Geological Technics Inc.

Site Characterization Report

Soil and Groundwater Investigation

Arrow Rentals Service 187 North L Street Livermore, CA

> Project No. 1262.2 October 26, 2006

Prepared for: Tony & Rita Sullins Arrow Rentals Service 187 North L Street Livermore, CA 94550

<u>Prepared by:</u> Geological Technics Inc. 1101 7th Street Modesto, California 95354 (209) 522-4119

Geological Technics Inc.

1101 7th Street Modesto, California 95354 (209) 522-4119/Fax (209) 522-4227

October 26, 2006

Project No.:1262.2Project Name:Sullins

Tony & Rita Sullins Arrow Rentals Service 187 North L Street Livermore, CA 94550

RE: Report –Site Characterization, Soil and Groundwater Investigation Location- Arrow Rentals Service, 187 North L St., Livermore, CA

Dear Mr. & Ms. Sullins:

Geological Technics Inc. is pleased to present the attached Report of Site Characterization summarizing the fieldwork completed on October 2 - 10, 2006. This work included:

- Installation of five soil borings to depth ranging 66 82 feet below grade.
- Installation of five multi-chambered monitoring wells.
- Installation of one soil vapor extraction well.
- Collection of 28 discreet soil samples for laboratory analysis.

If you have any questions please do not hesitate to call.

Respectfully Submitted,

Raynold I. Kablanow II, Ph.D. Vice President

cc: Jerry Wickham - ACEH
 USTCUF
 Chris Davidson, City of Livermore
 Matt Katen, Zone #7 Water Agency
 Heidi Timken – Timken Johnson Hwang
 Jennifer Sedlechek – Exxon Mobile Corp.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0 SITE HISTORY

2.0 SOIL & GROUNDWATER INVESTIGATION

- 2.1 Soil Borings
- 2.2 Soil Sampling Procedure
- 2.3 Continuous Multi-Chambered (CMTTM) Well Installation

3.0 SOIL SAMPLE ANALYSES

4.0 **DISCUSSION**

- 4.1 Geology & Hydrology of the Site
- 4.2 Chemical Distribution
- 4.3 Contaminant Mass Estimate Calculations
- 5.0 CONCLUSIONS & RECOMMENDATIONS
- 6.0 LIMITATIONS
- 7.0 SIGNATURES & CERTIFICATIONS

LIST OF FIGURES

Area Map	1
Site Map	2
Site Detail Map	3
Site Detail Map w/ cross section locations	4
Well Screen Interval Diagram	5
Cross Section A – A'	6A
Cross Section A – A' with Soil Contaminant Concentrations	6B
Cross Section B – B'	7 A
Cross Section B – B' with Soil Contaminant Concentrations	7 B

LIST OF APPENDICES

Summary Data Tables	Α
Lab Data Reports	В
Boring Logs	С

Geological Technics Inc. _

1101 7th Street Modesto, California 95354 (209) 522-4119/Fax (209) 522-4227

Site Characterization Report

Soil and Groundwater Investigation

Arrow Rentals Service 187 North L Street Livermore, CA

> Project No. 1262.2 October 26, 2006

EXECUTIVE SUMMARY

Geological Technics Inc. has prepared this report summarizing the fieldwork completed on October 2 - 6, 2006. The scope of work included the installation of five new multichambered monitoring wells to further define the vertical and lateral extent of the soil and groundwater plumes.

Soil samples obtained from the new borings indicate that elevated levels of soil contamination are limited to the area of the former UST piping trenches. Soil contamination is evident laterally away from this location but it appears to be the result of groundwater transport. The extent of the groundwater contamination will be determined when the new multi-chambered monitoring wells are sampled. This work was completed on October 5 - 17,2006 and the laboratory results are pending.

The results of this field investigation effort and a dual phase extraction pilot test completed on October 16 - 20, 2006 will be used to complete a Site Conceptual Model for the site. The Site Conceptual Model will contain recommendations for further site investigation (if necessary) and cleanup alternatives.

1.0 SITE HISTORY

Gasoline range petroleum hydrocarbons associated with underground storage tank (UST) systems have been documented in soil and groundwater at the subject site (see Figures 1 and 2 for vicinity and site maps). The site also experienced an environmental impact when a

gasoline delivery was introduced into a subsurface vapor/monitoring well rather than the UST fill pipe ("Petcock Release").

The work performed to date is summarized below*:

- 1972 Three 1,500 gallon gasoline USTs removed.
- 1984 Two gasoline USTs removed (4,000 & 6,000 gallon); a single 1,000 gallon gasoline UST installed.
- June 1985 Petcock Petroleum dispenses ~600 gallons into a vapor monitoring well adjacent to the 1,000 gasoline UST (Petcock Release).
- September 1988 Three monitoring wells installed (W-1, W-2 and W-3).
- March 1989 Five soil borings advanced (B-1 through B-5).
- July 1990 Five monitoring wells installed (W-A through W-E), three soil borings advanced (B-7, B-8 and B-1A), and a soil gas survey was completed.
- March 1991 A single soil boring advanced (B-F).
- January 1992 UST pipeline soil excavation and sampling, two soil borings advanced (B-G and B-H).
- March 1994 Dual Phase Extraction pilot test performed.
- March 1996- Four monitoring wells installed (W-1s, W-Bs, W-3s and W-Es).
- 1988 to present intermittent monitoring/sampling of select wells.

* Data from Woodward Clyde Consultants and ACEH documentation.

The data compiled during the course of this investigation indicate that the soil and groundwater were impacted with petroleum hydrocarbons from at least two separate sources.

In their letter correspondence's August 16 and December 27, 2005, the Alameda County Environmental Health (ACEH) directed that a work plan for additional site characterization be submitted for approval. Geological Technics Inc. (GTI) prepared our May 26, 2006 "Additional Site Characterization – Addendum" work plan addendum to supplement the Aquifer Sciences, Inc. (ASI) December 8, 2005 "Work Plan for Additional Soil and Investigation and Other Items". GTI's work plan addendum was intended to address ACEH staff concerns that were not covered in the original ASI work plan. The ACEH approved GTI's work plan in their June 9, 2006 letter.

The following sections summarize the field activities that were completed according to the GTI's May 26, 2006 work plan.

2.0 SOIL & GROUNDWATER INVESTIGATION

To further investigate the extent of soil and groundwater impacted with petroleum hydrocarbons, GTI supervised the installation of five continuous multi-chambered tubing (CMTTM) wells on October 2 - 10, 2006 (MW-4 through MW-8, see Figure 3 for borehole

Geological Technics Inc. Sullins (Arrow Rentals) Report – Site Characterization Project No. 1262.2 October 26, 2006

locations). One CMTTM well was constructed with five discretely screened intervals (MW-4) with the remaining wells completed with four screened intervals. The MW-4 CMTTM well borehole was installed in the vicinity of the highest documented contamination in soil and groundwater near existing wells W-1 and W-1s. The MW-5 CMTTM well borehole was placed approximately 5 feet down gradient (northwest) of the former 1000 gallon UST and Petcock gasoline release. The MW-6 CMTTM well borehole was placed approximately 5 feet west of the former dispenser island at the front of the parcel. The MW-7 CMTTM well borehole was placed approximately 5 feet west of the former UST excavation in the south-central portion of the site. The MW-8 CMTTM well borehole was placed approximately 55 feet down gradient (northwest) of borehole MW-4 in the vicinity of well W-B and W-Bs. (The propane tank and storage shed precluded placing boring MW-8 closer to W-B.)

2.1 Soil Borings

Prior to commencing work, a soil boring/monitoring well permit was secured from the Zone #7 Water Agency and the ACEH was notified at least 48 hours in advance. The subsurface was cleared of underground utilities by notifying Underground Service Alert.

Borings MW-4 through MW-8 were drilled using an 8.00-inch outside diameter continuous flight hollow stem auger owned and operated by Cascade Drilling Inc. of Sacramento, CA (C57# 142682). The first boring was advanced to approximately 82 feet below grade surface (bgs) while subsequent boreholes were terminated at 66.5 - 68 feet bgs. Static depth to groundwater was approximately 34 feet bgs as measured in existing well W-1s during the drilling period.

In preparation for a proposed pilot test a 25 foot extraction well, EW-1, was also installed on October 3, 2006. This well was free drilled with no soil sampling. The details of this well will be included in a forthcoming pilot test report.

2.2 Soil Sampling Procedure

In accordance with GTI's work plan and ACEH directives, the first borehole (MW-4) was intended to be continuously cored for geological evaluation from the depth of first water (34 ft) to total depth. Due to a communication error in the field with the driller the hole was sampled at 5 foot intervals to 50 feet bgs, but thereafter continuously to final depth. In each of the remaining boreholes MW-5 through MW-8 the soils were sampled continuously from 35 feet to total depth.

Field observations were made (including, but not inclusive of or limited to) sediment type, grain size and clay content; moisture content; obvious odor; visible evidence of contamination, i.e., color change due to reduction of iron or discoloration from hydrocarbons and other pollutants, and any readings above background levels on an organic vapor meter (OVM). The OVM is a field portable photo ionization detector that uses a 10.0 eV lamp to detect compounds with ionization potential below 10.0 eV (hydrocarbon range). Boring logs

providing sediment description using the USCS and field observations were maintained by GTI staff geologists, working under the supervision of Mr. Ray Kablanow, a California Professional Geologist and Certified Hydrogeologist. The boring logs are attached in Appendix C.

Soil samples were collected in 6.0-inch brass liners using a 2.0-inch modified California split spoon sampler. Select soil samples were sealed with Teflon sheets, capped, labeled and placed in a cooler at 4° Celsius for transport to the laboratory following Chain of Custody protocol.

2.3 Continuous Multi-chambered Tubing (CMTTM) Well Installation

The objective of installing CMT[™] wells was to monitor multiple lithologic units to define the lateral & vertical extent of the groundwater plume.

All five multi-chambered wells were constructed with manufacturer (Solinst Canada) supplied materials. The exception to this was that the bottom of the tubing was sealed by forcing hydrated bentonite into each chamber, and then installing a PVC cap with a pin through the cap and tubing to hold in place. The shallow screened interval of each CMTTM well was designated by the borehole name (i.e.- MW-4, MW-5, etc.) The deeper screened intervals of the wells are designated with 100, 200, 300, etc. series labels to differentiate the depth intervals monitored. The table below illustrates the new CMTTM well construction details and Figure 5 shows the screened intervals of all the site's wells (see boring logs in Appendix C for complete construction details):

Well No.	TD	Screen	Sand Pack
	(ft)	Interval (ft)	(ft)
MW-4	81.5	30	20 - 30
MW-104		50	48 - 52
MW-204		66	64 - 68
MW-304		75	73 - 76
MW-404		81.5	79.5 - 81.5
MW-5	68	27	24 - 29
MW-105		37	34 - 39
MW-205		48	45 - 50
MW-305		66	63 - 68
MW-6	68	30	27 - 31
MW-106		37	35 - 39
MW-206		50	47 - 52
MW-306		66	63 - 68

Geological Technics Inc. Sullins (Arrow Rentals) Report – Site Characterization Project No. 1262.2 October 26, 2006

Well No.	TD (ft)	Screen Interval (ft)	Sand Pack (ft)
MW-7	69.5	30	20 - 30
MW-107		40	37 - 42
MW-207		50	47 - 52
MW-307		66	63 - 68
MW-8	66.5	30	20 - 30
MW-108		40	37 - 42
MW-208		52	49 - 54
MW-308		66	63 - 68

The screened intervals were chosen based on the lithology encountered in the initial boring MW-4 and then each subsequent borehole. The CMTTM tubing was laid out on the ground and the screened intervals constructed using hand tools. The actual perforations in the wall of the CMTTM tube chambers are three (3) 5/16 inch diameter holes drilled approximately two inches apart into the wall and covered by stainless steel mesh. Two sets of drilled holes/mesh placed adjacent to one another therefore comprise a one-foot interval of well screen.

Once the CMT[™] tubing for the wells MW-4 through MW-8 had been installed, alternating sections of #2/12 Monterey washed sand and weighted bentonite pellets were used to fill the annulus of the borehole. The auger flights were removed one by one during the process to ensure correct annulus material placement and to keep the tubing centered in the borehole.

A granular bentonite transition seal was installed above the top sand filter pack and hydrated with clean water prior to installing the surface seal in each borehole. A surface seal was installed by pumping a neat cement grout (augmented with < 4% bentonite) into the borehole through the augers. The wells were encased in flush mounted traffic rated well boxes.

The new and existing site wells were sampled in accordance with GeoTracker requirements by Keir & Wright Civil Engineers of Livermore, California on October 16, 2006.

Note: Off-site groundwater monitoring wells W-2 & W-3 were not included in the survey. On October 3, 2006, GTI staff contacted Mr. Bob Habit of Signature Properties for permission to access these two wells located on the adjacent developed parcel to the west of the Arrow Rentals site. Signature Properties did not grant permission to access the wells citing liability issues with employees performing the proposed work and their concern that the ownership of the wells was in question. Signature Properties has not granted access permission to date. GTI has procured traffic boxes from Cascade Drilling to install over the wells but this work has also been set aside. At this time the wells are not secured and are vulnerable to vandalism.

3.0 SOIL SAMPLE ANALYSES

Five to six soil samples obtained from each boring were submitted to California Laboratory Services in Rancho Cordova, California (Department of Health Services Certification # 1233) for the following analyses:

- Benzene, toluene, ethylbenzene and xylene (BTEX) by EPA method 8260B or 8021
- Gasoline range petroleum hydrocarbons (TPH-G) by EPA method 5030/8015(m)
- TPH-DIESEL (8015M)
- 5 Oxygenates: MTBE, DIPE, TAME, ETBE, TBA (8260B)

A summary of the soil laboratory data is attached in Table 1, Appendix A, and the lab data reports are attached in Appendix B.

Soil samples were also obtained from soil cuttings (in drums) for disposal characterization. These lab data reports are also attached in Appendix B.

The laboratory data was submitted electronically to GeoTracker as required under AB2886 on October 25, 2006 (confirmation #'s: 4983137786, 2573171913 and 9309863328).

4.0 DISCUSSION

The following data were gleaned during the installation of the five CMTTM wells.

4.1 Geology and Hydrogeology of the Site

Depth to groundwater was determined to be approximately 34 feet bgs in well W-1s on Monday, October 2, 2006 prior to drilling. The driller tied a piece of cotton cord around the top of each auger flight to prevent clay/silt and groundwater intrusion into the augers. It was not possible to detect exactly when groundwater was encountered in the boreholes for this reason and due to the slow recharge nature of the clayey soils at the site.

Note: These boreholes were logged by different field geologists.

In the location of borehole MW-4 the subsurface was characterized as follows:

□ The subsurface contained predominantly clayey/sandy gravels and clays. Gravel containing units are found extending from the surface to 40 feet, 50 - 51.5 feet and 61 - 78 feet bgs. Clay units are present at 40 - 41.5 feet, 52 - 61 feet and 78 - 81.5 feet bgs. The proportion of gravel to clay varied considerably in the borehole with some 6 inch sampling tubes comprised of approximately 80% or more ¼ - ½ inch diameter

pebbles. An opposite extreme was a solid tube of clay with one 2 inch diameter pebble in the middle.

- □ Silt and sand units are infrequent, with a silt unit noted at 45 feet bgs, and a thin (6 inch) sand at 66.5 feet bgs.
- □ The gravels range from brown or grey to a grey–green in color. Colors other than these included: orange iron-oxide stained sediments at 25, 35, 70 and 80 feet bgs.
- □ The clays range from uniform brown or grey to a mottled grey–brown color. Colors other than these included a dark brown "chocolate" clay at 78 feet bgs. Some brown clays contained grey nodules with a distinct hydrocarbon odor.
- □ The clayey silt unit at 45 feet was uniform brown, moist and contained some 5 mm pebbles.
- □ The sand unit at 66.5 feet was grey in color (salt and pepper), wet and fine to coarse grained.
- □ Field evidence of contamination (odor, staining or OVM readings) was noted in this boring. Petroleum hydrocarbon odor was noticeable at depths from 15 78 feet bgs. From 15 40 feet the odor was distinctly gasoline while a weathered petroleum odor was noted below 40 feet. The OVM readings ranged from 0 to 469 PPM (parts per million) with the highest readings (>450 PPM) at 20, 45, 52-54 and 61 feet bgs.

In the location of borehole MW-5 the subsurface was characterized as follows:

- □ The subsurface contained predominantly clayey/sandy gravels and clays. Gravel units are found extending from the surface to 37 feet, 62.5 65 and 66 68 feet bgs. Clay units are present at 37 61 feet.
- □ Silt and sand units are infrequent, with silt units noted at 51.5, 55.5 and 62 feet bgs, and with sand units at 65 66 feet bgs, a thin (3 inch) sand at 66.5 feet bgs.
- □ The gravels range from brown to grey in color.
- □ The clays range from brown or grey to reddish brown. Colors other than these included orange iron-oxide stained sediments at 15, 25 and 36 feet bgs.
- □ The silt units at 51.5 and 55.5 feet are grey & moist while the silt at 62 feet is brown.
- □ The sand units at 66 & 66.5 feet are grey in color (salt and pepper), wet and medium to coarse grained.
- Field evidence of contamination (odor, staining or OVM readings) was noted in this boring. Petroleum hydrocarbon odor was noticeable at depths from 30 56 feet bgs. The OVM readings ranged from 0 to 489 PPM (parts per million) with the highest readings (>450 PPM) at 40 44 feet bgs.

In the location of borehole MW-6 the subsurface was characterized as follows:

- □ The subsurface contained predominantly clayey/sandy gravels and clays. Gravel units are found extending from the surface to 37 feet, and 61 65 feet bgs. Clay units are present at 37 42.5, 45.5 53 and 54.5 61 feet bgs.
- □ Silt and sand units are infrequent, with silt units noted at 53 –54.5 feet bgs, and with sand units at 42.5 45.5 feet, and 67 feet bgs.
- □ The gravels range from brown to grey in color.

- □ The clays range from brown or grey, mottled grey-brown or reddish-brown. Colors other than these included orange iron-oxide stained sediments at 20, 36 and 41 feet bgs.
- \Box The silt unit at 53 –54.5 feet bgs is mottled grey-brown and moist.
- □ The sand unit at 42.5 45.5 feet is fine grained with some pebbles, grey in color and wet. The sand unit at 67 feet is coarse to very coarse grained with some pebbles, brown in color and wet.
- □ Field evidence of contamination (odor, staining or OVM readings) was noted in this boring. Petroleum hydrocarbon odor was noticeable at depths from 45.5 51 feet bgs. The OVM readings ranged from 0 to 177 PPM (parts per million) with the highest reading at 45 feet bgs.

In the location of borehole MW-7 the subsurface was characterized as follows:

- □ The subsurface contained predominantly clayey/sandy gravels and clays. Gravel units are found extending from the surface to 36.5 feet, 53 56.5, 57.5 62 feet and 62 70 feet bgs. Clay units are present at 36.5 39.5 feet, 42.5 48.5 and 57 feet bgs.
- □ Silt and sand units are infrequent, with a silt unit noted at 39.5 42.5 feet bgs, and sands at 48.5 50 feet, 56.5, 62 feet and a thin (4 inch) sand at 64 feet bgs.
- □ The gravels range from brown to grey in color. Colors other than these included orange iron-oxide stained sediments at 35 and 55 feet bgs.
- The clays range from uniform brown or grey to a mottled grey-brown color
- \Box The silt unit at 39.5 42.5 feet bgs was uniform brown and wet.
- The sand unit at 48.5 50 feet was mottled grey-brown in color, wet and very fine to fine grained. The sand unit at 56.5 feet is very fine grained, mottled grey-brown in color and wet. The sand unit at 62 feet is very coarse grained, grey and wet. The thin 4" sand layer at 64 feet is also very coarse grained, grey and wet.
- □ Field evidence of contamination (odor, staining or OVM readings) was noted in this boring. Petroleum hydrocarbon odor was noticeable at depths from 30 57 feet bgs. At 37 42 feet the odor was distinctly gasoline while a weathered petroleum odor was noted at other depths. The OVM readings ranged from 0 to 521 PPM (parts per million) with the highest readings (<450 PPM) at 38 and 44 47 feet bgs.</p>

In the location of borehole MW-8 the subsurface was characterized as follows:

- □ The subsurface contained predominantly clayey/sandy gravels and clays. Gravel units are found extending from the surface to 25 feet, 30, 35, 55 57.5 and 65 66.5 feet bgs. Clay units are present at 25 feet, 36.5 51.5 and 58.5 65 feet bgs.
- □ Silt and sand units are infrequent, with a silt unit noted at 58 feet, and sands at 26 feet, and 51.5 54.5 feet bgs.
- □ The gravels range from brown to grey in color. Colors other than these included orange iron-oxide stained sediments at 20, a dark green gravel at ~55 feet bgs, and a gravel with "chocolate" dark brown clay nodules at 65 feet bgs.
- **□** The clays range from uniform brown or grey to a mottled grey–brown color.
- □ The silt unit at 58 feet bgs is a mottled grey–brown color.

- □ The sand unit at 26 feet is approximately 4" thin, moist and grey. The sand unit at 51.5 54.5 feet bgs ranges from very fine to very coarse grained, grey to grey-green in color and wet.
- Field evidence of contamination (odor, staining or OVM readings) was noted in this boring. Petroleum hydrocarbon odor was noticeable at depths from 35 58 feet bgs. The OVM readings ranged from 0 to 446 PPM (parts per million) with the highest reading at 43 feet bgs.

Figure 4 indicates the locations of geological cross sections presented in Figures 6A and 7A. The continuous sampling of the boreholes revealed that the subsurface lithology falls into two predominant categories- gravelly soils and clayey soils. The site exhibits little correlation between boreholes and this situation is exacerbated by the fact that different geologists logged the boreholes and a five foot sampling interval was utilized in the past. For this reason the cross sections have gravelly units combined (sandy gravels, clayey gravels, silty gravels) and clay/silt units combined (clays, silts, gravelly clays). Sands units are portrayed as encountered. This grouping serves to identify potential preferential pathways for contaminant migration through units of greater hydraulic conductivity.

Figure 6A illustrates the geology trending from northwest to southeast side of the site. The diagram indicates that gravelly units are present to a depth of 35 - 40 feet. These are underlain by twenty feet of clayey units with some gravel interbedding. GTI's interpretation of the geology does not identify any sands units as laterally continuous. The gravelly units above 40 feet do appear to be laterally continuous, however the amount of sand, silt and clay within the gravels varies considerably both vertically and horizontally.

Figure 7A illustrates the geology trending from west-central portion to the northeast of the site. The lithology is very similar to Figure 6A with slightly more sandy units present in the soil profile in MW-7 borehole.

4.2 Chemical Distribution

The results of the soil sample analytical data are included in Table 1, Appendix A. The laboratory data sheets are included in Appendix B.

Chemical Distribution in the Soil

- □ Soil samples were obtained from boring MW-4 at 15, 30, 45, 60.5, 73 and 80 feet bgs.
 - The 15 ft sample contained: 64 mg/kg TPH-G, 84 mg/kg TPH-D and 0.65 mg/kg ethylbenzene.
 - The 30 ft sample contained: 18 mg/kg TPH-G, 3.2 mg/kg TPH-D, 0.15 mg/kg benzene, 0.19 mg/kg toluene, 0.11 mg/kg ethylbenzene and 1.1 mg/kg xylenes.
 - The 45 ft sample contained: 820 mg/kg TPH-G, 360 mg/kg TPH-D, 4.2 mg/kg ethylbenzene and 7.7 mg/kg xylenes.

- The 60.5 ft sample contained: 1100 mg/kg TPH-G, 680 mg/kg TPH-D, 8.7 mg/kg benzene, 1.1 mg/kg toluene, 18 mg/kg ethylbenzene and 62 mg/kg xylenes.
- The 73 ft sample contained: 5.4 mg/kg TPH-G, 0.027 mg/kg benzene, 0.065 mg/kg toluene, 0.043 mg/kg ethylbenzene and 0.19 mg/kg xylenes.
- The 80 ft sample contained: 12 mg/kg TPH-G, 0.013 mg/kg benzene, 0.036 mg/kg toluene, 0.016 mg/kg ethylbenzene and 0.084 mg/kg xylenes.
- □ Soil samples were obtained from boring MW-5 at 26, 36, 40.5, 48, 55.5 and 66.5 feet bgs.
 - The 26 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 36 ft sample contained: 11 mg/kg TPH-G, 1.1 mg/kg TPH-D, 0.021 mg/kg toluene, 0.031 mg/kg ethylbenzene and 0.035 mg/kg xylenes.
 - The 40.5 ft sample contained: 110 mg/kg TPH-G, 360 mg/kg TPH-D, 1.1 mg/kg benzene, 1.4 mg/kg toluene, 1.2 mg/kg ethylbenzene and 5.7 mg/kg xylenes.
 - The 48 ft sample contained: 7.6 mg/kg TPH-G, 0.19 mg/kg benzene, 0.025 mg/kg toluene, 0.067 mg/kg ethylbenzene and 0.16 mg/kg xylenes.
 - The 55.5 ft sample contained: 75 mg/kg TPH-G, 0.18 mg/kg benzene, 0.13 mg/kg toluene, 0.67 mg/kg ethylbenzene and 0.53 mg/kg xylenes.
 - The 66.5 ft sample did not contain contaminant concentrations above the laboratory limits.
- □ Soil samples were obtained from boring MW-6 at 16, 26, 40.5, 45, 49.5 and 67.5 feet bgs.
 - The 16 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 26 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 40.5 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 45.5 ft sample contained: 7.2 mg/kg TPH-G, 1.1 mg/kg TPH-D, 0.022 mg/kg toluene and 0.014 mg/kg ethylbenzene.
 - The 49.5 ft sample contained: 1.2 mg/kg TPH-G, 0.0091 mg/kg toluene and 0.0052 mg/kg ethylbenzene.
 - The 67.5 ft sample did not contain contaminant concentrations above the laboratory limits.
- □ Soil samples were obtained from boring MW-7 at 15, 40, 45.5, 49 and 68 feet bgs.
 - The 15 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 40 ft sample contained: 220 mg/kg TPH-G, 23 mg/kg TPH-D, 3.9 mg/kg benzene, 19 mg/kg toluene, 8.8 mg/kg ethylbenzene and 43 mg/kg xylenes.
 - The 45.5 ft sample contained: 1200 mg/kg TPH-G, 66 mg/kg TPH-D, 10 mg/kg benzene, 56 mg/kg toluene, 32 mg/kg ethylbenzene and 160 mg/kg xylenes.

