

Epigene International

CONSULTING GEOLOGISTS

February 29, 1996

Mr. J. W. Silveira J. W. Silveira Company 499 Embarcadero Oakland, CA 94606

Subject:

Quarterly Monitoring Report for Site Located at 2301 East 12th Street,

Oakland, First Quarter 1996

Dear Mr. Silveira,

The purpose of this report is to provide data regarding the results of investigations that have been carried out at the subject site during the second quarter of 1995. The site is located at the southwest corner of the intersection of East 12th Street and 23rd Ave. in Oakland. The location of the site is shown on Figure 1. A site plan is shown on Figure 2. The former tenant at the site, Alejo Auto Repair Shop vacated the property in June 1994. The site was vacant until January of this year. The new tenant is Discount Brakes & Tires.

GROUNDWATER GRADIENT

In the past, groundwater elevations for the project wells were relative to an assumed elevation for the top of casing of MW-1. The top of casing elevations were resurveyed on June 20, 1995 using an automatic level. The elevations are now tied to a City of Oakland sea level datum.

Gauging of the depth to groundwater was carried out for each project well on February

Quarterly Monitoring Report 2301 East 12th Street, Oakland February 29, 1996 Page 2

15, 1996 prior to any purging of the wells. An electronic probe was used to measure the depth to groundwater from the surveyed mark on the top of the casing. The probe is calibrated to hundredths of a foot. Several of the wells had significant vapor pressure and up to 2 hours were required for the water level in the wells to stabilize. The groundwater elevations were calculated and are presented on Figure 3. Groundwater elevation contours are also plotted on Figure 3.

In addition to the contouring, a direction and slope of the gradient was also calculated by a graphical solution to a three-point problem based on the groundwater elevations of MW-1, MW-5 and MW-6. The results of this calculation are plotted on Figure 3. The direction of the gradient is generally consistent with the groundwater elevation contouring and most of the more recent previous calculations.

GROUNDWATER SAMPLING

Groundwater samples were collected on February 15 from all of the project wells. The wells were purged of approximately five casing volumes prior to sampling by bailing or pumping with a purge pump. Purge water was placed in new 55 gallon drums and left on the site. The samples were collected using a dedicated bailer for each well. The samples were placed in appropriate sample containers provided by the laboratory. After labeling each sample, it was stored in a cooled ice chest and transferred to a State certified laboratory under chain-of-custody control.

The requested analysis for each sample was based on the original Workplan, amendment and the results of the past quarter sampling and analysis. The results of the water samples are summarized on tables for each well in Appendix B which also includes the results of previous data for each well. In addition, LUFT metals were run for the samples from MW-2, MW-3 and EW-1. These results are included in Appendix A.

Quarterly Monitoring Report 2301 East 12th Street, Oakland February 29, 1996 Page 3

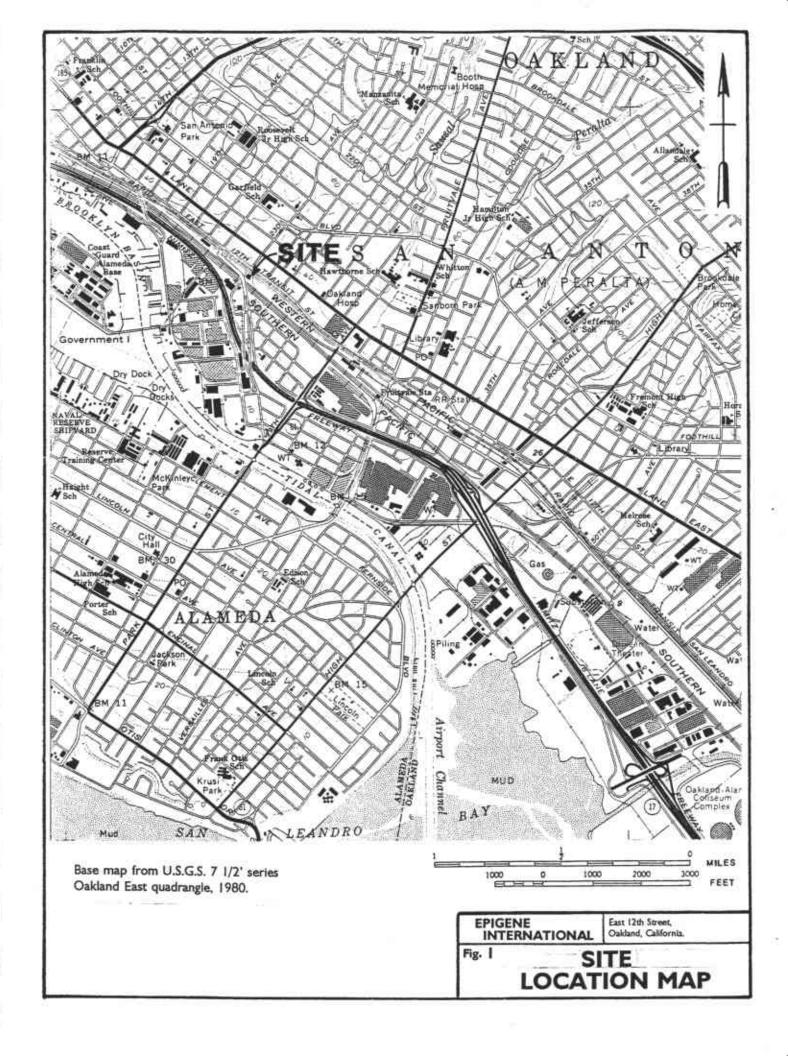
The Certified Laboratory Report and chain-of custody documentation are included in Appendix A. Significant levels of contamination continue to be present in all of the project wells. Summary graphs showing concentrations of contamination for each well through time are presented in Appendix C.

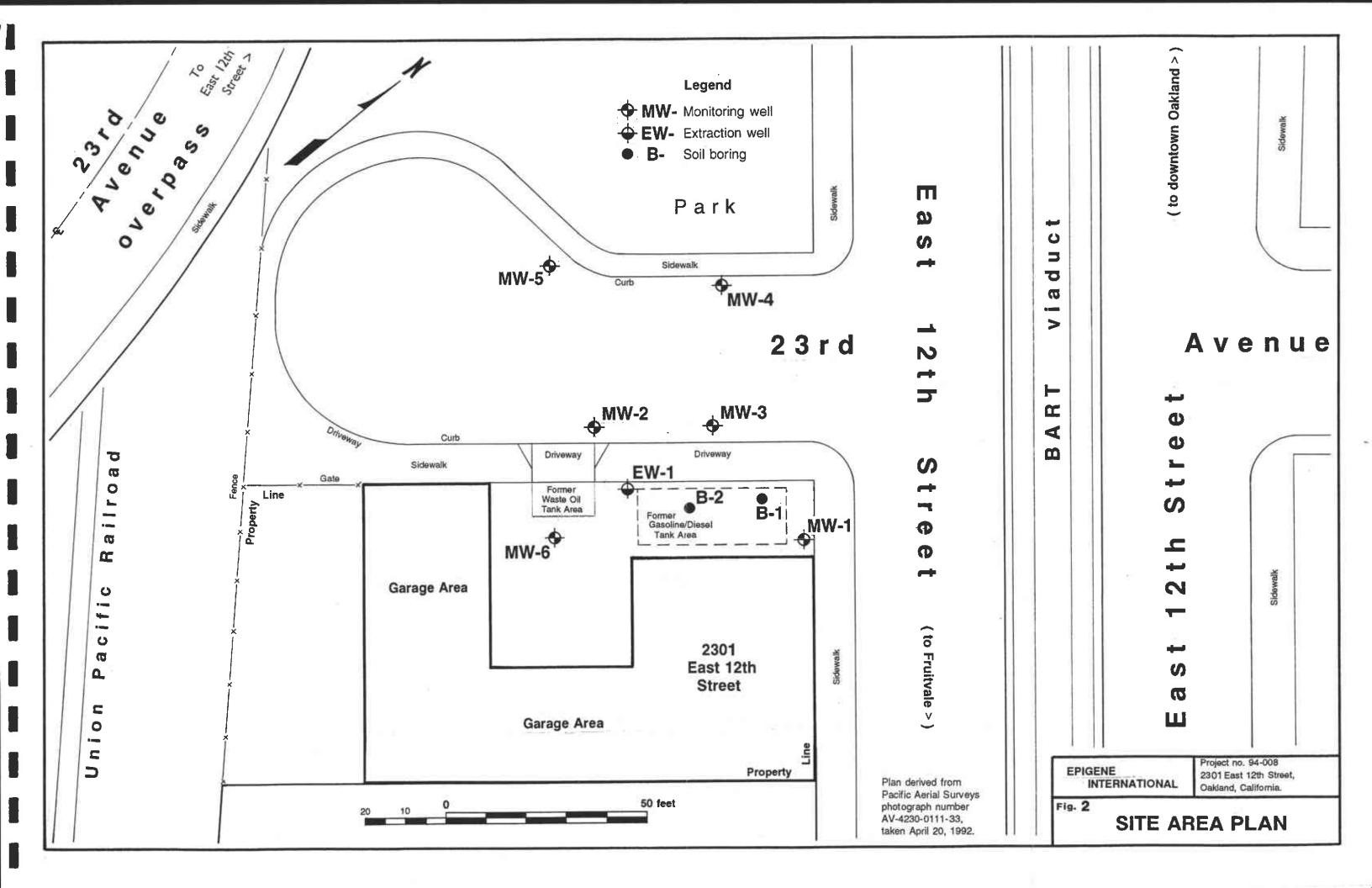
Other work for the site during this quarter will include the installation of the additional wells as outlined in the Remedial Action Plan. The wells will be installed, developed and sampled by the end of this month. Additional engineering of the proposed remediation system will be required as the new tenant is utilizing the space originally designated for the installation of the system.

