SOIL AND GROUND WATER INVESTIGATION SUMMARY REPORT PACIFIC ELECTRIC MOTOR CO. 1009 - 66TH AVENUE OAKLAND, CALIFORNIA

7/17/97

Submitted to:

Alameda County Environmental Health Department

Submitted on behalf of:

Pacific Electric Motor Co.

Prepared by:

ENVIRON Corporation Emeryville, California

July 17, 1997 Project No. 03-5991A

TABLE OF CONTENTS

		Pa	age No.
1.0	INTRODUCTIO	N	1
2.0	BACKGROUND	INFORMATION	2
3.0	 3.1 Drilling P 3.2 Monitorin 3.3 Well Dev 3.4 Analytica 3.5 Water Le 	Procedures	4
4.0	CONCLUSIONS	S AND RECOMMENDATIONS	8
Table		LIST OF TABLES Ionitoring Well Construction Details	
Table Table Table Table	3 G:	oil Analytical Results Fround Water Analytical Results Fround Water Elevations urvey Measurements	
		LIST OF FIGURES	
Figure Figure	e 2 M	ite Location Map Monitoring Well Locations Fround Water Elevation Contour Map	
		LIST OF APPENDICES	
Appe Appe Appe	ndix B Sendix C Fundix D Sendix D	ACEHD Work Plan Approval Letter Soil Boring Logs and Well Construction Details Field Records of Well Development and Sampling Soil Analytical Results Ground Water Analytical Results	

1.0 INTRODUCTION

This report summarizes the results of a soil and ground water investigation that was recently completed at the Pacific Electric Motor Company (PEM) facility located at 1009 - 66th Avenue in Oakland, California (hereinafter referred to as the "Site"). The purpose of the investigation was to further define the lateral and vertical extent of gasoline constituents in soil and ground water within the vicinity of a former gasoline underground storage tank (UST) that was removed on February 16, 1995.

This soil and ground water investigation was completed under the jurisdiction of the Alameda County Environmental Health Department (ACEHD) in accordance with a work plan titled Work Plan for Soil and Ground Water Investigation, Pacific Electric Motor Co., 1009 - 66th Avenue, Oakland, California (ENVIRON, May 27, 1997) that was conditionally approved by the ACEHD in a letter dated May 30, 1997 (Appendix A). Field investigation activities included soil sampling and analysis, new monitoring well construction, well development, water level measurements, ground water sampling and analysis, and well surveying. These field activities were completed between June 10 and 19, 1997.

Following this brief introductory section, this report summarizes background information concerning previous UST removal and site investigation activities (Section 2.0), Site Investigation Procedures and Results (Section 3.0), and Conclusions and Recommendations (Section 4.0).

2.0 BACKGROUND INFORMATION

The Site is located at 1009 - 66th Avenue in Oakland, California (Figure 1). PEM formerly operated a 2,000-gallon steel gasoline UST located east of the on-site warehouse building (see Figure 2) that was reportedly removed on February 16, 1995 by W.A. Craig, Inc. (WAC). At the time of removal of the former UST, it was reported that the tank was approximately 20 years old, in good condition, and that no holes were evident. However, free product was encountered on the water surface within the tank excavation pit and elevated concentrations of gasoline constituents (including up to 10,000 mg/kg of TPH as gasoline), were detected in three soil samples collected from the UST excavation and associated piping trenches.

In a report titled Final Closure Plan for Underground Storage Tank Removal (WAC, March 14, 1995), it was recommended that the soil stockpile resulting from the UST removal project be disposed of off-site, that clean material be used to backfill the tank pit, and that petroleum-impacted water from the pit be pumped and disposed of at a licensed disposal facility. In addition, further soil and ground water remediation was recommended. In a letter dated April 20, 1995, the ACEHD indicated its awareness of subsequent activities completed by WAC that included enlarging the initial tank pit area through overexcavation and constructing trenches, and requested additional information from PEM concerning these activities.

In a document titled Subsurface Environmental Investigation (WAC, May 16, 1995), it was reported that from April 4 through 11, 1995, approximately 300 cubic yards of gasoline-impacted soils were excavated from the vicinity of the former UST and stockpiled at the Site on plastic sheeting. In addition, it was reported that approximately 18,000 gallons of contaminated water had been pumped from the excavation pit and placed in a Baker tank on-site.

On April 24 and 25, 1995, WAC reportedly performed a geoprobe investigation in an attempt to define the lateral and vertical extent of gasoline constituents. Nine soil borings were advanced to depths between 20 and 30 feet below ground and soil samples were collected above and below the water table. Ground water samples were not collected during this investigation because the fine-grained soils reportedly did not yield sufficient water.

Based on information provided to ENVIRON by PEM, it is ENVIRON's understanding that additional remedial actions were completed at the Site from August 1995 to November 1995 in accordance with a work plan dated July 5, 1995. These remedial actions reportedly included the removal of approximately 1,500 cubic yards of petroleum hydrocarbon-impacted soil and the treatment/discharge of an estimated 116,000 gallons of petroleum hydrocarbon-

impacted ground water. Other activities reportedly included demolition of the fuel dispensing island, associated product supply lines, and a materials storage structure; installation of a temporary ground water monitoring well; collection and analysis of excavation sidewall and bottom soil confirmation samples; and collection and analysis of ground water samples. The approximate horizontal and vertical extent of the final soil excavation, as well as confirmation soil sample results, were presented in Figure 4 of the report titled *Excavation and Sampling Report* (WAC, May 12, 1997).

Until recently, four soil stockpiles were located on-site that ENVIRON had identified as Stockpiles 1, 2, 3, and 4 for reference purposes (Figure 2). In order to assist PEM in evaluating potential soil recycling, treatment, or disposal methods, ENVIRON completed a soil stockpile characterization project that was completed in accordance with a work plan dated April 23, 1997 that was approved by the ACEHD in a letter dated April 24, 1997. Based on the results of the soil stockpile characterization effort that were summarized in a report titled Soil Stockpile Characterization Summary Report (ENVIRON, May 28, 1997), PEM recently arranged to transport the stockpiled soils off-site for disposal.

As noted above, the objective of this site investigation was to further define the lateral and vertical extent of gasoline constituents in soil and ground water within the vicinity of a former gasoline US that was removed on February 16, 1995. Site investigation procedures and results are summarized in the following section.

3.0 SITE INVESTIGATION PROCEDURES AND RESULTS

A field investigation was conducted between June 10 and 19, 1997 at the Pacific Electric Motor Company, Oakland, California facility in accordance with the document titled Work Plan for Soil and Ground Water Investigation, Pacific Electric Motor Co., 1009-66th Avenue, Oakland, California (ENVIRON, May 27, 1997), subject to the conditions contained in the ACEHD's May 30, 1997 approval letter. The field investigation included advancing three soil borings for the purposes of collecting soil samples, and converting the soil borings to monitoring wells in order to evaluate ground water quality conditions in the vicinity of a former underground storage tank. The boring and well locations are shown on Figure 2 and the boring logs and well construction details are presented on Figures B-1 through B-3 of Appendix B.

3.1 Drilling Procedures

On June 10, 1997, drilling and installation of three ground water monitoring wells was performed by Gregg Drilling & Testing, Inc. of Martinez, California using hollow-stem auger drilling methods. At each monitoring well location, a soil boring was advanced using a Mobile B-53 drill rig. The borings were advanced using nominal 8-inch diameter hollow-stem augers and an 8½-inch diameter bit.

Relatively undisturbed soil samples were obtained by using a 2-inch inside diameter (ID) split spoon sampler lined with pre-cleaned, 6-inch long, brass liner tubes. The sampler was driven into undisturbed soils using a hammer weighing 130 pounds and falling 30 inches. Prior to collecting each sample, the sampler was cleaned with a liquinox and water solution, then double rinsed with potable water, and reassembled with pre-cleaned brass tubes. Upon removal from the borehole, the sampler was disassembled, and the tubes were removed from the sampler and labeled.

An ENVIRON geologist was present during drilling to obtain soil samples, maintain a continuous log of the borings, make observations of site conditions, conduct health and safety monitoring for organic vapors during drilling, and provide technical assistance as required. Soil samples were logged and classified according to the Unified Soil Classification System shown on Figure B-4 of Appendix B. Sample color (according to the Munsell soil color charts), consistency, moisture, and soil screening results are noted on the boring logs. The boring logs contain geologic descriptions of the materials encountered and an estimate of the grain size distribution. Discrete soil samples were collected at various depths throughout the drilling and placed in a ziploc bag for field screening using an organic vapor photoionization detector (PID) instrument. Soil samples were selected for chemical testing based upon field

observations and the results of the field screening. As noted above, the boring log and well construction details containing the field data for each location are presented on Figures B-1 through B-3.

3.2 Monitoring Well Installation Procedures

The monitoring wells were constructed in accordance with the California Department of Water Resources and Alameda Zone 7 Water Agency regulations. Well materials were handled and stored prior to installation in a manner such that they were protected from contamination. Monitoring well construction details are summarized in Table 1.

Following completion of the soil boring, well screen consisting of 2-inch diameter Schedule 40 PVC (0.010-inch machine slotted) was fitted with endcaps and placed in the borehole. Unslotted 2-inch diameter Schedule 40 PVC was attached to the top of the screen interval using flush threaded couplings. The unslotted PVC casing extended to the ground surface. A locking expandable cap was placed inside of each well casing. A sand pack consisting of Lonestar #2/16 sand was then placed in the annulus from the bottom of the borehole to approximately one foot above the top of the slotted screen. Approximately one foot of bentonite pellets was placed above the sand pack. The bentonite pellets were hydrated with potable water prior to placement of the grout seal. The remaining annular space was filled to one foot below ground surface with a bentonite-cement grout seal. A 12-inch diameter, flush-mounted, traffic-rated Christy box was grouted in at the surface to complete the installation.

3.3 Well Development and Sampling

Blaine Tech Services of San Jose, California performed well development on June 17, 1997, and sampling on June 19, 1997, under the supervision of ENVIRON staff. Well development procedures consisted of bailing, surging (with a surge block or bailer), and pumping. ENVIRON maintained field records of the volume of water removed from each well, pH readings, temperature readings, conductivity readings, and turbidity readings. Field records maintained during development activities are included in Appendix C.

Ground water samples were collected from the three newly constructed monitoring wells (MW-1, MW-2 and MW-3) and one previously existing well (WAC-1) on June 19, 1997 by Blaine Tech Services under the supervision of an ENVIRON geologist. Each well was purged with a Middleburg type displacement pump constructed of stainless steel and TeflonTM. A minimum of three well-casing volumes of water were purged prior to sampling to produce samples that were representative of aquifer conditions. ENVIRON maintained field records of the volume of water removed from each well, pH readings, temperature readings, conductivity

readings, and turbidity readings. Field records maintained during sampling activities are included in Appendix C.

Samples were collected using a stainless steel bailer. All down-hole equipment was steam-cleaned prior and between use in each well. Samples were collected and submitted for chemical testing under chain-of-custody protocol.

3.4 Analytical Results

One soil sample was selected for chemical analysis from each of the three soil borings for MW-1, MW-2, and MW-3 on the basis of field screening measurements using an organic vapor monitoring (OVM) instrument, and field observations. The soil samples that were submitted for chemical analysis from the borings for MW-1 and MW-3 were selected to coincide with the highest OVM field measurements. Due to the low OVM field screening measurements that were encountered in the boring for MW-2, however, ENVIRON submitted the soil sample collected from a depth of 15.5 to 16.0 feet below ground for chemical analysis in order to provide a basis for comparison with the soil sample collected from the boring for MW-1. Soil analytical results are summarized in Table 2, OVM field measurements are included on the boring logs in Appendix B, and soil analytical laboratory reports are included in Appendix C . As shown in Table 2, concentrations of TPH/gasoline and BTEX compounds were non-detectable in soil samples collected from the borings for MW-2 and MW-3, while the soil sample collected from the boring for MW-1 at a depth of 15.5 to 16.0 feet below ground contained the following concentrations of gasoline constituents: TPH/gasoline - 480 mg/kg; benzene - 1.4 mg/kg; toluene - 0.71 mg/kg; ethylbenzene - 11 mg/kg; and xylenes - 35 mg/kg. As shown in Table 2, concentrations of TPH/gasoline and BTEX compounds were nondetectable in the equipment blank and trip blank associated with these soil samples.

Ground water analytical results for the three new monitoring wells and existing well WAC-1 are summarized in Table 3, and ground water analytical laboratory reports are included in Appendix D. As shown in Table 3, concentrations of TPH/gasoline and BTEX compounds were non-detectable in ground water samples collected from MW-2 and MW-3, while the ground water sample collected from MW-1 contained the following concentrations of gasoline constituents: TPH/gasoline - 18 mg/L; benzene - 3.3 mg/L; toluene - 0.2 mg/L; ethylbenzene - 1.1 mg/L; and xylenes - 4.9 mg/L. Although TPH/gasoline and BTEX concentrations were reported to be non-detectable in the ground water sample collected from WAC-1, this well reportedly contained 0.43 mg/L of methyl tertiary-butyl ether (MTBE). Lead concentrations were either below or near the detection limit of 0.005 mg/L in the ground water samples collected from the four wells, and non-detectable concentrations of TPH/gasoline, BTEX, MTBE, and lead were reported in the equipment blank and trip blank

associated with these ground water samples.

