499 Embarcadero Oakland, CA 94606

Tel: (510) 834-9810 Fax: (510) 763-9996 jw_silveira@hotmail.com

Real Estate

RECEIVED

December 16, 2008

Mr. Jerry Wickham Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

9:19 am, Jan 16, 2009

Alameda County Environmental Health

SUBJECT:GROUND-WATER MONITORING AND SAMPLING REPORT

(JUNE 4, 2007 SAMPLING EVENT) CERTIFICATION

County File # RO 387 Mel Senna Brake Service 2301 East 12th Street

Oakland, CA

Dear Mr. Wickham:

P&D Environmental, Inc. has prepared the following document:

Groundwater Monitoring and Sampling Report (June 4, 2007 Sampling Event) dated December 8, 2008 (document 0404.R1).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 834-9811.

Sincerely,

J.W. Silveira Realty

0404.L1

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

December 8, 2008 Report 0404.R1

Mr. J.W. Silveira J.W. Silveria Realty 499 Embarcadero Oakland, CA 94606

SUBJECT: GROUNDWATER MONITORING AND SAMPLING REPORT

(JUNE 4, 2007 SAMPLING EVENT)

County File # RO 387 Mel Senna Brake Service 2301 East 12th Street

Oakland, CA

Dear Mr. Silveira:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of monitoring and sampling of the groundwater monitoring wells at the subject site. Field activities were performed on June 4, 2007. The well monitoring and sampling was performed in response to a request in a letter from the Alameda County Environmental Health Department (ACDEH) dated January 31, 2006. A Site Location Map (Figure 1) and Site Vicinity Map showing groundwater monitoring well locations (Figure 2) are attached with this report.

BACKGROUND

The subject site was previously a gas station and vehicle repair facility, and is currently a tire and brake repair facility. The subject site is located in an industrially zoned area and bordered to the northeast by East 12th Street, to the southeast by railroad property, to the northwest by 23rd Avenue and a public park, and to the southwest by a furniture restoration facility.

Review of available reports prepared by others has identified the following historic activities and investigations at the subject site.

• Removal of one gasoline UST, one diesel UST, and two waste oil USTs from December 1990 through March 1991, and excavation of contaminated soil to a depth of approximately 17 to 18 feet below the ground surface. A total of 16 soil samples were collected from beneath USTs, a total of 6 UST pit sidewall samples were collected, and 2 UST pit water samples were collected. Some of the soil excavated during UST removal was reportedly used to backfill the UST pit. Maximum soil concentrations of 13,000 mg/kg Total Petroleum Hydrocarbons as Gasoline (TPH-G) and 46 mg/kg benzene were detected in samples collected from the UST pit at a depth of 9 feet. Documentation of the activities and sample results is provided in the Tank Closure Report for 2301 East 12th Street, Oakland prepared by Epigene Consultants, dated August 31, 1993.

- Installation of wells MW-1, MW-2, and MW-3 in June, 1991. Documentation of the well installation is reported to be presented in a Subsurface Investigation Report prepared by Artesian Environmental Consultants dated August, 1992 and submitted with a cover sheet by Bernabe and Brinker, Inc. dated October 15, 1992.
- Installation of wells MW-4, MW-5, MW-6, and EW-1, and drilling of two soil borings (B-1 and B-2), and the quarterly monitoring and sampling of wells MW-1, MW-2, and MW-3 from July 1992 through December 1993. Documentation of the sampling and associated results is presented in a Progress Report for Soil and Groundwater Contamination Investigations for Site Located at 2301 East 12th Street, Oakland prepared by Epigene Consultants dated May 10, 1994.
- Weekly and other periodic bailing of wells MW1, MW2 and MW3 at the site during April, May, October and November 1993 as an interim remedial measure to remove separate phase petroleum hydrocarbons from well MW-2 and reduce petroleum hydrocarbon concentrations in the groundwater monitoring wells. Documentation of the purging volumes and liquid removal is presented in various documents with cover sheets from Bernabe and Brinker, Inc. with various dates in 1993.
- Collection of groundwater grab samples from boreholes SB-1 through SB-6 on March 31 and April 1, 1999 and quarterly groundwater monitoring well monitoring and sampling from June 1994 through April 1999 is documented in a Draft Summary Reports for Additional Site Characterization Work, prepared by Tetra Tech dated November 10, 1999. Although Table 1 in the report identifies detected petroleum hydrocarbons and HVOCs at location SB-6, review of the laboratory report shows that none of the analytes were detected.
- The results of a Tier 1 screening level human health risk assessment and well sampling events in May 2000 and August 2001 are documented in a Tier 1 Screening Level Human Health Risk Assessment, prepared by Tetratech that is undated and was received by the county on December 20, 2005.

The highest concentrations of petroleum hydrocarbons in soil at the site have been detected at depths ranging from 8 to 12 feet below the ground surface. The highest concentrations of petroleum hydrocarbons in groundwater at the site have been detected in well MW-2 (the well where separate phase petroleum hydrocarbons were detected in 1993), MW-3 (located near well MW-2), and in well MW-1 (located at one end of the former UST pit). The highest concentrations of HVOCs detected in groundwater have been at well MW-6, with trichloroethene, cis-1,2-dichlorethene, trans-1,2-dichloroethene and vinyl chloride detected in groundwater. It is possible that impacted soil could be a continuing source for groundwater degradation in the vicinity of these wells.

The measured depth to groundwater at the site has typically ranged from approximately 5 to 9 feet. Historic groundwater levels for all of the wells are summarized in Appendix A, Table 1. The calculated groundwater flow direction at the site has historically been reported to be predominantly northwesterly. Separate phase hydrocarbons were historically reported to be present in well MW2, and groundwater sample results have consistently shown the presence of TPH-G, TPH-D, and BTEX in all of the wells at the site. TPH-G and TPH-D concentrations for all of the wells have almost invariably exceeded 1,000 ug/L during all sampling events, and have shown little evidence of decline since the beginning of monitoring. Groundwater benzene concentrations have ranged up

December 8, 2008 Report 0404.R1

to 5,200 ug/L in well MW-2, and have shown a decline with time for all of the wells. HVOCs have also been intermittently detected in groundwater samples at the site, with TCE ranging up to 160 ug/L, and vinyl chloride up to 230 ug/L. MTBE was not detected in any of the groundwater samples. Historic groundwater organic compound concentrations are summarized in Appendix A, Table 2, and historic groundwater metals concentrations are summarized in Appendix A, Table 3.

Groundwater isoconcentration contours for TPH-G, TPH-D, and benzene, that include the April 1999 groundwater grab sample results and the June 2007 well sample results are shown in Figures 3, 4, and 5, respectively, and selected HVOCs (TCE, cis-1,2-DCE and trans-1,2-DCE) that include the April 1999 groundwater grab sample results and the highest historic well sample results are shown on Figure 6. A review of laboratory reports for historic groundwater monitoring well sampling events shows that three of the last four sampling events where laboratory reports were available for review and the laboratory reported the presence of sheen on the laboratory report identified sheen as present in almost all of the samples. A summary of sheen reported on samples in laboratory reports is provided in Appendix A as Table 4.

FIELD ACTIVITIES

On June 4, 2007, P&D personnel monitored wells MW1, MW2, MW3, MW4, MW5, MW6, and EW1 for depth to water to the nearest 0.01 foot using an electric water level indicator, and sampled all seven wells. The wells were first evaluated for the presence of free product or sheen by using a transparent bailer. No free product was detected in any of the wells. Petroleum hydrocarbon sheen and petroleum hydrocarbon odors were detected on the purge water from all seven wells.

Prior to sampling, all of the wells were purged of a minimum of three casing volumes of water. During purging operations, the field parameters of pH, electrical conductivity and temperature were monitored. Once a minimum of three casing volumes had been purged, water samples were collected using a clean Teflon bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative and to one-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

The water levels measured in wells MW1, MW2, MW3, MW4, MW5, MW6, and EW1 on June 4, 2007 are summarized in Table 1. Review of the water levels shown on Figure 2 shows that the water level in the UST pit (see EW1 and MW1) is elevated relative to the water levels in the surrounding wells, and that the water level in well MW6 appears anomalously low in relative to the water levels in the adjacent wells. Based on the groundwater levels in wells MW1 through MW5, the groundwater flow direction on June 4, 2007 appeared to be westerly to southwesterly

December 8, 2008 Report 0404.R1

with a gradient ranging from approximately 0.024 to 0.066. The apparent groundwater flow direction at the site on June 4, 2007 is shown on Figure 2.

Review of groundwater flow direction information for nearby sites that have groundwater monitoring wells shows that the groundwater flow direction at 2200 East 12th Street (located approximately 800 feet northwest of the subject site) has historically been to the west-southwest, and the groundwater flow direction at 2345 International Boulevard (located approximately 500 feet northeast of the subject site) has historically been to the southwest. The calculated June 4, 2007 westerly to southwesterly groundwater flow direction calculated for the subject site is consistent with the groundwater flow directions identified for the nearby sites. The historic northnorthwesterly groundwater flow direction reported for the subject site may be associated with elevated water levels in the former UST pits resulting in anomalously elevated water levels in wells located in the immediate vicinity of the former UST pits.

Groundwater surface elevations shown on Figure 2 were calculated by determining top of well casing elevations from historic depth to water measurements and associated reported groundwater surface level elevations.

LABORATORY RESULTS

The groundwater samples collected from all of the wells were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and TPH-D using EPA Method 3510C in conjunction with EPA Method 8015C, and for TPH-G and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015C and EPA Method 8021B. The samples were also analyzed for Volatile Organic Compounds (VOCs), including Lead Scavengers and Fuel Oxygenates using EPA Method 5030B in conjunction with EPA Method 8260B.

TPH-MO was detected in wells MW1, MW2, MW3, and MW6 at concentrations of 2,100, 1,600, 580, and 880 $\mu g/L$, respectively; TPH-D was detected in all seven wells at concentrations ranging from 1,200 to 10,000 $\mu g/L$; and TPH-G was detected in all seven wells at concentrations ranging from 4,900 to 28,000 $\mu g/L$. MTBE was not detected in any of the wells. Benzene was detected in wells MW1, MW2, MW3, MW5, MW6 and EW1 at concentrations of 260, 480, 58, 44, 580, and 160 $\mu g/L$, respectively, when analyzed by EPA Method 8021B, and at concentrations of 280, 430, 34, 41, 600 and 160 $\mu g/L$, respectively, when analyzed by EPA Method 8260B. The remaining BTEX analyte concentrations ranged from not detected to 41 $\mu g/L$ by EPA Method 8021B and from not detected to 43 $\mu g/L$ by EPA Method 8260B. Additional VOCs were detected by EPA Method 8260B at concentrations ranging from not detected to 260 $\mu g/L$. The only HVOCs detected were 1,2-dichloroethene and vinyl chloride at concentrations of 2.1 and 1.8 $\mu g/L$, respectively in well MW5, and trans-1,2-dichloroethene at a concentration of 5.8 $\mu g/L$ in well EW1. No lead scavengers or fuel oxygenates were detected in any of the wells.

Review of the laboratory analytical reports shows that the results reported as TPH-G for all of the samples were identified as having no recognizable pattern. Similarly, all of the TPH-D results, except for from MW4, were identified as consisting of diesel-range compounds with no recognizable pattern. Additionally, the TPH-D results for wells MW5, MW6, and EW1 are

December 8, 2008 Report 0404.R1

identified as both gasoline-range and diesel-range compounds; and the results reported as TPH-D for wells MW1, MW2 and MW3 are identified as both diesel-range and as Stoddard solvent/mineral spirits-range compounds. The results reported as TPH-D for well MW4 are identified as Stoddard solvent/mineral spirits. The MW1 TPH-D results were also identified as oil-range compounds. A lighter than water immiscible sheen was reported by the laboratory only for well MW1. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Since the last sampling event on April 1, 1999, TPH-MO concentrations have increased in wells MW1, MW2, MW3, and MW6 and decreased in wells MW4 and MW5; TPH-D concentrations have increased in wells MW1, MW2, MW3, and MW5 and decreased in wells MW4 and MW6; and TPH-G concentrations have increased in all of the wells. MTBE was not detected in any of the wells. Benzene concentrations have decreased in all of the wells since the previous monitoring and sampling episode, except for well MW6, where it increased. All other analytes in all of the wells have either decreased, were not detected,, or remained unchanged, with the exception of xylenes in wells MW3 and MW4, which increased.

DISCUSSION AND RECOMMENDATIONS

The groundwater flow direction was calculated to be to the west-southwest, which is consistent with the groundwater flow direction identified at two nearby sites that have groundwater monitoring wells. Petroleum hydrocarbon sheen and petroleum hydrocarbon odors were detected on the purge water from all seven wells. However, review of the laboratory report shows that the laboratory identified sheen only for the sample from well MW1.

P&D recommends that the extent of impacted groundwater be further investigated at locations shown on figures 3, 4 and 5 in accordance with a work plan submitted under separate cover. Based on the large amount of historic water quality data for the site, P&D recommends that the groundwater monitoring and sampling be continued on a semi-annual basis.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of J.W. Silveira Realty. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which are used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made.

The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

PAUL H. KING No. 5901

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

- and H.King

Expires: 12/31/09

Attachments:

Table 1 – Well Monitoring Data

Table 2 – Summary of Groundwater Sample Laboratory Analytical Results

Site Location Map (Figure 1)

Site Vicinity Map Showing Groundwater Surface Elevations (Figure 2)

Site Vicinity Map Showing TPH-G Groundwater Isoconcentration Contours (Figure 3)

Site Vicinity Map Showing TPH-D Groundwater Isoconcentration Contours (Figure 4)

Site Vicinity Map Showing Benzene Groundwater Isoconcentration Contours (Figure 5)

Site Vicinity Map Showing TCE and DCE Groundwater Isoconcentration Contours (Figure 6)

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

Appendix A – Historic Site Information

- Historic Groundwater Level Measurements Table 1
- Historic Groundwater Organic Compound Concentrations Table 2
- Historic Groundwater Metals Concentrations Table 3
- Historic Laboratory Report Sheet Summary Table 4

PHK/sjc/0404.R1

TABLES

Table 1. Wel	l Monitoring Data			
Well Number	Date Monitored	* Top of Casing	-	Water Table Elevation
		Elevation (ft-msl.)	(ft)	(ft-msl.)
MW1	6/4/2007	16.21	8.07	8.14
MW2	6/4/2007	14.43	6.77	7.66
MW3	6/4/2007	14.95	7.04	7.91
MW4	6/4/2007	14.66	7.45	7.21
MW5	6/4/2007	14.67	8.62	6.05
MW6	6/4/2007	15.28	7.88	7.40
EW1	6/4/2007	15.36	7.23	8.13

Abbreviations and Notes:

ft-msl = feet above mean sea level

ft = feet

^{*}Elevations were surveyed by Epigene International using a spirit level relative to a City of Oakland benchmark and are reported in feet mean sea level.

Table 2. Summary of Groundwater Sample Laboratory Analytical Results										
Well Number	Sample Date	ТРН-МО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	
		•			μg/L					
MW1	6/4/2007	2,100	10,000, a, b,d,e	11,000, a, f	ND< 45	260 (280)	6.9	5.6	9.5	
MW2	6/4/2007	1,600	8,300, b, e	28,000, f	ND< 160	480 (430)	18 (31)	17	41 (43)	
MW3	6/4/2007	580	4,200, b, e	9,200, f	ND< 60	58 (34)	4.7 (4.8)	5.9 (2.4)	8.1 (2.7)	
MW4	6/4/2007	ND<250	1,200, e	4,900, f	ND< 25	ND< 2.5	ND< 2.5	ND< 2.5	3.0	
MW5	6/4/2007	ND<250	2,000, b, c	6,200, f	ND< 25	44 (41)	3.7 (4.0)	10 (7.0)	13 (11)	
MW6	6/4/2007	880	2,700, b, c	7,100, f	ND< 90	580 (600)	ND< 5.0	11	ND< 5.0	
EW1	6/4/2007	ND<500	1,200, b, c	6,400, f	ND< 90	160 (160)	ND< 2.5	6.3	7.7	

Abbreviations and Notes:

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary-butyl ether

ND = Not detected

a = Laboratory Note: lighter than water immiscible sheen/product is present

b = Laboratory Note: diesel range compounds are significant; no recognizable pattern

c = Laboratory Note: gasoline range compounds are significant

d = Laboratory Note: oil range compounds are significant.

e = Laboratory Note: Stoddard solvent/mineral spirits.

f = Laboratory Note: no recognizable pattern.