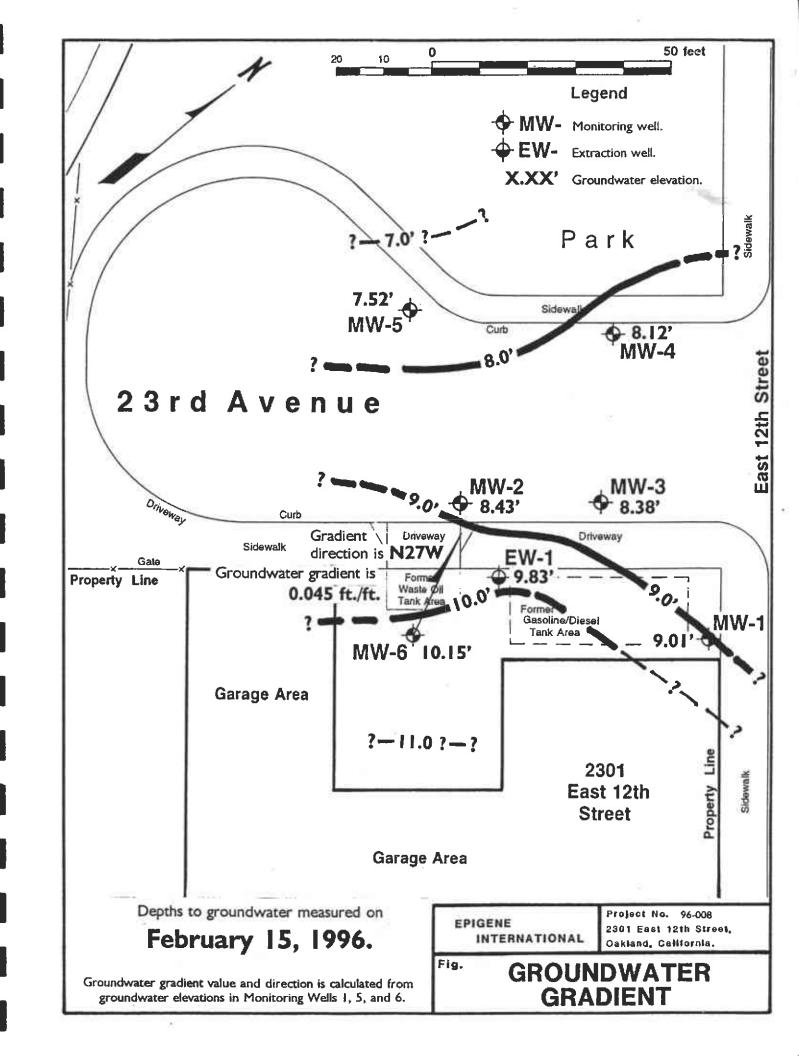
The increasing presence of the chlorinated hydrocarbons is somewhat of a mystery as the highest concentrations are in the upgradient wells. It may be appropriate to collect grab samples of the groundwater in the rear of the building to assess whether or not this contamination is originating off site. A more detailed schedule for the installation of a remediation will be provided to Mr. Barney Chan at the end of next week after discussions with you and your tenant to identify an appropriate location for the remediation system. Should you have any questions, please contact the undersigned. ERED GEOLOGIS

Sincerely.

John N. Alt, CEG No. 1136


JOHN N. ALT Nº 1136 CERTIFIED ENGINEERING


GEOLOGIST


Attachments

cc: Mr. Barney Chan, Alameda County Dept. of Environmental Health

Mr. Robert Shapiro, Esq.

APPENDIX A

CERTIFIED LABORATORY REPORT

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Epigene International 8750 Pasco Padre Pkwy, # A1		Client Project	ID: # 96-008; 2301 E. 12th,	Date Sampled: (12/15/96
38 750 Paseo F	Padre Pkwy, # A11	Oakland		Date Received:	02/17/96
Fremont, CA	94536	Client Contact:	John Alt	Date Extracted:	02/17/96
		Client P.O:		Date Analyzed:	02/17/96
EPA methods me	Diesel Ra odified 8015, and 3550 or	nge (C10-C23) E 3510; California RW	xtractable Hydrocarbons as QCB (SF Bay Region) method GC	Diesel *	
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recovery Surrogate
61601	EW-I	w	2400, d, a,h		98
61602	MW-1	w	16,000,d,g,h		105
61603	MW-2	W	11,000d,g,h		102
61604	MW-3	W	9400,d,h		102
61605	MW-4	w	940,d,g,h	-	104
61606	MW-5	w	2200,d,b,h		105
61607	MW-6	w	1500,d,a,h		98
			- Air		
	06.		***		
Danastine !	المامية				
wise stated: 1	imit unless other- ND means not de-	W	50 ug/L		
recied anove	the reporting limit	S	1.0 mg/kg	1	

^{*} water samples are reported in ug/L, soil samples in mg/kg, and all TCLP and STLC extracts in mg/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant), d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

Epigene Inter		Client I Oakland	Project ID: #	96-008; 230)1 E. 12th,	Date Samp	Date Sampled: 02/15/96			
38750 Paseo I	Padre Pkwy, # A11	V diAddin				Date Received: 02/17/96				
Fremont, CA	94536	Client C	ontact: John .	Alt	Date Extra	cted: 02/17	7/96			
 -	· · ·	Client P	.0:			Date Analy	zed: 02/17	/96		
EPA methods 50	Gasoline Range 030, modified 8015, and 8	(C6-C12) 020 or 602; (Volatile Hyd	rocarbons	as Gasolin	e*, with BT	EX*	,		
Lab ID	Client ID	Matrix	TPH(g) ⁺			Ethylben- zene	Xylenes	% Rec. Surrogate		
61601	EW-1	w	5000,j,h	270	7.5	50	20 -	117#		
61602	MW-1	w	11,000,a,h	1400	25	130	81	103		
61603	MW-2	W	25,000,a,h	1700	93	490	440	101		
61604	MW-3	w	8100,j,b,h	62	13	50	33	103		
61605	MW-4	w	3400,d,b,h	ND	ND	ND	ND	101		
61606	MW-5	w	4400,c,d,b,h	61	5.3	34	ND	102		
61607	MW-6	w	3900c,b,h	460	11	110	23	103		
							A. W.			
-										
Reporting I	Limit unless other-	w	50 ug/L	0.5	0.5	0.5	0.5			
wise stated:	ND means not de- the reporting limit	S	1.0 mg/kg	0,005	0.005	0,005	0.005			