- The 49 ft sample contained: 0.31 mg/kg benzene, 0.051 mg/kg toluene, 0.034 mg/kg ethylbenzene and 0.1 mg/kg xylenes.
- The 68 ft sample did not contain contaminant concentrations above the laboratory limits.
- □ Soil samples were obtained from boring MW-8 at 25, 35, 45, 55 and 65 feet bgs.
 - The 25 ft sample did not contain contaminant concentrations above the laboratory limits.
 - The 35 ft sample contained: 2200 mg/kg TPH-G, 800 mg/kg TPH-D, 3.8 mg/kg benzene, 2.2 mg/kg toluene, 29 mg/kg ethylbenzene and 130 mg/kg xylenes.
 - The 45 ft sample contained: 1.7 mg/kg TPH-G, 0.058 mg/kg benzene and 0.011 mg/kg ethylbenzene.
 - The 55 ft sample contained: 1.8 mg/kg TPH-G and 0.022 mg/kg benzene.
 - The 65 ft sample contained: 0.041 mg/kg benzene and 0.03 mg/kg ethylbenzene.
- □ Note: the laboratory qualified all detections of diesel as falling within the diesel petroleum hydrocarbon range but as not matching the diesel chromatogram "fingerprint". This suggests these detections are weathered gasoline.
- □ Figure 6B & 7B illustrate the above cross sections with the historical distribution of gasoline concentrations (TPH-G) in soil included.

Chemical Distribution in the Ground Water

The new wells were developed by GTI staff during the period October 5 – 17, 2006. The wells were sampled as part of the 2^{nd} 2006 semi-annual groundwater sampling event and in accordance with ACEH directives. The ACEH directed that water samples be obtained prior to conducting a dual-phase extraction pilot test on October 16 – 20, 2006.

The distribution of contamination in groundwater will be presented in a forthcoming Site Conceptual Model (SCM) under development.

4.3 Contaminant Mass Estimate Calculations

Contaminant mass balance calculations will be presented in the SCM referenced above.

5.0 CONCLUSIONS & RECOMMENDATIONS

Based on our interpretation of the data collected over the course of this subsurface investigation, GTI have reached several conclusions. These conclusions are based on the premise that the data we considered, although incomplete, are representative of actual site conditions. We acknowledge that there may be undiscovered conditions, which would upon their consideration, change our interpretation and thus our conclusions.

Conclusions

- The depth to groundwater was approximately 27 feet bgs in July and 34 feet bgs in October 2006. This fact affirms previous data that shows groundwater elevation has ranged 20 40 feet bgs during the site investigation and wide fluctuations are possible in a three month timeframe. This has caused a large smear zone of impacted soils in the subsurface.
- There was limited evidence of contamination in the vadose zone with the exception of borehole MW-4 that had gasoline odors and 64 mg/kg TPH-G in the 15' bgs sample. This is an area adjacent to former UST piping trenches and other boreholes in this location have also contained shallow soil contamination.
- Boring MW-4 was advanced to a depth of 81.5 feet bgs. The soils below 70 feet showed declining gas odors/OVM readings and it appeared that the bottom of the contamination plume was attenuating at this level. The boring was advanced into clayey soils at 78 81.5 ft and terminated in accordance with GTI work plan if deep clays were encountered. The laboratory data for the 73 and 80 foot samples contained 5.4 and 12 mg/kg TPH-G, respectively. GTI believes that these soil samples define the bottom of the contaminant plume and may in fact be a drilling artifact. A semi-viscous clayey slurry was forming in the augers as the sampling device was repeatedly inserted and removed at depths below the water table and this may have affected the sample tubes. Future sampling of the wells screened at this interval will demonstrate if the TPH-G at this depth is the bottom of the impacted soils or a drilling artifact.
- The basal soil samples from the other four borings at depths of 65 68 ft did not contain TPH-G above the laboratory reporting limits suggesting that clayey soils at 40 60 ft bgs act to retard the vertical migration of contaminants.
- The highest levels of soil contamination remain in the area of boreholes W-1 and B-G. But the 15 ft sample from MW-4 shows attenuation over time as it contained only 64 mg/kg TPH-G. The 15 ft sample from boring W-1 contained 1,200 mg/kg TPH-G and the 15 ft sample from B-G contained 1,800 mg/kg. These two locations are only a few feet from MW-4 and were installed in 1988 and 1992, respectively.
- The residual soil TPH-G contamination in the vadose zone and sorbed hydrocarbons below the water table continues to provide a source for dissolved hydrocarbon groundwater plume. The presence of 220 2,200 mg/kg TPH-G in down gradient boring MW-8 with clean soils above and below the depths of 40 45 ft suggests that groundwater transport was responsible for the contamination in this location. The clean soils at 50 and 68 ft in this boring affirm that the clays below 40 ft serve to inhibit the spread of the gasoline.

Recommendations

Our recommendations are based on our knowledge of site conditions, and on the state and limitations of subsurface investigative technology. GTI makes the following recommendations:

- Incorporate the new MCT wells in the semi-annual monitoring schedule. The new wells were sampled during the week of October 16 – 20, 2006 and this data will be used to complete a SCM and the 2nd 2006 Semi-Annual Groundwater Monitoring Report.
- 2. Perform contaminant mass estimate calculations for soil and include in the forthcoming SCM.
- 3. Perform contaminant mass estimate calculations for groundwater after the data is received and include in the forthcoming SCM.
- Perform a dual phase extraction test to evaluate the feasibility of utilizing both soil vapor and groundwater extraction technologies to treat the gasoline plume at the site. This work was proposed, approved and completed during the week of October 16 – 20, 2006. A report on this work is forthcoming.
- 5. If further site investigation is necessary, utilize a conductor casing during drilling to prevent the introduction of contamination to the deeper aquifer. As stated above, the clays at 40 60 ft below grade appear to prevent the vertical migration of the gasoline. Drilling through these intervals could cause shallow contaminated water to spread below the clays.

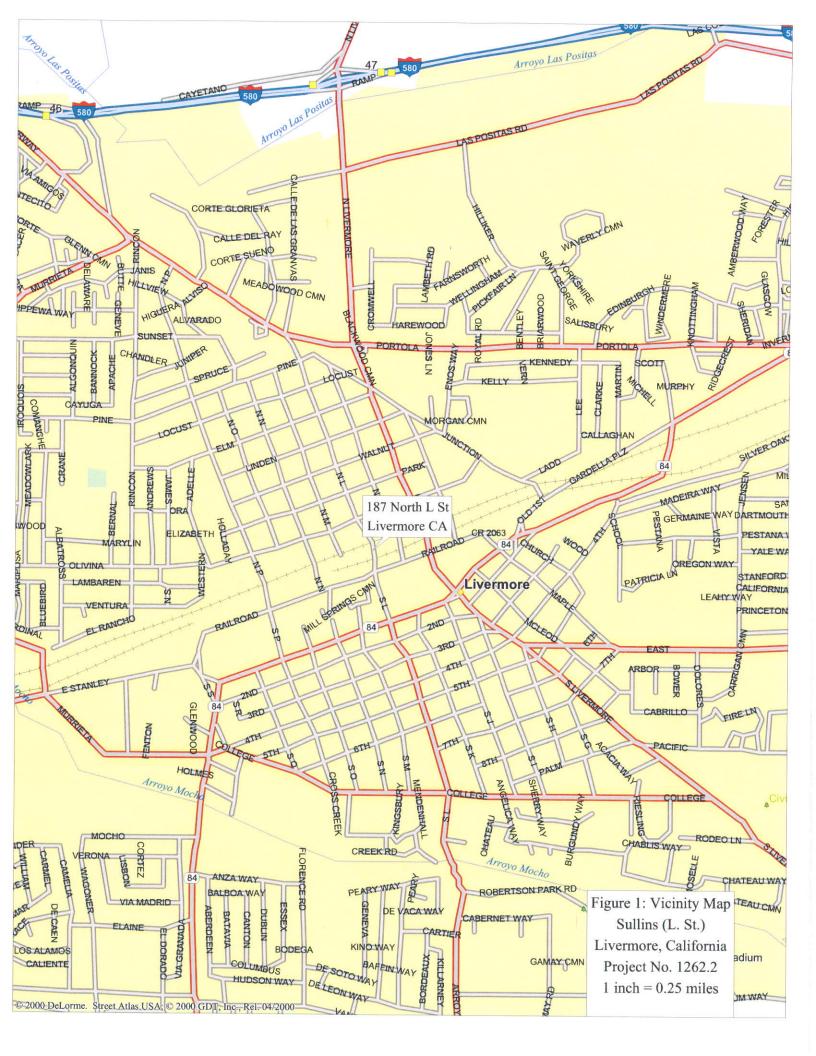
6.0 LIMITATIONS

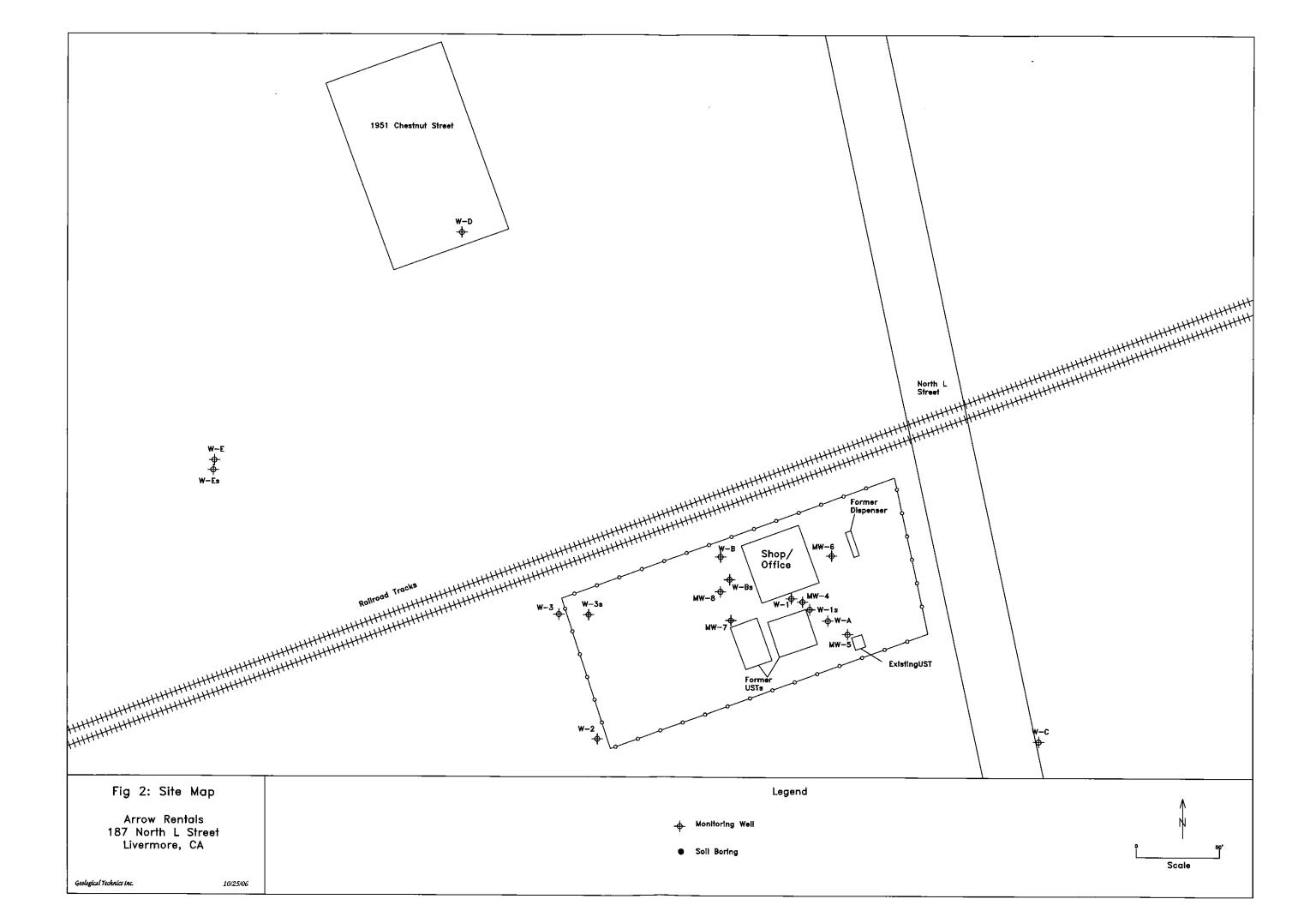
This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

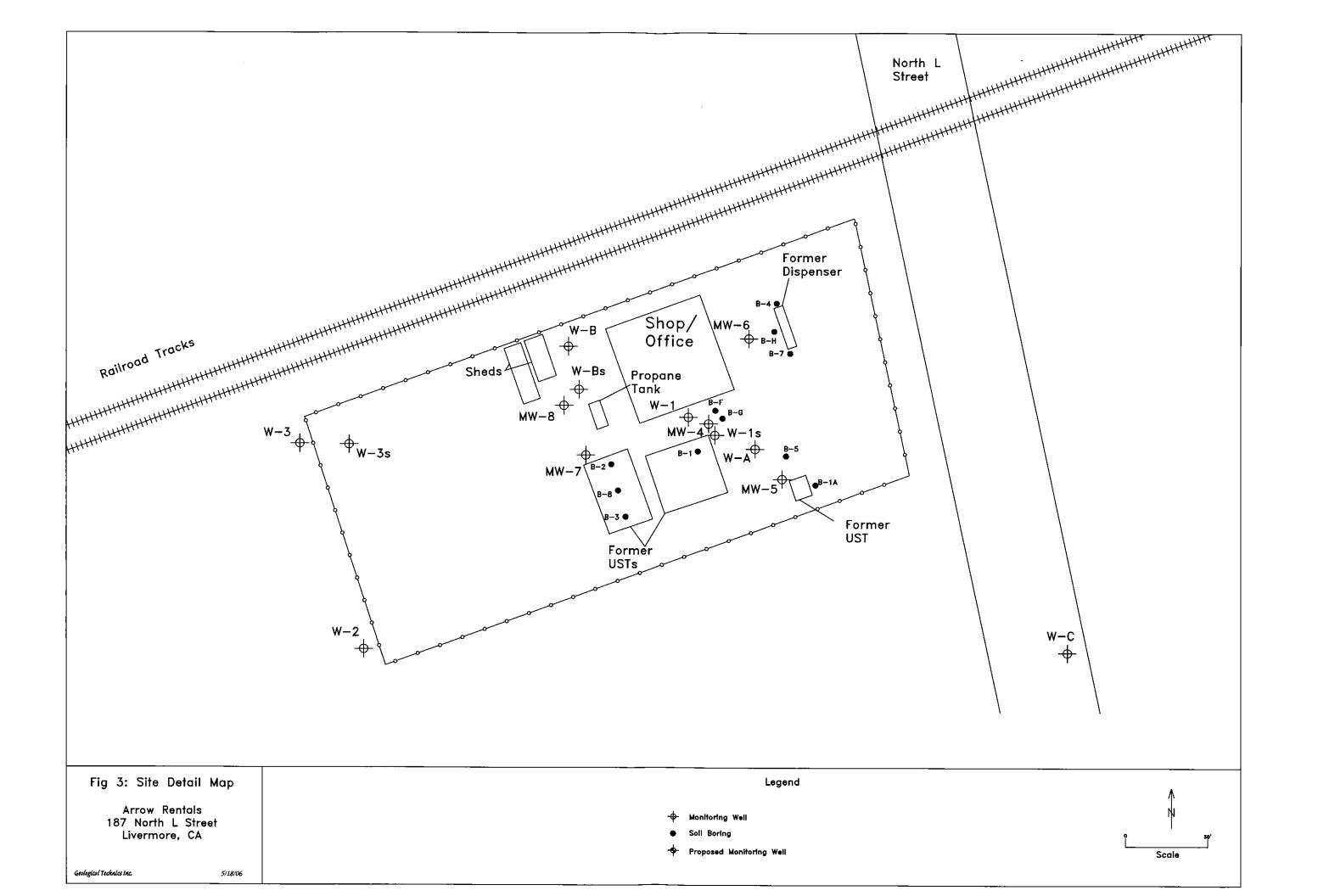
The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

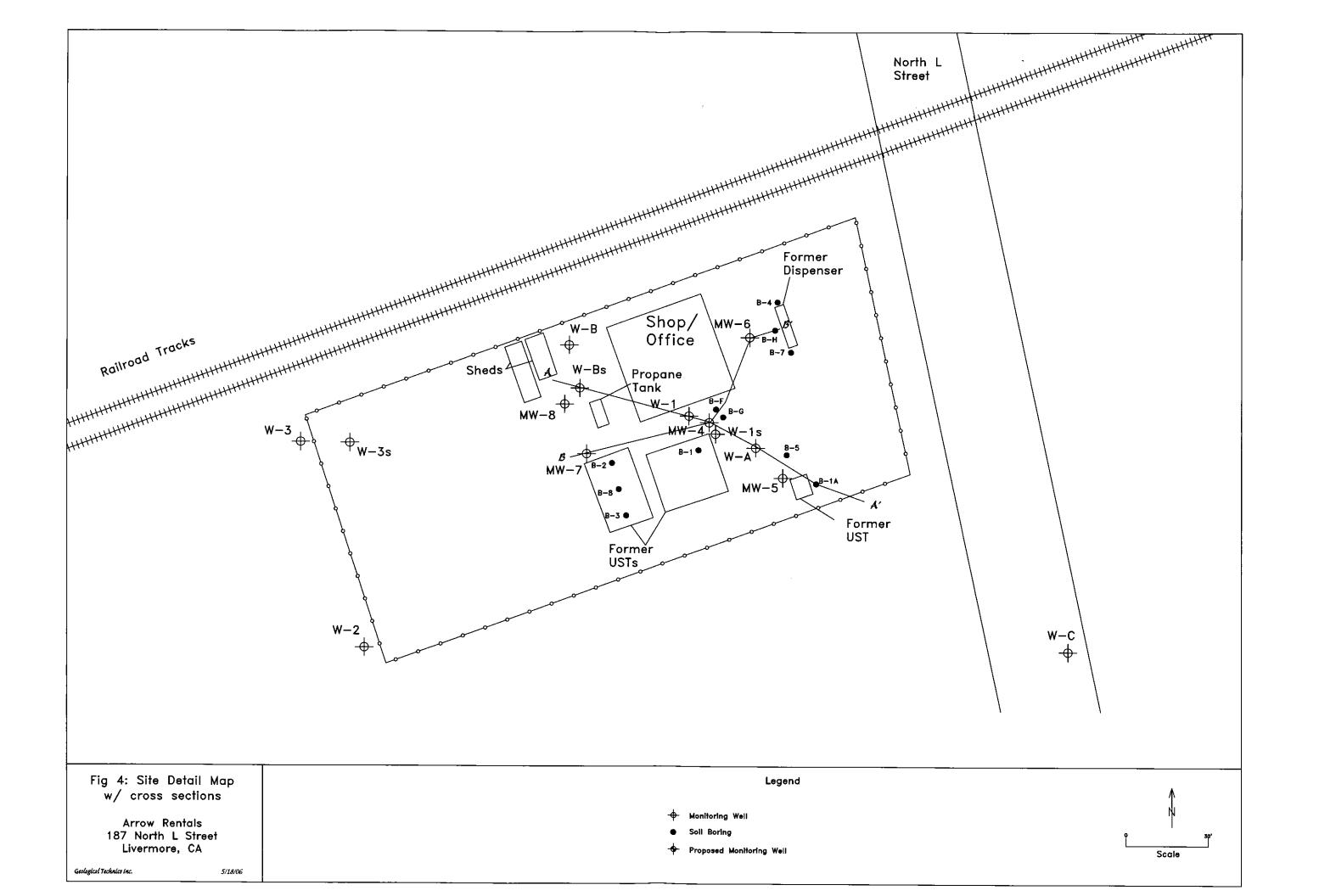
Geological Technics Inc. Sullins (Arrow Rentals) Report – Site Characterization Project No. 1262.2 October 26, 2006

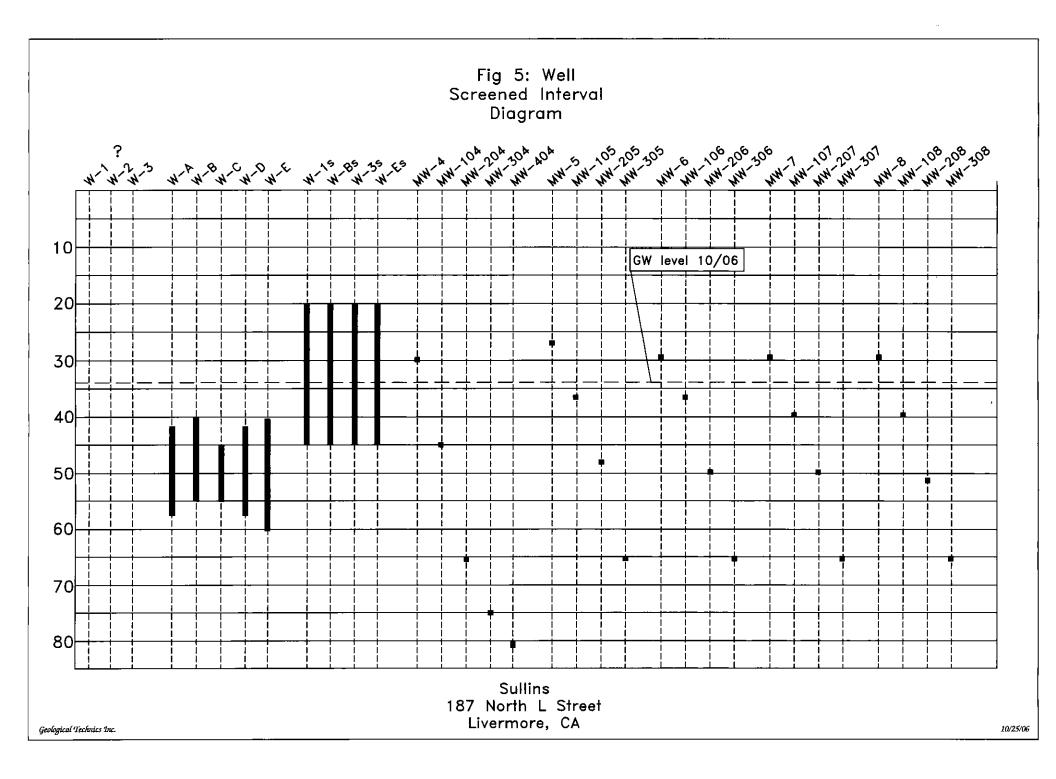
7.0 SIGNATURES AND CERTIFICATION

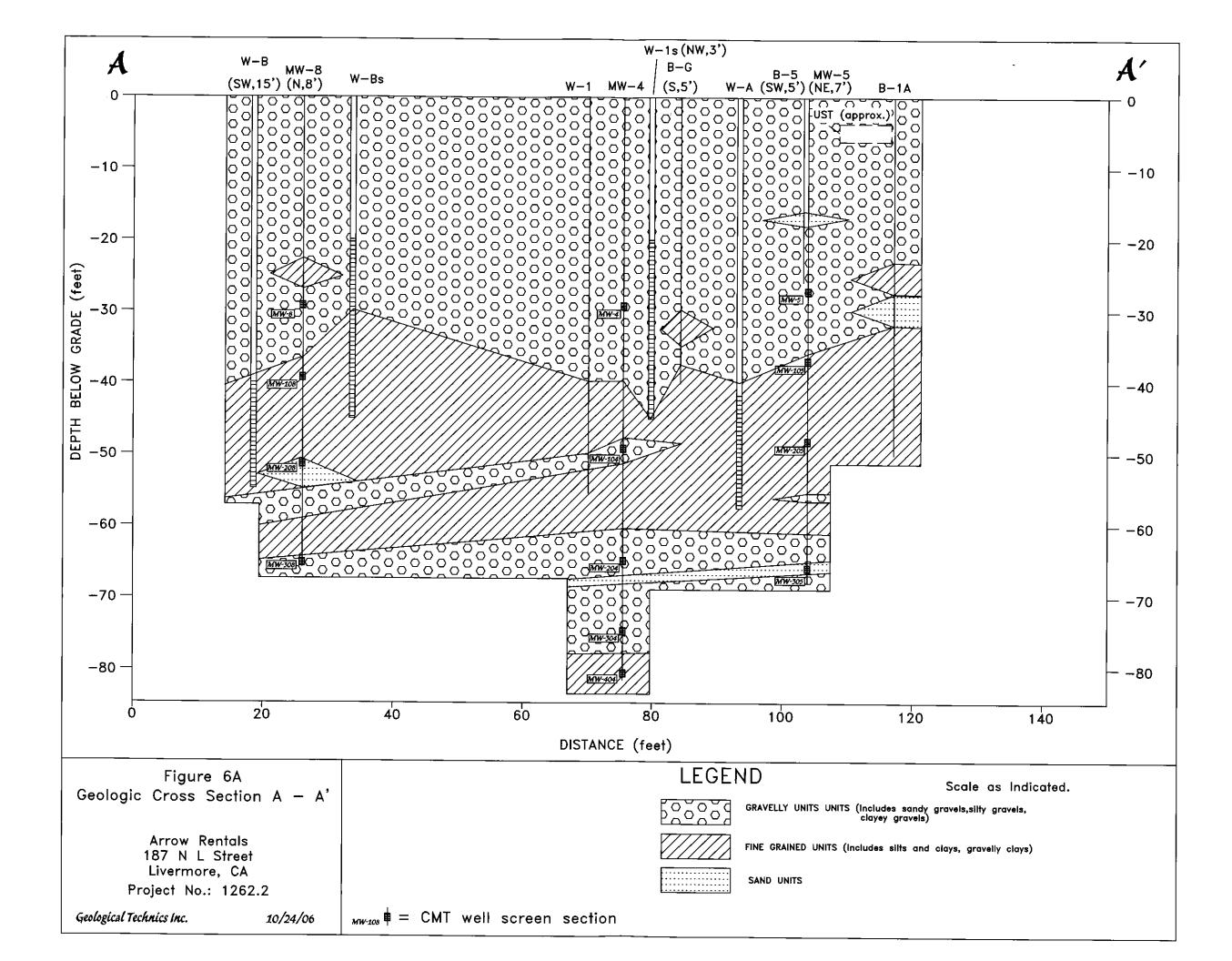

If you have any questions or if we can be of further assistance, please do not hesitate to contact our office at 209-522-4119.

