

GETTLER-RYAN INC.

TRANSMITTAL

May 9, 2001 G-R #180225

MAY 2 5 2001

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC: Mr. Glen Matteucci

ERI, Inc.

73 Digital Drive, Suite 100

Novato, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc. 6747 Sierra Court, Suite J

Dublin, California 94568

RE:

Tosco 76 Service Station #1156

4276 MacArthur Boulevard

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	May 4, 2001	Groundwater Monitoring and Sampling Report Second Quarter - Event of April 4, 2001

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *May 22, 2001*, this report will be distributed to the following:

Ms. Eva Chu, Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 Mr. Bob Hale, Alameda County Public Works Agency, Water Resources Section, 951 Turner Court, Suite 300, Hayward, CA 94545

Enclosure

trans/1156-DBD

May 4, 2001 G-R Job #180225

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Second Quarter Event of April 4, 2001

Groundwater Monitoring & Sampling Report Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Deanna L. Harding

Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1: Potentiometric Map Figure 2: Concentration Map

Table 1: Groundwater Monitoring Data and Analytical Results

Table 2: Groundwater Analytical Results

Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

1156.qml

GETTLER - RYAN INC.
6747 Sierra Ct., Suite J
Dublin, CA 94568 (925) 551-7555

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

REVISED DATE

PROJECT NUMBER REVIEWED BY 180225

DATE April 4, 2001

REVIEWED BY

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

DATE

April 4, 2001

180225

PROJECT NUMBER

REVISED DATE

FILE NAME: P:\Enviro\Tosco\1156\Q01-1156.DWG | Layout Tab: Con2

PIGURE 2

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

						Oukland, Can						
WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (msl)	Product Thickness (ft.)	TPH-D (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
MW-1												
174,86	07/20/995	7.50	5.0-25.0	167.36		$16,000^2$	120,000	11,000	27,000	3,300	18,000	ND^1
174.00	09/28/99	8.75	0.0 25.0	166.11	< 0.01	$2,410^{2}$	$6,020^6$	1,030	1,040	68.5	412	321/333 ³
	01/07/00	9.05		165.83**	0.02	$7,870^{2,4}$	$72,700^6$	7,410	13,900	2,070	9,620	ND ^t
	03/31/00	7.18		167.68	0.00	$3,600^2$	92,000 ⁶	10,000	23,000	3,200	14,000	ND¹
	07/14/00	7.68		167.18	0.00	$8,580^{2}$	108,000 ⁶	8,250	18,700	3,750	17,800	ND¹
	10/03/00	7.99		166.87	0.00	$9,260^{2}$	96,000 ⁶	8,760	20,000	3,350	15,600	ND^1
	01/03/01	9.18		165.68	0.00	11,0008	37,000 ⁶	5,800	13,000	1,700	8,100	2,200
	04/04/01	8.05		166.81	0.00	14,000 ⁸	86,900 ⁶	7,780	18,500	2,470	11,800	¹ ND/481 ³
MW-2												
173.01	07/20/99	5.40	5.0-25.0	167.61			ND^{I}	ND^1	ND^1	ND ¹	ND ¹	4,500/11,000 ^{3,4}
	09/28/99	5.60		167.41	0.00		1,390 ⁶	124	ND¹	62.9	43.1	5,280/6,150 ³
	01/07/00	5.92		167.09	0.00		1,450 ⁶	99.0	ND^1	23.8	16.0	33,100
	03/31/00	5.23		167.78	0.00		ND1	42	ND^1	ND^1	ND	17,000
	07/14/00	5.52		167.49	0.00		ND ¹	44.7	ND	ND	ND ¹	66,500
	10/03/00	6.04		166.97	0.00		ND ¹	56.7	ND	ND ¹	ND ¹	57,500
	01/03/01	6.42		166.59	0.00		ND_1	ND ¹	ND ¹	ND'	ND ¹	49,000
	04/04/01	6.14		166.87	0.00		ND^1	ND ¹	ND ¹	ND ¹	ND ¹	38,700/37,800 ³
MW-3												
178.44	07/20/99	8.50	5.0-25.0	169.94			1,000	76	52	79	76	330
	09/28/99	8.31		170.13	0.00	••	1,860 ⁶	174	95.4	71.8	135	443/288 ³
	01/07/00	8.56		169.88	0.00		28,400 ⁶	2,450	3,090	1,560	3,910	1,940
	03/31/00	8.42		170.02	0.00		26,000 ⁶	1,300	2,900	2,600	3,500	2,800
	07/14/00	8.61		169.83	0.00		24,500 ⁶	1,850	2,630	2,750	3,900	548
	10/03/00	9.14		169.30	0.00		22,000 ⁶	1,910	2,020	2,400	2,680	965
	01/03/01	9.06		169.38	0.00		14,000 ⁶	1,600	1,100	2,300	1,400	3,300
	04/04/01	8.98		169.46	0.00		19,600 ⁶	1,150	1,470	2,100	1,820	1,050/450 ³

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (msl)	Product Thickness (ft.)	TPH-D (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
MW-4	-											
179.10	07/20/99	7.40	5.0-25.0	171.70			69	2.7	0.77	ND	7.1	100
179.10	09/28/99	7.19		171.91	0.00		4,050 ⁶	1,250	72.0	51.3	133	416/459 ³
	01/07/00	8.98		170.12	0.00		7,010 ⁶	2,260	167	271	276	764
	03/31/00	7.26		171.84	0.00		5,500 ⁶	1,800	230	330	400	1,000
	03/31/00	7.67		171.43	0.00		$7,940^6$	2,810	332	450	247	1,530
	10/03/00	8.12		170.98	0.00		$11,400^6$	3,110	437	519	816	1,040
	01/03/01 ⁷	9.10		170.00	0.00		$8,600^{6}$	2,500	340	480	960	850
	04/04/01	8.63		170.47	0.00		9,950 ⁶	2,380	126	416	725	1,140/819 ³
Trip Blank												
TB-LB	07/20/99											
	09/28/99						ND	ND	ND	ND	ND	ND
	01/07/00					- - .	ND	ND	ND	ND	ND	ND
	03/31/00						ND	ND	ND	ND	ND	ND
	07/14/00						ND	ND	ND	ND	ND	ND
	10/03/00						ND	ND	ND	ND	ND	ND
	01/03/01						ND	ND	ND	ND	ND	ND
	04/04/01						ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

X = Xylenes

(ft. bgs) = Feet Below Ground Surface

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

(msl) = Mean sea level

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- TOC elevations are based on City of Oakland Benchmark No. 3967, (Elevation = 174.40 feet, msl).
- GWE has been corrected due to the presence of free product; correction factor: [(TOC DTW) + (Product Thickness x 0.77)].
- Detection limit raised. Refer to analytical reports.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- MTBE by EPA Method 8260.
- Laboratory analyzed sample past EPA recommended holding time.
- Total Recoverable Petroleum Oil was ND.
- Laboratory report indicates gasoline C6-C12.
- This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- Laboratory report indicates unidentified hydrocarbons <C16.

Table 2 Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	HVOCs	SVOCs
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррь)	(ppb)	(ppb)	(ppb)
2477	07/00/00			11,000 ³						ND^1	ND^2
MW-1	07/20/99 09/28/99	 	ND ⁶	333	ND^6	ND ⁶	ND^6			ND^4	ND ⁵
										$ND^{7.8}$	ND ⁹
	01/07/00									11	ND^{10}
	03/31/00									ND^{12}	ND^{13}
	07/14/00	·								ND ¹⁵	ND ¹⁴
	10/03/00				==					ND ¹⁵	ND ¹⁶
	01/03/01					6			 6	ND ¹⁷	ND ¹⁸
	04/04/01	ND ⁶	ND^6	481	ND ⁶	ND ⁶	ND^6	ND ⁶	ND^6	ND	ND
	004000		ND ⁶	6 150	ND^6	ND ⁶	ND^6				
MW-2	09/28/99	 *****6	ND ⁶	6,150	ND ⁶	ND ⁶	ND^6	ND^6	ND^6		
	04/04/01	ND ⁶	ND	37,800	ND	ND	ND.	110			
MW-3	09/28/99		ND ⁶	288	ND^6	ND^6	8.80				
NIV D	04/04/01	ND ⁶	ND^6	450	ND ⁶	ND^6	ND ⁶	ND ⁶	ND^6		
					,	£	6				
MW-4	09/28/99		ND^6	459	ND^6	ND^6	ND ⁶		6		
	04/04/01	ND ⁶	ND ⁶	819	ND^6	ND ⁶	ND ⁶	ND^6	ND ⁶		

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TBA = Tertiary butyl alcohol

