

94603□ (510) 577-8804 FAX□ (510) 577-8859

June 21, 2001

Ms. eva chu
Alameda County Health Division
Division of Environmental Protection
Department of Environmental Health
1131 Harbor Bay Parkway, Second Floor
Alameda, CA 94502

Dear Ms. chu:

Subject: Quarterly Groundwater Monitoring Report.

AC Transit, 1177 47th Street, Emeryville

AC Transit hereby submits the enclosed quarterly groundwater monitoring report for the AC Transit facility located at 1177 47th Street in Emeryville. The report was prepared by our consultant, Safety-Kleen Consulting and contains the results of the March 2001 sampling event and additional studies conducted pursuant to directives from your office.

Groundwater samples from the 14 on-site monitoring wells (MW-1 through MW-10, W-1 through W-4) were collected and analyzed for total extractable petroleum hydrocarbons (TPH) using modified EPA Method 8015 and benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert-butyl ether (MTBE), and gasoline using EPA Method 8021B. Depth to groundwater was measured in each well and groundwater contour maps were developed for the report. Analytical results indicate that TPH was detected in all wells except well MW-4 at concentrations that ranged from 220 to 7,200 ppb. Benzene was detected above the California maximum contaminant level of 1 ppb in wells W-1 and MW-6 at concentrations of 32 ppb and 49 ppb, respectively. MTBE was detected in four monitoring wells (MW-1, MW-2, MW-5, and MW-9) with concentrations ranging from 5.5 ppb to 87 ppb.

Additional site investigation activities performed to test soil at a former underground storage tank site included drilling and collecting soil samples from four soil borings(SB-1 to SB-4) and collecting a grab groundwater sample from one boring (SB-1). The results of the soil samples indicate that the compounds detected were limited to low levels of hydrocarbons in three borings, with the exception of low levels of ethylbenzene and xylenes detected in SB-2. Analytical results of the grab groundwater sample from SB-1 indicated the presence of trichloroethene, tetrachloroethene, cis-1,2-dichlorothene, ethylene glycol, diesel and motor oil.

To further evaluate the potential impacts from a past diesel release from the fuel island, grab groundwater samples were collected from four borings (SB-5 to SB-8) drilled along the downgradient property boundary. The results of the grab groundwater samples indicate the

Ethylene glycol Fizhor Max 1.0 ×105 max 7.3 ×10 4 nc

7300%. 73,000

teotox

John Marshack:

OPA. 14,000 ug/L drinking water SNARL

	N			of the follow	ving flight o	ption	15				
From Cl	DG - PA	RIS D	E GAULLI	E (FR)					•		
	<i></i>	KAN(ISCO INT	L (CA)		1		TO A	RES		
FLIGH	ITS							(US I	-		
	1			D D D D D			1	-	**	**	**
Flight	From	To	Dep Date	Dep Time	Arv Time	J	C	Y	H1	H2	BB
AC-881	CDG	YYZ	07/25	11:55	14:25	C		0	೧	C	C
AC-755	YYZ	SFO	07/25	16:45	19:10	C		റ	೧	C	C
* Or less ** = Lov quoted		ilable I	are for sele	cted flight(s)	will be	C Res	= Ex tricte	ecutiv recutived ospita	ve Fir		
	Show)	Tibalitie	rary and	lıCost® =					Sta	et g	λve
o garaga	Showe,	Punt	tary and	B(Çost#≎≡					Sta	3 - 1	we
	Show		Fary and	E Çost©iz					Sta	ITOP)ve
ΓΥΡΕ Ο											
You may	change 1	the type	es of fares (Adult, Child	displayed of	on thi	s pa g "C	ge by	selec	cting	
You may differen	change t t passen	the typo	es of fares (Adult, Child)	and then sel	ectin	g "C	hang	selecte Typ	cting	Ac
You may differen	change t t passen	the typo	es of fares (Adult, Child	and then sel	ectin	g "C	hang	selecte Typ	cting	
You may differen	change t t passen	the typo	es of fares (Adult, Child)	and then sel	ectin	g "C	hang	selecte Typ	cting	
You may a differen	change t t passen; children	the typoger typo	es of fares (as from the lines between 2	Adult, Child)	and then sel	ectin	g "C	hang	selecte Typ	cting	
You may a different Note that	change it passen; children	the typoger typomust b	es of fares (Are from the late of the between 2	Adult, Child of provided, 2 and 11 year	and then sel	ectin	g "C	hang	selecte Typ	cting	
You may a different Note that	change to t passen; children	the type ger type must t	es of fares (Are from the line between 2	Adult, Child' ist provided, 2 and 11 year	and then sel	ectin	g "C	hang	selecte Typ	cting	
You may a different Note that	change to t passen; children	the type ger type must b	es of fares (Are from the late of the between 2	Agult, Child; ist provided, 2 and 11 year INTL (CA) SON (ON)	and then sel	ectin	g "C	hang	selecte Typ	cting	

Instructions Back to top

- You may change the types of fares (Adult, Child) displayed on this page by selectin passenger type from the list provided, and then selecting "Change Type." Note that between 2 and 11 years of age at the time of the flight.
 Select a complete outbound flight by selecting your fare class. A complete flight co
- Select a complete outbound flight by selecting your fare class. A complete flight co
 more legs connecting your origin to your destination. If you choose a flight with m
 you must select a fare class for each leg of that flight
- 3. Select a complete return flight solution, as above.
- 4. Select "Show Itinerary and Cost" to reserve seats on the flights, and to receive your
- 5. Select "Start Over" to change your travel request.
- 6. If you want the system to automatically search for more flights on your behalf for t fare, simply select "Price Shop".

Each selection you make within the grids on this page specifies both a flight (row) and a fa

GROUNDWATER MONITORING REPORT FOR THE AC TRANSIT FACILITY LOCATED AT 1177 47th STREET, EMERYVILLE, CALIFORNIA

May 2001

Prepared For:

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

JUN 2 5 2001

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792551

Cameron. Cole
101 W Atlantic & Bltg 90
Alameda 94521
566(337-8660×18

Safety-kleen

Need E6 and upio indg wells Need VOC analysis indg weels Um tank Farm 2 Why were SS from tank Farm Z ellected below 6WD. WP perposes to sample at cap-

GROUNDWATER MONITORING REPORT FOR THE **AC TRANSIT FACILITY** LOCATED AT 1177 47th STREET, **EMERYVILLE, CALIFORNIA**

May 2001

Prepared For:

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792551

Approved By Brad Wright,

Senior Geologist

Written By Brady Hanson

Geologist I

TABLE OF CONTENTS

INTRODUCTI	ON1
ADDITIONAL	SUBSURFACE INVESTIGATIONS1
GROUNDWAT	ER MONITORING3
Groundwater E	evations and Flow Direction3
Groundwater Sa	mpling Activities3
Groundwater A	nalytical Results4
SUMMARY OF	RESULTS5
PROJECTED V	WORK AND RECOMMENDATIONS5
APPENDIX B APPENDIX C	
	FIGURE
Figure 1	Site Map Including Groundwater Elevation Contours
	TABLES
Table 1 Table 2 Table 3	Summary of Additional Characterization Analytical Results Groundwater Level Measurements Analytical Results of Groundwater Samples

INTRODUCTION

This report presents the results from the first quarter 2001 sampling event for the AC Transit Facility located at 1177 47th Street, Emeryville, California (Site). Groundwater sampling of monitor wells MW-1 through MW-10 was reinstated in August 1999, in accordance with directives from Alameda County Health Care Services (ACHCS). In a letter dated February 2, 2000, ACHCS requested that the status of monitor wells W-1 through W-4 be determined, and if found, be included in the quarterly sampling events. In addition, the February 2, 2000, letter requested that analysis for methyl tert-butyl ether (MTBE) and gasoline be performed on all Site monitor wells. AC Transit retained Safety-Kleen Consulting to perform this work.

Additional characterization activities performed during the first quarter 2001 included installation of eight borings for purposes of assessing the extent from a past release of diesel in soil and groundwater in the vicinity of Tank Farm No. 1. The scope of work associated with the installation of eight borings was described in the document "Workplan for Additional Subsurface Investigation at the AC Transit 1177 47th Street Facility, Emeryville, California" dated August 8, 2000. The workplan was accepted by the ACHCS in a letter dated November 20, 2000, with a request to revise the scope of work to include soil borings in the vicinity of former Tank Farm No. 2. A letter of addendum to the workplan dated December 6, 2000, presented the scope of work performed in the vicinity of Tank Farm No. 2. The addendum to the workplan was approved by the ACHCS in a letter dated December 11, 2000, with requested modifications to the laboratory analysis.

ADDITIONAL SUBSURFACE INVESTIGATIONS

On January 22, 2001, four borings (SB-1 through SB-4) were installed in the vicinity of former Tank Farm No. 2. The borings were installed under permit issued by the Alameda County Public Works Agency a copy of which has been included in Appendix A. During boring installation, a continuous core of the lithology was collected for description and field monitoring with a photoionization detector (PID). PID measurements were used to assist with selection of sample intervals to be submitted to the analytical laboratory. Soil boring logs are presented in

Appendix B and the location of the borings is presented on Figure 1. A fifth boring installed within the former Tank Farm No. 2 pit encountered refusal at a depth of 14 feet below groundsurface. This refusal was attributed to a concrete pad installed during the original tank pit construction.

Samples selected for laboratory analysis included one grab groundwater sample from SB-1 and one soil sample from each boring SB-1 through SB-4. As no significant PID measurements were recorded during boring installation, soil samples were collected from immediately above first encountered groundwater. These samples were submitted for analysis by USEPA Methods 8015 modified for Total Purgeable Hydrocarbons (TPH) as stoddard solvent, motor oil, and diesel, NIOSH Method 5500 for ethylene glycol and USEPA Method 8260 for volatile organic compounds (VOCs). The results of the laboratory analysis are summarized in Table 1. Certified analytical reports are presented in Appendix C. Compounds detected in excess of State of California Maximum Contaminant Levels (MCLs) in the grab groundwater sample collected from SB-1 included trichloroethene (TCE), tetrachloroethene (PCE) and cis-1,2-dichloroethene (cis-1,2-DCE). Additionally, TPH as diesel, motor oil and ethylene glycol were detected in the grab groundwater sample. Compounds detected in soil samples were limited to hydrocarbons detected in samples collected from borings SB-1, SB-2 and SB-3 with the exception of low levels of ethylbenzene and xylene detected in SB-2.

To further define the extent of diesel in groundwater, four borings (SB-5 through SB-8) were installed along the downgradient property boundary. Soil boring logs are presented in Appendix B and the location of the borings is presented on Figure 1. Grab groundwater samples from these borings were submitted for laboratory analysis by USEPA Method 8015 for TPH as diesel and motor oil and USEPA Method 8260 for VOCs. The results of the laboratory analysis are summarized in Table 1. Certified analytical reports are presented in Appendix C. Elevated concentrations of diesel and motor oil were detected in the samples collected from borings SB-6 and SB-7. Concentrations of methyl tert-butyl ether (MTBE) were detected over the MCL in samples collected from borings SB-5 and SB-7.

GROUNDWATER MONITORING

Groundwater well monitoring performed during this event included measuring depth to water in the monitor wells and sample collection. Groundwater samples were analyzed for total extractable petroleum hydrocarbons (TEPH) using USEPA Method 8015 Modified and benzene, toluene, ethylbenzene, xylenes (BTEX), MTBE, and gasoline by EPA Method 8021B.

A site map displaying the monitoring well locations is presented as Figure 1. Chain-of-custody documents, field data sheets and certified analytical reports are included in Appendix D.

Groundwater Elevations and Flow Direction

On March 20, 2001, all 14 Site monitor wells were inspected and measured for the presence of free phase hydrocarbons and depth to groundwater. Measurements of depths to groundwater are presented on Table 2 and were used to construct the groundwater elevation contours shown in Figure 1. As shown on Figure 1, groundwater flow is to the west at a gradient of 0.046 feet/foot.

Groundwater Sampling Activities

The monitor wells were purged a minimum of three casing volumes using a centrifugal pump and samples were collected using disposable polyethylene bailers in all wells except W-2, which was abandoned on January 23, 2001. During well purging, field parameters for pH, electrical conductivity and temperature were monitored using calibrated field meters.

Groundwater samples were transferred to 40-milliliter glass vials preserved with hydrochloric acid and one-liter non-preserved amber glass containers and placed in an ice-filled cooler for shipment under chain-of-custody to a State of California certified laboratory. A trip blank was submitted for analysis by EPA Method 8021B.

Groundwater Analytical Results

Table 3 presents groundwater analytical results for the March 2001 sampling event. TPH was detected in all Site monitor wells except for MW-4. Concentrations of TPH above laboratory reporting limits ranged from 220 to 7200 parts per billion (ppb). Benzene was detected in wells W-1 and MW-6, at concentrations of 32 ppb and 49 ppb, respectively. These concentrations are above the maximum contaminant level (MCL) for benzene of 1.0 ppb. Toluene was detected in monitor well MW-7 at a concentration below the MCL. Toluene, ethylbenzene and xylenes were detected in monitor wells MW-6 and W-1 at concentrations below the MCLs. MTBE was detected in four wells, three of which exceed the MCL of 13 ppb. These are MW-1, MW-2, and MW-5, at concentrations of 17 ppb, 33 ppb, and 87 ppb, respectively. MTBE concentration in MW-9 was below the MCL.

No analytes were detected in the trip blanks or method blanks. A lab control spike and lab control spike duplicate passed the EPA's criteria for acceptance.

SUMMARY OF RESULTS

- Soil samples collected in the vicinity of former Tank Farm No. 2 were impacted by concentrations of TPH;
- The grab groundwater sample collected in the vicinity of former Tank Farm No.
 2 was impacted by VOCs over MCLs and diesel, motor oil and ethylene glycol;
- Elevated concentrations of diesel and motor oil were detected in grab groundwater samples collected from downgradient borings SB-6 and SB-7;
- MTBE was detected in grab groundwater samples collected from borings SB-5 and SB-7 and monitor wells MW-1, MW-2, MW-5 above the MCL of 13 ppb.
- Benzene was detected in W-1, and MW-6 above the MCL of 1 ppb.

- TPH was detected in all Site monitor wells except MW-4.
- Groundwater flow is to the west at a gradient of 0.046 feet/foot.

PROJECTED WORK AND RECOMMENDATIONS

- Quarterly groundwater monitoring is scheduled for June 2001.
- An additional monitor well should be installed along the downgradient property line to confirm elevated concentrations of diesel and motor oil detected in grab groundwater samples.

TABLE 1

SUMMARY OF ADDITIONAL CHARACTERIZATION ANALYTICAL DATA AC TRANSIT 1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	TCE	PCE	MTBE	В	T	Е	X	TPH-8015	SS	Diesel	Motor Oil	EG	cis-1,2-DCE
MCL (ppb)	·	5	5	13	1	150	700	1750						6
Water														
SB-1	1/22/01	10	6.50	<2.0	<2.0	<2.0	<2.0	<2.0	69	<0.056	260	280	18,000	11
SB-5	1/23/01	<2.0	<2.0	15	<2.0	<2.0	<2.0	<2.0	<50	N/A	N/A	N/A	N/A	<2.0
SB-6	1/23/01	<2.0	<2.0	12	<2.0	<2.0	<2.0	<2.0	3,600	N/A	8,600	1,700	N/A	<2.0
SB-7	1/22/01	<2.0	<2.0	19	<2.0	<2.0	<2.0	<2.0	24,000	N/A	2,400,000	450,000	N/A	<2.0
SB-8	1/23/01	<2.0	<2.0	10	<2.0	<2.0	<2.0	<2.0	83	N/A	160	<310	N/A	<2.0

Soil (ppm)														
SB-1 15 -16	1/22/01	<.10	<.10	<.10	<.10	<.10	<.10	<.10	27	<1.0	<1.0	<10	<10	<.10
SB-2 9'-10'	1/22/01	<.10	<.10	<.10	<.10	<.10	0.73	0.24	330	4.10	6.40	<10	12	<.10
SB-3 11'-12'	1/22/01	<.10	<.10	<.10	<.10	<.10	<.10	<.10	560	<1.0	2.10	<10	<10	<.10
SB-4 11'-12'	1/22/01	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<1.0	<1.0	<1.0	<10	<10	<.10

Notes:

N/A: not analyzed EG: Ethelene glycol

B, T, E, X: Benzene, Toluene, Ethylbenzene, Xylene (respectively)

TPH: total petroleum hydrocarbons MCL: maximum contaminant level

SS: Stoddard Solvent PCE: Tetrachloroethene TCE: Trichloroethene

cis-1,2-DCE: cis-1,2-Dichloroethylene

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS AC TRANSIT 1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	Top of Casing Elevation (ft-msl)	Product Thickness (feet)	DTW (feet)	Groundwater Elevation (ft-msl)	Groundwater Elevation Corrected from Product Thickness* (ft-msl)
MW-1	8/31/99	32.56	None	3.24	29.32	NA
IVI W - 1	11/23/99	32.30	None	4.55	28.01	NA
	3/1/00		None	3.65	28.91	NA
	5/17/00		None	4.08	28.48	NA
	8/30/00		None	5.18	27.38	NA
	12/18/00		None	4.86	27.7	NA
	3/20/01		None	4.22	28.34	NA
A GWL O	8/31/99	32.12	None	5.24	26.88	NA
MW-2	11/23/99	J2.12	None	4.03	28.09	NA
			None	3.11	29.01	NA
	3/1/00		None	3.66	28.46	NA
	5/17/00			4.65	27.47	NA
	8/30/00		None	4.06	28.06	NA
	12/18/00		None	4.00 3.91	28.21	NA.
	3/20/01	94.0/	None	000000000000000000000000000000000000000	27.91	NA
MW-3	8/31/99	34.06	None	6.15	28.28	NA
	11/23/99		None	5.78	29.24	NA
	3/1/00		None	4.82		NA
	5/17/00		None	5.29	28.77	NA NA
	8/30/00		None	6.20	27.86	NA NA
	12/18/00		None	5.65	28,41	NA NA
	3/20/01		None	5.18	28.88	W. Sacra con configuration and 11111 11111 11111 11111 11111
MW-4	8/31/99	34.11	None	6.22	27.89	NA
	11/23/99		None	6.01	28.10	NA NA
	3/1/00		None	4.74	29.37	NA
	5/17/00		None	5.33	28.78	NA
	8/30/00		None	6.26	27.85	NA
	12/18/00	***	None	5.66	28.45	NA
	3/20/01		None	5.46	28.65	NA
MW-5	8/31/99	31.7	None	4.51	27. 1 9	NA
	11/23/99		None	4.00	27.70	NA
	3/1/00		None	3.31	28.39	NA
	5/17/00		None	3.59	2 8 .1 1	NA
	8/30/00		None	4.53	27.17	NA
	12/18/00		None	3.97	27.73	NA
	3/20/01		None	3.68	28.02	NA
MW-6	8/31/99	31.02	None	4.40	26.62	NA
	11/23/99		None	3.81	27.21	NA
	3/1/00		None	2.88	28.14	NA
	5/17/00		None	3.44	27.58	NA
	8/30/00		None	4.40	26.62	NA
	12/18/00		None	3.61	27.41	NA
	3/20/01		None	3.16	27.86	NA
MW-7	8/31/99		None	5,47	24.15	NA
-	11/23/99		None	4.93	24.69	NA
	3/1/00		None	4.06	25.56	NA
	5/17/00		None	4.69	24.93	NA
	8/30/00		None	5.50	24.12	NA
	12/18/00		None	5.78	23.84	NA
	3/20/01		None	4.83	24.79	NA

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS AC TRANSIT 1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	Top of Casing Elevation (ft-msl)	Product Thickness (feet)	DTW (feet)	Groundwater Elevation (ft-msl)	Groundwater Elevation Corrected from Product Thickness* (ft-msl)
MW-8	8/31/99	29.43	None	5.35	24.08	NA
11211 0	11/23/99		None	4.75	24.68	NA
	3/1/00		None	4.48	24.95	NA
	5/17/00		None	4.78	24.65	NA
	8/30/00		None	5.02	24.41	NA
	12/18/00		None	5.23	24.20	NA
	3/20/01		None	4.70	24.73	NA
MW-9	8/31/99	29.18	None	4.15	25.03	NA
	11/23/99		None	3.93	25.25	NA
	3/1/00		None	3.69	25.49	NA
	5/17/00		None	3.56	25.62	NA
	8/30/00		None	4.64	24.54	NA
	12/18/00		None	4.02	25.16	NA
	3/20/01		None	3.92	25.26	NA NA
MW-10	8/31/99	29.13	None	9.59	19.54	NA
11277 20	11/23/99	2.7.2	None	9.44	19.69	NA
	3/1/00		None	9.06	20.07	NA
	5/17/00		None	9.31	19.82	NA
	8/30/00		None	9.68	19.45	NA
	12/18/00		None	9.41	19.72	NA
	3/20/01		None	9,23	19,90	NA.
W-1	3/2/00	33.43	None	4.08	29.35	NA
,. <u>-</u>	5/17/00		None	5.41	28.02	NA
	8/30/00		None	6.71	26.72	NA
	12/18/00		None	5.73	27.70	NA
	3/20/01		None	5.16	28.27	NA NA
W-2	5/17/00	34.21	None	5.60	28.61	NA
	8/30/00		None	7.37	26.84	NA
	12/18/00		None	6.44	27.77	NA
W-3	5/17/00	37.46	None	6.38	31.08	NA
	8/30/00		None	8.16	29.30	NA
	12/18/00		None	7.19	30.27	NA
	3/20/01		None	5.70	31.76	NA.
W-4	3/2/00	31.72	None	3.34	28.38	NA
	5/17/00		None	3.86	27.86	NA
	8/30/00		None	4.99	26.73	NA
	12/18/00		None	4.20	27.52	NA
	3/20/01		None	3.75	27.97	NA NA

Notes

* used 0.8 specific gravity of product

ft-msl:feet mean sea level
DTW: Depth to water
NA: not applicable

TABLE 3
ANALYTICAL RESULTS GROUNDWATER SAMPLES
AC TRANSIT
1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	TPH-8015	TPH-8021	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MCL (ppb)		None	None	1.0	150	700	1750	13
MW-1	8/31/99	310	NA	<1.0	2.4	1	1.6	NA
	11/23/99	250	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	310	62	<1.0	<1.0	<1.0	<20	68 7
	5/17/00	390	63	<1.0	<1.0	<1.0	<2.0	74
	8/31/00	180	< 50	<1.0	<1.0	<1.0	<2.0	49
	12/18/00	310	<50	<1.0	<1.0	<1.0	<2.0	44
	3/21/01	240	<50	<1.0	<1.0	≤1.0	<2.0	17
MW-2	8/31/99	180	NA	<1.0	<1.0	<1.0	1.2	NA
	11/23/99	120	NA	<1.0	<1.0	<1.0	< 5.0	NA
	3/1/00	510	<50	<1.0	<1.0	<1.0	< 2.0	81
	5/17/00	1,100	<50	<1.0	<1.0	<1.0	< 2.0	87
	8/31/00	620	<50	<1.0	<1.0	<1.0	< 2.0	65
	12/19/00	830	< 50	<1.0	<1.0	<1.0	<2.0	70
	3/21/01	900	<50	<2.0	<2.0	<2.0	<4.0	33
MW-3	8/31/99	2,700	NA	<1.0	<1.0	<1.0	<1.0	NA
	11/23/99	640	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	<250	< 50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	620	<50	<1.0	<1.0	<1.0	< 2.0	< 5.0
	8/31/00	1,800	<50	<1.0	<1.0	<1.0	< 2.0	< 5.0
	12/18/00	NA	<50	<1.0	<1.0	<1.0	< 2.0	< 5.0
	3/21/01	1,700	<50	<1.0	<1.0	<1.0	<2.0	<5.0
MW-4	8/31/99	< 50	NA	<1.0	<1.0	<1.0	1.6	NA
	11/23/99	< 50	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	<250	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	80	<50	<1.0	<1.0	<1.0	<2.0	< 5.0
	8/31/00	<250	<50	<1.0	<1.0	<1.0	<2.0	< 5.0
	12/18/00	<250	<50	<1.0	<1.0	<1.0	<2.0	< 5.0
	3/20/01	<250	<50	<1.0	<1.0	<1.0	<2.0	<5.0
MW-5	8/31/99	250	NA	<1.0	<1.0	<1.0	1	NA
	11/23/99	300	NA	<1.0	<1.0	<1.0	<5.0	NA
	3/1/00	340	< 50	<1.0	<1.0	<1.0	<2.0	100
	5/17/00	230	< 50	<1.0	<1.0	<1.0	<2.0	86
	8/31/00	220	< 50	<1.0	<1.0	<1.0	<2.0	59
	12/18/00	360	<50	<1.0	<1.0	<1.0	<2.0	57
	3/20/01	250	<50	≪5.0	<5.0	<5.0	<10	87
MW-6	8/31/99	140,000	NA .	77	18	31	49	NA
	11/23/99	6,100	NA	45	14	6.9	48	NA
	3/1/00	22,000	2800	6.8	<2.0	<2.0	<10	<5.0
	5/17/00	1,800	6200	77	16	39	37	<5.0
	8/31/00	76,000	5300	60	13	43	45.7	<5.0
	12/19/00	6,300	1300	26.0	4.9	8.4	11.5	<5.0
	3/21/01	5,100	1900	49.0	9.5	13	12	<10
MW -7	8/31/99	1,400	NA	<1.0	2.9	2.3	2.7	NA
	11/23/99	530	NA	<1.0	<1.0	<1.0	<1.0	NA -20
	3/1/00	640	860	<1.0	<1.0	<1.0	<2.0	<20
	5/17/00	430	410	<1.0	<1.0	<1.0	<2.0	9.5
	8/31/00	950	1100	<1.0	<1.0	<1.0	<2.0	<5.0
	12/18/00	1,100	820	<1.0	<1.0	<1.0	<2.0	<5.0
	3/20/01	770	1000	<1.0	1.4	<1.0	<2.0	<5.0

TABLE 3
ANALYTICAL RESULTS GROUNDWATER SAMPLES
AC TRANSIT
1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	TPH-8015	TPH-8021	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MCL (ppb)		None	None	1.0	150	700	1750	13
MW-8	8/31/99	230	NA	<1.0	<1.0	1.2	<1.0	NA
	11/23/99	220	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	260	150	<1.0	<1.0	<1.0	<2.0	< 5.0
	5/17/00	660	310	<1.0	<1.0	<1.0	<2.0	< 5.0
	8/31/00	460	300	<1.0	<1.0	<1.0	1.4	<5.0
	12/18/00	370	230	<1.0	<1.0	<1.0	<2.0	<5.0
·6	3/20/01	1,700	64	<1.0	<1.0	<1.0	<2.0	<5.0
MW-9	8/31/99	2,800	NA	<1.0	<1.0	<1.0	1.1	NA
	11/23/99	1,300	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	510	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	990	< 50	<1.0	<1.0	<1.0	<2.0	< 5.0
	8/31/00	1,100	<50	<1.0	<1.0	<1.0	< 2.0	<5.0
	12/18/00	1,900	<50	<1.0	<1.0	<1.0	<2.0	5.9
3	3/20/01	1,500	<50	<1.0	<1.0	<1.0	<2.0	5.5
M₩-10	8/31/99	1,10 0	NA	<1.0	1.2	2.0	<1.0	NA
	11/23/99	1,200	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	1,300	540	<1.0	<1.0	<1.0	<2.0	Na12
	5/17/00	990	460	<1.0	<1.0	<1.0	<2.0	6.9
	8/31/00	840	320	<1.0	<1.0	<1.0	< 2.0	25
	12/18/00	900	290	<1.0	<1.0	<1.0	< 2.0	< 9.0
*	3/21/01	620	220	<1.0	<1.0	<1.0	<2.0	<5.0
W-1	3/2/00	1,800	3400	20.0	5.3	30	23.8	< 5.0
	5/17/00	1,100	7300 .	35.0	11	59	45	<1.0
	8/31/00	2,200	6200	20.0	7.9	36	38.2	<10
	12/19/00	1,700	5600	20.0	8.4	30	35.6	<5.0
	3/20/01	2,100	7200	32.0	13	56	40	<10
- W-2	5/17/00	19,000	870	<2.0	<1.0	< 2.0	<4.0	< 5.0
	8/31/00	7,400	2200	4.6	2.5	3.8	11	< 5.0
	12/19/00	10,000	290	8.8	3.4	8.6	17.4	<5.0
W-3	5/17/00	<50	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	8/31/00	< 50	< 50	<1.0	<1.0	<1.0	<2.0	<5.0
	12/18/00	<250	< 50	<1.0	<1.0	<1.0	<2.0	<5.0
	3/20/01	630	<50	<1.0	<1.0	<1.0	<2.0	<5.0
W-4	3/2/00	190	<50	1.1	<1.0	<1.0	<2.0	<5.0
	5/17/00	230	< 50	<1.0	<1.0	<1.0	<2.0	< 5.0
	8/31/00	240	<50	<1.0	<1.0	<1.0	< 2.0	<5.0
	12/19/00	320	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	3/21/01	220	<50	<1.0	<1.0	<1.0	<2.0	<5.0

Notes:

ppb: parts per billion

TPH: Total Petroleum Hydrocarbons
MTBE: methyl tert butylether

MCL: Maximum Contaminant Level

NA: not analyzed

#136 PB2

7.04

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 951 TURNER COURT, SUITE 310, HAYWARD, CA 94949-2461 PRONE (310) 676-2575 ANDREAS GODFREY PAX (SI TAX (519) 670-5262 (510) 678-5248 ALVIN KAN

DRILLING PERMIT APPLICATION	•
nott ting permit application	
DISTRIBUTE OF STREET	_