^{*} water and vapor samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

[#] chittered chromatogram; sample peak coclutes with surrogate peak

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

Epigene International		ID: # 96-008; 2301 E	. 12th, Date Sample	Date Sampled: 02/15/96			
38750 Paseo Padre Pkwy, # A11	Oakland		Date Receive	Date Received: 02/17/96			
Fremont, CA 94536	Client Contact:	John Alt	Date Extracte	ed: 02/17/96			
	Client P.O:		Date Analyzo	:d: 02/18/96			
EPA method 601 or 8010	Volati	ile Halocarbons					
Lab ID	61601	61602	61603 61604				
Client ID	EW-I	MW-1	MW-2	MW-3			
Matrix	W	W	W	W			
Compound		Concen					
Bromodichloromethane	ND< 1.0	ND	ND < 2.5	ND			
Bromoform ^(b)	ND< 1.0	ND	ND < 2.5	ND			
Bromomethane	ND< 1.0	ND	ND< 2.5	ND			
Carbon Tetrachloride(c)	ND< 1.0	ND	ND < 2.5	ND			
Chlorobenzene	ND< 1.0	ND	4,8	ND ND			
Chloroethane	1.0	ND	ND< 2.5	ND			
2-Chloroethyl Viny l Ether (d)	ND< 1.0	ND	ND< 2.5	<u>שא</u>			
Chloroform (e)	ND< 1.0	ND	ND < 2.5	ND			
Chloromethane	ND< 1.0	ND	ND< 2.5	ND			
Dibromochloromethane	ND< 1.0	ND	ND < 2.5	ND			
1,2-Dichlorobenzene	ND< 1.0	ND	ND< 2.5				
1.3-Dichlorobenzene	ND< 1.0	ND	ND< 2.5	ND ND			
1.4-Dichlorobenzene	ND< 1.0	ND	ND< 2.5	ND ND			
Dichlorodifluoromethane	ND< 1.0	ND	ND< 2.5	ND ND			
1,1-Dichloroethane	ND< 1.0	ND	ND< 2.5	ND			
1,2-Dichloroethane	ND< 1.0	ND		ND			
l,l-Dichloroethene	ND< 1.0	ND	ND< 2.5	ND ND			
cis 1,2-Dichloroethene	17	0.82	ND< 2.5 ND< 2.5	ND 22			
trans 1,2-Dichloroethene	6.4	ND		7,3			
1.2-Dichloropropane	ND< 1.0	ND ND	ND< 2.5	2,6			
cis 1,3-Dichloropropene	ND< 1.0	T ***	ND< 2.5	ND			
trans 1,3-Dichloropropene	ND< 1.0	ND ND	ND< 2.5	ND			
Methylene Chloride ^(f)	ND< 2.0	ND ND	ND< 2.5	ND			
1.1.2.2-Tetrachloroethane	ND< 1.0	ND ND	ND< 2.5	ND			
Tetrachlorocthene	ND< 1.0	ND	ND< 2.5	ND			
1,1,1-Trichloroethane	ND< 1.0	ND ND	ND< 2.5	ND			
1,1,2-Trichloroethane	ND< 1.0	ND ND	ND< 2.5	ND ND			
Trichloroethene	33		ND< 2.5	ND 0.0			
Trichlorofluoromethane	ND< 1.0	24	ND< 2.5	9.3			
Vinyl Chloride ^(g)		ND ND	ND< 2.5	<u>ND</u>			
% Recovery Surrogate	2.3 111	ND 112	ND< 2.5	ND			
Comments	h	113 h	119	110			

vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chlorocthoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chlorocthene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 3 vol. % sediment.

DHS Certification No. 1644

Epigene International	Client Project I	D: # 96-008, 2301 E	2. 12th, Date Samp	Date Sampled: 02/15/96		
38750 Paseo Padre Pkwy, # A11	Oakland		Date Recei	ved: 02/17/96		
Fremont, CA 94536	Client Contact:	John Alt	Date Extra	Date Extracted: 02/17/96		
	Client P.O:	THE AND I	Date Analy	zed: 02/18/96		
	Volati	le Halocarbons				
EPA method 601 or 8010						
Lab ID	61605	61606	61607			
Client ID	MW-4	MW-5	MW-6			
Matrix	W	W	w			
Compound		Concer	itration			
Bromodichloromethane	ND	ND	ND< 2.5			
Bromoform ^(b)	ND	ND	ND< 2.5			
Bromomethane	ND	ND	ND< 2.5			
Carbon Tetrachloride ^(c)	ND	ND	ND< 2.5			
Chlorobenzene	ND	0.57	ND< 2.5			
Chloroethane	ND	ND	ND< 2.5			
2-Chloroethyl Viny 1 Ether (d)	ND_	ND	ND< 2.5			
Chloroform (c)	ND	ND	ND< 2.5			
Chloromethane	ND	ND	ND< 2.5			
Dibromochloromethane	ND	ND	ND< 2.5			
l,2-Dichlorobenzenc	ND	ND	ND< 2.5			
1,3-Dichlorobenzene	ND	ND	ND< 2.5			
1,4-Dichlorobenzene	ND	ND	ND< 2.5			
Dichlorodifluoromethane	ND	ND	ND< 2.5			
I,1-Dichloroethane	ND	ND	ND< 2.5			
1,2-Dichloroethane	ND	ND	ND< 2.5			
l,1-Dichloroethene	ND	ND	ND< 2.5			
is 1,2-Dichloroethene	1.8	7.7	110			
rans 1.2-Dichloroethene	0.79	ND	25			
1,2-Dichloropropane	ND	ND	ND< 2.5			
cis 1,3-Dichloropropene	ND	ND	ND< 2,5			
rans 1,3-Dichloropropene	ND	ND	ND< 2.5			
Methylene Chloride ^(f)	ND	ND	ND< 5.0			
.1,2,2-Tetrachloroethane	ND	ND	ND< 2.5			
Tetrachloroethene	ND	ND	ND< 2.5	-		
,1,1-Trichloroethane	ND	ND	ND< 2.5			
,1,2-Trichloroethane	ND	ND	ND< 2.5			
richloroethene	ND	ND	160			
richlorofluoromethane	ND	ND	ND< 2.5			
Vinyl Chloride (g)	ND	5,3	46			
6 Recovery Surrogate	113	115	116			
comments	h	h	110			

^{*} water and vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

Edward Hamilton, Lab Director

DHS Certification No. 1644

Epigene Interna	tional	Client Project	ID: # 06.009: 2201 12 2041.	Data Camulad, 000 000
38750 Paseo Pac		Oakland	ID: # 96-008; 2301 E. 12th,	
İ	•			Date Received: 02/17/96
Fremont, CA 94	236	Client Contact	: John Alt	Date Extracted: 02/17/96
		Client P.O:	· ··	Date Analyzed: 02/17/96
Total Recovera	ble Petroleum Hy	drocarbons as (il & Grease (with Silica Gel	Clean-up) by Scanning IR Spec-
!	or 9073; Standard Met		trometry*	
Lab ID	Client ID	Matrix	TRPH ⁺	
61601	EW-1	W	4.2,h	***************************************
61603	MW-2	w	20,h	
61604	MW-3	w	12,h	
	THE TRANSPORT			
	T- M		3 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.00
			7 - 748.3	
				7
		75.30		- 10. 11.

	NA SIMA			
Reporting Lim wise stated; ND	means not de-	W	1.0 mg/L	
tected above the	reporting limit	s	10 mg/kg	

water samples are reported in mg/L and soils in mg/kg

[#] surrogate diluted out of range

⁺ At the laboratory's discretion, one positive sample may be run by direct injection chromatography with FID detection. The following comments periain to this GC result: a) gasoline-range compounds (C6-C12) are present; b) diesel range compounds (C10-C23) are present; c) oil-range compounds (> C18) are present; d) other patterned solvent (?); e) isolated peaks; f) GC compounds are absent or insignificant relative to TRPH inferring immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

1	nternational		Chent Proje	ect ID: #9	6-008; 2301 1	Date Sampled: 02/15/96				
l L	eo Padre Pkwy,	#AII	Cakiand				Date Recei	ved: 02/1	7/96	
Fremont, (CA 94536		Client Cont	act: John A	lt	Date Extracted: 02/20/96				
			Client P.O:				Date Analy	zed: 02/2:	2/96	
EPA analytic	al methods 6010/20	0.7, 239,2 ⁺		LUFT Me	tals"					
Lab ID	Client ID	Matrix	Extraction ⁶	Cadmium	Chromium	Lead	Nickel	Zinc	% Rec. Surrogate	
61601	EW-1	w	TTLC	ND	0.005	ND	0.052	ND	104	
61603	MW-1	w	TTLC	ND	0.007	0.049	0.061	0.025	104	
61604	MW-3	W	TTLC	ND	0.018	0.009	0.059	0.021	107	
	-									
						· • • • • • • • • • • • • • • • • • • •				
						-1407 V -				
Reporting Li	mit unless other-	S	TTLC	0.5						
wise stated: N	rise stated; ND means not deceted above the reporting limit W		TILC	0.5 mg/kg 0.01 mg/L	0.5	0.005	0.02	0.01		
			STLC,TCLP	0.01 mg/L	0.05	0.2	0.05	0.05		

^{*} soil samples are reported in mg/kg, and water samples and all STLC & TCLP extracts in mg/L

⁺ Lead is analysed using EPA method 6010 (ICP) for soils, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

o EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC), 3050(solids, TTLC); STLC from CA Title

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

i) liquid sample that contains greater than ~ 2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

