

94603□ (510) 577-8804 FAX□ (510) 577-8859

November 16, 2000

Ms. eva chu
Alameda County Health Division
Division of Environmental Protection
Department of Environmental Health
1131 Harbor Bay Parkway, Second Floor
Alameda, CA 94502

Dear Ms. chu:

Subject: Quarterly Groundwater Monitoring Report, AC Transit, 1177 47th Street, Emeryville

AC Transit hereby submits the enclosed quarterly groundwater monitoring report for the AC Transit facility located at 1177 47th Street in Emeryville. The report was prepared by our consultant, Safety-Kleen Consulting (formerly Environmental Decision Group) and contains the results of the August 2000 sampling event.

Ground water samples from the 14 on-site monitoring wells (MW-1 through MW-10, W-1 through W-4) were collected and analyzed for total extractable petroleum hydrocarbons (TPH) using modified EPA Method 8015 and benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert-butyl ether (MTBE), and gasoline using EPA Method 8021B. Depth to ground water was measured in each well and ground water contour maps were developed for the report.

Analytical results indicate that TPH was detected in all wells except well W-3 and MW-4 at concentrations that ranged from 180 to 76,000 ppb. Benzene concentrations above the California maximum contaminant level of 1 ppb were found in wells W-1 and MW-6 at 20 ppb and 60 ppb, respectively. MTBE was detected in four monitoring wells with concentrations ranging from 25 ppb to 65 ppb.

If you have any questions regarding this report or other matters pertaining to this site, please call me at (510) 577-8869.

Sincerely,

Suzame Patton, P.E. Environmental Engineer

enclosure

GROUNDWATER MONITORING REPORT FOR THE AC TRANSIT FACILITY LOCATED AT 1177 47th STREET, EMERYVILLE, CALIFORNIA

November 8, 2000

Prepared For:

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792551

GROUNDWATER MONITORING REPORT FOR THE AC TRANSIT FACILITY LOCATED AT 1177 47th STREET, EMERYVILLE, CALIFORNIA

November 8, 2000

Prepared For:

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792551

Reviewed By Brad Wright, R

Senior Geologis

Written **B**y

Brady Hanson

Geologist I

INTRODU	ICTION	. 1
OBJECTIV	VES AND SCOPE OF WORK	. 1
	oundwater Elevations and Flow Direction	
Gro	oundwater Sampling Activities	.2
Gro	oundwater Analytical Results	. 3
SUMMAR	Y OF RESULTS	. 3
PROJECT	ED WORK AND RECOMMENDATIONS	. 3
	X AChain-of-Custody Documentation, tified Analytical Reports, and Field Data Sheets	•
	List of Figures	
Figure 1	Site Map Including Groundwater Elevation Contours	
	List of Tables	
Table 1	Groundwater Level Measurements	
Table 2	Analytical Results of Groundwater Samples	

INTRODUCTION

This report presents the results from the August 2000 sampling event for the AC Transit Facility located at 1177 47th Street, Emeryville, California (Site). Groundwater sampling of monitor wells MW-1 through MW-10 was reinstated in August 1999, in accordance with directives from Alameda County Health Care Services (ACHCS). In a letter dated February 2, 2000, ACHCS requested that the status of monitor wells W-1 through W-4 be determined, and if found, be included in the quarterly sampling events. In addition, the February 2, 2000, letter requests that analysis for methyl tert-butyl ether (MTBE) and gasoline be performed on all Site monitor wells. AC Transit retained Safety-Kleen Consulting to perform this work.

OBJECTIVES AND SCOPE OF WORK

Work performed during this sampling event included measuring depth to water in the monitor wells and sample collection. Groundwater samples were analyzed for total extractable petroleum hydrocarbons (TEPH) using Environmental Protection Agency (EPA) Method 8015 Modified and benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tertiary-butyl ether (MTBE), and gasoline by EPA Method 8021B.

A site map displaying the monitoring well locations is presented as Figure 1. Chain-of-custody documents, field data sheets and certified analytical reports are included in Appendix A.

Groundwater Elevations and Flow Direction

On August 30, 2000, all 14 Site monitor wells were inspected and measured for the presence of free phase hydrocarbons and depth to groundwater. Measurements of depths to groundwater are presented on Table 1 and were used to construct the groundwater elevation contours shown in Figure 1. A free phase hydrocarbon sheen was detected in MW-6 during this sampling event. As shown on Figure 1, groundwater flow is to the west at a gradient of 0.013 feet/foot. Groundwater Sampling Activities

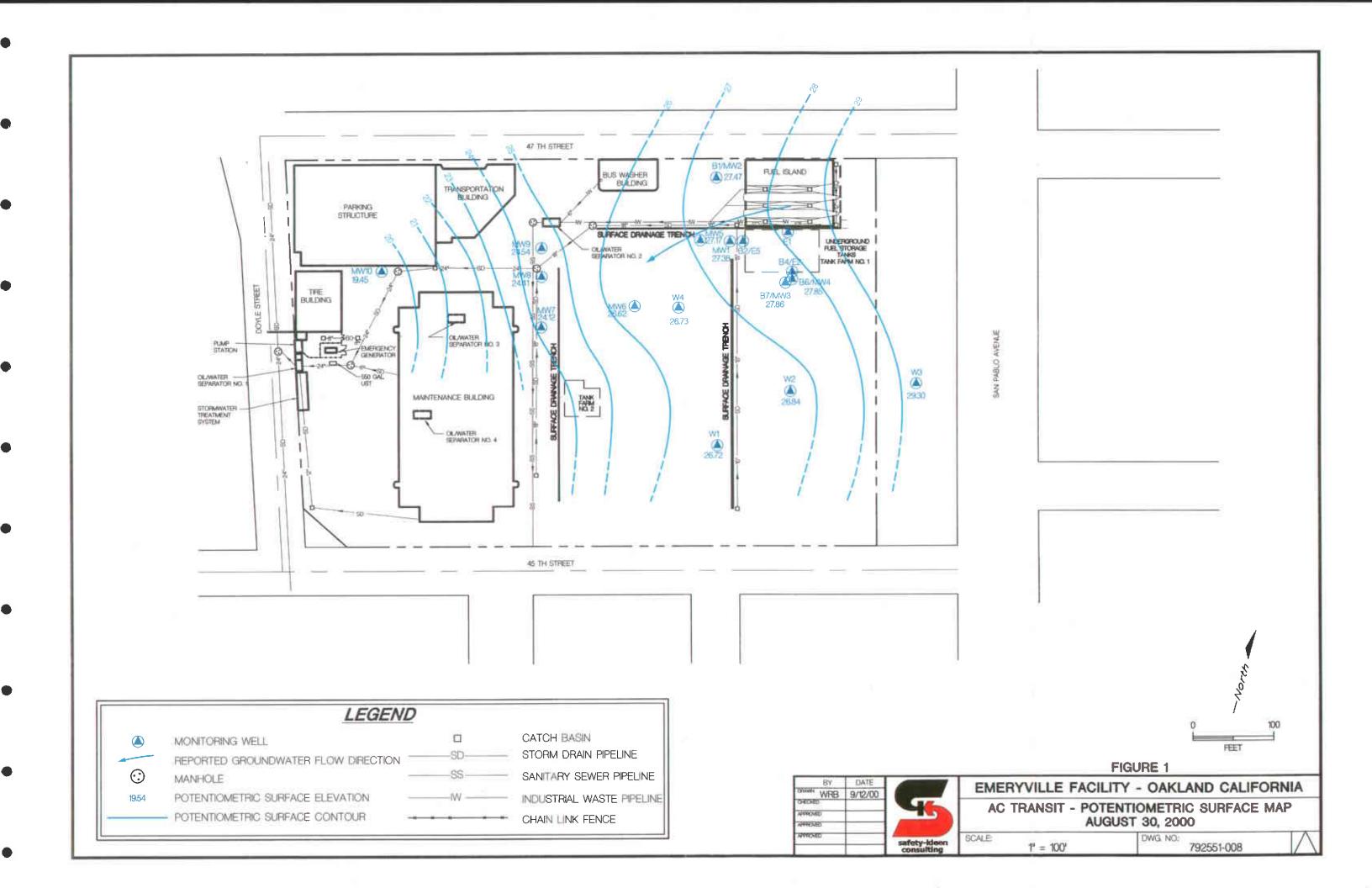
The monitor wells were purged a minimum of three casing volumes using a centrifugal pump and samples were collected using disposable polyethylene bailers in all wells except W-2. During well purging, field parameters for pH, electrical conductivity and temperature were monitored using calibrated field meters.

Groundwater samples were transferred to 40-milliliter glass vials preserved with hydrochloric acid and one-liter non-preserved amber glass containers and placed in an ice-filled cooler for shipment under chain-of-custody to a State of California certified laboratory. A trip blank was submitted for analysis by EPA Method 8021B.

Monitor well W-2's casing damage did not allow for use of a bailer to collect groundwater samples. Samples from W-2 were collected using ¼-inch polyethene tubing which was allowed to fill with groundwater sealed at the surface and extracted from the well. The surface seal was then released allowing the groundwater to flow from the tubing into the laboratory containers.

Groundwater Analytical Results

Table 2 presents groundwater analytical results for the August 2000 sampling event. TPH was detected in all Site monitor wells except for MW-4 and W-3. Concentrations of TPH above laboratory reporting limits ranged from 180 to 76,000 parts per billion (ppb). Benzene was detected in wells W-1, and MW-6, at concentrations of 20 ppb, and 60 ppb, respectively. These concentrations are above the maximum contaminant level (MCL) for benzene of 1.0 ppb. Toluene, ethylbenzene and xylenes were detected in monitor wells MW-6, W-1, and W-2 at concentrations below the MCLs. MTBE was detected in MW-1, MW-2, MW-5, and MW-10 at 49 ppb, 65 ppb, 59 ppb, and 25 ppb respectively.


No analytes were detected in the trip blanks or method blanks. A lab control spike and lab control spike duplicate passed the EPA's criteria for acceptance.

SUMMARY OF RESULTS

- MTBE was detected in monitor wells MW-1, MW-2, MW-5, and MW-10.
- Benzene was detected in W-1, and MW-6 above the MCL of 1 ppb.
- A free phase hydrocarbon sheen was present in MW-6.
- TPH was detected in all Site monitor wells except MW-4 and W-3.
- Groundwater flow is to the west at a gradient of 0.013 feet/foot.

PROJECTED WORK AND RECOMMENDATIONS

- Additional site groundwater investigations are scheduled for the fourth quarter 2000.
- Quarterly groundwater monitoring is scheduled for December 2000.

TABLE 1 GROUNDWATER LEVEL MEASUREMENTS AC TRANSIT 1177 47TH STREET, EMERYVILLE, CALIFORNIA

			ft Thickness		Groundwater Elevation	Elevation Corrected fro Product Thickness
Well	Date	msl)	(feet)	DTW (feet)	(ft-msl)	(ft-msl)
MW-1	8/31/99	32.56	None	3.24	29.32	NA
	11/23/99		None	4.55	28.01	NA
	3/1/00		None	3.65	28.91	NA
	5/ 1 7/ 0 0		None	4.08	28.48	NA
	8/30/00	ak åtor a kolotok ävak 17 ma 1941. Skaladisk make	None	5.18	27.38	NA
MW-2	8/31/99	32.12	None	5.24	26.88	NA
	11/23/99		None	4.03	28.09	NA
	3/2/00		None	3.11	29.01	NA
	5/17/00	wasanidi da ka d	None	3.66	28.46	NA
1.000	8/30/00		None	4,65	27.47	NA
MW-3	8/31/99	34.06	None	6.15	27.91	NA
	11/23/99		None	5.78	28.28	NA
	3/1/00 5/17/00		None	4.82	29.24	NA
	a maria dan dan dan dan dan dan dan dan dan da	Najpojet po u plumpo p	None	5.29	28.77	NA NA
MW-4	8/30/0 0 8/31/99	34.11	None None	6.20 6.22	27.86 27.89	NA NA
IAF AA - 4	11/23/99	34.11	None None	6.01	28.10	NA NA
	3/1/00		None	4,74	29.37	NA NA
	5/17/00		None None	5.33	28.78	NA NA
	8/30/00		None	6.26	27.85	NA NA
MW-5	8/31/99	31 .70	None	4.51	27.19	NA
272.00	11/23/99	51.70	None	4.00	27.70	NA
	3/1/00		None	3.31	28.39	NA
	5/17/00		None	3.59	28.11	NA
	8/30/00		None	4.53	27.17	NA
MW-6	8/31/99	31.02	0.40	4.40	26.62	26.94
	11/23/99		Sheen	3.81	27.21	NA
	3/2/00		0.02	2.88	28.14	28.16
	5/17/00		None	3.44	27.58	NA
	8/30/00		Sheen	4.40	26.62	NA
MW-7	8/31/99	29.62	None	5.47	24.15	NA
	11/23/99		None	4.93	24.69	NA
	3/2/00		None	4.06	25.56	NA
	5/17/00		None	4.69	24.93	NA
	8/30/00		None	5.50	24.12	NA
MW-8	8/31/99	29.43	None	5.35	24.08	NA
	11/23/99		None	4.75	24.68	NA
	3/2/00		None	4.48	24.95	NA
	5/17/00		None	4.78	24.65	NA
	8/30/00		None	5.02	24.41	NA
MW-9	8/31/99	29.18	None	4.15	25.03	NA
	11/23/99		None	3.93	25.25	NA
	3/2/00		None	3.69	25.49	NA
	5/17/00	Network .	None	3.56	25.62	NA
	8/30/00		None	4.64	24.54	NA
MW-10	8/31/99	29.13	None	9.59	19.54	NA
	11/23/99		None	9.44	19.69	NA
	3/2/00		None	9.06	20.07	NA
	5/17/00		None	9.31	19.82	NA