3.5 Water Level Measurements

Static water levels in the three newly installed monitoring wells (MW-1, MW-2, and MW-3) and one existing well (WAC-1) were measured on July 1, 1997. Measurements were made with an electronic water level probe with gradations to the nearest 0.02 feet. Readings were taken from a surveyed reference point until agreement was reached from two consecutive readings to the nearest 0.01 foot after interpolation. The ground water elevation measurements are presented in Table 4 and a ground water elevation contour map is included as Figure 3.

3.6 Surveying

Following completion of the monitoring wells, the well locations and important nearby site features were surveyed by Kister, Savio, & Rei, Inc. The surveying was conducted on June 25, 1997. Well locations were surveyed to the nearest 0.1 foot and are referenced to an assumed site coordinate system. The ground surface and top of casing elevations were surveyed to the nearest 0.01 foot and are referenced to an assumed site datum. The survey data are presented in Table 5.

4.0 CONCLUSIONS AND RECOMMENDATIONS

As noted above, this report summarizes the results of a site investigation that was completed at the PEM facility between June 10 and June 19, 1997. The investigation was completed in accordance with a work plan that was approved by the ACEHD in a letter dated May 30, 1997 and included the following activities: soil sampling and analysis, new monitoring well construction, well development, water level measurements, ground water sampling and analysis, and well surveying. The purpose of the investigation was to further define the lateral and vertical extent of gasoline constituents in soil and ground water within the vicinity of a former gasoline UST that was removed on February 16, 1995.

The results of this investigation have confirmed that the local ground water gradient is generally toward the south to southwest, which is consistent with site topography and results of other site investigations that have been conducted in area. Therefore, it is concluded that monitoring wells MW-2 and MW-3 appear to have been appropriately located to assess the potential migration of petroleum constituents from the former UST location. The absence of petroleum hydrocarbons in soil and ground water samples collected at these downgradient locations suggests that the occurrence of petroleum hydrocarbons is relatively limited in extent. Although TPH/gasoline and BTEX compounds were detected in the soil and ground water samples collected at MW-1 and MTBE was detected in a ground water sample collected from WAC-1, it is important to recognize that these concentrations are within ranges that the RWQCB has allowed to remain in soil and ground water at other similar sites located within the Bay Area, depending upon site-specific factors.

Based on the results of this investigation, it is recommended that the ACEHD consider requiring no further action at this Site for the following reasons:

- The former 2,000 gallon gasoline UST, which was the source of gasoline constituents identified in soils and ground water at the Site, has been removed;
- Additional source remedial actions have been implemented in the immediate
 vicinity of former UST, which have included the excavation and recent off-site
 disposal of approximately 1,500 cubic yards of petroleum-hydrocarbon impacted
 soil and the extraction, treatment, and disposal of an estimated 116,000 gallons
 of ground water;
- Site-specific hydrogeologic conditions, which include the nature and extent of fine-grained soils that were encountered during this investigation, are expected

to limit the lateral and vertical migration of petroleum hydrocarbons;

- No adverse soil or ground water quality impacts by petroleum hydrocarbons were identified at MW-2 or MW-3, which are located approximately 130 to 160 feet downgradient of the former UST;
- Ground water within the vicinity of the Site is reportedly not used as a drinking water supply; and
- Intrinsic bioremediation processes are likely to further reduce the concentrations of petroleum hydrocarbons in soil and ground water at the Site over time.

In summary, significant remedial actions have been completed at the Site to address soil and ground water issues associated with the former gasoline UST, which was removed nearly two and one-half years ago (on February 16, 1995). During the soil and ground water investigation summarized in this report, no adverse impacts were identified in monitoring wells that were constructed downgradient of the former UST, and the ranges of petroleum hydrocarbon constituents that were identified in the vicinity of the former UST are within ranges that the RWQCB has allowed to remain in soil and ground water at other similar sites located within the Bay Area. Based on these considerations, and the other considerations listed above, ENVIRON recommends that ACEHD consider requiring no further investigation, monitoring, or remediation at the Site.

TABLE 1: MONITORING WELL CONSTRUCTION DETAILS
Pacific Electric Motor Company, 1009 66th Avenue, Oakland, California

								Bentonite	
Well	Total Depth (ft bgs)	Casing Material	Casing Diameter	Screen Slot Size	Filter Pack Size	Screen Interval (ft bgs)	Filter Pack Interval (ft bgs)	Pellet Interval (ft bgs)	Grout Interval (ft bgs)
MW-1	25.5	Sch. 40 PVC	2"	0.010"	Lonestar 2/16	5.0 - 25.0	4.0 - 25.5	3.0 - 4.0	1.0 - 3.0
MW-2	25.5	Sch. 40 PVC	2"	0.010"	Lonestar 2/16	5.0 - 25.0	4.0 - 25.0	3.0 - 4.0	1.0 - 3.0
MW-3	25.5	Sch. 40 PVC	2"	0.010"	Lonestar 2/16	5.0 - 25.0	4.0 - 25.0	3.0 - 4.0	1.0 - 3.0
WAC-1 *	28.0	Sch. 40 PVC	10"	0.032"	#3 Monterey	19.6 - 27.6	18 - 27.9	12.6 - 18.6	N/A

Notes:

ft bgs = feet below ground surface

^{*}Well construction details for well WAC-1 are based on information contained in the report Excavation and Sampling Report.

⁽W. A. Craig, Inc., May 12, 1997).

TABLE 2. SOIL ANALYTICAL RESULTS

Pacific Electric Motor Company, 1009 66th Avenue, Oakland, California

P .				
MW-1	MW-2	MW-3	MW-3EB	MW-1TB
15.5-16.0	15.5-16.0			Strategy and the same of the s
Sample	•	•	• •	Trip Blank
MW1-10C-15.5				MW-1TB
6/10/97				6/10/97
6/18/97				6/13/97
9706106				9706106
8020A/8015M				8020A
mg/kg	mg/kg	mg/kg	μg/L	μg/L
480	<1.0	<1.0	<50	na
1.4	<0.0050	<0.0050	<0.50	<0.50
0.71	<0.0050	<0.0050	<0.50	<0.50
11	<0.0050	<0.0050	<0.50	<0.50
35	<0.0050	<0.0050	<0.50	< 0.50
•	15.5-16.0 Sample MW1-10C-15.5 6/10/97 6/18/97 9706106 8020A/8015M mg/kg 480 1.4 0.71	15.5-16.0 Sample Sample MW1-10C-15.5 MW2-10C-15.5 6/10/97 6/18/97 6/18/97 6/18/97 9706106 9706106 8020A/8015M 8020A/8015M mg/kg mg/kg 480 <1.0 1.4 <0.0050 0.71 <0.0050 11 <0.0050	15.5-16.0 15.5-16.0 9.5-10.0 Sample Sample Sample MW1-10C-15.5 MW2-10C-15.5 MW3-6C-9.5 6/10/97 6/10/97 6/10/97 6/18/97 9706106 9706106 9706106 8020A/8015M 8020A/8015M 8020A/8015M mg/kg mg/kg mg/kg 480 <1.0 <1.0 1.4 <0.0050 <0.0050 0.71 <0.0050 <0.0050	15.5-16.0 Sample Sample Sample Sample MW1-10C-15.5 MW2-10C-15.5 MW3-6C-9.5 MW3-6C-9.5 MW-3EB 6/10/97 6/18/97 6/18/97 6/18/97 6/18/97 9706106 9706106 9706106 9706106 8020A/8015M Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg 1.0

Notes:

< xx = not detected above detection limit xx.

na = not analyzed

TABLE 3: GROUND WATER ANALYTICAL RESULTS
Pacific Electric Motor Company, 1009 66th Avenue, Oakland, California

Well		MW-1	MW-2	MW-3	WAC-1	WAC-1EB	MW-1TB
Sample Code		Sample	Sample	Sample	Sample	Equipment Blank	Trip Blank
Date Sampled		6/19/97	6/19/97	6/19/97	6/19/97	6/19/97	6/19/97
Date Analyzed		6/27/97	6/27/97	6/27/97	6/27/97	6/27/97	6/27/97
Lab Report		9706268	9706268	9706268	9706268	9706268	9706268
Analytical Method	Units	8020A/8015M	8020A/8015M	8020A/8015M	8020A/8015M	8020A/8015M	8020A/8015M
Gasoline	μg/L	18,000	<50	<50	<50	<50	<50
MTBE	μg/L	<250	<5.0	<5.0	430	<5.0	<5.0
Benzene	μg/L	3,300	<0.5	<0.5	<2.5	<0.5	<0.5
Toluene	μ g /L	200	<0.5	<0.5	<2.5	<0.5	<0.5
Ethylbenzene	μg/L	1,100	<0.5	<0.5	<2.5	<0.5	<0.5
Xylenes	μg/L	4,900	<0.5	<0.5	<2.5	<0.5	<0.5
Lead (mg/L)	mg/L	0.0051	0.0052	<0.0050	<0.0050	<0.0050	na

Note:

< xx = not detected above detection limit xx.

na = not analyzed

TABLE 4: GROUND WATER ELEVATIONS
Pacific Electric Motor Company, 1009 66th Avenue, Oakland, California

WELL	Screened Interval Elevation (ft above assumed datum)	Top of Casing Elevation (ft above assumed datum)	Depth to Water (ft below toc)	Ground Water Elevation (ft above assumed datum)
MW-1	96.0 - 76.0	100.67	5.88	94.79
MW-2	95.1 - 75.1	99.85	5.37	94.48
MW-3	95.2 - 75.2	99.93	5.52	94.41
WAC-1 (2)	81.3 - 73.3	100.8	6.12	94.68

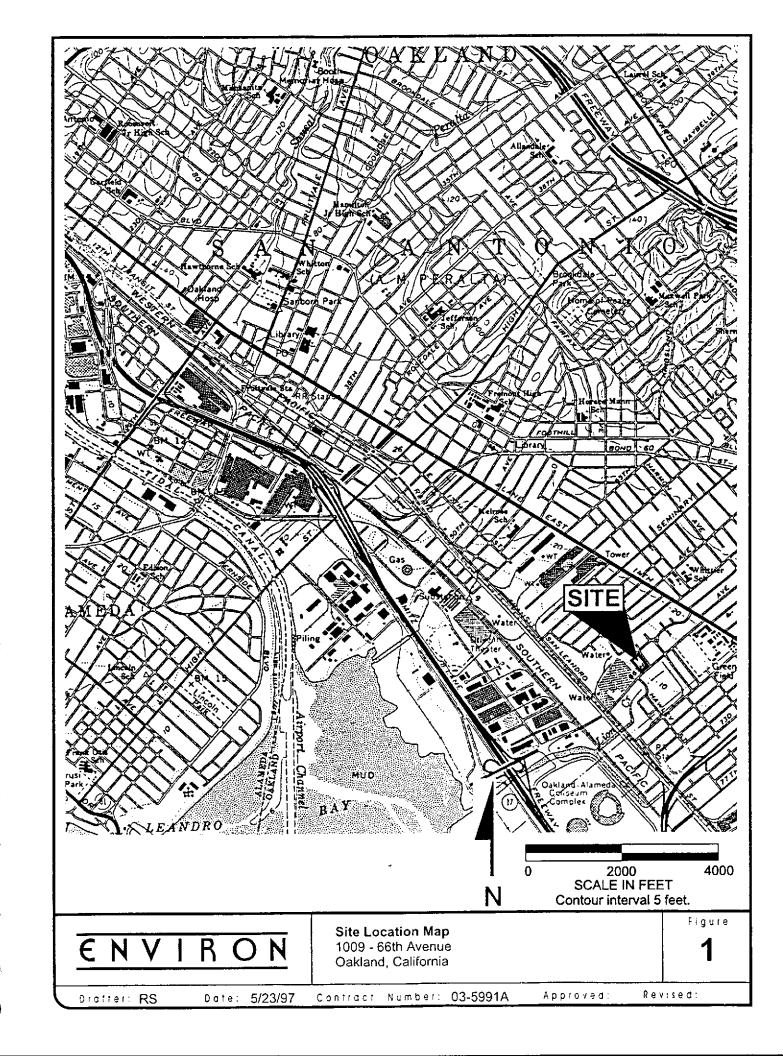
Notes:

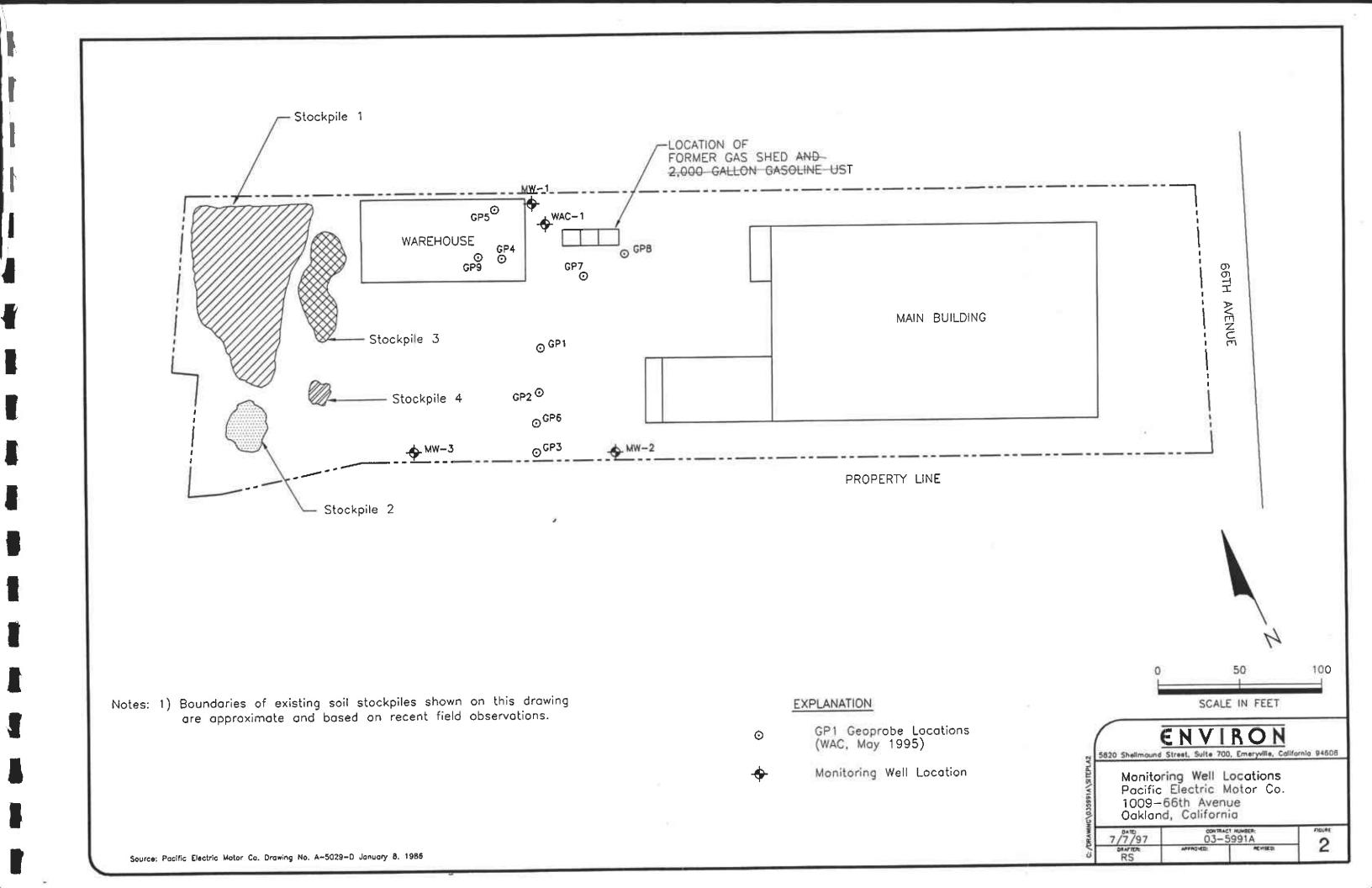
ft above msl = feet above mean sea level datum

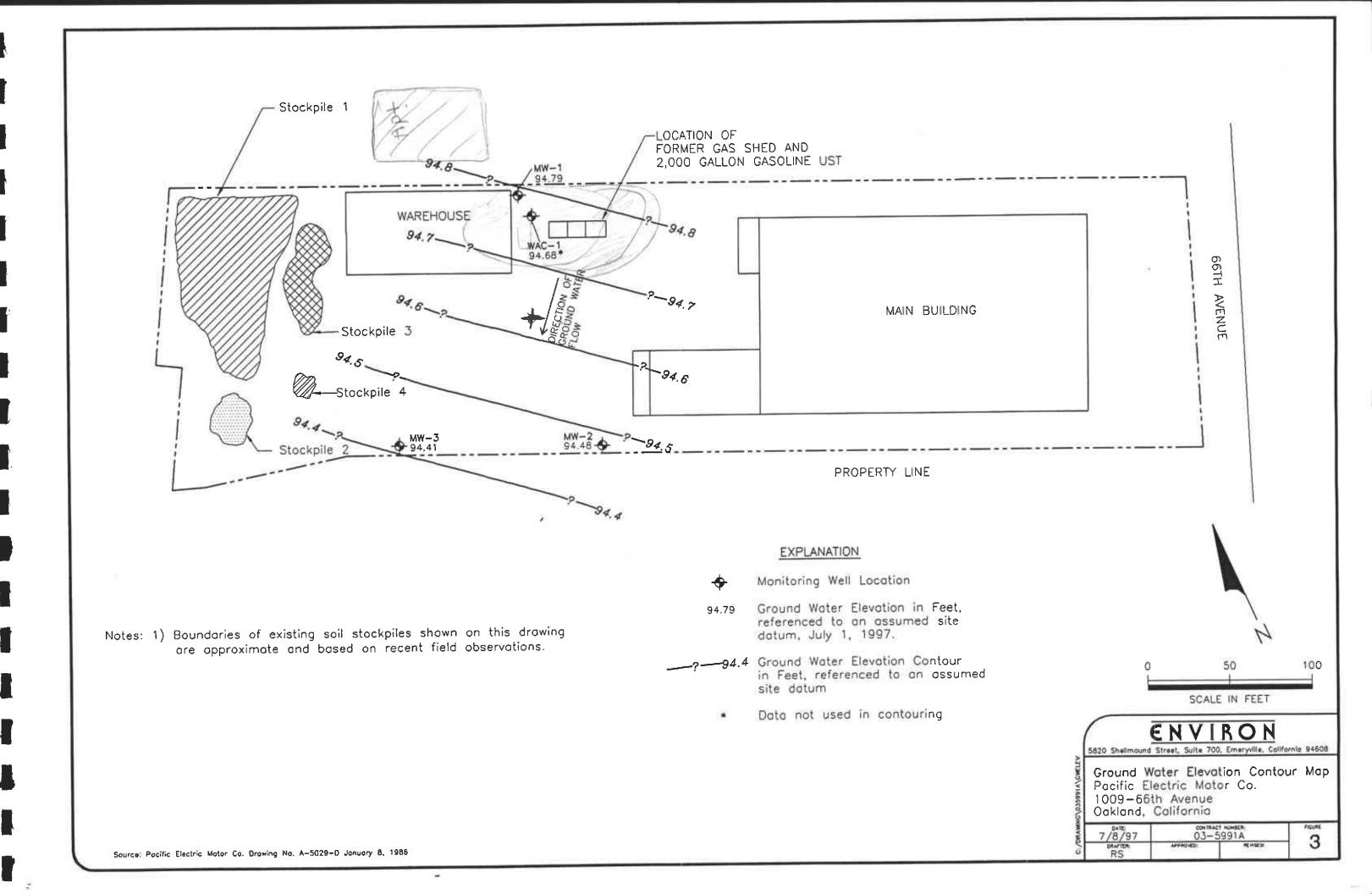
ft below toc = feet below top of casing

⁽¹⁾ Static water level measurements were made on July 1, 1997.

⁽²⁾ Measured total depth of well WAC-1 was 17.09 ft (below ground surface) on July 1, 1997. Available well construction details for well WAC-1 indicate a total depth of 28.0 ft (below ground surface).


TABLE 5: SURVEY MEASUREMENTS
Pacific Electric Motor Company, 1009 66th Avenue, Oakland, California


WELL/Site Feature	Northing	Easting	Ground Surface Elevation (ft above assumed datum)	Top of Casing Elevation (ft above assumed datum)
MW-1	5157.0	4996.0	101.04	100.67
MW-2	4997.6	5015.8	100.12	99.85
MW-3	5022.7	4894.6	100.23	99.93
WAC-1	5143.0	5001.6	100.9	100.8
NE Corner of Warehouse	5160.9	4992.5	100.99	
SE Corner of Warehouse	5111.6	4982.8	100.94	
SW Corner of Warehouse	5131.2	4884.3	100 . 97	
Surveyors Work Point I	5000.0	5000.0	100	
Surveyors Work Point 2	5149.5	5000.0	101	


Notes:

⁽¹⁾ Survey measurements made by Kister, Savio & Rei, Inc. on June 25, 1997 using an assumed coordinate system.

Assumed coordinate system defined by the location of two surveying nails driven into the ground (Surveyor's Work Point 1 and Surveyor's Work Point 2). Assumed datum defined at Surveyor's Work Point 1 of 100 feet.

APPENDIX A ACEHD WORK PLAN APPROVAL LETTER

AGENCY

DAVID J. KEARS, Agency Director

May 30, 1997 StID # 565

Mr. Rand Perry, Vice President Pacific Electric Motor Co. 1009 66th Ave. Oakland CA 94621

ENVIRONMENTAL HEALTH SERVICES 1131 Harbor Bay Parkway, Suite 250 4lameda, CA 94502-6577 (510) 567-6700 (510) 337-9335 (FAX)

Re: Work Plan for Soil and Groundwater Investigation for Pacific Electric Motor Co., 1009 66th Ave., Oakland CA 94621

Dear Mr. Perry:

Our office has received and reviewed the May 27, 1997 work plan for soil and groundwater investigation as provided by Mr. John Schroeter of Environ. This work plan proposes the installation of three monitoring wells at this site; one upgradient and two in the assumed downgradient direction relative the former gasoline Both soil and groundwater samples will be collected from the borings/ wells in addition to collecting a groundwater sample from the existing monitoring well.

This work plan is accepted with the following conditions:

- On all future site plans, please indicate the location of the existing monitoring well. There was some uncertainty in its location and our office was never informed of its exact location.
- Please provide a copy of the stockpile soil sampling report. At the time of our previous meeting, not all analytical results were available. Please keep our office updated on the disposition of these soils.
- 3. Please have Environ use its best professional judgement when determining the depth of borings and the slotting interval in the construction of the proposed wells. Using the same slotting interval as the adjacent Fire Station on 66th Ave. should occur only if site conditions dictate.
- Please have your consultant field screen each boring within every five foot interval using either a PID or OVA instrument or The soil samples with the highest values should be equivalent. analyzed in the laboratory. Please keep in mind that our office may require additional chemical analysis based upon the complete results of the stockpile samples.

Quarterly groundwater sampling should be instituted after monitoring well installation.

Please notify me 72 working hours prior to your field work.

Mr. Rand Perry 1009 66th Ave. StID # 565 May 30, 1997 Page 2.

You may contact me at (510) 567-6765 if you have any questions.

