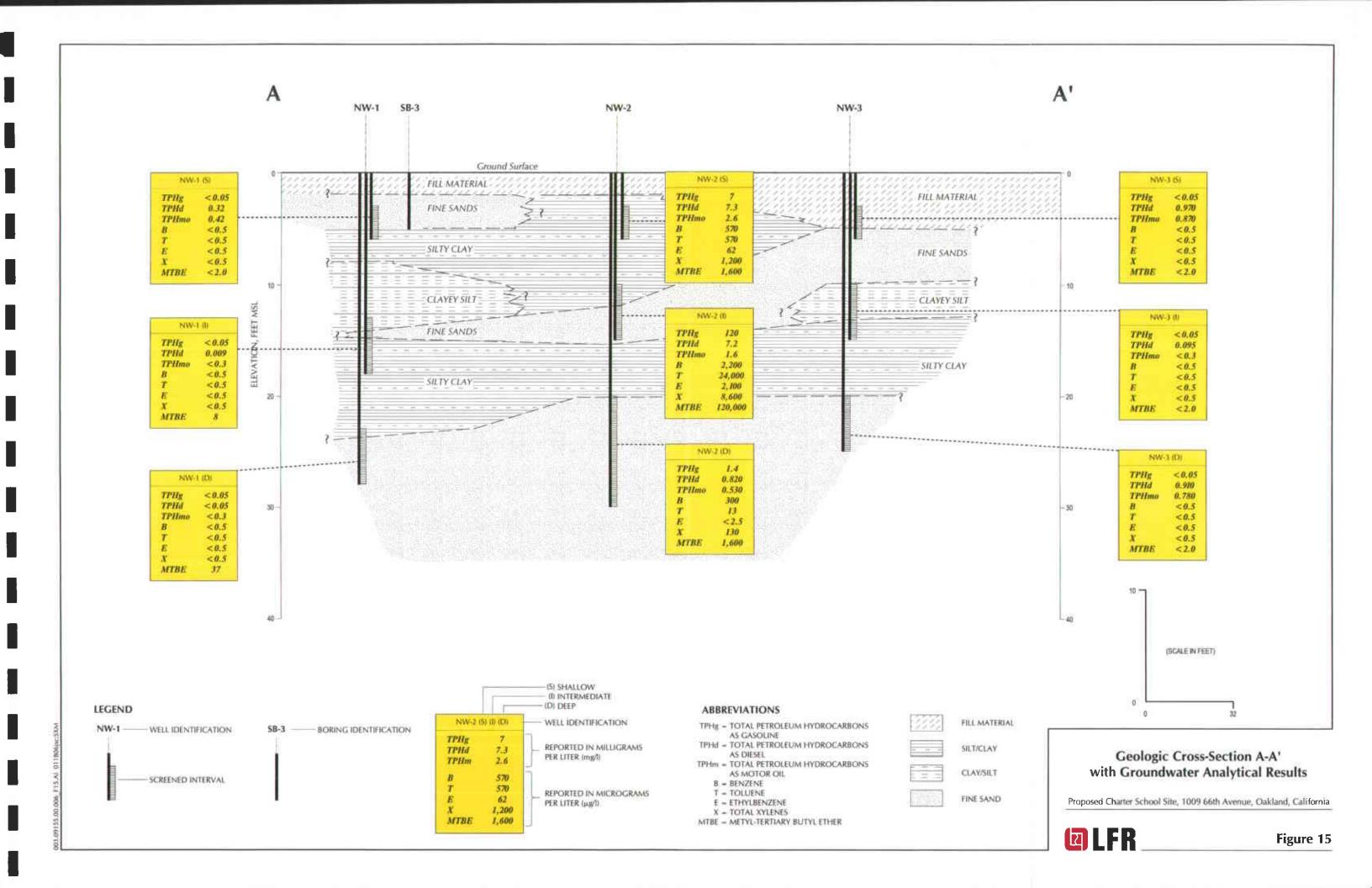
(APPROXIMATE SCALE: 1" = 35')

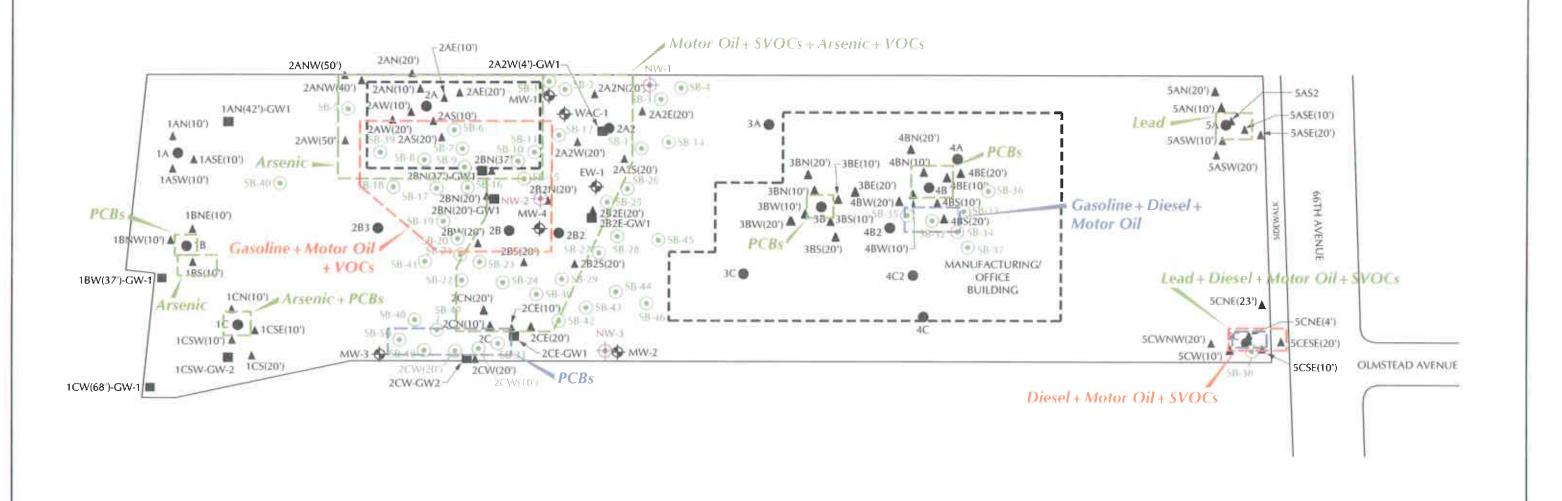


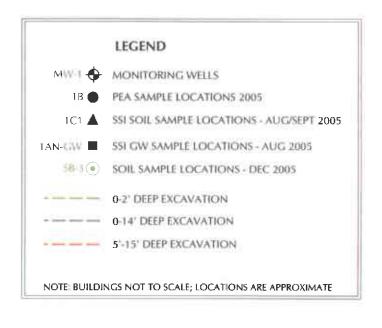
MTBE-Affected Soil 6 - 24 Feet

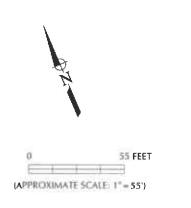





0 3S FEET
(APPROXIMATE SCALE: 1" = 35")


Detail MTBE-Affected Soil 6-24 Feet





Apparent Boundaries of Impacted Soil

Proposed Charter School Site, 1009 66th Avenue, Oakland, California

APPENDIX A

Analytical Results Tables from Preliminary Environmental Assessment and Supplemental Site Investigation by CSS Environmental Services, Inc.

Table 1. SSI Soil Matrix Chemical Analytical Results.

	· ·	JPH	以正	PCBs	As	Pb	1	Cr
								Ę.
	12 0 mg/kg tange	CZ3 Mg npe	C40	руби	6 mg/kg	2	singling .	
Location Location	IPH, C4-C12 RL = 0.1-10 mg/kg Gasolins Range	IPH, C22-C23 RL = 5 mg/kg Diesel Range	IPH, C24-C40 RL = 50 mg/kg CXI Range	PCBs RL = 2-50 µg/kg	Ursenic U. = 0.97 · 6 mg/kg	Lead IL = 5 mg/kg	Hokel RL. 1 mg/hg	lectavanan Chroanium ILS mgftg
				NO (NO)				
TA @ 0.5 PEA TA @ 5 PEA				203				
1A-N(107) 0.5°				ND				
1A-N(10') 5' 1A-SE(18') 0.5'				ND ND				
1A-SE(10") 5" 1A-SW(10") 0.5"				ND ND				
1A-SW(18') 5'				ND				
18 @ 0.5 PEA				718				
18 @ 5 PEA 18-NE(10') 0.5'				ND ND		_		
18-ME(10') 5'				ND				
1B-WW(10') 0.5'	-			ND				
1B-S(10') 0.5'				ND ND				
18-5(10') 5'								
1C @ 0.5 PEA 1C @ 8 PEA				21,337 ND				
1C-M(18') 0.5'				ND				
1C-N(187) 5' 1C-SE(187) 8.5'				ND ND				
1C-SE(10") 5"				ND ND				
1C-SW(10') 0.5' 1C-SW(10') 5'				ND				
1C-8(28') 6.8'HOLD 1C-8(28') 8'HOLD							-	_
TV SQUATE INCOME.								
2A @ 0.5' PEA					12			
2A @ 5" PEA					11		-	
ZA-N(10') 0.5' ZA-N(10') 5'					ND			
2A-9(10') 0.5' 2A-9(10') 3'				_	22 ND			
2A-E(10') 0.5'		250			27			
2A-E(10') 3' 2A-W(10') 0.5'					ND 47			
2A-W(10') 5' 2A-W(20') 0.5'					ND 37			
2A-N(20') 5HOLD								
2A-8(20') 6.5' 2A-8(20') 5'HOLD	-				117		_	
2A-E(28') 0.5'					10			
2A-E(28') 5'HOLD 2A-W(28') 8.8'					88			
2A-W(2E') 5'HOLD		_					-	
09285-2AW(90') 0.5'					13			
09285-2AHW(50') 0.5'			-		73			
2A-2 @ 5 PEA 2A-2 @ 5 PEA	ND ND	ND ND	1,307 ND					
2A-2H(20') 8.5"	ND	ND	1,110					
2A-2N(29') 5' 2A-2N(20') 7.5'	ND ND	ND ND	ND ND					
2A-25(20') 0.5'	ND	ND	893		_			
2A-25(29') 5' 2A-25(19') 7.5'	ND ND	ND ND	ND ND					
2A-2E(10') 0.5' 2A-2E(20') 5'	ND ND	ND ND	386 ND					
2A-2E(20") 7.5'	ND	ND	ND					
2A-2W(20') 6.5' 2A-2W(20') 8'	ND ND	ND ND	1,212 ND					
2A-2W(20°) 7.5°	ND	ND	ND					
28 Q 0.5 PEA	MD	MD	1,560		18			
28 章 5 PEA 28 章 10 PEA	943	MD MD	MO MO		6	1 2		
28 @ 15 PEA	564 S	ND ND	ND ND	NA.	ND NA	ND NA		
38 @ 20 PEA 28 @ 24 PEA	12	MD	NO		ND	2		
28-N(20') 0.5' 28-N(20') 5'	ND 0.6	ND ND	545 NO		ND			
28-H(29') 7.5'	1,040.8	ND	ND ND	1				
28I-H(20") 10" 28I-S(20") 0.5"	ND	ND ND	798		ND			
28-8(28') 5' 28-8(20') 7.5'	ND ND	ND ND	ND ND					
2B-W(20') 0.5'	ND	ND	7,415		6			

Table 1. SSI Soil Matrix Chemical Analytical Results.

		1000	TPH		PCBs	As	Pb	200	Cr"
									畫
Sample 10 &		IPH, C4-C12 Rt. = 0.1-10 mg/kg Gesoline Range	I'PH, C22-C23 IL. = 5 mgftg Diesel Range	IPH, C24-C40 FL = 50 mg/kg CAI Range	PCBs RL = 2-50 µg/kg	Urpenie IL = 6.97 - 5 mgftg	it - Smgftg	Mickel RL 1 mg/kg	Heracement Chromium 0.5 melta
28-W(20') 5'		ND	ND	ND			-		
28-W(20°) 7.5°		2.8	NĐ	ND					3
28-W(28°) 10° 28-N(37°) 0.5°	_	926.6	ND	ND					
2B-N(37') 5'	_	ND 7.1	ND ND	ND ND	_	13	-	-	_
29-N(37') 7.5		2,019	ND	ND					
26-N(37') 18'		2,780.8	ND	ND		ž-			
2B-N(37) 15	\rightarrow	7.5	ND	ND		-	-	_	
101		100							
282 (0.1 PEA 2 1.5 PEA	ND ND	ND ND	1,318	100 ND				
283-N(20') 0.5'		0.3	ND	22,524	775				
2B2-N(20°) 5 2B2-N(20°) 7.5°		979.5 2,507.4	ND ND	446 ND			-		
2B2-N(20') 10'		907.1	ND	ND	-				-
252-5(26') 0.5'		ND	ND	1,139					
292-5(20') S	\rightarrow	ND	ND	ND					
282-8(20°) 7.5° 282-E(20°) 8.5°	_	ND 0,1	ND ND	ND 1,386			-		
192-E(20') F		ND	ND	ND					
182-E(20') 7.5'		ND	ND	ND	j				
(B-35(0.5') 0.5'									1.14
20.0	AAAPEA	ND	ND	1,345	428	ND	11	=	
20	Q S PEA	ND	ND	491	2,100	ND			
2C-W(107 8.5"					0.19	17	1100		
C-M(107 5"	_				ND	ND			
2C-N(10') 7.5'HOLD 2C-N(10') 10'HOLD	\rightarrow					_	-	_	
2C-E(10') 0.5'		ND	45	ND	ND	57			
C-E(107 5"		ND	ND	ND	ND	ND			
C-E(10') 7.5' C-E(10') 10'	\rightarrow	ND 21.3	ND ND	ND			\vdash	_	
C-N(20') 0.5'		ND	ND	ND ND		21	\vdash		
C-N(20) 5		ND	ND	ND		-			
C-N(20") 7.5" C-N(20") 10"	\rightarrow	ND	NO	ND					
C-W(207 0.5	-	11.2 ND	ND ND	ND ND	-	_	\vdash	-	_
C-W(207 5		ND	ND	ND					
C-E(20') 5.5 C-E(20') 5	\rightarrow	ND ND	93	ND					
C-E(29') 16'	\rightarrow	ND	ND ND	ND ND	-			-	
	O.S PEA	ND ND	ND ND	ND ND	987	_		-	
B-N(10') 9.5'	40764	110	- MD	MU	ND ND		\vdash	\neg	
5-M(10') 5'					ND				
8-5(10') 0.5' 8-5(10') 5'	-	-	-	_	ND				
8-6(10) 0.5					ND 340	_	-		
B-E(10') 5'					ND				
B-W(10') 0.5" B-W(10') 5"	\rightarrow	_			ND MD				
B-N(20') 8.5'			-		ND	ND	-	\rightarrow	
B-M(20') 5'HOLD									
8-8(29') 0.5'HOLD 8-8(29') 2'HOLD	-								
B-E(20') 0.5'	_	-		-+	ND			-	
8-E(20') 5'HOLD					1.00				
8-W(20') 0.5'HOLD									
8-W(20') \$'HOLD	-	-	-	_	-		\rightarrow	-	
40	0.5 PEA	NO	ND	ND	69,681	ND	1		
		1 1	200				ND		
	S FEA	ND	ND	ND	ND ND	5	NO	\rightarrow	

Table 1. SSI Soil Matrix Chemical Analytical Results.

TPH, C4C12 RL = 0.1-10 mg/kg 3ssoline Range	IPH, C22-C23 RL = 5 mg/kg Diesel Ránge	IPH, C24-C40 RL = 50 mg/kg Dil Runge	D _B 6d	i mg/hg		aya.	R.*
IPH, C&C12 RL = 0.1-10 mg/kg Gasoline Range	PH, C22-C23 . = 5 mg/kg esel Ránge	24-C40 3 mg/kg 1ge	BySrt	i mg/kg		Ę	
	프 전 경	TPH, C	PCBe RL = 2-50 µg/kg	Ursenic IL. = 0.97 - 5 mg/kg	L = 5 mg/lg	Hickel RL 1 mgfkg	Henzavanent Zhromlum 1.5 mg/kg
			230	-			
-			ND	-			
-			840				
_			40				
			ND				
ND	ND	64	2.04				
23.5	ND						
				_		_	
3.69	ND	2,499		\rightarrow	_	_	_
			ND	_		-	
-		_	0.1	$\overline{}$			
-		_	0.1	_		_	
NO	ND	ND	ND	7	320		
NO			ND	ND	3		
					90	178	
							The state of
							ND
					301	184	
					154	_	
+"				_	- 488	490	
				-	109	1/0	
				_	-	-	
				_		_	
		_	-	_			
			_	- 1		-	
MD	ND	ND	ND	4	298		
		ND	ND	ND	- 4),i	
ND	ND	ND	-		81	75	
ND	ND	ND				1	
ND	ND	ND		- A	28	124	
ND	ND	ND					
					271	_	
					401	-	_
ND 4	ND				191	227	
ND	ND	ND		_		_	_
						-	
						_	_
					_	_	
						-	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	23.5 12.8 99.5 ND ND ND ND ND ND ND	23.5 ND 12.0 ND 99.6 ND 99.6 ND MD MD MD MD MD ND ND ND	23.5 ND 2,679 12.8 ND 880 99.6 ND 2,499 MD MD MD MD MD MD ND	ND ND 64 2.04 23.5 ND 2,679 2.20 12.II ND 880 0.23 99.5 ND 2,499 0.24 ND 0.1 ND N	ND ND 64 2.04 23.5 ND 2,679 2.20 12.8 ND 880 0.23 99.6 ND 2,499 0.24 ND N	ND ND 84 2.04 23.5 ND 2,579 2.20 12.8 ND 880 0.23 399.6 ND 2,499 0.24 ND N	ND ND 64 2.04 23.5 ND 2,879 2.20 12.8 ND 880 0.23 399.6 ND 2,499 0.24 ND ND ND ND ND ND 7 320 NO ND ND ND ND ND 3 ND ND ND ND ND ND 154 ND ND ND ND ND ND ND 4 398 ND ND ND ND ND ND ND 175 ND ND ND ND ND ND ND 175 ND ND ND ND ND ND ND 175 ND ND ND ND ND ND ND 128 124 ND N

Table 2. SSI SVOCs Soil Matrix Chemical Analytical Results.

	37716	aswer.		YOC	UNA DEGLE		\$1050	1		e u	00.500		remotiles.	avor i			E ME	10/5	HORSE N	CASSESSED IN	
keegis () & Loaden	Bessera R 2-200 juping	Tuterne RL = 2 pg/kg	Ellybectone RL+ 3-200 papkg	Agleme RL = 3-300 paping	NTSE RL = 2 pg/kg	SepropyBenses Rt. = 2 juping	Chlorobeszene R 2 jujfug	1,4. Dichlerobenses RL = 2 µglbg	Nuplithalers Rt. = 255-2500 juging	1-lite dry frame houses Rt. + 250-2500 puping	Acomphibylens RL = 256-2500 juping	Acaraphthane RL = 250-2500 pg/kg	Planeres PL, = 256-2500 juping	Phenenthrens Pt. v 156.2500 juging	Andimests Rt. = 250-2500 juging	Pleasarthere Rt. = 156-1500 μgAg	Pyrene Rt. = 250-2500 jugilig	Senzyla/Anthracene FL = 250-2500 jupity	Chrysens Pl. e 256-2500 uping	Banzo(k)Fluorenthene Rt. = 256-2500 jugikg	BenzolajPyrene Ri, = 250-2500 jugitą
3A-3 R 3-2 FEA 2A-3 R 3-7 FEA 3A-30(20) V 3A-30(20) V 3A-30(20) S.F 3A-30(20) S.F 3A-30(20	ND ND ND ND ND ND ND ND ND ND	MD HO HO HO HO HO HO HO HO HO HO	MD MD MD MD MD MD MD MD MD MD MD MD MD M	MD MD MD MD 19 19 MD MD MD MD MD MD	ND ND ND ND ND ND ND ND ND ND ND ND ND N	MD MD MD MD MD MD MD MD MD MD MD MD	MO MD MD MD MD MO MO MD MD MD MD MD	ARD S	MD ND ND ND ND ND ND ND ND ND ND ND ND ND	MD M	MO MO MO MO MO MO MO MO MO MO MO MO	AID AID NO HID	MID NID NID NID NID NID NID NID NID NID N	MO MO NO NO NO NO NO NO NO NO NO NO NO NO NO	MD ND ND ND ND NO NO NO NO NO NO	MD ND 2,991 ND ND 1,944 ND ND ND ND ND ND ND ND ND ND ND ND ND	MO MD 1,698 NO MO 2,298 NO MO 629 MO NO 0,165	##D ##D ##D ##D ##D ##D ##D ##D ##D ##D	AID AID 2,812 ND ND 1,658 ND ND S07 NO MD S07 NO MD ND ND ND ND ND ND ND ND ND ND ND ND ND	MD MO 3,978 ND NO 2,729 MO ND ND ND ND ND ND ND ND ND ND	MD MD 1,423 ND NO 1,554 NO ND ND ND ND 4,184
3A-200(20) T S 2A-200(20) T S 2B @ 5 PEA 3B @ 5 PEA 3B @ 5 PEA 3B @ 5 PEA 3B @ 20 PEA	NO NO 739 7,633 NA NO NO NO 15,589 21,332	NO NO NA 12 37,378 NA NO NA NO 121,874 124,917	ND ND 31 14,044 NA ND ND NA 8 ND E0,688 36,934	HO MQ MA 101, 53,141 MA MD NA 78 43 178,461 131,524	ND NO NA 19 204 NA 11 NA ND ND ND	MD MD MA MD MA MD MA MD MA MD MD MA	ND NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NO NA NO	ND ND ND SJET NA NO NA	MO MD MD .00 2,742 NA MD .00 2,849 MO 11,123 4,299	MD MD MD MD MD MA MA MD MO MD MD MD	MD MD MD MD MD MD MD MD MD MD MD MD	ND N	ND ND ND ND ND ND ND ND ND	MD MD MD MD MD MD MD MD MD MD MD MD	MD MD MD MD MD MD MD MD MD MD MD MD	ND ND ND ND ND ND ND ND ND ND	ND NO ND MD MD ND NO NO NO NO	MD MD MD MD MD MD MD MD MD MD	MO HD MD MO MD MD MD MD MD MD MD	NO NO NO NO NO NO NO NO NO NO NO NO NO N
18-4(27) 10' 18-6(27) 8.0' 18-6(27) 8.0' 18-6(27) 8.1' 18-6(27) 8.1' 18-6(27) 1.1' 18-6(27) 1.1' 18-6(27) 1.1' 18-6(27) 1.5' 18-6(27) 1.5' 18-6(27) 1.5' 18-6(27) 1.5' 18-6(27) 1.5'	ND ND ND ND ND ND ND ND ND 138 4.491 21.876	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NO NO NO NO NO NO 22 20,217 MO 103 22,218 40,698 238	ND ND ND ND ND ND ND 4 75,810 ND 238 114,985 127,723 762	NG NO NO ND ND NO NO NO NO NO NO NO NO NO NO NO NO NO	ND N	HD HD HD HD HD HD HD HD HD HD	MD MD MD MD MD MD MD MD MD MD MD	ND N	ND N	MD MD MD MD MD ND MD MD ND ND	HD HD HD HD HD HD HD HD HD HD HD	ND ND ND ND ND ND ND ND ND ND ND ND	NO N	MD MD MD MD MD MD MD MD MD MD MD MD MD M	3,186 RD RD 21,348 RD RD RD RD RD RD RD RD RD RD RD RD RD	6.758 ND ND ND ND ND ND ND ND ND ND ND ND ND	1,874 MD ND 18,163 MD HD ND ND ND ND	1,188 ND ND ND ND ND ND ND ND ND	4,360 MD HD 35,128 MD HD HD HD ND	6,163 ND ND ND 48,399 ND ND ND ND
387 d 6.1 PEA 282 d 1.1 PEA 283-4(2P) F 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T 283-4(2P) T	NA	MA MD 7 48,663 126,172 45,812 ND ND ND MD 94 ND ND	MA MD MD 19,417 51,813 19,319 MD MD 11 MD	MA MD 4 73,228 (178,228 77,889 MD ND ND ND ND ND ND	AAA AID 18 3,387 12,697 7,479 MD MD MD MD MD MD	NA ND 1,851 8,858 1,786 ND NO NO NO NO NO	MA ND ND ND ND ND NO NO NO NO NO	MA AO HO HO HO HO HO HO HO HO	ND	MD MD L556 4,866 L569 MD MD MD MD MD MD MD MD MD MD MD MD MD	ND NO	AID AID NO	ND N	MD ND ND ND ND ND ND ND ND ND ND ND ND ND	MD ND ND ND ND ND ND ND ND ND ND ND ND	MD 68,418 555 ND ND 2,734 ND ND ND ND ND	MD	MD MD 32,864 MD NO MO 2,122 NO ND ND ND ND	MD MD 46,152 631 NO NO 2,458 NO ND ND ND ND	MD MD 63,542 554 HD HD 7,656 ND HD HD HD HD	MD MO 66,928 778 MO ND ND HD HD ND ND
16.0 5.1 75.0 20.0 1 75.0 40.0 1 75.0	ИD	ND	ND NA	ND NA NA	ND NA	ND AD	12 NO ND	128 ND	NO NO NO	ND ND	MD MD	MD MD	ND ND ND	MO NO NO	HO HO	MD MD	ND ND	MD ND	MD MD	ND ND ND	ND ND
SC 他 E.S.PEA SC 他 FEA IC-HE(H) F IC-M(H) F	MA MA ND ND NO	MA NA NO NO NO	MA NA ND ND	MA MA ND ND ND	MA MA ND NO NO	ND ND ND ND	MD MD MD MD	ND ND NO NO	ND 1,148 ND ND ND	MD NO NO NO	4767 4767 ND ND ND	MD MD MD MD MD	MD ND HD ND MO	MD 88,210 MD MD MD	ND 18,646 ND ND ND	AD 28,320 ND ND ND	ND 26,674 HD HD ND	ND 10,219 ND ND ND	MD 8,572 MO ND NO	ND ND ND ND	AID 3,378 ND HD HD

Table 3. SSI Groundwater Matrix Chemical Analytical Results.