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

MTBE = Methyl tertiary butyl ether

EDB = 1,2-Dibromoethane

ND = Not Detected

DIPE = Di-isopropyl ether

HVOCs = Halogenated Volatile Organic Compounds

-- = Not Analyzed

ETBE = Ethyl tertiary butyl ether

SVOCs = Semi-Volatile Organic Compounds

- All HVOCs were ND except for Chlorobenzene at 12 ppb; 1,2-Dichlorobenzene (1,2-DCB) at 3.9 ppb; 1,1-Dichloroethane (1,1-DCA) at 2.0 ppb; 1,2-Dichloroethane (1,2-DCA) at 20 ppb; cis-1,2-Dichloroethene (cis-1,2-DCE) at 3.6 ppb; and 1,2-Dichloropropane (1,2-DCP) at 0.92 ppb.
- All SVOCs were ND except for Benzyl alcohol at 37 ppb; 2,4-Dimethylphenol at 140 ppb; 2-Methylnaphthalene at 240 ppb; 4-Methylphenol at 27 ppb; and Naphthalene at 600 ppb.
- 3 Laboratory analyzed sample past EPA recommended holding time.
- All HVOCs were ND except for Benzene at 6,130 ppb; Ethylbenzene at 1,590 ppb; Naphthalene at 534 ppb; Toluene at 11,900 ppb; 1,2,4-Trimethylbenzene at 1,240 ppb; 1,3,5-Trimethylbenzene at 318 ppb; and Total Xylenes at 7,360 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2,4-Dimethylphenol at 13.6 ppb; 2-Methylphenol at 87.4 ppb; 2-Methylphenol at 26.4; 4-Methylphenol at 35.6; and Naphthalene at 292 ppb.
- 6 Detection limit raised. Refer to analytical reports.
- All HVOCs were ND (with a raised detection limit) except for Benzene at 8,380 ppb; Ethylbenzene at 2,380 ppb; Naphthalene at 1,050 ppb; n-Propylbenzene at 371 ppb; Toluene at 17,500 ppb; 1,2,4-Trimethylbenzene at 2,210 ppb; 1,3,5-Trimethylbenzene at 597 ppb; and Total Xylenes at 10,800 ppb.
- 8 EPA Method 8260 for HVOCs.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 315 ppb and Naphthalene at 615 ppb.
- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 10 ppb; 1,2-DCB at 6.2 ppb; 2-Methylnaphthalene at 73 ppb; 2-Methylphenol at 31 ppb; 4-Methylphenol at 18 ppb; and Naphthalene at 140 ppb. Laboratory report indicates all SVOCs were analyzed outside the EPA recommended holding time.
- 11 Laboratory did not analyze for HVOCs.
- All HVOCs were ND (with a raised detection limit) except for Tetrachloroethene at 334 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 300 ppb and Naphthalene at 690 ppb.
- All SVOCs were ND (with a raised detection limit) except for Benzoic acid at 362 ppb; Bis(2-ethylhexyl)phthalate at 51.6 ppb; 2-Methylnaphthalene at 98.1 ppb; 4-Methylphenol at 28.9 ppb; and Naphthalene at 361 ppb.
- All HVOCs were ND (with a raised detection limit).
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 180 ppb and Naphthalene at 400 ppb.

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS CONT:

- All HVOCs were ND except for cis-1,2-DCA at 3.4 ppb; 1,2-DCA at 5.7 ppb; Chlorobenzene at 5.6 ppb; and 1,2-DCB at 4.6 ppb.
- All SVOCs were ND except for Benzoic acid at 28 ppb; Bis(2-ethylhexyl)phthalate at 55 ppb; 2-Methylnaphthalene at 78 ppb; and Naphthalene at 490 ppb.

ANALYTICAL METHODS:

EPA Method 8260 for Oxygenate Compounds EPA Method 8010 for HVOCs EPA Method 8270 for SVOCs

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/ acility #11 5 (c		Job#:	180225		
ddress: 427			Date:	4-4-01	<u> </u>	
city: Odk	land CA.		Sampler	: <u>50 c</u>		· · · · · · · · · · · · · · · · · · ·
Well ID	1-ww	Well Cond	ition:	0. K -	- ·- ·- ·-	
Well Diameter	2 in	Hydrocarb	1.4	Amount Bai	~ /	(gal.)
Total Depth Depth to Water	25.17 m	Thickness Volume Factor (VI	2" = 0.17	3" = 0.38 6" = 1.50		- 0.66
Purge	17.12 x VI	<u>e.17 -2.</u>	Sampling	ume) = Estimated Pu		(Oal.)
Equipment:	Bailer Stack Suction Grundfos		Equipment:	Bailer Pressure Baile Grab Sample		ŕ
	Other:	_	Ot	ther:		
Starting Time: Sampling Time:	Other:	w Wate	ther Conditions	clear	Odor: 7	e 5
Sampling Time:	1:18	w Wate	ther Conditions: er Color:	clear		
Sampling Time: Purging Flow Rate Did well de-water Time		Water Sedi If ye Conductive mnhos/cr	ther Conditions: er Color: iment Descriptions; Time: ity Tempera	clear		
Sampling Time: Purging Flow Rate Did well de-water Time V	1'18' 1'436' 1'436' 7' Colume pH	Water Sedi	ther Conditions: er Color: ment Descriptions; Time: Temperanx 72. 72.	Clear Clear On: Volum One (mg/L)	ORP	(gal.) Alkalinity
Sampling Time: Purging Flow Rate Did well de-water Time V	1:18 1:438 1:438	Conductive muchos/conductive m	ther Conditions: er Color: ment Descriptions; Time: Temperanx 72. 72.	Clear Clear Volum LABORATORY	ORP (mV)	Alkalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V	1:18 1:436 1:436 7:436 7:436 7:12 7:08 7:12 7:06	Conductive punhos/conductive p	ther Conditions: er Color: iment Descriptions: es; Time:	Clovdy Clear Volum Volum Volum D.O. (mg/L)	ORP (mV)	Alkalinity (ppm) YSES EX, MTBE
Sampling Time: Purging Flow Rate Did well de-water Time V	1.18 1.438. 1.4	Conductive punhos/conductive p	ther Conditions: er Color: iment Descriptions: es; Time:	Clear Clear Volum Marie D.O. (mg/L) 1 6 2 TON LABORATORY Seq.	ANAL	YSES EX, MTBE 2, DCA-EDS 6482
Sampling Time: Purging Flow Rate Did well de-water Time V	1.18 1.438	Conductive purhos/conductive p	ther Conditions: er Color: iment Descriptions: es; Time: ity Temperative 72. 72. 72. 72. DRY INFORMAT RESERV. TYPE H CL	Clear Clear Volum LABORATORY Seq.	ANAL TPHG, BT	YSES EX, MTBE 2, DCA-EDS 6482
Sampling Time: Purging Flow Rate Did well de-water Time V	1.18 1.438. 1.4	Conductive purhos/conductive p	ther Conditions: er Color: iment Descriptions: es; Time:	Clear Clear Volum Marie D.O. (mg/L) 1 6 2 TON LABORATORY Seq.	ANAL TPHG, BT (G) 0xys 1, HVOCS 5	YSES EX, MTBE 2, DCA-EDS 6482

WELL MONITORING/SAMPLING FIFI D DATA SHEET

		1164	, 5717 0	•		
client/ acility # <u>115</u>	6		Job#	180225		· · · · · · · · · · · · · · · · · · ·
ddress: 42	76 Machithe	if	Date:	4-4-0	1	
lity: <u>0 a)</u>	Fland, CA.		Samı	oler: <u>50 c</u>		
Well ID	mw-2	Well	Condition:	0.F-		· · ·
Vell Diameter	2 in	-	ocarbon	Amoun	t Bailed	(gal.)
otal Depth Depth to Water	25.48 ft	Volu	ness:2" = 0 for (VF)	.17 3" = 1 6" = 1.50	0.38 4	* = 0.66
	19.34 x	VF <u>Ø.17</u>	=3.28 × 3 (case	volume) = Estimate	d Purge Volume: [((las)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampling Equipment	Disposable Bailer Pressure B Grab Samp	lailer ple	y
Starting Time: Sampling Time: Purging Flow Rat Did well de-wate:	12:4 1:08 re: 1 o	P.m	Sediment Descri	clear	Odor:	7 e S
12:55	/olume pH (gal.) 3. \(7.18 \) 7 7.19 7.26	μml 2 	.25 7	perature D.C F (mg/l		Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABOF REFRIG.	ATORY INFORM	ATION LABORATORY	ANA	LYSES
	BYOA	Y	H C L	Seq.		TEX, MTBE
mw-2		I	tr .	11.	V6) 0x45 1	12,004 EDB 4482
mw-2	2 40 4	- 11				