DRILLING PERMIT A	PPLICATION
DEATION OF PROJECT 11 7747 STRUET	PERMIT NUMBER WOL -035 WELL NUMBER APN
Alifornia Goordinann Source n. Assumey 2ft.	PERMIT CONDITIONS
Alifornia Guardinems JeurezR. CCER. Assumey 2R.	Circled Permit Requirements Apply
THENT ACTIONS: + (See Patton) Lame ACTIONS: + (See Patton) Lame ACTIONS Lity Out Land Control 20 74403 LAPTLICANT LAME Dately - Elem Control 20 100 Wright) LAME DATELY - Elem Control 20 100 JA - 100 JA LAME DATELY - Elem Control 20 100 JA - 100 JA	GENERAL 1. A permit application about he submitted so as so univer as the ACPWA office five days prior to proposed starting date. 2. Submit to ACPWA within 60 days after completion of permitted work the original Department of Water Resources Wester Well Drillers Report or equivalent for well project, or drilling logs and location statch for personalized project in void of surect not begun within 90 days of approval date. 3. Permit is void if project not begun within 90 days of approval date. 3. WATER SUPPLY WELLS 1. Minimum surface seel thickness to two techns of
Cathodic Protection D General C	comment growt placed by fremie.
Water Supply D Commination C Monitoring D Well Destruction	industrial wells or 20 feet for domestic and frigation wells unless a lease dopth is specially approved.
PROPOSED WATER SUPPLY WELL USE New Domessis O Replacement Pomessic O Memicipal O Integration O Industrial O Other O DRILLING METHOD:	C. GROUNDWATER MONITORING WELLS ENCLUDING PIEZOMETERS 1) Minimum perfect sent thickness is two inches of econors ground by transle. 2. Minimum qual dapth for manitoring wells in the manitoring wells in the manitoring wells in the
Mus Retary C Air Rotary C Auser C	D. GEOTECHNICAL. Sockill bote bole with compacted cuttings or heavy
DRILLER'S LICENSE NO. 657 48565 PKD-731-02 WELL PROJECTS Drill Note Diameter Casing Diameter Surface Scal Depth 1. Number 1. Number	between and upper two feet with compacted material. In areas of known ar suspected concentration, named. Carnest great shall be used in place of compacted countings. E. CATHODIC PAI hole above smode zone with concrete placed by transic. F. WELL DESTRUCTION See created. G. SPECIAL CONDITIONS
CEOTECHNICAL PROJECTS Number of Borings S Maximum Hole Dismoses m. Depth n. ESTIMATED STARTING DATE SAME 1 2001	APPROVED 1 MATE 1-10-0
Applicant's Way Wind DATE 0/8/0/	

NOV 24 197 14137

ALAMEDA CO PUBLIC UK

P.03

Jan-10-01 12:40P Safety*Kleen Consulting 510 337 3994 NOV-24-197 MDN 13:39 10:ALAMEDA CO PUBLIC MK FAX MO:518/678-5262

#136 PB2

USA# 16904

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

151 TURNER COURT, SUITE 300, HAYWARD, CA 140045-3661
PHONE (310) 670-6376 ANDREAS GODFREY FAX (510) 670-5362
(310) 670-6363 ALVIN KAN

DRILLING PERMIT APPLICATION

L			
A DEATION OF PROJECT	LICANTTO COMPLETE 177 47 1 64 reed	· 	PERMIT NUMBER WO1-036 WELL NUMBER
California Coordinante Source	ft. Adourne	r <u>=</u> ft.	PERMIT CONDITIONS
CCN	A CCE	<u> </u>	Circled Formit Requirements Apply
CLIENT Norm Address 10 626 E. 14 City October APPLICANT Name Safety - Holorom Address 2212 Standard	Consulting (Box) Vix \$10 - 11 Clary Ave those \$10-	(Dazy 61)	A: CBNERAL 1. A permit application should be submitted so as so arrive at the ACPWA office five days prior to proposed starting date. 2. Submit to ACPWA within 60 days after completion of permitted work the original Department of Water Resources Water Well Delicer Resource requireless for wall projects, or drilling lags and location photoh for geographical projects. 3. Permit is said if project our begun within 90 days of
City Alemade	A Zip 9-190	-	SPHOWS SEE-
TYPE OF PROJECT Well Construction Cathodic Prosection	Geotechnical Investig	pilien · Ci	1. Minimum gerface east thickness is two inches of
Mares Subb ja Calibrate Mortenni	D Contemistation	ō	2. Minimum mai dopth is 50 feet for municipal and ledustriel wells or 20 feet for domestic and irrigation
Monitoring	U Well Destruction	8	weeks makens a leasest death is specially approved.
PROPOSED WATER SUFF	LY WELL USE	_	C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
Hew Comestic O	Replacement Domestic	0	1. Minimum surface tent thickness in two inches of
Manicipal () Industrial ()	Intigation Other	0	conjust groot placed by tromic. 2. Minimum seel depth for monitoring wells in the
DETALING METHOD			medinum dayth precideable or 20 feet.
Med Roters 'O	Air Rotery D Aug	er ()	(D. GEOTECHNICAL Backfitt bore hale with compacted cuttings or beavy
Cable 0	Other U		A complete and manner than Cost with professional traderial.
DRILLER'S LICENSE NO.	C57 485165	- exp.1-31-02	In west of known of suspected contamination, tremted. cament grout shall by used in piace of antiquand cutings.
WELL PROJECTS	Gress Dully d'	restre	
Drill Hole Diameter	in. Maximum	٠ ي	E. CATROPEL FILL belo shows enade some with concrete placed by tramic. F. WELL DESTRUCTION
Casing Distrector	in. Deptk	_u.	See smacked.
Surface Scal Depth			C. SPECIAL CONDITIONS
GEOTECHNICAL PROJECTION OF THE PROJECT OF THE PROJE	Meximum	n.	
estimated starting i Estimated completic	DATE Jan. 22, 2000 DATE Fan. 44, 44	001	APPROVED DATE 1-10-0
I hereby agree to comply with Alameda County Ordinance	ith all requirements of this port : No. 73-48.	nit and	
APPLICANT'S	Dright DATE	1/8/01	,

NDU 24 197 14137

ALAMEDA CO PLELIC UK

PAGE. 882

BORING NO. SB-01

Page Lof L

CLIENT	ACT									JOB NUME	3ER:	792551		
			rviii)=						LOCATION: 1	<u> </u>				
EXCAVATED BY: Gregg Drilling OPERATOR: Paul									METHOD:		PROBE	<u> </u>		
	DATE START: 1/22/01 DATE COMP: 1/22/01 TIME:								1			PTH: 16 F		
<u> </u>	LOGGED BY: Erik Gerking APPROVED BY:									DEPTH TO				
			-			ALTROVE.				1				SAMPLE
COMP	OPT	₹0 10 10 10 10 10 10 10 10 10 10 10 10 10	GRAPHIC USCS C	, LUG ODE	' 		DES	CRIPTI(UN		_		NUMBER	ANAL.
WELL	DPT -		GRAPHIC	GP CH	0-1	-16' Silty Cla moist, high p otal Depth 16	el (Fill)	SCRIPTIO	ON Olive brown, (2.5	5Y5/4),			SAMPLE NUMBER SB-1 Soil W	
JOB NUMBER: 792551	20-													

SAFETY-KLEEN CONSULTING

Page Lof 1

CLIENT:	AC	Т						JOB NUMB	ER: 7925	51				
PROJECT:	Er	mme	ryville				LOCATION: 11	77 47th St.						
EXCAVATED E	3Y: G	regg	Drilling		OPERATOR: Paul			METHOD:	GEOPROE	E	-			
DATE START:	DATE START. 1/22/01									TOTAL DEPTH: 12 FT				
LOGGED BY: Erik Gerking APPROVED BY:								DEPTH TO	WATER:					
WELL	DPT	BLOWS	GRAPHIC		DES	CRIPTIO)N		OVM	SAMPLE NUMBER	SAMPLE ANAL.			
СОМР		퓹	uscs co	DE	-			<u> </u>	(PP)	I NOMBER	Anaci			
T 277	-	1	• •		0-3.5' Pea Gravel fill									
	-													
				GP										
	-													
		4												
	_				3.5'-6.5' Silty Clay (0,5,40,	55), dark	greenish gray,	(5Y4/I)	64 23.5	· [
					high plasticity.									
el of	5-	-		СН										
2" diameter borehole		1								-				
all				\dashv	6.5'-9.0' Silty clay with san	d (0,20,	30,50), greenish	gray,	_					
	_	1			(565/I), medium plasticity									
		-												
								<u>.</u>						
				CL	9.0'-12.0' Silty clay, (10,10,3 (5GY4/I), medium plastici	30,50), d ty, odife	ark greenish gre: rous.	у,			8260			
Backill w/ Restraite	10-	1								SB-2 Soil	8015			
		4								6 8, collect				
1		1			Total Depth 12 Feet				ļ	ļ	!			
		+												
	15-	-												
ł		-												
ļ														
									ŀ					
		+												
JOB NUMBER: 7925	20	_												

Page 1 of 1

CONSOL LINO						100 1000	ED, ZOGEE		
CLIENT: ACT							ER: 79255	· · · · · · · · · · · · · · · · · · ·	
	eryville				LOCATION: 1				
EXCAVATED BY: Gregg	Drilling		OPERATOR: Paul	l _= =		METHOU:	GEOPROBE	PTH: 18 F	
DATE START: 1/22/01		DATE CO	MP: 1/22/01	TIME:		050711 75			<u>'</u>
LOGGED BY: Erik Gerkir			APPROVED BY:			DEPTH TO	OVM	SAMPLE	SAMPLE
r meer lurtio	GRAPHIC I		DES	CRIPTI	NC			NUMBER	ANAL.
COMP Societific to the state of the state o		GP 4. CH 8 8 9 SM 11 CH 11	'-5.0' Pea Gravel (fill), 50 '0'-8.0' Silty Clay (0,10,40) high plasticity, moist. 1.0'-9.0' Silty sand, (15,30) (574/2), low plasticity, s 1.0'-11.0' Silty sand (15,45, plasticity, dry. 1.0'-11.5' Silty gravel with s polychroma, saturated. 1.5'-12.0' Silty clay (0,10,4) high plasticity, odiferous Total Depth 16 Feet	,23,22), cosaturated, 20,20) ol	y dark greyish b live grey, i. ive grey (5G5/2), low	5 @ 12'	SB-3 Soil collect 8 11.5"	8260 8015

BORING NO. SB-04

Page 1 of 1

JOB NUMBER: 792551 CLIENT: ACT LOCATION: 1177 47th St. PROJECT: Emmeryville METHOD: GEOPROBE EXCAVATED BY: Gregg Orilling OPERATOR: Paul TIME: TOTAL DEPTH: 16 FT DATE COMP: 1/22/01 DATE START: 1/22/01 DEPTH TO WATER: 6 APPROVED BY: LOGGED BY: Erik Gerking SAMPLE SAMPLE BLOWS OVM GRAPHIC LOG WELL DESCRIPTION DPT ANAL. (ppm) NUMBER USCS CODE COMP 0-4" Concrete 0-11.5' Pea gravel fill. GP 11.5'-12.0' Silty clay, (10,10,30,50), dark greenish grey, CL SB-4 8260 (5G4/I), medium plasticity, moist. Soil 8015 Collect 12.0'~16.0' No recovery. @ 11.5" 15-Total Depth 16 Feet 20-IOB NUMBER: 792551

ENVIRONMENTAL DECISION GROUP, INC.

SOIL BORING/WELL LOG

BORING NO. SB-5

Page 1 of 1

CLIENT:	AC	TR	ANSIT			-		109 NANB	ER: 79248	9	
PROJECT	: U	ST :	INVES	TIGAT	ION		LOCATION: 11	OO SEMINAF	RY AVE., O	KLAND, CA	
EXCAVATED	BY: K	VILH	AUG DRIL	LING	OPERATOR: DON E	EVANS		METHOD:	GEOPROBE	MACROCOF	Æ
DATE START	: 1-8-	99		DATE	COMP: 1-8-99	REF.	L: FT		TOTAL DE	PTH: 17 F	7
LOGGED BY:	BRAD	WRIC	НТ		APPROVED BY: BF	RAD WRIGH	T	DEPTH TO	WATER: 0	RY HOLE	
WELL	ОРТ	BLOWS	GRAPHIC USCS CO		C	ESCRIPTIO	ON		(ppm)	SAMPLE NUMBER	SAMPLE ANAL.
	- - - 5-			:L/CH	Concrete 12-inches 0-8° Silty Clay; (0,20,40 moist 6-7.5° Sandy Clay; (0,40				0.0		
2" da borehole	- 10-			SC CL	7.5-9' Clayey Sand; (10, fine sand to fine gravet; 9-11' Sandy Clay; (0,40,3 soft; moist @ 10' stiff; slightly moist	to coarse (50,20,20); d subrounded:	grained sand; moi ark yellowish brod loose; moist	st wn (10YR 4/4	0.0	Soli 7-7.5	8015 8020
	-				After 2.5 hours no water Discrete water sampler p No water was encountere	robe was dr	iven to 17 feet.		0.0		
	15—										
108 NUNBER: 79248	20-				·						

Page Lof L

CLIENT: ACT	· · · · · · · · · · · · · · · · · · ·					JOB NUMB	ER:	792551		ļ
	ruilla	_ .			LOCATION: 11	77 47th St.				
	ryville		OPERATOR: Paul			METHOD:		PROBE		
EXCAVATED BY: Gregg	ormany	DATE CO	MP: 1/23/01	TIME:					PTH: 29 F	·T
DATE START: 1/23/01		DATE CO	APPROVED BY:			DEPTH TO	<u> </u>			
LOGGED BY: Erik Gerkin		. 60	<u></u>				_ T	OVM	SAMPLE	SAMPLE
WELL DPT SMO	GRAPHIC I USCS CO		DES	CRIPTI	UN				NUMBER	ANAL.
18 Secritify of Particular Partic		GP 2.5 CL SM 5.6 CH 5. SM 13 CH 13 ML 2 ML 2	-6" Concrete -2.5' Pea Gravel 5'-5.0' Silty clay with sand low plasticity. 0'-5.5' Silty sand with gralew plasticity, dry, moist. 5'-8.0' Silty clay (0,10,40 high plasticity, odiferous. 0'-13.0' Silty sand with graderk yellowish brown, (10' dark yellowish brown, (10' dark yellowish brown, (10' high plasticity. 3.25'-13.75' Silty sand with dry, low plasticity, dry. 3.75'-18.0' Silty clay (0,10 high plasticity. 8.0'-21.0' Silt with sand (0' yellow, (5YR6/8).	vel (25, ,50), dar avel (25, ,40,50), gravel ,40,50), , odifero (0,20,60	40,25,10), polychr k-greenish gray, (40,25,10), ow plasticity, sat olive, (2.5Y4/4), (20,60,20,0), olivi dark olive, (5Y3/ 0), reddish	oma, (5GY4/I) urated. e, (5Y4/4)		1.6	SB-6 W	8260 8015

BORING NO. SB-07

Page 1 of 1

OUTENT: ACT				JOB NUMBER:	792551		
CLIENT: ACT	ille		LOCATION:	1177 47th St.			
PROJECT: Emmery		OPERATOR: Paul		METHOD: GEO	PROBE		
EXCAVATED BY: Gregg Dri		ATE COMP: 1/22/01	TIME:			PTH: 20 F	Т
DATE START: 1/22/01	UA	APPROVED BY:	, girlan	DEPTH TO WA			
LOGGED BY:					OVM	SAMPLE	SAMPLE
	RAPHIC LOG	DES	CRIPTION			NUMBER	ANAL.
15 - 15 - 20 - 25 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	CH/CL CH SC CH	3.0'-7.5' Silty clay, (0,15,45, high plasticity. 7.5'-8.0' Clayey sand with s (564/1), medium low plasticity. 8.0'-12.0' Silty clay (0,5,25, high plasticity	.40), dark yellowish bro lit, (0,50,20,25), dark g city, odiferous saturate	reenish grey, ed.	17.1 9 6°	SB-7 W Collect @ 7.5'	8260 8015

BORING NO. SB-08

Page I of I

CLIENT: A	ACT							JOB NUMB	ER:	792551		
PROJECT:		eryville	<u> </u>				LOCATION: 11	77 47th St.				
EXCAVATED BY				-	OPERATOR: Paul			METHOD:	GEO	PROBE		
DATE START:		·	D	ATE COI	MP: 1/23/01	TIME:			TO	TAL DE	PTH: 25 F	т
LOGGED BY: Er					APPROVED BY:			DEPTH TO) WA	TER: 10)	
			C LOG			CRIPTI	ON.	I		OVM	SAMPLE	SAMPLE
COMP	IPT E	uscs			UE3	JORII 11		<u> </u>	_	(ppm)	NUMBER	ANAL.
TOMP Sockfill W. Bentonite Packfill W. Bentonite	5		CM CH SC CH	7.4 11. 12	e" Concrete 5'-7.0' Silty clay with san (10YR3/6) high plasticity. 0'-11.0' Silty clay (0,15,45 high plasticity, saturated 0'-11.5' Sandy clay (0,15, (10YR4/6), medium plasticity 2.5'-23.0' Silty clay (0,10,4 high plasticity, moist. 23.0'-25.0' Silty sand (0,4 moderate low plasticity, Total Depth 25 Feet	35,25,25) city. 0,50), da, very mo	owish brown, (10°), dark yellowish brok greenish grey ist. lack, (2.5YR2.5/0	YR5/4) Drown, , (5GY4/1), D)		4 9 12'	SB-8 W Collect © 11.5'	8260 8015

SAFETY-KLEEN CONSULTING

SOIL BORING/WELL LOG

Page Loft

CONSOL	1 11										
CLIENT:	AC	Γ						JOB NUMB		551 ————	
PROJECT:			ryville				LOCATION: 11				
EXCAVATED	BY: G	regg	Drilling	· · · · · ·	OPERATOR: Paul	 		METHOD:			
DATE START:	1/22	/01		DATE C	OMP: 1/22/01	TIME:			<u> </u>	DEPTH: 14	FT
LOGGED BY:	Erik G		9		APPROVED BY:			DEPTH TO			
WELL COMP	DPT	BLOWS	GRAPHIC USCS CO		DE	SCRIPTI	DN		OVI (ppi	SAMPLE NUMBER	SAMPLE ANAL.
		ā	1					<u> </u>	-		
	_			ĺ	-4" Middle of Pad Concrete Surface						
	_			C	1–14.0' Pea Gravel (fill)						
	-										
	-										
	-										
	5—										
onehole	-	-									
2" diameter borehole	-										
	-	1									
- I de la company	¥ -	1									
Backill of Bertantie	10-	-									
	-										
	-										
	-										
	-				214' Geoprobe Stopped by tank floor.	concret	e pad, bottom of	pre-existing	J		
	15-	1			Total Depth 14 Feet						
		1									
	-										
JOB NUMBER: 79255	20-	-									

13 February, 2001

Brad Wright Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda, CA 94501

RE: No Project Sequoia Report: W101564

Enclosed are the results of analyses for samples received by the laboratory on 24-Jan-01 14:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dimple Sharma Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 15 1/2-16 1/2	W101564-01	Soil	22-Jan-01 09:15	24-Jan-01 14:00
SB-1	W101564-02	Water	22-Jan-01 09:15	24-Jan-01 14:00
SB-7	W101564-03	Water	22-Jan-01 11:00	24-Jan-01 14:00
SB-2 9'-10'	W101564-04	Soil	22-Jan-01 12:00	24-Jan-01 14:00
SB-3 11'-12'	W101564-05	Soil	22-Jan-01 13:15	24-Jan-01 14:00
SB-4 11'-12'	W101564-06	Soil	22-Jan-01 13:50	24-Jan-01 14:00
SB-8	W101564-07	Water	23-Jan-01 10:20	24-Jan-01 14:00
Trip Blank	W101564-08	Water	23-Jan-01 10:15	24-Jan-01 14:00
SB-6	W 101564-09	Water	23-Jan-01 11:40	24-Jan-01 14:00
SB-5	W 101564-10	Water	23-Jan-01 11:00	24-Jan-01 14:00

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dimple Sharma, Project Manager

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Total Purgeable Hydrocarbons by DHS LUFT Sequoia Analytical - Walnut Creek

-	- <u> </u>					
Reporting Limit	Units Dilution	Batch	Prepared	Analyzed	Method	Notes
Jan-01 09:15	Received: 24-Jan-	01 14:00	-			P-03
25	mg/kg 500	1A30015	30-Jan-01	05-Feb-01	EPA 8015M	
%	40-140	n	"	"	n .	S-0.
:15 Received:	24-Jan-01 14:00					P-03
50	ug/l l	1B02001	02-Feb-01	02-Feb-01	EPA 8015M	
98.3 %	70-130	"	"	'n	n .	
:00 Received:	24-Jan-01 14:00					P-03
10000	ug/l 200	1B02001	02-Feb-01	02-Feb-01	EPA 8015M	
100 %	70-130	"	"	į,	ri .	
12:00 Receiv	ved: 24-Jan-01 14:0	00				P-0
100	mg/kg 2000	1A30015	30-Jan-01	03-Feb-01	EPA 8015M	
%	40-140	"	"	n	"	S-0.
)1 13:15 Rece	ived: 24-Jan-01 14	:00				P-03
500	mg/kg 10000		30-Jan-01	05-Feb-01	EPA 8015M	
%	40-140		"	н	n	S-02
)1 13:50 Rece	eived: 24-Jan-01 14	:00				
1.0	mg/kg 20	1A30015	30-Jan-01	02-Feb-01	EPA 8015M	
99.7%	40-140	"	п	"	"	
·20 Received	: 24-Jan-01 14:00					P-03
50	ug/l 1	1B02001	02-Feb-01	02-Feb-01	EPA 8015M	
	Limit Jan-01 09:15 25 % 15 Received: 50 98.3 % 1000 Received: 10000 100 % 12:00 Received: 100 96 113:15 Received: 500 % 01 13:50 Received: 1.0 99.7 %	Limit Units Dilution Jan-01 09:15 Received: 24-Jan- 25 mg/kg 500 % 40-140 15 Received: 24-Jan-01 14:00 50 ug/l l 98.3 % 70-130 10000 ug/l 200 1000 Received: 24-Jan-01 14:00 1000 mg/kg 2000 % 40-140 01 13:50 Received: 24-Jan-01 14 1.0 mg/kg 20 10000 % 40-140 01 13:50 Received: 24-Jan-01 14 1.0 mg/kg 20	Limit Units Dilution Batch Jan-01 09:15 Received: 24-Jan-01 14:00 25 mg/kg 500 1A30015 % 40-140 " 15 Received: 24-Jan-01 14:00 50 ug/l 1 1B02001 98.3 % 70-130 " 100 Received: 24-Jan-01 14:00 10000 ug/l 200 1B02001 100 % 70-130 " 12:00 Received: 24-Jan-01 14:00 100 mg/kg 2000 1A30015 % 40-140 " 01 13:15 Received: 24-Jan-01 14:00 500 mg/kg 10000 1A30015 % 40-140 " 01 13:50 Received: 24-Jan-01 14:00 1.0 mg/kg 20 1A30015 99.7 % 40-140 "	Limit Units Dilution Batch Prepared	Limit Units Dilution Batch Prepared Analyzed	Limit Units Dilution Batch Prepared Analyzed Method

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Total Purgeable Hydrocarbons by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 (W101564-09) Water	Sampled: 23-Jan-01 11:40	Received:	24-Jan-	01 14:00					P-03
Purgeable Hydrocarbons	3600	500	ug/l	10	1B05001	05-Feb-01	05-Feb-01	EPA 8015M	
Surrogate: a,a,a-Trifluorotol	uene	84.7%	70-	130	р	"	"	"	
SB-5 (W101564-10) Water	Sampled: 23-Jan-01 11:00	Received:	24-Jan-	01 14:00				<u></u>	
Purgeable Hydrocarbons	ND	50	ug/l	1	1B02001	02-Feb-01	02-Feb-01	EPA 8015M	
Surrogate: a,a,a-Trifluorotol	uene	102 %	70-	-130	"	"	"	"	

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Custom Extractable Hydrocarbons by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 15 1/2-16 1/2 (W101564-01) Soi	l Sampled: 22-Ja	n-01 09:15	Receive	d: 24-Jan-(14:00				
Stoddard Solvent (C9-C13)	ND	1.0	mg/kg	1	1B05013	05-Feb-01	06-Feb-01	DHS LUFT	
Surrogate: n-Pentacosane		64.1 %	50-	150	"	"	"	"	
SB-1 (W101564-02) Water Sample	d: 22-Jan-01 09:15	Received:	24-Jan-(14:00					
Stoddard Solvent (C9-C13)	ND	0.056	ug/l	1	1B05012	05-Feb-01	06-Feb-01	DHS LUFT	
Surrogate: n-Pentacosane		154 %	50-	150	"	"	"	"	S-04
SB-2 9'-10' (W101564-04) Soil Sam	npled: 22-Jan-01 12	:00 Receiv	ved: 24-J	an-01 14:00	0				
Stoddard Solvent (C9-C13)	4.1	1.0	mg/kg	1	1B05013	05-Feb-01	08-Feb-01	DHS LUFT	D-21
Surrogate: n-Pentacosane		91.0 %	50-	150	"	"	"	"	
SB-3 11'-12' (W101564-05) Soil Sa	mpled: 22-Jan-01 1	3:15 Rece	ived: 24-	Jan-01 14:	00				
Stoddard Solvent (C9-C13)	ND	1.0	mg/kg	1	1B05013	05-Feb-01	08-Feb-01	DHS LUFT	
Surrogate: n-Pentacosane		103 %	50-	150	"	tt.	,,	"	
SB-4 11'-12' (W101564-06) Soil Sa	mpled: 22-Jan-01 1	3:50 Rece	ived: 24-	Jan-01 14:	00 _				
Stoddard Solvent (C9-C13)	ND	1.0	mg/kg	1	1B05013	05-Feb-01	06-Feb-01	DHS LUFT	
Surrogate: n-Pentacosane		91.9 %	50-	150	"	. "	"	. "	

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT Project Manager: Brad Wright **Reported**: 13-Feb-01 12:57

Hydrocarbons as Motor Oil by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 15 1/2-16 1/2 (W101564-01) Soil	Sampled: 22-Jan	n-01 09:15	Received	l: 24-Jan-(11 14:00				
Motor Oil (C16-C36)	ND	10	mg/kg	1	1B05013	05-Feb-01	06-Feb-01	DHS LUFT	
Diesel Range Hydrocarbons	ND	1.0	**	**	11	11	**	**	
Surrogate: n-Pentacosane		64.1 %	50-	150	"	"	"	"	
SB-1 (W101564-02) Water Sampled	l: 22-Jan-01 09:15	Received:	24-Jan-0	1 14:00				<u></u>	
Motor Oil (C16-C36)	280	280	ug/l	1	1B05012	05-Feb-01	06-Feb-01	DHS LUFT	D- 1
Diesel Range Hydrocarbons	260	56	ш	н	**	11		"	D- 17
Surrogate: n-Pentacosane		154 %	50-	150	"	"	"	"	S-0-
SB-7 (W101564-03) Water Sampled	l: 22-Jan-01 11:00	Received	24-Jan-0	1 14:00					. <u> </u>
Motor Oil (C16-C36)	450000	130000	ug/l	100	1B05012	05-Feb-01	07-Feb-01	DHS LUFT	D-0
Diesel Range Hydrocarbons	2400000	25000	*1))	"	11		"	D-1
Surrogate: n-Pentacosane		51100 %	50-	150	"	n	"	"	S-0
SB-2 9'-10' (W101564-04) Soil Sam	pled: 22-Jan-01 12	:00 Recei	ved: 24-J:	an-01 14:0	0				
Motor Oil (C16-C36)	ND	10	mg/kg	1	1B05013	05-Feb-01	08-Feb-01	DHS LUFT	
Diesel Range Hydrocarbons	6.4	1.0	**		**	**	"	n	D-1
Surrogate: n-Pentacosane		91.0 %	50-	150	"	n	n	,,	
SB-3 11'-12' (W101564-05) Soil San	npled: 22-Jan-01	3:15 Rece	eived: 24-	Jan-01 14:	00				
Motor Oil (C16-C36)	ND	10	mg/kg	1	1B05013	05-Feb-01	08-Feb-01	DHS LUFT	
Diesel Range Hydrocarbons	2.1	1.0	н	**	77	"	**		D-1
Surrogate: n-Pentacosane		103 %	50-	150	,,	"	"	"	
SB-4 11'-12' (W101564-06) Soil San	mpled: 22-Jan-01	13:50 Rec	eived: 24-	Jan-01 14:	00				
Motor Oil (C16-C36)	ND	10	mg/kg	1	1B05013		06-Feb-01	DHS LUFT	
Diesel Range Hydrocarbons	ND	1.0	**	**	"				
Surrogate: n-Pentacosane		91.9%	50-	-150	"	"	"	"	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Hydrocarbons as Motor Oil by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 (W101564-07) Water	Sampled: 23-Jan-01 10:20	Received:	24-Jan-(14:00					, ,
Motor Oil (C16-C36)	ND	310	ug/l	l	1B05012	05-Feb-01	06-Feb-01	DHS LUFT	
Diesel Range Hydrocarbons	160	63	"	**	**	II	H	**	D-13
Surrogate: n-Pentacosane		77.2 %	50-	150	"	"	"	"	
SB-6 (W101564-09) Water	Sampled: 23-Jan-01 11:40	Received:	24-Jan-6	01 14:00					
Motor Oil (C16-C36)	1700	360	ug/l	1	1B05012	05-Feb-01	06-Feb-01	DHS LUFT	D-14
Diesel Range Hydrocarbons	8600	71	"	11	11	H	H	"	D-16
Surrogate: n-Pentacosane		68.1 %	50-	150	**	"	"	rr .	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Glycols by NIOSH Method 5500 (modified)

