Geologic and Environmental Services

Fax: 415-547-5043

Phone: 415-547-5420

5500 Shellmound Street, Emeryville, CA 94608

February 4, 1991

HE SHITCH

Walter F. Posluszny Chevron USA P.O. Box 5004 San Ramon, CA 94583-0804

> Re: Chevron Service Station #9-0260 21995 Foothill Boulevard Hayward, California WA Job #4-310-01

Dear Mr. Posluszny:

Weiss Associates (WA) collected ground water samples from seven of thirteen monitoring wells on January 4, 1991 as part of the quarterly ground water monitoring program at Chevron Service Station #9-0260 in Hayward, California (Figure 1). Floating hydrocarbons were measured in monitoring wells MW-5, MW-8, MW-11 and MW-12 (Figure 2) in thicknesses of 0.01, 0.18, 0.30, and 0.06 ft, respectively. Benzene in ground water samples from wells MW-6, MW-9, MW-13, MW-15 and MW-16, ethylbenzene in samples from wells MW-6, MW-9, MW-13 and MW-16 and xylenes in samples from wells MW-6, MW-9 and MW-13 exceeded the California Department of Health Services (DHS) maximum contaminant levels (MCLs). Lastly, toluene in samples from wells MW-6, MW-9, MW-13 and MW-16 exceeded the DHS recommended action level (RAL) for drinking water.

GROUND WATER SAMPLING

Sampling personnel: WA Environmental Technician David Charles

Monitoring wells sampled: MW-6, MW-9, MW-10 and MW-13 through MW-16

Well not sampled due to the presence of floating hydrocarbons: MW-11

WEISS ASSOCIATES

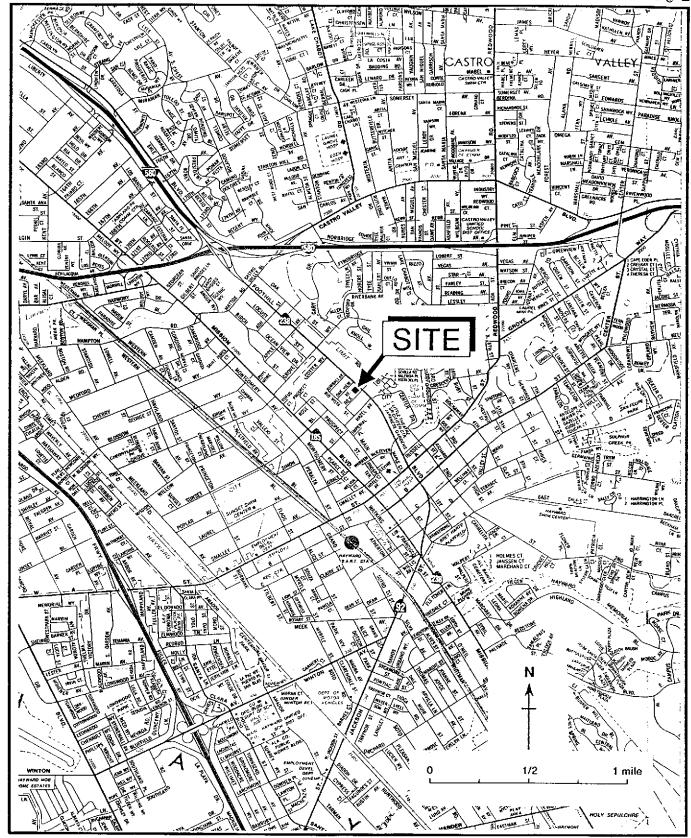


Figure 1. Site Location Map - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

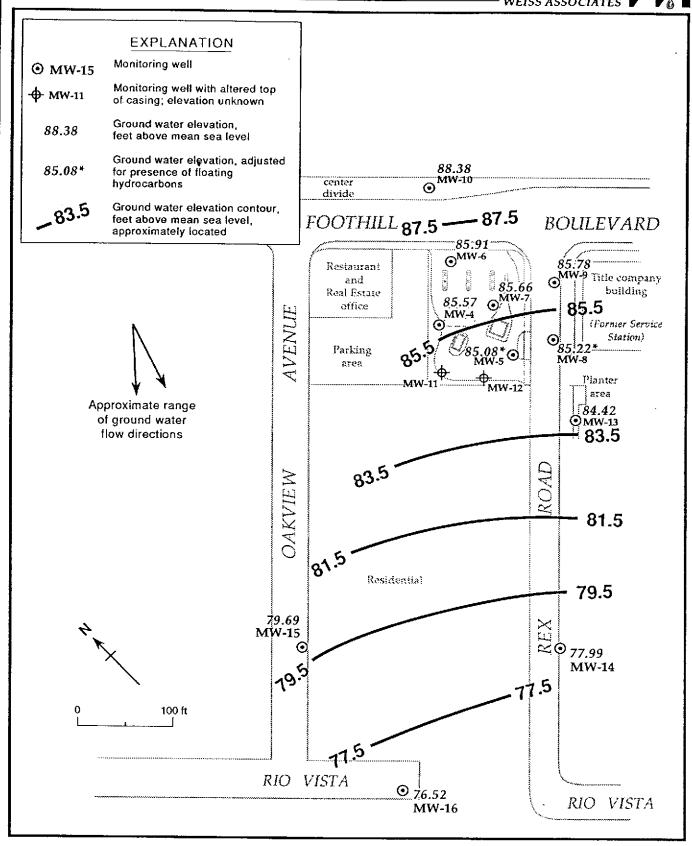


Figure 2. Ground Water Elevation Contours - January 4, 1991 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Mr. Walter F. Posluszny February 4, 1991

• Wells not sampled this quarter according to the approved sampling frequency reduction program: MW-4, MW-5, MW-7, MW-8 and MW-12

4

Method of purging wells:

Dedicated PVC bailers

Volume of water purged prior to sampling:

- Wells that were purged of three well-casing volumes, about 2.5 to 27 gallons each: MW-9, MW-10 and MW-13 through MW-16
- Well that was purged dry; water level was allowed to recover for at least two hours prior to sampling: MW-6

Method of collecting ground water samples:

- Drawn through sampling ports on the sides of dedicated PVC bailers: wells MW-6, MW-9, MW-10, and MW-13
- Decanted from dedicated PVC bailers: wells MW-14, MW-15, and MW-16

Method of containing ground water samples:

 40 ml glass volatile organic analysis (VOA) vials, preserved with hydrochloric acid and packed in protective foam sleeves

All samples were refrigerated and transported under chain-of-custody to the analytical laboratory.

Water samples transported to:

• Superior Analytical Laboratory, Inc., Martinez, California and were received on January 7, 1991

Quality assurance/quality control:

A travel blank was submitted for analysis.

 An equipment blank was not necessary because all bailers are dedicated to specific wells.

Water sample collection records and chain-of-custody forms are included in Attachments A and B, respectively.

GROUND WATER ELEVATIONS

- Water levels were measured in all wells on January 4, 1991. Ground water elevations increased up to one ft from the previous quarter in all wells except MW-14 and MW-16.
- Ground water flows southwestward which is consistent with the general direction over the past year.

Depth to water measurements and historical ground water elevations are presented in Table 1. Ground water elevation contours are plotted on Figure 2. Previous ground water elevation contour maps are included in Attachment C.

CHEMICAL ANALYSES

The ground water samples were analyzed for:

- Total petroleum hydrocarbons as gasoline by modified EPA Method 8015 and
- Benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 8020

The laboratory analyzed the samples on January 11 and 13, 1991. The results are presented in Table 2 and the analytic reports are included as Attachment C. Isoconcentration contour maps of TPH-G and benzene in ground water are included as Figures 3 and 4, respectively.