MBTEX results were analyzed using EPA Method 8021B.

MBTEX compounds detected by EPA Method 8260B are in parentheses.

Results in micrograms per liter (µg/L) unless otherwise specified.

Table 2. Su Analytical Re	-	roundwater Sample Laboratory nued)	
Well Number	Sample Date	VOCs	ESL, 1
MW1	6/4/2007	ND, except	
		Isopropylbenzene = 11,	None
		n-Propylbenzene = 14	None
MW2	6/4/2007	ND, except	
		Naphthalene = 260 ,	17
		1,3,5-Trimethylbenzene = 36	None
MW3	6/4/2007	ND, except	
		n-Butylbenzene = 16,	None
		Isopropylbenzene = 34,	None
		sec-Butylbenzene = 13,	None
		4-Isopropyltoluene = 19,	None
		Naphthalene = 21 ,	17
		n-Propylbenzene = 30	None
MW4	6/4/2007	ND, except,	
		n-Butylbenzene = 8.7 ,	None
		tert-Butylbenzene = 1.0,	None
		Isopropylbenzene = 13,	None
		sec-Butylbenzene = 13,	None
		4-Isopropyl toluene = 5.7,	None
		n-Propylbenzene = 11	None
MW5	6/4/2007	ND, except	
		n-Butylbenzene = 17,	None
		trans-1,2-Dichloroethene = 2.1,	10
		Isopropylbenzene $= 72$,	None
		Vinyl Chloride = 1.8 ,	0.5
		sec-Butylbenzene = 11,	None
		Naphthalene = 39 ,	17
		n-Propylbenzene = 100	None
MW6	6/4/2007	Isopropylbenzene = 27,	None
		Napthalene = 48 ,	17
		n-Propylbenzene = 32	None
		ND, except	
EW1	6/4/2007	trans-1,2-Dichloroethene = 5.8,	10
		Isopropylbenzene $= 21$,	None
		4-Isopropyl toluene = 6.2 ,	None
		Naphthalene $= 15$,	17
		n-Propylbenzene = 13	None
		n-rropytoenzene = 13	None

Abbreviations and Notes:

PCE = Tetrachloroethene

TCE = Trichloroethene

DCE = Dichloroethane

DCA = Dichloroethane

ND = Not detected

VOC results were analyzed using EPA Method 8260B.

ESL¹ = Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water.

Results in micrograms per liter (µg/L) unless otherwise specified.

FIGURES

2301 East 12th Street Oakland, California

Base Map From: U.S.Geological Survey Oakland East, California 7.5 Minute Quadrangle Photorevised 1980

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

GROUNDWATER MONITORING/ WELL PURGING DATA SHEETS

7

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

(DAT	A SHEET
Site Name Dixont Brakey of lines Ogkland	Well No. MW1
Job No. 04 04	Date 6/4/07
TOC to Water (ft.) 8,07 24.	Sheen VS
Well Depth (ft.)	Free Product Thickness
Well Diameter 20 (0.63)	Sample Collection Method
Gal./Casing Vol. 2.7 99	Tetlo-Bale-
501-8.1	of electrical Mikr
TIME GAL. PURGED DH	TEMPERATURE COMPOCITATION
1649 0,9 7.13	75,4 19,470
1651 1.8 707	74.8 > 30,000
1659 7.7 7.00	75.5
1656 3.6 7.06	75.9
1659 4.5 7.04	76.3
(701 5.4 7,c2	76.1)20,000
1703 6.3 7.02	75.7 722,000
1705 7.2 7.02	
1702 8-1 7.02	
767 8" 750	
NOTES:	br a
NOTES: Shein + mod-stronger Sand. Time = 21(12	1

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

		, DATA SHI			
	iscount Brakes & [ns/Ockland		Well No.	
Job No		•		Date 6/4	107
TOC to Water	(ft.) 6.77	_		Sheen	Y ? >
Well Depth ((ft.) 15.07	_		Pree Product	Thickness
Well Diamete		.			ection Method
Gal./Casing	vol. 1.4	-		tetto	n bailer
	3/2/-4.2			of	ELECTRICAL PS/CH
1235	GAL. PURGED	6.95	<u> </u>	ATURE .6	5 ZO
1237	0.5	6.48 7.03		0	570
1741	1.6	7.05	86		1,800
1243	1.0	7.07	85		2,600
				-	
	3.3 51		_		
	5.6			·	
	<u> </u>	tind @ ~	·	11	
	- Will demo		<u> </u>	((0))	
					
					<u></u>
					
					
				·	
NOTES:	Sheen + mod -s	strong the be			
	Sheer + mod -s Snaple Time =	1520101	 		*************************************

(5)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

Stee Name DS. Co.		•	, DATA SH	EET	
TOC to Water (ft.) 7.04 Well Depth (ft.) 15.84 Well Diameter 2" Sample Collection Method Gal./Casing Vol. 15 (0.163) TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY 1453 0.5 6.94 81.9 >20.000 1457 1.5 6.44 81.9 >20.000 1501 2.5 6.94 \$4.38.8 >20.000 1503 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.94 \$4.38.8 >20.000 1505 3.0 6.97 77.9 >20.000 1507 4.5 1.00 77.7 77.000			Tires/Onkland	Well No	MW3
Well Depth (ft.) 15.84 Well Diameter 2'(Gal./Casing Vol. \$\infty\$ 1.5 (0.163) Telfo kelv Sample Collection Method Telfo kelv Telfo kelv Of BLECTRICAL PS (cm) TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY 1453 0.5 6.94 86.0 >29.000 1457 1.5 6.94 81.9 >29.000 1457 1.5 6.94 81.9 >29.000 1459 1.0 6.96 81.1 >20.000 150 2.5 6.98 90.2 >20.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 4.9 6.90 90.000 150 5.9 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 7.0000 150 8.9000 150 8.9000 150 90.00000 150 90.00000 150 90.00000 150 90.00000 150 90.000000 150 90.0000000000000000000000000000000000				Date	0/4/07
Well Depth (ft.) 15.84 Well Diameter 2'(Gal./Casing Vol. \$\infty\$ 1.5 (0.163) Telfo kelv Sample Collection Method Telfo kelv Telfo kelv Of BLECTRICAL PS (cm) TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY 1453 0.5 6.94 86.0 >29.000 1457 1.5 6.94 81.9 >29.000 1457 1.5 6.94 81.9 >29.000 1459 1.0 6.96 81.1 >20.000 150 2.5 6.98 90.2 >20.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 3.5 6.99 90.000 150 4.9 6.90 90.000 150 5.9 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 6.99 90.000 150 7.0000 150 8.9000 150 8.9000 150 90.00000 150 90.00000 150 90.00000 150 90.00000 150 90.000000 150 90.0000000000000000000000000000000000	TOC to Wate	r (ft.) 7.04		Sheen	Yes
Well Diameter	Well Depth	(ft.) 15.84		Free Prod	uct Thickness
TIME GAL. PURGED. DH TEMPERATURE CONDUCTIVITY 1453 0.5 6.94 86.0 >29.000 1457 1.5 6.94 81.9 >29.000 1457 1.5 6.94 81.9 >29.000 1459 2.0 6.96 87.1 >20,000 1501 2.5 6.98 90.2 72.000 1503 3.0 6.94 84.888 220,000 1505 94.3.5 6.92 77.9 1506 4.5 1.0 77.7 1506 4.5 1.0 77.7 1507 77.000		er L'		Sample Co	, <u> </u>
TIME GAL, PURGED OH TEMPERATURE CONDUCTIVITY 453	Gal./Casing	vol	(0.1631		
THE 1453 0.5 6.94 86.0 >29.000 1455 1.0 6.88 83.5 >29.000 1457 1.5 6.94 81.9 >20.000 1459 2.0 6.96 81.1 >20.000 1501 2.5 6.98 90.2 >20.000 1503 3.0 6.94 87.8.8 220,000 1505 95.3.5 6.97 77.9 9000 1504 4.5 1.90 77.7 770,000		301-4.5			ELECTRICAL INS (Cm
1455	7	GAL. PURGED `	<u>pH</u>	4.4	
1457 1.5 6.44 81.9 220,000 1501 2.5 6.46 81.1 220,000 1501 3.0 6.46 81.1 220,000 1501 1503 3.0 6.48 90.2 72.0 220,000 1505 1505 90.2 77.9 9000 1504 1.5 1.40 77.7 770,000	1423			86.0	>2000
1459	1457	1.0	6,88	83.5	20,000
15°1 2.5 6.98 40.2 720,000 15°3 3.0 6.94 87.8.8 220,000 15°5 94.3.5 6.92 77.9 220,000 15°5 15°5 1.00 1.01 77.7 770,000	1457	1.5	6.94	81.9	720,000
15°3 3.6 6.94 87.878.8 220,000 15°5 34.3.5 6.97 77.9 220,000 15°5 15°5 1.00 1.01 77.7 770,000	1459	7.0	6.96	8/11	>20,000
15°5	150	2.5	6.95	40,2	770,000
15°5 36,92 77.9 72°0 77.7 72°0 77.7 72°0 77.7 72°0 77.7 72°0 77°0	1503	3.0	6.94	87.8.8 78.8	720,000
Kot 4.0 1.11 77.7 77e,000 1.11 1.40	1505	> 3.5	6,97	77.9	730,000
1504 4.5 7.70 770,000			7.91	77.7	130,000
		100	1.40	71.7	770,000
NOTES: Sheen, I mud phe whom, dewatered Some & End Sample time = 71530	130 1		<u> </u>		
NOTES: Shen; + mudphe ulor; devotered Some & End Sample time = 71530					
NOTES: Shen; + mudphe ulon; devotered some & end Somple time = 71530					
NOTES: Shear, + mudphe ulor ', devotered 50 me @ End Sample time = 71570		-	•		
NOTES: Shen; + mudphe ulor; devotored some is interest some interest so					
NOTES: Shen, + mudphe ulon, devotered 5 cme & end Sample time = 71570					
NOTES: Shear it mudphe ulon devotered some l'entered some l'enter					·
NOTES: Sheen; + mudphe ulon; devotered some le entre Some le entre 1500					
NOTES: Sheen; + mudphe ulon; deportered some de end Sample time = 71570					
NOTES: Sheen; + mudphe ulor ', devotered some & end Sample time = 7/570					
NOTES: Sheen; + mud phe ulor devotered some & end Sample time =71570					
Sample time =71530	NOTES:	Sh	cen; + mud pl	iculos ; è	lewatered some & En
		_	Sample	hn=71570	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

_		DATA S		
Site Name _	Discount Brakess	r Tires/Ockland	Well No. M	w ^y
Job No			Date 06	104/07
TOC to Wate	r (ft.) 7.43		Sheen	5
Well Depth	(ft.) 10.02		Free Produc	ct Thickness
Well Diamet	er 1" (0.16	3)	•	lection Method
Gal./Casing	vo1. 7 /		Tet	don Brile
	27-1-1-9		of	ELECTRICAL M'/c.
TIME 1328	GAL. PURGED	6192	TEMPERATURE 89,4	CONDUCTIVITY 7 20,000
1330	1.4	6.90	90.5	720,000
1332	7.1	6.90	41.0	720,000
1334	2-8	6.40	91.2	>20,000
1336	3.5	6.90	91.2	730,800
1238	4.2	6.91	92.2	720,000
1340	4.9	6.93	92.7	720,000
1343	5.6	6.94	91.1	720,000
1244	6.3	6:94	90,4	720,1000
	,			
		 		
				
				
				
	•			
NOTES:	hear + modoha	od·r		
	here + modphe Surple Time > 1	1350 hrs		

PURGE10.92

M

4

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

DATA	Sheet
Site Name Pistont Bickes It is Or Ward	Well No. MWS
Job No. 6484	Date 6/4/07
TOC to Water (ft.) - 8.62	Sheen
Well Depth (ft.) 14.53	Free Product Thickness
Well Diameter 21 (0163)	Sample Collection Method
Gal./Casing Vol	Teffor Briles
3425.4	electrical MS/cm
TIME GAL. PURGED DH 1415 O.L 6.80	TEMPERATURE CONDUCTIVITY
1417 1.2 6.85	95.3 1990
1419 1.8 6.88	90.5
1421 2.4 6.88	89,6 720,000
1423 3.0 6.89	89.2 >20,000
1425 3.6 6.90	39.6 720,000
1427 4.2 6.92	
1429 4.8 6.91	90.\ 720,000 86:Z 720,000
1431 5.4 6.91	85.3 720,000
	·
and the second s	
NOTES: Sheen + It-mod phe odo	·
ande tres 1440	

(2)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

	o:	/ DATA		ſ
	Discourt Brokes + 7	ires oakland	Well No	MW6
Job No	0404		Date	14/07
TOC to Wate	er (ft.) 7-88		Sheen	105
Well Depth	(ft.) 19.84	-7:-	Free Produ	ct Thickness
	ter2" (0.(63)		Sample Col	lection Method
Gal./Casin	g Vol. 2.0	<u>.</u>	Te	floor Bales
	3vol = 6.0		Jul 40	ELECTRICAL pike
1840	GAL. PURGED	<u>DH</u>	TEMPERATURE	CONDUCTIVITY
120	1.3	110	87.8	720,000
1204	1.2	6.68	85.1	270,000
1254	7.1	6.60	81.7	7201000
1256	7.6	6,67	80.2	20,000
12.58	3.2	6,69	79.3	730,000
1300	<u> </u>	6.71	78.3	72000
1302	4.5	6.72	77.9	130,000
1304	5.2	6.77	77.6.	7201000
(306	6.0-5-451c	6.72	77.4	720,000
				
				
	-	<u> </u>		
			· · · · · · · · · · · · · · · · · · ·	
			·	
	*****		1	
				· · · · · · · · · · · · · · · · · · ·
				
NOTES:	theen & mod pl	r .do ~		
	Soude Times	1315		

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

DA'	TA SHEET
Site Name Discount Brookes & Tises	Well No. EW 1
Job No. 0404	Date 6/4/57
TOC to Water (ft.) 7.23	Sheen Yes
Well Depth (ft.) 29.92	Free Product Thickness 😾
Well Diameter 4"2 10.35/512	Sample Collection Method
Gal./Casing Vol. 14.8	1etlo-bow
347=447	BLECTRICAL MYCK
TIME GAL. PURGED DH (TEMPERATURE CONDUCTIVITY 85.7 19,120
1531 4.3	85.5 730,000
1536 9.0 60	
$\frac{154^{2}}{195}$ $\frac{14.5}{195}$ $\frac{6.9}{195}$	82.1 730,000
1548 19.5 6.8°	187 81.5 770,000
	,;
1607 35.0 6,90	
1614 40.0 6.96	
1621 44.4 6.88	790,000
	<u> </u>
NOTES: - heart Ftansch	i ad
NOTES: Sheer + 5+12-5 ph	- 0400
(
PURGE10.92	

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 06/12/07
	Client P.O.:	Date Completed: 06/12/07

WorkOrder: 0706126

June 12, 2007

Dear Steve:

Enclosed are:

- 1). the results of 7 analyzed samples from your #0404; Former Mel Senna Brake Service-Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0706126

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

CHAIN OF CUSTODY RECORD PROJECT NUMBER: PROJECT NAME: Distant Brakes o 0404 SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Steven Carmack SAMPLE LOCATION SAMPLE NUMBER DATE TIME | TYPE MWI 6/4/07 166 1512 10 MW Z 1520 8 1530 MW 4 nw 4 1350 1440 MWK 1315 MW 6 AND LWZ 1635 RELINQUISHED BY (SIGNATURE) TOTAL NO. OF SAMPLES RECEIVED BY: (SIGNATURE) DATE/ TIME, LABORATORY: (THIS SHIPMENT) 10 McCampbell Andytical TOTAL NO. OF CONTAINERS (THE SHPWENT) RELINQUISHED BY: (SIGNATURE) DATE LABORATORY PHONE NUMBER: TIME RECEIVED BY: (SIGNATURE) LABORATORY CONTACT: 520 (877) 262-9262 Angela Rydelin 567 RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET (SIGNATURE) ATTACHED: ()YES (X)NO Billing and Results to: Vons preserved WHCL REMARKS: PEND Environmental, Inc Lab & Ddenviro. com