			YOU					100		PCBs	NE T		NO.	-100	機
								본							
Bample D & Location	VOCs RL = 10-180 pg/L	Bertteine RL = 0.5-25 pg/L	Tolume Rt. = 0.5-25 pg/L	Ethylbenzene d.= 0.5-25 µg/f.	Kylens RL = 0.5-28 pg/L	NTBE NL = 0.5 pg/L	TPH, CB-CT2 Na. = 100 paph. Geodino Range	TPK, C13-C23 * 500 papil. Diesel Renge	TPH, C24-C48 RL = 1008 pg/L Da Range	PCBs RL = 0.2 pg/L	Vaphthalene Rt. = 10-100 jugit.	1-Methylmphthalone Rt. = 10-100 μg/L.	Acenephitishene RL = 10 µp.fl.	Acensphilhene Rt. = 19 pg/l.	Pluorene RL = 10 pgf.
1A-N(4Z') GW1	1									4.5					
18-W(37') GW1										7.1					
1C-W(65') GW1						E7:84				ND					
1C-SW(20') GW2										ND					
2A-2W(4') GW1	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	NĐ
2B-N(29') GW1	ND	28,496	29,546	4,719	15,529	ND	221,129	NO	ND		2,365	487	ND	ND	ND
28-N(37") GW1	ND1	10,754.6	13,534.7	3,428.7	9,903.1	7,007	148,570	ND	NO		293	57	ND	MD	ND
28-2E(20') GW1	NO	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND
2C-E(10') GW1	NO	ND	4	5	-14		160	ND	ND		ND	ND	ND	ND	ND
2C-W(20') GWZ	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND

VOC Inopropytherowns eletected at 166.5 papit.
 Detected SVOCs reported only, all other SVOCs ND.

Table 1
Monitoring Well Completion Details
Groundwater Monitoring Report
Pacific Electric Motor Company
1009 66th Avenue, Oakland, California

Date	Installed	Top of Casing Elevation	Boring Diameter	Casing Diameter	Total Depth Boring	Total Depth of Casing	<u>Depth</u>	ed Interval (feet bgs)
mstaneu	Бу	(leet MISE)	(inches)	(inches)	(reet bgs)	(feet bgs)	Тор	Bottom
6/10/1997	ENVIRON	10.87	8	2	26.5	25.5	5	25
6/10/1997	ENVIRON	10.02	8	2	25.5	25.5	5	25
6/10/1997	ENVIRON	10.12	8	2	25.5	25.5	5	25
9/14/1998	PES	10.50	8	2	25.0	25.0	15	25
NP	Decon	10.26	NP	7	NP	8.77	NP	NP
	6/10/1997 6/10/1997 6/10/1997 9/14/1998	Installed By 6/10/1997 ENVIRON 6/10/1997 ENVIRON 6/10/1997 ENVIRON 9/14/1998 PES	Date Installed Installed Installed Elevation (feet MSL) 6/10/1997 ENVIRON 10.87 6/10/1997 ENVIRON 10.02 6/10/1997 ENVIRON 10.12 9/14/1998 PES 10.50	Date Installed Installed Installed Installed By (feet MSL) Diameter (inches) 6/10/1997 ENVIRON 10.87 8 6/10/1997 ENVIRON 10.02 8 6/10/1997 ENVIRON 10.12 8 9/14/1998 PES 10.50 8	Date Installed Installed Installed Installed By (feet MSL) Elevation (inches) Diameter (inches) Diameter (inches) 6/10/1997 ENVIRON 10.87 8 2 6/10/1997 ENVIRON 10.02 8 2 6/10/1997 ENVIRON 10.12 8 2 9/14/1998 PES 10.50 8 2	Date Installed Installed Installed Elevation (feet MSL) Diameter (inches) Diameter (inches) Boring (feet bgs) 6/10/1997 ENVIRON 10.87 8 2 26.5 6/10/1997 ENVIRON 10.02 8 2 25.5 6/10/1997 ENVIRON 10.12 8 2 25.5 9/14/1998 PES 10.50 8 2 25.0	Date Installed Installed Elevation (feet MSL) Diameter (inches) Diameter (inches) Boring (feet bgs) of Casing (feet bgs) 6/10/1997 ENVIRON 10.87 8 2 26.5 25.5 6/10/1997 ENVIRON 10.02 8 2 25.5 25.5 6/10/1997 ENVIRON 10.12 8 2 25.5 25.5 9/14/1998 PES 10.50 8 2 25.0 25.0	Date Installed Installed Installed Installed Installed Installed By Elevation (feet MSL) Diameter (inches) Boring (feet bgs) of Casing (feet bgs) Depth (feet bgs) 6/10/1997 ENVIRON 10.87 8 2 26.5 25.5 5 6/10/1997 ENVIRON 10.02 8 2 25.5 25.5 5 6/10/1997 ENVIRON 10.12 8 2 25.5 25.5 5 9/14/1998 PES 10.50 8 2 25.0 25.0 15

Notes:

bgs = Below ground surface

NP = Information not provided to PES

^{* =} Well completion information derived from December 2002 sampling event field notes

Table 2
Water-Level Elevation Data
Groundwater Monitoring Report
Pacific Electric Motor Company
1009 66th Avenue, Oakland, California

Well Number	Date Measured	Measured By	Top of Casing Elevation (feet 1/feet MSL ²)	Depth to Water (feet BTOC)	Water-level Elevation (feet ¹ /feet MSL ²)
MW-1	6/19/1997	ENVIRON	100.67	5.87	94.80
	7/1/1997	ENVIRON	100.67	5.88	94.79
	9/29/1997	PES	100.67	6.45	94.22
	12/16/1997	PES	100.67	3.42	97.25
	3/10/1998	PES	100.67	3.06	97.61
	10/1/1998	PES	100.67	6.36	94.31
	1/19/1999	PES	100.67	5.33	95.34
	4/15/1999	PES	100.67	3.23	97.44
	5/6/1999	PES	100.67	4.36	96.31
	7/30/1999	PES	100.67	5.49	95.18
	11/15/1999	PES	100.67	6.30	94.37
	3/24/2000	PES	100.67	3.47	97.20
	5/18/2000	PES	100.67	4.34	96.33
	7/26/2000	PES	100.67	5.28	95.39
	10/30/2000	PES	100.67	5.68	94.99
	11/14/2000	PES	100.67	5.53	95.14
	7/24/2001	PES	100.67	5.52	95.15
	11/28/2001	PES	100.67	5.31	95.36
	2/18/2002	PES	100.67	3.69	96.98
	12/11/2002	PES	10.87	5.71	5.16
	2/26/2003	PES	10.87	3.90	6.97
	5/16/2003	PES	10.87	3.61	7.26
MW-2	6/19/1997	ENVIRON	99.85	5.30	94.55
	7/1/1997	ENVIRON	99.85	5.37	94.48
	9/29/1997	PES	99.85	6.05	93.80
	12/16/1997	PES	99.85	3.81	96.04
	3/10/1998	PES	99.85	^ 2.89	96.96
	10/1/1998	PES	99.85	5.83	94.02
	1/19/1999	PES	99.85	5.26	94.59
	4/15/1999	PES	99.85	3.19	96.66
	5/6/1999	PES	99.85	3.91	95.94
	7/30/1999	PES	99.85	4.79	95.06
	11/15/1999	PES	99.85	5. 92	93.93
	3/24/2000	PES	99.85	3.55	96.30
	5/18/2000	PES	99.85	4.04	95.81
	7/26/2000	PES	99.85	4.85	95.00
	10/30/2000	PES	99.85	5.31	94.54
	11/14/2000	PES	99.85	5.14	94.71
	7/24/2001	PES	99.85	5.12	94.73
	11/28/2001	PES	99.85	5.15	94.70
	2/18/2002	PES	99.85	3.73	96.12
	12/11/2002	PES	10.02	5.30	4.72
	2/26/2003	PES	10.02	3.55	6.47
	5/16/2003	PES	10.02	3.37	6.65
MW-3	6/19/1997	ENVIRON	99.93	5.50	94.43
	7/1/1997 9/29/1997	ENVIRON	99.93	5.52	94.41
		PES	99.93	L 6.16	93.77
			00.00	£ ===	
	12/16/1997	PES	99.93	5.52	94.41
	12/16/1997 3/10/1998	PES PES	99.93	3.11	96.82
	12/16/1997	PES			

Table 2
Water-Level Elevation Data
Groundwater Monitoring Report
Pacific Electric Motor Company
1009 66th Avenue, Oakland, California

Number Measured By		Measured By	Top of Casing Elevation (feet ¹ /feet MSL ²)	Depth to Water (feet BTOC)	Water-level Elevation (feet 1/feet MSL2)
MW-3	5/6/1999	PES	99.93	4.12	95.81
cont.	7/30/1999	PES	99.93	5.14	94.79
5 5111.	11/15/1999	PES	99.93	• 6.35	93.58
	3/24/2000	PES	99.93	3.29	96.64
	5/18/2000	PES	99.93	4.16	95.77
	7/26/2000	PES	99.93	5.14	94.79
	10/30/2000	PES	99.93	5.43	94.50
	11/14/2000	PES	99.93	5.25	94.68
	7/24/2001	PES	99.93	5.29	94.64
	11/28/2001	PES	99.93	4.92	95.01
	2/18/2002	PES	99.93	3.88	96.05
	12/11/2002	PES	10.12	5.37	4.75
	2/26/2003	PES	10.12	3.71	6.41
	5/16/2003	PES	10.12	3.55	6.57
MW-4	10/1/1998	PES	100.32	6.32	94.00
10100 3	1/19/1999	PES	100.32	5.59	94.73
	4/15/1999	PES	100.32	7.71#	92.61 #
	5/6/1999	PES	100.32	4.50	95.82
	7/30/1999	PES	100.32	5.18	95.14
	11/15/1999	PES	100.32	6.27	94.05
	3/24/2000	PES	100.32	3.59	96.73
	5/18/2000	PES	100.32	4.40	95.92
	7/26/2000	PES	100.32	5.65	94.67
	10/30/2000	PES	100.32	5.89	94.43
	11/14/2000	PES	100.32	5.61	94.71
	7/24/2001	PES	100.32	5.34	94.98
	11/28/2001	PES	100.32	5.67	94.65
	2/18/2002	PES	100.32	4.21	96.11
	12/11/2002	PES	10,50	5.77	4.73
	2/26/2003	PES	10.50	4.00	6.50
	5/16/2003	PES	10.50	3.87	6.63
EW-1	12/11/2002	PES	10.26	5.00	5.26
	2/26/2003	PES	10.26	3.10	7.16
	5/16/2003	PES	10.26	2.73	7.53

Notes:

BTOC = Below top of casing

= Anomalous data, not used for water-level elevation contouring

^{1 =} Top of casing elevations referenced to site datum established by ENVIRON (1997), used through February 2002

² = Top of casing elevations resurveyed by Cross Land Surveying, Inc. on January 16, 2003; referenced to NGVD 1929 MSL = Mean sea level

Table 3
Summary of Analytical Results for Groundwater Samples
Groundwater Monitoring Report
Pacific Electric Motor Company
1009 56th Avenue, Oakland, California

	Date Sampled	Sampled By	Dissolved Oxygen (mg/L)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE EPA 8020	MTBE EPA 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB
MW-1	6/19/1917	ENVIRON	na	18,000	3,300				(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
j	9/29/1907	PES	na	29,000	4,800	200 <25	1,100	4,900	<250				-		1	
	12/16/1997	PES	na	<50	1.3	<0.5	2,000 0,6	3,500	<250]	!			l
1	3/10/1908	PES	na	190	2.0	<0.5	5.7	0.7	<5	•	••					
	1/19/1909	PES	па	1,000	40	<0.5	18	1.7	<5		-					
1	4/15/1999	PES	na]	<50	0.92	0.9	1 1	68	8.3	6.9		••				
	7/30/1909	PES	na	1,400	60	<0.5	0.7	0.87	<5.0	••	••					
;	11/15/19 9	PES	па	3,600	120	<0.5	63	120	13	<5.0	••					
- 1	3/24/2000	PES	na	<50	<0.5	<0.5	150 <0.5	620	<5.0		** .		ļ			
1	5/18/2000	PES	na	1,300	10	1.2	38	<0.5	<5.0							
	7/26/20 0 0	PES	na	6,400	100	7.4	260	130	8.6	<5.0	7*		J	ļ —		
	10/30/2000	PES	na	5,000	130	14	330	680	<5.0	1						
- 1	7/24/200	PES	na	1,200	13	<0.5	70	950	<100	••	••					
- 1	11/28/2001	PES	na	1,800	27	0.93		39	13	••	-					
İ	2/18/2002	PES	na	2,400	18	<2.5	72 89	160	<5.0	**						
	12/11/2002	PES	0.7	8,400	83	9.2	320	200	<25	••	••	••			1	
-	2/26/200	PES	2.2*	8,300	12	<10	240	640		<0.50	<5.0	<1.0	<0.50	<0.50	<0.50	<0.50
İ	5/16/200	PES	0.2	5,600	22	<5.0	240	720		<10	<100	<20	<10	<10	<10	<10
				.,		~J.U	240	490		<5.0	<50	<10	<5.0	<5.0	<5.0	<5.0
MW-2	6/19/199	ENVIRON	na	<50	<0.5	<0.5	<0.5	-05		<u> </u>				L		*
1	9/29/199	PES	ла	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-					••	
- }	12/16/1997	PES	па	<50	<0.5	<0.5	<0.5	<0.5	<5	**	••		•-			•-
- 1	3/10/199	PES	na	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<5							
- 1	1/19/195	PES	na	<50	<0.5	<0.5		<0.5	<5.0							
)	4/15/196	PES	na	<50	0.75	0.64	<0.5	<0.5	<5.0	<5.0					••	
	7/30/198	PES	na	<50	<0.5	<0.5	<0.5 <0.5	0.74 <0.5	<5.0	••	••	••			••	
- 1	11/15/19	PES	ла	<50	<0.5	<0.5	<0.5	<0.5	<5.0	••	••					
1	3/24/200	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	"	••	••	٠-			
	5/18/200	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	**	••	••				
	7/26/200	PES	na	<50	<0.5	<0.5	<0.5		<5.0		••	**	••	~-		
-	10/30/2000	PES	na	<50 Í	<0.5	<0.5	<0.5	<0,5 <0,5	<5.0	••		••				-
	7/24/200	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	••	-					
	11/28/200	PES	na	<50	<0.5	<0.5	<0.5	<0.5	7.6	**					••	**
1	2/18/2002	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	•	-			**		**
1	12/11/2002	PES	1.4	<50	<0.50	<0.50	<0.50		<5.0		-		~-	. ••	••	
	2/26/2005	PES	0.8	<50	<0.50	<0.50	<0.50	<1.0	-	5.8	<5.0	<1.0	<0.50	<0.50	<0.50	< 0.50
ŀ	5/16/2002	PES	2.7	<50	<0.50	<0.50	<0.50	<1.0	-	10	<5.0	<1.0	<0.50	<0.50	<0.50	<0.50
						.0.00	-0.50	<1.0	-	16	<5.0	<1.0	<0.50	<0.50	<0.50	< 0.50
MW-3	6/19/1991	ENVIRON	กล	<50	<0.5	<0.5	<0.5	<0.5	-50							
	9/29/1997	PES	na	<50	<0.5	<0.5	<0,5	<0.5	<5.0	-	••	-				**
	12/16/199	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5					- i		
	3/10/1994	PES	na	<50	<0.5	<0.5	<0.5	<0.5 ·	<5 - c c c	.]		-]			
	1/19/1996	PES	na .	<50	0.78	<0.5	<0.5	<0.5	<5.0		-		}			••
ļ	4/15/1998	PES	na	<50	5.4	3.8	1.7		8.7	<5.0	-	[
1	7/30/1999	PES	na	<50	<0.5	<0.5	<0.5	5.6	23	25	-	**	**			••
1	11/15/199	PE\$	nai	<50	<0.5	<0.5	<0.5	<0.5	<5.0				••			**
	3/24/2000	PES	na	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<5.0 <5.0	-		-		-		

Table 3 Summary of Analytical Results for Groundwater Samples **Groundwater Monitoring Report** Pacific Electric Motor Company 1009 66th Avenue, Oakland, California

Well Number	Date Sample	Sampled By	Dissolved Oxygen (mg/L)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (pg/L)	Ethyi- benzene (µg/L)	Xylenes (µg/L)	MTBE EPA 8020 (µg/L)	MTBE EPA #260 (µg/L)	TBA (µg/L)	OIPE (µg/L)	ETBE (pg/L)	TAME (µg/L)	EDC (ug/L)	EDB (µg/L)
MW-3	5/18/20 0 0	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	.,						
cont.	7/26/2000	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0							
	10/30/2000	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i	. _		l			
	7/24/200	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0					i		
	11/28/2001	PES	na	<50	<0.5	<0.5	<0.5	< 0.5	<5.0							
,	2/18/2002	PES	na	<50	<0.5	<0.5	<0.5	<0.5	<5.0							
	12/11/2002	PES	1.9	<50	<0.50	< 0.50	<0.50	<1.0	l	0.7B	<5.D	<1.0	<0.50	<0.50	<0.50	<0.50
[2/26/200	PES	1.9	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<5.0	<1.Q	<0.50	<0.50	<0.50	<0.50
	5/16/200	PES	1.9	<50	<0.50	<0.50	<0.50	≺1.0		2.5	<5.0	≺1.0	<0.50	<0.50	<0.50	<0.50
MW-4	9/15/199	PES	na na	170,000	28,000	32,000	2,900	18,000	26,000	•••						••
}	1/19/199	PES	па	2,600	1,700	3.8	25	29	13,000	16,000	••					••
	4/15/199	PES	na	210,000	28,000	15,000	3,700	19,000	52,000	67,000						
	7/30/199	PES	na	91,000	15,000	7,500	2,300	8,500	68,000	67,000	-	_				
.	11/15/1993	PES	na	63,000	8,500	2,400	1,400	4,000	57,000	58,000					ļ <u></u>	
1	3/24/200	PES	na	95,000	16,000	13,000	2,500	12,000	44,000							_
i	5/18/200	PES	na	91,000	15,000	10,000	2,200	9,600	64,000	77,000					-	
	7/26/200	PES	na na	130,000	11,000	6,400	1,700	6,500	80,000					! –		
}	10/30/2000	PES	na.	59,000	5,700	2,200	750	3,100	68,000	68,000**				-		
	7/24/200	PES	na	180,000	25,000	23,000	3,500	20,000	44,000	44,000**	. **	**				
}	11/28/2008	PES	na	67,000	8,100	3,300	1,400	5,600	57,000	57,000**	**					••
	2/18/200	PE\$	na	98,000	20,000	12,000	2,300	15,000	47,000	47,000**	-•	••	 .			
	12/11/2002	PES .	0.8	200,000	340	<50	590	1,000		17,000	3,600	<100	<50	<50	<50	<50
	2/26/200	PES	0.1	63,000	8,100	4,400	1,900	8,200		30,000	<1,300	<250	<130	<130	<130	<130
	5/16/2003	PES	0.4	530,000	24,000	20,000	12,000	63,000		42,000	<2,500	<500	<250	<250	<250	<250
EW-1	12/11/2002	PES	2.4	6,600	530	<50	87	<100		2,600	1,500	<100	<50	<50	<50	<50
	2/26/200	PES	0.1	4,000	170	20	41	53		5,000	130	<25	<13	<13	<13	<13
	5/16/200	PES	0.5	330	12	7.6	4.2	14		300	<25	<5.0	<2.5	<2.5	<2.5	<2.5

Notes:

TPH-g = Total petroleum by rocarbons quantified as gasoline (EPA 8015M)
MTBE = Methyl tert-butyl ett ar (EPA 8020; detected concentrations were confirmed by EPA 8260)

TBA = terl-butyl aichohoi

DIPE = di-isopropyl ether

ETBE = ethyl ten-butyl ether

TAME = tert-amyl methyl eth

EDC = ethylene dichloride (#so known as 1,2-dichloroethane)

EDB # ethylene dibromide

mg/L = milligrams per liter

µg/L = micrograms per liter

na = not analyzed

-- = Not analyzed

^{* =} Dissolved oxygen measurement collected following purging

^{** =} MT6E results confirmed but not requantified by EPA Method 9260
<50 = Not detected at or above the indicated laboratory reporting limit

APPENDIX B

California Environmental Protection Agency, Department of Toxic Substances Control Additional SSI Work Plan Approval Letter and LFR's Responses

Department of Toxic Substances Control

5796 Corporate Avenue Cypress, California 90630

December 12, 2005

Mr. Charles Robitaille Director of Real Estate Aspire Public Schools 426 17th Street, Suite 200 Oakland, California 94612-2820

REVIEW OF SUPPLEMENTAL SITE INVESTIGATION WORKPLAN, ASPIRE SCHOOL, 1006 66th AVENUE, OAKLAND, ALAMEDA COUNTY (SITE CODE: 204147-11)

Dear Mr. Robitaille:

The Department of Toxic Substances Control (DTSC) has reviewed the Draft Supplemental Site Investigation Workplan (Workplan) prepared by LFR Levine Fricke (LFR) for the proposed Aspire School (Site), and submitted on behalf of Aspire Public Schools (APS). The Workplan is dated November 18, 2005 and was received by DTSC on November 22, 2005. The Workplan documents the proposed investigation activities for the property located at the subject Site.

The Site consists of 2.51 acres and is owned by Modad Properties, LLC. Historically, the Site was developed in 1948 by Pacific Electric Manufacturing. Operations included manufacturing of specialty magnets, power supplies and components, the repair of motors, generators, transformers, and magnets. In 1975, a 2,000 gallon gasoline underground storage tank was installed on the property. The Site was recently operated by Bay Area Powder Coatings and Landeros Iron Works. Between 1992 and 1993, a soil removal action for polychlorinated biphenyls was conducted under the oversight of the Alameda County Health Care Services Agency (ACHSCA). From 1995 through 2002, the UST was removed and remedial activities were conducted for soil and groundwater contaminated with petroleum hydrocarbons under ACHSCA oversight.

On June 30, 2005, DTSC concurred with the findings of a Preliminary Endangerment Assessment (PEA) conducted at the Site, that further action is necessary due to polychlorinated biphenyls (PCBs), metals, total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs) detected in soil and/or groundwater. Subsequently, a Supplemental Site Investigation (SSI) was conducted to delineate contamination at the Site, and an SSI report was submitted to DTSC on October 6, 2005. On October 26, 2005, DTSC determined that, due to major

Mr. Charles Robitaille December 12, 2005 Page 2

discrepancies, the SSI report could not be approved. Based upon a scoping meeting held on November 9, 2005, between DTSC, APS, and LFR representatives, an additional SSI Workplan was submitted to address these deficiencies.

The purpose of this SSI Workplan is to delineate the extent of PCBs, metals, TPH, VOCs, SVOCs as detected in soil and/or groundwater during the PEA and previous SSI conducted at the Site. DTSC has identified discrepancies in the SSI Workplan that require clarification or modification. Enclosed are comments identifying the discrepancies. However, based upon the condition that the Workplan is revised and the enclosed comments are addressed through the sampling program, DTSC hereby approves the Workplan. Please submit your response to comments in a table form, and necessary revisions to the Workplan, to DTSC by December 16, 2005. Additionally, DTSC recognizes that, due to the scheduling needs of APS, fieldwork at the site will begin on December 12, 2005. Upon completion of the fieldwork and resolution of the comments, APS should submit an SSI Report.

If you have any questions please contact me at (714) 484-5305.

Sincerely,

Tawfiq S. Deek

ani Oe.k

Unit Chief

Cypress Branch

School Property Evaluation and Cleanup Division

Enclosure

cc: Mr. Terry Carter

CSS Environmental Services, Inc.

95 Belvedere Street

San Rafael, California 94901

Mr. John Dominguez
Project Manager
School Site Solutions
1130 K Street, Suite LL70
Sacramento, California 95814

Mr. Charles Robitaille December 12, 2005 Page 3

cc: Ms. Dawn Richmond
Brownfields Coordinator
EPA region 9

75 Hawthorne Street

San Francisco, California 94105

DTSC COMMENTS SUPPLEMENTAL SITE INVESTIGATION WORK PLAN ASPIRE CHARTER SCHOOL SITE OAKLAND

The following DTSC staff reviewed and provided comments herein to the Draft Supplemental Site Investigation (SSI) Workplan. Please contact the Project Manager if you have any questions on the comments. Original Comments from the Project Geologist and DTSCs Human and Ecological Risk Division (HERD) are available for review in DTSC project files.

Ryan M. Atencio

Project Manager
Schools Unit - Cypress Office
Department of Toxic Substances Control
5796 Corporate Avenue
Cypress, California 90630
714-484-5340
ratencio@dtsc.ca.gov

GENERAL AND SPECIFIC COMMENTS

- 1) While DTSC recognizes that Figure #14 shows the proposed excavation areas, the SSI Workplan should note that cleanup goals have yet to be established, and can only be considered after the Site is fully characterized, and the contamination is delineated across all media. Therefore, actual limits of any excavation may be revised based upon the outcome of the SSI and any necessary further investigation.
- 2) The SSI Workplan document title should indicate that this is a second or additional Workplan for the Supplemental Site Investigation, or otherwise distinguish itself from previous SSI Workplans.
- 3) The SSI Workplan should include a sampling table listing each proposed sample, rationale, matrix, and corresponding parameters.
- 4) The SSI workplan should indicate Method 8260 analysis holding times. Also, please indicate field preservation method or collection method for soil samples to be analyzed for VOCs using Method 8260.
- 5) The SSI workplan should indicate the analytical method for PCBs, and list the corresponding holding time.