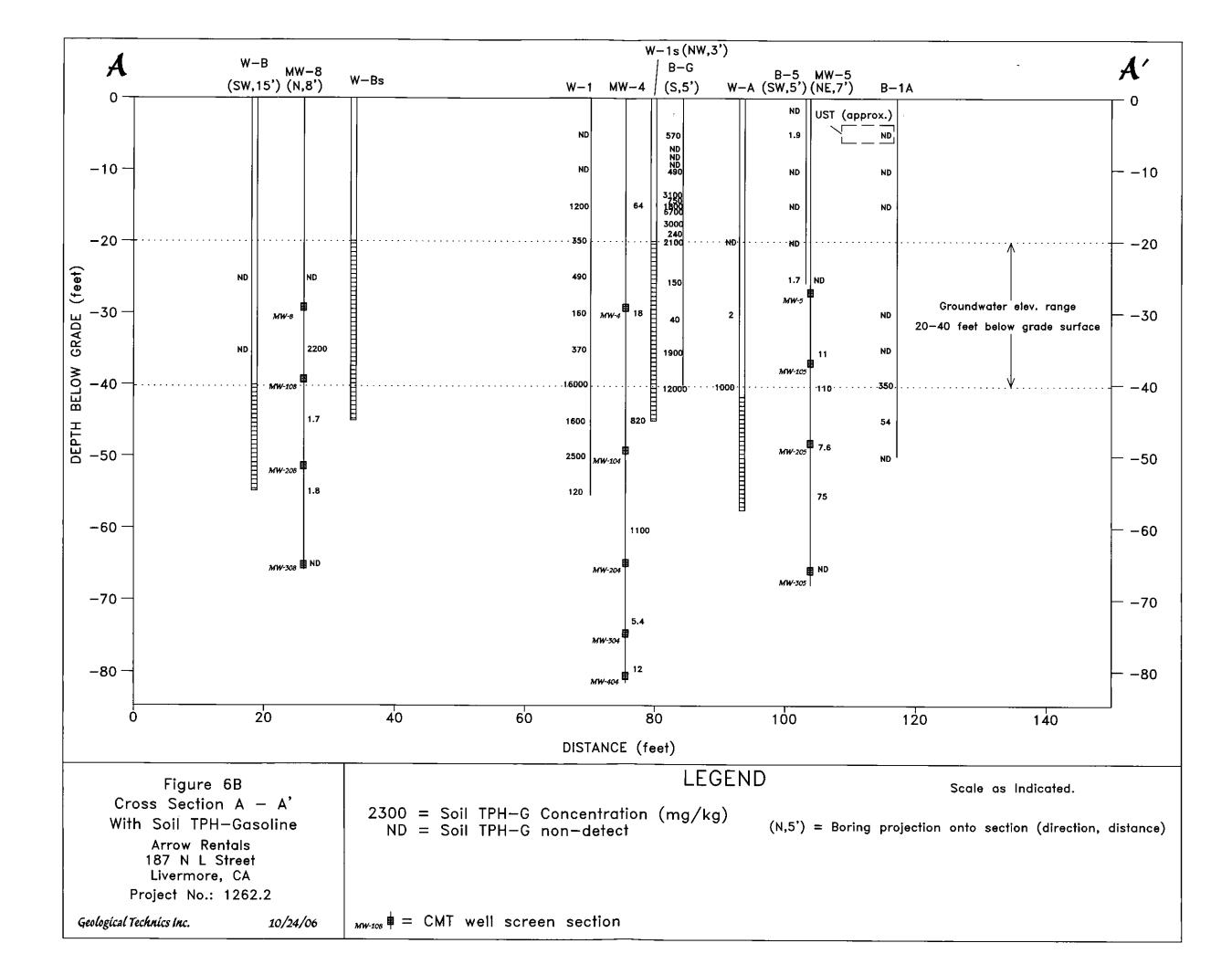

This report was prepared by:

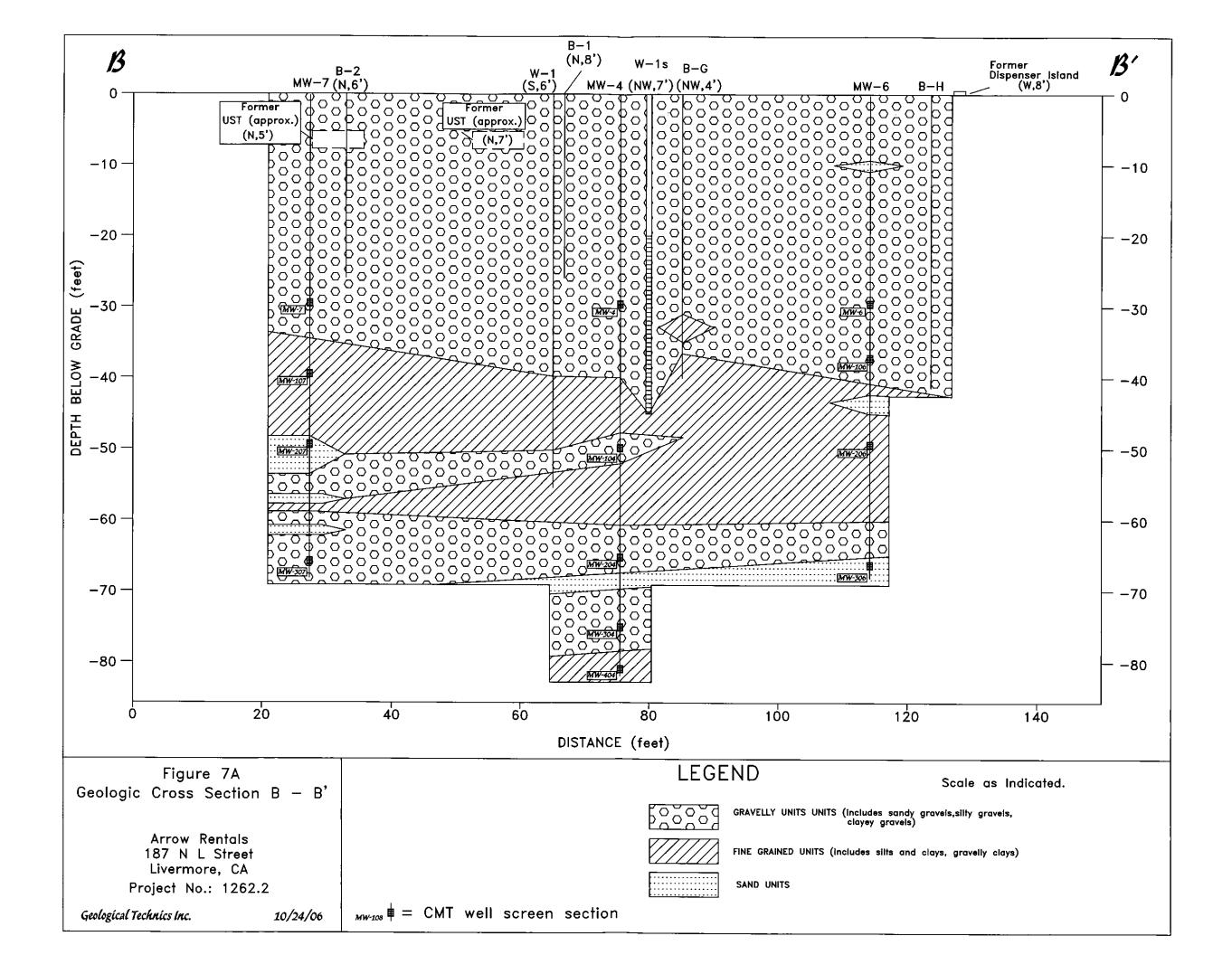

Joseph D. Angulo Geologist

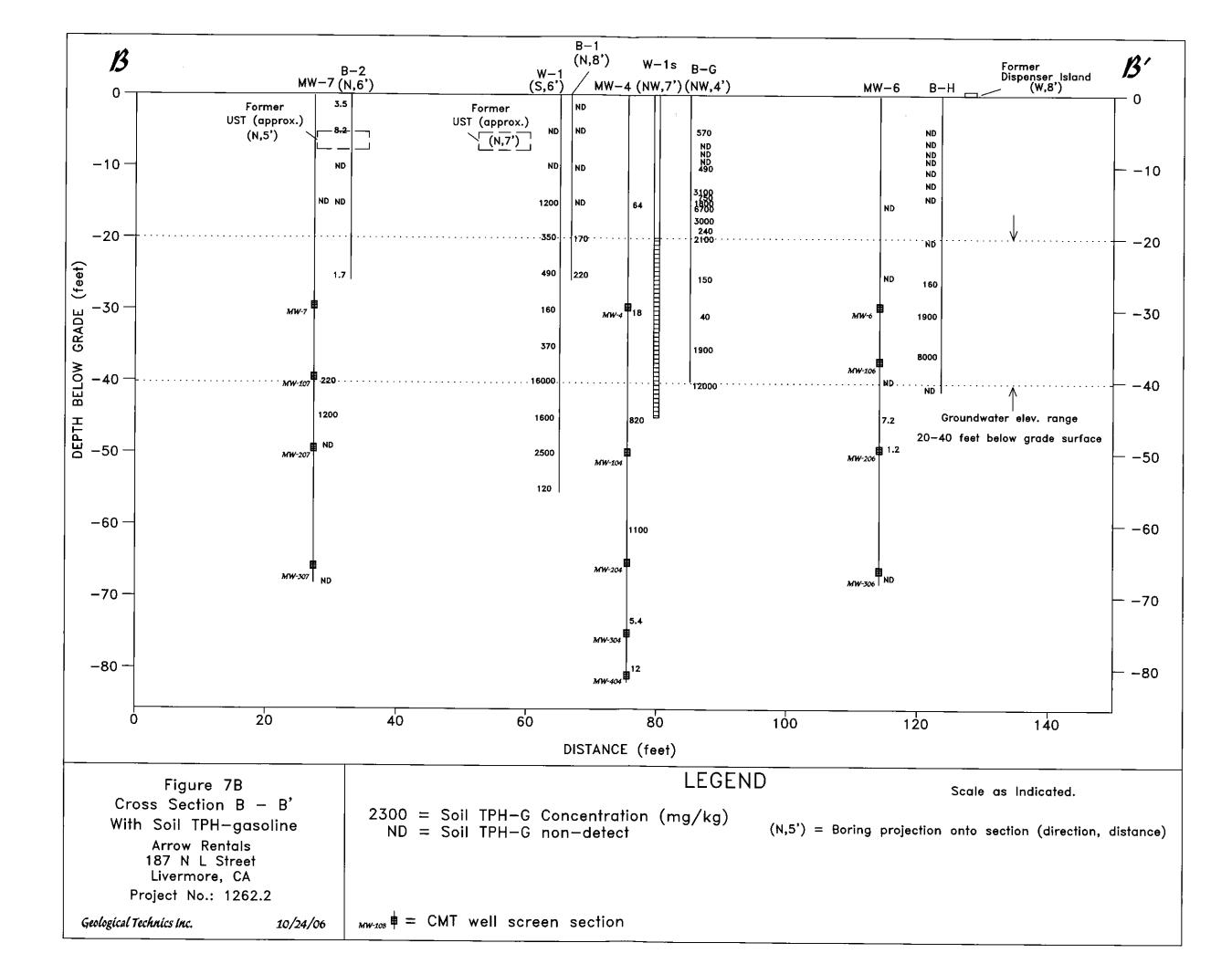



Raynold Kablanow II, Ph.D. California Professional Geologist #5234 Certified Hydrogeologist #42









Appendix A

-

Summary Data Tables

Table 1. Summary of Analytical Data - Soil Borings

<u>Sullins</u> 187 North L Street Livermore, California Project No. 1262.2

Summary of Soil Analytical Data

Date Sampled	Barehole	Sample Depth (Ft)	mg/Kg	By/Ka	eue Beuzeue mg/Kg	euen Jo F mg/Kg	Ethylbenzene B/Kg	By Dyfenes	u da mg/Kg	Han	MTBE	TAME	TBA
			_							ingrid	mg/Kg	mg/Kg	mg/Kg
10/2/2006	MW-4	15	64**	84*	ND<0.25	ND<0.25	0.65	ND<0.5	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.5
10/2/2006	MW-4	30	18	3.2*	0.15	0.19	0.11	1.1	ND<0.02	ND<0.02	ND<0.02		ND<2.5
10/2/2006	MW-4	45	820**	360*	ND<0.25	ND<0.25	4.2	7.7	ND<0.25	ND<0.25	ND<0.25		ND<0.2
10/2/2006	<u>MW-4</u>	60.5	1100	680*	8.7	1.1	18	62	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.5
10/2/2006	<u>MW-4</u>	73	5.4	ND<1	0.027	0.065	0.043	0.19	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.1
10/2/2006	<u>MIVV-4</u>	80	12	ND<1	0.013	0.036	0.016	0.084	ND<0.005	ND<0.005		ND<0.005	ND<0.05
10/9/2006												110 10.000	1020.00
10/9/2006	5 	26	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/9/2006	5 	36	11**	1.1*	ND<0.005	0.021	0.031	0.035	ND<0.005	ND<0.005		ND<0.005	
10/9/2006	<u>MW-5</u>	40.5	110	360*	1.1	1.4	1.2	5.7	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.5
10/9/2006	NW-5		7.6	ND<1	0.19	0.025	0.067	0.16	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/9/2006	3	66.5	75	ND<1	0.18	0.13	0.67	0.53	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/3/2000	<u> </u>	00.5	<u>ND</u> <1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/10/2006	MW-6	16											
10/10/2006	MW-6	26	ND<1 ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/10/2006	MW-6	40.5	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005		ND<0.05
10/10/2006	MW-6	40.5	7.2**	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/10/2006	MW-6	49.5	1.2**	1.1*	ND<0.005	0.022	0.014	ND<0.01	ND<0.005	ND<0.005	ND<0.005		ND<0.05
10/10/2006	MW-6	67.5	ND<1	<u>ND<1</u> ND<1	ND<0.005	0.0091	0.0052	ND<0.01	ND<0.005	ND<0.005	ND<0.005		ND<0.05
10/10/2000		07.3		<u>ND<1</u>	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/4/2006	MW-7	15	ND<1	ND<1		ND 0.005							
10/4/2006	MW-7	40	220	23*	ND<0.005 3.9	ND<0.005	ND<0.005	ND<0.01	ND<0.005		ND<0.005		ND<0.05
10/4/2006	MW-7	45.5	1200	66*	10	<u>19</u> 56	8.8	43	ND<0.025		ND<0.025	ND<0.025	ND<0.25
10/4/2006	MW-7	49	ND<1	ND<1	0.31	0.051	32	160	ND<0.25	ND<0.25		ND<0.25	ND<2.5
10/4/2006	MW-7	68	ND<1	ND<1	ND<0.005		0.034	0.1	ND<0.01	ND<0.01		ND<0.01	ND<0.1
					NU<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/5/2006	MW-8	25	ND<1	ND<1	ND<0.005	ND<0.005		ND 0.01	110				
10/5/2006	MW-8	35	2200	800*	3.8	2.2	ND<0.005 29	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/5/2006	MW-8	45	1.7	ND<1	0.058	ND<0.005	0.011	130	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.25
10/5/2006	MW-8	55	1.8	ND<1	0.038	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/5/2006	MW-8	65	ND<1	ND<1	0.041	ND<0.003	0.03	ND<0.01 ND<0.04	ND<0.005	ND<0.005	ND<0.005		
							0.03	ND<0.04	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.2

.

Г

*= laboratory reported as within diesel range but does not match diesel chromatogram "fingerprint"
 **= laboratory reported as within gasoline range but does not match gasolinel chromatogram "fingerprint"

Appendix B

-

Laboratory Reports

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 13, 2006

CLS Work Order #: CPJ0163 COC #:

Joe Angulo GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354

Project Name: Sullins

Enclosed are the results of analyses for samples received by the laboratory on 10/04/06 18:15. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

une production in

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

Page 1 of 12

EOLOGICAL TECHNICS INC.		10/13/06 1
01 7th St. ODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:
Geological Technics Inc.	P S	C16.3 Page of
1101 7(b Strv) (Modesto, f (A (289) 522-4119 Fax 522-4237	ین ا در ی	Chain of Custody
E-mail: gti@grologicaltechnics.com Project 4: ChentProject Name	Analysis Requested	Laboratory Name and Admess
Sille Address	• Other	i C y
GoballD No	ers arei Gas, me 2 5	Purchase Order #
Turces Clib Sampled By (print and sign parties	ntano at Time	EDF Report D Yes D No
The second secon	No. 28 Contanners Matus (Soit Water Toraround Time Kit (V (Trine C	Turnarbund Timer S - Standard 1 day, 2 day, 5 day
Date Time Field I.D. Sample I.D.	Torna A Materia	Remarks
Richard Robert Brit		
1 2 mil march and and a second		the The Law of the
They are Y to A Y	I D S X X I I I I I I I I I I I I I I I I I	
MIL CAN I HAVE I DECK		The A
1.33 Mar 14 100 1 D 13		ETLA CAMES THE AND THE
Leve here y Day		
	┨╶╂╌┼╌┨╌┾╌┦╌┽╌┽╌┽╶┽╴┽	
****	╊╍╆╍╋╍╋╍╋╍╋╍╋╸╇┈╉	
	╊╴ ╞┈╪┉╋╶╞╶╞┈┊ ┈ ╞╶┊╶	
	╏┊┊┊ ╏┼┼┽┽┽┽┼┼┼╴	
		·····
Rollinguished by (signature) (Date		
Charled Chip Intelection	Time: Acceived for laignature	Date: r: / 4 / 02 1998 - 34
Reinglished by Island by Date:	LUNCE THE CENTRE THE THE THE	nvate ligne
Relinquished by (signature)	18/14 Inne Received by ingrature	104.5 1815
	r in a second a second second second	Date Time

Page 2 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 D15 (CPJ0163-01) Soil	Sampled: 10/02/06 11:10	Received	: 10/04/06	5 18:15					
Diesel	84	1.0	ing/kg	·	CP07720	10/05/06	10/05/06	EPA 8015M	D-DSL
MW-4 D30 (CPJ0163-02) Soil	Sampled: 10/02/06 11:35	Received	: 10/04/06	5 18:15			10002000		D-D3L
Diesel	3.2	L.0	mg/kg	<u> </u>	CP07720	10/05/06	10/05/06	EPA 8015M	D D01
MW-4 D45 (CPJ0163-03) Soil	Sampled: 10/02/06 12:05	Received	: 10/04/06	18:15		,	10.02.00		D-DSL
Diesel	360	5.0	mg/kg	.5	CP07720	10/05/06	10/05/06	EPA 8015M	D D01
MW-4 D60.5 (CPJ0163-04) Soi	Sampled: 10/02/06 14:1	2 Receive	- ° d: 10/04/(06 18:15			10.02.00	CLM 901530	D-DSL
Diesel	680	10	mg/kg	10	CP07720	10.05/06	10/05/06	EDA SOLEM	
MW-4 D73 (CPJ0163-05) Soil	Sampled: 10/02/06 15:30	Received:				11 02 00	10:02:00	EPA 8015M	D-DSL
Diesel	ND	1.0	mg/kg	1	CP07720	10/05/06	10/05/04		
MW-4 D80 (CPJ0163-06) Soil	Sampled: 10/02/06 16:18	Received:	•••	18-15	CT07720	11/12/14)	10/05/06	EPA 8015M	
Diescl	ND	1.0	mg/kg		CP07720	10/05/06	10/05/06	EPA 8015M	

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 3 of 12		10/12/07 17 00
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	10/13/06 16:08 CLS Work Order #: CPJ0163 COC #:
	TPH Caseline by CC EID	

TPH-Gasoline by GC FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	mpled: 10/02/06 11:10	Received	1: 10/04/0	6 18:15					
Gasoline	64	10	mg/kg	10	CP07789	10/09/06	10/09/06	EPA 8015M	GAS-
Surrogate: o-Chlorotoluene (Gas)		710%	65-	135	"	"	"	**	05
MW-4 D30 (CPJ0163-02) Soil San	npled: 10/02/06 11:35	Received	l: 10/04/0	6 18:15					QS
Gasoline	18	5.0	mg/kg	5	C'P07789	10/09/06	10/09/06	EPA 8015M	<u></u>
Surrogate: v-Chlorotoluene (Gas)		176 %	65-	135	**	n		п	OP -
MW-4 D45 (CPJ0163-03) Soil — San	npled: 10/02/06 12:05	Received	: 10/04/06	5 18:15					QS-4
Gasoline	820	200	mg/kg	200	СР07850	10/10/06	10/10/06	EPA 8015M	GAS-1
Surrogate: o-Chlorotoluene (Gas)		295 %	65-1	35	ņ	v	11		~~~
MW-4 D60.5 (CPJ0163-04) Soil Sa	mpled: 10/02/06 14:12	Receive	:d: 10/04/	06 18:15					QS-4
Gasoline	1100	100	mg/kg	100	CP07789	10/09/06	10/09/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		281%	65-1	35	"	"	"		
MW-4 D73 (CPJ0163-05) Soil Sam	pled: 10/02/06 15:30	Received	: 10/04/0 6	18:15					QS-4
Gasoline	5.4	1.0	nıg/kg	I	CP07789	10/09/06	10/09/06	EPA 8015M	
Surrogate. o-Chlorotoluene (Gas)		111%	65-1	35	"	"			
4W-4 D80 (CPJ0163-06) Soil Sam	pled: 10/02/06 16:18	Received:	10/04/06	18:15					
Jasoline	12	10	mg/kg	10	CP07789	10/09/06	10/09/06	EPA 8015M	
urrogate: o-Chlorotoluene (Gas)		126 %	65-1	25	"	"	"	"	

