

July 30, 2014 Project No. 2115-1436-01

Mr. Mark Detterman Alameda County Health Care Services Agency Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health at 3:01 pm, Oct 08, 2014

Re: Status Report and Results of Second Quarter 2014 Groundwater

Monitoring and Sampling Event

Former Olympic Station 1436 Grant Avenue San Lorenzo, California

ACEHD Case No. RO0000373, GeoTracker No. T0600102256

Dear Mr. Detterman:

On behalf of Mr. Philip Jaber and the George and Frida Jaber 1989 Family Trust, Stratus Environmental, Inc. (Stratus) is submitting the attached report, for the Former Olympic Station located at 1436 Grant Avenue in San Lorenzo, California (the site, see Figure 1). If you have any questions or comments concerning this report, please contact Gowright Gargewortha (2008) 676-6001 or Scott Bittinger at (530) 676-2062.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Gowri S. Kowtha, P.E.

Prøject Manager

Scott G. Bittinger, P.G.

Project Geologist

Attachment: Status Report and Results of Second Quarter 2014 Groundwater Monitoring

And Sampling Event

cc: Mr. Philip Jaber

Ms. Cherie McCaulou, RWQCB

Scott G. Bittinger

No. 7477

Mr. Mark Detterman Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Former Olympic Service Station

1436 Grant Avenue San Lorenzo, California

ACEHD Case No. RO0000373, GeoTacker No. T0600102256

Dear Mr. Detterman:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

George and Frida Jaber 1989 Family Trust

Philip Jaber, Trostee

FORMER OLYMPIC STATION PROJECT STATUS AND GROUNDWATER MONITORING AND SAMPLING REPORT

Facility Address: 1436 Grant Avenue, San Lorenzo, CA

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Gowri Kowtha, P.E.

Consultant Project No: 2115-1436-01

Primary Agency/Regulatory ID No: Mark Detterman, Alameda County Environmental Health Department

(ACEHD) / Case No. RO0000373

WORK PERFORMED THIS PERIOD (Fourth Quarter 2013, First and Second Quarter 2014):

In June 2013, ACEHD conditionally approved a Corrective Action Plan (CAP) for the site, pending completion of a public comment period. The CAP also included a scope of work to perform additional environmental site assessment activities. After performing the public comment period (predominately during the third quarter 2013), and receiving agency approval, Stratus began implementing tasks outlined in the CAP. With the exception of a groundwater monitoring and sampling event performed in June 2014, the activities described below are associated with CAP implementation.

- 1. Stratus obtained permits to discharge treated soil vapors and groundwater generated by dual phase extraction (DPE) from the appropriate agencies. A building permit was also obtained from the City of San Lorenzo.
- Stratus directed the installation of wells EX-4 through EX-7 between February 20 and 21, 2014. Groundwater monitoring wells MW-5A/B and MW-6A/B were installed on May 8, 2014. Each of these wells were also developed. Previously proposed wells MW-7A/B were not installed due to a conflict with an underground utility corridor and access problems at the proposed location (heavy traffic in Grant Avenue).
- 3. A temporary power pole and electrical panel needed to provide a power supply for the DPE system was installed.
- 4. Natural gas plumbing needed to provide supplemental fuel for the DPE system was installed.
- 5. A DPE system was mobilized to the site, and construction/installation activities needed to begin DPE were performed. Above ground lateral conveyance piping was connected to wells EX-1 through EX-7.
- On June 19, 2014, Stratus conducted semi-annual groundwater monitoring and sampling activities. During this event, wells MW-1 through MW-4, MW-5A/B, MW-6A/B, and EX-1 through EX-7 were gauged for depth to water and evaluated for the presence of free product. Following gauging, these wells were purged and groundwater samples were collected. MW-4 purged dry before three casing volumes were removed. All groundwater samples were forwarded to a state-certified analytical laboratory for chemical analysis. This well sampling event also serves as a 'baseline' well sampling event prior to implementation of DPE, and thus will be useful in the future for gauging remedial progress.

WORK PROPOSED FOR NEXT PERIOD (Third and Fourth Quarter 2014):

1. DPE remediation will be performed. Data collected as DPE progresses will be continually evaluated in order to assess the length of time for this remedial work. A minimum of two site visits per month

will be performed in order to verify proper operation of the equipment and collect samples needed to verify permit compliance and assess effectiveness of remedial efforts.

2. A groundwater monitoring and sampling event will be performed during the fourth quarter 2014.

Current Phase of Project:

Frequency of Groundwater Monitoring:

All Wells = Semi-Annual (2nd & 4th)

All Wells = Semi-Annual (2nd & 4th)

All Wells = Semi-Annual (2nd & 4th)

Groundwater Sampling Date:

June 19, 2014

Is Free Product (FP) Present on Site:

Approximate Depth to Groundwater:

Groundwater Flow Direction:

Groundwater Gradient:

O.004 ft/ft

DISCUSSION:

Groundwater samples were analyzed at a state-certified analytical laboratory for gasoline range organics (GRO) by EPA Method SW8015B/SW8260B and for benzene, toluene, ethylbenzene, total xylenes (BTEX) and methyl tert-butyl ether (MTBE) by EPA Method SW8260B. Well construction details are summarized in Table 1, and historical groundwater elevation and analytical data are summarized in Table 2. Field data sheets documenting measurements and observations obtained by Stratus personnel, a description of sampling and analyses procedures utilized, and laboratory analytical reports with chain of custody records are included in Appendix A, B, and C, respectively. Depth to groundwater measurements and sample analytical results have been uploaded to the State of California's GeoTracker database, and documentation of this data uploading is provided in Appendix D.

At the time of the second quarter 2014 monitoring event, depth-to-water was measured between 7.20 and 7.86 feet below the top of the well casing. Groundwater elevations were within historical fluctuation ranges. Depth-to-water measurements were converted to feet above mean sea level (MSL) and used to construct a groundwater elevation contour map (Figure 2). Groundwater flow beneath the site on June 19, 2014 was to the west-southwest with a calculated gradient of 0.004 ft/ft. Historically, groundwater flow beneath the site has been toward the west-southwest and southwest.

Figure 3 presents a summary of groundwater analytical results for wells with screening intervals between approximately 5 and 10 feet bgs, only a few feet below the static water table interface. Figure 4 presents a summary of groundwater analytical results for the other monitoring wells and extraction wells. The depth and screening interval of each monitoring well may be referenced on Table 1.

GRO and benzene were detected at concentrations of 43,000 micrograms per liter (μ g/L) and 3,300 μ g/L, respectively, in the MW-6A sample, 21,000 μ g/L and 2,000 μ g/L, respectively, in the MW-5A sample, and 6,000 mg/L and 260 mg/L, respectively, in the MW-4 well sample. MTBE was detected in the MW-6A sample (77 μ g/L) and at well MW-4 (1,600 μ g/L).

In general, GRO and BTEX concentrations were significantly lower in the deeper monitoring/extraction well samples than in the samples collected from wells MW-4, MW-5A, and MW-6A. GRO and benzene were reported at maximum levels of 210 μ g/L (EX-4) and 25 μ g/L (EX-6), respectively, in samples collected from the deeper wells. MTBE was detected in all of the deeper monitoring extraction well samples, at concentrations ranging from 10 μ g/L to 230 μ g/L.

FUTURE WORK AND REMEDIAL EFFORTS

In July 2014, Stratus initiated DPE remedial efforts using wells EX-1 through EX-7 for extraction. Stratus will provide periodic updates to ACEHD regarding the status of these work efforts.

ATTACHMENTS:

•	Table 1	Well Construction Details
•	Table 2	Groundwater Elevation and Analytical Summary
•	Figure 1	Site Location Map
•	Figure 2	Groundwater Elevation Contour Map, Second Quarter 2014
•	Figure 3	Groundwater Analytical Summary, 10' Depth Monitoring Wells, Second
		Quarter 2014
•	Figure 4	Groundwater Analytical Summary, 20' – 26' Depth Monitoring Wells, Second
		Quarter 2014
•	Appendix A	Field Data Sheets
•	Appendix B	Sampling and Analyses Procedures
•	Appendix C	Laboratory Analytical Reports and Chain-of-Custody Documentation
•	Appendix D	GeoTracker Electronic Submittal Confirmations

TABLE 1
WELL CONSTRUCTION DETAIL SUMMARY

Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Boring/Well I.D.	Date	Boring Depth	Boring Diameter	Well Diameter	Screen Interval	Slot Size	Drilling Method	Consultant
		(feet)	(inches)	(inches)	(feet bgs)	(inches)		
Groundwater	Monitorin	g Wells						
MW-1	09/24/99	26.5	8	2	5 - 26.5	0.020	HSA	Aqua Science Engineers
MW-2	09/24/99	20	8	2	5-20	0.020	HSA	Aqua Science Engineers
MW-3	09/24/99	21.5	8	2	5-21	0.020	HSA	Aqua Science Engineers
MW-4	02/09/10	10	10	4	5-10	0.020	Air Knife	Conestoga-Rovers & Associates
MW-5A	05/28/14	10	8	2	5-10	0.020	HSA	Stratus Environmental
MW-5B	05/28/14	20	8	2	15-20	0.020	HSA	Stratus Environmental
MW-6A	05/28/14	10	8	2	5-10	0.020	HSA	Stratus Environmental
MW-6B	05/28/14	20	8	2	15-20	0.020	HSA	Stratus Environmental
Extraction W	ells							
EX-1	05/19/11	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-2	05/19/11	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-3	05/19/11	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-4	02/20/14	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-5	02/20/14	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-6	02/21/14	20	10	4	5-20	0.020	HSA	Stratus Environmental
EX-7	02/20/14	20	10	4	5-20	0.020	HSA	Stratus Environmental
Injection Well	ls						•	
IW-1	05/20/11	11.5	8	0.75	9.5-11.5	microporous	HSA	Stratus Environmental
IW-2	05/20/11	16	8	0.75	14-16	microporous	HSA	Stratus Environmental