TABLE 1 GROUNDWATER LEVEL MEASUREMENTS AC TRANSIT 1177 47TH STREET, EMERYVILLE, CALIFORNIA

Well	Date	Top of Casing Elevation (f msl)		DTW (feet)	Groundwater Elevation (ft-msl)	Groundwater Elevation Corrected from Product Thickness* (ft-msl)
			(,,,,,	D1 w (lect)		(10 11131)
W-1	3/2/00	33.43	None	4.08	29.35	NA
	5/17/00		None	5.41	28.02	NA
	8/30/00		None	6.71	26.72	NA
W-2	5/17/00	34.21	None	5.6	28.61	NA
	8/30/00		None	7.37	26.84	NA
W-3	5/17/00	37.46	None	6.38	31.08	NA
	8/30/00		None	8.16	29.30	NA
W-4	3/2/00	31.72	None	3.34	28.38	NA
	5/17/00		None	3.86	27.86	NA
	8/30/00		None	4,99	26.73	NA

Notes:

ft-msl: feet-mean sea level DTW: Depth to Water NA: Not applicable ** Not Available

^{*} used 0.8 specific gravity of product

^{**} top of casing elevation not established

TABLE 2
ANALYTICAL RESULTS GROUNDWATER SAMPLES
AC TRANSIT
1177 47TH STREET, EMERYVILLE, CALIFORNIA

107 **	. .	7	G	т.	ent e	F.1 11	17 I	1 mm =
Well	Date	TPH-8015	TPH-8021	Benzene	Toluenc	Ethylbenzene	Xylenes	MTBE
CL (ppb)	0 /04 /00	None	None	1.0	150	700	1,750	None
MW-1	8/31/99	310	NA	<1.0	2.4	1	1.6	NA
	11/23/99	250	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	310	62	<1.0	<1.0	<1.0	<2.0	68
	5/18/00	390	63	<1.0	<1.0	<1.0	<2.0	74
	8/31/00	180	<50	<1.0	<1,0	≤ 1.0	<2.0	49
MW-2	8/31/99	180	NA	<1.0	<1.0	<1.0	1.2	NA
	11/23/99	120	NA	< 5.0	<5.0	<5.0	<5.0	NA
	3/1/00	510	< 50	<1.0	<1.0	<1.0	<2.0	81
	5/18/00	1,100	<50	<1.0	<1.0	<1.0	<2.0	87
	8/31/00	620	<50	<1.0	<1.0	<1.0	<2.0	65
MW-3	8/31/99	2,700	NA	<1.0	<1.0	<1.0	<1.0	NA
	11/23/99	640	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	<250	< 50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	620	< 50	<1.0	<1.0	<1.0	<2.0	<5.0
	8/31/00	1,800	<50	<1.0	<1.0	<1.0	<2.0	<5.0
MW-4	8/31/99	<50	NA	<1.0	<1.0	<1.0	1.6	NA
	11/23/99	<50	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	<250	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	80	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	8/31/00	<250	<50	<1.0	<1.0	<1.0	<2.0	<5.0
MW-5	8/31/99	250	NA	<1.0	<1.0	<1.0	1	NA
	11/23/99	300	NA	<5.0	< 5.0	<5.0	<5.0	NA
	3/1/00	340	50	<1.0	<1.0	<1.0	<2.0	100
	5/18/00	230	<50	<1.0	<1.0	<1.0	<2.0	86
	8/30/00	220	< 5 0	<1.0	<1.0	<1.0	<2.0	59
MW-6	8/31/99	140,000	NA	77	18	31	49	NA
-7-11	11/23/99	6,100	NA	45	14	6.9	48	NA
	3/1/00	22,000	2,800	6.8	<2.0	<2.0	<10	<5.0
	5/17/00	1,800	6,200	77	16	39	37	<5.0
	8/31/00	76,000	5,300	60	13	43	45.7	<5.0
MW-7	8/31/99	1,400	NA	<1.0	2.9	2.3	2.7	NA
IVE W - 1	11/23/99	530	NA NA		<1.0	<1.0	<1.0	NA NA
				<1.0				
	3/1/00	640	860	<1.0	<1.0	<1.0	<2.0	<20
	5/17/00	430	410	<1.0	<1.0	<1.0	<2.0	9.5
3.077.0	8/30/00	950	1,100	<1.0	<1.0	<1.0	<2.0	<5.0
MW-8	8/31/99	230	NA	<1.0	<1.0	1.2	<1.0	NA
	11/23/99	220	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	260	150	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00	660	310	<1.0	<1.0	<1.0	<2.0	<5.0
	8/30/00	460		<1.0	<1.0	<1,0	1.4	<5.0
MW-9	8/31/99	2,800	NA	<1.0	<1.0	<1.0	1.1	NA
	11/23/99	1,300	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	510	<50	<1.0	<1.0	<1.0	<2.0	< 5.0
	5/17/00	990	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	8/30/00	1,100	<50	<1.0	<1.0	<1.0	<2.0	<5.0
MW-10	8/31/99	1,100	NA	<1.0	1.2	2.0	<1.0	NA
	11/23/99	1,200	NA	<1.0	<1.0	<1.0	<1.0	NA
	3/1/00	1,300	540	<1.0	<1.0	<1.0	<2.0	12
	5/18/00	990	460	< 1.0	<1.0	<1.0	< 2.0	6.9
	8/30/00	840	320	<1.0	<1.0	<1.0	<2.0	25

TABLE 2
ANALYTICAL RESULTS GROUNDWATER SAMPLES
AC TRANSIT
1177 47TH STREET, EMERYVILLE, CALIFORNIA

		11// 1/2	, H SIKEBI)		T-luano.	Ethylbenzene	Xylenes_	MTBE
	Date	TPH-8015	TPH-8021	Benzene	Toluene	700	1,750	None
Well	Date	None	None	1.0	150	30	23.8	<5,0
CL (ppb)		1,800	3,400	20	5.3		45	<1.0
W-1	3/1/00		7,300	35	11	59 	38.2	<10
•	5/17/00	1,100	6,200	20	7.9	36	and the second of the second of the second	7.8
	8/30/00	2,200	one of the second	<2.0	<1.0	<2.0	<4.0	<10
W-2	5/17/00	19,000	870	4.6	2.5	3.8	n	Philipping province in one
υ " ¯	8/30/00	7,400	2,200	<1.0	<1.0	<1.0	<2.0	<5.0
W-3	5/17/00	<50	<50	医环状腺 化二二苯甲二甲基苯二	<1.0	<1.0	<2.0	≮5.0
₩-5	8/30/00	<50	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	3/1/00	190	<50	1.1		<1.0	< 2.0	<5.0
W-4		230	<50	<1.0	<1.0	<1.0	<2.0	<5.0
	5/17/00 8/30/0 0	240	<50	<1.0	<1.0		Accessed to the commence of the con-	.vv

Notes:

ppb: parts per billion

TPH: total petroleum hydrocarbons MCL: maximum contaminant level

NA: not analyzed

APPENDIX A

CHAIN-OF-CUSTODY DOCUMENTATION FIELD DATA SHEETS CERTIFIED ANALYTICAL REPORTS

October 30, 2000

STL SACRAMENTO PROJECT NUMBER: G0I010169

PO/CONTRACT: Emeryville

Tel: 916 373 5600 Fax: 916 371 8420 www.stl-inc.com

STL Sacramento

880 Riverside Parkway

West Sacramento, CA 95605-1500

Brad Wright Safety Kleen Consulting 2233 Santa Clara Ave Suite 7 Alameda, CA 94501

Dear Mr. Wright,

This report contains the analytical results for the samples received under chain of custody by STL Sacramento on 8/31/00. These samples are associated with your AC Transit project.

The case narrative is an integral part of this report.

Preliminary results were sent via facsimile on October 25, 2000.

If you have any questions, please feel free to call me at (916)374-4414.

Sincerely,

Bonnie J. McNeill

Bonnie & mihaile

Project Manager

TABLE OF CONTENTS

STL SACRAMENTO PROJECT NUMBER G0I010169

Case Narrative

STL Sacramento Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

WATER, TPH-Gas/BTEX + MTBE by 8021B Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 Sample Data Sheets Method Blank Reports Laboratory QC Reports

WATER, 8015 MOD, Diesel/Motor Oil Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Sample Data Sheets Method Blank Reports Laboratory QC Reports

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G01010169

General Comments

Samples were received at 9 and 10 degrees Centigrade.

WATER, CA LUFT, TVPH (Gas)

High surrogate recoveries were attributed to sample matrix.

WATER, 8015 MOD, Diesel/Motor Oil

The RPD for the diesel LCS/LCSD for lot G0I010169 was above the 23% limit at 25%.

There were no other anomalies associated with this project.

STL Sacramento Quality Control Definitions

QC Parameter	Definition
QC Batch	A set of up to 20 field samples plus associated laboratory QC samples that are similar in composition (matrix) and that are processed within the same time period with the same reagent and standard lots.
Duplicate Control Sample (DCS)	Consist of a pair of LCSs analyzed within the same QC batch to monitor precision and accuracy independent of sample matrix effects. This QC is performed only if required by client or when insufficient sample is available to perform MS/MSD.
Duplicate Sample (DU)	A second aliquot of an environmental sample, taken from the same sample container when possible, that is processed independently with the first sample aliquot. The results are used to assess the effect of the sample matrix on the precision of the analytical process. The precision estimated using this sample is not necessarily representative of the precision for other samples in the batch.
Laboratory Control Sample (LCS)	A volume of reagent water for aqueous samples or a contaminant-free solid matrix (Ottawa sand) for soil and sediment samples which is spiked with known amounts of representative target analytes and required surrogates. An LCS is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects.
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A field sample fortified with known quantities of target analytes that are also added to the LCS. Matrix spike duplicate is a second matrix spike sample. MSs/MSDs are carried through the entire analytical process and are used to determine sample matrix effect on accuracy of the measurement system. The accuracy and precision estimated using MS/MSD is only representative of the precision of the sample that was spiked.
Method Blank (MB)	A sample composed of all the reagents (in the same quantities) in reagent water carried through the entire analytical process. The method blank is used to monitor the level of contamination introduced during sample preparation steps.
Surrogate Spike	Organic constituents not expected to be detected in environmental media and are added to every sample and QC at a known concentration. Surrogates are used to determine the efficiency of the sample preparation and the analytical process.

Source: STL Sacramento® Quality Control Program, Policy QA-003, Rev. 0, 8/19/96.

Sample Summary G0I010169

WO#	Sample #	Client Sample ID	Sampling Date	Received Date
DJR15	1	W-3	8/30/00 09:50 AM	8/31/00 05:30 PM
DJR1F	2	W-2	8/30/00 10:55 AM	8/31/00 05:30 PM
DJR1H	3	W-1	8/30/00 11:30 AM	8/31/00 05:30 PM
DJR1Q	4	MW-7	8/30/00 12:45 PM8	/31/00 05:30 PM
DJR1X	5	MW-8	8/30/00 01:20 PM8	/31/00 05:30 PM
DJR23	6	MW-9	8/30/00 01:55 PM8	/31/00 05:30 PM
DJR25	7	MW-10	8/30/00 02:35 PM8	/31/00 05:30 PM
DJR27	8	W-4	8/30/00 03:05 PM8	/31/ 00 05:30 PM
DJR28	9	MW-5	8/30/00 03:40 PM8	/31/00 05:30 PM
DJR2C	10	MW-2	8/31/00 08:50 AM	8/31/00 05:30 PM
DJR2D	11	MW-1	8/31/00 09:30 AM	8/31/00 05:30 PM
DJR2E	12	MW-3	8/31/00 10:25 AM	8/31/00 05:30 PM
DJR2F	13	MW-4	8/31/00 10:50 AM	8/31/00 05:30 PM
DJR2H	14	MW-6	8/31/00 11:30 AM	8/3 I/00 05:30 PM
DJR2J	15	TRIP BLANK	8/31/00 08:00 AM	8/31/00 05:30 PM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must no be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weigh