WELL MONITORING/SAMPLING FIELD DATA SHEET

ient/ cility # <u>1156</u>			_ Job#:	•		
idress: 4270	6 MacAithur		- ,	4-4-01		
	land CA.		Sample	r: Joe		
						•
Well ID	mw-3	Weli Co	ondition:	0.F.	<u> </u>	<u>. · · · · · · · · · · · · · · · · · · ·</u>
ell Diameter	2 in.	Hydroc Thickne	1.2	Amount Ba	iled or):	(gal)
otal Depth	25.03 H	Volum Factor		3" = 0.38 6" = 1.50	4" = 12" = 5.80	0.66
epth to Water	8.98 +	L				<u> </u>
	16.05 x v	F <u>Ø.17</u> =	273 x 3 (case v	olume) = Estimated Pu	rge Volume: 🏯	S. S (gal.)
Purge quipment:	Disposable Bailer Bailer	•	Sampling Equipment:	Disposable Ba	<u>iler</u>	×
dohmen.	Stack			Bailer Pressure Baile	£	
	Suction Grundfos	•	,	Grab Sample		
	Other:	_	•	Other:	- 	
Starting Time:	11:52	<u> </u>	eather Condition	s: Clordy		
		m. S	Vater Color:	clear	Odor: 4 c	(gal.)
Sampling Time: Purging Flow Rate Did well de-water Time Vi	/ 2 / 30/ :/ ap. ? olume pH (gal.)	M. S M. S M. If	Vater Color: lediment Descript fyes; Time: crivity \(\textstyle \text{Temperson} \)	ion: Volum		
Sampling Time: Purging Flow Rate Did well de-water Time V	12:30 1 cm 7 pH (gal.) 3 6.95	Condu Condu untho	rediment Description of yes; Time: crivity Temper Temp	ion: Volumenture D.O. (mg/L)	ne:	(gal)
Sampling Time: Purging Flow Rate Did well de-water Time V	/ 2 / 30/ :/ ap. ? olume pH (gal.)	M. S M. S M. If	rediment Description of yes; Time: crivity Temper Temp	ion: Volumenture D.O. (mg/L)	ne:	(gal)
Sampling Time: Purging Flow Rate Did well de-water Time V	12:30 	Condu Condu untho	rediment Description of yes; Time: crivity Temper Temp	ion: Volumenture D.O. (mg/L)	ne:	(gal)
Sampling Time: Purging Flow Rate Did well de-water Time V	12:30 	Condu Condu untho	rediment Description of yes; Time: crivity Temper Temp	ion: Volumenture D.O. (mg/L)	ne:	(gal)
Sampling Time: Purging Flow Rate Did well de-water Time Volume 12.08	12:30 	Condu Condu umho 109	rediment Description of yes; Time: crivity 7 Temper 72 72 72 72 72 72 74 75 75 75 75 75 75 75	ion: Volumenture D.O. (mg/L)	ne:	Allcalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time Vo	12:30 1 cm 7 colume pH (gal.) 3 6.95 6.97 6.97	Conduction of the conduction o	Vater Color: lediment Descript I yes; Time: ctivity 7 Temper lo 73. 7 72 7 72	ion: Volumerature D.O. (mg/L)	ORP (mV)	Alkalinity (ppm) YSES EX, MTBE
Sampling Time: Purging Flow Rate Did well de-water Time Volume 12.08	12:30 1 mi 7 olume pH (gal.) 3 6.95 6.90 6.97 (#) - CONTAINER 3 YO A	Condu Condu umho 109	ATORY INFORM/PRESERV. TYPE	TION LABORATORY	ORP (mV)	Alkalinity (ppm) YSES EX, MTBE
Sampling Time: Purging Flow Rate Did well de-water Time Vo	12:30 1 cm 7 colume pH (gal.) 3 6.95 6.97 6.97	Conduction of the conduction o	ATORY INFORM/PRESERV. TYPE	TION LABORATORY Seq.	ORP (mV)	(gal) Alkalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time Vo	12:30 1 mi 7 olume pH (gal.) 3 6.95 6.90 6.97 (#) - CONTAINER 3 YO A	Conduction of the conduction o	ATORY INFORM/PRESERV. TYPE	TION LABORATORY Seq.	ORP (mV)	Alkalinity (ppm) YSES EX, MTBE

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/				3 m	····	
acility # 1156			_ Job#:		_	
ddress: 4270	· Machithus		_ Date:		1	
ity: <u>Cakl</u>	and CA.		_ Samp	ler: <u>50 c</u>		
Well ID _	mw-4	Well Co	ondition:	0.F-		
Vell Diameter _	2 in	Hydroc	1 1		Bailed	
otal Depth -	25.32 tt. 8.63 tt	Thicknown Volume Factor	ne 2" = 0.	in. (product/ 17 3" = 0 6" = 1.50	3.38	(gal.) 4" = 0.66
epul to water .		- (۱ <u>۵</u> .۱)	2:84 x 3 (case	volume) = Estimated	d Purge Volume:	8 · S (gal.)
quipment:	Disposable Bailer Bailer Stack	•	Sampling Equipment:	Bailer		,
	Suction Grundfos Other:	·. —	· <u>··</u> ·	Pressure B Grab Samp Other:	ole	
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water?	Suction Grundfos Other:	— <u>4.</u> ↓	/eather Condition /ater Color: ediment Descrip	Grab Samp	Odor:	
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water?	Suction Grundfos Other:	A	/eather Condition /ater Color: ediment Descrip / yes; Time: ctivity () Temporal	Grab Samp Other: ns:tion: Vo	Odor:	
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water?	Suction Grundfos Other: : 6 : 4	Conduction A. 15	/eather Condition /ater Color: /ediment Descrip /yes; Time: ctivity Temporal	Grab Samp Other: Clovd cloa tion: Vo crature D.C (mg/l	Odor:	(gal.) Alkalinity
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol	Suction Grundfos Other: : 6 : 4	A	/eather Condition /ater Color: /ediment Descrip /yes; Time: ctivity Temporal	Grab Samp Other: Clovd cloa tion: Vo crature D.C (mg/l	Odor:	(gal.) Alkalinity
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol (g) 11:27 2	Suction Grundfos Other: : 6 : 4	Conduction A. 15	/eather Condition /ater Color: /ediment Descrip /yes; Time: ctivity Temporal	Grab Samp Other: Clovd cloa tion: Vo crature D.C (mg/l	Odor:	(gal.) Alkalinity
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol (g) 11:25 2 11:27 5:	Suction Grundfos Other: 11:16 11:401 opening pH al.) 7:41 7:42	Conduction A.79 4.2 4.2 4.2	Veather Condition Vater Color: ediment Descrip Yes; Time: Ctivity Tempor S/cm X	Grab Samp Other: Clovd Clovd tion: Vo erature D.C (mg/l	Odor:	(gal.) Alkalinity
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol (g) 11:25 2 11:27 5 (1:29 8.	Suction Grundfos Other: : 6 : 4	Conduction of the second secon	/eather Condition /ater Color: ediment Descrip / yes; Time: crivity 1 Temporal / Color	Grab Samp Other: Clovd Clear tion: Crature (mg/)	Odor:	Alkalinity (ppm) Alkalinity (ppm)
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol (g) 11:25 3 11:27 5.	Suction Grundfos Other: : 6 : 4	Conduction of the second of th	Veather Condition Vater Color: ediment Descrip Ves; Time: ctivity Tempor S/cm ×	Grab Samp Other: Clovd Clovd tion: Vo crature D.C (mg/l	Odor:	Alkalinity (ppm)
Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Vol (g) 11:25 2 11:27 5 (1:19 8.	Suction Grundfos Other: 11:16 11:401 1 qpp 1 qpp 2 qpp 3 qpp 4 qpp 4 qpp 5 qpp 7	Conduction of the second of th	Veather Condition Vater Color: ediment Descrip Yes; Time: Ctivity Tempor S/CM X	Grab Samp Other: Clovd Clovd	Odor:	Alkalinity (ppm) Alkalinity (ppm)

5 Days 10 Days

As Contracted

iched By (Signature)

nd By (Signature)

Date/Time

Date/Time

Organization

Organization

TOSCO (76) SS#1156 Contact (Nome) ... Facility Humber Facility Address 4276 MACARTHUR, CA OAKLAND (Phone)_ Laboratory Name _ Sequoia Analytical 180225.85 Consultant Project Number. Consultant Name Gettler-Ryan Inc. (G-R Inc.) Loboratory Relaces Number_ Samples Collected by (Name) JOE ASEMIAN Address 6747 Sierra Court, Suite J. Dublin, CA 94568 Collection Date 4-4-0 Project Contact (Name) Deanna L. Harding