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	g, CA 94565-1701 52-9262					Work	Order:	0706	5126	(ClientII	D: PDE	О				
<u> </u>				☐ EDF		Excel		Fax		🗸 Email		Hard	Сору	Thir	dParty		
Report to: Steve Carmack P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610		Email: p_denvironmental@msn.com TEL: (510) 658-691 FAX: 510-834-0152 ProjectNo: #0404; Former Mel Senna Brake Servic PO:			P 8 55 Oa	Accounts Payable P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610 PDKing0000@aol.com				D / D : 1.0/10							
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
706126-001	MW1		Water	6/4/07 3:12:00 PM		В	Α										
706126-002	MW2		Water	6/4/07 3:20:00 PM		В	Α		1								†
706126-003	MW3		Water	6/4/07 3:30:00 PM	_	В	Α										1
706126-004	MW4		Water	6/4/07 1:50:00 PM	_	В	Α										1
706126-005	MW5		Water	6/4/07 2:40:00 PM	_	В	Α										1
706126-006	MW6		Water	6/4/07 1:15:00 PM		В	Α										1
706126-007	EW1		Water	6/4/07 4:35:00 PM		В	Α										1
est Legend:								_					г				
	DB_W 2	G-MBTEX	(_W	3				_	4					5			
6	7			8				9	9					10			
1	12																
he following San	npIDs: 001A. 002A. 003A. 004	A. 005A. 006A	. 007A contair	n testaroup.									Prens	red by:	Melis	sa Vall	es

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environmen	ntal			Date a	and Time Received:	6/5/07 8:4	8:27 PM
Project Name:	#0404; Former Me	el Senna Brake Se	ervice	e-Oaklaı	nd Check	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0706126	Matrix Water			Carrie	er: Rob Pringle (M	IAI Courier)	
		Chain	of Cu	stody (C	OC) Informa	ation_		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No \square			
Date and Time of	collection noted by Clie	ent on COC?	Yes	✓	No \square			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		Sa	ample	Receipt	Information	<u>1</u>		
Custody seals in	tact on shippping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condi	tion?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated t	test?	Yes	✓	No 🗌			
		Sample Preser	vatio	n and Ho	old Time (HT) Information		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	er Temp:	3.2°C		NA \square	
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	~	No \square	No VOA vials subm	itted \square	
Sample labels ch	necked for correct pres	servation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon receip	ot (pH<2)?	Yes		No 🗆		NA 🔽	
				===:				
Client contacted:		Date contact	ed:			Contacted	by:	
Comments:								

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
33 Santa Ciara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID		0706126-001B						
Client ID				MW1				
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND<200	20	10	Acrolein (Propenal)	ND<100	20	5.0	
Acrylonitrile	ND<40	20	2.0	tert-Amyl methyl ether (TAME)	ND<10	20	0.5	
Benzene	280	20	0.5	Bromobenzene	ND<10	20	0.5	
Bromochloromethane	ND<10	20	0.5	Bromodichloromethane	ND<10	20	0.5	

	<u> </u>		Limit				Limit
Acetone	ND<200	20	10	Acrolein (Propenal)	ND<100	20	5.0
Acrylonitrile	ND<40	20	2.0	tert-Amyl methyl ether (TAME)	ND<10	20	0.5
Benzene	280	20	0.5	Bromobenzene	ND<10	20	0.5
Bromochloromethane	ND<10	20	0.5	Bromodichloromethane	ND<10	20	0.5
Bromoform	ND<10	20	0.5	Bromomethane	ND<10	20	0.5
2-Butanone (MEK)	ND<40	20	2.0	t-Butyl alcohol (TBA)	ND<100	20	5.0
n-Butyl benzene	ND<10	20	0.5	sec-Butyl benzene	ND<10	20	0.5
tert-Butyl benzene	ND<10	20	0.5	Carbon Disulfide	ND<10	20	0.5
Carbon Tetrachloride	ND<10	20	0.5	Chlorobenzene	ND<10	20	0.5
Chloroethane	ND<10	20	0.5	2-Chloroethyl Vinyl Ether	ND<20	20	1.0
Chloroform	ND<10	20	0.5	Chloromethane	ND<10	20	0.5
2-Chlorotoluene	ND<10	20	0.5	4-Chlorotoluene	ND<10	20	0.5
Dibromochloromethane	ND<10	20	0.5	1,2-Dibromo-3-chloropropane	ND<10	20	0.5
1,2-Dibromoethane (EDB)	ND<10	20	0.5	Dibromomethane	ND<10	20	0.5
1,2-Dichlorobenzene	ND<10	20	0.5	1,3-Dichlorobenzene	ND<10	20	0.5
1,4-Dichlorobenzene	ND<10	20	0.5	Dichlorodifluoromethane	ND<10	20	0.5
1,1-Dichloroethane	ND<10	20	0.5	1,2-Dichloroethane (1,2-DCA)	ND<10	20	0.5
1,1-Dichloroethene	ND<10	20	0.5	cis-1,2-Dichloroethene	ND<10	20	0.5
trans-1,2-Dichloroethene	ND<10	20	0.5	1,2-Dichloropropane	ND<10	20	0.5
1,3-Dichloropropane	ND<10	20	0.5	2,2-Dichloropropane	ND<10	20	0.5
1,1-Dichloropropene	ND<10	20	0.5	cis-1,3-Dichloropropene	ND<10	20	0.5
trans-1,3-Dichloropropene	ND<10	20	0.5	Diisopropyl ether (DIPE)	ND<10	20	0.5
Ethylbenzene	ND<10	20	0.5	Ethyl tert-butyl ether (ETBE)	ND<10	20	0.5
Freon 113	ND<200	20	10	Hexachlorobutadiene	ND<10	20	0.5
Hexachloroethane	ND<10	20	0.5	2-Hexanone	ND<10	20	0.5
Isopropylbenzene	11	20	0.5	4-Isopropyl toluene	ND<10	20	0.5
Methyl-t-butyl ether (MTBE)	ND<10	20	0.5	Methylene chloride	ND<10	20	0.5
4-Methyl-2-pentanone (MIBK)	ND<10	20	0.5	Naphthalene	ND<10	20	0.5
Nitrobenzene	ND<200	20	10	n-Propyl benzene	14	20	0.5
Styrene	ND<10	20	0.5	1,1,1,2-Tetrachloroethane	ND<10	20	0.5
1,1,2,2-Tetrachloroethane	ND<10	20	0.5	Tetrachloroethene	ND<10	20	0.5
Toluene	ND<10	20	0.5	1,2,3-Trichlorobenzene	ND<10	20	0.5
1,2,4-Trichlorobenzene	ND<10	20	0.5	1,1,1-Trichloroethane	ND<10	20	0.5
1,1,2-Trichloroethane	ND<10	20	0.5	Trichloroethene	ND<10	20	0.5
Trichlorofluoromethane	ND<10	20	0.5	1,2,3-Trichloropropane	ND<10	20	0.5
1,2,4-Trimethylbenzene	ND<10	20	0.5	1,3,5-Trimethylbenzene	ND<10	20	0.5
Vinvl Chloride	ND<10	20	0.5	Xvlenes	ND<10	20	0.5

Surrogate Recoveries (%)							
%SS1:	100	%SS2:	98				
%SS3:	92						

Comments: h

 $ND\ means\ not\ detected\ above\ the\ reporting\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
33 Santa Ciara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID	0706126-002B						
Client ID	MW2						
Matrix		Water					
Compound	Concentration *	DF	Reporting	Compound	Concentration *	DF	Reporting
			Limit				Limit
Acetone	ND<250	25	10	Acrolein (Propenal)	ND<120	25	5.0
Acrylonitrile	ND<50	25	2.0	tert-Amyl methyl ether (TAME)	ND<12	25	0.5
Benzene	430	25	0.5	Bromobenzene	ND<12	25	0.5
Bromochloromethane	ND<12	25	0.5	Bromodichloromethane	ND<12	25	0.5
Bromoform	ND<12	25	0.5	Bromomethane	ND<12	25	0.5
2-Butanone (MEK)	ND<50	25	2.0	t-Butyl alcohol (TBA)	ND<120	25	5.0
n-Butyl benzene	ND<12	25	0.5	sec-Butyl benzene	ND<12	25	0.5
tert-Butyl benzene	ND<12	25	0.5	Carbon Disulfide	ND<12	25	0.5
Carbon Tetrachloride	ND<12	25	0.5	Chlorobenzene	ND<12	25	0.5
Chloroethane	ND<12	25	0.5	2-Chloroethyl Vinyl Ether	ND<25	25	1.0
Chloroform	ND<12	25	0.5	Chloromethane	ND<12	25	0.5
2-Chlorotoluene	ND<12	25	0.5	4-Chlorotoluene	ND<12	25	0.5
Dibromochloromethane	ND<12	25	0.5	1,2-Dibromo-3-chloropropane	ND<12	25	0.5
1,2-Dibromoethane (EDB)	ND<12	25	0.5	Dibromomethane	ND<12	25	0.5
1,2-Dichlorobenzene	ND<12	25	0.5	1,3-Dichlorobenzene	ND<12	25	0.5
1,4-Dichlorobenzene	ND<12	25	0.5	Dichlorodifluoromethane	ND<12	25	0.5
1,1-Dichloroethane	ND<12	25	0.5	1,2-Dichloroethane (1,2-DCA)	ND<12	25	0.5
1,1-Dichloroethene	ND<12	25	0.5	cis-1,2-Dichloroethene	ND<12	25	0.5
trans-1,2-Dichloroethene	ND<12	25	0.5	1,2-Dichloropropane	ND<12	25	0.5
1,3-Dichloropropane	ND<12	25	0.5	2,2-Dichloropropane	ND<12	25	0.5
1,1-Dichloropropene	ND<12	25	0.5	cis-1,3-Dichloropropene	ND<12	25	0.5
trans-1,3-Dichloropropene	ND<12	25	0.5	Diisopropyl ether (DIPE)	ND<12	25	0.5
Ethylbenzene	ND<12	25	0.5	Ethyl tert-butyl ether (ETBE)	ND<12	25	0.5
Freon 113	ND<250	25	10	Hexachlorobutadiene	ND<12	25	0.5
Hexachloroethane	ND<12	25	0.5	2-Hexanone	ND<12	25	0.5
Isopropylbenzene	ND<12	25	0.5	4-Isopropyl toluene	ND<12	25	0.5
Methyl-t-butyl ether (MTBE)	ND<12	25	0.5	Methylene chloride	ND<12	25	0.5
4-Methyl-2-pentanone (MIBK)	ND<12	25	0.5	Naphthalene	260	25	0.5
Nitrobenzene	ND<250	25	10	n-Propyl benzene	ND<12	25	0.5
Styrene	ND<12	25	0.5	1,1,1,2-Tetrachloroethane	ND<12	25	0.5
1,1,2,2-Tetrachloroethane	ND<12	25	0.5	Tetrachloroethene	ND<12	25	0.5
Toluene	31	25	0.5	1,2,3-Trichlorobenzene	ND<12	25	0.5
1,2,4-Trichlorobenzene	ND<12	25	0.5	1,1,1-Trichloroethane	ND<12	25	0.5
1,1,2-Trichloroethane	ND<12	25	0.5	Trichloroethene	ND<12	25	0.5
Trichlorofluoromethane	ND<12	25	0.5	1,2,3-Trichloropropane	ND<12	25	0.5
1,2,4-Trimethylbenzene	ND<12	25	0.5	1,3,5-Trimethylbenzene	36	25	0.5
Vinvl Chloride	ND<12	25	0.5	Xvlenes	43	25	0.5

 %SS1:
 100
 %SS2:
 98

 %SS3:
 94

Comments:

Surrogate Recoveries (%)

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
33 Santa Ciara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID	0706126-003B						
Client ID		MW3					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<25	2.5	10	Acrolein (Propenal)	ND<12	2.5	5.0
Acrylonitrile	ND<5.0	2.5	2.0	tert-Amyl methyl ether (TAME)	ND<1.2	2.5	0.5
Benzene	34	2.5	0.5	Bromobenzene	ND<1.2	2.5	0.5
Bromochloromethane	ND<1.2	2.5	0.5	Bromodichloromethane	ND<1.2	2.5	0.5
Bromoform	ND<1.2	2.5	0.5	Bromomethane	ND<1.2	2.5	0.5
2-Butanone (MEK)	ND<5.0	2.5	2.0	t-Butyl alcohol (TBA)	ND<12	2.5	5.0
n-Butyl benzene	16	2.5	0.5	sec-Butyl benzene	13	2.5	0.5
tert-Butyl benzene	ND<1.2	2.5	0.5	Carbon Disulfide	ND<1.2	2.5	0.5
Carbon Tetrachloride	ND<1.2	2.5	0.5	Chlorobenzene	ND<1.2	2.5	0.5
Chloroethane	ND<1.2	2.5	0.5	2-Chloroethyl Vinyl Ether	ND<2.5	2.5	1.0
Chloroform	ND<1.2	2.5	0.5	Chloromethane	ND<1.2	2.5	0.5
2-Chlorotoluene	ND<1.2	2.5	0.5	4-Chlorotoluene	ND<1.2	2.5	0.5
Dibromochloromethane	ND<1.2	2.5	0.5	1,2-Dibromo-3-chloropropane	ND<1.2	2.5	0.5
1,2-Dibromoethane (EDB)	ND<1.2	2.5	0.5	Dibromomethane	ND<1.2	2.5	0.5
1,2-Dichlorobenzene	ND<1.2	2.5	0.5	1,3-Dichlorobenzene	ND<1.2	2.5	0.5
1,4-Dichlorobenzene	ND<1.2	2.5	0.5	Dichlorodifluoromethane	ND<1.2	2.5	0.5
1,1-Dichloroethane	ND<1.2	2.5	0.5	1,2-Dichloroethane (1,2-DCA)	ND<1.2	2.5	0.5
1,1-Dichloroethene	ND<1.2	2.5	0.5	cis-1,2-Dichloroethene	ND<1.2	2.5	0.5
trans-1,2-Dichloroethene	ND<1.2	2.5	0.5	1,2-Dichloropropane	ND<1.2	2.5	0.5
1,3-Dichloropropane	ND<1.2	2.5	0.5	2,2-Dichloropropane	ND<1.2	2.5	0.5
1,1-Dichloropropene	ND<1.2	2.5	0.5	cis-1,3-Dichloropropene	ND<1.2	2.5	0.5
trans-1,3-Dichloropropene	ND<1.2	2.5	0.5	Diisopropyl ether (DIPE)	ND<1.2	2.5	0.5
Ethylbenzene	2.4	2.5	0.5	Ethyl tert-butyl ether (ETBE)	ND<1.2	2.5	0.5
Freon 113	ND<25	2.5	10	Hexachlorobutadiene	ND<1.2	2.5	0.5
Hexachloroethane	ND<1.2	2.5	0.5	2-Hexanone	ND<1.2	2.5	0.5
Isopropylbenzene	34	2.5	0.5	4-Isopropyl toluene	19	2.5	0.5
Methyl-t-butyl ether (MTBE)	ND<1.2	2.5	0.5	Methylene chloride	ND<1.2	2.5	0.5
4-Methyl-2-pentanone (MIBK)	ND<1.2	2.5	0.5	Naphthalene	21	2.5	0.5
Nitrobenzene	ND<25	2.5	10	n-Propyl benzene	30	2.5	0.5
Styrene	ND<1.2	2.5	0.5	1,1,1,2-Tetrachloroethane	ND<1.2	2.5	0.5
1,1,2,2-Tetrachloroethane	ND<1.2	2.5	0.5	Tetrachloroethene	ND<1.2	2.5	0.5
Toluene	4.8	2.5	0.5	1,2,3-Trichlorobenzene	ND<1.2	2.5	0.5
1,2,4-Trichlorobenzene	ND<1.2	2.5	0.5	1,1,1-Trichloroethane	ND<1.2	2.5	0.5
1,1,2-Trichloroethane	ND<1.2	2.5	0.5	Trichloroethene	ND<1.2	2.5	0.5
Trichlorofluoromethane	ND<1.2	2.5	0.5	1,2,3-Trichloropropane	ND<1.2	2.5	0.5
1,2,4-Trimethylbenzene	ND<1.2	2.5	0.5	1,3,5-Trimethylbenzene	ND<1.2	2.5	0.5
Vinyl Chloride	ND<1.2	2.5	0.5	Xylenes	2.7	2.5	0.5