DTSC Comments Aspire Charter School December 9, 2005 Page 2

- 6) The SSI Workplan should discuss and make clear the plan to analyze archived samples to meet holding time limits for all parameters.
- 7) The SSI workplan should include a list of all laboratories used for all analysis. Also, drill rig SOPs should be included in the SSI Workplan and a diagram of the nested probe design should be included as well.
- 8) Soil samples should be analyzed for arsenic at and between the previous 2A and 1A locations. The SSI Workplan proposes that a "baserock" is source of the arsenic concentrations at this area, and assumes that this area will require removal. However, for purposes of Site characterization and human health risk decision making, soil samples should be taken here and analyzed for arsenic.
- 9) The SSI Workplan proposes not sample for arsenic at 2A, 2B, 2NC because this area is impacted with SVOC and /or TPH and will be remediated for these COCs. However, the extent of arsenic contamination in these areas is still not defined. As a result, site specific, risk based, clean up goals have yet to be developed for arsenic. Additionally, it is not known if the potential arsenic cleanup area is equal to the proposed cleanup area for TPH, SVOCs or other COCs. Therefore, for the purposes of site characterization, arsenic should be sampled for, and delineated, in these areas.
- 10) Lead does not appear to be delineated in the areas at 5CESE and 5ASE. These areas should include sampling locations for lead where it has been detected above 255 mg/kg. The SSI should define, laterally and vertically, lead contamination in soil. Results above 255 mg/kg should be carried forth as COCs in the risk evaluation. Based upon laboratory results, additional sampling may become necessary.
- 11) TPH results over 1000 mg/kg should be specieated by carbon chain range for the purposes of risk evaluation, in accordance with HERD guidelines. Please consult project toxicologist for methods of evaluation.
- 12) Page 24, Section 8.5, Preparation of SSI Report
 The final recommendation cannot be made based upon screening levels. The
 final recommendation should be made based upon the results of the
 investigation and associated human health risk assessment. A No-FurtherAction recommendation is not appropriate if the site is poses a significant risk to
 human health.

DTSC Comments Aspire Charter School December 9, 2005 Page 3

Joe T. Hwong, R.G., C.HG.

Senior Engineering Geologist Schools Unit - Cypress Office Department of Toxic Substances Control 5796 Corporate Avenue Cypress, California 90630 714-484-5406 jhwong@dtsc.ca.gov

GENERAL AND SPECIFIC COMMENTS

- 1) Page 6, Section 2.2 Prior Assessment and Agency Determination All activities performed by Pacific Electric Motors should also be listed in this section.
- Page 9, Soil vapor Soil samples were collected from 3' to 5' bgs, not 1' and 5' bgs. Please revise accordingly.
- 3) Sample collection and analytical methods described in the text are unclear. DTSC recommends a table listing all proposed borings, sample depths, and analysis for each sample be prepared and included in the SSI Workplan.

Thomas Booze, Ph.D.

Staff Toxicologist
Human and Ecological Risk Division
Department of Toxic Substance Control
8810 Cal Center Drive
Sacramento, California 95826
916-255-6628
tbooze@dtsc.ca.gov

GENERAL AND SPECIFIC COMMENTS

1) PCB data is necessary from west and east of former location 2C since the sample from 2C is just over a probable cleanup concentration. ER proposes that we do not collect samples for PCB in the area of former locations 4B and

DTSC Comments Aspire Charter School December 9, 2005 Page 4

4BE(10') because the extent of PCBs has been defined in this area. The concentrations of PCBs found in both samples was higher than likely cleanup levels which indicates the need for additional sampling. For 4B (PCBs = 69.7 ppm) this would be a sample from the subsurface and from the surface to the north. For sample 4BE-10' (PCB= 0.84 ppm) this would mean additional deeper and lateral samples.

- 2) Groundwater Naphthalene should be on the list of analytes.
- 3) The SSI Workplan indicates that the oral cancer slope factor for PCBs is 5. However, HERD recommends the use of 2.
- 4) Appendix D- HERD can provide guidelines for determining background metals concentrations (See attached).
- 5) SVOCs in soil Add a sample or two from the grouping of SB-32 through 34 since that's around the location of a TPH motor oil detection that is the subject of further sampling.

LFR Levine Fricke (LFR) prepared a work plan for the additional supplemental site investigation (SSI) titled "Supplemental Site Investigation Work Plan, Proposed Aspire Charter High School Site, 1009 66th Avenue, Oakland, Alameda County, California," dated November 18, 2005. The California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) presented comments on the additional SSI work plan in a letter dated December 8, 2005. DTSC's comments and LFR's responses are presented below.

Ryan Atencio's General Comments	LFR Response
1. While DTSC recognizes that Figure #14 shows the proposed excavation areas, the SSI Workplan should note that cleanup goals have yet to be established, and can only be considered after the Site is fully characterized, and the contamination is delineated across all media. Therefore, actual limits of any excavation may be revised based upon the outcome of the SSI and any necessary further investigation.	LFR has noted in Section 3.1 of the work plan (Page 16) that the limits of any proposed excavation could change after the Site has been fully characterized across all media.
2. The SSI Workplan document title should indicate that this is a second or additional Workplan for the Supplemental Site Investigation, or otherwise distinguish itself from previous SSI Workplans.	LFR will title the work plan as the "Additional Supplemental Site Investigation Work Plan."
3. The SSI Workplan should include a sampling table listing each proposed sample, rationale, matrix, and corresponding parameters.	LFR has prepared a table presenting the boring ID number, the rational for collecting the sample, the sample depth interval, the matrix, and the analytes. This table is presented as Table 4 in the Additional Supplemental Site Investigation. The analytical methods are presented at the end of the table.
4. The SSI Workplan should indicate Method 8260 analysis holding times. Also, please indicate field preservation method or collection method for soil samples to be analyzed for VOCs using Method 8260.	LFR has noted the holding times for U.S. EPA Method 8260 and field preservation method for samples to be submitted for VOC analysis in the project Quality Assurance Project Plan (QAPP).
5. The SSI Workplan should indicate the analytical method for PCBs and list the corresponding holding time.	LFR has noted the analytical method and holding time for PCBs using U.S. EPA Method 8082A in Section 3.1 of the work plan (Page 22) and in the QAPP.
6. The SSI Workplan should discuss and make clear the plan to analyze archived samples to meet holding time limits for all parameters.	LFR presents a discussion of plans to analyze archived samples to meet holding times in Section 3.1 of the work plan (Page 21).

7. The SSI Workplan should include a list of all laboratories used for all analysis. Also, drill rig SOPs should be included in the SSI Workplan and a diagram of the nested probe design should be included as well.

A list of laboratories that will be used to perform analysis and SOPs for drill rigs to be used for soil and groundwater sample collection on this project is presented in Section 3.1 (Pages 15 through 18) of the work plan. A diagram showing the construction of a nested well to be installed at the Site is presented as Figure 15.

8. Soil samples should be analyzed for arsenic at and between the previous 2A and 1A locations. The SSI Workplan proposes that a "baserock" is source of the arsenic concentrations at this area, and assumes that this area will require removal. However, for purposes of Site characterization and human health risk decision making, soil samples should be taken here and analyzed for arsenic.

A discussion of sampling proposed to address delineation of arsenic-affected soil in the area between 1A and 2A is presented in Section 3.1 (Pages 20 and 21) of LFR's Additional SSI Work Plan.

9. The SSI Workplan proposes not sample for arsenic at 2A, 2B, 2NC because this area is impacted with SVOC and/or TPH and will be remediated for these COCs. However, the extent of arsenic contamination in these areas is still not defined. As a result, site specific, risk based, clean up goals have yet to be developed for arsenic. Additionally, it is not known if the potential arsenic cleanup area is equal to the proposed cleanup area for TPH, SVOCs or other COCs. Therefore, for the purposes of site characterization, arsenic should be sampled for, and delineated, in these areas.

A discussion of sampling proposed to address delineation of arsenic-affected soil in these areas is presented in Section 3.1 (Pages 20 and 21) of LFR's Additional SSI Work Plan.

10. Lead does not appear to be delineated in the areas at 5CESE and 5ASE. These areas should include sampling locations for lead where it has been detected above 255 mg/kg. The SSI should define, laterally and vertically, lead contamination in soil. Results above 255 mg/kg should be carried forth as COCs in the risk evaluation. Based upon laboratory results, additional sampling may become necessary.

A discussion of sampling proposed to address delineation of lead-affected soil in these areas is presented in Section 3.1 (Page 23) of LFR's Additional SSI Work Plan.

Ryan Atencio's Specific Comments

11. Page 24, Section 8.0, Preparation of SSI
Report - The final recommendation cannot be made based upon screening levels. The final recommendation should be made based upon the results of the investigation and associated human health risk assessment. A No-Further-Action recommendation is not appropriate if the site is poses a significant risk to human health.

Section 8.0 of LFR's Additional SSI Work Plan has been revised.

Joe Hwong's General and Specific Comments	
1. Page 6, Section 2.2 Prior Assessment and Agency Determination – All activities performed by Pacific Electric Motors should also be listed in this section.	Site activities performed by PEM are presented in Section 2.2.1 of LFR's Additional SSI Work Plan. Additional information on site history is presented in Section 2.1 of LFR's Additional SSI Work Plan.
2. Page 9, Soil vapor - Soil samples were collected from 3' to 5' bgs, not 1' and 5' bgs. Please revise accordingly.	The depth from which soil vapor samples were collected has been corrected.
3. Sample collection and analytical methods described in the text are unclear. DTSC recommends a table listing all proposed borings, sample depths, and analysis for each sample be prepared and included in the SSI Workplan.	LFR has prepared a table presenting the boring ID number, the rational for collecting the sample, the sample depth interval, the matrix, and the analytes. This table is presented as Table 4 in the Additional Supplemental Site Investigation. The analytical methods are presented at the end of the table.
Tom Booze's General Comments	
1. PCB data is necessary from west and east of former location 2C since the sample from 2C is just over a probable cleanup concentration. LFR proposes that we do not collect samples for PDB in the area of former locations 4B and 4BE (10') because the extent of PCBs has been defined in this area. The concentrations of PCBs found in both samples was higher that likely cleanup levels which indicates the need for additional sampling. For 4B (PCBs = 69.7 ppm) this would be a sample from the subsurface and from the surface to the north. For sample 4BE-10' (PCB = 0.84 ppm) this would mean additional deeper and lateral samples.	A discussion of the extent of PCBs-affected soil is presented in Section 3.1 (Pages 21 through 23) of LFR's Additional SSI Work Plan.
2. Groundwater - Naphthalene should be on the list of analytes.	Analysis for naphthalene, a SVOC, has been added to the analytes for groundwater samples collected from borings SB-19, SB-22, SB-33, SB-35 and SB-37 (see Section 3.1, Page 23 of LFR's Additional SSI Work Plan).
3. The SSI Workplan indicates that the oral cancer slope factor for PCBs is 5. However, HERD recommends the use of 2.	LFR's responses to DTSC's comments on the SSI report by CSS have been revised to note use of 2 as the oral cancer slope factor for PCBs.
4. Appendix D - HERD can provide guidelines for determining background metals concentrations.	LFR will use guidelines provided by HERD to evaluate background metals concentrations.

5. SVOCs in soil – add a sample or two from the grouping of SB-32 through 34 since that's around the location of a TPH motor oil detection that is the subject of further sampling.

As noted in Section 3.1 (Page 17) and on Table 4, the soil sample from the 5-foot depth from SB-32 and the soil sample from the 10-foot depth from SB-33 will be submitted for SVOC analysis.

APPENDIX C

Alameda County Public Works Agency Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/01/2005 By jamesy

Permits Issued:

W2005-1151 to W2005-1154

Receipt Number: WR2005-2223

Permits Valid from 12/12/2005 to 12/22/2005

Application Id:

1133478728703

City of Project Site:Oakland

Site Location: Project Start Date: 1009 66th Avenue, Oakland, CA 94621 12/12/2005

Completion Date: 12/22/2005

Applicant:

Client:

LFR Levine Fricke - Lita Freeman

Phone: 916-786-2456

Property Owner:

4190 Douglas Blvd, #200, Granite Bay, Granite Bay, CA 95746

Modad Properties Llc

Phone: --

561 4th St., Oakaind, CA 94607 ** same as Property Owner *

Total Due:

\$1100.00

Total Amount Paid:

\$1100 OO

Paid By: VISA

PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells

Driller: Vironex, TEG, BC2 Environmental - Lic #: 705927 - Method: DP

Work Total: \$900.00

Specifications

Permit #		Expire Date	Owner Well	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2005- 1151	12/01/2005	03/12/2006	NW1	12.00 in.	2.00 in.	2.00 ft	25.00 ft
W2005-	12/01/2005	03/12/2006	NW2	12.00 in.	2.00 in.	2.00 ft	25.00 ft
1152 W2005-	12/01/2005	03/12/2006	NW3	12.00 in.	2.00 in.	2.00 ft	25.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the

Alameda County Public Works Agency - Water Resources Well Permit

Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 5. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Minimum seal depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Borehole(s) for Investigation-Contamination Study - 38 Boreholes

Driller: Vironex, TEG, BC2 Environmental - Lic #: 705927 - Method: DP Work Total: \$200.00

Specifications

Permit	issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2005-	12/01/2005	03/12/2006	38	2.00 in.	15.00 ft
1154					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street

Hayward, CA 94544

For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org

For Drilling Permit information and process contact James Yoo at

Phone: 510-670-6633 FAX: 510-782-1939

Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location:	Agency with Jurisdiction	Contact Number	
Berkeley	City of Berkeley	Ph: 510-981-7460 Fax: 510-540-5672	
Fremont, Newark, Union City	Alameda County Water District	Ph: 510-668-4460 Fax: 510-651-1760	
Pleasanton, Dublin, Livermore, Sunol	Zone 7 Water Agency	Ph: 925-454-5000 Fax: 510-454-5728	

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Weil Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Complete Permit Application Check List (24 Kb)*

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells, shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact George Bolton at 510-670-5594 to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application before we issue the approved permit(s), will receive a FULL refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars). To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors.

The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices.

If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies. Links to pertinent forms are provided below.

Well Completion Report Form*
Well Owner's Request Form for Previously Filed Forms (41Kb)*
Government Authorization Form for the Release of Forms (46 Kb)*
Site Hazard Information Form (51 Kb)*

* Adobe PDF Reader is Required.

APPENDIX D

Standard Operating Procedures for Drill Rigs

Standard Operating Procedures for Drill Rigs

LFR Inc. (LFR) described the sampling and analysis program proposed at the Proposed Aspire Charter High School located at 1009 66th Avenue in Oakland, Alameda County, California in our work plan titled "Additional Supplemental Site Investigation Work Plan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, Alameda County, California, DTSC Site Code: 204147-11" and dated December 13, 2005. To implement this work plan, LFR retained Transglobal Environmental Geochemistry (TEG), Vironex, Inc. (Vironex) and Precision Sampling (Precision) to collect soil and groundwater samples using direct-push drill rigs. BC² Environmental, Inc. (BC²) was retained by LFR to install three nested groundwater monitoring wells using a drill rig equipped with hollow-stem augers. Standard operating procedures for these drill rigs are presented below.

• TEG: TEG utilized the STRATAPROBE™ technology for the borings they advanced on the Site. The STRATAPROBE™ sampling system is a hydraulic and percussion drive-point unit. Applications for STRATAPROBE™ include collection of soil, soil vapor, and groundwater samples and installation of small diameter water wells, vapor wells and sparge points. The sampling unit is mounted on a four wheel drive, low profile truck. A 12-foot mast height and compact overall size allows sampling in previously inaccessible locations. STRATAPROBE™ is a quicker and more powerful than other direct-push systems, and is more cost effective and cleaner than conventional drilling methods.

The most common samplers used are the split spoon sampler and the solid core barrel. Both samplers are available in lengths ranging from 18 inches to 4 feet with a typical diameter of 2 inches. This allows for the use of 1.5-inch diameter sample tubes, yielding approximately 175 cubic centimeters of sample matrix per 6-inches of tube. Each sample can be fitted with a variety of cutting shoe profiles to accommodate changing lithologic units and subsurface conditions.

Groundwater samples are recovered by pumping or bailing the water collected with the sampler. Alternately, depending on analysis required, etc., tubing from the surface may be used to recover samples using a peristaltic pump, vacuum source or a giggle tube. For volatile organic compounds, a disposable bailer is preferred, yielding the highest quality sample with the least amount of disturbance.

• Vironex: Vironex utilized limited access rigs (the 6610DT track-mounted rig and the Badger) to advance the soil borings proposed within the on-site structures.

The 6610DT is on a track-mounted vehicle with outriggers on opposite ends of the vehicle to ensure that the maximum weight possible is placed over the tool string. Because it is track-mounted and has a narrow profile, the 6610DT easily maneuvers into tight areas. The 6610DT has a larger hammer than the 5400 system and a beefed-up hydraulic system, allowing it to advance larger diameter tooling to greater depths at faster rates. Lithological conditions, such as caliche lenses, that

would normally inhibit the use of direct push rigs generally pose no problem for the 6610DT. Using this powerhouse, Vironex has pushed 3.25-inch casing and installed 2-inch diameter wells.

Specifications for the 6610DT track-mounted rig are as follows:

o Dimensions: 6.2'H x 4'W x 7.6'L

Weight: 4,900 lbs.Clearance: 13 Feet

Typical Depth: 60 to 80 feet
Pulling Force: 46,000 lbs.
Pushing Force: 34,000 lbs.
Boring Angle: 45 Degrees

The Badger is a direct-push system that is mounted on a truck dolly, which makes it ideal for accessing sites through narrow openings, such as a standard doorframe. The Badger is capable of pushing sampling tools to fairly significant depths. Furthermore, the Badger can be bolted to many flooring surfaces for additional stability and leverage.

Specifications for the Badger are as follows:

o Dimensions: 5.1'H x 2.1'W x 2.6'L

Weight: 660 lbsClearance: 8 Feet

Typical Depth: 30 to 40 feet
Pulling Force: 18,000 lbs.
Pushing Force: 16,000 lbs.
Boring Angle: 15 Degrees

• BC²: BC² utilized a CME 85 drill rig for the installation of the nested groundwater monitoring wells. This rig is truck mounted and equipped for mud rotary, hollow-stem auger or rotary drilling with augers up to 17-inch diameter outside diameter (12-inch diameter inside diameter). All rigs can be converted to high torque configuration for hard drilling conditions, some rigs have 140# and 300# auto hammers, several rigs are equipped for angle holes. This rig has the advantage of taking borings to depths greater than 150 feet when needed to chase contaminates on an environmental project.

Specifications for the CME 85 drill rig are as follows:

- o Powered by Cummins 6BT turbo charged diesel engine
- o Rotary torque.....20,000 ft. lbs.
- o Rotary speed......465 RPM
- o Retract Force......48,000 lbs.
- o Pulldown force....28,000lbs.
- Safety driver hoist for down-hole-hammer
- o Hydraulic rod holder and breakout wrench (rotary drilling)

o 140 lb. Automatic SPT hammer

Capabilities for the CME 85 drill rig are as follows:

- o Angle drilling
- o Augers to 10.25-inches inside diameter
- o CME continuous dry core system

Photo 1: Soil borings along western edge of gasoline-affected soil (SB-22 in foreground and SB-21 and SB-20 in middle background).

Photo 2: Soil borings along western edge of gasoline-affected soil (SB-41 in foreground and SB-19 and SB-20 in background).

Photo 3: Soil borings 2CW(10') and 2CW(20') located west of stormwater collection sump and pump along southern border of the Site.

Photo 4: Soil boring SB-40 located in unpaved area immediately west of paved parking area.

Photo 5: Boring 4BE(10') 4.5-5' at southeastern corner of the pressure wash room inside the manufacturing/office building.

Photo 6: Boring SB-34 located inside the manufacturing/office building.

Photo 7: Nested well (NW-1) located along northern border of Site before installation of traffic box.

Photo 8: Nested well (NW-3) located along southern border of the Site after installation of traffic box.

Photo 9: TEG's mobile laboratory shown on the Site in December 2005.

Photo 10: BC² Environmental drill rig and support truck during installation of nested well NW-2.

Photo 11: BC² Environmental crew during installation of nested well NW-2.

Photo 12: BC² Environmental crew during installation of nested well NW-3.

Photo 13: BC² Environmental crew steam cleaning augers used for drilling nested wells.

Photo 14: Sampling equipment used during collection of groundwater samples from nested wells.

Property of LFR

Address 1900 Bouell St 12# floor Emeryville, CA 94608

Telephone (510) 652 - 4500

This Book is manufactured of a High Grade 50% Rag Ledger Paper having a Water Resistant Surface, and is sewed with Nylon Waterproof Thread.

INDEX

- page 1 - Garprobe - page 6 Geoprobe
page 12 Geoprobe
page 17 Geoprobe
page 24 - NW-3/NW-1
page 39 NW-1/NW-2
page 32 - well development
page so

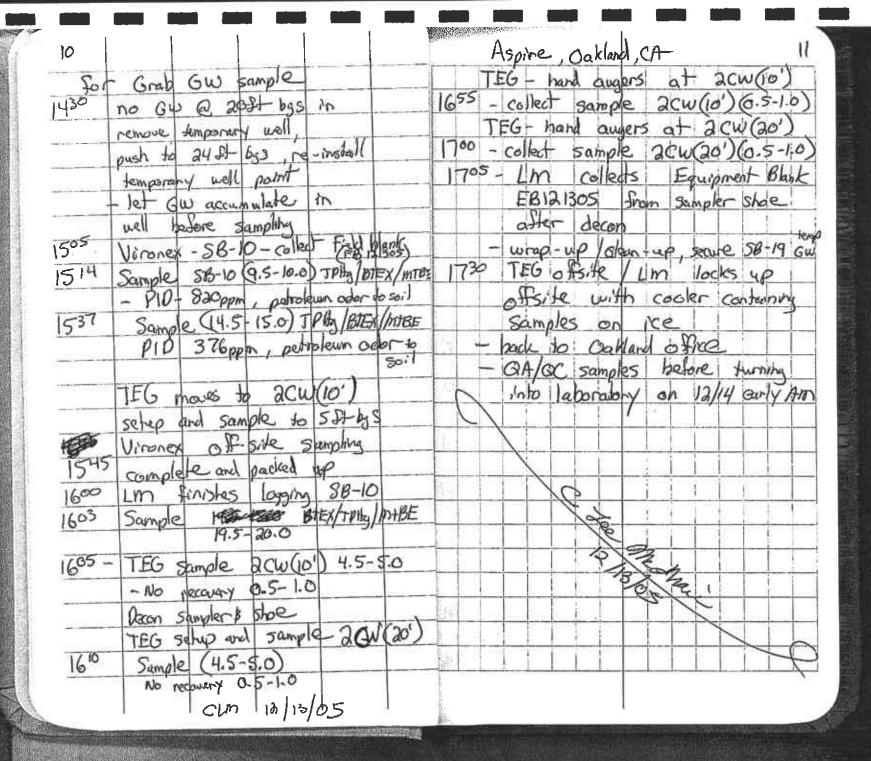
12/12/05 Aspire Oakland 1009 Goth Avenue Dakland, CA 40°F 730am LIFR- LES. Shelby Lita Freeman Virginize track manted direct push truck may stand threat push and MODILE Val Shelby inside warehouse w/ Vinonex LEE - Fost of watchouse wy tes 8:30 selup and sample 3B-4 SUCC PAH TAHmo/AS 0.5 - 1.0 4.5 - 5.0 SUCC PART / TPH mo/As Diplocate 10-1.5 grout 5B-4 5B-B and Sample 855 SVOC(PAH/TPHMO 05-10 4.5-5.0 SUCC /PAH/ TPH IND - grout SB-3 and sample SB-13 to 5th das 12/12/05 CHM

9		Aspire Charter high school site, oakland
cn-	13 0.5 - 1.0 TPH no SUCC PAH	120- nove to SB-29
36	4.5-5.0 Svoc/PAH	- poor recovery
	and 58-13	- and attempt poor recovery
INVA	selep and sample SB-14 to 58th	2rd attempt better requery
0.03	0.5-1.0 7PHmo Svec/PAH	1231 0.5-1.0 TPHmo / SUCCS
	4.5-50 Svac/patt	1253 4.5-5.0 SVOCs
	grout SB-15	move to 5B-30
10135	Setup and sample SB-26 to 5.8-bgs	
10.07	16:46 0.5-1.0	1315 samples 0.5 - 1.0 TRHmo / As
	10:53 4.5 -5.0	1326 4.5-5.0 As only
	omit 58+26	Call to Lita report progress, check
11:15	Setup and sample SB-25 to 29ths	with Mobile lab no more samples
11:16	- 0.5-1.0 only TAltmo 10	today, have enough to run already
11.10	mobile lab only	- Additional samples will be submitted
	-grout SB-25	to fixed Laboratory C3T
11:16	Selup and Sample SB-28	check with Salay working up Vironex
11.0	0.5-1.0 only TPitor to	inside from works shop w/
	mobile lab	Borrys inside completed include
	move to SB-27	Bonnes inside completed include
	Selep and Sample SB-27	SB-7 \$ to 1594 bgs
1156	0.5-1.0 - TPHmo/SUCC	3B-8 to 2014 bys
1158	1.6-1.5dup SUOC	56-11 to 1554 bys
1208	4.5 -5.0 SVOC	5B-9 to 2051 bys 3B-6 to 1551 bys
	- auck lunch break for TEG	38-6 1 to 157 bys
	driller to allow LM to	according to Selby Hese locathors show
	la samples CLM	according to Selby Hese localtons show
	12/12/05	12/12/05

Service .

.