			•	(Pi	hone) <u>92</u>	<u>5-551-75</u>	55_(Fox	. Number	925	-551-	7888	_ s	Ignoture	<u>\$</u>		a					
Sample Number A	Lob Sample Number	Number of Containers	Metrix S = Soll A = Air W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	Ja.	Sample Preservation	load (Yea or No)	TPH G.M.+ BTEX WANTSE 17	T	Oil and Gradue (5520)	Purgeable Halocarbors (8010)	-		To B	CACYPEZANI CLCYPEZANI (ICVP or M)	8010	S VOC'S 648270	(6) exy ; 1.2 Det			DO NOT BILL TB-LB ANALYSIS
TB-LB	01	VOA	J	G	_	HCL	Y	1										<u> </u>			
mw_l	02	7 VOA 2 Amy	,	,	1:43	,	7	1	✓		<u> </u>					√	<u> </u>	1		<u> </u>	
WW-2	03	SYUA	,	1	1:08	/	,	1					<u> </u>	ļ	<u> </u>		<u> </u>	\ <u> </u>	<u> </u>	ļ	
WW-3	04	SUON	/	/	12:30	1	/	/			<u> </u>		<u> </u>				<u> </u>	\ <u>\</u>	 	 	
mw-4	05	SVOA	,	,	11:40	/		<u> </u>		.	<u> </u>	<u> </u>		.	ļ		ļ	<u> </u>		ļ	
		<u> </u>						_		<u> </u>	<u> </u>	 			<u> </u>	 	 	<u> </u>			
		<u> </u>	ļ			·	<u>. </u>	_	ļ		 		<u> </u>	 	 -		 	 	 	<u> </u>	
		<u> </u>		<u> </u>	<u> </u>		-		-	<u> </u>	<u> </u>		<u> </u>		-		-	 	 		
		_		ļ	 	ļ	.	_		-	-		- 	 	 	 	 	 	 	 	
			<u> </u>		ļ			_	 	-		ļ	· -	 	 	 	\dagger	 	 	 	
B .						<u> </u>	_	<u></u>	-	-	ļ		 	<u> </u>	├		┼	-		1	
			ļ		 		-	_		-	- 	·	 				 	 	 		
				-	 	<u> </u>		.	-	-		├		-	 		 	-	 	1-	
pulatred By	(Signature)		G-	onization -R Inc		Date/Time 3:		ocelved E	M	9	حـــــــــــــــــــــــــــــــــــــ		organiza 1/4/c			•/Tim•			Turn Ar	24	me (Circle Cholce) Hre.

Realeyed For Laboratory Dy (Signature)

Dale/Time

April 19, 2001

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568 RE: Tosco(1) / L104027

Enclosed are the results of analyses for samples received by the laboratory on 04/04/01. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Latonya Pelt Project Manager

CA ELAP Certificate Number 2360

Jonya K. Pelt

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

ANALYTICAL REPORT FOR SAMPLES

	Laboratory ID	Matrix	Date Sampled	Date Received
Sample ID			04/04/01 00:00	04/04/01 16:50
TB-LB	L104027-01	Water		
	L104027-02	Water	04/04/01 13:43	04/04/01 16:50
MW-1	L104027-03	Water	04/04/01 13:08	04/04/01 16:50
MW-2			04/04/01 12:30	04/04/01 16:50
MW-3	L104027-04	Water		•
	L104027-05	Water	04/04/01 11:40	04/04/01 16:50
MW-4				

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156

Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (L104027-01) Water Sample	ed: 04/04/01 00:00	Received: (04/04/01	16:50				· · · · · · · · · · · · · · · · · · ·	
Purgeable Hydrocarbons as Gasoline	ND	50.0	ug/l	1	1040048	04/13/01	04/13/01	DH\$ LUFT	
Benzene	ND	0.500	Ħ	Ħ	W	"	**	41	
Toluene	ND	0.500	**	**	Ħ	Ħ	"	ų	
Ethylbenzene	ND	0.500	н	11	n	11	**	Ħ	
Xylenes (total)	ND	0.500	н	п	11	**	#	"	
Methyl tert-butyl ether	ND	5.00	n	n	#	"	n	n	
Surrogate: a,a,a-Trifluorotoluene		89.8 %	70-	-130	"	n	rr	*	
MW-1 (L104027-02) Water Sample	ed: 04/04/01 13:43	Received: 0	4/04/01	16:50			_		
Purgeable Hydrocarbons as Gasoline	86900	20000	ug/l	400	1040052	04/14/01	04/14/01	DHS LUFT	P-01
Benzene	7780	200	n	*	-	**	H	**	
Toluene	18500	200		**	11	11	If	-	
Ethylbenzene	2470	200	*	n	"	Ħ	**	41	
Xylenes (total)	11800	200	•	#	Ħ	II)	**	н	
Methyl tert-butyl ether	ND	2000	Ħ	11			.	"	
Surrogate: a,a,a-Trifluorotoluene		95.3 %	70	-130	π .	n	n	n	
MW-2 (L104027-03) Water Sample	ed: 04/04/01 13:08	Received:	04/04/01	16:50					
Purgeable Hydrocarbons as Gasoline	ND	5000	ug/i	100	1040048	04/13/01	04/13/01	DHS LUFT	
Benzene	ND	50.0	11	Ħ	H	n	н	н	
Toluene	ND	50.0	"	**		*	11	Ħ	
Ethylbenzene	ND	50.0	11*	•	**	Ħ	Ħ	11	
Xylenes (total)	ND	50.0		Ħ	Ħ	"	n	It	
Methyl tert-butyl ether	38700	2500	Ħ	500	n	н	04/14/01		M-04
Surrogate: a,a,a-Trifluorotoluene		90.9 %	70	-130	n	tt .	04/13/01	*	

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156

Reported: 04/19/01 09:35

Project Manager: Deanna Harding

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
_	4/04/01 12:30	Received: 0	4/04/01	16:50					
<u></u>	19600	5000	ug/l	100	1040052	04/14/01	04/14/01	DHS LUFT	P-01
Purgeable Hydrocarbons as Gasoline	1150	50.0	11	Ħ	#1		**	n	
Benzene	1470	50.0	н	11	11	#1	n	17	
Toluene		50.0		71		n	•	H	
Ethylbenzene	2100	50.0	п	Ħ	11	**	#	41	
Xylenes (total)	1820		**	*	n	97	n	n	
Methyl tert-butyl ether	1050	500				"		11	
Surrogate: a,a,a-Trifluorotoluene		95.7 %	70	-130	#	"			
MW-4 (L104027-05) Water Sampled:	04/04/01 11:40	Received: 0	4/04/01	16:50					
	9950	2500	ug/l	50	1040052	04/14/01	04/14/01	DHS LUFT	P-01
Purgeable Hydrocarbons as Gasoline	2380	25.0	"	n	11	**	#	н	
Benzene	126	25.0	**		n	"	#	H	
Toluene		25.0	11	**	₩	**	11	w	
Ethylbenzene	416			n	n	"	π	u	
Xylenes (total)	725	25.0		•	**	H	ŧ	n	
Methyl tert-butyl ether	1140	250_						"	
Surrogate: a,a,a-Trifluorotoluene		99.3 %	70	130	#	"	.		

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Volatile Organic 8 Oxyganated Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (L104027-02) Water	Sampled: 04/04/01 13:43	Received: 0	4/04/01	16:50					O-04
Ethanol	ND	50000	ug/i	50	1040017	04/05/01	04/05/01	EPA 8260B	
1,2-Dibromoethane	ND	100	Ħ	n		•	"		
1,2-Dichloroethane	ND	100	P	h	77	11			
Di-isopropyl ether	ND	100		**	н	Ħ		"	
Ethyl tert-butyl ether	ND	100	*	"	н	н		"	
Methyl tert-butyl ether	481	100	Ħ	11	H	Ħ	**	-	
Tert-amyl methyl ether	ND	100	n		*	11	Ħ		
Tert-butyl alcohol	ND	5000	**			n			
Surrogate: 1,2-Dichloroethan	no-d4	90.8 %	76	-114	"	ıt	n	"	
Surrogate: Toluene-d8	ic-is7	101 %	88	-110	"	n	**	"	
MW-2 (L104027-03) Water	Sampled: 04/04/01 13:08	Received: 0	4/04/01	16:50			<u> </u>		
Ethanol	ND	250000	ug/l	250	1040017	04/05/01	04/05/01	EPA 8260B	
1,2-Dibromoethane	ND	500	#	Ħ	u	π	₩	u	
1,2-Dichloroethane	ND	500	"		**	Ħ	**	Ħ	
Di-isopropyl ether	ND	500	**	-	11	**	Ħ	H	
Ethyl tert-butyl ether	ND	500	**	**	**	n		**	
Methyl tert-butyl ether	37800	500	"	Ħ	n	**	*	п	
Tert-amyl methyl ether	ND	500	**		#	**	Ħ	"	
Tert-butyl alcohol	ND	25000	,,	11	#	"			
Surrogate: 1,2-Dichloroethan	no_d4	90.6 %	76	5-114	п .	"	"	n .	
Surrogate: Toluene-d8	71C-U7	102 %		3-110	"	*	"	Ħ	
MW-3 (L104027-04) Water	· Samuled: 04/04/01 12:30		04/04/01	16:50					
Ethanol	ND	10000	ug/l	10	1040017	04/05/01	04/05/01	EPA 8260B	
1,2-Dibromoethane	ND	20.0	-6-	н	#	"	71		
	ND	20.0		77	71	11	**	н .	
1,2-Dichloroethane Di-isopropyl ether	ND ND	20.0	Ħ	11	n	**	#	11	
Ethyl tert-butyl ether	ND	20.0		n	•	n	H	**	
Methyl tert-butyl ether	450	20.0		н	Ħ	Ħ	*	is.	
Tert-amyl methyl ether	ND	20.0	**	**	11	H	41	•	
Tert-butyl alcohol	ND	1000	н	"	n	н	***		
		93.2 %		6-114		w		" "	
Surrogate: 1,2-Dichloroetha	ine-a4	93.2 % 102 %		8-110	"	*	#	"	
Surrogate: Toluene-d8		102 70	0	0-110					