CHAIN OF CUSTODY

Laboratory	McCampbell Analytical	Inc.
	110 2nd Avenue South	
	Pacheco, CA 94553	
	(510) 798-1620	
Contact:	Ed Hamilton	

Epigene International

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite Fremont, California, 94536

Business: (510) 791-1986 FAX: (510) 791-3306

_	(510) 798-1620						rojec	t Nan	Sam	Sample WAMDAR			
Contact:	Ed Hamiltor	7				Project Name: 2301 E. 12th OAKLAM CA Project no. 96-008 Date: 215/96							
								/		Analy			
							HI GBS	oling	PHID1828	13010	3 ²⁰ /	, age	//
Sample I.D.	Date/Tim Sampled	e Matri	Co	ntainer.	Lab. #		HIGS	8 th	SHID, O.	18 218	105		/
1.WW-3	राह्मिश्र			f Type	<u> </u>		,	/ 		(s /	2/0	a questa d	Comment
2. 11	1400		1	Voa:	<u> </u>	X	X	-	X				
3. ll	140<					-	 	X			-		61604
4	1400		-	l. Fer Spith			ļ	<u> </u>			X		
5-MW-4				bottle			 	<u> </u>		<u> X</u>			
6. ,)	1210		2	VOAS		$+\times$	X		X				61605
	1510		-1-	betti	٠	<u> </u>		X					_
-MW-5	1200		7_	VOAL		×	X		×				
	1200		1	liter bettle		<u> </u>		×					61606
0. 11	1115		7_	YOAS	<u> </u>	X	×		×			ļ	C10
	1112	14	{	bottle				X					61607
Relinquished b	About 2	100A	Date	:2/17/9	Time: 12:30	Rec	olved	byst		101	d		· .
lelinquished by	v:\		Date		Time:	 	ived	bv.	Lucyel	<u>riual</u>	ilus	1 -	Time: 12:3
elinquished b	y:		Date	1	Time:	 	lved					Date:	Time:
urnasound Tim	•: STANDARI)	·					-,.				Date:	Times
dditional <u>Vol</u> omments:	ts have	HCI	Plant	, e bot	Hes HNO				, 	· ·		/3 5040 ME/U	201171
						٠	CF/F*	ONDITH		PPFCFD 4DDDOD	WINE !		Z 10 Z ops

HEAD SPACE ABSENT

CHAIN OF CUSTODY

		
Laboratory	: McCampbell Analytical	Inc.
	110 2nd Avenue South	#D7
	Pacheco, CA 94553	
	(510) 798-1620	
Contact:	Ed Hamilton	

Epigene International

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite Series
Fremont, California, 94536

Business: (510) 791-1986 FAX: (510) 791-3306

Contact: John Alt Sampler: TWA/MD/APA

Project Name: Z301 E, 12th, Oak C4.

Project no. 96-008 Date: 7/15/96

•								<i>/</i>				adno z ro			
			,				HIGOR	ino de	2 Hi Die 2 6	18010	20/1	1. 65.05	7	$\overline{}$	
Sample I.D.	Date/Time Sampled	Matrix Desc.	No. o	ntainer. f Type	Lab. #	Z	41°	3/4	34/ 80	601/		\ `	/ /	<u></u>	
1.EW-1	215/96 1030	450	2	VOAS		1x	×		X					Commen	115
2. 11			1	liter		1		X			-		, الب	61601	}
3. 11			١	1,				<u> </u>			X			,,,,,,	; ;-
4. 1.	Y	-		Plastic bottl	•					X			 	***************************************	
5-MW-1	1700		7	VOAS		×	×		×				<u> </u>		
6	1700		1	bottle				X					6	1602	
7-MW-2	1430		2	VOAS		×	×		×				1		
8.	1430			bottle		<u> </u>		X							
10.	1430	\downarrow	<u> </u>	too His							X		6	1603	} ! !
	1430	Y		Plantie				[X			1		}
Relinquished b		120	Date	:7/1/96	Time:/2:30	Rece	ived	by:[Lucas	a Person	10 Prices	Dates	2/17/20	Time:/2	20
Relinquished b			Date		Time:	Rece	bevi	pa:	Janese J	acar you		Date:	''	Time:	<u>\X</u>
Relinquished b	y:		Date	:	Time;	Rece	lved	by:				Date:		Time:	
Turnaround Tim	•: STANDARD						ICE/T	-		/ 2000		WAS TOUG	ſ		
Additional V	eas have	HC	1 17	actie	bettles #	NO>	ຜິວດີວີ	COND	HOIT		EPLATIVE Opriate	YY			
		·	·/·				HEAD	SPACE	ABSENT	CONT	MEDIALE.		Page	1 017	,

APPENDIX B

SUMMARY TABLES

Table 1A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ezhyl- benzene	Xylenes	TRPH*
7/27/92	360	1800	600	5.1	13	18	ND
11/6/92	670	8000	2400	6.1	41	ND	NA
3/2/93	1100	5600	3800	ND	120	ND	NA
5/26/93	1700	4800	3400	44	140	150	NA
8/27/93	1200	8400	2300	35	180	57	ND
12/23/93	ND	7800	29	16	5.8	26	NA
3/27/94	2600	10,000	2400	84	310	280	NA
6/24/94	1500	9000	2300	44	260	170	NA
10/16/94	2000	10,000	2100	35	250	140	NA
2/13/95	2500	16,000	3200	110	460	260	NA
6/20/95	3500	18,000	2600	87	450	220	NA
10/16/95	2700	13,000	2200	63	220	110	NA
2/15/96	16,000	11,000	1400	25	130	81	NA
<u></u>							

MW-1 is a 2 inch PVC well installed 12/23/91 to a total depth of 28 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 1B-Summary of Volatile Halocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	Chloro- benzene	Chloro- ethane	1.2-Di Chloro- ethane	Cis 1,2 Dictions others	Trans 1,2 Dichloro- ethems	PCE	TCE	Vinyl Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	5.8	ND
5/26/93	ND	ND	ND	ND	ND	ND	6.8	ND
8/27/93	ND	ND	ND	1.1	ND	5.4	ND	ND
12/23/94	NA	NA	NA	NA	NA	NA	NA	NA
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	NA	NA	NA	NA	NA	NA	NA	NA
2/13/95	ND	ND	ND	1.3	ND	ND	ND	ND
6/20/95	ND	1.1	ND	1.1	ND	ND	6.5	ND
10/16/95	ND	ND	ND	0.84	ND	ND	2.5	ND
2/15/96	ND	ND	ND	0.82	ND	ND	24	ND
		+					 	
							-	
							<u> </u>	
-								<u> </u>

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 2A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-2

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toloene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	1500	20,000	110	6	37	39	ND
11/6/92	17,000	19,000	2800	120	790	1100	NA
3/2/93	37,000	14,000	3800	110	950	1100	NA
5/26/93	6000	11,000	5200	140	1000	990	32
8/27/93	5400	16,000	1700	120	640	710	ND
12/23/93	720	18,000	87	79	42	400	NA
3/27/94	6100	17,000	2100	100	630	750	ND
6/24/94	3000	15,000	2000	72	550	520	7.9
10/16/94	5300	15,000	1500	81	410	520	13
2/13/95	4900	18,000	2000	120	660	900	20
6/20/95	6600	30,000	1300	85	510	520	11
10/16/95	31,000	19,000	1500	92	400	330	11
2/15/96	11,000	25,000	1700	93	490	440	20
		-	 				

MW-2 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 2B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-2

Sampling Date	Chloro- benzene	Chiaro- ethane	1,2-Di Chloro- elhene	Cis t.i Dichioro- ethens	Trans 1,2 Dichloro- ethons	PCE	TCE	Vinyi Chioride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	ND	ND
5/26/93	9.8	ND	ND	2.7	2.7	ND	ND	ND
8/27/93	10	1.3	0.66	3.2	ND	ND	ND	2.2
12/23/93	4.3	ND	ND	1.0	ND	ND	ND	1.5
3/27/94	ND	ND	ND	ND	ND	ND	ND	ND
6/24/94	6.5	ND	ND	ND	ND	ND	ND	ND
10/16/94	5.7	1.1	ND	0.73	ND	ND	ND	1.0
2/13/95	12	ND	ND	ND	ND	ND	ND	ND
6/20/95	7.9	1.5	1.4	1.0	ND	ND	ND	2.1
10/16/95	5.1	ND	ND	ND	ND	ND	ND	ND
2/15/96	4.8	ND	ND	ND	ND	ND	ND	ND
								<u></u>

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 3A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-3