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 4 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilation	Batch	Prepared	Analyzed	Method	Note
MW-4 D15 (CPJ0163-01) Soil	Sampled: 10/02/06 11:10	Received	10/04/06	18:15					QRL-
Di-isopropyl ether	ND	250	µg/kg	50	CP07751	10/05/06	10/06/06	EPA \$260B	
Ethyl tert-butyl ether	ND	250	r4	u	ч	"	u	"	
Methyl tert-butyl ether	ND	250	0	••	9	n			
tert-Amyl methyl ether	ND	250	"	a		н		*1	
Tert-butyl alcohol	ND	2500	4	17			Ð		
Benzene	ND	250	78		-			11	
Ethylbenzene	650	250	0	"	9		н	34	
Toluene	ND	250	4	זי	"	.,		,,	
Xylenes (total)	ND	500	u	a	"		n	11	
Surrogate. Toluene-d8		95.2 %	60-1-	40	n	"	"	п	
MW-4 D30 (CPJ0163-02) Soil	Sampled: 10/02/06 11:35	Received:	10/04/06	18:15					
Di-isopropyl ether	ND	20	μg/kg	4	CP07716	10/05/06	10/05/06	EPA 8260B	
Ethyl tert-butyl ether	ND	20	"		"	10.02.00	10.02/00	ELA \$200B	
Methyl tert-butyl ether	ND	20		м	14	n	¢1	н	
tert-Amyl methyl ether	ND	20		п					
Tert-butyl alcohol	ND	200	н	"	18				
Benzene	150	20		14			*1		
Ethylbenzene	190	20		.,		.,		14	
Toluene	110	20	"	**					
Xylenes (total)	1100	40	*		н		M	11	
Surrogate: Toluene-d8		96.0 %	60-14	4/)	"			·····	
MW-4 D45 (CPJ0163-03) Soil	Sampled: 10/02/06 12:05	Received:							
Di-isopropyl ether	ND	· · · · · · · · · · · · · · · · · · ·	μg/kg	50	CP07751	10/05/06	10:07 :07		
Ethyl tert-butyl ether	ND	250	" "			10/05/06	10/06/06	EPA 8260B	
Methyl tert-butyl ether	ND	250	н	4			н	"	
ert-Amyl methyl ether	ND	250	н	9	4	n.			
Fert-butyl alcohol	ND	2500	,,	'n		ri II	,, ,,	**	
Benzene	ND	250		н	**			31	
Ethylbenzene	4200	250	м		"		"	*	
Toluene	ND	250				u u	н		
Xylenes (total)	7700						"	**	
	7700	500		"	br			44	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 5 of 12								10/13/06	16:08	
GEOLOGICAL TECHNICS IN 1101 7th St.	NC.	Project: Sullins Project Number: 1262.2								
MODESTO, CA 95354						CLS Work Order #: CPJ0163				
		Project Manager: Joe Angulo					COC #:			
	Volatile Organ	ic Com	pounds	by EP.	A Metho	od 8260E	3			
	······		·							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Deserved				
MW-4 D45 (CPJ0163-03) Soil	Sampled: 10/02/06 12:05		l: 10/04/04			Prepared	Analyzed	Method	Note	
Surrogate: Toluene-d8		95.6%	60-							
C.		-			CP07751	10/05/06	10/06/06	EPA 8260B		
MW-4 D60.5 (CPJ0163-04) Soil	Sampled: 10/02/06 14:1	2 Receiv	ed: 10/04/	06 18:15						
Di-isopropyl ether	ND	250	μg/kg	50	CP07716	10/05/06	10/05/06	EPA 8260B		
Ethyl tert-butyl ether	ND	250	, , , ,	н	"	"	н	11 A 6200D		
Methyl tert-butyl ether	ND	250			"		U U			
tert-Amyl methyl ether	ND	250	н	71	"	н	म			
Tert-butyl alcohol	ND	2500	н		"	U	м			
Benzene	8700	1200	-	250	11	**		0		
Ethylbenzene	18000	1200			.,	13	-	0		
Toluene	1100	250	ba	50	**	•	o			
Xylenes (total)	62000	2500		250		re	н			
Surrogate: Tolucne-d8		97.6 %	17.6 % 60-140 "		*	10	11			
MW-4 D73 (CPJ0163-05) Soil - S	sampled: 10/02/06 15:30	Received	: 10/04/06	18:15						
Di-isopropyl ether	ND	10		2	CP07716	10/05/06	10:00 000			
Ethyl tert-butyl ether	ND	10	11 E. 11 E. 11		0	10/05/06	10/05/06	EPA 8260B		
Methyl tert-butyl ether	ND	10	0	D			D.			
ert-Amyl methyl ether	ND	10					и			
Tert-butyl alcohol	ND	100	"	н	а	н	14			
Benzene	27	10	U	v	п	ч	17			
Ethylbenzene	43	10	17		"	ч	н			
Foluene	65	10	н	11	*1					
Xylenes (total)	190	20		.,	н			N		
		-0						· · · · ·		
Surrogate: Toluene-d8		96.8 %	60-1	40	"	"	"	"		

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 6 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 D80 (CPJ0163-06) Soil	Sampled: 10/02/06 16:18	Received	: 10/04/0	6 18:15					
Di-isopropyl ether	ND	5.0	µg/kg		CP07751	10/05/06	10/06/06	L'DA 63/0D	<u>-</u>
Ethyl tert-butyl ether	ND	5.0	, e e			10/02/00	10/00/001 #	EPA 8260B	
Methyl tert-butyl ether	ND	5.0	н	a		14		*	
tert-Amyl methyl ether	ND	5.0		11	ы	"			
Tert-butyl alcohol	ND	50	13	11		н		a	
Benzene	13	5.0	н			"			
Ethylbenzene	16	5.0	a	**	4		D.	н	
Toluene	36	5.0		11	11				
Xylenes (total)	84	10	u .	b,	н		ħ	-	
Surrogate: Toluene-d8		102 %	60-	140	"	ir.	v	"	

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 7 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07720 - LUFT-DHS GCNV										
Blank (CP07720-BLK1)				Prepared of	& Analyz	ad: 10/05/	<u> </u>			
Diese!	ND		mg/kg	riepared	oc manyza	a. 10/03/	vo .			
Motor Oil	ND	1.0	C E							
Kerosene	ND	L0	11							
JP-5/JP-8	ND	1.0								
LCS (CP07720-BS1)				Prepared &	R Analise	a. Door	07			
Diesel	46.5	1.0	mg/kg	50.0	x Maryze	93.0	65-135		30	
LCS Dup (CP07720-BSD1)				Prepared &	6 Analusa	a nonsi	04			
Diesel	49.0	1.0	mg/kg	50.0	c maryze	98 0	65-135	5 24	30	
Matrix Spike (CP07720-MS1)	Sou	irce: CPJ016	53-01	Prepared &	k Analyza	d: 10/05//	16			
Diesel	83.8	1.0	mg/kg	50.0	84 84	NR NR	59-138		37	ОМ
Matrix Spike Dup (CP07720-MSD1)	Sou	rce: CPJ016	3-01	Prepared &	k Analyze	d: 10/05/(16			
Diesel	84.1	1.0	mg/kg	50.0	84	0.200	59-138	0.357	37	QM

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 8 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07789 - EPA 5030 Soil GC										
Blank (CP07789-BLK1) Gasoline	ND		mg/kg	Prepared:	10/09/06	Analyzed	: 10/11/06			
Surrogate: o-Chlorotoluene (Gas)	0.0933		"	0 100		93 <u>3</u>	65-135			
LCS (CP07789-BS1) Gasoline	2.83	2.0	mg/kg	Prepared: 2.50	10/09/06	Analyzed	: 10/11/06 65-135		30	
Surrogute: o-Chlorotoluene (Gas)	0 106		"	0.100		106	65-135			
LCS Dup (CP07789-BSD1) Fasoline	2.86	2.0	mg/kg	Prepared:	10/09/06	Analyzed	65-135	1.05	30	
Surrogate: 0-Chlorotoluene (Gas)	0.109		"	0.100		109	65-135	1.05	50	
Matrix Spike (CP07789-MS1) Jasoline	Sou 30,7	rce: CPJ016	6 3-02 mg/kg	Prepared: 12.5	10/09/06	Analyzed. 102			25	
Surrogate: o-Chlorotoluene (Gas)	0 406	1.0	т <u>е</u> к е	0.500	10	81.2	63-124 65-135		35	
Matrix Spike Dup (CP07789-MSD1) Basoline	Sou 31,2	rce: CPJ01(1.0	53-02 mg/kg	Prepared: 12.5	10/09/06	Analyzed:	10/11/06	1.42	20	
Surrogate: 0-Chlorotoluene (Gas)	0 412		ты <u>д</u> , к <u>е</u>	0.500	10	82.4	63-124 6 <i>5-135</i>	1.62	35	
<u> Satch CP07850 - EPA 5030 Soil GC</u>										
Blank (CP07850-BLK1) Basoline	ND	1.0	mg/kg	Prepared:	10/10/06	Analyzed:	10/11/06			
urrogate: o-Chlorotoluene (Gas)	0.100		"	0.100		100	65-135			
.CS (CP07850-BS1) jasoline	1 73	1.0	mg/kg	Prepared: 2.50	10/10/06	Analyzed: 69.2	10/11/06		30	
urrogate. v-Chlorotoluene (Gas)	0 102		"	0.100		107	65-135		20	

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 9 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	T.E. 's	Spike	Source		%REC		RPD	
			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CP07850 - EPA 5030 Soil GC										
LCS Dup (CP07850-BSD1)				Prepared	10/10/06	Analyzed	10/11/07			
Gasoline	1 73	10	mg/kg	2.50	10/10/00	69.2	65-135	0.00	30	
Surrogate: o-Chlorotoluene (Gas)	0110		0	0,100		110	65-135		200	
Matrix Spike (CP07850-MS1)	Sou	rce: CPJ022	28-19	Prepared:	10/10/06	Analyzed	10/11/06			
Jasoline	1.69	1.0	mg/kg	2.50	ND	67.6	63-124		35	
urrogute: o-Chlorotoluene (Gas)	0 0920		"	0.100		92.0	65-135		.7~1	
Matrix Spike Dup (CP07850-MSD1)	Sour	ce: CPJ022	8-19	Prepared:	10/10/06	Analyzed:	10/11/06			
iasoline	1.69	10	mg/kg	2.50	ND	67.6	63-124	0.00	35	
hirrogate - o-Chlorotoluene (Gas)	0.0911		"	0 100		911	65-135	0.111	22	

Page 10 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07716 - EPA 5030 Soil MS										
Blank (CP07716-BLK1)		······		Prepared	& Analyze		06			
Di-isopropyl ether	ND	5.0	μg/kg	Tiephieu	a maryze	u. 10/05/				
Ethyl tert-butyl ether	ND	5.0	"							
Methyl tert-butyl ether	ND	5.0	.,							
ert-Amyl methyl ether	ND	5.0	4							
Tert-butyl alcohol	ND	50								
Benzene	ND	50	4							
Ethylbenzene	ND	5.0	u.							
Foluene	ND	5.0								
Xylenes (totał)	ND	10	ч							
Surrogate: Toluene-d8	49.5		"	50.0		99 O	60-140			
LCS (CP07716-BS1)				Prepared &	a Analuaa	d- 10/06//	14			
Mothyl tert-butyl ether	52.0	5.0	µg/kg	50.0	e Anaryze	104	60-140		20	
Surrogate Toluene-d8	50.7		"	50.0		104	60-140		30	
LCS Dup (CP07716-BSD1)				Prepared &	k Anoluur	4. L0/05/0				
Acthyl tert-bulyi ether	44,9	5.0	µg/kg	50.0	e Anaryzei	89.8	60-140	14.7		
Surrogate: Toluene-d8	50.1		"	50.0		100	60-140	14.7	30	
Batch CP07751 - EPA 5030 Soil MS										
Blank (CP07751-BLK1)				Prepared &		1. 10/06/0	·······			
Di-isopropyl ether	ND	5.0	µg/kg	i repared o	C / that y 2.00	1. 10/0(%)	0			
thy) tert-butyl ether	ND	5.0	н. И							
Aethyl tert-butyl ether	ND	5.0	н							
ent-Amyl methyl ether	ND	5.0								
ert-butyl alcohol	ND	50	н							
ionzene	ND	5.0	10							
thylbenzene	ND	5.0	м							
oluene	ND	5.0	н							
ylenes (total)	ND	10								
wrrogate Toluene-d8	48.7	- ·	v	50.0		97.4	60-140			

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

ł

Page 11 of 12		10/13/06 16:08
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0163 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Límits	RPD	RPD Limit	Notes
Batch CP07751 - EPA 5030 Soit MS	_						<u> </u>			
LCS (CP07751-BS1)				Prepared	& Analyze	ed: 10/06/	06		<u> </u>	
Methyl tert-butyl ether	48.7	5.0	μg′kg	50.0		97.4	60-140		30	
Surrogate. Toluenc-d8	49 D	· .	ы	50.0			60-140			
LCS Dup (CP07751-BSD1)				Prepared	& Analyze	sd: 10/06/	' 16			
Methyl tert-butyl ether	44.8	5.0	μg/kg	50,0		89.6	60-140	8.34	30	
Surrogate Toluene-d8	48.8		"	50.0		97.6	60 140	0.24	50	
Matrix Spike (CP07751-MS1)	Sou	irce: CPJ022	28-07	Prepared:	10/06/06	Analyzed	: 10/07/06			
Methyl tert butyl ether	37.6	5.0	μg/kg	50.0	ND	75.2	60-140		30	
Surrogate Toluene-d8	47 Y			50-0		958	60-140			
Matrix Spike Dup (CP07751-MSD1)	Sou	rce: CPJ022	28-07	Prepared:	10/06/06	Analyzed	: 10/07/06			
Methyl tert butyl ether	39.9	5.0	μ <u>e</u> /kg	50.0	ND	79.8	60-140	5.94	30	
Surrogate Toluene-d8	483		t	50.0		96.6	60-140	0.23		

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 12 of 12

		10/13/06 16:08
GEOLOGICAL TECHNICS INC.	Project: Sullins	
MODESTO, CA 95354	Project Number: 1262.2	CLS Work Order #: CPJ0163
1000L310, CA 35534	Project Manager: Joe Angulo	COC #:

Notes and Definitions

- QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- QR1.-5 The sample was diluted due to the presence of high levels of non-target analytes or matrix interference resulting in elevated reporting limits.
- QM-7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS/LCSD recovery.
- GAS-1 Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- D-DSL Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 16, 2006

CLS Work Order #: CPJ0296 COC #:

Joe Angulo GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354

Project Name: Sullins

Enclosed are the results of analyses for samples received by the laboratory on 10/06/06 17:50. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

- hing 22

James Liang, Ph.D. Laboratory Director

Pa

e 1 of 16		10/16/0
OLOGICAL TECHNICS INC. 1 7th St. DESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:
Feological Technics Inc.	்றை	Chain of Custody
(209) 522-4119 Fax 522-4237 E-mail: gi@geologicaltechnics.com	Analysis Requested	
Olient/Project Name: 1112 SULTINS le Addrese: 187 MMH ST LULA JAULIZ obsit ID No.: TC CO TC CO TC CO Impled By: (print and sign nemial	No of Containtins Mattha (Soit Water, Gas, Other) Turneround Time $\tilde{V} T \times I + T \to (T \in I \times Y)$ $T P_1 + P_2 (T \in I \times Y)$	Laboratory Name and Address CLS Purchase Order # 12.6.1
JUSEPH D. H-GILD ANILY J6	X / Con	Turnaround Time: S = Standard 1 day, 2 day, 5 day
Date Time Field I.D. Sample I.D.	No of C Turnaro UTUX 3 PH	Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		* Dire, TDA, TAME ETHE MIDE APPOINT LIMITS. TPH-4 COMMENTER MEXISCON ACCOMPTO TH-D COS MALLY
Apply 462 (1) (6 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ime: Received by (signature)	$\begin{array}{c c} \hline Date \\ \hline Date \\ \hline IC/O/O 6 \\ \hline ISJS74 \\ \hline Date \\ \hline IO-6 6 \\ \hline IT 5 0 \\ \hline Date \\ \hline IT 5 0 \\ \hline Date \\ \hline IT 5 0 \\ \hline \end{array}$

Please return cooler/ice chest to Geological Technics Inc.

Rev. 4/2004

Page 2 of 16								10/16/06	14:36
GEOLOGICAL TECHNICS I 1101 7th St. MODESTO, CA 95354	NC.	Project N		Sullins 1262.2 Joe Angule	D		S Work Ord OC #:	ier #: CPJ0296	
<u> </u>	Extractable Petrole	um Hyd	lrocar	bons by	EPA M	ethod 80)15M	<u> </u>	
[Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 D15 (CPJ0296-01) Soil	Sampled: 10/04/06 14:12	Received	: 10/06/0	6 17:50				<u> </u>	
Diesel	ND	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	
MW-7 D40 (CPJ0296-02) Soil	Sampled: 10/04/06 15:07	Received	: 10/06/0	6 17:50					
Diesel	23	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	D-DSL
MW-7 D45.5 (CPJ0296-03) Soil	Sampled: 10/04/06 15:3	4 Receive	d: 10/06	/06 17:50					
Diesel	66	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	D-DSI
MW-7 D49 (CPJ0296-04) Soil	Sampled: 10/04/06 15:42	Received	: 10/06/0	6 17:50					
Diesel	ND	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	
MW-7 D68 (CPJ0296-05) Soil	Sampled: 10/04/06 17:20	Received	: 10/06/0	6 17:50					
Diesel	ND	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	
MW-8 D25 (CPJ0296-06) Soil	Sampled: 10/05/06 13:25	Received	: 10/06/0	6 17:50					
Dicsel	ND	1.0	mg/kg		CP07763	10/09/06	10/09/06	EPA 8015M	
MW-8 D35 (CPJ0296-07) Soil	Sampled: 10/05/06 13:56	Received	: 10/06/0	6 17:50					
Diesel	800	20	mg/kg	20	CP07763	10/09/06	10/09/06	EPA 8015M	D-DSI
MW-8 D45 (CPJ0296-08) Soil	Sampled: 10/05/06 14:55	Received	: 10/06/0	6 17:50					
Diesel	ND	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	
MW-8 D55 (CPJ0296-09) Soil	Sampled: 10/05/06 15:33	Received		6 17:50					

Diesel ND 1.0 mg/kg 1 CP07763 10/09/06 EPA 8015M D-DSL

age 3 of 16		10/16/06 14:3
GEOLOGICAL TECHNICS INC.	Project: Sullins	
1101 7th St.	Project Number: 1262.2	CLS Work Order #: CPJ0296
MODESTO, CA 95354	Project Manager: Joe Angulo	COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 D65 (CPJ0296-10) Soil	Sampled: 10/05/06 16:23	Received	I: 10/06/0	6 17:50					
Diesel	ND	1.0	mg/kg	1	CP07763	10/09/06	10/09/06	EPA 8015M	

Page 4 of 16								10/16/06	14:36
GEOLOGICAL TECHNICS INC 1101 7th St. MODESTO, CA 95354	· · · · · · · · · · · · · · · · · · ·	-	Project: Number: Janager:	Sullins 1262.2 Joe Angul	0	CLS Work Order #: CPJ0296 COC #:			
	Т	PH-Ga	soline k	y GC I	FID				
Analyte,	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 D15 (CPJ0296-01) Soil Sa	mpled: 10/04/06 14:12	Received	1: 10/06/0	6 17:50					
Gasoline	ND	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		83.5 %	65-,		#	n	"	h	
MW-7 D40 (CPJ0296-02) Soil Sa Gasoline									
Gasonne	220	20	mg/kg	20	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		257 %	65-1		"	"	"	11	QS-4
MW-7 D45.5 (CPJ0296-03) Soil S		4 Receive	ed: 10/06/	06 17:50		<u> </u>			
Gasoline	1200	500	mg/kg	500	CP07870	10/11/06	10/11/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		118 %	65-1	35	u	n	"	"	
MW-7 D49 (CPJ0296-04) Soil Sai	mpled: 10/04/06 15:42	Received	: 10/06/06	17:50					
Gasoline	ND	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		84.3 %	65-1	- •	n	"	"	n	
MW-7 D68 (CPJ0296-05) Soil Sai	npled: 10/04/06 17:20	Received	: 10/06/06	17:50					
Gasoline	ND	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		91.0%	65-1	35	"	"	"	11	
MW-8 D25 (CPJ0296-06) Soil Sai	apled: 10/05/06 13:25	Received	: 10/06/06	17:50					
Gasoline	ND	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		97.1 %	65-1	35	"	"	"	"	<u> </u>
MW-8 D35 (CPJ0296-07) Soil Sar	npled: 10/05/06 13:56	Received	10/06/06	17:50					
Gasoline	2200	500	mg/kg	500	CP07956	10/12/06	10/13/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		92.1 %	65-1	35	n	"	n	"	

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301

ł

$C \text{ALIFORNIA} \ L \text{ABORATORY} \ S \text{ERVICES}$

Page 5 of 16								10/16/06	14:36
GEOLOGICAL TECHNICS 1101 7th St. MODESTO, CA 95354		Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo PH-Gasoline by GC FID			CL/ C				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 D45 (CPJ0296-08) Soil	Sampled: 10/05/06 14:55	Received	l: 10/06/0	6 17:50					
Gasoline	1.7	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas	s)	112 %	65-	135	"	n	n	n	
MW-8 D55 (CPJ0296-09) Soil	Sampled: 10/05/06 15:33	Received	l: 10/06/0	6 17:50					
Gasoline	1.8	1.0	mg/kg	1	CP07850	10/10/06	10/10/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas	5)	117 %	65-	135	Н	Ħ	Ħ	**	
MW-8 D65 (CPJ0296-10) Soil	Sampled: 10/05/06 16:23	Received	I: 10/06/0	6 17:50					
Gasoline	ND	1.0	mg/kg	1	CP07870	10/11/06	10/11/06	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas	5)	107 %	65-	135	"	n	"	N	

$C \text{ALIFORNIA} \ L \text{ABORATORY} \ S \text{ERVICES}$

Page 6 of 16								10/16/06	14:36
GEOLOGICAL TECHNICS I	NC.		Project:	Sullins					
1101 7th St.		Project 1	Number:	12 6 2.2		CL	S Work Ord	ler #: CPJ0296	
MODESTO, CA 95354		Project N	Aanager:	Joe Angul	0	C	OC #:		
	Volatile Organ	ic Com	pounds	by EP	A Metho	od 8260E	3		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-7 D15 (CPJ0296-01) Soil	Sampled: 10/04/06 14:12	Received	1: 10/06/0	6 17:50					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP07952	10/11/06	10/13/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	u	0	н	u	0	ч	
Methyl tert-butyl ether	ND	5.0	*1	n	*	14	н	u.	
tert-Amyl methyl ether	ND	5.0	н	U	н	"	н	н	
Tert-butyl alcohol	ND	50	u	н		Ħ	11	11	
Benzene	ND	5.0	u	.,	"	n	11		
Ethylbenzene	ND	5.0	u	17	**	11		11	
Toluene	ND	5.0	н	**	71	н	**	14	
Xylenes (total)	ND	10	н	91	**	n	*1	*1	
Surrogate: Toluene-d8 MW-7 D40 (CPJ0296-02) Soil	Sampled: 10/04/06 15:07	100 % Received		140 6 17:50	"	"	и	n	
Di-isopropyl ether	ND	25	µg/kg	5	CP07871	10/09/06	10/11/06	EPA 8260B	
Ethyl tert-butyl ether	ND	25	100	U	11	н	н		
Methyl tert-butyl ether	ND	25	**	n	17	11	17	n	
tert-Amyl methyl ether	ND	25	11	It	**	n	**	"	
Tert-butyl alcohol	ND	250	Ħ	н	**	*	**	*1	
Benzene	3900	500	н	100	*1	a	10/13/06	11	
Ethylbenzene	8800	500	н	100	11	n	10/15/00	11	
Toluene	19000	500	п	71	*1	U	н	*1	
Xylenes (total)	43000	1000	н	*1	u	H	P	71	
Surrogate: Toluene-d8		99.6 %	60-	140	н	n	"	н	
MW-7 D45.5 (CPJ0296-03) Soil	Sampled: 10/04/06 15:34	4 Receive	ed: 10/06/	/06 17:50					
Di-isopropyl ether	ND	250	μg/kg	50	CP07871	10/09/06	10/11/06	EPA 8260B	
Ethyl tert-butyl ether	ND	250	"	"	"	1	"	0	
Methyl tert-butyl ether	ND	250	n	u		*1		н	
ert-Amyl methyl ether	ND	250	**	14	14	9	*	н	
Fert-butyl alcohol	ND	2500	**	IT		a a	u	77	
Benzene	10000	2500	**	*	u	n		*1	
Ethylbenzene	32000	2500	u	500	11	17	10/13/06	11	
Foluene	56000	2500	4	- 500	ų	H.	10/15/00	u.	
				9	ų	ц	11	*1	
Xylenes (total)	160000	5000	u	9	п	п	u	0	

Page 7 of 16								10/16/06	14:36
GEOLOGICAL TECHNICS I 1101 7th St. MODESTO, CA 95354	NC.	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo					S Work Ord	ler #: CPJ0296	
	Volatile Organ	aic Com	pounds	by EP.	A Meth	od 82601	3	<u>,</u>	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 D45.5 (CPJ0296-03) Soil	Sampled: 10/04/06 15:	34 Receiv	ed: 10/06/	06 17:50					
Surrogate: Toluene-d8		98.6 %	60-1		CP07871	10/09/06	10/11/06	EPA 8260B	
MW-7 D49 (CPJ0296-04) Soil	Sampled: 10/04/06 15:42	Received	l: 10/06/06	17:50					
Di-isopropyl ether	ND	10	μg/kg	2	CP07952	10/11/06	10/13/06	EPA 8260B	
Ethyl tert-butyl ether	ND	10	Ħ	и	u	11	11	¥1	
Methyl tert-butyl ether	ND	10	71		0	n	ц		
tert-Amyl methyl ether	ND	10	н	ч	11	It		U	
Tert-butyl alcohol	ND	100		17	tı	н	н	IT	
Benzene	310	10	n	т	H	0	u		
Ethylbenzene	34	10	н	a	. н	н	19	u	
Toluene	51	10	*	и	11	+1	4	1+	
Xylenes (total)	100	20	n 	"	u 		<u> </u>	11	
Surrogate: Toluene-d8		100 %	60-1	40	"	"	н	н	
MW-7 D68 (CPJ0296-05) Soil	Sampled: 10/04/06 17:20	Received	: 10/06/06	17:50					
Di-isopropyl ether	ND	5.0	μg/kg	1	CP07952	10/11/06	10/13/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	н	н	и		11	1	
Methyl tert-butyl ether	ND	5.0	U		łt	н	11	n	
tert-Amyl methyl ether	ND	5.0	и		u	u	u	It	
Tert-butyl alcohol	ND	50	74	н	0	"	D	71	
Benzene	ND	5.0	n	TI	H	11	#	U	
Ethylbenzene	ND	5.0	н	u.	*1	41	n	0	
Foluene	ND	5.0	14	в	ч	17	U	И	
Xylenes (total)	ND	10	**	**		H	14	11	
Surrogate: Toluene-d8		103 %	60-14	40	"	"	"	11	