Chain of Custody Record

QUA-4124 0797		•																												
SAFETY-KLEEN CONSULTING		Project Mar		4.Δ	1.17	011	4 .	T									D	Pate 47.	-30	- ∧	ก			Cha	iin of	Custo	ody Nu	mber	25	61
Address		Telephone	O C	PC /A	VAR C	Sortel.	DIT Earl	<u>I</u> Numh	HOF.								١,		JU Imber	-			\dashv	_						
2233 SANTA CLARA AVE, #	=7				37													ATL) / 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Pai	ae_	_1		of	<u>Z</u>	
	xae	Site Contac				L	ab Co	ontac		_			Г			Ai	nalys	is (A	ttach	list	if			T						
ALAMEDA CA 9	4501	0	1 777 1				Bor	M	18	W	-		┢	Т	T''	T	re s	pace	is ne	ege	<u> </u>	Т	7	\dashv						
Project Name		Carrier/Way	ybili N	umbi	er																	1	-			_				
AC TRANSIT EMERYVILLE Contract/Purchase Order/Quote No.		L	$\overline{}$	—		T			ntain		•		┨		1														tions, leceiu	
792551				Mal	trix				serv				_	۱,		1								ĺ	_					
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Sed.	,80°,		Unpress.	HNOS	HCI	MaOH	ZnAci	NECH	208	2015	9															
W-3	8-30-00		X			7	2		3				X	X										ightharpoons						
<u></u> ω-Ζ_	8-30-00	1055							1				1	$\ $																
U−1		1130							\prod		T	T	П	П	T	Γ				T			T	\top					******	
MW-7		1245					П	T	\prod				\prod	П		Γ				\top			T	T						
MW-8		1320						T	\prod				\prod		T					T			I							
mw-9		1355											\prod	\prod							T	R	ECE	:VE	O IN	GO	OD CO	ONDI	ION	$\overline{\gamma}$
mw-10		1435												Ц							$I\Gamma$	\prod	Ŧ	T		PERT	COC		7	T
W-4		1505																			II	\parallel		AU	G	3 1	200) <u>n</u>	T	T
mw-5	V	1540	V			N	ø		V	1			Y		7														Π	T
TAIP BLANK	<u> </u>	0900	V			+	+	_	1	-	\pm		1	+	+							11	NI			O	5]	T
,							ł								1							7	Ŧ	-		: ۵۰۰				
						7	\top	十		1	1		1	T	十	Ī				T	1		1	ヿ						
Possible Hazard Identification	<u></u>	1	Sampi	e Dis	posal					1			ــــــــــــــــــــــــــــــــــــــ				I						_ <u>_</u> _	<u> </u>	- 4 M -		s are r			
	Poison B 🔲	Unknown [] Re	lurn	To CI	ient								hive	For			Mon	hs !	onge	r thai	3 11	nont	hs)	U 17 5d	ширке	2 918 1	BIANTE	u	
Turn Around Time Required	[[] ₂₄ 2	Пап					I ^a		quire TA		•	pecify A	y)																	
24 Hours 48 Hours 7 Days 14 Days	Les 21 Days	Other_ Date		, Tin	oe		1	. Rec	_		ηĸ.	17											—	7	Date			Time		
1. Relinguished By A		8-17-	ထ	15	3:3	30	ı]			
2. Aftinguished By 3. Pelinguished By		Date	-00	Tin		10	2.	. Rec	elveç	3	re	1	0	זע	or	ke	1))ate 8	<u></u>	31	Time	5	12
3. Belinquisted By Brent II	-	Date 3	1	Tin	ne 17.	3 0	3,	. Rec	elved	'Ву /	1/	/m/		[1 - 4	4-			-						<i>J</i> 8(8	31-		Time	77	56
Comments		· · · · · · · · · · · · · · · · · · ·	-	.,		<u>-</u>				t	~~	7(4	ダ	J									J	<u> </u>			1 0	
															<u>/_</u>															

Chain of Custody Record

OUA-4124 0797	-																Tools					7		(Custos		£	
Client	,	Project Man	-				_	_									Date	21	. 60			Cn	iain oi	Custoc	יותטאיז עו	" 52	563
SAFETY-KLEEN CONSULTING	7	BR Telephone I	40	<u>~</u>	121	<u>64</u>		. \$440										<u>-> </u> Vumbe	-01			+					
SAFETY-KLEEN CONSULTING Address ZZ33 SANTA CLARA, AVE.	<i>47</i>	510							noer								Laur	VUIIIUB	rr			Pi	age.	2		۔ کے of	<u> </u>
City State Zip Cod		Site Contact						Conte	act				T			An	alysis (Attac	h list i	Ť			ľ				
ALAMEDA CA 94							\mathcal{B}	ON	NI	6_	M	•	_}-	Т	-	moi	e spac	e is n	eeded	"	Τ-	\dashv					
Project Name		Carrier/Way	bill N	lumbe	91																1						
ACTRANSIT EMERYVILLE		<u></u>											4	1			- 1					1 }		Speci	al ins	tructio	ns/
Contract/Purchase Order/Quote No.				Mat	rix				onta rese					1					- 1				' '	Conai	ions d	of Rec	eipt
792551	γ	1	-	rr		٠.	3''T			_			- ;	N	$\bar{\rho}$		İ	1 1		1							
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Афияси	Sed.	80			F250	HNOS		NaQ.	Nac.	6	802	8	Ц					1_						
MW-2	8-31-00		Ϋ́		_	4	2	_	_ -	3	_	\perp		X)	ΧĹ		_				丄		_				
MW-1	8-31-00	0930					Ц			Ц		\perp	·	Ц	Ш		_				丄		L				
MW-3	1	1025					П			Ш	.]			Ш	}												
MW-Y		1050												Ш													
mw-6		1130				`	V			Ш				Ц	¥								L				
TRIP BLANK	4	0800	Ų	Ш						V				4	_ _						Ri	CEI	VED	IN GO	00 CC	NDITI	ON
																					Ш					******	
							-		Ì					1									Anc	3 1	201	າດ	
							T			╛				\exists							П					,,	
			1	\vdash	\dashv	+	+	\dashv	-	_		十	\top	┪	\top	T		1	-	-	+-	=	干	16	_		-
			├		-	\dashv	+	\dashv		ᆉ	\dashv	-		+	+	+				_	1	₩	圭	<u>V</u>			
			_		\dashv						\dashv		-		_	╀	\vdash	-			\perp	1	\vdash				
		1																				<u> </u>	L				
Possible Hazard Identification	_	,	•		sposa			~											(A lee	may.	be as	:sess	ed if	semples	are ret	ained	
	Poison B	Unknown [_] R	eturn	To C	lient						(Spe		uchi	ve For		Мо	nihs	longe	r than	3 mo	nths)	1				
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days	A 21 Davs	Other_						WC I	•			ነብ ያትር															
1. Refing@ished By	A	Date		Tin			- 1	1. R	eceiv														Date		1 7	îme	
1. Refinglished By	<u> </u>	8-17	-a		151	30	<u> </u>								_^												
2. Actinguished By A Hamson		8-31-	00			10		2. R	ecei	7	πŲ	大	B	w	ψ	ett								5-5	<u> </u>	ime S	10
3. Relinquistred By Brux Brunket	•	Date -	3 1	Tir	17	30		3. R	eceiv	red E	/\/	1	7	1		4							Date	Tai	ر ا ر-	ime)	30
Comments		<u> </u>									15 0	7	(*	147	ナ		·) 	400		 / .	
			- 54	w c								/			/								—			·	

WATER, TPH Gas/ BTEX + MTBE Method 8021B

Client Sample ID: W-3

GC Volatiles

Lot-Sample #...: G0I010169-001

Date Sampled...: 08/30/00

Prep Date....: 09/08/00 Prep Batch #...: 0273482

Dilution Factor: 1

Work Order #...: DJR15104

Date Received..: 08/31/00

Analysis Date..: 09/08/00

Method..... DHS CA LUFT

REPORTING

UNITS

Matrix....: WATER

PARAMETER TPH (as Gasoline)

Unknown Hydrocarbon

SURROGATE RECOVERY

4-Bromofluorobenzene

RESULT LIMIT 50

ug/L ND ug/L ND 50

RECOVERY PERCENT LIMITS

106

(70 - 130)

Client Sample ID: W-3

GC Volatiles

Lot-Sample #...: G01010169-001 Work Order #...: DJR15102 Matrix....: WATER

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	G .
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	\mathtt{ug}/\mathtt{L}
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	${\tt ug/L}$
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	96	(70 - 13	0)

Client Sample ID: W-2

GC Volatiles

Lot-Sample #: G0I010169-002 Date Sampled: 08/30/00 Prep Date: 09/08/00 Prep Batch #: 0273482	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix: WATER
Dilution Factor: 2	Method:	DHS CA LUF	T
PARAMETER	RESULT	REPORTING LIMIT	UNITS
TPH (as Gasoline)	2200	100	ug/L
Unknown Hydrocarbon	ND	100	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	•
4-Bromofluorobenzene	144 *	(70 - 130)	

NOTE(S):

Surrogates outside acceptance criteria due to demonstrated matrix effect.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: W-2

GC Volatiles

Lot-Sample #:	G0I010169-002	Work Order #: DJR1F102	Matrix: WATER

 Date Sampled...:
 08/30/00
 Date Received...:
 08/31/00

 Prep Date.....:
 09/08/00
 Analysis Date...:
 09/09/00

Prep Batch #...: 0274151

Dilution Factor: 2 Method.....: DHS CA LUFT

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	4.6	2.0	ug/L	
Ethylbenzene	3.8	2.0	ug/L	
Toluene	2.5	2.0	ug/L	
m-Xylene & p-Xylene	11	4.0	ug/L	
o-Xylene	ND	2.0	ug/L	
Methyl tert-butyl ether	ND	10	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
a,a,a-Trifluorotoluene	101	(70 - 130)	

Client Sample ID: W-1

GC Volatiles

Lot-Sample #: G0I010169-003	Work Order #:	DJR1H104	Matrix: WATER
Date Sampled: 08/30/00	Date Received:	08/31/00	
Prep Date: 09/08/00	Analysis Date:	09/08/00	
Prep Batch #: 0273482			
Dilution Factor: 2	Method:	DHS CA LUFT	
		REPORTING	
PARAMETER	RESULT	LIMIT U	<u>NITS</u>
TPH (as Gasoline)	6200	100 ບ	g/L
Unknown Hydrocarbon	ND	100 u	g/L
	PBRCENT	RECOVERY	

<u>LIMITS</u> (70 - 130)

NOTE(S):

SURROGATE

4-Bromofluorobenzene

Surrogates outside acceptance criteria due to demonstrated matrix effect.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: W-1

GC Volatiles

Lot-Sample #: G0I010169-003	Work Order #: DJR1H102	Matrix: WATER
-----------------------------	------------------------	---------------

 Date Sampled...:
 08/30/00
 Date Received..:
 08/31/00

 Prep Date.....:
 09/08/00
 Analysis Date..:
 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 2 Method.....: DHS CA LUFT

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	20	2.0	ug/L
Ethylbenzene	36	2.0	ug/L
Toluene	7.9	2.0	ug/L
m-Xylene & p-Xylene	36	4.0	ug/L
o-Xylene	2.2	2.0	ug/L
Methyl tert-butyl ether	ND	10	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	115	(70 - 13	(0)

Client Sample ID: MW-7

GC Volatiles

Lot-Sample #: G0I010169-004 Date Sampled: 08/30/00 Prep Date: 09/08/00 Prep Batch #: 0273482	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix:	WATER
Dilution Factor: 1	Method:	DHS CA LUF	T	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
TPH (as Gasoline)	1100	50	ug/L	
Unknown Hydrocarbon	ND	50	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	155 *	(70 - 130)		

NOTE(S):

Surrogates outside acceptance criteria due to demonstrated matrix effect.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: MW-7

GC Volatiles

Matrix....: WATER Lot-Sample #...: G0I010169-004 Work Order #...: DJR1Q102

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method....: DHS CA LUFT

		REPORTIN	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS	
Benzene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Toluene	ND	1.0	ug/L	
m-Xylene & p-Xylene	ND	2.0	ug/L	
o-Xylene	ND	1.0	ug/L	
Methyl tert-butyl ether	ND	5.0	ug/L	
	PERCENT	RECOVERY	T.	
SURROGATE	RECOVERY	LIMITS	· .	
a,a,a-Trifluorotoluene	105	(70 - 13	30)	

Client Sample ID: MW-8

GC Volatiles

Lot-Sample #: G0I010169-005 Date Sampled: 08/30/00 Prep Date: 09/08/00 Prep Batch #: 0273482	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix: WATER
Dilution Factor: 1	Method:	DHS CA LUF	T
PARAMETER	RESULT	REPORTING	UNITS
TPH (as Gasoline)	ND	50	ug/L
Unknown Hydrocarbon	300	50	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene	189 *	(70 - 130)	

NOTE (S):

* Surrogate recovery is outside stated control limits.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Client Sample ID: MW-8

GC Volatiles

Date Sampled...: 08/30/00

Prep Date...: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1

Lot-Sample #...: G01010169-005 Work Order #...: DJR1X102

Date Received..: 08/31/00

Analysis Date..: 09/08/00

Method.....: DHS CA LUFT

Matrix....: WATER

		REPORTIN	I G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	1.4	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	<u>.</u>
SURROGATE	RECOVERY	LIMITS	<u></u>
a,a,a-Trifluorotoluene	101	(70 - 13	(0)

Client Sample ID: MW-9

GC Volatiles

Lot-Sample #...: G0I010169-006

Date Sampled...: 08/30/00

Prep Date....: 09/08/00 Prep Batch #...: 0273482

Dilution Factor: 1

SURROGATE

Work Order #...: DJR23104

Date Received..: 08/31/00 **Analysis Date..:** 09/09/00

Method.....: DHS CA LUFT

50

50

REPORTING PARAMETER

TPH (as Gasoline) Unknown Hydrocarbon RESULT ND ND

LIMIT UNITS ug/L ug/L

Matrix..... WATER

PERCENT RECOVERY RECOVERY LIMITS 4-Bromofluorobenzene 105 (70 - 130)

Client Sample ID: MW-9

GC Volatiles

Lot-Sample #: G0I010169-006	Work Order #: DJR23102	Matrix WATER
-----------------------------	------------------------	--------------

 Date Sampled...:
 08/30/00
 Date Received...
 08/31/00

 Prep Date.....:
 09/08/00
 Analysis Date...
 09/09/00

 Prep Batch #...:
 0274151
 O274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	MD	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	95	(70 - 13	0)