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons (ft)	Water Elevation (ft above msl)
MW-4	06/15/88	100.75	12.92		87.83
	09/27/88		14.22		86.53
	01/05/89		13.20		87.55
	04/06/89		12,32		88.43
	06/28/89		14.25		86.50
	10/03/89		14.75		86.00
	01/04/90		14.75		86.00
	04/03/90		13.81		86.94
	07/03/90		14.06		86.69
	11/06/90		15.66		85.09
	01/04/91		15.18		85.57
MW-5	06/15/88	99.97	12.30	***	87.67
	09/27/88		13.25		86.72
	01/05/89		12.70		87.27
	04/06/89		12.22		87.75
	06/28/89		13.81		86.16
	10/03/89		14.27		85.70
	01/04/90		14.31		85.66
	04/03/90		13.50		86.47
	07/03/90		13.64		86.33
	11/06/90		15.14		84.83
	01/04/91		14.90	0.01	85.08ª
MW-6	06/15/88	101.43	13.51		87.92
	09/27/88		14.56		86.87
	01/05/89		13.48	•••	87.95
	04/06/89		12.60	•••	88.83
	06/28/89		14.58		86.85
	10/03/89		13.03		88.40
	01/04/90		15.08		86.35
	04/03/90		14.06	•••	87.37
	07/03/90		14.28		87.15
	11/06/90		16.10		85.33
	01/04/91		15.52		85.91
MW-7	06/15/88	100.91	12.57	,	88.34
	09/27/88		13.60		87.31
	01/05/89		12.98		87.93
	04/06/89		12.34	***	88.57
	06/28/89		14.08		86.83
	10/03/89		14.53		86.38
	01/04/90		14.49		86.42
	04/03/90		13.66	•••	87.25
	07/03/90		13.86		87.05
	11/06/90		15.58		85.33
	01/04/91		15.25		85.66

⁻⁻ Table 1 continues on next page --

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons (ft)	Water Elevation (ft above msl)
MW-8	01/05/89	99.67	12.02		87.65
	04/06/89		11.78		87.89
	06/28/89		13.40		86.27
	10/03/89		13.84	0.11	85.92ª
	01/04/90		13.99	0.10	85.76a
	04/03/90		13.07	0.30	86.84 ^a
	07/03/90		13.11	0.04	86.59 ^a
	11/06/90		14.77	0.15	85.02a
	01/04/91		14.59	0.18	85.22a
MW-9	01/05/89	101.15	12.63		88.52
	04/06/89		12.46		88.69
	06/28/89		14.04		87.11
	10/03/89		14.61		86.54
	01/04/90		14.59		86.56
	04/03/90		13.75		87.40
	07/03/90		13.84		87.31
	11/06/90		15.42		85.73
	01/04/91		15.37		85.78
MW-10	01/05/89	102.36	12.64		89.72
	04/06/89		11.38	•••	90.98
	06/28/89		13.64		88.72
	10/03/89		13.85		88.51
	01/04/90		13.75		88.61
	04/03/90		12.86		89.50
	07/03/90		13.43		88.93
	11/06/90		14.82		87.54
	01/04/91		13.98		88.38
MW-11	06/28/89	99.97	14.33		85.64
	10/03/89		14.61	4 6 4	85.36
	01/04/90		14.55		85.42
	04/03/90		13.82		86.15
	07/03/90		14.00		85.97
	11/06/90		15.56	•••	84.41
	01/04/91	b	14.88	0.30	

⁻⁻ Table 1 continues on next page --

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons (ft)	Water Elevation (ft above msl)
MW-12	06/28/89	99.64	14.10		85.54
	10/03/89		14.30		85.34
	01/04/90		14.35		85.29
	04/03/90		13.59		86.05
	07/03/90		13.77		85.87
	11/06/90		15.19		84.45
	01/04/91	b	14.52	0.06	
MW-13	06/28/89	98.47	13.22		85,25
	10/03/89		13.54		84.93
	01/04/90		13.64	•••	84.83
	04/03/90		12.95		85.52
	07/03/90		13.05		85.42
	11/06/90		14.12		84.35
	01/04/91		14.05		84.42
MW-14	08/29/90	99.68	21.39		78.29
	11/06/90		21.62	•••	78.06
	01/04/91	,	21.69		77.99
MW-15	08/29/90	96.06	16.58	270	79.48
	11/06/90		17.43		78.63
	01/04/91		16.37		79.69
MW-16	08/29/90	98.15	20.89		77.26
	11/06/90		21.27		76.88
	01/04/91		21.63		76.52

^a = Ground water elevation corrected for floating hydrocarbons by the formula: Ground Water Elevation = Top-of-casing elevation - Depth to ground water + (0.8 x hydrocarbon thickness)

b = Top-of-casing cut down; elevation unknown

Sample ID and Sampling	Sample	Analytical	Depth to	TPH-G	В	E	T	X	EDC	EDB	VOCs
Frequency	Date	Lab	Water (ft)	<		р	arts per billio	n (μg/L)			
MW-4	02/05/88	8&C		88,000	24,000	1,700	19,000	10,000			
mw-4 (Semi-Annually	06/15/88	B&C	12.92	95,000	45,000	2,100	30,000	17,000	•••	•••	
	09/27/88 ^a	CCAS	14.22	500,000	41,000	<5,000	27,000	16,000	<5,000	<5.000	
2nd & 4th	09/21/00 00/27/00ab	CCAC	14.22		41,000	1 400	21,000 / 100			230	
quarters)	09/27/88 ^{ab}	CCAS	14.22	88,000	1,200	1,600	4,100	12,000	270	230	
	01/05/89	SAL	13.20	64,000	41,000	2,700	29,000	14,000			• • •
	06/28/89	SAL	14.25	110,000	34,000	2,400	24,000	13,000			
	10/03/89	SAL	14.75	240,000	36,000	3,200	31,000	19,000			
	01/04/90	SAL	14.75	130,000	33,000	2,400	28,000	14,000			
	04/03/90	SAL	13.81	110,000	41,000	2,900	32,000	17,000			
	07/03/90	SAL	14.06	180,000	32,000	2,600	30,000	15,000			
	11/06/90	SAL	15.66	170,000	31,000	2,700	30,000	17,000			
_											
MW-5	02/05/88	B&C	45.70	80,000	16,000	2,600	15,000	17,000	•••		
(Semi-Annually	06/15/88	B&C	12.30	77,000	42,000	2,500	38,000	16,000			
2nd & 4th	09/27/88 ^a	CCAS	13.25	470,000	39,000	<5,000	32,000	16,000	<5,000	<5,000	
quarters)	09/27/88 ^{ab}	CCAS	13.25	48,000	1,800	1,600	3,500	10,000	410	420	
	01/05/89	SAL	12.70	82,000	44,000	2,400	37,000	14,000	~ ~ ~		
	06/28/89	SAL	13.81	80,000	36,000	2,400	24,000	13,000			
	10/03/89	SAL	14.27	240,000	40,000	2,600	35,000	15,000		***	
	01/04/90	SAL	14.31	130,000	37,000	2,400	31,000	13,000			
	04/03/90	SAL	13.50	120,000	41,000	2,500	33,000	14,000			
	07/03/90	SAL	13.64	200,000	28,000	1,800	25,000	10,000			
	11/06/90	SAL	15.14	370,000	38,000	4,700	36,000	31,000			
6011-Z	02/05/88	B&C		53,000	5,100	2,100	4,400	14,000		•••	
MW-6			13. 51		9,200	520	5,500				
(Semi-Annually	06/15/88	B&C		33,000	9,200			20,000			
1st & 3rd	09/27/88 ^a	CCAS	14.56	17,000	2,200	1,700	2,800	5,100	130	<10	
quarters)	01/05/89	SAL	13.48	37,000	5,000	2,200	3.400	10,000			
	06/28/89	SAL	14.58	80,000	7,000	2,000	4,100	9,700			
	10/03/89	SAL	13.03	110,000	8,500	2,600	5,100	14,000			
	01/04/90	SAL	15.08	59,000	5,200	2,000	2,600	11,000		•••	
	04/03/90	SAL	14.06	31,000	6,600	2,200	2,600	12,000			
	07/03/90	SAL	14.28	66,000	5,800	2,000	2,900	9,800			
	01/04/91	SAL	15.52	50,000	5,600	1,800	2,200	9,400			
7	02.405.400	B0.0		04 000	7/ 000	2 (00	74 000	14 000			
MW-7	02/05/88	8&C 8&C	12.57	81,000 77,000	34,000 40,000	2,400 1,400	36,000 41,000	16,000 24,000			
(Semi-Annually	06/15/88			77,000							
2nd & 4th	09/27/88 ^a	CCAS	13.60	30,000	9,700	400	8,900	4,100	2,600	<10	
quarters)	01/05/89	SAL	12.98	96,000	36,000	2,800	38,000	16,000			
	06/28/89	SAL	14.08	110,000	31,000	2,600	30,000	16,000			
	10/03/89	SAL	14.53	230,000	34,000	2,400	34,000	15,000			
	01/04/90	SAL	14.49	150,000	41,000	2,400	40,000	15,000			
	04/03/90	SAL	13.66	100,000	31,000	2,100	28,000	16,000			
	07/03/90	SAL	13.86	190,000	30,000	1,800	27,000	13,000			
	11/06/90	SAL	15.58	160,000	27,000	1,900	25,000	15,000			