 Surrogate Recoveries (%)

 %SS1:
 104
 %SS2:
 97

 %SS3:
 97
 97

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

Lab ID

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

0706126 004D

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
55 Santa Ciara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID		0706126-004B						
Client ID	MW4							
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0	
n-Butyl benzene	8.7	1.0	0.5	sec-Butyl benzene	13	1.0	0.5	
tert-Butyl benzene	1.0	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5	
Isopropylbenzene	13	1.0	0.5	4-Isopropyl toluene	5.7	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene	11	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5	

 %SS1:
 110
 %SS2:
 99

 %SS3:
 97

Comments:

Surrogate Recoveries (%)

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
33 Santa Ciara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID	0706126-005B						
Client ID	MW5						
Matrix	Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<25	2.5	10	Acrolein (Propenal)	ND<12	2.5	5.0
Acrylonitrile	ND<5.0	2.5	2.0	tert-Amyl methyl ether (TAME)	ND<1.2	2.5	0.5
Benzene	41	2.5	0.5	Bromobenzene	ND<1.2	2.5	0.5
Bromochloromethane	ND<1.2	2.5	0.5	Bromodichloromethane	ND<1.2	2.5	0.5
Bromoform	ND<1.2	2.5	0.5	Bromomethane	ND<1.2	2.5	0.5
2-Butanone (MEK)	ND<5.0	2.5	2.0	t-Butyl alcohol (TBA)	ND<12	2.5	5.0
n-Butyl benzene	17	2.5	0.5	sec-Butyl benzene	11	2.5	0.5
tert-Butyl benzene	ND<1.2	2.5	0.5	Carbon Disulfide	ND<1.2	2.5	0.5
Carbon Tetrachloride	ND<1.2	2.5	0.5	Chlorobenzene	ND<1.2	2.5	0.5
Chloroethane	ND<1.2	2.5	0.5	2-Chloroethyl Vinyl Ether	ND<2.5	2.5	1.0
Chloroform	ND<1.2	2.5	0.5	Chloromethane	ND<1.2	2.5	0.5
2-Chlorotoluene	ND<1.2	2.5	0.5	4-Chlorotoluene	ND<1.2	2.5	0.5
Dibromochloromethane	ND<1.2	2.5	0.5	1,2-Dibromo-3-chloropropane	ND<1.2	2.5	0.5
1,2-Dibromoethane (EDB)	ND<1.2	2.5	0.5	Dibromomethane	ND<1.2	2.5	0.5
1,2-Dichlorobenzene	ND<1.2	2.5	0.5	1,3-Dichlorobenzene	ND<1.2	2.5	0.5
1,4-Dichlorobenzene	ND<1.2	2.5	0.5	Dichlorodifluoromethane	ND<1.2	2.5	0.5
1,1-Dichloroethane	ND<1.2	2.5	0.5	1,2-Dichloroethane (1,2-DCA)	ND<1.2	2.5	0.5
1,1-Dichloroethene	ND<1.2	2.5	0.5	cis-1,2-Dichloroethene	ND<1.2	2.5	0.5
trans-1,2-Dichloroethene	2.1	2.5	0.5	1,2-Dichloropropane	ND<1.2	2.5	0.5
1,3-Dichloropropane	ND<1.2	2.5	0.5	2,2-Dichloropropane	ND<1.2	2.5	0.5
1,1-Dichloropropene	ND<1.2	2.5	0.5	cis-1,3-Dichloropropene	ND<1.2	2.5	0.5
trans-1,3-Dichloropropene	ND<1.2	2.5	0.5	Diisopropyl ether (DIPE)	ND<1.2	2.5	0.5
Ethylbenzene	7.0	2.5	0.5	Ethyl tert-butyl ether (ETBE)	ND<1.2	2.5	0.5
Freon 113	ND<25	2.5	10	Hexachlorobutadiene	ND<1.2	2.5	0.5
Hexachloroethane	ND<1.2	2.5	0.5	2-Hexanone	ND<1.2	2.5	0.5
Isopropylbenzene	72	2.5	0.5	4-Isopropyl toluene	ND<1.2	2.5	0.5
Methyl-t-butyl ether (MTBE)	ND<1.2	2.5	0.5	Methylene chloride	ND<1.2	2.5	0.5
4-Methyl-2-pentanone (MIBK)	ND<1.2	2.5	0.5	Naphthalene	39	2.5	0.5
Nitrobenzene	ND<25	2.5	10	n-Propyl benzene	100	2.5	0.5
Styrene	ND<1.2	2.5	0.5	1,1,1,2-Tetrachloroethane	ND<1.2	2.5	0.5
1,1,2,2-Tetrachloroethane	ND<1.2	2.5	0.5	Tetrachloroethene	ND<1.2	2.5	0.5
Toluene	4.0	2.5	0.5	1,2,3-Trichlorobenzene	ND<1.2	2.5	0.5
1,2,4-Trichlorobenzene	ND<1.2	2.5	0.5	1,1,1-Trichloroethane	ND<1.2	2.5	0.5
1,1,2-Trichloroethane	ND<1.2	2.5	0.5	Trichloroethene	ND<1.2	2.5	0.5
Trichlorofluoromethane	ND<1.2	2.5	0.5	1,2,3-Trichloropropane	ND<1.2	2.5	0.5

 Surrogate Recoveries (%)

 %SS1:
 102
 %SS2:
 98

 %SS3:
 95
 98

0.5

1,3,5-Trimethylbenzene

Xvlenes

Comments:

Vinvl Chloride

1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<1.2

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

ND<1.2

0.5

0.5

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
	Client Contact: Steve Carmack	Date Extracted: 06/08/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/08/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID		0706126-006B							
Client ID				MW6					
Matrix		Water							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND<250	25	10	Acrolein (Propenal)	ND<120	25	5.0		
Acrylonitrile	ND<50	25	2.0	tert-Amyl methyl ether (TAME)	ND<12	25	0.5		
Benzene	600	25	0.5	Bromobenzene	ND<12	25	0.5		
Bromochloromethane	ND<12	25	0.5	Bromodichloromethane	ND<12	25	0.5		
Bromoform	ND<12	25	0.5	Bromomethane	ND<12	25	0.5		
2-Butanone (MEK)	ND<50	25	2.0	t-Butyl alcohol (TBA)	ND<120	25	5.0		
n-Butyl benzene	ND<12	25	0.5	sec-Butyl benzene	ND<12	25	0.5		
tert-Butyl benzene	ND<12	25	0.5	Carbon Disulfide	ND<12	25	0.5		
Carbon Tetrachloride	ND<12	25	0.5	Chlorobenzene	ND<12	25	0.5		
Chloroethane	ND<12	25	0.5	2-Chloroethyl Vinyl Ether	ND<25	25	1.0		
Chloroform	ND<12	25	0.5	Chloromethane	ND<12	25	0.5		
2-Chlorotoluene	ND<12	25	0.5	4-Chlorotoluene	ND<12	25	0.5		
Dibromochloromethane	ND<12	25	0.5	1,2-Dibromo-3-chloropropane	ND<12	25	0.5		
1,2-Dibromoethane (EDB)	ND<12	25	0.5	Dibromomethane	ND<12	25	0.5		
1,2-Dichlorobenzene	ND<12	25	0.5	1,3-Dichlorobenzene	ND<12	25	0.5		
1,4-Dichlorobenzene	ND<12	25	0.5	Dichlorodifluoromethane	ND<12	25	0.5		
1,1-Dichloroethane	ND<12	25	0.5	1,2-Dichloroethane (1,2-DCA)	ND<12	25	0.5		
1,1-Dichloroethene	ND<12	25	0.5	cis-1,2-Dichloroethene	ND<12	25	0.5		
trans-1,2-Dichloroethene	ND<12	25	0.5	1,2-Dichloropropane	ND<12	25	0.5		
1,3-Dichloropropane	ND<12	25	0.5	2,2-Dichloropropane	ND<12	25	0.5		
1,1-Dichloropropene	ND<12	25	0.5	cis-1,3-Dichloropropene	ND<12	25	0.5		
trans-1,3-Dichloropropene	ND<12	25	0.5	Diisopropyl ether (DIPE)	ND<12	25	0.5		
Ethylbenzene	ND<12	25	0.5	Ethyl tert-butyl ether (ETBE)	ND<12	25	0.5		
Freon 113	ND<250	25	10	Hexachlorobutadiene	ND<12	25	0.5		
Hexachloroethane	ND<12	25	0.5	2-Hexanone	ND<12	25	0.5		
Isopropylbenzene	27	25	0.5	4-Isopropyl toluene	ND<12	25	0.5		
Methyl-t-butyl ether (MTBE)	ND<12	25	0.5	Methylene chloride	ND<12	25	0.5		
4-Methyl-2-pentanone (MIBK)	ND<12	25	0.5	Naphthalene	48	25	0.5		
Nitrobenzene	ND<250	25	10	n-Propyl benzene	32	25	0.5		
Styrene	ND<12	25	0.5	1,1,1,2-Tetrachloroethane	ND<12	25	0.5		
1,1,2,2-Tetrachloroethane	ND<12	25	0.5	Tetrachloroethene	ND<12	25	0.5		
Toluene	ND<12	25	0.5	1,2,3-Trichlorobenzene	ND<12	25	0.5		
1,2,4-Trichlorobenzene	ND<12	25	0.5	1,1,1-Trichloroethane	ND<12	25	0.5		
1.1.2-Trichloroethane	ND<12	25	0.5	Trichloroethene	ND<12	25	0.5		
Trichlorofluoromethane	ND<12	25	0.5	1,2,3-Trichloropropane	ND<12	25	0.5		
1.0.4 T	ND 12	25		1.2.5 The moropropulation	ND 12	25	0.5		

Surrogate Recoveries (%)							
%SS1:	97	%SS2:	98				
%SS3:	91						

1,3,5-Trimethylbenzene

Comments:

Vinvl Chloride

1,2,4-Trimethylbenzene

 $ND\ means\ not\ detected\ above\ the\ reporting\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

ND<12

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$.

P & D Environmental	Client Project ID: #0404; Former Mel	Date Sampled: 06/04/07
55 Santa Clara, Ste.240	Senna Brake Service-Oakland	Date Received: 06/05/07
	Client Contact: Steve Carmack	Date Extracted: 06/09/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 06/09/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706126

Lab ID		0706126-007B						
Client ID		EW1						
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	

Matrix Water							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<100	10	10	Acrolein (Propenal)	ND<50	10	5.0
Acrylonitrile	ND<20	10	2.0	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5
Benzene	160	10	0.5	Bromobenzene ND<5.0		10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromethane	ND<5.0	10	0.5
Bromoform	ND<5.0	10	0.5	Bromomethane	ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<50	10	5.0
n-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene	ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene	ND<5.0	10	0.5
Chloroethane	ND<5.0	10	0.5	2-Chloroethyl Vinyl Ether	ND<10	10	1.0
Chloroform	ND<5.0	10	0.5	Chloromethane	ND<5.0	10	0.5
2-Chlorotoluene	ND<5.0	10	0.5	4-Chlorotoluene	ND<5.0	10	0.5
Dibromochloromethane	ND<5.0	10	0.5	1,2-Dibromo-3-chloropropane	ND<5.0	10	0.5
1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Dibromomethane	ND<5.0	10	0.5
1,2-Dichlorobenzene	ND<5.0	10	0.5	1,3-Dichlorobenzene	ND<5.0	10	0.5
1.4-Dichlorobenzene	ND<5.0	10	0.5	Dichlorodifluoromethane	ND<5.0	10	0.5
1,1-Dichloroethane	ND<5.0	10	0.5	1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5
1,1-Dichloroethene	ND<5.0	10	0.5	cis-1,2-Dichloroethene	ND<5.0	10	0.5
trans-1,2-Dichloroethene	5.8	10	0.5	1,2-Dichloropropane	ND<5.0	10	0.5
1,3-Dichloropropane	ND<5.0	10	0.5	2,2-Dichloropropane	ND<5.0	10	0.5
1,1-Dichloropropene	ND<5.0	10	0.5	cis-1,3-Dichloropropene	ND<5.0	10	0.5
trans-1,3-Dichloropropene	ND<5.0	10	0.5	Diisopropyl ether (DIPE)	ND<5.0	10	0.5
Ethylbenzene	ND<5.0	10	0.5	Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5
Freon 113	ND<100	10	10	Hexachlorobutadiene	ND<5.0	10	0.5
Hexachloroethane	ND<5.0	10	0.5	2-Hexanone	ND<5.0	10	0.5
Isopropylbenzene	21	10	0.5	4-Isopropyl toluene	6.2	10	0.5
Methyl-t-butyl ether (MTBE)	ND<5.0	10	0.5	Methylene chloride	ND<5.0	10	0.5
4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	Naphthalene	15	10	0.5
Nitrobenzene	ND<100	10	10	n-Propyl benzene	13	10	0.5
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	ND<5.0	10	0.5
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenzene	ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane	ND<5.0	10	0.5
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropane	ND<5.0	10	0.5
1,2,4-Trimethylbenzene	ND<5.0	10	0.5	1,3,5-Trimethylbenzene	ND<5.0	10	0.5
Vinvl Chloride	ND<5.0	10	0.5	Xvlenes	ND<5.0	10	0.5
		Surr	ogate Re	ecoveries (%)			
			-	1 '			

Surrogate Recoveries (%)							
%SS1:	100	%SS2:	98				
%SS3:	93						

Comments:

 $ND\ means\ not\ detected\ above\ the\ reporting\ limit;\ N/A\ means\ analyte\ not\ applicable\ to\ this\ analysis.$

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

P & D Environmental

Client Project ID: #0404; Former Mel Senna
Brake Service-Oakland

Date Sampled: 06/04/07

Date Received: 06/05/07

Client Contact: Steve Carmack

Date Extracted: 06/09/07

Client P.O.:

Date Analyzed 06/09/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	Extraction method SW5030B Analytical methods SW8021B/8015Cm									6126
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW1	W	11,000,a,m,h	ND<45	260	6.9	5.6	9.5	5	101
002A	MW2	W	28,000,a,m	ND<160	480	18	17	41	10	107
003A	MW3	W	9200,a,m	ND<60	58	4.7	5.9	8.1	5	94
004A	MW4	W	4900,m	ND<25	ND<2.5	ND<2.5	ND<2.5	3.0	5	105
005A	MW5	W	6200,a,m	ND<25	44	3.7	10	13	5	90
006A	MW6	W	7100,a,m	ND<90	580	ND<5.0	11	ND<5.0	10	96
007A	EW1	W	6400,a,m	ND<90	160	ND<2.5	6.3	7.7	5	105
_	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Total Control of the								
P & D Environ	nmental		ID: #0404; Former Mel Service-Oakland	Date Sampled: 06/	Date Sampled: 06/04/07			
55 Santa Clara	ı, Ste.240	Senna Brake	Service-Oakiand	Date Received: 06/	05/07			
Oakland, CA 9	94610	Client Contac	ct: Steve Carmack	Date Extracted: 06/	05/07			
Outraine, Cr 1	1010	Client P.O.:		Date Analyzed 06/	08/07-06/	09/07		
			Extractable Hydrocarbons					
Extraction method:	SW3510C	Analytica	al methods: SW8015C	Wor	k Order: 0'	706126		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0706126-001A	MW1	W	10,000,n,g,b,h	2100	2	97		
0706126-002A	MW2	W	8300,n,b	1600	2	107		
0706126-003A	MW3	W	4200,n,b	580	2	93		
0706126-004A	MW4	W	1200,n	ND	1	104		
0706126-005A	MW5	W	2000,d,b	ND	1	105		
0706126-006A	MW6	W	2700,d,b	880	1	103		
0706126-007A	EW1	W	1200,d,b	ND<500	2	95		