Cum 12/12/05 CLM 12/12/05 20% () () () elevated PID readings, some 1520 - Collect Equipment blank Off-scale at 10 and 1527 bys (EBIAROS) by poring DI wakes over sampling (SS) shoe after - still elevated at borrings to 2011 by. 1355 Move over to 58-24 schip and simple SB-24 Decon + rinse Sample EB121205 for TPHy, BTEX Soil and Grab Gw localton mtb=, svecs, Arsenic |
Shill not enough Gw in
temporary well point in 38 24 1359 Sample 0.5-1.0 1401 (Soil) 1.0-1.5 dup 4.5-5.0 1441 9.5-10.0 1501 How up site & grapment I drum of soil cultings started 14.5-15.0 -intall temporary 1" PVR well at 05\$1 bys, no water 1630 - TEG offsite (Geophibe) 5B-PA nuter at 2511 bys - TEG mobile lab - still running not elough when to what samples, will continue to Grab Gw somple, wait run remaining samples toright prepare to depart site.
TEG mobile lab aff-site - secure temporary well and 1700 per permit Acurb

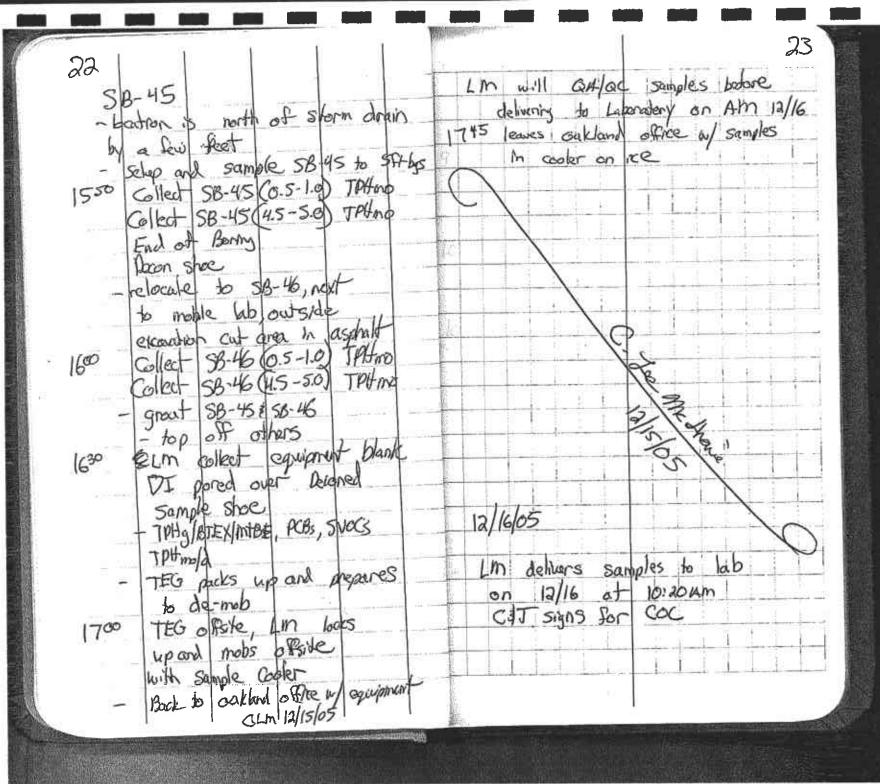

Collect Field blank (FB121205)

with abordery provided DI CLM and Shelby Sach off-site back to bakked shed with 1515 cooker of samples on ice - CLM to QA/QC samples us. Charl water for TPHz, BTEX, MTBE SVOCS, Arsenic and analysis will subnit samples to laboratory on 12/13 early AM C. yee Mr Mair 12/12/05

CLM 12/13/05

Aspire Charter High School Site.
Ockland, CA - purtly cloudy 40's going to 50's CLM delivers samples from 12/12. to C3T Luberatory 0700 in Bereakely - Cooler N/ samples
on I've, COC + custody seed - mob to caleland office shed then to site 6730 CLM onsite, TEG geoprobes - Vironex w/ concrete corer
and limited access rix onsite CLM conducts daily toolbox HSP metry - Vironex to Concrete Core 6 locations inside building for TEG geoprobe Soil + GW locations - Vironex to Care room inside building and collect sample from 1994 bys for ABs location 4BEO TEG mobile lab shill has a sew Samples exercit to run after generator stopped running last night, will complete TPHMO samples in AM CLM 12/13/05

8		Aspire,	Oakland	1	Aspire, Oakland 9
	Vironex &	moletes	room sam	de 1	- Decon geoprobe sampler \$ shoe
	location (4	BEID)	nside		- Metal works meturns, opens
	building				access to building Virgnex to
001	Sample 4	BEID G.	5-50)-P	CE's	go back to building and core
	Vironex -	o move	40		concrete to collect sub slab
	Moretal Wor	ks burl	log of		material for greenit amilyes
	tenant sl	שושא אם	to unlock		1246 Sample SB-88 (0.0-0.5)
	door to	get additive	to unlack	sub stat	1246 Sample SB-88 (0.0-0.5) Wronex) Hrsenic below slab
	Joe Mona	OF-5,7	le	ĺ	1257 - Sample 5B-6 (0-0-0.5) (below ship)
-	Vironex 1	oads agu	promot	William Company	(Moorex) Account
215	TEG geopi	obe mou	es do SB-	-18	1300 Sample SB-10(00-0-5) helow slab
	Setup and	Sample	SB-18 to	651- bys	Acsenie,
026	Sample	0.5+1.0	- Arsente (Not !	1322 Sample 3B-10(0.5-1.0) TPHmo
1035		4.5-5.0	Arsene On	V	T.F.G. Setyo and Sample SB-19
	Decon con	e & Shoe	e, move	1	1337 Sample SB-10 (4.5-5.0) TAIL /BITEX
	TEG to				mobile lab, PID = 89.6ppm oder MTBI
1120			ande SB-	17	TEG - SB-19
	to 15	ft kgs			1380 Sample - (0.5-1.0) TPH no
1131	Samples C	1.5-1.0	- THE BIE	MTBE	E 1401 SB-19 - Sample (4.5-5.0) 7014/80EX/house
1154	. 4	.5- 5.0	11 71	1	1410 SB-19-Sample (9.5-10.0) TPHy/BIEX/INTER
1221	q	5-10-0	. 41 11	N	Viranex - SB+10 - continues to push down
1231	l l	0.0- 10.5	dupun	11.	1418 TEG-58-19
1243		4.5-15.0	v ~	7	Sample 14.5-15.0-7PHy/BTEX/MHBE
	P10 3 00	dor in :	sample at		- no PID response no adoc
	to Stand	15 Fl by	3		TEG pushes to 20 St his hold
		n 12/13/0			TEG pushes to 20 St bys install I"DVC temporary well (SSL green)


ıa	Aspire Charler high School 8,40	13
	Oakland, CA 12/14/05	5B-20 contid
	Oakland, CA 12/14/05 weather: portly cloudy 40's going	9:20 Sample SB-20 (9.5-10.0)
	into the so's	mobile lab - TPHa/BTEX/MABE
710	Lm delivers samples from	PID = 218ppm petroleum odor ins.
	12/13 to CAT labs	7-31 Jample SB-20 (14.5-15:0)
730	LM onsik, TEG Lab &	mobile lab - TPHalBTEX/INTEE
	generabe present	111/ = 0. Spain ha adar
745	conduct toolbox HSP meeting	End of Bening 16 St bys
	calibrate PID to Oppm	Decon enjugatent
	isobutylere in air	move to location: SB-21
800	check GW in demporeury	939 Sample SB-21 (0.5-1.0) TPHmo/SVOCS
	uell point SB-19 @ 24st	991 Sample SB-21 (0.5-1.0) TPHmo / SVOCS
	GW 15 11-58+	mobile tab / C+T
810	Collect SB-19-GW	953 Sample 513-21 (4.5-50) TPHO/BTEX/MISE
	Sor TIPHA/BITEX/MITBE	SVOCS-C3T
812	Collect SB-R-GWdys	1010 Sample SB-21 (9.5-10.0) TPHy/BYEX/INTEF
	SOF TPHY / BYEX / MABLE	- mb/0 1 10
830 -	remove cosing, grout SB-19	1000 Damole SB-21 (145-150) + 014 letry longor
	w/ tremie pipe from ballon	that of portal least bes
×=	to top	TREAM Sample + 1 Sho
840 -	mare to 5B-20	It (2 males and treat to
2-111/4	Setup to Sumple to 1694 bys	SB-30 setup and sample to 16 ft by
845	Sample 0.5-1.0 - TREETING 18 VOCS	1051 58-22-50male 0.5-1.0 TPH 1500CS
848	Jample 1.071.2000 Aroune/SI/OCS	mable lab / C tT
& doy	Sample 4.5-5.0 BTEX/TPHJ/M+BE/SUCC	1102 5B-22 Sample 4.5-5.0 TPHS/BTEX/MHBE
904	Sample 5.0-5.5 TPH9/BITEX/INTRE SVOC	CLM 12/14/05
	alm 12/19/05	CLM 12/14/05

a 1		
14		15
	SB-22 cont a	518-32 cont'd
116	58-22-Sample (9.5-10-0)	Schup and Sample SB-32 to 164+ bys
	1 his/1816X / WARE	1327 SB-32 Sounde (4.5-5.08 TPH / PTEX/ALE
Company Service	P10 = 2-3000	1340 SB-32 Sample (9.5-10.0) TOTAL/BITEX/INTE
35	SB-22 (4.5-150) TOHY/BTEX/MABE	1379 58-32 dup sample (100-10-5) TIPIS/18/18/19/16
124	SB-22dup (15.0-155) JPB- /BTEX/MI	67 -
-	Ind of soil boring	1300 310-32 Sumple (14.5-15.0) TP1+ /8/EX/1011
	push to a off for Grab GW	Envlot Boring 16# 095
	collection, no GW measured	Deron sandar almost
	install temporary well point	move around to other side of postition
	at all st bas let GW	wall (down gradent) to load for con
	accumpatate, will try to sample	move around to other state of partitions well (down gradient) to location (a) 513-34 - Setup and prepare to sample
	later.	
, (4	- Decon w/ alconox & DI	17" dample 215-34 (95-10-0) TPH-18TEX/WHA
-)	move ingole building out near	- 1117ma (n- h/b h/b)
	- Decon w/ alconex & DI move insulte building out near GGLA Avenue to SB-38	Jample 2B-54 (14.5-15.0) +DHA BOXX LAYER
<	Solub bond Sample SB-38 to 164 bys	and Total (mahle h)
	Begin pushing on SB-88 Sample SB-38 (9.5-10.0) TPHd/SUCCE	End of Boning 16st bys Rocan could ment, Sinish loss
1215	Sande 58-38 (9.5-10.0) TPHO /SUCC	s Recon comment, Sinish lon
217	Sugar Sp. 38 (10.0-10.5) Just TPHO (CLM)	TO TO THOSE THE STATE OF THE STATE
1228	Sample 38-38 (14.5-15.0) TPHJ/SVOCS	of partition wall in building and an aradium gradium tof SB-32
10/	End of Boring 16 St bys	andown gradient of SB-32
	- Deron sampling outle and mave	- Sample From 518-35 will be held based on regults of 318-312 Begin 318-35 near i-beam
	- Decon sampling oyulp and move include by whitehouse building move to SB-32 GLM 12/14/05	Held based on results of 78-312
1310 -	move to SB-32	Begin SB-35 now i-boun
0	CIM 12/19/18	CLM 12/14/05
	17.70	CLM 12/14/05

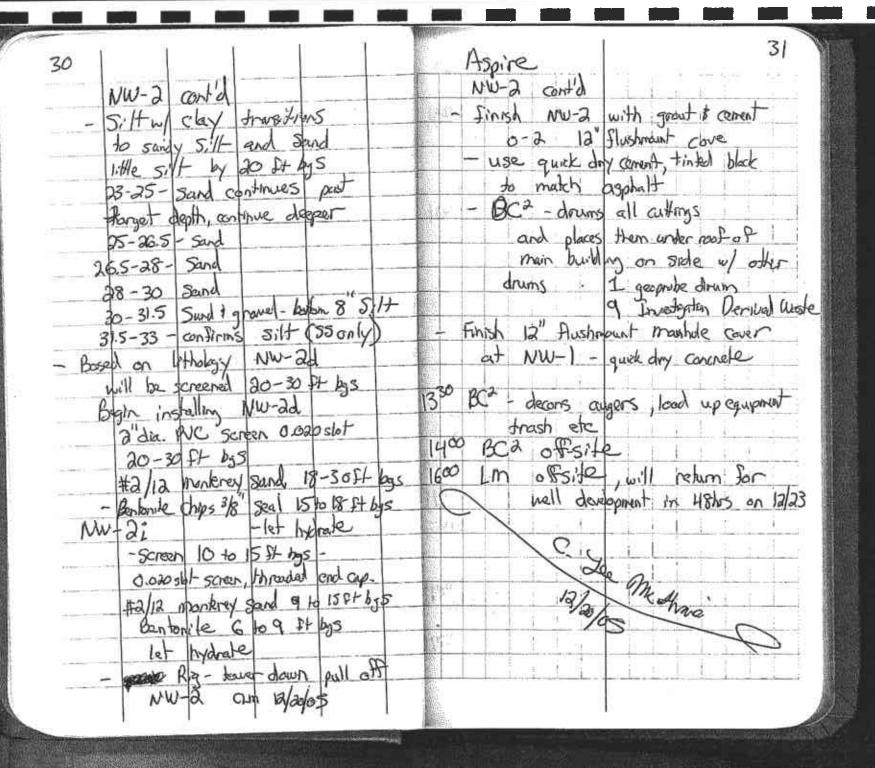
16	1 12/14/05	Aspire Charter high School Site 17
SE	3-35 cont'd	Oaklard, CA
1503	Sunde SB-25 (45-50)	Weather: mostly supply 40's coing to-Core
10	HOLD - TOHOLD TEX/MARK	- Lm to CIT labs to drop off 12/14/05 samples
55	Sample SB-315 (9.5-16-0)	705 - LM signs COC over to CAT
-28	HOLD - TPH /BIEX / MITE	Sample recitevity
1533		mon to add offer the to site
	HOLD samples TOHY /BTEX/MTBE End of soil borna	730 - LM onsite, TEG gosprobe \$ mobile lab present
	Push to 2554 bas, install	LM conducts toolbox HSP meeting
	temporated well cosing to	TEG
-	Stay in oversight to allow	LM Calibrates PID to 100 ppm
	GW to occumulate	isolatylare in air
	TEG completes sampley	Calibration ok
	coforthe day	8:00 check water level exertion in
	LM probile lab has a	temporary wells SB-22 (outside)
	Sew samples left to analyse,	and 58-35 (inside)
	Lm has cooler with samples	- 515-22 PTW-4.91 St bas
	and up QA/QC them	8:05 collect SB- 22-GW - TPHY/BTEX/MTBE
	Defore subnitted to laboratory	8:10 collect SB-22 Gwdup 11+Abyphtholor
1630	TEG melale lab off-size	- mave to \$18-35 to collect CW/DIN870
	LM off-site with cooler	8:35 called SB-35GW TPHg/BIEX/INTBE
	and samples, was sevared I m	7P/h) /ma = 10 m/h)=0
	will GALOC sande before	8:38 called SB-35G well Tritg/BIEX/MBE
	compital to the Lab in AM	TOHA/mo
	tomorrow . Jee me 12/14/08	CLM 12/15/05

8.	Aspire	19
Finish Gw sampling at SB-35	1141 collet sample \$8-36	(4.5-5.0)
1:00- abandoned SB:22 & growt	for PCBs only	
w/ tremie pipe	Hold TPHy/BTEX/	ntafi
abandoned 513-35 agrowt	1153 collect sample 513-	36 (as-100)
w tremie pipe	1153 collect sample SB-	When tou
03 move geoprobe to SB-33	Hold Sor TPHS/BTE	X/MTGE + JVHAO
setup and samples to Kortais	1201 Collect sample 56-3	1 20122
No sande person 0-4		6 (43-13.0)
Collect sangle 58-33 (4.5-5.0)	Hola - same as a	DIE .
C TPH, MEX INDE	Find of Boring SB	- 26 @ 1617 bys
017 Collect sample 58-33 (9.5-10-0)	1230 - Collect grab GW	sample from
FOC TPHE BIEN MHBE	58-33 - TPHy/A	TEX MIBE & TPHA
For TPH BIEX/MHBE (C+T)	and N	aphthalere + CIT
1006 Collect sample resulting SB-33	1245 Remove temporary	wall point
(14.5- 15.0) - TAINS BEEX INTE	and about all the	mic pipe
TPH no 1 SUCCS	1300 - take wark lunch	break Im
049 - install temporary well point	office will also	pith up the
L 24 STL NG 2 2000	to restorted re	in sample coole
5 and difficult, water in	1300 chm back onsite	
Jana, a. William, war.	- TGG geoprate Se	up on 58-37
nell la la la la la la la la la la la la l	porepare to Sample	Li to 16 Aba
- move to SB-36	-0-4 ft bys no	
- move to 38 20	1345 Collect sample.	518-37-(45-50)
and soup to tample to		later Inter \$.).
16st bas	176ly Joe 1979	BIEX/INTEE \$ perdin
1/30 Collect sample SB-35 (0.5-1.	o) results from	,
for Pebsony cum 1	1/15/05 CLM 12/	15/05

WANTED THE STATE OF THE STATE

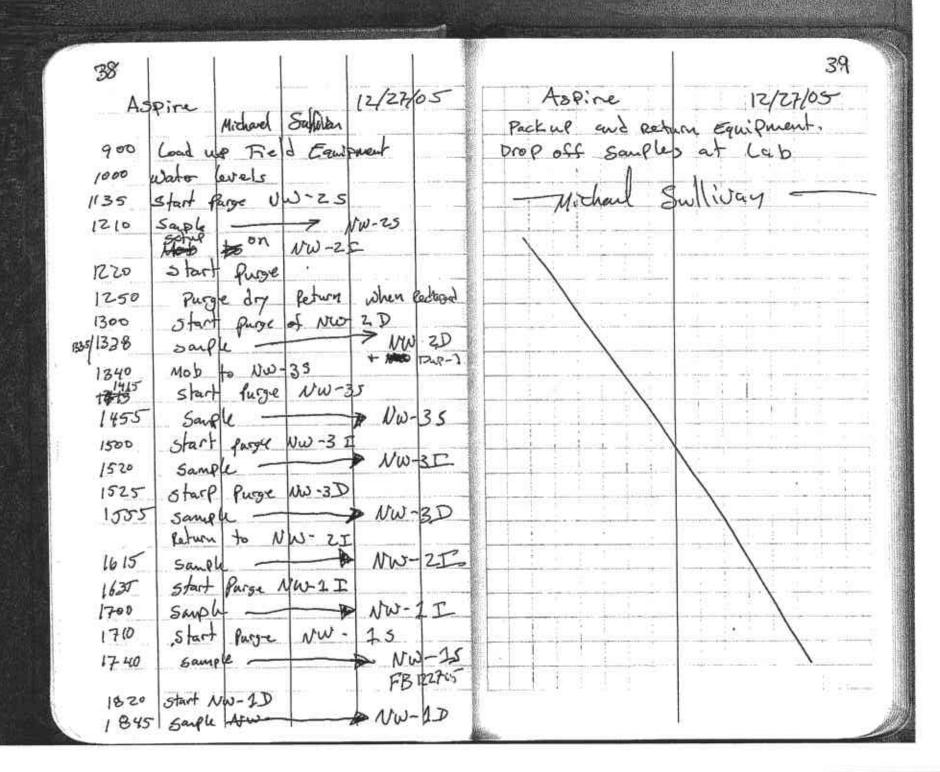
24 Appre charter School Site 12/19/	and Aspire 25
Ocklard, CAt	NW-3 Cont'd
heater: cloudy, chance of num	- seepege noted shallow @ 1.5f bgs BC2 using 12 0.0. HSA w/cmE-85
730 LM onsite to ment drike BC2 to install	9:65 - sampling completed to 13 ft bys
3 2"diameter triple-nested	- no impacted measured - into clay and silt and SILT
wells - 9 wells to feel	- Somethy my hith 18" and 24" SS complete
- BC2 arrives onside my	10.13 - SS sampling completed to 28 St bys:
745 - LM conducts ItsP meeting	augers at 26.5 st in cky since
of tool box suferly meeting	10:25 Prepare to install triple nested
- Will install will be NW-3, NW-1 and thin	NW-3d - screen 20-25 It bys
NW-1 - clean to dirty	#a/la monkry sand to 195t
of GW	Bentonile 3/8" chips to 16 ft bys -let hydrate - 30 minutes
800 - BC2 - sets up on NW-3	NW-31 - Screen 10-15 St bas
near existing (hw-2) - LM calibrates PID to looppin	# 2/12 moterey sand-16ft bgs to 9ft bgs
isohutivere in late- all of	Bentonile = 6.5 to 9 St bys
815 - BC2 band clopes NWB	- take lunch break to let bontonite
to 5 ft bgs	hudate
to 5 ft bgs - find 1.5" diameler tree branch (horizonta) at a.5ft bgs	NW-3s - screen 3-6 ft bys
(horizontal) at a.5 H bys	#2/12 monterey S and to 2 St
o bagin continues >> bumphy	bgs - use 55 scens to secure end
Soon 5ft to 25ft bys Cun 12/19/05	NW-35 - Screen 3-6 ft bys #2/12 monterey Sand to 2 ft bys - use 55 saws to secure end - Cement 1 growt to surface cap CLM 12/19/05 on casing

BC2 - tower down, secure rig and equipment on tender truck - cone off NW-3 & allow cement to cure, add plastic 1730 DC2 OSF-Site - LM locks up gate off-site, back to aduland offsile - charge questiont return company truck will return tomorrow to complete NW-1 and drill and complete WW-2 - Araw


Aspire Charler School Site Oakland, CA - 12/20/05 weather: avercost precipitation expected 730 - Lm oreite, BC2 mig + tender onsile - LM conducts tool box HSP meeting LM calibrates PID to 100ppm 150 butylene in air

8:00 BC2 sets up doll nig on MW-2

- hard auger to 5ft bys - clear


8:35 - begin continuous lithologic

5ampling from 5ft bys - Sample at 5-6.5st immediately has a petroleum odor - shallow soil is moist no Seepaye -primarily Silt , little sand & gravel - petroleum oder still persistant At 13-15 core - net, outside of SS is a sheen - petroleum odort goes away at 15St with charge is litholy Silt u/sand to Silt u/chy CLM 12/20/05

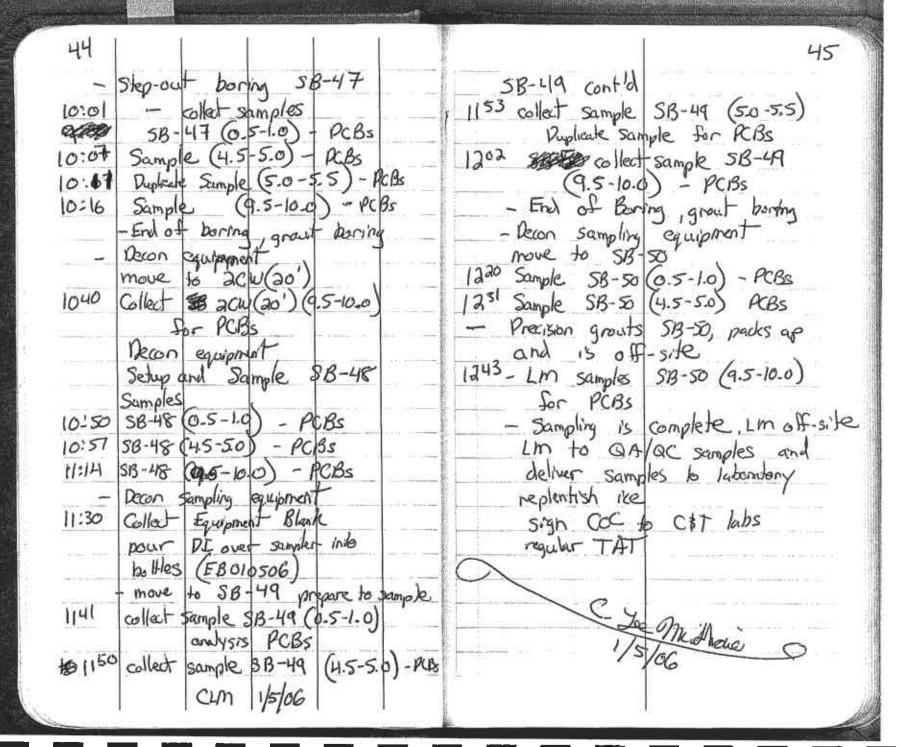
32	Aspire Charler high school Site	Appire Charler High School Site 33
	Caleland CA	- very turbed w/ sediment
	weather: party cloudy, little sung 50%	1045 purged dry
800	Lm & muchael Sultum meet at	- recharge is slow, poor/fair
	ookland office, load equipment	Decon pump,
	mob to site	- use singe block on NW-ld TD
830	In ms at side, go over	1050 - Begin pumping from NW-1d = 27.79
0	HSP w/ ms, show well	- yield is poor, worse than It be
9 -		NW-15 and NW-12
	locations and quality	
_	task: well development 9 wells	pump rate unable to maintain
	3 rested x 3	steady flow rate, very multy with
-	Stort at MW-1	silt (purge dry)
-	use surge block to re-pack	- let rechange will come back laker
	Sand plack and Suspend Sitt	and pump again
	For removed by Submersible pump	to NW-3 nested well
	2" Guntos Kedi Ho	to NW-3 nested well
	- use 2" pump & flow through	- use surge plack on MW-3S
12 44 1101	cell to pump and monitor	NW-3S = 5.90 ft be TD
		1135- initial pumping purges dry
1025	- water is clearing llund > 100 ATV	- Decon pump and place in
10:30	- final NTUS = 16	- NW-SE which was just surge
1032	Idl in Indiana (A)	Marked -
10	of NW-IS TD = 5.55 ft-be	144 - Begin Oumpin NU-31, oursed day
F-1	The supplied of the supplied to the supplied t	IN 112 - 01 10 0 - KO VII
14	The state of the s	153 - arrived day stage was let outer
	using pump and flow-cell yield is initial poor/fur	153 - Aurged dry, stop weit, let redige - quick lunch break (LM offsite)
	yield is initial poor/four - Cam 12/2405	yaire with brak (L'110 1512)
	Cam 12/2405	
		k A

34	Aspire	Aspire	35
<u> </u>	INS Drives and O	1320 - Begin pumpio	TD= 25.59 \$1 bc n NW-3d
1158	Baying pumping from 100-3:	- tuched u/ s	indiment(silf) boown measurements u/ Estat parameter meter
	turbidity slowly comes into mange - yield is increasity as Contact we formation increases and sedment with	1345 garantelars St	able. Turbidity
12%	- Turbolly down to 77 now Surge pamp, hereases soul.	- pull pump nested well clu	, 48 gallons removed move to NW-2 skr
1241	Turbidity decreases to < 100 WTM other parameters are shable	pumping to	remove stallment /5/15
1748	- Decon pump, return to NW.3.	- well goes dry - pull pump - collected, po	No parameters or to no recharge
18.11.	- better yield, still sediment, sitt	remove Sedim	nt and development of nove to NW-32
1310	- well will go dry again	- use surge pack adjusting	and to scaspen
,	turbridy down to 354 - uell dry Dross own	sadment Sor - Bayin pumping petroleum or	, hurbid, brown,
35 35	use Surge block on NW-3d	- NW-22; - g poor to no 12/23/05	nechange CLM

42 Aspire Charler high School Site weather: partly cloudy 50's 800 meet precision Sampling (Isree)
Geoprate nig onsite
for step-out locations
- conduct HSP tailgate meeting - Lm calibrates PID with

100 ppm isobutylene in air

- cut slab in big wherehouse building near 4BS(00') location will sample deeper


- Geoprobe - push at 4BS(00') 900 Collect Sample 4135(20') (9.5-10.0)

- analysis - TPHmo

910 Collect sample 4135(20') (14.5-15.0)

Find bering - grout

- more outside, decon sampler 1 shoe Setup and prepare to sample 940 Gllect sample 2CW (10') (9.5-10.0) for PCBs analysis - Decon sampler & shoe 950 Collect Field Black (FB010506) for RBS and TPHINO CLM 1/5/06

APPENDIX F

Laboratory Reports and Chain-of-Custody Documents See Volume II

APPENDIX G Tronoff Associates Survey Data

TRONOFF ASSOCIATES

LAND SURVEYING

EMERYSTATION

5858 HORTON STREET, SUITE 140, EMERYVILLE, CA 94608

TELEPHONE: (510) 428-1515 E-MAIL: bruce@tronoff.com FAX: (510) 428-0193

January 11, 2006

Alan D. Gibbs LFR Levine Fricke 4190 Douglas Boulevard, Suite 200 Granite Bay, CA 95746-9460

Re: Aspire Charter School Site, 1009 66th Avenue, Oakland, CA.