NC. Volatile Organ	Project N Project N		Sullins 1262.2 Joe Angul		CL	S Work Ord		
	Project N	lanager:			CL	S Work Ord	L. A CD MAAA	
			Joe Angul				ler #: CPJ0296	
	ic Comj	pounds		0	C	OC #:		
			by EP.	A Metho	od 8260E	3		
	Reporting					<u></u>		
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 10/05/06 13:25	Received	: 10/06/0	6 17:50					
ND	5.0	µg/kg	1	CP07952	10/11/06	10/13/06	EPA 8260B	
ND	5.0	н	"	n	P	R	0	
ND	5.0	19	"		*	м	0	
ND	5.0	*	Ħ	n	"	н	*	
ND	50	ч	u	1 7	9	и	ท	
ND	5.0	"	n	*	U	u	71	
ND	5.0	11	u	**	U.	11	a	
ND	5.0	11	н	u	"	н		
ND	10	*	*	"	*	H	H	
	102 %	60	140	"	н	и	н	
Sampled: 10/05/06 13:56	Received:	: 10/06/00	6 17:50					
ND	25	µg/kg	5	CP07871	10/09/06	10/11/06	EPA 8260B	
ND	25	*	'n	11	*1	n	11	
ND	25	н	11	11	D	**		
ND	25	u	н	u	"	17	0	
ND	250		"		11	Ħ	17	
3800	1200	×	250	**		10/11/06	н	
29000	1200	71	11	**	11	н	11	
2200	1200	tI	u	**	ю	u.	11	
130000	2500		и	"	*	H.	n	
	96.2 %	60-1	140	"	11	H	11	
Sampled: 10/05/06 14:55	Received:	10/06/06	5 17:50					
ND				CP07952	10/11/06	10/13/06	EP4 8260B	<u>_</u> _
ND		"	u I	"	10/11/00	10/13/00 #	EFA 6200D	
		a	н	u	tr	*	14	
		0	в	н	17	71	и	
			11		u	U	"	
		Ħ	11	71	н	IT	U	
		11	11	**		W	11	
		н	n	ч	tf	n	И	
		n	Ħ	н	-		н	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 5.0 ND 25 ND 25 ND 25 ND 25 ND 250 3800 1200 29000 1200 2200 1200 2200 1200 30000 2500 96.2 % Sampled: 10/05/06 14:55 Received: ND ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	ND 5.0 μg/kg ND 5.0 " ND 25 " ND 25 " ND 250 " ND 250 " 3800 1200 " 29000 1200 " 29000 1200 " 96.2 % 60 MD 5.0 " ND 5.0 " ND 5.0 "	ND 5.0 " ND 60-140 Sampled: 10/05/06 13:56 Received: 10/06/06 17:50 ND 25 " ND 25 " ND 250 " 200 1200 " 130000 2500 " ND 5.0 " ND 5.0	ND 5.0 μg/kg 1 CP07952 ND 5.0 " " " ND 25 " " " ND 25 " " " ND 250 " " " ND 250 " " " ND 250 " " " 200 1200 " " " 200 12	ND 5.0 μg/kg 1 CP07952 10/11/06 ND 5.0 " <td>ND 5.0 $\mu g/kg$ 1 CP07952 10/11/06 10/13/06 ND 5.0 """"""""""""""""""""""""""""""""""""</td> <td>ND 5.0 µg/kg 1 CP07952 10/11/06 10/13/06 EPA 8260B ND 5.0 "</td>	ND 5.0 $\mu g/kg$ 1 CP07952 10/11/06 10/13/06 ND 5.0 """"""""""""""""""""""""""""""""""""	ND 5.0 µg/kg 1 CP07952 10/11/06 10/13/06 EPA 8260B ND 5.0 "

Page 9 of 16 GEOLOGICAL TECHNICS			Destant					10/16/06	
1101 7th St.	INC.	Project	Project: Number:	Sullins		CT	S Work Ord	on the CD 1020/	
MODESTO, CA 95354				Joe Angul	0		OC #:	ler #: CPJ0296	
	Valatila Organ								
	Volatile Organ	ic Com	pouna	S DY EPA	A Metho	DA 8260E	5		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-8 D45 (CPJ0296-08) Soil	Sampled: 10/05/06 14:55	Received	I: 10/06/0	6 17:50			·		
Surrogate: Toluene-d8		104 %	60-	140	CP07952	10/11/06	10/13/06	EPA 8260B	
MW-8 D55 (CPJ0296-09) Soil	Sampled: 10/05/06 15:33	Received	l: 10/06/0	6 17:50					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP07952	10/11/06	10/13/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	**	н	ч	н	н	n	
Methyl tert-butyl ether	ND	5.0	Ħ	11	н	"	и	и	
tert-Amyl methyl ether	ND	5.0	**	н	11	"	n	n	
Tert-butyl alcohol	ND	50	**		n	"	14	н	
Benzene	22	5.0	**	н	11	n	Ħ	ч	
Ethylbenzene	ND	5.0		11	**	41	ч	U	
Toluene	ND	5.0	Ħ	11	ŦŤ	ч	41	19	
Xylenes (total)	ND	10	"	Ħ			11	I 1	
Surrogate: Toluene-d8		99.6 %	60-	140	н	"	11	tr	
MW-8 D65 (CPJ0296-10) Soil	Sampled: 10/05/06 16:23	Received	l: 10/06/0	6 17:50					
Di-isopropyl ether	ND	20	μg/kg	4	CP07822	10/10/06	10/10/06	EPA 8260B	
Ethyl tert-butyl ether	ND	20	17	u	"	tr	**	H	
Methyl tert-butyl ether	ND	20	Ħ	n	**	u	u	n	
tert-Amyl methyl ether	ND	20	**	n	**	u	u	"	
Tert-butyl alcohol	ND	200	**	IT	**	н	н	11	
Benzene	41	20	11	"	u		u	U	
Ethylbenzene	30	20	*1	11	*1	u	н	0	
Toluene	ND	20	**	11	**	n	n	D	
Xylenes (total)	ND	40	"	1	u 	n	"	H	
Surrogate: Toluene-d8		108 %	60-	140	н	"	"	"	

Page 10 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07763 - LUFT-DHS GCNV								-		
Blank (CP07763-BLK1)				Prepared	& Analyz	ed: 10/09/0				
Diesel	ND	1.0	mg/kg	*	·					
LCS (CP07763-BS1)				Prepared	& Analyze	ed: 10/09/0	06			
Diesel	53.2	1.0	mg/kg	50.0		106	65-135		30	
LCS Dup (CP07763-BSD1)		_		Prepared	& Analyza	ed: 10/09/0	06			
Diesel	54.0	1.0	mg/kg	50.0		108	65-135	1.49	30	
Matrix Spike (CP07763-MS1)	So	urce: CPJ029	95-01	Prepared a	& Analyze	ed: 10/09/0)6			
Dieset	118	1.0	mg/kg	50.0	66	104	59-138		37	
Matrix Spike Dup (CP07763-MSD1)	So	urce: CPJ029	95-01	Prepared .	& Analyze	ed: 10/09/0)6			
Diesel	113	1.0	mg/kg	50.0	66	94.0	59-138	4.33	37	

Page 11 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07850 - EPA 5030 Soil GC										
Blank (CP07850-BLK1)				Prepared:	10/10/06	Analyzed	: 10/11/06			
Gasoline	ND	1.0	mg/kg	A		`				
Surrogate: o-Chlorotoluene (Gas)	0.100		"	0.100		100	65-135			
LCS (CP07850-BS1)				Prepared:	10/10/06	Analyzed	: 10/11/06			
Gasoline	1.73	1.0	mg/kg	2.50		69.2	65-135		30	
Surrogate: o-Chlorotoluene (Gas)	0.107		#	0.100		107	65-135			
LCS Dup (CP07850-BSD1)				Prepared:	10/10/06	Analyzed	: 10/11/06			
Gasoline	1.73	1.0	mg/kg	2.50		69.2	65-135	0.00	30	
Surrogate: o-Chlorotoluene (Gas)	0.110		"	0.100		110	65-135			
Matrix Spike (CP07850-MS1)	So	urce: CPJ022	28-19	Prepared:						
Gasoline	1.69	1.0	mg/kg	2.50	ND	67.6	63-124		35	
Surrogate: o-Chlorotoluene (Gas)	0.0920		W	0.100	-	92.0	65-135			
Matrix Spike Dup (CP07850-MSD1)	So	urce: CPJ022	28-19	Prepared:	10/10/06					
Gasoline	1.69	1.0	mg/kg	2.50	ND	67.6	63-124	0.00	35	
Surrogate: o-Chlorotoluene (Gas)	0.0911		"	0.100	••••	91.1	65-135			
Batch CP07870 - EPA 5030 Soil GC										
Blank (CP07870-BLK1)				Prepared	& Analyz	ed: 10/11/0)6			
Gasoline	ND	1.0	mg/kg					-		
Surrogate: o-Chlorotoluene (Gas)	0.0856	-	"	0.100		85.6	65-135			-
LCS (CP07870-BS1)				Prepared a	& Analyz	ed: 10/11/0)6			
Gasoline	2.78	2.0	mg/kg	2.50		111	65-135		30	
Surrogate: o-Chlorotoluene (Gas)	0.115		"	0.100		115	65-135			

Page 12 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07870 - EPA 5030 Soil GC										
LCS Dup (CP07870-BSD1)		• • • • • • • • • • • • • • • • • • •		Prepared	& Analyz	ed: 10/11	/06	<u> </u>		<u> </u>
Gasoline	2.91	2.0	mg/kg	2.50	a Analyz	116	65-135	4.57	30	
Surrogate: o-Chlorotoluene (Gas)	0.113			0.100		113	65-135			<u> </u>
Matrix Spike (CP07870-MS1)	Se	urce: CPJ02:	28-23	Prepared a	& Anoluz	adi 10/11/	INC			
Gasoline	1.99	1.0	mg/kg	2.50	ND	79.6	63-124		35	<u> </u>
Surrogate: o-Chlorotoluene (Gas)	0.109		"	0.100		109	65-135			
Matrix Spike Dup (CP07870-MSD1)	Source: CPJ0228-23			Prepared &	e Amalua	a. 10/11/	0.0			
Gasoline	2.40	1.0	mg/kg	2.50	ND	96.0	63-124	18.7	35	
Surrogate: o-Chlorotoluene (Gas)	0.104			0.100		104	65-135	10.7		
Batch CP07956 - EPA 5030 Soil GC										
Blank (CP07956-BLK1)				Prepared:	10/12/06	Analyzed	10/12/04			
Gasoline	ND	1.0	mg/kg		10/12/00	maryzou	. 10/15/00			
Surrogate: o-Chlorotoluene (Gas)	0.0903		"	0.100		90.3	65-135		·	
LCS (CP07956-BS1)				Prepared.	10/12/04	4 mal	10/12/07			
Jasoline	2.13	1.0	mg/kg	Prepared: 2.50	10/12/00	85.2	65-135			
Surrogate: o-Chlorotoluene (Gas)	0.113		"	0.100		113	65-135		30	
CS Dup (CP07956-BSD1)					10/12/07					
Gasoline	2.19	1.0	mg/kg	Prepared: 1 2,50	10/12/06				<u>_</u>	
Surrogate: o-Chlorotoluene (Gas)	0.118		те/ке "			87.6	65-135	2.78	30	
6 Control (Court	0.110			0.100		118	65-135			

Page 13 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07822 - EPA 5030 Soil MS				·····						
Blank (CP07822-BLK1)				Prenared	& Analyze	ed: 10/10/	/06			
Di-isopropyl ether	ND	5.0	μg/kg	- repaired	de Fullaty2		<u>. </u>			
Ethyl tert-butyl ether	ND	5.0								
Methyl tert-butyl ether	ND	5.0	н							
ert-Amyl methyl ether	ND	5.0	14							
Tert-butyl alcohol	ND	50	11							
Surrogate: Toluene-d8	50.3		"	50.0		101	60-140		<u> </u>	
LCS (CP07822-BS1)				Prepared	& Analyze	ed: 10/10/	06			
Methyl tert-butyl ether	52.4	5.0	μg/kg	50.0		105	60-140	·	30	
Surrogate: Toluene-d8	50.8		н	50.0		102	60-140			
-CS Dup (CP07822-BSD1)				Prepared	& Analyze	d· 10/10/	06			
Methyl tert-butyl ether	51,7	5.0	µg/kg	50.0		103	60-140	1.34	30	
urrogate: Toluene-d8	50.2	<u> </u>	"	50.0		100	60-140			
Aatrix Spike (CP07822-MS1)	Sou	rce: CPJ022	8-23	Prepared:	10/10/06	Analyzed	· 10/11/06			
Aethyl tert-butyl ether	37.1	5.0	μg/kg	50.0	ND	74.2	60-140	,	30	
urrogate: Toluene-d8	49.4		"	50.0		98.8	60-140			
Aatrix Spike Dup (CP07822-MSD1)	Sou	rce: CPJ022	8-23	Prepared:	10/10/06	Analyzed	· 10/11/06			
1ethyl tert-butyl ether	37.8	5.0	μg/kg	50.0	ND	75.6	60-140	1.87	30	
urrogate: Toluene-d8	50.3		"	50.0	·	101	60-140			_ "
atch CP07871 - EPA 5030 Soil MS										
lank (CP07871-BLK1)				Prepared &	& Analuza	d. 10/11/0	· <u> </u>			
i-isopropyl ether	ND	5.0	μg/kg		c Anaryze	u. 10/11/0	······			
thyl tert-butyl ether	ND	5.0	ч <u>в</u> /к <u>в</u>							
lethyl tert-butyl ether	ND	5.0	n							
rt-Amyl methyl ether	ND	5.0								
ert-butyl alcohol	ND	50	n							

CA DOHS ELAP Accreditation/Registration Number 1233

...

50.0

99.8

60-140

49.9

Surrogate: Toluene-d8

Page 14 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07871 - EPA 5030 Soil MS							<u> </u>			
LCS (CP07871-BS1)				Prepared	& Analyz	ed: 10/11/	·			
Methyl tert-butyl ether	53.4	5.0	μg/kg	50.0		107	60-140		30	
Surrogate: Toluene-d8	51.5			50.0		103	60-140			
LCS Dup (CP07871-BSD1)				Prepared	& Analyz	d. 10/11/				
Methyl tert-butyl ether	51.6	5.0	μg/kg	50.0		103	60-140	3,43		
Surrogate: Toluene-d8	50.0							3.43	30	
	50.0			50.0		100	60-140			
Matrix Spike (CP07871-MS1)	Sou	irce: CPJ022	28-18	Prepared:	10/11/06	Analyzed	: 10/12/06			
Methyl tert-butyl ether	37.5	5.0	μg/kg	50.0	ND	75.0	60-140		30	
Surrogate: Toluene-d8	47.8		"	50.0		95.6	60-140			
Matrix Spike Dup (CP07871-MSD1)	Sou	irce: CPJ022	28-18	Prepared:	10/11/06	Analyzad	- 10/12/04			
Methyl tert-butyl ether	30.2	5.0	µg/kg	50.0	ND	60.4	60-140	21.6	30	·
Surrogate: Toluene-d8	47.9	_	"	50.0		95.8	60-140			
Batch CP07952 - EPA 5030 Soil MS										
Blank (CP07952-BLK1)				Prepared &	Analyze	d- 10/13/0		<u>-</u>		
Di-isopropyl ether	ND	5.0	μg/kg	Tropuled c	< maiy 20	u. 10/15/(
Ethyl tert-butyl ether	ND	5.0	<i>гъ</i> -тъ и							
Methyl tert-butyl ether	ND	5.0	4							
ert-Amyl methyl ether	ND	5.0	17							
ert-butyl alcohol	ND	50	n							
Benzene	ND	5.0	U							
thylbenzene	ND	5.0	н							
oluene	ND	5.0	н							
Lylenes (total)	ND	10	"							
urrogate: Toluene-d8	50.0		n	50.0		100	60-140			

Page 15 of 16		10/16/06 14:36
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0296 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07952 - EPA 5030 Soil MS										<u>.</u>
LCS (CP07952-BS1)				Prepared	& Analyze	ed: 10/13/	06			
Methyl tert-butyl ether	48.7	5.0	µg/kg	50.0		97.4	60-140		30	
Surrogate: Toluene-d8	49.7		н	50.0		99.4	60-140			
LCS Dup (CP07952-BSD1)				Prepared a	& Analyze	d: 10/13/	06			
Methyl tert-butyl ether	51.8	5.0	μg/kg	50.0		104	60-140	6.17		
Surrogate: Toluene-d8	49.6		"	50.0		99.2	60-140			
Matrix Spike (CP07952-MS1)	So	arce: CPJ029	6-01	Prepared a						
Methyl tert-butyl ether	45.2	5.0	µg/kg	50.0	ND	90.4	60-140		30	
Surrogate: Toluene-d8	49.0		"	50.0		98.0	60-140			<u> </u>
Matrix Spike Dup (CP07952-MSD1)	Sou	arce: CPJ029	6-01	Prepared a	& Analvze	d: 10/13/0	06			
Methyl tert-butyl ether	49.6	5.0	μg/kg	50.0	ND	99.2	60-140	9.28	30	
Surrogate: Toluene-d8	50.5	. <u>.</u>	"	50.0		101	60-140			

Page 16 of 16

GEOLOGICAL TECHNICS INC.	Project: Sullins	10/16/06 14:36
1101 7th St.	Project Number: 1262.2	CLS Work Order #: CPJ0296
MODESTO, CA 95354	Project Manager: Joe Angulo	COC #:

Notes and Definitions

QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

D-DSL Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

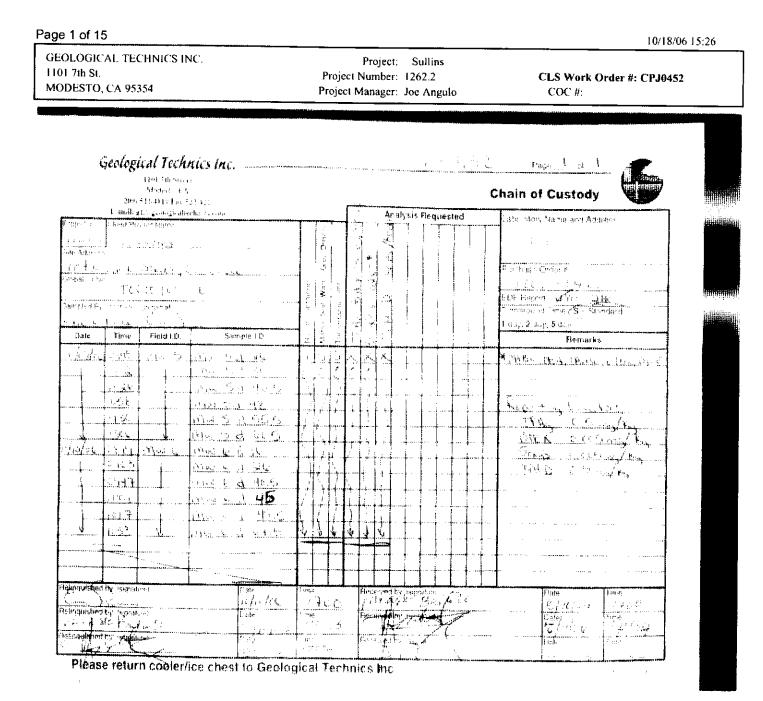
3249 Fitzgerald Road Rancho Cordova, CA 95742

October 18, 2006

CLS Work Order #: CPJ0452 COC #:

Joe Angulo GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354

Project Name: Sullins


Enclosed are the results of analyses for samples received by the laboratory on 10/11/06 17:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

way - Sur y

James Liang, Ph.D. Laboratory Director

Page 2 of 15

Page 2 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyle	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5D 26 (CPJ0452-01) Soil	Sampled: 10/09/06 09:48	Received	: 10/11/0	6 17:00	••••••••••••				
Diesel	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	
MW-5D 36 (CPJ0452-02) Soil	Sampled: 10/09/06 10:12	Received	: 10/11/0	6 17:00					
Diesel	1.1	1.0	mg/kg		CP07957	10/13/06	10/13/06	EPA 8015M	D-DSI
MW-5D 40.5 (CPJ0452-03) Soil	Sampled: 10/09/06 10:2	6 Receive	d: 10/11/	06 17:00					
Diesel	360	5.0	mg/kg	5	CP07957	10/13/06	10/13/06	EPA 8015M	D-DSL
MW-5D 48 (CPJ0452-04) Soil	Sampled: 10/09/06 10:58	Received:	10/11/06	5 17:00					
Diesel	ND	1.0	mg/kg	1	C'P07957	10/13/06	10/13/06	EPA 8015M	
MW-5D 55.5 (CPJ0452-05) Soil	Sampled: 10/09/06 11:3	0 Receive	d: 10/11/	06 17:00					
Diesel	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	
MW-5D 66.5 (CPJ0452-06) Soil	Sampled: 10/09/06 13:00	6 Receive	d: 10/11/	06 17:00					
Diesel	ND	1.0	mg/kg	1	C'P07957	10/13/06	10/13/06	EPA 8015M	
MW-6D 16 (CPJ0452-07) Soil	Sampled: 10/10/06 08:19	Received:	10/11/06	6 17:00					
Diesel	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	
MW-6D 66 (CPJ0452-08) Soil	Sampled: 10/10/06 09:03	Received :	10/11/06	17:00					
Diesel	ND	1.0	mg/kg		CP07957	10/13/06	10/13/06	EPA 8015M	·
MW-6D 40.5 (CPJ0452-09) Soil	Sampled: 10/10/06 09:47			06 17:00					
Diesel	ND	1.0	mg/kg	-	CP07957	10/13/06	10/13/06	EPA 8015M	

Page 3 of 15

1			10/18/06 15:26
	GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6D 45 (CPJ0452-10) Soil	Sampled: 10/10/06 10:01	Received	: 10/11/0	6 17:00					
Diesel	1,1	1.0	mg/kg		C'P07957	10/13/06	10/13/06	EPA 8015M	
MW-6D 49.5 (CPJ0452-11) Soil	Sampled: 10/10/06 10:1	7 Receive	 d: 10/11/	06 17:00			10015/00	LI A BUTJW	D-DSL
Dicseł	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	
MW-6D 67.5 (CPJ0452-12) Soil	Sampled: 10/10/06 11:3	3 Receive	d: 10/11/	06 17:00		10112700	10/15/00	LEA OUTOM	
Diesel	ND	1.0	mg/kg		 CP07957	10/13/06	10/13/06	EPA 8015M	

Page 4 of 15

Page 4 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5D 26 (CPJ0452-01) Soil	Sampled: 10/09/06 09:48	Received	: 10/11/0	6 17:00				•	
Gasoline	ND	1000	μg/kg	 I	CP07987	10/16/06	10/16/06	8015M/8021B	··· #
Benzene	ND	5.0		п	н	"		"	
Toluene	ND	5.0				"			
Ethylbenzene	ND	5.0		н	۲	"	a	н	
Xylenes (total)	ND	10	u 	19	n 	•	D 	".	
Surrogate: o-Chlorotohiene (Gas)		120 %	65-	135		•	"	n	
MW-5D 36 (CPJ0452-02) Soil	Sampled: 10/09/06 10:12	Received	: 10/11/0	6 17:00					
Gasoline	11000	1000	µg/kg		CP07987	10/16/06	10/16/06	8015M/8021B	GAS-1
Benzenc	ND	5.0		n	"	н	•	P	0/10-1
Toluene	21	5.0	U	"	•*			н	
Ethylbenzene	31	5.0		ы		hr.	a	"	
Xylenes (total)	35	10		u		••	"	к	
Surrogate: o-Chlorotoluene (Gas)		406 %	65-	135	"	"	"	н	QS-4
MW-5D 40.5 (CPJ0452-03) Soil	Sampled: 10/09/06 10:20	6 Receive	d: 10/11/	06 17:00					
Gasolíne	110000	20000	μg/kg	20	CP08025	10/18/06	10/18/06	8015M/8021B	
Benzene	1100	100	*	н	u		n	0015Mi/0021D	
Toluene	1400	100	++	.,		*1		0	
Ethylbenzene	1200	100		"	u		ti		
Xylenes (total)	5700	200	**	н — <u>—</u>	**	"		"	
Surrogate: o-Chlorotoluene (Gas)		77.0 %	65-1	135	"	"	"	"	-
MW-5D 48 (CPJ0452-04) Soil	Sampled: 10/09/06 10:58	Received:	10/11/06	5 17:00					
Gasoline	7600	1000	µg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	
Benzene	190	5.0	н		н		н	*	
Foluene	25	5.0	44	"	н	"	44	•	
Ethylbenzene	67	5.0	н	U	*			.,	
Kylenes (total)	160	10	"	*	*		0	n	
Surrogate: o-Chlorotoluene (Gas)		82.7 %	65-1	35	и	"	н	v	