Client Sample ID: MW-10

GC Volatiles

Lot-Sample #...: G0I010169-007

Date Sampled...: 08/30/00 Prep Date....: 09/08/00

Prep Batch #...: 0273482

Dilution Factor: 1

Work Order #...: DJR25104

Matrix....: WATER

Date Received.:: 08/31/00 Analysis Date.:: 09/09/00

Method.....: DHS CA LUFT

REPORTING

PARAMETERRESULTLIMITUNITSTPH (as Gasoline)ND50ug/LUnknown Hydrocarbon32050ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 114 (70 - 130)

Client Sample ID: MW-10

GC Volatiles

Lot-Sample #: G0I01	10169-00 7 Work Ord	er #: DJR25102	Matrix:	WATER
---------------------	----------------------------	----------------	---------	-------

 Date Sampled...: 08/30/00
 Date Received..: 08/31/00

 Prep Date.....: 09/08/00
 Analysis Date..: 09/09/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	25	5.0	ug/L
	PERCENT	RECOVERY	Z
SURROGATE	RECOVERY	LIMITS	<u>. </u>
a,a,a-Trifluorotoluene	99 .	(70 - 13	30)

Client Sample ID: W-4

GC Volatiles

Lot-Sample #...: G0I010169-008 Work Order #...: DJR27104 Matrix....: WATER

 Date Sampled...: 08/30/00
 Date Received..: 08/31/00

 Prep Date.....: 09/08/00
 Analysis Date..: 09/09/00

Prep Batch #...: 0273482

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (as Gasoline) ND 50 ug/L
Unknown Hydrocarbon ND 50 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 122 (70 - 130)

Client Sample ID: W-4

GC Volatiles

Lot-Sample #...: G0I010169-008 Work Order #...: DJR27102

Matrix....: WATER

Date Sampled...: 08/30/00

Date Received..: 08/31/00

Prep Date....: 09/08/00 Prep Batch #...: 0274151

Analysis Date..: 09/09/00

Dilution Factor: 1 Method..... DHS CA LUFT

		REPORTIN	G .
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	\mathtt{ug}/\mathtt{L}
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	95	(70 - 13	0)

Client Sample ID: MW-5

GC Volatiles

Lot-Sample #...: G0I010169-009

Work Order #...: DJR28104

Matrix....: WATER

Date Sampled...: 08/30/00 Prep Date....: 09/08/00 Date Received..: 08/31/00

Analysis Date..: 09/09/00

Prep Batch #...: 0273482 Dilution Factor: 1

Method.....: DHS CA LUFT

PARAMETER

RESULT

REPORTING LIMIT

UNITS

TPH (as Gasoline) Unknown Hydrocarbon ND ND

50 50

ug/L ug/L

PERCENT SURROGATE RECOVERY RECOVERY LIMITS

4-Bromofluorobenzene

107

(70 - 130)

Client Sample ID: MW-5

GC Volatiles

Lot-Sample #: G0I010169-009	Work Order #: DJR28102	Matrix: WATER
-----------------------------	------------------------	---------------

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/08/00 Analysis Date..: 09/09/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method....: DHS CA LUFT

		REPORTIN	iG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	59	5.0	ug/L
	PERCENT	RECOVERY	.
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	89	(70 - 13	30)

Client Sample ID: MW-2

GC Volatiles

Lot-Sample #...: G0I010169-010 Work Order #...: DJR2C104 Matrix....: WATER

 Date Sampled...:
 08/31/00
 Date Received...:
 08/31/00

 Prep Date.....:
 09/08/00
 Analysis Date...:
 09/09/00

Prep Batch #...: 0273482

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Gasoline)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 ND
 50
 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 110 (70 - 130)

Client Sample ID: MW-2

GC Volatiles

Lot-Sample #...: G0I010169-010 Work Order #...: DJR2C102 Matrix....: WATER

Date Sampled...: 08/31/00 Date Received..: 08/31/00 Prep Date....: 09/08/00 Analysis Date..: 09/09/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	IG .
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	65	5.0	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	95	(70 - 13	0)

Client Samplé ID: MW-1

GC Volatiles

Lot-Sample #: G0I010169-011	Work Order #: DJR2D104	Matrix WATER
Date Sampled: 08/31/00	Date Received: 08/31/00	

Prep Date....: 09/08/00 Analysis Date..: 09/09/00 Prep Batch #...: 0273482

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (as Gasoline) ND 50 ug/L
Unknown Hydrocarbon ND 50 ug/L

PERCENT RECOVERY

SURROGATE RECOVERY LIMITS

4-Bromofluorobenzene 120 (70 - 130)

Client Sample ID: MW-1

GC Volatiles

Lot-Sample #:	G0I010169-011	Work	Order #
Date Sampled:	08/31/00	Date	Receive

Work Order #...: DJR2D102
Date Received..: 08/31/00

Analysis Date..: 09/09/00

Prep Date....: 09/08/00 Prep Batch #...: 0274151

Dilution Factor: 1

Method..... DHS CA LUFT

REPORTING

Matrix..... WATER

PARAMETER	RESULT	<u>LIMIT</u>	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	49	5.0	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
a a a-Trifluorotoluene	102	(70 - 13	(0)

Client Sample ID: MW-3

GC Volatiles

Lot-Sample #...: G0I010169-012 Work Order #...: DJR2E104

Date Received..: 08/31/00

Matrix....: WATER

Date Sampled...: 08/31/00 Prep Date....: 09/08/00

Analysis Date..: 09/09/00

Prep Batch #...: 0273482 Dilution Factor: 1

Method.....: DHS CA LUFT

REPORTING

PARAMETER TPH (as Gasoline) ND Unknown Hydrocarbon ND

LIMIT UNITS RESULT ug/L 50 50 ug/L

PERCENT RECOVERY SURROGATE RECOVERY LIMITS

(70 - 130)4-Bromofluorobenzene 106

Client Sample ID: MW-3

GC Volatiles

Lot-Sample #...: G0I010169-012 Work Order #...: DJR2E102 Matrix....: WATER

Prep Batch #...: 0274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	_
a,a,a-Trifluorotoluene	95	(70 - 13	(0)

Client Sample ID: MW-4

GC Volatiles

Lot-Sample #...: G0I010169-013 Work Order #...: DJR2F104 Matrix....: WATER

Prep Batch #...: 0273482

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (as Gasoline) ND 50 ug/L
Unknown Hydrocarbon ND 50 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 105 (70 - 130)

Client Sample ID: MW-4

GC Volatiles

Lot-Sample #:	G0I010169-013	Work Order #: DJR2F102	Matrix WATER

 Date Sampled...:
 08/31/00
 Date Received...:
 08/31/00

 Prep Date....:
 09/08/00
 Analysis Date...
 09/09/00

	•	REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	<u>, </u>
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	93	(70 - 13	0)

Client Sample ID: MW-6

GC Volatiles

Lot-Sample #: G0I010169-014 Date Sampled: 08/31/00 Prep Date: 09/08/00 Prep Batch #: 0273482	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix: WATER
Dilution Factor: 1	Method:	DHS CA LUF	T
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Gasoline)	5300	50	ug/L
Unknown Hydrocarbon	ND	50	ug/L
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	244 *	(70 - 130)	•

NOTE(S):

Surrogates outside acceptance criteria due to demonstrated matrix effect.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: MW-6

GC Volatiles

Lot-Sample #...: G0I010169-014 Work Order #...: DJR2H102 Matrix....: WATER

Prep Batch #...: 0274151

a,a,a-Trifluorotoluene

Dilution Factor: 1 Method.....: DHS CA LUFT

106

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	60	1.0	ug/L
Sthylbenzene	43	1.0	ug/L
Toluene .	13	1.0	ug/L
n-Xylene & p-Xylene	43	2.0	ug/L
>-Xylene	2.7	1.0	ug/L
ethyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	

(70 - 130)

Client Sample ID: TRIP BLANK

GC Volatiles

Lot-Sample #: G0I010169-015	Work Order #:	DJR2J103	Matrix WATER
Date Sampled: 08/31/00	Date Received:	08/31/00	
Prep Date: 09/08/00	Analysis Date:	09/09/00	
Prep Batch #: 0273482			
Dilution Factor: 1	Method:	DHS CA LUF	T ·
		REPORTING	
		KELOKITING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
TPH (as Gasoline)	ND	50	ug/L
Unknown Hydrocarbon	ND	50	ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
4-Bromofluorobenzene 105 (70 - 130)

Client Sample ID: TRIP BLANK

GC Volatiles

Lot-Sample #: G0I010169-015	Work Order #: DJR23	J101 Matrix V	JATER

 Date Sampled...: 08/31/00
 Date Received...: 08/31/00

 Prep Date....: 09/08/00
 Analysis Date...: 09/09/00

Prep Batch #...: 0274151

Dilution Factor: 1 Method.....: DHS CA LUFT

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	\mathtt{ug}/\mathtt{L}
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
a,a,a-Trifluorotoluene	92	(70 - 13	0)

QC DATA ASSOCIATION SUMMARY

G0I010169

Sample Preparation and Analysis Control Numbers

	•	ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
		DVA 03 11700		0072400	
002	WATER	DHS CA LUFT		0273482 0274151	
	WATER	DHS CA LUFT		02/4151	
003	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
004	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
				•	_
005	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
006	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
007	WATER	DHS CA LUFT		0273482	
007	WATER	DHS CA LUFT		0274151	
	MAILER	DAS CA HOFT		0214131	
800	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
009	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
				0000400	
010	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
011	WATER	DHS CA LUFT		0273482	
V.L.	WATER	DHS CA LUFT		0274151	
				*-	
012	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
		,			
013	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
014	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

G0I010169

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
015	WATER WATER	DHS CA LUFT DHS CA LUFT		0273482 0274151	

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: G0I010169

Work Order #...: DLC1Q101

Matrix....: WATER

MB Lot-Sample #: G0I290000-482

Analysis Date..: 09/08/00

Prep Date....: 09/08/00

Prep Batch #...: 0273482

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
TPH (as Gasoline)	ND	50	ug/L	DHS CA LUFT
Unknown Hydrocarbon	ND	50	ug/L	DHS CA LUFT
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	<u>LIMITS</u>		
4-Bromofluorobenzene	104	(70 - 13	10)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot # ...: G0I010169

Work Order #...: DLD3E101

Matrix....: WATER

MB Lot-Sample #: G0I300000-151

Prep Date....: 09/08/00

Analysis Date..: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	DHS CA LUFT
Ethylbenzene	ND	1.0	ug/L	DHS CA LUFT
Toluene	ND	1.0	ug/L	DHS CA LUFT
m-Xylene & p-Xylene	ND	2.0	\mathtt{ug}/\mathtt{L}	DHS CA LUFT
o-Xylene	ND	1.0	ug/L	DHS CA LUFT
Methyl tert-butyl ether	ND	5.0	ug/L	DHS CA LUFT
	PERCENT	RECOVER'	Y	
SURROGATE	RECOVERY	LIMITS		
a,a,a-Trifluorotoluene	98	(70 - 1)	30)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G0I010169 Work Order #...: DLC1Q102-LCS Matrix.....: WATER

LCS Lot-Sample#: G01290000-482 DLC1Q103-LCSD

Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0273482

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	d Units	PERCENT RECOVERY	RPD	METH	OD	
TPH (as Gasoline)	1000 1000	1020 1020	ug/L ug/L	102 102	0.18			LUFT LUFT
SURROGATE			PERCENT RECOVERY	RECOVERY LIMITS	-			
4-Bromofluorobenzene	-		107	$\frac{1311113}{(70 - 130)}$	1)			
			109	(70 - 130)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G0I010169 Work Order #...: DLD3E102-LCS Matrix.....: WATER

LCS Lot-Sample#: G0I300000-151 DLD3E103-LCSD

Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1

	SPIKE	MEASURE	ED .	PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD)
Benzene	10.0	9.59	ug/L	96		DHS CA	LUFT
	10.0	9.56	ug/L	96	0.30	DHS CA	LUFT
Ethylbenzene	10.0	9.71	ug/L	97		DHS CA	LUFT
	10.0	9.63	ug/L	96	0.80	DHS CA	LUFT
Toluene	10.0	9.75	ug/L	97		DHS CA	LUFT
	10.0	9.64	ug/L	96	1.1	DHS CA	LUFT
m-Xylene & p-Xylene	20.0	19.2	ug/L	96		DHS CA	LUFT
	20.0	18.9	ug/L	94	1.9	DHS CA	LUFT
o-Xylene	10.0	9.56	ug/L	96		DHS CA	LUFT
	10.0	9.52	ug/L	95	0.37	DHS CA	LUFT
Methyl tert-butyl ether	10.0	10.1	ug/L	101		DHS CA	LUFT
	10.0	10.3	ug/L	103	1.7	DHS CA	LUFT
			PERCENT	RECOVERY			
SURROGATE			RECOVERY	LIMITS			
a,a,a-Trifluorotoluene		•	93	(70 - 130	·)		
			94	(70 - 130)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G0I010169 Work Order #...: DLC1Q102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I290000-482 DLC1Q103-LCSD

Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0273482

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMITS	METHOD
TPH (as Gasoline)	102	(70 - 130)		DHS CA LUFT
	102	(70 - 130)	0.18 (0-35)	DHS CA LUFT
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
4-Bromofluorobenzene		107	(70 - 130)	
		109	(70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G0I010169 Work Order #...: DLD3E102-LCS Matrix..... WATER