AI,

Transmitted herewith are two signed and sealed blue line prints of our monitoring well and soil sampling location survey for the subject project. Also, enclosed are two sets of the soil sample and survey control point tabulation.

Please let me know if you have any questions or if we may be of additional assistance.

Sincerely,

Bruce T/Tronoff, PLS

73110111TRN

TRONOFF ASSOCIATES

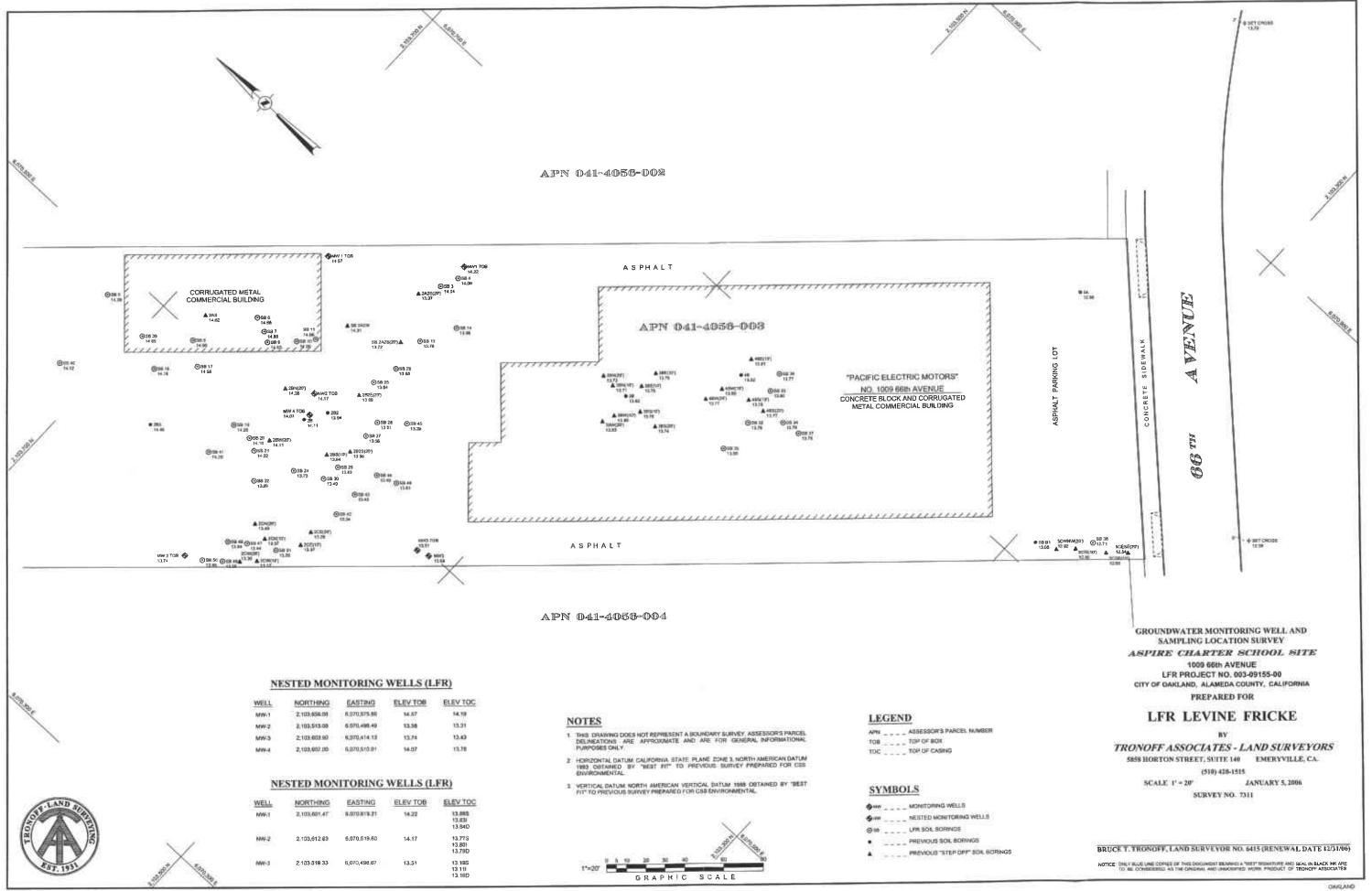
LAND SURVEYING

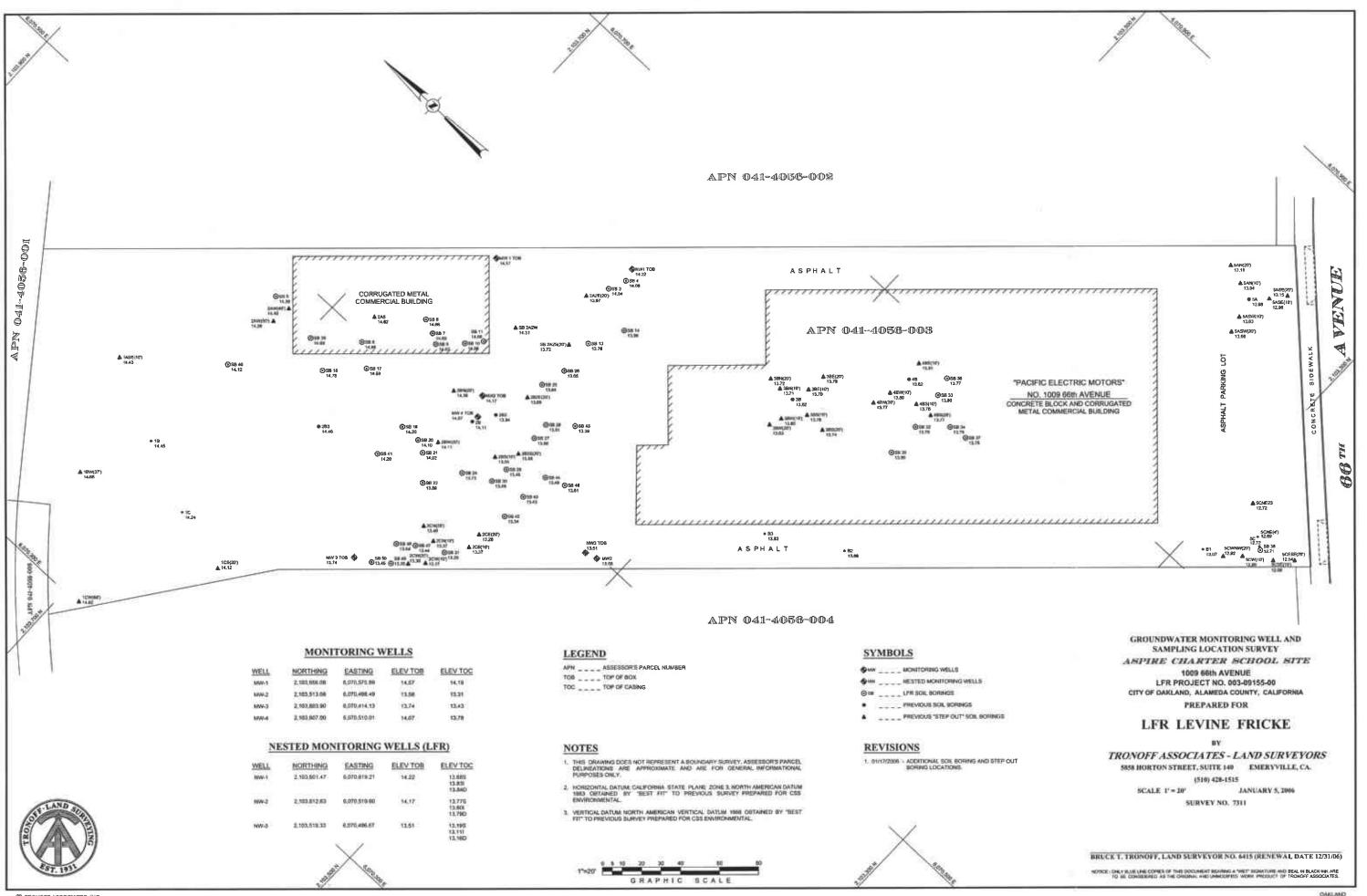
EMERYSTATION

5858 HORTON STREET, SUITE 140, EMERYVILLE, CA 94608
TELEPHONE: (510) 428-1515 E-MAIL: bruce@tronoff.com FAX: (510) 428-0193

SURVEY NO. 7311 – LFR PROJECT NO. 003-09155-00 ASPIRE CHARTER SCHOOL – OAKLAND, CA. SOIL SAMPLE AND SURVEY REFERENCE POINT LOCATIONS

POINT NO.	NORTHING	EASTING	GROUND ELEV	DESCRIPTION
101	2,103,211.30	6,070,787.75	12.59	SET CROSS
105	2,103,393.24	6,070,980.66	13.70	SET CROSS
209	2,103,603.41	6,070,603.68	14.04	SB 3
210	2,103,599.74	6,070,612.75	14.09	SB 4
275	2,103,724.90	6,070,484.59	14.39	SB 5
270	2,103,660.83	6,070,528.23	14.66	SB 6
269	2,103,653.41	6,070,525.39	14.69	SB 7
272	2,103,676.66	6,070,497.48	14.66	SB 8
268	2,103,648.39	6,070,522.49	14.67	SB 9
267	2,103,637.82	6,070,532.95	14.66	SB 10
266	2,103,631.44	6,070,540.32	14.66	SB 11
212	2,103,591.64	6,070,575.93	13.78	SB 13
211	2,103,582.74	6,070,593.53	13.96	SB 14
230	2,103,665.63	6,070,489.21	14.58	SB 17
231	2,103,681.25	6,070,473.19	14.78	SB 18
233	2,103,631.69	6,070,479.98	14.20	SB 19
234	2,103,621.26	6,070,480.45	14.10	SB 20
238	2,103,615.10	6,070,477.30	14.02	SB 21


POINT NO.	NORTHING	EASTING	GROUND ELEV	DESCRIPTION
241	2,103,604.56	6,070,466.02	13.89	SB 22
237	2,103,593.30	6,070,483.55	13.73	SB 24
215	2,103,594.37	6,070,544.48	13.64	SB 25
214	2,103,590.99	6,070,557.40	13.65	SB 26
217	2,103,578.52	6,070,521.74	13.56	SB 27
218	2,103,578.92	6,070,530.80	13.51	SB 28
226	2,103,578.05	6,070,500.25	13.45	SB 29
225	2,103,579.35	6,070,490.92	13.49	SB 30
246	2,103,571.99	6,070,447.50	13.20	SB 31
293	2,103,439.99	6,070,659.28	13.76	SB 32
294	2,103,442.74	6,070,678.94	13.80	SB 33
296	2,103,426.99	6,070,671.34	13.79	SB 34
317	2,103,440.10	6,070,641.24	13.80	SB 35
295	2,103,445.36	6,070,688.41	13.77	SB 36
297	2,103,417.43	6,070,672.72	13.75	SB 37
260	2,103,268.48	6,070,733.24	12.71	SB 38
273	2,103,697.18	6,070,481.10	14.69	SB 39
253	2,103,718.65	6,070,442.32	14.12	SB 40
239	2,103,631.52	6,070,461.15	14.20	SB 41
224	2,103,562.24	6,070,482.06	13.34	SB 42
223	2,103,562.21	6,070,495.90	13.43	SB 43
221	2,103,560.66	6,070,510.87	13.49	SB 44
219	2,103,567.48	6,070,540.61	13.39	SB 45
222	2,103,550.67	6,070,514.77	13.61	SB 46


POINT NO.	NORTHING	EASTING	GROUND ELEV	DESCRIPTION
244	2,103,585.24	6,070,440.03	13.44	SB 47
243	2,103,592.89	6,070,434.06	13.64	SB 48
251	2,103,588.00	6,070,424.84	13.35	SB 49
252	2,103,595.80	6,070,418.48	13.45	SB 50
271	2,103,680.93	6,070,511.30	14.62	2AS(10')
207	2,103,624.45	6,070,556.56	14.31	2A-2W
208	2,103,609.28	6,070,593.34	13.97	2A-2E(20')
213	2,103,598.54	6,070,568.96	13.72	2A-2S(20')
314	2,103,360.77	6,070,823.14	12.98	5A
259	2,103,290.32	6,070,713.30	13.06	1B
236	2,103,607.48	6,070,506.37	14.11	2B
229	2,103,625.34	6,070,511.49	14.36	2BN(20')
227	2,103,586.66	6,070,501.13	13.64	2BS(20')
235	2,103,613.09	6,070,486.73	14.11	2BW(20')
228	2,103,601.08	6,070,517.02	13.94	2B-2
220	2,103,579.05	6,070,510.51	13.56	2B-2S(20')
216	2,103,595.47	6,070,534.65	13.69	2B-2E(20')
232	2,103,663.03	6,070,450.97	14.46	2B-3
278	2,103,495.48	6,070,626.71	13.62	3B
279	2,103,504.09	6,070,626.41	13.71	3BN(10')
280	2,103,511.05	6,070,626.85	13.72	3BN(20')
283	2,103,484.69	6,070,625.99	13.78	3BS(10')
284	2,103,473.74	6,070,625.84	13.74	3BS(20')

Bruce T. Tronoff - California Licensed Land Surveyor No. 6415

POINT NO.	NORTHING	EASTING	GROUND ELEV	DESCRIPTION
285	2,103,493.13	6,070,636.07	13.70	3BE(10')
286	2,103,492.14	6,070,646.00	13.79	3BE(20')
281	2,103,493.03	6,070,615.61	13.80	3BW(10')
282	2,103,495.40	6,070,609.34	13.83	3BW(20')
287	2,103,459.28	6,070,674.77	13.82	4B
290	2,103,447.79	6,070,668.18	13.78	4BS(10')
291	2,103,438.55	6,070,669.00	13.77	4BS(20')
316	2,103,461.13	6,070,684.34	13.81	4BE(10')
288	2,103,461.68	6,070,663.16	13.80	4BW(10')
289	2,103,464.40	6,070,653.69	13.77	4BW(20')
245	2,103,580.33	6,070,448.02	13.37	2CN(10')
242	2,103,589.16	6,070,450.34	13.49	2CN(20')
247	2,103,564.78	6,070,458.19	13.37	2CE(10')
248	2,103,565.48	6,070,466.49	13.28	2CE(20')
249	2,103,575.47	6,070,437.02	13.17	2CW(10')
250	2,103,581.61	6,070,430.81	13.30	2CW(20')
261	2,103,280.23	6,070,718.16	12.92	5CWNW(20')
262	2,103,273.17	6,070,724.96	12.80	5CW(10')
263	2,103,260.22	6,070,734.06	12.68	5CSE(10')
264	2,103,252.15	6,070,741.56	12.54	5CESE(20')

APPENDIX H Sample Handling Procedures

Sample Handling Procedures

Sample handling procedures employed by LFR Inc. (LFR) during the Additional Supplemental Site Investigation at the Proposed Aspire Charter High School located at 1009 66th Avenue in Oakland, Alameda County, California are described below. These procedures were described in our work plan titled "Additional Supplemental Site Investigation Work Plan, Proposed Aspire Charter High School, 1009 66th Avenue, Oakland, Alameda County, California, DTSC Site Code: 204147-11" and dated December 13, 2005.

1.0 Sample Containers, Preservation, and Holding Times

Table 3 lists appropriate containers, preservation methods, and holding times for the analysis for the chemicals of potential concern that will be analyzed for during this project.

Soil samples will be placed in coolers and chilled to approximately 4°C. Regular ice used in the coolers will be sealed in a plastic bag other than the one in which it was purchased. Reusable "blue ice" packets may also be used.

Sample analyzed after the recommended holding time has been exceeded will be appropriately flagged in data summary tables. These data can be used for quantitative purposes only with appropriate disclosure and qualification.

2.0 Documentation and Sample Custody

Sample custody and documentation procedures link each reported datum with its associated sample. Documentation and custody procedures cover field, office, and laboratory activities. COCs, which are central to these procedures, will travel with all samples and their associated data throughout the tracking process.

Field documentation consists of sample labels, sampling information forms, a field activities logbook, and COCs. These documents will be completed using indelible ink. Any corrections to a document will be made by drawing a line through the error and entering the correct value, without obliterating the original entry. Anyone correcting an original document will initial and date all changes. Field documentation is described in detail below.

Sample Labels

Sample labels will be completed and attached to the sample container for every sample collected. Labels are made of a waterproof material backed with a water-resistant adhesive. Labels will be filled out using waterproof ink and will include (at least) the

sample name, the sampling date, the sampling location, the sampler's name, and the analyses to be conducted.

Field Activities Logbook

A field activities logbook will be used to record daily field activities. Each logbook entry will include the following, as necessary, for each activity undertaken:

- name of person making entry
- · date and time of entry
- location of activity
- equipment calibration status
- personnel present at the Site
- sampling and measurement methods
- total number of samples collected
- sample numbers
- laboratory to perform analysis
- field observations and comments

Chain-of-Custody Forms

COCs will be prepared for groups of samples collected at a given location on a given day. Each COC will be prepared in quadruplicate. Two of the four copies (white and green) will accompany each shipment of samples to the laboratory. The yellow copy is kept in LFR's QA/QC file, and the pink copy is kept in the project file. The COC documents the identity of all personnel involved in sample transfer. Information entered on the COC consists of the following:

- project name and number
- field activities logbook number
- COC serial number
- project location
- sample numbers
- sampler's/recorder's signature
- date and time of collection
- number of containers
- sample type
- analyses requested

- · inclusive dates of possession
- name of person receiving the sample
- laboratory sample number
- · date and time of receipt of sample
- address of laboratory
- miscellaneous remarks

Samples will be shipped so that no more than 24 hours elapse from the time of shipment to the time the laboratory receives the samples. The method of shipment may be hand delivery by field personnel, laboratory courier, or commercial shipping services (such as UPS or Federal Express). The method of sample shipment will be noted on the COC. Strict COC procedures will be maintained during sample handling.

Office Documentation

Samples will be tracked and data archived at LFR's office in Granite Bay, California. LFR's QA/QC Officer will be responsible for ensuring that documentation is in order and that all results are obtained for the analyses requested on the COC and that sample identifications on the laboratory reports match those on the COCs. The project file will be used in data tracking and documentation, as discussed below.

The project file is the common location for all information required in data evaluation and report preparation. It contains documents including work plans, sampling plans, assessment reports, correspondence, field activities logbooks, COCs, and sampling information forms. The file is organized for easy retrieval and long-term storage of information (two years or more). The LFR project manager will direct the maintenance of the project file.

Laboratory Custody

The laboratory will designate a sample custodian who will accept custody of the shipped samples and check that the information on the sample labels matches that on the COC. The custodian will then enter the appropriate data into the laboratory's sample tracking system. The custodian will use the sample number on the sample label or will assign a unique laboratory number to each sample. As a record of sample receipt, the analytical laboratory will return a copy of the COC, with the assigned laboratory numbers, to the sampler. The custodian will then transfer the sample(s) to the proper analyst(s) or store the sample(s) under refrigeration until they are analyzed.

Laboratory personnel are responsible for the care and custody of samples from the time they are received until the sample is exhausted or disposed. Disposal of unused samples must comply with all applicable federal, state, and local environmental regulations. All data sheets and laboratory records will be retained as permanent documentation.

3.0 Sample Packaging and Transport

Each soil sample will be packaged and transported according to the following procedure:

- Attach completed label to each sample.
- Properly seal and package sample containers (package samples so the potential for shipping damage is minimized).
- Complete COCs.
- Seal the top two copies of the COC inside a reclosable plastic bag.
- Seal the shipping container with several strips of strapping tape.
- Arrange for appropriate shipment to the analytical laboratory.

Samples will be transported to the laboratory by LFR or by courier pickup, following the COC and documentation protocols outlined above.

Table 1 Sample Quantitation Limits

From Curtis and Tompkins, Ltd.

EPA 8015m - Extractable Hydrocarbons

CAS#	Target Compound	Reporting Lim	iit
		(ug/L) (n	ig/Kg)
68334-30-5	Diesel	50	1
Additional (Compounds (may be adde	d to target list):	
	Motor Oil	300	5
	Hydraulic Fluid	300	5
Surrogate:			
630-01-3	Hexacosane		

EPA 8015m - Purgeable Hydrocarbons

Bromofluorobenzene

460-00-4

CAS#	Target Compound	Reporting I	imit	
		(ug/L)	(mg/Kg)
8006-61-9	Gasoline	50	;	ı
Additional	Compounds (may be adde	d to target list):		
	Mineral Spirits	50	:	L
	Stoddard Solvent	50	:	Ĺ
P				
Surrogates:				

Table 1
Sample Quantitation Limits
From Curtis and Tompkins, Ltd.

EPA 8082 - PCBs

CAS#	Target Compound	Reporting Lin	nit	
		(ug/L)	(ug/Kg)	
12674-11-2	Aroclor-1016	0.5	12	
11104-28-2	Aroclor-1221	1	24	
11141-16-5	Aroclor-1232	0.5	12	
53469-21-9	Aroclor-1242	0.5	12	
12672-29-6	Aroclor-1248	0.5	12	
11097-69-1	Aroclor-1254	0.5	12	
11096-82-5	Aroclor-1260	0.5	12	

Recommended Surrogates:

2051-24-3 Decachlorobiphenyl (DCB) 877-35-2 Tetrachloro-m-xylene (TCMX)

Table 1
Sample Quantitation Limits
From Curtis and Tompkins, Ltd.

EPA 8270 - Semivolatile Organic Compounds

CAS#	Target Compound	Reporting	Limit	CAS#	Target Compound	Reportin	g Limit
		(ug/L)	(ug/Kg)			(ug/L)	(ug/Kg)
83-32-9	Acenaphthene	10	330	118-74-1	Hexachlorobenzene	10	330
208-96-8	Acenaphthylene	10	330	87-68-3	Hexachlorobutadiene	10	330
120-12-7	Aπthracene	10	330	77-47-4	Hexachlorocyclopentadiene	50	1,700
103-33-3	Azobenzene	10	330	67-72-1	Hexachloroethane	10	330
56-55-3	Benzo(a)anthracene	10	330	193-39-5	Indeno(1,2,3-cd)pyrene	10	330
50-32-8	Benzo(a)pyrene	10	330	78-59-1	Isophorone	10	330
205-99-2	Benzo(b)fluoranthene	10	330	91-57-6	2-Methylnaphthalene	10	330
207-08-9	Benzo(k)fluoranthene	10	330	95-48-7	2-Methylphenol	10	330
191-24-2	Benzo(g,h,i)perylene	10	330	1319-77-3	3-,4-Methylphenol	10	330
65-85-0	Benzoic acid	50	1,700	88-74-4	2-Nitroaniline	50	1,700
100-51-6	Benzyl alcohol	10	330	99-09-2	3-Nitroaniline	50	1,700
111 -9 1-1	bis(2-Chloroethoxy)methane	10	330	100-01-6	4-Nitroaniline	50	1,700
111-44-4	bis(2-Chloroethyl)ether	10	330	88-75-5	2-Nitrophenol	50	1,700
108-60-1	bis(2-Chloroisopropyl)ether	10	330	100-02-7	4-Nitrophenol	50	1,700
117-81-7	bis(2-Ethylhexyl)phthalate	10	330	621-64-7	N-Nitroso-di-n-propylamine	10	330
101-55-3	4-Bromophenyl-phenylether	10	330	62-75-9	N-Nitrosodimethylamine	10	330
85-68-7	Butylbenzylphthalate	10	330	86-30-6	N-Nitrosodiphenylamine	10	330
106-47-8	4-Chloroaniline	10	330	91-20-3	Naphthalene	10	330
59-50-7	4-Chloro-3-methylphenol	10	330	98-95-3	Nitrobenzene	10	330
91-58-7	2-Chloronaphthalene	10	330	87-86-5	Pentachiorophenol	50	1,700
95-57-8	2-Chlorophenol	10	330	85-01-8	Phenanthrene	10	330
7005-72-3	4-Chlorophenyl-phenylether	10	330	108-95-2	Phenol	10	330
218-01-9	Chrysene	10	330	129-00-0	Pyrene	10	330
53-70-3	Dibenz(a,h)anthracene	10	330	120-82-1	1,2,4-Trichlorobenzene	10	330
132-64-9	Dibenzofuran	10	330	95-95-4	2,4,5-Trichlorophenol	10	1,700
95-50-1	1,2-Dichlorobenzene	10	330	88-06-2	2,4,6-Trichlerophenol	10	330
541-73-1	1,3-Dichlorobenzene	10	330		•		
106-46-7	1,4-Dichlorobenzene	10	330				
91-94-1	3,3'-Dichlorobenzidine	50	1,700				
120-83-2	2,4-Dichlorophenol	10	330	Recommen	ded Surrogates:		
84-66-2	Diethylphthalate	10	330	321-60-8	2-Fluorobiphenyl		
105-67-9	2.4-Dimethylphenol	10	330	367-12-4	2-Fluorophenol		
131-11-3	Dimethylphthalate	10	330	4165-60-0	Nitrobenzene-d5		
84-74-2	Di-n-butylphthalate	10	330	13127-88-3	Phenol-d5		
534-52-1	4.6-Dinitro-2-methylphenol	50	1,700	1718-51-0	Terphenyl-d14		
51-28-5	2,4-Dinitrophenol	50	1,700	118-79-6	2,4,6-Tribromophenol		
121-14-2	2.4-Dinitrotoluene	10	330		•		
606-20-2	2,6-Dinitrotoluene	10	330				
117-84-0	Di-n-octylphthalate	10	330				
206-44-0	Fluoranthene	10	330				
86-73-7	Fluorene	10	330				

Table 1 Sample Quantitation Limits From Curtis and Tompkins, Ltd.