Sequoia Analytical - Walnut Creek

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Soil Sampled: 22-Ja	n-01 09:15	Receive	d: 24-Jan-(01 14:00			<u>.</u>	
ND	10	mg/kg	1	1A30020	30-Jan-01	30-Jan-01	NIOSH 5500	
led: 22-Jan-01 09:15	Received:	24-Jan-	01 14:00					
18	10	mg/l	ì	1A29019	30-Jan-01	30-Jan-01	NIOSH 5500	
ampled: 22 -J an-01 12	2:00 Receiv	ved: 24-J	an-01 14:00	0			•	
12	10	mg/kg	1	1A30020	30-Jan-01	30-Jan-01	NIOSH 5500	
Sampled: 22-Jan-01	13:15 Rece	ived: 24-	Jan-01 14:	00				
ND	10	mg/kg	1	1A30020	30-Jan-01	30-Jan-01	NIOSH 5500	
Sampled: 22-Jan-01 1	13:50 Rece	ived: 24-	Jan-01_14:	00				
ND	10	mg/kg	1	1A30020	30-Jan-01	30-Jan-01	NIOSH 5500	
	Soil Sampled: 22-Ja ND Sled: 22-Jan-01 09:15 18 sampled: 22-Jan-01 12 12 Sampled: 22-Jan-01 12 ND Sampled: 22-Jan-01 12	Soil Sampled: 22-Jan-01 09:15 ND 10 sled: 22-Jan-01 09:15 Received: 18 10 Received: 12 12 10 Sampled: 22-Jan-01 13:15 Received: 12 ND 10 Sampled: 22-Jan-01 13:50 Received: 12	Result Limit Units Sampled: 22-Jan-01 09:15 Receiver ND	Result Limit Units Dilution Sampled: 22-Jan-01 09:15 Received: 24-Jan-01 10 ND	Result Limit Units Dilution Batch Soil Sampled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 ND 10 mg/kg 1 1A30020 sled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 1A29019 ampled: 22-Jan-01 12:00 Received: 24-Jan-01 14:00 1 1A30020 Sampled: 22-Jan-01 13:15 Received: 24-Jan-01 14:00 ND 10 mg/kg 1 1A30020 Sampled: 22-Jan-01 13:50 Received: 24-Jan-01 14:00 1A30020	Result Limit Units Dilution Batch Prepared Soil Sampled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 A30020 30-Jan-01 Soled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 A29019 30-Jan-01 ampled: 22-Jan-01 12:00 Received: 24-Jan-01 14:00 1 A30020 30-Jan-01 Sampled: 22-Jan-01 13:15 Received: 24-Jan-01 14:00 1 A30020 30-Jan-01 Sampled: 22-Jan-01 13:50 Received: 24-Jan-01 14:00	Result Limit Units Dilution Batch Prepared Analyzed Soil Sampled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 1A30020 30-Jan-01 30-Jan-01 30-Jan-01 Soled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 1A29019 30-Jan-01 30-Jan-01 30-Jan-01 ampled: 22-Jan-01 12:00 Received: 24-Jan-01 14:00 30-Jan-01 30-Jan-01 Sampled: 22-Jan-01 13:15 Received: 24-Jan-01 14:00 ND 10 mg/kg 1 1A30020 30-Jan-01 30-Jan-01 Sampled: 22-Jan-01 13:50 Received: 24-Jan-01 14:00	Result Limit Units Dilution Batch Prepared Analyzed Method Soil Sampled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 1 1A30020 30-Jan-01 30-Jan-01 NIOSH 5500 Soled: 22-Jan-01 09:15 Received: 24-Jan-01 14:00 30-Jan-01 30-Jan-01 NIOSH 5500 Sampled: 22-Jan-01 12:00 Received: 24-Jan-01 14:00 30-Jan-01 30-Jan-01 NIOSH 5500 Sampled: 22-Jan-01 13:15 Received: 24-Jan-01 14:00 ND 10 mg/kg 1 1A30020 30-Jan-01 30-Jan-01 NIOSH 5500 Sampled: 22-Jan-01 13:50 Received: 24-Jan-01 14:00 30-Jan-01 NIOSH 5500 NIOSH 5500

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 15 1/2-16 1/2 (W101564-01) Soil	Sampled: 22-	Jan-01 09:15	Receive	d: 24-Jan-(14:00		·		
Dichlorodifluoromethane	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	0.10	"	**	**	11	"	"	
Vinyl chloride	ND	0.10	н	ef	**	II .	11	**	
Bromomethane	ND	0.10	"	11	Ħ	u	11	"	
Chloroethane	ND	0.10	11	**	**	u u	n	"	
Trichlorofluoromethane	ND	0.10	**	**	#	**	II	"	
1,1-Dichloroethene	ND	0.10	"	11	II	И	**		
Methylene chloride	ND	0.50	U	п	II .	**	**	II	
Methyl tert-butyl ether	ND	0.10	u	u	н	n	**	II	
trans-1,2-Dichloroethene	ND	0.10	"		**	IJ	H	п	
1,1-Dichloroethane	ND	0.10	"	11	*1	II	**	**	
2,2-Dichloropropane	ND	0.10	ŧı	**	••	"	11	11	
cis-1,2-Dichloroethene	ND	0.10		*1	**	**	II	er .	
2-Butanone	ND	0.50	II .	11	п	#	tt	**	
Bromochloromethane	ND	0.10	"	11	n	**	**	n	
Chloroform	ND	0.10	u	н	H	"	"	II .	
1,1,1-Trichloroethane	ND	0.10	**	**	71	11	н	u	
Carbon tetrachloride	ND	0.10	"	ш	tt	II	•	**	
1,1-Dichloropropene	ND	0.10	**	**	**	н	11	"	
Benzene	ND	0.10	"	*11	17	**	II	rt .	
1,2-Dichloroethane	ND	0.10	II	II	11	"	"	"	
Trichloroethene	ND	0.10	μ	11	II .	Ħ	**	п	
1,2-Dichloropropane	ND	0.10	**	**	**	"	**	II.	
Dibromomethane	ND	0.10	**	**	**	11	π	It	
Bromodichloromethane	ND	0.10	11	Ħ	н	II	**	"	
cis-1,3-Dichloropropene	ND	0.10		"	**	u	11	11	
Toluene	ND	0.10	11	н	11	**	11	**	
trans-1,3-Dichloropropene	ND	0.10		ш	п	"	n n	"	
1,1,2-Trichloroethane	ND	0.10		u u	11	**	**	n	
Tetrachloroethene	ND	0.10		**	••	*1	11	n .	
1,3-Dichloropropane	ND	0.10		**	n	ш	**	**	
Dibromochloromethane	ND	0.10			•	п	11	и .	
1,2-Dibromoethane	ND	0.10		**	**	**	U	"	
Chlorobenzene	ND	0.10		п	п	77	ш	#	
Ethylbenzene	ND	0.10		п	н	**	**	и	
Total Xylenes	ND	0.10			••	"	н	u	
1,1,1,2-Tetrachloroethane	ND	0.10		*1	н	u	**	"	
Styrene	ND	0.10			**	u	. н	н	

Sequoia Analytical - Walnut Creek

Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 15 1/2-16 1/2 (W101564-01) Soil	Sampled: 22-Ja	n-01 09:15	Receive	d: 24-Jan-	114:00	- 			
Bromoform	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	ND	0.10	**	11	Ħ	II	**	*	
1,1,2,2-Tetrachloroethane	ND	0.10	н	**	**	"	II .	11	
Bromobenzene	ND	0.10	**	17	II .	**	ii	"	
n-Propylbenzene	ND	0.10	н	II .	"	"	н	II	
1,2,3-Trichloropropane	ND	0.10	ıı	u	rt	II .	"	u u	
2-Chlorotoluene	ND	0.10	II.	R	11	IJ	"	н	
1,3,5-Trimethylbenzene	ND	0.10	"	71	н	П	**	**	
4-Chlorotoluene	ND	0.10	**	*	14	•	II	н	
tert-Butylbenzene	ND	0.10	**	**	IJ	11	II	••	
1,2,4-Trimethylbenzene	ND	0.10	U	II	п	*	H	"	
sec-Butylbenzene	ND	0.10	"	u	Ħ	11	"	II .	
p-Isopropyltoluene	ND	0.10	**	**	**	II .	н	u	
1,3-Dichlorobenzene	ND	0.10	**	**	11	II .	"	**	
1,4-Dichlorobenzene	ND	0.10	"	**	**	"	II .	11	
n-Butylbenzene	ND	0.10	**	"	11	•	П	**	
1,2-Dichlorobenzene	ND	0.10	II .	п	п	н	н	**	
1,2-Dibromo-3-chloropropane	ND	0.10	u	III	H	11	*	U	
1,2,4-Trichlorobenzene	ND	0.10	**		**	17	**	п	
Naphthalene	ND	0.50	11	11	ττ	II	**	Ħ	
Hexachlorobutadiene	ND	0.10	*	"	**	u	**	"	
1,2,3-Trichlorobenzene	ND	0.10	н	41	n	"	"	**	
Surrogate: Dibromofluoromethane		102 %	50	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %		-150	"	"	"	"	
Surrogate: Toluene-d8		102 %		-150	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %		-150	"	rr .	n	"	

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 (W101564-02) Water Sa	ampled: 22-Jan-01 09:15	Received:	24-Jan-0	1 14:00					
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	2.0	н	**	**	II .	**	п	
Vinyl chloride	ND	2.0	**	**	"	II	**	**	
Bromomethane	ND	5.0	**	**	11	п	"	**	
Chloroethane	ND	2.0	"	н	**	u	11	11	
Trichlorofluoromethane	ND	2.0	Ħ	**	**	н	II	77	
1,1-Dichloroethene	ND	2.0	"	**	**	**	II .	**	
Methylene chloride	ND	10	**	"	**	**	II .	"	
Methyl tert-butyl ether	ND	2.0	41	H	ш	n	н	"	
trans-1,2-Dichloroethene	ND	2.0	11	ii	11		**	11	
1,1-Dichloroethane	ND	2.0	II .	II.	11	*	17 ·	II	
2,2-Dichloropropane	ND	5.0	п	п	tt	"	**	n .	
cis-1,2-Dichloroethene	11	2.0	н	н	**	н	37	(I	
Bromochloromethane	ND	2.0	**	"	77	ш	*	u	
Chloroform	ND	2.0		11	11	U	,,	**	
1,1,1-Trichloroethane	ND	2.0	*	H	#	ш	**	**	
Carbon tetrachloride	ND	2.0	**	**	••	II	31	π.	
1,1-Dichloropropene	ND	2.0	**	**	17	+1		••	
Benzene	ND	2.0	17	11	n n	**	п	**	
1,2-Dichloroethane	ND	2.0		п	п	"	ш	II.	
Trichloroethene	10	2.0		п	и	11	"	п	
1,2-Dichloropropane	ND	2.0	11	a	п	**		п	
Dibromomethane	ND ND	2.0	**	Ħ	H		.,	n	
Bromodichloromethane	ND ND	2.0	,,	**	••	,,	•	n n	
		2.0	,,	77	**	11	H	Ħ	
2,2,5,5-Tetramethyltetrahydrofu		2.0	**	**	11	ji	**	**	
cis-1,3-Dichloropropene	ND ND		rı		,,		**	••	
Toluene	ND	2.0 5.0			,,	n	**	ø	
trans-1,3-Dichloropropene	ND		,,	**	11	н	II	11	
1,1,2-Trichloroethane	ND	2.0	11	n	n	.,	U	**	
Tetrachloroethene	6.5	2.0	 U	n		**	11	**	
1,3-Dichloropropane	ND	2.0	"	"	" "	н	**	11	
Dibromochloromethane	ND	2.0		"	" "	,,			
1,2-Dibromoethane	ND	2.0	"	"	" "	"	**	"	
Chlorobenzene	ND	2.0	H	"	,,	" "	"		
Ethylbenzene	ND	2.0	**			"	,,		
Total Xylenes	ND	2.0	**	**	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.0	**	H					
Styrene	ND	2.0	**	"	**	H	11	11	

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 (W101564-02) Water Sam	pled: 22-Jan-01 09:15	Received:	24-Jan-	14:00					
Bromoform	ND	2.0	ug/l	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	ND	2.0	4	**	**	н	11	71	
1,1,2,2-Tetrachloroethane	ND	2.0	"	41	II .	"	ıı	H	
Bromobenzene	ND	2.0	U	п	II	ķi	Ħ	11	
n-Propylbenzene	ND	2.0	ш	ш	Ħ	"	TI TI	II	
1,2,3-Trichloropropane	ND	2.0	**	**	**	II .	"	**	
2-Chlorotoluene	ND	2.0	**	11	H-	u	11	71	
1,3,5-Trimethylbenzene	ND	2.0	n	**	"	11	II	**	
4-Chlorotoluene	ND	2.0	"	11	п	11	ш	**	
tert-Butylbenzene	ND	2.0	11	U	и	ur.	H	II .	
1,2,4-Trimethylbenzene	ND	2.0	11	п	II	#	"	H .	
sec-Butylbenzene	ND	2.0	II .	**	**	"	11	u u	
p-Isopropyltoluene	ND	2.0	**	***	11	II	"	*1	
1,3-Dichlorobenzene	ND	2.0	11	Ħ	**	II .	"	**	
1,4-Dichlorobenzene	ND	2.0	"	**	**	н	11	11	
n-Butylbenzene	ND	2.0	**	"	II .	**	II	и	
1,2-Dichlorobenzene	ND	2.0	II	III	II .	ч	a	17	
1,2-Dibromo-3-chloropropane	ND	5.0	н	n	п	**	**	11	
1,2,4-Trichlorobenzene	ND	2.0		w	**	11	11	п	
Naphthalene	ND	10	"	Ħ	**	11	"	Ħ	
Hexachlorobutadiene	ND	10	*	"	"	н	11	#	
1,2,3-Trichlorobenzene	ND	2.0	17	" -	ii	**	"		
Surrogate: Dibromofluoromethan	e	101 %	50	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		103 %	50	-150	"	n	"	"	
Surrogate: Toluene-d8		102 %	50	-150	#	n	"	"	
Surrogate: 4-Bromofluorobenzene	2	98.0 %	50	-150	"	"	"	"	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (W101564-03) Water Sa	ampled: 22-Jan-01 11:00	Received:	24-Jan-(14:00		_		<u></u>	
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	31-Jan-01	31-Jan-01	EPA 8260B	
Chloromethane	ND	2.0	11	II.	11	11	II .	**	
Vinyl chloride	ND	2.0	li	п	п	**	**	11	
Bromomethane	ND	5.0	"	ш	***	III	**	u .	
Chloroethane	ND	2.0	#	**	**	II	**	**	
Trichlorofluoromethane	ND	2.0	17	*1	Př	II	n	"	
1,1-Dichloroethene	ND	2.0	**	**	••	(l	IJ	rr .	
Methylene chloride	ND	10		**	11	"	ıı	**	
Methyl tert-butyl ether	19	2.0	**	ш	11	н	"	**	
trans-1,2-Dichloroethene	ND	2.0	II .	11	ш	17	"	II	
1,1-Dichloroethane	ND	2.0	u	H	**	н	**	п	
2,2-Dichloropropane	ND	5.0	"	**	**	II	**	P+	
cis-1,2-Dichloroethene	ND	2.0	н	**	**	II	**	**	
Bromochloromethane	ND	2.0	"	**	**	**	ш	**	
Chloroform	ND	2.0	11	11	п	**	n	"	
1,1,1-Trichloroethane	ND	2.0	п	II	u	11	P	п	
Carbon tetrachloride	ND	2.0	н	н	**	"	"	11	
1,1-Dichloropropene	ND	2.0	**	**	11	п	**	"	
Benzene	ND	2.0	ŧı	77	**	п	**	**	
1,2-Dichloroethane	ND	2.0	**	"	••	**	U	ч	
Trichloroethene	ND	2.0	н	ıı	n	"	II .	**	
1,2-Dichloropropane	ND	2.0	п	ii	п	**	**	n	
Dibromomethane	ND	2.0	**	**	**	"	**	п	
Bromodichloromethane	ND	2.0	**	,,	•	п	**	u ·	
2,2,5,5-Tetramethyltetrahydrofu		2.0	**	"		ш	"	"	,
cis-1,3-Dichloropropene	ND	2.0	,,	**	"	**	11	16	
	ND	2.0	11	n	п	"	II .	**	
Toluene	ND	5.0	п	п	п	31	н	n .	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND ND	2.0	**	**	n	**	**	п	
	ND ND	2.0	,,	**	"	n n	"	п	
Tetrachloroethene	ND ND	2.0	н	#		п	11	**	
1,3-Dichloropropane	ND	2.0	•1	,,	#	**	п	п	
Dibromochloromethane	ND ND	2.0	,,,	Į)		**	ĮĮ.	"	
1,2-Dibromoethane	ND	2.0	u	п	ш	**	**	U	
Chlorobenzene		2.0	н	**	,,	11	**	u	
Ethylbenzene	ND		**	**	**	п	**	**	
Total Xylenes	ND	2.0	**	**	**	н	11	n	
1,1,1,2-Tetrachloroethane	ND	2.0	**	,,					
Styrene	ND	2.0	"	"	**				

Sequoia Analytical - Walnut Creek

Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (W101564-03) Water Samp	led: 22-Jan-01 11:00	Received:	24-Jan-	14:00					
Bromoform	ND	2.0	ug/l	1	1A30019	31-Jan-01	31-Jan-01	EPA 8260B	
Isopropylbenzene	11	2.0	स	H	**	#	II .	**	
1,1,2,2-Tetrachloroethane	ND	2.0	"	**	n	"	II	**	
Bromobenzene	ND	2.0	,,	п	II .	н	*	n	
n-Propylbenzene	14	2.0	"	п	**))	"	и	
1,2,3-Trichloropropane	ND	2.0	**	**	17	II	*	**	
2-Chlorotoluene	ND	2.0	**	**	**	н	II	FT	
1,3,5-Trimethylbenzene	ND	2.0	**	77	11	**	II	••	
4-Chlorotoluene	ND	2.0	п	ш	11	it	**	11	
tert-Butylbenzene	ND	2.0	II .	ш	**	"	91	II	
1,2,4-Trimethylbenzene	ND	2.0	н	**	"	II .	Ħ	u .	
sec-Butylbenzene	18	2.0	#	"	17	II	*	**	
p-Isopropyltoluene	ND	2.0	"	**	**	Ħ	n	*1	
1,3-Dichlorobenzene	ND	2.0	11	"	n	"	II .	**	
1,4-Dichlorobenzene	ND	2.0	п	п	п	17	***	11	
n-Butylbenzene	29	2.0	н	н	Ħ	**	a	п	
1,2-Dichlorobenzene	ND	2.0	**	**	**	п	*	н	
1,2-Dibromo-3-chloropropane	ND	5.0	m	Ħ	n	11	n	**	
1,2,4-Trichlorobenzene	ND	2.0	**	"	**	H	II	H	
Naphthalene	ND	10	п	n n	n	"	II .	"	
Hexachlorobutadiene	ND	10	(I	п	п	**	**	п	
1,2,3-Trichlorobenzene	ND	2.0		**		"	Ħ	ш	
Surrogate: Dibromofluoromethane		105 %	50	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		104 %		-150	"	H	н	"	
Surrogate: Toluene-d8		105 %		-150	"	"	"	n	
Surrogate: 10tuene-40 Surrogate: 4-Bromofluorobenzene		165 %		-150	"	"	"	"	S-6

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

								<u> </u>	.,
Analyte	Result	orting Limit	Units	Dilution		Prepared	Analyzed	Method	Notes
SB-2 9'-10' (W101564-04) Soil	Sampled: 22-Jan-01 12:00	Receiv	ed: 24-J	an-01 14:00		<u> </u>	<u> </u>		
Dichlorodifluoromethane	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	0.10	,,,	II .	п	**	"	11	
Vinyl chloride	ND	0.10		п	Ħ	**	***	II	
Bromomethane	ND	0.10	Ħ	**	**	ii	"	11	
Chloroethane	ND	0.10	**	"	+1	II	"	"	
Trichlorofluoromethane	ND	0.10	11	H	**	н	II	**	
1,1-Dichloroethene	ND	0.10	"	**	**	"	II	**	
Methylene chloride	ND	0.50	#1	H		44	#	11	
Methyl tert-butyl ether	ND	0.10	п	II	п	**	"	"	
trans-1,2-Dichloroethene	ND	0.10	н	Ħ	**	**	**	II	
1,1-Dichloroethane	ND	0.10	**	"	"	II	**	tr	
2,2-Dichloropropane	ND	0.10	**	**	**	II	**	**	
cis-1,2-Dichloroethene	ND	0.10	**	**	**	**	II	rr ·	
2-Butanone	ND	0.50	11	t)	11	"	п	**	
Bromochloromethane	ND	0.10	n	II .	u	**	**	11	
Chloroform	ND	0.10	п	н	п	**	**	ti .	
1,1,1-Trichloroethane	ND	0.10	**	**	**	п	17	п	
Carbon tetrachloride	ND	0.10	**	H	н	п	**	**	
1,1-Dichloropropene	ND	0.10		**	**	н	u u	11	
Benzene	ND	0.10	11	11	ji.	**	п	**	
1,2-Dichloroethane	ND	0.10	п	11		н	**	11	
Trichloroethene	ND	0.10	**	rr	**	**	17	II .	
	ND ND	0.10	**	,,	11	n	**	ш	
1,2-Dichloropropane	ND ND	0.10	17	,,	**	п	**	"	
Dibromomethane	ND ND	0.10	**		**	n	п	12	
Bromodichloromethane		0.10	"	,,		**	п	"	
cis-1,3-Dichloropropene	ND			11		#	78		
Toluene	ND	0.10			**	**	**	11	
trans-1,3-Dichloropropene	ND	0.10		,,	**	**	**	H	
1,1,2-Trichloroethane	ND	0.10	77	#	**		11	11	
Tetrachloroethene	ND	0.10		,,	,,	rt		*	
1,3-Dichloropropane	ND	0.10	**	11	" "	**	n	"	
Dibromochloromethane	ND	0.10	11			"	**		
1,2-Dibromoethane	ND	0.10	"	"	"	**	**	"	
Chlorobenzene	ND	0.10	Ħ	tt	"	"	"	**	
Ethylbenzene	0.73	0.10		"			"	,,	
Total Xylenes	0.24	0.10		51	**			"	
1,1,1,2-Tetrachloroethane	ND	0.10		"	**	11			
Styrene	ND	0.10	17	н	11	**	н	n	

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-2 9'-10' (W101564-04) Soil	Sampled: 22-Jan-01 12:0	0 Receiv	ed: 24-J	an-01 14:00	0				
Bromoform	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	0.61	0.10	•	**	Ħ	"	"	**	
1,1,2,2-Tetrachloroethane	ND	0.10	H	**	**	н	"	**	
Bromobenzene	ND	0.10	**	44	11	11	II	**	
n-Propylbenzene	0.87	0.10	. 0	IJ	11	*	**	11	
1,2,3-Trichloropropane	ND	0.10		II	Ħ	17	"	11	
2-Chlorotoluene	ND	0.10	#	**	17	II	**	н	
1,3,5-Trimethylbenzene	0.61	0.10	**	11	n	(I	"	"	
4-Chlorotoluene	ND	0.10	**	"	**	#	II	"	
tert-Butylbenzene	ND	0.10	**	11	11	**	П	**	
1,2,4-Trimethylbenzene	0.12	0.10	"	11	п	**	н	11	
sec-Butylbenzene	0.27	0.10	a	н	н	**	"	.,	
p-Isopropyltoluene	0.56	0.10	"	**	**	11	17	u	
1,3-Dichlorobenzene	ND	0.10	"	**	п	U	**	**	
1,4-Dichlorobenzene	ND	0.10	**	**	"	a	11	**	
n-Butylbenzene	0.39	0.10	"	11	11	17	II	**	
1.2-Dichlorobenzene	ND	0.10	ıı .	II .	11	11	Ħ	"	
1,2-Dibromo-3-chloropropane	ND	0.10	u	u	п	**	**	11	
1,2,4-Trichlorobenzene	ND	0.10	**	**	**	H	11	II .	
Naphthalene	0.50	0.50	**	n	11	II .	**	71	
Hexachlorobutadiene	ND	0.10	**	**	**	II .	**	**	
1,2,3-Trichlorobenzene	ND	0.10	**	n	11	**	ıı .		
Surrogate: Dibromofluorometha	ne	100 %	50	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d		106 %	50	-150	"	"	"	u	
Surrogate: Toluene-d8		99.2%	50	-150	"	n	"	и	
Surrogate: 4-Bromofluorobenzer	10	114%	50	-150	"	"	"	п	

Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Rep Result	orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SB-3 11'-12' (W101564-05) Soil	Sampled: 22-Jan-01 13:15	Recei	ived: 24-	Jan-01 14:0)0				
Dichlorodifluoromethane	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	0.10	"	н	"	U	**	и	
Vinyl chloride	ND	0.10	tt	**	11	U	"	**	
Bromomethane	ND	0.10	**	**	н	II	**	**	
Chloroethane	ND	0.10	**	**	**	**	II	**	
Frichlorofluoromethane	ND	0.10	**	*11	11	**	II		
l,1-Dichloroethene	ND	0.10	**	п	11	et	"	II	
Methylene chloride	ND	0.50	"	п	н	"	*	11	
Methyl tert-butyl ether	ND	0.10	II.	rt .	+*	н	"	п	
rans-1,2-Dichloroethene	ND	0.10	**	**	11	II	**	н	
1,1-Dichloroethane	ND	0.10	**	**	**	II.	"	**	
2,2-Dichloropropane	ND	0.10	**	**	***	u	II	**	
cis-1,2-Dichloroethene	ND	0.10	**	"	п	**	н	**	
2-Butanone	ND	0.50	н	II .	11	"	II	**	
Bromochloromethane	ND	0.10	a	п	н	*	"	u u	
Chloroform	ND	0.10	**	**	**	"	н	II .	
1,1,1-Trichloroethane	ND	0.10	"	**	**	II .	"	u	
Carbon tetrachloride	ND	0.10	н	**	"	II .	**	**	
1,1-Dichloropropene	ND	0.10	"	11	н	**	п	H	
Benzene	ND	0.10	ji .	11	ш	44	II	**	
1,2-Dichloroethane	ND	0.10	11	п	tt	11	••	II .	
Trichloroethene	ND	0.10	,,	**	**	**	Ħ	II	
1,2-Dichloropropane	ND	0.10	"	"	"	II	"	н	
Dibromomethane	ND	0.10	**	"	**	и	,,	**	
Bromodichloromethane	ND	0.10	**	**	#1	Ħ	II	ŧŧ	
cis-1,3-Dichloropropene	ND	0.10	n	ш	u u	"	п	**	
Toluene	ND	0.10	II .	u	II .	**	**	п	
trans-1,3-Dichloropropene	ND	0.10	**	H	**	"	11	н	
1,1,2-Trichloroethane	ND	0.10	**	"	***	11	π	H	
Tetrachloroethene	ND	0.10	**	**		u	"	**	
1,3-Dichloropropane	ND	0.10	**	11	11	H	II	11	
Dibromochloromethane	ND	0.10	11	II .	n	"	п	**	
1,2-Dibromoethane	ND	0.10	n	п	п	н	**	11	
Chlorobenzene	ND	0.10	**	Ħ	**	"	**	п	
Ethylbenzene	ND	0.10		**	"	п	**	и	
Total Xylenes	ND	0.10	17	н	**	n n	**	**	
1,1,1,2-Tetrachloroethane	ND	0.10			**	н	**	11	
Styrene	ND	0.10	11	11	n	**	п	**	

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B

Sequoia	Analytical -	Walnut	Creek
---------	--------------	--------	-------

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-3 11'-12' (W101564-05) Soil	Sampled: 22-Jan-01	13:15 Rece	ived: 24-	Jan-01 14:0	00				
Bromoform	ND	0.10	mg/kg	100	1A26017	26-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	0.19	0.10	**	**	11	**	II .	"	
1,1,2,2-Tetrachloroethane	ND	0.10	11	μ	и	u	н	1)	
Bromobenzene	ND	0.10	II.	ш	u	**	"	11	
n-Propylbenzene	0.24	0.10	II .	н	••	п	**	u	
1,2,3-Trichloropropane	ND	0.10	**	91	u	II	,,	**	
2-Chlorotoluene	ND	0.10	Ħ	11	**	II	п	*11	
1,3,5-Trimethylbenzene	ND	0.10	"	**	"	**	II .	н	
4-Chlorotoluene	ND	0.10	11	п	ш	11	п	11	
tert-Butylbenzene	ND	0.10		п	II	**	**	n	
1,2,4-Trimethylbenzene	ND	0.10	п	п	II .	**	"	п	
sec-Butylbenzene	0.15	0.10	н	**	**	II .	H	н	
p-Isopropyltoluene	0.15	0.10	**	"	Ħ	II .	**	er	
1,3-Dichlorobenzene	ND	0.10	н	**	"	II .	11	**	
1,4-Dichlorobenzene	ND	0.10		**	**	"	"	**	
n-Butylbenzene	0.23	0.10	**	n	п	**	tt	**	
1,2-Dichlorobenzene	ND	0.10		п		**	н	11	
1,2-Dibromo-3-chloropropane	ND	0.10	"	п	н	**	•	II .	
1,2,4-Trichlorobenzene	ND	0.10	**	**	**	**	11	II	
Naphthalene	ND	0.50	*1	**	"	II .	**	**	
Hexachlorobutadiene	ND	0.10	**	"	••	u	"	••	
1,2,3-Trichlorobenzene	ND	0.10	**	**	"	H	11	11	
Surrogate: Dibromofluoromethan		104 %	50	-150	n		"	"	
Surrogate: Dibromojtuoromeutan Surrogate: 1,2-Dichloroethane-d-		106 %		-150	"	"	и	"	
Surrogate: 1,2-Dichtoroethune-a- Surrogate: Toluene-d8	7	105 %		-150	"	"	rt .	п	
Surrogate: 1 otuene-ao Surrogate: 4-Bromofluorobenzen	e	114 %		-150	"	"	"	"	

Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

	Beduoia Isharyucai Wanat Ci oon								
Analyte	Result	Reporting Limit	Units	Dilution		Prepared	Analyzed	Method	Note
SB-4 11'-12' (W101564-06) Soil	Sampled: 22-Jan-01 1	3:50 Recei	ived: 24-	Jan-01 14:0)0				
Dichlorodifluoromethane	ND	0.10	mg/kg	100	1A26017	26-Jan-01	29-Jan-01	EPA 8260B	
Chloromethane	ND	0.10	u	**	**	**	"	ĮI.	
Vinyl chloride	ND	0.10	"	"	**	n	If	II	
Bromomethane	ND	0.10	11	11	н	Ц	**	ŧτ	
Chloroethane	ND	0.10	rr	**	**	17	II	11	
Trichlorofluoromethane	ND	0.10	**	**	D	**	II.	**	
1,1-Dichloroethene	ND	0.10	n	II	II .	Ħ	••	II	
Methylene chloride	ND	0.50	"	U	*1	"	11	II	
Methyl tert-butyl ether	ND	0.10	**	**	••	"	"	**	
trans-1,2-Dichloroethene	ND	0.10	"	**	Ħ	11	**	**	
1,1-Dichloroethane	ND	0.10	**	"	**	н	П	7)	
2,2-Dichloropropane	ND	0.10	••	*1	**	**	II	**	
cis-1,2-Dichloroethene	ND	0.10	11	п	п	**	u	"	
2-Butanone	ND	0.50	п	п	II.	श	н	#1	
Bromochloromethane	ND	0.10	n	н	**	**	**	"	
Chloroform	ND	0.10	11	**		**	11	п	
1.1.1-Trichloroethane	ND	0.10	н	н	н	II.	**	н	
Carbon tetrachloride	ND	0.10	+7	"		н	"	"	
1,1-Dichloropropene	ND	0.10	н	п	п	**	n n	**	
·	ND	0.10	и	II		H	77	н	
Benzene	ND ND	0.10		**	**	**	41	п	
1,2-Dichloroethane	ND	0.10	**	11	**	μ		*	
Trichloroethene		0.10	н	"		ij.	U	Ħ	
1,2-Dichloropropane	ND	0.10	"	**	,,	.,	u	**	
Dibromomethane	ND		ıı		lı	11	**	п	
Bromodichloromethane	ND	0.10	 H		"	**	**	11	
cis-1,3-Dichloropropene	ND	0.10	" **			11	77	н	
Toluene	ND	0.10	"	**	н	п	**		
trans-1,3-Dichloropropene	ND	0.10				**	n n	H	
1,1,2-Trichloroethane	ND	0.10	**	"	"			**	
Tetrachloroethene	ND	0.10	17		" "			11	
1,3-Dichloropropane	ND	0.10	п			"	**		
Dibromochloromethane	ND	0.10	u	Ħ	"		,,		
1,2-Dibromoethane	ND	0.10	**	"	"	"	"		
Chlorobenzene	ND	0.10	"	н	"		"	11	
Ethylbenzene	ND	0.10		"	**	Ħ		"	
Total Xylenes	ND	0.10	"	**	н	**	II .		
1,1,1,2-Tetrachloroethane	ND	0.10	II.	II	"	**	II .	11	
Styrene	ND	0.10	II	н	**	**	**	n	