LCS Lot-Sample#: G01300000-151 DLD3E103-LCSD

Prep Date....: 09/08/00 Analysis Date..: 09/08/00

Prep Batch #...: 0274151

Dilution Factor: 1

	PERCENT	RECOVERY	F	RPD	
PARAMETER	RECOVERY	LIMITS	RPD I	LIMITS	METHOD
Benzene	96	(70 - 130)			DHS CA LUFT
	96	(70 - 130)	0.30	(0-35)	DHS CA LUFT
Ethylbenzene	97	(70 - 130)			DHS CA LUFT
-	96	(70 - 130)	0.80	(0-35)	DHS CA LUFT
Toluene	97	(70 - 130)			DHS CA LUFT
	96	(70 - 130)	1.1	(0-35)	DHS CA LUFT
m-Xylene & p-Xylene	96	(70 - 130)			DHS CA LUFT
- ·-	94	(70 - 130)	1.9	(0-35)	DHS CA LUFT
o-Xylene	96	(70 - 130)			DHS CA LUFT
-	95	(70 - 130)	0.37	(0-35)	DHS CA LUFT
Methyl tert-butyl ether	101	(70 - 130)	•		DHS CA LUFT
	103	(70 - 130)	1.7	(0-35)	DHS CA LUFT
		PERCENT	RECOVE	RY	•
SURROGATE		RECOVERY	LIMITS		
a,a,a-Trifluorotoluene		93	(70 -	130)	
-,-,		94	(70 - :	130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

WATER, 8015 MOD, Diesel/Motor Oil

Client Sample ID: W-3

GC Semivolatiles

Lot-Sample #: G0I010169-001	Work Order #: DJR15103	Matrix WATER
Date Sampled: 08/30/00	Date Received: 08/31/00	•

Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING PARAMETER UNITS RESULT LIMIT TPH (as Motor Oil) ND 250 ug/L TPH (as Diesel) ND50 ug/L Unknown Hydrocarbon ND ug/L 50

 SURROGATE
 RECOVERY
 LIMITS

 o-Terphenyl
 117
 (66 - 136)

Client Sample ID: W-2

GC Semivolatiles

ror-sample #:	G01010169-002	work Order #:	DUKIFIU3	Matrix:	WATER
Date Sampled:	08/30/00	Date Received:	08/31/00		
Prep Date:	09/06/00	Analysis Date:	09/27/00		
Prep Batch #:	0250193				
Dilution Factor:	10	Method:	SW846 8015 MOD		
		•	REPORTING		

•		-	•	*	-	 •••
т	_	n.a	-	4		

PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	2500	u g /L
TPH (as Diesel)	N D	500	ug/L
Unknown Hydrocarbon	7400	500	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	0.0 SRD	(66 - 13	(6)

NOTE(S):

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Elevated reporting limits. The reporting limits are elevated due to matrix interference.

The unknown from n-C8 to n-C40 was quantitated with all peaks from n-C8 to n-C36 and based on motor oil n-c19 to n-C36.

Client Sample ID: W-1

GC Semivolatiles

Lot-Sample #.	: G0I010169-003	Work Order	# DJR1H103	Matrix:	WATER
TOU DUMPLE H.	002020203-000	HATTA ATTACT	T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L

 TPH (as Motor Oil)
 ND
 250
 ug/L

 TPH (as Diesel)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 2200
 50
 ug/L

SURROGATERECOVERYLIMITSo-Terphenyl132(66 - 136)

NOTE(S):

The unknown from n-C8 to n-C32 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

Client Sample ID: MW-7

GC Semivolatiles

Lot-Sample #:	G0I010169-004	Work Order #: DJR1Q103	Matrix: WA	ITER

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

		REPORTING
ARAMETER	RESIII.T	LIMIT

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Motor Oil)
 ND
 250
 ug/L

 TPH (as Diesel)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 950
 50
 ug/L

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
o-Terphenyl	137 *	(66 - 136)

NOTE(S):

The unknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

^{*} Surrogate recovery is outside stated control limits.

The surrogate recovery in the sample is outside control limits due to confirmed matrix effect.

Client Sample ID: MW-8

GC Semivolatiles

Lot-Sample #...: G0I010169-005 Work Order #...: DJR1X103 Matrix.....: WATER

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1 Method....: SW846 8015 MOD

REPORTING

PARAMETER RESULT UNITS LIMIT TPH (as Motor Oil) ND 250 ug/L 50 TPH (as Diesel) ND ug/L Unknown Hydrocarbon 460 50 ug/L RECOVERY PERCENT

 SURROGATE
 RECOVERY
 LIMITS

 o-Terphenyl
 130
 (66 - 136)

NOTE(S):

The unknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

Client Sample ID: MW-9

GC Semivolatiles

Lot-Sample #:	G0I010169-006	Work Order #:	DJR23103	Matrix:	WATER
Date Sampled:	08/30/00	Date Received:	08/31/00		
Prep Date:	09/06/00	Analysis Date:	09/27/00		
Prep Batch #:	0250193				
Dilution Factor:	1	Method:	SW846 8015	MOD	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	
TPH (as Motor Oil	.)	ND	250	ug/L	
TPH (as Diesel)		ND	50	ug/L	
Unknown Hydrocarh	on	1100	50	ug/L	
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		- *

(66 - 136)

NOTE(S):

o-Terphenyl

The surrogate recovery in the sample is outside control limits due to confirmed matrix effect.

The unknown from n-C8 to n-C40 was quantitated with all peaks from n-C8 to n-C36 and based on motor oil n-C19 to n-C36.

152 *

Surrogate recovery is outside stated control limits.

Client Sample ID: MW-10

GC Semivolatiles

Lot-Sample #: G0I010169-007	Work Order #: DJR25103	Matrix: WATER
-----------------------------	------------------------	---------------

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

	REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Motor Oil)
 ND
 250
 ug/L

 TPH (as Diesel)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 840
 50
 ug/L

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
o-Terphenyl	137 *	(66 - 136)

NOTE(S):

The surrogate recovery in the sample is outside control limits due to confirmed matrix effect.

The unknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: W-4

GC Semivolatiles

Lot-Sample #:	G0I010169-008	Work Order #: DJR27103	Matrix: WATER
		and the second s	

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING

PARAMETER RESULT UNITS LIMIT TPH (as Motor Oil) ND 250 ug/L TPH (as Diesel) ND 50 ug/L Unknown Hydrocarbon 240 50 ug/L

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
o-Terphenyl	135	(66 - 136)

NOTE(S):

The unkknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

Client Sample ID: MW-5

GC Semivolatiles

Lot-Sample #: G0I010169-009 Work Order #	: DJR28103	Matrix:	WATER
--	------------	---------	-------

Date Sampled...: 08/30/00 Date Received..: 08/31/00 Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

		REPORTING

PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	220	50	ug/L
	***	DEGOTTEDIT	

 SURROGATE
 RECOVERY
 LIMITS

 o-Terphenyl
 129
 (66 - 136)

NOTE(S):

The unknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

Client Sample ID: MW-2

GC Semivolatiles

Lot-Sample #...: G0I010169-010 Work Order #...: DJR2C103 Matrix....: WATER

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

141 *

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	250	ug/L
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	620	50	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_

(66 - 136)

NOTE(S):

o-Terphenyl

The surrogate recovery in the sample is outside control limits due to confirmed matrix effect.

The unknown from n-C12 to n-C40 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: MW-1

GC Semivolatiles

Lot-Sample #: G0I010169-011	Work Order #: DJR2D103	Matrix: WATER
-----------------------------	------------------------	---------------

Prep Batch #...: 0250193

Dilution Factor: 1 Method.....: SW846 8015 MOD

RE	PORTING
----	---------

PARAMETER	RESULT	LIMIT	UNITS	
TPH (as Motor Oil)	ND	250	ug/L	
TPH (as Diesel)	ND	50	ug/L	
Unknown Hydrocarbon	180	50	ug/L	
•				
	PERCENT	RECOVERY		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
o-Terphenyl	121	(66 - 136)

NOTE(S):

The unknown from n-C8 to n-C30 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

Client Sample ID: MW-3

GC Semivolatiles

Lot-Sample #: G0I010169-012 Date Sampled: 08/31/00 Prep Date: 09/06/00	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix: WATER
Prep Batch #: 0250193			
Dilution Factor: 2	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Motor Oil)	ND	500	ug/L
TPH (as Diesel)	ND	100	ug/L
Unknown Hydrocarbon	1800	100	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	133	(66 - 136)	

NOTE(S):

Elevated reporting limits. The reporting limits are elevated due to matrix interference.

The unknown from n-C19 to n-C36 was quantitated with all peaks from n-C8 to n-C36 and based on motor oil n-C19 to n-C36.

SAPETY KLEEN CONSULTING

Client Sample ID: MW-4

GC Semivolatiles

Lot-Sample #...: G0I010169-013

Date Sampled...: 08/31/00

Prep Date....: 09/06/00

Prep Batch #...: 0250193

Dilution Factor: 1

Work Order #...: DJR2F103

Date Received.:: 08/31/00

Analysis Date..: 09/27/00

Method.....: SW846 8015 MOD

REPORTING

Matrix....: WATER

PARAMETER RESULT LIMIT UNITS TPH (as Motor Oil) 250 ug/L ND TPH (as Diesel) ND 50 ug/L Unknown Hydrocarbon ND 50 ug/L

PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
0-Terphenyl 104 (66 - 136)

SAFKTY KLEEN CONSULTING

Client Sample ID: MW-6

GC Semivolatiles

Lot-Sample #: G0I010169-014 Date Sampled: 08/31/00 Prep Date: 09/06/00 Prep Batch #: 0250193	Work Order #: Date Received: Analysis Date:	08/31/00	Matrix: WATER
Dilution Factor: 500	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
TPH (as Motor Oil)	ND	120000	ug/L
TPH (as Diesel)	ND .	25000	ug/L
Unknown Hydrocarbon	76000	25000	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	0.0 SRD	(66 - 136)	

NOTE(S):

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Elevated reporting limits. The reporting limits are elevated due to matrix interference.

The unknown from n-C8 to n-C18 was quantitated with all peaks from n-C8 to n-C36 and based on diesel n-C10 to n-C24.

QC DATA ASSOCIATION SUMMARY

G0I010169

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH	PREP	MC DIM#
DAME TO A	PHIKIK	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
002	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
003	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
004	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
005	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
006	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
007	Ma moo	011016 0015 NOD		0050100	
007	WATER WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WAIDE	DHS CA LUFT		0274151	
008	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
	•	•			
009	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
010	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
011	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

G0I010169

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
012	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
013	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
014	WATER	SW846 8015 MOD		0250193	
	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	
015	WATER	DHS CA LUFT		0273482	
	WATER	DHS CA LUFT		0274151	

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: G01010169

Work Order #...: DJX5X101

Matrix....: WATER

MB Lot-Sample #: G0I060000-193

Prep Date....: 09/06/00

Analysis Date..: 09/27/00 Prep Batch #...: 0250193

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
TPH (as Motor Oil)	ND	250	ug/L	SW846 8015 MOD
TPH (as Diesel)	ND	50	ug/L	SW846 8015 MOD
Unknown Hydrocarbon	ND	50	ug/L	SW846 8015 MOD
	PERCENT	RECOVER	·	
SURROGATE	RECOVERY	LIMITS		
o-Terphenyl	95	(66 - 13	36)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G0I010169 Work Order #...: DJX5X104-LCS Matrix..... WATER

LCS Lot-Sample#: G0I060000-193 DJX5X105-LCSD

Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1

	SPIKE	MEASURE	ED .	PERCENT				
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO)	
TPH (as Motor Oil)	900	823	ug/L	91		SW846	8015	MOD
	900	861	ug/L	96	4.5	SW846	8015	MOD
			PERCENT	RECOVERY				
SURROGATE	_		RECOVERY	LIMITS				
o-Terphenyl			104	(66 - 136	<u>)</u>			
			107	(66 - 136)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G0I010169 Work Order #...: DJX5X106-LCS Matrix....: WATER

LCS Lot-Sample#: G0I060000-193 DJX5X107-LCSD

Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1

	SPIKE	MEASURE	_	PERCENT	D. D. D.			
PARAMETER TPH (as Diesel)	AMOUNT 300	AMOUNT 197	UNITS ug/L	RECOVERY 66	RPD	METHOI SW846		MOD
	300	254 p	ug/L	85	25	SW846	8015	MOD
			PERCENT	RECOVERY				
SURROGATE			RECOVERY	LIMITS				
o-Terphenyl			109	(66 - 136)			
			104	(66 - 136)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G01010169 Work Order #...: DJX5X104-LCS Matrix....: WATER

LCS Lot-Sample#: G0I060000-193 DJX5X105-LCSD

Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMIT	S METHOD
TPH (as Motor Oil)	91	(50 - 150)		SW846 8015 MOD
	96	(50 - 150)	4.5 (0-30) SW846 8015 MOD
•		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
o-Terphenyl		104	(66 - 136)	

107

(66 - 136)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G0I010169 Work Order #...: DJX5X106-LCS Matrix..... WATER

LCS Lot-Sample#: G0I060000-193 DJX5X107-LCSD

Prep Date....: 09/06/00 Analysis Date..: 09/27/00

Prep Batch #...: 0250193

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMITS	METHOD
TPH (as Diesel)	66 85 p	(50 - 129) (50 - 129)	25 (0-23)	SW846 8015 MOD SW846 8015 MOD
		PERCENT	RECOVERY	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