TABLE 2. Analytic Results for Ground Water, Chevron Service Station #90260, 21995 Foothill Boulevard, Hayward, California

⁻⁻Table 2 continues on next page--

TABLE 2. Analytic Results for Ground Water	vron Service Station #90260,	21995 Foothill Boulevard, Ha	ayward, California (continued)

Sample ID and Sampling Frequency	Sample Date	Analytical Lab	Depth to Water	TPH-G <	В	Epai	T rts per billion	X 1 (#g/L)	EDC	EDB	VOCs
	· · · · · · · · · · · · · · · · · · ·							17:07 = 7			
MW-8	10/27/88 ⁸	CCAS		190,000	27,000	2,200	43,000	15,000	<500	<500	
(Semi-Annually	01/05/89	SAL	12.02	87,000	24,000	3,000	39,000	15,000			
2nd & 4th	06/28/89	SAL	13.40	120,000	22,000	2,900	35,000	16,000			
quarters)	10/03/89 ^C		13.84								
•	01/04/89 ^C		13.99							•••	
	04/03/90		13.07								
	07/03/90 ^C		13.11								
	11/06/90 ^C		14.77								
MW-9	10/27/88 ^a	CCAS		50,000	2,000	2,000	9,900	14,000	<500	<500	
(Semi-Annually	01/05/89	SAL	12.63	55,000	670	3,400	8,900	16,000			
1st & 3rd	06/28/90	SAL	14.04	100,000	510	2,600	4,500	13,000			
quarters)	10/03/89	SAL	14.61	130,000	540	3,200	8,000	17,000			
qual tels)	01/04/90	SAL	14.59	83,000	600	2,600	4,600	14,000			
	04/03/90	SAL	13.75	52,000	1,600	3,100	5,400	16,000			
	07/03/90	SAL	13.84	100,000	520	3,200	5,400	16,000		•••	•••
	01/04/91	SAL	15.37	59,000	1,100	2,500	5,600	13,000			
		JAL .	13.37	37,000	1,100		2,000	.5,000			
MW-10	10/27/88 ⁸	CCAS	<500	26	<5	13	<5	<5	<5		
(Annually	01/05/89	SAL	12.64	<1,000	<0.3	<0.3	<0.3	<0.3			
1st quarter)	06/28/89	SAL	13.64	<500	<0.5	<0.5	<0.5	<0.5	•••	•••	
	10/03/89	SAL	13.85	<500	<0.5	<0.5	<0.5	<0.5			
	01/04/90	SAL	13.75	<50	0.5	<0.5	1.1	1.7	•••	• • •	
	04/03/90	SAL	12.86	<50	<0.5	<0.5	<0.5	<0.5			- • -
	01/04/91	SAL	13.98	<50	<0.5	<0.5	<0.5	<0.5			
MW-11	06/28/89	SAL	14.33	60,000	36,000	2,500	13,000	12,000			ND d
(Semi-Annually	10/03/89	SAL	14.61	14,000	4,200	240	1,400	1,300			
1st & 3rd	01/04/90	SAL	14.55	82,000	33,000	2,000	11,000	10,000			
quarters)	04/03/90	SAL	13.82	78,000	35,000	2,300	12,000	12,000		•••	
qual (CI 5)	07/03/90	SAL	14.00	140,000	32,000	2,100	12,000	10,000			
	01/04/91 ^c	5/12	14.88						• • • •	•••	
MW-12	06/28/89	SAL	14.10	55,000	30,000	2,900	21,000	19,000			NDd
(Semi-Annually	10/03/89	SAL	14.30	170,000	30,000	2,700	23,000	15,000		•••	
	01/04/90	SAL	14.35	110,000	24,000	2,300	19,000	12,000		•••	
2nd & 4th	04/03/90		13.59	89,000	41,000	3,300	28,000	17,000	•••	•••	•••
quarters)		SAL	13.77			2,200	20,000	12,000			
	07/03/90 11/06/90	SAL SAL	15.19	170,000 110,000	27,000 28,000	2,400	21,000	14,000		***	
	11/00/90	SAL	12.17	110,000	20,000	2,400	21,000	14,000			
MW-13	06/28/89	SAL	13.22	54,000	12,000	1,900	10,000	15,000			ND^{d}
(Semi-Annually	10/03/89	SAL	13.54	120,000	10,000	2,300	10,000	15,000			
1st & 3rd	01/04/90	SAL	13.64	87,000	6,800	2,000	10,000	12,000			
quarters)	04/03/90	SAL	12.95	53,000	12,000	2,900	14,000	17,000			
•	07/03/90	SAL	13.05	90,000	8,400	2,000	11,000	11,000			
	01/04/91	SAL	14.05	72,000	5,500	2,300	12,000	12,000			

⁻ Table 2 continues on next page --

Sampling ID				•							
and Sampling Frequency	Sample Date	Analytical Lab	Depth to Water (ft)	TPH-G	В	E	T s per billion	X	EDC	EDB	VOCs
rrequericy	vace	LAD	water (10)			pai t	s per bittion	(µg/L)			
MW-14	08/29/90	SAL	21.39	970	4	0.7	2	2	1		иDе
(Quarterly)	11/06/90	SAL	21.62	920	10	4	10	9			
, ,	01/04/91	SAL	21.69	1,000	<0.5	2.6	4.0	4.2			
MW-15	08/29/90	SAL	16.58	2,000	26	72	2	110	<0.5		0.6 ^f
(Quarterly)	11/06/90	SAL	17.43	1,300	40	45	2 5	63	•••		
(dddi certy)	01/04/91	SAL	16.37	1,700	46	45 58	2.8	86			
MW-16	08/29/90	SAL	20.89	11,000	6,000	1,100	51	20	<0.5		ND 9
(Quarterly)	11/06/90	SAL	21.27	15,000	6,300	1,300	340	540			ND -
(woar certy)	01/04/91	SAL	21.63	16,000	6,800	1,300	820	1,500			
Bailer											
Blank	01/05/89	SAL		<1,000	<0.3	<0.3	<0.3	<0.3			
Trip Blank	01/05/89	SAL		<1,000	<0.3	<0.3	<0.3	<0.3			
р	10/03/89	SAL		<500	<0.5	<0.5	<0.5	<0.5			
	01/04/89	SAL		<50	<0.5	<0.5	<0.5	<0.5			
	04/03/90	SAL		<50	<0.5	<0.5	<0.5	<0.5			
	07/03/90	SAL		<50	<0.5	<0.5	<0.5	<0.5			
	11/06/90	SAL		<50	<0.5	<0.5	<0.5	<0.5			
	01/04/91	SAL		<50	<0.5	<0.5	<0.5	<0.5			
DHS MCLs				NE	1	680	100 ^h	1,750	0.5	0.02	100 ¹