Sincerely,

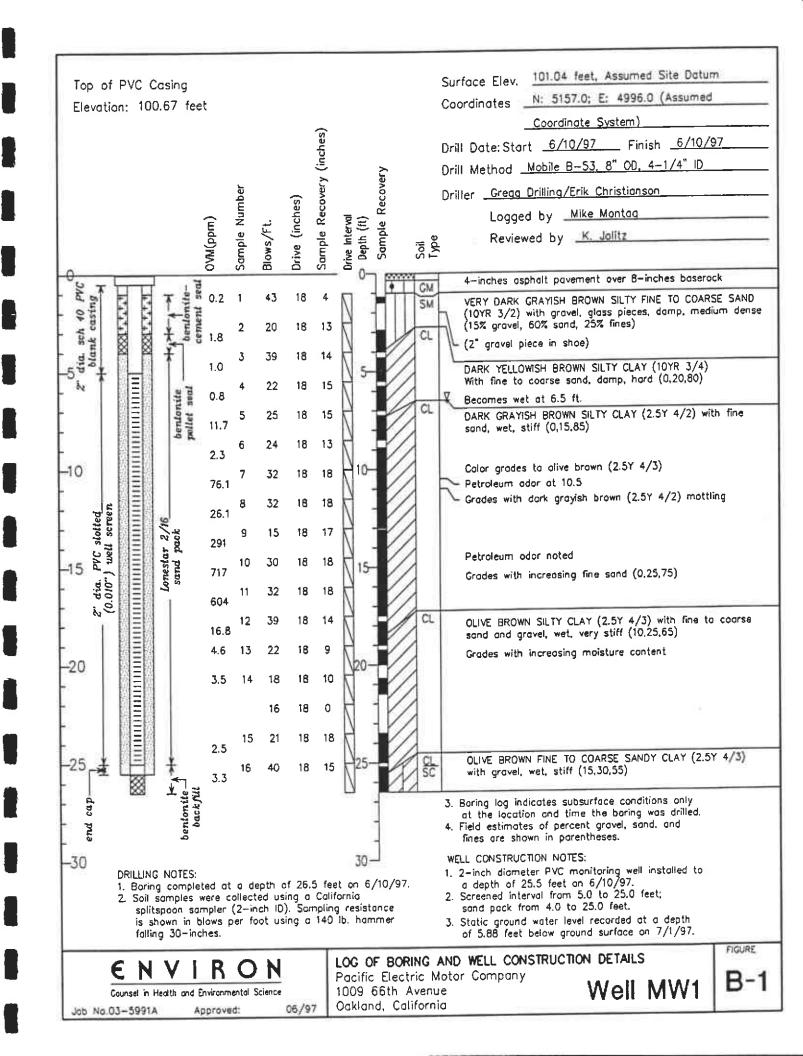
Barney M. Chan

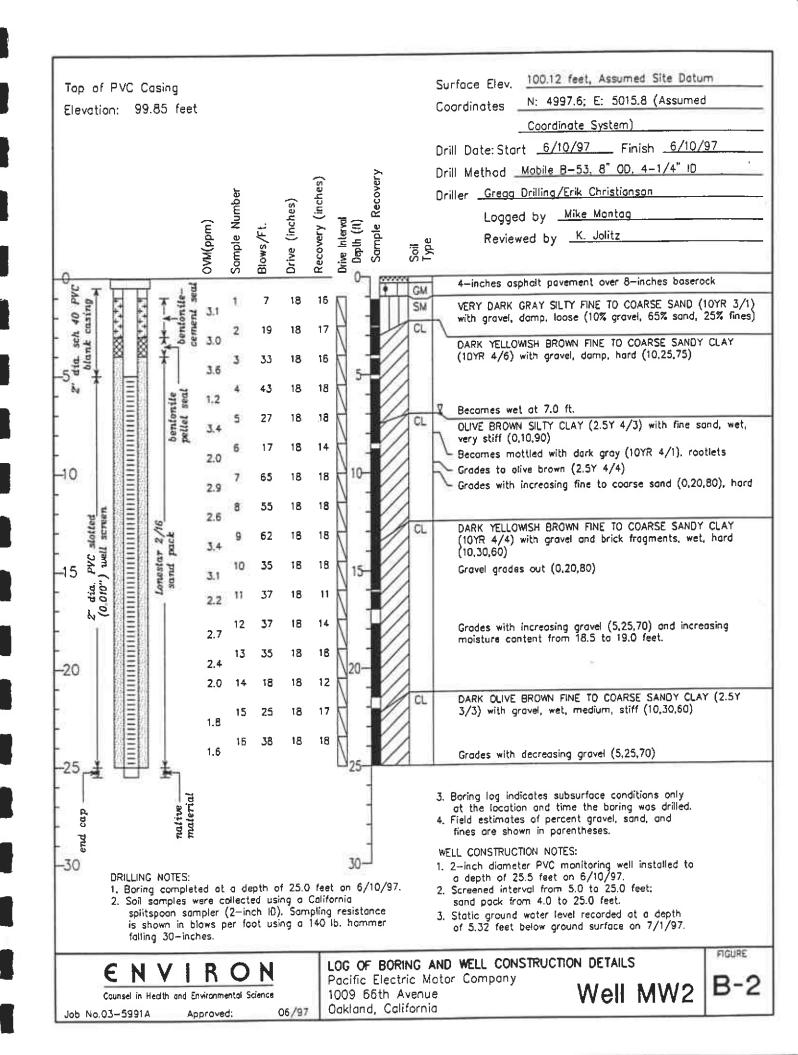
Hazardous Materials Specialist

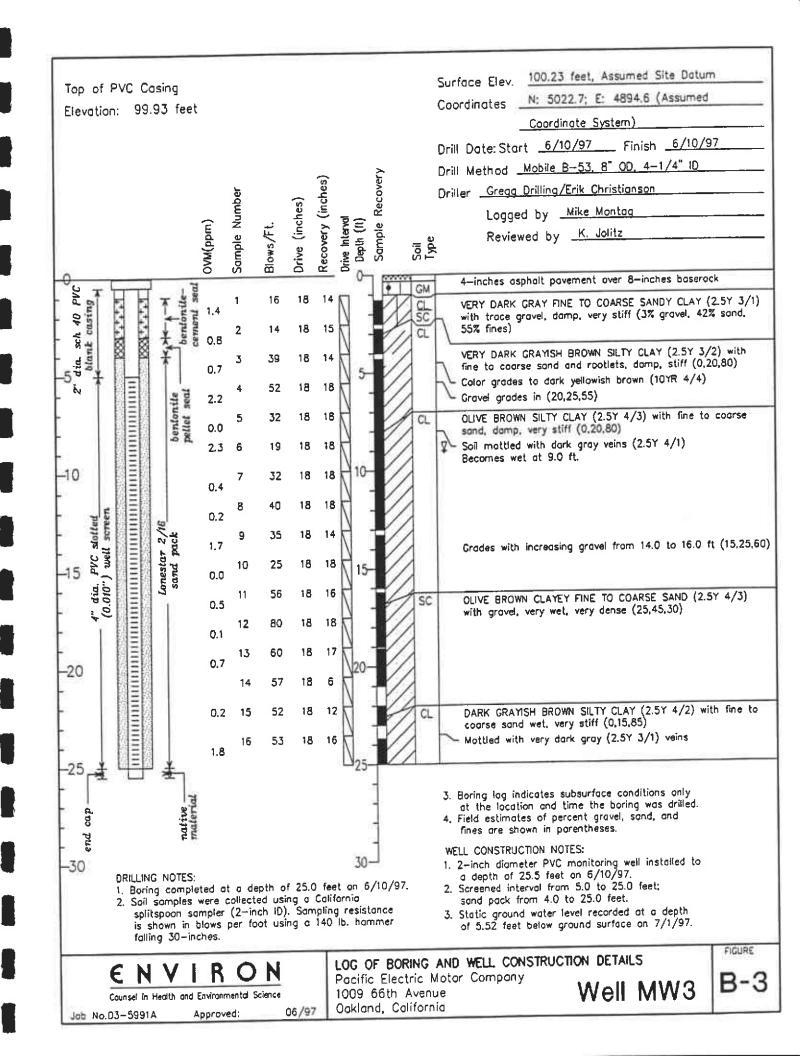
c: B. Chan, files

Mr. J. Schroeter, Environ, 5820 Shellmound St., Suite 700,

Emeryville, CA 94608


Mr. G. Norton, Serrano & Cone Inc., 2092 Omega Rd., Suite F,


San Ramon, CA 94583


wpap1009

APPENDIX B

SOIL BORING LOGS AND WELL CONSTRUCTION DETAILS

	IVIO ROLAM	SIONS	GRAPHIC SYMBOL	SOIL	DESCRIPTIONS	
		CLEAN GRAVELS	0.0 0.0	6M	WELL GRADED GRAVELS, WITH OR WITHOUT SAND, LITTLE OR NO FINES	
#200 sieve	GRAVELS more than half	WITH LITTLE OR NO FINES	200	6P	POORLY GRADED GRAVELS. WITH OR WITHOUT SAND, LITTLE OR NO FINES	
an #200	coarse fraction is larger than	GRAVELS WITH	111	6 M	SILTY GRAVELS, SILTY GRAVELS WITH SAND	
ser than	ng. 4 sieve	OVER 12% FINES		ec	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND	
coarser		CLEAN SANDS		SW	WELL GRADED SANDS, WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES	
COARSE-GRAINED half is coarser	SANDS more than half coarse fraction is smaller than no. 4 sieve	WITH LITTLE OR NO FINES		SP	POORLY GRADED SANDS, WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES	
than h		SANDS WITH	111	SH	SILTY SANDS, WITH OR WITHOUT GRAVEL	
Hore		OVER 12% FINES		sc	CLAYEY SANDS, WITH OR WITHOUT GRAVEL	
-				HL.	INORGANIC SILTS AND VERY FIRE SANDS. ROCK FLOUR, CLAYEY SILTS OF LOW PLASTICITY	
.		ND CLAYS		a.	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY. CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS	
FINE-GRAINED SOILS	11dala 11m1	liquid limit 50 or less	tiddid timir an or year		OL.	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
SALINE			1111	нн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS	
FINE-(ND CLAYS		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
/8	lidnio rimit è	greater than 50		ОН	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGAN	IC SDILS		РТ	PEAT AND OTHER HIGHLY ORGANIC SOILS	
	SAMPLE INT	FRVAL KEY		d	SOIL SAMPLE RECOVERY KEY	
	SWALLE ILA		7	7)	Soil Sample (disturbed)	

Continuous Core Barrel Run

Drive Interval

Soil Sample (disturbed) Partial Recovery

Soil Sample Recovery

Continuous Soil Sample Recovery where Contiguous

Sample Attempt.
No Recovery

ENVIRON

Counsel in Health and Environmental Science

Jab No.03-5991A

Approved:

06/97

Unified Soil Classification Chart Pacific Electric Motor Company 1009 66th Avenue Oakland, California FIGURE

B-4

APPENDIX C

FIELD RECORDS OF WELL DEVELOPMENT AND SAMPLING

É						
ENVIRON Counsel in Health and Environmental Science	WELL DEVELOPMENT					
METHOD(S) PUMP BALER SURGE BLOCK	PROJECT Pacific Electric Motor Co. WELL NO. MW-1					
TYPE Middlebring NA BIS	JOB NO. STE PREPARED BY					
MATERIAL Strinkers S. NA Strinkers Str DIMENSION W/form	DEVELOPMENT CRITERIA per Enviro-					
OTHER	DECONTAMINATION METHOD, Steam Cleaner					
· su - -d _w	CASING VOLUME CALCULATION (USE CONSISTENT UNITS)					
HOLE DIAMETER dh= 6" SMALE	CASING VOLUME - $V_c = \pi \left(\frac{d_w}{2}\right)^2$ (TD-H) = $\frac{3.1}{}$					
INSIDE DIAMETER CW = 24 DTW CASING STICKUP SU = NA DTW ST	FIELD EQUIPMENT CALIBRATIONS					
ретн то: ТО ПО В З	EQUIPMENT MYTER L HF Scientific Fluke Them. SERIAL NO. 0210926E NTV 10 6245030					
TOP SCREEN SU+ST = 5,00	SERIAL NO. 0210420E N/010 DATE CALIBRATED 6/17/47 6/17/47					
BOTTON WELL SU+TD= 24.95	TEMP (°C)					
BOTTOM WELL SU+TO- 27.73 - dh	SIMONO/NOTAL					
DEVELOPMENT LOG: CUMULATIVE TOTAL REMOVED	WATER CHARACTER COMMENTS:					
DATE METHOD REJOVED	CONDUCTIVITY TEMP. TURBERTY					
417 1359 Surged well before pumps						
4/17 1405 Began purging w/ middleburg						
4/7 14/1 3.0 3.0 1.0 7.0						
6/17/417 3.0 6.0 1.9 6.						
6/17/1423 3.0 9.0 2.9 6.	9 4000 19.3 >200					
V17 1429 3.0 12.0 3.9 6.0	7 3420 17.1 7200 Continue to be very turbid					
6/17/1435 3.0 15.0 4.8 6.8						
417 1437 Well dewatered @ 1720						
4/17/1440 Began suging well to regge	nin flav					
الأكاكان والمسابق وال	of D. I. water to well per Mike & Environ DTW=6.7					
6/17/456 Began surging well again						
17 1501 Agan pumping w/ Middleturg	7 1 1 1 1					
0/17/507 3.0 20.0 6.5 7.3						
6/17 1513 3,0 23,0 7,4 7.1						
4/17 1514 Aggettated bottom w/ pump-						
1/17 1520 3.0 26.0 8.4 6.0	1 2,00					
	2 (3600 / -)					
11/17 1527 Stopped developing & 2	7.0 gallons per Mike e Envinn					