DEPTH TO WATER

DATE: 8 30 - 30

OJEC:	T <u>AC Transit Emeryyill</u>	2.	EVENT	I Quarterly		TECHNICIAN BIT/GP	
NO.	WELL OR LOCATION	DATE	ТІМЕ	MEASUREMENT	CODE	COMMENTS	
1	MW-1	8-30-00	820	5.18	SWL		
2	MW-2		824	4.65			
3	MW-3		818	6.20			
4	MW-4		BIL	6.26			h
5	MW-5		821	4.53			
6	MW-6		901	4.40		GAS + Diesol Sheen	
7	MW-7		8 37	5.50			
8	MW-8		838	5.02			_
9	MW-9		347	4.64			_
10	MW-10		850	9.68			
11	W-1		832	6.71			
12	W-2		830	7.37			
13	W-3		827	8.16			
14	W∔	4	853	4.99	#		

CODES: SWL - Static Water Level

OIL - Oil Level

OWI - Oil/Water Interface

MTD - Measured Total Depth

-			· •			Weil ID:	
Casi Tota	ect Name: 4CT ing Diameter (ini il Well Depth (ft) th to Water (ft),	1: 2" 1: 29.42	Sam Sam	ect Number: ipie Date: 5 ipie ID: 6			
Dev	elopment Metho Bailer:		onStainid	ass Stani	m.c	ADC Diamin	
	Pump:	Dedic	Cated Submersible Dedicated Submersible Pirities Arc	a D	PVC	Aos Plastic Bladder Pum	Þ
[Time	pH	Conduct. (umho/cm)	Temp.	Water Level	Cum. Vol.	Pump Rate
f	0931	7.6	648	(Celsius)	(to 0.01 ft)	(gai)	(GPM)
ľ	0935	6.9	611	28.5	11.61.	<u>3</u>	,41
[0943	6.6	614	27.9	12.66	9	
					12-00	<u> </u>	
1							
					17.74	VOLUME :	1101
	ie Collection Me	thod:	were removed pr			ABS Plastic	
	Pump:	Dedica	ited Submersible edicated Submers	٥		Bladder Pump	
QA/Q	C Samples if any		ieid Blank, Rinse				
		TRIP B		, ,			
Param Samp	neter Collected: ie Appearance OVA Rea	•	5	C	ENT ILAN	TO PUR	6£
		led Solids (des	cribe):				•
Decor	stamination Perfo		-/w S/r	^			
Солп	ients / Calculatio	ns:		_			
				START	:11420		

STOP : 0947

SANTLE : 0950

13 m/ A 4.

Project Mame: 400 Cosing Diameter (2 Total Well Depth (1 Dapth to Water (ft)	ni: 2" Ni: 2 <i>8-</i> 61	Sar Sor	npia Data: 8 npia Data: 8 npia ID: W-Z	- 3005		
Development Meth Bailer Pump	r: Ter p: Dec	fion Stain	ie B.—	PVC	_ ABS Plastic _ Bladder Pum	p
Time	pH	Conduct.	Temp.	Water Level	Cum. Voi.	Pump Rat (GPM)
1023	63	895	30.4	10.12	3-5	.4/4
1035	6.3	918	27.8	11/16	7.0	
1041	63	900	27.5	12.45	10.5	4
					·	
		<u> </u>		Total Val	Duried = 12	yel.
Pump:	Dedic	n Stainles	Charmer .		ABS Plastic Bladder Pump	
MQC Samples if an	14011+	vedicated Submen	sible Pump			
ameter Coilected: mpie Appearance OVA Re	/021, (6) Bading (ppm) ded Solids (de	•		CENT PU	MP TO PU	1466
contamination Perf		5/m.				
nments / Calculatio	ons:		57A	T:101Z		
ODOR PA	FESENT.	!		0:1041		
- 90				(10)		
			SAME	NE: 1355		

relopment Mett Baile Pum	r: Tef p: Dec	ion Stain	do Bress		ABS Plastic	
Time	recr	Conduct.	ersible Pump Temp. (Celsius)	Water Level	Cum. Voi.	Pump (GPA
1114	6.4	962	28.4	7.21	(gai)	• 5
	6.3	972	27.9	7 37	7.0	1
1120	6.3	975	27.6	7-45	4.5	V
				<u> </u>		<u> </u>
ing Length in F re X = 1 Well ' TE: 3 to 5 We est 3 well on the Collection M	t - Depth to Wi Volume in gal/i all Casing Volumes casing volumes lethod:	= 16.43 - 5.18 ater in Ft) x X x 3 it, X = 0.165 for mes required prior were removed prior Stainles	2 in. weils, X to sample col	,165= 1,86 = 0.37 for 3 in. lection.	. weils, X = 0.	57
ing Length in Fre X = 1 Well ' TE: 3 to 5 Well ' Bat 3 well (Die Collection N X Bailer: Pump:	t - Depth to Wi Volume in gal/i ill Casing Volumes casing volumes lethod: Tefio	ater in Ft) x X x 3 it, X = 0.165 for mes required prior were removed pr Stainles ated Submersible Dedicated Submers	2 in. wells, X to sample colling to sampling ss Steel Pump sible Pump	,165= 1,86 = 0.37 for 3 in. lection.	. ×3 = 5.5 . wells, X = 0.	57
ing Length in Fire X = 1 Well ' TE: 3 to 5 Well ' ast 3 well of the Collection N X Bailer: Pump: C Samples if a selection of the Collected: The Appearance of the Appearance of the Collected:	t - Depth to Will Volume in gal/i Volume in gal/i volumes in gal/i casing Volumes lethod: Dedic Dedic Non-(ater in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed pr Stainles ated Submersible Dedicated Submers Field Blank, Rinse	2 in. weils, X to sample colling to sampling ss Steel Pump sible Pump Blank, etc.):	,165= 1,86 = 0.37 for 3 in. lection.	×3=5.5 weils, X = 0. ABS Plastic Bladder Pump	57
ing Length in Fire X = 1 Well Vote: 3 to 5 Well Vote: 3 to 5 Well Vote: 3 well vote: 3 well vote: 4 Bailer: 4 Pump: 4 C Samples if a seter Collected: 4 Appearance OVA R	t - Depth to Will Casing Volume in gal/ingled Casing Volumes Lethod: Dediction Teffor Non-to Your Couplicate, Indeed Solids (decided Solids (decided)	ater in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed pr Stainles sated Submersible Dedicated Submers Field Blank, Rinse	2 in. weils, X to sample colling to sampling is Steel Pump sible Pump Blank, etc.):	./65 - 1,86 = 0.37 for 3 in. lection.	Weils, X = 0. ABS Plastic Bladder Pump	57
ing Length in Fire X = 1 Well VITE: 3 to 5 Well	t - Depth to Will Casing Volume in gal/i casing Volumes lethod: Dedic Dedic Non-to-to-to-to-to-to-to-to-to-to-to-to-to-	ater in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed pr Stainles sated Submersible Dedicated Submers Field Blank, Rinse	2 in. weils, X to sample col rior to sampling ss Steel Pump sible Pump Blank, etc.):	765= 1,86 = 0.37 for 3 in. lection. PVC	Weils, X = 0. ABS Plastic Bladder Pump	57

eii Depth (i S Water (it	ft): 24,53), before purgil	33	M M : di eigm	792551 30-00 -7		
ment Meth Baile	Tefi	lonStair		PVC	ABS Plastic	-
Pump	Ded	licated Submersi	ble Pump		Bladder Pum	p
		-Dedicated Subn	nersible Pump		- Pump	Slow
Time	pH	Conduct. (umho/cm)	Temp. (Ceisius)	Water Lavei (to 0.01 ft)	Cum. Vol.	Pump (GP
205	6.2	1006	41.7	10.70	3	.10
227	6.0	1029	41.1	14.35	6	
238	6-D	1031	40.4	17.47	9	
						
					·	
1		= 24.53 -5.		Total Vil -	- 10gai	
<u>}</u> well c	asing volumes	were removed p		J.	ABS Plastic	39 fgr 4
well collection Mix Bailer: Pump:	ethod: Teflor Dedict	were removed p Stainle ated Submersible Sedicated Subme	ss Steel Pump rsible Pump	J.		39 fgr 4
well collection Mix Bailer: Pump:	ethod: Teflor Dedict	were removed p	ss Steel Pump rsible Pump	J.	_ABS Plastic	oo ior 4
well collection Mix Bailer: Pump: Pump: Collected: pearance OVA Re	ethod: Teflor Dedicate, F	were removed particles of the Submersible	ss Steel Pump rsible Pump Blank, etc.):	J.	_ABS Plastic _Bladder Pump	39 FQF 4
well contection Max Bailer: Pump: Pump: mples if an Collected: psarance OVA Re Suspen	sting volumes ethod: Teflor Dedicate, Non-D y (Duplicate, F	were removed particles of the Submersible	ss Steel Pump rsible Pump Blank, etc.):	PVC	_ABS Plastic _Bladder Pump	
Suspendent Well contaction Max Bailer: Pump: Pump: Pump: Collected: psarance OVA Results Suspendent	sting volumes ethod: Teflor Dedicate, Non-D y (Duplicate, F	were removed particles of the Submersible	ss Steel Pump rsible Pump Blank, etc.):	PVC	_ABS Plastic _Bladder Pump	
Well contection Max Bailer: Pump: Pump: Pump: Collected: Pearance OVA Resident Suspension Performance Collected: Suspension Performance Collected: Collected: Collect	sting volumes ethod: Teflor Dedicate, For Sold (Duplicate, For Sold) seding (ppm) ded Solids (des	were removed particles atted Submersible Dedicated Submersible Plank, Rinse Scribe):	ss Steel Pump rsible Pump Blank, etc.):	PVC	_ABS Plastic _Bladder Pump	
well collection Mailer: Bailer: Pump: pump: pump: Collected: collecte	sting volumes ethod: Teflor Dedicate, F SOZI, 8013 seding (ppm) ded Solids (des	were removed programmers of the submersible decirated de	ss Steel Pump rsible Pump Elank, etc.:	PVC	_ABS Plastic _Bladder Pump	
well collection Mailer: Bailer: Pump: pump: pump: Collected: collecte	sting volumes ethod: Teflor Dedicate, F SOZI, 8013 seding (ppm) ded Solids (des	were removed programmers of the submersible decirated de	ss Steel Pump rsible Pump Elank, etc.:	PVC	_ABS Plastic _Bladder Pump	
well collection Mix Bailer: Pump: Pump: Collected: pearance OVA Re	sting volumes ethod: Teflor Dedicate, F SOZI, 8013 seding (ppm) ded Solids (des	were removed programmers of the submersible decirated de	es Steel Pump rsible Pump Blank, etc.):	PVC	_ABS Plastic _Bladder Pump	

Signature:

Development Met	r: NA Tefi	on Stain	ligge Cand	57.1 5	ARC Plancia	-
 Pum		icated Submersit		PVC	ABS Plastic	
	Non	-Dedicated Subm	ole Pump nersible Pump		Bladder Pum	Þ
Time	pH	Conduct. (umho/cm)	Temp.	Water Level (to 0.01 ft)	Cum. Voi.	Pump A
1304	6-3	1179	31.2	8 56	2.5	.45
1309	6.2	1135	29.4	G. 79	5.0	
1314	6.2	1136	29.1	10.10	7.5	9
						
tere X = 1 Well NOTE: 3 to 5 Well least 3 well	Volume in gal/fi ell Casing Volumes casing volumes	Iter in (2) $\times \times \times 3$ L. $X = 0.165$ for the required prior were removed p	3 2 in. weils, X ir to sample col irior to samplin	./65 = 7 - 58 = 0.37 for 3 in. llection. g.		
here X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection in	Volume in gal/fi ell Casing Volumes casing volumes fethod:	ter in Ft) x X x 3 L X = 0.165 for nes required prior were removed p	2 in. weils, X r to sample col rior to sampline ss Steel	./65 = 7 - 58 = 0.37 for 3 in. llection. g.	×3= 7•7	
ater Volume to be asing Length in Finere X = 1 Well NOTE: 3 to 5 Well reast well mple Collection in Bailer.	Volume in gal/fi ell Casing Volumes casing volumes fethod: Teffor	ter in Ft) x X x 3 L X = 0.165 for nes required prior were removed prior Stainle	2 in. weils, X r to sample coi	./65 = 7 - 58 = 0.37 for 3 in. llection. g.	×3 = 7-7 weils, X = 0.1	
here X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection in Bailer	Volume in gal/fi ell Casing Volumes casing volumes fethod: Dedication	ter in Ft) x X x 3 t. X = 0.165 for nes required prior were removed p Stainle: ated Submersible dedicated Submers	3 2 in. weils, X r to sample column to sampling sa Steel	./65 = 7 - 58 = 0.37 for 3 in. llection. g.	×3 = 7-7 weils, X = 0.6 ABS Plastic	
here X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection & Bailer Pump /QC Samples if a	Volume in gal/fiell Casing Volumes casing volumes Method: Teffor Non-D	ter in Ft) x X x 3 L X = 0.165 for nes required prior were removed p Stainle sted Submersible edicated Submersible reid Blank, Rinse	2 in. weils, X r to sample collector to sample collector to sampling as Steel Pump rsible Pump Ellank, etc.):	./65 - 2 - 58 = 0.37 for 3 in. llection. 9. PVC	×3 = 7.7 weils, X = 0.6 ABS Plastic Bladder Pump	
here X = 1 Well NOTE: 3 to 5 W least well mple Collection in Bailer Pump /QC Samples if a ameter Collected noie Appearance OVA F	Volume in gal/fiell Casing Volumes casing volumes Method: Teffor Non-D	ter in Ft) x X x 3 L X = 0.165 for nes required prior were removed p Stainle ated Submersible dedicated Submersible field Blank, Rinse	2 in. weils, X r to sample collector to sample collector to sampling as Steel Pump rsible Pump Ellank, etc.):	./65 = 7 - 58 = 0.37 for 3 in. llection. g.	×3 = 7.7 weils, X = 0.6 ABS Plastic Bladder Pump	