Page 5 of 15

ł

Page 5 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5D 55.5 (CPJ0452-05) Soil	Sampled: 10/09/06 11:3	Receiv	ed: 10/11	/06 17:00					
Gasoline	75000	20000	μg/kg	20	CP08025	10/18/06	10/18/06	8015M/8021B	
Benzene	180	100			н	**	н	"	
Toluene	130	100	**	"	*	н	"		
Ethylbenzene	670	100				4	ч	24	
Xylenes (total)	530	200	D	н	••		ч	D	
Surrogate. a-Chlorotoluene (Gas)		138 %	65-	135	"	н	"	.,	QS-4
MW-5D 66.5 (CPJ0452-06) Soil	Sampled: 10/09/06 13:06	Receiv	ed: 10/11	/06 17:00					Συ .
Gasoline	ND	1000	µg/kg	i	CP07987	10/16/06	10/16/06	8015M/8021B	
Benzene	ND	5.0			"	"	н	"	
Toluene	ND	5.0	"	н		••	4	E1	
Ethylbenzene	ND	5.0		0		13	6	н	
Xylenes (total)	ND	10		••	41	n	n	**	
Surrogate: o-Chlorotoluene (Gas)		99.4 %	65-	135	"	"	"	u	
MW-6D 16 (CPJ0452-07) Soil S	ampled: 10/10/06 08:19	Received	: 10/11/0	6 17:00					
Gasoline	ND	1000	µg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	
Benzene	ND	5.0		+	н	"	н (<i>р.</i> 1 (<i>р.</i> (<i>р</i>)) М	00101010100211D	
Foluene	ND	5.0		*	н	ц	+*		
Ethylbenzene	ND	5.0	**		**	"	*		
Xylenes (total)	ND	10	"		rr		н	0	
Surrogate: o-Chlorotoluene (Gas)		125 %	65-1	135	"	p	*	"	
MW-6D 66 (CPJ0452-08) Soil S	ampled: 10/10/06 09:03	Received	: 10/11/00	5 17:00					
Gasoline	ND	1000	µg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	
Benzene	ND	5.0	*	4	"	н	4	0010101002115	
foluene	ND	5.0	н	۹		••	ч	u.	
Ethylbenzene	ND	5.0	**		*1	a	D.		
(ylenes (total)	ND	10		•	•		*1	u	
urrogate: o-Chlorotoluene (Gas)		128 %	65-1	135	"		"	"	

Page 6 of 15

Page 6 of 15	······	10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	teporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-6D 40.5 (CPJ0452-09) Soil	Sampled: 10/10/06 09:47	Receiv	ed: 10/11	/06 17:00				· · ·	
Gasoline	ND	1000	μg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	······
Benzene	ND	5.0	4	и	**	**	л	n	
Toluene	ND	5.0	н	R	**	н		ŧr	
Ethylbenzene	ND	5.0		14	n	*			
Xylenes (total)	ND	10	n	•		6	¥	n	
Surrogate: o-Chlorotoluene (Gas)		131 %	65-	135	"		"	0	
MW-6D 45 (CPJ0452-10) Soil 5	Sampled: 10/10/06 10:01	Received	l: 10/11/0	6 17:00					
Gasoline	7200	1000	µg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	GAS-I
Benzene	ND	5.0	н н	н	19	n	"	*	10/10-1
Toluene	22	5.0		11		н	"		
Ethylbenzene	14	5.0				п			
Xylenes (total)	ND _	10	.		"	u	••	н	
Surrogate: o-Chlorotoluene (Gas)		112 %	65-	135	"		"	0	
MW-6D 49.5 (CPJ0452-11) Soil	Sampled: 10/10/06 10:17	Receive	ed: 10/11/	06 17:00					
Gasoline	1200	1000	μ <u>g</u> /kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	GAS-I
Benzene	ND	5.0	10	4		u –	н	001200120020120	0/13-1
Toluene	9.1	5.0		*1	U	a	11		
Ethylbenzene	5.2	5.0		D	н				
Xylenes (total)	ND	10	*1	и .	+1	- "		"	
Surrogate: o-Chlorotohiene (Gas)		147%	65-	135	n	"		"	<i>QS-4</i>
MW-6D 67.5 (CPJ0452-12) Soil	Sampled: 10/10/06 11:33	Receive	ed: 10/11/	06 17:00					2
Gasoline	ND	1000	µg/kg	1	C'P07987	10/16/06	10/16/06	8015M/8021B	
	ND	5.0	*	"	*1	4	*	"	
Benzene	ND I			b.	*1		м		
Toluene	ND	5.0	и	15					
		5.0 5.0	51 19	и		"	"		
Toluene	ND			и		11 11			

Page 7 of 15

Page 7 of 15	·	10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5D 26 (CPJ0452-01) Soil	Sampled: 10/09/06 09:48	Received:	10/11/0	6 17:00					
Di-isopropyl ether	ND	5.0	μg/kg	1	CP08052	10/17/06	10/18/06	EPA 8260B	.
Ethyl tert-butyl ether	ND	5.0	#		ħ	n	11	15	
Methyl tert-butyl ether	ND	5.0	41	н	44	n		**	
tert-Amyl methyl ether	ND	5.0	11	"	14	**	*1	*1	
Tert-butyl alcohol	ND	50			*		n		
Surrogate: Toluene-d8		95.0 %	60-	140	h	п	"	"	
MW-5D 36 (CPJ0452-02) Soil	Sampled: 10/09/06 10:12	Received:	10/11/0	6 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08002	10/11/06		EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	17	н		"	D	v	
Methyl tert-butyl ether	ND	5.0		11	н	"	.,		
tert-Amyl methyl ether	ND	5.0	"	"					
Tert-butyl alcohol	ND	50	14	**			н	n	
Surrogate: Toluene-d8		99.2 %	60-	140	14	n	11	"	
MW-5D 40.5 (CPJ0452-03) Soil	Sampled: 10/09/06 10:2	6 Received	d: 10/11	/06 17:00					QRL-5
Di-isopropyl ether	ND	250	µg/kg	50	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	ND	250	"	ч	n	**		н	
Methyl tert-butyl ether	ND	250		a	"	н	*1	н	
ert-Amyl methyl ether	ND	250	71	4	tı.		11	a	
Tert-butyl alcohol	ND	2500	"	n	*1	u 		"	
Surrogate: Toluene-d8		96.2 %	60-	140	"	4	n	"	
MW-5D 48 (CPJ0452-04) Soil	Sampled: 10/09/06 10:58	Received:	10/11/0	6 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	NÐ	5.0	г <i>а</i> -те и		*	"	10.10/00	4 H	
Methyl tert-butyl ether	ND	5.0	17	н	+1	ч		ч	
ert-Amyl methyl ether	ND	5.0	*1		••		16	n	
Fert-butyl alcohol	ND	50	¥I	м	"		11	U	
Surrogate: Toluene-d8		102 %	60-	140	м	**	н	"	

Page 8 of 15

Page 8 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Ceporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5D 55.5 (CPJ0452-05) Soil	Sampled: 10/09/06 11:30	Receiv	ed: 10/11	/06 17:00					·
Di-isopropyl ether	ND	5.0	µg/kg		CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl terl-butyl ether	ND	5.0		"				"	
Methyl tert-butyl ether	ND	5.0		1+	"	"	a	"	
tert-Amyl methyl ether	ND	5.0	••		*	t+	•	u	
Tert-butyl alcohol	ND	50	"	"	н	n 	n 	u 	
Surrogate: Toluene-d8		98.2 %	60-	140	"	"	"	**	
MW-5D 66.5 (CPJ0452-06) Soil	Sampled: 10/09/06 13:06	Receive	ed: 10/11	/06 17:00					
Di-isopropyl ether	ND	5.0	μg/kg	I	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0			и		P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Methyl tert-butyl ether	ND	5.0	•	a		**			
tert-Amyl methyl ether	ND	5.0	15	v				.,	
Tert-butyl alcohol	ND	50			•	"		м.	
Surrogate: Toluene-d8		958%	60-	140	"	"	**	"	
MW-6D 16 (CPJ0452-07) Soil S	ampled: 10/10/06 08:19	Received	: 10/11/0	6 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08002	10/11/06	10/17/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	107 6	+4	4	*	"	1.1 A 6200B	
Methyl tert-butyl ether	ND	5.0	н	**	**	*	"		
lert-Amyl methyl ether	ND	5.0	n	н	"			"	
Fert-butyl alcohol	ND	50	"	"	¥		n	,*	
Surrogate: Toluene-d8		94.6 %	60-1	140	м	"	"		
MW-6D 66 (CPJ0452-08) Soil S	ampled: 10/10/06 09:03	Received	: 10/11/06	5 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	, p	"		10/17/00	10/16/00	CPA 8260B	
Methyl tert-butyl ether	ND	5.0		ŋ	н	11	**		
ert-Amyl methyl ether	ND	5.0	a	**		••	и		
Tert-butyl alcohol	ND	50	н	11	"		**	н	
Surrogate: Toluene-d8		95.0 %	60-1	140	,,	"	"	"	

Page 9 of 15

;

Page 9 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th Si. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-6D 40.5 (CPJ0452-09) Soil	Sampled: 10/10/06 09:4	7 Receiv	ed: 10/11	/06 17:00				· · · · · · ·	
Di-isopropyl ether	ND	5.0	μg/kg	1	CP08052	10/17/06	10/18/06	EPA 8260B	<u> </u>
Ethyl tert-butyl ether	ND	5.0		н	н	17	"	"	
Methyl tert-butyl ether	ND	5.0	"	n	"		"	"	
tert-Amyl methyl ether	ND	5.0		"	••	n	н	μ	
Tert-butyl alcohol	ND		n 	n 	n 		•		
Surrogate: Toluene-d8		96.0 %	60-	140	n	"	44	"	
MW-6D 45 (CPJ0452-10) Soil	Sampled: 10/10/06 10:01	Received	1: 10/11/0	6 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	I	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	4	н	U	н	li -	.,	
Methyl tert-butyl ether	ND	5.0	*1		"	"	н		
tert-Amyl methyl ether	ND	5.0	*1	н		*	"	IT	
Tert-butyl alcohol	ND	50	11	н	u 			74	
Surrogate: Toluene-d8		101 %	60-	140	"	"	"	"	
MW-6D 49.5 (CPJ0452-11) Soil	Sampled: 10/10/06 10:17	7 Receive	ed: 10/11	/06 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	C'P08052	10/17/06	10/18/06	ЕРА 8260В	
Ethyl tert-butyl ether	ND	5.0	н	U U		۹	ч	41	
Methyl tert-butyl ether	ND	5.0	Ħ	"	ų	11			
ert-Amyl methyl ether	ND	5.0	н	"	ч	11		•	
Tert-butyl alcohol	ND	50	н 	"	.	a	u 	ıf	
Surrogate: Toluene-d8		95.4 %	60-	140	"	"	tr	34	
MW-6D 67.5 (CPJ0452-12) Soil	Sampled: 10/10/06 11:33	8 Receive	ed: 10/11	/06 17:00					
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08052	10/17/06	10/18/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0		н	н	**		n n	
Methyl lert-butyl ether	ND	5.0	U.	н	٣	11	**	۲	
ert-Amyl methyl ether	ND	5.0	0	r	*	"	**	u	
Tert-butyl alcohol	ND	50	0		17	и	**	19	
Surrogate: Toluene-d8		96.4 %	60-	140	м	и		17	

Page 10 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07957 - LUFT-DHS GCNV			-						·	
Blank (CP07957-BLK1)				Prepared	& Analyze	ed: 10/13/	06			
Diesel	ND	1.0	me/kg	<u>/</u>						
Motor Oil	ND	1.0								
Hydraulic Oil	ND	1.0	н							
Mineral Oil	ND	1.0								
Kerosene	ND	10								
LCS (CP07957-BS1)				Prepared a	& Anaivze	ed: 10/13/	06			
Diesel	43.9	1.0	mg/kg	50.0	,	87.8	65-135		30	
CS Dup (CP07957-BSD1)				Prepared 4	& Analyze	:d: 10/13/	06			
Diesel	57.8	10	mg/kg	50,0	· · · · · · · · · · · · · · · · · · ·	116	65-135	27.3	30	
Matrix Spike (CP07957-MS1)	Sou	irce: CPJ04;	52-05	Prepared a	& Analyze	:d: 10/13/0	06			
Diesel	46.6	1.0	mg/kg	50.0	0.18	92.8	59-138		37	
Matrix Spike Dup (CP07957-MSD1)	Sou	irce: CPJ04	52-05	Prepared & Analyzed: 10/13/06)6			
Diesel	47 7	1.0	mg/kg	50.0	0.18	95.0	59-138	2.33	37	

Page 11 of 15

Ethylbenzene

Xylenes (total)

Page 11 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Gas/BTEX by GC PID/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07987 - EPA 5030 Soil GC										
Blank (CP07987-BLK1)				Prepared	& Analyz	ed: 10/16/	06			
Gasotine	ND	1000	µg/kg	· · · · · · · · · · · · · · · · · · ·	······································			• • • • •		
Benzene	ND	5.0								
Toluene	ND	5.0	н							
Ethylbenzene	ND	5.0	ħ							
Xylenes (total)	ND	10	•†							
Surrogate: o-Chlorotoluene (BTEX)	134		~	100		134	65-135			
Surrogate: o-Chlorotoluene (Gas)	124			100		124	65-135			
LCS (CP07987-BS1)				Prepared	& Analyze	:d: 10/16/	06			
Gasoline	2360	1000	μg/kg	2500		94.4	65-135		30	
Surrogate: o-Chlorotoluene (Gas)	128	· · · · · · · · · · · · · · · · · · ·		100		128	65-135			4
LCS Dup (CP07987-BSD1)				Prepared a	& Analyza	-d-10/16/	Ù6			
Gasoline	2500	1000	µg/kg	2500		100	65-135	5.76	30	
Surrogate: 0-Chlorotohiene (Gas)	123	· ·· · · · · · · · · · · · · · · · ·		100		123	65-135			
Matrix Spike (CP07987-MS1)	So	urce: CPJ044	48-12	Prepared a	& Analvze	:d: 10/16/	06			
Gasoline	2300	1000	µg/kg	2500	ND	92.0	63-124		35	
Surrogate: o-Chlorotoluene (Gas)	124		~	100		1.24	65 135			· · · · ·
Matrix Spike Dup (CP07987-MSD1)	So	urce: CPJ044	48-12	Prepared a	& Analyze	:d: 10/16/0	06			
Gasoline	2220	1000	µg/kg	2500	ND	88.8	63-124	3.54	35	
Surrogate: o-Chlorotoluene (Gas)	122		n	100	·	122	65-135			
Batch CP08025 - EPA 5030 Soil GC										
Blank (CP08025-BLK1)				Prepared &	& Analyze	d-10/18/	<u> </u>	·		<u> </u>
Gasoline	ND	1000	µg/kg	. repared (~	a. roriga				
Benzene	ND	5.0	re «e							
Toluene	ND	5.0	n							

CA DOHS ELAP Accreditation/Registration Number 1233

5.0

10

U

0

ND

ND

Page 12 of 15

GEOLOGICAL TECHNICS INC.	Project: Sullins	
1101 7th St.	Project Number: 1262.2	CLS Work Order #: CPJ0452
MODESTO, CA 95354	Project Manager: Joe Angulo	COC #:

Gas/BTEX by GC PID/FID - Quality Control

10/18/06 15:26

Anałyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP08025 - EPA 5030 Soil GC		_								
Blank (CP08025-BLK1)				Prepared a	& Analyza	ed: 10/18/	06			
Surrogate: o Chlorotoluene (BTEX)	136		$\mu g/kg$	100		136	65-135			QS-H
Surrogate: 0-Chloroioluene (Gas)	121		"	100		121	65-135			£
LCS (CP08025-BS1)				Prepared a	& Analyza	:d: 10/18/	'06			
Gasoline	2180	1000	μք/եք	2500	-	87.2	65-135		30	
Surrogate. o-Chlorotoluenc (Gas)	125		"	100		125	65-135			
LCS Dup (CP08025-BSD1)				Prepared a	& Analyze	:d: 10/18/	06			
Gasoline	2260	1000	µg/kg	2500	·····, ···	90.4	65-135	3.60	30	
Surrogate: o-Chlorotoluene (Gas)	129		15	100		129	65 135			
Matrix Spike (CP08025-MS1)	So	urce: CPJ053	31-08	Prepared a	& Analyze	ed: 10/18/	06			
Gasoline	2020	1000	µg/kg	2500	ND	80.8	63-124		35	
Surrogate: o-Chlorotoluene (Gas)	131		*	100		131	65-135			
Matrix Spike Dup (CP08025-MSD1)	So	urce: CPJ053	31-08	Prepared a	& Analyze	:d: 10/18/	06			
Gasoline	2030	1000	µg/kg	2500	ND	81.2	63-124	0.494	35	
Surrogate: o-Chlorotoluene (Gas)	120		"	100		120	65-135			

Page 13 of 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP08002 - EPA 5030 Soil MS										
Blank (CP08002-BLK1)				Prepared	10/16/06	Analyzed	10/17/06			
Di-isopropyl ether	ND	5.0	µg/kg	1		, and y Lea	10,11,00			
Ethyl tert-butyl ether	ND	5.0								
Methyl tert-butyl ether	ND	5.0	н							
tert-Amyl methyl ether	ND	5.0	н							
Tert-butyl alcohol	ND	50								
Surrogate: Toluene-d8	48.4		"	50.0		96.8	60-140			
LCS (CP08002-BS1)				Prenared	10/16/06	Analyzed:	10/17/06			
Methyl tert-butyl ether	42.5	5.0	μg/kg	50.0	10/10/00	85.0	60-140		30	
Surrogate Toluene-d8	49.1		"	50.0		98.2	60-140		50	
LCS Dup (CP08002-BSD1)				Prepared	10/16/06	Analyzed:	10/17/06			
Methyl tert-butyl ether	44.6	5.0	µg/kg	50,0	.010/00	89.2	60-140	4.82	30	
Surrogate [.] Toluene-d8	47.5		"	50.0		95.0	60-140			
Matrix Spike (CP08002-MS1)	Sou	rce: CPJ068	15-05	Prepared:	10/16/06	Analyzed:	10/17/06			
Methyl tert-butyl ether	35.3	5.0	μg/kg	50.0	ND	70.6	60-140		30	
Surrogate: Toluene-d8	46.5			50.0		91.0	60-140			
Matrix Spike Dup (CP08002-MSD1)	Sou	rce: CPJ068	5-05	Prenared	10/16/06	Analyzed:	10/17/06			
Acthyl tert-butyl ether	34.1	5.0	µg/kg	50.0	ND	68.2	60-140	3.46	30	
Surrogate: Toluene-d8	45.0		, с с "	\$0.0		90.0	60-140			
Batch CP08052 - EPA 5030 Soil MS										
Blank (CP08052-BLK1)				Prepared	10/17/06	Analyzed:	10/18/06			
Di-isopropyl ether	ND	5,0	µg/kg				10/10/00			
thyl tert-butyl ether	ND	5,0	*****							
Aethyl tert-butyl ether	ND	5.0	*1							
rt-Amyl methyl ether	ND	5.0	٠							
ert-butyl alcohol	ND	50	T1							
urrogate: Toluene-d8	48.0			50.0		96.0	60-140			

Page 14 of 15

Page 14 01 15		10/18/06 15:26
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP08052 - EPA 5030 Soil MS										
LCS (CP08052-BS1)				Prepared:	10/17/06	Analyzed:	10/18/06			
Methyl tert-butyl ether	20.3	5.0	µg/kg	18.0		113	60-140	····-	30	
Surrogate. Toluene-d8	49.9		"	50.0		99.8	60-140		20	
CS Dup (CP08052-BSD1)				Prepared:	10/17/06	Analyzed:	10/18/06			
Aethyl tert-butyl ether	21.5	5,0	μg/kg	18.0		119	60-140	5 74	30	
urrogate. Toluene-d8	50.0		"	50.0		100	60-140	511	200	
Aatrix Spike (CP08052-MS1)	Sou	rce: CPJ045	52-09	Prepared:	10/17/06	Analyzed:	10/18/06			
Acthyl tert-butyl ether	45.9	5.0	µg/kg	50.0	ND	91.8	60-140		30	
urrogate Toluene-d8	47.6		"	50.0		<u>95 2</u>	60-140			
Aatrix Spike Dup (CP08052-MSD1)	Sou	rce: CPJ045	2-09	Prepared:	10/17/06	Analyzed:	10/18/06			
fethyl tert-butyl ether	46.7	5.0	μg/kg	50.0	ND	93.4	60-140	1.73	30	
urrogate: Toluene-d8	47.4		"	50.0		94.8	60-140		20	

Page 15 of 15

GEOLOGICAL TECHNICS INC. Project: Sullins	
1101 7th St.Project Number: 1262.2MODESTO, CA 95354Project Manager: Joe Angulo	CLS Work Order #: CPJ0452 COC #:

10/18/06 15:26

Notes and Definitions

- QS-H1 Surrogate recovery was greater than the upper control limit. A reanalysis was not performed since the analytes associated with the surrogate were not detected.
- QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- QRL-5 The sample was diluted due to the presence of high levels of non-target analytes or matrix interference resulting in elevated reporting limits.
- GAS-1 Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- D-DSL Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 18, 2006

CLS Work Order #: CPJ0448 COC #:

Joe Angulo GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354

Project Name: Sullins

Enclosed are the results of analyses for samples received by the laboratory on 10/11/06 17:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

and a start and a start and a start a s

James Liang, Ph.D. Laboratory Director

ł

e 1 of 10	Project: Sullins	10/18/06
EOLOGICAL TECHNICS INC. 01 7th St. ODESTO, CA 95354	CLS Work Order #: CPJ0448 COC #:	
Geological Technics Inc.		Chain of Custody
. 2097 572-01394 E. v. 522 (1997) Comard, gita Gigenbigis, albectaister, com	Analysis Requested	
Provide Chemic Product Pipers Jensis Chemic Product Pipers Jensis Chemic Product Pipers Jensis Chemic Product Pipers Trans of Fig. 2011 (1999) Date Trans Figlig 4.0 Semple 1.0		Fill i to Soch oraș Alberta File Schaldagore Alberta E d'Egreco articulă și articulă E d'Egreco articulă și articulă Concense e Societă E der 2 con 5 con Elemarkă
		· · · · · · · · ·
Patricipal bolt of comparisons (1997) Patricipal to comparisons (1997) P		Tarren 10-10-10-10-10-10-10-10-10-10-10-10-10-1

Page 2 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0448 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Composite Soil Composite A	A-D-G (CPJ0448-04) Soil	Sampled: 10	/10/06 00:0) Rece	ived: 10/11	1/06 17:00			
Diesel	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	
Composite Soil Composite B	8-E-H (CPJ0448-08) Soil	Sampled: 10	/10/06 00:00) Recei	ived: 10/11	/06 17:00			
Diesel	4.2	1.0	mg/kg	Î	CP07957	10/13/06	10/13/06	EPA 8015M	D-DSI
Composite Soil Composite C	C-F-1 (CPJ0448-12) Soil	Sampled: 10/	10/06 00:00	Receiv	ed: 10/11/	06 17:00			
Diesel	ND	1.0	mg/kg	1	CP07957	10/13/06	10/13/06	EPA 8015M	

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 3 of 10

age 3 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC.	Project: Sullins	
1101 7th St.	Project Number: 1262.2	CLS Work Order #: CPJ0448
MODESTO, CA 95354	Project Manager: Joe Angulo	COC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Composite Soil Composite A-D-G (CPJ0448-04) Soil		Sampled: 10	/10/06 00	:00 Rece	ived: 10/11	/06 17:00		·····	
Gasoline	6200	1000	μg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	GAS-1
Benzene	ND	5.0	•	**	и			н	
Toluene	13	5.0	п	ъ	"	11		n	
Ethylbenzene	15	5.0		(†	U U	h	и	н	
Xylenes (total)	ND	10	"	м	85	J#	H	17	
Surrogate: 0-Chlorotoluene (Gas)		113 %	65-	135		11	"	"	
Composite Soil Composite B-E-H (CPJ	10448-08) Soil	Sampled: 10	/10/06-00:	00 Recei	ved: 10/11	/06 17:00			
Gasoline	12000	1000	μg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	GAS-1
Benzene	ND	5.0	"	Ð	ч	0	н	"	
Toluene	ND	5.0		**	•			17	
Ethylbenzene	22	5.0	"	11	9		u	FT	
Xylen <u>es (total)</u>	69	10	н.	• ·	a 	"	u	ц. 	
Surrogate: o-Chlorotoluene (Gas)		439 %	65-	135		"		"	QS-4
Composite Soil Composite C-F-I (CPJ)	0448-12) Soil	Sampled: 10/	0/06 00:0	0 Receiv	ed: 10/11/	06 17:00			
Gasoline	ND	1000	 μg/kg	1	CP07987	10/16/06	10/16/06	8015M/8021B	
Benzene	ND	5.0	"	*		"	*	в	
Toluene	ND	5.0			н	14	u	1+	
Ethylbenzene	ND	5.0		а	•	71		"	
Xylenes (total)	NĐ	10	н	u	и	P	u	н.	
Surrogate: o-Chlorotoluene (Gas)		106 %	65-,	135	"	"		"	