TPH Diesel	TPH Gasoline	Reazene	Tolnene	Ethyl- benzene	Xylenes	TRPH*
4000	8800	150	8.6	88	13	ND
21,000	10,000	78	3.1	830	13	NA
9300	3900	120	ND	240	37	NA
4400	7400	570	4.1	640	8.4	ND
8200	7100	180	15	110	9.4	ND
230	7900	30	14	12	62	NA
4300	5700	180	10	100	24	ND
1500	8400	230	13	93	7.6	NA
2700	6300	140	8.7	68	25	7.3
1600	7500	220	17	110	22	8.3
13,000	11,000	310	23	160	63	8.5
1900	4700	120	6.7	32	16	8.3
9400	8100	62	13	50	33	12
A						
	4000 21,000 9300 4400 8200 230 4300 1500 2700 1600 13,000 1900	Dienel Gashine 4000 8800 21,000 10,000 9300 3900 4400 7400 8200 7100 230 7900 4300 5700 1500 8400 2700 6300 1600 7500 13,000 11,000 1900 4700	Diesel Gasoline 4000 8800 150 21,000 10,000 78 9300 3900 120 4400 7400 570 8200 7100 180 230 7900 30 4300 5700 180 1500 8400 230 2700 6300 140 1600 7500 220 13,000 11,000 310 1900 4700 120	Diesel Gasoline 4000 8800 150 8.6 21,000 10,000 78 3.1 9300 3900 120 ND 4400 7400 570 4.1 8200 7100 180 15 230 7900 30 14 4300 5700 180 10 1500 8400 230 13 2700 6300 140 8.7 1600 7500 220 17 13,000 11,000 310 23 1900 4700 120 6.7	Diesel Gasaline benzene 4000 8800 150 8.6 88 21,000 10,000 78 3.1 830 9300 3900 120 ND 240 4400 7400 570 4.1 640 8200 7100 180 15 110 230 7900 30 14 12 4300 5700 180 10 100 1500 8400 230 13 93 2700 6300 140 8.7 68 1600 7500 220 17 110 13,000 11,000 310 23 160 1900 4700 120 6.7 32	Direct Gasotice benzene 4000 8800 150 8.6 88 13 21,000 10,000 78 3.1 830 13 9300 3900 120 ND 240 37 4400 7400 570 4.1 640 8.4 8200 7100 180 15 110 9.4 230 7900 30 14 12 62 4300 5700 180 10 100 24 1500 8400 230 13 93 7.6 2700 6300 140 8.7 68 25 1600 7500 220 17 110 22 13,000 11,000 310 23 160 63 1900 4700 120 6.7 32 16

MW-3 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 3B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-3

Chiara- benzenz	Chloro- ethane	L2-Di Chierr- ethane	Cis 1.2 Dichloro- ethens	Trans 1,2 Dichloro- ethene	PCE	TCE	Vinyl Chloride
NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA
ND	ND	ND	ND	ND	ND	ND	ND
NA	NA	NA	NA	NA	NA	NA	NA
ND	ND	ND	ND	ND	ND	16	ND
NA	NA	NA	NA	NA	NA	NA	NA
ND	ND	ND	ND	ND	ND	6	ND
ND	ND	ND	6.0	1.5	ND	ND	ND
ND	ND	ND	8.4	2.1	ND	12	ND
ND	ND	ND	4.3	1.3	ND	5.1	ND
ND	0.5	ND	4.9	1.7	ND	5.7	ND
ND	ND	ND	7.1	2.0	ND	7.8	ND
ND	ND	ND	7.3	2.6	ND	9.3	ND
	NA NA NA ND NA ND NA ND	NA N	NA N	bearens sthane Chiero-stiens Bicilioro-stiens NA NA NA NA NA NA NA NA ND ND ND ND NA NA NA NA ND ND ND ND ND ND ND ND ND ND ND 8.4 ND ND ND 4.9 ND ND ND 7.1	NA NA<	NA NA<	NA NA<

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 4A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-4

Sampling Date	TPH Diesel	TPH Gasaline	Benzene	Toinene	Exhyl- benzene	Xylenes	TRPH*
3/27/94	1800	2200	19	1.2	2.9	12	NA
6/24/94	420	2300	2.9	1.6	2.8	4.6	NA
10/16/94	900	3500	3.8	2	5.2	24	NA
2/13/95	630	2600	100	100	3.8	7.1	NA
6/20/95	1100	3000	31	3.4	6.1	12	NA
10/16/95	1100	2000	43	2.3	8.4	6.9	NA
2/15/96	940	3400	ND	ND	ND	ND	NA

MW-4 is a 2 inch PVC well installed 3/18/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 4B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-4

Sampling Date	Chlore- benzens	Chican- ethase	1.2-Di Chloro- ethane	Cis 1,2 Bichinens athens	Trans 1,2 Dichloro- ethene	PCE	TCE	Vinyt Chioride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	ND	ND	0.67	0.71	ND	ND	ND	ND
2/13/95	ND	ND	ND	ND	ND	ND	ND	ND
6/20/95	ND	ND	ND	2.2	1.0	ND	ND	ND
10/16/95	ND	ND	ND	1.3	ND	ND	ND	ND
2/15/96	ND	ND	ND	1.8	0.79	ND	ND	ND
			•					
-		 						
		-						

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 5A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-5

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	870	2900	71	ND	27	15	NA
6/24/94	950	6100	220	12	38	24	NA
10/16/94	1100	4300	120	5.1	27	13	NA
2/13/95	1200	4600	130	7.9	38	29	NA
6/20/95	1000	6000	140	6.7	27	29	NA
10/16/95	940	2000	43	2.3	8.4	6.9	NA
2/15/96	2200	4400	61	5.3	34	ND	NA
						-	
						-	
						ļ	

MW-5 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 5B-Summary of Volatile Haolcarbons Concentrations (in PPB) Detected in MW-5

Sampling Date	Chlero- bettaene	Chloro- ethane	1.2-Di Chloro- ethane	Cia 1,2 Dichloro- ethene	Trans 1,2 Dichloro- ethene	PCE.	TCE	Vinyl Chloride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	0.53	ND	ND	11	3.1	ND	ND	7.5
10/16/94	0.66	ND	ND	16	4.2	ND	ND	9.6
2/13/95	ND	ND	ND	20	5.1	ND	ND	8.4
6/20/95	0.95	ND	ND	12	4.1	ND	ND	10
10/16/95	0.54	ND	ND	9.8	2.9	ND	2.0	7.6
2/15/96	0.57	ND	ND	7.7	ND	ND	ND	5.3
								,

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 6A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-6

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	1000	5000	1100	17	180	41	NA
6/24/94	660	8000	1200	21	210	54	NA
10/16/94	850	6300	870	14	140	49	NA
2/13/95	1000	5500	1000	17	210	55	NA
6/20/95	1400	9100	1300	24	240	79	NA
10/16/95	770	3000	590	8.8	84	24	2.8
2/15/96	1500	3900	460	11	110	23	NA

MW-6 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 6B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-6

NA NA NA	NA NA	NA	NA	NA	NA
	NA	NIA			
NA		NA	NA	NA	NA
	NA	NA	NA	NA	NA
ND	40	13	ND	99	87
ND	26	17	ND	29	130
ND<5	75	16	ND<5	110	54
ND	110	25	ND	160	46
	ND<5	ND<5 75	ND<5 75 16	ND<5 75 16 ND<5	ND<5 75 16 ND<5 110

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 7A-Summary of Hydrocarbon Concentrations (in PPB) Detected in EW-1

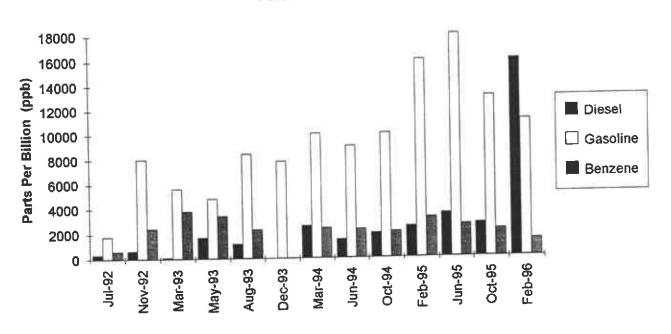
Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	920	1200	270	6.2	30	13	ND
6/24/94	1200	4600	410	5.6	78	22	NA
10/16/94	1200	4900	310	5.2	30	32	6.4
2/13/95	1000	3900	380	5.9	41	22	ND
6/20/95	1800	7800	710	14	260	52	6.5
10/16/95	940	3200	310	3.3	32	16	5.5
2/15/96	2400	5000	270	7.5	50	20	4.2
		-					

EW-1 is a 4 inch PVC well installed 3/16/94 to a total depth of 30 feet.