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 11'-12' (W101564-06) Soil	Sampled: 22-Jan-01	13:50 Rece	ived: 24	Jan-01 14:0	00				
Bromoform	ND	0.10	mg/kg	100	1A26017	26-Jan-01	29-Jan-01	EPA 8260B	
Isopropylbenzene	ND	0.10	"	n n	"	"	**	II	
1,1,2,2-Tetrachloroethane	ND	0.10	н	**	**	II	H	II	
Bromobenzene	ND	0.10	**	**	"	п	**	81	
n-Propylbenzene	ND	0.10	"	71	**	н	**	51	
1,2,3-Trichloropropane	ND	0.10	•	**	11	**	II	**	
2-Chlorotoluene	ND	0.10	11	н	п	н	н	11	
1,3,5-Trimethylbenzene	ND	0.10	"	n n	н	**	"	II .	
4-Chlorotoluene	ND	0.10	**	***	"	n	**	n	
tert-Butylbenzene	ND	0.10	**	11	п	u	**	**	
1,2,4-Trimethylbenzene	ND	0.10	н	**	**	n	11	17	
sec-Butylbenzene	ND	0.10	**	II	п	*	II	**	
p-Isopropyltoluene	ND	0.10	II .	11	11	*1	н	11	
1,3-Dichlorobenzene	ND	0.10	н	Ħ	**	**	**	ш	
1,4-Dichlorobenzene	ND	0.10	**	**	77	II .	**	H	
n-Butylbenzene	ND	0.10	ti.	Ħ	**	II	"	**	
1,2-Dichlorobenzene	ND	0.10	**	"	11	4	п	н	
1,2-Dibromo-3-chloropropane	ND	0.10	"	11	ш	"	II	**	
1,2,4-Trichlorobenzene	ND	0.10	u	II .	и	11	н	**	
Naphthalene	ND	0.50	"	**	**	н	"	11	
Hexachlorobutadiene	ND	0.10	"	**	11	IJ	н	11	
1,2,3-Trichlorobenzene	ND	0.10	**	**	**		**	**	
Surrogate: Dibromofluoromethan	<u> </u>	102 %	50	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	50	-150	"	"	"	"	
Surrogate: Toluene-d8		103 %	50	-150	"	"	n	II .	
Surrogate: 4-Bromofluorobenzene	?	98.0 %	50	-150	"	u	"	"	

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-8 (W101564-07) Water S	ampled: 23-Jan-01 10:20	Received:	24-Jan-	01 14:00		-			
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	2.0	11	**	"	н	"	"	
Vinyl chloride	ND	2.0	**	**	**	*1	II	II.	
Bromomethane	ND	5.0	**	"	11	н	II	"	
Chloroethane	ND	2.0	II .	II .	н	"	**	11	
Trichlorofluoromethane	ND	2.0	11	н	R	1)	"	п	
1,1-Dichloroethene	ND	2.0	"	H	**	U	II	a	
Methylene chloride	ND	10	••	**	n	II .	**	**	
Methyl tert-butyl ether	10	2.0	17	- н	**	u	**	••	
trans-1,2-Dichloroethene	ND	2.0	n	tt	"	H	н	**	
1,1-Dichloroethane	ND	2.0	"	11	**	"	"	**	
2,2-Dichloropropane	ND	5.0	11	U	п	н	"	79	
cis-1,2-Dichloroethene	ND	2.0	μ	II	u	it		II	
Bromochloromethane	ND	2.0	п	Ħ	**	1*	ч.	II	
Chloroform	ND	2.0	**	**	**	II .	**	н	
1,1,1-Trichloroethane	ND	2.0	**	17	Ħ	II	**	**	
Carbon tetrachloride	ND	2.0	**	**		u	"	79	
1,1-Dichloropropene	ND	2.0	"	**	"	"	· ·	n	
Benzene	ND	2.0	п	ii	ш	**	ji.	"	
1,2-Dichloroethane	ND	2.0		u	u	**	н	п	
Trichloroethene	ND	2.0		**		н	"	п	
1,2-Dichloropropane	ND	2.0	11	11	11	II	14	u	
Dibromomethane	ND	2.0	**	**	**	п	11	**	
Bromodichloromethane	ND	2.0	"	**	**	*	n	**	
2,2,5,5-Tetramethyltetrahydrofi		2.0	п	п	II.	n	II	**	
	ND	2.0			п	**	**	II	
cis-1,3-Dichloropropene	ND ND	2.0	*	**	**	"	11	u .	
Toluene	ND ND	5.0	"	**	11	н	и	er	
trans-1,3-Dichloropropene	ND ND	2.0	**	71	**	п	**	**	
1,1,2-Trichloroethane	ND ND	2.0		**	,,	**	11	U	
Tetrachloroethene	ND ND	2.0 2.0	1)	II.	ji .	.,	п	**	
1,3-Dichloropropane		2.0		II.	п	Ħ	n	11	
Dibromochloromethane	ND		и.		"		,,	п	
1,2-Dibromoethane	ND	2.0	" H	**		**	Ħ	п	
Chlorobenzene	ND	2.0	,,	**			17	***	
Ethylbenzene	ND	2.0	**	"	" ••		11	**	
Total Xylenes	ND	2.0	**	"	**		,, H	11	
1,1,1,2-Tetrachloroethane	ND	2.0		"	"	**			
Styrene	ND	2.0	11	II	"	"			

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 (W101564-07) Water S:	ampled: 23-Jan-01 10:20	Received:	24-Jan-0	14:00					
Втотобогт	ND	2.0	ug/l	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	ND	2.0	"	11	II	**	II .	**	
1,1,2,2-Tetrachloroethane	ND	2.0	н	11	IJ	"	н	77	
Bromobenzene	ND	2.0	U	II	II .	н	Ħ	11	
n-Propylbenzene	ND	2.0		II	u	**	**	II .	
1,2,3-Trichloropropane	ND	2.0	ш	Ц	n	n	**	II	
2-Chlorotoluene	ND	2.0	u	н	**	"	17	II	
1,3,5-Trimethylbenzene	ND	2.0	**	**	•	11	r	u	
4-Chlorotoluene	ND	2.0	**	"	**	II	**	11	
tert-Butylbenzene	ND	2.0	**	"	11	II	**	t t	
1,2,4-Trimethylbenzene	ND	2.0	**	н	H	II	**	**	
sec-Butylbenzene	ND	2.0	PF	"	**	п	11	**	
p-Isopropyltoluene	ND	2.0	27	**	"	ч	Ш	**	
1,3-Dichlorobenzene	ND	2.0	**	•	**	**	n	н	
1,4-Dichlorobenzene	ND	2.0	**	"	п	**)ı	"	
n-Butylbenzene	ND	2.0	**	μ	п	11	II	,,	
1,2-Dichlorobenzene	ND	2.0	11	"	11	**	II	*	
1,2-Dibromo-3-chloropropane	ND	5.0	п	II .	п	11	н	"	
1,2,4-Trichlorobenzene	ND	2.0	u	II	п	H	rr	19	
Naphthalene	ND	10	u	II .	u	**	"	II .	
Hexachlorobutadiene	ND	10	п	ŧŧ	**	**	**	U	
1,2,3-Trichlorobenzene	ND	2.0	**	"	"	**	11	п	
Surrogate: Dibromofluorometho	ine	103 %	50-	150	"	n	"	"	
Surrogate: 1,2-Dichloroethane-	d4	105 %	50-	150	#	rr	"	"	
Surrogate: Toluene-d8		105 %	50-	150	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	103 %	50-	150	"	"	"	"	

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

	<u>-</u>	D							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
Trip Blank (W101564-08) Water	Sampled: 23-Jan-01	10:15 Rec	eived: 24	-Jan-01 14	:00				
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Chloromethane	ND	2.0	**	**	**	ti .		It	
Vinyl chloride	ND	2.0	27		**	**	п	"	
Bromomethane	ND	5.0	**	**	11	**	п	**	
Chloroethane	ND	2.0	"	**		"	"	"	
Trichlorofluoromethane	ND	2.0	#	n	11	11	н	11	
1,1-Dichloroethene	ND	2.0	11	II.		n	Ħ	n	
Methylene chloride	ND	10		II.	"	н	Ħ	II .	
Methyl tert-butyl ether	ND	2.0	п	ø		**	**	11	
trans-1,2-Dichloroethene	ND	2.0	п	II.	ft	**	**	п	
1,1-Dichloroethane	ND	2.0	D	II .	u	••	**	II.	
2,2-Dichloropropane	ND	5.0	п	**	Ħ	**	**	II .	
cis-1,2-Dichloroethene	ND	2.0	н	n	**	**	**	п	
Bromochloromethane	ND	2.0	н	"	**	11	77	п	
Chloroform	ND	2.0	**	**	**	11	**	II .	
1,1,1-Trichloroethane	ND	2.0	97	"	**	11	er	н	
Carbon tetrachloride	ND	2.0	**	"	**	п	**	(t	
1,1-Dichloropropene	ND	2.0	11	н	"	n	**	**	
Benzene	ND	2.0	**	11	**	п	**		
1,2-Dichloroethane	ND	2.0	**	••	11	п	**	"	
Trichloroethene	ND	2.0	**	,,	**	**	п	11	
1,2-Dichloropropane	ND	2.0	**	n	п	**	ij	**	
Dibromomethane	ND	2.0	п	п	11	**	II	•	
Bromodichloromethane	ND	2.0	,,,	,,	п	,,	u	11	
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	u	II	п	th.	н	11	
cis-1,3-Dichloropropene	ND ND	2.0	п	ш	ш		**	п	
Toluene	ND ND	2.0	**	н	**	**		п	
trans-1,3-Dichloropropene	ND ND	5.0				**	"	п	
1,1,2-Trichloroethane	ND ND	2.0	**	**	,,	**	**	п	
Tetrachloroethene	ND ND	2.0	**	,,	*1	п	N	н	
1,3-Dichloropropane	ND ND	2.0	11	Ħ	11	ij	**		
Dibromochloromethane	ND ND	2.0	11	**		п	**		
1,2-Dibromoethane	ND ND	2.0	,,	,,	,,		11	**	
•		2.0	**	,,	,,		11	11	
Chlorobenzene	ND		**	**	"	" "	 II	п	
Ethylbenzene Trad Volume	ND	2.0	,,	"	"			**	
Total Xylenes	ND	2.0		"	"	**	 II	,,	
1,1,1,2-Tetrachloroethane	ND	2.0	"		" "	,,	 II	,,	
Styrene	ND	2. 0	"	11	"	**	"	•	

Sequoia Analytical - Walnut Creek

Project: No Project

Project Number: ACT Project Manager: Brad Wright **Reported:** 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Trip Blank (W101564-08) Water	Sampled: 23-Jan-01	10:15 Rec	eived: 24	I-Jan-01 14	:00				
Bromoform	ND	2.0	ug/i	1	1A30019	30-Jan-01	30-Jan-01	EPA 8260B	
Isopropylbenzene	ND	2.0	**	**	11	U	"	**	
1,1,2,2-Tetrachloroethane	ND	2.0	"	71	н	u	**	**	
Bromobenzene	ND	2.0	"	11	**	u	11	11	
n-Propylbenzene	ND	2.0	и	**	**	u	II	"	
1,2,3-Trichloropropane	ND	2.0	н	**	**	"	II	н	
2-Chlorotoluene	ND	2.0		"	11	**	IJ	rr .	
1,3,5-Trimethylbenzene	ND	2.0	*	11	11	*	II	**	
4-Chlorotoluene	ND	2.0	11	μ	п	11	II	**	
tert-Butylbenzene	ND	2.0	11	ш	п	11	и	11	
1,2,4-Trimethylbenzene	ND	2.0	"	II	u	**	")1	
sec-Butylbenzene	ND	2.0	II .	II	ш	"	**	m.	
p-Isopropyltoluene	ND	2.0	н	н	**	Ħ	11	Ц	
1,3-Dichlorobenzene	ND	2.0	*	**	**	n	"	u	
1,4-Dichlorobenzene	ND	2.0	**	77	77	II .	H	***	
n-Butylbenzene	ND	2.0	*	79	Ħ	п	**	Ħ	
1,2-Dichlorobenzene	ND	2.0	11	17	H	II	*	**	
1,2-Dibromo-3-chloropropane	ND	5.0	*	Pt	**	II .	"	**	
1,2,4-Trichlorobenzene	ND	2.0	н	**	**	II	**	71	
Naphthalene	ND	10	"	**	**	н	II	Ħ	
Hexachlorobutadiene	ND	10	**	17	**	**	D .	H	
1,2,3-Trichlorobenzene	ND	2.0	н	n	п	***	11	**	
Surrogate: Dibromofluoromethane		109 %	50-	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %	50-	-150	"	Ħ	"	"	
Surrogate: Toluene-d8		105 %	50-	-150	. "	"	н	11	
Surrogate: 4-Bromofluorobenzene		100 %	50-	-150	"	"	u u	"	

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-6 (W101564-09) Water S	ampled: 23-Jan-01 11:40	Received:	24-Jan-0	14:00					
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	02-Feb-01	02-Feb-01	EPA 8260B	
Chloromethane	ND	2.0	11	**	*	"	#1	11	
Vinyl chloride	ND	2.0	**	**	**	**	n	н	
Bromomethane	ND	5.0	•	**	**	"	II	#	
Chloroethane	ND	2.0	**	11	n	II .	II	**	
Trichlorofluoromethane	ND	2.0	11	п	II	**	**	11	
1,1-Dichloroethene	ND	2.0	O	п	u	*1	**	U	
Methylene chloride	ND	10		п	II .	**	"	п	
Methyl tert-butyl ether	12	2.0	и	н	Ħ	U	**	ш	
trans-1,2-Dichloroethene	ND	2.0	R	Ħ	**	n	н	ш	
1,1-Dichloroethane	ND	2.0	**	**	**	U	"	Ħ	
2,2-Dichloropropane	ND	5.0	**	**	11	u	•	**	
cis-1,2-Dichloroethene	ND	2.0	#	rt	n	II .	91	**	
Bromochloromethane	ND	2.0	**	**	••	н	11	Ħ	
Chloroform	ND	2.0		**	"	**		n	
1,1,1-Trichloroethane	ND	2.0	31	11	н	#	п	**	
Carbon tetrachloride	ND	2.0		11	п	**	II	**	
1,1-Dichloropropene	ND	2.0	и	п	п	**	и	**	
Benzene	ND	2.0	п	11	n	4	**	11	
1,2-Dichloroethane	ND	2.0	Ħ	н	н	*	*	n .	
Trichloroethene	ND	2.0	H	**	**	17	**	n .	
1,2-Dichloropropane	ND	2.0	**	**	,,	II	**	н	
Dibromomethane	ND	2.0	11	11	H	п		**	
Bromodichloromethane	ND	2.0		**	**	n	"	11	
2,2,5,5-Tetramethyltetrahydrofi		2.0	**	"	+1	**	h	н	
cis-1,3-Dichloropropene	ND	2.0	"	"	ш	**	n n	**	
Toluene	ND	2.0		11	u	11	н	11	
trans-1,3-Dichloropropene	ND	5.0	п	u	п	**		II	
1,1,2-Trichloroethane	ND	2.0	н	Ħ	**	"	"	II	
	ND ND	2.0	**	**	**	н	11	(I	
Tetrachloroethene	ND	2.0	,,	77	**	п	**	n	
1,3-Dichloropropane		2.0	1)	н	11	п		11	
Dibromochloromethane	ND	2.0	**	**	**	u	n	11	
1,2-Dibromoethane	ND ND	·=·	,,	,,	,, ,,	17))	**	
Chlorobenzene	ND	2.0	"	"	. "	**	 II	**	
Ethylbenzene	ND	2.0	"	" "	" "	,,	"	,,	
Total Xylenes	ND	2.0	"	"	" II	11	"		
1,1,1,2-Tetrachloroethane	ND	2.0		"	"	"	"		
Styrene	ND	2.0	ш	"	"	***	**	,,	

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Analyte	Result	Reporting Limit	Units_	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 (W101564-09) Water Sa	mpled: 23-Jan-01 11:40	Received:	24-Jan-0	14:00					
Bromoform	ND	2.0	ug/l	1	1A30019	02-Feb-01	02-Feb-01	EPA 8260B	
Isopropylbenzene	8.9	2.0	"	н	Ħ	11	"	**	
1,1,2,2-Tetrachloroethane	ND	2.0	н	**	**	н	1)	**	
Bromobenzene	ND	2.0	"	11	н	"	II	**	
n-Propylbenzene	13	2.0	"	II	и	"	*	#	
1,2,3-Trichloropropane	ND	2.0	ш	u	**	"	**	u	
2-Chlorotoluene	ND	2.0	**	**	**	II	"	**	
1,3,5-Trimethylbenzene	4.7	2.0	**	н	**	н	**	11	
4-Chlorotoluene	ND	2.0	tt	**	**	**))	**	
tert-Butylbenzene	ND	2.0	"	ш	II	ir	u	**	
1,2,4-Trimethylbenzene	2.7	2.0	"	II .	(1	**	"	11	
sec-Butylbenzene	13	2.0	ш	et	**	10	**	"	
p-Isopropyltoluene	7.4	2.0	"	"	11	1)	**	II	
1,3-Dichlorobenzene	ND	2.0	**	11	**	u	"	Ħ	
1,4-Dichlorobenzene	ND	2.0	**	**	**	u	"	**	
n-Butylbenzene	15	2.0	11	11	П	**	ji	"	
1,2-Dichlorobenzene	ND	2.0	11)1	"	ч	п	••	
1,2-Dibromo-3-chloropropane	ND	5.0	н	н	**	"	**	11	
1,2,4-Trichlorobenzene	ND	2.0	*	**	11	11	"	u	
Naphthalene	ND	10	Ħ	Ħ	"	. "	"	tt	
Hexachlorobutadiene	ND	10		**	**	"	II	11	
1,2,3-Trichlorobenzene	ND	2.0	**	11		**		**	
Surrogate: Dibromofluorometho	ine	99.6%	50-	-150	"	"	"	"	
Surrogate: 1,2-Dichloroethane-		101 %	50	-150	"	"	#	"	
Surrogate: Toluene-d8		102 %	50	-150	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	133 %	50	-150	"	и	"	n	

Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-5 (W101564-10) Water Sampled:	23-Jan-01 11:00		24-Jan-(01 14:00					
Dichlorodifluoromethane	ND	2.0	ug/l	1	1A30019	30-Jan-01	31-Jan-01	EPA 8260B	
Chloromethane	ND	2.0	"	11	11	**	II .	n	
Vinyl chloride	ND	2.0	п	н	ıi	**	**	" "	
Bromomethane	ND	5.0	п	п	н	11	"	"	
Chloroethane	ND	2.0	н	**	**	п	**		
Frichlorofluoromethane	ND	2.0	"	"	н	U	**	"	
,1-Dichloroethene	ND	2.0	11	**	#F	п	n	,,	
Methylene chloride	ND	10	**	"	11	"	II	"	
Methyl tert-butyl ether	15	2.0	11	II .	П	**	II	**	
rans-1,2-Dichloroethene	ND	2.0	II .	П	П	It	**	н	
,1-Dichloroethane	ND	2.0	и	н	**	**	"	п	
2,2-Dichloropropane	ND	5.0	*	tt .	**	н	Ħ	п	
is-1,2-Dichloroethene	ND	2.0	"	11	H	II	"	**	
Bromochloromethane	ND	2.0	**	**	**	II	11	0	
Chloroform	ND	2.0	**	**	н	**	"	**	
1,1,1-Trichloroethane	ND	2.0	п	ii	п	"	II .	41	
Carbon tetrachloride	ND	2.0	II .	II .	н	"		п	
1,1-Dichloropropene	ND	2.0	н	**	"	•	"	и	
Benzene	ND	2.0	**	**	11	11	**	"	
1,2-Dichloroethane	ND	2.0	"	**	"	II	**	H	
Trichloroethene	ND	2.0	**	"	**	**	· ·	"	
1,2-Dichloropropane	ND	2.0	п	μ	II	**	u	"	
Dibromomethane	ND	2.0		a	II .	н	**	11	
Bromodichloromethane	ND	2.0	**	"	H	**	"	II .	
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	**	"	**	п	**	ш	
cis-1,3-Dichloropropene	ND	2.0	**	H	H	II.		**	
Toluene	ND	2.0	**	**	"	п	11	71	
trans-1,3-Dichloropropene	ND	5.0	11	II	n	•)1	**	
1,1,2-Trichloroethane	ND	2.0	11	ıı .	II.	"	II	*	
Tetrachloroethene	ND	2.0	u	H	"	"	*	II .	
1,3-Dichloropropane	ND	2.0		"	••	"	11	п	
Dibromochloromethane	ND	2.0	17	**	Ħ	ш	**	#	
1,2-Dibromoethane	ND	2.0	ŧr		**	н	п	11	
Chlorobenzene	ND	2.0	11	**	11	**	μ	**	
Ethylbenzene	ND	2.0	n.	п	п	11	11	н	
Total Xylenes	ND	2.0	ш	н	н	**	**	u u	
1,1,1,2-Tetrachloroethane	ND	2.0	#t	*		н	*1	"	
Styrene	ND	2.0	**	TT	н	II.	**	**	

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

SB-5 (W101564-10) Water Sampled: 23-Jan-01 11:00 Received: 24-Jan-01 14:00	260B
Isopropylbenzene	260B
Isopropylbenzene	
1,1,2,2-Tetrachloroethane	
Bromobenzene	
n-Propylbenzene ND 2.0 " " " " " " " " " " " " " " " " " " "	
1,2,3-Trichloropropane ND 2.0 "<	
2-Chlorotoluene ND 2.0 "	
1,3,5-Trimethylbenzene ND 2.0 "<	
4-Chlorotoluene ND 2.0 "	
tert-Butylbenzene ND 2.0 """"""""""""""""""""""""""""""""""""	
1,2,4-Trimethylbenzene ND 2.0 "<	
sec-Butylbenzene ND 2.0 "	
p-Isopropyltoluene ND 2.0 " " " " " 1,3-Dichlorobenzene ND 2.0 " " " " " " " " " " " " " " " " " " "	
1,3-Dichlorobenzene ND 2.0 " <td></td>	
1,4-Dichlorobenzene ND 2.0 " " " " n-Butylbenzene ND 2.0 " " " " "	
n-Butylbenzene ND 2.0 " " " "	
· · · · · · · · · · · · · · · · · · ·	
1.2-Dibromo-3-chloropropane ND 5.0 " " " " "	
1,2,4-Trichlorobenzene ND 2.0 " " " "	
Naphthalene ND 10 " " " " "	
Hexachlorobutadiene ND 10 " " " " "	
1,2,3-Trichlorobenzene ND 2.0 " " " " " "	·
Surrogate: Dibromofluoromethane 108 % 50-130 " " " " " " " " " " " " " " " " " " "	
Surrogate: 1.2-Dichloroethane-d4 102 % 50-150 " " "	n
Surrogate: Toluene-d8 105 % 50-150 " " "	
Surrogate: 4-Bromofluorobenzene 102 % 50-150 " " "	er .

Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Total Purgeable Hydrocarbons by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30015 - EPA 5030B [MeOH]					<u> </u>				<u>. </u>	
Blank (1A30015-BLK1)				Prepared:	30-Jan-0	l Analyze	d: 01-Feb-	01		
Purgeable Hydrocarbons	ND	1.0	mg/kg			·				
Benzene	ND	0.0050	"							
Toluene	ND	0.0050	**							
Ethylbenzene	ND	0,0050	"							
Xylenes (total)	ND	0.0050	*1							
Surrogate: a,a,a-Trifluorotoluene	0.632		"	0.600		105	40-140			
LCS (1A30015-BS1)				Prepared:	: 30-Jan- 0	l Analyze	d: 01-Feb-	01		
Benzene	0.652	0.0050	mg/kg	0.800		81.5	50-150			
Toluene	0.686	0.0050	п	0.800		85.7	50-150			
Ethylbenzene	0.732	0.0050	ıı	0.800		91.5	50-150			
Xylenes (total)	2.18	0.0050	**	2.40		90.8	50-150			
Surrogate: a.a.a-Trifluorotoluene	0.608		"	0.600		101	40-140		-	
Matrix Spike (1A30015-MS1)	So	ource: W1015	526-02	Prepared	& Analyz	ed: 30-Jat	n-01			
Benzene	0.780	0.0050	mg/kg	0.800	ND	97.5	50-150			
Toluene	0.816	0.0050	11	0.800	ND	102	50-150			
Ethylbenzene	0.862	0.0050	μ	0.800	ND	108	50-150			
Xylenes (total)	2.57	0.0050	ıı .	2.40	ND	107	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.618		"	0.600		103	40-140			
Matrix Spike Dup (1A30015-MSD1)	Se	ource: W1015	526-02	Prepared	& Analyz	ed: 30-Jai	n-01	-		
Benzene	0.844	0.0050	mg/kg	0.800	ND	105	50-150	7.88	20	
Toluene	0.886	0.0050	"	0.800	ND	111	50-150	8.23	20	
Ethylbenzene	0.936	0.0050	"	0.800	ND	117	50-150	8,23	20	
Xylenes (total)	2.76	0.0050	ıı	2.40	ND	115	50-150	7.13	20	
Surrogate: a, a, a-Trifluorotoluene	0.660		"	0.600		110	40-140			

Project: No Project

Project Number: ACT Project Manager: Brad Wright **Reported:** 13-Feb-01 12:57

Total Purgeable Hydrocarbons by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B02001 - EPA 5030B [P/T]										
Blank (1B02001-BLK1)			_	Prepared	& Analyz	ed: 02-Fel	5-01			
Purgeable Hydrocarbons	ND	50	ug/l		_					
Benzene	ND	0.50	#							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	ш							
Xylenes (total)	ND	0.50	н							
Surrogate: a,a,a-Triftuorotoluene	31.7		"	30.0		106	70-130		•	
LCS (1B02001-BS1)				Prepared	& Analyz	ed: 02-Fel	p-01			
Benzene	16.8	0.50	ug/l	20.0		84.0	70-130			
Toluene	17.4	0.50	II.	20.0		87.0	70-130			
Ethylbenzene	18.6	0.50	II	20.0		93.0	70-130			
Xylenes (total)	55.3	0.50	и	60.0		92.2	70-130			
Surrogate: a,a,a-Trifluorotoluene	29.1		"	30.0		97.0	70-130			
Matrix Spike (1B02001-MS1)	Sc	urce: W1016	53-06	Prepared	& Analyz	ed: 02-Fe	b-01			
Benzene	17.8	0.50	ug/l	20.0	ND	89.0	70-130			
Toluene	18.6	0.50	*1	20.0	ND	93.0	70-130			
Ethylbenzene	19.7	0.50		20.0	ND	98.5	70-130			
Xylenes (total)	59.4	0.50	п	60.0	ND	99.0	70-130			
Surrogate: a, a, a-Trifluorotoluene	30.6		"	30.0	-	102	70-130			
Matrix Spike Dup (1B02001-MSD1)	Se	ource: W1016	53-06	Prepared	& Analyz	ed: 02-Fe	b-01			
Benzene	19.6	0.50	ug/l	20.0	ND	98.0	70-130	9.63	20	
Toluene	20.4	0.50	**	20.0	ND	102	70-130	9.23	20	
Ethylbenzene	21.2	0.50	U	20.0	ND	106	70-130	7.33	20	
Xylenes (total)	62.8	0.50	ıı	60.0	ND	105	70-130	5.56	20	
Surrogate: a, a, a-Trifluorotoluene	34.0	·	"	30.0		113	70-130		-	

Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Total Purgeable Hydrocarbons by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B05001 - EPA 5030B [P/T]										
Blank (1B05001-BLK1)				Prepared	& Analyz	ed: 05-Feb	o-01			
Ourgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	**							
l'oluene	ND	0.50	"							
Ethylbenzene	ND	0.50	PP .							
Xylenes (total)	ND	0.50	**							
Surrogate: a,a,a-Trifluorotoluene	30.3		"	30.0		101	70-130		-	
LCS (1B05001-BS1)				Prepared	& Analyz	ed: 05-Fel	o-01			
Benzene	16.6	0.50	ug/l	20.0		83.0	70-130			
l'oluene	17.4	0.50	**	20.0		87.0	70-130			
Ethylbenzene	18.9	0.50	**	20.0		94.5	70-130			
Xylenes (total)	55.1	0.50	**	60.0		91.8	70-130			
Surrogate: a,a,a-Trifluorotoluene	26.7		"	30.0		89.0	70-130			
Matrix Spike (1B05001-MS1)	Sc	urce: W1016	47-18	Prepared	& Analyz	ed: 05-Fel	o-01			
Benzene	19.8	0.50	ug/l	20.0	1.5	91.5	70-130			
Toluene	19.5	0.50	н	20.0	ND	97.5	70-130			
Ethylbenzene	20.2	0.50	*	20.0	ND	101	70-130			
Xylenes (total)	61.6	0.50	11	60.0	1.6	100	70-130			
Surrogate: a,a,a-Trifluorotoluene	30.6		"	30.0		102	70-130			
Matrix Spike Dup (1B05001-MSD1)	Se	ource: W1016	47-18	Prepared	& Analyz	ed: 05-Fe	b-01			
Benzene	18.9	0.50	ug/l	20.0	1.5	87.0	70-130	4.65	20	
Toluene	18.7	0.50	"	20.0	ND	93.5	70-130	4.19	20	
Ethylbenzene	19.5	0.50	**	20.0	ND	97.5	70-130	3.53	20	
Xylenes (total)	60.3	0.50	**	60.0	1.6	97.8	70-130	2.13	20	
Surrogate: a,a,a-Trifluorotoluene	29.5		"	30.0		98.3	70-130			