Page 4 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC.	Project: Sullins	
1101 7th St.	Project Number: 1262.2	CLS Work Order #: CPJ0448
MODESTO, CA 95354	Project Manager: Joe Angulo	COC #:

Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Composite Soil Composite A-l)-G (CPJ0448-04) Soil	Sampled: 10	/10/06 00:0	0 Rece	ived: 10/11	/06 17:00			
Lead	ND	2.5	mg/kg	1	CP07998	10/16/06	10/17/06	EPA 6010B	
Composite Soil Composite B-F	E-H (CPJ0448-08) Soil	Sampled: 10	/10/06 00:01	0 Recei	ived: 10/11	/06 17:00			
Lead	6.9	2.5	mg/kg	I	CP07998	10/16/06	10/17/06	EPA 6010B	
Composite Soil Composite C-I	-1 (CPJ0448-12) Soil	Sampled: 10/	10/06 00:00	Receiv	ved: 10/11/	06 17:00			
Lead	ND	2.5	mg/kg	I	CP07998	10/16/06	10/17/06	EPA 6010B	

Page 5 of 10	e 5 of 10
--------------	-----------

	10/18/06 15:59
GEOLOGICAL TECHNICS INC. Project: Sullins 1101 7th St. Project Number: 1262.2 CLS Work Order MODESTO, CA 95354 Project Manager: Joe Angulo COC #:	#: CPJ0448

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Composite Soil Composite A-D-G (CPJ0448-04) Soil	Sampled: 10	/10/06 00	:00 Rece	ived: 10/1	/06 17:00			
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08002	10/11/06	10/17/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0		*		н	34		
Methyl tert-butyl ether	ND	5.0	•	*	.,		0	n	
tert-Amyl methyl ether	ND	5.0	U	*	"	n			
Tert-butyl alcohol	ND	50	н	"	"	•	H 	*	
Surrogate: Toluene-d8		102 %	60-	140	"	v	"		
Composite Soil Composite B-E-H ((CPJ0448-08) Soil	Sampled: 10	/10/06-00:	00 Recei	ved: 10/11	/06 17:00			
Di-isopropyl ether	ND	5.0	µg/kg	1	CP08002	10/11/06	10/18/06	FPA 8260B	
Ethyl tert-butyl ether	ND	5.0	4	"	"	4	41		
Methyl tert-butyl ether	ND	5.0	•		**		11		
tert-Amyl methyl ether	ND	5.0		n	**	"	-1		
Tert-butyl alcohol	ND	50	"	n 		н	v	"	
Surrogate: Toluene-d8		107 %	60-	140		n	"	"	
Composite Soil Composite C-F-I (C	PJ0448-12) Soil	Sampled: 10/1	0/06 00:0	0 Receiv	red: 10/11/	06 17:00			
Di-isopropyl ether	ND	5,0	µg/kg	1	CP08002	10/11/06	10/17/06	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	"	41		ч	,		
Methyl tert-butyl ether	ND	5.0	"	*1	н	"	v	"	
tert-Amyl methyl ether	ND	5.0	"			**		м	
Tert-butyl alcohol	ND	50	n		u -		н	n 	
Surrogate: Toluene-d8		94.0 %	60-1	140	"	"	*		

Page 6 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0448 COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07957 - LUFT-DHS GCNV										
Blank (CP07957-BLK1)				Prepared a	& Analyze	ed: 10/13/	06			
Diesel	ND	1.0	mg/kg	•						
Motor Oil	ND	1.0	19							
Hydraulie Oil	ND	1.0	71							
Mineral Oil	ND	1.0	**							
Kerosene	ND	1.0	н							
.CS (CP07957-BS1)				Prepared a	& Analyze	d: 10/13/0	96			
Diesel	43.9	1.0	mg/kg	50.0	-	87.8	65-135		30	
CS Dup (CP07957-BSD1)				Prepared a	& Analyze	d: 10/13/0	96			
Diesel	57.8	1.0	mg/kg	50.0	F	116	65-135	27.3	30	
Matrix Spike (CP07957-MS1)	So	arce: CPJ045	52-05	Prepared a	& Analyze	ed: 10/13/6	06			
Diesel	46.6	1.0	mg/kg	50.0	0.18	92.8	59-138		37	
Matrix Spike Dup (CP07957-MSD1)	So	urce: CPJ04	52-05	Prepared &	& Analyze	:d: 10/13/0)6			
Diesel	47.7	1.0	mg/kg	50.0	0.18	95.0	59-138	2.33	37	

Page 7 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0448 COC #:

Gas/BTEX by GC PID/FID - Quality Control

Tolucne ND 5.0 Ethylbenzene ND 5.0 Xylenes (total) ND 10 Surrogate: o-Chlorotoluene (BTEX) 134 100 134 65-135 Surrogate: o-Chlorotoluene (Gas) 124 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 Prepared & Analyzed: 10/16/06 30 Surrogate: o-Chlorotoluene (Gas) 128 100 128 65-135 LCS Dup (CP07987-BSD1) Prepared & Analyzed: 10/16/06 <		RPD Limit	RPD	%REC Limits	%REC	Source Result	Spike Level	Units	Reporting Limit	Result	Analyte
Gasoline ND 1000 $\mu g/kg$ Benzene ND 5.0 " Toluene ND 5.0 " Ethylbenzene ND 5.0 " Surrogate: o-Chlorotoluene (BTEX) 134 " 100 134 65-135 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 65-135 LCS Dup (CP07987-BS1) Prepared & Analyzed: 10/16/06 Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 65-135 LCS Dup (CP07987-BS1) Prepared & Analyzed: 10/16/06 Gasoline 2500 1000 $\mu g/kg$ 2500 100 65-135 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65-135 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/											Batch CP07987 - EPA 5030 Soil GC
Gasoline ND 1000 $\mu g/kg$ Benzene ND 5.0 " Toluene ND 5.0 " Ethylbenzene ND 5.0 " Xylenes (total) ND 10 " Surrogate: o-Chlorotoluene (BTEX) 134 " 100 134 65-135 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 1060 128 65-135 30 Surrogate: o-Chlorotoluene (Gas) 128 " 100 128 65-135 30 Surrogate: o-Chlorotoluene (Gas) 128 " 100 128 65-135 30 Surrogate: o-Chlorotoluene (Gas) 128 " 100 128 65-135 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 5.76 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65-135 30 Surrogate: o-Chlorotoluene (Gas) 123 " 1000 123				 D6	:d: 10/16/0	k Analyze	Prepared &				Blank (CP07987-BLK1)
Benzene ND 5.0 " Toluene ND 5.0 " Ethylbenzene ND 5.0 " Xylenes (total) ND 10 " Surrogate: o -Chlorotoluene (BTEX) 134 " 100 124 $65-135$ LCS (CP07987-BS1) Tolo " " 100 124 $65-135$ Surrogate: o -Chlorotoluene (Gas) 124 " 100 124 $65-135$ LCS (CP07987-BS1) Prepared & Analyzed: $10/16/06$ Test (1000) $\mu g/kg$ 2500 94.4 $65-135$ 30 Surrogate: o -Chlorotoluene (Gas) 128 " 100 128 $65-135$ 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Test (1000) $\mu g/kg$ 2500 100 $65-135$ 30 Surrogate: o -Chlorotoluene (Gas) 123 " 100 123 $65-135$ 30 Surrogate: o -Chlorotoluene (Gas) 123 " 100 123 $65-135$ 30 Surrogate: o -Chlorotoluene (Ga							· - <u></u> · · ·	µg∕kg		ND	Gasoline
Ethylbenzene ND 5.0 " Xylenes (total) ND 10 " Surrogate: o-Chlorotoluene (BTEX) 134 " 100 124 65-135 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 30 30 Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 65-135 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: 10/16/06 5.135 30 30 Gasoline 2500 1000 $\mu g/kg$ 2500 94.4 65-135 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: 10/16/06 30 30 30 30 30 30 Gasoline 2500 1000 $\mu g/kg$ 2500 100 65-135 5.76 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65-135 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65-135 30 Surrogate: o-Chlorotoluene (Gas)									5.0	ND	Benzene
ND 10 10 Surrogate: a -Chlorotoluene (BTEX) 134 " 100 134 65-135 Surrogate: a -Chlorotoluene (Gas) 124 " 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 Prepared & Analyzed: 10/16/06 30 Gasoline 2360 1000 µg/kg 2500 94.4 65-135 30 LCS (CP07987-BS1) Prepared & Analyzed: 10/16/06 Prepared & Analyzed: 10/16/06 30 30 Surrogate: a -Chlorotoluene (Gas) 128 " 100 128 65-135 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: 10/16/06 93 93 93 93 93 93 93 93 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 35 30 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 35 35 Surrogate: a -Chlorotoluene (Gas) 124 "100 124 65-135 35									5.0	ND	Toluene
Surrogate: o-Chlorotoluene (BTEX) 134 " 100 134 65-135 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135 LCS (CP07987-BS1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ 30 Gasoline 2360 1000 µg/kg 2500 94.4 65-135 30 Surrogate: o-Chlorotoluene (Gas) 128 " 100 128 65-135 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ 30 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 55.76 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 55.76 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65.135 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65.135 30 Surrogate: o-Chlorotoluene (Gas) 123 " 100 123 65.135 30 Surrogate: o-Chlorotoluene (Gas) 124 "								*1	5.0	ND	Ethylbenzene
Surrogate. o-Chlorotoluene (Gas) 124 100 134 $65-135$ LCS (CP07987-BS1) Prepared & Analyzed: $10/16/06$ Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 128 n 100 128 $65-135$ 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ $65-135$ 30 Gasoline 2500 1000 $\mu g/kg$ 2500 100 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 123 n 100 128 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 123 n 1000 $\mu g/kg$ 2500 100 $65-135$ 5.76 30 Surrogate: o-Chlorotoluene (Gas) 123 n 1000 123 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 123 n 1000 123 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 124 n n n n n n <								ч	10	ND	Xylenes (total)
Surrogate. o-Chlorotoluene (Gas) 124 " 100 124 $65-135$ LCS (CP07987-BS1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ 30 Gasoline 2360 1000 $\mu g' kg$ 2500 94.4 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 128 100 $\mu g' kg$ 2500 94.4 $65-135$ 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ $65-135$ 30 Gasoline 2500 1000 $\mu g' kg$ 2500 100 $65-135$ 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: $10/16/06$ $63-124$ 35 Surrogate: o-Chlorotoluene (Gas) 124 m 100 124 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 123 m 1000 123 $65-135$ 35 Surrogate: o-Chlorotoluene (Gas) 124 m 1000 124 $65-135$ 35 Surrogate: o-Chlorotoluene (Gas) 124 m 1000 </td <td></td> <td></td> <td></td> <td>65-135</td> <td>134</td> <td></td> <td>100</td> <td>"</td> <td></td> <td>134</td> <td>Surrogate: o-Chlorotoluene (BTEX)</td>				65-135	134		100	"		134	Surrogate: o-Chlorotoluene (BTEX)
Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 128 " 100 128 $65-135$ 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ 5.76 30 Gasoline 2500 1000 $\mu g/kg$ 2500 100 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 123 " 1000 123 $65-135$ 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: $10/16/06$ 35 Surrogate: o-Chlorotoluene (Gas) 124 m 1000 124 $65-135$ Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: $10/16/06$ 35 Surrogate: o-Chlorotoluene (Gas) 124 m 100 124 $65-135$ Matrix Spike (CP07987-MS1) 630 124 m 1000 124 $65-135$ Matrix Spike (CP07987-MS1) 124 m 1000 124 $65-135$ 35 <							100	"		124	Surrogate. o-Chlorotoluene (Gas)
Gasoline 2360 1000 $\mu g/kg$ 2500 94.4 $65-135$ 30 Surrogate: o-Chlorotoluene (Gas) 128 100 128 $65-135$ 30 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Prepared & Analyzed: $10/16/06$ $65-135$ 30 Gasoline 2500 1000 $\mu g/kg$ 2500 100 $65-135$ 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: $10/16/06$ $63-124$ 35 Surrogate: o-Chlorotoluene (Gas) 123 1000 $\mu g/kg$ 2500 ND 92.0 $63-124$ 35 Surrogate: o-Chlorotoluene (Gas) 124 u^{-1} 1000 124 $65-135$ 30)6	d: 10/16/0	z Analyze	Prepared &				LCS (CP07987-BS1)
Surrogate: o-Chlorotoluene (Gas) 128 100 128 65-135 LCS Dup (CP07987-BSD1) Prepared & Analyzed: $10/16/06$ Gasoline 2500 1000 µg/kg 2500 100 65-135 30 Surrogate: o-Chlorotoluene (Gas) 123 100 123 65-135 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: $10/16/06$ 35 Gasoline 2300 1000 µg/kg 2500 ND 92.0 63-124 35 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135		30				,,,,,,,, .	•	µg/kg	1000		Gasoline
Gasoline 2500 1000 $\mu g/kg$ 2500 100 65-135 5.76 30 Surrogate: o-Chlorotoluene (Gas) 123 $^{\prime\prime}$ 100 123 65-135 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 92.0 63-124 35 Surrogate: o-Chlorotohuene (Gas) 124 $^{\prime\prime}$ 100 124 65-135				65-135	128		100	H			Surrogate: o-Chlorotoluene (Gas)
Gasoline 2500 1000 µg/kg 2500 100 65-135 5.76 30 Surrogate: o-Chlorotoluene (Gas) 123 123 100 123 65-135 30 Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 Gasoline 2300 1000 µg/kg 2500 ND 92.0 63-124 35 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135 30)6	d: 10/16/0	: Analyze	Prepared 8				LCS Dup (CP07987-BSD1)
Matrix Spike (CP07987-MS1) Source: CPJ0448-12 Prepared & Analyzed: 10/16/06 Gasoline 2300 1000 µg/kg 2500 ND 92.0 63-124 35 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135		30	5.76				-	µg/kg	1000	2500	Gasoline
Gasoline 2300 1000 µg/kg 2500 ND 92.0 63-124 35 Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135				65-135	123			v		123	Surrogate: o-Chlorotoluene (Gas)
Sasoline 2300 1000 µg/kg 2500 ND 92.0 63-124 35 Surrogate: o-Chlorotoluene (Gas) 124 " 1000 124 65-135 35				6	d: 10/16/0	: Analyzed	Prepared 8	8-12	rce: CPJ044	Sou	Matrix Spike (CP07987-MS1)
Surrogate: o-Chlorotoluene (Gas) 124 " 100 124 65-135		35				-	•	μg/kg	1000	2300	Gasoline
Matrix Spike Dup (CP07987-MSD1) Source: CP10448-13 Prepared & Applyands 10/16/06			· ····-	65-135	124		100		·	124	Surrogate: o-Chlorotoluene (Gas)
				6	d: 10/16/0	. Analyzed	Prepared &	8-12	rce: CPJ044	Sou	Matrix Spike Dup (CP07987-MSD1)
Gasoline 2220 1000 µg/kg 2500 ND 88.8 63-124 3.54 35		35	3.54	-		-	-	µg∕kg	1000	2220	Gasoline
Surrogate: o-Chlorotoluene (Gas) 122 " 100 122 65-135	-				<u> </u>				·	122	Surrogate: o-Chlorotoluene (Gas)

CA DOHS ELAP Accreditation/Registration Number 1233

3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

Page 8 of 10

Page 8 of 10	- <u> </u>	10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Anguło	CLS Work Order #: CPJ0448 COC #:

Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CP07998 - EPA 3050B										
Blank (CP07998-BLK1)				Prepared:	10/16/06	Analyzed	: 10/17/06			
Lead	ND	2.5	mg/kg							
LCS (CP07998-BS1)				Prepared:	10/16/06	Analyzed	: 10/17/06			
Lvad	23.2	2.5	mg/kg	25.0		92.8	75-125		25	
LCS Dup (CP07998-BSD1)				Prepared:	10/16/06	Analyzed	: 10/17/06			
Lead	23.0	2.5	mg/kg	25.0		92.0	75-125	0.866	25	
Matrix Spike (CP07998-MS1)	Sou	irce: CPJ04()3-01	Prepared:	10/16/06	Analyzed:	10/17/06			
Lead	65.6	2.5	mg/kg	25.0	15	202	75-125		30	QM
Matrix Spike Dup (CP07998-MSD1)	Sou	irce: CPJ04()3-01	Prepared:	10/16/06	Analyzed:	10/17/06			
Lead	79.4	2.5	mg/kg	25.0	15	258	75-125	19.0	30	ON

Page	a	of	10	
raye	3	UI.	10	

ł

		10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0448 COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Levet	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch CP08002 - EPA 5030 Soil MS							··	·		
Blank (CP08002-BLK1)				Prenared	10/16/06	Appluzed	: 10/17/06			
Di-isopropyl ether	ND	5.0	µg/kg	. toputou.	10,10,00	7 mary 2.cu				
Sthyl tert-butyl ether	ND	5.0	"							
Methyl tert-butyl ether	ND	5.0	н							
crt-Amyl methyl ether	ND	5.0	13							
[ent-butyl alcoho]	ND	50	"							
Surrogate: Toluene-d8	48.4		"	50.0		96.8	60-140			
CS (CP08002-BS1)				Prenared	10/16/06	Analyzed	: 10/17/06			
Acthyl tert-butyl ether	42.5	5.0	μg/kg	50.0	10/10/00	85.0	69-140		30	
hurrogate: Toluene-d8	491			50.0		98.2	60-140			
-CS Dup (CP08002-BSD1)				Prepared:	10/16/06	Amburnd	10/17/07			
Acthyl tert-butyl ether	44.6	5.0	µg/kg	50.0	10/10/00	89.2	60-140	4.82	30	
hurrogate: Toluene-d8	47.5		"	50,0		95.0	60-140			
Aatrix Spike (CP08002-MS1)	Sou	arce: CPJ068	5-05	Prepared:	10/16/06	Analyzed	10/17/06			
fethyl tert-butyl ether	35.3	5.0	µg/kg	50.0	ND	70.6	60-140		30	
urrogate: Toluene-d8	46.5			50.0		93.0	60-140		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Aatrix Spike Dup (CP08002-MSD1)	Sou	rce: CPJ068	5-05	Prepared:	10/16/06	Analyzed	10/17/04			
fethyl tert-butyl ether	34.1	5.0	µg/kg	50.0	ND	68.2	60-140	3.46	30	
			ф °С				140	5.40	00	

Page 10 of 10

Page 10 of 10		10/18/06 15:59
GEOLOGICAL TECHNICS INC. 1101 7th St. MODESTO, CA 95354	Project: Sullins Project Number: 1262.2 Project Manager: Joe Angulo	CLS Work Order #: CPJ0448 COC #:

Notes and Definitions

- QS-4 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- Although sample contains compounds in the retention time range associated with gasoline, the chromatogram was not consistent GAS-1 with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on gasoline.
- Although sample contains compounds in the retention time range associated with diesel, the chromatogram was not consistent D-DSL with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on diesel.

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD Relative Percent Difference

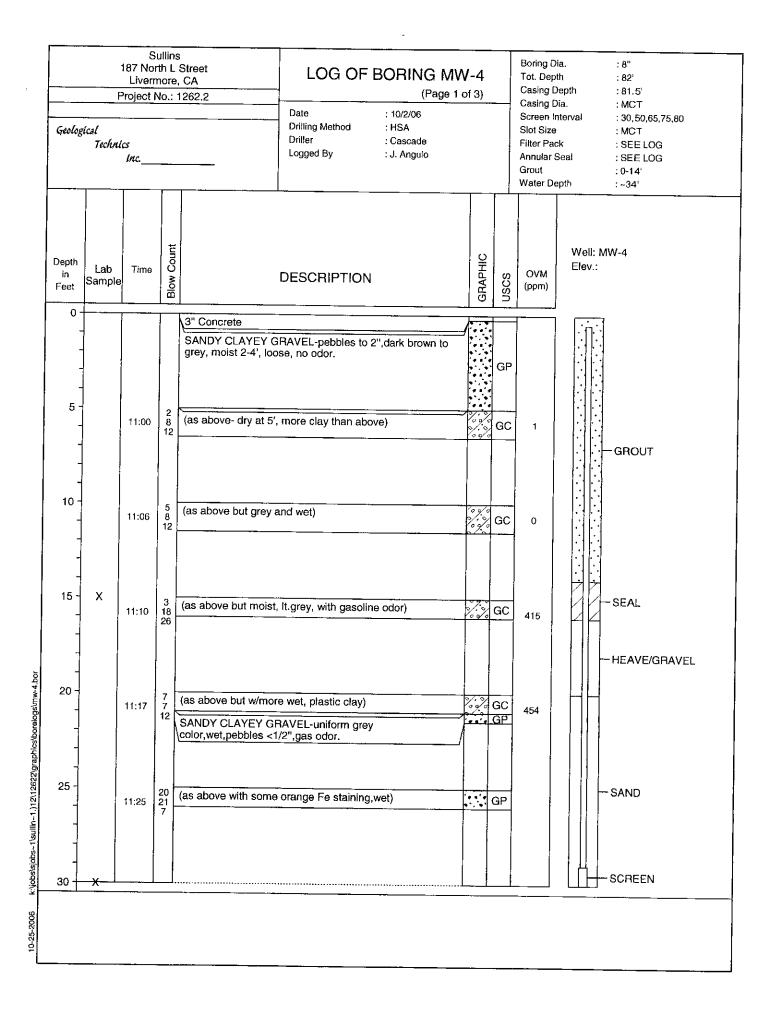
3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com 916-638-7301 Fax: 916-638-4510

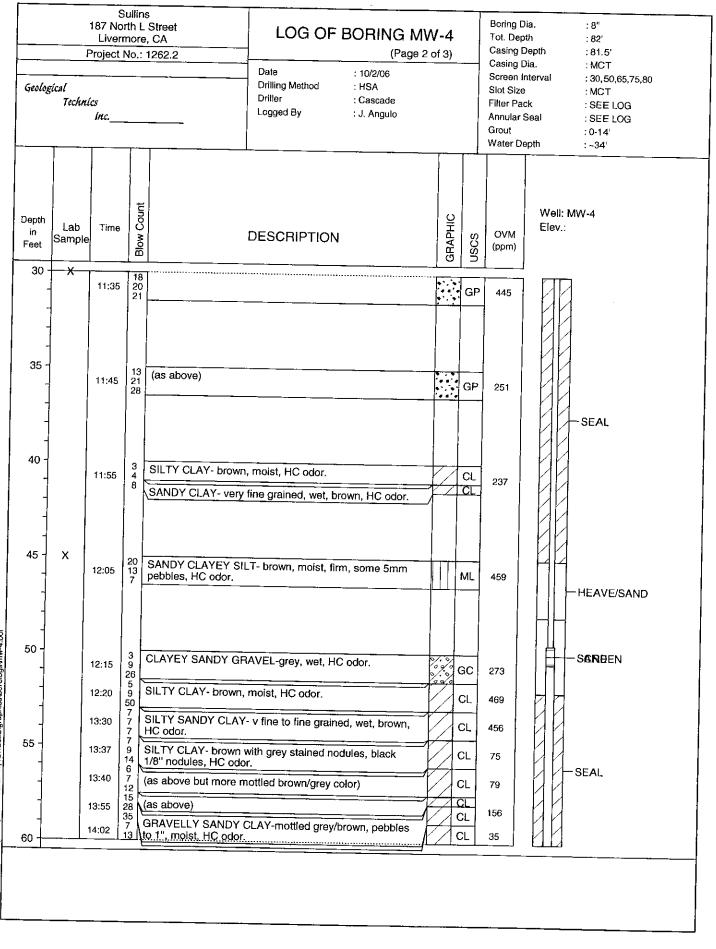
DET Analyte DETECTED

Appendix C

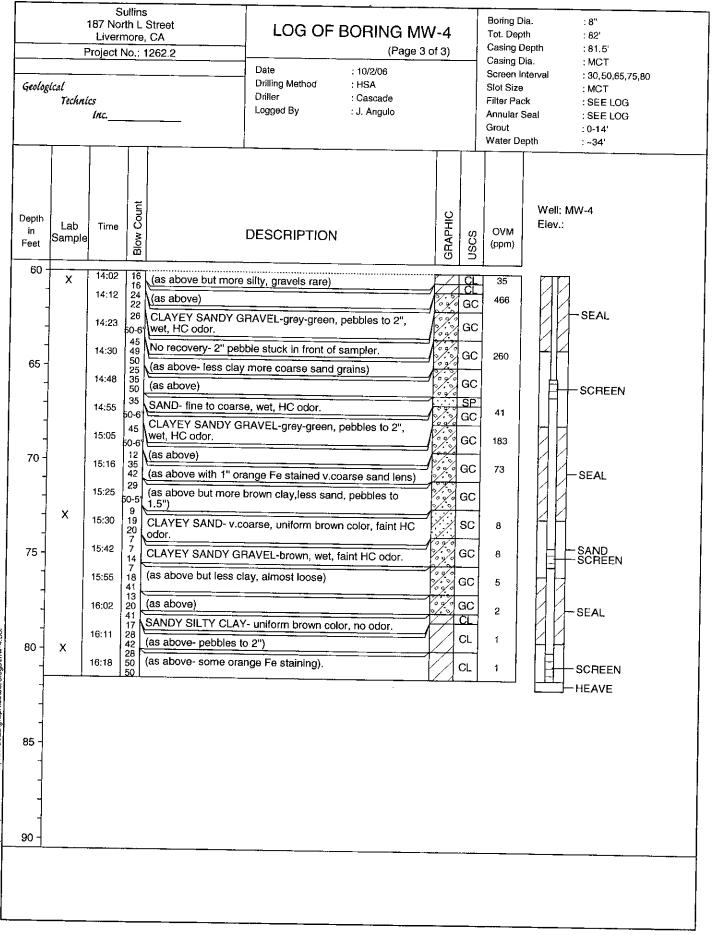
-

Boring Logs

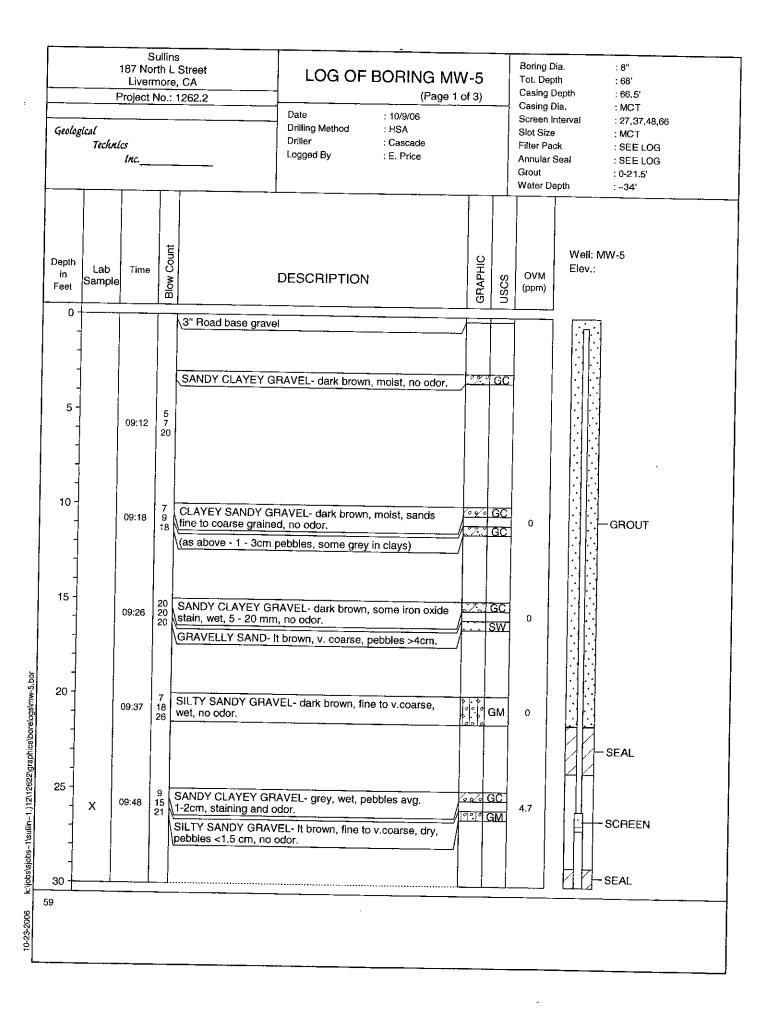

Geological Technics Inc.