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Volatile Organic 8 Oxyganated Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4 (L104027-05) Water	Sampled: 04/04/01 11:40	Received: 0	4/04/01	16:50					
	ND	10000	ug/l	10	1040017	04/05/01	04/05/01	EPA 8260B	
Ethanol	ND ND	20.0	#	H	11		**	•	
,2-Dibromoethane			Ħ	**	11	н	11	#	
1,2-Dichloroethane	ND	20.0		"		н		#	
Di-isopropyl ether	ND	20.0						**	
Ethyl tert-butyl ether	ИD	20.0	**	n			#	,,	
Methyl tert-butyl ether	819	20.0	H	*	Ħ	**	"	,,	
	ND	20.0	17	**	H	Ħ	"	"	
Tert-amyl methyl ether	ND	1000	н	n	**	n	41		
Tert-butyl alcohol				- • • •					
Surrogate: 1,2-Dichloroethar Surrogate: Toluene-d8	ne-d4	100 % 103 %		5-114 R-110	n	H	n	n	

Project: Tosco(1)

6747 Sierra Court, Suite J

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Dublin CA, 94568

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (L104027-02) Water	Sampled: 04/04/01 13:43	Received: 0	4/04/01	16:50					
Diesel Range Hydrocarbons	14000	500	ug/l	10	1D12014	04/12/01	04/13/01	EPA 8015M	D-11
Surrogate: n-Pentacosane	18	170 %	50-	150	#	"	n	N N	S-02

Project: Tosco(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Volatile Organic Compounds by EPA Method 8010B

Sequoia Analytical - Walnut Creek

		Describe							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (L104027-02) Water S	Sampled: 04/04/01 13:43	Received: 04	4/04/01	16:50				TR 4 0010P	_
Chloromethane	ND	2.0	ug/l	1	1D11016	04/12/01	04/12/01	EPA 8010B	
Vinyl chloride	ND	1.0		**	, ff	" R	Ħ	TI	
Bromomethane	ND	1.2	н	Ħ	#		н	Ħ	
Chloroethane	ND	1.0	H	"	"			Ħ	
Trichlorofluoromethane	ND	0.60	"	**			#	77	
Freon 113	ND	1.0	Ħ	Ħ	17	"		**	
1,1-Dichloroethene	ND	1.0	₩ .	н	Ħ	,,		u ·	
Methylene chloride	ND	10	**	п	π		"	w	
trans-1,2-Dichloroethene	ND	1.0	n	Ħ		-	,,	"	
1,1-Dichloroethane	ND	1.0	*	**	н	"			
cis-1,2-Dichloroethene	3.4	1.0	11	н	н		"		
Chloroform	ND	1.0			W	Ħ	# H		
1,1,1-Trichloroethane	ND	1.0		•	**	#	-	,,	
Carbon tetrachloride	ND	1.0	н	11		"		-	
1,2-Dichloroethane	5.7	1.6		Ħ	w	Ħ	11	#	
Trichloroethene	ND	1.1	•	**	**	н	п	" H	
1,2-Dichloropropane	ND	1.0	Ħ	Ħ	*		**		
Bromodichloromethane	ND	1.0	*	n	**		#	11	
cis-1,3-Dichloropropene	ND	1.0	11	₩	"	п	··	"	
trans-1,3-Dichloropropene	ND	0.60	**	Ħ	n	u	Ħ		
1,1,2-Trichloroethane	ND	0.50	11	*	11	u	Ħ		
Tetrachloroethene	ND	0.60	n	н		п	**	"	
Dibromochloromethane	ND	0.50				*	n		
= * *	ND	1.0	#	Ħ	Ħ	11	H	•	
1,2-Dibromoethane	5.6	1.0	H	#	**	"	•	n	
Chlorobenzene	ND	0.50	u		n	**	11	10	
Bromoform	ND	0.50	н	**	•	#	ri	**	
1,2,3-Trichloropropane	ND	0.60		н	#1	*	#1	#	
1,1,2,2-Tetrachloroethane	ND ND	0.50		11	,	*	11		
1,3-Dichlorobenzene	ND ND	1.2	-		-	H	**	11	
1,4-Dichlorobenzene	4.6	1.2	**	-	н	*	H	n	
1,2-Dichlorobenzene				150	"		п	"	
Surrogate: Dibromodifluorom		144 %		50-150	u	n	*	π	
Surrogate: 4-Bromofluoroben	zene	117 %		50-150					

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Semivolatile Organic Compounds by EPA Method 8270C

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (L104027-02) Water	Sampled: 04/04/01 13:43	Received: 0	4/04/01	16:50	·				
Acenaphthene	ND	5.0	ug/l	1	1D06021	04/06/01	04/11/01	EPA 8270C	
Acenaphthylene	ND	5.0	"	4	m	u	eı	**	
Aniline	ND	5.0	11	11	*	11	#	**	
Anthracene	ND	5.0	**	17	#	m	Ħ	11	
Benzoic acid	28	10			Ħ		tt	Ħ	
Benzo (a) anthracene	ND	5.0	tr	*	Ħ	n	,,	Ħ	
Benzo (b) fluoranthene	ND	5.0	**	**	*	**		**	
Benzo (k) fluoranthene	ND	5.0	**	=	н	*	•	н	
Benzo (ghi) perylene	ND	5.0	**	,,	#	n	•	n	
Benzo[a]pyrene	ND	5.0	47	#	*	n		H	
Benzyl alcohol	ND	5.0	Ħ	н	7	Ħ	π	**	
Bis(2-chloroethoxy)methane	ND	5.0	11		н	n	Ħ	•	
Bis(2-chloroethyl)ether	ND	5.0	11		**	P	н	n	
Bis(2-chloroisopropyl)ether	ND	5.0	**	P	n	. "	11	m	
Bis(2-ethylhexyl)phthalate	55	10	77		H	•	Ħ	#1	
4-Bromophenyl phenyl ether	ND	5.0	#	ч	н	**	n	п	
Butyl benzyl phthalate	ND	50	**	. "	*	Ħ	н	Ħ	
4-Chloroaniline	ND	25	**	41	**	#	*	11	
2-Chloronaphthalene	ND	5.0		"	Ħ	•	*	n	
4-Chloro-3-methylphenol	ND	5.0	n	11	11	n	#	н	
2-Chlorophenol	ND	5.0	**	•	n	n	Ħ	п	
4-Chlorophenyl phenyl ether	ND	5.0	n	"	n	π	"	**	
Chrysene	ND	5.0	11			*	Ħ	•	
Dibenz (a,h) anthracene	ND	10	n	н	**	n	Ħ		
Dibenzofuran	ND	5.0		n	а	н	"	H	
Di-n-butyl phthalate	ND	10	tr		**	11		ч	
1,2-Dichlorobenzene	ND	5.0	**		п	Ħ	**	п	
1,3-Dichlorobenzene	ND	5.0			H	n	*	**	
1.4-Dichlorobenzene	ND ND	10	11	π	II.	н	**	e	
3,3'-Dichlorobenzidine	ND ND	10	п	n			**	**	
2,4-Dichlorophenol	ND	5.0	•	"	*		н	**	
Diethyl phthalate	ND ND	5.0	11	11	π	**	м	11	
2,4-Dimethylphenol	ND ND	5.0	**	n	п	"	11	n	
Dimethyl phthalate	ND ND	5.0		,,	11	**	11	· n	
4,6-Dinitro-2-methylphenol	ND ND	10	17		н	n	"		
· ·	ND ND	10	**	*	n	н	ır	H	
2,4-Dinitrophenol 2,4-Dinitrotoluene	ND ND	10	**				n	**	
•	ND ND	10	11	"	**	**	**		
2,6-Dinitrotoluene	ND ND	10	#1	п	n		я	•	
Di-n-octyl phthalate			"	n	н		н	•	
Fluoranthene	ND	5.0	-	••	••				