Abbreviations:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Modified EPA Method 8015

B = Benzene by Method 602 or 8020

E = Ethylbenzene by EPA Method 602 or 8020

T = Toluene by EPA Method 602 or 8020

X = Xylenes by EPA Method 602 or 8020

EDC = 1,2-dichloroethane by EPA Method 524.2/8240

EDB = Ethylene dibromide by EPA Method 524.2/8240

VOCs = Volatile Organic Compounds by EPA Method 8010

--- = Not analyzed

DHS MCL = Department of Health Services Maximum Contaminant Level

NE = DHS action level not established

<n = Not detected at detection limit of n ppb</pre>

ppb = parts per billion

Analytical Laboratory:

- B&C = Brown and Caldwell Laboratories of Emeryville, California
- CCAS = Central Coast Analytical Services of San Luis Obispo, California
- SAL = Superior Analytical Laboratory of San Francisco and Martinez, California

Notes:

- Samples analyzed by Fuel Fingerprint Analysis EPA Method 524.2/8240 for total fuel and aromatic volatile hydrocarbons
- Samples from MW-4 and MW-5 were analyzed a second time after the holding time expired to confirm the high TPH-G reported in the original analysis. Although the samples were preserved with NaHSO, and refrigerated, the second analysis was not conducted until 52 days after sample collection.
- Well not sampled due to the presence of floating hydrocarbons.
- Not detected at detection limits ranging from 500 to 2,000 ppb.
- Not detected at detection limits ranging from 0.5 to 4.0 ppb.
- Chloroform detected at 0.6 ppb. No other VOCs were detected.
- Not detected at detection limits ranging from 25 to 500 ppb.
- DHS Recommended Action Level for Drinking Water.
- DHS MCL for Chloroform = 100 ppb MCLs vary for other compounds.

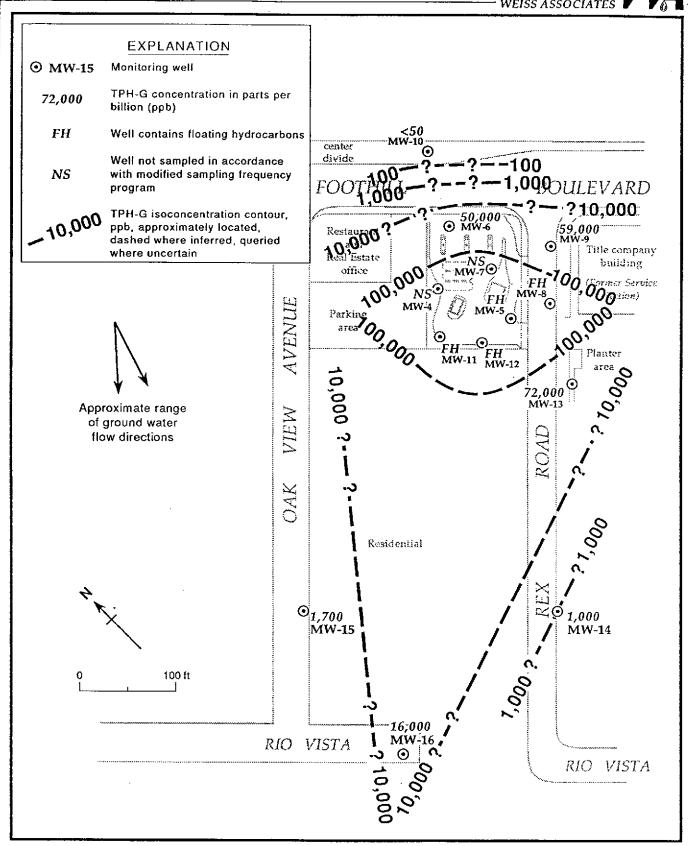


Figure 3. TPH-G Isoconcentration Contours - January 4, 1991 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

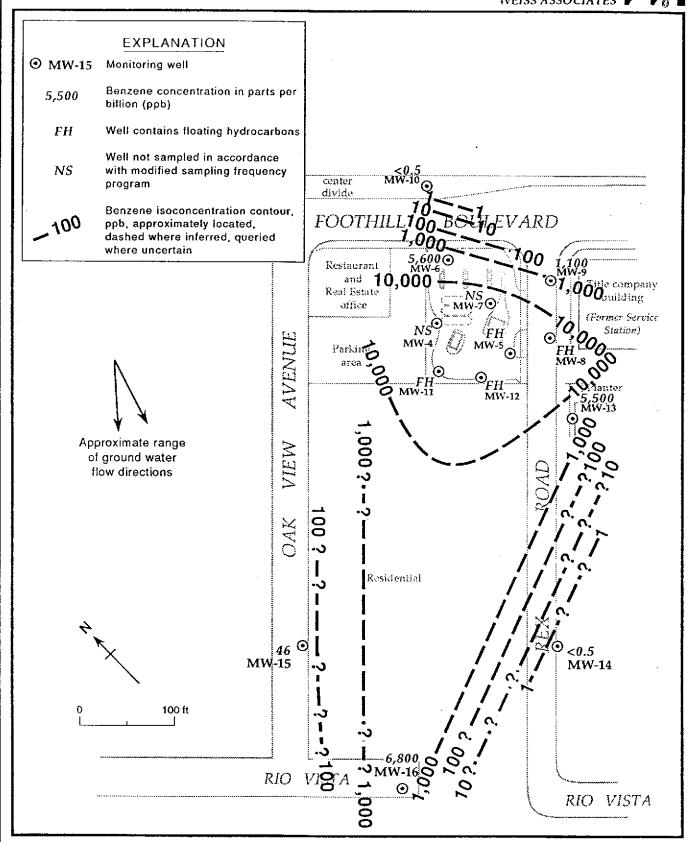


Figure 4. Benzene Isoconcentration Contours - January 4, 1991 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Discussion of ground water analytic results for this quarter:

- Floating hydrocarbons were measured in monitoring wells MW-5, MW-8, MW-11, and MW-12 in thicknesses of 0.01, 0.18, 0.30 and 0.06 ft, respectively.
- Benzene in ground water samples from monitoring wells MW-6, MW-9, MW-13, MW-15 and MW-16, ethylbenzene in samples from wells MW-6, MW-9, MW-13 and MW-16 and xylenes in samples from wells MW-6, MW-9 and MW-13 exceeded DHS MCLs and toluene in samples from wells MW-6, MW-9, MW-13 and MW-16 exceeded the DHS RAL for drinking water.
- No hydrocarbons have been detected in samples from well MW-10 since January 1990.
- Toluene and xylene concentration in samples from well MW-16 have increased significantly over the past three quarters.

We appreciate the opportunity to provide hydrogeologic consulting services to Chevron and trust that this report meets your needs. Please contact Tom Fojut or Robert Kitay if you have any questions.