Notes:

HSA = Hollow Stem Auger

Data regarding the construction of wells MW-1 through MW-4 obtained from groundwater monitoring reports prepared by Conestoga-Rovers & Associates

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (µg/L)	TAME (μg/L)			Ethanol (µg/L)	EDB (µg/L)	1,2- DCA (μg/L)
MW-1	10/06/99	8.35	15.00	6.65			84**	3,900*	<25	<25	<25	<25	3,500							
Ī	01/13/00	7.90		7.10			< 50	<1,300	18	<13	<13	<13	1,700							
	04/12/00	7.08		7.92			56***	<1,000	66	<10	<10	<10	1,600							
	07/19/00	7.66		7.34			52**	<1,000	<10	<10	<10	<10	1,200							
	10/25/00	7.91		7.09			76***	4,100*	120	<25	<25	<25	6,100							
	02/16/07	6.32		8.68																
	03/01/07	5.88		9.12		<250	<50	<50	<1.2	<1.2	<1.2	<1.2	78	<1.2	<1.2	<1.2	<12	<120	<1.2	<1.2
l:	05/01/07	7.24	15.71	8.47		<250	< 50	<50	<5.0	< 5.0	< 5.0	<5.0	250	< 5.0	< 5.0	<5.0	<50	<500	< 5.0	<5.0
	08/01/07	7.77		7.94			< 50	< 50	<25	<25	<25	<25	520	<25	<25	<25	<250	<2,500	<25	<25
:	11/01/07	7.71		8.00			< 50	<50	<12	<12	<12	<12	460	<12	<12	<12	<120	<1,200	<12	<12
	02/01/08	5.71		10.00			< 50	<50	<2.5	<2.5	<2.5	<2.5	110	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	05/02/08	7.52		8.19		<250	< 50	<50	<5.0	<5.0	< 5.0	< 5.0	240	< 5.0	<5.0	< 5.0	<20	<500	< 5.0	<5.0
	08/01/08	8.02		7.69			< 50	<50	<10	<10	<10	<10	500	<10	<10	<10	<40	<1,000	<10	<10
	11/04/08	7.28		8.43			< 50	<50	<5.0	< 5.0	< 5.0	<5.0	260	< 5.0	< 5.0	< 5.0	26	< 500	<5.0	<5.0
	08/11/09	8.08		7.63			<50	<50	<5.0	<5.0	<5.0	< 5.0	270	< 5.0	< 5.0	< 5.0	<20	<500	< 5.0	<5.0
	02/03/10	6.14		9.57				<50	< 0.5	< 0.5	< 0.5	< 0.5	39							
1	05/18/10	7.09		8.62															44	
	08/05/10	7.65		8.06				< 50	< 0.5	< 0.5	< 0.5	< 0.5	350							
	02/04/11	7.20		8.51				< 50	0.90	< 0.5	< 0.5	< 0.5	62							
	06/03/11	7.28	18.60	11.32																
	08/02/11	7.47		11.13				120	< 0.50	< 0.50	< 0.50	< 0.50	160							
	09/29/11	7.83		10.77																
1	10/12/11	7.03		11.57																
	11/09/11	7.55		11.05																
	12/12/11	7.81		10.79																
	03/15/12	6.45		12.15				55	< 0.50	< 0.50	< 0.50	< 0.50	71							
	08/28/12	7.81		10.79				120	< 0.50	< 0.50	< 0.50	< 0.50	240							
	02/27/13	7.32		11.28				61	< 0.50	< 0.50	< 0.50	< 0.50	69							
	08/26/13	8.05		10.55				470	< 0.50	< 0.50	< 0.50	< 0.50	590							
	06/19/14	7.86		10.74				190	<0.50	<0.50	<0.50	<0.50	230							

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

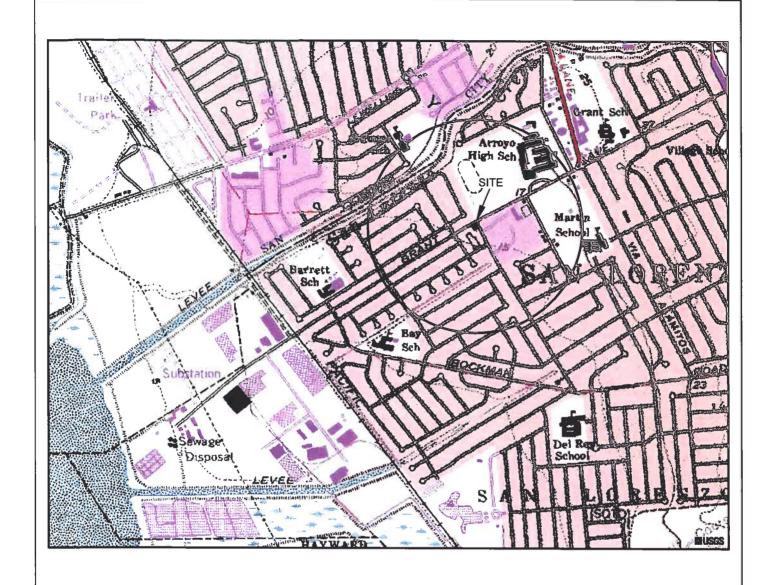
Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (µg/L)	TAME (µg/L)		TBA (μg/L)	Ethanol (µg/L)	EDB (µg/L)	1,2- DCA (μg/L)
MW-2	10/06/99	7.87	14.46	6.59	<1,000	500[3]	<50	70*	<0.5	<0.5	<0.5	<0.5	11							
l l	01/13/00	7.46		7.00	<1,000	500[3]	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	6.2							
	04/12/00	6.67		7.79	1,100	<500	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	39							
	07/19/00	7.23		7.23	1,300	<500	<50	<1,000	<10	<10	<10	<10	990							
1	10/25/00	7.52		6.94		<500	< 50	370	<2.5	<2.5	<2.5	<2.5	690							
1	02/16/07	5.89		8.57																
	03/01/07	5.45		9.01		<250	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	9.8	< 0.5	< 0.5	< 0.5	< 5.0	< 50	< 0.5	< 0.5
1	05/01/07	6.83	15.17	8.34		<250	< 50	<50	< 5.0	<5.0	<5.0	<5.0	120	< 5.0	< 5.0	< 5.0	<50	<500	< 5.0	< 5.0
	08/01/07	7.35		7.82			< 50	<50	<5.0	< 5.0	<5.0	<5.0	130	< 5.0	< 5.0	<5.0	< 50	<500	< 5.0	<5.0
	11/01/07	7.27		7.90			< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	19	< 0.5	< 0.5	< 0.5	< 5.0	<50	< 0.5	< 0.5
	02/01/08	5.25		9.92			<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.3	< 0.5	< 0.5	< 0.5	<2.0	<50	< 0.5	< 0.5
	05/02/08	7.12		8.05			< 50	<50	<2.5	<2.5	<2.5	<2.5	83	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	08/01/08	7.59		7.58			<50	<50	<1.0	<1.0	<1.0	<1.0	52	<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0
	11/04/08	6.84		8.33			80	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.9	< 0.5	< 0.5	< 0.5	< 2.0	< 50	< 0.5	< 0.5
[08/11/09	7.65		7.52			<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	9.4	< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5
	02/03/10	5.75		9.42				< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.86							
ì	05/18/10	6.67		8.50																
	08/05/10	7.25		7.92				<50	< 0.5	< 0.5	< 0.5	< 0.5	57							
	02/04/11	6.79		8.38				<50	< 0.50	< 0.50	< 0.50	< 0.50	4.4							
	06/03/11	6.82	18.00	11.18																
	08/02/11	7.06		10.94				< 50	< 0.50	< 0.50	< 0.50	< 0.50	46							
	09/29/11	7.39		10.61				<50	< 0.50	< 0.50	< 0.50	< 0.50	41	<1.0	<1.0	<1.0	<10			<1.0
	10/12/11	6.62		11.38				<50	< 0.50	< 0.50	< 0.50	< 0.50	37	<1.0	<1.0	<1.0	<10			<1.0
	11/09/11	7.11		10.89				<50	< 0.50	< 0.50	< 0.50	< 0.50	33	<1.0	<1.0	<1.0	<10			<1.0
	12/12/11	7.35		10.65																
	03/15/12	5.98		12.02				<50	< 0.50	< 0.50	< 0.50	< 0.50	4.3							
	08/28/12	7.39		10.61				<50	< 0.50	< 0.50	< 0.50	< 0.50	35							
	02/27/13	6.91		11.09				<50	< 0.50	< 0.50	< 0.50	< 0.50	12							
	08/26/13	7.61		10.39				<50	< 0.50	< 0.50	< 0.50	< 0.50	6.2							
	06/19/14	7.43		10.57				<50	<0.50	< 0.50	<0.50	< 0.50	13							