Sequoia Analytical - San Carlos

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Semivolatile Organic Compounds by EPA Method 8270C

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (L104027-02) Water 5	Sampled: 04/04/01 13:43	Received: 04	4/04/01	16:50					
Fluorene	ND	5.0	ug/l	1	1D06021	04/06/01	04/11/01	EPA 8270C	
Hexachlorobenzene	ND	10		#	Ħ	n	#		
Hexachlorobutadiene	ND	10	H	Ħ		Ħ	n n	**	
Hexachlorocyclopentadiene	ND	10	Ħ	**	#1	n	,	**	
Hexachloroethane	ND	5.0	71	"	"	"	#		
Indeno (1,2,3-cd) pyrene	ND	10	#	. "	"	H	"		
Isophorone	ND	5.0	*	**	"	R	" "		
2-Methylnaphthalene	78	5.0	Ħ	Ħ			,		
2-Methylphenol	ND	5.0	*		•	Ħ			
4-Methylphenol	ND	5.0	*	a	47	n		"	
Naphthalene	490	50	#	10	H	**	n	"	
2-Nitroaniline	ND	10		1	**	Ħ	π	" "	
3-Nitroaniline	ND	10	•	Ħ	IT	14	*	#	
4-Nitroaniline	ND	20	.н	н	н	11	#		
Nitrobenzene	ND	5.0			11	Ħ	11		
	ND	5.0	,,	**		**	•	4	
2-Nitrophenol	ND	10	Ħ	**	11	"	**	n	
4-Nitrophenol N-Nitrosodimethylamine	ND	5.0	-	n	п	n	**	n n	
	ND	5.0	n	"	n	*	*	#	
N-Nitrosodiphenylamine	ND	5.0	н	#	Ħ	Ħ	Ħ	н	
N-Nitrosodi-n-propylamine	ND ND	10		Ħ	*	п	Ħ	R	
Pentachlorophenol	ND	5.0	H	#	11	п	*	4	
Phenanthrene	ND	5.0	-	Ħ		H	**	Ħ	
Phenol	ND	5.0	Ħ		**	•		•	
Pyrene	ND ND	5.0		n	n	Ħ	Ħ	*	
1,2,4-Trichlorobenzene	ND ND	10	н				r	n	
2,4,5-Trichlorophenol	ND ND	10	n	н	н	н	#1		<u></u> , ,
2,4,6-Trichlorophenol				1110		,,	"	"	A-0
Surrogate: 2-Fluorophenol		4.35 %		?1-110 !0-110	н		"	"	
Surrogate: Phenol-d6		34.1 %		10-110 35-114	11	H		*	
Surrogate: Nitrobenzene-d5		46.7 %	-		"	n	a	"	
Surrogate: 2-Fluorobiphenyl		99.9 %		13-116 10-122	"	"	*	n	
Surrogate: 2,4,6-Tribromophe	enol	103 % 103 %		10-123 33-141	"	п	H	0	
Surrogate: p-Terphenyl-d14		100 /0							

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Spike

Source

Reported: 04/19/01 09:35

RPD

%REC

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - San Carlos

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1040048 - EPA 5030B (P/T)								_		
Blank (1040048-BLK1)				Prepared	& Analyz	ed: 04/13/0	01			
Purgeable Hydrocarbons as Gasoline	ND	50.0	ug/l							
Benzene	ND	0.500	#1							-
Toluene	ND	0.500	н							
Sthylbenzene Sthylbenzene	ND	0.500	n							
Xylenes (total)	ND	0.500	п							
Methyl tert-butyl ether	ND	5.00	**							
Surrogate: a,a,a-Trifluorotoluene	7.96		"	10.0		79.6	70-130			
LCS (1040048-BS1)				Prepared	& Analyz	zed: 04/13/				
Benzene	8.49	0.500	ug/l	10.0		84.9	70-130			
Toluene	8.65	0.500		10.0		86.5	70-130			
Ethylbenzene	8.49	0.500	ŧŧ	10.0		84.9	70-130			
Xylenes (total)	25.8	0.500	41	30.0		86.0	70-130			
Surrogate: a,a,a-Trifluorotoluene	8.26		n	10.0	<u>-</u>	82.6	70-130			
LCS (1040048-BS2)				Prepared	& Analyz	zed: 04/13/				
Purgeable Hydrocarbons as Gasoline	263	50.0	ug/l	250		105	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.63		N	10.0	· ·	96.3	70-130			
Matrix Spike (1040048-MS1)	Sou	rce: L10402	25-05	Prepared	& Analyz	zed: 04/13/				
Purgeable Hydrocarbons as Gasoline	229	50.0	ug/l	250	ND	91.6	60-140			
Surrogate: a,a,a-Trifluorotoluene	7.92	-	"	10.0		79.2	70-130			
Matrix Spike Dup (1040048-MSD1)	Sou	rce: L10402	25-05_	Prepared	& Analy:	zed: 04/13	/01	. <u> </u>	<u> </u>	
Purgeable Hydrocarbons as Gasoline	267	50.0	ug/l	250	ND	107	60-140	15.3	25	
Surrogate: a,a,a-Trifluorotoluene	9.18		H	10.0		91.8	70-130			
± •										

Project: Tosco(1)

6747 Sierra Court, Suite J Dublin CA, 94568

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - San Carlos

		Reporting		Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits			
Batch 1040052 - EPA 5030B (P/T)						<u> </u>				
Blank (1040052-BLK1)				Prepared	& Analyz	ed: 04/14/0	01			
Purgeable Hydrocarbons as Gasoline	ND	50.0	ug/l							
Benzene	ND	0.500	11							
Toluene	ND	0.500	#							
Ethylbenzene	ND	0.500	"							
Xylenes (total)	ND	0.500	₩.							
Methyl tert-butyl ether	ND	5.00	п							
Surrogate: a,a,a-Trifluorotoluene	9.97		я	10.0		99.7	70-130			
Blank (1040052-BLK2)				Prepared	& Analyz	ed: 04/16/	01	_		
Purgeable Hydrocarbons as Gasoline	ND	50.0	ug/l							
Benzene	ND	0.500	•							
Toluene	ND	0.500								
Ethylbenzene	ND	0.500	n							
Xylenes (total)	ND	0.500	#							
Methyl tert-butyl ether	ND	5.00								
Surrogate: a,a,a-Trifluorotoluene	11.7		11	10.0	-	117	70-130			
LCS (1040052-BS1)				Ртерагес	& Analyz	zed: 04/14/				
Benzene	10.9	0.500	ug/l	10.0		109	70-130			
Toluene	10.7	0.500		10.0		107	70-130			
Ethylbenzene	11.3	0.500	Ħ	10.0		113	70-130			
Xylenes (total)	34.0	0.500	н	30.0		113	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.5		#	10.0		105	70-130			
LCS (1040052-BS2)		•		Prepare	d & Analy	zed: 04/14	/01			
Purgeable Hydrocarbons as Gasoline	266	50.0	ug/l	250		106	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.8		'n	10.0		108	70-130	· <u> </u>		

6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1040052 - EPA 5030B (P/T)							<u></u> .	···		
LCS (1040052-BS3)				Prepared	& Analyze	ed: 04/16/	01		<u> </u>	
Benzene	10.2	0.500	ug/l	10.0		102	70-130			
Toluene	10.2	0.500	"	10.0		102	70-130			
Ethylbenzene	10.4	0.500	**	10.0		104	70-130			
Xylenes (total)	31.1	0.500	н	30.0		104	70-130			
Surrogate: a,a,a-Trifluorotoluene	12.6		"	10.0		126	70-130			
LCS (1040052-BS4)				Prepared	& Analyz	ed: 04/16/	01			
Purgeable Hydrocarbons as Gasoline	241	50.0	ug/l	250		96.4	70-130			
Surrogate: a,a,a-Trifluorotoluene	12.5		0	10.0		125	70-130			
Matrix Spike (1040052-MS1)	Son	urce: L10403	37-02	Prepared	& Analyz	ed: 04/14/	01			
Benzene	10.6	0.500	ug/l	10.0	ND	106	60-140			
Toluene	10.5	0.500	"	10.0	ND	105	60-140			
Ethylbenzene	10.7	0.500	n	10.0	ND	107	60-140			
Xylenes (total)	32.2	0.500	*	30.0	ND	107	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.95		-	10.0		99.5	70-130			
Matrix Spike Dup (1040052-MSD1)	So	urce: L10403	37-02	Prepared	& Analyz	zed: 04/14	/01			
Benzene	10.9	0.500	ug/l	10.0	ND	109	60-140	2.79	25	
Toluene	10.6	0.500	#	10,0	ND	106	60-140	0.948	25	
Ethylbenzene	10.8	0.500	11	10.0	ND	108	60-140	0.930	25	
Xylenes (total)	32.4	0.500	n	30.0	ND	108	60-140	0.619	25	
Surrogate: a,a,a-Trifluorotoluene	9.94			10.0		99.4	70-130			