Sincerely, Weiss Associates

Thomas J. Fojut Staff Geologist

Thomas

James W Carmody R G

James W. Carmody, R.G. Senior Project Hydrogeologist

TJF/JWC:jg

E:\ALL\CHEV\300\310QMJA1.WP

Attachments:

A - Water Sample Collection Records

No. 4872

B - Analytic Reports and Chain-of-Custody Form

C - Previous Ground Water Elevation Contour Maps

ATTACHMENT A

WATER SAMPLE COLLECTION RECORDS

WATER SAMPLING DATA
Well Name $Mu-6$ Date $1/4/91$ Time of Sampling $\sqrt{233}$
Job Name CHEV - HAYWARD Job Number / 4-310-01 Initials OC
Sample Point Description M (M = Monitoring Well)
Location BY PUMPS ON SITE
WELL DATA: Depth to Water 15.52 ft (static, pumping) Depth to Product 6 ft.
Product Thickness Well Depth 16.5 ft (spec) Well Depth 16.61 ft (sounded) Well Diameter 4 in
Initial Height of Water in Casing 1.094 6 ft. = volume 6.5.64.71 gal.
Casing Volumes to be Evacuated. Total to be evacuated 2./39 gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type $3 \times 36^{\circ} / / / \bigcirc$ Dedicated $1/ES$ (Y/N)
Other
Evacuation Time: Stop /436
Start 1435 F Formulas/Conversions
Total Evacation Time PIP r = well radius in ft.
Total Evacuated Prior to Sampling 0.5 gal. $h = ht$ of water col in ft.
Evacuation Rate $\frac{1}{2}$ gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling $\frac{\sqrt{5.95} \text{ ft.}}{\sqrt{627}}$ time v_2 casing = 0.163 gal/ft
Evacuated Dry? VES After 0.5 gal. Time 1936 V ₃ " casing = 0.367 gal/ft
80% Recovery = 15.74 DTW V_4^* casing = 0.653 gal/ft
% Recovery at Sample Time 61° Time 1627 $V_{4.5}$ casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
Volume Evacuated (gal.)

SAMPLE: Color NONE Odor LT.
Description of matter in sample: VERY MINUTE AMY. PINE SILT
Sampling Method: [ROM FORT ON DED. BLR.
Sample Port: Rate gpm Totalizer gal.
Time 7
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
2 011-06 W/CV 40ML N Y HOL 8015/602 N SAL

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Well Name $MW-9$ Date $1/4/91$ Time of Sampling 1758
Well Name $MW-9$ Date $1/4/91$ Time of Sampling $1+38$
Job Name CHEVHAYWARD Job Number H-316-01 Initials OC
Sample Point Description (M = Monitoring Well)
Location IN CTREET - REY ROAD
WELL DATA: Depth to Water 15.37 ft (static, pumping) , Depth to Product 0 ft.
Product Thickness Well Depth /9.2 ft (spec) Well Depth N/A ft (sounded) Well Diameter // in
Initial Height of Water in Casing 3.83 ft. = volume 2.5 gal
7.
EVACUATION METHOD: Pump # and type Hose # and type Hose # and type
Bailer# and type 2×3 C" PVC Dedicated \sqrt{RS} (Y/N)
Other
Evacuation Time: Stop _/507
0 1542
7 € T = Well radius in to.
gai. h = ht of water col in it.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft ft time 7.48 gal/ft ³
Depth to Water at Sampling $\frac{15.46}{5}$ ft. $\frac{1552}{1552}$ time $V_2^{"}$ casing = 0.163 gal/ft
Evacuated Dry? $\frac{\sqrt{5}}{5}$ After $\frac{\sqrt{507}}{5}$ gal. Time $\frac{\sqrt{507}}{5}$ V_3 casing = 0.367 gal/ft
80% Recovery = $\frac{16.14 \text{ DTW}}{16.14 \text{ DTW}}$ V ₄ " casing = 0.653 gal/ft
% Recovery at Sample Time $\frac{\sqrt{552}}{\sqrt{552}}$ $V_{4.5}$ casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
·- ·
SAMPLE: Color NONE Odor MOD. STRING
Description of matter in sample: NONE
Description of matter in sample: NONE Sampling Method: FROM PORT ON DED. BLR.
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal.
Description of matter in sample: NONE Sampling Method: FROM PORT ON DED. BLR.
Description of matter in sample: NONE Sampling Method: From TORT on DED. BLR. Sample Port: Rate gpm Totalizer gal. Time # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAR
Description of matter in sample: NONE Sampling Method: FROM FORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. Time
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Description of matter in sample: NONE Sampling Method: FROM TORT ON DED. BLR. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name <u>MW-10</u> Date 1/4/91 Time of Sampling /615
Job Name CHEU HAYWARD Job Number 4-210-61 Initials ()
Sample Point Description (M = Monitoring Well)
Location MEDIAN ON FOSTHILL BLVD.
WELL DATA: Depth to Water 13.98 ft (static, pumping) Depth to Product ft.
Product Thickness Well Depth 27.65ft (spec) Well Depth w/A ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing 13.67 ft. = volume 8.9 gal.
Casing Volumes to be Evacuated. Total to be evacuated $\frac{26.7}{2}$ gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type $\frac{3 \times 36 \text{ PVC}}{\text{PVC}}$ Dedicated $\frac{1000 \text{ F}}{\text{C}}$ (Y/N)
Other
Evacuation Time: Stop 1543 1553 1609
σ_{i} , $i\sigma \sigma \sigma = 1/M + 1/\Omega M$
7
\sim \sim \sim \sim \sim
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate / $\frac{1}{8}$ gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling $\frac{2}{2}$ ft. $\frac{6}{7}$ time V_2'' casing = 0.163 gal/ft
Evacuated Dry? \sqrt{ES} After $\frac{16}{2}$ gal. Time $\frac{1553}{2}$ V_3 " casing = 0.367 gal/ft
80% Recovery = CONTO BAILING UNTIL 3 CAS. VOLS. PURGED V4" casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: ColorOdorOdor
Description of matter in sample: NONE
Sampling Method: From DED- RIE- FORT Sample Port: Rate gpm Totalizer gal.
Sample Port: Rate gpm Totalizer gal
of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB
Cont. ID Type ¹ (specify) Method
2 011-10 w/cV 40ml N Y HCL 8015/602 N SAL
- 10 10 10 10 10 10 10 10 10 10 10 10 10
1 Sample Type Codes: W = Water, S = Soil, Describe Other

Container Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name Mw-11 Date 1/4/91 Time of Sampling NOT TAKEN Job Name CHEV- HAYWARD Job Number 4-310-01 Initials OC
Job Name (FEV - HATWHED Job Number 7 5/0-01 Initials 00
Sample Point Description (M = Monitoring Well)
Location
WELL DATA: Depth to Water 14.88 ft (static, pumping) Depth to Product 14.58 ft.
Product Thickness 0.30 Well Depth _ ft (spec) Well Depth _ ft(sounded) Well Diameter _ in
Initial Height of Water in Casingft. = volumegal.
Casing Volumes to be Evacuated. Total to be evacuated gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Dedicated(Y/N)
Other
Evacuation Time: Stop
Start Formulas/Conversions
Total Evacation Time r = well radius in ft.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuationfttime 7.48 gal/ft ³
Depth to Water at Sampling ft. χ time $V_2^{\text{max}} = 0.163 \text{ gal/ft}$
Evacuated Dry? After gal Time v ₃ " casing = 0.367 gal/ft
80% Recovery =
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/amhos pH T°C Time Volume Evacuated (gal.)
y view 2 view 2 view (gam)
/
SAMPLE ColorOdor
Description of matter in sample:
Sampling Method:
Sample Port: Rategpm Totalizergal.
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
WELL NOT SAMPLED DUE TO PRESENCE OF FREE PROD.