Project: No Project

Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Custom Extractable Hydrocarbons by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B05012 - EPA 3510B			-							
Blank (1B05012-BLK1)				Prepared	& Analyz	ed: 05-Feb	o-01	<u> </u>		
Stoddard Solvent (C9-C13)	ND	50	ug/l							
Diesel Range Hydrocarbons	ND	50	17							
Surrogate: n-Pentacosane	27.7		"	33.3	-	83.2	50-150	·		
LCS (1B05012-BS1)				Prepared	& Analyz	ed: 05-Fel	o-01			
Diesel Range Hydrocarbons	416	50	ug/l	500		83.2	60-140			
Surrogate: n-Pentacosane	29.3		н	33.3		88.0	50-150	_		
LCS Dup (1B05012-BSD1)				Prepared	& Analyz	ed: 05-Fel	o-01			
Diesel Range Hydrocarbons	509	50	ug/l	500		102	60-140	20.1	50	
Surrogate: n-Pentacosane	37.3		н	33.3		112	50-150			
Batch 1B05013 - EPA 3550A										
Blank (1B05013-BLK1)			"-	Prepared	: 05-Feb-0	1 Analyze	d: 06-Feb-	01		
Stoddard Solvent (C9-C13)	ND	1.0	mg/kg	-						
Diesel Range Hydrocarbons	ND	1.0	н							
Surrogate: n-Pentacosane	1.03		"	1.11		92.8	50-150			
LCS (1B05013-BS1)				Prepared	: 05-Feb-0	1 Analyze	ed: 06-Feb-	01		
Diesel Range Hydrocarbons	9.85	1.0	mg/kg	15.0		65.7	60-140			
Surrogate: n-Pentacosane	1.27		ıı .	1.11		114	50-150			
LCS Dup (1B05013-BSD1)				Prepared	: 05-Feb-0	1 Analyzo	ed: 06-Feb	-01		
Diesel Range Hydrocarbons	12.7	1.0	mg/kg	15.0		84.7	60-140	25.3	50	
Surrogate: n-Pentacosane	1.76		н	1.11		159	50-150			S

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501

Surrogate: n-Pentacosane

Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Custom Extractable Hydrocarbons by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B05013 - EPA 3550A					_					
Matrix Spike (1B05013-MS1)	Set	arce: W1016	47-05	Prepared:	05-Feb-0	l Analyze	d: 06-Feb-	01		
Diesel Range Hydrocarbons	10.1	1.0	mg/kg	15.0	ND	67.3	50-150			•
Surrogate: n-Pentacosane	1.28		"	1.11	 -	115	50-150	• •		
Matrix Spike Dup (1B05013-MSD1)	Sor	urce: W1016	47-05	Prepared:	05-Feb-0	1 Analyze	d: 06 -Feb -	-01		
Diesel Range Hydrocarbons	9.52	1.0	mg/kg	15.0	ND	63.5	50-150	5.91	50	

1.26

1.11

114

50-150

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Hydrocarbons as Motor Oil by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B05012 - EPA 3510B										
Blank (1B05012-BLK1)				Prepared	& Analyz	ed: 05-Feb	5-01		<u> </u>	
Motor Oil (C16-C36)	ND	250	ug/l							
Diesel Range Hydrocarbons	ND	50	**							
Surrogate: n-Pentacosane	27.7		n	33.3		83.2	50-150			
LCS (1B05012-BS1)				Prepared	& Analyz	ed: 05-Feb	o-01			
Diesel Range Hydrocarbons	416	50	ug/l	500	•	83.2	60-140			
Surrogate: n-Pentacosane	29.3	<u> </u>	n	33.3		88.0	50-150			
LCS Dup (1B05012-BSD1)				Prepared	& Analyz	ed: 05-Fel	0-01			
Diesel Range Hydrocarbons	509	50	ug/l	500		102	60-140	20.1	50	
Surrogate: n-Pentacosane	37.3		n	33.3		112	50-150			
Batch 1B05013 - EPA 3550A										
Blank (1B05013-BLK1)	<u> </u>			Prepared	: 05-Feb-0	1 Analyze	d: 06-Feb-	01		
Motor Oil (C16-C36)	ND	10	mg/kg				.			
Diesel Range Hydrocarbons	ND	1.0	**							
Surrogate: n-Pentacosane	1.03		"	1.11		92.8	50-150			
LCS (1B05013-BS1)				Prepared	: 05 -Feb- 0	1 Analyze	ed: 06-Feb-	-01		
Diesel Range Hydrocarbons	9.85	1.0	mg/kg	15.0		65.7	60-140			
Surrogate: n-Pentacosane	1.27		"	1.11		114	50-150			
LCS Dup (1B05013-BSD1)				Prepared	: 05- Fe b-0	l Analyze	ed: 06-Feb	-01		
Diesel Range Hydrocarbons	12.7	1.0	mg/kg	15.0		84.7	60-140	25.3	50	
Surrogate: n-Pentacosane	1.76		"	1.11	<u> </u>	159	50-150			S

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Hydrocarbons as Motor Oil by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B05013 - EPA 3550A										
Matrix Spike (1B05013-MS1)	Sou	rce: W1016	47-05	Prepared:	05-Feb-0	1 Analyze	:d: 06-Feb-	-01		
Diesel Range Hydrocarbons	10.1	1.0	mg/kg	15.0	ND	67.3	50-150			
Surrogate: n-Pentacosane	1.28		"	1.11		115	50-150			•
Matrix Spike Dup (1B05013-MSD1)	Sou	rce: W1016	47-05	Prepared	: 05-Feb-0	1 Analyze	d: 06-Feb	-01		
Diesel Range Hydrocarbons	9.52	1.0	mg/kg	15.0	ND	63,5	50-150	5.91	50	
Surrogate: n-Pentacosane	1.26		"	1.11		114	50-150			

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Glycols by NIOSH Method 5500 (modified) - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A29019 - General Prep						<u></u>				
Blank (1A29019-BLK1)				Prepared	& Analyz	ed: 30-Jan	-01	_		
Ethylene glycol	ND	10	mg/l							
LCS (1A29019-BS1)				Prepared	& Analyz	ed: 30-Jan				
Ethylene glycol	35.4	10	mg/l	50.0		70.8	60-140			
LCS Dup (1A29019-BSD1)				Prepared	& Analyz	ed: 30-Jar	ı - 01			
Ethylene glycol	45.4	10	mg/l	50.0		90.8	60-140	24.8	50	·
Matrix Spike (1A29019-MS1)	So	ource: W1015	29-01	Prepared	& Analyz	ed: 30-Jar				
Ethylene glycol	81.0	10	mg/l	100	ND	81.0	50-150			
Matrix Spike Dup (1A29019-MSD1)	Sc	ource: W1015	29-01	Prepared	& Analyz	ed: 30-Jar	1 - 01			
Ethylene glycol	108	10	mg/l	100	ND	108	50-150	28.6	50	
Batch 1A30020 - General Prep Solid										<u> </u>
Blank (1A30020-BLK1)				Prepared	& Analyz	ed: 30-Jar	n-01			
Ethylene glycol	ND	10	mg/kg							
LCS (1A30020-BS1)				Prepared	l & Analyz	ed: 30-Jai	n-01			<u>. </u>
Ethylene glycol	44.3	10	mg/kg	50.0		88.6	60-140			
LCS Dup (1A30020-BSD1)				Prepared	l & Analyz	ed: 30-Ja	n-01			
Ethylene glycol	46.7	10	mg/kg	50.0		93.4	60-140	5.27	50	
Duplicate (1A30020-DUP1)	s	ource: W1015	564-01	Prepared	l & Analyz	ed: 30-Ja	n-01			
Ethylene glycol	ND	10	mg/kg		ND				200	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT Project Manager: Brad Wright Reported:

13-Feb-01 12:57

Glycols by NIOSH Method 5500 (modified) - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30020 - General Prep Solid						_				
Matrix Spike (1A30020-MS1)	So	urce: W1015	64-01	Prepared	& Analyz	ed: 30-Jai	n-01			
Ethylene glycol	77.0	10	mg/kg	50.0	ND	154	50-150			Q-02
Matrix Spike Dup (1A30020-MSD1)	So	urce: W1015	64-01	Prepared	& Analyz	ed: 30-Jai	n-01			
Ethylene glycol	93.3	10	mg/kg	50.0	ND	187	50-150	19.1	50	Q-02

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A26017 - EPA 5030B [MeOH]										
Blank (1A26017-BLK1)				Prepared	& Analyz	ed: 26-Jan	-01	200		
Dichlorodifluoromethane	ND	0.10	mg/kg			•				
Chloromethane	ND	0.10	"							
Vinyl chloride	ND	0.10	н							
Bromomethane	ND	0.10	"							
Chloroethane	ND	0.10	II .							
Trichlorofluoromethane	ND	0.10	u							
1,I-Dichloroethene	ND	0.10	**							
Methylene chloride	ND	0.50	**							
Methyl tert-butyl ether	ND	0.10	"							
trans-1,2-Dichloroethene	ND	0.10	31							
1,1-Dichloroethane	ND	0.10	п							
2,2-Dichloropropane	ND	0.10	н							
cis-1,2-Dichloroethene	ND	0.10	**							
2-Butanone	ND	0.50	#1							
Bromochloromethane	ND	0.10	"							
Chloroform	ND	0.10	11							
1,1,1-Trichloroethane	ND	0.10	u							
Carbon tetrachloride	ND	0.10	"							
1,1-Dichloropropene	ND	0.10	71							
Benzene	ND	0.10	17							
1,2-Dichloroethane	ND	0.10	11							
Trichloroethene	ND	0.10	II							
1,2-Dichloropropane	ND	0.10	н							
Dibromomethane	ND	0.10	**							
Bromodichloromethane	ND	0.10	н							
cis-1,3-Dichloropropene	ND	0.10	**							
Toluene	ND	0.10	U							
trans-1,3-Dichloropropene	ND	0.10	tt							
1,1,2-Trichloroethane	ND	0.10	**							
Tetrachloroethene	ND	0.10	Ħ							
1,3-Dichloropropane	ND	0.10	**							
Dibromochloromethane	ND	0.10	H							
1,2-Dibromoethane	ND	0.10	ш							
Chlorobenzene	ND	0.10	**							

Sequoia Analytical - Walnut Creek

Project: No Project

Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A26017 - EPA 5030B [MeOH]							·			
Blank (1A26017-BLK1)	·			Prepared	& Analyz	ed: 26-Jan	ı-01			
Ethylbenzene	ND	0.10	mg/kg							
Total Xylenes	ND	0.10	ŋ							
1,1,1,2-Tetrachloroethane	ND	0.10	"							
Styrene	ND	0.10	Ħ							
Bromoform	ND	0.10	**							
Isopropylbenzene	ND	0.10	"							
1,1,2,2-Tetrachloroethane	ND	0.10	**							
Bromobenzene	ND	0.10	II							
n-Propylbenzene	ND	0,10	u							
1,2,3-Trichloropropane	ND	0.10	"							
2-Chlorotoluene	ND	0.10	"							
1,3,5-Trimethylbenzene	ND	0.10	**							
4-Chlorotoluene	ND	0.10	"							
tert-Butylbenzene	ND	0.10	п							
1,2,4-Trimethylbenzene	ND	0.10	"							
sec-Butylbenzene	ND	0.10	**							
p-Isopropyltoluene	ND	0.10	**							
1,3-Dichlorobenzene	ND	0.10	**							
1,4-Dichlorobenzene	ND	0.10	п							
n-Butylbenzene	ND	0.10	п							
1,2-Dichlorobenzene	ND	0.10	**							
1,2-Dibromo-3-chloropropane	ND	0.10	11							
1,2,4-Trichlorobenzene	ND	0.10	**							
Naphthalene	ND	0.50	п							
Hexachlorobutadiene	ND	0.10	ш							
1,2,3-Trichlorobenzene	ND	0.10	н ,							
Surrogate: Dibromofluoromethane	2.42		"	2.50		96.8	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.69		. "	2.50		108	50-150			
Surrogate: Toluene-d8	2.60		<i>"</i>	2.50		104	50-150			
Surrogate: 4-Bromofluorobenzene	2.47		D.	2.50		98.8	50-150			

Project: No Project
Number: ACT

Project Number: ACT Project Manager: Brad Wright **Reported:** 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A26017 - EPA 5030B [MeOH]										
LCS (1A26017-BS1)				Prepared:	26-Jan-01	l Analyze	d: 29-Jan-0)1		
1.1-Dichloroethene	3.17	0.10	mg/kg	2,50	<u>. </u>	127	65-135			
Methyl tert-butyl ether	2.37	0.10		2.50		94.8	70-130			
Benzene	2.91	0.10	ш	2.50		116	70-130			
Trichloroethene	2.85	0.10	Ħ	2.50		114	70-130			
Toluene	2.87	0.10	**	2.50		115	70-130			
Chlorobenzene	2.93	0.10	**	2.50		117	70-130			
Surrogate: Dibromofluoromethane	2.60		,,	2.50	.	104	50-150	*****	·	
Surrogate: 1,2-Dichloroethane-d4	2.45		"	2.50		98.0	50-150			
Surrogate: Toluene-d8	2.65		н	2.50		106	50-150			
Surrogate: 4-Bromofluorobenzene	2.50		"	2.50		100	50-150			
Matrix Spike (1A26017-MS1)	So	urce: W1016	05-28	Prepared	& Analyz	ed: 26-Jar	ı-01			
1,1-Dichloroethene	2.79	0.10	mg/kg	2.50	ND	112	60-140			
Methyl tert-butyl ether	2.38	0.10	11	2.50	ND	95.2	60-150			
Benzene	2.74	0.10	п	2.50	ND	110	60-140			
Trichloroethene	2.55	0.10	U	2.50	ND	102	60-140			
Toluene	2.21	0.10	**	2.50	ND	88.4	60-140			
Chlorobenzene	2.36	0.10	*1	2,50	ND	94.4	60-140			
Surrogate: Dibromofluoromethane	2.73		<i>"</i>	2.50		109	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.67		"	2.50		107	<i>50-150</i>			
Surrogate: Toluene-d8	2.84		H	2.50		114	50-150			
Surrogate: 4-Bromofluorobenzene	2.24		"	2.50		89.6	50-150			
Matrix Spike Dup (1A26017-MSD1)	S	ource: W1010	505-28	Prepared	& Analyz	zed: 26-Jas	n-01			
1,1-Dichloroethene	3.32	0.10	mg/kg	2.50	ND	133	60-140	17.3	25	
Methyl tert-butyl ether	2.80	0.10	**	2.50	ND	112	60-150	16.2	25	
Benzene	3.08	0.10	п	2.50	ND	123	60-140	11.7	25	
Trichloroethene	3.03	0.10	п	2.50	ND	121	60-140	17.2	25	
Toluene	2.77	0.10	н	2.50	ND	111	60-140	22.5	25	
Chlorobenzene	2.94	0.10	"	2.50	ND	118	60-140	21.9	25	
Surrogate: Dibromofluoromethane	2.71		,,	2.50		108	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.67		"	2.50		107	<i>50-150</i>			
Surrogate: Toluene-d8	2.84		'n	2.50		114	50-150			
Surrogate: 4-Bromofluorobenzene	2.28		**	2.50		91.2	50-150			

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT

Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30019 - EPA 5030B [P/T]	<u>, </u>									
Blank (1A30019-BLK1)			<u> </u>	Prepared	& Analyz	ed: 30-Jan	- 01			
Dichlorodifluoromethane	ND	2.0	ug/l							
Chloromethane	ND	2.0	U							
Vinyl chloride	ND	2.0	п							
Bromomethane	ND	5.0	н							
Chloroethane	ND	2.0	**							
Trichlorofluoromethane	ND	2.0	**							
1,1-Dichloroethene	ND	2.0	n							
Methylene chloride	ND	10	**							
Methyl tert-butyl ether	ND	2.0	н			,				
trans-1,2-Dichloroethene	ND	2.0	II							
1,1-Dichloroethane	ND	2.0	u							
2,2-Dichloropropane	ND	5.0	н							
cis-1,2-Dichloroethene	ND	2.0	17							
Bromochloromethane	ND	2.0	Ħ							
Chloroform	ND	2.0	**							
1,1,1-Trichloroethane	ND	2.0	н							
Carbon tetrachloride	ND	2.0	п							
1,1-Dichloropropene	ND	2.0	"							
Benzene	ND	2.0	**							
1,2-Dichloroethane	ND	2.0	**							
Trichloroethene	ND	2.0	**							
1,2-Dichloropropane	ND	2.0	**							
Dibromomethane	ND	2.0	п							
Bromodichloromethane	ND	2.0	и							
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	"							
cis-1,3-Dichloropropene	ND	2.0	11							
Toluene	ND	2.0	"							
trans-1,3-Dichloropropene	ND	5.0	11							
1,1,2-Trichloroethane	ND	2.0	ш							
Tetrachloroethene	ND	2.0	II .							
1,3-Dichloropropane	ND	2.0	**							
Dibromochloromethane	ND	2.0	**							
1,2-Dibromoethane	ND	2.0	Ħ							
Chlorobenzene	ND	2.0	**							

Sequoia Analytical - Walnut Creek

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30019 - EPA 5030B [P/T]										
Blank (1A30019-BLK1)				Prepared	& Analyz	ed: 30 -J an	-01			
Ethylbenzene	ND	2.0	ug/l							
Total Xylenes	ND	2.0	IJ							
1,1,1,2-Tetrachloroethane	ND	2.0	**							
Styrene	ND	2.0	**							
Bromoform	ND	2.0	п							
Isopropylbenzene	ND	2.0	II .							
1,1,2,2-Tetrachloroethane	ND	2.0	U							
Bromobenzene	ND	2.0	**							
n-Propylbenzene	ND	2.0	11							
1,2,3-Trichloropropane	ND	2.0	11							
2-Chlorotoluene	ND	2.0	**							
1,3,5-Trimethylbenzene	ND	2.0	" .							
4-Chlorotoluene	ND	2.0	**							
tert-Butylbenzene	ND	2.0	п							
1,2,4-Trimethylbenzene	ND	2.0	u							
sec-Butylbenzene	ND	2.0	**							
p-Isopropyltoluene	ND	2.0	**							
1,3-Dichlorobenzene	ND	2.0	**							
1,4-Dichlorobenzene	ND	2.0	**							
n-Butylbenzene	ND	2.0	17							
1,2-Dichlorobenzene	ND.	2.0	n							
1.2-Dibromo-3-chloropropane	ND	5.0	п							
1,2,4-Trichlorobenzene	ND	2.0	n							
Naphthalene	ND	10	н							
Hexachlorobutadiene	ND	10	••							
1,2,3-Trichlorobenzene	ND	2.0	Ħ							
Surrogate: Dibromofluoromethane	51.5		"	50.0	··	103	50-150			
Surrogate: 1,2-Dichloroethane-d4	52.7		"	50.0		105	50-150			
Surrogate: Toluene-d8	52.1		u	50.0		104	50-150			
Surrogate: 4-Bromofluorobenzene	49.5		"	50.0		99.0	50-150			

Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30019 - EPA 5030B [P/T]										
LCS (1A30019-BS1)				Prepared	& Analyz	ed: 30-Jan	-01			
1,1-Dichloroethene	62.4	2.0	ug/l	50.0		125	65-135			
Methyl tert-butyl ether	46.2	2.0	n	50.0		92.4	65-135			
Benzene	53.7	2.0	u	50.0		107	70-130			
Trichloroethene	52.8	2.0	**	50.0		106	70-130			
Toluene	49.0	2.0	11	50.0		98.0	70-130			
Chlorobenzene	48.0	2.0	**	50.0		96.0	70-130			
Surrogate: Dibromofluoromethane	56.0		"	50.0		112	50-150			
Surrogate: 1,2-Dichloroethane-d4	<i>53</i> , <i>7</i>		"	50.0		107	50-150			
Surrogate: Toluene-d8	51.4		rr	50.0		103	50-150			
Surrogate: 4-Bromofluorobenzene	49.0		"	50.0		98.0	50-150			
Matrix Spike (1A30019-MS1)	So	ource: W1015	28-07	Prepared	30-Jan-0	1 Analyze	d: 31-Jan-	01		
1.1-Dichloroethene	54.8	2.0	ug/l	50.0	ND	110	60-140			
Methyl tert-butyl ether	43.9	2.0	n	50.0	ND	87.8	60-140			
Renzene	52.0	2.0	п	50.0	ND	104	60-140			
Trichloroethene	51.5	2.0	п	50.0	ND	103	60-140			
Toluene	51.3	2.0	ŧŧ	50.0	ND	. 103	60-140			
Chlorobenzene	49.8	2.0	**	50.0	ND	99.6	60-140			
Surrogate: Dibromofluoromethane	49.8			50.0		99.6	50-150			
Surrogate: 1,2-Dichloroethane-d4	50.9		"	50.0		102	50-150			
Surrogate: Toluene-d8	51.7		"	50.0		103	50-150			
Surrogate: 4-Bromofluorobenzene	50.0		"	50.0		100	50-150			
Matrix Spike Dup (1A30019-MSD1)	S	ource: W101:	528-07	Prepared	& Analyz	ed: 30-Ja	n-01			
1,1-Dichloroethene	65.9	2.0	ug/l	50.0	ND	132	60-140	18.4	25	
Methyl tert-butyl ether	53.3	2.0	"	50.0	ND	107	60-140	19.3	25	
Benzene	60.1	2.0	n	50.0	ND	120	60-140	14.5	25	
Trichloroethene	59,9	2.0	II .	50.0	ND	120	60-140	15.1	25	
Toluene	54.9	2.0	н	50.0	ND	110	60-140	6.78	25	
Chlorobenzene	57.8	2.0	**	50.0	ND	116	60-140	14.9	25	
Surrogate: Dibromofluoromethane	52.4		"	50.0		105	50-150			
Surrogate: 1,2-Dichloroethane-d4	53.2		"	50.0		106	50-150			
Surrogate: Toluene-d8	51.8		"	50.0		104	50-150			
Surrogate: 4-Bromofluorobenzene	47.3		"	50.0		94.6	50-150			

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Safety-Kleen - Alameda 2233 Santa Clara Ave. Alameda CA, 94501 Project: No Project
Project Number: ACT
Project Manager: Brad Wright

Reported: 13-Feb-01 12:57

Notes and Definitions

D-05	Chromatogram Pattern: Motor Oil C16-C36.
D-11	Chromatogram Pattern: Unidentified Hydrocarbons < C16
D-12	Chromatogram Pattern: Unidentified Hydrocarbons > C16
D-13	Chromatogram Pattern: Diesel C9-C24
D-14	Chromatogram Pattern: Unidentified Hydrocarbons C9-C24
D-16	Chromatogram Pattern: Diesel C9-C24 + Unidentified Hydrocarbons < C16
D-21	Chromatogram Pattern: Stoddard Solvent C9-C13
P-03	Chromatogram Pattern: Unidentified Hydrocarbons C6-C12
P-04	Chromatogram Pattern: Gasoline C6-C12 + Unidentified Hydrocarbons C6-C12
Q-02	The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
S-03	The surrogate recovery for this sample is outside of established control limits. Review of associated QC indicates the recovery for this surrogate does not represent an out-of-control condition.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

2 000 datas plive " Morgan Hill, On 90001 " (100) The 0000 This (100) to 0000
☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
ELA04 N. Wiget Lane • Walnut Creek, CA 94598 • (925) 988-9600 FAX (925) 988-9673
1455 McDowell Blvd. North, Suite D • Petaluma, CA 94954 • (707) 792-1865 FAX (707) 792-0342
⊔ 1551 Industrial Road • San Carlos, CA 94070 • (650) 232-9600 FAX (650) 232-9612

															· · · · · · · · · · · · · · · · · · ·	
Company Name: Safe	ty-kleen	Cons	Jling	·		Projec	t Name	Ac	-T		· · · · · · · · · · · · · · · · · · ·			WIC	1564	
1	3 Santa			1		Billing	Addres	s (if dif	ferent)	E	nimes	y Vi	11e			
City: Alameda	State:			Zip Code: <	14501											
Telephone: 510 - 337			FAX #:			P.O. #	-						_			- Client
Report To: Brad Write		Sampler	: Bul	k Gerkin	19	QC D	ata: 🔼	Level	D (Sta	ndard)		_evel (Level B	B Level A	
Turnaround 1 10 Working)	Working D		🗋 2 - 8 Hou	rs 🗀 Dri	inking W					Analy	ses F	Reques	ted		¥
Time:	•	Working E 4 Hours	ays		i Wa j ∡ i Ot		Į.	34 63	E WA	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Alex HIL	103			/	
1	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's Sample #	3 /Q	7	22 0	2 0	636975	y Mer				Comments	
1. SB-1 151/2-16 1/2	2/01/915	Soil]	Core	OLAZE	4 ×	. X	X	メ							
2. SB-1	V	W	7	VOA/Liter	02 A-G		X	X	X			·				Seguoia
3. 55-7 1/	122/01	Sw	5	Ų.	0 3 A-F	= ×	X		,	*						Xellow
4. 58-2 9-10'	122/01	i oz	<u> </u>	ره-رم م	03A01		(×	X	K							^
5 515-3 11'-12'	122/01	Soil	2	Core	OSA, B	} x	(×	×							
6. 58-4 11/42 11	1350	Scil	1	Care	05 A		×	X	X							
	122/01	Soil	1	Jar	Dens	×	×			X.					Hold	
53-8	23/01	W	5	VOA/Liles	07A-1	<u> </u>	. 🗶	ļ		X.						
9. Trip Blank	1/23/01	W	1	VOA	08A	<u> </u>		ļ	ļ			· · · ·				- A
10. SR-6 11	23/01 1140	W	5		09A-	E)	K X			Χď		-				
Relinquished By:	half	;	Date	1/24/01	Time///0	R	eceived	Ву:	Mish.	AL.	A		Date://	refol	Time: /// 0	
Relinquished By:	16.6/1	<u>ک</u>	Dat	e:////2/	Time://ス	5 R	eceived		177	مرد دد .	سد قد البتر	1 -	Date:	a la :	Time:	
Relinguished By:			Dat	e:	Time:	R	eceived	By:	2.9	1000	WC	ַ כ	1/z 4 Date:	7101	Time: 14:0	7

1 680 C	nesapeake Drive	 Redwood City, 	CA 94063 •	(415) 364-9600	FAX (415)	i 364-9233
---------	-----------------	-----------------------------------	------------	----------------	-----------	------------

- ⊔ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100
- ⊔ 404 North Wiget Lane Walnut Creek, CA 94598 (510) 988-9600 FAX (510) 988-9673

Mobil Oil Consulting	; Firm:	(,	.C.L.	· klos		ancu l	Hhre					S	Static	n Ne	o./Site	Addr	ess:		Ac			Em	mary ville	
Mobil Oil Consulting Address: 以33	- Can	atra C	loss	Au	<u>. </u>	Ste	# 7	7				F	roje	ct C	ontac	t:		Br	Ad		لی	نجا	mayville at WIO15	64
City: Alamed		<u> </u>	with w		tate:			Zip:	945	S0		N	/lobil	Oil I	Engin	eer:	_							
Tel: 5/6-33		- (an		Fax.:	51	o -3						5	Samp	oler(s	s) (sig	natur	e):	Ca	K.	2.(sole			
1ei. 3/0 33	1- 00	ريعي و								Si.					6010/7000		:		Waste		86			DING ck one)
					tainers	Jers	02/8020	5/8020 ((dified 8015 Diesel	EPA 413	9.1				< 0		EPA 504		· Title 22 Haz. Waste	luent	STE MIBG	620	Code 1	Emergency Response
e I.O.	İ	Date Sampled		Preservation	Number of Containers	Type of Containers	- EPA 602/8020	BTEX -TPH EPA M602/8015/8020 (GAS)	TPH EPA Modified 8015 Gas Diesel	Oil & Grease - EPA 413.2	TPH - EPA 418.1	EPA 601/8010	EPA 624/8240	EPA 625/8270	Title 22 Metals	Lead Org./DHS	EDB/DBCD - EPA 504		Bioassay - Tit	Bioassay - Effluent	\$260 B	8015 (Code 2 🔀	Site Assessment
Sample I.D.	Matrix		Time		—		втех	i		Oil &	ТРН	EPA	EPA	EPA	Title T.C	Lead	EDB	표	Bioa	Bioa		X	Code 3	Remediation (Plan Devlpmt.)
SB-5	W	1/23/01	1100	HCL	3	VOA	10) A-	ے-												X		Code 4	Active Remed. (Install./Start-up)
																							Code 5	Active Remed. (O & M)
			-				<u> </u>				<u> </u>		<u> </u>			<u></u>	_			<u> </u>	-	<u> </u>	Code 6	Passive Remed/ Monitoring
	 							-															Code 7	Closure
1										_					<u> </u>		-		-				Code 8	Construction
							-		-		-		-				-	-		-		-	Code 9	Litigation/Claims Fines
Relinquished by:	ııl	 K		124/6	1 21	Date/Tir	me: (<i>O</i>		Recei	ved by	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/1	6	1	Sea	<u>, </u>		1/2	14/0	Date	//////////////////////////////////////		Turnaround Time: Normal X 1 day	(check one): Same day
Relinquished by:	adel	6/1	· · · · · · · · · · · · · · · · · · ·		241	Date/Ti	me: 600		Recei	ved b	y:	24	16	7 2 Ja	E1	we	17	1/2	2 <u>91</u>	Date O I	e/Time: 14 e/Time:	:00	1 day 5 day	2 day
Relinquished by:	·					Date/Ti	me:	<u> </u>	necer	ved in	LAD	.y. 	<u>-</u>										Sample Integrity:	On Ice