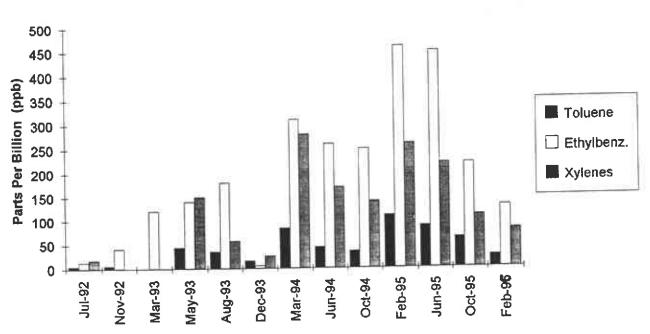
NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

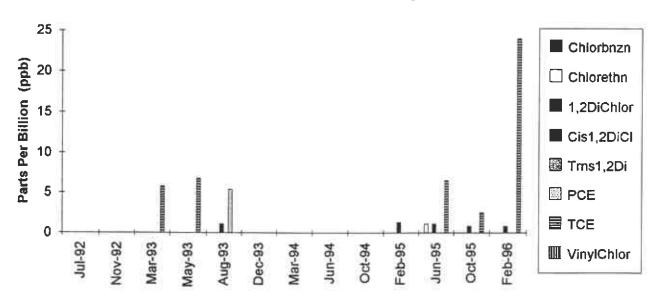
Table 7B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in EW-1

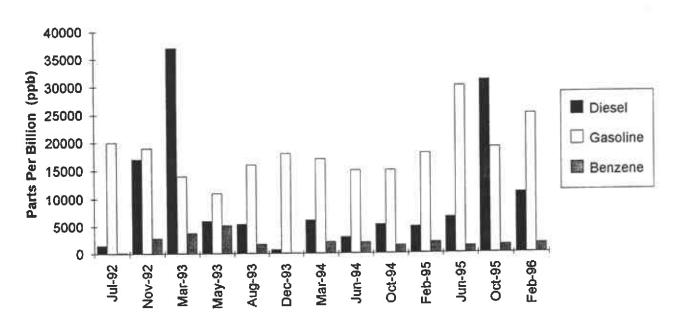

Sampling Date	Chlero- benzene	Chlore- +thane	1,2-Di Chloro- ethane	Cis 1,2 Dichloro- ethene	Trans 1,3 Dichloro- ethone	PCE	TCE	Vinyl Chloride
3/27/94	ND	ND	ND	ND	ND	ND	40	ND
6/24/94	ND	ND	1.3	42	11	ND	68	3.2
10/16/94	ND	ND	ND	36	ND	ND	74	ND
2/13/95	ND	ND	ND	13	4.4	ND	53	ND
6/20/95	ND	2.0	ND	4.3	2.0	ND	6.0	2.8
10/16/95	ND <2.0	ND <2.0	ND <2.0	24	7.1	ND <2.0	46	ND <2.0
2/15/96	ND	1.0	ND	17	6.4	ND	33	2.3

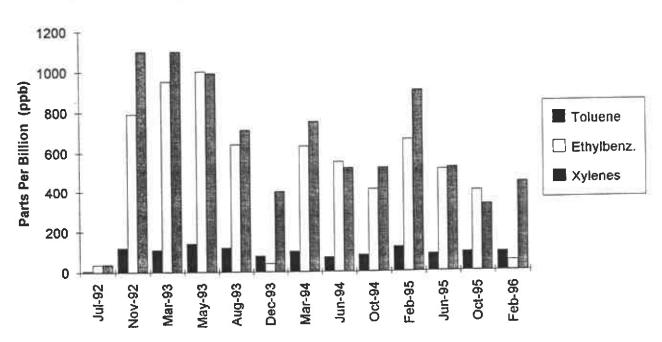
NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.0 PPB for this well.

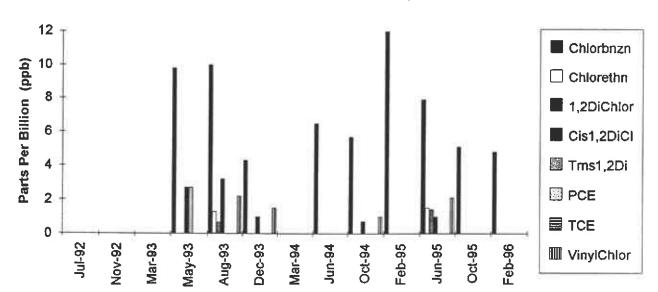

APPENDIX C

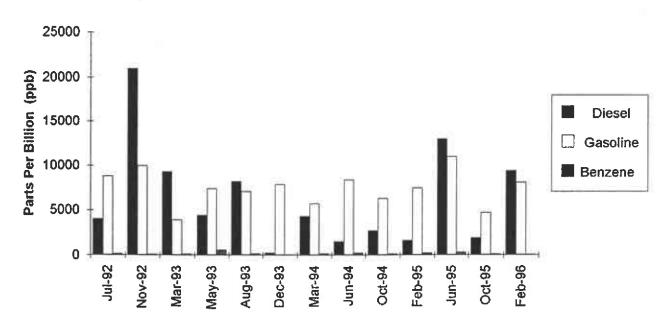
SUMMARY GRAPHS OF CONTAMINATION

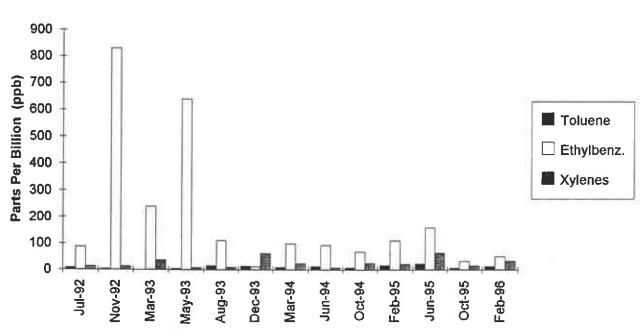

MW-1: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

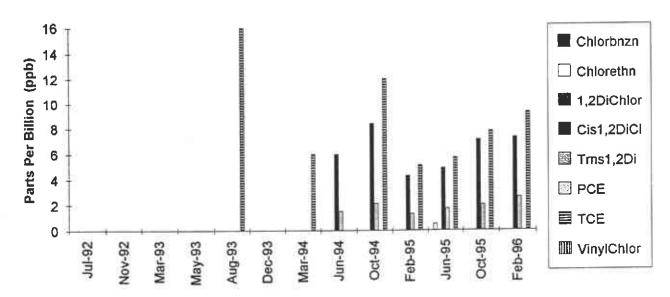

MW-1: Toluene, Ethylbenzene, and Xylenes Concentrations

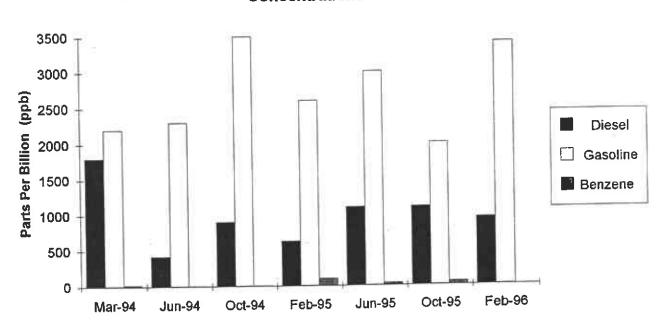

MW-1: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; PCE; TCE; Vinyl Chloride