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = I week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

		-	
	f		
		ÆJ	
•		$\stackrel{\checkmark}{-}$	
•	•	6) (

WATER SAMPLING DATA
Well Name $MW^{-1}3$ Date $1/4/91$ Time of Sampling $15/7$
WATER SAMPLING DATA Well Name MW-13 Date 1/4/91 Time of Sampling /5/7 Job Name (HEV HAY WARD) Job Number 4-210-01 Initials 0(
M = Monitoring Wall)
Location IN BUSHES NEAR TITLE CO. (IN - Monthstring Well)
WELL DATA: Depth to Water 14.05 ft (static, pumping) Depth to Product 17 ft
Product Thickness Well Depth 177 ft (spec) Well Depth 1773 ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing 3.72 ft. = volume 2.43 gal.
Casing Volumes to be Evacuated. Total to be evacuated $\frac{7.28}{9al}$
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type 3x36" PVC Dedicated /ES (Y/N)
Other
Evacuation Time: Stop 1427 1446 1456 1509
Start /1/75 ///79 ///55 (5/8
Total Francis Tr.
Fracuation Pate / 6 gal. h = ht of water col in ft.
Evacuation Ratef.6gal. per minute vol. in cyl. = $\pi r^2 h$ Depth to Water during Evacuation fttime7.48 gal/ft ³
Depth to Water at Sampling 4/2 5.
Depth to Water at Sampling $\frac{N/A}{ft}$ ft. $\frac{1}{2}$ time V_2 casing = 0.163 gal/ft V_3 casing = 0.367 gal/ft V_3 casing = 0.367 gal/ft
900/ B
80% Recovery = The CONTO PAILING TILL 3 CAS. VOLS. PURGED V4" casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color NONE Odor VERY LIGHT Description of matter in sample: ALMOST NOTHING - VERY LITTLE SILT
Sampling Method: FROM DED. BLB. PORT.
Sampling Method: TROM DED. BLE. PORT. Sample Port: Rate gpm Totalizer gal.
Time
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Cont. ID Type ¹ (specify) Method
2 011-13 W/CV 4001 N Y HCL 8015/602 N SAC

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name MW-14 Date 1/4/90 Time of Sampling /410
Job Name CHEV- HAYWARD Job Number 4-310-01 Initials OC
Sample Point Description (M = Monitoring Well
Location ON REX RD HALFWAY DOWN
WELL DATA: Depth to Water 21.69 ft (static, pumping) Depth to Product ft
Product Thickness # Well Depth 41.5 ft (spec) Well Depth 41.01 ft (sounded) Well Diameteri
Initial Height of Water in Casing 19.32 ft. = volume 3.15 gal
Casing Volumes to be Evacuated. Total to be evacuated 9.45 gal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type / 1/2/ Co PVC Dedicated VES (Y/N)
Other
Evacuation Time: Stop 1352 1405
Start 1350 1353 Formulas/Conversions
Total Evacation Time $\frac{14}{r}$ $\frac{r}{r}$ = well radius in ft.
Total Evacuated Prior to Sampling 9.5 gal. $h = ht$ of water col in ft.
Evacuation Rate 0.7 gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling $\frac{2}{2}$ ft. $\frac{14}{4}$ time V_2 casing = 0.163 gal/ft
Evacuated Dry? NO After gal. Time V ₃ " casing = 0.367 gal/ft
80% Recovery = $V_{\text{casing}} = 0.653 \text{ gal/ft}$
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
- Totalio Siduatod (gail)
SAMPLE: Color NED BROWN Odor MODERATE - GAS
Description of matter in sample: $\frac{3 - 5}{10} = \frac{7}{10} = \frac{7}{1$
Sampling Method: DECANT FROM PIVSED BED. BLR. Sample Port: Rate gpm Totalizer gal.
Sample Port: Rate gpm Totalizer gal.
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
(aparty) withing
2 DII-14 W/CV 40ml N Y HCV 8015/667 N SAL

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name Mw-15 Date 1/4/91 Time of Sampling 1338
Job Name CHEV HAYWARD Job Number 4-316-01 Initials OC
Sample Point Description M (M = Monitoring Well
Location ON BAKVIEW AVE HALFWAY DOWN
WELL DATA: Depth to Water 16.37 ft (static, pumping) Depth to Product ft
Product Thickness Well Depth ft (spec) Well Depth 2 ft (sounded) Well Diameter in
Initial Height of Water in Casing 5.63 ft. = volume
Casing Volumes to be Evacuated. Total to be evacuated 2.75 gal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Wyx 66 PVC Dedicated WES (Y/N)
Other
Evacuation Time: Stop 1323 1227
5. 17/9 127/
m
Total Evacuated Prior to Sampling $\frac{2.75}{2.75}$ gal. $h = ht$ of water col in ft.
Evacuation Rate 0.5 gal, per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling 20.6% ft. 1336 time V_2 casing = 0.163 gal/ft
Evacuated Dry? VES After 25-3.0gal (Bre(ASIME VOLS.) V3" casing = 0.367 gal/ft
80% Recovery = $\frac{1}{\sqrt{\Lambda}}$ v ₄ " casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color LT. BROWN Odor LT POD DOR
Description of matter in sample: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Sampling Method: DECANT FROM PINSED DED . BLF.
Sample Port: Rategpm Totalizergal.
Linie
of Sample Cont. Vol2 Fil3 Ref Preservative Apalytic Turn5 LAR
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Cont. ID Type ¹ (specify) Method
Cont. ID Type ¹ (specify) Method

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name /hw-16 Date 1/4/91 Time of Sampling 302
Job Name CHEV MAYWARD Job Number 4-310-01 Initials OC
Sample Point Description (M = Monitoring Well)
Location ON RIO VISTA DR. NEAR DEAD END
WELL DATA: Depth to Water 21.63 ft (static, pumping) Depth to Product ft.
Product Thickness — Well Depth 46 ft (spec) Well Depth 39.13 ft(sounded) Well Diameter 2 in
Initial Height of Water in Casing 16.5 ft. = volume 768 gal.
Casing Volumes to be Evacuated. Total to be evacuated <-/ gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type 1/4×60 TVC Dedicated VES (Y/N)
Other
Evacuation Time: Stop 1257
Start 1248 Formulas/Conversions
Total Evacation Time 9 M/V.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate ρ , ρ gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Depth to Water at Sampling $\frac{23.89}{1}$ ft. $\frac{305}{1}$ time $\frac{308}{1}$ time $\frac{308}{1}$ time $\frac{308}{1}$
Evacuated Dry? \bigcirc After \bigcirc gal. Time \bigcirc \lor_3 casing = 0.367 gal/ft
80% Recovery = V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time $V_{4.5}$ " casing = 0.826 gal/ft
$V_{6}'' \text{ casing } = 0.526 \text{ gal/ft}$
ν _c casing = 1.47 gai/π
CHENCAY DATA ACA DA ACA
CHEMICAL DATA: Meter Brand/Number
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color ΔΤ. Εκρων Odor ΣΤΡΟΝΟ 6Λ5
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color LT. BROWN Odor STRONG GAS Description of matter in sample: UELT FINE SAND SUSPENDED SILT Sampling Method: DEGANT FROM RINSED DED: BLR.
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color LT. EROWN Odor STRONG 6AS Description of matter in sample: UEL-T FINE SAND SUSPENDED SILT Sampling Method: DECANT FROM RINSED DED BLR. Sample Port: Rate gpm Totalizer gal.
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color LT. BROWN Odor STRONG GAS Description of matter in sample: UELT FINE SAND SUSPENDED SILT Sampling Method: DEGANT FROM RINSED DED: BLR.
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color LT. RROWN Odor STRONG GAS Description of matter in sample: UEFT FINE SAND SUSPENDED SILT Sampling Method: DECANT FROM PINSED DED BLR. Sample Port: Rate gpm Totalizer gal. Time
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft Calibration: 4.0 7.0 10.0 Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.) SAMPLE: Color LT. RROWN Odor STRONG GAS Description of matter in sample: UEFT FINE SAND SUSPENDED SILT Sampling Method: DECANT FROM RINSED DED BLR. Sample Port: Rate gpm Totalizer gal. Time
CHEMICAL DATA: Meter Brand/Number
CHEMICAL DATA: Meter Brand/Number 7.0 10.0 10.0 Measured: SC/\mumber pH T°C Time Volume Evacuated (gal.) SAMPLE: Color 17. BROWN Odor STRONG 6AS Description of matter in sample: UEFT FINE SAND / SUSPENDED SILT Sampling Method: DECANT FROM RINSED DED SLET. Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol2' Fil3 Ref4 Preservative Analytic Turn5 LAB
CHEMICAL DATA: Meter Brand/Number