6747 Sierra Court, Suite J **Dublin CA, 94568**

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Spike

Source

Reported: 04/19/01 09:35

RPD

%REC

Volatile Organic 8 Oxyganated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

Reporting

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	Limits	RPD	Limit	Notes
			Prepared	& Analyze	ed: 04/05/0)1			
ND									
ND									
ND									
ND									
ND									
ND	2.00								
ND	2.00								
ND	100								
48.0		#	50.0						
52.7		*	50.0		105	88-110			
			Prepared	& Analyz	ed: 04/05/				
44.5	2.00	ug/l	50.0		89.0	70-130			
		"	50.0		91.6	76-114			
		**			102	88-110			
						40.4			
Sa	rurce: L10407								
80.0	2.00	ug/l	50.0	38.2	83.6				
47.0		"	50.0		94.0	76-114			
51.7		*	50.0		103	88-110			
•		-	N	1 0. Ameter		/n1			
							0.879	25	
79.3	2.00	ug/i	50.0	38.2					
		,,	50.0		95.2	76-114			
47.6					102	88-110			
	ND ND ND ND ND ND ND ND 52.7 44.5 45.8 51.2 So 80.0 47.0 51.7	ND 1000 ND 2.00 ND 100 48.0 52.7 44.5 2.00 45.8 51.2 Source: L1040 80.0 2.00 47.0 51.7 Source: L1040 79.3 2.00 10	ND 1000 ug/l ND 2.00 " ND 100 " 48.0 " 45.8 " 52.7 " Source: L104025-05 80.0 2.00 ug/l 47.0 " 51.7 " Source: L104025-05 79.3 2.00 ug/l	ND 1000 ug/l ND 2.00 " ND 3.00 " Value 100 " 48.0 " 50.0 50.0 50.0 Frepared 44.5 2.00 ug/l 50.0 45.8 " 50.0 50.0 50.0 47.0 " 50.0 50.0 50.0 Source: L104025-05 Prepared 50.0 Source: L104025-05 Prepared 50.0 Source: L104025-05 Prepared 50.0 50.0 50.0 ug/l 50.0 50.0 50.0 ug/l 50.0 50.0 50.0 ug/l 50.0	ND 1000 ug/l ND 2.00 " ND 100 " 48.0 " 50.0 50.0	ND 1000 ug/l ND 2.00 " ND 100 "	ND	Prepared & Analyzed: 04/05/01	ND 1000 ug/l ND 2.00 " ND 100 "

6747 Sierra Court, Suite J

Project: Tosco(1)

Project Number: Tosco (76) SS#1156

Reported: 04/19/01 09:35

Dublin CA, 94568

Project Manager: Deanna Harding

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

		Reporting	·	Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	LAMINS	N D	1211111	110003
Batch 1D12014 - EPA 3510B						 		· · · · · · · · · · · · · · · · · · ·		
Blank (1D12014-BLK1)				Prepared	& Analyz	ed: 04/12/	01			
Diesel Range Hydrocarbons	ND	50	ug/l							
Surrogate: n-Pentacosane	24.7		π	33.3		74.2	50-150			
LCS (1D12014-BS1)				Prepared	& Analyz	ed: 04/12/	01			
Diesel Range Hydrocarbons	463	50	ug/l	500		92.6	60-140			
Surrogate: n-Pentacosane	27.0		"	33.3		81.1	50-150			
LCS Dup (1D12014-BSD1)				Prepared	& Analyz	ed: 04/12/	01			
Diesel Range Hydrocarbons	232	50	ug/l	500		46.4	60-140	66.5	50	Q-01
Surrogate: n-Pentacosane	20.3		"	33.3		61.0	50-150			

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Trichlorofluoromethane

Chlorobenzene

1,2,3-Trichloropropane

Bromoform

Freon 113

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

0.60

1.0

ND

ND

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	ŔPD	RPD Limit	Notes
Batch 1D11016 - EPA 5030B [P/T]					<u>-</u>					
Blank (1D11016-BLK2)				Prepared	& Analyz	ed: 04/12/0	01			
Chloromethane	ND	2.0	ug/I							
Vinyl chloride	ND	1.0								
Bromomethane	ND	1.2	"							
Chlomethane	ND	1.0	н							

•		1.0	n	
1,1-Dichloroethene	ND	1.0		
Methylene chloride	ND	10	**	
trans-1,2-Dichloroethene	ND	1.0	"	
1,1-Dichloroethane	ND	1.0		
cis-1,2-Dichloroethene	ND	1.0	**	
Chloroform	ND	1.0	n	
1,1,1-Trichloroethane	ND	1.0	-	
Carbon tetrachloride	ND	1.0	**	
1,2-Dichloroethane	ND	1.6	п	
Trichloroethene	ND	1.1	и	
1,2-Dichloropropane	ND	1.0	"	
Bromodichloromethane	ND	1.0	-	
cis-1,3-Dichloropropene	ND	1.0	Ħ	
trans-1,3-Dichloropropene	ND	0.60	**	
1,1,2-Trichloroethane	ND	0.50	**	
Tetrachloroethene	ND	0.60	H	
Dibromochloromethane	ND	0.50	#	
1,2-Dibromoethane	ND	1.0	n	
Chlorobenzene	ND	1.0	**	
CHORDICHZEUG				

ND	0.60	"			
ND	0.50	. "			
ND	1.2	Ħ			
ND	1.2	H			
15.0		#	10.0	150	50-150
9.77		"	10.0	97.7	50-150
11.2		Ħ	10.0	112	50-150
	ND ND ND 15.0 9.77	ND 0.50 ND 1.2 ND 1.2 15.0 9.77	ND 0.50 " ND 1.2 " ND 1.2 " 15.0 " 9.77 "	ND 0.50 " ND 1.2 " ND 1.2 " 15.0 " 10.0 9.77 " 10.0	ND 0.50 " ND 1.2 " ND 1.2 " 15.0 " 10.0 150 9.77 " 10.0 97.7

0.50

0.50

0.60

ND

ND

ND

6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1D11016 - EPA 5030B [P/T]										
LCS (1D11016-BS2)				Prepared	& Analyze	d: 04/12/0	01			
1,1-Dichloroethene	24.4	1.0	ug/l	20.0		122	65-135			
Trichloroethene	23.0	1.1		20.0		115	70-130		*	•
Chlorobenzene	21.5	1.0	n	20.0		108	70-130			
Surrogate: Dibromodifluoromethane	15.0		п	10.0		150	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	II.1		tr	10.0		111	50-150			
Surrogate: 4-Bromofluorobenzene	13.2		"	10.0		132	50-150			
Matrix Spike (1D11016-MS1)	So	rce: W1042	19-01	Prepared:	04/11/01	Analyzed	1: 04/13/01			
1,1-Dichloroethene	23.1	1.0	ug/l	20.0	ND	116	60-140			
Trichloroethene	22.3	1.1	•	20.0	NĎ	111	60-140			
Chlorobenzene	22.5	1.0	n	20.0	ND	113	60-140			
Surrogate: Dibromodifluoromethane	12.1		~	10.0		121	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	12.2		"	10.0		122	50-150			
Surrogate: 4-Bromofluorobenzene	14.8		"	10.0		148	50-150			
Matrix Spike Dup (1D11016-MSD1)	So	urce: W1042	19-01	Prepared	: 04/11/01	Analyzed	1: 04/12/01			
1.1-Dichloroethene	22.9	1.0	ug/l	20.0	ND	114	60-140	0.870	25	
Trichloroethene	20.6	1.1	n	20.0	ND	103	60-140	7.93	25	
Chlorobenzene	18.8	1.0	n	20.0	ND	94.0	60-140	17.9	25	
Surrogate: Dibromodifluoromethane	10.2		- "	10.0		102	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	10.0		#	10.0		100	<i>50-150</i>			
Surrogate: 4-Bromofluorobenzene	11.0		,,	10.0		110	50-150			