APPENDIX D

GROUNDWATER MONITORING CHAIN-OF-CUSTODY DOCUMENTATION FIELD DATA SHEETS CERTIFIED ANALYTICAL REPORTS

Chain of Custody Record

QUA-4124 0797		Project Mana				_						_			Date	9				CI	ain of Custody	Number	
Client (A) (C) A) S. II T. I. A	أ	Project Mani	ager ∖\ ı	0	10	ıT				•						3/	21/	101	·		ain of Custody	<u> </u>	<u> 5040</u>
SAFETY KLEEN CONSULTIN	7-1	Telephone N	lumbei	(Area	Code	/Fax I	Vumbe	er							Lab	Numb	er			-	1		2_
2722 SANTA CLARA AVE. :	# フ	5 1(Site Contact) – (337	-8	66	D.								ــــــــــــــــــــــــــــــــــــــ					P	age	of _	<u></u>
City Since 1 - F	1	Site Contact	1		- 1	Lab Co	ontact		4.4	,	ľ					(Atta]		
ALAMEDA CA 9450)					150	NN	16	Μ	<u> </u>	_ _	П	T						丁				
Project Name		Carrier/Way	bill Nu	mber										1 1							Snacia	Instruc	tions/
AC TRANSIT EMERYJILLE Contract/Purchase Order/Quote No.			<u> </u>								\dashv	1							-		Condition	ons of R	eceipt
Contract/Purchase Order/Quote No.			,	Vatrix	·		Cor Pres	itaine serva	ers & itives	; S	-	4	И	1 1									
712551			9	\top	1	8 8	ξ (g		Ŧ	3 I		ZI,	ð										
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Auth	So So		Unpres	HNOS	ΤĊ	NaO	ZnAc/ NaOH	1	202	<u> </u>			<u> </u>	<u> </u>	\dashv	_				1
TRIP BLANK 3/	120/01	0930	X		1_	X		X	\bigsqcup		_ 2	XL,	<u>X</u> _	<u> </u>	_	-			\dashv	4-	GAS/6	STEX,	MTBE OTOR OI
W-3	1	1050	Ш	┵		Ш.		11				$\!$	_	44	_ -		_			+	DIESE	1_/M	otol o
W-1		1130				Ц	<u> </u>	Ц		1		\parallel	_			_	<u> </u>	\sqcup	4	\perp		 	
MW-7		1245	Ш	丄		Ш	<u> </u>	\coprod				Щ	Щ		\perp	_	╀			-			
MW-8		1330				11		Щ			_	1	Ш	_			╁		_				
MW-9		1415	Ш			$\perp \!\!\! \perp$		\coprod				Щ	Ш	_ _			\perp	_		_			
MW-5	1	1500				Ш	_	\coprod				Ц	Ш	_		<u> </u>	_		_	\bot			
MW-4 3	121/01	0840	Ш					Ш			_	11	\coprod	_			-	\sqcup	_	_ _			
MW-3		0850			<u> </u>			Ц			\dashv	Ц	$\!$	_		4-	4		\dashv	+	<u> </u>		
1-WM		0915	Ш					\coprod	L	\sqcup	4	\coprod	11-	_		_	4_				ļ		
MW-Z		0940						Ш	_			Ш	\parallel		\sqcup	\downarrow	_	\square	_	_	<u> </u>		
MW-10		1015	<u> ↓ </u>		1_	1		\downarrow	<u>.</u>	<u> </u>		V	V		1 1					<u> </u>			
Possible Hazard Identification	_		Sample				oi					4 la 2	Fa			Month:	(A	lee m	ay be	asses	sed if samples	are retaine	ed .
Non-Hazard Flammable Skin Irritant Pois	son B	Unknown	⊔ Re	tum T	o Clien	1 L	Dis OC Re	posai equire	meni	ad Is (Spe			VU FD			WICH ID A	3 701	iger ii	IEIT O	110110			
Turn Around Time Required	¥ 21 Down	Other_				1		-		AR													<u></u>
24 Hours 48 Hours 7 Days 14 Days 5	A Zi Days	Date /		Time	e	=	1. Red			<u> </u>											Date	Time)
BYANY MANSON		3/21	101		141	5													_				
2. Relinquished By		Date		Tim	₽		2. Re	ceived	і Ву												Date	Time	,
3. Relinquished By	<u> </u>	Date		Tim	0		3. Re	ceive	і Ву		·										Date	Time	9
						ı																	

Chain of Custody Record

SAFLETT - KLEEN CONSILET N (1 SLEET SAFLETT - KLEEN CONSILET N (2 SLEET SAFLETT - KLEEN CONSILET N (2 SLEET	
City State Zip Code Site Contact Lab Contact Manalysis (Attach list if more space is needed) Project Name AC TRANSIT & MARMY VILL & Contact/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time Site Contact Lab Contact Lab Contact Lab Contact Lab Contact Lab Contact Analysis (Attach list if more space is needed) Special Instruction Conditions of Recommendation on the line of the second sample in the second sample may be combined on one line of	<u> </u>
City State Zip Code Site Contact Lab Contact So No 16. M Project Name Analysis (Attach list if more space is needed) Analysis (Attach list if more space is needed) Special Instruction Conditions of Recommendation on the line) Special Instruction Conditions of Recommendation on the line of	2
Project Name ACTIANSIT LEMARM VILLE Contract/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time Special Instruction Containers & Preservatives NA Special Instruction Conditions of Record Conditions of Record AN Special Instruction Conditions of Record Conditions of Record AN Sample I.D. No. and Description (Containers for each sample may be combined on one line) AN Special Instruction Conditions of Record AN Special Instruction Conditions o	
Project Name ACTIANSIT LEMARM VILLE Contract/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time Special Instruction Containers & Preservatives NA Special Instruction Conditions of Record Conditions of Record AN Special Instruction Conditions of Record Conditions of Record AN Sample I.D. No. and Description (Containers for each sample may be combined on one line) AN Special Instruction Conditions of Record AN Special Instruction Conditions o	
Contract/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time Special instruction Containers & Preservatives Natrix Natrix Natrix Containers & Preservatives Natrix Natri	
Contract/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time Special instruction Containers & Preservatives Natrix Natrix Natrix Containers & Preservatives Natrix Natri	/
Contract/Purchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time So So So So So So So S	15/ aint
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time So	··
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time So	
W-4 3/21/01 1100 X X X X X X X X X X X X X X X X	
W 1	CBE.
MW-6	ווכי גימו
	<u> </u>
Sample Disposal (A lee may be assessed if samples are retained	
Possible riazard identification	
Non-Hazard Flammable Skill Illineal Tribidity Constitution Constitution	
Tum Around Time Required	
24 Hours 48 Hours 7 Days 14 Days 21 Days Other 7 Date Time 1. Received By	
[3-71-91]	
13-21-01 1. Salar Time 2. Received By Date Time Date Time	
3. Relinquished By Date Time 3. Received By Date Time	
Comments	
Clinate The College Phill Field Conv.	

DEPTH TO WATER

DATE: 3-20-01

PROJEC	T <u>AC Transit Emeryvill</u>	Ē	EVENT	Quarterly		TECHNICIAN BA
NO.	WELL OR LOCATION	DATE	ТІМЕ	MEASUREMENT	CODE	COMMENTS
1	MW-1	3/20/01	1000	4.22		
2	MW-2		1001	3.91		
3	MW-3		0962	5.18		
4 .	MW-4		0954	5.46		
5	MW-5		1002	3.68		
6	MW-6		1013	3.16		
7	MW-7_		0936	4.83		
8	MW-8		0137	4.70		
9	MW-9		0938	3.92		
10	MW-10		0940	9.23		
11	W-1		1006	5.16		
-12	W/ 2					ABAADONED
13	W-3		0930	5.70		
14	W-4	1	0949	3.75		

CODES: SWL - Static Water Level

OIL - Oil Level

OWI - Oil/Water Interface

MTD - Measured Total Depth

ng Diameter (i I Well Depth (i	M: 29.42	San San	ject Number: 3 npie Date: 3/ npie ID: W -3	20/01		
), before purgin	19: 5.70				-
elopment Meth Baile		onStain	iess Steel	PVC	_ ABS Plastic	
		icated Submersit -Dedicated Subm			Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp.	Water Level (to 0.01 ft)	Cum. Voi. (gai)	Pump Rate (GPM)
1029	6.92	704	27.9	9.79	23	0.52
1037	6.94	668	24.8	9.72	6	1
1043	6.89	660	24.6	11.03	9	V
						
ting Length in the X = 1 Well DTE: 3 to 5 W	Pt - Depth to W Volume in gal/ Vell Casing Volu	= 21.42 - 5.70 later in Ft) x X x Ift, X = 0.165 for the common required priors were removed	3 or 2 in. wel ls,) or to sample c	× .165 = 3.9/ C = 0.37 for 3 in ollection.		lgallone
ting Length in the X = 1 Well DTE: 3 to 5 Well bast 3 well well by the Collection	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method:	later in Ft) $x X x$ Ift, $X = 0.165$ for imas required princes were removed	3 or 2 in. wells,) or to sample co prior to sampli	× .165 = 3.9/ K = 0.37 for 3 in collection.	x 3 = 1/.)	lgallone
sing Length in the X = 1 Well DTE: 3 to 5 Well east well uple Collection Baile	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Teffe	ater in Ft) x X x ft, X = 0.165 fc imes required pri s were removed on Stain	3 or 2 in. weils,) or to sample co prior to sampli less Steel	× .165 = 3.9/ C = 0.37 for 3 in ollection.	x 3 = 1(.) . weils, X = 0. _ ABS Plastic	.65 for 4 in. v
ting Length in the X = 1 Well DTE: 3 to 5 Well bast 3 well well by the Collection	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Tefic	later in Ft) $x X x$ Ift, $X = 0.165$ for imas required princes were removed	3 or 2 in. weils,) or to sample co prior to sampli less Steel	× .165 = 3.9/ K = 0.37 for 3 in collection.	x 3 = 1/.)	.65 for 4 in. v
sing Length in there X = 1 Well DTE: 3 to 5 Well east well uple Collection Baile Pum	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Tefform Non-	Ater in Ft) x X x Ift, X = 0.165 for Imes required pri s were removed onStainli icated Submersib	3 or 2 in. wells,) or to sample of prior to sampli less Steel lie Pump lersible Pump	× .165 = 3.9/ K = 0.37 for 3 in ollection. ng.	x 3 = 1(.) . weils, X = 0. _ ABS Plastic	.65 for 4 in. v
sing Length in there X = 1 Well DTE: 3 to 5 Well east well uple Collection Baile Pum	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Tefform Non-	Ater in Ft) x X x Ift, X = 0.165 for Imes required pri s were removed onStain icated Submersib Dedicated Subm Field Blank, Rins	3 or 2 in. wells,) or to sample of prior to sampli less Steel lie Pump lersible Pump	× .165 = 3.9/ K = 0.37 for 3 in ollection. ng.	x 3 = 1(.) . weils, X = 0. _ ABS Plastic	.65 for 4 in. v
sing Length in the X = 1 Well OTE: 3 to 5 Well opin Collection Baile Pump	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Ded p: Ded any (Duplicate) TAIR f	rater in Ft) x X x ft, X = 0.165 fc imes required pri s were removed on Stain icated Submersib Dedicated Subm Field Blank, Rins	3 or 2 in. weils,) or to sample of prior to sampli less Steel less Steel lersible Pump sersible Pump	× .165 = 3.9/ K = 0.37 for 3 in ollection. ng.	x 3 = 11. n. weils, X = 0. ABS Plastic Bladder Pump	.65 for 4 in. v
sing Length in the East 1 Well DTE: 3 to 5 Well pile Collection	Pt - Depth to W Volume in gal/ /ell Casing Volume casing volume Method: r: Ded p: Ded any (Duplicate) TAIR f	Atter in Ft) x X x Ift, X = 0.165 for Imes required pri s were removed Don Stain icated Submersib Dedicated Subm Field Blank, Rins SUPNE	3 or 2 in. weils,) or to sample of prior to sampli less Steel less Steel lersible Pump sersible Pump	× .165 = 3.9/ C = 0.37 for 3 in ollection. ng. PVC	x 3 = 11. n. weils, X = 0. ABS Plastic Bladder Pump	.65 for 4 in. v

Sample Collection Method: Tefion Stainless Steel PVC **Dedicated Submersible Pump** Non-Dedicated Submersible Pump QA/QC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.): TRIP BLANK CENT. Parameter Collected: 8021 8015 Sample Appearance OVA Reading (ppm) Suspended Solids (describe): Decontamination Performed: WASHED / RINSED SOUNDERS/MET Comments / Calculations: START : 1025 STOP : 1048 SAMPLE : 1050 Rach & 11 ... _ 7-70-01

			* * * *			Weil ID:	W-1
roject l asing l otal W lepth to	Name: AC Diameter (in /eli Depth (ft o Water (ft),	712ANS. EME N: 2 " N: 16.43 , before purgin	Proj San San San	ject Number: 3/ npie Date: 3/ npie ID: W-	792551 20/01		
	oment Metho	od: NA				400 5	
•	Pump:		on Stain!	le Pumn	PVC	_ ABS Plastic _ Bladder Pum	p
	Time	pH	Conduct.	Temp.	Water Level	Cum. Voi.	Pump Flate (GPM)
-	1117	6.74	917	(Celsius)	(to 0.01 ft)	(gai) 1. 5	0.6
_	1511	6.79	938	<u>7,4.8</u> 25.4	7.28	30	1
_	123	6.75	929	Z5.1	7.59	50	
		7		23.1	1 /		
					77-41	VOL: 60	
asing i here X NOTE:	Length in Pt	- Depth to Wa /olume in gal/f Il Casing Volum	ter in Ft) $\times X \times 3$ t, $X = 0.165$ for mes required prior	2 in. wells, X r to sample co	= 0.37 for 3 in. ilection.		
asing I here X NOTE: least	Length in Ft C = 1 Well V 3 to 5 Well Well c Collection M	- Depth to Wa /olume in gal/f Il Casing Volumes asing volumes ethod: Teflor	iter in Ft) x X x 3 it, X = 0.165 for mes required prior were removed p Stainle	2 in. wells, X r to sample co	= 0.37 for 3 in. ilection. g.	weils, X = 0.	65 for 4 in. w
asing interest NOTE: tleast ample (Length in Pt C = 1 Well V 3 to 5 We Well c Collection M Bailer: Pump:	- Depth to Wa /olume in gal/f Il Casing Volumes asing volumes ethod: Dedic	iter in Ft) x X x 3 it, X = 0.165 for mes required prior were removed p	2 in. wells, X r to sample col rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ilection. g.	wells, X = 0. ABS Plastic	65 for 4 in. w
here X NOTE: Heast Hample (Length in Pt = 1 Well V = 3 to 5 We Collection M Bailer: Pump: Pump: Samples if an er Collected: Appearance OVA R	- Depth to Wa /olume in gal/f Il Casing Volumes asing volumes ethod: Dedic	ter in Ft) x X x 3 t, X = 0.165 for mes required prior were removed p Stainle sated Submersible Dedicated Submer Field Blank, Rinse	2 in. wells, X r to sample collinate to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ilection. g.	wells, X = 0. ABS Plastic Bladder Pump	65 for 4 in. w
A/QC Sample A	Length in Pt = 1 Well V = 3 to 5 We Collection M Bailer: Pump: Pump: Samples if an er Collected: Appearance OVA R	- Depth to Wa /olume in gal/f Il Casing Volumea sasing volumea ethod: Dedic Dedic Non-f my (Duplicate, in the solids (defined	ter in Ft) x X x 3 t, X = 0.165 for mes required prior were removed p Stainle sated Submersible Dedicated Submer Field Blank, Rinse	2 in. wells, X r to sample collinate to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ilection. g. PVC	wells, X = 0. ABS Plastic Bladder Pump	65 far 4 in. w
A/QC Saramete	Length in Pt = 1 Well V = 3 to 5 We Collection M Bailer: Pump: Pump: Samples if and er Collected: Appearance OVA R Suspen	- Depth to Wa /olume in gal/f Il Casing Volumes sasing volumes sethod: Dedic Dedic Non-(my (Duplicate,) seading (ppm) nded Solids (deformed:	ter in Ft) x X x 3 t, X = 0.165 for mes required prior were removed p Stainle sated Submersible Dedicated Submer Field Blank, Rinse	2 in. wells, X r to sample collinate to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ilection. g. PVC	wells, X = 0. ABS Plastic Bladder Pump	65 far 4 in. w

Binda A Ham

9/20/01

Cas	ect Name: AC ing Diameter (ir al Weil Depth (f th to Water (ft)	り: 2"	MEAYVILLE <mark>Proj</mark> San San G:4:93	ject Number: nple Date: nple ID: MW -			
	elopment Meth	od: NA	on Stain!	ess Steel	PVC	_ ABS Plastic	-
	Pump	: Dedi Non-	cated Submersib Dedicated Subm	ie Pump ersible Pump		_ Bladder Pum	P
	Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Vol.	Pump Rate (GPM)
	1200	6.66	1013	28.3	3.93	3	0.19
	1224	6-69	1079	32.6	14.39	6	
	1230	6.63	1036	32.1		9	y
Ì							
L			= (24.53 - 4.8 iter in Ft) x X x 3		TOTAL	1.>10	
Sam	ple Collection M Bailer: Pump:	lethod: Teflor Dedic	were removed p Stainle ated Submersible Jedicated Submers	ss Steel Pump rsible Pump		ABS Plastic Bladder Pump	
Parai	meter Collected:		Reid Blank, Rinse	Blank, etc.):	CENT PUR	np 70	pur6e_
	Susper	ndeci Solids (de	scribe):				•
Deco	ntamination Per		4				
		W/R	5/m.				
Com	ments / Calculat	STV STO SAN	9RT: 1147 P: 1239 1PLE: 1245	i B			

Weil ID: MW-7

ect Name: AC		• • •			Weil ID:	1.44.
ng Diameter (in i Well Depth (f in to Water (ft)	744,05 - 6. n): 2" n): 20.67 1, before purgi	MEAYVILLE Pro San San	ject Number: nple Date: nple ID: _{MW} -9	792551 _.		_
elopment Meth	od: NA	on Stain			_ ABS Plastic	-
Pump	o: Ded	icated Submersib -Dedicated Subm	ile Pumn		_ Bladder Pum	p
Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Vol. (gail	Pump Rati (GPM)
1305	6.80	1/32	27.9	7.23	2.5	0.27
312	6.82	(144	27.0	8.3	5.0	
13 20	6.78	1143	27.5	9.56	7.5	V
		1		Draw!	PUA660:8	
	<u></u>	- 60.67 - 4.7	2.2	10146	(1) m 2 : 2	A .
× Bailer	: Tefic	n Stainle	ess Steel	DA/C	ABS Plastic	
4					-	
Pump	: Dedi	cated Submersible Dedicated Subme	e Pump ersible Pump		Bladder Pump	r
Ритр	: Dedi	cated Submersible	ersible Pump		-	ı
Pump C Samples if a	Dedi Non- Non- any (Duplicate,	cated Submersibi Dedicated Subme Field Blank, Rinst	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a	Dedi Non- any (Duplicate,	cated Submersibi Dedicated Subme Field Blank, Rinst	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a	Dedi Non- any (Duplicate,	cated Submersible Dedicated Subme Field Blank, Rinse 015	ersible Pump e Blank, etc.):	NT PUMP	Bladder Pump	
Pump C Samples if a	Dedi Non- any (Duplicate,	cated Submersible Dedicated Subme Field Blank, Rinse 015	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a second control of the control	Dedi Non- i: 8021 / 8 Reading (ppm) ended Solids (d	cated Submersible Dedicated Subme Field Blank, Rinse 015	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a second content of the content	Dedi Non- i: 8021 / 8 Reading (ppm) ended Solids (d	cated Submersible Dedicated Subme Field Blank, Rinse 015	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a neter Collected ple Appearance	Deding Non- i: 8021 / 8 Reading (ppm) ended Solids (deformed:	Cated Submersible Dedicated Submersible Field Blank, Rinse 0.15^{-1} escribe):	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a second content Collected on the Appearance OVA (Content Collected	Deding Non- i: 8021 / 8 Reading (ppm) ended Solids (deformed:	Cated Submersible Dedicated Submersible Field Blank, Rinse 0.15^{-1} escribe):	ersible Pump e Blank, etc.):		Bladder Pump	
Pump C Samples if a second content Collected one Appearance OVA (Suspendentamination Period Content	Dedinany (Duplicate, i: 8021 / 8 Reading (ppm) anded Solids (deformed: W/P	Cated Submersible Dedicated Submersible Dedicated Submersible Signal Blank, Rinse D15 escribel: 5/w 5706	e Blank, etc.): (6)		Bladder Pump	
Pump C Samples if a neter Collected ie Appearance OVA (Suspentamination Pe	Dedinany (Duplicate, i: 8021 / 8 Reading (ppm) anded Solids (derformed: W/ Partions:	Cated Submersible Dedicated Submersible Field Blank, Rinse 0.15^{-1} escribe):	1255 1325		Bladder Pump	

		• •			Weil ID:	<u> Mw-9</u>
Project Name: AC Casing Diameter (Total Well Depth (Depth to Water (fi	in): て。 (ft): 20.52	San San	ject Number: ople Date: 3.2 ople ID: MW	792551 10-01 -9		
evelopment Meti	hod: NA	-				-
		onStain!		PVC	_ ABS Plastic	
Pum	p: Ded Non	icated Submersib -Dedicated Subm	ie Pump ersibie Pump		Bladder Purr	d
Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Vol.	Pump Rate (GPM)
(350	6.81	1160	Z6-0	(to 0.01 ft)	(gal) 2.5	0.34
1358	6.70	1168	26.3	8.12	5.0	1
1405	6.68	166	26.2	9.23	7.5	1
		- (20.52 - 3		TOTAL	V = 8.5	
Baile	p: Dedi	Stainle	Pumo	PVC	_ABS Plastic _Bladder Pump	,
VQC Samples if		Dedicated Subme Field Blank, Rinse	•			
rameter Collecte	d: 8015 /8	P021		CENT PUM	P 70 PC	UPGE
mpie Appearance OVA				CENT PUM	P TO PO	UFGE
	e Reading (ppm) ended Solids (d			CENT PUM	P 70 P	UF66_ ~
Imple Appearance OVA Susp	e Reading (ppm) ended Solids (d erformed:			CENT PUM	P 70 P	UF66_ ~
Imple Appearance OVA Susp	e Reading (ppm) ended Solids (d erformed: W//}_	escribe): S/m		CENT PUM	P 70 P	UP-66_ ~
mple Appearance OVA Suspectontamination Po	e Reading (ppm) ended Solids (d erformed: W//}_	escribe): S/m STAR	T 1345	CENT PUM	P 70 P	UF66 ***
mple Appearance OVA Suspectontamination Po	e Reading (ppm) ended Solids (d erformed: W//}_	escribe): S/m STAR- STOP	-1345 1410	CENT PUM	P 70 P	UF66.
mple Appearance OVA Suspicontamination Po	e Reading (ppm) ended Solids (d erformed: W//}_	escribe): S/m STAR- STOP	T 1345	CENT PUM	P 70 P	UF66.

epth to Water (ft),	: 2" : 19,49 before purgin	San San San G:710	ject Number: nple Date: 3- nple ID: _{MW-}	20-01		
evelopment Method Bailer:	i: NA)	ess Steel	PVC	ABS Plastic	-
Pump:	Dedic	cated Submersib Dedicated Subm	ie Pumn		Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level	Cum. Vol. (gai)	Pump Rate (GPM)
1441	6.90	752	25.0	5.58	2.5	0.53
1445	691	713	25.2	6.32	50	
1448	6.91	711	25.1	6.12	7.5	4
ļ						
ater Volume to be i				TOTAL	V = 8	
		were removed p	nior to samplin	g.		
mple Collection Me	nthod:Teflor	Stainle	ss Steel	_PVC	ABS Plastic Bladder Pump	
mple Collection Me	rthod: Teflor Dedica	Stainle Stainle Stainle Stainle Stainle	ss Steel Pump rsible Pump	_PVC		
mple Collection Me Bailer: Pump: A/QC Samples if any rameter Collected: mple Appearance OVA Re	Teflor Dedicate, F	Stainle ated Submersible Dedicated Submer Field Blank, Rinse	ss Steel Pump rsible Pump s Blank, etc.):	_PVC	Bladder Pump	
mple Collection Me Bailer: Pump: A/QC Samples if any rameter Collected: mple Appearance OVA Re	POZI / 80 Juding (ppm) ded Solids (des	Stainle ated Submersible Dedicated Submer Field Blank, Rinse	ss Steel Pump rsible Pump s Blank, etc.):	_PVC	Bladder Pump	
mple Collection Me Bailer: Pump: //OC Samples if any rameter Collected: mple Appearance OVA Re OVA Re	SOZI / SO Jading (ppm) ded Solids (desormed:	Stainle ated Submersible Dedicated Submer Field Blank, Rinse	ss Steel Pump rsible Pump s Blank, etc.):	_PVC	Bladder Pump	
mple Collection Me Bailer: Pump: A/QC Samples if any rameter Collected: mple Appearance OVA Re OVA Re	SOZI / SO sading (ppm) ded Solids (desormed:	Stainle ated Submersible Dedicated Submersible Stainle	ss Steel Pump rsible Pump s Blank, etc.):	_PVC	Bladder Pump	
mple Collection Me Bailer: Pump: A/QC Samples if am rameter Collected: mple Appearance OVA Re OVA Re Suspend contamination Perfe	SOZI / SO sading (ppm) ded Solids (desormed:	Stainle ated Submersible Dedicated Submersible Staink, Rinse Stainle Stainle Stainle Stainle Stainle Stainle Stainle	e Pump rsible Pump e Blank, etc.):	_PVC	Bladder Pump	

7-10-01

12 ... / 1/2 ...

Weil ID: MW-5

-		• • •			Weil ID:	MW-Y
Project Name: AC Casing Diameter (i Fotal Well Depth (i Depth to Water (ft	ft): 14.95	Sar Ser	nject Number: nple Date: 3/ nple ID: MW -	/a . /		
evelopment Meth	nod: NA r: Tefi	on Stain	iess Steel	PVC	ABS Plastic	-
Pum	p: Ded	icated Submersib -Dedicated Subm	ila Bu-		Bladder Pum	p
Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Vol. (gai)	Pump Rate (GPM)
0919	6.88	777	17.2	6.89	1.5	0.38
0824	6.70	802	22.9	7.11	3.0	
0827	6.71	784	23.1	7.09	4,5	-
			- 			
		(14.95-5.46		TOTAL VI	= 5 <u> </u>	
Pump:	Dedic	n Stainle ated Submersible Dedicated Submer	- Arma	_PVC	ABS Plastic Bladder Pump	
A/QC Samples if a			-			
	: 8015 / 80 Reading (ppm) nded Solids (de					. .
contamination Pe		L 5/m				
mments / Calculat	tions:	:	57AFT :09	•		
			570P :08	28		
			570P :08 SAMPLE :	28 0 640		•

si Weil Depth (f nth to Water (ft)	11: (14.68)	ERYVILLE Pro Sa Sa	mple ID: NW.	3		
		מיכימי				-
elopment Meth	od: (/ () - r: Tef ic	OD Casis	-l -		400 Marsin	
			niess Steel	PVC	ABS Plastic	
Pump	Dedi	icated Submersi -Dedicated Subn	ble Pump nersible Pump		_ Bladder Pum	ip
Time	pH	Conduct.	Temp.	Water Level	Cum. Voi. (gal)	Pump Ra (GPM)
0830	6.81	778	19.9	7.32	1.6	0.59
0833	6.78	170	20.8	7.57	3.0	
0836	6.77	732	20.8	7.68	4.5	+
				x./65 = 1.	V= 4.7	
ple Collection M	casing volumes lethod:	mers reduced pri	or to sample co prior to samplin			.65 for 4 in.
ple Collection M	casing volumes lethod:Teflor	were removed (r 2 in. wells, X or to sample co prior to samplin	lection.	. weils, X = 0. ABS Plastic	65 for 4 in.
ple Collection M	casing volumes fethod: Teffor	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin	liection. g.		
ple Collection M	lethod: Teflor Dedic	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g.	ABS Plastic	
ple Collection M	lethod: Teflor Dedic	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g.	ABS Plastic	
ple Collection M	lethod: Teflor Dedic	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g. PVC	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump:	lethod: Teflor Dedic Non-C	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g. PVC	ABS Plastic	
ple Collection M Bailer: Pump: C Samples if a	lethod: Teflor Dedic Non-C	were removed printing stainle	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g. PVC	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: Pump: Pump: Pump: Pump: Pump: Pump: OVA R	lethod: Teffor Dedic Non-C Ny (Duplicate, 1	were removed printing were removed printing stainle st	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g. PVC	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: Pump: Pump: Pump: Pump: Pump: Pump: OVA R	tethod: Teflor Dedic Non-E	were removed printing were removed printing stainle st	r 2 in. wells, X or to sample co prior to samplin ess Steel e Pump ersible Pump	liection. g. PVC	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: Pump: Pump: Pump: Pump: Pump: Pump: OVA R	casing volumes lethod: Dedic Dedic Non-C my (Duplicate,) Reading (ppm) nded Solids (de	were removed printing stainles required printing stainles atted Submersible Dedicated Submersible Printing stainles attended atte	r 2 in. wells, X or to sample co- prior to samplin ess Steel e Pump ersible Pump e Blank, etc.):	liection. g. PVC	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: C Samples if a service Appearance OVA R Suspersentamination Per	lethod:	were removed printing stainles required printing stainles atted Submersible Dedicated Submersible Pols Pols scribe):	prior to sampling ess Steel e Pump ersible Pump ersible Pump e Blank, etc.):	Bection. G. PVC CENT. PU	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: C Samples if a	lethod:	were removed printing stainles required printing stainles atted Submersible Dedicated Submersible Pols Pols scribe):	prior to sampling ess Steel e Pump ersible Pump ersible Pump e Blank, etc.):	Bection. G. PVC CENT. PU	_ ABS Plastic _ Bladder Pump	
ple Collection M Bailer: Pump: C Samples if a service Appearance OVA R Suspersentamination Per	lethod:	were removed printing stainles required printing stainles atted Submersible Dedicated Submersible Pols Pols scribe):	r 2 in. wells, X or to sample co- prior to samplin ess Steel e Pump ersible Pump e Blank, etc.):	Bection. G. PVC CENT. PU	_ ABS Plastic _ Bladder Pump	

Project Name: (1)C Casing Diameter (in Total Well Depth (f Depth to Water (ft)	11: 14.5D	Sar Sar	ject Number: npie Date: 3 npie ID: _{MW} -	~71 m/		
Development Methors Beiler	: Tef	ionStain licated Submersib l-Dedicated Subm	ia Dum	PVC	ABS Plastic Bladder Pum	IP
Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Voi. (gai)	Pump Rate (GPM)
0903	7,01	739	17.8	5.51	1.5	0.71
0904	6.98	765	18.4	5.92	3.0	
0906	6.97	756	18.3	6.62	4.5	J
-	<u> </u>					
					<u> </u>	
Water Volume to be					V = 5	0.9
Sample Collection M Bailer: Pump:	Teffor	nStainle: exted Submersible Dedicated Submer	Prima	_PVC	ABS Plastic Bladder Pump	
QA/QC Samples if ar						
	SOZI / S eading (ppm) ided Solids (de		(CENT. PUMF	TO PUR	² 6£.
Decontamination Peri		2 5/m	ı	~		
Comments / Calculati	ons:	START STOP SAMPLE	: 0900 : 0907 : 0915			

R1-14

Weil ID: MW-/

Z.71-n1

•						Weil ID:	MW-2
Cat	ject Name: AC sing Diameter (in al Well Depth (fi oth to Water (ft),	1: 2" 1: 14.56	San San	ject Number: nple Date: 3/2 nple ID: MW-	1/01		
Dev	relopment Metho		on Stain	iess Steel	PVC	ABS Plastic	·
	Pump:	: Dedi	cated Submersib Dedicated Subm	ile Pumn		Bladder Pum	p
	Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level	Cum. Vol. (gail	Pump Rate (GPM)
	0926	6.85	677	19.6	4.87	1.5	0.48
	0928	6.86	659	20.0	5.02	3.0	
	0930	6.89	654	20.0	502	4.5	—
i		·			TOTAL U	5.3	
:							
	east <u>3</u> well conple Collection M <u>K</u> Bailer: Pump:	ethod: Teflor	Stainle ated Submersible Dedicated Subme	e Pump		ABS Plastic Bladder Pump	
QA/	QC Samples if a						·
Para Sam		8021 / 801. leading (ppm) nded Solids (de		(617	PUMP TO	PURE	- •- ·
Dec	ontamination Per		S/M				
Соп	ments / Calculat	ions:	_				
		51	top 093	0			
		5	top 093°	١			
		4	male nau	10			

But A Hora.