SAMPLE : 1320

Rendy A Home

Signature:

evelopment Met Baild		ionStain	less Steel	PVC	ABS Plastic	
Pum	p: Dec	dicated Submersib n-Dedicated Subm	da B		Bladder Pum	ıp
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level	Cum. Voi.	Pump Rat (GPM)
1337	6.3	1116	32.6	9.64	2.5	-36
1343	6.4	1159	31.5	9.14	5.0	
1349	6.2	1162	31.1	10.15	7.5	V
					VULUMU -	3.0
tere X = 1 Well NOTE: 3 to 5 W Isast 3 well mple Collection I Bailer	t - Depth to W Volume in gai/ ell Casing Volu casing volume: Method: Teffo	ater in Ft) x X x 3 ft, X = 0.165 for mes required prior s were removed prior Stainles	2 in. wells, X r to sample co rior to samplin ss Steel	g.	. wells, X = 0. ABS Plastic	65 for 4 in. v
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection I Bailer Pump	t - Depth to W Volume in gal/ ell Casing Volu casing volumes Method: Teffo Non-	rater in Ft) x X x 3 ft, X = 0.165 for imes required prior s were removed prior Stainler cated Submersible Dedicated Submer	2 in. wells, X r to sample col rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. lection. 9.	. weils, X = 0.	65 for 4 in. \
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection I Bailer Pump	t - Depth to W Volume in gal/ ell Casing Volu casing volumes Method: Teffo Non-	rater in Ft) x X x 3 ft, X = 0.165 for imes required prior s were removed pr materials Cated Submersible	2 in. wells, X r to sample col rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. lection. 9.	. wells, X = 0. ABS Plastic	65 for 4 in. \
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection &	rt - Depth to W Volume in gal/ ell Casing Volu casing volumes Method:	rater in Ft) x X x 3 ft, X = 0.165 for the prior the pri	2 in. wells, X r to sample col rior to samplin sa Steel Pump rsible Pump	= 0.37 for 3 in. lection. 9.	. wells, X = 0. ABS Plastic Bladder Pump	65 for 4 in. v
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection if Bailer Pump //QC Samples if a mple Appearance OVA if Suspe	rt - Depth to W Volume in gal/ rell Casing Volume r	rater in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainler cated Submersible Dedicated Submer Field Blank, Rinse	2 in. wells, X r to sample collision to sample collision to sampling see Steel Pump reliank, etc.):	= 0.37 for 3 in. ilection. g. PVC PUMP TO	ABS Plastic Bladder Pump	65 for 4 in. \
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection &	rt - Depth to W Volume in gal/ rell Casing Volume r	rater in Ft) x X x 3 ft, X = 0.165 for the prior the pri	2 in. wells, X r to sample collision to sample collision to sampling see Steel Pump reliank, etc.):	= 0.37 for 3 in. ilection. g. PVC PUMP TO	ABS Plastic Bladder Pump	65 for 4 in. v
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection & Bailer Pump /QC Samples if a ameter Collected mple Appearance OVA (Suspe	Tell Casing Volume in gal/sell Casing Volume in gal/sell Casing Volume in gal/sell Casing Volume in Galing Volume in Galing Volume in Galing (ppm) inded Solids (dataformed:	rater in Ft) x X x 3 ft, X = 0.165 for imes required prior in Stainler Stainler Cated Submersible Dedicated Submer Field Blank, Rinse	2 in. wells, X r to sample collinate to sample collinate to samplinate Steel Pump rsible Pump Blank, etc.): (CENT.	= 0.37 for 3 in. ilection. pvc pvmp pvm	ABS Plastic Bladder Pump	65 for 4 in. v
nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection if Bailer Pump //QC Samples if a mple Appearance OVA if Suspe	Tell Casing Volume in gal/sell Casing Volume in gal/sell Casing Volume in gal/sell Casing Volume in Galing Volume in Galing Volume in Galing (ppm) inded Solids (dataformed:	ster in Ft) x X x 3 ft, X = 0.165 for mes required prior were removed prior Stainler Cated Submersible Dedicated Submer Field Blank, Rinse O15 BSCribel: CNSCO / WAS STAINLER STAINLE	2 in. wells, X r to sample colling to sample colling sample colling sampling sample from proble Pump sible Pum	= 0.37 for 3 in. ilection. pvc pvmp pvm	ABS Plastic Bladder Pump	65 for 4 in. v

Project Name: ACT EMERYVILLE_ Casing Diameter (in): Z"

Pump: Dedicated Submersible Pump	
Time pH Conduct. (umho/cm) Temp. (Colsius) Water Lavel (to 0.01 ft) Cum. Vol. (gai) 1419 6.5 410 29.6 10.55 2.6 1423 6.5 790 29.4 10.55 47.0	(GPM
1419 6.5 810 29.6 10.55 2.0 1423 6.5 790 29.4 10.58 4.0	
1473 6.5 790 29.4 10.58 4.0	
	1 1
TOTAL LOLUME = 7.5	5
	_
	c
✓ Bailer: Tefion Stainless Steel PVC ABS Plastic Pump: Dedicated Submersible Pump Bladder Pump Non-Dedicated Submersible Pump Bladder Pump	
Pump: Dedicated Submersible Sums	
✓ Bailer: Tefion Stainless Steel PVC ABS Plastic Pump: Dedicated Submersible Pump Bladder Pump Non-Dedicated Submersible Pump Bladder Pump	
Pump: Dedicated Submersible Pump Bladder Blank, Rinse Blank, etc.):	mp
Pump: Dedicated Submersible Pump Bladder Pump Non-Dedicated Submersible Pump OCC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.): Dedicated Submersible Pump OCC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.):	mp
Pump: Dedicated Submersible Pump Bladder Pump Non-Dedicated Submersible Pump OCC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.): Dedicated Submersible Pump Figure Pump OCC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.): Dedicated Submersible Pump OCC Samples if any (Duplicate, Field Blank, Rinse Blank, etc.):	mp
Mailer: Teflon Stainless Steel PVC ABS Plastic	1MP
Mailer:	1MP
Mailer:	1MP
Mailer: Teffon Stainless Steel PVC ABS Plastic	1MP
Mailer: Teflon Stainless Steel PVC ABS Plastic	1MP
Mailer:	1MP

evelopment Meth Baile	r: Tef	ionStain	iges Canal		A50 m	-
Pump		licated Submersib	2 .ess 71681	PVC		
	Nor	-Dedicated Subm	ersible Pump		Bladder Pum	ıp
Time	pH	Conduct.	Temp. (Celsius)	Water Lavel (to 0.01 ft)	Cum. Voi. (gai)	Pump Ri (GPM)
1454	6-4	1070	30.8	5.82	2	.40
1458 1 5 02	6.4	1090	31.6	5-86	4	
- 302	0.1	1097	30.9	7.66	6	V
						7
		- 16.93 - 4.99		TOTAL	volume 1	6
sest <u>3</u> well o	easing volumes lethod: Teflo	were removed pr	rior to sampling	J.		
sest 3 well outlier well outlier.	easing volumes lethod: Teffor	were removed pi	rior to sampling	PVC		
ple Collection MX_ Bailer: Pump:	lethod: Teflor Dedic	were removed pr	rior to sampling ss Steel Pump sible Pump	PVC	ABS Plastic	
east 3 well of pile Collection MX_ Bailer: Pump: QC Samples if an open collected: ple Appearance	lethod: Dedic Non-(were removed process of the second process o	rior to sampling ss Steel Pump sible Pump	PVC	ABS Plastic Bladder Pump	
east well of the collection M Bailer: Pump: Pump: OC Samples if an over the collected: ple Appearance OVA R	lethod: Dedice Non-(were removed process of the state of Submersible Dedicated Submersible Stank, Rinse Secribe):	rior to sampling ss Steel Pump sible Pump Ellank, etc.):	PVC	ABS Plastic Bladder Pump	
ple Collection MX_ Bailer: Pump: CC Samples if an open ance over the collected: ple Appearance over Suspen	lethod: Dedice Non-(were removed proceed process of the second p	rior to sampling ss Steel Pump sible Pump Ellank, etc.):	PVC	ABS Plastic Bladder Pump	
meter Collected: ple Appearance OVA R Suspen	eading (ppm) ided Solids (deformed:	were removed process of the state of Submersible Dedicated Submersible Stank, Rinse Secribe):	rior to sampling ss Steel Pump sible Pump Ellank, etc.):	PVC	ABS Plastic Bladder Pump	
meter Collected: ple Appearance OVA R Suspen	eading (ppm) ided Solids (deformed:	were removed process of the state of Submersible Dedicated Submersible Stank, Rinse Secribe):	Fump sible Pump Blank, etc.:	CENT FUMP	ABS Plastic Bladder Pump	
meter Collected: ple Appearance OVA R Suspen	eading (ppm) ided Solids (deformed:	were removed process of the state of Submersible Dedicated Submersible Stank, Rinse Secribe):	Fump sible Pump Blank, etc.:	CENT FUMP	ABS Plastic Bladder Pump	
east well of the collection M Bailer: Pump: QC Samples if an are collected: ple Appearance OVA R	eading (ppm) ided Solids (deformed:	were removed process of the state of Submersible Dedicated Submersible Stank, Rinse Secribe):	Fump sible Pump Blank, etc.:	FVC	ABS Plastic Bladder Pump	

Signature: Brady 1 Hamon -

evelopment Meth Baile	r:Teff	onStain	iess Steel _	PVC	ABS Plastic	•
Pump	: Dedi	icated Submersib -Dedicated Subm	de B	_	Bladder Pun	
Time	pH	Conduct. (umho/cm)	Temp. (Celskus)	Water Level (to 0.01 ft)	Cum. Voi.	Pump Rat (GPM)
1524	6.7	720	78,5	6.15	2.5	.425
15-27	6.7.	717	27.3	6.34	5.0	
1530	<u> </u>	720	27.0	6.42	7.5	1
-						
		19.49 - 4.5		76TAL AM		
iesst 3 to 5 Well \ iesst 3 to 5 Well comple Collection M Bailer:	/olume in gal/fi il Casing Volumes asing volumes ethod: Tefion Dedic:	t. X = 0.185 for nes required prior were removed prior Stainles	2 in. wells, X r to sample col rior to samplin	= 0.37 for 3 in. lection. G.	. weils, X = 0.	65 for 4 in. 1
least Well \ IOTE: 3 to 5 We least well c inple Collection M Bailer: Pump:	/olume in gal/fi Il Casing Volumes asing volumes ethod: Tefion Dedic: Non-D	ter in Ft; x X x 3 t, X = 0.185 for nes required prior were removed prior Stainler Stainler atted Submersible	2 in. wells, X r to sample col rior to samplin ss Steel Pump ssible Pump	= 0.37 for 3 in. lection. G.	. weils, X = 0.	65 for 4 in. \
ieast well comple Collection M Bailer: Pump:	/olume in gal/fi Il Casing Volumes asing volumes ethod: Tefion Dedicate, Fi IV (Duplicate, Fi	ter in Ft; x X x 3 t, X = 0.185 for the required prior were removed prior Stainler ated Submersible adicated Submer Field Elank, Rinse	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Sible Pump	= 0.37 for 3 in. ilection. PVC	weils, X = 0. ABS Plastic Bladder Pump	
ieast well of the local control of the local	/olume in gal/fi Il Casing Volumes asing volumes ethod: Dedic: Non-D ny (Duplicate, F	ter in Ft; x X x 3 t, X = 0.185 for the required prior were removed prior Stainler ated Submersible adicated Submer Field Elank, Rinse	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Sible Pump	= 0.37 for 3 in. lection. G.	weils, X = 0. ABS Plastic Bladder Pump	
iess X = 1 Well \ IOTE: 3 to 5 We iesst well o mple Collection M Bailer: Pump: /QC Samples if an ameter Collected: mple Appearance OVA Re	/olume in gal/fi Il Casing Volumes asing volumes ethod: Tefion Dedicate, Fi IV (Duplicate, Fi	t. X = 0.185 for nes required prior were removed prior Stainler atted Submersible edicated Submer Field Elank, Rinse	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Sible Pump	= 0.37 for 3 in. ilection. PVC	weils, X = 0. ABS Plastic Bladder Pump	
ieast well of the local	/olume in gal/fi Il Casing Volumes ethod: Dedic: Non-O ny (Duplicate, F 8021, 8 eading (ppm) ded Solids (des	t. X = 0.185 for nes required prior were removed prior stad Submersible adicated Submer field Elank, Rinse of S	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Ellank, etc.):	= 0.37 for 3 in. ilection. PVC	weils, X = 0. ABS Plastic Bladder Pump	
iess = 1 Well \ IOTE: 3 to 5 We iesst well o ipple Collection M Bailer: Pump: /QC Samples if an imple Appearance OVA Re Suspen contamination Peri	/olume in gal/fi Il Casing Volumes asing volumes ethod: Dedic: Non-D IV (Duplicate, F 8021, 8 adding (ppm) ded Solids (des formed:	t. X = 0.185 for nes required prior were removed prior stad Submersible adicated Submer field Elank, Rinse of S	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Ellank, etc.):	= 0.37 for 3 in. ilection. PVC	weils, X = 0. ABS Plastic Bladder Pump	
ieast well of the local	/olume in gal/fi Il Casing Volumes asing volumes ethod: Dedic: Non-D IV (Duplicate, F 8021, 8 adding (ppm) ded Solids (des formed:	t. X = 0.185 for nes required prior were removed prior stad Submersible adicated Submer field Elank, Rinse of S	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump Ellank, etc.):	= 0.37 for 3 in. ilection. PVC	weils, X = 0. ABS Plastic Bladder Pump	