ENVIRON Counsel in Health and Environmental Science	WELL DEVELOPMENT
METHOD(S) PUMP BAILER SURGE BLOCK TYPE Middleburg N/A BTS	PROJECT Pacific Electric Motor Co. MW-2 JOB NO. 970617-51 Environ DOUG
MATERIAL Stainless S. N/A Stainless Stall	DEVELOPMENT CRITERIA DEV Environ
OTHER	DECONTAMINATION METHOD Steam Cleaner
HOLE DIAMETER $d_h = 6''$ WELL CASING SU - - d_w SAFACE	CASING VOLUME CALCULATION (USE CONSISTENT UNITS) CASING VOLUME - $V_c = TT \left(\frac{d_w}{2}\right)^2 (TD-H) = 3.2$
INSIDE DIAMETER dw Z Z DTW DTW Z ST ST ST SB	FIELD EQUIPMENT CALIBRATIONS EQUIPMENT MY DOLL HF Schike Fluke Them.
WATER LEVEL DTW = 5-28 TOP SCREEN SU+ST = 5-00 BASE SCREEN SU+Sg = 25700 BOTTOM WELL SU+TD= 24,99	EQUIPMENT MY D. 1 HF Schhie Fluke Them MY D. 1 L OZIO926 E NTV 10 6245030 DATE CALIBRATED 6/17/27 4/17/27 6/17/27 TEMP (°C) STANDARD/ACTUAL 7.0/7. 0.02/0.02
DEVELOPMENT LOG: CUMULATIVE	WATER CHARACTER COMMENTS: Page 1/2
DATE BEGIN FINISH WETHOD REMOVED GILL CASING PH	, CONDUCTIVITY TIDAP, TURBOTTY
4/7 1109 Surged well before pumping	
	Surg pump - Soft better - pump 6" off botton
9/17 1120 3.0 3.0 0.9 7.0	2500 18.9 7200
6h7 1126 3.c 6.0 1.9 7.1	2100 18.8 >200 Very turbial / Sandy
6/0/1132 3.0 9.0 2.8 6.9	1800 18.6 >200
9/17/1138 3.0 120 3.8 7.0	[700 18.1 >z\infty
4/17/1139 Pulled Aumplistopped pumping to	surge well for a 2nd time @ 12 gallons
6/17/1143 Began propring of middleburg	pamp - pump on bottom - feels hard
417 1149 3.0 15.0 4.7 6.9	
417 1155 3.0 18.0 5.6 6.5	1 1200 18.1 >200 Beginning to Clear up-but still 72001
417 1156 Aggettantal well w/ pump-t	witton feels hard
417 1201 3.0 210 6.6 6.8	
6/17 1202 Stopped pumping - Surged well	a 3rd time 0 21 gallons
6/17 1206 Began purging w/ Middleburg	
4/17/12/12 3.0 24.0 7.5 7.0	
6/17 1218 3.0 27.0 8.4 7.1	1100 18.3 7200
6/17/1224 3.8 30.0 9.4 7.0	1200 182 7200 Aggetfated bottom w/ pump-hand both
G/17 1230 3.0 33.0 10.3 6.9	1200 18.3 7200
6/17 1240 3.0 360 11.3 VA	ble to take parameter- pump stopped working
1/17 1250 Beyon purging on pump	+100
6/17 1252 3.0 36.0 11.3 7.0	1100 19.4 7200
6/17 1858 3.0 39.0 12.2 7.0	

										./ -				
	ENVIRON Counsel in Health and Environmental Science								WELL DEVELOPMENT					
METH	OD(S)	PUNP		BAILER		SURGE BL	.000	PROJECT	arihi-	Electri	c Mobr Co.	WELL NO	NW-Z-	
TYPE	B	iddlebu		NA		B13	-	JOB NO.		STE	- A. C. I.	PREPARE		
MATE	RIAL 5h	ainless s	<u>·</u> _	NA	<u> </u>	Stailes		97061	1		7/4-1000	20	VG	
DIMEN:	SION			· -		w/fo	<u> </u>	DEVELOPME	NI CRITE	per	Erviran		· · · · · · · · · · · · · · · · · · ·	
OTHER							<u> </u>	DECONTAMI	4 NOITAN	іЕТНОО 54	eam Cleane	<i>_</i>		
				SU	<u> </u>	- d _w		CASING VOI	UME CAL		(USE CONSISTENT		·········	
HOLE	DIAMETER	d _h	<u> </u>	<u>"</u> [_		Ŧ	SHEY VOE				$\left(\frac{d_{W}}{2}\right)^{2}$ (TD-		3.2	
	CASING		= 2"		7	WTQ			.05045	'c - 11	2 / (10-	··· <i>)</i>		
	E DIAMETI 4G STICKL		NA.	- -		AT ST	- i - I	TELD EQUIP					T11	
DEPTH			= 5.2	g T	D	[5- 1	EQUIPMENT MODEL/TYPE	-	Myron	L 4F S.	itatione. O	6245030	
	R LEVEL SCREEN		= <u> 7.00</u> = <u> 5.00</u>	_			-	SERIAL NO. DATE CALIBR		6/17/9	7 6/17/	92	6/11/97	
	SCREEN	SU+Sa	_ 25.0	_O				TEMP (*C)	ـ حسارم					
9011	OM MET	SU+TD:	24.9	<u>*</u>	dh	-		STANDARD/A	CTUAL _	7.0/7.0	7.0 /2	c		
	DEVE	LOPMEN	T LOG:		CUMU	LATIVE	w	ATER CHA	ARACTE?	2	COMMENTS:	paze	2/2	
DATE	J.	4E	иЕТHOD	WATER REMOVED	TOTAL	SENOVED	11,					J	/=	
	BEGIN	TINISH	AC INCO	(pa)	<u>с</u> ч.	AOTHIEZ CYZNO	pH	CONDUCTIVITY	TOP.	TURBIDITY		<u> </u>		
9/11	1304			3,0	41.0	12.8	7.0	1100	18.2	7000				
417	1310			3.0	44,0	13.8	7-1	1000	183	>200				
9/7	1316			3.0	47.0	14.7	7.1	1000	18.3	7200			 	
	1322			3.0	50.0				18.1	7200			· · · · · · · · · · · · · · · · · · ·	
6/17	1328					16.6		1000						
	1334	<u> </u>				17.5		1000	18.5	7200				
	1338	<u> </u>	Stopper	prms	12	per i	nike 6	Environ						
417	1553							DTW						
	1557		egan p		1			1/e burg			1/2 - 1 42			
	1603		ļ	3.0		18.4			18.8	>200	Very turbi	a		
	1609			3.0		19.4	i	1200	18.4	>200				
	1615	<u> </u>		3.0	-	20.3		1100	18.3					
	1621			3.0		21.3	7.0	1100	18.4			<u> </u>		
	6 Z G			3.0	!	22.2	7.0	1100	18.5	7200				
7 .	632		<u> </u>	3.0		23-1	7.0	1100	18.5		Faire			
17	1633	<u> </u>	Ploppe	u pur	12	47	14 911	(ONS PL	1111	re w	Envion		<u> </u>	
				<u> </u>	-	<u> </u>		<u> </u>	ļ <u>.</u>	<u> </u>				
		<u> </u>	<u> </u>	<u> </u>	 	1			 	<u> </u>				
		<u> . </u>	<u> </u>	}	-	<u> </u>	 		1					
			<u> </u>	 					1				<u></u>	
		<u> </u>			1	1		!		 				

ENVIRO Counsel in Health and Environmental) N	WEI	LL D	EVELOF	MENT	
METHOD(S) PUMP BALER	SURGE BLOCK	PROJECT Pacific Electric Motor Co. WELL NO. MW-3				
TIPE Middleburg Teffor	BTS_	JOS NO.	977	-	PREPARED BY	
MATERIAL Staintes & Teflon		970617-51		hviron	DOVG	
DIMENSION	w/form	DEVELOPMENT CRI	Environ (criteria		
OTHER		DECONTAMINATION	METHOD			
				Cleaner		
HOLE DIAMETER dh= 6	DTW GROUND	CASING VOLUME (-H) = <u>3.2</u>	
INSIDE DIAMETER $d_w = \frac{2}{NA}$ CASING STICKUP $SU = \frac{NA}{NA}$	ZL ST	FIELD EQUIPMENT	CALIBRATION:			
DEPTH TO:	Sa	EQUIPMENT MODEL/TYPE	Myron L	HF Scie		
WATER LEVEL DTW = 5.47 TOP SCREEN SU+ST = 5.0		SERIAL NO.	0210926		10 6245030	
BASE SCREEN SU+Sg= 25.0		DATE CALIBRATED TEMP ("C)				
77.89	d h	STANDARD/ACTUAL	7.0 / 7.0	0.02/0	0.02	
DEVELOPMENT LOG: c	UMULATIVE	WATER OUTER		COMMENTS:	page 1/2	
TIME WATER TOT	AL REMOVED	WATER CHARACT	EX	•	, ,-	
DATE ECOM THISH METHOD REMOVED CA	CYZING PH	CONDUCTIVITY TELEP	. TURBUTY	Surged well	after gauging	
411/4 834 840 30 3.	0 0.9 6.0	0 10000 18.9	7200	Purging w/1	Middleburg-fire mud	
1/17 846 3.0 6.	0 1.9 6.9	9300 18.3	7200			
	0 2.8 7.1	9200 18.3				
6/1 855 Stored prop	ing/surged	well after 10	gallons P	wed		
6/17 901 Began proping	Middle	hig/bottom	of well	feels hard	·	
6/11 905 3.0 1/2.						
6/1911 30 15		- 8700 18-2		Yen turbin	L .	
6/1 913 Aggettated butta						
	0 5.6 7.3	8700 18:	7200			
6/17 919 Hygettaked bottom						
	· 6.6 7.2				,	
417 924 Stopped pumping 1			gollars			
6/17 932 Began pumping				£ .	· · ·	
	0 7.5 7.1	8900 180		light sheen	noticed:	
	70 8.4 7.0			Clearing up	obit-but still > 200 A other W/ pump	
	20 9.4 7.0	9000 18.0		Agge Hatel 6	alon of bank	
- - - - - - - - - -	3.0 10.3 7.0					
	0.0 11.3 7.0			Cleaning up-	SHI >ZOO NTV'S	
	7.0 12.2 7.1	9000 18.1				
\ 	0 12.8 7.1					
	10 13.8 7.1	9100 18.1				
417 1028 3.0 4	70 14.7 7.2	9200 19.	2 >200			

	<u>E</u>	N unsei in H	ealth and	R	O ental Sc	N		\	WEL	L D	EVELOF	PMENT
i .	HOD(S)	PUMP	• •	BAILER		SURGE B		PROJECT	6 Fl	erbie 1	Moto Co.	MELL NO.
TYPS	· <u>/</u>	hiddleb tainkss	voj _	Teflon		073		JOH NO.		STE	yviran	PREPARED BY
MAT	ERIAL S	tain 1855	<u>ś. </u>	Teflon		Shink	<u> 175-</u>	970617			1viran	Doub
	אסופא				<u> </u>	u/fear	<u> </u>	DEVELOPME		Envin	Λ.	
отне	R _							DECONTAMI	HOTTAN	METHOD Shew	Cloner	
	-		, ,	รุบ	41	- d _w					(USE CONSISTENT	
ı	DIAMETE CASING		= 6"		7		SHEYAR	CASING	VOLUME	- v _c = π	$\left(\frac{d_{W}}{2}\right)^{2}$ (TD-	-H) = 3-2
ı	DE DIAME	ਸ਼ਹਖ਼ d _w kup SU	= z" <u>NA</u>			T ST		FIELD EQUIP	MENT C	ALIBRATION	5	
i	H TO:			7		3T	s _a	EQUIPMENT MODEL/TYPE		Myros	HF Sca	which Fluke They 10 6/17/47
	ER LEVEL SCREEN		= <u>5.47</u> = <u>5.0</u>				_	SERIAL NO.	4	02/09/20	E NTV	10 6245030
		50+5 ₂ 2+02 :	25.	00				DATE CALIBR	ATED .	6/11/97	<u> </u>	<u> </u>
BOT	TOW WELL	ם r+us	- 24,8	<u> </u>	- dh	_		STANDARD/A	CTUAL .	70/7		
	DEV	ELOPMEN	IT LOG:	1		JLATIVE	W	ATER CHA	ARACTE	R	COMMENTS:	Page 2/2
DATE	BECON	THISH	метноо	WATER REHOVED (gal)	CUL.	CASING VOLUMES	ы	CONDUCTIVITY	TEMP.	TURBOTTY		•
6/0	1034	/ PRISA	<u> </u>	3.0	<u> </u>	15.6	7.2	9200	18.1	7200	Cleaning up	
44	1040	<u></u>		3.0		16.6	7.2	9300	1B. Z	1938		low 200 ATV'S
417	1046			3.0	56.0		7.2	9300	18.0	170.6		
417	1052			3.0	59,0	18.4	7.2	9300	18.0	141.9		
40	1054	5	Торрег	aura	مدورتون	our	mike	Q En	iron			
				1			14.90					
	i		1									
						1						
										<u></u>		
			_					<u> </u>				
	<u> </u>	<u> </u>		<u> </u>		ļ	ļ					
<u> </u>							<u> </u>	<u> </u>		ļ		
		<u> </u>			ļ	<u> </u>		ļ	<u> </u>	ļ		
					ļ <u>.</u>			ļ				
	!	<u> </u>										
	1	1				1	1	<u> </u>	<u> </u>			
<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				
	<u> </u>	1	 		<u> </u>				<u> </u>	 		
\vdash	1	1		 	<u> </u>	<u> </u> 	-		-		 	
				r								

ENVIRON

PRELIMINARY FIELD DRAFT REVIEW PENDING

WELL NO:

WATER PURGING AND SAMPLING LOG

Counsel in Health and Environmental Science 5820 Shellmound St., Suite 700 Emeryville, California 94608

PROJECT NAME	ME 970619-E,		_ SAMPLING DATE <u>6/19/97</u>				
CONTRACT NUMBER			P.M	./SAMPLER	(S)	1 Tim GRA	
EQUIPMENT MODEL/T	YPE SERIAI		DATE ALIBRATED	TEMP (°C)	STANDA!	RD/ACTUAL	
SLOPE SOUNDER	2419	7	1/18		30.c	130.0	
MYRON L	25.20	_	6119			17.0,3900	
HE SCIENTIFIC	NTU		6/19		0.02		
FLUKE THERMON							
							
PURGING/SAMPLING METH	HOD	1.75" MID	DLEJURG -	Jo" ELEC.	sug. /Ss	BAILER	
EQUIPMENT CLEANING MI	ETHOD(S)	STEAM	CLEANE	R			
PURGE WATER DISPOSAL	METHOD	, لده	itte			<u></u>	
WELL NUMBER OR WELL CASING RAD TOTAL DEPTH (TD) DEPTH TO WATER CASING VOLUME (OIUS (CR) (in) OF WELL (ft) (DTW) (ft)	74. 5.	7.0 .95 87		e ^s		
PURGING START TIME	/158	PURGING	DATA PURGING RA		<u>-</u>	GPM	
TIME/GALLONS SINCE START	TEMP (C')	pН	CONDUC (µmhc		TURBIDITY (NTU)	OTHER	
1200/1.0	20.5	7.0		00	>200	Odor	
1206/35	19.4	7.2	78	100	7200		
1213/6.5	18-7	7.2		00	7200		
1219/9.5	18.9	7.5	26	00	7200	د	
1228/12.5	18.9	7.4		00	7200	<u> </u>	
	RED AT	13.0 6-	9LLONS		DTW-12	· <u>31</u>	
1345/12.75	19.3	6.6		100	22.5		
PURGING STOP TIME	1230	CASING VOLUMES PURGED 4					
GALLONS PURGED	13.0		SAMPLING T	ГІМЕ	1320		
OBSERVATIONS/COMMENT	rs <u>Chelker</u>	· ~/		c <i>E PROGE</i>			
SLOWED PURGING	a Pour	AFTER	THIRD CH	te voca-	AE (START	VAG TO	
DEWATER)				<u></u>			
LABORATORY NAME	CHROMOCAL	<u> </u>	SAMPLE I.D.	•	mw-1		

ENVIRON

PRELIMINARY FIELD DRAFT REVIEW PENDING

WELL NO:

WATER PURGING AND SAMPLING LOG

Counsel in Health and Environmental Science 5820 Shellmound St., Suite 700 Emeryville, California 94608

PROJECT NAME	970619	- 61	SAMPLIN	IG DATE	E <u>6/6/97</u>		
CONTRACT NUMBER			P.M./SAM	PLER(S)	/Tim Gran		
EQUIPMENT MODEL/T	YPE SERIAL N		DATE TEN IBRATED	ЛР (°C) STANI :	DARD/ACTUAL		
SLOPE SOUNDER	24195		1/18	30	0/300		
myron L	023035		6/19		50 /7.0 , 3900		
HE SCIENTIFIC	NTU 3		6/19		10.02		
FLUKE THERMO-							
PURGING/SAMPLING METH	HOD	1.75" MIDDLE	surb - 30" ELE	. sus. /55 B	AILER		
EQUIPMENT CLEANING MI		STEAM		· · · · · · · · · · · · · · · · · · ·	 		
PURGE WATER DISPOSAL		0~	SITE				
WELL CASING RAD TOTAL DEPTH (TD) DEPTH TO WATER	OF WELL (ft) (DTW) (ft) (gal) = (TD-DTW) (CR) ²	25.06 \$.30 (.163) =	}.∠				
PURGING START TIME	1118	PURGING D	ATA PURGING RATE (gi	om). Lef	0 GPm		
TIME/GALLONS SINCE START	TEMP (C')	рН	CONDUCTIVIT (µmhos/cm)	• ——	OTHER		
1120 / 1.0	20.5_	8.0	1700	7200			
1122 / 3.5	19.6	7.)	1' 1000	7200			
1125 / 65	19.4	7.9	960	7700			
1128/1000	19.0	7.8	960	7200			
1132/13.0	18.7	7.7	960	7200			
1135/16.0	18.4	7.6	760	0055			
PURGING STOP TIME	1135		CASING VOLUMES PURGED 5				
GALLONS PURGED	16.0		SAMPLING TIME _	1140	<u> </u>		
OBSERVATIONS/COMMENT	IS CLEARED	up To	-AROS ENE	> But 57	7/11		
	NTUIS						
	04-		SAMPLE I.D.	m~ -2			
LABORATORY NAME	CHRUMOLAS	 ,	SAMPLE I.D				

ENVIRON

PRELIMINARY FIELD DRAFT REVIEW PENDING

WATER PURGING AND SAMPLING LOG

Counsel in Health and Environmental Science 5820 Shellmound St., Suite 700 Emeryville, California 94608

			WEL	L NO:	1	<i>∪-3</i>	
PROJECT NAME	97061	9-F1	SAM	PLING DATE	6/19/97		
CONTRACT NUMBER			P.M./	SAMPLER(S)		1-Tim Gor	
001,114101 1,011				• •		,	
EQUIPMENT MODEL/I	YPE SERIAL		DATE .IBRATED	TEMP (°C)	STANDARI	D/ACTUAL	
Scope source	24199	<u>-</u>	1/18		30.0 /	30.0	
MYRON L	0530	3238	6/19	•	7.0, 3900	170,3900	
HE SCIENTIFIC	NTU	31	6/19		0.02/	ღ.ღ <u>ი</u> _	
FLUKE THER -0.	me Tere 6547	006		-			
							
PURGING/SAMPLING MET	HOD	175" ~100	LEBURG - 3.0	" ELEC. SUB	f SS BA	ILER	
EQUIPMENT CLEANING M	ETHOD(S)	STEAM	CLEANEI				
PURGE WATER DISPOSAL	METHOD	مر ۲۰ <u>-</u>	7E				
WALL MINNER OF	R SAMPLING LOCAT	TON ~	nω·3				
	DIUS (CR) (in)	1.0_					
) OF WELL (ft)	2462		·			
DEPTH TO WATER	(DTW) (ft)	5.50	3.1				
CASING VOLUME	(gal) = (TD-DTW) (CR)	(.163) =					
	,	PURGING I	DATA		~ 6 ~		
PURGING START TIME	9:09/	1031	PURGING RA	TE (gpm)	0.8 G	Pm	
TIME/GALLONS SINCE START	TEMP (C')	рН	. CONDUC (μmhos		BIDITY NTU)	OTHER	
911 / 1.0	<u> 20.1</u>	7.4	9800		200_	· ne	
915 / 35	19.5	*	9800		> 200		
918 / 65	19.2	_ *	9400		7 200		
10331 7.5	19.0	6.4	750		7200		
1033/ 7.5	18.8	6.8	2500		7 250		
1042/125	18.2_	7.1	750		200		
1047/15.5	18-6	7.2	750		200		
	18.案	7.2	75		7200		
1051/19.0	18.0	7.2			7220		
PURGING STOP TIME	918 / 1054 _		CASING VOL	JMES PURGED	7		
GALLONS PURGED	. 22.0		SAMPLING TI	ME	0		
OBSERVATIONS/COMMEN		-ENT OUT	(PH METER	- STOPPED	ALRON	vc 47	
918 - STARTE		नेर					
					<u>.</u>		
I ARODATORY NAME	CHROMOLAG		SAMPLE I.D.	mw-3			

ENVIRON

PRELIMINARY FIELD DRAFT REVIEW PENDING

WELL NO:

WATER PURGING AND SAMPLING LOG

WAC-1

Counsel in Health and Environmental Science 5820 Shellmound St., Suite 700 Emeryville, California 94608

PROJECT NAME	970	619 · FI	SAI	MPLING DA	TE <u>6/19/</u>	97
CONTRACT NUMBER			P.M	I./SAMPLER	(S)	1 Tim Gre
EQUIPMENT MODEL/TY	PE SER	IAL NO.	DATE CALIBRATED	TEMP (°C)	STANDAR	D/ACTUAL
SLOPE SOUNDER	. 24	1195	1/18		30.0	130.0
myran L		303238	6/19			17.0,3900
HE SCIENTIFIC		и 31	6/19		0.52	0.02
FLUKE THERMON		47006				-
PURGING/SAMPLING METH	OD	1.75° mi	MINERSURG - 3	0" ELEC. 1	43. · / SS B	AILEK
EQUIPMENT CLEANING ME	THOD(S)	STEA	m CLEANER			
PURGE WATER DISPOSAL N	METHOD	<u> </u>	5175			
WELL NUMBER OR	CAMPI ING I O	CATION	1.85-1		•	
WELL CASING RAD			5.0			
TOTAL DEPTH (TD)			7.22			
DEPTH TO WATER (6.00			
CASING VOLUME (g	(TD-DTW)	$(CR)^{2}(.163) =$	45.7			
		PURGIN	G DATA			
PURGING START TIME	1300		PURGING R	ATE (gpm)	8 GP	<u> </u>
, TIME/GALLONS SINCE START	TEMP (C')	pН		CTIVITY 'os/cm)	TURBIDITY (NTU)	OTHER
1303 / 24	20.5	7.6	69	50	30.0	
1306 / 46	20.7	7.6	64	10	4.3	
1312 92	20.3	. 7.5		10	3.5	
1318) 138	20.3	7.4		10	2.0	
						·
<u> </u>				<u> </u>		
		-				
						
		<u> </u>				
						
PURGING STOP TIME	1319		CASING VO	LUMES PURG	ED	
GALLONS PURGED	140		SAMPLING '	TIME	1330	
OBSERVATIONS/COMMENT	s ~w	000R	- BOTTON	~ DEPT	H OF 1	7. 22
JEEMED VERY		To MI	KE OF E	wurren -	GAUGED	DTB 2x
						
LABORATORY NAME	CHRomo	LAB	SAMPLE I.D)w	95 - 1	
 -			E	B @ 13	35	

APPENDIX D

SOIL ANALYTICAL RESULTS

Environmental Services (SDB)

June 18, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Project#: 03-5991A

Received: June 11, 1997

re: One sample for BTEX analysis.

Method: SW846 8020A Nov 1990

Client Sample ID: MW1TB

Spl#: 135285

Matrix: WATER

Sampled: June 10, 1997

Run#: 7257 Analyzed: June 13, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
BENZENE	N.D.	0.50	N.D.	103	1
TOLUENE	N.D.	0.50	N.D.	103	1
ETHYL BENZENE	N.D.	0.50	N.D.	105	1
XYLENES	N.D.	0.50	N.D.	100	1

Kayvan Kimyai

Chemist

Environmental Services (SDB)

June 18, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Project#:

03-5991A

Received: June 11, 1997

re: One sample for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW3EB

Spl#: 135286

Matrix: WATER

Sampled: June 10, 1997

Run#: 7257

Analyzed: June 13, 1997

ANALYTE	RESULT	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK DILUTION SPIKE FACTOR (%)
GASOLINE	N.D.	50	N.D.	81 1
BENZENE	N.D.	0.50	N.D.	103 1
TOLUENE	N.D.	0.50	N.D.	103 1
ETHYL BENZENE	N.D.	0.50	N.D.	105 1
XYLENES	N.D.	0.50	N.D.	100 1

Kayvan Kimyai

Chemist

Environmental Services (SDB)

June 18, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Project#: 03-5991A

Received: June 11, 1997

re: One sample for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW1-10C-15.5'

Spl#: 135287

Matrix: SOIL

Sampled: June 10, 1997

Run#: 7353

Analyzed: June 18, 1997

ANALYTE	RESULT	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK DILUTION SPIKE FACTOR	
GASOLINE	480	150	N.D.	500	
BENZENE	1.4	0.59	N.D.	104 500 107 500	
TOLUENE	0.71	0.59 0.59	N.D. N.D.	107 500	
ETHYL BENZENE XYLENES	11 35	0.59	N.D.	107 500	

Note: Surrogate Recoveries biased high due to Hydrocarbon co-elution.