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706126

EPA Method SW8015C Extraction SW3510C				Bat	chID: 28	526	Sp	iked Samı	ole ID:	N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	119	129	0.0157	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	116	119	0.198	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28526 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706126-001A	06/04/07 3:12 PM	06/05/07	06/09/07 6:49 AM	0706126-002A	06/04/07 3:20 PM	06/05/07	06/09/07 5:42 AM
0706126-003A	06/04/07 3:30 PM	06/05/07	06/09/07 4:34 AM	0706126-005A	06/04/07 2:40 PM	06/05/07	06/08/07 10:52 PM
0706126-006A	06/04/07 1:15 PM	06/05/07	06/08/07 9:42 PM	0706126-007A	06/04/07 4:35 PM	06/05/07	06/09/07 1:10 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706126

EPA Method SW8260B	Extra	Extraction SW5030B				chID: 28	527	Sp	Spiked Sample ID: 0706091-007C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 ilialy to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	95	95.9	0.972	95.3	96.6	1.45	70 - 130	30	70 - 130	30
Benzene	ND	10	94.1	92.6	1.59	93.1	97.6	4.76	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	92.1	89.8	2.56	89.4	87.5	2.18	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	99.8	1.53	109	108	0.965	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	91.4	95.4	4.32	101	91.7	9.51	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	95.2	93.8	1.52	97.3	106	8.45	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	94.3	93.8	0.534	96.7	101	4.59	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	101	100	0.356	101	102	0.847	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.4	95.5	0.869	97.5	97.2	0.324	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	99.3	98.8	0.549	102	102	0	70 - 130	30	70 - 130	30
Toluene	ND	10	99.1	102	2.69	110	102	7.56	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	80.4	78.7	2.09	88.8	87.7	1.29	70 - 130	30	70 - 130	30
%SS1:	105	10	107	107	0	106	110	3.63	70 - 130	30	70 - 130	30
%SS2:	95	10	93	97	4.17	104	96	7.83	70 - 130	30	70 - 130	30
%SS3:	93	10	94	96	1.59	94	86	8.36	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 28527 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706126-001B	06/04/07 3:12 PM	06/08/07	06/08/07 5:58 PM	0706126-002B	06/04/07 3:20 PM	06/08/07	06/08/07 6:46 PM
0706126-003B	06/04/07 3:30 PM	06/08/07	06/08/07 7:30 PM	0706126-004B	06/04/07 1:50 PM	06/08/07	06/08/07 8:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706126

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 28	550	Sp	iked Samp	ole ID:	0706122-00	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
/ mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	84.9	111	27.0	99.3	96.7	2.62	70 - 130	30	70 - 130	30
MTBE	ND	10	84.7	91.8	7.99	102	102	0	70 - 130	30	70 - 130	30
Benzene	ND	10	96	92.1	4.14	89.1	92	3.15	70 - 130	30	70 - 130	30
Toluene	ND	10	92.9	89	4.16	99.5	102	2.87	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	99.6	96.6	3.01	97.3	100	2.91	70 - 130	30	70 - 130	30
Xylenes	ND	30	110	110	0	110	110	0	70 - 130	30	70 - 130	30
%SS:	103	10	92	95	3.11	94	94	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 28550 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706126-001A	06/04/07 3:12 PM	06/09/07	06/09/07 3:14 AM	0706126-002A	06/04/07 3:20 PM	06/09/07	06/09/07 3:44 AM
0706126-003A	06/04/07 3:30 PM	06/09/07	06/09/07 4:14 AM	0706126-004A	06/04/07 1:50 PM	06/09/07	06/09/07 4:44 AM
0706126-005A	06/04/07 2:40 PM	06/09/07	06/09/07 5:13 AM	0706126-006A	06/04/07 1:15 PM	06/09/07	06/09/07 5:43 AM
0706126-007A	06/04/07 4:35 PM	06/09/07	06/09/07 6:13 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0706126

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 28	551	Sp	iked Samp	ole ID:	0706165-01	1B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	99.5	104	4.15	94.5	95.8	1.41	70 - 130	30	70 - 130	30
Benzene	ND	10	96.3	94.1	2.25	89.9	90.1	0.203	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	95	95.9	0.891	84.7	85.4	0.784	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	109	113	3.75	107	107	0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	93.5	104	10.4	97.6	99.5	1.96	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	107	105	2.21	92.6	94.1	1.54	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	101	95	5.75	105	95.6	9.47	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	106	109	2.55	96.3	98	1.68	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	100	105	4.42	95.4	97.4	2.06	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	102	111	9.00	100	103	2.82	70 - 130	30	70 - 130	30
Toluene	ND	10	104	112	7.22	105	106	0.461	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	86.9	92.2	6.01	88.9	87.7	1.46	70 - 130	30	70 - 130	30
%SS1:	97	10	113	106	6.46	106	107	0.937	70 - 130	30	70 - 130	30
%SS2:	90	10	100	102	2.38	101	102	1.46	70 - 130	30	70 - 130	30
%SS3:	112	10	92	97	5.24	89	90	1.41	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 28551 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706126-005B	06/04/07 2:40 PM	1 06/08/07	06/08/07 9:01 PM	0706126-006B	06/04/07 1:15 PM	06/08/07	06/08/07 9:47 PM
0706126-007B	06/04/07 4:35 PM	1 06/09/07	06/09/07 1:45 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX A Historic Site Information

- Table 1 Historic Groundwater Level Measurements
- Table 2 Historic Groundwater Organic Compound Concentrations
- Table 3 Historic Groundwater Metals Concentrations
- Table 4 Historic Laboratory Report Sheen Summary

APPENDIX A TABLE 1 Historic Groundwater Level Measurements

MW1

Date Monitored	* Top of Casing Elevation (ft-msl.)	Depth to Water (ft)	Water Table Elevation (ft-msl.)		
7/27/1992	16.21	12.85	3.36	_	SEE NOTES
11/6/1992	16.21	9.15	7.06		
3/2/1993	16.21	7.45	8.76		
5/26/1993	16.21	8.05	8.16		
8/27/1993	16.21	9.06	7.15		
12/23/1993	16.21	7.73	8.48		
3/27/1994	16.21	7.94	8.27		SEE NOTES
6/24/1994	16.21	8.22	7.99		
10/16/1994	16.21	9.11	7.10		
2/13-14/1995	16.21	7.67	8.54		
6/20/1995	16.21	7.74	8.47	NRA	
10/16/1995	16.21	8.95	7.26	NR	
2/15/1996	16.21	7.20	9.01	NR	
6/13/1996	16.21	7.91	8.30	NR	
9/17/1996	16.21	8.63	7.58	NR	
1/16/1997	16.21	6.87	9.34	NR	
5/1/1997	16.21			NRA	
12/12/1997	16.21	6.77	9.44	NRA	
3/21/1998	16.21	7.12	9.09	NRA	
6/14/1998	16.21	7.60	8.61	NRA	
3/31-4/1/1999	16.21			NR	SEE NOTES
5/22/2000	16.21	7.40	8.81		
6/4/2007	16.21	8.07	8.14		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

MW2

Date Monitored	* Top of Casing Elevation (ft-msl.) 14.43	Depth to Water (ft) 7.95	Water Table Elevation (ft-msl.) 6.48		SEE NOTES
11/6/1992 3/2/1993 5/26/1993 8/27/1993 12/23/1993	14.43 14.43 14.43 14.43	7.30 5.71 6.28 7.98 8.10	7.13 8.72 8.15 6.45 6.33		
3/27/1994 6/24/1994 10/16/1994 2/13-14/1995 6/20/1995 10/16/1995 2/15/1996 6/13/1996 9/17/1996 1/16/1997 5/1/1997	14.43 14.43 14.43 14.43 14.43 14.43 14.43 14.43 14.43 14.43	5.95 7.70 7.77 5.31 5.56 7.52 6.00 6.04 7.65 4.93	8.48 6.73 6.66 9.12 8.87 6.91 8.43 8.39 6.78 9.50	NRA NR NR NR NR NR NR	SEE NOTES
12/12/1997 3/21/1998 6/14/1998 3/31-4/1/1999 5/22/2000 6/4/2007	14.43 14.43 14.43	4.94 5.10 5.84 5.89 6.77	9.49 9.33 8.59 8.54 7.66	NRA NRA NRA NR	SEE NOTES

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

MW3

Date Monitored	* Top of Casing Elevation (ft-msl.)	Depth to Water (ft)	Water Table Elevation (ft-msl.)		
7/27/1992	14.95	8.00	6.95	_	SEE NOTES
11/6/1992	14.95	7.59	7.36		
3/2/1993	14.95	6.07	8.88		
5/26/1993	14.95	7.22	7.73		
8/27/1993	14.95	8.21	6.74		
12/23/1993	14.95	6.70	8.25		
3/27/1994	14.95	6.93	8.02		SEE NOTES
6/24/1994	14.95	7.21	7.74		
10/16/1994	14.95	8.23	6.72		
2/13-14/1995	14.95	6.52	8.43		
6/20/1995	14.95	6.50	8.45	NRA	
10/16/1995	14.95	7.93	7.02	NR	
2/15/1996	14.95	6.57	8.38	NR	
6/13/1996	14.95	7.07	7.88	NR	
9/17/1996	14.95	7.86	7.09	NR	
1/16/1997	14.95	6.03	8.92	NR	
5/1/1997	14.95			NRA	
12/12/1997	14.95	6.00	8.95	NRA	
3/21/1998	14.95	6.10	8.85	NRA	
6/14/1998	14.95	6.61	8.34	NRA	
3/31-4/1/1999	14.95			NR	SEE NOTES
5/22/2000	14.95	6.46	8.49		
6/4/2007	14.95	7.04	7.91		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan. Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

MW4

Date	* Top of Casing	Depth to Water	1 abie		
Monitored	Elevation (ft-msl.)	(ft)	Elevation (ft-msl.)		
7/07/4000	` ′	\A/\.IO	` ′	J	OFF NOTES
7/27/1992	WNC	WNC	WNC		SEE NOTES
11/6/1992	WNC	WNC	WNC		
3/2/1993	WNC	WNC	WNC		
5/26/1993	WNC	WNC	WNC		
8/27/1993	WNC	WNC	WNC		
12/23/1993	WNC	WNC	WNC		
3/27/1994	14.66	7.57	7.09		SEE NOTES
6/24/1994	14.66	7.53	7.13		
10/16/1994	14.66	8.37	6.29		
2/13-14/1995	14.66	6.99	7.67		
6/20/1995	14.66	7.17	7.49	NRA	
10/16/1995	14.66	8.00	6.66	NR	
2/15/1996	14.66	6.54	8.12	NR	
6/13/1996	14.66	7.32	7.34	NR	
9/17/1996	14.66	7.96	6.70	NR	
1/16/1997	14.66	6.37	8.29	NR	
5/1/1997	14.66			NRA	
12/12/1997	14.66	6.17	8.49	NRA	
3/21/1998	14.66	6.74	7.92	NRA	
6/14/1998	14.66	7.10	7.56	NRA	
3/31-4/1/1999		-		NR	SEE NOTES
5/22/2000	14.66	7.27	7.39	·	
6/4/2007	14.66	7.45	7.21		
, 00.		•	· ·		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

MW5

Date Monitored	* Top of Casing Elevation (ft-msl.)	Depth to Water (ft)	Water Table Elevation (ft-msl.)		
7/27/1992	WNC	WNC	WNC		SEE NOTES
11/6/1992	WNC	WNC	WNC		
3/2/1993	WNC	WNC	WNC		
5/26/1993	WNC	WNC	WNC		
8/27/1993	WNC	WNC	WNC		
12/23/1993	WNC	WNC	WNC		
3/27/1994	14.67	7.99	6.68		SEE NOTES
6/24/1994	14.67	7.83	6.84		
10/16/1994	14.67	8.81	5.86		
2/13-14/1995		7.40	7.27		
6/20/1995	14.67	7.59	7.08	NRA	
10/16/1995	14.67	8.40	6.27	NR	
2/15/1996	14.67	7.15	7.52	NR	
6/13/1996	14.67	7.91	6.76	NR	
9/17/1996	14.67	8.75	5.92	NR	
1/16/1997	14.67	7.08	7.59	NR	
5/1/1997	14.67			NRA	
12/12/1997	14.67	6.87	7.8	NRA	
3/21/1998	14.67	7.35	7.32	NRA	
6/14/1998	14.67	7.71	6.96	NRA	
3/31-4/1/1999	14.67			NR	SEE NOTES
5/22/2000	14.67	7.82	6.85		
6/4/2007	14.67	8.62	6.05		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan. Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Appendix A - Table 1 Historic Groundwater Level Measurements

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW6

Date Monitored	* Top of Casing Elevation (ft-msl.)	(ft)	Water Table Elevation (ft-msl.)		
7/27/1992	WNC	WNC	WNC		SEE NOTES
11/6/1992	WNC	WNC	WNC		
3/2/1993	WNC	WNC	WNC		
5/26/1993	WNC	WNC	WNC		
8/27/1993	WNC	WNC	WNC		
12/23/1993	WNC	WNC	WNC		
3/27/1994	15.28	6.34	8.94		SEE NOTES
6/24/1994	15.28	7.22	8.06		
10/16/1994	15.28	8.20	7.08		
2/13-14/1995	5 15.28	5.39	9.89		
6/20/1995	15.28	5.79	9.49	NRA	
10/16/1995	15.28	7.65	7.63	NR	
2/15/1996	15.28	5.13	10.15	NR	
6/13/1996	15.28	6.13	9.15	NR	
9/17/1996	15.28	7.52	7.76	NR	
1/16/1997	15.28	4.62	10.66	NR	
5/1/1997	15.28			NRA	
12/12/1997	15.28	4.62	10.66	NRA	
3/21/1998	15.28	4.86	10.42	NRA	
6/14/1998	15.28	5.77	9.51	NRA	
3/31-4/1/199	15.28			NR	SEE NOTES
5/22/2000	15.28	5.90	9.38		
6/4/2007	15.28	7.88	7.40		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

EW1

Date Monitored	* Top of Casing Elevation (ft-msl.)	Depth to Water (ft)	Water Table Elevation (ft-msl.)		ace Notes
7/27/1992	WNC	WNC	WNC		SEE NOTES
11/6/1992	WNC	WNC	WNC		
3/2/1993	WNC	WNC	WNC		
5/26/1993	WNC	WNC	WNC		
8/27/1993	WNC	WNC	WNC		
12/23/1993	WNC	WNC	WNC		CEE NOTES
3/27/1994	15.36	6.70	8.66		SEE NOTES
6/24/1994	15.36	7.46	7.90		
10/16/1994	15.36	8.46	6.90		
2/13-14/1995		5.88	9.48	NID A	
6/20/1995	15.36	5.93	9.43	NRA	
10/16/1995	15.36	7.96	7.40	NR	
2/15/1996	15.36	5.53	9.83	NR	
6/13/1996	15.36	6.52	8.84	NR	
9/17/1996	15.36	7.85	7.51	NR NB	
1/16/1997	15.36	5.14	10.22	NR	
5/1/1997	15.36	F 20	10.10	NRA	
12/12/1997	15.36	5.20	10.16	NRA	
3/21/1998	15.36	5.50 6.14	9.86	NRA NRA	
6/14/1998	15.36	6.14	9.22		CEE NOTES
3/31-4/1/1999 5/22/2000				NS NS	SEE NOTES
5/22/2000 6/4/2007	15.36	7.23	0 12	CVI	
0/4/2007	15.36	1.23	8.13		

NOTES:

NR = Depth to water measurements Not Reported.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by summary table, or site plan. Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

APPENDIX A TABLE 2 Historic Groundwater Organic Compound Concentrations

Tetra Tech EM Inc.