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name Date //4/9/Time of Sampling /800
Job Name CHEVHAYWARD Job Number 4-310-01 Initials OC
Sample Point Description (M = Monitoring Well
Location
WELL DATA: Depth to Water ft (static, pumping) Depth to Product ft
Product Thickness Well Depth ft (spec) Well Depth ft(sounded) Well Diameter in
Initial Height of Water in Casingft. = volume gal
Casing Volumes to be Evacuated. Total to be evacuated gal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Dedicated(Y/N)
Other
Evacuation Time: Stop
StartFormulas/Conversions
The table is the state of the s
T-41F
Fracuation Pate 2
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$ Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling
Depth to Water at Sampling ft. time $V_2^{"}$ casing = 0.163 gal/ft
Evacuated Dry? After gal. Time v ₃ * casing = 0.367 gal/ft 80% Recovery = V ₄ * casing = 0.653 gal/ft
0/15
/
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration:
Measured: 8C/μmhos pH T°C Time Volume Evacuated (gal.)
/
141/5
SAMPLE: Color
Sampling Method: NO NE
Sample Port: Rate gpm Totalizer gal.
Time
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
2 DII-21 W/CV 40ml N Y HCL 805/602 N SAL

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Tesson Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Tesson lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

ATTACHMENT B

ANALYTIC REPORTS AND CHAIN-OF-CUSTODY FORM

SUPERIOR ANALYTICAL LABORATORIES, INC.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82239 CLIENT: Weiss Associates CLIENT JOB NO.: 4-310-01

DATE RECEIVED: 01/07/91 DATE REPORTED: 01/14/91

Page 1 of 2

Lab Number	Customer	Sample Id	entificati	on	Da Samp		Date Analyzed	
82239- 1 82239- 2 82239- 3	011-06 011-09 011-10				01/0- 01/0- 01/0-	4/91	01/13/91 01/11/91 01/13/91	
82239- 4 82239- 5 82239- 6	011-13 011-14 011-15			·	01/0- 01/0-	4/91 4/91	01/13/91 01/13/91 01/13/91 01/11/91	
82239- 7 82239- 8	011-16 011-21				01/04/91 01/1		01/13/91 01/13/91	
Laboratory N	umber:	82239 1	82239 2	82239 3	82239 4	822		
ANALYTE LIST		Amounts/	Quantitati	on Limits	(ug/L)			
OIL AND GREAT TPH/GASOLINE TPH/DIESEL R. BENZENE: TOLUENE: ETHYL BENZEN XYLENES:	RANGE: ANGE:	NA 50000 NA 5600 2200 1800 9400	NA 59000 NA 1100 5600 2500 13000	NA ND<50 NA ND<0.5 ND<0.5 ND<0.5	NA 72000 NA 5500 12000 2300 12000	NA 100 NA ND< 4.0 2.6 4.2	(0.5)	
Laboratory N	umber:	82239 6	82239 7	82239 8				
ANALYTE LIST		Amounts/Quantitation Limits (ug/L)						
OIL AND GREAS TPH/GASOLINE TPH/DIESEL RA BENZENE: TOLUENE: ETHYL BENZENS XYLENES:	RANGE: 'ANGE:	NA 1700 NA 46 2.8 58	NA 16000 NA 6800 820 1300 1500	NA ND<50 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5				

SUPERIOR ANALYTICAL LABORATORIES, INC.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSI'S

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS ...

Page 2 of 2 QA/QC INFORMATION SET: 82239

NA = ANALYSIS NOT REQUESTED

ND = ANALYSIS NOT DETECTED ABOVE QUANTITATION LIMIT

ug/l = part per billion (ppb)

OIL AND GREASE ANALYSIS By Standard Methods Method 503E: Minimum Detection Limit in Water: 5000ug/L

Modified EPA-SW846 Method 8015 for Extractable Hydrocarbons: Minimum Quantitation Limit for Diesel in Water: 50ug/l Standard Reference: NA

EPA-SW846 Method 8015/5030 Total Purgable Petroleum Hydrocarbons: Minimum Quantitation Limit for Gasoline in Water: 50ug/l Standard Reference: 10/25/90

SW-846 Method 8020/BTXE

Minimum Quantitation Limit in Water: 0.5ug/l

Standard Reference: 12/14/90

ANALYTE	REFERENCE	SPIKE LEVEL	MS/MSD RECOVERY	RPD	CONTROL LIMIT
Oil & Grease	NA NA	NA NA	NA	NA	NA
Gasoline Benzene	10/25/90 12/14/90	NA 200 ng 200 ng	NA 97 101	NA 2 5	NA 70-130 70-130
Toluene Ethyl Benzene Total Xylene	12/14/90 12/14/90 12/14/90	200 ng 200 ng 200 ng	101 96 106	10 4 5	70-130 70-130 70-130

Richard Srna, Ph.D.

Laboratory Director

82239 Unain-or-cusiouy-necor WALTER F. POSLUZNEY JR. HAYWARD Chevron Contact (Name) _ Chevron Facility Number 21975 FOOTHILL BLVD. HAYWARD Laboratory Name SUPERIOR ANALYTICAL LABORATORY Chevron U.S.A. Inc. 4-310-01 Consultant Project Number Consultant Name WEIST ASSOCIATES 2564320 P.O. BOX 5004 Laboratory Release Number. CHARLES San Ramon, CA 94583 Address 5500 SHELL OUND ST. EMERYVILLE, 94608 Samples Collected by (Name). FAX (415)842-9591 JIM CARMODY Collection Date ... Project Contact (Name) (Phon \$15)547 5420 (Fax Number 415) 547 5043 Signature Analyses To Be Performed Air Charcoal BTEX + TPH CAS (8020 + 8015) Non Chlorinated (8020) Chlorinated HC (8010) Oil and Grease (5520) 1PH Diesel (8015) 1 1 E 3000 Remorks G 1633 HCL 011-16 1751 011-07 nu Please initial: 1615 011-10 Samples Brored in ic 1517 011-13 Appropriate containers 1410 011-14 VOIA's without head 1338 011-15 Comments: . 1302 011-16 1800 011-21 Date/Time 900 Turn Around Time (Circle Cholce) Organization Received By (Signature) Date/Time Organization Relinquished By/(Signature) 1920 24 Hrs. 4) piss time Weiss Ussur 48 Hrs. Date/Time Organization Received By (Signature) Date/Time 1206 Organization 5 00ys 4/7 /205 Eypers (1) 15 10 Days Recleved For Laboratory By (Signature) As Contracted Date/Time Organization Relinquished By (Signature)