Kayvan Kimyai

Chemist

Environmental Services (SDB)

June 18, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Project#: 03-5991A

Received: June 11, 1997

re: One sample for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW2-10C-15.5'

Spl#: 135288

Matrix: SOIL

Sampled: June 10, 1997

Run#: 7358

Analyzed: June 18, 1997

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mq/Kg)	BLANK RESULT (mg/Kg)	BLANK D SPIKE (%)	FACTOR
GASOLINE BENZENE TOLUENE ETHYL BENZENE XYLENES	N.D. N.D. N.D. N.D. N.D.	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D.	114 94 89 89 83	1 1 1 1

Kayvan Kimyai Chemist

Environmental Services (SDB)

June 18, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Project#: 03-5991A

Received: June 11, 1997

re: One sample for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW3-6C-9.5'

Spl#: 135289

Matrix: SOIL

Sampled: June 10, 1997

Run#: 7358

Analyzed: June 18, 1997

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mq/Kg)	BLANK RESULT (mg/Kg)	SPIKE FACTOR (%)	
GASOLINE BENZENE TOLUENE ETHYL BENZENE XYLENES	N.D. N.D. N.D. N.D. N.D.	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D.	114 1 94 1 89 1 89 1 83 1	

Kayvan Kimyai

Chemist

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

5820 Shellmound St., Suite 700 Emeryville, CA 94608

Attn: Kim Jolitz

RE: Analysis for project PEM-OAKLAND, number 03-5991A.

REPORTING INFORMATION

Samples were received cold and in good condition on June 11, 1997. They were refrigerated upon receipt and analyzed as described in the attached report. ChromaLab followed EPA or equivalent methods for all testing reported.

Deviation from standard conditions was found in the following:

- Soil sample MW1-10C-15.5' had high surrogate recoveries due to hydrocarbon co-elution.
- · For soil samples no MS/MSD due to matrix interference. BS/BSD used for batch QC.

Client Sample ID	Matrix	Date collected	Sample #
MW1-10C-15.5'	SOIL	June 10, 1997	135287
MW1TB	WTR	June 10, 1997	135285
MW2-10C-15.5'	SOIL	June 10, 1997	135288
MW3-6C-9.5'	SOIL	June 10, 1997	135289
MW3EB	WTR	June 10, 1997	135286

Jill Thomas

Quality Assurance Manager

Eric Tam

Laboratory Director

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Received: June 11, 1997

Project#: 03-5991A

re: Blank spike and duplicate report for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL Lab Run#: 7353

Analyzed: June 17, 1997

Analyte	Spike Amount BSP Dup (mg/Kg)	Spike Amount Found BSP Dup (mg/Kg)	Spike Recov BSP Dup (%) (%)	% Control % RPI Limits RPD Lin
BENZENE	0.100 0.100	0.104 0.109	104 109	77-123 4.69 35
TOLUENE	0.100 0.100	0.107 0.110	107 110	78-122 2.76 35
ETHYL BENZENE	0.100 0.100	0.108 0.111	108 111	70-130 2.74 35
XYLENES	0.300 0.300	0.321 0.327	107 109	75-125 1.85 35

^{*} No MS/MSD due to methanol extraction.

Environmental Services (SD8)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND Project#: 03-5991A

Received: June 11, 1997

re: Blank spike and duplicate report for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL

Lab Run#: 7358 Analyzed: June 17, 1997

Spike ક્ષ Spike Amount Amount Found Spike Recov RPD BSP BSP Dup **BSP** Dup Control % Dup (왕) (%) Limits RPD Lim (mq/Kq)(mg/Kg)<u>Analyte</u> 0.500 0.100 0.100 116 75-125 1.74 0.569 0.580 114 0.500 GASOLINE 6.86 35 77-123 0.0943 0.101 94.3 101 0.100 BENZENE 7.17 0.100 0.0888 0.0954 88.8 95.4 78-122 35 TOLUENE 0.0892 0.0953 89.2 95.3 70-130 6.61 0.100 0.100 ETHYL BENZENE 75-125 7.40 35 0.300 0.300 0.250 0.269 83.3 89.7 XYLENES

^{*} No MS/MSD due to matrix interference.

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Received: June 11, 1997

Project#: 03-5991A

re: Matrix spike report for BTEX analysis.

Method: SW846 8020A Nov 1990

Matrix: WATER

Analyzed: June 12, 1997 Lab Run#: 7257 Instrument: 3400-5

Analyte	Spiked Sample Amount (ug/L)	Spike MS (ug	Amt MSD /L)	Amt F MS (ug/I	MSD	Spike MS (%)	Recor MSD (%)	v % Control % RPD Limits RPD Lim
BENZENE	N.D.	100	100	132	134	132	134	65-135 1.50 20
TOLUENE	N.D.	100	100	130	131	130	131	65-135 0.76 20
ETHYL BENZENE	N.D.	100	100	132	134	132	134	65-135 1.50 20
XYLENES	N.D.	300	300	378	380	126	127	65-135 0.79 20

Sample Spiked: 134707 Submission #: 9706060 Client Sample ID: WCC-2A

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND

Received: June 11, 1997

Project#: 03-5991A

re: Surrogate report for 1 sample for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 7353 Matrix: SOIL

			% 3	Recovery
Sample#	Client Sample ID	Surrogate	Recovered	Limits
135287-1	MW1-10C-15.5'	TRIFLUOROTOLUENE	197*	65-135
135287-1	MW1-10C-15.5'	4-BROMOFLUOROBENZENE	170*	65-135
				Recovery
Sample#	QC Sample Type	Surrogate	<u>Recovered</u>	<u>Limits</u>
136147-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	85.6	65-135
136147-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	118	65-135
136148-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	104	65-135
136148-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	123	65-135
136149-1	Spiked blank duplicate	(BSD)TRIFLUOROTOLUENE	110	65-135
136149-1	Spiked blank duplicate	(BSD)4-BROMOFLUOROBENZENE	122	65-135

V132 QCSURR1229 RUDO 09-Jul-97 13:32

^{*} Surrogate recoveries exceed QC limits due to hydrocarbon co-elution.

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND Project#: 03-5991A

Received: June 11, 1997

re: Surrogate report for 2 samples for Gasoline BTEX analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 7358 Matrix: SOIL

			% I	Recovery
Sample#	Client Sample ID	Surrogate	Recovered	<u>Limits</u>
135288-1	MW2-10C-15.5'	TRIFLUOROTOLUENE	102	65-135
135288-1	MW2-10C-15.5'	4-BROMOFLUOROBENZENE	108	65-135
135289-1	MW3-6C-9.5'	TRIFLUOROTOLUENE	107	65-135
135289-1	MW3-6C-9.5'	4-BROMOFLUOROBENZENE	105	65-135
			%]	Recovery ·
Sample#	OC Sample Type	Surrogate	Recovered	<u>Limits</u>
Sample# 136182-1	OC Sample Type Reagent blank (MDB)	Surrogate TRIFLUOROTOLUENE	Recovered 110	65-135
	Reagent blank (MDB)			
136182-1	Reagent blank (MDB) Reagent blank (MDB)	TRIFLUOROTOLUENE 4-BROMOFLUOROBENZENE TRIFLUOROTOLUENE	110	65-135
136182-1 136182-1	Reagent blank (MDB) Reagent blank (MDB)	TRIFLUOROTOLUENE 4-BROMOFLUOROBENZENE	110 124 102 126	65-135 65-135 65-135 65-135
136182-1 136182-1 136183-1	Reagent blank (MDB) Reagent blank (MDB) Spiked blank (BSP)	TRIFLUOROTOLUENE 4-BROMOFLUOROBENZENE TRIFLUOROTOLUENE	110 124 102	65-135 65-135 65-135

V132 QCSURR1229 RUDO 09-Jul-97 13:32

Environmental Services (SDB)

July 9, 1997

Submission #: 9706106

ENVIRON

Atten: Kim Jolitz

Project: PEM-OAKLAND Project#: 03-5991A

Received: June 11, 1997

re: Surrogate report for 2 samples for BTEX analysis.

Method: SW846 8020A Nov 1990

Lab Run#: 7257 Matrix: WATER

			જ	Recovery
Sample#	Client Sample ID	Surrogate	Recovered	<u>Limits</u>
135285-1	MW1TB	TRIFLUOROTOLUENE	111	65-135
135286-1	MW3EB	TRIFLUOROTOLUENE	108	65-135
135286-1	MW3EB	4-BROMOFLUOROBENZENE	85.4	65-135
	•		_	Recovery
Sample#	QC Sample Type	Surrogate	Recovered	Limits
135436-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	95.0	65-135
135436-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	71.4	65-135
135437-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	101	65-135
135437-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	90.1	65-135
135438-1	Matrix spike (MS)	TRIFLUOROTOLUENE	113	65-135
135438-1	Matrix spike (MS)	4-BROMOFLUOROBENZENE	106	65-135
135439-1	Matrix spike duplicate	(MSD) TRIFLUOROTOLUENE	111	65-135
135439-1	Matrix spike duplicate	(MSD) 4-BROMOFLUOROBENZENE	105	65-135

V132 QCSURR1229 RUDO 09-Jul-97 13:32 06/104/135285-135287

ENVIRON

Counsel in Health and Environmental Science

CHAIN-of-CUSTODY FORM

Sheet / Of / 5820 Shellmound St., Suite 700 Emeryville, California 94608 (510) 655-7400

UBM #: 9706106 REP: GCLEV2 PROJECT NAME: CIENT: ENVIRON COLLECTED BY (initials) 06/18/97 PEM - Oaklund EF #:34115 MATRIX CASE NO .: 03-5991A TAT COMMENTS ENVIRON SAMPLE ID. Results EME water MWI - 10C-15.5'
MW2 - 10C-15.5' 6/10 EME Soil KIM JOLITZ X 6/10 EME Soil 6/10 EME water MW3EB 6/10 EME SOIT MW3-6C-9.5' TOTAL

Relinquished by:

Shuthy. Ethethy

Date: 6/1/97

ne: Received by:

Company: Chrondof Chroneal ab Date: Time: 6/1/1/ 1/65 120

Environmental Service (SDB)

Sample Receipt Checklist

Client Name: ENVIRON	Date/Time !	Received:	06/11/97	1202
Reference/Submis: 34115 9706106	Received by	y: <u>CR</u>		
Checklist completed by:	///97 Date	Reviewed	by: Init	ials Date
Matrix: SOIL/WATER Carr	ier name: Clie	nt -(C/L)	Not	
Shipping container/cooler in good condition?	Ye	es No		sent V
Custody seals intact on shipping container/cooler	r? Ye	es No		esent $\frac{V}{V}$
Custody seals intact on sample bottles?	Y	es No		sent V
Chain of custody present?			Yes V	No
Chain of custody signed when relinquished and re-	ceived?		Yes V	No
Chain of custody agrees with sample labels?			Yes \/	No
Samples in proper container/bottle?			Yes	No
Sample containers intact?			Yes 🏒	No
Sufficient sample volume for indicated test?			Yes <u>V</u>	No
All samples received within holding time?			Yes V	No
Container/Temp Blank temperature in compliance?	Ter	mp: <u>5/0</u> °c	Yes	No
	o VOA vials submi	tted	Yes 🗸	No
	Adjusted?	Checked by	chemist	for VOAS)
Any No and/or NA (not applicable) response must	be detailed in th	e comments	section be	low.
Client contacted: Date contact	ed: p	erson conta	cted:	
Contacted by: Regarding: _	<u> </u>			
Comments:				
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Corrective Action:				
		. <u> </u>		
_				

APPENDIX E

GROUND WATER ANALYTICAL RESULTS

Environmental Services (SDB)

July 1, 1997

Submission #: 9706268

ENVIRON

5820 Shellmound St., Suite 700 Emeryville, CA 94608

Attn: Kim Jolitz

RE: Analysis for project PACIFIC ELECTRIC MOTORS, number 03-5991A.

REPORTING INFORMATION

Samples were received cold and in good condition on June 20, 1997. They were refrigerated upon receipt and analyzed as described in the attached report. ChromaLab followed EPA or equivalent methods for all testing reported.

No discrepancies were observed or difficulties encountered with the testing.

Client Sample ID	Matrix	Date collected	Sample #
MW-1	WTR	June 19, 1997	136684
MW-1TB	WTR	June 19, 1997	136689
MW-2	WTR	June 19, 1997	136685
MW-3	WTR	June 19, 1997	136686
WAC-1	WTR	June 19, 1997	136687
WAC-1EB	WTR	June 19, 1997	136688

Jill Thomas

Quality Assurance Manager

Eric Tam

Laboratory Director

Environmental Services (SDB)

June 28, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1

Spl#: 136684

Matrix: WATER

Sampled: June 19, 1997

Run#: 7502

Analyzed: June 27, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	SPIKE FACTOR (%)	
GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	18000 N.D. 3300 200 1100 4900	2500 250 25 25 25 25 25	N.D. N.D. N.D. N.D. N.D. N.D.	84 50 87 50 97 50 95 50 98 50 95 50	

Kayvan Kimyai

Chemist

Marianne Alexander

Gas/BTEX Supervisor

Environmental Services (SDB)

June 28, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-2

Spl#: 136685

Matrix: WATER

Sampled: June 19, 1997

Run#: 7502

Analyzed: June 27, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK I SPIKE (%)	FACTOR
GASOLINE BENZENE TOLUENE ETHYL BENZENE XYLENES MTBE	N.D. N.D. N.D. N.D. N.D. N.D.	50 0.50 0.50 0.50 0.50 5.0	N.D. N.D. N.D. N.D. N.D.	84 97 95 98 95 87	1 1 1 1 1

Kayvan Kimyai

Chemist

Environmental Services (SDB)

June 28, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-3

Spl#: 136686

Matrix: WATER

Sampled: June 19, 1997

Run#: 7502

Analyzed: June 27, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	SPIKE FACTOR	
GASOLINE BENZENE TOLUENE ETHYL BENZENE XYLENES MTBE	N.D. N.D. N.D. N.D. N.D. N.D.	50 0.50 0.50 0.50 0.50 5.0	N.D. N.D. N.D. N.D. N.D. N.D.	84 1 97 1 95 1 98 1 95 1 87 1	

Kayvan Kimyai

Chemist

Marianne Alexander

Gas/BTEX Supervisor

Environmental Services (SDB)

July 17, 1997

Submission #: 9706268

REISSUED

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS.