135 Main Street, Suite 1800 ◆ San Francisco, CA 94105 ◆ (415) 543-4880 ◆ FAX (415) 543-5480

November 7, 2000

J. W. Silveira Company 499 Embarcadero Oakland, California 94606

((415) 543-5480 PW-bi:

The dude's

The du

Subject:

May 2000, Groundwater Monitoring report for the Sited Located at

2301 East 12th Street, Oakland

INTRODUCTION

The purpose of this report is to provide the results of the groundwater sampling at 6 monitoring wells conducted on May 22, 2000. The site is located at 2301 East 12th Street at the south corner of the intersection of East 12th Street and 23rd Avenue in Oakland, California (Figure 1).

SITE BACKGROUND

Four underground storage tanks (USTs) were previously located at the site. Two of the USTs were 1,000-gallon tanks and were used for waste oil storage; one of the USTs was a 6,000-gallon tank that contained gasoline; and one of the USTs was a 1,000-gallon tank that contained diesel fuel. The gasoline and diesel tanks were removed on December 21, 1990, and the 2 waste oil tanks were removed on February 11, 1991. It was reported that contamination was discovered at both ends of the 1,000-gallon waste oil tanks and at the northern end of the 6,000-gallon gasoline tank. As part of the UST removal action activities, six groundwater monitoring wells and one extraction well were installed at the site. The wells were sampled approximately two to four times a year from 1992 through 1999.

GROUNDWATER SAMPLING ACTIVITIES

As part of the additional site characterization, the six monitoring wells at the site were sampled on May 22, 2000. The depth of groundwater was measured at each well with an electronic depth probe. The depth to the monitoring well caps were removed from the tops of the well and the groundwater

Tetra Tech EM Inc.

2301 East 12th Street

Page 1

TABLE 2 DETECTED VOC AND TPH COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS MAY 22, 2000 2301 EAST 12TH STREET

Analyte	100	Мс	nitoring W	fell Locatio	ns	
VOC (μg/L)	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene"	ND	ND	ND	ND	ND	ON.
1,2,4-Trimethylbenzene	5.4	110	0.5	ND	8.0	ND
1,3,5-Trimethylbenzene	6.4.	100	ND	ND .	ND	ND
Benzene	_1,300_ ⁻ /	970 ^{_}}	73	ND	53	320
Chlorobenzene	ND	4.6	ND	ND	1.1	ND
Ethylbenzene	98	560	18	ND	5.6	61
Isopropyibenzene	17	63	41	10	43	20
Naphthalene	16	600	3.9	ND	26	ND
Propylbenzene	17	120	48	9.4	61	17
Toluene	30	84	6.3	ND	3.4	3.8
Trichloroethene	ND	ND	3.9	ND	ND	Vel
cis-1,2-Dichloroethene	1.0	ND	3.4	ND	3.6	44
m,p-Xylenes	24	230	5,4	מא	8.1	1,9
o-Xylene	1.9	27	0.6	ND	1.5	ND
n-Butylbenzene	10	43	20	4.6	11	5.8
para-Isopropyl Toluene	9.6	21	21	2.8	6.3	3.9
sec-Butylbenzene	7.2	13	13	7.0	6.8	4.0
tert-Butylbenzene	ND	ND	1.3	1.0	ND	ND
transel:,24Dichlordethene*	ND	ND	2.6	ND	3.6	18
TPH (μg/L)	.MW-1.	MW-2	MW-3	MW-4	MW-5	MW-6
Gasoline	5,600	14,000	7,600	2,400	4,500	3,000
Diesel	3,300	6,900	9,700	580	1,000	730
Motor Oil	720	840	390	ND	לוא	ND

Assume Another year act

46 Supportante

ZI odar

\$00 of post \$00 of post \$00 of rest is again

zao odar

Notes:

μg/L micrograms per Liter

Not Analyzed
No Not Detected

TPH Total Petroleum Hydrocarbons

VOC Volitile Organic Compound

TABLE 3
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-1 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

Date	ТРН	(μg/L)					Voc	(μg/L)		
1	Diesei	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroethane	Tetrachloroethene	Trichloroethene	Cis 1,2 Dichloroethene
07/27/92	360	1,800	600	5.1	13	18			·	
11/06/92	670	8,000	2,400	6.1	41	ND				
03/02/93	1,100	5,600	3,800	סא	120	ND	ND	ND	5.8	ND
05/26/93	1,170	4,800	3,400	44	140	150	סא	ND	6.8	ND
08/27/93	1,200	8,400	2,300	35	180	57	ND	5.4	ND	1.1
12/23/93	מא	7,800	29	16	5.8	26				
03/27/94	2,600	10,000	2,400	84	310	280				
06/24/94	1,500	9,000	2,300	44	260	170				
10/16/94	2,000	10,000	2,100	35	250	140		4.		
02/13/95	2,500	16,000	3,200	110	460	260	ND	ND	ND	. 1.3
06/20/95	3,500	18,000	2,600	87	450	220	1.1	ND .	6.5	1.1
10/16/95	2,700	13,000	2,200	63	220	110	ND .	ND	2,5	0.84
02/15/96	16,000	11,000	1,400	25	130	81	ND	ND	24	0.82
06/18/96	8,000	12,000	2,500	72	190	130	ND	ND	ND	ND
09/17/96	3,100	7,000	1,200	29	86	55	NO	ND ND	11	NO EL E
01/16/97	11,000	14,000	1,500	47	190	130	ND DN	ND	13	0.71
05/01/97	4,300	10,000	2,200	56	170	110	ND	ND	2.7	0.81
12/12/97	3,400	9,800	2,000	46	81	94				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
03/24/98	8,600	12,000	2,600	74	280	100		••		
07/20/98	6,800	11,000	2,100	57	220	83	ND	ND	3.4	1.4
04/01/99	4,300	4,100	1,300	., 30	93	36	סא	NO	20	NO
05/22/00	3,300	5,600	1,300	ND	98	24	ND	ND	ND	1.0

μg/L micrograms per Liter

-- Not Analyzed
NO Not Detected

TABLE 4
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-2 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

Date	ТРН	(μg/L)						VOC (µg/L)			
Vale	Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Chlorobenzene	Chloroethane	Trichtoroethene	Vinyl Chloride	cis-1,2-Dichloroethene
07/27/92	1,500	20,000	110	6	37	39					
11/06/92	17,000	19,000	2,800	120	790	1100			- -		
03/02/93	37,000	14,000	3,800	110	950	1100	סא	ND	ND	ND	ND
05/26/93	6,000	11,000	5,200	140	1,000	990	9.8	ND	ND	ND	2.7
08/27/93	54,000	16,000	1,700	120	640	710	10	1.3	ND	2.2	3.2
12/23/93	720	18,000	87	79	42	400	4,3	ND	ND	1.5	
03/27/94	6,100	17,000	2,100	100	630	750	ND	ND	ND	ND	ND
06/24/94	3,000	15,000	2,000	72	550	520	6.5	ND	ND	ND	ND
10/16/94	53,000	15,000	1,500	81	410	520	5.7	1.1	ND	1	0.73
02/13/95	49,000	18,000	2,000	120	660	900	12	סא	ND	סא	ND
06/20/95	6,600	30,000	1,300	85	510	520	7.9	1.5	ND	2.1	1
10/16/95	31,000	19,000	1,500	92	400	330	5.1	ND.	NO	NO	eresembli kas si MP anie ili encercisi
02/15/96	11,000	25,000	1,700	93	490	440	4.8	ND	ND	ND	סא
06/13/96	5,500	13,000	1,400	75	460	410	5.6	DN D	ND	. סא	ND
09/17/96	13,000	15,000	1,600	66	480	460	8.2	NO	NO	i Mo ssioni	NO.
01/16/97	30,000	20,000	1,800	150	670	780	ND	מא	12	DN	0.69
05/01/97	24,000	11,000	1,300	96	400	410	5.2	מא	ND	ND	ND
12/12/97	24,000	14,000	1,200	76	460	420		-			American Manual Company of the Compa
03/24/98	9,500	11,000	1,200	74	430	350					
07/20/98	490,000	38,000	890	160	490	850	1.9	1.4	DN	0.76	ND
04/01/99	5,800	7,200	1,100	100	540	370	5.2	NO	סא	ND.	NO.
05/22/00	6,900	14,000	970	84	560	230	4.6	ND	DN	ND	ND

μg/L micrograms per Liter

Not Analyzed
No Not Detected

TABLE 5
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-3 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

Date	ТРЕ	(µg/L)					VOC (µg/l	j	
Date .	. Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
07/27/92	4,000	8,800	150	8.6	88	13	• •		
11/06/92	21,000	10,000	78	3.1	830	13			
03/02/93	9,300	3,900	120	nd	240	37	ND	NO	ND ON
05/26/93	4,400	7,400	570	4.1	640	8.4	* •		
08/27/93	8,200	7,100	180	15	110	9.4	16	ND	NO
12/23/93	230	7,900	30	14	12	62			
03/27/94	4,300	5,700	180	10	100	24	6	ND	ND
06/24/94	1,500	8,400	230	13	93	7.6	ND	6	1.5
10/16/94	2,700	6,300	140	8.7	68	25		8.4	2.1
02/13/95	1,600	7,500	220	17	110	22	5.1	4.3	1.3
06/20/95	13,000	11,000	310	23	160	63	5.7	4.9	1.7
10/16/95	1,900	4,700	120	6,7	32	16	7.8	7.1	2
02/15/96	9,400	8,100	62	13	50	33	9.3	7.3	2.6
06/18/96	5,000	30,000	110	65	130	160	ND	6.9	2.5
09/17/96	15,000	10,000	68	20	61	42:	113	11	No.
01/16/97	57,000	9,700	64	19	38	60	3.9	4.9	2
05/01/97	30,000	7,300	67	13	51	20	ND	4.9	2.4
12/12/97	16,000	10,000	63	22	68	48			
03/24/98	10,000	7,900	ND	1.5	53	21			
07/20/98	17,000	6,200	87	13	44	25	ND	1.1	0.81
04/01/99	3,200	5,600	73	7	29	6.3	67	NO.	3.3
05/22/00	9,700	7,600	73	6.3	18	5.4	3.9	3.4	2.6

μg/L micrograms per Liter

-- Not Analyzed Not Detected

TABLE 6
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-4 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

Date	Tel	(μg/L)	r triri recession in the				VOC (mg/L)	
	Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
03/27/94	1,800	2,200	19	1.2	2.9	12		
06/24/94	420	2,300	2.9	1.6	2.8	4.6		
10/16/94	900	3,500	3.8	2	5.2	24	0.71	ND
02/13/95	630	2,600	100	100	3.8	7.1	ND	ND
06/20/95	1,100	3,000	31	3.4	6.1	12	2.2	1
10/16/95	1,100	2,000	43	2.3	8.4	6.9	13	ND
02/15/96	940	3,400	ND ND ND		ND	1.8	0.79	
06/13/96	1,100	1,900	12	5.7	3.4	9.6	ND	ND
09/17/96	2,500	3,100	ND	15	78	12	NO	NO
01/16/97	13,000	4,000	ND	7	3	15	0.76	ND
05/01/97	6,200	2,900	ND	5.1	3.4	5.7	ND	ND
12/12/97	650	1,800	41	13	14	20	aer a	
03/24/98	1,300	3,100	ND	5	3.7	6.2		
07/20/98	1,000	950	2.2	1.5	2	2.1	. ND	ND
04/01/99	2,500	3,900	ND	NO :	0.8	ND.	ND:	ND ND
05/22/00	580	2,400	ND	ND	ND	ND	ND	ND

μg/L micrograms per Liter

Not AnalyzedND Not Detected

TABLE 7
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-5 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

	ТРН	(µg/L)					VO	C (μg/L)		
Date	Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Chlorobenzene	Vinyl Chloride	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
03/27/94	870	2,900	71	ND	27	15		• •	· -	
06/24/94	950	6,100	220	12	38	24	0.53	7.5	11	3.1
10/16/94	1,100	4,300	120	5.1	27	13	0.66	9.6	16	4.2
02/13/95	1,200	4,600	130	7.9	38	29	ND	8.4	20	5.1
06/20/95	1,000	6,000	140	6.7	27	29	0.95	10	12	4.1
10/16/95	940	2,000	43	2.3	8.4	6.9	0.54	7.6	9.8	2.9
02/15/96	2,200	4,400	61	5.3	34	ND	0.57	5.3	7.7	ND
06/18/96		7,400	94	11	32	40	ND	DN	2.9	ND
09/17/96	1,600	5,200	140	7.5	18	21	0.83	7,3	4.5	2.7
01/16/97	2,500	4,500	64	8.7	23	26	0.71	9.1	6.1	3.8
05/01/97	3,400	4,300	120	7.6	21	23	ND	1.1	0.55	ND
12/12/97	2,400	4,000	66	8.7	15	25			440000	
03/24/98	1,200	4,100	48	7.2	14	21			••	
07/20/98	1,600	3,400	69	6	11	1 5	0.68	5.3	1.8	2
04/01/99	1,500	5,200	73	5	13	13	סא	NO .	ND	2.7
05/22/00	1,000	4,500	53	3.4	5.6	8.1	1.1	ND	3.6	3.6

μg/L micrograms per Liter

Not Analyzed
No Not Detected

TABLE 8
VOC AND TPH COMPOUNDS IN GROUNDWATER
MW-6 FROM JULY 1992 TO MAY 2000
2301 EAST 12TH STREET

	TPH	(µg/L)						···········Voo	C (μg/L) = ratio μ			
Date	Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dichloroethane	Chloroethane	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride	trans-1,2-Dichloroethene
03/27/94	1,000	5,000	1,100	17	180	41						
06/24/94	660	8,000	1,200	21	210	54	••					
10/16/94	850	6,300	870	14	140	49						
02/13/95	1,000	5,500	1,000	17	210	55 ND NO		ND	99	40	87	13
06/20/95	1,400	9,100	1,300	24	240	79	ND	ND	29	26	130	17
10/16/95	770	3,000	590	8.8	84	24	ND	NO	110	75	54	16
02/15/96	1,500	3,900	460	11	110	23 ND		ND	160	110	46	25
06/13/96	1,300	4,800	630	14	140	37	ND	ND	83	72	33	20
09/17/96	1,300	4,700	550	14	120	38	ND	2.7	59	73	48	25
01/16/97	2,200	5,600	850	17	190	43	1.1	1.1	82	81	29	21
05/01/97	3,500	5,400	450	9.1	38	35	0.92	2	52	50	26	17
12/12/97	1,200	4,900	530	. 13	130	38						
03/24/98	1,200	5,300	630	11	120	25				••		
07/20/98	1,600	2,900	420	7	60	14	ND	2.5	34	54	12	16
04/01/99	3,400	4,000	280	4.4	66	6.4	:ND:	ND	75	72	NO	21 - 21
05/22/00	730	3,000	320	3.8	61	1.9	ND	ND	46	44	ND	18

μg/L micrograms per Liter

- Not Analyzed

NO Not Detected

TPH Total Petroleum Hydrocarbons

VOC Volitile Organic Compound

97 MAR - 7 PM 3Epigene International

CONSULTING GEOLOGISTS

February 7, 1997

Mr. J.W. Silveira

J.W. Silveira Company

499 Embarcadero

Oakland, CA 94606

Le souths

Subject:

Quarterly Monitoring Report for Site Located at 2301 East 12th Street, Oakland

The purpose of this report is to provide the results of the site investigations carried out in the first quarter of 1997 at the subject site. The site is located at the southwest corner of the intersection of East 12th Street and 23rd Avenue in Oakland. The site location is shown on Figure 1. A site plan is presented on Figure 2. The site is presently occupied by Discount Brake and Tire.

There are six monitoring wells and one extraction well located on or adjacent to the site. The well locations are shown on Figure 2. Gauging of the depth to groundwater was carried out for each project well on January 16, 1997 prior to any purging of the wells. An electronic probe was used to measure the depth to groundwater from the survey mark on the top of the casing. The probe is calibrated to hundredths of a foot. Several of the wells had significant vapor pressure and up to 2 hours were required for the water levels in the wells to stabilize. The groundwater elevations were calculated and are presented on Figure 3. Groundwater elevation contours are also plotted on Figure 3.