		• •			AAGII ID:	TVI 00 -70
oject Name: AC sing Dlameter (i stal Well Depth (opth to Water (fi	TNA)S. (in): 2° ft): 24.)5 it, before purgi	emeryvicut <mark>fro</mark> San San ng: 9.23	ject Number: / nple Date: 3 nple ID: //\ W -	192551 112 8 /01		
velopment Meti Baile	rod: NA	onStain			_ ABS Plastic	-
Pum	p: Ded	icated Submersib -Dedicated Subm	le Pump	-	_ Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level	Cum. Vol.	Pump Rate (GPM)
1004	7.15	720	18.5	10.73	2.5	0.68
1008	7.11	727	18.7	10.91	5.0	1
10)1	7.11	725	18.4		7.5	1
				TOTAL V	- 7.5	
		- (24.15-9.2	a)			- 09
nple Collection (Method: : Tefic	in Stainle	iee Staal	PMC	ABS Plastic	
•): Dedi	cated Submersible	Pumn		Bladder Pump	1
QC Samples if		Field Blank, Rinse	•			
	: Reading (ppm)					.
	ended Solids (de	Bacribe):				
ontamination Pe		'R 5/m				
nments / Calcula	•			••		
		cTA	PT: 1001			
			•			
			P = 1012			
		SAM	PLG : 1015	_		

7-70-01

Brak A Vann

velopment Meth Baile Pum	r:Tef	ion Stain		PVC	_ ABS Plastic	
	Nor	dicated Submersit n-Dedicated Subm	ole Pump Tersible Pump		_ Bladder Pum	Þ
Time	pH	Conduct.	Temp. (Celsius)	Water Lavel	Cum. Voi.	Pump Rs (GPM)
1041	7.03	1992	19,9	1to 0.01 ft1 4.78	(gal) 	0.72
10 43	7.04	1012	19.7	4.93	4	
1046	6.94	1022	19.4	5.69	6	4
					, , , , , , ,	
		_ (6.93-3.7			v: 6.5	
east <u>3</u> well on the Collection M	casing volume: Aethod:	mes required prior were removed p	prior to samplin	g.	weils, X = 0.0	
east <u>3</u> well on the Collection Market Seller: Pump:	casing volume: Aethod: Teffo Dedii	t were removed poin Stainle cated Submersible Dedicated Subme	orior to samplin ess Steel Pump ersible Pump	g.		
east <u>3</u> well on the Collection Market Seller: Pump:	casing volume: Aethod: Teffo Dedii	were removed p Stainle	orior to samplin ess Steel Pump ersible Pump	g.	ABS Plastic	
east weil of the collection is Pump: OC Samples if a collected in the collecte	casing volume: Method: Teffo Dedicate,	s were removed poin Stainle cated Submersible Dedicated Submersible Field Elank, Rinse	ess Steel Pump rsible Pump stible Pump	g.	ABS Plastic Bladder Pump	
east weil of the collection is Pump: OC Samples if a collected in the collecte	Casing volume: Aethod: Teffo Dedii Non- Nor- Ny (Duplicate, So 21 , 80) Reading (ppm) Inded Solids (de	s were removed poin Stainle cated Submersible Dedicated Submersible Field Elank, Rinse	es Steel Pump raible Pump Riank, etc.i:	g. _ PVC	ABS Plastic Bladder Pump	
east weil of the collection is Pailer: Pump: Pump: CC Samples if a surprise Appearance OVA F Suspection of the collected in the collect	Casing volumes Aethod: Teffo Dedit Non- Iny (Duplicate, Reading (ppm) Inded Solids (de	s were removed programmers. Stainle cated Submersible Dedicated Submersible Field Ellank, Rinse Scribe):	ess Steel Pump rsible Pump Blank, etc.):	ePVC	ABS Plastic Bladder Pump	
east well of pie Collection for Pailer: Pump: CC Samples if a surface OVA For OVA For Suspendentamination Performance	Casing volumes Aethod: Teffo Dedit Non- Nor- Nogram Reading (ppm) Inded Solids (de	s were removed programmers. Stainle cated Submersible Dedicated Submersible Field Ellank, Rinse Scribe):	START:	Cent. pump	ABS Plastic Bladder Pump	
east well of pie Collection for Pailer: Pump: CC Samples if a surface OVA For OVA For Suspendentamination Performance	Casing volumes Aethod: Teffo Dedit Non- Nor- Nogram Reading (ppm) Inded Solids (de	s were removed poinStainle cated Submersible Dedicated Submersible Field Ellank, Rinse scribe): C W	ess Steel Pump rsible Pump Blank, etc.):	Cent. pump	ABS Plastic Bladder Pump	

Weil ID: <u>W-4</u>

					Weil ID:	
ect Name: AC ng Diameter (i I Well Depth (i h to Water (ft)	m: 19,64	Sei	pject Number: mple Date: 3 mple ID: _{MW}	· 21 · 01		
lopment Meth	od: .14					-
Bailer	r: Tef i	lonStain	iless Steel	PVC	ABS Plastic	
Pump						
•	Non	iicated Submersii I-Dedicated Subm	ole Pump Tersible Pump		Bladder Pum	.
Time	pH	Conduct		/	(C) - 1(c)	
		(umho/cm)	Temp. (Celsius)	(to 0.01 ft)	Cum. Vol. (gai)	Pun (C
1114	6.85	984	70.7	3.96	2.5	
7/1	6.97	980	20.4	3.94	5,0	
1170	6.82	1043	20.9	3.97	7.5	
	<u> </u>					
				Tonal V	= 8.5	
ng Length in Fi $e X = 1$ Well \(\text{TE: } 3 to 5 \text{ Well } \)	t - Depth to Wi Volume in gai/i ill Casing Volu casing volumes	= $(9.69 - \frac{3.9}{4.9})$ ster in Ft) x X x 3 ft, X = 0.165 for mes required prior	3 /نارع r 2 in. wells, X pr to sample co	رک : = 0.37 for 3 in: ::	/ : 5	7.7
ing Length in Fig. $X = 1$ Well $X = 1$ Well $X = 1$ Well $X = 1$ Well $X = 1$	t - Depth to Wi Volume in gai/i ill Casing Volumes casing volumes lethod:	eter in Ft) $\times X \times C$ ft, $X = 0.165$ for mes required prior were removed C	76.48 r 2 in. wells, X or to sample co	2. = 0.37 for 3 in: dection.	/ : { . weils, X = 0.	7.7
ing Length in Fig. $X = 1$ Well $X = 1$ Well $X = 1$ Well $X = 1$ Well $X = 1$	t - Depth to Will Casing Volumes asing volumes lethod: Teflo	eter in Ft) x X x ; ft, X = 0.165 for mes required prices were removed ; Stainle	76.48 r 2 in. wells, X or to sample co prior to samplin	ے = 0.37 for 3 in: illection. ig.	weils, X = 0. ABS Plastic	7.7
ng Length in Fi e X = 1 Well V TE: 3 to 5 Well ast well of the Collection N Beiler:	t - Depth to Will Casing Volumes asing volumes lethod: Teflo	eter in Ft) $\times X \times C$ ft, $X = 0.165$ for mes required prior were removed C	76.48 r 2 in. wells, X or to sample co prior to samplin	2. = 0.37 for 3 in: dection.	/ : { . weils, X = 0.	7.7
ng Length in Pie X = 1 Well V TE: 3 to 5 Well v let Well v Bailer: Pump:	t - Depth to Wi Volume in gai/i all Casing Volumes casing volumes lethod: Teflo Dedic	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior were removed prior Stainle cated Submersible Dedicated Submersible	76.48 r 2 in. wells, X pr to sample co prior to samplir pss Steel p Pump praible Pump	2. = 0.37 for 3 in: dection.	weils, X = 0. ABS Plastic	7.7
ng Length in Pie X = 1 Well V TE: 3 to 5 Well v let Well v Bailer: Pump:	t - Depth to Wi Volume in gai/i all Casing Volumes casing volumes lethod: Teflo Dedic	eter in Ft) x X x ; ft, X = 0.165 for mes required prices were removed ; Stainle	76.48 r 2 in. wells, X pr to sample co prior to samplir pss Steel p Pump praible Pump	2. = 0.37 for 3 in: dection.	weils, X = 0. ABS Plastic	7.7
ng Length in Ple X = 1 Well V TE: 3 to 5 Well v le Collection N Bailer: Pump: C Samples if a	t - Depth to Will Volume in gal/in all Casing Volumes casing volumes lethod: Teflo Dedic ny (Duplicate,	eter in Ft) x X x 3 ft, X = 0.165 for mes required price were removed ; Stainle cated Submersible Dedicated Subme Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2. = 0.37 for 3 in: dection.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Ple X = 1 Well V TE: 3 to 5 Well v le Collection N Beiler: Pump: C Samples if a	Volume in gal/sill Casing Volumes asing volumes lethod: Dedic Dedic Non-sill any (Duplicate,	eter in Ft) x X x 3 ft, X = 0.165 for mes required price were removed ; Stainle cated Submersible Dedicated Subme Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Place X = 1 Well V TE: 3 to 5 Well v le Collection N	t - Depth to Will Volume in gal/in all Casing Volumes casing volumes lethod: Teflo Dedic ny (Duplicate,	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainle eated Submersible Dedicated Submersible Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Fi e X = 1 Well V TE: 3 to 5 We ist well of the Collection M Bailer: Pump: C Samples if a meter Collected: ie Appearance OVA Fi Suspen	lethod: Bozi / Solids (desding (ppm) nded Solids (desired (described (descri	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainle eated Submersible Dedicated Submersible Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Place X = 1 Well V TE: 3 to 5 Well v le Collection N	t - Depth to Will Volume in gal/sail Casing Volumes lethod: Dedic Non-iny (Duplicate, leading (ppm) inded Solids (deformed:	ater in Ft) x X x 3 ft, X = 0.165 for mes required prior in Stainle ated Submersible Dedicated Submersible Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Fi e X = 1 Well V TE: 3 to 5 We ist well of the Collection M Bailer: Pump: C Samples if a meter Collected: ie Appearance OVA Fi Suspen	t - Depth to Will Volume in gal/sail Casing Volumes lethod: Dedic Non-iny (Duplicate, leading (ppm) inded Solids (deformed:	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainle eated Submersible Dedicated Submersible Field Blank, Rinse	76.48 r 2 in. wells, X pr to sample co prior to samplin pss Steel p Pump proble Pump proble Pump proble Blank, etc.):	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Fi e X = 1 Well V TE: 3 to 5 We ist well of the Collection M Bailer: Pump: C Samples if a meter Collected: ie Appearance OVA Fi Suspen	lethod: Bozi / Solution Teflo Dedic Non- Non- Reading (ppm) nded Solids (deformed:	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainle cated Submersible Dedicated Submersible Field Blank, Rinse Scribe):	7 2 in. wells, X or to sample co prior to sampling ess Steel e Pump ersible Pump ersible Pump ersible Pump (CEN)	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Ple X = 1 Well V TE: 3 to 5 Well of the Collection M Bailer: Pump: C Samples if a seter Collected: ie Appearance OVA F Suspendentamination Performance Performan	lethod: Bozi / Solution Teflo Dedic Non- Non- Reading (ppm) nded Solids (deformed:	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed to the standard Submersible Dedicated Submersible Dedicated Submersible Submersi	7 2 in. wells, X or to sample control to sample control to sample control to sample de Pump ersible Pump ersi	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for
ng Length in Ple X = 1 Well V TE: 3 to 5 Well of the Collection M Bailer: Pump: C Samples if a seter Collected: ie Appearance OVA F Suspendentamination Performance Performan	lethod: Bozi / Solution Teflo Dedic Non- Non- Reading (ppm) nded Solids (deformed:	eter in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainle cated Submersible Dedicated Submersible Field Blank, Rinse Scribe):	7 2 in. wells, X or to sample control to sample control to sample control to sample de Pump ersible Pump ersi	2 - 0.37 for 3 in. Election.	weils, X = 0. ABS Plastic Bladder Pump	8.2 65 for

B 1 - A 4.

3-21-01

April 20, 2001

Brad Wright

STL SACRAMENTO PROJECT NUMBER: G1C210285

STL Sacramento

880 Riverside Parkway West Sacramento, CA 95605-1500

Tel: 916 373 5600 Fax: 916 371 8420 www.stl-inc.com

2233 Santa Clara Ave Suite 7 Alameda, CA 94501

Safety Kleen Consulting

Dear Mr. Wright,

This report contains the analytical results for the samples received under chain of custody by STL Sacramento on March 21, 2001. These samples are associated with your AC Transit Emeryville project.

The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4414.

Sincerely,

Bonnie J. McNeill Project Manager

Bonnie Mcheile.

TABLE OF CONTENTS

STL SACRAMENTO PROJECT NUMBER

Case Narrative

STL Sacramento Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

WATER, 8015M, TPH Gas/8021B, BTEX + MTBE Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Sample Data Sheets Method Blank Reports Laboratory QC Reports

WATER, 8015 MOD, Diesel/Motor Oil Samples: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Sample Data Sheets Method Blank Reports Laboratory QC Reports

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER

General Comments

Samples were received at 3 and 6 degrees Centigrade.

WATER, 8015M, TPH Gas/8021B, BTEX + MTBE

Several sample surrogate recoveries are affected by co-elution with the unknown hydrocarbon present in the sample.

WATER, 8015 MOD, Diesel/Motor Oil

The surrogate recovery in sample MW-8 was affected by co-elution with the unknown hydrocarbon present in the sample. The surrogate recovery in sample MW-6 was diluted out due to a required sample dilution. The relative percent difference between the LCS/LCSD was high due to variable recovery seen this QC set. The surrogate recovery in the LCS was also slightly high. Samples were not re-extracted due to sample holding time considerations. Sample surrogate recoveries were acceptable (except MW-8 and MW-6 as noted above) and thus sample extraction efficiency remained unaffected by the problems in the LCS/LCSD.

STL Sacramento **Ouality Control Definitions**

QC Parameter	Definition
QC Batch	A set of up to 20 field samples plus associated laboratory QC samples that are similar in composition (matrix) and that are processed within the same time period with the same reagent and standard lots.
Duplicate Control Sample (DCS)	Consist of a pair of LCSs analyzed within the same QC batch to monitor precision and accuracy independent of sample matrix effects. This QC is performed only if required by client or when insufficient sample is available to perform MS/MSD.
Duplicate Sample (DU)	A second aliquot of an environmental sample, taken from the same sample container when possible, that is processed independently with the first sample aliquot. The results are used to assess the effect of the sample matrix on the precision of the analytical process. The precision estimated using this sample is not necessarily representative of the precision for other samples in the batch.
Laboratory Control Sample (LCS)	A volume of reagent water for aqueous samples or a contaminant- free solid matrix (Ottawa sand) for soil and sediment samples which is spiked with known amounts of representative target analytes and required surrogates. An LCS is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects.
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A field sample fortified with known quantities of target analytes that are also added to the LCS. Matrix spike duplicate is a second matrix spike sample. MSs/MSDs are carried through the entire analytical process and are used to determine sample matrix effect on accuracy of the measurement system. The accuracy and precision estimated using MS/MSD is only representative of the precision of the sample that was spiked.
Method Blank (MB)	A sample composed of all the reagents (in the same quantities) in reagent water carried through the entire analytical process. The method blank is used to monitor the level of contamination introduced during sample preparation steps.
Surrogate Spike	Organic constituents not expected to be detected in environmental media and are added to every sample and QC at a known concentration. Surrogates are used to determine the efficiency of the sample preparation and the analytical process.

Source: Quanterra® Quality Control Program, Policy QA-003

STL Sacramento Certifications:

Alaska (UST-055), Arizona (#AZ00616), Arkansas, California (#2166), Connecticut (#PH-0691), Florida (E87570), Hawaii, Louisiana (AI # 30612), New Jersey (Lab ID 44005), Nevada (#CA 044), New York (LAB ID 11666 serial # 107407), Oregon (LAB ID CA 044), South Carolina (LAB ID 87014, Cert. # 870140), Utah (E-168), Virginia (#00178), Washington (# C087), West Virginia (# 9930C), Wisconsin (Lab 998204680), USNAVY, USACE, USDA Foreign Plant (Permit # 37-82605), USDA Foreign Soil (Permit # S-46613).

SAMPLE SUMMARY

G1C210285

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
DXQJ4 DXQJ9 DXQKC DXQKD DXQKE DXQKF DXQKH DXQKK DXQKK DXQKM DXQKM DXQKM DXQKM DXQKM	001 002 003 004 005 006 007 008 009 010 011 012 013	TRIP BLANK W-3 W-1 MW-7 MW-8 MW-9 MW-5 MW-4 MW-3 MW-1 MW-2 MW-10 W-4 MW-6	03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/21/01 03/21/01 03/21/01 03/21/01 03/21/01 03/21/01 03/21/01	10:50 11:30 12:45 13:30 14:15 15:00 08:40 08:50 09:15 09:40 10:15 11:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Chain of Custody Record

QUA-4124 0797		5												···	Date	•				Tch	aln of Custody No	ımber	
SAFETY-KLEEN CONSUL	TING	Project Man BRA Telephone M	ager ∙ <u>Å</u> L	JR	i G#	T						_			1	3/	21/	01		1			
2233 SANTA CLARA AVE	#フ	Telephone i	Vumber フー マ	(Area とつ・	Codé)/ _ 8 /	Fax No	umbe. ")	r							LEO	Numl	JEF			P.	age	of <u></u>	<u> </u>
City State Zip Co.	de	Site Contact			L	вb Сог	rtact							An	alysis e spa	(Atta	ch lis	t if					
ALAMEDA State Zip Co	1501	51(Site Contact				Bon	<u>IN I</u>	<u> </u>	M	١.	_	Т	T	mor	e spa	ce is	need	ea)		T^{T}	İ		
Project Name AC TRANSIT - EMERY VILL		Carrier/Way	bill Nur	nber 																	Special I Condition	nstructio	ns/
Contract/Purchase Order/Quote No. 79 2 5 5 1			٨	/atrix				taine erva			7.2	ļĮ	3								Condition	s or neu	ειρι
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueque	Soil		Unpres. H2SO4	HNOS	Ą	NBOH	2n4c/ NaOH	202		9										<u></u>
TRIP BLANK	3/20/-1	0930	X			X _		X			X	$\langle 1 \rangle$	1	-		_			_ _	 	GAS/BI	EX/N	TBE
W-3		1050		\perp		_	igg	\prod			4	Ш		 			 			igapha	DIESEL	/MOT	of of
W-1		1130		1			╁		L	 	-H	Ш	\perp	-		+	_		+	-			
MW-7 MW-8		1245				-	_	_	-	-			_	-		-	+-		+	+			
MW-8		1330		\perp		\ _	<u> </u>	╢-	_	 	_	4	\bot	1		-	+	\vdash		+-			
MW-9		1415	141	↓_		11	1	Щ.	_		_		┧-	-	\vdash	+	-	\vdash	+	+-			
<u>MW-5</u>	<u> </u>	1500	Ш	_	$\downarrow \downarrow$	₩.	<u> </u>	#	<u> </u>	\vdash				 		+	-	\vdash	+	+	ļ		
<u> </u>	3/21/01	0810		_	\coprod		┼	₩.	igapha	-		- -	-	-		-		\vdash	-	+	ļ <u></u>		
MW-3	<u> </u>	0850	\coprod				╀.	\coprod	ļ	-		1	₩		- - +	- -	+	╢┪	-	GC			
<u></u>		0915	$ \cdot $	ऻ-	-		\downarrow	\coprod	-	\vdash	-	H	╀			-			+	+			
MW-2		0940	\prod	4	1-1	4.	+	╁	┝	\dashv		H	H			\dashv		╂	-		 		
WM-10		1015	₩ Sample	Dieno	1	√	<u></u>	Ψ	İ		N	י ע	V	.	LJ.			Ш		. }			
Possible Hazard Identification Non-Hazard	Poison B	Unknown	•	•		K	Disp	osal	By L	ab		rchiv	e Fo	<u></u>	/	Aonth:	(A s lor		ay be a an 3 n		sed if samples are s)	e retained	
Turn Around Time Required						۱۵		•		ts (Spe	• -												
24 Hours 48 Hours 7 Days 14 Day	s Al 21 Days	Other_				= ,	51	4	10	ALL	<u> </u>	1									Date	Time	
1. Relinquished By BRADY HANSON		3/21/	01		415	5/	S)	eifed U	بر. سري	/	\geq	\mathbb{L}									3-21-01	170	0
2. Relinquished By		Date		Time		م ا	. Réc	eived	і Ву	,		J									Date	Time	
3. Relinquished By		Date		Time		3	. Flec	eiveo	l By											-, ,-	Date	Time	
Comments U		<u> </u>													<u>-</u>								
Q COISTRIBUTION: WHITE - Stavs with the Sample; CANARY	' - Returned to Clie	nt with Repor	t; PINH	(- Field	д Сору	•																	

្តិChain of ន្តិCustody Record

QUA 4124 0797	Project N	10000													•	Dá	ile	-				Ch	ain of Custody Nu	mber
City ALAMEDA CAPA CAPA PUSO CA 9450	Telephoi			1 Ri	61	ŁI										1.	3 b Nur		<u> ~c</u>)		-		
Address 77.22 CAITA CLACA AND 47	Telephoi															- ا	U 140)	,,061				Pi	age <u>2</u>	of <u>2</u>
City State Zip Code	Site Con	tact	10 -	<u> </u>	1							Т				nalysi	s (At	tach	list il	15				
ALAMEDA CA 9450	1					St	440	116		1			7	Т	\neg	ore sp	ace i	S ne	eueu	-	Τ			
Project Name	Carrier/V	Vaybill	Numb	er									-	ļ		1 1							Consist in	etructions/
AC TRANSIT EMERYVILLE												\dashv	l		ĺ	1 1	Ì	Ì	İ	İ		ĺ	Conditions	s of Receipt
Contract/Purchase Order/Quote No. 792551			Ма	trix	1		Pi	oni ese	aine erva	rs o live	s S	I.	_	L			- 1	1			1			
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	Arriboria	Sec.	Soil		Unpres	H2SO4	NOS	ğ	NaOH	ZoAc/ NaOH		802	108										
	121/01 110	D)				X			X				X	X								<u> </u>	GAS/BTE	X/MTBE
MW-6	4 113					\overline{V}			ł				Ų.	Ţ	_ [_								DIESEL	MOTOR
A W/M		Ť	1																					
0			+			_	寸			_	Ħ	T							1		T	T		
				-	\vdash	-	\dashv	-	Н	┢╌	\vdash			\vdash	-	+	1	_	_	1	1	1		
			- -	⊦⊢		\dashv	\dashv			-				\vdash	\dashv	+	\vdash	+	╁	+	╫	+		
		_ _	┷			_				_	1				\dashv	-	\vdash		-	+	+-	╀	 	
	·		L							_				Ш		_		_	_	\bot	_	 		
							İ												\perp		L	_		
				Π														ı	-	12	4			
			-	1												\top				Т	T	Τ		
		十		╫╌			H		\vdash	1-	1-				\Box	-				T	1	1		
			-	╀╌	H	_			\vdash	╁	+			┼	H	+	╀┤		\dashv	+	十	+		
		150	mole L	liena		_	Щ		L	_ـــــــــــــــــــــــــــــــــــــ		لـــا	_			i	<u> </u>					Щ.		
Possible Hazard Identification ■ Non-Hazard □ Flammable □ Skin Irritant □ Pois	on B 🔲 Unknowi	1.	Retur			ŧ	Z	Dispo	osal	Ву Ц	.ab		Ara	hive i	or	_	Mon	ths	(A let longe	e may er thai	r be a n 3 m	sses: onths	sed if samples are s)	retamed
Turn Around Time Required							ac	Rec	quire	men	is (Sp	pecity)											
	21 Days 🗌 Oli	er					5	ΤA	~	34 <u>/</u>	40	9	-/	1—									. Date	, Time
1. Relinquished By SRADY HANSON	Date 3	? -1		ime 1	113	>		לדי	1				¥	-									3-21-0	
2. Relinquished By	Date		١	ime			2. F	less	eived	Вŷ	,												Date	Time
3, Relinquished By	Dale		 	Time		-	3. F	lece	eivea	Ву										· · · ·			Date	Time
	<u></u>						_						_										<u>. </u>	<u> </u>
Comments on																								
ODISTRIBUTION: WHITE - Stays with the Sample; CANARY - Ret	urned to Client with Re	port;	PINK -	Field	Cop	y																		

WATER,8015M, TPH Gas 8021B, BTEX + MTBE

SAFETY KLEEN CONSULTING

Client Sample ID: TRIP BLANK

GC Volatiles

Lot-Sample #: G1C210285-001 Date Sampled: 03/20/01 Prep Date: 03/27/01 Prep Batch #: 1092384	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix:	WATER
Dilution Factor: 1	Method:	DHS CA LUFT	ŗ	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	
TPH (as Gasoline)	ND	50 -	ug/L	
Unknown Hydrocarbon	ND	50	ug/L	
	PERCENT	RECOVERY		

RECOVERY

100

LIMITS

(70 - 130)

SURROGATE

4-Bromofluorobenzene

SAFRTY KLEEN CONSULTING

Client Sample ID: TRIP BLANK

GC Volatiles

Lot-Sample #...: G1C210285-001 Work Order #...: DXQJ41AC Matrix..... WATER

Date Sampled...: 03/20/01 Date Received..: 03/21/01
Prep Date....: 03/29/01 Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1 Method.....: DHS CA LUFT

PARAMETER Benzene Ethylbenzene Toluene	RESULT ND ND ND	REPORTING LIMIT 1.0 1.0 1.0	G <u>UNITS</u> ug/L ug/L ug/L
m-Xylene & p-Xylene o-Xylene Methyl tert-butyl ether	ND ND	2.0 1.0 5.0	ug/L ug/L ug/L
SURROGATE Fluorobenzene	PERCENT RECOVERY 100	RECOVERY LIMITS (70 - 13	<u></u>

SAFETY KLREN CONSULTING

Client Sample ID: W-3

GC Volatiles

Lot-Sample #: G1C210285-002	Work Order #: DXQJ91AD	Matrix WATER
	Date Received: 03/21/01	

Prep Date: 03/27/01 Date Received..: 03/27/01

Prep Date...: 03/27/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1 Method.....: DHS CA LUFT

PARAMETER RESULT LIMIT UNITS

TPH (as Gasoline)
Unknown Hydrocarbon
ND
DIMIT
ONITS
Ug/L
Ug/L

 SURROGATE
 PERCENT
 RECOVERY

 4-Bromofluorobenzene
 105
 (70 - 130)

SAFETY KLEEN CONSULTING

Client Sample ID: W-3

GC Volatiles

Matrix..... WATER Lot-Sample #...: G1C210285-002 Work Order #...: DXQJ91AC

Date Received..: 03/21/01 Date Sampled...: 03/20/01 Prep Date....: 03/29/01 Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Fluorobenzene

Method.....: DHS CA LUFT Dilution Factor: 1

		REPORTIN	r G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND ND	1.0 1.0	ug/L
Toluene			ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene Methyl tert-butyl ether	ND ND	1.0 5.0	ug/L
			ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS_	
Fluorobenzene	104	(70 - 13	30)

SAFRTY KLEEN CONSULTING

Client Sample ID: W-1

GC Volatiles

Matrix WATER Work Order #...: DXQKClAD Lot-Sample #...: G1C210285-003

Date Received..: 03/21/01 Date Sampled...: 03/20/01 Prep Date....: 03/27/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Method..... DHS CA LUFT Dilution Factor: 5

REPORTING

UNITS <u>LIM</u>IT RESULT PARAMETER ug/L 250 ND TPH (as Gasoline) ug/L 250 7200 Unknown Hydrocarbon

RECOVERY PERCENT RECOVERY LIMITS SURROGATE

(70 - 130)139 * 4-Bromofluorobenzene

NOTE(S): * Surrogate recovery is outside stated control limits.

SAFETY KLEEN CONSULTING

Client Sample ID: W-1

GC Volatiles

Lot-Sample #: G1C210285-003	Work Order #: DXQKClAC	Matrix WATER
Date Campled - 03/20/01	Date Received: 03/21/01	

Analysis Date..: 03/29/01

Date Sampled...: 03/20/01
Prep Date....: 03/29/01
Prep Date.....: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 2 Method.....: DHS CA LUFT

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Benzene	32	2.0	ug/L
Ethylbenzene	56	2.0	ug/L
Toluene	13	2.0	ug/L
m-Xylene & p-Xylene	36	4.0	ug/L
o-Xylene	4.0	2.0	ug/L
Methyl tert-butyl ether	ND	10	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Fluorobenzene	157 *	(70 - 130	0)

NOTE (S):

^{*} Surrogate recovery is outside stated control limits.

SAFRTY KLREN CONSULTING

Client Sample ID: MW-7

GC Volatiles

Lot-Sample #...: G1C210285-004

Work Order #...: DXQKD1AD

Matrix..... WATER

Date Sampled...: 03/20/01

Date Received..: 03/21/01

Prep Date....: 03/27/01

Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Method..... DHS CA LUFT

Dilution Factor: 1

REPORTING

PARAMETER

RESULT

LIMIT

UNITS

TPH (as Gasoline)

ND

50

ug/L

Unknown Hydrocarbon

1000

50

ug/L

SURROGATE

PERCENT RECOVERY RECOVERY LIMITS

4-Bromofluorobenzene 142 * (70 - 130)

NOTE(S):

Surrogate recovery is outside stated control limits.