ATTACHMENT C

PREVIOUS GROUND WATER ELEVATION CONTOUR MAPS

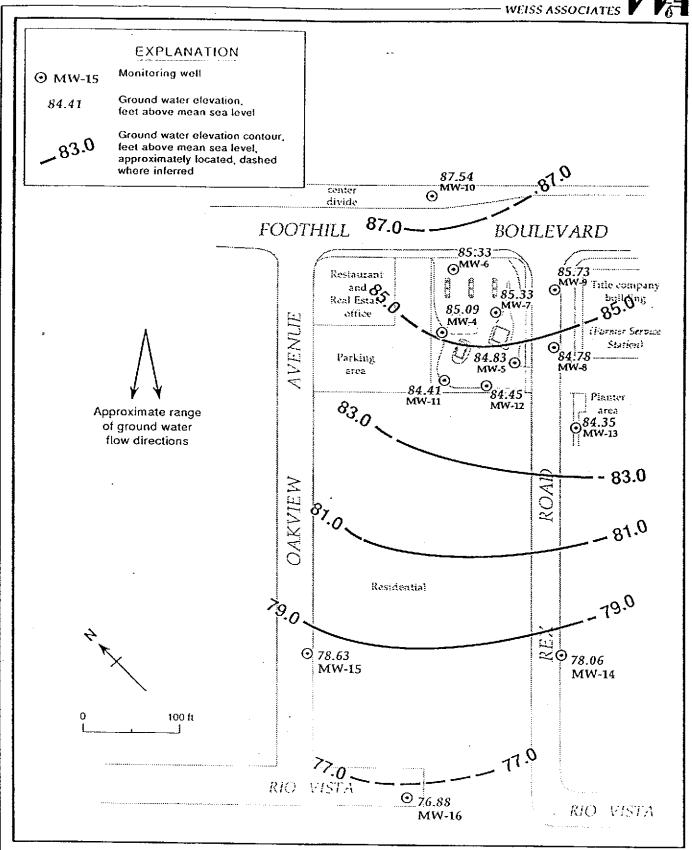


Figure 2. Ground Water Elevation Contours - November 6, 1990 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

M

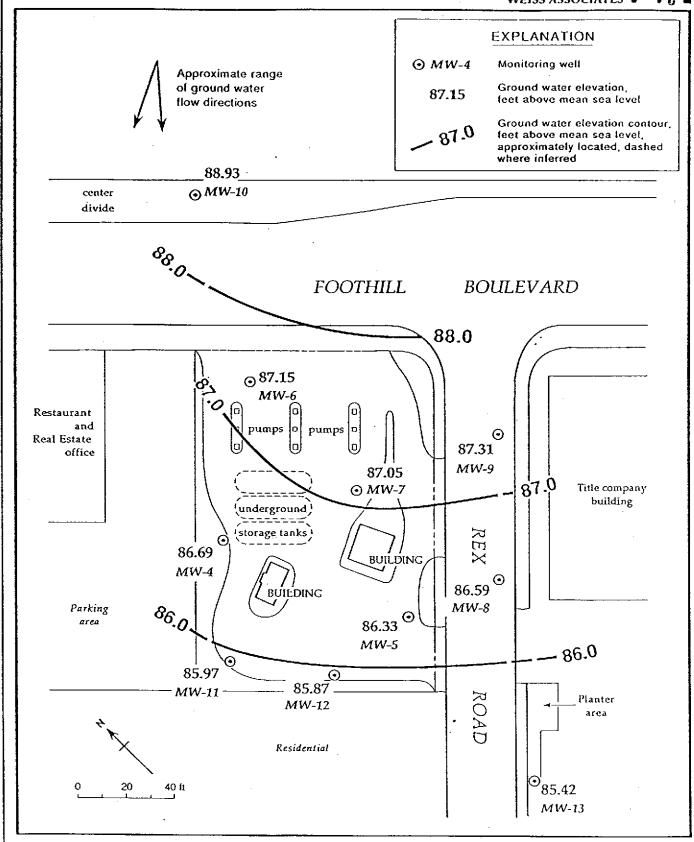


Figure 2. Ground Water Elevation Contours - July 3, 1990 - Chevron Service Station #90260, 21995 Foothill Boulevard, Hayward, California

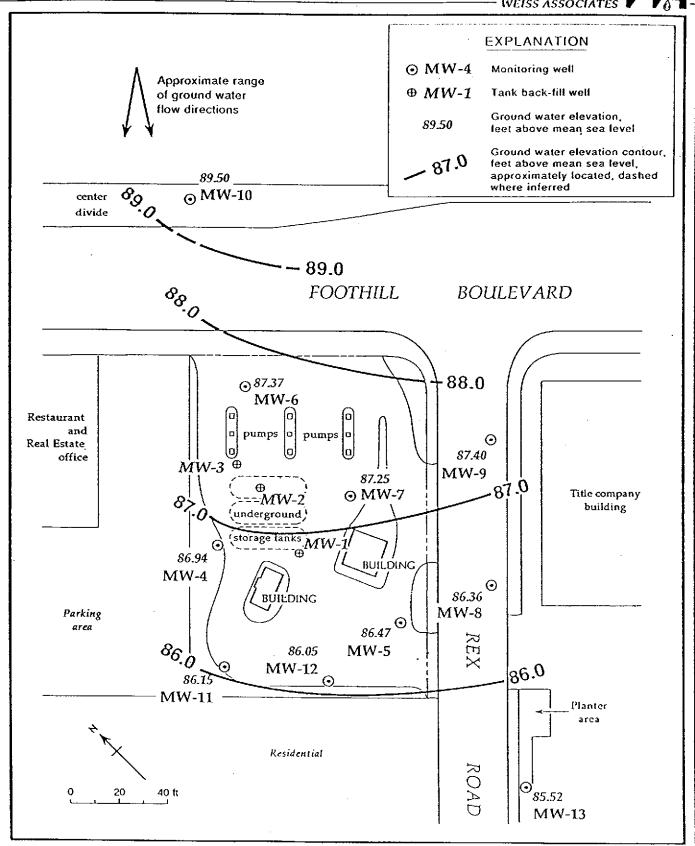


Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - April 3, 1990 - Chevron Service Station #90260, 21995 Foothill Boulevard, Hayward, California

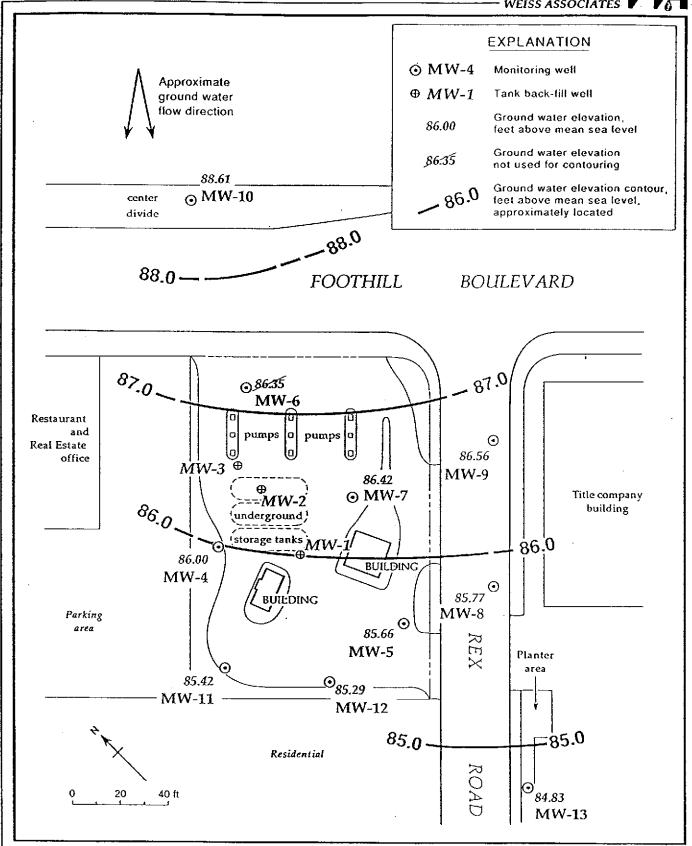


Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - January 4, 1990 - Chevron Service Station #90260, 21995 Foothill Boulevard, Hayward, California