In addition to the contouring, a direction and slope of the gradient was also calculated by a graphical

Table 7A-Summary of Hydrocarbon Concentrations (in PPB) Detected in EW-1

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- bestzene	Xylenes	TRPH*
3/27/94	920	1200	270	6.2	30	13	ND
6/24/94	1200	4600	410	5.6	78	22	NA
10/16/94	1200	4900	310	5.2	30	32	6.4
2/13/95	1000	3900	380	5,9	41	22	ND
6/20/95	1800	7800	710	14	260	52	6.5
10/16/95	940	3200	310	3.3	32	16	5.5
2/15/96	2400	5000	270	7.5	50	20	4.2
6/13/96	1800	5700	450	11	75	19	8.3
9/17/96	1300	5300	300	15	67	29	7.2
1/16/97	2100	5800	480	8.6	100	30	99
			:				

		.].					

EW-1 is a 4 inch PVC well installed 3/16/94 to a total depth of 30 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 7B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in EW-1

Sampling Date	Chloro- benzene	Chiere ethane	12-Di Chioso ethane	Cis 1,2 Dichlere ethene	Trans 1,2 Dichloro- ettone	PCE	ICE	Vinyl Chloride
3/27/94	ND	ND	ND	ND	ND	ND	40	ND
6/24/94	ND	ND	1.3	42	11	ND	68	3.2
10/16/94	ND	ND	ND	36	ND	ND	74	ND
2/13/95	ND	ND	ND	13	4.4	ND	53	ND
6/20/95	ND	2.0	ND	4,3	2.0	ND	6.0	2.8
10/16/95	ND<2	ND<2	ND<2	24	7.1	ND<2	46	ND<2
2/15/96	ND	1.0	ND	17	6.4	ND	33	2.3
6/13/96	ND<1	ND<1	ND<1	25	9.8	ND<1	38	4.9
9/17/96	ND<2	2.3	ND<2	25	9.0	ND<2	39	5.4
1/16/97	ND	0.87	ND	14	5,2	ND	14	3.7
								

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.0 PPB for this well.

TIER I SCREENING LEVEL HUMAN
HEALTH RISK ASSESSMENT
2301 EAST 12TH STREET
OAKLAND, CA
DRAFT FINAL

Does not include results.

Toes not results.

Tesults.

Tesults.

Tesults.

Tesults.

Tesults.

Tesults.

PREPARED BY:

TETRA TECH EM INC.

135 MAIN STREET SUITE 1800

SAN FRANCISCO, CA 94105

TABLE A-1 CHEMICAL CONCENTRATIONS IN GROUNDWATER **MONITORING WELL MW-1** FROM JULY 1992 TO AUGUST 2001 2301 EAST 12TH STREET

ANALYTE									i i i en	The second	SAI	APLE DA	ATE				ration for						Selection of
VOC (μg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene													• •							• •	ND	5.4	NO
1,3,5-Trimethylbenzene								• •					••		·						ND	6.4	ND
Benzene	600	2,400	3,800	3,400	2,300	29	2,400	2,300	2,100	3,200	2,600	2,200	1,400	2,500	1,200	1,500	2,200	2,000	2,600	2,100	1,300	1,300	1,000
Chlorobenzene			ND	ND	ND		!	• •	1	ND	ND	ND	ND	ND	ND	ND	ND			מא	NΩ	ND	ND
cis-1,2-Dichloroethene			ND	ND	1.1			• •		1.3	1.1	0.84	0.82	סא	ND	0.71	0.81			1.4	ND	1.0	ND
Ethylbenzene	13	41	120	140	180	5.8	310	260	250	460	450	220	130	190	86	190	170	81	280	220	93	98	92
Isopropylbenzene										•• '						• •	• •				ND	17	20
m,p-Xylenes	18	NO	ND	150	57	26	280	170	140	260	220	110	81	130	55	130	110	94	100	83	36	24	20
n-Butylbenzene			• •				• -	•-			22.							-,-			ND	10	10
Naphthalene						[!		•-								ND	16	17
o-Xylene	а	ND	ND	a	а	а	а	a	a	а	a	а	а	a	а	а	а	a	a	а	NO	1.9	NΩ
para-Isopropyl Toluene										••	• •	-;-						· •			ND:	9.6	12
Propylbenzene												• •							••		ND	17	19
sec-Butylbenzene			4 -											••							ND	7.2	7.6
tert-Butylbenzene		` 			• •						-	: ° ÷ +: 0			-						ND	ND	ND
Toluene	5.1	6.1	סא	44	35	16	84	44	35	110	87	63	25	72	29	47	56	46	74	57	30	30	19
trans-1,2-Dichloroethene			מא	ND	ND		• •			NO	ND	ND	ND	ND	ND	ND	סא			ND	ND	ND	NO
Trichlorgethene	· • • • • • • • • • • • • • • • • • • •		5,8	6,8	::ND		· ·		••	ND .	6.5	2.5	24	ND	11	13	2.7			3,4	20	ND	NO
Vinyl Chloride		<u> </u>	ND	מא	NĎ					ND	ND	ND	ND	ND	מא	ND	ND			ND	ND	ND	ND
TPH (µg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	360	670	1,100	1,170	1,200	ND	2,600	1,500	2,000	2,500	3,500	2,700	16,000	8,000	3,100	11,000	4,300	3,400	8,600	6,800	4,300	3,300	8,800
Motor Oil (TPH-o)												•-	<u> </u>				• •	••			850	720	2,600

Notes:

Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter

Not analyzed

Not detected ND

TABLE A-2 CHEMICAL CONCENTRATIONS IN GROUNDWATER **MONITORING WELL MW-2** FROM JULY 1992 TO AUGUST 2001

2301 EAST 12TH STREET

ANALYTE		Sar Na						11 (14) 			SA	MPLE D	ATE										
VOC (μg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene						•							• •							•-	200	110	240
1,3,5-Trimethylbenzane																					120	100	190
Benzene	110	2,800	3,800	5,200	1,700	87	2,100	2,000	1,500	2,000	1,300	1,500	1,700	1,400	1,600	1,800	1,300	1,200	1,200	890	1,100	970	630
Chlorobeпzene]	פא	9.8	10	4.3	ND	6.5	5.7	12	7.9	5.1	4.8	5.6	8.2	ND	5.2			1.9	5.2	4.6	ND
cis-1,2-Dichloroethene	·		פא	2.7	3.2	1.0	ND	סא	0.73	ND	1.0	פא	ND	ND	ΝĎ	0.69	ND			ND	ND	ND	ND
Ethylbenzene	37	790	950	1,000	640	42	630	550	410	660	510	400	490	460	480	670	400	460	430	490	540	560	340
Isopropylbenzene					• •	'							• •		• •		••				50	63	64
m,p-Xylenes	39	1,100	1,100	990	710	400	750	520	520	900	520	330	440	410	460	780	410	420	350	850	370	230	260
n-Butylbenzene														~ -	'						39 -	43	88
Naphthalene										• •			'								570	600	910
o-Xylene	a	a	а	a	a	а	а	a	a	а	a	a	a	a	a	a	a	а	а	а	38	27	31
para-isopropyl Toluene					••				'					4.							22	21	42
Propylbenzene																			• •	••	86	120	110
sec-Butylbenzene																					ND	13	21
tert-Butylbenzene												• •	•							'	ND :	ND .	ND
Toluene	6	120	110	140	120	79	100	72	81	120	85	92	93	75	66	150	96	76	74	160	100	84	49
trans-1,2-Dichloroethene			ND	2.7	ND	ND	ND	ND	ND	ND	ND	D	פא	NO	ND	ND	ND		* *	פא	ND	ND	, ND
Trichloroethene			ND	ND	ND	NĐ	ND	ND	ND	ND	שא	ND	ND	ND	12	ND	ND			ND	ND	ND	ND
Vinyl Chloride			ND	ND	2.2	1.5	ND	ND	1.0	ND	2.1	ND	ND	ND	ND	ND	ND.			0.46	ND	ND	ND
TPH (μg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	1,500	17,000	37,000	6,000	54,000	720	6,100	3,000	53,000	49,000	6,600	31,000	11,000	5,500	13,000	30,000	24,000	24,000	9,500	490,000	,	6,900	28,000
Motor Oil (TPH-o)														• -							750	840	3,800

Notes:

Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter
Not analyzed

Not detected

TPH Total petroleum hydrocarbons

TABLE A-3 CHEMICAL CONCENTRATIONS IN GROUNDWATER **MONITORING WELL MW-3**

FROM JULY 1992 TO AUGUST 2001

2301 EAST 12TH STREET

ANALYTE	- 1.1										SA	IPLE DA	ATE										
VOC (μg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene			• •										••		• -						ND	0.5	ND
1,3,5-Trimethylbenzene																					ND	ND	ND
Benzene	150	78	120	570	180	30	180	230	140	220	310	120	62	110	68	64	67	63	ND .	87	73	0.5	59
Chlorobenzene			ND		NO		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND
cis-1,2-Dichloroethene			ND		ND		ND	6.0	8.4	4.3	4.9	7.1	7.3	6.9	11	4.9	4,9			1.1	ND	3.4	ND
Ethylbenzene	88	830	240	640	110	12	100	93	68	110	160	32	50	130	61	38	51	68	53	44	29	18	13
Isopropylbenzene										• •		• •									41	41	41
m,p-Xylenes	13	13	37	8.4	9.4	62	24	7.6	25	22	63	16	33	160	42	60	20	48	21	25	6.3	5.4	4.6
n-Butylbenzene]							• •	••	• •	••		17	20	21
Naphthalene																		• •	• •	• •	3.4	3.9] 3
o-Xylene	а	ND	ND	а	a	a	а	а	a	a	а	а	а	а	a	a	а	а	а	а	מא	0.6	פא
para-Isopropyl Totuene									••		:										18	21	22
Propylbenzene										• •	• •										45	48	47
sec-Butylbenzene															••	••		••			12	13	14
tert-Butylbenzene																					3.3	1.3	1.3
Toluene	8.6	3.1	ND	4.1	15	14	10	13	8.7	17	23	6.7	13	65	20	19	13	22	1.5	13	7.0	6.3	5.8
trans-1,2-Dichloroethene			ND		ND		ND	1.5	2.1	1.3	1.7	2.0	2.6	2.5	ND	2.0	2.4			0.81	3.3	2.6	ND
Trichloroethene	-,-		ND		16		6.0	ŃΦ	12	5.1	5.7	7.8	9.3	ND	13	3.9	ND			ND	6.7	3.9	4.4
Vinyl Chloride			מא	* *	ND		ND	ND	ND	ND	ND	ND :	ND	ND	ND	ND	ND			ND	ND	ND	ΝĎ
TPH (μg/L)	7/92	11/92	3/93	5/93	8/93	12/93	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	4,000	21,000	9,300	4,400	8,200	230	4,300	1,500	2,700	1,600	13,000	1,900	9,400	5,000	15,000	57,000	30,000	16,000	10,000	17,000	3,200	9,700	9,800
Motor Oil (TPH-o)							• •							- 4		<u> </u>					280	390	750

Notes:

Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter
-- Not analyzed

Not detected

TABLE A-4 CHEMICAL CONCENTRATIONS IN GROUNDWATER MONITORING WELL MW-4 FROM MARCH 1994 TO AUGUST 2001

2301 EAST 12TH STREET

ANALYTE								SA	MPLE D	ATE	. 4 . 5	That was a series		42.00.00	i i		
VOC (μg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene															ND	ND	ND
1,3,5-Trimethylbenzene	- -								- •						ND	ND	ND
Benzene	19	2.9	3.8	100	31	43	ND	12	מא	מא.	ND	41	ND	2.2	ND	ND	ND
Chlorobenzene			ND	ND	ND	NO	ND	ND	ND	ND	ND			NO	י מא	ND	ND
cis-1,2-Dichloroethene			0.71	ND	2.2	1.3	1.8	ND	ND	0.76	ND			ND	ND	ND	ND
Ethylbenzene	2.9	2.8	5.2	3.8	6.1	8.4	ND.	3.4	78	3.0	3.4	14	3.7	2.0	0.8	- ND	ND
Isopropylbenzene															18	10	10
m,p-Xylenes	12	4.6	24	7.1	12	6.9	ND	9.6	12	15	5.7	20	6.2	2.1	ND	ND	ND
n-Butylbenzene	: 														11	4.6	5.9
Naphthalene															ND	ND	ND
o-Xylene	а	а	a	а	а	а	ND	а	a	а	a	a	а	a	ND	ND	סא
para-Isopropyl Toluene		4-								4-1			11444		7.9	2.8	3.6
Propylbenzene		']]	18	9.4	9.1
sec-Butylbenzene															13	7.0	8.2
tert-Butylbenzene			1.		-1-		e ryk, s								ND	1.0	1,2
Toluene	1.2	1.6	2.0	100	3.4	2.3	ND	5.7	15	7.0	5.1	13	5.0	1.5	ND	ND	ND
trans-1,2-Dichloroethene			ND	ND	1.0	ND	0.79	ND	סא	NO	סא			מא	NO	ND	ND
Trichloroethene		100	מא	סא	NO	סא	ND	סא	NO	MO	סא			NO	מא	NO	מא
Vinyl Chloride			מא	ND	ND	ND	ND	ND	ND	ND	ND			מא	ND	ND	ND
TPH (µg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	1,800	420	900	630	1,100	1,100	940	1,100	2,500	13,000	6,200	650	1,300	1,000	2,500	580	28,000
Motor Oil (TPH-o)															300	ND	3,000

Notes:

a Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter

-- Not analyzed

Not detected

TPH Total petroleum hydrocarbons

TABLE A-5 CHEMICAL CONCENTRATIONS IN GROUNDWATER MONITORING WELL MW-5 FROM MARCH 1994 TO AUGUST 2001 2301 EAST 12TH STREET

ANALYTE								SA	MPLE D	4TE							
VOC (μg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene												• •			ND	8.0	ND
1,3,5-Trimethylbenzene			ļ i	1											ND	ND	ND
Benzene	71	220	120	130	140	43	61	94	140	64	120	66	48	69	73	53	44
Chlorobenzene		0.53	0.66	ND	0.95	0.54	0.57	ND	0.83	0.71	ND			0.68	פא	1.1	1.4
cis-1,2-Dichloroethene		11	16	20	12	9.8	7.7	2.9	4.5	6.1	0.55			1.8	פא	3.6	3.1
Ethylbenzene	27	38	27	38	27	8.4	34	32	18	23	21	15	14	11	13	5.6	5.2
Isopropylbenzene															55	43	44
m,p-Xylenes	15	24	13	2 9	29	6.9	ND	40	21	26	23	25	21	15	13	8.1	7.3
n-Butylbenzene	fugs.					16, 111,60					11.2.2			11.14.	14	11	12
Naphthalene															42	26	23
o-Xylene	а	a	a	а	а	а	ND	а	а	а	а	a	а	а	ND	1.5	1.3
para-Isopropyl Toluene			• •		144										9.9	6.3	6.3
Propylbenzene															80	61	63
sec-Butylbenzene	-,-										••				8.3	6.8	7.7
tert-Butylbenzene	<u> </u>	an.						Cust T							NO	- אס	∥ND .
Toluene	ND	12	5.1	7.9	6.7	2.3	5.3	11	7.5	8.7	7.6	8.7	7,2	6.0	5.0	3.4	3.1
trans-1,2-Dichloroethene		3.1	4.2	5.1	4.1	2.9	ND	ND	2.7	3.8	ND			2.0	2.7	3.6	5.3
Trichloroethene		ND	סא	ND	. מא	2.0	ND	מא	. מא	ND.	סא		-1,4	ND		ND	ND :
Vinyl Chloride		7.5	9.6	8.4	10	7.6	5.3	ND	7.3	9.1	1.1			5.3	ND	ND	13
TPH (μg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	870	950	1,100	1,200	1,000	940	2,200		1,600	2,500	3,400	2,400	1,200	1,600	1,500	1,000	2,100
Motor Oil (TPH-o)															290	ND	340

Notes:

a Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter

-- Not analyzed

Not detected

TPH Total petroleum hydrocarbons

TABLE A-6 CHEMICAL CONCENTRATIONS IN GROUNDWATER MONITORING WELL MW-6 FROM MARCH 1994 TO AUGUST 2001 2301 EAST 12TH STREET