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (μg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (μg/L)	TAME (μg/L)			Ethanol (µg/L)	EDB (µg/L)	1,2- DCA (μg/L)
MW-3	10/06/99	7.90	14.41	6.51			300**	3,900	900	89	160	560	790							
	01/13/00	7.50		6.91			210**	740	110	4.8	35	18	290							
	04/12/00	6.61		7.80			640***	2,200	650	9.7	180	24	140							
	07/19/00	7.24		7.17			270**	2,700*	420	<2.5	160	<2.5	99							
	10/25/00	7.52		6.89			150	710*	180	<2.5	24	<2.5	71							
	02/16/07	5.90		8.51																
	03/01/07	5.44		8.97		<250	<50	82	20	<1.7	<1.7	<1.7	100	<1.7	<1.7	<1.7	<17	<170	<1.7	<1.7
	05/01/07	6.87	15.13	8.26		<250	<50	<50	<5.0	<5.0	< 5.0	<5.0	88	<5.0	< 5.0	<5.0	< 50	< 500	< 5.0	< 5.0
	08/01/07	7.40		7.73			<50	130	12	<2.5	<2.5	<2.5	98	<2.5	<2.5	< 2.5	<25	<250	<2.5	<2.5
	11/01/07	7.35		7.78			< 50	77	<2.5	<2.5	<2.5	<2.5	68	< 2.5	<2.5	< 2.5	<25	<250	<2.5	<2.5
	02/01/08	5.28		9.85			< 50	<50	<2.5	<2.5	<2.5	<2.5	97	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	05/02/08	7.15		7.98			< 50	68	2.3	<1.7	<1.7	<1.7	86	<1.7	<1.7	<1.7	7.2	<170	<1.7	<1.7
	08/01/08	7.66		7.47			< 50	85	3.5	<1.0	<1.0	<1.0	66	<1.0	<1.0	<1.0	7.2	<100	<1.0	<1.0
	11/04/08	6.96		8.17			< 50	< 50	<1.0	<1.0	<1.0	<1.0	40	<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0
	08/11/09	7.72		7.41			< 50	110	33	< 0.50	< 0.50	< 0.50	28	< 0.50	< 0.50	< 0.50	<2.0	<50	< 0.50	< 0.50
	02/03/10	5.72		9.41				<50	0.55	< 0.50	< 0.50	< 0.50	25							
	05/18/10	6.73		8.40																
	08/05/10	7.31		7.82				450	110	2.2	0.76	0.64	32							
	02/04/11	6.80		8.33				220[1]	64	1.6	< 0.5	< 0.5	36							
	06/03/11	6.87	17.95	11.08				200	26	< 0.50	< 0.50	< 0.50	34							
	08/02/11	7.07		10.88				<50	2.5	< 0.50	< 0.50	< 0.50	36							
	09/29/11	7.43		10.52				<50	< 0.50	< 0.50	< 0.50	< 0.50	28	<1.0	<1.0	<1.0	<10			<1.0
	10/12/11	6.67		11.28				< 50	0.91	< 0.50	< 0.50	< 0.50	32	<1.0	<1.0	<1.0	<10			<1.0
	11/09/11	7.16		10.79				< 50	1.8	< 0.50	< 0.50	< 0.50	31	<1.0	<1.0	<1.0	<10			<1.0
	12/12/11	7.42		10.53																
	03/15/12	6.21		11.74				<50	< 0.50	< 0.50	< 0.50	< 0.50	24							
	08/28/12	7.44		10.51				<50	6.5	< 0.50	< 0.50	< 0.50	24							
	02/27/13	6.90		11.05				<50	< 0.50	< 0.50	< 0.50	< 0.50	18							
	08/26/13	7.72		10.23				<50	< 0.50	< 0.50	< 0.50	< 0.50	34							
	06/19/14	7.50		10.45				<50	2.3	<0.50	< 0.50	< 0.50	16							

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DIPE (µg/L)				Ethanol (μg/L)	EDB (µg/L)	1,2- DCA (μg/L)
MW-4	05/18/10	6.68	15.15	8.47				13,000	620	36	170	12	1,200							
H	08/05/10	7.25		7.90				9,200	780	13	230	4.3	1,800							
l	02/04/11	6.71		8.44				4,800[1]	350	7.1	23	<2.5	440							[
	06/03/11	6.78	17.99	11.21				4,700	350	2.6	19	<2.5[2]	670							
	08/02/11	7.01		10.98				4,700	290	<2.5[2]	12	<2.5[2]	970							
ľ	09/29/11	7.37		10.62				8,700	590	<5.0[2]	34	<5.0[2]	1,500	<10[2]	28	<10[2]	<100[2]			<10[2]
	10/12/11	6.61		11.38				1,500	160	<1.0[2]	1.8	<1.0[2]	1,300	<2.0[2]	8.6	<2.0[2]	42		-	<2.0[2]
	11/09/11	7.18		10.81				2,800	190	1.4	9.6	1.3	720	<2.0[2]	3.6	<2.0[2]	270			<2.0[2]
	12/12/11	7.36		10.63				3,800	300	2.4	11	2.5	1,200							
	03/15/12	6.15		11.84				8,300	530	<5.0[2]	120	72	3,700							
	08/28/12	7.40		10.59				2,400	250	<4.0[2]	14	<4.0[2]	1,400							
	02/27/13	6.85		11.14				2,400	160	2.5	8.2	<2.0[2]	1,400							
	08/26/13	7.69		10.30				4,900	220	<2.5[2]	5.7	<2.5[2]	2,400							
	06/19/14	7.48		10.51				6,000	260	<4.0[2]	8.8	<4.0[2]	1,600							
MW-5A	06/19/14	7.53	17.94	10.41				21,000	2,000	<25[2]	1,400	650	<25[2]							
MW-5B	06/19/14	7.52	17.92	10.40				<50	<0.50	<0.50	<0.50	< 0.50	32							
MW-6A	06/19/14	7.66	18.05	10.39		· =		43,000	3,300	<50[2]	2,000	3,100	77							
MW-6B	06/19/14	7.32	17.69	10.37				86	<0.50	<0.50	<0.50	<0.50	82							


TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (μg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DIPE (µg/L)				Ethanol (µg/L)	1,2- DCA (μg/L)
EX-1	06/03/11	6.96	18.14	11.18				76	8.3	<0.50	<0.50	0.99	37	-					
	08/02/11	7.20		10.94				420	37	0.65	3.5	2.9	32						
	09/29/11	7.53		10.61				150	13	< 0.50	3.2	1.1	23	<1.0	1.2	<1.0	<10		 <1.0
	10/12/11	6.63		11.51				180	23	0.51	2.8	0.97	27	<1.0	1.0	<1.0	<10		 <1.0
	11/09/11	7.28		10.86				<50	4.3	< 0.50	< 0.50	< 0.50	34	<1.0	<1.0	<1.0	<10		 <1.0
	12/12/11	7.50		10.64				520	32	1.3	13	5.58	20						
	03/15/12	6.19		11.95				<50	2.6	< 0.50	< 0.50	< 0.50	8.4						
	08/28/12	7.53		10.61				410	88	1.2	36	1.4	42						
	02/27/13	7.02		11.12				<50	0.75	< 0.50	< 0.50	< 0.50	14						
	08/26/13	NM		NM							vered by Car	-		ed					-
	06/19/14	7.59		10.55				<50	< 0.50	< 0.50	< 0.50	< 0.50	19						
EX-2	06/03/11	6.81	18.14	11.33				760	<1.5[2]	<1.5[2]	<1.5[2]	<1.5[2]	1,100						
	08/02/11	7.03		11.11				920	8.7	<1.0[2]	<1.0[2]	<1.0[2]	920						
	09/29/11	7.37		10.77															
l	10/12/11	6.65		11.49															
1	11/09/11	7.08		11.06															
]	12/12/11	7.35		10.79				590	5.6	<1.0[2]	<1.0[2]	<1.0[2]	920						
	03/15/12	6.58		11.56				100	< 0.50	<0.50	< 0.50	< 0.50	130						
	08/28/12	7.35		10.79				<300[2]	2.5	<1.5[2]	<1.5[2]	<1.5[2]	540						
	02/27/13	6.82		11.32				320	0.51	< 0.50	< 0.50	< 0.50	420						
	08/26/13	7.56		10.58				270	< 0.50	< 0.50	< 0.50	< 0.50	340						
	06/19/14	7.37		10.77				150	< 0.50	< 0.50	<0.50	<0.50	170						
EX-3	06/03/11	6.55	17.63	11.08				95	0.93	<0.50	<0.50	< 0.50	78						
EV-2	08/02/11	6.82	17.03	10.81				130	1.5	< 0.50	< 0.50	<0.50	150						
ľ	09/29/11	7.15		10.48					1.5	~0.50 	~0.50 	~0.50 							
ŀ	10/12/11	6.37		11.26															
1	11/19/11	6.89		10.74															
	12/12/11	7.12		10.74				100	2.4	< 0.50	< 0.50	< 0.50	84						
	03/15/12	5.70		11.93				<50	< 0.50	< 0.50	< 0.50	< 0.50	30						
	08/28/12	7.15		10.48				100	<0.50	< 0.50	< 0.50	< 0.50	190			-			
	02/27/13	6.63		11.00				84	<0.50	<0.50	<0.50	<0.50	93						
	08/26/13	7.41		10.22				120	< 0.50	< 0.50	<0.50	< 0.50	120						
	06/20/13	7.41		10.22				96	<0.50	< 0.50	< 0.50	<0.50	110						
EX-4	06/19/14	7.64	18.30	10.66				210	9.5	<0.50	0.55	0.74	10						
EX-5	06/19/14	7.84	18.41	10.57				110	6.0	<0.50	<0.50	<0.50	14						
EX-6	06/19/14	7.81	18.29	10.48				190	25	<0.50	5.9	<0.50	18						
EX-7	06/19/14	7.44	18.06	10.62				56	0.79	<0.50	<0.50	<0.50	50						