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: WAC-1

Spl#: 136687 Sampled: June 19, 1997 Matrix: WATER Run#: 7502

Analyzed: June 27, 1997

Sampled: June 19, 199	7 Rull#. RESULT	reporting Limit	BLANK RESULT	BLANK DILUTION SPIKE FACTOR (%)	
ANALYTE GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	(ug/L) N.D. 430 N.D. N.D. N.D. N.D.	(ug/L) 50 25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Range is compose	(ug/L) N.D. N.D. N.D. N.D. N.D. N.D. d of a single	84 87 97 95 98 95 95	

Hydrocarbon found in Gasoline Range is composed of a single peak

identified as MTBE. If quantified using Gasoline's response factor,

concentration would equal 260 ug/L.

Marianne Alexander Gas/BTEX Supervisor Operations Manager

Environmental Services (SDB)

June 28, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: WAC-1EB

Spl#: 136688

Matrix: WATER

Sampled: June 19, 1997

Run#: 7502

Analyzed: June 27, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK I SPIKE (%)	FACTOR
GASOLINE	N.D.	50	N.D.	84	1
MTBE	N.D.	5.0	N.D.	87	
BENZENE	N.D.	0.50	N.D.	97	1
TOLUENE	N.D.	0.50	N.D.	95	
ETHYL BENZENE	N.D.	0.50	N.D.	98	1
XYLENES	N.D.	0.50	N.D.	95	

Kayvan Kimyai

Chemist

Environmental Services (SDB)

June 28, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1TB

Spl#: 136689

Matrix: WATER

Sampled: June 19, 1997

Run#: 7502

Analyzed: June 27, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK DI SPIKE F (%)	ACTOR
GASOLINE	N.D.	50	N.D.	84	1
MTBE	N.D.	5.0	N.D.	87	1
BENZENE	N.D.	0.50	N.D.	97	1
TOLUENE	N.D.	0.50	N.D.	95	1
ETHYL BENZENE	N.D.	0.50	N.D.	98	1
XYLENES	N.D.	0.50	N.D.	95	T

Kayvan Kimyai

Chemist

Environmental Services (SDB)

July 1, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: Matrix spike report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: WATER

Lab Run#: 7502 Instrument: 3400-5

Analyzed: June 26, 1997

Analyte	Amount MS	e Amt MSD	Amt MS (ug/	Found MSD	Spike MS (%)	Reco MSD (%)	v % Control % RPD Limits RPD Lim
BENZENE	N.D. 100	100	108	120	108	120	65-135 10.5 20
TOLUENE	N.D. 100	100	106	118	106	118	65-135 10.7 20
ETHYL BENZENE	N.D. 100	100	112	123	112	123	65-135 9.36 20
XYLENES	N.D. 300	300	329	357	110	119	65-135 7.86 20

Sample Spiked: 136803 Submission #: 9706281

Client Sample ID: SCCTA-JUN 97

Environmental Services (SDB)

July 1, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS Project#: 03-5991A

Received: June 20, 1997

re: Surrogate report for 6 samples for Purgeable Volatile Aromatic

Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 7502 Matrix: WATER

				Recovery
Sample#	Client Sample ID	Surrogate	Recovered	65-135
136684-4	MW-1	TRIFLUOROTOLUENE	101	65-135
136684-4	MW-1	4-BROMOFLUOROBENZENE	116	65-135
136685-1	MW-2	TRIFLUOROTOLUENE	91.8 108	65-135
136685-1	MW - 2	4-BROMOFLUOROBENZENE		65-135
136686-1	MW-3	TRIFLUOROTOLUENE	89.3	65-135
136686-1	MW-3	4-BROMOFLUOROBENZENE	107	
136687-1	WAC-1	TRIFLUOROTOLUENE	103	65-135
136687-1	WAC-1	4-BROMOFLUOROBENZENE	103	65-135
136687-2	WAC-1	TRIFLUOROTOLUENE	103	65-135
136687-2	WAC-1	4-BROMOFLUOROBENZENE	112	65-135
136688-1	WAC-1EB	TRIFLUOROTOLUENE	99.6	65-135 65-135
136688-1	WAC-1EB	4-BROMOFLUOROBENZENE	104	65-135
136688-2	WAC-1EB	TRIFLUOROTOLUENE	94.0	65-135
136688-2	WAC-1EB	4-BROMOFLUOROBENZENE	113	65-135
136689-1	MW-1TB	TRIFLUOROTOLUENE	100	65-135
136689-1	MW-1TB	4-BROMOFLUOROBENZENE	103	65-135
136689-2	MW-1TB	TRIFLUOROTOLUENE	108	65-135
136689-2	MW-1TB	4-BROMOFLUOROBENZENE	110	65-135
			<u> </u>	Recovery
Sample#	QC Sample Type	Surrogate	Recovered	
137319-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	107	65-135
137319-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	113	65-135
137320-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	102	65-135
137320-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	113	65-135
137358-1	Matrix spike (MS)	TRIFLUOROTOLUENE	112	65-135
137358-1	Matrix spike (MS)	4-BROMOFLUOROBENZENE	130	65-135
137359-1	Matrix spike duplicate	(MSD) TRIFLUOROTOLUENE	118	65-135
137359-1	Matrix spike duplicate	(MSD)4-BROMOFLUOROBENZENE	134	65-135

V132 QCSURR1229 RUDO 01-Jul-97 10:35

Environmental Services (SDB)

June 24, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

03-5991A Project#:

Received: June 20, 1997

re: One sample for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Client Sample ID: MW-1

Spl#: 136684

Matrix: WATER

Sampled: June 19, 1997

Run#: 7424

Analyzed: June 23, 1997

RESULT (mg/L)

0.0051

REPORTING LIMIT (mq/L)

0.0050

BLANK RESULT

(mq/L)

N.D.

BLANK DILUTION SPIKE FACTOR

<u>(%)</u>

106

Chemist

norganics Supervisor

Environmental Services (SDB)

June 24, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Client Sample ID: MW-2

Sp1#: 136685

Matrix: WATER

Sampled: June 19, 1997

Run#: 7424

Analyzed: June 23, 1997

RESULT

0.0052

REPORTING LIMIT BLANK RESULT BLANK DILUTION SPIKE FACTOR

(mg/L) (mg/L) \(0.0050 \), N.D.

(%) 106 _____

ANALYTE

, /

Shafi Barekzai

Chemiet

John S./Lapash

Inorganics Supervisor

Environmental Services (SDB)

June 24, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Client Sample ID: MW-3

Sp1#: 136686

Matrix: WATER

Sampled: June 19, 1997

Run#: 7424 Analyzed: June 23, 1997

RESULT (mg/L)
N.D.

REPORTING LIMIT (mg/L)

0.0050

BLANK RESULT (mg/L)

N.D.,

BLANK DILUTION SPIKE FACTOR

(%) 106

LEAD

Shafi Barekzai

Chemast

ohn \$./Labash

norganics Supervisor

Environmental Services (SDB)

June 24, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Client Sample ID: WAC-1

Spl#: 136687

Matrix: WATER

Sampled: June 19, 1997

Run#: 7424

Analyzed: June 23, 1997

RESULT (mg/L) N.D.

LIMIT (mg/L) 0.0050

REPORTING

BLANK RESULT

(mq/L)

N.D.

BLANK DILUTION SPIKE FACTOR

1 1

106

(%)_____

ANALYTE

LEAD

Shafi karekzai Chemist John S. Labash

norganics Supervisor

Environmental Services (SDB)

June 24, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: One sample for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Client Sample ID: WAC-1EB

Spl#: 136688

Matrix: WATER

Sampled: June 19, 1997

Run#: 7424

Analyzed: June 23, 1997

RESULT (mg/L)
N.D.

SULT LIMIT (/L) (mg/L)

REPORTING

0.0050

BLANK | RESULT

 $N.D_{\star}$

BLANK DILUTION SPIKE FACTOR

(%) 106

(%)_____

ANALYTE LEAD

Mati/Barekzai

Chemist

rohm s. Habash

Inorganies Supervisor

Environmental Services (SDB)

July 1, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

03-5991A Project#:

Received: June 20, 1997

re: Blank spike and duplicate report for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Matrix: WATER

Analyzed: June 23, 1997 Lab Run#: 7424

Spike ક Amount Found Spike Recov Spike Amount RPD Control % **BSP** Dup BSP Dup BSP Dup Lim Limits RPD (%) (%) (mq/L)(mq/L)<u>Analyte</u> 20 80-120 0 106 106 0.531 0.528 0.500 0.500 LEAD

Environmental Services (SDB)

July 1, 1997

Submission #: 9706268

ENVIRON

Atten: Kim Jolitz

Project: PACIFIC ELECTRIC MOTORS

Project#: 03-5991A

Received: June 20, 1997

re: Matrix spike report for Miscellaneous Metals analysis.

Method: EPA 3010A/6010A Nov 1990

Matrix: WATER

Lab Run#: 7424

Instrument:

Analyzed: June 23, 1997

Spiked

Spike Recov Spike Amt Amt Found Sample % RPD MS MSD Control MSD MS MS MSD Amount Limits RPD Lim (%) (%) (mq/L)(mq/L)(mg/L)

<u>Analyte</u>

LEAD

0.0063 0.500 0.500 0.522 0.538 103 106 80-120 2.87 20

Sample Spiked: 135953 Submission #: 9706190 Client Sample ID: CH-1 00200/176689 - 176089

ENVIRON

Counsel in Health and Environmental Science

CHAIN-of-CUSTODY FORM

Sheet 1 Of 1 5820 Shellmound St., Suite 700 Emeryville, California 94608 (510) 655-7400

PROJECT NAME: Pacific Electric Motors CASE NO .: 03-5991A ENVIRON SAMPLE ID.	COLLECTION DATE	COLLECTED BY (Initials)	MATRIX	TOTAL NO. OF CONTAINERS	TVH AND.	345 37 KYSES.	Part Co. Mr. BE		/ /	/ / 	/ /	/ /	<u> </u>	LE	NT:	9706268 REP: GCLEV2 ENVIRON 06/27/97 4313 COMMENTS
MW-1	6/19	m	wike	4	X	X								,,,,		Std TAT
MW-ITB				3	×											
Mw-2				4	×	×		 								send usults
Mw-3				4	×	×										ATTM:
WAC-I				4	£	×										Kim Jolitz
WAC-IEB	1	1	1	4	×	Y										
The ly														ļ		
													ļ			
TOTAL	\times	\times	> <	12)	15	5										

Relinguished	l by:
1	
Alven-	

Date:	
6/20/97	

Time: Received: Must

Received by: Company:

Musn ATIFFI Chromalab

(hromalab

Date: 6-20-97

Time: 5<u>-97 -13:15</u> 5-97 *180*00

Environmental Service (SDB)

Sample Receipt Checklist

Client Name: ENVIRON	Date/Time Received: 06/20/97 1315
Reference/Submis: 34313 9706268	Received by: MH
Checklist completed by:	$\frac{-23-97}{\text{Date}}$ Reviewed by: $\frac{\sqrt{125/6}}{\text{Initials}} = \frac{\sqrt{125/6}}{\text{Date}}$
Matrix: WATER Carrie	er name: Client C/L
Shipping container/cooler in good condition?	Yes No Present V
Custody seals intact on shipping container/cooler	Yes No Present V
Custody seals intact on sample bottles?	Yes No Present
Chain of custody present?	YesNo
Chain of custody signed when relinquished and rece	eived? Yes No
Note: Chain of custody agrees with sample labels?	Yes No
Samples in proper container/bottle?	YesNo
Sample containers intact?	Yes Vo
fficient sample volume for indicated test?	YesNo
All samples received within holding time?	Yes Wo
Container/Temp Blank temperature in compliance?	Temp: 6 C Yes V No
•	VOA vials submitted Yes No
. 1.	djusted? Checked by chemist for VOAs
Any No and/or NA (not applicable) response must b	e detailed in the comments section below.
Client contacted: Date contacte	d: Person contacted:
Contacted by: Regarding:	
Comments:	
Corrective Action:	