CAS#	Target Compound	Reporting Limit		 	
	-	(ug/L) (ug/l	Kg)		
83-32-9	Acenaphthene	10	50		
208-96-8	Acenaphthylene	10	50		
120-12-7	Anthracene	10	50		
56-55-3	Benzo(a)anthracene	10	50		
50-32-8	Benzo(a)pyrene	to	50		
205-99-2	Benzo(b)fluoranthene	10	50		
207-08-9	Benzo(k)fluoranthene	10	50		
191-24-2	Benzo(g,h,i)perylene	10	50		
218-01-9	Chrysene	10	50		
53-70-3	Dibenz(a,h)anthracene	10	50		
206-44-0	Fluoranthene	10	50		
86-73-7	Fluorene	10	50		
193-39-5	Indeno(1,2,3-cd)pyrene	10	50		
91-20-3	Naphthalene	10	50		
85-01-8	Phenanthrene	10	50		
129-00-0	Pyrene	10	50		
Surrogates:					

321-60-8 2-Fluorobiphenyl 4165-60-0 Nitrobenzene-d5 1718-51-0 Terphenyl-d14

Table 1
Sample Quantitation Limits

From Curtis and Tompkins, Ltd.

California	California Title 26 Metals (6010B/ 7000)			ICP-MS Reporting Limits				
CAS#	Element	Reporting	Limit	CAS#	Element	Repor	ting Limit	
		(ug/L) (mg/Kg)			(ug/L)	(mg/Kg)	
7440-36-0	Antimony	60	3	7440-36-0	Antimony	1	0.25	
7440-38-2	Атѕепіс	5	0.25	7440-38-2	Arsenic	1	0.25	
7440-39-3	Barium	10	0.5	7440-39-3	Barium	1	0.25	
7440-41-7	Beryllium	2	0.1	7440-41-7	Beryllium	1	0.25	
7440-43-9	Cadmium	5	0.25	7440-43-9	Cadmium	1	0.25	
7440-47-3	Chromium	10	0.5	7440-47-3	Chromium	1	0.50	
7440-48-4	Cobalt	20	1	7440-48-4	Cobalt	1	0.25	
7440-50-8	Copper	10	0.5	7440-50-8	Copper	1	0.25	
7439-92-1	Lead	3	0.15	7439-92-1	Lead	1	0.25	
7439-97-6	Mercury	0.2	0.04					
7439-98-7	Molybdenum	20	1	7439-98-7	Molybdenum	1	0.25	
7440-02-0	Nickel	20	1	7440-02-0	Nickel	1	0.25	
7782-49-2	Selenium	5	0.25	7782-49-2	Selenium	1	0.25	
7440-22-4	Silver	` 5	0.25	7440-22-4	Silver	1	0.25	
7440-28-0	Thallium	5	0.25	7440-28-0	Thallium	1	0.25	
7440-62-2	Vanadium	10	0.5	7440-62-2	Vanadium	1	0.25	
7440-66-6	Zinc	20	1	7440-66-6	Zinc	10	1.0	

6010B QC Limits

Matrix	Compound	LCS/BS/BSD Recovery	BS/BSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Antimony	75 - 126	20	62 - 135	20
	Arsenic	79 - 123	20	66 - 134	29
	Barium	80 - 120	20	66 - 123	20
	Beryllium	80 - 120	20	65 - 128	20
	Cadmium	80 - 120	20	61 - 124	20
	Chromium	79 - 120	20	64 - 123	20
	Cobalt	80 - 120	20	65 - 120	20
	Copper	80 - 120	20	62 - 130	20
	Lead	78 - 120	20	58 - 129	28
	Molybdenum	80 - 120	20	68 - 122	20
	Nickel	78 - 120	20	60 - 126	20
	Selenium	72 - 121	20	62 - 131	23
	Silver	80 - 120	20	47 - 138	20
	Thallium	70 - 121	20	57 - 126	29
	Vanadium	80 - 120	20	59 - 132	20
	Zinc	78 - 120	20	49 - 139	31
	Aluminum	80 - 126	20	59 - 145	25
	Calcium	76 - 120	20	44 - 137	20
	Iron	80 - 120	20	58 - 142	20
	Magnesium	80 - 120	20	58 - 135	20
	Manganese	77 - 120	20	46 - 136	20
	Potassium	80 - 120	20	51 - 147	22
	Sodium	80 - 123	20	58 - 141	20
	Boron	77 - 120	20	69 - 122	25
	Tin	80 - 102	20	71 - 120	20
	Titanium	76 - 120	20	77 - 120	30

6010B QC Limits

Matrix	Compound	LCS/BS/BSD Recovery	BS/BSD RPD	MS/MSD Recovery	MS/MSD RPD
Soil	Antimony	70 - 120	20	50 - 120	47
2011	Arsenic	72 - 120	20	48 - 120	32
	Barium	73 - 120	20	63 - 142	34
	Beryllium	73 - 120	20	54 - 120	22
	Cadmium	69 - 120	20	43 - 120	26
	Chromium	72 - 120	20	62 - 145	33
	Cobalt	70 - 120	20	45 - 129	33
	Copper	72 - 120	20	62 - 150	40
	Lead	70 - 120	20	46 - 128	39
	Molybdenum	74 - 120	20	43 - 120	25
	Nickel	72 - 120	20	62 - 141	37
	Selenium	66 - 120	20	52 - 102	28
	Silver	69 - 120	20	58 - 120	21
	Thallium	68 - 120	20	51 - 120	26
	Vanadium	72 - 120	20	62 - 150	28
	Zinc	65 - 120	20	55 - 150	38
	Aluminum	67 - 120	20	57 - 150	38
	Calcium	69 - 120	20	59 - 150	41
	Iron	70 - 120	20	60 - 150	38
	Magnesium	69 - 120	20	59 - 150	36
	Manganese	69 - 120	20	59 - 150	45
	Potassium	72 - 120	20	62 - 142	34
	Sodium	61 - 129	20	47 - 146	34
	Boron	80 - 120	20	70 - 130	30
	Tin	80 - 120	20	70 - 130	30
	Titanium	76 - 120	20	66 - 150	42

6020A QC Limits

Matrix	Compound	LCS/BS/BSD Recovery	BS/BSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Antimony	80 - 120	20	66 - 127	30
	Arsenic	80 - 120	20	52 - 145	35
	Barium	80 - 120	20	61 - 138	20
	Beryllium	79 - 120	28	45 - 146	38
	Cadmium	80 - 120	20	47 - 136	30
	Chromium	80 - 120	20	57 - 139	42
	Cobalt	80 - 120	20	49 - 141	20
	Copper	80 - 120	20	57 - 134	47
	Lead	80 - 120	20	64 - 133	44
	Molybdenum	80 - 120	20	69 - 125	35
	Nickel	80 - 120	20	46 - 142	49
	Selenium	80 - 120	20	40 - 148	40
	Silver	80 - 120	20	22 - 127	30
	Thallium	78 - 120	20	59 - 129	30
	Vanadium	80 - 120	20	50 - 143	32
	Zinc	80 - 121	20	53 - 134	49
	Aluminum	80 - 121	20	52 - 138	30
	Calcium	61 - 143	20	41 - 149	24
	Iron	80 - 122	20	58 - 141	31
	Magnesium	80 - 120	20	45 - 137	20
	Manganese	80 - 120	20	57 - 135	20
	Potassium	80 - 120	20	58 - 131	21
	Sodium	80 - 120	20	52 - 131	26

6020A QC Limits

Matrix	Compound	LCS/BS/BSD Recovery	BS/BSD RPD	MS/MSD Recovery	MS/MSD RPD
Soil	Antimony	80 - 120	20	75 - 120	30
	Arsenic	80 - 120	20	75 - 125	30
	Barium	80 - 120	20	73 - 120	30
	Beryllium	75 - 124	20	55 - 134	30
	Cadmium	78 - 122	20	68 - 132	30
	Chromium	70 - 137	20	70 - 130	30
	Cobalt	80 - 120	20	70 - 126	30
•	Copper	80 - 120	20	76 - 127	30
	Lead	80 - 120	20	76 - 123	30
	Molybdenum	80 - 120	20	73 - 123	30
	Nickel	80 - 120	20	73 - 125	30
	Selenium	80 - 120	20	73 - 123	30
	Silver	80 - 120	20	77 - 129	30
	Thallium	66 - 120	20	56 - 120	30
	Vanadium	70 - 122	20	60 - 132	30
	Zinc	78 - 124	20	68 - 134	30
	Aluminum	80 - 120	20	70 - 130	30
	Calcium	75 - 150	20	56 - 150	30
	Iron	76 - 125	20	66 - 135	30
	Magnesium	80 - 123	20	76 - 133	30
	Manganese	80 - 120	20	70 - 130	30
	Potassium	79 - 124	20	69 - 134	30
	Sodium	79 - 148	20	69 - 150	30

Mercury QC Limits

Matrix	Compound	LCS Recovery	LCS/LCSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Mercury	80-116	20	80-114	22
Soil	Mercury	80-114	20	62-130	27

8015M/ 8021 QC Limits

Matrix	Compound	LCS Recovery	LCS/LCSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Gasoline Trifluorotoluene (s)	79 - 120 68 - 145	20	67 - 120 68 - 145	20
	Bromofluorobenzene (s)	66 - 143		66 - 143	
Soil	Gasoline	78 - 120	20	44 - 133	31
	Trifluorotoluene (s) Bromofluorobenzene (s)	58 - 144 60 - 146		58 - 144 60 - 146	
Water	MTBE	59 - 135	20	56 - 146	30
	Benzene	65 - 122	20	52 - 149	30
	Toluene	67 - 121	20	69 - 130	30
	Ethylbenzene	70 - 121	20	70 - 131	30
	m,p-Xylenes	72 - 125	20	68 - 137	30
	o-Xylene	73 - 122	20	73 - 133	30
	Trifluorotoluene (s)	53 - 143		53 - 143	
	Bromofluorobenzene (s)	52 - 124		52 - 124	
Soil	МТВЕ	58 - 115	20	58 - 116	20
	Benzene	68 - 117	20	62 - 117	20
	Toluene	70 - 120	20	55 - 121	20
	Ethylbenzene	67 - 124	20	46 - 128	20
	m,p-Xylenes	72 - 124	20	33 - 141	20
	o-Xylene	72 - 123	20	40 - 136	20
	Trifluorotoluene (s)	65 - 134		65 - 134	
	Bromofluorobenzene (s)	55 - 138		55 - 138	

TPH-Extractable QC Limits

Matrix	Compound	LCS Recovery	LCS/LCSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Diesel Hexacosane (s)	37 - 120 39 - 137	26	44 - 131 39 - 137	26
Soil	Diesel Hexacosane (s)	56 - 121 48 - 137	20	37 - 128 48 - 137	37

8082 QC Limits

Matrix	Compound	LCS Recovery	LCS/LCSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Aroclor 1016	70 - 127	20	60 - 137	30
	Aroclor 1260	60 - 123	25	50 - 133	35
	TCMX (s)	37 - 140		37 - 140	
	DCBP (s)	17 - 150		17 - 150	
Soil	Aroclor 1016	76 - 123	20	57 - 139	20
	Aroclor 1260	69 - 125	20	47 - 143	38
	TCMX (s)	55 - 150		55 - 150	
	DCBP (s)	37 - 150		37 - 150	

Table 2 Quality Control Limits

from Curtis and Tompkins, Ltd.

8270C QC Limits

Matrix	Compound	LCS Recovery	LCS/LCSD RPD	MS/MSD Recovery	MS/MSD RPD
Water	Phenol	36 - 120	22	26 - 130	32
	2-Chlorophenol	40 - 120	23	30 - 130	33
	1,4-Dichlorobenzene	38 - 120	26	28 - 130	36
	N-Nitroso-di-n-propylamine	32 - 120	20	22 - 130	30
	1,2,4-Trichlorobenzene	40 - 120	23	30 - 130	33
	4-Chloro-3-methylphenol	42 - 120	20	32 - 130	30
	Acenaphthene	50 - 120	20	40 - 130	30
	4-Nitrophenol	38 - 120	20	28 - 130	30
	2,4-Dinitrotoluene	49 - 120	20	39 - 130	30
	Pentachlorophenol	22 - 120	20	12 - 130	30
	Pyrene	41 - 120	20	31 - 130	30
	2-Fluorophenol	28 - 120		28 - 120	
	Phenol-d5	34 - 120		34 - 120	
	2,4,6-Tribromophenol	32 - 123		32 - 123	
	Nitrobenzene-d5	38 - 120		38 - 120	
	2-Fluorobiphenyl	40 - 120		40 - 120	
	Terphenyl-d14	29 - 132		29 - 132	
Soil	Phenol	35 - 120	20	37 - 120	24
	2-Chlorophenol	35 - 120	20	40 - 120	25
	1,4-Dichlorobenzene	34 - 120	20	35 - 120	41
	N-Nitroso-di-n-propylamine	27 - 120	20	31 - 120	26
	1,2,4-Trichlorobenzene	34 - 122	20	36 - 125	26
	4-Chloro-3-methylphenol	38 - 120	20	41 - 120	24
	Acenaphthene	40 - 120	20	42 - 120	32
	4-Nitrophenol	24 - 120	20	20 - 120	31
	2,4-Dinitrotoluene	36 - 120	20	38 - 120	28
	Pentachlorophenol	24 - 120	20	17 - 120	47
	Pyrene	34 - 120	20	22 - 140	34
	2-Fluorophenol	34 - 120		34 - 120	
	Phenol-d5	37 - 120		37 - 120	
	2,4,6-Tribromophenol	24 - 120		24 - 120	
	Nitrobenzene-d5	35 - 120		35 - 120	
	2-Fluorobiphenyl	38 - 121		38 - 121	
	Terphenyl-d14	32 - 127		32 - 127	

Table 3
Analytical Methods, Container Types, and Preservatives

From Curtis and Tompkins, Ltd.

Analysis	Matrix	Analytical Method	Holding Time ^a	Minimum Volume	Container (water)	Preservative (water) ^b
TPHd and TPHmo ^c	Water Soil	EPA 8015 mod	14/40 ^d	500 ml 50 g	1-l glass	None
ТРНg ^e	Water Soil	EPA 8015 mod	14 days	40 ml 5 g	2 x 40mL VOA	HC1 ^f
Polychlorinated Biphenyls	Water Soil	EPA 8082	7/40 ^d 14/40 ^d	1 I 30 g	1-l glass	None
Polynuclear Aromatic Hydrocarbons	Water Soil	EPA 8270	7/40 ^d 14/40 ^d	1 1 30 g	1-l glass	Nonef
CCR Title 26 Metals	Water Soil	EPA 6010/7470	6 mo/28 d ^g	100 ml 5 g	1-l poly	HNO ₃

Notes:

- a.) Holding times specified in 40 CFR 136.3 Table 2 (Clean Water Act/NPDES) and SW-846 Table 2-36 Revision 3, December 1996.
- b.) Samples should be kept at 4°C from time of collection until analysis.
- c.) Total petroleum hydrocarbons as diesel and motor oil.
- d.) X/Y: X days from sample collection to extraction, then Y days from extraction to analysis.
- e.) Total petroleum hydrocarbons as gasoline

Reporting limits may be higher for fuels other than gasoline.

- f.) Free chlorine should be neutralized with 0.008% Na₂S₂O₃.
- g.) 28 day holding time for mercury; 6 month holding time for all other elements.

EPA = U.S. Environmental Protection Agency	g = grams
m = months	VOA = volatile organic analysis vial
mod = modified	d = days
(m)l = (milli)liters	HCl = hydrochloric acid to pH < 2
CCR = California Code of Regulations	$HNO_3 = nitric acid to pH < 2$

APPENDIX I

Boring Logs for Nested Groundwater Monitoring Wells

Well Permit Number:

Date Well Drilled: 12/19/05 Drilling Company: BC2

Driller:

Sampling Method:

LFR Geologist: Lee McIlvaine

Casing Elevation: Flush Mount Vault Box

EXPLANATION

Clay (CL/CH)
Slit (ML/MH)

TITTE SIIC GAITAMH

Sand (SP/SW)

Gravel (GP/GW)

WELL CONSTRUCTION AND LITHOLOGY FOR WELL NW-1

Aspire Charter High School

Well Permit Number:

Date Well Drilled: 12/26/05 Drilling Company: BC2

Driller:

Sampling Method:

LFR Geologist: Lee McIlvaine

EXPLANATION

Bottom of Bore Hole approximately 33 feet bgs

WELL CONSTRUCTION AND LITHOLOGY FOR WELL NW-2

Well Permit Number:

Date Well Drilled: 12/19/05 Drilling Company: BC2

mpany: BC, Driller:

Sampling Method:

LFR Geologist: Lee McIlvaine

EXPLANATION

Bottom of Bore Hole at approximately 28 feet bgs

Gravel (GP/GW)

WELL CONSTRUCTION AND LITHOLOGY FOR WELL NW-3

Aspire Charter High School

APPENDIX J

Risk Evaluation Data Tables

Table J-1
Data Used for PEA Risk and Hazard Evaluation

		Site S	oll Data			Site Groundwater Data				Soil Vapor I	Data .	Include in Risk Assessment
Chemicals	Detection Frequency	Minlmum (mg/kg)	Maximum (mg/kg)	95%UCL ¹ (mg/kg)	Detection Frequency	Minimum (ug/l)	Maximum (ug/l)	95%UCL ¹ (ug/L)	Detection Frequency	Minimum (ug/L)	Maximum (ug/L)	
olatile Organic Compounds												
nacne		nd	22.361				28,496			nd	9.3	yes
thylbenzene		nd	51.813				4,719			nd	1.6	yes
p-Xylenes		nd	178.481				15,529			nd	5.7	yes
ethyl-t-Butyl ether (MTBE)		nd	12.897				7,007			nd	1.3	yes
Xylene		nd	see m.p xylene				see m.p xylene			nd	1	yes
trachloroethene		nd	nd	111111111111111111111111111111111111111		nd	nd nd			nd	ú	yes yes
oluene		nd	131.071		2010017	nd	29,546			nd	1.7	yes yes
opropyibenzene		nd	5.63		1		2/15/15				The second second	,03
hlorobenzene		nd	0.012									10
4-Dichlorobenzene		nd	0.128									
ACCOMPANION NAMED IN THE PARTY OF THE PARTY												
CBs / Dioxins		7					10000					
CB 1260		nd	69.7	NC		nd	7.1					
Oxins						nu .	7.1					yes
Oxuis												yes
	4		SEMESTIC									
olycyclic Aromatic Hydrocarbon	S											
cenaphthylene			7.788									yes
cenaphthene		nd	0.058					I Commence of the Commence of				5
mbracene		1	10.044									yes
enzo(a)anthracene		1	32.864									yes
епго(а)ругеле	Commence of the		66.928									yes
enzo(k)fluoranthene			63.542							Carlotte and the second		yes
rysene			46.152									yes
uoranthene			46.416				2.00		Jan Telephone			yes
luorene		nd	6.474									1
henanthrene			55.31									yes
утеле			59.68									yes
emi-Volatile Organic Compound	s		7.7.2.33			C. Carrier						
Methylnaphthalene aphthalene	AND DESCRIPTION OF THE PARTY OF	nd	11.123			nd	487	A				yes
laphthalene	- Wellingsth	nd	13.279			nd	2,365					yes
Dibenzofuran		nd	7.788									yes
arbazole		nd	5.786									yes
	- III 70											1
1etals											I STATE OF THE	
ntimony		nd	nd	ná	0		nd					yes
rsenic		nd	117.00	13.9	0		pd					yes
Arium		nd	246.00	129.9	7		298.00					yes
eryllium		nd	nd	100	0		nd					
adminim		nd	nd	na	0		nd					yes
hromium		nd	101.00	43.8	1		133.00					yes
exavalent Chronium		- 100	3.02	+3.8	218		133.00					yes
		Access to the second second			- 04				The second second			yes
obult		nd	92.00	19.0	100		69.00				100000000000000000000000000000000000000	yes

Table J-1
Data Used for PEA Risk and Hazard Evaluation

Chemicals		Site S	oil Data		Site Groundwater Data				Site	Include in Risk Assessment		
	Detection Frequency	Minimum (mg/kg)	Maximum (mg/kg)	95%UCL ¹ (mg/kg)	Detection Frequency	Minimum (ug/l)	Maximum (ug/l)	95%UCL ¹ (ug/L)	Detection Frequency	Minimum (ug/L)	Maximum (ug/L)	
Volatile Organic Compounds												
enzene		nd	22.361									
Shylbenzene		nd nd	51.813			11.5	28,496		C- 25m	nd	9.3	yes
R.p. Xylenes		nd nd	178,481				4,719			nd	1.6	yes
lehyl - Butyl ether (MTBE)		nd nd	12.897				15,529			nd	5.7	yes
-Xyene		nd nd					7,007			nd	1.3	yes
etrachioroethene		nd	see m,p aylana				see m.n xylene			nd		yes
oluene		nd nd	nd			nd	nd			nd	1.1	yes
sopropyibenzene		and the second second second	131.071			nd	29,546			nd	1.7	yes
Chlorobenzene		nd nd	5.63									
4 Diellomber		nd nd	0.012									
The state of the s		90	V.128									
CBs / Dioxins												
CB 1260			- 10=									
NOXINS		nd	69.7	NC		nd	7.1					yes
PRINTED AND A MILE MY GOLDANDER NA MILE WAS PROSPERED ON SPECIMEN IN	this to be a dill											yes
CONTRACTOR OF PARTY OF A SECURIFICATION OF A S										N. C. STROME		'
olycyclic Aromatic Hydrocarbon	S"											
cenaphthylene			7.788									
cenaphthene		nd	0.058			W						yes
athracene	~,		10.044									
lenzo(u)anthracene			32.864		TT-127-35-111-1-							yes
enzo(a)pyvene			66,928							et and the later		yes
enzo(k)fluoranthene			63.542									yes
hrysene			46.152									yes
luoranthene			46.416							THE CONTRACT		yes
luocene	TOTAL TURBORN	nd	6,474	*************		*** ****						yes
henanthrene			55.31									
утеле	200	Samuel Control of	59.68					******				yes
			22.04.									yes
emi-Volatile Organic Compound	8	THE STATE OF	12.010				-					
-Methylnuphthalene		ad	11.123			nd	487					
laphthalene		nd	13.279	************		nd	2,365					yes
Dibenzofuran		nd	7.788			100	4,303					yes
urbarole		nd	5.786		T-1814-1111							yes
10484500404.49									***************************************			yes
/letals	11/7"											
itimony		nd	nd	na	0		nd					
menic	heer as any	nd	117.00	13.9	0		nd					yes
arium		nd	246.00	129.9	7		298.00			***	~ * *****	yes
eryllium		nd	nd	na na	0							yes
Menium		nd	nd	na	0		nd	***************************************				yes
hromium		nd	101.00	43.8	1		nd 133,00					yes
exavolent Chromium			3.02	1010	na		133,00					yes
obalt		nd	92.00	18.8			69.00					yes
opper			61.00	27.2	0		nd			1000	retains Ell	yes

Table J-1
Data Used for PEA Risk and Hazard Evaluation

	Site S	oil Data		Site Groundwater Data				Site	Include in Risk Assessment		
Detection Frequency	Minimum (mg/kg)	Maximum (mg/kg)	95%UCL ¹ (mg/kg)			Maximum (ug/l)	95%UCL ¹ (ug/L)	Detection Frequency	Minimum (ug/L)	Maximum (ug/L)	
	nd	398.00	78.3	0		nd					
	nd	nd	na	0		nd					yes
	nd	nd	na na	1		The state of the s			*****		yes
	nd	227.00	63.3	l l		nd				100000	No
	nd	nd	пв	0		nd			~~ ~ ~ ~	A 7 MG	yes
	nd	nd	na	0		nd					yes
	nd	nd	ла	0		pd			******		yes
	nd	86.00	35.1	1		6.00					yes
	26.00	221,00	84.9	5		29.00					yes yes
· · · · · · · · · · · · · · · · · · ·											
	nd	2.780			- 44	163963					
	nd				the second secon					V= A- V-	no
	pd	22,524	-		nd	2184					no no
		Detection Frequency Minimum (mg/kg) ad ad ad ad ad ad ad ad ad ad ad ad ad	Trequency (mg/kg) (mg/kg) md 398.00 nd nd nd nd nd nd nd	Detection Frequency Minimum (mg/kg) Maximum (mg/kg) (mg/kg) (mg/kg)	Detection Minimum (mg/kg) (mg/kg) (mg/kg) Detection Frequency Frequency Frequency Detection Frequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prequency Prepared Prepare	Detection Minimum Maximum 95%UCL Detection Minimum (mg/kg) (mg/kg) Frequency (ug/l)	Detection Minimum (mg/kg) Minimum (mg/kg) Detection Minimum Maximum (ug/l) (ug/l)	Detection Minimum (mg/kg) Maximum (mg/kg) Detection Minimum Maximum (ug/l) (ug/l) (ug/l) (ug/l)	Detection Frequency Minimum Maximum Detection Frequency Minimum Maximum 95%UCL (mg/kg) Frequency (mg/kg) Frequency Minimum (ug/l) (ug/l) Detection Minimum (ug/l) Frequency (ug/L) Detection Minimum (ug/l) (ug/L) Frequency (ug/L) Frequency (ug/L) Detection Minimum (ug/l) (ug/L) Frequency (ug/L) Detection Minimum (ug/l) (ug/L) Frequency (ug/L) Frequency (ug/L) Detection Minimum (ug/l) (ug/L) Frequency (ug/L) Detection Minimum (ug/L) (ug/L) Frequency (ug/L) Detection Minimum (ug/L) Detection Detecti	Detection Frequency Comp/kg Prequency Comp/kg Prequency Comp/kg Prequency Comp/kg Prequency Comp/kg Prequency Comp/kg Prequency Comp/kg Comp/kg Prequency Comp/kg Prequency Comp/kg Comp	

NOTES

95% UCL = Corresponds to the 95% Upper Confidence Limit calculated using USEPA's ProUCL (USEPA 2004b)

ND = Not detected

NC = Not calculated. The maximum concentration was used as exposure point concentration.