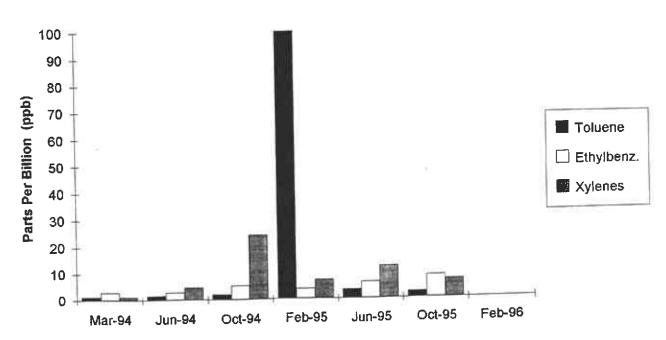

MW-2: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

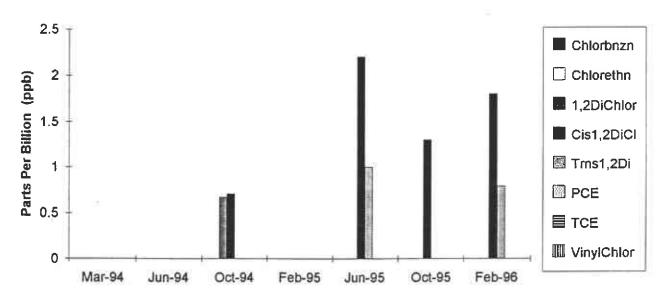

MW-2: Toluene, Ethylbenzene, and Xylenes Concentrations

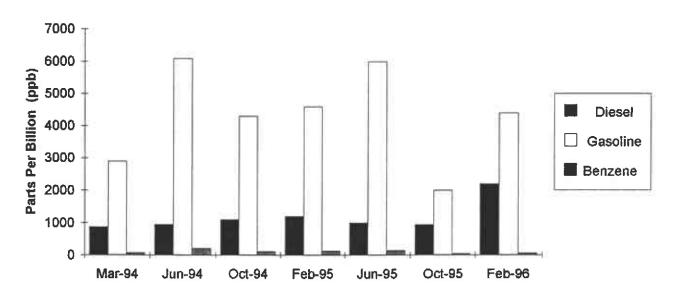

MW-2: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; PCE; TCE; Vinyl Chloride

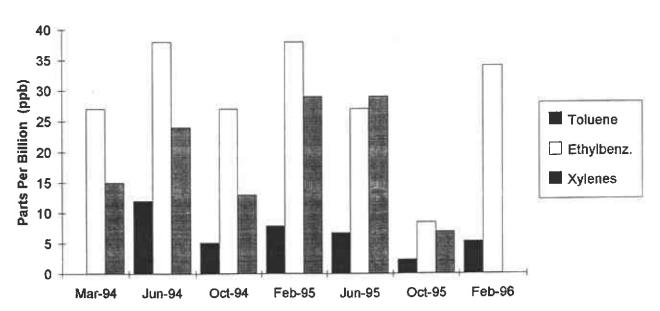

MW-3: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

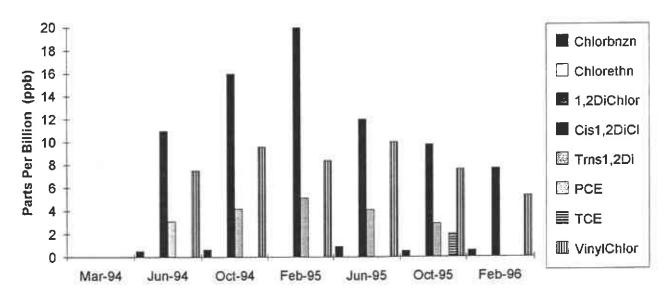

MW-3: Toluene, Ethylbenzene, and Xylenes Concentrations

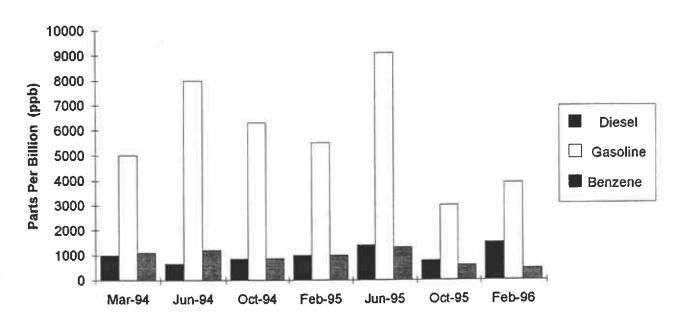

MW-3: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; PCE; TCE; Vinyl Chloride

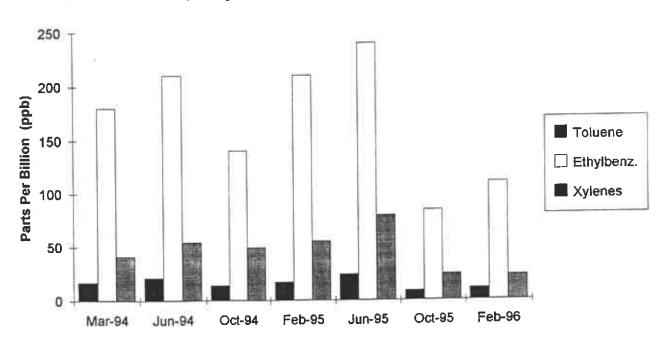

MW-4: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

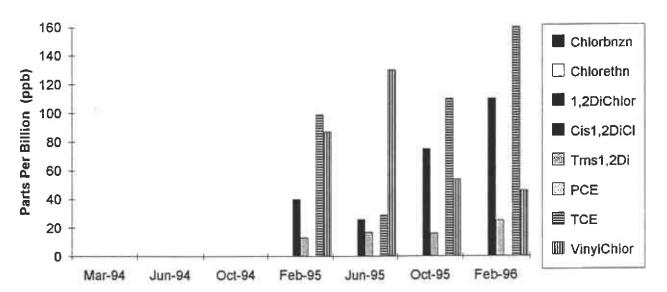

MW-4: Toluene, Ethylbenzene, and Xylenes Concentrations

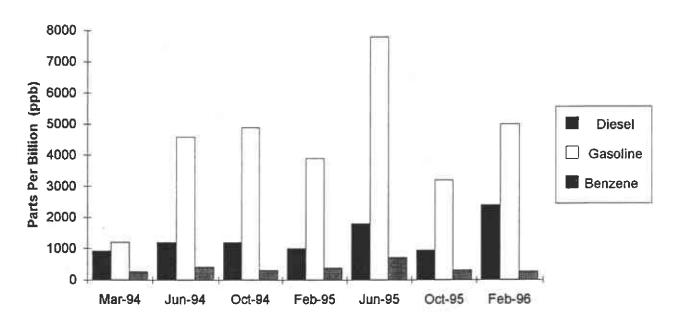

MW-4: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; TCE; PCE; Vinyl Chloride

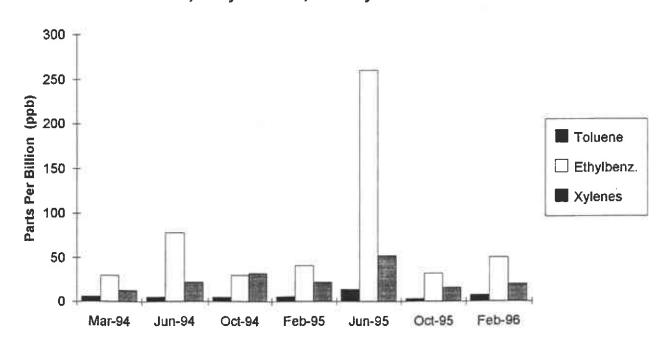

MW-5: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

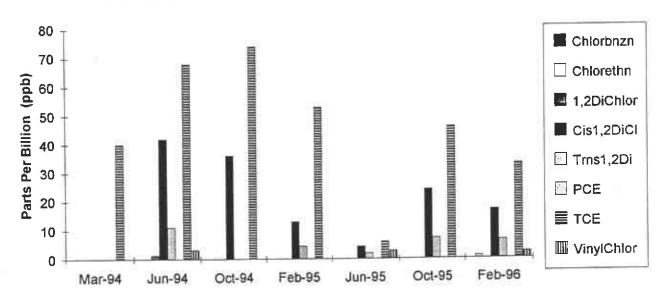

MW-5: Toluene, Ethylbenzene, and Xylenes Concentrations

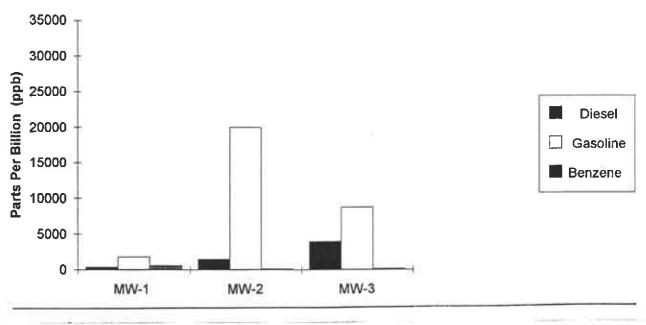

MW-5: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; TCE; PCE; Vinyl Chloride

