

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-070

www.CRAworld.com

(510) 420-0700 Fax: (510) 420-9170

TRANSMITTAL

<u> Prijagijak ja da kritistis († 1907)</u>	<u> </u>		<u>in and somethings polytypids (1) ffyd</u> C				
DATE:	Februa	ary 17, 20	009	REFER	ENCE No.:	_24	0612
				Proje	CT NAME:	17	84 150th Avenue, San Leandro
To:	Jerry V	Vickham	<u> </u>				RECEIVED
	Alame	eda Cour	nty Health Care Ser	vices Age	ency		
	1131 H	Harbor Ba	ay Parkway, Suite 2	250			4:06 pm, Feb 23, 2009
			fornia 94502	-	<u> </u>		Alameda County
:		<u>, , , , , , , , , , , , , , , , , , , </u>	 		 		Environmental Health
Please fin	d enclos	ed:	Draft	\boxtimes	Final		
			Originals Prints	Ш	Other	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Sent via:			Mail Overnight Courier		Same Day Co Other Ge		eker and ACHCSA FTP uploads
		LJ	Overnight Courier		Outer Ge	eorrac	ker and ACHCSA FTF uploads
QUAN	JTITY				DESCRIP	TION	
1		Soil Va	apor Probe Samplir	ng Report		1101	
	<u>.</u>		~				
	Requeste Your Use		⊠ Fo	r Review a	and Comment	t	
	1001 050				,		
COMMI	ENTS:						
		uestions	regarding the cont	ent of thi	s document,	pleas	e contact Peter Schaefer at
(510) 420	-3319.	-					
		· · · · · · · · · · · · · · · · · · ·					
Copy to:	-	Denis B	rown				
Complet	ed by:	Peter Sc			Signed:	And	ney Cool
F:11:	Comme		[Please Print]				S
Filing:	Correspo	ondence l	THE				

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown
Shell Oil Products US
HSE - Environmental Services
20945 S. Wilmington Ave.
Carson, CA 90810-1039
Tel (707) 865 0251
Fax (707) 865 2542
Email denis.l.brown@shell.com

Re:

Shell-branded Service Station

1784 150th Avenue San Leandro, California SAP Code 136019 Incident #98996068

Agency Site No. RO0000367

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

SOIL VAPOR PROBE SAMPLING REPORT

SHELL-BRANDED SERVICE STATION **1784 150TH AVENUE** SAN LEANDRO, CALIFORNIA

SAP CODE

136019

INCIDENT NO.

98996068

AGENCY NO.

RO0000367

FEBRUARY 17, 2009 REF. NO. 240612 (6)

This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http:\\www.CRAworld.com

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SOIL VAPOR PROBE SAMPLING PROCEDURES	2
	2.1 PERSONNEL PRESENT	
	2.2 SOIL VAPOR SAMPLING	2
	2.3 SOIL VAPOR SAMPLING ANALYSIS	2
3.0	SOIL VAPOR PROBE SAMPLING RESULTS	3
4.0	CONCLUSIONS AND RECOMMENDATIONS	4

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR DATA MAP

LIST OF TABLES (Following Text)

TABLE 1

SOIL VAPOR ANALYTICAL DATA

TABLE 2

SOIL VAPOR FIELD DATA

LIST OF APPENDICES

APPENDIX A

STANDARD OPERATING PROCEDURES

APPENDIX B

LABORATORY ANALYTICAL REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to present the recent soil vapor probe sampling results. Alameda County Health Care Services Agency's (ACHCSA's) November 19, 2008 letter requested this sampling event.

The site is an operating Shell-branded service station located at the southern corner of the 150th Avenue and Freedom Avenue intersection in San Leandro, California (Figure 1). The area surrounding the site is mixed commercial and residential. The site layout (Figure 2) includes a station building, two dispenser islands, and three fuel underground storage tanks (USTs). One waste oil UST was removed from the site on May 25, 2006.

A summary of previous work performed at the site and additional background information was submitted in CRA's February 5, 2009 *Subsurface Investigation Report*, and is not repeated herein.

1

2.0 SOIL VAPOR PROBE SAMPLING PROCEDURES

2.1 PERSONNEL PRESENT

CRA Staff Geologist Erin Reinhart-Koylu sampled the soil vapor probes under the supervision of California Professional Geologist Peter Schaefer.

2.2 SOIL VAPOR SAMPLING

On January 17, 2009 CRA sampled soil vapor probes SVP-1 through SVP-3 and SVP-5 according to CRA's soil vapor probe sampling protocol, included as Appendix A. During the sampling event, SVP-4 could not be sampled because water was present in the probe's Teflon tubing. Several attempts were made to clear the water from SVP-4 without success. Soil vapor sampling and leak testing were performed following Department of Toxic Substances Control's January 28, 2003 Advisory-Active Soil Gas Investigation guidelines. Paper towels with shaving cream were placed at sample system connections for the leak test.

Purging and sampling of the probes was conducted at a rate of approximately 200 milliliters per minute (ml/min). As requested in ACHCSA's November 19, 2008 letter, an additional sample was collected from SVP-5 at a flow rate of 100 ml/min. Vapor samples were collected in 1-liter SummaTM canisters after removing approximately three purge volumes from the screen interval. Each sample was labeled, documented on a chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis.

2.3 <u>SOIL VAPOR SAMPLING ANALYSIS</u>

Soil vapor samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3 (modified) and benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tertiary-butyl ether (MTBE), and tracer compounds isobutane, butane, and propane (as tentatively identified compounds) by modified EPA Method TO-15. These tracer compounds were identified by EPA Method TO-15 as the most abundant compounds of the specific shaving cream analyzed and indicated by distinctive peaks on the petroleum hydrocarbon chromatograph, separate from TPH in the gasoline range. The laboratory analytical report is provided in Appendix B.

3.0 SOIL VAPOR PROBE SAMPLING RESULTS

Soil vapor samples collected on January 17, 2009 contained up to 51 micrograms per cubic meter ($\mu g/m^3$) MTBE. SVP-4 could not be sampled due to water in the sampling tubing. No other constituents of concern were detected.

As requested in ACHCSA's November 19, 2008 letter, CRA collected field measurements of carbon dioxide, methane, and oxygen concentrations before and after sampling, using a Landtec GEM 2000 portable gas analyzer.

Leak testing was performed during sampling using shaving cream to determine if ambient air was entering the SummaTM canisters during sampling. Isobutane was detected in the samples from SVP-2 and SVP-3. The highest concentration reported was $60 \, \mu g/m^3$, an amount considered negligible when compared with the amount in the tracer gas compound (approximately 350,000 $\mu g/m^3$ in shaving cream).

Table 1 summarizes the soil vapor analytical data, and Table 2 presents soil vapor field data. TPHg, BTEX, and MTBE results are shown on Figure 2, and the laboratory analytical report is presented in Appendix B.

4.0 CONCLUSIONS AND RECOMMENDATIONS

This round of soil vapor sampling was conducted following a multi-phase extraction pilot test conducted during the first two weeks of November 2008. All soil vapor sample concentrations were below San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) for residential and commercial land use.

Soil vapor sample concentrations in on-site probes have been below the residential land use RWQCB ESLs with the exception of TPHg in probes SVP-1 and SVP-4 during the September 2007 sampling event, and all constituent of concern concentrations have been below the commercial land use RWQCB ESLs during all five sampling events. Based on these results, no further on-site soil vapor monitoring is warranted.

In off-site probe SVP-5, TPHg concentrations exceeded residential and commercial land use RWQCB ESLs in two of the five events, ethylbenzene concentrations exceeded residential and commercial land use RWQCB ESLs during the September 15, 2008 event only, and benzene and xylenes concentrations exceeded residential land use RWQCB ESLs during the September 15, 2008 event only. SVP-5 could not be sampled during the May 20, 2008 event due to water in the sampling tubing.

CRA recommends one additional round of soil vapor sampling from SVP-5 to determine if the vapor concentrations rebound following the pilot testing. CRA proposes to collect the additional sample at a flow rate of 200 ml/min.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

A. Tol for:

Peter Schaefer, CEG, CHG

Anbrey K. Cool, PG

FIGURES

Shell-branded Service Station

1784 150th Avenue San Leandro, California

Vicinity Map

TABLES

TABLE 1

SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE, SAN LEANDRO, CALIFORNIA

Sample ID	Date	TPHg µg/m³	Benzene µg/m³	Toluene μg/m³	Ethylbenzene μg/m ³	Total Xylenes μg/m³	MTBE μg/m³	Butane ^a µg/m ³	Isobutane ^a µg/m ³	Propane ^a µg/m³
SVP-1	9/25/2007	12,000	<17	7,000	120	300	<19	67	ND	ND
SVP-1	3/5/2008	<17,000	8.2	1,300	41	95	<10	ND	70.12	ND
SVP-1 DUP ^c	3/5/2008	<18,000	7.9	400	32	65	<11	ND	62.99	ND
SVP-1	5/20/2008	620	<3.9	<4.6	<5.2	<5.2	<4.4	ND	ND	ND
SVP-1	9/17/2008	<270	<4.2	5.7	<5.7	<5.7	<4.8	ND	ND	ND
SVP-1	1/17/2009	<9,800	<2.7	<3.2	<3.7	<15	<12	<20	<20	<46
SVP-2	9/25/2007	760	11	90	14	56	24	ND	ND	ND
SVP-2	3/5/2008	<19,000	<2.7	<3.1	<3.6	<7.3	<12	ND	ND	ND
SVP-2	5/20/2008	830	<6.4	<7.6	<8.8	<8.8	<7.3	ND	ND	ND
SVP-2	9/17/2008	<240	<3.8	<4.5	<5.2	<5.2	<4.3	ND	ND	ND
SVP-2 DUP ^c	9/17/2008	<230	<3.6	<4.3	<5.0	<5.0	<4.1	ND	ND	ND
SVP-2	1/17/2009	<9,400	<2.6	<3.1	<3.6	<14	<12	<19	25	<44
SVP-3	9/25/2007	300	<4.4	<5.2	<6.0	<6.0	<5.0	ND	ND	ND
SVP-3 DUP ^c	9/25/2007	<260	<4.1	<4.9	< 5.6	<5.6	<4.6	ND	ND	ND
SVP-3	3/5/2008	<20,000	3.9	32	7.8	38	13	ND	ND	ND
SVP-3	5/20/2008	380	<3.9	<4.6	<5.4	<5.4	<4.4	ND	ND	ND
SVP-3	9/17/2008	<340	< 5.4	<6.3	<7.3	<7.3	<6.1	ND	ND	ND
SVP-3	1/17/2009	<9,200	<2.6	<3.0	<3.5	<14	<12	<19	60	<43
SVP-4	9/25/2007	12,000	<3.9	13	6.3	31	<4.4	713	ND	ND
SVP-5	9/25/2007	70,000	<56	<66	<76	<76	<63	ND	ND	ND
SVP-5	3/5/2008	<17,000	<2.3	2.7	<3.1	<6.3	<10	ND	22.11	ND
SVP-5	9/17/2008	280,000	260	780	14,000	48,000	290	8,600 ^b	880 ^b	ND
SVP-5 (200 ml/min flow)	1/17/2009	<9,100	<2.5	<3.0	<3.4	<14	36	<19	<19	<43
SVP-5 (100 ml/min flow)	1/17/2009	<9,100	<2.5	<3.0	<3.4	<14	51	<19	<19	<43
SVP-5 DUP ^c (200 ml/min flow)	1/17/2009	<9,000	<2.5	<3.0	<3.4	<14	59	<19	<19	<42
Residential Land Use ESL ^d :		10,000	84	63,000	980	21,000	9,400			
Commercial/Industrial										
Land Use ESL ^d :		29,000	280	180,000	3,300	58,000	31,000			

CRA 240612 (6)

TABLE 1

SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE, SAN LEANDRO, CALIFORNIA

Notes:

 $\label{eq:total_petroleum} TPHg \ = \ Total \ petroleum \ hydrocarbons \ as \ gasoline \ by \ modified \ EPA \ Method \ TO-3 \ GC/FID$

Benzene, toluene, ethylbenzene and total xylenes by modified EPA Method TO-15 GC/FID Full Scan

MTBE = Methyl tertiary-butyl ether by modified EPA Method TO-15 GC/FID Full Scan

Butane, isobutane, and propane by modified EPA Method TO-15 GC/FID Full Scan

 $\mu g/m^3$ = Micrograms per cubic meter

ND = Not detected; no reporting limit provided.

--- = No applicable ESL

ESL = Environmental screening level

- a = Compounds not listed in Regional Water Quality Control Board (RWQCB) ESLs; detected quantities estimated by laboratory for 2007 and 2008 samples.
- b = The identification is based on presumptive evidence; estimated value
- c = Field duplicate
- d = San Francisco Bay RWQCB ESLs for shallow soil gas (Table E)

TABLE 2

SOIL VAPOR ANALYTICAL FIELD DATA SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE, SAN LEANDRO, CALIFORNIA

Sample ID	Date		Dioxide %	Oxygen %	Methane %	Balance %
SVP-1	1/17/2009	pre-sampling	0.4	14.7	0.0	84.8
SVP-1	1/17/2009	post-sampling	0.3	18.7	0.0	81.0
SVP-2	1/17/2009	pre-sampling	1.4	19.7	0.0	78.9
SVP-2	1/17/2009	post-sampling	1.4	20.5	0.0	78.1
SVP-3	1/17/2009	pre-sampling	0.5	21.4	0.0	78.1
SVP-3	1/17/2009	post-sampling	0.5	20.9	0.0	78.6
SVP-5 (200 ml/min flow)	1/17/2009	pre-sampling	0.0	21.1	0.0	78.9
SVP-5 (200 ml/min flow)	1/17/2009	post-sampling	0.0	21.2	0.1	78.8
SVP-5 (100 ml/min flow)	1/17/2009	pre-sampling	0.0	21.2	0.1	78.8
SVP-5 (100 ml/min flow)	1/17/2009	post-sampling	0.3	21.8	0.1	77.8

Notes:

Field measurements collected using Landtec GEM 2000 portable gas analyzer ml/min = Milliliters per minute

APPENDIX A

STANDARD OPERATING PROCEDURES

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR SOIL VAPOR PROBE INSTALLATION AND SAMPLING

VAPOR POINT METHODS

This document describes Conestoga-Rovers & Associates' standard field methods for soil vapor sampling. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil vapor samples are collected and analyzed to assess whether vapor-phase subsurface contaminants pose a threat to human health or the environment.

Shallow Soil Vapor Point Method for Soil Vapor Sampling

The shallow soil vapor point method for soil vapor sampling utilizes a hand auger or drill rig to advance a boring for the installation of a soil vapor sampling point. Once the boring is hand augered to the final depth, a probe, connected with Swagelok fittings to nylon or Teflon tubing of ¼-inch outer-diameter, is placed within 12-inches of number 2/16 filter sand (Figure A). A 12-inch layer of dry granular bentonite is placed on top of the filter pack. Pre-hydrated granular bentonite is then poured to fill the borehole. The tube is coiled and placed within a wellbox finished flush to the surface. Soil vapor samples will be collected no sooner than 48 hours after installation of the soil vapor points to allow adequate time for representative soil vapors to accumulate. Soil vapor sample collection will not be scheduled until after a minimum of three consecutive precipitation-free days and irrigation onsite has ceased. Figure B shows the soil vapor sampling apparatus. A measured volume of air will be purged from the tubing using a different Summa purge canister. Immediately after purging, soil vapor samples will be collected using the appropriate size Summa canister with attached flow regulator and sediment filter. The soil vapor points will be preserved until they are no longer needed for risk evaluation purposes. At that time, they will be destroyed by extracting the tubing, hand augering to remove the sand and bentonite, and backfilling the boring with neat cement. The boring will be patched with asphalt or concrete, as appropriate.

Vapor Sample Storage, Handling, and Transport

Samples are stored and transported under chain-of-custody to a state-certified analytic laboratory. Samples should never be cooled due to the possibility of condensation within the canister.

APPENDIX B

LABORATORY ANALYTICAL REPORT

January 28, 2009

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-01-1419

1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/17/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Philip Samelle for

Jessie Kim

Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

01/17/09 09-01-1419 N/A

Method:

EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-1	Walter Commence	09-01-1419-1-A	01/15/09 - 10:25	Air	GC 13	N/A	01/17/09 13:39	090117L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
rPH as Gasoline	ND	9800	1.7		ug/m3			
SVP-2		. 09-01-1419-2-A	01/15/09 11:112	Air	GC 13	N/A	01/17/09 13:48	090117L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	9400	1.64		ug/m3			
SVP-3		09-01-1419-3-A	01/15/09 12:02	Air	GC 13	NA	01/17/09 .13:58	0901/17L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
ГРН as Gasoline	ND ·	9200	1.6		ug/m3			
SVP-5 (200ml/m flow)		09-01-1419-4-A	01/15/09 13:46	Air	GC 13	N/A	01/17/09 14/07	090117L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			•
TPH as Gasoline	ND	9100	1.58		ug/m3			
SVP-5 (100ml/m flow)		09-01-1419-5-A	01/15/09 14:30	Air	GC 13	N/A	01/17/09 14:27	090117L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	9100	1.58		ug/m3	,		
SVP-5 DUP		09-01-1419-6-A	01/15/09 13.54	Air	GC 13	N/A	01/17/09 14/41	0901117L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	9000	1.57		ug/m3	3	*	

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

N/A

Method:

EPA TO-3M

09-01-1419

01/17/09

Project: 1784 150th Ave., San Leandro, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Trip Blank		09-01-1419-7-A	01/15/09 14:00	Air	GC 13	N/A	01/17/09 13:29	090117L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	5700	1		ug/m3			
Method Blank		098-01-005-1-647	N/A	Air	GC 13	N/A	01/17/09 09:30	090117L01
<u>Parameter</u>	Result	<u>RL</u>	· <u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	5700	. 1	•	ug/m3			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

Units:

01/17/09 09-01-1419

9-01-1419 N/A

EPA TO-15 ug/m3

Project: 1784 150th Ave., San Leandro, CA

Page 1 of 3

		,'					···				
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Section of the Sectio	Q Q	C Batch ID
SVP-1			09-01-1	419-1-A	01/15/09 10:25	Air	GC/MS K	N/A	01/18/09 15:42	9 0	90118L01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	2.7	1.7		Toluene			ND	3.2	1.7	
Ethylbenzene	ND	3.7	1.7		Propane			ND	46	1.7	
Methyl-t-Butyl Ether (MTBE)	ND	12	1.7		Butane			ND	20	1.7	
Xylenes (total)	ND	15	1.7		Isobutane			ND	20	1.7	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u>		Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	97	57-129			1,2-Dichloroet	hane-d4		96	47-137		
Toluene-d8	100	78-156									
SVP-2			09-01-1	419-2-A	01/15/09	Air	GC/MS K	N/A	01/18/0	9 0	90118L01
					11:12				16:29		
上海市中央公司,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年		Cosside Paper	n assaulariaa		55 C. ECHINE IIVAE 1999 (#E 3609/8/3/2014 100	204 × 8 × 200 (200 x 2)	20.00	A" THAIRN AND ADVANCED BY	THE PARTY OF	agur Labar (radis vi
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND:	2.6	1.64		Toluene			ND	3.1	1.64	
Ethylbenzene	ND	3.6	1.64		Propane			ND	44	1.64	
Methyl-t-Butyl Ether (MTBE)	ND	12	1.64		Butane			ND	19	1.64	
Xylenes (total)	ND	14	1.64		Isobutane			25	19	1.64	
Surrogates:	REC (%)	Control	1.0-1	Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
<u>ourrogatoo.</u>		Limits							Limits		
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroet	hane-d4		95	47-137		
Toluene-d8	100	78-156									
SVP ₁ 3			09-01-	1419-3-A	01/15/09 12:02	Air	GC/MS K	i NA	01/18/0 17:15	9 (90118L01
									12.20.000.000		
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	2.6	1.6		Toluene			ND	3.0	1.6	
Ethylbenzene	ND	3.5	1.6		Propane			ND	43	1.6	
Methyl-t-Butyl Ether (MTBE)	ND	12	1.6		Butane			ND	19	1.6	
Xylenes (total)	ND	14	1.6		Isobutane			60	19	1.6	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
Anti-Adminant		Limits							Limits		
1.4-Bromofluorobenzene	96	57-129			1,2-Dichloroet	thane-d4		95	47-137		
Toluene-d8	100	78-156									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

01/17/09 09-01-1419 N/A

Method: Units: EPA TO-15 ug/m3

Project: 1784 150th Ave., San Leandro, CA

Page 2 of 3

Client Sample Number			b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyzed		Batch ID
SVP-5 (200ml/m flow)		-10-60	1419-4-A	01/15/09 13:46	Air	GC/MS K	NA P	01/18/09 18:01		0118L01
Parameter	Result	RL DF	Qual	<u>Parameter</u>		٠	Result	RL	<u>DF</u>	Qual
Benzene	ND 2	2.5 1.58		Toluene			ND	3.0	1.58	
Ethylbenzene	ND 3	3.4 1.58		Propane			ND	43	1.58	
Methyl-t-Butyl Ether (MTBE)	36 11	1. 1.58		Butane			·ND	19	1.58	
Xylenes (total)	ND 14	4 1.58		Isobutane			ND	19	1.58	
Surrogates:		Control	Qual	Surrogates:			REC (%)	<u>Control</u>	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene		<u>Limits</u> 57-129		1,2-Dichloroet	hane-d4		92	<u>Limits</u> 47-137		
Toluene-d8		8-156	<u> </u>	·	·					
SVP-5 (100ml/m flow)	userujaa jan	7 09-01-	1419-5-A	01/15/09 14:30	Äir	GC/MS K	N/A	01/19/09 15:52) (09	0119L01
Parameter	Result	RL DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND :	2.5 1,58		Toluene			ND	3.0	1.58	
Ethylbenzene	ND :	3.4 1.58		Propane			ND	43	1.58	
Methyl-t-Butyl Ether (MTBE)	51 1	1 1.58		Butane			ND	19	1.58	
Xylenes (total)	ND 14	4 1.58		Isobutane			ND	19	1.58	
Surrogates:		<u>Control</u> Limits	Qual	Surrogates:			REC (%)	Control Limits	9	<u>Qual</u>
1,4-Bromofluorobenzene	_	<u> </u>		1,2-Dichloroe	thane-d4		91	47-137		
Toluene-d8	102 7	'8-156	* -							
SVP-5 DUP		09-01-	1419-6-A	01/15/09 13:54	Air	GC/MS K	N/A	01/18/0 19:31		90118L01
Parameter	Result	RL DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	2.5 1.57		Toluene			ND	3.0	1.57	
Ethylbenzene		3.4 1.57		Propane			ND	42	1.57	
Methyl-t-Butyl Ether (MTBE)	59 1	1.57		Butane			ND	19	1.57	
Xylenes (total)	ND 1	14 1.57		Isobutane			ND	19	1.57	
Surrogates:		Control Limits	Qual	Surrogates:			REC (%)	Control Limits	!	Qual
1,4-Bromofluorobenzene	93 5	57-129		1,2-Dichloroe	thane-d4		93	47-137		
Toluene-d8	100 7	78-156								

Conestoga-Rovers & Associates

Emeryville, CA 94608-2008

Date Received:

01/17/09

5900 Hollis Street, Suite A

Work Order No:

09-01-1419

Preparation: Method:

N/A **EPA TO-15**

Units:

ug/m3

Project: 1784 150th Ave., San Leandro, CA

Page 3 of 3

-								
Client Sample Number		L	ab Sample Number	Date/Time Collected Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Trip Blank		. 09-01	-1419-7-A	01/15/09 Air 14:00	GC/MS K	N/A	01/18/09 21502	090118L01
<u>Parameter</u>	Result F	RL DF	<u>Qual</u>	<u>Parameter</u>		Result	<u>RL</u> D	F Qual
Benzene	ND 1.	6 1		Toluene		ND	1.9	1
Ethylbenzene	ND 2.	2 1		Propane		ND:	27	1
, Methyl-t-Butyl Ether (MTBE)	ND 7.	2 1		Butane		ND	12	1
Xylenes (total)	ND 8.	7 1		Isobutane		ND	12	1
Surrogates:	REC (%) Co	<u>ntrol</u>	<u>Qual</u>	Surrogates:		REC (%)	<u>Control</u>	Qual
		<u>nits</u>	*				<u>Limits</u>	
1,4-Bromofluorobenzene		129		1,2-Dichloroethane-d4		93	47-137	
Toluene-d8	97 78-	-156						
Method Blank		095-0	1-021-7,12	5 NA Air	GC/MS K	N/A	01/18/09	090118L01
							08:44	
在最高的。2011年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月					RECORD AND DESCRIPTION OF STREET		acina anti-samorena	
<u>Parameter</u>	Result F	RL DF	Qual	<u>Parameter</u>		Result	<u>RL</u> D	F Qual
Benzene	ND 1.	.6 1		Toluene		ND	1.9	1
Ethylbenzene	ND 2.	.2 1		Propane		ND	27	1
Methyl-t-Butyl Ether (MTBE)	ND 7.	.2 1		Butane		ND	12	1
Xylenes (total)	ND 8	.7 1		Isobutane		ND	12	1
Surrogates:	REC (%) Co	ntroi_	Qual	Surrogates:	- *	REC (%)	Control	Qual
	Liı	mits					<u>Limits</u>	
1,4-Bromofluorobenzene	94 57	-129	•	1,2-Dichloroethane-d4		92	47-137	
Toluene-d8	99 78	-156						
Method Blank		. 095-0)1-021-7,12	S N/A Air	GC/MS K	N/A	01/19/09 13:34	090119L01
<u>Parameter</u>	<u>Résult</u>	RL DF	Qual	Parameter		Result	RL D	OF Qual
Benzene		.6 1		Toluene		ND	1.9	1 .
Ethylbenzene		.2 1		Propane		ND	27	1
Methyl-t-Butyl Ether (MTBE)		.2 1		Butane	,	ND	12	1
Xylenes (total)		.7 1		Isobutane		ND	12	1
Surrogates:	-	ontrol	Qual	Surrogates:		REC (%)	Control	Qual
<u> </u>		mits					Limits	
1,4-Bromofluorobenzene		-129		1,2-Dichloroethane-d4		93	47-137	
Toluene-d8		-156						
		- =						

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 01/17/09 09-01-1419 N/A EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-01-1408-1	Àir	GC 13	N/A	01/17/09	090117D01
<u>Parameter</u>	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
TPH as Gasoline	130000	130000	3	0-20	-

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 09-01-1419 N/A **EPA TO-15**

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 01/18/09		LCS/LCSD E Number	
095-01-021-7,125	Air	GC/MS K	N/A			090118L0	Ŋ
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	108	106	60-156	44-172	1	0-40	
Carbon Tetrachloride	106	103	64-154	49-169	3	0-32	
1,2-Dibromoethane	104	104	54-144	39-159	0	0-36	
1,2-Dichlorobenzene	98	98	34-160	13-181	0	0-47	
1,2-Dichloroethane	107	105	69-153	55-167	1	0-30	
1,2-Dichloropropane	111	111	67-157	52-172	0	0-35	
1,4-Dichlorobenzene	97	97	36-156	16-176	0	0-47	
c-1,3-Dichloropropene	117	115	61-157	45-173	1	0-35	
Ethylbenzene	107	108	52-154	35-171	0 .	0-38	
o-Xylene	105	106	52-148	36-164	1	0-38	
p/m-Xylene	104	104	42-156	23-175	1	0-41	
Tetrachloroethene	105	104	56-152	40-168	1	0-40	
Toluene	105	105	56-146	41-161	1	0-43	
Trichloroethene	109	107	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	111	110	65-149	51-163	1	0-37	
Vinyl Chloride	107	104	45-177	23-199	2	0-36	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

N/A 09-01-1419 N/A **EPA TO-15**

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD I Numbe	
095-01-021-7,126	Air	GC/MS-K	N/A			090119L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	105	104	60-156	44-172	1	0-40	
Carbon Tetrachloride	103	100	64-154	49-169	3	0-32	
1,2-Dibromoethane	· 104	101	54-144	39-159	3	0-36	
1,2-Dichlorobenzene	100	97	34-160	13-181	4	0-47	
1,2-Dichloroethane	105	100	69-153	55-167	5 .	0-30	
1,2-Dichloropropane	110	108	67-157	52-172	2	0-35	•
1,4-Dichlorobenzene	99	95	36-156	16-176	4	0-47	
c-1,3-Dichloropropene	116	113	61-157	45-173	2	0-35	
Ethylbenzene	107	104	52-154	35-171	3	0-38	
o-Xylene	106	103	52-148	36-164	3	. 0-38	
p/m-Xylene	104	100	42-156	23-175	. 4	0-41	
Tetrachloroethene	102	100	56-152	40-168	2	0-40	
Toluene	103	102	56-146	41-161	2	0-43	
Trichloroethene	106	104	63-159	47-175	2	0-34	· .
1,1,2-Trichloroethane	110	108	65-149	51-163	2	0-37	
Vinyl Chloride	102	100	45-177	23-199	2	0-36	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-01-1419

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATION)	:			€ ′	W	S	hell	Oil	Pro	odu	cts (Cha	in O	f Cu	sto	dy F	Rec	ord					
CALSCIENCE ()	10000000	Pleas	e Check /	ppropi	riate B	ox:		Р	rint B	ill To	Contac	t Nan	ie:			: INC	CIDEN	T#(EŅV.	SERV	/ICES):	CHECK	IF NO INCIDENT # APPLIES
SPL (MOTIVA RETAIL SHELL RETAIL]									8 9 9 6 0 6						1/15/2009
☐ XENCO ()	☐ MOTIVA	SD&CM	mo	ONSULTAN	r	l u	BES		IIIS BIOV	VII	400000	PO #		434434				يبي	AP#			<i>D</i> , C	1 1
TEST AMERICA ()					<u> </u>			; :::	30000 T	<u> </u>		7.0.7			1		7		7.7	7		PAGE	: of
OTHER ()	SHELL P	IPELINE	<u> </u>]								1	3	6	0 1	9			
MPLING COMPANY				CRAW					E ADDRES		amotorky ∕e,San	Lean	dro			State	CA	Τ	O 600) 1012:	30		
onestoga-Rovers & Associates				O.C.IV							. Company, Offi		410	PHO	NE NO.			E-W	AL:	71012			CONSULTANT PROJECT NO
900 Hollis Street, Suite A, Emeryville, CA 9460 ROJECT CONTACT (Hardcopy or PDF Report to)	8							⅃ ┏┎	anda Ca	ortor C	RA, Eme	-nwille		51	0-420-3	343		si	ell em	.edf@c	crawo <u>rld.co</u>	om.	240612-2008-6
eter Schaefer								SAV	PLER NAME	(S) (Print):	<u></u>	zi y v nic									LAB	USE ONL	Ý
510-420-3319 FAX 510-420)-9170	E-MAIL	pscha	efer@cra	world.co	om		Eri	n Reinh	art-Ko	ylu										O	7 (DN-1419
URNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY)	DAYS 2	DAYS	☐ 24 HO	URS		ESULTS N		T							RE	QUEST	TED AI	NALY	sis				
LA - RWQCB REPORT FORMAT UST AGENC	:					,		Т		<u></u>	<u></u>	aue	MS)							\prod			ADERATURE ON DECEME
			SHELL	CONTRACT	RATE AP	PLIES		7		5	9	ğ								[IE	IPERATURE ON RECEIPT
SPECIAL INSTRUCTIONS OR NOTES:			☐ STATE	REIMBURS	EMENT R	ate appli	ES			=	E	00	12,										
please report results in µg/m³				EDD NOT NEEDED						ફ	eth	Isobutane, butane, & propane (TO-15, GC/MS)	일									-	
			☑ RECEI	PT VERIFIC	ATION RE	QUESTED		=		<u>ک</u>	A	a a			1								
:BB	SAM	PLING		ī	PRESERVA	ATIVE	\neg	၂일		느		tane			-		1				.		
Field Sample Identification	DATE	TIME	MATRIX	HCL HIN	13 HOSOM	NONE O	NO. C CON	TPHg (TO-3)		BTEX by EPA Method (TO-15)	MTBE by EPA Method (TO-15)	Isobu											Container PID Readings or Laboratory Notes
SVP-1	1/15/2009	10:25	air	1102 1110		x	1	х	\Box	х	X.		x										mma ID#LC 293
SVP-2	1/15/2009	11:12	air			х	1	X		х	x		x		.					1		Su	mma ID#LC 105
1 4868 .		12:02	air			х	1	x		x	х	1	x							\Box		Su	nma ID#LC 343
2 SVP-3	1/15/2008		ait	 -				1			+ +							_					
SVP-5 (200ml/m flow)	1/15/2009	13:46	air		T	х	1	Х		х	х	;	K .									Sui	nma ID#LC 309
444		1		 -	+	x	_	T _x	1	x	x	1,	x			1 1						Sui	nma ID#LC084
S SVP-5 (100ml/m flow)	1/15/2009	14:30	air			\vdash	1		+		+		K		+-	1	-	+	+-	++	-		mma ID# LC - 398
SVP-5 DUP	1/15/2009	13:54	air		ļ.	X	1	X	+	X	X		`		-	-		-	+	+-+	$\rightarrow \rightarrow$		
Trip Blank	1/15/2009	14:00	air		ļ.,	x	1	X		X	X		(-		_		\sqcup		Sui	nma ID#LC-169
					-											11							
<u> </u>				<u> </u>	 			\top	11				\neg										
			Received by: (Sig	Todare)							1				1	1_1_	-	Dale:		1		Time:	
allinguisted by: (Signature)	~		(), (), (), (), (), (), (), (),			(2		1-	_								1/	15	09	7 .	15	.00.
74 Kentlan	0 -			ecu	<u> </u>	<u> </u>	ر <u>ھر</u>	<u> </u>	Di	1/1		<u> </u>						Dale:	·~ /		<u>'</u>	Time:	
Inquistrate if: (Signatura)			Received by: (Sig		W	lli	,		5										1 16/t	09	· .		736
(Inquished by: (Signalure)	1/1	7/09	Received by: (Sig	nature)	- 1 -		1		T								- 1	Dale:	1			Time:	
on omally to a	0 17	7/09 36					<u>) ၁۷୯</u>	ba	باس	<u>, C</u>	<u>少</u>							<u>[1</u>	10	<u>9</u>		log	12/06 Revision
(CSO 51/10	dred.																					. 02	220010-13101
16305110	The same																						
	1								·														

. ---

WORK ORDER #: **09-** □ □ - □ 4 □ 9

SAMPLE RECEIPT FORM

Cooler <u>O</u> of <u>O</u>

CLIENT: CRA DATE: 1 17 100
TEMPERATURE: (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature °C − 0.2 °C (CF) = °C □ Blank □ Sample □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. □ Received at ambient temperature, placed on ice for transport by Courier.
Ambient Temperature: Air Filter Metals Only PCBs Only Initial: W
CUSTODY SEALS INTACT: Cooler
SAMPLE CONDITION: Yes No. N/A Chain Of Custody (COC) degument(s) received with semples
Chain-Of-Custody (COC) document(s) received with samples
Sampler's name indicated on COC.
Sample container label(s) consistent with COC
Sample container(s) intact and good condition.
Correct containers and volume for analyses requested
Analyses received within holding time.
Proper preservation noted on COC or sample container
Volatile analysis container(s) free of headspace
Tedlar bag(s) free of condensation
CONTAINER TYPE:
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores® □
Water: □VOA □VOAh □VOAna ₂ □125AGB □125AGBh □125AGBpo ₄ □1AGB □1AGBna
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □500PB □500PBna □250P
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂ □ □ □ □
Air: Tedlar® Summa® Checked/Labeled by: Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4 s:H2SO4 znna:ZnAc2+NaOH Scanned by: WS