NS = Not sampled

Includes non-detects at half the detection limit. As this is a SCREENING-LEVEL evaluation, discussion of risks are generally based on the maximum detected concentration.

Table J-2
Chemical Properties for Chemicals of Potential Concern

	CAS	Vapor Pressure ¹	Solubility ¹	Henry's Law		
Chemical	Number	(mmHg @ 20-30C)	(mg/l @ 20-30C)	Constant		
	Metals					
Arsenic	7440-38-2	NA	0	NA		
Barium	7440-39-3	NA	0	NA		
Chromium	16065-83-1	NA	0	NA		
Chromium IV	18540-29-9	NA NA	0	ΝA		
Cobalt	7440-48-4	NA	0	NA		
Copper	7440-50-8	NA	0	NA		
Lead	7439-92-1	NA	0	NA		
Nickel	7440-02-0	NA NA	0	NA		
Vanadium	7440-68-2	NA NA	0	NA		
Zinc	7440-66-6	NA	0	NA		
PCBs, SVOCs, and Furans						
Dibenzofuran	132-64-9	NA	1.00E-04	NA		
Carbazole	86-74-8	NA	1.00E-04	NA		
Aroclor 1260	11096-82-5	NA	slightly	NA		
Polycyclic Aromatic Hydro	carbons (PA	Hs)				
Acenaphthene	83-32-9	NA	6.34E-03	6.36E-03		
Anthracene	120-08-9	NA	4.00E-02	2.67E-03		
Benzo(a)anthracene	56-55-3	NA	9.00E-03	1.37E-04		
Benzo(a)pyrene	50-32-8	NA	1.00E-03	4.63E-05		
Benzo(k)fluoranthene	207-08-9	NA	8.00E-04	3.40E-05		
Chrysene	218-01-9	NA	2.00E-03	9.5E-05		
Fluoranthene	206-44-0	NA	2.10E-01	2.1E-01		
Fluorene	86-73-7	NA	2.00E+00	6.4E-05		
Methylnaphthalene	91-57-6	NA	3.10E+01	1.98E-02		
Naphthalene	91-20-3	NA	3.10E+01	1.98E-02		
Phenanthrene	85-01-8	NA	1.15E+00	9.55E-04		
Pyrene	129-00-0	NA	1.35E+00	4.51E-04		
Volatile Organic Compounds (VOCs)						
Benzene	71-43-2	9.5E+01	1.79E+03	5.43E-03		
Chlorobenzene	108-90-7	1.2E+00	4.72E+02	3.70E-03		
1,4-Dichlorobenzene	106-46-7	1.7E+00	7.38E+01	2.40E-03		
Ethylbenzene	100-41-4	9.5E+00	161	8.44E-03		
Isopropylbenzene	98-82-8	4.5E+00	500	6.30E-05		
mp-Xylenes	108-38-3	NA NA	200	5.30E-03		
o-Xylene	95-47-6	NA 0.55.400	200	5.30E-03		
MTBE	1634-04-4	2.5E+02	5.00E-03	6.23E-04		
Tetrachloroethene	127-18-4	1.9E+01	150.3	1,49E-02		
Toluene	108-88-3	2.8E+01	5.34E+02	5.94E-03		

Notes

mmHg = Millimeter of mercury mg/l = Milligrams per liter NA = Not applicable

¹ Values from DTSC Preliminary Endangerment Assessment Guidance Manual, June 1999.

Table J-3

Carcinogenic Toxicity Information for Chemicals of Potential Concern

Chemical	Oral Cancer Slope Factor (Sfo) (mg/kg-day) ⁻¹	Inhalation Cancer Slope Factor (Sfi) (mg/kg-day) ⁻¹	Weight-of Evidence Classification	Toxicity Information Reference Source ¹
Metals				
Arsenic	9.5E+00	1.2E+01	A	Cal/EPA
Barium	-	-		IRIS
Chromium				IRIS
Chromium IV	5.1E+02	1.5E-01	A	Cal/EPA
Cobalt		9.8E+00	B2	IRIS
Copper			722	Cal/EPA
Lead	_			Cal/EPA
Nickel				Cal/EPA
Vanadium	_			Cal/EPA
Zinc	_		_	Cal/EPA
PCBs, SVOCs, and Fur	ans			
Dibenzofuran	5.5E+00	5.5E+00	B2	Cal/EPA
Carbazole			-	IRIS
Aroclor 1260	5.0E+00	2.0E+00	B2	Cal/EPA
Polycyclic Aromatic Hy	drocarbons (PAH	s)		
Acenaphthene		T	_	IRIS
Anthracene				IRIS
Benzo(a)anthracene	1.2E+00	3.9E-01	B2	Cal/EPA
Benzo(a)pyrene	1.2E+01	3.9E+00	B2	Cal/EPA
Benzo(k)fluoranthene	1.2E+00	3.9E-01	B2	Cal/EPA
Chrysene	1.2E+01	3.9E+00	B2	Cal/EPA
Fluoranthene				IRIS
Fluorene			_	IRIS
Methylnaphthalene	1.2E-01	1.2E-01	C	Cai/EPA
Naphthalene	1.2E-01	1.2E-01	c	Cal/EPA
Phenanthrene				IRIS
Pyrene				IRIS
Volatile Organic Comp	ounds (VOCs)			
Benzene	1.00E-01	1.00E-01	A	Cal/EPA
Ethylbenzene				IRIS
mp-Xylenes			-	IRIS
Chlorobenzene			722	IRIS
1,4-Dichlorobenzene	5.4E-03	5.0E-02	B2	Cal/EPA
o-Xylene				IRIS
Isopropylbenzene				IRIS
MTBE	1.8E-03	9.1E-04	С	Cal/EPA
Tetrachloroethene Toluene	0.54	0.021	B2	Cal/EPA IRIS

Notes:

California EPA OEHHA Cancer Potency Values, August 2005

U.S. EPA Integrated Risk Information System (IRIS) database, October 2004.

mg/kg-day = Milligrams per kilogram per day

--- = not applicable

Weight-of-Evidence Classification:

- A Human carcinogen
- B1 Probable human carcinogen indicates that limited human data are available
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans
- C Possible human carcinogen
- D Not classifiable as to human carcinogenicity

Table J-4
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern

Chemical	Oral Reference Dose (RfDo) (mg/kg-day)	Inhalation Reference Dose (RfDi) (mg/kg-day)	Primary Target Organs	Toxicity Information Reference Source ¹
Metals				
Arsenic	3.0E-04	3.0E-04	Skin	IRIS
Barium	7.0E-02	1.4E-04	Development,	IRIS
Chromium	1.5E+00	1.5E+00	Skin	IRIS
Chromium IV	3.0E-03	2.2E-06	Respiratory	IRIS
Cobalt	2.0E-02	5.7E-06	Respiratory	IRIS
Copper	4.0E-02	4.0E-02	Respiratory	IRIS
Lead		Street Street	CNS	IRIS
Nickel	2.0E-02	2.0E-02	Kidney, CNS, Respiratory Kidney,	IRIS
Vanadium	1.0E-03	1.0E-03	Respiratory	IRIS
Zinc	3.0E-01	3.0E-01	Blood	
PCBs, SVOCs, and Furans				
Dibenzofuran			Skin	iRIS
Carbazole	0.02	2.0E-02		IRIS
			GI,	
Aroclor 1260	2.00E-05	2.0E-05	Development	IRIS
Polycyclic Aromatic Hydro	carbons (PAHs)			
Acenaphthene	6.00E-02	6.00E-02	Liver	IRIS
Anthracene	3.00E-01	3.00E-01	Liver	IRIS
Benzo(a)anthracene	3.00E-01	3.00E-01	NOEL	IRIS
Benzo(a)pyrene	3.00E-02	3.00E-02	Kidney	IRIS
Benzo(k)fluoranthene	4.00E-02	4.00E-02	Liver, Kidney, Blood	IRIS
Chrysene Fluoranthene	7.30E-03 4.00E-02	7.30E-03 4.00E-02	NOEL Liver, Kidney, Blood	IRIS IRIS
Fluorene	4.00E-02	4.00E-02	Liver, Kidney, Blood	IRIS
Methylnaphthalene	2.00E-02	3.00E-03	Respiratory	IRIS
Naphthalene	2.00E-02	3.00E-03	Respiratory	IRIS
Phenanthrene	3.00E+00	3.00E+00	NOEL	IRIS
Pyrene	3.00E-02	3.00E-02	Kidney	IRIS
Volatile Organic Compour				
Benzene	4.00E-03	8.60E-03	Liver	IRIS
			GI, Development,	
Ethylbenzene	1.0E-01	2.9E-01	Kidney	IRIS
mp-Xylenes	2.0E-01	2.9E-01	CNS	IRIS
Chiorobenzene	2.0E-02	1.7E-02	GI, Kidney GI, Kidney,	IRIS
1,4-Dichlorobenzene	3.0E-02	2.3E-01	CNS	IRIS

Table J-4
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern

Chemical	Oral Reference Dose (RfDo) (mg/kg-day)	Inhalation Reference Dose (RfDI) (mg/kg-day)	Primary Target Organs	Toxicity Information Reference Source ¹
o-Xylene	2.0E-01	2.9E-02	CNS	IRIS
Isopropylbenzene	1.0E-01	1.0E-01	CNS	IRIS
MTBE	8.6E-01	8.6E-01	GI	IRIS
Tetrachloroethene	0.01	0.021	GI, Kidney	IRIS
Toluene	2.0E-01	1.1E-01	CNS	IRIS

Notes:

National Center for Environmental Assessment (NCEA) as cited in U.S. EPA Region 9 Preliminary U.S. EPA Integrated Risk Information System (IRIS) database, October 2004. mg/kg-day = Milligrams per kilogram per day

--- = Not available

NOEL = No observed effects level

GI = Gastrointestinal

CNS = Central nervous system

Table J-5
Carcinogenic Risk Estimate for Chemicals of Potential Concern

Chemical	Oral Cancer Slope Factor (Sfo) (mg/kg-day) ⁻¹	Inhalation Cancer Slope Factor (Sfi) (mg/kg-day) ⁻¹	Dermal Absorption Fraction (ABS) (dimensionless)	Concentration in Soil ¹ (Cs) (mg/kg)	Concentration in Air (Ca) (mg/m³)	RISK for Soil Pathway	RISK for Air Pathway
Metals	410-						
Arsenic	9.5E+00	1.2E+01	0.03	13.9	7.0E-07	3.E-04	1.E-06
Chromium IV	5.1E+02	1.5E-01	0.03	3.2	1.6E-07	3.E-03	4.E-09
Cobalt		9.8E+00	0.03	92.0	4.6E-06		7.E-06
PCBs, SVOCs, and Fu	rans						
Dibenzofuran	5.5E+00	5.5E+00	0.03	7.8	3.9E-07	9.E-05	3.E-07
Aroclor 1260	5	2.0E+00	0.15	69.7	3.5E-06	2.E-03	1.E-06
Polycyclic Aromatic H	ydrocarbons (PAH	s)					
Benzo(a)anthracene	1.2E+00	3.9E-01	0.15	32.9	1.6E-06	2.E-04	1.E-07
Benzo(a)pyrene	1.2E+01	3.9E+00	0.15	66.9	3.3E-06	4.E-03	2.E-06
Benzo(k)fluoranthene	1.2E+00	3.9E-01	0.15	63.5	3.2E-06	3.E-04	2.E-07
Chrysene	1.2E+01	3.9E+00	0.15	46.2	2.3E-06	2.E-03	1.E-06
Methylnaphthalene	1.2E-01	1.2E-01	0.15	11.1	2.0E-04	6.E-06	4.E-06
Naphthalene	1.2E-01	1.2E-01	0.15	13.3	9.9E-04	7.E-06	2.E-05
Volatile Organic Comp	ounds (VOCs)						
Benzene	1.00E-01	1.00E-01	0.1	22.4	8.6E-03	8.E-06	1.E-04
1.4-Dichlorobenzene	5.4E-03	5.0E-02	0.1	0.1	NA	2.E-09	-
MTBE	1.8E-03	9.1E-04	0.1	ND	1.3E-03	1 - 1	2.E-07
Tetrachioroethene	0.54	0.021	0.1	ND	8.9E-04		3.E-06
TOTAL RISK (across all c	hemicals and exposure	e routes):	1.E-02				

Maximum detected concentration in soil mg/kg = Milligrams per kilogram mg/kg-day = Milligrams per kilogram per day cm/hr = Centimeters per hour mg/l = Milligrams per liter mg/m³ = Milligrams per cubic meter VOCs = Volatile organic compounds

For Soil Pathway (equation shown on Figure 2.3: Cal-EPA 1999): RISK = $((Cs \times SFo) \times (1.57 \times 10^{-6})) + ((Cs \times SFo) \times (1.87 \times 10^{-6}) \times ABS)$

For Air Pathway (equation shown on Figure 2.4; Cal-EPA 1999):

RISK = (Ca x SFi) x 0.149

where for non-VOCs (equation shown on Figure 2.8, Cal-EPA 1999):

 $Ca = Cs \times (5.0 \times 10^{-8} \text{ kg/m}^3)$

Table J-5
Noncarcinogenic Hazard Index Estimate for Chemicals of Potential Concern

Chemical	Oral Reference Dose (RfDo) (mg/kg-day)	Inhalation Reference Dose (RfDi) (mg/kg-day)	Dermal Absorption Fraction (ABS) (dimensionless)	Concentration in Soil ¹ (Cs) (mg/kg)	Concentration in Air (Ca) (mg/m³)	HAZARD QUOTIENT for Soil Pathway	HAZARD QUOTIENT for Air Pathway
Metals							
Arsenic	3.0E-04	3.0E-04	0.03	13.9	7.0E-07	B.E-01	1.E-03
Barium	7.0E-02	1.4E-04	0.03	246	1.2E-05	8.E-02	6.E-02
Chromium	1.5E+00	1.5E+00	0.03	101	5.1E-06	1.E-03	2.E-06
Chromium IV	3.0E-03	2.2E-06	0.03	3.02	1.5E-07	2.E-02	4.E-02
Cobalt	2.0E-02	5.7E-06	0.03	92	4.6E-06	6.E-02	5.E-01
Copper	4.0E-02	4.0E-02	0.03	61	3_1E-06	3.E-02	5.E-05
Vickel	2.0E-02	2.0E-02	0.03	227	1.1E-05	2.E-01	4.E-04
/anadium	1.0E-03	1.0E-03	0.03	86	4.3E-06	1.E+00	3.E-03
Zinc	3.0€-01	3.0E-01	0,03	221	1.1E-05	1.E-02	2.E-05
PCBs, SVOCs, and Fur							
Carbazole	0.02	2.0E-02	0.1	5.8	2.9E-07	7.E-03	9.E-06
Aroclor 1260	2.00E-05	2.0E-05	0.15	69.7	3.5E-06	1.E+02	1.E-01
Polycyclic Aromatic Hy		AHs)					
Acenaphthene	6.00E-02	6.00E-02	0.15	7,788	3.9E-07	4.E-03	4.E-06
Anthracene	3.00E-01	3 00E-01	0.15	10.044	5.0E-07	1.E-03	1.E-06
Benzo(a)anthracene	3.00E-01	3.00E-01	0.15	32,864	1.6E-06	4.E-03	4.E-06
Benzo(a)pyrene	3.00E-02	3.00E-02	0.15	66.928	3,3E-06	7.E-02	7.E-05
Benzo(k)fluoranthene	4.00E-02	4.00E-02	0.15	63.542	3.2E-06	6.E-02	5.E-05
Chrysene	7.30E-03	7.30E-03	0.15	46.152	2.3E-06	2.E-01	2.E-04
Fluoranthene	4.00E-02	4.00E-02	0.15	46,416	2.3E-06	4.E-02	4.E-05
-luorene	4.00E-02	4.00E-02	0.15	6.5	3.3E-07	5.E-03	5.E-06
viethylnaphthalene	2.00E-02	3.00E-03	0.15	11.1	2.0E-04	2.E-02	4.E-02
Vaphthalene	2.00E-02	3.00E-03	0.15	13.1	9.9E-04	2.E-02	2.E-01
vapnulalene Phenanthrene	3.00E+00	3.00E+00	0.15	55.31	2.8E-06	6.E-04	6.E-07
	3.00E-02	3.00E-02	0.15	59.68	3.0E-06	6.E-02	6.E-05
Pyrene Volatile Organic Comp		0.000-02	0,10	00.00			
Volatile Organic Compi Benzene	4,00E-03	6.60E-03	0.1	22.4	8.6E-03	1.E-01	6.E-01
Chlorobenzene	2.0E-02	1.7E-02	0.1	0.01	NA.	2,E-05	_
	1.0E-01	2.9E-01	0.1	ND ND	1.3E-03		3.E-03
Ethylbenzene	3.0E-02	2.3E-01	0.1	0.1	NA	1.E-04	-
1,4-Dichlorobenzene	1.0E-01	1.0E-01	0.1	5.6	NA.	1,E-03	
sopropylbenzene	2.0E-01	2.9E-01	0.1	ND ND	4.8E-03	_	1.E-02
mp-Xylenes	2.0E-01	2.9E-02	0.1	ND ND	9.2E-04		2.E-02
o-Xylene	8.6E-01	8.6E-01	0.1	ND ND	1.3E-03	_ [1.E-03
MTBE	8.6E-01 0.01	0.021	0.1	ND ND	8.9E-04	l –	3.E-02
Tetrachloroethene		1.1E-01	0.1	ND ND	1.6E-03	l _	9.E-03
Toluene	2.0E-01	1.16-01	0.1	1 140	1.02-00	1.E+02	
Hazard Index for Pathwa	y					7.2702	

¹ Maximum detected concentration in soil or as the soil vapor source

mg/kg = Milligrams per kilogram

mg/kg-day = Milligrams per kilogram per day

mg/l = Milligrams per liter

cm/hr = Centimeters per hour

mg/m3 = Milligrams per cubic meter

NA = Not applicable

VOCs = Volatile organic compounds

For Soil Pathway (equation shown on Figure 2.3; Cal-EPA 1999);
HAZARD = ((Cs/RfDo) x (1.28 x 10-5)) + ((Cs/RfDo) x (1.28 x 10-4) x ABS)

For Air Pathway (equation shown on Figure 2.4; Cal-EPA 1999):

HAZARD = (Ca/RfDi) x 0.639

where for non-VOCs (equation shown on Figure 2.8, Cal-EPA 1999):

 $Ca = Cs \times (5.0 \times 10^{-8} \text{ kg/m}^3)$

Table J-7 Lead Risk Assessment Spreadsheet

USER'S GUIDE to version 7

INPUT	
MEDIUM	LEVEL
Lead in Air (µg/m³)	0.0044
Lead in Soil/Dust (µg/g)	398
Lead in Water (µg/l)	15
% Home-grown Produce	
Respirable Dust (µg/m³)	1.5

	OUTP	UT					
	Percentil	e Estima	te of Blo	od Pb (µg/	/dI)	PRG-99	PRG-95
•	50th	90th	95th	98th	99th	(µg/g)	(µg/g)
BLOOD Pb. ADULT	1.4	2.6	3.1	3.8	4.3	2459	3851
BLOOD Pb, CHILD	4.3	7.9	9.4	11.4	12.9	259	440
BLOOD Pb, PICA CHILD	7.1	13.0	15.4	18.7	21.3	130	221
BLOOD Pb. OCCUPATIONAL	1.3	2.4	2.9	3.5	4.0	3518	5507

EXPOSURE	PARAMETERS			
	units	adults	children	
Days per week	days/wk		7	
Days per week, occupational		5		
Geometric Standard Deviation			1.6	
Blood lead level of concern (µ		10		
Skin area, residential	cm ²	5700	2900	
Skin area occupational	cm ²	2900		
Soil adherence	μg/cm ²	70	200	
Dermal uptake constant	(µg/dl)/(µg/day)	0.0001		
Soil ingestion	mg/day	50	100	
Soil ingestion, pica	mg/day		200	
Ingestion constant	(µg/dl)/(µg/day)	0.04	0.16	
Bioavailability	unitless).44	
Breathing rate	m³/day	20	6.8	
Inhalation constant	(µg/dl)/(µg/day)	0.08	0.192	
Water ingestion	1/day	1.4	0.4	
Food ingestion	kg/day	1.9	1.1	
Lead in market basket	μg/kg	3.1		
Lead in home-grown produce	μg/kg	179.1		

	PA	THWA	YS				
ADULTS	R	esidenti	al	0	ccupation	nal	
	Pathw	ay contr	ibution	Pathway contribution			
Pathway	PEF	μg/dl	percent	PEF	μg/dl	percent	
Soil Contact	3.8E-5	0.02	1%	1.4E-5	0.01	0%	
Soil Ingestion	8.8E-4	0.35	24%	6.3E-4	0.25	19%	
Inhalation, bkgrnd		0.01	0%		0.01	0%	
Inhalation	2.5E-6	0.00	0%	1.8E-6	0.00	0%	
Water Ingestion		0.84	58%		0.84	63%	
Food Ingestion, bkgrnd		0.23	16%		0.23	17%	
Food Ingestion	0.0E+0	0.00	0%			0%	

CHILDREN		typical		with pica Pathway contribution			
	Pathw	ay contr	ibution				
Pathway	PEF	μg/dl	percent	PEF	μg/dl	percent	
Soil Contact	5.6E-5	0.02	1%		0.02	0%	
Soil Ingestion	7.0E-3	2.80	65%	1.4E-2	5.60	79%	
Inhalation	2.0E-6	0.00	0%		0.00	0%	
Inhalation, bkgrnd		0.01	0%		0.01	0%	
Water Ingestion		0.96	22%		0.96	13%	
Food Ingestion, bkgrnd		0.54	12%		0.54	8%	
Food Ingestion	0.0E+0	0.00	0%		0.00	0%	

Notes:

μg = microgram

 $m^3 = cubic meter$

g = gram 1 = liter

dl = deciliter

cm² = squared centimeter

mg = milligram kg = kilogram

Table J-8

Data Used for the Additional SSI Risk and Hazard Evaluation

		Site S	oil Data			Site Groun	idwater Data		Site	Soil Vapor I	Data	Include in Risk Assessment
Chemicals	Detection Frequency	Minimum (mg/kg)	Maximum (mg/kg)	95%UCL ¹ (mg/kg)	Detection Frequency	Minimum (ug/l)	Maximum (ug/l)	95%UCL¹ (ug/L)	Detection Frequency	Minimum (ug/L)	Maximum (ug/L)	m
			PER 100 100 100 100 100 100 100 100 100 10				The second					
olatile Organic Compounds												
enzene			36 110				10,755					
thylbenzene			110				3,429					
,p-Xylenes			408				15,529					
ethyl-t-Butyl ether (MTBE)			32				120,000					
Xylene oluene			see mup sylene				see maj xylene					
niuene			170				24,000					
4-Dich probenzene			0.128				SE F 25519					
hlorobenzene			0.012				SHELD FREEDOM					
apropylbenzene			5.63			77	E-minites and					
erachloroethene							nd			100000000		ľ
CD. I Dississ			CONTRACTOR OF THE PARTY OF THE									
CBs / Dioxins			1000				principal property					
CB 1260			69.7				22					
rioxins			- particulars - 200				Control of the Control					
							EUS COLUMN					
olycyclic Aromatic Hydrocarbons4							DM 50 1155-201					
conaphthylene			4.7						_			
mifracene			10.044		-							
enzo(a)anthracene			32.864				Ministration of the Control					
			66.928		-							
meo(alpyrene m2o(k)fluoranthene			63.542		_		Annual Control of				-	
rysène			46:152				Carlo management					
horanthene			46.416				THE RESERVE OF THE PARTY OF THE					
			55.31		-	_						
henanderene			59 6B									į.
yrene			39 68				A CONTRACTOR OF THE PARTY OF TH					
						-	Transmitter and the		-			
Semi-Volatile Organic Compounds			ALC: UNKNOWN									
Acenaphthylene			4 702							100 - 100		
Acenaphthene			0.058				MCISSEN DE					1
Anthracene	71	1	10.046				CHURSES SA			-		
-Methylnaphthalene			41.123	2010 WA MA WASA OF THE	11-1-2 2	11 11 11	487					1
Vaphthainne			13.279				2365					
Dibenzofuran			7,788				STRUMAS					
arbazole			5.786				11-1000					
emen(a)anthracene		1	32.8				Putter and Build					
Senzo(a)pyrene		1	66.9				September 100 Page 12					1
Senzo(b)fluoranthene		1	0.11				STORY STORY					1
Senzo(k)ffuoranthene		1	63.542									I
Urypene		1	46 152				CONTRACTOR OF STREET					1
luorene		1	6.474									1
luoranthene		1	46,416				1 6-8 to 1 P4					1
henoi		1	1.2				and the same of th					
Pyrene		1	59.66				BUSEARCH BURE					1
Phenagthrene		1	55 31			100	R STATE OF THE STA					1
			CONTRACTOR OF THE				STATE OF STREET					1
Vietals			CUSTA FOR THE				Marchine Symple					1
		-	A CONTRACTOR OF THE PARTY.		-		CONTRACTOR OF THE					
Antimony			nd .		The second second	1	and very		I.			1

Table J-8

Data Used for the Additional SSI Risk and Hazard Evaluation

		Site S	oil Data			Site Groun	dwater Data	Ŋ.	Site	Site Soil Vapor Data		Include in Risk Assessment
	Detection Frequency	Minimum (mg/kg)	Maximum (mg/kg)	95%UCL ¹ (mg/kg)	Detection Frequency	Minimum (ug/l)	Maximum (ug/l)	95%UCL ¹ (ug/L)	Detection Frequency	Minimum (ug/L)	Maximum (ug/L)	
Chemicals							VICE STATE					
Arjenic			140:00				nd					
Barnetti			246.00				298.00					
Beryllium Cadmium			nd nd				nd					
							nd					I.
Chromium			101.00				133.00					
Sesavalent Chromium			3.02				760					
Cobalt			92.00				69.00					
Copper			61.00	STATE OF THE STATE			nd					
ead			398.00				nd nd					
Mercury			nd nd									
Molybdenum							33.00					
Nickel			227.00				ed					
Selesium		Contract of the Contract of th	nd			4	nd .					
Silver			nd nd				nd					
Phallitum							nd					
Vanadium			86.00				6.00					
Zinc			221.00				29.00					
TPH			25.05.5									
Datoline			4,900				221,129					
Diesel			1,200				7200					
Oil.			22.524				2.600					
							HILL SET TO BE					

NOTES:

95% UCL = Corresponds to the 95% Upper Confidence Limit calculated using USEPA's ProUCL (USEPA 2004b)

ND = Not detected.