ANALYTE								SAI	MPLE D/	ATE .							
VOC (μg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
1,2,4-Trimethylbenzene															ND	ND	ND
1,3,5-Trimethylbenzene							!								ND	ND	ND
Benzene	1,100	1,200	870	1,000	1,300	590	460	630	550	850	450	530	630	420	280	320	240
Chlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND
cis-1,2-Dichloroethene				40	26	75	110	72	73	81	50			54	72	44	43
Ethylbenzene	180	210	.140	210	240	84	110	140	120	190	38	130	120	60	-66	61	34
Isopropylbenzene					• -										17	20	15
m.p-Xylenes	41	54	49	55	79	24	23	37.	38	43	35	38	25	14	6.4	1.9	ND
n-Butylbenzene		4 44				444						Prince Hill		42	NO.	5.8	6.7
Naphthalene															ND	ND	מא
o-Xylene	а	а	a	а	а	а	а	a	а	а	a	а.	а	а	ND	ND	ND
para-Isopropyl Toluene	i i i i i				11122			44	الأشاه عادات	4.4					- NO	3.9	2.8
Propylbenzene															15	17	14
sec-Butylbenzene							-								ND	4.0	3.9
tert-Butylbenzene			144				1.1				10	4.4	145		ND	NO	NO
Toluene	17	21	14	17	24	8.8	11	14	14	17	9.1	13	11	7	4.4	3.8	2.5
trans-1,2-Dichloroethene				13	17	16	25	20	25	21	17			16	21	18	15
Trichloroethene		1 441		99	29	110	160	83	59	82	52			34	75	46	33
Vinyl Chloride				87	130	54	46	33	48	29	26			12	ND	ND	13
TPH (µg/L)	3/94	6/94	10/94	2/95	6/95	10/95	2/96	6/96	9/96	1/97	5/97	12/97	3/98	7/98	4/99	5/00	8/01
Diesel (TPH-d)	1,000	660	850	1,000	1,400	770	1,500	1,300	1,300	2,200	3,500	1,200	1,200	1,600	3,400	730	1,400
Motor Oil (TPH-o)															280	ND	300

Notes:

a Laboratory analytical report only lists total xylenes

μg/L Micrograms per liter

-- Not analyzed

NO Not detected

TPH Total petroleum hydrocarbons

APPENDIX A TABLE 3 Historic Groundwater Metals Concentrations

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW1

		Total				
<u>Date</u>	<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	NA	NA	NA	NA	NA	SEE NOTES
11/6/1992	NA	NA	NA	NA	NA	
3/2/1993	NA	NA	NA	NA	NA	
5/26/1993	NA	NA	NA	NA	NA	SEE NOTES
8/27/1993	ND<0.05	ND<0.25	<u>0.005</u>	<u>0.37</u>	<u>0.12</u>	
12/23/1993	NA	NA	NA	NA	NA	
3/27/1994	NA	NA	NA	NA	NA	SEE NOTES
6/24/1994	NA	NA	NA	NA	NA	
10/16/1994	NA	NA	NA	NA	NA	
2/13-14/1995	NA	NA	NA	NA	NA	
10/16/1995	NA	NA	NA	NA	NA	
2/15/1996	ND<0.01	0.007	<u>0.049</u>	<u>0.061</u>	<u>0.025</u>	
6/13/1996	NA	NA	NA	NA	NA	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	NA	NA	NA	NA	NA	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NA	NA	NA	NA	NA	SEE NOTES
5/22/2000	NA	NA	NA	NA	NA	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A–Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW2

	Total				
<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
NA	NA	NA	NA	NA	SEE NOTES
NA	NA	NA	NA	NA	
NA	NA	NA	NA	NA	
ND	ND	ND	ND	<u>0.050</u>	SEE NOTES
ND<0.05	ND<0.25	ND<0.005	ND<0.10	ND<0.05	
NA	NA	NA	NA	NA	
NA	NA	NA	NA	NA	SEE NOTES
ND<0.05	ND<0.25	ND<0.05	ND<0.10	ND<0.05	
<u>0.015</u>	0.014	<u>0.010</u>	<u>0.21</u>	0.049	
ND<0.01	ND<0.005	0.008	0.032	ND<0.05	
ND<0.01	0.010	ND<0.005	ND<0.05	ND<0.05	
NA	NA	NA	NA	NA	
0.023	ND<0.005	0.020	ND<0.05	<u>0.078</u>	
NA	NA	NA	NA	NA	
ND<0.005	ND<0.005	<u>0.076</u>	<u>0.10</u>	ND<0.05	
NRA	NRA	NRA	NRA	NRA	
NRA	NRA	NRA	NRA	NRA	
NRA	NRA	NRA	NRA	NRA	
NRA	NRA	NRA	NRA	NRA	
NA	NA	NA	NA	NA	SEE NOTES
NA	NA	NA	NA	NA	
0.00025	0.050	0.0025	0.0082	0.0081	
	NA NA NA NA ND ND<0.05 NA NA ND<0.05 0.015 ND<0.01 ND<0.01 NA 0.023 NA ND<0.005 NRA NRA NRA NRA NRA NRA NA	Cadmium Chromium NA NA NA NA NA NA ND ND ND ND ND ND ND ND ND 0.25 ND ND ND 0.014 ND 0.005 ND 0.005 NA NA ND 0.005 NA NA ND 0.005 NRA NRA NRA	Cadmium Chromium Lead NA NA NA NA NA NA NA NA NA NA NA NA ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA ND 0.05 ND ND 0.05 ND ND 0.005 ND ND 0.005 ND NA NA NA ND 0.005 0.005 NA NA NA ND 0.005 0.020 NA NA NA ND 0.005 0.076 NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA NRA	Cadmium Chromium Lead Nickel NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA ND ND ND ND NA NA NA NA ND ND ND ND ND ND <td>Cadmium Chromium Lead Nickel Zinc NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA ND ND ND 0.050 ND NA NA NA NA NA NA NA NA NA NA ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 0.015 0.014 0.010 0.021 0.049 ND 0.05 ND <td< td=""></td<></td>	Cadmium Chromium Lead Nickel Zinc NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA ND ND ND 0.050 ND NA NA NA NA NA NA NA NA NA NA ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 0.015 0.014 0.010 0.021 0.049 ND 0.05 ND <td< td=""></td<>

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A-Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Report 0404.R1

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW3

		Total				
<u>Date</u>	<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	NA	NA	NA	NA	NA	SEE NOTES
11/6/1992	NA	NA	NA	NA	NA	
3/2/1993	NA	NA	NA	NA	NA	
5/26/1993	NA	NA	NA	NA	NA	SEE NOTES
8/27/1993	ND<0.05	ND<0.25	ND<0.005	ND<0.10	ND<0.05	
12/23/1993	NA	NA	NA	NA	NA	
3/27/1994	NA	NA	NA	NA	NA	SEE NOTES
6/24/1994	NA	NA	NA	NA	NA	
10/16/1994	NA	NA	NA	NA	NA	
2/13-14/1995	ND<0.01	0.016	ND<0.005	<u>0.053</u>	ND<0.05	
10/16/1995	ND<0.01	0.014	ND<0.005	ND<0.05	ND<0.05	
2/15/1996	ND<0.01	0.018	0.009	<u>0.059</u>	<u>0.021</u>	
6/13/1996	ND<0.005	0.008	ND<0.005	ND<0.05	ND<0.05	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	ND<0.005	0.020	<u>0.14</u>	ND<0.05	<u>0.069</u>	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NA	NA	NA	NA	NA	SEE NOTES
5/22/2000	NA	NA	NA	NA	NA	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

Metals Concentrations

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A-Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW4

		Total				
<u>Date</u>	<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	WNC	WNC	WNC	WNC	WNC	SEE NOTES
11/6/1992	WNC	WNC	WNC	WNC	WNC	
3/2/1993	WNC	WNC	WNC	WNC	WNC	
5/26/1993	WNC	WNC	WNC	WNC	WNC	SEE NOTES
8/27/1993	WNC	WNC	WNC	WNC	WNC	
12/23/1993	WNC	WNC	WNC	WNC	WNC	
3/27/1994	NA	NA	NA	NA	NA	SEE NOTES
6/24/1994	NA	NA	NA	NA	NA	
10/16/1994	NA	NA	NA	NA	NA	
2/13-14/1995	NA	NA	NA	NA	NA	
10/16/1995	NA	NA	NA	NA	NA	
2/15/1996	NA	NA	NA	NA	NA	
6/13/1996	NA	NA	NA	NA	NA	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	NA	NA	NA	NA	NA	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NA	NA	NA	NA	NA	SEE NOTES
5/22/2000	NA	NA	NA	NA	NA	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A-Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW5

		Total				
<u>Date</u>	<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	WNC	WNC	WNC	WNC	WNC	SEE NOTES
11/6/1992	WNC	WNC	WNC	WNC	WNC	
3/2/1993	WNC	WNC	WNC	WNC	WNC	
5/26/1993	WNC	WNC	WNC	WNC	WNC	SEE NOTES
8/27/1993	WNC	WNC	WNC	WNC	WNC	
12/23/1993	WNC	WNC	WNC	WNC	WNC	
3/27/1994	NA	NA	NA	NA	NA	SEE NOTES
6/24/1994	NA	NA	NA	NA	NA	
10/16/1994	NA	NA	NA	NA	NA	
2/13-14/1995	NA	NA	NA	NA	NA	
10/16/1995	NA	NA	NA	NA	NA	
2/15/1996	NA	NA	NA	NA	NA	
6/13/1996	NA	NA	NA	NA	NA	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	NA	NA	NA	NA	NA	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NA	NA	NA	NA	NA	SEE NOTES
5/22/2000	NA	NA	NA	NA	NA	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A–Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

MW6

		Total				
<u>Date</u>	<u>Cadmium</u>	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	WNC	WNC	WNC	WNC	WNC	SEE NOTES
11/6/1992	WNC	WNC	WNC	WNC	WNC	
3/2/1993	WNC	WNC	WNC	WNC	WNC	
5/26/1993	WNC	WNC	WNC	WNC	WNC	SEE NOTES
8/27/1993	WNC	WNC	WNC	WNC	WNC	
12/23/1993	WNC	WNC	WNC	WNC	WNC	
3/27/1994	NA	NA	NA	NA	NA	SEE NOTES
6/24/1994	NA	NA	NA	NA	NA	
10/16/1994	NA	NA	NA	NA	NA	
2/13-14/1995	NA	NA	NA	NA	NA	
10/16/1995	NA	NA	NA	NA	NA	
2/15/1996	NA	NA	NA	NA	NA	
6/13/1996	NA	NA	NA	NA	NA	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	NA	NA	NA	NA	NA	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NA	NA	NA	NA	NA	SEE NOTES
5/22/2000	NA	NA	NA	NA	NA	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A-Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

Metals Concentrations

Report 0404.R1

Mel Senna Brake Service RO 387 2301 East 12th Street Oakland, CA

EW1

		Total				
<u>Date</u>	<u>Cadmium</u>	<u>Chromium</u>	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>	
7/27/1992	WNC	WNC	WNC	WNC	WNC	SEE NOTES
11/6/1992	WNC	WNC	WNC	WNC	WNC	
3/2/1993	WNC	WNC	WNC	WNC	WNC	
5/26/1993	WNC	WNC	WNC	WNC	WNC	SEE NOTES
8/27/1993	WNC	WNC	WNC	WNC	WNC	
12/23/1993	WNC	WNC	WNC	WNC	WNC	
3/27/1994	ND<0.05	<u>0.25</u>	<u>800.0</u>	<u>0.35</u>	<u>0.099</u>	SEE NOTES
6/24/1994	ND<0.05	ND<0.25	ND<0.05	<u>0.14</u>	ND<0.05	
10/16/1994	ND<0.05	<u>0.070</u>	ND<0.005	<u>0.21</u>	<u>0.049</u>	
2/13-14/1995	ND<0.01	<u>0.085</u>	ND<0.005	<u>0.17</u>	ND<0.05	
10/16/1995	ND<0.01	ND<0.005	ND<0.005	<u>0.078</u>	ND<0.05	
2/15/1996	ND<0.01	0.005	ND<0.005	<u>0.052</u>	ND<0.01	
6/13/1996	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.05	
9/17/1996	NA	NA	NA	NA	NA	
1/16/1997	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.05	
5/1/1997	NRA	NRA	NRA	NRA	NRA	
12/12/1997	NRA	NRA	NRA	NRA	NRA	
3/24/1998	NRA	NRA	NRA	NRA	NRA	
7/20/1998	NRA	NRA	NRA	NRA	NRA	
3/31-4/1/99	NS	NS	NS	NS	NS	SEE NOTES
5/22/2000	NS	NS	NS	NS	NS	
ESL	0.00025	0.050	0.0025	0.0082	0.0081	

NOTES:

ND = Not Detected.

NA= Not Analyzed.

NS = Not Sampled

WNC = Well not yet constructed.

NRA = No Report Available. No lab or consultant reports. Sampling known by TPH summary table.

ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality

Control Board (SF-RWQCB) updated May 2008, from Table A-Groundwater Screening Levels,

Groundwater is a current or potential source of drinking water.

Results in bold indicate detected concentrations.

Underlined results exceed their respective ESL value.

No lab reports are available for 5/26/93 results. Results obtained from report text.

Results for 7/27/92 and 3/27/94 are from well installation reports.

Results for 3/31-4/1/99 are from Hydropunch investigation and well sampling report.

Unless otherwise identified, laboratory reports are from periodic well sampling reports.

APPENDIX A TABLE 4 Historic Laboratory Report Sheen Summary

Appendix A - Table 4 Laboratory Report Sheen Summary

0404 Laborato	ory Sample	Sheen Rer	orting						
Mel Senna Br			l						
2301 East 12t									
2001 Ed3t 12t	iii Oticot, C	Jakiana, Ort							
Sample									
Collection									
	MW1	MW2	MW3	MW4	MW5	MW6	EW1	Laboratory	
7/27/1992	N	N	N	WNC	WNC	WNC	WNC	McCampbell Analytical, Inc.	see notes
11/6/1992	NR	NR	NR	WNC	WNC	WNC	WNC	Trace Analysis, Laboratory, Inc.	
3/2/1993	NR	NR	NR	WNC	WNC	WNC	WNC	Trace Analysis, Laboratory, Inc.	
5/26/1993		NR	NR	WNC	WNC	WNC	WNC	Trace Analysis, Laboratory, Inc.	
8/27/1993	N	N	Υ	WNC	WNC	WNC	WNC	McCampbell Analytical, Inc.	
12/23/1993	NR	NR	NR	WNC	WNC	WNC	WNC	Onsite Environmental Laboratorie	s, Inc.
3/27/1994	Υ	Υ	Υ	N	N	N	N	McCampbell Analytical, Inc.	see notes
6/24/1994	N	N	N	N	N	N	N	McCampbell Analytical, Inc.	
10/16/1994	N	Υ	Υ	N	N	N	N	McCampbell Analytical, Inc.	
2/13-14/1995	N	Y	N	N	N	N	N	McCampbell Analytical, Inc.	
10/16/1995	Υ	N	N	N	N	N	N	McCampbell Analytical, Inc.	
2/15/1996	Υ	Υ	Υ	Υ	Υ	Υ	Y	McCampbell Analytical, Inc.	
6/13/1996		N	Υ	N	N	N	N	McCampbell Analytical, Inc.	
9/17/1996	Υ	Υ	Υ	Υ	N	N	Y	McCampbell Analytical, Inc.	
1/16/1997	Υ	Υ	Υ	Υ	N	Υ	Υ	McCampbell Analytical, Inc.	
5/1/1997								No lab reports	A SA
12/12/1997								No lab reports	
3/24/1998								No lab reports	
7/20/1998								No lab reports	
	NR	NR	NR	NR	NR	NR	NS	Curtis & Tompkins	see notes
5/22/2000	NR	NR	NR	NR	NR	NR	NR	Curtis & Tompkins	
NOTES:									
N = No sheen									
Y = Sheen ide			n sample						
WNC = Well r									
NR = Not Rep		boratory as	part of labo	pratory prot	ocol				
NS = Not Sam									
Results for 7/2						<u> </u>			
Results for 3/3									
Unless otherw	ise identifi	ed, laborato	ry reports a	re from pe	riodic well sa	ampling rep	orts.		AMARAMA