Project Name: ACT EMERYVILLE
Casing Diameter (in): 2"

Project Name: FC Casing Diameter (in Total Well Depth (ft), Depth to Water (ft),	T EMERYU ii: 2" ii: 14.56 , before purging	Sar Sar 9: 4.65	jest Number: npie Date:	792551 -31- <i>0</i> 0 -2		* · · · -
Development Metho	Tefici	n Staini ated Submersib dedicated Subm	l- 8	PVC	ABS Plastic Bladder Pur	
Time	pH	Conduct. (umho/cm)	Temp.	Water Level	Cum. Voi.	Pump Rate (GPM)
0835 0840 0843	7-10 6.95 6.41	7/1 671 647	27.4 31.1 31.1	5.27 5.52 5.56	1.5 3.0 4.5	.33
				TOTAL	PUMPEN	5.0
Sample Collection Me X Bailer: Pump: QA/QC Samples if any	Teffon Dedicate Non-Ded	Stainles ed Submersible dicated Submersible	Pump sible Pump	_PVC	ABS Plastic Bladder Pump	1
		TRIP BLA				+ ***
Parameter Collected: Sample Appearance OVA Rea Suspend			C(z	NT PUMP	עם עד	26 <u>6</u>
Decontamination Perfo		5/m				
Comments / Calculation		5	TART:	0845		
Signature: Birey	1. Hanson			Danie 12 -21	G	

	in: 2" ft): /4.50), before purgir	Sar Sa r 19: <i>5.</i> 18	npie Date: 8 npie ID: MW	792551 -31-00 -1		•
evelopment Meth	nod: NA	•				•
		onStaini		PVC	ABS Plastic	
Pum	p: Dedi	icated Submersib -Dedicated Subm	ie Pump ersible Pump	_	Bladder Pum	IP
Time	pH	Conduct. (umho/cm)	Temp. (Ceisius)	Water Level	Cum. Voi. (gai)	Pump Rat
0917	6.76	694	31.5	6.33	1.5	-33
0971	6.74	693	7/.6	656	3,0	
0925	6.73	687	31.6	6.58	4.5	V
				TOTAL	PUMPED -	50
mpla Collection M	lethod:		rior to sampling		ABS Plastic	
mpla Collection M	lethod: Teflon	Stainles	s Steel			
mple Collection M <u>X</u> Bailer:	lethod:Teflon	Stainles	ss Steel		ABS Plastic Bladder Pump	
mple Collection M <u>X</u> Bailer:	lethod: Teflon Dedica Non-D	Stainles ated Submersible edicated Submer	s Steel Pump sible Pump			
mple Collection M _X Bailer: Pump:	lethod: Teflon Dedica Non-D	Stainles ated Submersible edicated Submer	s Steel Pump sible Pump			
mpla Collection M _X Bailer: Pump: /QC Samples if a	lethod: Teflon Dedica Non-O	Stainles ated Submersible edicated Submers feid Blank, Rinse	Pump Sible Pump Blank, etc.):	_PVC	Bladder Pump	2.4.6
mple Collection M Bailer: Pump: /QC Samples if asmeter Collected: npie Appearance	POZI, 8019	Stainles ated Submersible edicated Submers feid Blank, Rinse	Pump Sible Pump Blank, etc.):		Bladder Pump	26E
mpla Collection M Bailer: Pump: /QC Samples if asserter Collected: npie Appearance QVA R	POZI, 8019	Stainles ated Submersible dedicated Submersible feid Blank, Rinse	Pump Sible Pump Blank, etc.):	_PVC	Bladder Pump	26€_ •••
mple Collection M Bailer: Pump: /QC Samples if asserter Collected: npie Appearance OVA R Suspen	POZI, 8019 eading (ppm) ided Solids (des	Stainles ated Submersible edicated Submersible feld Blank, Rinse	Pump Sible Pump Blank, stc.):	PVC	Bladder Pump	2.6€_ •••
mple Collection M Bailer: Pump: /QC Samples if asserter Collected: npie Appearance OVA R Suspen	POZI, 8019 eading (ppm) ided Solids (des	Stainles ated Submersible dedicated Submersible feid Blank, Rinse	Pump Sible Pump Blank, stc.):	PVC	Bladder Pump	26E_
mpla Collection M Bailer: Pump: /QC Samples if asserter Collected: npie Appearance QVA R	POZI, 8019 seeding (ppm) ided Solids (des	Stainles ated Submersible edicated Submersible feld Blank, Rinse	Pump Sible Pump Blank, stc.):	PVC	Bladder Pump	26E_ ***
mpla Collection M Bailer: Pump: /QC Samples if as ameter Collected: nple Appearance OVA R Suspen contamination Peri	POZI, 8019 seeding (ppm) ided Solids (des	Stainles ated Submersible dedicated Submers	Pump sible Pump Blank, etc.):	PVC	Bladder Pump	26E_ ***
mpla Collection M Bailer: Pump: /QC Samples if as ameter Collected: nple Appearance OVA R Suspen contamination Peri	POZI, 8019 seeding (ppm) ided Solids (des	Stainles ated Submersible adicated Submers	Pump sible Pump Blank, etc.1:	PVC	Bladder Pump	26E
mpla Collection M Bailer: Pump: /QC Samples if as ameter Collected: nple Appearance OVA R Suspen contamination Peri	POZI, 8019 seeding (ppm) ided Solids (des	Stainles ated Submersible ledicated Submersible ledicated Submersible Reid Blank, Rinse Scribe): ANSED / WAS	Pump sible Pump Blank, etc.1:	-PVC CENT PUM UNDERS/MEI	Bladder Pump	266
mpla Collection M Bailer: Pump: /QC Samples if as ameter Collected: nple Appearance OVA R Suspen contamination Peri	Jethod: Teflon Dedic: Non-O ny (Duplicate, F POZI, 80 4 eading (ppm) ided Solids (dea formed:	Stainles ated Submersible ledicated Submersible ledicated Submersible Reid Blank, Rinse Scribe): ANSED / WAS	Pump sible Pump Blank, etc.1:	-PVC CENT PUM UNDERS/MEI	Bladder Pump	26E_ ***

---- c 2k-m

Pum	p: Dedi	on Stain icated Submersit -Dedicated Subm	ala Guma	_	Bladder Pum	
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level (to 0.01 ft)	Cum. Voi. (gai)	Pump Rete (GPM)
1008	6.35	775	35.0	7.52	1.5	·24
10.13	5-50	7 34	34.3	7.75	3.0	
1018	7.97	730	34-4	7.90	4.5	↓
				JOTAL	PUMPED	4.5
Pump:	Dedic:	Stainle:	. B		ABS Plastic Bladder Pump	
Pump:	Teflor	ated Submersible Adicated Submer	Pump Sible Pump			
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R	Tefion Dedicate, F	ated Submersible ledicated Submer feld Elank, Rinse	Pump rsible Pump Blank, etc.):		Bladder Pump	6E_
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R	Dedicate, Formula (Duplicate, Formula (Duplica	ated Submersible ledicated Submer feld Elank, Rinse	Pump raible Pump Blank, etc.):		Bladder Pump	6E.
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dediction Non-Day (Duplicate, Formed:	ated Submersible ledicated Submer Reid Blank, Rinse	Pump raible Pump Blank, etc.):	ENT. PUMP	Bladder Pump	6E_
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dediction Non-Day (Duplicate, Formed:	ated Submersible ledicated Submer Reid Blank, Rinse	Pump raible Pump Blank, etc.):		Bladder Pump	66_

Project Number: 792551 Sample Date: 8-31-00 Sample ID: MW-3

EMERYVILLE

Project Name: ACT & Casing Diameter (In): 2"

Total Well Depth (ft): 14.68

Deput to Water (ft), before purging: 4-20

Project Name: #C Cooling Diameter (i Total Well Depth (Depth to Water (ft	ini: 2" iti: 14.95	Pro Sai	npie Oate: 3 mpie Oate: 3 mpie ID: MW	-ZI-OO		·
Development Meti Baile	nod: <u>NA</u> Tef	flon Stain	iess Steel		A8S Plastic	-
Pum		dicated Submersib n-Dedicated Subm	.f_ ma		Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp. (Calsius)	Water Level	Cum. Voi.	Pump Rati (GPM)
1042	6.29	723	28.9	8.33	1.5	-48
1044	6.39	720	24.3	8.84	3,0	(
1047	6.35	720	Z9.6	8.75	4.5	V
					·	
ater Volume to be		Tork	AL VOLUM	PURGEO -	4.5	
		ated Submersible Dedicated Submer Field Blank, Rinse	sible Pump		Bladder Pump	
						•
Emeter Collected: npie Appearance	SD21, SD	15	CEN	IT PUMP ?	TO PUACE	
Suspen	ded Solids (det	scribe):				•
contamination Perf	crned:	Flw				
nments / Calculatio	ons:		5/m			
		•	5/m	· ·		
		5	TALT: 10			
		57	TALT: 10	18		
nature: Back 7	A 1/	57 5 Av	TALT: 10	18		

Project Name: ACT EMERY, VILLE Cooling Diameter (in): 2"

	er: Teff	on Stain	da 6	PVC	ABS Plastic Bladder Pun	- 10
Time	pH	Conduct.	Temp.	Water Level	Cum. Vol.	Pump Ra
1120	6.71	1043	25.8	(to 0.01 ft)	(gai)	1.07
1127	6.72	1063	25.7	5.22	6.0	1
11 24	6-77	1058	25.6	4-63	7.5	→
Ising Length in I lere X = 1 Well IOTE: 3 to 5 W least 3 well imple Collection (Pt - Depth to Wa Volume in gal/fi fell Casing Volumes casing volumes Method: :: Teflon	ter in Ft) x X x 3 t. X = 0.165 for nes required prior were removed prior Stainler	2 in. wells, X r to sample col rior to sampling	5 - 2.5 X = 0.37 for 3 in lection.	. weils, X = 0. ABS Plastic	
sing Length in I nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection (Bailer Pump	Pt - Depth to Wa Volume in gai/ft fell Casing Volum casing volumes Method: Teflon Non-D	ter in Ft) x X x 3 t, X = 0.165 for nes required prior were removed pr Stainler atted Submersible ledicated Submer	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump	5 - 2.5 X = 0.37 for 3 in lection.	3 = 7.54 . weils, X = 0.	
sing Length in I nere X = 1 Well NOTE: 3 to 5 W least 3 well mple Collection (Bailer Pump	Pt - Depth to Wa Volume in gai/ft fell Casing Volum casing volumes Method: Teflon Non-D	ter in Ft) x X x 3 t, X = 0.165 for nes required prior were removed pr Stainler	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump	5 - 2.5 X = 0.37 for 3 in lection.	3 = 7.54 . weils, X = 0 ABS Plastic	
least 3 well here X = 1 Well NOTE: 3 to 5 Well heast 3 well mple Collection (Bailer Pump /QC Samples if a meter Collected mple Appearance OVA	Pt - Depth to Walvers Volume in gal/fil fell Casing Volumes Method: Teflor Dedicate Non-D Any (Duplicate, F	ter in Ft) x X x 3 t, X = 0.165 for nes required prior were removed pr Stainler ated Submersible ledicated Submer Teid Blank, Rinse	2 in. wells, X r to sample col rior to sampling ss Steel Pump sible Pump	5 - 2.5 X = 0.37 for 3 in lection.	3 - 7.54 . weils, X = 0. ABS Plastic Bladder Pump	
least 3 well here X = 1 Well NOTE: 3 to 5 Well heast 3 well mple Collection (Bailer Pump /QC Samples if a meter Collected mple Appearance OVA	Pt - Depth to Walvernes in gal/filed Casing Volumes Method: Teflor Dedict Non-D Any (Duplicate, F	ter in Ft) x X x 3 t, X = 0.165 for nes required prior were removed pr Stainler ated Submersible ledicated Submer Teid Blank, Rinse	2 in. wells, X r to sample colling to sampling ss Steel Pump sible Pump Elank, etc.):	5 - 2.5 X. = 0.37 for 3 in lection. PVC	3 - 7.54 . weils, X = 0. ABS Plastic Bladder Pump	
sing Length in it here X = 1 Well NOTE: 3 to 5 Well NOTE: 3 to 5 Well niple Collection in the Bailer Pump /QC Samples if a supple Appearance OVA in Suspension of the Suspension in the Suspensi	Pt - Depth to Walvers Volume in gal/fil Casing Volumes Method: Teflor Dedict Non-Dany (Duplicate, Filesding (ppm) anded Solids (despression)	ter in Ft) x X x 3 t, X = 0.165 for nes required prior were removed pr Stainler ated Submersible ledicated Submer Teid Elank, Rinse	2 in. wells, X r to sample colling to sampling ss Steel Pump sible Pump Elank, etc.):	5 = 2.5 X = 0.37 for 3 in lection. PVC	3 - 7.54 . weils, X = 0. ABS Plastic Bladder Pump	