NC = Not calculated. The maximum concentration was used as exposure point concentration

NS = Not sample

¹ Includes non-delects at half the detection limit. As this is a SCREENING-LEVEL evaluation, discussion of risks are generally based on the maximum detected concentration

Table J-9
Chemical Properties for Chemicals of Potential Concern

Chemical	CAS Number	Vapor Pressure ¹ (mmHg @ 20-30C)	Solubility ¹ (mg/l @ 20-30C)	Henry's Law Constant						
Metals	· · · · · · · · · · · · · · · · · · ·									
Arsenic	7440-38-2	NA	0	NA						
Barium	7440-39-3	NA	0	NA						
Chromium	16065-83-1	NA	0	NA						
Chromium IV	18540-29-9	NA	0	NA						
Cobalt	7440-48-4	NA	0	NA						
Copper	7440-50-8	NA	0	NA						
Lead	7439-92-1	NA	0	NA						
Nickel	7440-02-0	NA	0	NA						
Vanadium	7440-68-2	NA	0	NA						
Zinc	7440-66-6	NA	0	NA						
PCBs, SVOCs, and Furans										
Dibenzofuran	132-64-9	NA	1.00E-04	NA						
Carbazole	86-74-8	NA	1.00E-04	NA						
Aroclor 1260	11096-82-5	NA	slightly	NA						
Polynuclear Aromatic Hydrocarbons (PAHs)										
Acenaphthene	83-32-9	NA	6.34E-03	6.36E-03						
Anthracene	120-08-9	NA	4.00E-02	2.67E-03						
Benzo(a)anthracene	56-55-3	NA	9.00E-03	1.37E-04						
Benzo(a)pyrene	50-32-8	NA	1.00E-03	4.63E-05						
Benzo(k)fluoranthene	207-08-9	NA	8.00E-04	3.40E-05						
Chrysene	218-01-9	NA	2.00E-03	9.5E-05						
Fluoranthene	206-44-0	NA	2.10E-01	2.1E-01						
Fluorene	86-73-7	NA	2.00E+00	6.4E-05						
Methylnaphthalene	91-57-6	NA	3.10E+01	1.98E-02						
Naphthalene	91-20-3	NA	3.10E+01	1.98E-02						
Phenanthrene	85-01-8	NA	1.15E+00	9.55E-04						
Pyrene	129-00-0	NA	1.35E+00	4.51E-04						
Volatile Organic Compoun										
Benzene	71-43-2	9.5E+01	1.79E+03	5.43E-03						
Chlorobenzene	108-90-7	1.2E+00	4.72E+02	3.70E-03						
1,4-Dichlorobenzene	106-46-7	1.7E+00	7.38E+01	2.40E-03						
Ethylbenzene	100-41-4	9.5E+00	161	8.44E-03						
Isopropylbenzene	98-82-8	4.5E+00	500	6.30E-05						
mp-Xylenes	108-38-3	NA	200	5.30E-03						
o-Xylene	95-47-6	NA 0.55.00	200	5.30E-03						
MTBE	1634-04-4	2.5E+02	5.00E-03	6.23E-04						
Tetrachloroethene	127-18-4	1.9E+01	150.3	1.49E-02						
Toluene	108-88-3	2.8E+01	5.34E+02	5.94E-03						

mmHg = Millimeter of mercury mg/l = Milligrams per liter NA = Not applicable

¹ Values from DTSC Preliminary Endangerment Assessment Guidance Manual, June 1999.

Table J-10
Carcinogenic Toxicity Information for Chemicals of Potential Concern

	Oral Cancer	Inhalation Cancer								
			Weight-of	Toxicity Information						
Chemical	Slope Factor (Sfo)	Slope Factor (Sfi)	Evidence							
	(mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	Classification	Reference Source ¹						
Metals										
Arsenic	9.5E+00	1.2E+01	Α	Cal/EPA						
Barium			777.	IRIS						
Chromium			***	IRIS						
Chromium IV	5.1E+02		A	Cal/EPA						
Cobalt		9.8E+00	B2	IRIS						
Copper			****	Cal/EPA						
Lead			555	Cal/EPA						
Nickel			555	Cal/EPA						
Vanadium		2 440 21	222	Cal/EPA						
Zinc			***	Cal/EPA						
PCBs, SVOCs, and Fura										
Dibenzofuran	5.5E+00	5.5E+00	B2	Cal/EPA						
Carbazole				IRIS						
Aroclor 1260	5.0E+00	2.0E+00	B2	Cal/EPA						
TPHd				IRIS						
Polynuclear Aromatic Hy	Polynuclear Aromatic Hydrocarbons (PAHs)									
Acenaphthene				IRIS						
Anthracene				IRIS						
Benzo(a)anthracene	1.2E+00	3.9E-01	B2	Cal/EPA						
Benzo(a)pyrene	1.2E+01	3.9E+00	B2	Cal/EPA						
Benzo(k)fluoranthene	1.2E+00	3.9E-01	B2	Cal/EPA						
Chrysene	1.2E-01	3.9E-02	B2	Cal/EPA						
Fluoranthene				IRIS						
Fluorene		 		IRIS						
Methylnaphthalene			С	Cal/EPA						
Naphthalene	1.2E-01	1.2E-01	С	Cal/EPA						
Phenanthrene				IRIS						
Pyrene				IRIS						
Volatile Organic Compo										
Benzene	1.00E-01	1.00E-01	A	Cal/EPA						
Ethylbenzene			===	IRIS						
mp-Xylenes			===	IRIS						
Chlorobenzene				IRIS						
1,4-Dichlorobenzene	5.4E-03	5.0E-02	B2	Cal/EPA						
o-Xylene				IRIS						
Isopropylbenzene			222	IRIS						
MTBE	1.8E-03	9.1E-04	C	Cal/EPA						
Tetrachloroethene	0.54	0.021	B2	Cal/EPA						
TPHg			***	IRIS						
Toluene				IRIS						

U.S. EPA Integrated Risk Information System (IRIS) database, October 2004.

mg/kg-day = Milligrams per kilogram per day

-- = not applicable

Weight-of-Evidence Classification:

- A Human carcinogen
- B1 Probable human carcinogen indicates that limited human data are available
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans
- C Possible human carcinogen
- D Not classifiable as to human carcinogenicity

California EPA OEHHA Cancer Potency Values, August 2005

Table J-11
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern

	Oral Reference Dose (RfDo)	Inhalation Reference Dose (RfDi)	Primary	Toxicity Information
Chemical	(mg/kg-day)	(mg/kg-day)	Target Organs	Reference Source ¹
Metals				
Arsenic	3.0E-04	3.0E-04	Skin	IRIS
Barium	7.0E-02	1.4E-04	Development,	IRIS
Chromium	1.5E+00	1.5E+00	Skin	IRIS
Chromium IV	3.0E-03	2.2E-06	Respiratory	IRIS
Cobalt	2.0E-02	5.7E-06	Respiratory	IRIS
Copper	4.0E-02	4.0E-02	Respiratory	IRIS
Lead			CNS Kidney, CNS,	IRIS
Nickel	2.0E-02	2.0E-02	Respiratory Kidney,	IRIS
Vanadium	1.0E-03	1.0E-03	Respiratory	IRIS
Zinc	3.0E-01	3.0E-01	Blood	
PCBs, SVOCs, and Furans	1			
Dibenzofuran			Skin	IRIS
Carbazole	0.02	2.0E-02	GI,	IRIS
Aroclor 1260	2.00E-05	2.0E-05	Development	IRIS
TPHd aliphatic	1.00E-01	1.0E-01		MADEP
TPHd aromatic	3.00E-02	3.0E-02		MADEP
Polynuclear Aromatic Hyd	lrocarbons (PAHs)			
Acenaphthene	6.00E-02	6.00E-02	Liver	IRIS
Anthracene	3.00E-01	3.00E-01	Liver	IRIS
Benzo(a)anthracene	3.00E-01	3.00E-01	NOEL	IRIS
Benzo(a)pyrene	3.00E-02	3.00E-02	Kidney	IRIS
Benzo(k)fluoranthene	4.00E-02	4.00E-02	Liver, Kidney, Blood	IRIS
Chrysene	7.30E-03	7.30E-03	NOEL	
On yathe	1.50=03	7.JUE-U3		IRIS
Fluoranthene	4.00E-02	4.00E-02	Liver, Kidney, Blood	IRIS
			Liver, Kidney	
Fluorene	4.00E-02	4.00E-02	Blood	IRIS
Methylnaphthalene	2.00E-02	3.00E-03	Respiratory	IRIS
Naphthalene	2.00E-02 2.00E-02	3.00E-03	Respiratory	IRIS
Phenanthrene	3.00E+00	3.00E+00	NOEL	IRIS
Pyrene	3.00E-02	3.00E-02	Kidney	IRIS
Volatile Organic Compour		0.00L VL	Marioy	
Benzene	4.00E-03	8.60E-03	Liver	IRIS
		5.052 55	GI, Development,	
Ethylbenzene	1.0E-01	2.9E-01	Kidney	IRIS
mp-Xylenes	2.0E-01	2.9E-01	CNS	IRIS
Chlorobenzene	2.0E-02	1.7E-02	GI, Kidney	IRIS

Table J-11
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern

Chemical	Oral Reference Dose (RfDo) (mg/kg-day)	Inhalation Reference Dose (RfDi) (mg/kg-day)	Primary Target Organs	Toxicity Information Reference Source ¹
			GI, Kidney,	
1,4-Dichlorobenzene	3.0E-02	2.3E-01	CNS	IRIS
o-Xylene	2.0E-01	2.9E-02	CNS	IRIS
Isopropylbenzene	1.0E-01	1.0E-01	CNS	iRIS
MTBE	8.6E-01	8.6E-01	GI	IRIS
Tetrachloroethene	0.01	0.021	GI, Kidney	IRIS
TPHg	0.04	0.01		MADEP
Toluene	2.0E-01	1.1E-01	CNS	IRIS

--- = Not available

NOEL = No observed effects level

GI = Gastrointestinal

CNS = Central nervous system

MADEP = Massachuetts Department of Environmental Protection

National Center for Environmental Assessment (NCEA) as cited in U.S. EPA Region 9 Preliminary U.S. EPA Integrated Risk Information System (IRIS) database, October 2004. mg/kg-day = Milligrams per kilogram per day

Table J-12
Carcinogenic Risk Estimate for Chemicals of Potential Concern

Chemical	Oral Cancer Slope Factor (Sfo) (mg/kg-day) ⁻¹	Inhalation Cancer Slope Factor (Sfl) (mg/kg-day) ⁻¹	Dermal Absorption Fraction (ABS) (dimensionless)	Concentration in Soil ¹ (Cs) (mg/kg)	Concentration in Air (Ca) (mg/m³)	RISK for Soli Pathway	RISK for Air Pathway
Metals							
Arsenic	9.5E+00	1.2E+01	0.03	140.0	7.0E-06	3.E-03	1.E-05
Chromium IV		5.1E+02	0.03	3.2	1.6E-07	NA -	1.E-05
PCBs, SVOCs, and Fur	ans			s — — — — —			
Dibenzofuran	5.5E+00	5.5E+00	0.03	7.8	3.9E-07	9.E-05	3.E-07
Aroclor 1260	5	2.0E+00	0.15	69.7	3.5E-06	2.E-03	1.E-06
Polynuclear Aromatic I	hydrocarbons (PAI	is)					
Benzo(a)anthracene	1.2E+00	3.9E-01	0.15	32.9	1.6E-06	2.E-04	1.E-07
Benzo(a)pyrene	1.2E+01	3.9E+00	0.15	66.9	3.3E-06	4.E-03	2.E-06
Benzo(k)fluoranthene	1.2E+00	3.9E-01	0.15	63.5	3.2E-06	3.E-04	2.E-07
Chrysene	1.2E-01	3.9E-02	0.15	46.2	2.3E-06	2.E-05	1.E-08
Naphthalene	1.2E-01	1.2E-01	0.15	13.3	9.9E-04	7.E-06	2.E-05
Volatile Organic Comp	ounds (VOCs)						
Benzene	1.00E-01	1.00E-01	0.1	36.0	8.6E-03	1.E-05	1.E-04
1,4-Dichlorobenzene	5.4E-03	5.0E-02	0.1	0.1	NA	2.E-09	-
MTBE	1.8E-03	9.1E-04	0.1	ND	1.3E-03		2.E-07
Tetrachioroethene	0.54	0.021	0.1	5.6	8.9E-04	1.E-05	3.E-06
TOTAL RISK (across all ch	nemicals and exposure	routes):	9.E-03				

Maximum detected concentration in soil mg/kg = Milligrams per kilogram mg/kg-day = Milligrams per kilogram per day cm/hr = Centimeters per hour mg/l = Milligrams per liter mg/m³ = Milligrams per cubic meter VOCs = Volatile organic compounds

For Soil Pathway (equation shown on Figure 2.3; Cal-EPA 1999): RISK = ((Cs x SFo) x (1.57×10^{-6})) + ((Cs x SFo) x (1.87×10^{-5}) x ABS)

For Air Pathway (equation shown on Figure 2.4; Cal-EPA 1999):

RISK = (Ca x SFi) x 0.149

where for non-VOCs (equation shown on Figure 2.8, Cal-EPA 1999):

 $Ca = Cs \times (5.0 \times 10^{-8} \text{ kg/m}^3)$

Table J-13
Noncarcinogenic Hazard Index Estimate for Chemicals of Potential Concern

Chemical	Oral Reference Dose (RfDo) (mg/kg-day)	Inhalation Reference Dose (RfDI) (mg/kg-day)	Dermal Absorption Fraction (ABS) (dimensionless)	Concentration in Soil ¹ (Cs) (mg/kg)	Concentration in Air (Ca) (mg/m³)	HAZARD QUOTIENT for Soil Pathway	HAZARD QUOTIENT for Air Pathway
Metais	10.3.3	(gg)	(Carrierio i Carrierio i	(mana)	137	· utilities	Turnay
Arsenic	3 0E-04	3.0E-04	0.03	140	7.0E-06	8.E+00	1.E-02
Barium	7.0E-02	1.4E-04	0.03	246	1.2E-05	6.E-02	6.E-02
Chromium	1.5E+00	1.5E+00	0.03	101	5.1E-06	1.E-03	2.E-06
Chromium IV	3.0E-03	2.2E-06	0.03	3.02	1 5E-07	2.E-02	4.E-02
Cobalt	2.0E-02	5.7E-06	0.03	92	4.6E-06	8.E-02	5.E-01
Соррег	4.0E-02	4.0E-02	0.03	61	3.1E-06	3.E-02	5.E-05
Vicke!	2.0E-02	2.0E-02	0.03	227	1.1E-05	3.E-02 2.E-01	4.E-04
/anadium	1.0E-03	1.0E-03	0.03	86	4.3E-06	1.E+00	3.E-03
Zinc	3.0E-01	3.0E-01	0.03	221	1.1E-05	1.E-02	2.E-05
PCBs, SVOCs, and Fura		0.02-01	0.03	221	1.15-05	1.E-02	Z.E-05
Carbazole	0.02	2.0E-02	0,1	5.8	2.9E-07	7.E-03	9.E-06
Aroclor 1260	2 00E-05	2.0E-05	0.15	69.7	3.5E-06	1.E+02	1.E-01
PHd aliphatic	1.00E-01	1.0E-01	0.15	480	3.5E-06 2.4E-05	2.E-01	2.E-04
PHd aromatic	3.00E-02	3.0E-02	0.15	720	3.6E-05	8.E-01	8.E-04
Polynuclear Aromatic Hy			0.13	120	3,01-00	8.E-01	6.E-04
Acenaphthene	6.00E-02	6.00E-02	0.15	7.788	3.9E-07	4.E-03	4.E-06
Anthracene	3.00E-01	3.00E-01	0.15	10.044	5.0E-07	1.E-03	1.E-06
Benzo(a)anthracene	3.00E-01	3.00E-01	0.15	32 864	1.6E-06	4.E-03	4.E-06
Benzo(a)pyrene	3.00E-02	3.00E-02	0.15	66.928	3.3E-06	7.E-02	7.E-05
Benzo(k)fluoranthene	4.00E-02	4.00E-02	0.15	63.542	3.2E-06	5.E-02	5.E-05
Chrysene	7.30E-03	7.30E-03	0.15	46.152	2.3E-06	2.E-01	2.E-04
luoranthene	4.00E-02	4.00E-02	0.15	46.416	2.3E-06	4.E-02	4.E-05
luorene	4.00E-02	4.00E-02	0.15	6.5	3.3E-07	5.E-03	5.E-06
dethylnaphthalene	2.00E-02	3.00E-03	0.15	11.1	5.6E-07	2.E-02	1.E-04
laphthalene	2.00E-02	3.00E-03	0.15	13.1	9.9E-04	2.E-02	2.E-01
Thenanthrene	3.00E+00	3.00E+00	0.15	55.31	2.8E-06	6.E-04	6.E-07
Vrene	3.00E-02	3.00E-02	0.15	59 68	3.0E-06	6.E-02	6.E-07
/olatile Organic Compo		0.00E-02	0.15	39.00	3.05-00	0.E-02	0.E-U3
Benzene	4 00E-03	8,60E-03	0.1	36.0	8.6E-03	2.E-01	6.E-01
Chlorobenzene	2.0E-02	1.7E-02	0.1	0.01	NA NA	2.E-01	0,5-01
thylbenzene	1.0E-01	2.9E-01	0.1	110.0	1.3E-03	3.E-02	3.E-03
.4-Dichlorobenzene	3.0E-02	2.3E-01	0.1	0.1	1.3E-U3 NA	3.E-02 1.E-04	3.E-U3
sopropylbenzene	1.0E-01	1.0E-01	0.1	5.6	NA I	1.E-04	_
np-Xylenes	2.0E-01	2.9E-01	0.1	400.0	4.8E-03	5.E-02	1.E-02
-Xylene	2.0E-01	2.9E-02	0.1	ND ND	9.2E-04	3.E-02	2.E-02
ATBE	8.6E-01	8.6E-01	0.1	32.0	9.2E-04 1.3E-03	1.E-03	2.E-02 1.E-03
etrachloroethene	0.01	0.021	0.1	5.6	8.9E-04	1.E-03	1.E-03 3.E-02
PHg	0.04	0.04	0,1	4900.0	2.5E-04	3.E+00	3.E-02 4.E-03
oluene	2.0E-01	1.1E-01	0.1	170.0	1.6E-03	2.E-02	9.E-03
MINAMA	202-01	1.12-01	U-I	170.0	1.00-03	2.6-02	8.E-U3

¹ Maximum detected concentration in soil or as the soil vapor source mg/kg = Milligrams per kilogram

mg/kg-day = Milligrams per kilogram per day

mg/l = Milligrams per liter

cm/hr = Centimeters per hour

mg/m³ = Milligrams per cubic meter

NA = Not applicable

VOCs = Volatile organic compounds

For Soil Pathway (equation shown on Figure 2.3; Cal-EPA 1999):

 $HAZARD = ((Cs/RfDo) \times (1.28 \times 10-5)) + ((Cs/RfDo) \times (1.28 \times 10-4) \times ABS)$

For Air Pathway (equation shown on Figure 2.4; Cal-EPA 1999);

 $HAZARD = (Ca/RfDi) \times 0.639$

where for non-VOCs (equation shown on Figure 2.8, Cal-EPA 1999):

Ca = Cs x $(5.0 \times 10^{-8} \text{ kg/m}^3)$

Table J-14 Lead Risk Assessment Spreadsheet

USER'S GUIDE to version 7	
INPUT	
MEDIUM	LEVEL
Lead in Air (µg/m³)	0.0044
Lead in Soil/Dust (μg/g)	398
Lead in Water (μg/l)	15
% Home-grown Produce	
Respirable Dust (μg/m³)	1.5

	OUTP	UT					
	Percentil	le Estima	te of Blo	od Pb (µg	/dl)	PRG-99	PRG-95
	50th	90th	95th	98th	99th	(μg/g)	(µg/g)
BLOOD Pb, ADULT	1.4	2.6	3.1	3.8	4.3	2459	3851
BLOOD Pb, CHILD	4.3	7.9	9.4	11.4	12.9	259	440
BLOOD Pb, PICA CHILD	7.1	13.0	15.4	18.7	21.3	130	221
BLOOD Pb, OCCUPATIONAL	1.3	2.4	2.9	3.5	4.0	3518	5507

EXPOSURI	E PARAMETERS			
	units	adults	children	
Days per week	days/wk	7		
Days per week, occupational		5		
Geometric Standard Deviation			1.6	
Blood lead level of concern (µ	g/dl)		10	
Skin area, residential	cm ²	5700	2900	
Skin area occupational	cm ²	2900		
Soil adherence	μg/cm ²	70	200	
Dermal uptake constant	(μg/dl)/(μg/day)	0.0001		
Soil ingestion	mg/day	50	100	
Soil ingestion, pica	mg/day		200	
Ingestion constant	(μg/dl)/(μg/day)	0.04	0.16	
Bioavailability	unitless	().44	
Breathing rate	m³/day	20	6.8	
Inhalation constant	(μg/dl)/(μg/day)	0.08	0.192	
Water ingestion	l/day	1.4	0.4	
Food ingestion	kg/day	1.9	1.1	
Lead in market basket	μg/kg		3.1	
Lead in home-grown produce	μg/kg	1	79.1	

	P/	ATHWA	YS				
ADULTS	R	esidenti	al	Occupational Pathway contribution			
	Pathw	ay contr	ibution				
	PEF	μg/dl	percent	PEF	μg/dl	percent	
Soil Contact	3.8E-5	0.02	1%	1.4E-5	0.01	0%	
Soil Ingestion	8.8E-4	0.35	24%	6.3E-4	0.25	19%	
Inhalation, bkgrnd		0.01	0%		0.01	0%	
Inhalation	2.5E-6	0.00	0%	1.8E-6	0.00	0%	
Water Ingestion		0.84	58%		0.84	63%	
Food Ingestion, bkgrnd		0.23	16%		0.23	17%	
Food Ingestion	0.0E+0	0.00	0%			0%	

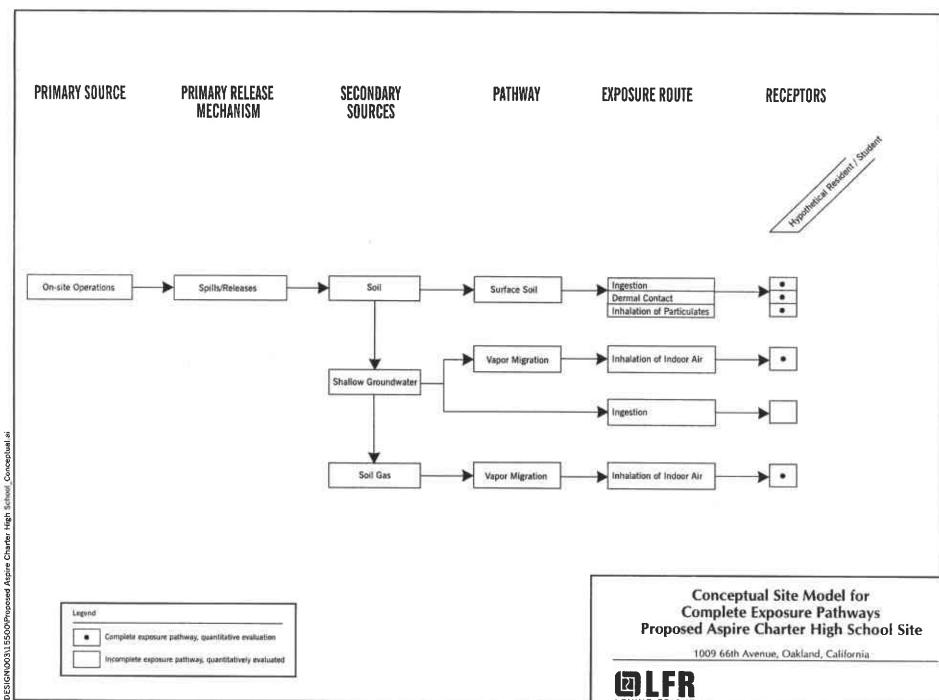
CHILDREN		typical		with pica Pathway contribution			
	Pathw	ay contr	ibution				
Pathway	PEF	μg/dl	percent	PEF	μg/di	percent	
Soil Contact	5.6E-5	0.02	1%		0.02	0%	
Soil Ingestion	7.0E-3	2.80	65%	1.4E-2	5.60	79%	
Inhalation	2.0E-6	0.00	0%		0.00	0%	
Inhalation, bkgrnd		0.01	0%		0.01	0%	
Water Ingestion		0.96	22%		0.96	13%	
Food Ingestion, bkgrnd		0.54	12%		0.54	8%	
Food Ingestion	0.0E+0	0.00	0%		0.00	0%	

Notes:

 $\mu \mathbf{g} = \text{microgram}$

 m^3 = cubic meter

g = gram l = liter


dl = deciliter

cm² = squared centimeter

mg = milligram

kg = kilogram

QA/QC__