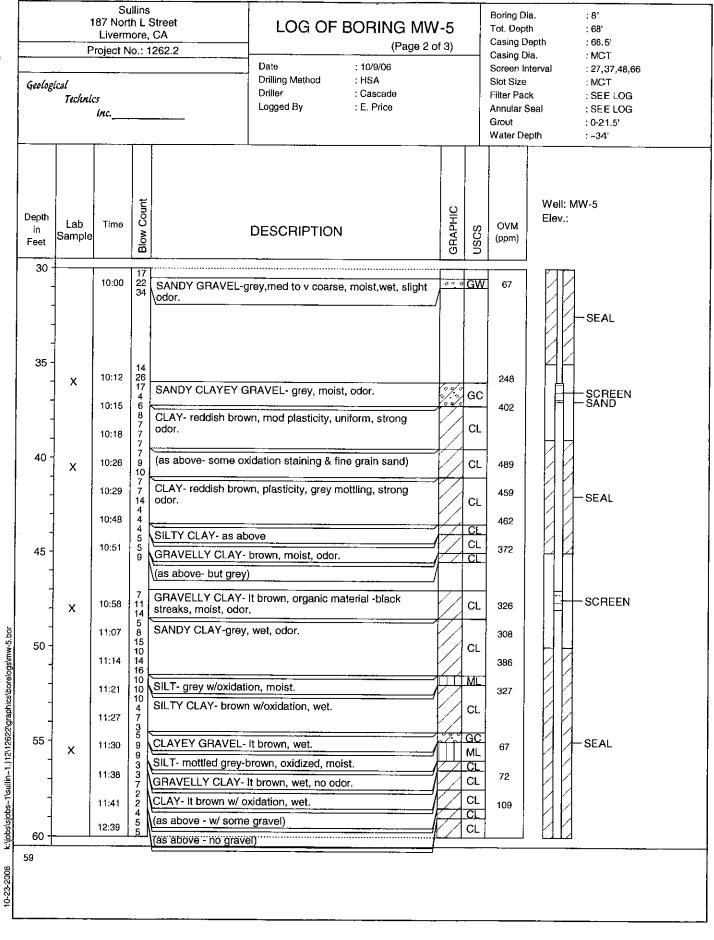

1101 7th Street Modesto, CA 95354 209.522.4119 209.522.4227 (fax) gti@geologicaltechnics.com

÷

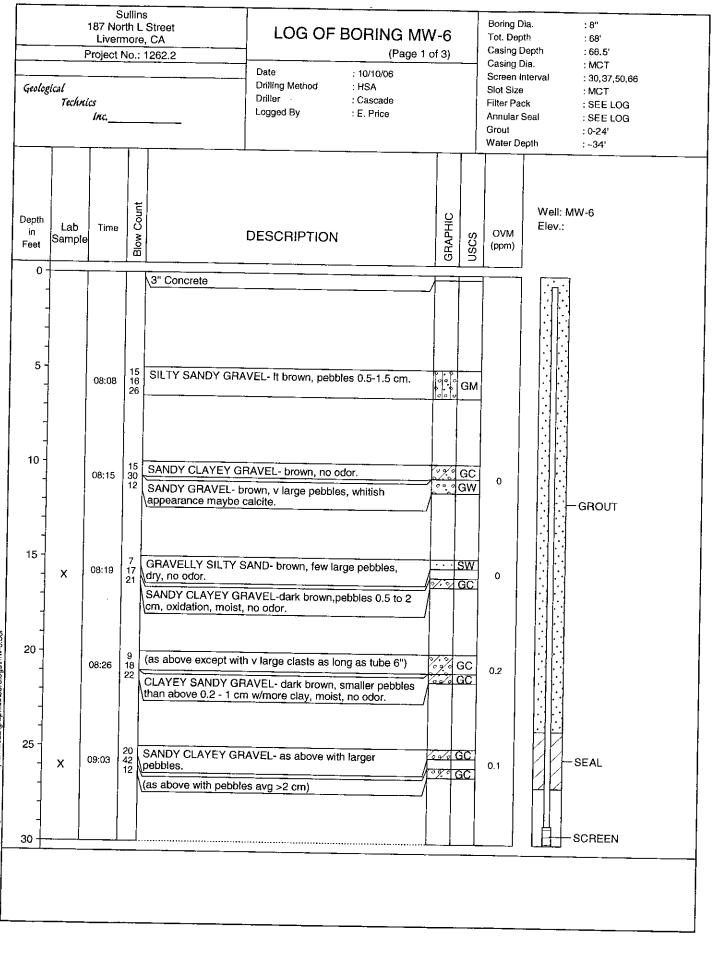


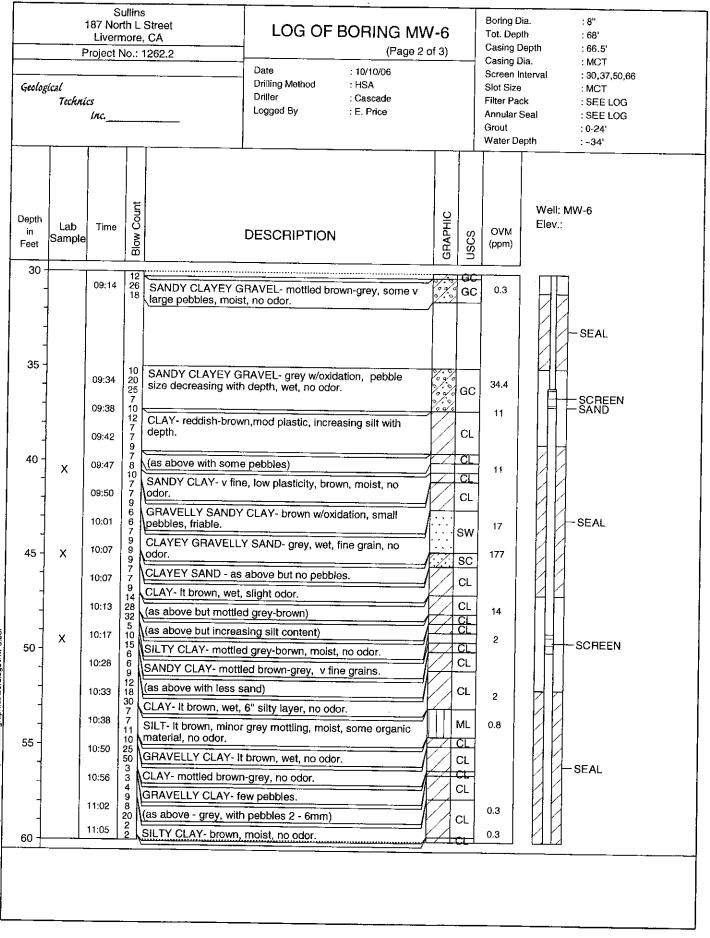
		SIFICATION AND SYMBOL CHART	LABORATORY CLASSIFICATION CRITERIA	
(more than		RSE-GRAINED SOILS terial is larger than No. 200 sieve size.)		
_	Clean	Gravels (Less than 5% fines)		
GRAVELS More than 50% of coarse fraction larger than No. 4 sieve size	GW			
	GP COC	Poorly-graded gravels, gravel-sand mixtures, little or no fines	GP Not meeting all gradation requirements for GW	
	Grave	s with fines (More than 12% fines)		
	GM GM GM	Silty gravels, gravel-sand-silt mixtures	GM Atterberg limits below "A" line or P.I. less than 4 Above "A" line with P.I. between	
	GC	Clayey gravels, gravel-sand-clay mixtures	GC Atterberg limits above "A" requiring use of dual symbols line with P.I. greater than 7	
	Clean	Sands (Less than 5% fines)		
SANDS	sw	Well-graded sands, gravelly sands, little or no fines	SW $C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = \frac{D_{30}}{D_{10} \times D_{60}}$ between 1 and 3	
50% or more of coarse fraction smaller	SP	Poorly graded sands, gravelly sands, little or no fines	SP Not meeting all gradation requirements for GW	
than No. 4	Sands	with fines (More than 12% fines)		
sieve size	SM	Silty sands, sand-silt mixtures	SM Atterberg limits below "A" Limits plotting in shaded zone with P.I. between 4 and 7 are	
	SC	Clayey sands, sand-clay mixtures	SC Atterberg limits above "A" borderline cases requiring use of dual symbols.	
		GRAINED SOILS		
<u>(50% or mo</u>	re of mater	al is smaller than No. 200 sieve size.)	Determine percentages of sand and gravel from grain-size curve. Dependin	
SILTS AND CLAYS Uquid limit less than 50%	ML	Inorganic silts and very fine sands, rock flour, silty of clayey fine sands or clayey silts with slight plasticity	on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows:	
	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	More than 12 percent	
	<u>n ()</u> 1		PLASTICITY CHART	
		Organic silts and organic silty clays of low plasticity		
SILTS AND CLAYS Liquid limit 50% or greater	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	8 50 10 CH 10 ALINE:	
	СН	Inorganic clays of high plasticity, fat clays	40 A.LINE: 30 PI = 0.73(LL-20) 20 CL MH&OH 10 CL+ML	
	он	Organic clays of medium to high plasticity, organic sitts		
	<u>산</u> 선전 PT 산산	Peat and other highly organic soils	0 10 20 30 40 50 60 70 80 90 100 LIQUID LIMIT (LL) (%)	

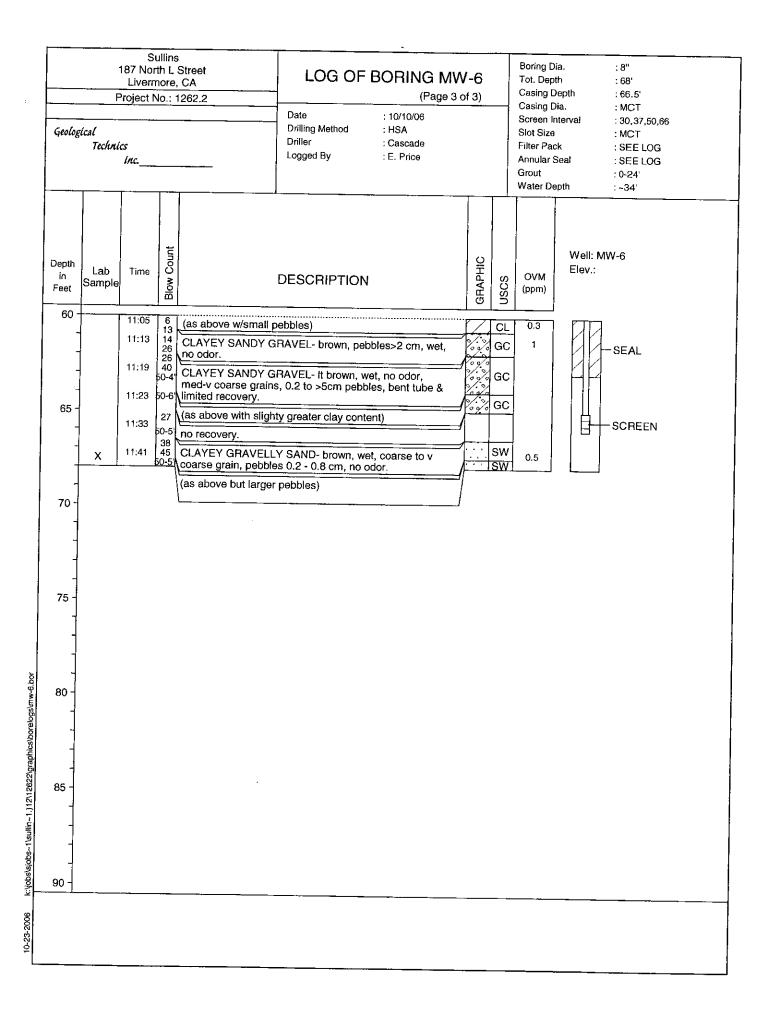


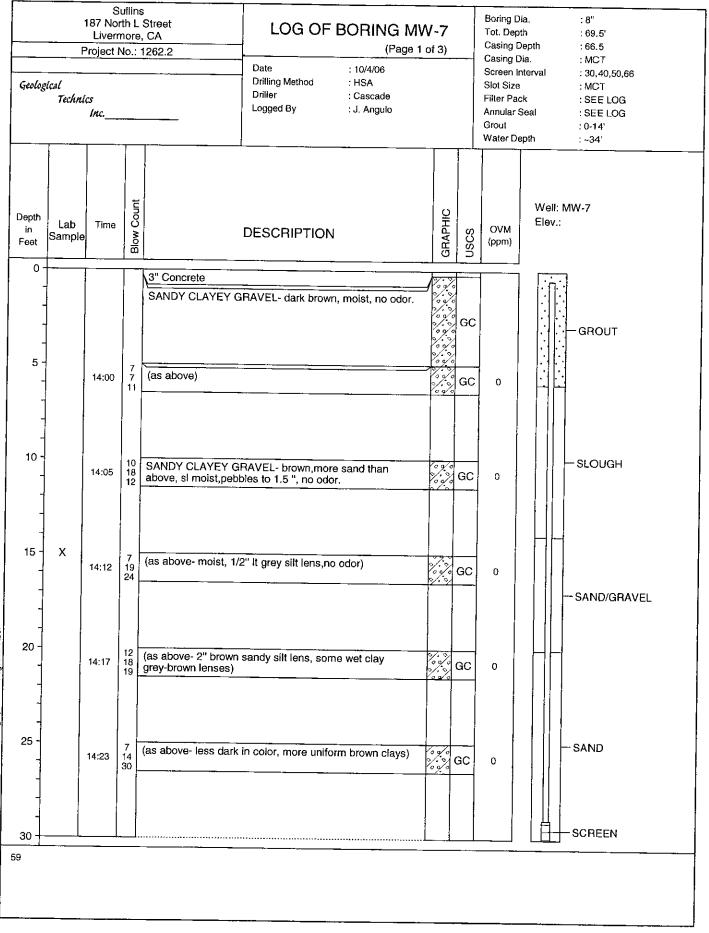



10-23-2006 k:\jobs\sjobs~1\sullin~1.)12\12622\graphics\borelogs\mw-4.bor

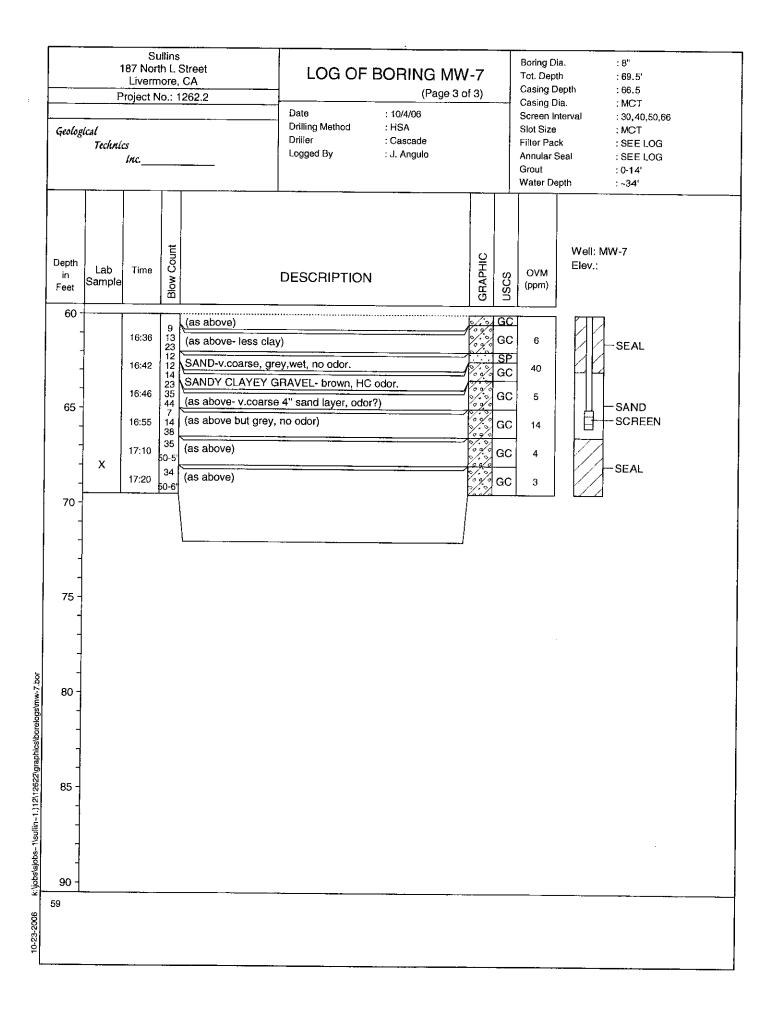


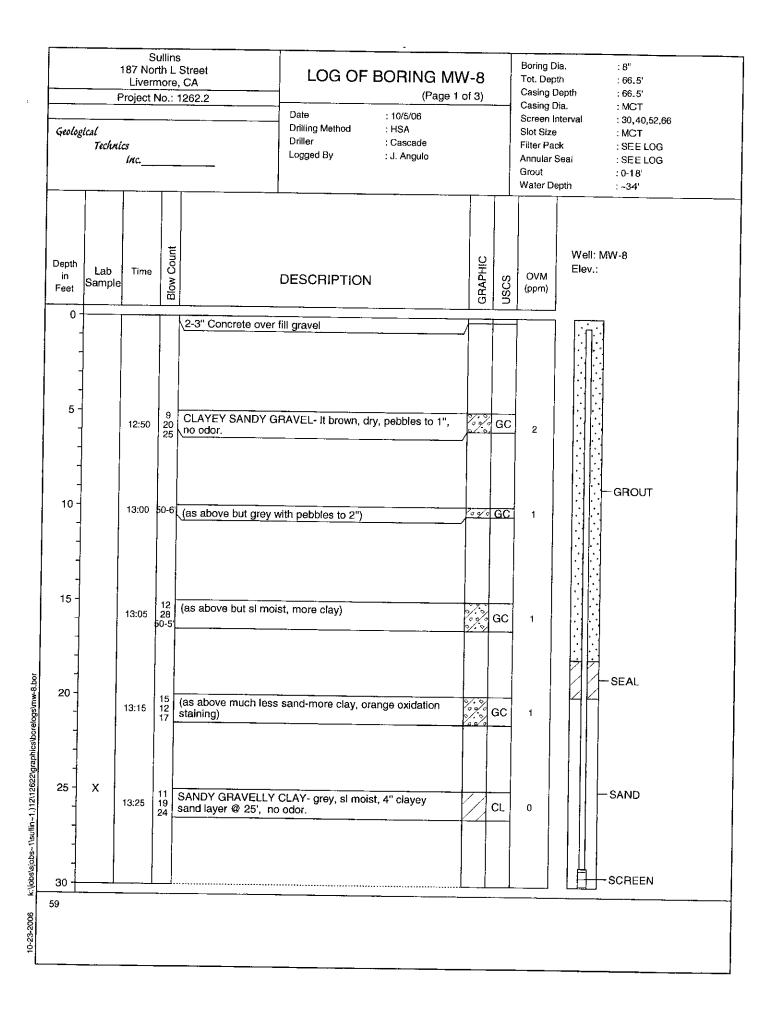

2006 k:\jobs\sjobs~1\sullin~1.)12\12622\graphics\borelogs\mw-4.bor





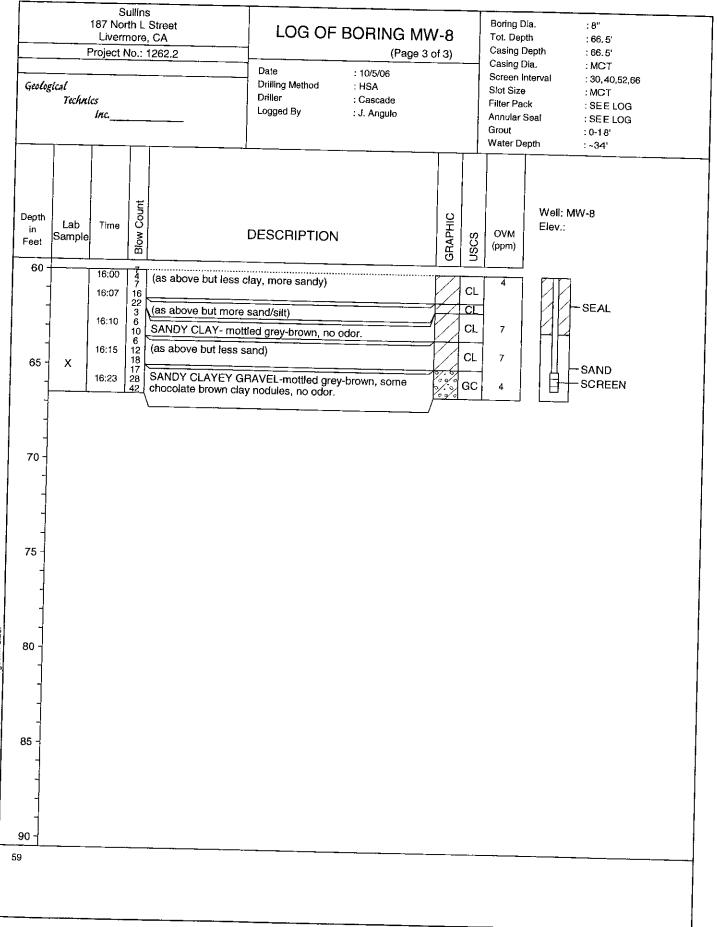



2006 k:\jobs\sjobs-1\sullin~1.)12\12622\graphics\borelogs\mw-6.bor





k:\iobs\sjobs~1\sullin~1.)12\12622\graphics\borelogs\rmw-7.bor 10-23-2006



k:\jobs\sjobs~1\sullin~1,)12\12622\graphics\borelogs\mw-8.bor

10-23-2006 k:\u00e3\sjobs-1\sullin-1.)12\12822\graphics\borelogs\mw-8.bor