TABLE 2 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)		TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DIPE (µg/L)	TAME (μg/L)		TBA (μg/L)	Ethanol (µg/L)	EDB (µg/L)	1,2- DCA (μg/L)
Legend/Ke	<u>/:</u>												-							
ft msl = feet	above mean sea	level	TPH - mo =	total petroleum l	hydrocarbon	s as motor oi	1		MTBE - methyl	tertiary butyl etl	ner	TAME = ter	t amyl meth	yl ether		Analytics	l Method	<u>s:</u>		
μg/L = micr	ograms per liter		TPHd = total	petroleum hydr	ocarbons as	diesel			DIPE = di isopro	pyl ether		TBA = tert l	outyl ether					PA Method		
NM = Not	neasured		GRO = gaso	line range organi	ics C6-C12				ETBE = ethyl te	rtiary butyl ether	r	EDB = 1,2-6	dibromoetha	ine				B, all other	analytes	
			_									1,2-DCA =	1,2-dichloro	ethane		analyzed	by SW826	0В.		i
* = Hydroca	rbon reported in	the gasoline ra	inge does not i	match the gasoli	ne standard.											Analytica	methods	prior to Feb	гиагу 201	l, are
ll '	arbon reported is	•	-	•		andard.												reports on t		la County
1.7		, , ,														Environm	ental Heal	th Departm	ent files.	1
*** = Hydro	carbon reported	does not mate	h the pattern o	f the diesel stand	lard.															ļ
= No sam	ple collected																			
														Anal	ytical data	fo r sample	s collected	prior to 20	11 are obt	ained from
[1] Weakly:	modified or unm	odified gasolir	ne is significan	t.										do	cuments av	ailable in t	he Alame	da County E		- 11
[2] = Report	ing limits were i	ncreased due to	high concent	rations of target	analytes.														•	ment files.
[3] = Sampl	e also analyzed f	or halogenated	volatile organ	ic compounds (l	EPA Method	8010) and s	emivolatile	organic comp	oounds (EPA Meth	od 8270A); all	analytes		ions and loc							
reported as n	on-detect.											MW-5A/I	3, MW-6A/	B, and extr	action wells	EX-4 thro	ough EX-7	surveyed b		
																			on Ju	ne 2, 2014.

GENERAL NOTES: BASE MAP FROM U.S.G.S. SAN LORENZO, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1978

QUADRANGLE LOCATION

STRATUS ENVIRONMENTAL, INC.

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

SITE LOCATION MAP

FIGURE

PROJECT NO. 2115-1436-01

(10.37) MW-6B MW-6A (10.39) ARROYO CENTER BUILDINGS ARROYO CENTER PARKING LOT LEGEND

MW-1 MONITORING WELL LOCATION

EXTRACTION WELL LOCATION

V-1 VOZONE INJECTION WELL LOCATION

(10.74) GROUNDWATER ELEVATION IN FEET RELATIVE TO MSL

=10.50 = GROUNDWATER ELEVATION CONTOUR IN FEET RELATIVE TO MSL

-- INFERRED GROUNDWATER FLOW DIRECTION

WELLS MEASURED ON 6/19/14
MSL = MEAN SEA LEVEL
(NM) = NOT MEASURED

BASED ON SURVEY PREPARED BY MORROW SURVEYING 6/15/11

STRATUS ENVIRONMENTAL, INC.

PATH NAME: OlympicQuarterly
DRAFTER INITIALS: JMP
DATE LAST REVISED: July 14, 2014
FILENAME: Olympic Quarterly Figures

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR MAP 2nd QUARTER 2014 FIGURE

PROJECT NO. 2115-1436-01

6,000 260 1,600 EX-6 OFFICE & GARAGE 3,300 2,000 <25 ARROYO CENTER ARROYO CENTER PARKING LOT LEGEND

MW-1 MONITORING WELL LOCATION

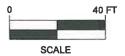
EX-1 EXTRACTION WELL LOCATION

W-1 OZONE INJECTION WELL LOCATION

6,000 260 1,600

GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN μg/L BENZENE CONCENTRATION IN μg/L

1,600 METHYL TERTIARY BUTYL ETHER (MTBE) IN μg/L


WELLS SAMPLED ON 6/19/14

GRO ANALYZED BY EPA METHOD SW8015B/SW8260B MTBE & BENZENE ANALYZED BY EPA METHOD SW8260B

BASED ON SURVEY PREPARED BY MORROW SURVEYING 6/15/11

STRATUS ENVIRONMENTAL, INC.

PATH NAME: Olympic\Quarterly
DRAFTER INITIALS: JMP
DATE LAST REVISED: July 14, 2014
FILENAME: Olympic Quarterly Figures

FORMER OLYMPIC SERVICE STATION
1436 GRANT AVENUE
SAN LORENZO, CALIFORNIA
GROUNDWATER ANALYTICAL SUMMARY
10' DEPTH MONITORING WELLS
2nd QUARTER 2014

FIGURE

PROJECT NO. 2115-1436-01

<50 <0.50 19 210 9.5 10 MW-4 <0.50 170 MW-3 € ● EX-2 190 25 18 86 <0.50 82 MW-6B 190 <0.50 OFFICE & GARAGE <0.50 EX-3 MW-5B MW-5A 96 <0.50 <50 <0.50 ARROYO CENTER BUILDINGS ARROYO CENTER PARKING LOT LEGEND

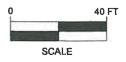
← MW-1 MONITORING WELL LOCATION
 ← EX-1 EXTRACTION WELL LOCATION
 ← IW-1 OZONE INJECTION WELL LOCATION

90 G 0.50 B

GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN μg/L

<0.50 BENZENE CONCENTRATION IN μg/L

230 METHYL TERTIARY BUTYL ETHER (MTBE) IN μg/L


WELLS SAMPLED ON 6/19/14

GRO ANALYZED BY EPA METHOD SW80158/SW8260B MTBE & BENZENE ANALYZED BY EPA METHOD SW8260B

BASED ON SURVEY PREPARED BY MORROW SURVEYING 6/15/11

STRATUS ENVIRONMENTAL, INC.

PATH NAME: OlympicQuarterly
DRAFTER INITIALS: JMP
DATE LAST REVISED: July 14, 2014
FILENAME: Olympic Quarterly Figures

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA GROUNDWATER ANALYTICAL SUMMARY 20' - 26' DEPTH MONITORING WELLS

2nd QUARTER 2014

4

PROJECT NO. 2115-1436-01

FIGURE

APPENDIX A FIELD DATA SHEETS

Site Address 1436 Grant Avenue
City San Lorenzo
Sampled by: Carl Scholze

Site Number Olympic Jaber
Project Number 2115-1436-01
Project PM S. Bittinger
DATE 06/19/14