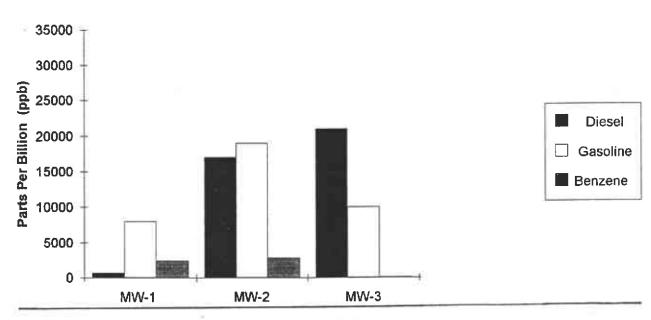

MW-6: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

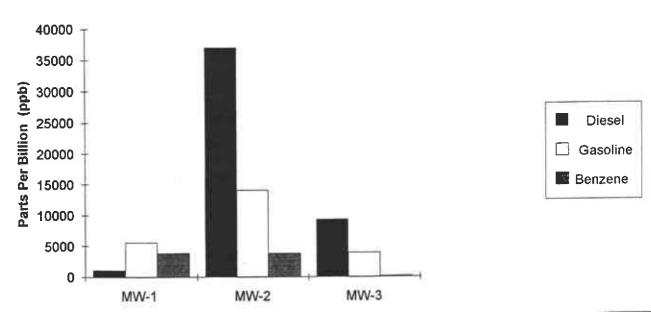

MW-6: Toluene, Ethylbenzene, and Xylenes Concentrations

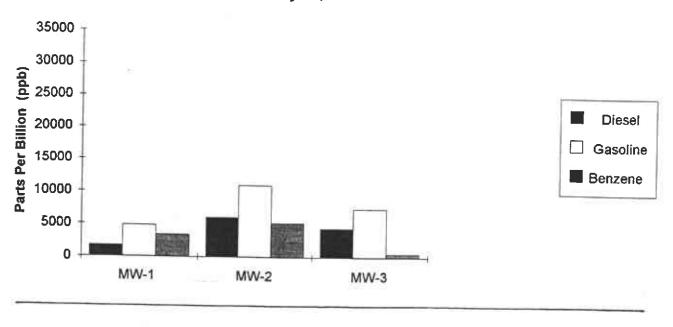

MW-6: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; TCE; PCE; Vinyl Chloride

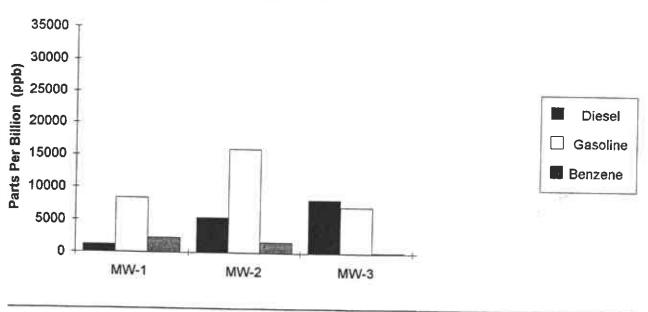

EW-1: TPH as Diesel, TPH as Gasoline, and Benzene Concentrations

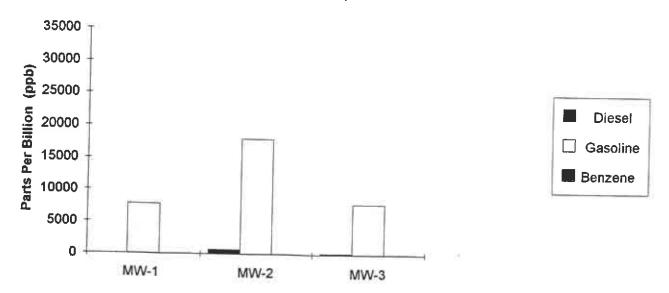

EW-1: Toluene, Ethylbenzene, and Xylenes Concentrations

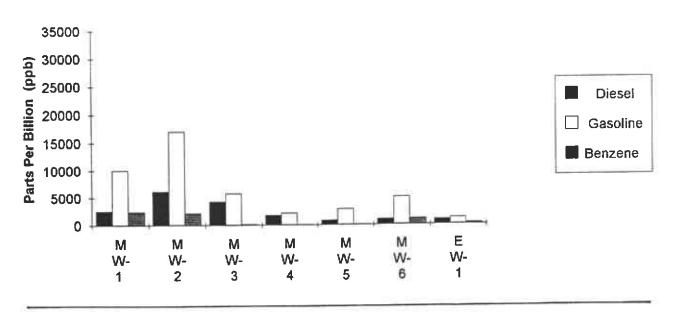

EW-1: Volatile Halocarbons Concentrations: Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; TCE; PCE; Vinyl Chloride

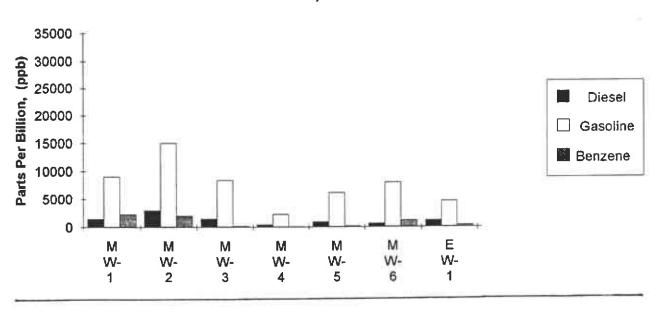

TPH as Diesel, TPH as Gasoline, and Benzene Concentrations, July 27, 1992

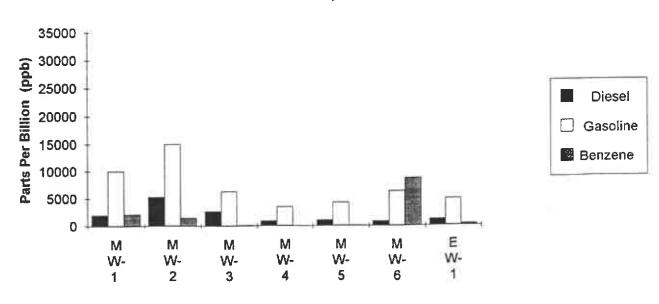

November 6, 1992

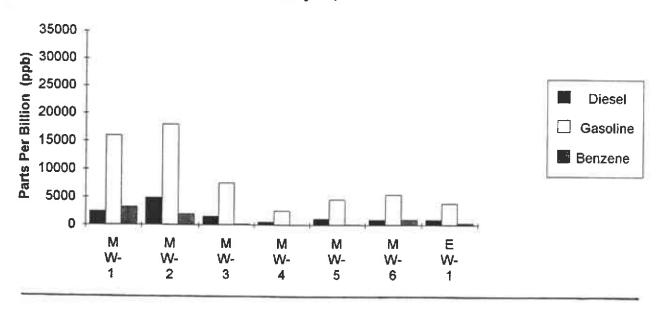

March 2, 1993


TPH as Diesel, TPH as Gasoline, and Benzene Concentrations, May 26, 1993

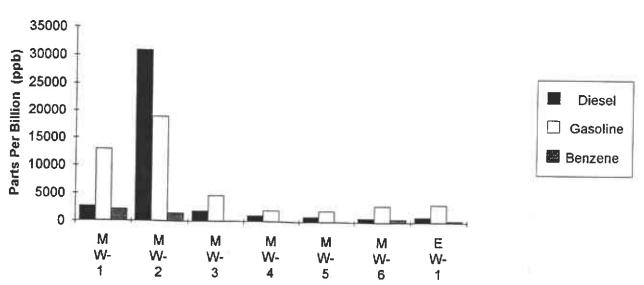

August 27, 1993


December 23, 1993

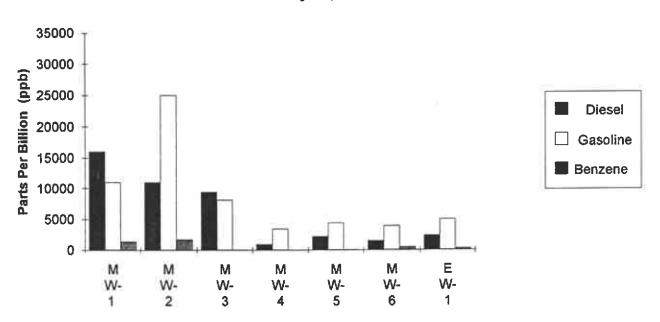

TPH as Diesel, TPH as Gasoline, and Benzene Concentrations, March 27, 1994


June 24, 1994

October 16, 1994



TPH as Diesel, TPH as Gasoline, and Benzene Concentrations, February 13, 1995



June 20, 1995 35000 30000 Parts Per Billion (ppb) 25000 Diesel 20000 ☐ Gasoline 15000 Benzene 10000 5000 0 М М М M М М Ε W-W-W-W-W-W-W-1 2 3 4 5 6 1

October 16, 1995

TPH as Diesel, TPH as Gasoline, and Benzene Concentrations, February 15, 1996