SAFETY KLEEN CONSULTING

Client Sample ID: MW-7

GC Volatiles

Lot-Sample #: G1C210285-004	Work Order #: DXQKD1AC	Matrix WATER
-----------------------------	------------------------	--------------

Date Received..: 03/21/01 Date Sampled...: 03/20/01 Analysis Date..: 03/29/01 Prep Date....: 03/29/01

Prep Batch #...: 1092387 Method..... DHS CA LUFT Dilution Factor: 1

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	ND	1.0	ug/L
Sthylbenzene	ND	1.0	ug/L
Toluene	1.4	1.0	ug/L
-Xylene & p-Xylene	ND	2.0	${ t ug/L}$
-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
URROGATE	RECOVERY	LIMITS	,
luorobenzene	119	(70 - 13	0)

Fluorobenzene

SAFETY KLEEN CONSULTING

Client Sample ID: MW-8

GC Volatiles

Lot-Sample #: G1C210285-005 Date Sampled: 03/20/01 Prep Date: 03/27/01	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix WAI	ER
Prep Batch #: 1092384 Dilution Factor: 1	Method:	DHS CA LUF	r	
PARAMETER TPH (as Gasoline) Unknown Hydrocarbon	RESULT ND 64	REPORTING LIMIT 50	UNITS ug/L ug/L	
	PERCENT	RECOVERY		

RECOVERY

112

LIMITS

(70 - 130)

SURROGATE

4-Bromofluorobenzene

Client Sample ID: MW-8

GC Volatiles

Lot-Sample #...: G1C210285-005 Work Order #...: DXQKE1AC

Date Sampled...: 03/20/01 Prep Date....: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

Fluorobenzene

Date Received..: 03/21/01 Analysis Date..: 03/29/01

Method..... DHS CA LUFT

Matrix....: WATER

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Fluorobenzene	101	(70 - 13	0)

Client Sample ID: MW-9

GC Volatiles

Matrix..... WATER Lot-Sample #...: G1C210285-006 Work Order #...: DXQKF1AD Date Received..: 03/21/01 Date Sampled...: 03/20/01

Analysis Date..: 03/27/01 Prep Date....: 03/27/01

Prep Batch #...: 1092384

Method..... DHS CA LUFT Dilution Factor: 1

REPORTING LIMIT UNITS RESULT PARAMETER

ug/L 50 TPH (as Gasoline) ND ug/L 50 Unknown Hydrocarbon ND

RECOVERY PERCENT RECOVERY <u>LIMITS</u> SURROGATE

Client Sample ID: MW-9

GC Volatiles

Lot-Sample #...: G1C210285-006 Work Order #...: DXQKF1AC Date Sampled...: 03/20/01

Matrix..... WATER

Prep Date....: 03/29/01

Date Received..: 03/21/01 Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

Method..... DHS CA LUFT

PARAMETER	RESULT	REPORTING LIMIT UNITS
Benzene Ethylbenzene Toluene m-Xylene & p-Xylene o-Xylene Methyl tert-butyl ether	ND ND ND ND ND ND	1.0 ug/L 1.0 ug/L 1.0 ug/L 2.0 ug/L 1.0 ug/L 5.0 ug/L
SURROGATE Fluorobenzene	PERCENT RECOVERY	RECOVERY LIMITS (70 - 130)

Client Sample ID: MW-5

GC Volatiles

Lot-Sample #...: G1C210285-007 Work Order #...: DXQKH1AD Matrix....: WATER Date Sampled...: 03/20/01 Date Received..: 03/21/01 Prep Date....: 03/27/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Gasoline)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 ND
 50
 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 102 (70 - 130)

Client Sample ID: MW-5

GC Volatiles

Matrix....: WATER Lot-Sample #...: G1C210285-007 Work Order #...: DXQKH1AC

Date Received..: 03/21/01 Date Sampled...: 03/20/01 Analysis Date..: 03/30/01 Prep Date....: 03/29/01

Prep Batch #...: 1092387 Method.....: DHS CA LUFT Dilution Factor: 5

		REPORTIN	Ğ
PARAMETER	RESULT	LIMIT	UNITS
enzene	ND	5.0	ug/L
hylbenzene	ND	5.0	ug/L
oluene	ND	5.0	ug/L
Xylene & p-Xylene	ND	10	ug/L
-Xylene	ND	5.0	ug/L
thyl tert-butyl ether	87	25	ug/L
	PERCENT	RECOVERY	7
RROGATE	RECOVERY	LIMITS	·
luorobenzene	103	(70 - 13	0)

Fluorobenzene

Client Sample ID: MW-4

GC Volatiles

Lot-Sample #: G1C210285-008 Date Sampled: 03/21/01 Prep Date: 03/27/01 Prep Batch #: 1092384	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix WATER
Dilution Factor: 1	Method:	DHS CA LUF	T
PARAMETER	result	REPORTING LIMIT	UNITS
TPH (as Gasoline)	ND	50	ug/L
Unknown Hydrocarbon	ND	50	ug/L
	PERCENT	RECOVERY	

LIMITS (70 - 130)

RECOVERY

102

SURROGATE

4-Bromofluorobenzene

Client Sample ID: MW-4

GC Volatiles

Lot-Sample #...: G1C210285-008 Work Order #...: DXQKK1AC Date Received..: 03/21/01 Date Sampled...: 03/21/01

Analysis Date..: 03/30/01

Matrix..... WATER

Prep Date....: 03/29/01 Prep Batch #...: 1092387

Dilution Factor: 1

Method..... DHS CA LUFT

REPORTING

PARAMETER	RESULT	<u>LIMIT</u>	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ИD	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Fluorobenzene	99	(70 - 13	(0)

Client Sample ID: MW-3

GC Volatiles

Lot-Sample #: G1C210285-009	Work Order #:	DXQKL1AD	Matrix WAT	ER
Date Sampled: 03/21/01	Date Received:			
Prep Date: 03/27/01	Analysis Date:	03/27/01		
Prep Batch #: 1092384				
Dilution Factor: 1	Method:	DHS CA LUF	T	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
TPH (as Gasoline)	ND	50	ug/L	
Unknown Hydrocarbon	ND	50	ug/L	

RECOVERY

(70 - 130)

LIMITS

PERCENT

101

RECOVERY

SURROGATE

4-Bromofluorobenzene

Client Sample ID: MW-3

GC Volatiles

Lot-Sample #...: G1C210285-009

Work Order #...: DXQKL1AC

Matrix....: WATER

Date Sampled...: 03/21/01 Prep Date....: 03/29/01 Date Received..: 03/21/01

Analysis Date..: 03/30/01

Prep Batch #...: 1092387

Dilution Factor: 1

Method.....: DHS CA LUFT

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Fluorobenzene	106	(70 - 13	0)

Client Sample ID: MW-1

GC Volatiles

Lot-Sample #: G1C210285-010 Date Sampled: 03/21/01 Prep Date: 03/27/01 Prep Batch #: 1092384	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix:	WATER
Dilution Factor: 1	Method:	DHS CA LUF	r	
	DDGVI #	REPORTING LIMIT	UNITS	
PARAMETER	RESULT			
TPH (as Gasoline)	ND	50	ug/L	
Unknown Hydrocarbon	ND	50	ug/L	
	PERCENT	RECOVERY		

RECOVERY

101

LIMITS

(70 - 130)

SURROGATE

4-Bromofluorobenzene

Client Sample ID: MW-1

GC Volatiles

Lot-Sample #...: G1C210285-010 Work Order #...: DXQKM1AC Matrix..... WATER

Date Sampled...: 03/21/01 Date Received..: 03/21/01 Prep Date....: 03/29/01 Analysis Date..: 03/30/01

Prep Batch #...: 1092387

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	17	5.0	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
Fluorobenzene	107	(70 - 13	(0)

Client Sample ID: MW-2

GC Volatiles

Lot-Sample #...: G1C210285-011 Work Order #...: DXQKN1AD Matrix..... WATER

Prep Batch #...: 1092384

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Gasoline)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 ND
 50
 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS

SURROGATERECOVERYLIMITS4-Bromofluorobenzene101(70 - 130)

Client Sample ID: MW-2

GC Volatiles

Lot-Sample #...: G1C210285-011 Work Order #...: DXQKN1AC Matrix..... WATER

Prep Batch #...: 1092387

Fluorobenzene

Dilution Factor: 2 Method.....: DHS CA LUFT

98

		REPORTIN	I G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	2.0	ug/L
Ethylbenzene	ND	2.0	ug/L
Toluene	ND	2.0	ug/L
m-Xylene & p-Xylene	ND	4.0	ug/L
o-Xylene	ND	2.0	ug/L
Methyl tert-butyl ether	33	10	ug/L
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	

(70 - 130)

Client Sample ID: MW-10

GC Volatiles

Lot-Sample #...: G1C210285-012

Date Sampled...: 03/21/01 Prep Date....: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1

Work Order # ...: DXQKP1AD Date Received..: 03/21/01

Analysis Date..: 03/27/01

Method..... DHS CA LUFT

REPORTING

PARAMETER TPH (as Gasoline)

SURROGATE

Unknown Hydrocarbon

4-Bromofluorobenzene

RESULT ND 220

<u>LIMIT</u> 50 50

UNITS ug/L ug/L

Matrix....: WATER

PERCENT RECOVERY

106

RECOVERY LIMITS

(70 - 130)

STL-Sacramento

Client Sample ID: MW-10

GC Volatiles

Lot-Sample #...: G1C210285-012 Work Order #...: DXQKP1AC Date Sampled...: 03/21/01

Prep Date....: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

Date Received..: 03/21/01

Analysis Date..: 03/30/01

Method..... DHS CA LUFT

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	NĎ	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl text-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Fluorobenzene	107	(70 - 130)	

Client Sample ID: W-4

GC Volatiles

Lot-Sample #: G1C210285-013 Date Sampled: 03/21/01 Prep Date: 03/27/01 Prep Batch #: 1092384	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix:	WATER
Dilution Factor: 1	Method:	DHS CA LUF	T	
PARAMETER	RESULT	REPORTING	UNITS	
TPH (as Gasoline)	ND	50	ug/L	
Unknown Hydrocarbon	ND	50	ug/L	
	PERCENT	RECOVERY	•	

RECOVERY

117

LIMITS

(70 - 130)

SURROGATE

4-Bromofluorobenzene

Client Sample ID: W-4

GC Volatiles

Lot-Sample #...: G1C210285-013 Work Order #...: DXQKT1AC Matrix....: WATER

Prep Batch #...: 1092387
Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene		1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
m-Xylene & p-Xylene	ND	2.0	ug/L	
o-Xylene	MD	1.0	ug/L	
Methyl tert-butyl ether	ND	5.0	ug/L	

SURROGATEPERCENTRECOVERYFluorobenzene104(70 - 130)

Client Sample ID: MW-6

GC Volatiles

Lot-Sample #...: G1C210285-014 Date Sampled...: 03/21/01

Work Order #...: DXQKV1AD

Matrix....: WATER

Prep Date....: 03/27/01

Date Received..: 03/21/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1

Method.....: DHS CA LUFT

REPORTING

LIMIT

50 50

PARAMETER TPH (as Gasoline) Unknown Hydrocarbon RESULT ND 1900

UNITS ug/L ug/L

PERCENT RECOVERY

RECOVERY LIMITS

4-Bromofluorobenzene

166 *

(70 - 130)

SURROGATE

NOTE(S):

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: MW-6

GC Volatiles

Lot-Sample #...: G1C210285-014 Date Sampled...: 03/21/01

Prep Date....: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 2

Work Order #...: DXQKV1AC

Matrix..... WATER

Date Received..: 03/21/01

Analysis Date..: 03/30/01

Method..... DHS CA LUFT

PEPORTING

		KUFOKILK	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	49	2.0	ug/L
Ethylbenzene	1.3	2.0	ug/L
Toluene	9.5	2.0	ug/L
m-Xylene & p-Xylene	12	4.0	ug/L
o-Xylene	ND	2.0	ug/L
Methyl tert-butyl ether	ND	10	ug/L
	PERCENT	RECOVERY	τ
SURROGATE	RECOVERY	LIMITS	_
Fluorobenzene	118	(70 - 13	30)

QC DATA ASSOCIATION SUMMARY

G1C210285

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX_	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
				1092384	
002	WATER	DHS CA LUFT		1092384	1092158
	WATER	DHS CA LUFT		1092367	1072130
003	WATER	DHS CA LUFT		1092384	
005	WATER	DHS CA LUFT		1092387	1092158
	WHILE	2112 441 241 1			
004	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
005	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
006	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
				1092384	
007	WATER	DHS CA LUFT		1092384	1092158
	WATER	DHS CA LUFT		1092307	1072130
800	WATER	DHS CA LUFT		1092384	
000	WATER	DHS CA LUFT		1092387	1092158
	MAILE	DIIS CA HOLL			
009	WATER	DHS CA LUFT		1092384	
005	WATER	DHS CA LUFT		1092387	1092158
01.0	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
011	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
				1092384	
012	WATER	DHS CA LUFT		1092387	1092158
	WATER	DHS CA LUFT		1092367	1072130
03.0	tern militara	DHS CA LUFT		1092384	
013	WATER WATER	DHS CA LUFT		1092387	1092158
	MAILE	THE CA TOLI			
014	WATER	DHS CA LUFT		1092384	
V2-7	WATER	DHS CA LUFT		1092387	1092158
	MAT TH				

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: G1C210285

Work Order #...: DOAG51AA

Matrix..... WATER

MB Lot-Sample #: G1D020000-384

Prep Date....: 03/27/01

Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1

REPORTING

PARAMETER TPH (as Gasoline) Unknown Hydrocarbon	RESULT ND ND	LIMIT UNITS 50 ug/L 50 ug/L	METHOD DHS CA LUFT DHS CA LUFT
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 102	RECOVERY LIMITS (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: G1C210285

Work Order #...: DOAHR1AA

Matrix..... WATER

MB Lot-Sample #: G1D020000-387

Prep Date....: 03/29/01

Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

REPORTING

		KREOKITI	40	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	DHS CA LUFT
Ethylbenzene	ND	1.0	ug/L	DHS CA LUFT
Toluene	ND	1.0	ug/L	DHS CA LUFT
m-Xylene & p-Xylene	ND	2.0	ug/L	DHS CA LUFT
o-Xylene	ND	1.0	ug/L	DHS CA LUFT
Methyl tert-butyl ether	ND	5.0	ug/L	DHS CA LUFT
	PERCENT	RECOVER'	Y	
SURROGATE	RECOVERY	LIMITS		
Fluorobenzene	100	(70 - 1	30)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: D0AG51AC-LCS Matrix..... WATER

LCS Lot-Sample#: G1D020000-384 D0AG51AD-LCSD

Prep Date....: 03/27/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1

PARAMETER TPH (as Gasoline)	SPIKE AMOUNT 1000 1000	MEASURE AMOUNT 927 957	D UNITS UG/L UG/L	PERCENT RECOVERY 93 96	RPD 3.2	METHOD DHS CA LUFT DHS CA LUFT
SURROGATE 4-Bromofluorobenzene			PERCENT RECOVERY 111 111	RECOVERY LIMITS (70 - 130	•	

NOTE(5):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: D0AG51AC-LCS Matrix..... WATER

LCS Lot-Sample#: G1DC20000-384 D0AG51AD-LCSD

Prep Date....: 03/27/01 Analysis Date..: 03/27/01

Prep Batch #...: 1092384

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS	METHOD
TPH (as Gasoline)	93 96	(70 - 130) (70 - 130)	3.2 (0-35)	DHS CA LUFT DHS CA LUFT
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene		111 111	(70 - 130) (70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: D0AHR1AC

Matrix..... WATER

LCS Lot-Sample#: G1D020000-387

Prep Date....: 03/29/01

Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

PARAMETER Benzene Ethylbenzene Toluene m-Xylene & p-Xylene o-Xylene Methyl tert-butyl ether	SPIKE AMOUNT 10.0 10.0 10.0 20.0 10.0 10.0	MEASURED AMOUNT 9.82 9.84 9.74 19.5 9.44 9.64	UNITS ug/L ug/L ug/L ug/L ug/L	98 98 97 98 94 96	METHOD DHS CA LUFT DHS CA LUFT DHS CA LUFT DHS CA LUFT DHS CA LUFT DHS CA LUFT
SURROGATE Fluorobenzene		PERCENT RECOVERY 100	RECOVERY LIMITS (70 - 130)	-	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: D0AHR1AC

Matrix....: WATER

LCS Lot-Sample#: G1D020000-387

Prep Date....: 03/29/01

Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	98	(70 - 130)	DHS CA LUFT
Ethylbenzene	98	(70 - 130)	DHS CA LUFT
Toluene	97	(70 - 130)	DHS CA LUFT
m-Xylene & p-Xylene	98	(70 - 130)	DHS CA LUFT
o-Xylene	94	(70 - 130)	DHS CA LUFT
Methyl tert-butyl ether	96	(70 - 130)	DHS CA LUFT
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Fluorobenzene		100	(70 - 130)
Fluorobenzene		100	(70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: DXQJ41AE-MS Matrix..... WATER

MS Lot-Sample #: G1C210285-001 DXQJ41AF-MSD

Date Sampled...: 03/20/01 Date Received..: 03/21/01 Prep Date....: 03/29/01 Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

PARAMETER Benzene Ethylbenzene Toluene m-Xylene & p-Xylene o-Xylene Methyl tert-butyl ether	SAMPLE AMOUNT ND ND ND ND ND ND ND ND ND ND ND ND ND	SPIKE AMT 10.0 10.0 10.0 10.0 20.0 20.0 20.0 10.0 10.0	MEASRD AMOUNT 9.64 9.73 9.70 9.78 9.61 9.69 19.4 19.5 9.31 9.40 10.4	UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	PERCENT RECOVERY 96 97 98 96 97 97 98 93 94 104	0.96 0.84 0.87 0.84 0.93	DAS DAS DAS DAS DAS DAS DAS DAS DAS DAS	CA CA CA CA CA CA CA CA	LUFT LUFT LUFT LUFT LUFT LUFT LUFT LUFT
Methyl tert-butyl ether	ND ND	10.0 10.0	10.4 9.98	ug/L ug/L	104 100	4.5		-	LOFT
SURROGATE Fluorobenzene	-		PERCENT RECOVER 99 98		RECOVERY LIMITS (70 - 13 (70 - 13				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G1C210285 Work Order #...: DXQJ41AE-MS Matrix....: WATER

MS Lot-Sample #: G1C210285-001 DXQJ41AF-MSD

Date Sampled...: 03/20/01 Date Received..: 03/21/01
Prep Date....: 03/29/01 Analysis Date..: 03/29/01

Prep Batch #...: 1092387

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
Benzene	96	(70 - 130)			DHS CA LUFT
Benzene	97	(70 - 130)	0.96	(0-35)	DHS CA LUFT
Ethylbenzene	97	(70 - 130)			DHS CA LUFT
Fruitpenzene	98	(70 - 130)	0.84	(0-35)	DHS CA LUFT
Toluene	96	(70 - 130)		-	DHS CA LUFT
101uene	97	(70 - 130)	0.87	(0-35)	DHS CA LUFT
- Western r w Williams	97	(70 - 130)			DHS CA LUFT
m-Xylene & p-Xylene	98	(70 - 130)	0.84	(0-35)	DHS CA LUFT
WE T	93	(70 - 130)		•	DHS CA LUFT
o-Xylene	94	(70 - 130)	0.93	(0-35)	DHS CA LUFT
sealoud tout housed other	104	(70 - 130)		•-	DRS CA LUFT
Methyl tert-butyl ether	104	(70 - 130)	4.5	(0-35)	DHS CA LUFT
				nncoleny	
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Fluorobenzene	-	99		(70 - 130))
		98		(70 - 130))

note(s) <u>:</u>

Calculations are performed before rounding to avoid round-off errors in calculated results.

WATER, 8015M, TPH Diesel/Motor Oil

Client Sample ID: W-3

GC Semivolatiles

Iot-Sample #:	G1C2:10285-002	Work Order #: DXQJ91AA	Matrix WATER
100 Dougles ()	02/20/01	Date Received: 03/21/01	

Date Sampled...: 03/20/01 Date Received..: 03/21/01
Prep Date....: 03/27/01 Analysis Date..: 04/06/01

Prep Batch #...: 1086279

Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING <u>UNITS</u> LIMIT RESULT PARAMETER ug/L 250 ND TPH (as Motor Oil) ug/L 50 ND TPH (as Diesel) ug/L 50 630 Unknown Hydrocarbon RECOVERY

SURROGATE PERCENT RECOVERY

SURROGATE RECOVERY

0-Terphenyl 86 (57 - 147)

NOTE(S):

The unknown from n-C16 to n-C40 is quantitated based on a motor oil reference from n-C19 to n-C36.

Client Sample ID: W-1

GC Semivolatiles

Lot-Sample #: G1C210285-003	Work Order #: DXQKC1AA	Matrix WATER
Date Sampled: 03/20/01	Date Received: 03/21/01	
Prep Date: 03/27/01	Analysis Date: 04/06/01	

Prep Batch #...: 1086279

Dilution Factor: 1 Method.....: SW846 8015 MOD

PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 2100	REPORTING LIMIT 250 50	UNITS ug/L ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 103	RECOVERY LIMITS (57 - 147)	-

Note(S):

The unknown from n-C8 to n-C40 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-7

GC Semivolatiles

Lot-Sample #: G1C210285-004 Date Sampled: 03/20/01 Prep Date: 03/27/01 Prep Batch #: 1086279	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix: WATER
Dilution Factor: 1	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	770	50	ug/L

PERCENT RECOVERY RECOVERY

(57 - 147)

LIMITS

o-Terphenyl 102

SURROGATE

NOTE(S):

The unknown from n-C8 to n-C32 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-8

GC Semivolatiles

Lot-Sample #: G1C210285-005 Date Sampled: 03/20/01 Prep Date: 03/27/01 Prep Batch #: 1086279	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix: WATER
Dilution Factor: 2	Method:	SW846 8015	MOD
PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 1700 Q	REPORTING LIMIT 500 100	UNITS ug/L ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 264 *	RECOVERY LIMITS (57 - 147)	

NOTE(S):

The unknown from n-C8 to n-C40 is quarkitated based on a diesel reference from n-C10 to n-C24.

^{*} Surrogate recovery is outside stated control limits.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-9

GC Semivolatiles

Lot-Sample #: G1C2L0285-006 Date Sampled: 03/20/01 Prep Date: 03/27/01 Prep Batch #: 1086279	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix: WATER
Dilution Pactor: 2	Method:	SW846 8015	MOD
PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 1500 Q	REPORTING LIMIT 500 100 500	UNITS ug/L ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 118	RECOVERY LIMITS (57 - 147)	

NOTE(S):

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

The unknown from n-C10 to n-C40 is quantitated based on a motor oil reference from n-C19 to n-C36.

Client Sample ID: MW-5

GC Semivolatiles

Lot-Sample #: G1C210285-007 Date Sampled: 03/20/01 Prep Date: 03/27/01	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix: WATER
Prep Batch #: 1086279 Dilution Factor: 1	Method:	SW846 8015	MOD
PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 250	REPORTING LIMIT 250 50	UNITS ug/L ug/L
SURROGATE	PERCENT RECOVERY 97	RECOVERY LIMITS (57 - 147)	

NOTE(S):

o-Terphenyl

The unknown from n-C10 to n-C32 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-4

GC Semivolatiles

Lot-Sample #: G1C210285-008 Date Sampled: 03/21/01 Prep Date: 03/27/01	Work Order #: DXQKK1AA Date Received: 03/21/01 Analysis Date: 04/07/01	Matrix: WATER
--	--	---------------

Prep Batch #...: 1086279
Dilution Factor: 1 Method.....: SW846 8015 MOD

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	ND	50	\mathtt{ug}/\mathtt{L}

 SURROGATE
 PERCENT
 RECOVERY

 0-Terphenyl
 84
 (57 - 147)

Client Sample ID: MW-3

GC Semivolatiles

Lot-Sample #: G1C210285-009 Date Sampled: 03/21/01 Prep Date: 03/27/01 Prep Batch #: 1086279	Work Order #: Date Received: Analysis Date:	03/21/01	Matrix WATER
Dilution Factor: 2	Method:	SW846 8015	MOD
PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 1700 Q	REPORTING LIMIT 500 100 500	UNITS ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 90	RECOVERY LIMITS (57 - 147)	

NOTE(S):

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

The unknown from n-C16 to n-C40 is quantitated based on a motor oil reference from n-C19 to n-C36.

Client Sample ID: MW-1

GC Semivolatiles

Lot-Sample #: G1C210285-010	Work Order #: DXQKMIAA	Matrix WATER

Date Sampled...: 03/21/01 Date Received..: 03/21/01 Analysis Date ..: 04/09/01 Prep Date....: 03/27/01

Prep Batch #...: 1086:279

Method..... SW846 8015 MOD Dilution Factor: 1

PARAMETER TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	RESULT ND ND 240	REPORTING LIMIT 250 50	UNITS ug/L ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 95	RECOVERY LIMITS (57 - 147)

NOTE(S):

o-Terphenyl

The unknown from n-C10 to n-C34 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-2

GC Semivolatiles

Lot-Sample #: G1C210285-011	Work Order #: DXQKN1AA	Matrix: WATER
Date Sampled: 03/21/01	Date Received: 03/21/01	

 Date Sampled...:
 03/21/01
 Date Received...:
 03/21/01

 Prep Date.....:
 03/27/01
 Analysis Date...:
 04/07/01

Prep Batch #...: 1086279
Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING

PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L ug/L
TPH (as Diesel) Unknown Hydrocarbon	ND 900	50 250	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	

o-Terphenyl 109 (57 - 147)

NOTE(S):

The unknown from n-C12 to n-C40 is quantitated based on a motor oil reference from n-C19 to n-C36.

Client Sample ID: MW-10

GC Semivolatiles

Lot-Sample #: G1C210285-012	Work Order #:		Matrix WATER
Date Sampled: 03/21/01	Date Received:		
Prep Date: 03/27/01	Analysis Date:	04/07/01	
Prep Batch #: 1086279			
Dilution Factor: 1	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	620	50	ug/L

 SURROGATE
 PERCENT
 RECOVERY

 0-Terphenyl
 72
 LIMITS

 (57 - 147)

NOTE(S):

The unknown from n-C8 to n-C32 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: W-4

GC Semivolatiles

Lot-Sample #: G1C210285-013	Work Order #: DXQKTlAA	Matrix WATER

Date Received..: 03/21/01 Date Sampled...: 03/21/01 Analysis Date..: 04/07/01 Prep Date....: 03/27/01

Prep Batch #...: 1086279

Method..... SW846 8015 MOD Dilution Factor: 1

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	220	50	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	84	(57 - 14	17)

NOTE(S):

o-Terphenyl

The unknown from n-C8 to n-C40 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-6

GC Semivolatiles

Date Sampled: G1C210285-014 Date Sampled: 03/21/01 Prep Date: 03/27/01 Prep Batch #: 1086279	Work Order #: Date Received: Analysis Date:	03/21/01 04/09/01	Matrix: WAIER
Dilution Factor: 10	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	2500	ug/L
TPH (as Diesel)	ND	500	ug/L
Unknown Hydrocarbon	5100 Q	500	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	0.0 SRD	(57 - 147)	

NOTE (S):

ם בות מונו

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

The unknown from n-C8 to n-C24 is quantitated based on a diesel reference from n-C10 to n-C24.

QC DATA ASSOCIATION SUMMARY

G1C210285

Sample Preparation and Analysis Control Numbers

sample#	MATR:IX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
002	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
003	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
004	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
005	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
006	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
007	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
800	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	_
	WATER	DHS CA LUFT		1092387	1092158
009	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
010	WATER	SW846 8015 MOD		1086279	
- 	WATER	DHS CA LUFT		1092384	_
	WATER	DHS CA LUFT		1092387	1092158
011	WATER	SW846 8015 MOD		1086279	
	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

G1C210285

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATR:X	ANALYTICAL METHOD	LEACH BATCH #	BATCH #	MS RUN#
012	WATER	SW846 8015 MOD		1086279	
022	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
013	WATER	SW846 8015 MOD		1086279	
023	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158
014	SIETAW	SW846 8015 MOD		1086279	
014	WATER	DHS CA LUFT		1092384	
	WATER	DHS CA LUFT		1092387	1092158

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: G1C210285

Work Order #...: DX1091AA

Matrix..... WATER

MB Lot-Sample #: G1C270000-279

Prep Date....: 03/27/01

Analysis Date..: 04/06/01

Prep Batch #...: 1086279

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
TPH (as Motor Oil) TPH (as Diesel) Unknown Hydrocarbon	ND ND ND	250 50 50	ug/L ug/L ug/L	SW846 8015 MOD SW846 8015 MOD SW846 8015 MOD
SURROGATE o-Terphenyl	PERCENT RECOVERY 84	RECOVERY LIMITS (57 - 147	7)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G1C210285 Work Order #...: DX1091AC-LCS Matrix..... WATER

LCS Lot-Sample#: G1C270000-279 DX1091AD-LCSD

Prep Date....: 03/27/01 Analysis Date..: 04/06/01

Prep Batch #...: 1086279

Dilution Factor: 1

PARAMETER TPH (as Diesel)	SPIKE AMOUNT 300 300	MEASURE AMOUNT 307 171 p	UNITS UNITS UG/L UG/L	PERCENT RECOVERY 102 57	RPD	METHOI SW846 SW846	8015	
SURROGATE o-Terphenyl			PERCENT RECOVERY 151 *	RECOVERY LIMITS (57 - 147 (57 - 147	•			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

p Relative percent difference (RPD) is outside stated control limits.

Surrogate recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G1C210285 Work Order #...: DX1091AC-LCS Matrix..... WATER

LCS Lot-Sample#: G1C270000-279 DX1091AD-LCSD

Prep Date....: 03/27/01 Analysis Date..: 04/06/01

Prep Batch #...: 1086279

Dilution Factor: 1

PARAMETER TPH (as Diesel)	PERCENT RECOVERY 102 57 p	RECOVERY LIMITS (39 - 125) (39 - 125)	RPD LIMITS 57 (0-44)	METHOD SW846 8015 MOD SW846 8015 MOD
SURROGATE o-Terphenyl		PERCENT RECOVERY 151 * 78	RECOVERY <u>LIMITS</u> (57 - 147) (57 - 147)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

- p Relative percent difference (RPD) is outside stated control limits.
- Surrogate recovery is outside stated control limits.