ruige meurou	DTWat	sample Sample	other	other time I.D Time (feet)	other time 1.D Time (refeet)	other time I.D Time (refeet) 7.40	other time 1.D Time (feet) 7.90 MU-2 1817 7.58 MU-3 1500	other time 1.D Time (feet) 7.40 MU-2 1817 7.43 MU-2 1817 7.58 MU-3 1500 6xy 7.79 MU-34 1441 8.41 MU-5A Z029	other time 1.D Time (feet) 7.90	other time l.D Time (feet) 7.40	other time 1.D Time (feet) 7.90 MU-2 1817 7.58 MU-3 1500 4cy 7.79 MU-59 2029 7.52 MU-58 2022 8.08 MU-68 1955 7.32 MU-68 1949	other time l.D Time (feet) 7.45	other time 1.D Time (feet) 7.90 MU-2 1817 7.58 MU-3 1500 4cy 7.79 MU-3 1500 4cy 7.79 MU-59 2029 7.52 MU-58 1949 7.52 MU-68 1949 7.52 MU-68 1955 7.52 MU-68 1955 7.52 MU-68 1955	other time time l.D Time (feet) 7.45	other time l.D Time (feet) 7.90	other time l.D Time (feet) 7.90	other time l.D Time (feet) 7.40	other time (feet) (feet) 7.90 7.90 7.90 4y 7.79 4y 7.79 4y 7.52 8.91 8.08 8.08 7.52 8.08 7.54 7.57 7.57 7.57 8.08 8.08 7.57 7.57 7.57 8.08 8.08 8.08 8.08 7.57 7.57 8.08 8.08 8.08 7.37 8.08 8.08 7.37 8.09 8.09 8.09 8.09 8.00 8.00 8.50 8.50 8.50 8.50 8.50 8.50	other time time l.D Time (feet) 7.40	other time (feet) Ifeet) Ifeet) 7.90	Sample Sample Sample Sample I.D Time I.D Time I.D Time I.D Time I.D 7.40 M.U.2 I.B.7 7.45 M.U.3 I.B.0 8.08 M.U.54 Z027 7.52 M.U.58 Z027 8.08 M.U.54 I.918 7.52 M.U.58 I.918 7.53 EX-1 I.918 7.34 EX-2 I.918 7.55 EX-1 I.818 4.05 EX-5 EX-1 7.85 EX-1 I.818 4.05 EX-5 L058 8.50 EX-1 T.S7 9.50 T.S7	other time time l.D Time (feet) 7.40	Sample Sample Sample Sample I.D Time I.D Time I.D Time I.D Time I.D	Sample S	Sample Sample Sample Clime C	Sample S
	DTW at sample Sample	other time I.D	(leet)	MC-1	1-UM 7-UM	MU-2	7.40 MU-1 7.43 MU-2 7.58 MU-3	7,40 MU-1 7,40 MU-2 7.43 MU-3 7.79 MU-3 8,41 MU-5A	7.40 MU-1 7.45 MU-2 7.58 MU-3 7.79 MU-3 8.41 MU-5A 7.52 MU-58	7.40 MU-1 7.45 MU-3 7.79 MU-3 7.79 MU-3 7.79 MU-5A 8.41 MU-5A 7.52 MU-5B	7.40 MU-1 7.45 MU-2 7.79 MU-3 7.79 MU-3 7.79 MU-5A 8.41 MU-5A 7.52 MU-5B 8.08 MU-6B	7.40 MU-1 7.45 MU-2 7.79 MU-3 7.79 MU-54 8.41 MU-54 7.52 MU-68 7.52 MU-68 7.52 K-1	7.40 MU-1 7.45 MU-2 7.79 MU-3 7.79 MU-5A 8.41 MU-5A 7.52 MU-58 8.08 MU-6B 7.32 MU-6B 7.35 EX-1 7.34 EX-2	7.40 MU-1 7.45 MU-3 7.79 MU-54 8.41 MU-54 7.52 MU-68 8.08 MU-68 7.32 MU-68 7.34 EX-2	7.40 MU-1 7.45 MU-3 7.79 MU-3 7.79 MU-3 7.52 MU-58 8.08 MU-66 7.52 MU-66 7.52 MU-66 7.52 MU-66 7.53 EX-1 7.43 EX-2 7.43 EX-3	7.40 MU-1 7.45 MU-2 7.79 MU-3 7.79 MU-54 8.41 MU-54 7.52 MU-68 7.32 MU-68 7.34 EX-2 7.39 EX-2 7.40 EX-3	7.90 MU-1 7.90 MU-2 7.58 MU-3 7.52 MU-58 8.08 MU-68 7.52 MU-68 7.32 MU-68 7.34 EX-2 7.43 EX-2 7.45 EX-3 7.45 EX-3 7.52 EX-4 7.65 EX-5	7.40 MU-1 7.45 MU-3 7.79 MU-3 7.79 MU-5A 7.52 MU-6B 8.08 MU-6B 7.52 MU-6B 7.37 EX-2 7.39 EX-2 7.39 EX-2 7.45 EX-3 4.05 EX-5 8.50 EX-5 8.50 EX-5	7.40 MU-1 7.40 MU-2 7.58 MU-3 7.79 MU-58 8.41 MU-58 8.08 MU-68 7.52 MU-68 7.54 EX-2 7.45 EX-2 9.05 EX-3 7.52 EX-4 8.50 EX-7 8.50 EX-7	7.40 MU-1 7.40 MU-2 7.58 MU-3 7.79 MU-58 8.08 MU-66 7.52 MU-66 7.52 MU-66 7.52 MU-66 7.54 EX-1 7.45 EX-2 7.45 EX-5 7.45 EX-5 8.50 EX-1 8.50 EX-1	7.40 MU-1 7.40 MU-2 7.79 MU-3 7.79 MU-5A 7.52 MU-5A 7.52 MU-6B 7.37 EX-2 7.39 EX-2 7.40 EX-4 8.50 EX-6	7.40 MU-1 7.40 MU-2 7.58 MU-3 7.79 MU-58 8.41 MU-58 8.08 MU-66 7.52 MU-66 7.54 EX-2 7.45 EX-2 7.45 EX-3 4.05 EX-5 8.50 EX-7 8.50 EX-7	7.40 MU-1 7.40 MU-3 7.79 MU-3 7.79 MU-54 8.41 MU-54 7.52 MU-68 7.52 MU-68 7.34 EX-2 7.39 EX-2 7.45 EX-3 4.01 EX-4 4.05 EX-5 8.50 EX-6 8.50 EX-7	7.40 MU-1 7.40 MU-2 7.58 MU-3 7.79 MU-58 8.41 MU-58 8.08 MU-68 7.52 MU-68 7.54 EX-2 7.45 EX-2 4.05 EX-5 8.50 EX-7 8.50 EX-7	7.40 MU-1 7.40 MU-3 7.79 MU-3 7.79 MU-54 8.41 MU-54 7.52 MU-68 7.52 MU-68 7.34 EX-2 7.39 EX-2 7.40 EX-4 8.50 EX-6 8.50 EX-7	7.40 MU-1 7.40 MU-2 7.58 MU-3 7.79 MU-58 8.41 MU-58 8.08 MU-68 7.52 MU-68 7.52 EX-1 7.43 EX-2 7.45 EX-2 8.50 EX-7 8.50 EX-7 8.50 EX-7
other	other	(feet)	7.9.7		7.43	7.43				20 1 20	7 7 20 7 20 7	20 1 80 1 1	7 7 00 7 00 7 7	1 1 20 1 80 1 1 1 1	1 1 20 1 00 1 1 1 2 0	7 7 8 7 8 7 7 7 7 8 5	7 7 8 7 8 7 7 7 6 9 7 7	7 7 80 7 80 7 7 7 7 8 8 7 80	7 7 8 7 80 7 7 7 7 8 5 7 80	7 7 80 7 80 7 7 7 7 80	7 7 8 7 8 7 7 7 8	7 7 8 7 80 7 7 7 7 8 5 7 80	7 7 8 7 8 7 7 7 7 8 5 7 8 8	7 7 8 7 80 7 7 7 7 80	7 7 8 7 8 7 7 7 7 8 5 7 8 9	7 7 8 7 80 7 7 7 7 8 8
Bailer Pump	Bailer Pump		×	*		×			V 3	V 2 4	V 8 E	V 24 25 25		V X & S		V X X										
al No Ser No Purge	Purge			ر ا	× 2.5																					
asing umes Illons)	- $+$	71.	- 5	117.	5.35 5.8	3.66 2		1.64			۰															
Multiplier vol	> 3 1 1			L	_	2 2 300	0.5		8	V V	V W V	V V V O	W W W O O	W W W O O O	V V V O O O O	V W W O O O O	V V V O O O O O O	V V V O O O O O O	V V V O O O O O O	V V V O O O O O O O	V V V O O O O O O	V V V O O O O O O O	V V V O O O O O O	V V V O O O O O O O	V V V O O O O O O	V V V O O O O O O O
Diameter (inches) 2 " 2 " 2 " 2 "	(inches)	.2	2			۳۴ ا	٦,,		1 .2		2	2 2 3	2 2 ,		0.7	3.74.0	0.2.0	2,2,0,5	0.20	3,24,0						
	(feet)	16.3	2.0	-	70	2 ° °	2.08	2 11.90		2.19			12		2	= -										
Depth (feet) (feet) 24.20 18.85 18.19				-		-	9.6	74.61	9.85	1	\sqcup															
Depth to Product Water (feet) (feet) 7.5 &		7.86	7.73	7.50		7.48	7.53	25.7	7:56		7.32	7.17	7.59	73.7 7.59 7.7 7.7	73.7 75.7 75.7 03.7 74.7	73.7 7.59 7.57 7.50 7.64 7.84	73.7 75.7 75.7 75.7 75.7 7.84	737 757 757 757 787 18.7	73.7 75.7 75.7 75.7 75.7 18.7 18.7	73.7 75.7 75.7 75.7 78.7 18.7	732. 75.7 75.7 75.7 78.7 18.7 18.7	73.7 75.7 75.7 75.7 75.7 78.7 18.7	73.7 75.7 75.7 75.7 78.7 18.7 18.7	73.7 75.7 75.7 75.7 78.7 18.7	73.7 75.7 75.7 78.7 18.7 18.7 18.7	7.57 7.59 7.57 7.57 7.8.7 18.7 18.7
Time Produc (feet)	-+	1310		8121	8521		1378	1332	1341	1.2.	1314	1350	1344 1350 30 L	1320	13.44 13.50 13.6 13.16 13.06	1320 1336 1336 1336 1336	1350 1360 1380 1380 1380 13802	1350 1300 1310 1310 1300 1300 1300 1300	1350 1350 1336 1336 1302 1302 1302 1307	1350 1350 1336 1336 1307 1307 1307 1307	1350 1350 1304 1304 1305 1305 1305 1305 1307	1350 1350 1336 1302 1302 1302 1307 1307	1350 1350 131 1302 1302 1302 1303 1303 1303 1303	1350 1350 1336 1302 1302 1307 1307	1350 1350 131 1302 1302 1302 1303 1303 1304	1350 1350 1336 1302 1302 1307 1314 1314
Well ID			1-11	2- JW	MU-3 1	W-7-4	Min-SA	MU-58	WII-LA		12-68	17-68 EX-1	17-68 EX-1 EX-7	εx-3 εx-3									+	+ 		

Multiplier $2'' = 0.5 \ 3'' = 1.0 \ 4'' = 2.0 \ 6'' = 4.4$

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

CALIBRATION DATE

PH 06/13/14

Conductivity
DO 1

Site Address :1436 Grant Ave
City San Lorenzo
Sampled By: Carl : Scholze
Signature

Well ID EX-)					Well II) MU-Y				•
Purge start time			Odor	Y (N)		start time			Odor	Ø N
	Temp C	pН	cond	gallons		1'	Temp C	pН	-	Ø N
time 1359	20.9	8.35	867,	0	time	1430			cond	gallons
time 1404	19.8	8.27	862	8	time	1441	21.9	8.13	707	0
time 1408	20.0	8.21	855	16	time	7771	21.7	8.37	67/	dry 2
time 1417	20.3	8.24	835	24	time					4
purge stop time		5 1.74		31	purge	slop time		: 1,48	ORP -	l
Well ID MW-					Well II			8 1,1	Old	124
Purge start time			Odor	(A) N		start time			Odor	Y 100
	Temp C	ρН	cond	gallons			Temp C	рН	cond	Y (f)
time 1445	22.3	8.06	724.	٥	time	16) 4	20. 8	8.28	748,	0
time 1448	20.4	8.10	754	2	time	1619	19.6	8.25	749	7
time 1451	20. 7	8.10	760	4	time	1623	19.6	8.20	744	14
time 1500	20.9	8.13	760	5.5	time	1634	20.0	8.26	738	22
purge stop time	Do :	0.93	ORP -	106	purge	stop time		1.59		7
Well ID Mul-		;			Well II	つ ざメ-て				
Purge start time			Odor	Y®	Purge	start time			Odor	ΥN
	Temp C	рН	cond	gallons			Temp C	рН	cond	gallons
time 1643	21.1	8.25	758,	0	time	1708	77.0	કે.૦૧	745 p	0
time 1647	20.7	8.20	757	3	time	1711	20.8	8.00	745	8
time 1651	20, l	8.16	755	Ь	lime	7715	70.7	7.99	741	16
time 1659	20.4	8.21	745	8.5	time	1724	20.5	8.02	733	24
purge stop time	DO	* 1.34	ORP 8	l	purge	stop time	00: 1.	20	ORP	28
Well ID EX-7					Well IC	MW-	۷			
Purge start time			Odor	Y 🔞	Purge	start time			Odor	Y 🕙
	Temp C	pН	cond	gallons			Temp C	рН	cond	gallons
time 1737	20.9	8.12	737	Ò	time	1805	20.2	8.4	7482	0
time 1747	20.3	8.07	753	8	time	1808	19.8	8.16	761	ζ
time 1746	20.1	8.04	755	16	time	1810	20.0	8.14	757	4
time 1757	19.8	8.15	739	24	time	1817	19.9	8.20	7571	6
purge stop time	00	: 1.22	ORP	105	purge	stop time	00:			39

Site Address 1436 Great Ave

City Sen Lorenzo

Sampled By: Corl Schulze

Signature

Site Number Olympic Jaker
Project Number 2/15 - 1436 - 01
Project PM 5. Billings
DATE 06/19/14

Well ID EX - Y Purge start time					Well li	U =v :	7			
			Odor			C A	۷		i	
	Temp C	al!		Y 🕖	Purge	start time			Odor	Y
time 1820		pH	cond	gallons			Temp C	рН	cond	gallons
1,630	20.6	8.20	776,	0	time	1901	20.8	8.29	771,	0
1023	20.2	8.12	792'	7	time	1904	19.9	8.23	783	8
time 1840	NIA	NIA	NIA	14	time	1908	19.8	8.18	786	16
time 1848	19.8	9.26	768	4	time	1918	19.3	8.71	775	75
purge stop time	00:	1.55	ORP I	37	purge	stop time	00:	2.45	ORP	146
Well ID MU-6	A				Well I	D MU-6	В		, , , , , , , , , , , , , , , , , , ,	
Purge start time			Odor	Ø N	Purge	start time			Odor	Y (N)
	Temp C	pН	cond	gallons			Temp C	pН	cond	gallons
time 1928	21.1	7,90	1137,	٥	time	1934	21.7	8.21	811,	0
time 1930	21.1	7.89	1110	0.5	time	1938	19.9	8.19	814	7
time 1955	20.3	7.85	1103	l	time	1941	19.7	8.15	810	4
time					lime	1949	19.5	8.18	800)	6.5
purge stop time	DO:	1.70	ORP	-102	purge	stop time	Do: 1.	81	ORP Y	13
Well ID MU-	5 A				Well I	MU-	5 B			
Purge start time			Odor	Ø N	Purge	start time			Odor	Y 🚱
	Temp C	pН	cond	gallons			Temp C	рH	cond	gallons
time 1001	20.3	7.93	10982	O	lime	2008	20.5	8.26	771.	0
time ZOO3	20.4	7.91	1105	0.5	time	2012	19.7	8.26	767	Z
time 2029	19.8	7,83	1114	1_	time	2014	19.6	8.24	762	7
time					time	2022	19.0	8.20	762	6
purge stop time	00	1.93	ORP	-83	purge	stop time	DO:			10
Well ID €X-L					Well I)				
Purge start time			Odor	YN	Purge	start time			Odor	ΥN
	Temp C	pН	cond	gallons			Temp C	рН	cond	gailons
time 2039	18.7	8.20	824	0	time					3
time wyy	19.3	8.10	826	8	time					
time 2048	19.2	8.08	811	16	time					
time 7058	18.3	8.14	794	23	time					
purge stop time	00:	1.28	ORP	11	purge :	stop time			ORP	

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected
 constituents is added to the sample at concentrations at which the accuracy of the
 analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical
 instrument performance, a quality check sample, which is prepared independently
 of the calibration standards and contains the constituents of interest, is analyzed to
 confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Scott Bittinger Phone: (530) 676-2062 Fax: (530) 676-6005

Date Received: 06/25/14

Job:

2115-1436-01/ Olympic

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentration	on	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-1						
Lab ID:	STR14062546-01A	TPH-P (GRO)	190		50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 16:59	Methyl tert-butyl ether (MTBE)	230		0.50 μg/L	07/01/14	07/01/14
		Benzene	ND		0.50 μg/L	07/01/14	07/01/14
		Toluene	ND		0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND		0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
Client ID:	MW-2						
Lab ID:	STR14062546-02A	TPH-P (GRO)	ND		50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 18:17	Methyl tert-butyl ether (MTBE)	13		0.50 μg/L	07/01/14	07/01/14
		Benzene	ND		0.50 μg/L	07/01/14	07/01/14
		Toluene	ND		0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND		0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
Client ID:	MW-3						
Lab ID:	STR14062546-03A	TPH-P (GRO)	ND		50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 15:00	Methyl tert-butyl ether (MTBE)	16		0.50 μg/L	07/01/14	07/01/14
		Benzene	2.3		0.50 μg/L	07/01/14	07/01/14
		Toluene	ND		0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND		0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND		0.50 μg/L	07/01/14	07/01/14
Client ID:	MW-4						
Lab ID:	STR14062546-04A	TPH-P (GRO)	6,000		800 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 14:41	Methyl tert-butyl ether (MTBE)	1,600		4.0 μg/L	07/01/14	07/01/14
		Benzene	260		4.0 μg/L	07/01/14	07/01/14
		Toluene	ND	V	4.0 μg/L	07/01/14	07/01/14
		Ethylbenzene	8.8		4.0 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	V	4.0 μg/L	07/01/14	07/01/14
		o-Xylene	ND	v	4.0 μg/L	07/01/14	07/01/14
Client 1D:	MW-5A						
Lab ID:	STR14062546-05A	TPH-P (GRO)	21,000		5,000 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 20:29	Methyl tert-butyl ether (MTBE)	ND	V	25 μg/L	07/01/14	07/01/14
		Benzene	2,000		25 μg/L	07/01/14	07/01/14
		Toluene	ND	V	25 μg/L	07/01/14	07/01/14
		Ethylbenzene	1,400		25 μg/L	07/01/14	07/01/14
		m,p-Xylene	650		25 μg/L	07/01/14	07/01/14
		o-Xylene	ND	V	25 μg/L	07/01/14	07/01/14

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-5B					
Lab ID:	STR14062546-06A	TPH-P (GRO)	ND	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 20:22	Methyl tert-butyl ether (MTBE)	32	0.50 μg/L	07/01/14	07/01/14
		Benzene	ND	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L 0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L 0.50 μg/L	07/01/14	07/01/14
Client ID:	MW-6A	0-Aylene	ND	0.50 µg/L	07/01/14	07/01/14
Lab ID:	STR14062546-07A	TPH-P (GRO)	42.000	10,000 μg/L	07/01/14	07/01/14
	06/19/14 19:55	Methyl tert-butyl ether (MTBE)	43,000		07/01/14	07/01/14
Suic Sumpicu	00/17/14 17.55	Benzene	77	50 μg/L		
		Toluene	3,300	50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND V	50 μg/L	07/01/14	07/01/14
		•	2,000	50 μg/L	07/01/14	07/01/14
		m,p-Xylene	1,800	50 μg/L	07/01/14	07/01/14
Clinat ID	MW CD	o-Xylene	1,300	50 μg/L	07/01/14	07/01/14
Client ID : Lab ID :	MW-6B	TRU D (CDC)		#A #		071014
	STR14062546-08A	TPH-P (GRO)	86	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 19:49	Methyl tert-butyl ether (MTBE)	82	0.50 μg/L	07/01/14	07/01/14
		Benzene	ND	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
Client ID:	EX-1					
Lab ID:	STR14062546-09A	TPH-P (GRO)	ND	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 14:17	Methyl tert-butyl ether (MTBE)	19	0.50 μg/L	07/01/14	07/01/14
		Benzene	ND	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
Client ID:	EX-2					
Lab ID:	STR14062546-10A	TPH-P (GRO)	150	100 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 17:24	Methyl tert-butyl ether (MTBE)	170	0.50 μg/L	07/01/14	07/01/14
		Benzene	ND	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
Client ID:	EX-3					
Lab ID:	STR14062546-11A	TPH-P (GRO)	96	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 19:18	Methyl tert-butyl ether (MTBE)	110	0.50 μg/L	07/01/14	07/01/14
		Benzene	ND	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
Client ID: 📏	EX-4					
Lab ID:	STR14062546-12A	TPH-P (GRO)	210	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 18:48	Methyl tert-butyl ether (MTBE)	10	0.50 μg/L	07/01/14	07/01/14
		Benzene	9.5	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	0.55	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	0.74	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
2115-1436	-01/Olympic					Page 2 of

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

			·			
Client ID:	EX-5					
Lab ID:	STR14062546-13A	TPH-P (GRO)	110	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 16:34	Methyl tert-butyl ether (MTBE)	14	0.50 μ g/ L	07/01/14	07/01/14
		Benzene	6.0	0.50 μ g/ L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
Client ID:	EX-6					
Lab ID:	STR14062546-14A	TPH-P (GRO)	190	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 20:58	Methyl tert-butyl ether (MTBE)	18	0.50 μg/L	07/01/14	07/01/14
		Benzene	25	0.50 µg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μg/L	07/01/14	07/01/14
		Ethylbenzene	5.9	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μ g/ L	07/01/14	07/01/14
		o-Xylene	ND	0,50 μg/L	07/01/14	07/01/14
Client ID:	EX-7					
Lab ID:	STR14062546-15A	TPH-P (GRO)	56	50 μg/L	07/01/14	07/01/14
Date Sampled	06/19/14 17:57	Methyl tert-butyl ether (MTBE)	50	0.50 μg/L	07/01/14	07/01/14
		Benzene	0.79	0.50 μg/L	07/01/14	07/01/14
		Toluene	ND	0.50 μ g/L	07/01/14	07/01/14
		Ethylbenzene	ND	0.50 μg/L	07/01/14	07/01/14
		m,p-Xylene	ND	0.50 μg/L	07/01/14	07/01/14
		o-Xylene	ND	0.50 μg/L	07/01/14	07/01/14

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Sadan Walter Strikm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. ettests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

7/2/14

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR14062546

Job:

2115-1436-01/ Olympic

Alpha's Sample ID	Client's Sample ID	Matrix	pН
14062546-01A	MW-1	Aqueous	2
14062546-02A	MW-2	Aqueous	2
14062546-03A	MW-3	Aqueous	2 .
14062546-04A	MW-4	Aqueous	2
14062546-05A	MW-5A	Aqueous	2
14062546-06A	MW-5B	Aqueous	2
14062546-07A	MW-6A	Aqueous	2
14062546-08A	MW-6B	Aqueous	2
14062546-09A	EX-1	Aqueous	2
14062546-10A	EX-2	Aqueous	2
14062546-11A	EX-3	Aqueous	2
14062546-12A	EX-4	Aqueous	2
14062546-13A	EX-5	Aqueous	2
14062546-14A	EX-6	Aqueous	2
14062546-15A	EX-7	Aqueous	2

7/2/14

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 02-Jul-14	(QC S1	QC Summary Report Work Ord 1406254											
Method Blank File ID: 14070105.D		Type N		est Code: El atch ID: MS1			15B/C / SW8260 Analysis Date	B e: 07/01/2014 11:56						
Sample ID: MBLK MS15W0701B	Units : µg/L			SD_15_1407			Prep Date:	07/01/2014 11:56						
Analyte	Result	PQL		SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual					
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4	ND	50				70	400							
Surr: Toluene-d8	8.86 10.5		10 10		89 105	70 70	130 130							
Surr: 4-Bromofluorobenzene	10.5		10		105	70 70	130							
Laboratory Control Spike	10.4	Type L		est Code: El			15B/C / SW8260	R						
File ID: 14070104.D		.,,,,		atch ID: MS1				e: 07/01/2014 11:30						
Sample ID: GLCS MS15W0701B	Units : µg/L			SD 15 1407			Prep Date:	07/01/2014 11:30						
Analyte	Result	PQL				LCL(ME)		efVal %RPD(Limit)	Qual					
TPH-P (GRO)	399	50	400		99.8	70	130							
Surr: 1,2-Dichloroethane-d4	8.94		10		89	70	130							
Surr: Toluene-d8	10.4		10		104	70	130	•						
Surr: 4-Bromofluorobenzene	10.7		10		107	70	130							
Sample Matrix Spike		Type N	IS T	est Code: El	PA Met	hod SW80	15B/C / SW8260	8						
File ID: 14070115.D			Ва	atch ID: MS1	5W070)1B	Analysis Dat	e: 07/01/2014 15:27						
Sample ID: 14062546-11AGS	Units : µg/L		Run ID: M	SD_15_1407	701A		Prep Date:	07/01/2014 15:27						
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual					
TPH-P (GRO)	2600	250	2000	95.76	125	54	143							
Surr: 1,2-Dichloroethane-d4	47.6		50		95	70	130							
Surr: Toluene-d8	51		50		102	70	130							
Surr: 4-Bromofluorobenzene	54		50		108	70	130							
Sample Matrix Spike Duplicate		Type N	ASD T	est Code: El	PA Met	hod SW80	15B/C / SW8260	В						
File ID: 14070116.D	Batch ID: MS15W0701B Analysis Date:													
Sample ID: 14062546-11AGSD	Units: µg/L		Run ID: M	SD_15_140	701A		Prep Date:	07/01/2014 15:48						
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual					
TPH-P (GRO)	2510	250	2000	95.76	121	54	143 26	601 3.7(23)						
Surr: 1,2-Dichloroethane-d4	46.1		50		92	70	130							
Surr: Toluene-d8	52		50		104	70	130							
Surr: 4-Bromofluorobenzene	52.8		50		106	70	130							

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 02-Jul-14	(Work Orde 14062546							
Method Blank File ID: 14070105.D Sample ID: MBLK MS15W0701A	t laite	Type MBLK	Test Code: Batch ID: M	S15W070		Analysis		7/01/2014 11:56	
Analyte	Units : µg/L Result		D: MSD_15_14 <val_spkrefv< td=""><td></td><td>LCL(ME)</td><td>Prep Da</td><td></td><td>7/01/2014 11:56 %RPD(Limit)</td><td>Qual</td></val_spkrefv<>		LCL(ME)	Prep Da		7/01/2014 11:56 %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5		ou quantum anno anno anno anno anno anno anno ann					
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	8.86 10.5	0.0	10 10	89 105	70 70	130 130			
Surr: 4-Bromofluorobenzene	10.4		10	104	70	130			
Laboratory Control Spike		Type LCS	Test Code:						
File ID: 14070103.D	l laita tt	O II	Batch ID: M		1A	•		7/01/2014 10:51	
Sample ID: LCS MS15W0701A Analyte	Units : µg/L Result		D: MSD_15 _14 kVal SpkRefV		LCL/MEN	Prep Da		7/01/2014 10:51	Qual
Methyl tert-butyl ether (MTBE)	7.34	0.5	10	73	63	137	r Di (ei vai	701 (1° D(CITTAL)	
Benzene	9.47	0.5	10	95	70	130			
Toluene	10.1	0.5	10	101	80	120			
Ethylbenzene	10.2	0.5	10	102	80	120			
m,p-Xylene o-Xylene	10.5 10.8	0.5 0.5	10 10	105 108	65 70	139 130			
Surr: 1,2-Dichloroethane-d4	8.85	0.5	10	89	70 70	130			
Surr: Toluene-d8	10.4		10	104	70	130			
Surr: 4-Bromofluorobenzene	10.7		10	107	70	130			
Sample Matrix Spike		Type MS	Test Code:	EPA Meti	nod SW82	260B			
File ID: 14070113.D			Batch ID: M	S15W070	1A	Analysi	s Date: 0	7/01/2014 14:44	
Sample ID: 14062546-11AMS	Units : µg/L		D: MSD_15_14			Prep Da		7/01/2014 14:44	
Analyte	Result	PQL Sp	kVal SpkRefV	al %REC	LCL(ME)	UCL(ME) R	PDRefVal	%RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	137	1.3		08 58	56	140			
Benzene	41.9	1.3	50	0 84	67	134			
Toluene Ethylbenzene	43.8 44.1	1.3 1.3	50 50	0 88 0 88	38 70	130 130			
m,p-Xylene	44.1 45.6	1.3	50	0 91	65	139			
o-Xylene	48	1.3	50	0 96	69	130			
Surr: 1,2-Dichloroethane-d4	47.8		50	96	70	130			
Surr: Toluene-d8	51.5		50	103	70	130			
Surr: 4-Bromofluorobenzene	51.4		50	103	70	130		<u> </u>	
Sample Matrix Spike Duplicate		Type MSD	Test Code:	EPA Met	hod SW8	260B			
File ID: 14070114.D			Batch ID: N		11A	-		7/01/2014 15:06	
Sample ID: 14062546-11AMSD	Units: µg/L		D: MSD_15_1			Prep D		7/01/2014 15:06	. .
Analyte	Result	PQL Sp	kVal SpkRefv					I %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	131	1.3	50 10	08 47	56	140	136.8	4.0(40)	M2
Benzene	42.2	1.3	50	0 84	67	134	41.9	0.6(21)	
Toluene	43.3	1.3	50	0 87	38	130	43.82	1.3(20)	
Ethylbenzene	43.5	1.3	50	0 87	70	130	44.09 45.64	1.4(20)	
m,p-Xylene o-Xylene	45 47.3	1.3 1.3	50 50	0 90 0 95	65 69	139 130	45.64 47.95	1.4(20) 1.4(20)	
Surr: 1,2-Dichloroethane-d4	47.5 47.5	1.3	50	95	70	130	41.50	1.7(20)	
Surr: Toluene-d8	50.9		50	102	70	130			
Surr: 4-Bromofluorobenzene	51.9		50	104	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 02-Jul-14

QC Summary Report

Work Order: 14062546

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

Billing	IIIIOIII	IOUVII	

PO:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc. WorkOrder: STR14062546

EMail Address

sbittinger@stratusinc.net

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Client: Report Attention Phone Number

Stratus Environmental Scott Bittinger (530) 676-2062 x

3330 Cameron Park Drive

EDD Required: Yes

Sampled by : Carl Schulze

Suite 550 Cameron Park, CA 95682-8861

Client's COC #: 13592, 13593

Job : 2115-1436-01/ Olympic

Cooler Temp Samples Received
3 °C 25-Jun-14

Report Due By: 5:00 PM On: 02-Jul-14

Date Printed 25-Jun-14

Page: 1 of 2

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

							Requested Tests								
Alpha	Client	Co	llection	No. of	Bottles)	TPH/P_W	VOC_W							1
Sample ID	Sample ID	Matrix	Date	Alpha	Sub	TAT							<u> </u>		Sample Remarks
STR14062546-01A	MW-1		5/19/14 16:59	4	0	5	GAS-C	BTXE/M_C				l	<u> </u>		
STR14062546-02A	MW-2		3/19/14 18:17	4	0	5	GAS-C	BTXE/M_C							
STR14062546-03A	MW-3		3/19/14 15:00	4	0	5	GAS-C	BTXE/M_C							
STR14062546-04A	MW-4		3/19/14 14:41	4	0	5	GAS-C	BTXE/M_C			ļ				
STR14062546-05A	MVV-5A		3/19/14 20:29	4	0	5	GAS-C	BTXE/M_C							
STR14062546-06A	MW-5B		5/19/14 20:22	4	0	5	GAS-C	BTXE/M_C							
STR14062546-07A	MW-6A		/19/14 19:55	4	0	5	GAS-C	BTXE/M_C							
STR14062546-08A	MW-6B		3/19/14 19:49	4	0	5	GAS-C	BTXE/M_C							
STR14062546-09A	EX-1		/19/14 14:17	4	0	5	GAS-C	BTXE/M_C							
STR14062546-10A	EX-2		7/19/14 17:24	4	0	5	GAS-C	ВТХЕ/М_С							

~				4
u.o	ш	Ш	en	ts:

Security seals intact. Frozen ice. :

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

(530) 676-2062 x

Alpha Analytical, Inc.

EMail Address

sbittinger@stratusinc.net

WorkOrder: STR14062546

Report Due By: 5:00 PM On: 02-Jul-14

Client:

Stratus Environmental
3330 Cameron Park Drive

Suite 550

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by: Carl Schulze

PO:

Client's COC #: 13592, 13593

Job: 2115-1436-01/ Olympic

Report Attention

Scott Bittinger

Cooler Temp 3 °C Samples Received 25-Jun-14 Date Printed 25-Jun-14

Page: 2 of 2

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

								Reque	sted Tests			
Alpha	Client	Collection	No. of	Bottles	;	TPH/P_W	VOC_W					
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT					<u> </u>		Sample Remarks
STR14062546-11A	EX-3	AQ 06/19/14 19:18	4	0	5	GAS-C	BTXE/M_C					
STR14062546-12A	EX-4	AQ 06/19/14 18:48	4	0	5	GAS-C	BTXE/M_C					
STR14062546-13A	EX-5	AQ 06/19/14 16:34	4	0	5	GAS-C	BTXE/M_C					
STR14062546-14A	EX-6	AQ 06/19/14 20:58	4	0	5	GAS-C	BTXE/M_C					
STR14062546-15A	EX-7	AQ 06/19/14 17:57	4	0	5	GAS-C	BTXE/M_C					

c	ш	-	-	ŧα	
·ι	ш	III C	44	13	•

Security seals intact. Frozen ice.:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Company: Attn: Address: City, State, Zip [*] Phone Number:	Billing Information: Stratus Environmental 3330 Comeron Park Dr. Conseron Park A 95	Ste 550		No S	rthern CA; outhern N\	Sate 9891 Hom /: 6255 Mc	Glendale Ilite Sen Road, Su Leod Ava,	/Ice Cent ite C, Ren Suite 24,	21 Sparks, NV 8943	827 20		Fax: Phone:	775-355-0- 918-368-9- 702-281-4- 714-388-21	406 089 848		135 Page #	592 (<u>2</u>	Z
Company: Address: City, State, Zip. Samples Collect	Consultant Client Info: Olympic 1736 Gran Ave. San Lacenza, CA ed from which State? (circle one) AZ (CA) N	Job and Purchase Ord Job # 21(5 - 14) Job Name: P.O. #: V WA ID OR DOD Site Other			-	F Name: Email Add Phone #: Cell #:		ttention/	Project Manager	Hinge			EDD Requi	ired? Yes	/ No TO			uired? (Ye	3 / N
Time Date	Matrix" od (See Key	Sample Description	TAT	Field Filtered?	# Containers " (See Key Below)	GRO	BTEX	M7 BE	Anaf	yala Raque	ested						Rem	irks	
1659 06/1 1817 1500 1441 2029	q AQ	MW-1 MW-2 MW-3 MW-4 MW-5A	516		10	X	X	x											
1949 1947 1724 1918		MU-5B MU-6A MW-6B EX-1 EX-2 EX-3																	
	ADDITIONAL INSTRUCTIONS: I (field sampler) attest to the validity and authenticity of this sample(s). I am aware that tampering with or intentionally mislebeling the sample location, date or time of collection is considered fraud and may be grounds for legal action. NAC 445.0638 (c) (2).																		
	Signature/Amiliation):	Date: 06/24/14 Time: 145	5	Received Received	by (Signet By (Signat by (Signat	ure/Affiliati	ion):						C	Date: 6 2		14	Time: 1/	459	

Time:

* Key: AQ - Aqueous WA - Waste OT - Other **: L - Liter V - VOA S-Soil Jar O - Orbo T - Tedlar B - Brass P - Plastic OT - Other NOTE: Samples are discarded 60 days after sample receipt unless other arrangements are made Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Date:

Time:

Relinquished by. (Signature/Affiliation):

Company	Billing Information: Stratus Environmental Inc.
Company	STICTION CHOTESTIAL INC.
Attn:	
Address:	
City, State, Zip:	**************************************
Phone Number:	Fax;

Main Laboratory: 255 Glendale Ave, Suite 21 Sparks, NV 89431

Phone: 775-355-1044 Fax: 775-355-0408

13593

Satellite Service Centers:

City, State, Zip: Phone Number:Fax:	The Tonmental In	/	Southern NV	: 6255 McLeo	l Ave, Suite 24,	, Las Vegas, NV 89120 le O, Carson, CA 90746	Phone	: 702-281-4848 : 714-388-2901	Page #		of	2_
Consultant/ Client info: Company: Address: City, State, Zp: Samples Collected from which State? (circle one) AZ CA N	Job and Purchase Orde Job # 2115 - 1 Job Name: P.O. #:			Repairement Repair		/Project Manager:		QC De EDD Required? Yes / Globel ID: Data Validation Level;	iliverable int No	EDF Requ	ired? Yes /	No
Time Sampled Sampled (See Key (See Key Lab ID Number (For Lab Use Only)) 163Y OVIQ AQ 2058 1757	Sample Description EX-5 EX-6 EX-7	IAT E SHE O	← ← ← Containers** (See Key Bal ow)		x BTEX	Analysis Requested				Rema	11/0	
ADDITIONAL INSTRUCTIONS: I (field sampler) attest to the validity and authenticity of this sample(s). I am aware that tampering with or intentionally mislabeling the sample location, date or time of collection is considered fraud and may be grounds for legal action. NAC 445.0838 (c) (2). Sampled By: Cal Scholze Recipied by: (Signature/Affiliation): Date: Time: Received by: (Signature/Affiliation): Date: Time: Received by: (Signature/Affiliation): Date: Time: Received by: (Signature/Affiliation): Date: Time: Date: Date: Time: Date: Da												
* Key: AQ - Aqueous WA - Waste OT - Other **: L - Liter V - VOA S-Soil Jar O - Orbo T - Tedlar B - Brass P - Plastic OT - Other NOTE: Samples are discarded 60 days after sample receipt unless other arrangements are made Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.												

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

2nd quarter 2014 Groundwater monitoring and sampling

report

Report Type:

Monitoring Report - Semi-Annually

Facility Global ID:

T0600102256

Facility Name:

OLYMPIC STATION

File Name:

14062546_EDF.zip

Organization Name:

Stratus Environmental, Inc.

Username:

STRATUS NOCAL

IP Address:

50.192.223.97

Submittal

Date/Time:

7/31/2014 10:42:46 AM

Confirmation

Number:

1585069179

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2014 State of California