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	76REC	Titules	14.10		
Batch 1D06021 - EPA 3510B Sep 1	Funnel									
Blank (1D06021-BLK1)				Prepared	: 04/06/01	Analyzed	: 04/10/01			
Acenaphthene	ND	5.0	ug/l							
Acenaphthylene	ND	5.0	n							
Aniline	ND	5.0	H							
Anthracene	ND	5.0	н							
Benzoic acid	ND	10	"							
Benzo (a) anthracene	ND	5.0	**							
Benzo (b) fluoranthene	ND	5.0	Ħ							
Benzo (k) fluoranthene	ND	5.0	"						•	
Benzo (ghi) perylene	ND	5.0								
Benzo[a]pyrene	ND	5.0								
Benzyl alcohol	ND	5.0	**							
Bis(2-chloroethoxy)methane	ND	5.0	ņ							
Bis(2-chloroethyl)ether	ND	5.0	п							
Bis(2-chloroisopropyl)ether	ND	5.0	н							
Bis(2-ethylhexyl)phthalate	ND	10	n							
4-Bromophenyl phenyl ether	ND	5.0	**							
Butyl benzyl phthalate	ND	50	7							
4-Chloroaniline	ND	25	*							
2-Chloronaphthalene	ND	5.0	Ħ							
4-Chloro-3-methylphenol	ND	5.0								
2-Chlorophenol	ND	5.0	п							
4-Chlorophenyl phenyl ether	ND	5.0								
Chrysene	ND	5.0								
Dibenz (a,h) anthracene	ND	10								
Dibenzofuran	ND	5.0								
Di-n-butyl phthalate	ND	10	n							
1,2-Dichlorobenzene	ND	5.0								
1,3-Dichlorobenzene	ND	5.0								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
2,4-Dichlorophenol	ND	5.0								
Diethyl phthalate	ND	5.0								
2,4-Dimethylphenol	ND	5.0								
Dimethyl phthalate	ND	5.0								
4,6-Dinitro-2-methylphenol	ND	10								
2,4-Dinitrophenol	ND	10	D "							

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding Reported: 04/19/01 09:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC_	%REC Limits	RPD	RPD Limit	Notes
The state of the s										

Blank (1D06021-BLK1)				Prepared: 04/06/01	Analyzed:	04/10/01	
2,4-Dinitrotoluene	ND	10	ug/l				
2,6-Dinitrotoluene	ND	10					
Di-n-octyl phthalate	ND	10	#				
Fhioranthene	ND	5.0	#				
Fluorene	ND	5.0	**				
Hexachlorobenzene	ND	10					
Hexachlorobutadiene	ND	10	-				
Hexachlorocyclopentadiene	ND	10	**				
Hexachloroethane	ND	5.0	и .				
Indeno (1,2,3-cd) pyrene	ND	10	**				
Isophorone	ND	5.0	"				•
2-Methylnaphthalene	ND	5.0	**				
2-Methylphenol	ND	5.0					
4-Methylphenol	ND	5.0	H				
Naphthalene	ND	5.0	"				
2-Nitroaniline	ND	10	n				
3-Nitroaniline	ND	10	"			•	•
4-Nitroaniline	ND	20	17				
Nitrobenzene	ND	5.0	н				
2-Nitrophenol	ND	5.0	**				
4-Nitrophenol	ND	10	**				
N-Nitrosodimethylamine	ND	5.0					
N-Nitrosodiphenylamine	ND	5.0	*				
N-Nitrosodi-n-propylamine	ND	5.0	**				
Pentachlorophenol	ND	10	11				
Phenanthrene	ND	5.0	**				
Phenol	ND	5.0	n				
Pyrene	ND	5.0	п				
1,2,4-Trichlorobenzene	ND	5.0	**				
2,4,5-Trichlorophenol	ND	10	Ħ				
2,4,6-Trichlorophenol	ND	10	n				 -
Surrogate: 2-Fluorophenol	66.4		rr	150	44.3	21-110	
Surrogate: Phenol-d6	40.4		,,	150	26.9	10-110	
Surrogate: Nitrobenzene-d5	68.9		•	100	<i>68.9</i>	35-114	
Surrogate: 2-Fluorobiphenyl	74.0		n	100	74.0	43-116	

Sequoia Analytical - San Carlos

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156 Project Manager: Deanna Harding

Reported: 04/19/01 09:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source	%REC	%REC Limits	R P D	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	76REC	Limes			
Batch 1D06021 - EPA 3510B Sep F	innel					. 1	04/10/01			
Blank (1D06021-BLK1)					04/06/01	Analyzed:				
Surrogate: 2,4,6-Tribromophenol	101	 -	ug/l	150		67.3	10-123			
Surrogate: p-Terphenyl-d14	69.5		~	100		69.5	33-141			
				Prenared:	04/06/01	Analyzed	04/10/01			.,
LCS (1D06021-BS1)	59.9	5.0	 ug/l	100		59.9	46-118			
Acenaphthene		5.0	"	150		63.4	23-97			
-Chloro-3-methylphenol	95.1 85.0	5.0		150		56.7	27-123			
2-Chlorophenol	40.0	10	п	100		40.0	36-97			
1,4-Dichlorobenzene		10		100		67.2	24-96			
2,4-Dinitrotoluene	67.2	10	#	150		29.0	10-80			
4-Nitrophenol	43.5	5.0	11	100		74.7	41-116			
N-Nitrosodi-n-propylamine	74.7		•	150		69.3	9-103			
Pentachlorophenol	104	10	n	150		24.5	12-110			
Phenol	36.8	5.0		100		66.1	26-127			
Pyrene	66.1	5.0				45.8	39-98			
1,2,4-Trichlorobenzene	45.8	5.0		100			21-110			
Surrogate: 2-Fluorophenol	61.4		"	150		40.9 27.1	21-110 10-110			
Surrogate: Phenol-d6	40.6		n	150			35-114			
Surrogate: Nitrobenzene-d5	70.1		"	100		70.1	43-116			
Surrogate: 2-Fluorobiphenyl	68.6		"	100		68.6	10-123			
Surrogate: 2,4,6-Tribromophenol	114		11	150		76.0				
Surrogate: p-Terphenyl-d14	63.7		"	100		63.7	33-141		•	
				Ртерагес	1: 04/06/0	1 Analyze	d: 04/10/01			
LCS Dup (1D06021-BSD1)	63,2	5.0	ug/l	100		63.2	46-118	5.36	30	
Acenaphthene	97.3	5.0	n .	150		64.9	23-97	2.29	30	
4-Chloro-3-methylphenol	97.3 86.9	5.0	п	150		57.9	27-123	2.21	30	
2-Chlorophenol		10		100		43.3	36-97	7.92	30	
1,4-Dichlorobenzene	43.3	10		100		64.4	24-96	4.26	30	
2,4-Dinitrotoluene	64.4	_		150		22.5	10-80	25.4	30	
4-Nitrophenol	33.7	10		100		69.6	41-116	7.07	30	
N-Nitrosodi-n-propylamine	69.6	5.0		150		66.5	9-103	4.22	30	
Pentachlorophenol	99.7	10				25.2	12-110	2.68	30	
Phenol	37.8	5.0	,	150		70.9	26-127	7.01	30	
Pyrene	70.9	5.0	,	100		52.1	39-98	12.9	30	
1,2,4-Trichlorobenzene	52.1	5.0		100						
Surrogate: 2-Fluorophenol	61.0		~	150		40.7	21-110			
Surrogate: Phenol-d6	39.0		n	150		26.0	10-110			

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Tosco (76) SS#1156

Project Manager: Deanna Harding

Reported:

04/19/01 09:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1D06021 - EPA 3510B Sep Funnel

LCS Dup (1D06021-BSD1)			Prepared: 04/0	06/01 Analyzec	1: 04/10/01
Surrogate: Nitrobenzene-d5	70.7	ug/l	100	70.7	35-114
Surrogate: 2-Fluorobiphenyl	69.0	n	100	69.0	43-116
Surrogate: 2,4,6-Tribromophenol	104	"	150	69.3	10-123
Surrogate: p-Terphenyl-d14	65.5	"	100	65.5	33-141

Gettler-Ryan/Geostrategies(1)
Project: Tosco(1)
Project Number: Tosco (76) SS#1156
Project Number: Deanna Harding

O4/19/01 09:35

Notes and Definitions

A-01	Surrogate recovery on the 10X run passed at 51% recovery.
D-11	Chromatogram Pattern: Unidentified Hydrocarbons < C16
M-04	MTBE was reported from second analysis.
O-04	This sample was diluted due to high non-target compounds.
P-01	Chromatogram Pattern: Gasoline C6-C12
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference