5500 Shellmound Street, Emeryville, CA 94608-2411

Fax: 510-547-5043 Phone: 510-450-6000

January 14, 1997

Mr. Scott Seery Alameda County Health Services Agency 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502

> RE: Final Soil Vapor Survey Report Shell Service Station 1784 150th Avenue San Leandro, California WIC #204-6852-1404 WA Job #81-0422

Dear Mr. Seery:

On behalf of Shell Oil Products Company (Shell), Weiss Associates has prepared the attached Soil Vapor Survey Report for the Shell Station at 1784 150th Avenue, San Leandro, California. If you have any questions or comments regarding the report, please do not hesitate to contact me at (510) 450-6115.

Sincerely, Weiss Associates

Steve Long, P.E.

Project Engineer

Enclosures:

Draft Soil Vapor Survey Report

cc:

Mr. R. Jeff Granberry, Shell Oil Products Company, Concord Mr. H. B. Boschetto, Shell Oil Products Company, Santa Ana Mr. Erik Hansen, Shell Development Company, Houston

SPL:all

AMBELL/1227/RBCA/TIER/1/12968EL/1.DOX

5500 Shellmound Street, Emeryville, CA 94608-2411

Fax: 510-547-5043 Phone: 510-450-6000

SOIL VAPOR SURVEY REPORT

for

-14-97

Shell Service Station WIC # 204-6852-1404 1784 150th Avenue San Leandro, California

prepared for

Shell Oil Products Company P.O. Box 4023 Concord, California 94524

January 14, 1997

5500 Shellmound Street, Emeryville, CA 94608-2411

Fax: 510-547-5043 Phone: 510-450-6000

SOIL VAPOR SURVEY REPORT

for

Shell Service Station WIC # 204-6852-1404 1784 150th Avenue San Leandro, California

prepared by

Weiss Associates 5500 Shellmound Street Emeryville, CA 94608

WA Job # 81-0422-06

Tim R. Utterback

Senior Staff Engineer

Weiss Associates work for the soil vapor survey, was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, or professional opinions were prepared solely for the use of Shell Oil Products Company in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied, and are not responsible for the interpretation by others of the contents herein.

STEPHEN P. LONG

No. C055060

Exp. 6/30/07

*

CIVIL CRIMIT

CIVIL CRIMIT

Stephen P. Long, P.E.

Project Engineer No. C055060 Date

CONTENTS

	Page
1. INTRODUCTION	1
1.1 Objective	1
1.2 Scope of Work	1
1.3 Parties Present	1
1.4 Sampling Dates	1
1.5 Site Location, Depth to Ground Water and Ground Water Gradient	2
2. BORING LOG RESULTS	. 2
3. SOIL VAPOR SAMPLING AND RESULTS	2
3.1 Sample Locations	2
3.2 Vapor Sampling Method	2
3.3 Analytical Laboratory	3
3.4 Analytical Methods	3
3.5 Analytical Results	3
4. SOIL SAMPLING RESULTS	4
4.1 Sample Locations	4
4.2 Soil Sampling Method	4
4.3 Analytical Laboratory	5
4.4 Analytical Methods	5
4.5 Analytical Results	5
5 CONCLUSIONS	6

FIGURES

- Figure 1. Site Location Map.
- Figure 2. Vapor, Soil and Ground Water Sample Locations.

TABLES

- Table 1. Analytic Results for Vapor Samples.
- Table 2. Analytic Results for Soil Samples.
- Table 3. Physical Parameter Results for Soil Samples.

APPENDICES

- Appendix A. Lithological Logs
- Appendix B. Laboratory Analytical and Geotechnical Results
- Appendix C. InterPhase, Soil Gas Survey Results

1. INTRODUCTION

On behalf of Shell Oil Products Company (Shell), Weiss Associates (WA) is presenting the results of the soil vapor survey data collected on July #8 and 19, 1996 at the subject site. This work was requested in the letter from Mr. Scott Seery, Alameda County Health Care Services Agency (ACHCSA) to Shell Engineer Jeff Granberry, dated January 24, 1996 and further clarified in the meeting between Shell, WA and ACHCSA on February 22, 1996.

1.1 Objective

The objective of the soil vapor survey was to determine the location and concentration of petroleum hydrocarbons in vadose zone pore air and vadose zone soil and to collect soil physical parameters.

1.2 Scope of Work

The soil vapor survey included:

- Collecting vapor samples from ten sample locations and soil samples from 3 sample locations;
- Recording the soil type encountered in 3 sample locations;
- Submitting the vapor and soil samples to analytical laboratories for analysis; and,
- Reporting the results.

1.3 Parties Present

During the performance of the soil vapor survey, the following individuals were onsite either all or part of the time:

- David Hinton and Paul Fassoth, InterPhase Inc. (InterPhase); and,
- Chuck Headlee, Weiss Associates (WA).

1.4 Sampling Dates

July 18 and 19, 1996.

1.5 Site Location, Depth to Ground Water and Ground Water Gradient

The Shell Service Station is located on the southwest corner of 150th Avenue and Freedom Avenue in San Leandro, California (Figure 1). The samples were collected on service station property and in the sidewalk on the north side of 150th Avenue (Figure 2). The depth to ground water at the subject site has ranged from 17 to 30 feet below ground surface with a variable gradient of typically less than 0.001 ft/ft.

2. BORING LOG RESULTS

Lithological logging of soil cores collected from soil sample locations SVS-3, SVS-5 and SVS-9 indicate that soil below the service station and across 150th avenue to the north consists of interbedded clays, gravels and clayey sands to the total depth explored. Lithological logs for the three soil boring locations are included in Appendix A.

Why only These 3 ?

3. SOIL VAPOR SAMPLING AND RESULTS

3.1 Sample Locations

ASSETT TOWARD PROPERTY AND ASSESSED OF

Nineteen vapor samples were collected from the ten locations depicted in Figure 2. One sample each was collected from SVS-1, SVS-2, SVS-4, SVS-6, SVS-7 SVS-8 and SVS-10. Vapor concentration profile samples were collected from SVS-3, SVS-5 and SVS-9.

3.2 Vapor Sampling Method

Vapor samples were collected concurrently for on-site vapor analysis and off-site laboratory analysis. InterPhase collected the vapor samples that were analyzed on-site and WA collected the vapor samples that were shipped off-site for laboratory analysis.

Both sets of vapor samples were collected by advancing the vapor sampling rod to a specified depth with a hydraulically powered Geoprobe. InterPhase operated the Geoprobe equipment and vapor sampling rod. InterPhase followed their standard vapor sample collection procedures to collect vapor samples for on site analysis. The InterPhase sample collection standard operating procedure is presented in Appendix C. WA collected vapor samples for laboratory analysis by the following procedure:

2

3

- A Summa canister was connected to the 1/4-inch polyethylene tubing provided by InterPhase with a three-way-valve and in line vacuum gauge.
- The three-way-valve was initially opened to the purge line to remove discrete purge volumes from the tubing with a 60 ml syringe.
- Upon removing the purge gas, the three-way-valve was closed to the purge line and opened to the Summa line.
- The Summa sample collection valve was slowly opened while monitoring the in-line vacuum.
- The Summa canister valve was closed when the vacuum in the line dropped to approximately 1 inch of mercury.
- After sample collection, the Summa canister was disconnected, labeled and stored for shipment to the laboratory.
- The purge and Summa lines were replaced after collecting each sample to prevent cross contamination.

3.3 Analytical Laboratory

The vapor samples collected by WA were shipped under chain-of-custody to Air Toxics Ltd. of Folsom, California for analysis. Vapor samples collected by InterPhase were analyzed on-site by InterPhase.

3.4 Analytical Methods

Vapor samples collected by WA were analyzed for benzene, toluene, ethylbenzene, and xylenes by California Air Resources Board Method 410 A and oxygen, carbon dioxide and methane by ASTM Method D3416. Vapor samples collected by InterPhase were analyzed for methylene chloride, chloroform, tetrachloroethene, vinyl chloride and total volatile hydrocarbons by InterPhase Standard Operating Procedure for the Collection and Analysis of Soil Gas Samples. The InterPhase standard operating procedure is included in Appendix C.

3.5 Analytical Results

The analytical results for vapor samples collected by WA are summarized in Table 1. Analytical laboratory reports are included in Appendix B. Benzene was detected in all of the vapor samples collected. The concentration of benzene in soil vapor ranged from 21 parts per billion by volume (ppbv) in sample SVS-9 at 3 feet below ground surface (bgs) to 7,600 ppbv in sample SVS-5 at 3 feet bgs. The three vapor profile samples collected from sample location SVS-5 near the northwest corner of the undergoed the samples collected from sample location SVS-5 near the northwest corner of the undergoed the samples collected from sample location SVS-5 near the northwest corner of the undergoed the samples collected from sample location SVS-5 near the northwest corner of the undergoed the samples collected from sample location SVS-5 near the northwest corner of the undergoed the samples collected from sample samples contained the highest concentrations of benzene in vapor (1,400 ppbv to 7,600 ppbv benzene). Benzene concentrations in

PARELIZATZ REPORTS I 1 WAS VALUE (

pore vapor were approximately an order of magnitude lower in vapor profile samples collected from sample location SVS-3 near the southwest corner of the UST complex.

The concentration of oxygen in vapor samples ranged from 5.8 percent by volume (pbv) in sample SVS-5 at 3 feet bgs to 22 pbv in sample SVS-8 at 5 feet bgs. The concentration of carbon dioxide in vapor samples ranged from 0.046 percent by volume (pbv) in sample SVS-9 at 18 feet bgs to 23 pbv in sample SVS-5 at 3 feet bgs. The concentration of methane was below laboratory detection limits in all of the samples collected except SVS-3 at 2 feet bgs and SVS-5 at 3, 13 and 20 feet bgs.

Concentrations of halogenated volatile organic compounds in soil gas samples were below InterPhase detection limits¹ in most of the samples collected. Concentrations of vinyl chloride were detected in shallow vapor samples (< 5 feet bgs) from sample locations SVS-3 and SVS-4 located on the west border of service station property. The InterPhase soil gas survey results are summarized and tabulated in the InterPhase report presented in Appendix C.

4. SOIL SAMPLING RESULTS

4.1 Sample Locations

Eight soil boring samples were collected from sample locations SVS-3, SVS-5, and SVS-9. Seven of these samples were collected for hydrocarbon analysis and eight samples were collected for percent moisture, pH, particle size distribution, dry bulk density, natural bulk density and fraction of organic carbon analysis. Please refer to Figure 2 for the sample locations.

4.2 Soil Sampling Method

Soil samples were collected by advancing a 1-inch diameter soil sampling rod using a hydraulically powered Geoprobe. Soil samples were collected in clean polyethylene terephthalate² tubes. The tubes were immediately cut and sealed with Teflon squares, capped and refrigerated for transport to the laboratory.

1::SHELL0422/REPORTS/11968VS/DOC

InterPhase detection limits range from 0.01ug/l to 1.0 ug/l depending on the compound analyzed. These detection limits are reported in the Field Sheet/Raw Data section of the Inter Phase Soil Gas Survey Results report presented in Appendix C.

² Terephthalate liners have a history of no detectable concentrations of chemicals except terephthalate and the liners are commonly used by the California EPA and Federal EPA for environmental sampling projects.

4.3 Analytical Laboratory

Soil samples were shipped under chain-of-custody to Sequoia Analytical Laboratory of Redwood City, California for petroleum hydrocarbon, percent moisture, pH, bulk density, particle size distribution, and fraction of organic carbon analysis. Sequoia Analytical shipped the bulk density samples to Core Laboratories of Bakersfield, California for geotechnical analysis.

4.4 Analytical Methods

Seven soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by modified EPA Method 8015 and methyl-t-butyl ether (MTBE) benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8020. Eight soil samples were analyzed for percent moisture by EPA Method 160.3, pH by EPA Method 9045, particle size distribution by ASTM Method D422, fraction of organic carbon by the Walkey-Black method and dry bulk density and natural bulk density by American Petroleum Institute (API) RP-40, API Recommended Practice for Core-Analysis Procedure, 1960.

4.5 Analytical Results

TPH-G and BTEX analytical results for soil borings samples are presented in Table 2 and percent moisture, pH, particle size distribution, dry bulk density, natural bulk density and fraction of organic carbon results are presented in Table 3. Laboratory data sheets are included in Appendix B. TPH-G, MTBE and BTEX concentrations were below laboratory detection limits in all of the soil boring samples except SVS-5 at 18-20 ft bgs which contained a TPH-G concentration of 1.1 mg/kg. The percent moisture in soil samples ranged from 14% in sample SVS-9 at 16-18 ft bgs to 24% in sample SVS-5 at 4-6 ft bgs. The pH was approximately 9 in all of the soil samples. Soil sample SVS-3 at 16-18 ft bgs contained the greatest amount of fines (15.89% passing #70 sieve) and soil sample SVS-5 at 8-10 ft bgs contained the least amount of fines (1.28% passing #70 sieve). Dry bulk density and natural bulk density ranged from 1.37 gm/cc and 1.84 gm/cc respectively in soil sample SVS-5 (4-6 ft bgs) to 1.91 gm/cc and 2.22 gm/cc respectively in soil sample SVS-5 at 18-20 ft bgs to 1.2% in soil sample SVS-5 at 4-6 ft bgs.

ESHELLID-04229 REPORTS-1196S VS.100C

5. CONCLUSIONS

Hydrocarbon concentrations in soil vapor were highest near the northwest corner of the service station UST complex. Soil the profile samples indicate hydrocarbon, appears do not show vertical attenuation in the vicinity of the service station. However, vapor concentrations show vertical attenuation in the vicinity of the north pedestrian walkway on 150th Avenue at sample location SVS-9. In contrast, hydrocarbon concentrations in soil were below laboratory detection limits in all of the soil samples collected except for low levels of TPH-G in sample SVS-5 at 18-20 ft bgs.

The greatest indication of biodegradation was detected in vapor sample SVS-5 at 3 ft bgs where oxygen is significantly depleted and carbon dioxide and methane concentrations are highest. Elevated carbon dioxide concentrations were also detected in shallow (<5 ft bgs) soil gas samples from locations SVS-1, SVS-2, SVS-3, SVS-4 and SVS-10. The depleted oxygen and elevated carbon dioxide vapor concentrations measured in shallow soil may be due to phytoremediation occurring within the shallow soil where much larger numbers of bacteria and fungi are likely to occur.

ESHELL00422/REPORTS-11965VS.DOC

³ Vertical attenuation is a decline in vapor concentration in the vertical direction from the depth of the impacted soil or ground water source to the ground surface.

Figure 1. Site Location Map - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

Figure 2. Soil Vapor Survey Boring Locations - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

Table 1. Analytic Results for Vapor Samples - Shell Service Station WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California.

Sample ID	Sample Depth (ft)	B ←	E parts per billion	T by volume (ppbv)-	X	O ₂	CO ₂ -percent by volume-	СН
SVS-1	4	37	130	100	390	18	2.1	<0.002
SVS-2	4	50	36	85	150	19	2.8	<0.002
SVS-3	1	410	190	560	660	18	3.8	<0.002
SVS-3	2	130	75	350	220 ^m	18	3.0	0.003
SVS-3	3	230	84	420	200 ^m	17	5.4	< 0.002
SVS-3	8	240	210	190	340	21	0.23	< 0.002
SVS-3	18	26	61	170	230	20	0.45	0.004
SVS-4	4	140	160	320	280 ^m	15	7.9	<0.002
SVS-5	3	7,600	1,200	4,900	4,500 ^m	5.8	23	1.6
SVS-5	13	1,400	55 ^m	260	660 ^m	21	0.57	0.036
SVS-5dup	13	1,400	96 ^m	270	620 ^m	N/A	N/A	N/A
SVS-5	20	2,500	300	570	740	20	0.38	0.039
SV-6	4	180 ^m	33	180	170 ^m	21	0.066	<0.002
SVS-7	4	25	66	- 21	7Ò	20	0.049	<0.002
SVS-8	5	180	88	190	330	21	0.057	<0.002
SVS-8dup	5,	N/A	N/A	N/A	N/A	22	0.057	< 0.002
SVS-9	3	.21	25	24	230 ^m	21	0.058	<0.002
SVS-9	6.5	150 ^m	68	72	380	21	0.099	< 0.002
SVS-9	13	360	290	180	220	21	0.056	0.003
SVS-9	18	320	49	110	70	21	0.046	< 0.002
SVS-10	3	110	100	89	430 ^m	19	1.8	<0.002

Table 1. Analytic Results for Vapor Samples - Shell Service Station WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California (continued).

Abbreviations:

B = Benzene by Modified California Air Resources Board Method 410A

E = Ethylbenzene by Modified California Air Resources Board Method 410A

T = Toluene by Modified California Air Resources Board Method 410A

X = Xylenes by Modified California Air Resources Board Method 410A

O₂ = Oxygen by ASTM Method D3416

CO₂ = Carbon dioxide by ASTM Method D3416

CH₄ = Methane by ASTM Method D3416

<n = Not detected at detection limits of n ppbv

m = Reported value may be biased due to apparent matrix interferences

N/A = Duplicate sample not analyzed for these compounds

Notes:

Samples collected on 7/18/96 and 7/19/96 by Weiss Associates and analyzed by Air Toxics, Folsom, California

Table 2. Analytic Results for Soil Samples - Shell Service Station, WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California

Sample ID	Depth (feet)	TPH-G ←	МТВЕ	B ——parts per m	E uillion (mg/kg)	Т	→ X
<u> </u>	· · ·						
SVS-3	16-18	<1.0	<0.025	< 0.005	< 0.005	< 0.005	< 0.005
SVS-5	4-6	<1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	8-10	< 1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	18-20	1.1	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
SVS-9	3-5	<1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	8-10	< 1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	16-18	< 1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

MTBE = Methyl-t-butyl-ether by EPA Method 8020

B = Benzene by EPA Method 8020 E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020 X = Total xylenes by EPA Method 8020

< n = Not detected at laboratory reporting limit of n ppm

Notes:

Samples collected on 7/18/96 and 7/19/96 and analyzed by Sequoia Analytical of Redwood City, California.

Table 3. Analytic Results for Soil Samples - Shell Service Station, WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California

Sample ID	Depth (feet)	Moisture (%)	pH (pH units)	Particle Size Distribution (<70%)	Dry Bulk Density (gm/cc)	Natural Bulk Density (gm/cc)	Fraction O.C. (%)
SVS-3	4-6	16	9.0	4.87	1.79	2.11	0.31
	16-18	16	8.8	15.89	1.65	2.04	0.13
SVS-5	4-6	24	8.9	4.1	1.37	1.84	1.20
	8-10	24	9.0	1.28	1.42	1.87	1.00
	18-20	14	9.2	5.27	1.69	2.07	0.12
SVS-9	3-5	23	9.0	1.79	1.45	1.90	0.98
	8-10	21	8.9	2.44	1.53	1.95	0.43
	16-18	14	8.7	4.37	1.91	2.22	0.14

Notes:

Moisture Percent by EPA Method 160.3.
pH by EPA Method 9045.
Particle Size Distribution by ASTM Method D422.
Dry Bulk Density by American Petroleum Institute
Recommended Procedure-40.
Natural Bulk Density by American Petroleum Institute
Recommended Procedure-40.
Samples collected on 7/18/96 and 7/19/96 and analyzed by
Sequoia Analytical of Redwood City, California and
Core Laboratories of Bakersfield, California.

Abbreviations:

Fraction O.C. = Organic Carbon by Walkey Black Method gm/cc = grams per cubic centimeter

APPENDIX A

LITHOLOGICAL LOGS

LITHOLOGIC LOG SVS-3

EXPLANATION

▼ Water level during drilling (date)

☑ Water level (date)

Contact (dotted where approximate)

--?--?- Uncertain contact

Gradational contact

Location of recovered drive sample

Location of drive sample sealed

for chemical analysis

Cutting sample

K = Estimated hydraulic conductivity

Logged By: Chuck Headlee

Supervisor: Jim Carmody; CEG 1576

Drilling Company: Interphase Inc.

License Number: C57-485165

Driller: Rick Nessinger

Drilling Method: Geoprobe

Date Drilled: August 18, 1996

Type of Sampler: Geoprobe Sampler

PID: Photoionization detector

Lithographic Log Details - Lithographic Log SVS-3, Shell Service Station WIC# 204-6852-1404, 1784 150th Avenue, San Leandro, California

LITHOLOGIC LOG SVS-5

EXPLANATION

- ▼ Water level during drilling (date)
- ✓ Water level (date)
 - Contact (dotted where approximate)
- -?--?- Uncertain contact
- Gradational contact
 - Location of recovered drive sample
 - Location of drive sample sealed
 - for chemical analysis
- **222222** Cutting sample
- K = Estimated hydraulic conductivity

- Logged By: Chuck Headlee
- Supervisor: Jim Carmody, CEG 1576
- Drilling Company: Interphase Inc.
- License Number: C57-606481
 - Driller: Rick Nessinger
- Drilling Method: Geoprobe
 - Date Drilled: August 18, 1996
- Type of Sampler: Geoprobe Sampler
 - PID: Photoionization detector

Lithographic Log Details - Lithographic Log SVS-5, Shell Service Station, WIC#204-6852-1404, 1784 150th Avenue, San Leandro, California

LITHOLOGIC LOG SVS-9

EXPLANATION

- Y Water level during drilling (date)
- Water level (date)
 - Contact (dotted where approximate)
- ?— Uncertain contact
- Gradational contact
 - Location of recovered drive sample
 - Location of drive sample sealed
 - for chemical analysis
- 20000000 Cutting sample
- Estimated hydraulic conductivity

- Logged By: Chuck Headlee
- Supervisor: Jim Carmody, CEG 1576
- Drilling Company: Interphase Inc.
 - License Number: C57-606481
 - Driller: Rick Nessinger
 - Drilling Method; Geoprobe Date Drilled: July 19, 1996
 - Type of Sampler: Geoprobe Sampler
 - PID: Photionization detector

Lithographic Log Details - Lithographic Log SVS-9, Shell Service Station, WIC#204-6852-1404, 1784 150th Avenue San Leandro, California

APPENDIX B

LABORATORY ANALYTICAL AND GEOTECHNICAL RESULTS

SAMPLE NAME: SVS-1 4' ID#: 9607243A-01A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil, Factor:	6072905 5.05		Date of Collection: Date of Analysis: 7	
- Annual Control (Print) - Did Prints 会社 部署 新聞社 emperifying the (Print) (Print) (Did Print) (Did Did Did Did Did Did Did Did Did Did	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.016	0.037	0.12
Toluene	0.005	0.019	0.10	0.38
Ethyl Benzene	0.005	0.022	0.13	0.57
Total Xylenes	0.005	0.022	0.39	1.7

SAMPLE NAME: SVS-2 4' ID#: 9607243A-02A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072906 5,22		Date of Collection: Date of Analysis: 7	rate for the local control of the co
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.017	0.050	0.16
Toluene	0.005	0.020	0.085	0.32
Ethyl Benzene	0.005	0.023	0.036	0.16
Total Xylenes	0.005	0.023	0.15	0.66

SAMPLE NAME: SVS-3 1' ID#: 9607243A-03A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name:	6072907 2.05	44 ** 1 ** Control (2008) \$2.00 ** Control (2008) \$2.00 **	Date of Collection:	\$7.00 Street of the contract of the contract of the contract of
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.41	1.3
Toluene	0.002	0.008	0.56	2.1
Ethyl Benzene	0.002	0.009	0.19	0.84
Total Xylenes	0.002	0.009	0.66	2.9

SAMPLE NAME: SVS-3 2' ID#: 9607243A-04A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072908 5,22		Date of Collection: Date of Analysis: 7	
***************************************	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.017	0.13	0.42
Toluene	0.005	0.020	0.35	1.3
Ethyl Benzene	0.005	0.023	0.075	0.33
Total Xylenes	0.005	0.023	0.22 M	0.97 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-3 3' ID#: 9607243A-05A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072909 5.12	 a c i i i chulaine una in deritamatotivaleitativaleitativaleitativaleita. 	Date of Collection: Date of Analysis: 7	o demonstration of the first section of the contract of the co
•	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.017	0.23	0.75
Toluene	0.005	0.020	0.42	1.6
Ethyl Benzene	0.005	0.023	0.084	0.37
Total Xylenes	0.005	0.023	0.20 M	0.88 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-3 8' ID#: 9607243A-06A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: 6072910 Dil. Factor: 5.05		TO THE PLANE OF A SECTION AND THE PROPERTY OF A SECTION AND A SECTION ASSECTATION AS	Date of Collection: Date of Analysis:	80km in 18 februarie (18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 1 1 1 1
	Det. Limit	Det. Limit	· Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.016	0.21	0.68
Toluene	0.005	0.019	0.19	0.73
Ethyl Benzene	0.005	0.022	0.21	0.93
Total Xylenes	0.005	0.022	0.34 M	1.5 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-3 18' ID#: 9607243A-07A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072911 5.05	a commo las las como al acolamentas, las highradades del paudión el país refer a la	Date of Collection: Date of Analysis: 7	· 衛子 经发生的 10 多,我们就就是"我说话,不得我们的" 10 多,也不是这么。
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.016	0.026	0.084
Toluene	0.005	0.019	0.17	0.65
Ethyl Benzene	0.005	0.022	0.061	0.27
Total Xylenes	0.005	0.022	0.23	1.0

SAMPLE NAME: SVS-4 4' ID#: 9607243A-08A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name:	6072912 5.22		Date of Collection: Date of Analysis:	7/29/96
The state of the s	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.017	0.14	0.45
Toluene	0.005	0.020	0.32	1.2
Ethyl Benzene	0.005	0.023	0.16	0.71
Total Xylenes	0.005	0.023	0.28 M	1.2 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-5 3' ID#: 9607243A-09A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor;	6072913 53.2		Date of Collection: Date of Analysis:	7/29/96
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.053	0.17	7.6 .	25
Toluene	0.053	0.20	4.9	19
Ethyl Benzene	0.053	0.23	1.2	5.3
Total Xylenes	0.053	0.23	4.5 M	20 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-5 13' ID#: 9607243A-10A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072914 5.05		Date of Collection: Date of Analysis: 7	gen notak biriya dara 18.30 iliyan pada pisangaraya yaya iliyayin 🕔 🗀
The second secon	Det, Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.016	1.4 .	4.5
Toluene	0.005	0.019	0.26	1.0
Ethyl Benzene	0.005	0.022	0.055 M	0.24 M
Total Xylenes	0.005	0.022	0.66 M	2.9 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-5 13' Duplicate ID#: 9607243A-10AA

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor;	6072915 5.05		Date of Collection:	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.016	1.4	4.5
Toluene	0.005	0.019	0.27	1.0
Ethyl Benzene	0.005	0.022	0.096 M	0.42 M
Total Xylenes	0.005	0.022	0.62 [·] M	2.7 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-5 20 ID#: 9607243A-11A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor;	6072916 12.6	Contract regulations and at a second with the second	Date of Collection: Date of Analysis: 7	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.013	0.041	2.5	8.1
Toluene	0.013	0.048	0.57	2.2
Ethyl Benzene	0.013	0.056	0.30	1.3
Total Xylenes	0.013	0.056	0.74	3.3

SAMPLE NAME: SVS-6 4' ID#: 9607243A-12A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: 6072917 Date of Collection: 7/19/96 Dil. Factor: 5.22 Date of Analysis: 7/29/96					
	Det. Limit	Det. Limit	Amount	Amount	
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)	
Benzene	0.005	0.017	0.18 M	0.58 M	
Toluene	0.005	0.020	0.18	0.69	
Ethyl Benzene	0.005	0.023	0.033	0.14	
Total Xylenes	0.005	0.023	0.17 M	0.75 M	

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-7 4' ID#: 9607243A-13A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072919 2.09		Date of Collection: Date of Analysis: 7	erobakeurorik – Dibigweki Bakimi ir 🐔 🖟 🖟 🖔 🖔
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.025	0.081
Toluene	0.002	0.008	0.021	0.080
Ethyl Benzene	0.002	0.009	0.066	0.29
Total Xylenes	0.002	0.009	0.070	0.31

SAMPLE NAME: SVS-8 5' ID#: 9607243A-14A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072920 2.09		Date of Collection: Date of Analysis: 7	ing the proof of the control of the proof of the control of the co
The second secon	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.18	0.58
Toluene	0.002	0.008	0.19	0.73
Ethyl Benzene	0.002	0.009	0.088	0.39
Total Xylenes	0.002	0.009	0.33 M	1.4 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-9 3' ID#: 9607243A-15A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072921 2.13	2011 Committee (1997) C	Date of Collection: Date of Analysis: 7	2000 A 2010 A
	Det, Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.021	0.068
Toluene	0.002	0.008	0.024	0.092
Ethyl Benzene	0.002	0.009	0.025	0.11
Total Xylenes	0.002	0.009	0.23 M	1.0 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-9 6.5' ID#: 9607243A-16A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072922 2.09	e de participat de la calenta de participa de la consecuencia della del	Date of Collection: Date of Analysis: 7	Properties and the Committee of the Comm
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.15 M.	0.49 M
Toluene	0.002	0.008	0.072	0.28
Ethyl Benzene	0.002	0.009	0.068	0.30
Total Xylenes	0.002	0.009	0.38	1.7

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: SVS-9 13' ID#: 9607243A-17A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072924 5.22		Date of Collection: Date of Analysis: 7	
	Det. Limit	Det. Limit	· Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.005	0.017	0.36	1.2
Toluene	0.005	0.020	0.18	0.69
Ethyl Benzene	0.005	0.023	0.29	1.3
Total Xylenes	0.005	0.023	0.22	0.97

SAMPLE NAME: SVS-9 18' ID#: 9607243A-18A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072926 2.09	Proprieta de la companya de la comp	Date of Collection:	
The second section is the second seco	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.32	1.0
Toluene	0.002	0.008	0.11	0.42
Ethyl Benzene	0.002	0.009	0.049	0.22
Total Xylenes	0.002	0.009	0.070	0.31

SAMPLE NAME: SVS-10 3' ID#: 9607243A-19A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072927	5/48/07 Arm ## John Nad George 137 ()	Date of Collection:	
Dil. Factor:	2.09 Det. Limit	Det. Limit	Date of Analysis: 7 Amount	//29/96 Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.11	0.36
Toluene	0.002	0.008	0.089	0.34
Ethyl Benzene	0.002	0.009	0.10	0.44
Total Xylenes	0.002	0.009	0.43 M	1,9 M

M = Reported value may be biased due to apparent matrix interferences.

SAMPLE NAME: Method Spike ID#: 9607243A-20A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: 60729 Dil. Factor: 1.	02 00		Date of Collection: NA Date of Analysis: 7/29/96
	Det. Limit	Det. Limit	
Compound	(ppmv)	(uG/L)	% Recovery
Benzene	0.001	0.003	. 115
Toluene	0.001	0.004	119
Ethyl Benzene	0.001	0.004	125
Total Xylenes	0.001	0.004	114

Container Type: NA

SAMPLE NAME: Lab Blank ID#: 9607243A-21A

STATE OF CALIFORNIA "LUFT"

(Modified CARB Method 410A - Low Level Aromatics in Air)

GC/PID

File Name: Dil. Factor:	6072904 1,00		Date of Collection: Date of Analysis: 7	 1 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected

Container Type: NA

AN ENVIRONMENTAL ANALYTICAL LABORATORY

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX: (916) 985-1020

CHAIN-OF-CUSTODY RECORD

Nº 007849 / of _

Address 5500 Shellmound St City Emeruville State CAzip 9468 Project # 81-0472-007 Phone 510 450-6170 FAX (510) 547-5043 Project Name Specify Collected By: Signature Church Aleadle	
Lab LD. Field Sample I.D. Date & Time Analyses Requested Canister Pressure / Vacu-	ium ceipt
SVS-1 4' 7/18/96 1000 BTEX, O2, CO2, CH4 -30 -1 0	14
5V5 - 2 4' 7/8/96 1030 BTEX, Oz, CUZ, CHY -30 -30 -	4
-5 5V5-3 1' -1/18/96 1100 BTEX, Oz CU, CHA -30 -30	<u> </u>
5V5-3 21 7/18/96 1105 BTEX 02 CO2 CHY -3 - 1 10	
SA 5V5-3 3' 7/18/96 1110 BTEX, O. CUZ, CHY30 -1 05	14
161 5V5-3 8' 1/8/96 1200 BTEX, O2 CH4 -30 -1 0/1	
17 SVS-3 18' 7/18/96 1250 BTEX, OZ COZ CHY 530 -12 01	5
5VS-4 4' 7/18/96 1415 BTEX, 02, CO, 6Ng 1-30 -10 10	4
5V5-5 3' 7/18/96 1430 BTEX, OZ, COZ, CHU -30 -1 1/4	14
SVS-5 131 7/18/96 1525 BTEX O7 CO7 CHY -30 -134 0	1/5
Relinquished By: (Signature) Date/Time Print Name, Headle Received By: (Signature) Date/Time Received By: (Signature) Date/Time Notes:	engantia e
Relinquished By: (Signature) Date/Time Received By: (Signature) Date/Time	
Shipper Name Air Bill # Opened By: Date/Time Temp. (°C) Condition Clustody Seals Intact? Work Order # Lab Yes No None N/A 9607243	<u></u>
Use UPS 17 13 14 15 15 15 ANGUNT GOOD YES NO None N/A 30 U 7 2 4 3	#

il dist

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX: (916) 985-1020

Ne

007848

Page 2 of 2

Form 1293 rev. 06

CHAIN-OF-CUSTODY RECORD

	ates City Kingryville State FAX (514) 547-: Vealla		Project info: P.O. # Project # _8/- 0422- 007 Project Name	Turn Arou	und Time: al Specif	y
Lab I.D. Field Sample I.D.	Date & Time	Analy	ses Requested	Canister Initial	Pressure /	Vacuum Receipt
5VS - 5 20	7/18/96 1545	BTEX, O.	cos. CN4	-30	- 1	0.514
Sys - 6 4'	7/19/96 0830	BTEX, OZ	CO2, CH4	-28	- 1335	1107
SVS-7 41	7/19/96 0915	BTEX, Oz	Coz, CH4	- 29	- 1	1.01/2
14x 5V5-8 51	7/19/96 0850	BTEX, Oz	CO2, CHY	-29	- 5	1,615
ISA SVS-9 31	7/19/96 0950	BTEY, Oz	CO2, CHY	- 28.5	-1	15/45
16A SVS-49 6.5'	7/19/96 1030	BTEX, Oz	CO2, CH4	- 30	-1	110/13
174 SVS - 9 131	7/19/96 1130	BTEX, Oz	COz, CH4	-30	-) ₫	1,014
** SV5-9 18'	7/19/96 1140	BTEX, O	COZ CHY	-30	-) *	1.6/15
19A SVS-10 3'	7/19/96 1300	BTEX, OZ	CO2) CHY	-30	- 1	1,014
Relinguished By: (Signafure) Date/Time	Print Name	"	Notes:			7/24/84
Helinquished By: (Signature) Date/Tithe	Chuck He	radlee	Notes.	8' ·	المعاديق	e constitue e
Helinquisned By: (Signature) Date/19me	Received By: (Signature) Date/	Time	a verter en	*		V
Relinquished By: (Signature) Date/Time	Received By: (Signature) Date/					
Shipper Name Air E	Jeett Amerika An Bill# Opened B		emp. (°C) Condition Custody Sea	ils Intact?	Work Ord	der#
Lab USP 127(3357)		-31 . 1	ANGENT COURS YES NO N		9607	243
Only						

SAMPLE NAME: SVS-1 4' ID#: 9607243B-01A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072509 Date of Collection: 7/18/96
Dil. Factor: 2.02 Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.020	18
Methane	0.002	Not Detected
Carbon Dioxide	. 0.002	2.1

SAMPLE NAME: SVS-2 4' ID#: 9607243B-02A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072510	Date of Collection: 7/18/96
Dil. Factor: 2.09	Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	19
Methane	0.002	Not Detected
Carbon Dioxide	0.002	2.8

SAMPLE NAME: SVS-3 1' ID#: 9607243B-03A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

	CONTRACTOR CONTRACTOR OF A CON
File Name: 3072511 Date of Collection: 7/18/9/	1.8000 a.a.a.a.a.a.a.a.a.a.a.a.a.
File Name: 3072511 Date of Collection: 7/18/96	Entropy and the control of the contr
20/2011 Date Of Collections 7/10/31	 A non mile page and a non-depth a
	ම වැනි මෙන් වල මන්තියෙන්නුවා මන්ත සංකර් දුම සාන
	and and sometimes are a second to the con-
All Contarts Data of All III. The Medical Contact of All III.	
Dil. Factor: 2.05 Date of Analysis: 7/25/96	substanta sebuta para sahura di Sibiliti.

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	18
Methane	0.002	Not Detected
Carbon Dioxide	0.002	3.8

SAMPLE NAME: SVS-3 2' ID#: 9607243B-04A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072512 Dil. Factor: 2.12	Date of Collection: 7/18/96 Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	18
Methane	0.002	0.003
Carbon Dioxide	0.002	3.0

SAMPLE NAME: SVS-3 3' ID#: 9607243B-05A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072513 Date of Collection: 7/18/96	Mirage Costra
Dil. Factor: 2.05 Date of Analysis: 7/25/96	A Section in the second of the section of
	ARA TERMINERA EN EWINGE

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	17
Methane	0.002	Not Detected
Carbon Dioxide	0.002	5.4

SAMPLE NAME: SVS-3 8' ID#: 9607243B-06A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

200 - 100 100 100 100 100 100 100 100 100	CONTROL OF A CONTR
File Name:	3072517 Date of Collection: 7/18/96
riie name.	3072517 Date of Collection: 7/18/96
Dil. Factor:	2.02 Date of Analysis: 7/25/96
Dir. actor.	Z.UZ Dale UI Aliaivsis. 1/23/30
commence and the commence of t	

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.020	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.23

SAMPLE NAME: SVS-3 18' ID#: 9607243B-07A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072	2518 Date of Colle	ection: 7/18/96
	.a. worker i doweddianyng i'r a fri webii ferfal e e i r	
Dil. Factor:		
DII. Factor.	2.UZ Date of Anal	ysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.020	20
Methane	0.002	0.004
Carbon Dioxide	0.002	0.45

SAMPLE NAME: SVS-4 4' ID#: 9607243B-08A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

As the above and the second se	
File Name	
File Name: 3072519	Date of Collection: 7/18/96
Dil Factor:	
	Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	15
Methane	0.002	Not Detected
Carbon Dioxide	0.002	7.9

SAMPLE NAME: SVS-5 3' ID#: 9607243B-09A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072520 Date of Collection: 7/18/96	双手张双维护 塞巴萨斯特政治
Dil. Factor: 2.13 Date of Analysis: 7/25/96	

Compound	Det. Limit (%)	Amount (%)
Oxygen	. 0.021	5.8
Methane	0.002	1.6
Carbon Dioxide	0.002	23

SAMPLE NAME: SVS-5 13' ID#: 9607243B-10A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072! DII, Factor: 2		Collection: 7/18/96
Diff acidit	.vz Date of	Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.020	21
Methane	0.002	0.036
Carbon Dioxide	0.002	0.57

SAMPLE NAME: SVS-5 20 ID#: 9607243B-11A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID.

The state of the s	5.1915. 1 x 191 de 190 d 9x 011 de 1
Cilablama.	
File Name: 3072522 Date	AT CAMPETIAN' //TX/UK
TO THE TOTAL OF THE PARTY OF TH	or conconding in any
Dil. Factor: 2 02 Date	of Anglicies 7/95/06
	of Analysis: 7/25/96
	ri i tari kiri ingga tara 🚅 i ti ni tara karangan kangan tangga kangan di diakan kangan kang

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.020	20
Methane	0.002	0.039
Carbon Dioxide	0.002	0.38

SAMPLE NAME: SVS-6 4' ID#: 9607243B-12A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

47 - 37 - 77 - 77 - 77 - 77 - 77 - 77 -
File Name: 3072525 Date of Collection: 7/19/95
File Name: 3072525 Date of Collection: 7/19/96
Dil. Factor: 2.09 Date of Analysis: 7/25/96
Living and the contract of the

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.066

SAMPLE NAME: SVS-7 4' ID#: 9607243B-13A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name:	3072527 Date of Collection: 7/19/96	150, takádo 200 Přísař
	19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	5年17年中華代記
Dil Factor	2.09 Date of Analysis: 7/25/96	CORRESPONDED
	Lius Date Of Allarysia. 1/20/30	recommendadores.

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	20
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.049

SAMPLE NAME: SVS-8 5' ID#: 9607243B-14A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 30729 Dil, Factor: 2		of Collection: 7/19/96 of Analysis: 7/25/96
------------------------------------	--	--

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.057

SAMPLE NAME: SVS-8 5' Duplicate ID#: 9607243B-14AA

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name:		Date of Collection: 7/19/96
	3072529	Date of Collection: 7/19/96
Dil. Factor:	2.09	Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	22
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.057

SAMPLE NAME: SVS-9 3' ID#: 9607243B-15A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

The first of the control of the cont	Control of the Contro	ACCOUNT OF THE PARTY OF THE PAR
File Name:		
FIIA Namo	3072530 Date	
I NV HARIE.	201/2000/00/00/00/00/00/00/00/00/00/00/00/0	of Callection: 7/19/96
		The state of the s
 regular page 1, 10, 1, 10, 10, 10, 10, 10, 10, 10, 1	 A proper graph of Party Committee and Committ	tudi dinatria calabat di api tri a si si si a salabatika dituali dinatria di d
Dil. Factor:		of Analysis: 7/25/96
Pilit CULUL CONTRACTOR		ni Anaivsis, 7725/46
	- 3. 1. 5. 5. 5. 5. 5. 1 (1995) [1] " " " " " " " " " " " " " " " " " " "	regranda a regional programma in a programma de la companya del companya de la companya del companya de la comp

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.058

SAMPLE NAME: SVS-9 6.5' ID#: 9607243B-16A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

· ·		
37 N. C. S. A. PROTECTOR MODEL MODEL N. TORS DESCRIPTION OF SECURITY CONTROL OF SECURITY S	C. C. V. W. de J. M. Craner and C. V. C.	
	3072534 Date of Collection	
File Name:	3072534 Date of Collect	MAN 7/10/0C
JUCGIONE	JUIZJJA – Date OI Colle	G11D11:2077 129210
 10.100 Per engage page and page 200 and page 200 per engage 200 per		
Dil. Factor:		
IM PACIOF	2 NO Data of Analy	oies 7/96/06
	2.09 Date of Analy	313. <i>[[20]</i> 30

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.099

SAMPLE NAME: SVS-9 13' ID#: 9607243B-17A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	0.003
Carbon Dioxide	0.002	0.056

SAMPLE NAME: SVS-9 18' ID#: 9607243B-18A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

	3072536 Date of Collection: 7/19/96
Dil. Factor:	2.09 Date of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	21
Methane	0.002	Not Detected
Carbon Dioxide	0.002	0.046

SAMPLE NAME: SVS-10 3' ID#: 9607243B-19A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072537 Date	of Collection: 7/19/96
Dil. Factor: 2.09 Date	of Analysis: 7/25/96

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.021	19
Methane	0.002	Not Detected
Carbon Dioxide	0.002	1.8

SAMPLE NAME: Method Spike ID#: 9607243B-20A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

File Name: 3072538 Date of Collection: NA	####### VALUE####################################
File Name: 3072538 Date of Collection: NA	Barran Parada da Grandina da C
Dil. Factor: 1.00 Date of Analysis: 7/25/96	reproprieta de la companya de la co Balanda de la companya
Date of Analysis: //25/90	3 000 (1000 - 6000000 6000 1000 600000000000000

Compound	Det. Limit (%)	% Recovery
Oxygen	0.010	99
Methane	0.001	99
Carbon Dioxide	0.001	93

Container Type: NA

SAMPLE NAME: Lab Blank ID#: 9607243B-21A

Atmospheric Gases by Modified ASTM D-3416 GC/TCD/FID

THE PROPERTY OF THE PROPERTY O	AUGSES, JUSTS MITTERS IN TWO IN 1994 MIT MIT HE WAS A STORY OF THE SECOND FOR THE	programacing and includes the experience of the control of	duration to the law acceptance of the property	ACT contribution and authorisation (Contribution Street and Action and Action and Action Contribution (Action Action Acti
File Name:	0000			
FRENdike.	3072!	3U4	uateoru	illection: NA
	Company of the compan	A temperatura (Control Control	300000 111000 K. Prof 197000	
			ser cultural sector threat, the seute secutions and property of the section of	Let us to be a secondariate and an expensive substitute and control of the secondaria substitute and the secondaria substitute
Dil. Factor:		I NA		alysis: 7/25/96
VII. I GULUI.	・光管を整備を見るのが発送しません。 11.12 本語 しきごう	TOD - Common with a Keeper of	Date Of All	BIVSIS: //2J/50
The second control of	100 000000 and the set of consequences of the second of th	The residence of the property of the design of the residence of	30.2 to 11.2. % @c20.01.11 . The Tay of the contract of the co	The second of th

Compound	Det. Limit (%)	Amount (%)
Oxygen	0.010	Not Detected
Methane	0.001	Not Detected
Carbon Dioxide	0.001	Not Detected

Container Type: NA

AN ENVIRONMENTAL ANALYTICAL LABORATORY

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX: (916) 985-1020

CHAIN-OF-CUSTODY RECORD

Nº 007849

Company Address Phone 5	Contact Person Tom Fojut Company Weiss Associates Address 5500 Shellmand St City Emergyille State CAZip 9468 Phone (510) 450-6170 FAX (510) 547-5043 Collected By: Signature Church Headlie			Project info: P.O. #Project #Project Name		Turn Around Time: Normal Rush Specify		
Lab I.D.	Field Sample I.D.	Date & Time	Analy	ses Requested		Caniste Initial	Pressure /	Vacuum Receipt
014	5V5-1 41	7/18/96 1000	BTEX On	CO2. CHH		- 30	- 1	251/5
074	5US - 2 4'	7/18/96 1730	BTEX O2	CO2 CH4		-30	-1	SUF.
AES	5V5-3 11	7/18/96 1100	BJEX. O.	CO CHA		-30	-1	3,044
OHA	SVS - 3 21	7/18/90 1105	BTEX, Do	. Co. CAU		-30	- 1	25745
ÜSA	545-3 3'	7/18/96 1110	BIEX, Or	COS CHY		-30	-1	0,5"/4
OFY	5V5-3 8'	7/18/9/ 1200	BTEX, O2	CO2 CH4	,	-36	-)	0.115
074	SV5-3 18'	7/18/96 1250	BTEX, On	COLCHU		- 30	-1	0"145
c&V	5V5-4 41	7/18/96 1415	BTEX, 02	CO CHA		-30	- 1	1,0"/5
ላ ቦኃ	SVS-5 3'	7/18/96 1430	BTEX, O2	CO Z CH4		- 30	- }	15"//5
ICAIAA	SV5-5 13'	7/18/96 1525	BIEX On	CO2 CHY		-30	- 1	01/5
Relinquished By: (Adiature) Date/Time Pfint Name, Notes: Relinquished By: (Signature) Date/Time Received By: (Signature) Date/Time								
Relinquished B	ly: (Signature) Dute/Time	Received By: (Signature) Date	/Time					
		scott amerion						
Lab [ill# Opened B		emp. (°C) Condition	Custody Seals		Work O	rder#
Use Only	UPS 12 963 30	120236 any AL	7/24/96 1215	fingical (600)	Yes No (Nor	IB) IN/A	9607	2433

ilaylit

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX: (916) 985-1020

 N_0

 $007848 \atop \text{Page } \underline{2} \text{ of } \underline{2}$

Form 1293 rev 06

CHAIN-OF-CUSTODY RECORD

Contact Person Tom Fojut Company Weiss Associates Address 5500 Shellmound ST City Kimpruville State CA Zip 9460 Phone (510) 450-6120 FAX (519) 547-5643 Collected By: Signature Church Meanla			Project info: P.O. #	Turn Aro		cily	
Lab I.D.	Field Sample I.D.	Date & Time	Analy	ses Requested	Caniste Initial	Pressure Final	/ Vacuum Receipt
CIA	SVS-5 20	7/18/96 1545	BTEX, Oz	. CO2. C.N4	- 30	- 1	0,51/4
OZA OZA	5VS-6 41	7/19/96 0830	BTEX, Or	CO2, CH4	-28	-1	1,01/5
13.4	SVS-7 41	7/19/96 0915	BTEX, O7	CO2, CH4	- 29	-1	1,01/4
144	5V5-8 51	7/19/96 0850	BTEX, Or	con CHY	-29	-1	1.07/5
15A	SVS-99 31	7/19/96 0950	BTEY, O	CO2, CH4	- 28,5	-1	1,5"/5
ΙbΑ	SVS-929 6.5'	7/19/96, 1630	BTEX, O.	CO2, CHY	- 30	-1	1,01/5
	SVS - 9 131	7/19/1/2 1130	BTEX, O	2) CO2, CH4	-30	-1	1101/2
√8V	SVS-9 18'	7/19/36 1140	BTEX, O	CO2, CH4	-30	-)	1.07/5
API	SV5-10, 3'	7/19/96 1300	BTEX, O.	2) CO2) CH4	-30	- 1	1,01/4
Dalinguich	ed By: (Signafure) Date/Time	Print Name	,	Notes:	<u> </u>		1/24/96
1'ldus	Pay 103 7/17/36 /600	Received By: (Signature) Date		Notes.		/	<i>ju</i>
Relinquished B	ly: (Signature) Date/Time	Received By: (Signature) Date: Lett American An					
أطما	Shipper Name Air E	Bill # Opened B	 		ieals Intact?		Order #
Lab Use Only	UPS 12 96335717	202300004 14	1/24/96 1215	AMBIENT GCOS Yes No	None N/A	9607	\$ 4 4R

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Heiss Associates 5500 Shellmound Emeryville, CA 94608 tention: Tom Fojut

Project:

Shell 1784 150th Ave, S.Leand

Enclosed are the results from samples received at Sequoia Analytical on July 25, 1996. The requested analyses are listed below:

AMPLE #	SAMPLE	DESCRIPTION	DATE COLLECTED	TEST METHOD
9607E85 -01	SOLID,	SVS-3 4-6	07/18/96	Fraction Organic Carbon
07E85 -01	SOLID,	SVS-3 4-6	07/18/96	Moisture, Percent
9607E85 -01	SOLID,	SVS-3 4-6	07/18/96	рН
07E85 -01	SOLID,	SVS-3 4-6	07/18/96	PSDSA Particle Size Distri
9607E85 -01	SOLID,	SVS-3 4-6	07/18/96	TPGBMS Purgeable TPH/BTEX
07E85 -01	SOLID,	SVS-3 4-6	07/18/96	Bulk Density
9607E85 -02	SOLID,	SVS-3 16-18	07/18/96	Fraction Organic Carbon
07E85 -02	SOLID,	SVS-3 16-18	07/18/96	Moisture, Percent
607E85 -02	SOLID,	SVS-3 16-18	07/18/96	`pH
9607E85 -02	SOLID,	SVS-3 16-18	07/18/96	PSDSA Particle Size Distri
07E85 -02	SOLID,	SVS-3 16-18	07/18/96	TPGBMS Purgeable TPH/BTEX
9607E85 -02	SOLID,	SVS-3 16-18	07/18/96	Bulk Density
07E85 -03	SOLID,	SVS-5 4-6	07/18/96	Fraction Organic Carbon
9607E85 -03	SOLID,	SVS-5 4-6	07/18/96	Moisture, Percent
07E85 -03	SOLID,	SVS-5 4-6	07/18/96	рH
9607E85 -03	SOLID,	SVS-5 4-6	07/18/96	PSDSA Particle Size Distri
07E85 -03	SOLID,	SVS-5 4-6	07/18/96	TPGBMS Purgeable TPH/BTEX
9607E85 -03	SOLID,	SVS-5 4-6	07/18/96	Bulk Density
07E85 -04	SOLID,	SVS-5 8-10	07/18/96	Fraction Organic Carbon
9607E85 -04	SOLID,	SVS-5 8-10	07/18/96	Moisture, Percent
9607E85 -04	SOLID,	SVS-5 8-10	07/18/96	pН

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

SAMPLE #	SAMPLE	DESCRIPTION	DATE COLLECTED	TEST METHOD
507E85 -04	SOLID,	SVS-5 8-10	07/18/96	PSDSA Particle Size Distri
9607E85 -04	SOLID,	SVS-5 8-10	07/18/96	TPGBMS Purgeable TPH/BTEX
607E85 -04	SOLID,	SVS-5 8-10	07/18/96	Bulk Density
2607E85 -05	SOLID,	SVS-5 18-20	07/18/96	Fraction Organic Carbon
9607E85 -05	SOLID,	SVS-5 18-20	07/18/96	Moisture, Percent
607E85 -05	SOLID,	SVS-5 18-20	07/18/96	рН
9607E85 -05	SOLID,	SVS-5 18-20	07/18/96	PSDSA Particle Size Distri
07E85 -05	SOLID,	SVS-5 18-20	07/18/96	TPGBMS Purgeable TPH/BTEX
9607E85 -05	SOLID,	SVS-5 18-20	07/18/96	Bulk Density
507E85 -06	SOLID,	SVS-9 3-5	07/19/96	Fraction Organic Carbon
9607E85 -06	SOLID,	SVS-9 3-5	07/19/96	Moisture, Percent
607E85 -06	SOLID,	SVS-9 3-5	07/19/96	рН
9607E85 -06	SOLID,	SVS-9 3-5	07/19/96	PSDSA Particle Size Distri
607E85 -06	SOLID,	SVS-9 3-5	07/19/96	TPGBMS Purgeable TPH/BTEX
9607E85 -06	SOLID,	SVS-9 3-5	07/19/96	Bulk Density
9507E85 -07	SOLID,	SVS-9 8-10	07/19/96	Fraction Organic Carbon
607E85 -07	SOLID,	SVS-9 8-10	07/19/96	Moisture, Percent
9607E85 -07	SOLID,	SVS-9 8-10	07/19/96	рH
07E85 -07	SOLID,	SVS-9 8-10	07/19/96	PSDSA Particle Size Distri
9607E85 -07	SOLID,	SVS-9 8-10	07/19/96	TPGBMS Purgeable TPH/BTEX
07E85 -07	SOLID,	SVS-9 8-10	07/19/96	Bulk Density
9607E85 -08	SOLID,	SVS-9 16-18	07/19/96	Fraction Organic Carbon
07E85 -08	SOLID,	SVS-9 16-18	07/19/96	Moisture, Percent
9607E85 -08	SOLID,	SVS-9 16-18	07/19/96	pH
07E85 -08	SOLID,	SVS-9 16-18	07/19/96	PSDSA Particle Size Distri

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

SAMPLE #

SAMPLE DESCRIPTION

DATE COLLECTED

TEST METHOD

07E85 -08

9607E85 -08

SOLID,

SVS-9 16-18

07/19/96

TPGBMS Purgeable TPH/BTEX

SOLID,

SVS-9 16-18

07/19/96

Bulk Density

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on a project.

⊭ry truly yours,

SEQUOIA ANALYTICAL

ke Gregory oject Manager

£3

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 6500 Shellmound Emeryville, CA 94608

Attention:

Client Proj. ID: Shell 1784 150th Ave, S.Leand Sampled: 07/18/96 Received: 07/25/96 Analyzed: see below

Lab Proj. ID: 9607E85 ntion: Tom Fojut

Reported: 08/08/96

LABORATORY ANALYSIS

Analyte		Units	Date Analyzed	Detection Limit	Sample Results
ab No: Sample D	9607E85-01 esc : SOLID,SVS-3 4-6		44		
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.029 1.0 N/A	Attached 0.31 16 9.0
ab No: Sample D	9607E85-02 esc : SOLID,SVS-3 16-18		The state of the s		
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.033 1.0 N/A	Attached 0.13 16 8.8
Lab No: Sample D	9607E85-03 esc : SOLID,SVS-5 4-6				
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.10 1.0 N/A	Attached 1.2 24 8.9
ab No: Sample D	9607E85-04 esc : SOLID,SVS-5 8-10				9
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.10 1.0 N/A	Attached 1.0 24 9.0

alytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

ke Gregory oject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

∥ Weiss Associates ⊫5500 Shellmound Emeryville, CA 94608 Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sampled: 07/18/96 Received: 07/25/96 Analyzed: see below

Attention: Tom Fojut

Lab Proj. ID: 9607E85

Reported: 08/08/96

LABORATORY ANALYSIS

nalyte **Units** Date Detection Sample Results Analyzed Limit ab No: 9607E85-05 Sample Desc : SOLID, SVS-5 18-20 **Bulk Density Attached** mg/L Fraction Organic Carbon % 07/30/96 0.025 0.12 Moisture, Percent % 07/29/96 14 1.0 pH Units N/A 9.2 pН 07/26/96

alytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

ke Gregory oject Manager

Tom Fojut

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound meryville, CA 94608

Attention:

Client Proj. ID: Shell 1784 150th Ave, S.Leand

S.Leand Sampled: 07/19/96 Received: 07/25/96 Analyzed: see below

Lab Proj. ID: 9607E85

Reported: 08/08/96

LABORATORY ANALYSIS

nalyte		Units	Date Analyzed	Detection Limit	Sample Results
ab No: Sample [9607E85-06 Desc : SOLID,SVS-9 3-5	· · · · · · · · · · · · · · · · · · ·			
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.10 1.0 N/A	Attached 0.98 23 9.0
ab No: Sample I	9607E85-07 Desc : SOLID,SVS-9 8-10				
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.050 1.0 N/A	Attached 0.43 21 8.9
ab No: Sample [9607E85-08 Desc : SOLID,SVS-9 16-18				
	Bulk Density Fraction Organic Carbon Moisture, Percent pH	mg/L % % pH Units	07/30/96 07/29/96 07/26/96	0.029 1.0 N/A	Attached 0.14 14 8.7

alytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

ke Gregory bject Manager

SPA

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates
5500 Shellmound
Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-3 4-6

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-01 Sampled: 07/18/96

Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	stribution	Weigh	eight Retained (g)	
.		22.79		19.71	
5		13.61		11.77	
8	***************************************	13.39		11.58	
12		21.55		18.64	
16		2.88		2.49	
20		7.26		6.28	
30	,	6.03		5.22	
40		3.18		2.75	
5 0	***************************************	3.20		2.77	
ro ·	***************************************	1.25		1.08	
pan	*************	4.87		4.21	
han		4.0/		4.21	

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

pject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 6500 Shellmound Emeryville, CA 94608

Proj. ID: Shell 1784 150th Ave, S.Leand Client Proj. ID:

Sample Descript: SVS-3 4-6

Matrix: SOLID

Analysis Method: 8015Mod/8020

Lab Number: 9607E85-01

Sampled: 07/18/96 Received: 07/25/96 Extracted: 07/26/96

Analyzed: 07/27/96 Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Attention: Tom Fojut

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas	1.0	N.D.
Methyl t-Butyl Ether	0.025	N.D.
Benzene	0.0050	N.D.
Toluene	0.0050	N.D.
Ethyl Benzene	0.0050	N.D.
Kylénes (Total) Chromatogram Pattern:	0.0050	N.D.
Surrogates	Control Limits %	% Recovery
Frifluorotoluene	70 130	88

Analytes reported as N.D. were not present above the stated limit of detection.

QUOIA ANALYTICAL - ELAP #1210

Mike Gregory oject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Shell 1784 150th Ave, S.Leand Sampled: 07/18/96 Client Proj. ID: Sample Descript: SVS-3 16-18

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-02 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	stribution	Weigh	ht Retained (g) 1.62 5.58 8.64	
4 6		2.37	***************	1.62	
6	**************	8.16		5.58	
8	***********	12.37		8.64	
12		19.49		13.33	
		3.98		2.72	
16 20		8.99		6.15	
30	***************************************	7.66		5.24	
40	***************************************	5.20		3.56	
50		13.24		9.06	
70		2.66		1.82	
pan	***********	15.89		10.87	

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL -

ELAP #1210

Mike Gregory roject Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 . Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608 Client Proj. ID: Shell 1784 150th Ave, S.Leand Sample Descript: SVS-3 16-18

Sampled: 07/18/96 Received: 07/25/96 Extracted: 07/26/96 Analyzed: 07/27/96

Attention: Tom Fojut

Matrix: SOLID Analysis Method: 8015Mod/8020 Lab Number: 9607E85-02

Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Methyl t-Butyl Ether Benzene	1.0 0.025	N.D. N.D.
Benzene	0.0050	N.D.
Toluene	0.0050	N.D.
Ethyl Benzene	0.0050	N.D.
Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	0.0050	N.D.
Surrogates Trifluorotoluene	Control Limits %	% Recovery
Trifluorotoluene	70 130	84

Analytes reported as N.D. were not present above the stated limit of detection.

QUOIA ANALYTICAL - ELAP #1210

Mike Gregory roject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand Sampled: 07/18/96

Sample Descript: SVS-5 4-6

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-03 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080226D42200A

Particle Size Distribution

Sieve Number	% Dis	% Distribution		Weight Retained (g)	
4		34.40		45.59	
5 5	***************************************	21.84		28.94	
8 .		12.39		16.42	
12	***************************************	11.09		14.70	
H6		2.47		3.27	
20		3.77		4.99	
30		4.19		5.56	
40		1.95		2.58	
Б0	***************************************	2.51		3.33	
70		1.29		1.71	
pan		4.10		5.43	

Analytes reported as N.D. were not present above the stated limit of detection.

QUOIA ANALYTICAL - ELAP #1210

Mike Gregory oject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand Sampled: 07/18/96

Sample Descript: SVS-5 4-6

Matrix: SOLID

Analysis Method: 8015Mod/8020

Lab Number: 9607E85-03

Sampled: 07/18/96 Received: 07/25/96 Extracted: 07/26/96

Analyzed: 07/27/96 Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.025 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 86

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Shell 1784 150th Ave, S.Leand Client Proj. ID:

Sample Descript: SVS-5 8-10

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-04

Sampled: 07/18/96 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	stribution	Weigh	eight Retained (g)	
1		57.78	****************	45.30	
6		14.36		11.26	
8		8.69		6.82	
12		6.68		5.24	
6		2.10		1.65	
20		3.90		3.06	
30		2.60	••••	2.04	
40	***************************************	0.92		0.72	
- -	***************************************	1.20		0.94	
50 70	***************************************	0.47	***************************************	0.37	
pan	***************************************	1.28		1.00	
Pali		1.20		1.00	

Analytes reported as N.D. were not present above the stated limit of detection.

ELAP #1210

Mike Gregory pject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 6500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Shell 1784 150th Ave, S.Leand Client Proj. ID:

Sample Descript: SVS-9 3-5

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-06

Sampled: 07/19/96 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	% Distribution		Weight Retained (g)	
4	••••••	61.01		76.71	
ô		12.45		15.65	
8		7.17		9.01	
12		6.74		8.47	
16		1.54		1.93	
20		2.75		3.46	
30		2.70		3.39	
40		1.39		1.75	
50		1.58		1.99	
70		0.89		1.12	
pan	********	1.79		2.25	

Analytes reported as N.D. were not present above the stated limit of detection.

QUOIA ANALYTICAL ELAP #1210

Mike Gregory oject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-5 18-20 Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9607E85-05 Extracted: 07[']/26[']/96 Analyzed: 07/27/96 Reported: 08/08/96

Sampled: 07/18/96

Received: 07/25/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection mg/	Sample Results mg/Kg	
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	0. 0. 0.	.0 025 0050 0050 0050 0050	1.1 N.D. N.D. N.D. N.D. N.D. C6-C12
Surrogates Frifluorotoluene	Control 70	Limits % 130	% Recovery 88

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory oject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-5 18-20

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-05 Sampled: 07/18/96 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	stribution	Weigh	t Retained (g)
		23.57	*************	26.67
		15.74		17.81
		12.46		14.10
12		15.61		17.66
≡ i6		2.57		2.91
0		5.67		6.42
30		8.39	***************************************	9.49
40		3.46		3.91
		5.66		6.41
70	***************************************	1.61	***************************************	1.82
	***************************************	5.27		5.96
- pan	*****************	J.21	******	3.30

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory ≅oject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-5 8-10 Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9607E85-04 Sampled: 07/18/96 Received: 07/25/96 Extracted: 07/26/96

Analyzed: 07/27/96 Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg		
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene (ylenes (Total) Chromatogram Pattern:	1.0 0.025 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D. N.D.		
Surrogates rifluorotoluene	Control Limits % 130	% Recovery 82		

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

pject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand Sampled: 07/19/96

Sample Descript: SVS-9 3-5

Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9607E85-06 Sampled: 07/19/96 Received: 07/25/96 Extracted: 07/26/96

Analyzed: 07/27/96 Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg		
TPPH as Gas	1.0	N.D.		
Methyl t-Butyl Ether Benzene	0.025 0.0050	N.D. N.D.		
Toluene	0.0050	N.D.		
≝ Ethyl Benzene	0.0050	N.D.		
Kylenes (Total) Chromatogram Pattern:	0.0050	N.D.		
Surrogates	Control Limits %	% Recovery		
rifluorotoluene	70 130	91		

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-9 8-10

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-07

Sampled: 07/19/96 Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	Weigh	Weight Retained (g)		
	•••••	67.98	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	91.02	
6	**********	8.09		10.83	
— 8	***********	6.06	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.12	
12	************	5.70		7.63	
2 16 2 0	**********	1.30		1.74	
		2.52		3.38	
~ 30	************	2.38		3.19	
40		1.26		1.69	
2 50		1.46		1.96	
70	***********	0.79		1.06	
pan	***********	2.44		3.27	

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory oject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-9 8-10

Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9607E85-07 Sampled: 07/19/96 Received: 07/25/96 Extracted: 07/26/96 Analyzed: 07/27/96

Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Kylenes (Total) Chromatogram Pattern:	1.0 0.025 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D. N.D.
Gurrogates rifluorotoluene	Control Limits % 130	% Recovery 88

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

pject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Shell 1784 150th Ave, S.Leand Client Proj. ID:

Sample Descript: SVS-9 16-18

Matrix: SOLID

Analysis Method: D422 Lab Number: 9607E85-08

Sampled: 07/19/96

Received: 07/25/96

Analyzed: 08/02/96 Reported: 08/08/96

C Batch Number: IN080296D42200A

Particle Size Distribution

Sieve Number	% Dis	stribution	Weigh	t Retained (g)
14	•••••	38.56	.,,	42.94
4 6	*************	10.94	*****	12.18
8		8.32	**************	9.26
12		11.44		12.47
16		2.06		2.29
20		5.89		6.56
30		7.99		8.90
40		2.31		2.57
50		5.42		6.04
70		2.69		3.00
pan		4.37		4.87

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL -ELAP #1210

Mike Gregory roject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss Associates 5500 Shellmound Emeryville, CA 94608

Attention: Tom Fojut

Client Proj. ID: Shell 1784 150th Ave, S.Leand

Sample Descript: SVS-9 16-18

Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9607E85-08 Sampled: 07/19/96 Received: 07/25/96 Extracted: 07/26/96

Analyzed: 07/27/96 Reported: 08/08/96

C Batch Number: GC072696BTEXEXB

strument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg		
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Kylenes (Total) Chromatogram Pattern:	1.0 0.025 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D. N.D.		
Gurrogates Frifluorotoluene	Control Limits % 130	% Recovery 87		

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

oject Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA '95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss & Associates 5500 Shellmound

Client Project ID:

Shell 1784 150th Ave., S. Leand.

Matrix:

Solid

Emeryville, CA 94608 Attention: Tom Fojut

Work Order #:

9607E85

-01 - 08

Reported: Aug 7, 1996

QUALITY CONTROL DATA REPORT

Analyte:	рН	Total Solids	Fractional Organic
			Carbon
QC Batch:	IN072696904500A	IN072995160300A	IN073096WALK00A
Analy. Method:	EPA 9045	EPA 160.3	Walkey-Black
Prep Method:	N.A.	N.A.	N.A.

Analyst:

J. Clark

N. Le

J. Clark

Duplicate

Sample #:

9607F02-01

9607E85-08

9607E85-06

Prepared Date: Analyzed Date:

7/26/96 7/26/96 7/29/96 7/29/96 7/30/96 7/30/96

Instrument I.D.#:

MANUAL

MANUAL

MANUAL

Sample

Concentration:

86

0.98

Dup. Sample Concentration:

8.3

8.4

86

0.98

RPD: **RPD Limit:**

1.2 0-20

0.0 0-20

0.0 0-20

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

** RPD = Relative % Difference

9607E85.WAA <1>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Weiss & Associates 5500 Shellmound Client Project ID:

Shell 1784 150th Ave., S. Leand.

-01 - 08

Matrix:

Solid

Emeryville, CA 94608 Attention: Tom Fojut

Work Order #:

9607E85

Reported:

Aug 7, 1996

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
QC Batch#:	GC072696BTEXEXB	GC072696BTEXEXB	GC072696BTEXEXB	GC072696BTEXEXB	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	
Analyst:	M. Otte	M. Otte	M. Otte	M. Otte	
MS/MSD #:		G9607C96-02	G9607C96-02	G9607C96-02	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	7/26/96	7/26/96	7/26/96	7/26/9 6	
Analyzed Date:	7/26/96	7/26/96	7/26/96	7/26/96	
nstrument I.D.#:	GCHP1	GCHP1	GCHP1	GCHP1	
Conc. Spiked:	0.20 mg/kg	0.20 mg/kg	0.20 mg/kg	0.60 mg/kg	
Result:	0.16	0.15	0.15	0.47	
MS % Recovery:	80	75	75	78	
Dup. Result:	0.15	0.15	0.12	0.47	
MSD % Recov.:	75	75	60	78	
RPD:	6.5	0.0	22	0.0	
RPD Limit:	0-25	0-25	0-25	0-25	

LCS #:	GBLK072696BS	GBLK072696B\$	GBLK072696B\$	GBLK072696BS	
Prepared Date:	7/26/96	7/26/96	7/26/96	7/26/96	
Analyzed Date:	7/26/96	7/26/96	7/26/96	7/26/96	
nstrument I.D.#:	GCHP1	GCHP1	GCHP1	GCHP1	
Conc. Spiked:	0.20 mg/kg	0.20 mg/kg	0.20 mg/kg	0.60 mg/kg	
LCS Result:	0.20	0.18	0.18	0.54	
LCS % Recov.:	100	90	90	90	-
MS/MSD	60-140	60-140	60-140	60-140	
LCS Control Limits	70-130	70-130	70-130	70-130	

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9607E85.WAA <2>

GEOTECHNICAL ANALYSIS RESULTS

SEQUOIA ANALYTICAL SA PROJECT NO. 9607E85

CL FILE 57111-096211

PERFORMED BY: CORE LABORATORIES 3430 UNICORN ROAD BAKERSFIELD, CA 93308 (805) 392-8600

FINAL REPORT PRESENTED AUGUST 6, 1996

ENVIRONMENTAL TESTING SERVICES

Sequoia Analytical SA Work Order: 9607E85 CL File No. 57111-96211

Geotechnical Analysis Results

Sample	Bulk	Density	Description
ID	Dry gm/cc	Natural gm/cc	
SVS-3 4-6'	1.79	2.11	Clay dk gry vf-pbl sand v silty
SVS-3 16-18'	1.65	2.04	Sand gry vfgr v silty v clay
SVS-5 4-6'	1.37	1.84	Clay dk gry v silty
SVS-5 8-10'	1.42	1.87	Clay dk gry v silty
SVS-5 18-20'	1.69	2.07	Silt gry vfgr sand v clay
SVS-9 3-5′	1.45	1.90	Clay dk gry v silty
SVS-9 8-10'	1.53	1.95	Clay gry vf-vcgr sand v silty
SVS-9 16-18'	1.91	2.22	Silt gry vf-mgr sand v clay

Analyses were performed as described in API RP-40, API Recommended Practice for Core-Analysis Procedure, 1960.

			JOMPANY IMENTAL ENGINEERING - WEST							CHAIN OF CUSTODY RECORD Serial No:										e: 1/24/74 e ol
Site Address: 1501b									I	And	alys	is R	equire	d d				LAB: <u>Sequo</u>	i a	
IWIC#:		-)	<u> </u>	*/92	<u></u>	.,					IJ.	Si ze					CHECK ONE (1) BOX ONLY	CT/DT	TURN AROUND TIME
204-68	<u> 52-</u>	1404		Nh	11.		·					TIBE	57					G.W. Monitoring	4461	24 hours
Shell Engineer:				Phone (5/0) Fax #2	No.:	6168		ļ				+	Sran					Site Investigation (3441	48 hours
J. Granberry Consultant Name & A	ddres	s: WEIS	5\$ AS	Soci	ATES	,						020						Soil Classify/Disposal	4442	15 days (Normal)
5500 SHELLMOUND	डा	EMER	VILL	E CA	946	०८						BTEX 8020						Water Classify/Disposal	4443	Other D (nominal)
Consultant Contact:			_	Phone (510) Fax #:	No.: 450-	6000	5)	sel)		8240)		& BI	10 St						4452	
WA JOB # 81-0	५५२२	,- 00	<u>/l</u>	Fax #:	<u>547-9</u>	5043	. Gas)	Die		(EPA			3 4						4453	NOTE: Notify Lab as soon as Possible of 24/48 hrs. TAT.
							Mod.	Jod.	/602			ж Ж	Some withon, pH,			D.	,	Other	- ר	
Sampled by: Chu						- ·-	(EPA 8015 P	IPH (EPA 8015 Mod. Die	BTEX (EPA 8020/602)	Volatile Organics	Test for Disposal	Combination 1PH 8015	Fraction organ		onfainer Size	Preparation Used	te Y/N	UST AGENCY:	et Counta	
Printed Name: Ch	uck	He	adle	e_			EPA	EPA.	(EP.	ie	ō	bina	1. 2. Z	sols	ine.	arati	posi	MATERIAL		SAMPLE
Sample ID	Date	Sludge	Soll	Water	Alr	No. of conts.	TPH (TPH (BIEX	Vold	Test	Com	12 P	Asbestos	Conf	Prep	Composite	DESCRIPTION		CONDITION/ COMMENTS
svs-3 4-6	7/8/90		メ			1						X	X							
	'		X									χ.	X							·
5V5-3 16-18	<i> </i>		^-						 							 			-	
SVS-5 4-6	7/18/AL		メ					<u> </u>	ļ	ļ <u>.</u>		X	$ \mathcal{L} $							
SUS-5 81-10	7/8/h		y			1						Х	$ \times $						1	·
SVS-5 18-20	1 1		Х			,						*	×							
1	' '					 					<u> </u>	×								_,
SVS-9 3-5'	7/14/96		×			'			 	 	-	1		1					+	
SVS-9 8-10'	1/9/96		Х			1		<u> </u>			<u> </u>	X	X						\perp	
SV5-9 16'-18'	7/19/91		×			\perp_{1}			<u> </u>			人	X				<u> </u>			
Relinquished By (signature)	\mathcal{F}^{T}	Printe	d Nam	Pi Lla	Padl	00		e:7/ ie://			celve		nature):					ed Name: CVVIII SEAMBRI	· State	Date: 7/25
Relinquished By (signature)); };	Printe	ad Nam	e:	-		Dal	e:	, ()	· Red			naturė):	· · · · · · · · · · · · · · · · · · ·			Printe	ed Name:	<u>, -11.</u>	Date:
Relinquished By (signature)):		od Nam		3 3 × 1.	V" j	Tim Dat		7 = 11,	Rec	celve	d (sig	ngture):		·····	····		ed Name:		Time: Date:7-25-96
firemidated by (all total)				_		<u>.</u>	Tim	i o ;			<u> </u>	$\leq \langle$	Lee-					SCOT RUSS	<u>, </u>	Time: 1500
1		711	C I A DA	DATODV	MALICY C	NONTHE	A CC	ነውላ ጥ	C TUIC	: ~U 4	INI O	にっつけり	TIME VACAT	⊔ 181\ <i>//</i>	71/CE /	A NIO 1	acetti.	71		

Rev. 1/12/03

Shell Oil Onn of Custooy

APPENDIX C

INTERPHASE SOIL GAS SURVEY REPORT AND STANDARD OPERATING PROCEDURES

July 23, 1996

WEISS ASSOCIATES 5500 Shellmound Street Emeryville, California 94608 Attention: Mr. Tom Fojut

SOIL GAS SURVEY RESULTS

Shelt Service Station
Emeryville, California
InterPhase Project #: 9634

(WIC # 204-6852-1404)

Dear Mr. Fojut:

InterPhase is pleased to submit the results of the soil gas survey conducted at the Shell Service Station located at 1784 150th Avenue in Emeryville, California on July 18 & 19, 1996. Our analytical services and data package have been completed in accordance with InterPhase's Standard Operating Procedures, which are based on the Los Angeles Regional Water Quality Control Board (LARWQCB) guidelines for active soil gas investigations under the Well Investigation Program (WIP).

Included in the submittals are the Quality Control Summary Sheets, the Data Summary Results Table and copies of the field sheets which document the raw analytical results, the complete analyte list and the practical quantitation limit (PQL) for each compound in each analysis.

Nineteen soil gas samples and one duplicate soil gas sample were collected and analyzed for this project. Vapor sampling depths ranged from 1 to 20 feet below ground surface (BGS). Five of the target analytes for this soil gas survey were detected in excess of their PCL in one or more samples analyzed. The detected analytes included methylene chloride (CH₂Cl₂), chloroform (CHCl₃), tetrachloroethene (PCE), vinyl chloride and total volatile hydrocarbons (TVH) in the C₄ to C₁₀ range. The Data Summary Results Table presents these compounds and the concentrations at which they were detected. Measurements of uncertainty in the analytical results are presented in the Quality Control Summary Sheets.

Additionally, InterPhase personnel collected seven soil samples at this site. Sampling depths ranged from 4 to 20 feet BGS. Soil samples were given to Weiss Associates on-site representative.

If you have any questions regarding the results, please call me at (800) 457-3300. We appreciate the opportunity to have worked with you on this project and look forward to working with you in the future.

Sincerely, InterPhase Environmental, Inc.

Scott A. Norris Senior Chemist

Enclosures

SOIL GAS SAMPLE RESULTS SUMMARY

SITE NAME: Shell Service Station, San Leandro, California (Project 9634)

LAB NAME: InterPhase Environmental, Inc.

DATE: July 18, 1996

SVS-1	SVS-2	SVS-3	SVS-3	SVS-3	SVS-3	SVS-3	SVS-4	SVS-5	SVS-5	•	SVS-5
4	4	1	2	3	8	18	4	3	13	13	20
(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
ė				•							
ND	ND	I.4 B	ND	ND	1.4 B	ND	3.9	ND	ND	ND	ND
ND	ND	0.020	ND	ND	ND	ND	ND	ND	ND	ND	ND
ND	0.010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ND	ND	4.9	1.2	1.4	ND	ND	1.8	ND	ND	ND	ND
ND	ND	43	ND	22	ND	ND	ND	ND	ND	ND	ND
	4 (μg/L) ND ND ND ND	4 4 (μg/L) (μg/L) ND	4 4 1 (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND 0.020 ND 0.010 ND ND ND 4.9	4 4 1 2 (μg/L) (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND ND 0.020 ND ND 0.010 ND ND ND ND 4.9 1.2	4 4 1 2 3 (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND ND ND 0.020 ND ND ND 0.010 ND ND ND ND ND 4.9 1.2 1.4	4 4 1 2 3 8 (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND 1.4 B ND ND 0.020 ND ND ND ND ND 0.010 ND ND ND ND ND ND 4.9 1.2 1.4 ND	4 4 1 2 3 8 18 (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND 1.4 B ND ND ND 0.020 ND ND ND ND ND ND 0.010 ND ND ND ND ND ND ND ND 0.010 ND ND ND ND ND ND ND ND ND ND ND	4 4 1 2 3 8 18 4 (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) ND ND 1.4 B ND ND 1.4 B ND 3.9 ND ND 0.020 ND ND ND ND ND ND ND ND 0.010 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	4 4 1 2 3 8 18 4 3 (μg/L) ND ND 1.4 B ND ND 1.4 B ND 3.9 ND ND ND 0.020 ND ND ND ND ND ND ND ND ND 0.010 ND 0.010 ND 1.2 1.4 ND ND 1.8 ND	4 4 1 2 3 8 18 4 3 13 (μg/L) ND ND 1.4 B ND ND 1.4 B ND 3.9 ND	4 4 1 2 3 8 18 4 3 13 13 (μg/L) (μg/

μg/L: micrograms per liter

Note: undetected compounds not listed

B: below calibration range

ND: not detected above Practicle Quantitation Limit

Why do these data not neflect those Soil ropor samples carterfied in Samura Tenisters for los analysis? (Ex: TVH results for all SVS-5 samples)

SOIL GAS SAMPLE RESULTS SUMMARY

SITE NAME: Shell Service Station, San Leandro, California (Project 9634)

LAB NAME: InterPhase Environmental, Inc.

DATE: July 19, 1996

Sample ID: Sampling Depth (ft):	SVS-6 4	SVS-8 5	SVS-7 4	SVS-9	SVS-9 6.5	SVS-9 13	SVS-9 18	SVS-10 3
	(μg/L)							
methylene chloride (CH ₂ Cl ₂) chloroform (CHCl ₃) tetrachloroethene (PCE) vinyl chloride TVH (C ₄ -C ₁₀)	ND ND ND ND	1.6 ND ND ND						

μg/L: micrograms per liter

Note: undetected compounds not listed

B: below calibration range

ND: not detected above Practicle Quantitation Limit

QUALITY CONTROL SUMMARY

Date: July 18, 1996 Project #: 9634

Chemist: David Hinton

Machine ID: Ph	chine ID: Phase 9					IBRATION	CHECK			LCS					
Supply Source:	Chem Service			Calibi	ration Inforn	nation and D	etector Re	sponse		Laborato	ry Con	trol Sample			
		COLUMN	STDconc		Injection	1	mean		ACC	Actual					ACC
	DETECTOR	TYPE/SERIAL#	μg/L	μL	area	rf	rf	% Dif	RGE	μg/L	μL	area	rf	% Dif	RGE
CFC-11	ECD	DB-624/1213537	0.05	200	173053	17305	16410	5%	25%	0.04212	200	144517	17155	5%	30%
CH ₂ Cl ₂	ECD	DB-624/1213537	22.06	200	137385	31	. 33	7%	15%	20.42	200	132299	32	3%	20%
1,1-DCA	ECD	DB-624/1213537	25,43	200	102531	20	19	8%	15%	20.675	200	66497	16	14%	20%
CHCl₃	ECD	DB-624/1213537	0.49	200	211406	2157	2374	9%	15%	0.3946	200	183610	2327	2%	20%
1,1,1-TCA	ECD	DB-624/1213537	0.0765	200	197622	12916	13940	7%	15%	0.0631	200	170236	13489	3%	20%
CCl ₄	ECD	DB-624/1213537	0.0157	200	125201	39873	43101	7.%	15%	0.01265	200	101152	39997	7%	20%
1,2-DCA	ECD	DB-624/1213537	20.61	200	128119	31	30	3%	15%	22.03	200	113731	26	14%	20%
TCE	ECD	DB-624/1213537	0.439	200	456387	5198	4653	12%	15%	0.34685	200	310313	4473	4%	20%
1,1,2-TCA	ECD	DB-624/1213537	5.52	200	299495	271	260	4%	15%	5.37	200	239188	223	14%	20%
PCE	ECD	DB-624/1213537	0.113	200	548747	24281	21422	13%	15%	0.09975	200	388062	19452	9%	20%
1,1-DCE	PID	DB1/5762234	27.5	200	550276	100	111	10%	15%	18.025	200	417419	116	5%	20%
t-1,2-DCE	PID	DB1/5762234	23.05	200	1041533	226	257	12%	15%	14.94	200	640257	214	17%	20%
c-1,2-DCE	PID	DB1/5762234	26.28	200	620936	118	130	9%	15%	17.545	200	404053	115	11%	20%
benzene	PID	DB1/5762234	14.33	200	667233	233	254	8%	15%	9.5	200	440064	232	9%	20%
TCE	PID	DB1/5762234	20.41	200	573212	140	138	1%	15%	14.945	200	357705	120	14%	20%
toluene	PID	DB1/5762234	18.38	200	853366	232	233	0%	15%	12.125	200	583815	241	3%	20%
PCE	PID	DB1/5762234	28.11	200	598910	107	98	9%	15%	21.295	200	374580	88	10%	20%
ethylbenzene	PID	DB1/5762234	19.6	200	786859	201	183	10%	15%	13.735	200	475730	173	6%	20%
m,p-xylenes	PID	DB1/5762234	21.38	200	1053756	246	232	6%	15%	14.87	200	606106	204	12%	20%
o-xylene	PID	DB1/5762234	21.37	200	839260	196	188	5%	15%	15.1	200	546989	181	3%	20%
vinyl chloride	PID	DB1/5762234	25	150	304316	81	87	7%	25%	50	200	752341	75	14%	30%
hexane	FID	DB1/5762234	343	300	55193	0.54	0.56	4%	15%	646	200	79244	0.61	10%	20%

μg/L: micrograms per liter

rf: response factor

STDconc: standard concentration

QUALITY CONTROL SUMMARY

Date: July 19, 1996 Project #: 9634

Chemist: David Hinton Machine ID: Phase 0

Machine ID: Pi	ase 9			MID-	POINT CALI	BRATION	CHECK			LCS		1			
Supply Source:	Chem Service			Calibi	ration Inform:	ation and I	etector Re	sponse		Laborato	ry Con	trol Sample	·		
		COLUMN	STDcone		Injection 1		mean		ACC	Actual	<u> </u>	· ·			ACC
	DETECTOR	TYPE/SERIAL#	μg/L	μL	area	rf	rf	% Dif	RGE	μg/L	μL	area	rf	% Dif	RGE
CFC-11	ECD	DB-624/1213537	0.05	250	196688	15735	16410	4%	25%	· · · · · · · · · · · · · · · · · · ·	200	135795	16120	2%	30%
CH₂Cl₂	ECD	DB-624/1213537	22.06	250	196404	36	33		15%		200	137746	34	1%	20%
1,1-DCA	ECD	DB-624/1213537	25.43	150	69012	18	19	3%	15%	20.675	200	67252	16	13%	20%
CHCl ₃	ECD	DB-624/1213537	0.49	250	276974	2261	2374	5%	15%	0.3946	200	172425	2185	8%	20%
1,1,1-TCA	ECD	DB-624/1213537	0.0765	250	250503	13098	13940	6%	15%	0.0631	200	161917	12830	8%	20%
CCl₄	ECD	DB-624/1213537	0.0157	250	155535	39627	43101	8%	15%		200	96321	38087	12%	20%
1,2-DCA	ECD	DB-624/1213537	20.61	250	157875	31	30	2%	15%	22.03	200	116801	27	12%	20%
TCE	ECD	DB-624/1213537	0.439	250	549952	5011	4653	8%	15%		200	343189	4947	6%	20%
1,1,2-TCA	ECD	DB-624/1213537	5.52	250	335656	243	260	6%	15%	5.37	200	237753	221	15%	20%
PCE	ECD	DB-624/1213537	0.113	250	681504	24124	21422	13%	15%		200	410349	20569	4%	20%
1,1-DCE	PID	DB1/5762234	27.5	200	543513	99	111	11%	15%		200	352935	98	12%	20%
t-1,2-DCE	PID	DB1/5762234	23.05	200	1051315	228	257	11%	15%	14.94	200	706941	237	8%	20%
c-1,2-DCE	PID	DB1/5762234	26.28	200	607302	116	130	11%	15%	17.545	200	439208	125	3%	20%
benzene	PID	DB1/5762234	14.33	200	638179	223	254	12%	15%		200	481169	253	0%	20%
TCE	PID	DB1/5762234	20.41	200	513755	126	138	9%	15%	L	200	389763	130	6%	20%
toluene	PID	DB1/5762234	18.38	200	774158	211	233	9%	15%		200	589310	243	4%	20%
PCE	PID	DB1/5762234	28.11	200	502955	89	98	8%	15%		200	399140	94	4%	20%
ethylbenzene	PID	DB1/5762234	19.6	200	695616	177	183	3%	15%	13.735	200	559240	204	11%	20%
m,p-xylenes	PID	DB1/5762234	21.38	200	878195	205	232	11%	15%	14.87	200	713527	240	3%	20%
o-xylene	PID	DB1/5762234	21.37	200	782386	183	188	2%	15%	15.1	200	558654	185	1%	20%
vinyl chloride	PID	DB1/5762234	25	150	312102	83	87	5%	25%	50	200	741747	74	15%	30%
hexane	FID	DB1/5762234	343	200	42607	0.62	0.56	11%	15%	646	200	76401	0.59	6%	

μg/L: micrograms per liter

rf: response factor

STDconc: standard concentration

DRAFT

						Evac.				CFC-11			CH ₂ Cl ₂		
			Star file	Time	Time	Volume	InjVol		Retention 2		Conc.	Retention 2	2629	Conc.	
.—	<u>~</u>	Sample(#/ft)	Name	Samp	Inj	(ml or L)	(uL)	Dil	Time	Area	(μg/L)	Time	Area	(μg/L)	
DATE:	14-96	AMAN Aiz	012	0934	0934		300				-,01	<u> </u>		41	
	/	Storm Seryns.	013	0950	0950		300	<i></i>			101			</td <td></td>	
PROJECT #:		5VS+1-4	- <i>'</i>	1503	1003	90	300		<u> </u>		101			61	
9634	1	515-2-41	015	1040	1040	90	300				401			K/	
CHEMIST:	1111	515-3-11	616	1112	1112	45	300				1.01	2.492	14277	1.4	
DAVID	HNON-	5V5-3-21	017	1134	1134	45	300				K101		ļ	41	
ON SITE:		54.5-3-31	018	1157	1157	45	300				1.01			K/	
0730) ,	515-3-81	019	1216	1216	135	300	 		•	4.01	2.524	13907	1,4	1
LUNCH:	/ /	5VS-3-15'	620	1252	1252	270	300				4.01			<1	,
1	•	515-4-4	021	1416	14/6	90	300				4,01	2636	38732	3,9	/
DEPART:	~	SV5-5-3	022	1441	1441	45	300				4,01	,		41	
1430	, ≈26×	5V5-5-13	023	1992	1532	225	300		<u> </u>	Powe	+ 5	4: (.		 	
(4)	,	/SV5-5-131	024	1544	1544	225	300				5.01			<u> </u>	
	,	- 515-5-13	1	1559	1559		300				2.01			K-1	
	Ł	/5155-20	026	NIU	1614	315	300	-		•	101			41	
	·	Suprem Sign	027	1722	1722		300				4.01			<1	
151		Ambint Air		1733	1133		30			4	1.01			<u></u>	
1/2/94		,,,,,													
													<u> </u>		
															
						1.									
				 		1	1	 		 					
			<u> </u>										-		1
			_l			<u> </u>		1				<u> </u>	<u>.</u>		J

DRAFT

								DRA	k.I.							
	. [11-DCA.	·		CHCl ₃			111-TCA			CCl ₄		12-DCA		
	ŀ	Retention		Conc.	Retention	3.805	Conc.	Retention	3,956	Conc.	Retention &	1.135	Conc.	Retention 4	326	Conc.
Samp	ple(#/ft)	Time	Агеа	(μg/L)	Time	Area	(μg/L)	Time	Area	(µg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)
	A			4.01			2.01			2.01			2.01			4,01
	5.13			4.01			4.01			4.01			4.01			6.51
SUS.	-1-4'			5,01			2.01			4,01			<.01			K.01
545	-2-41			4.01			4.01			€,01			<,01			4.01
575	1-3-11			4.01	3.441	14344	102 1	White		4,01			501			4,01
5/5	-3-21			4.0(10,			5.01			<.0(K10(
515	-3-31			4.01			K.01			<.0(K.01			4.01
SVS	5-3-81			401			4.01			5,01			<.01			4.01
)-3-18 [\]			4,01			4.0(5.01			5.0(4.01
515	-4-41			101			<,0(4,01			5,01			5,01
1	5-3			401			401	,		4,01			4.01			4,01
1 SV5	-5-13' 5 <i>-5-13</i> ' 5-5-20		3	401			101			4.01			5101			<.01
SVS	5-5-13			1.01			<.01			K101			5.01			<.01
Sv:	5-5-20			×.01			4.01			<.01		ļ	<,)(Kiel
5	53			K.01			4101	<u> </u>		K.01			<.01			4,0/
4	1.A			4.01			<.01	-		K.01			4.01			4.01
											<u> </u>					
											<u> </u>			ļ <u>.</u>		
							<u> </u>									
											ļ					
				_				-		_	<u> </u>	<u> </u>				
								İ				<u> </u>				

DRAFT

							A) A CA AA	· . 							
	ļ	TCE			112-TCA 6.943		ł I	PCE		1					}
	Retention	4.976	Conc.	Retention	6.843	Conc.	Retention	7.032	Conc.	Retention		Conc.	Retention		Conc.
Sample(#/ft)	Time	Area	(µg/L)	Time	Area	(μg/L)	Time	Агеа	(μg/L)	Time	Area	(μg/L)	Time	Агеа	(μg/L)
A. A			L.01 ·		·	2.01			2.01					· · · · · · · · · · · · · · · · · · ·	
5.5.13 515-1-4			K,01			C,01.			401						
SV5-1-41			101			4.01			5:01					<u> </u>	
505-2-41			K.01			4.01	7.113	64512	5.010 0.010	54/22					ļ
545-3-1			401			5,01			KIOI						
515-3-21			101			<10(<101	_	···				
515-3-31		4	K-01			4.01			1.01						
515.3-81			4,01			2.01			4.0(1
515-3-14	ļ	-	101			101			<.01						
515-4-41			101			4.01		1	4.01						
SUS-19-3'		·-	401			K101		<u> </u>	4.01			ļ			
SVS-5-B'			101			5.01		<u> </u>	5.01						
J SV5-5-131			401			5.01			101			,			
515-5-20			Kiol			201			L.01			ļ	-		
S. 5.B			2.01			1.01			K.01						
A.A			K01			<.01			<.01						<u> </u>
							<u> </u>			ļ					<u> </u>
						ļ						·-			
															
									<u> </u>	ļ		-			
						ļ									
													<u> </u>		

Dip

DRAFT

		Star File	InjVol	•		inyl chloric	ie Conc.	Datasias '	chloroetha	ne Conc.	2498	11-DCE 3 -22 7	Conc.	t-12-DCE ¥2876	Conc.]
	Sample(#/ft)	Name	mj voi (μL)	Dil	Time	Area	Conc. (μg/L)	Time	Area	Conc. (μg/L)	Time	Area	Conc. (μg/L)	Area	Conc. (µg/L)	
_	Ampint-Ar	012	500				<u>ن ا</u>	\		<1/			<1		41	
/	Extenserying		500				<u> </u>			<1			41		<u> </u>	
	515-1-41	014	500	_			41			4/1			<(</td <td></td>	
	SV5-2-41	015	500				61			71		,	<u>-1</u>		</td <td></td>	
/	515-3-11	016	500		1.794	213553	4.9	/ \		KI			4		Z	
	15-3-21	017	500		 	52000	1.2	/\		41			<u>د</u> (4 1	
		018	500	-	1.769	59551	1.4			41			<u>~1</u>		<u> </u>	
	513-3-81		50 U				KI	5/1/02		41			< (<1	
	615-3-18	020	500			1 - /		< 1 "		<u>-1</u>			41		41	
	515-4-4		500		1.762	77392	1,8			KI			< (<1	
1	515-5-31		500				<1		\Box	<(<(</td <td></td>	
	515-5-13	029	500	_			51		/__	K1			</td <td></td> <td><1</td> <td></td>		<1	
Depr	515-5-131	025	500	_			<u>-(</u>		/	<(<(<u> </u>	
/	SV5-5-20	026	500				41			<1			< (41	_
_	S.S. B	027	500				41		\	4(<(<u> </u>	</td <td></td>	
/	A.4	028	500				51			\ <u> \ </u>			<(</td <td></td>	
										<u> </u>			<u> </u>	·		
												·				
								ĺ		\						
				·							N .					
]												_

DRAFT

							DKA	r i								
		c-12-DCE			benzene		toluene			e	thylbenzen	e	m,p-xylenes			
	Retention	3291	Conc.	Retention C	1.130	Conc.	Retention	5.825	Conc.	Retention	7.493	Conc.	Retention	7.645	Conc.	
Sample(#/ft)	Time	Area	(μg/L)	Time	Агеа	(μg/L)	Time	Area	(μg/L)	Time	Агеа	(μg/L)	Time	Агеа	(μg/L)	
A.A			41			41			41			41			<1	
5.5.13			41			C1			<u>~1</u>			<1			</td	
515-1-41			61			<1			<u>~1</u>			- (</td	
515-2-41			<1			41			<1			<1			< (
SV5-3-1'			<u>در</u>			41			<1			< (< 1	
515-3-21			<1		·	41			<u>ح ر</u>			۷(<1	
SV5-3-31			41			< (<1			41			<1	
Su5-3-8'			41			<u>د ر</u>			<1			<1			<(
SUS-3-18	}		41			<1			<u>د</u> (< (~ \	
515-4-41			<1			<1			<1			<1			</td	
545-5-31			<1			<1			41			< 1			</td	
515-5-131			4			<(=1			<u> </u>			</td	
5V5-5-13'			<u>-1</u>			41			<1			<1			</td	
515-5-20			< 1			41			41			<1			<(
5.S.B			21			41			41			41			</td	
A.A			41			41			41			41			41	
					<u> </u>											
								<u>.</u> .								
													,			

Dup

FIELD SHEET / RAW DATA DRAFT

					<u>D</u>	KAI I						
		o-xylene								'		
	Retention	9.065	Conc.	Retention		Conc.	Retention		Conc.	Retention		Conc.
Sample(#/ft)	Time	Агеа	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)
AA			41		· · · · · ·				- 1. 1			, <u>, , , , , , , , , , , , , , , , , , </u>
5.5.13 SVS-1-4			41									
515-1-41			41									
505-2-41			61	ž						ļ		
5V5-3-1'			<1		·							
515-3-2			41								-	
545-3-31			<u>~</u> (
545-3-81			41									
515-3-181			41									
515-4-41			41									
515-5-31			41									
515-5-131			<1						***************************************			
515-5-131			<1									
SV5-5-20'			<u> </u>				<u> </u>					
5.5.13 A.1			<u>~1</u>									
A.1			41			1						
					~ 							
							<u> </u>					

Dup

Page 8 of 8

RF = 0.56

FIELD SHEET / RAW DATA DRAFT

·					TVH										
	Star File	InjVol		Retention	3.217		Retention		Conc.	Retention		Conc.	Retention		Conc.
Sample(#/ft)	Name	(此)	Dil	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Агеа	(μg/L)
1 A.A	014	500				<u>~10</u>									
553						_									
15V5-1-4'	0(7	500				410									
1 515-2-41	014	500			I	410									
1 SV5-3-1'	019	50U		1.0-1.2	12058	43		_			·				
15U5-3-21	020	500	-			<10									
1515-3-31	021	500	 .	1.03	6283	22	/	·							
/ SV5-3-81	022	500				210									
1 515-3-181	023	500				K10									
1 SV5-4-4"	024	500				<10									
15US-5-31		500				410				ļ					
1 SV5-5-13	026	500				<10									-
July SVS-5-13	027	500				410									
SV5-5-20	029	500		ļ		C10									
SA 5.53 A.A			_			_									
A.A	031	500	-			<10									
		-								-					
		i			1			1			J		.1	1	

					DIVAL								
					Evac.				CFC-11			CH ₂ Cl ₂	
		Star file	Time	Time	Volume	InjVol		Retention	1.997	Conc.	Retention	2.624	Conc.
	Sample(#/ft)	Name	Samp	Inj	(ml or L)	(uL)	Dil	Time	Area	(μg/L)	Time	Area	(μg/L)
DATE:	Ambier Air		T	0740		300				4.01			<u>-1</u>
DATE: 7-9-96	Sille Syoure	040	0754	0754		300				4.01			4
PROJECT #:	1 515-6-41	041	0533	0833	90	300	-			4.01			<u> </u>
9634	1515-8-51	042	0854	0854	90	300			<u></u>	4.01			<u> </u>
CHEMIST:	1515-7-41	043	0916	0916	90	300		, <u>.</u>		4.01	ļ		41
CHEMIST:	1505-9-3		959	959	45	30 U		ļ <u></u>	····	4.01			4
	1545-915°		1029	1029	135	300		 	-	1.01			4(
05:30 LUNCH:	/ SYS-9-13°		1124	1124	225	300			4	1.01	1		1/
LUNCH:	1 505-9-181		1149	1149	270	300		-		4:01	(2)		4-(
<i>A</i> :	/ 5/5-10-31	049	1313	1313	45	30 U				4.01	2.648	16344	1.6
DEPART:	2 Dem Seryar	050	1328	1328		300				4.01			KI
1630	Amaint Acc	056	1340	1340	<u> </u>	300		<u> </u>		4.1		1	41
177					ļ	_	-	ļ		-	 		_
										_			_
1/8.) 2/22/96			ļ						-				
2/22/96	-				<u> </u>		 	1			-	<u> </u>	
11				<u> </u>						 	-		-
				<u> </u>			ļ <u>.</u>	-					
											-	ļ <u>.</u>	
				-					<u> </u>				<u> </u>
				-									
			_		-			-	 				
			i				<u> </u>						

_							DICA				001			12-DCA	
		11-DCA			CHCl ₃		i	111-TCA			CCl ₄	_			<u> </u>
	Retention 2	2.11.2	Conc.	Retention	3.4	Conc.	Retention	3,94/	Conc.	Retention (1.19	Conc.	Retention 4		Conc.
Sample(#/ft)	Time	Area	(µg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)
A.A			4,01		· ·= ···	6.01			2:01			4,01			6,01
5.5.13			401			6.01			2.01			4.01			2.01
545-6-41			4.01			4,01			6.01	<u> </u>		6,01			6,01
515-8-51			K.01			4.01	<u> </u>		5.01	<u> </u>		4.01			<.01
515-7-41			4.01			401		<u> </u>	C101	ļ		4.01			<.0(
5V5-7-3'			<101			6.01		<u> </u>	<,0(4.01	-		<,01
515-9-65			KIOL			4.01			<,01	ļ		4.01			4.01
SUS-9-13			4.01			4101		<u> </u>	<1.01	+		4,01			.01
505-9-181			4.01			4.01		<u> </u>	4.01	ļ <u>.</u>		K.01			(,0/
515-10-31			2.01			4.01	ļ	<u> </u>	6101	<u> </u>		4,01	-		<.00 <.01
5.5.13			6.01			101	<u> </u>	<u> </u>	4.01	-	-	2.01			
A.A			.01			4.01		ļ	c.01	_	ļ	K.01			<.01
							ļ. <u>.</u>	<u> </u>		<u> </u>	ļ				
									<u> </u>			·-	_		
											ļ				_
							_								
					<u> </u>										
															-
															<u> </u>
										-			ļ		
							_						-		
						<u> </u>									

Į		TCE			112-TCA		DICAL	PCE 7, a 27							
	Retention É	1.92	Conc.	Retention (e. 434	Conc.	Retention 4	1,027		Retention		Conc.	Retention		Conc.
Sample(#/ft)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(µg/L)	Time	Area	(μg/L)	Time	Area	(μg/ L)
A. A S. S. 13 SVS-6-4' SVS-8-5' SVS-7-4'			K.01			C-01			C.01						
5.5.13			4.01			5.01			<.01						<u> </u>
515-6-4"			4.01		· · · · · · · · · · · · · · · · · · ·	1.01			5,01			 			ļ ——
515-8-5°			401			K.01			C.01		<u>-</u>		<u> </u>		
515-7-41			4.01			٧.٥١			<,01	.,					
515-9-31			4.01			4,01			<101						
5V5-9-65			6,01			501			4.01						<u> </u>
5V5-9-6.5 5V5-9-131 5V5-9-14"			6,01			<.01			101					<u>,</u>	
515-9-14"		 	4.01			2.01			2.01						
SVS-10-31	-		4.01			Liol			4101					<u> </u>	
5.5.13			<.01			<.01	-		<.01						
A.A		-	4.01	-	-	C.01			<.01						
14.12		-		<u> </u>			-			_					
				<u> </u>						-		-			
	_	-					-				-		-		
	<u>- </u>	-	-				-		1	<u> </u>	1		-		
		<u> </u>		-	<u> </u>		<u> </u>		_			 - -			
		<u> </u>							 -	-					
				-	 -	_		<u> </u>							
						_					 	_	 	-	
			_	- 							-	_	· ·		
				<u> </u>											
											-			 	
								1							

				v	nyl chlori	de	cl	hloroethar	ne		11-DCE		,	t-12-DCE	
	Star File	InjVol		Retention	~	Conc.	Retention			Retention .	2515	Conc.	Retention	2.498	Conc.
Sample(#/ft)	Name	(μL)	Dil	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(µg/L)	Time	Area	(μg/L)
JAA		500				<1						<u> </u>	,		41
15.5.B	040	500				41						41			<u> </u>
1515-6-41 1515-8-51	041	500				4						41			<u> </u>
1515-8-51	042	500		ļ		<u> </u>			/			6			<1
JS15-7-41	043	500				41	\		1	<u> </u>		<u>(</u>	ļ		21
1 SV5-9-31	644	500				41		\	<u> </u>	<u> </u>		41			<1
- 515-9-6.5	045	500				4			/			41	ļ		<u>~/</u>
1515-9-13' 1515-9-18'	047	500	_			41						C-1			4/
1515-9-18	048	500				41						<u> </u>	-		<1
1519-10-31	047	500	-			41						61			<1
15.5.3		500	_			41						61		ļ	<1
A.A	051	500				41						<u> </u>			</td
															<u> </u>
		_											_		
			1												
	-														
								<u> </u>						<u> </u>	
							j								ļ. <u></u>

		c-12-DCE			benzene		5. 88 Z	toluene		7.566	thylbenzen	e		m,p-xylene	s
	Retention	3.317	Conc.	Retention L		Conc.	Retention	425	Conc.	Retention -	Z	Conc.		ブフルと	Conc.
Sample(#/ft)	Time	Area	(μg/L)	Time	Агеа	(μg/L)	Time	Area	(μg/L)	Time	Area	(µg/L)	Time	Area	(μg/L)
A.A			41		··	41			41			41	<u> </u>		<1
553			41			21			41			41	ļ		41
505-6-4'			41			<u> </u>			< (41			4/
515-8-51			41			<1			<u>~1</u>			<1			</td
5V5-6-4' 5V5-8-5' 5V5-7-41			41			< \			<1			< \			K1_
515-9-31			4		-117	<u>ح(</u>			<1			<1			</td
515-9-60			K(1		41			41		,	<1			<-/
515-9-13' 515-9-18 515-10-3' 5.5.B			Z1			<u> </u>			41			41			</td
515-9-18	 -		41		·	41			<u>-1</u>			41			c1
515-10-3			41	 		<(۷(<(< 1
SEB	<u> </u>	<u> </u>	4	-		<1			< 1			<1			<1
1 1 1			41	-		41	-	_	Z1			<1			<1
A.A	ļ	 	+	-		 	 	 	-				_	1	
							 		 						
	<u> </u>	-	 -			 	-		1					- 	
		 		· ·	<u> </u>	<u> </u>				<u> </u>					
		<u> </u>					_								
									<u> </u>					 	
			 -	<u> </u>		 	-			-					
				-											
	1				ļ		_					-	_	-	
							_								
												_			

ı				Γ	<u></u>	IVAL I				1		
		o-xylene	_	!		_			_			
	Retention	8.144	Conc.	Retention		Conc.	Retention		Conc.	Retention		Conc.
Sample(#/ft)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)	Time	Area	(μg/L)
A.A 5.5.13 5V5-6-41 5V5-8-51 5V5-7-41			41									
5.5.13			41									
545-6-41			21									
SV5-8-51			41									
5V5-7-41			21						-10 11.			
SV5-9-31			41								J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
515-9-6.5		,	41						<u> </u>			
515-9-131			<1									
515-9-18			41									
5V5-9-18 5V5-10-3			41									
S.S. B			21									
A.A			41									
	-											
										-		
		 			<u> </u>							
						-						
				 -		 				1		
					 		-	 	 	-	-	
	_				 				 			
									 			
ļ	-	1			1							<u></u>

Page 8 of 8

ff = 0.56

FIELD SHEET / RAW DATA

		•					DK	71. 1							
	Star File	InjVol	m:1	Retention		Conc.	Retention	A	Conc.	Retention Time	Area	Conc. (µg/L)	Retention Time	Area	Conc. (µg/L)
Sample(#/ft)	Name	(μ L)	Dil	Time	Area	(μg/L)	Time	Area	(µg·L)	111116	Auca	(μ <i>β</i> / <i>Β</i> /	1	,,,,,	(1-6-)
VA.A	052	500				410							1		<u> </u>
5.5.B	1			-											
15V5-6-4'	053	500	1			410			<u> </u>			<u> </u>			
1505-8-51	054	500				<10							<u> </u>		ļ
5.5.13 1 SVS-6-41 5VS-8-51 1 SVS-7-41	055	500				KID						ļ	ļ		
1515-9-31	056	500				<10						<u> </u>	ļ		
1515-9-65	057	500				<10						ļ	ļ		
1 515-9-31 1 515-9-65 515-9-13	058	500				410						<u> </u>	-		
/ 515-7-18'	1059	500				410						<u> </u>			
~515-10-3	060	500	_			K10]	_				ļ		ļ	ļ
~515-10-3°	060	500	-			140	LO		<u> </u>						
A.A	062	500				40									
		 		 -		-									
			-		-										
					_	-									
						-					1				
			-												
			-												
· · · · · · · · · · · · · · · · · · ·	_		 	-											
	-							 		_	+				_
ļ											l				

STANDARD OPERATING PROCEDURES FOR THE COLLECTION AND ANALYSIS OF SOIL GAS SAMPLES

Equipment/Instrumentation

InterPhase operates a mobile sampling and analytical van which is capable of collecting soil gas and ambient air samples. Real-time chemical analyses of soil gas and air samples are performed for indicator compounds (analytes) selected for each project site. Field equipment and sampling systems used by InterPhase are as follows:

* Modified one-ton Ford E350 van;

* Two gasoline-powered AC generators;

* Van-mounted hydraulic driving/hammering system designed to install or remove sampling probes;

* 100 feet of percussion drill steel in 3-foot probe sections;

* Oilless air pump and evacuation chamber for collecting exact volumes of soil gas at atmospheric pressure;

Analytical instrumentation and chemical supplies include the following:

* Varian 3400, Hewlett-Packard 5890 and SRI 8610 gas chromatographs;

* 486 PC-based data management and GC integration systems;

* A combination of ECD (electron capture), FID (flame ionization), PID (photoionization), and TCD (thermal conductivity) detectors;

* UHP grade compressed analytical gases (nitrogen, helium, hydrogen);

* Analytical vapor and methanolic standards for priority pollutants, gaseous hydrocarbons and fixed/biogenic gases;

* High resolution megabore, capillary, and packed gas chromatographic columns;

* Fittings, tools, plumbing and syringes required for normal GC operation.

Sampling Procedures

Soil gas samples are collected at designated depths by filling a sampling syringe from a length of polyethylene tubing installed within the bore of 1" OD percussion drill steel sampling probes. An unbroken length of 1/4 " polyethylene tubing is connected via a threaded adapter the deepest probe. Probes are driven into the ground by a vehicle-mounted hydraulic hammer which loads the probe with the weight of the vehicle. Pre-designated sampling depths are reached by coupling the

three foot sections of probe. Discrete volumes of gas are removed by 60 ml syringe to purge the tubing of atmospheric air and to allow subsurface air to enter. The volume of gas removed is determined by the volume of tubing employed and results of purge volume tests. Unlike groundwater sampling, purging of a soil gas probe is designed to remove only the ambient air in the system.

A minimum sampling depth of 3 to 5 feet below ground surface (bgs) is recommended in areas where bare soil is the surface cover in an effort to minimize sample dilution with atmospheric air. Soil gas samples may be collected at depths less than 3 feet bgs to assess the accumulation of vapors under a surface cover such as asphalt or concrete. Comparing contaminant concentrations and fixed/biogenic gas composition as a function of purge volume may be performed at the beginning of a survey. Purge volume experiments may be conducted in an area where subsurface contamination is expected to be greatest and are designed to assess optimal purge times and potential sample dilution with atmospheric air.

done.

As the pressure within the sampling system reaches atmospheric, a 10 cc vapor sample is collected in a glass syringe by inserting the needle through the wall of the tubing. In order to minimize the possibility of cross-contamination among sampling locations; dedicated lengths of polyethylene tubing and drive points are used for each sampling location, and non-dispensable tools are baked in an oven at 80 degrees C for 10 minutes.

Two ambient air samples are collected over the course of each day and analyzed for background concentrations of the target compounds. All components of the sampling system are checked for contamination prior to sampling at the beginning of the day by drawing atmospheric air or nitrogen gas through the system, subjecting it to GC analysis, and comparing the resulting chromatogram with that of ambient air or UHP nitrogen. Steel sampling components are cleaned using steam or pressurized water and detergent (Alconox) at the conclusion of each day.

As part of the sampling procedure, probe locations are recorded on the field sampling sheets. In addition, field data forms (and chain-of-custody forms, if necessary) are used to record observations regarding vapor sampling and probe installation. These field data forms may include, but are not limited to, sample identification, sampling depth, time of sample collection and analysis, volume of soil gas extracted, and observations of soil characteristics.

Confirmatory soil vapor samples are collected by connecting dedicated sections of polyethylene tubing to an evacuated canister. Gas canisters are normally transferred under chain-of-custody procedures to a commercial laboratory where they are analyzed according to the specified methods. The percentage of duplicates submitted for laboratory analysis is dependent on project objectives and

regulatory specifications. InterPhase recommends that duplicates be collected at 5% of the sampling points.

InterPhase scientists have conducted field experiments to estimate the capture zone around the end of the soil gas sampling probe in order to demonstrate that vapor samples are not diluted with atmospheric air. Capture zone estimates were calculated for sandy soils and for silty or clayey soils as follows:

Sampling Depth: 6 feet

Volume of sampling probe: 15 cm³/3-foot length

Purge Volume: 60 cm³ (Approximately 2 probe volumes)

Air porosity of sandy soils: 30% = 0.3Air porosity of silt or clay soils: 20% = 0.2

Volume of soil gas collected from sandy materials:

 $60 \text{ cm}^3/0.3 = 200 \text{ cm}^3$

Volume of soil gas collected from silty or clayey materials:

 $60 \text{ cm}^3/0.2 = 300 \text{ cm}^3$

Assuming isotropic vapor flow, the volume of soil gas collected may be described as a sphere with the origin at the tip of the soil gas probe. Therefore,

$$(4/3)(pi)(r^3) = 200 \text{ cm}^3 \text{ (sand)}$$

r = 3.6 cm

$$(4/3)(pi)(r^3) = 300 \text{ cm}^3 \text{ (silt/clay)}$$

 $r = 4.1 \text{ cm}.$

The purge volume of 60 cm^3 ensures that two volumes of the sampling apparatus are evacuated (2 probe lengths x $15 \text{ cm}^3 = 30 \text{ cm}^3$). The calculated radius of influence is substantially less than the distance to ground surface (182.9 cm), thus minimizing the potential for sample dilution with atmospheric air.

Analytical Procedures

The 10 cc soil gas samples are subsampled and analyzed within 30 minutes of collection in order to preserve the integrity of the vapor sample. Duplicates may be analyzed approximately every twenty samples by gas chromatography for documentation of reproducibility. Analytes are identified by their respective elution times through the selected columns and detectors. Retention or elution times are compared with external standards injected in a gaseous, organic, or

aqueous phase. Analyte separation for compounds detected by the FID (e.g. petroleum hydrocarbons and ketones) is performed using a 30 m x 0.53 mm DB-624 or DB-1 megabore capillary column (J&W Scientific). Analyte separation for compounds detected by the ECD (e.g. halogenated aliphatics) is performed by using a 30 m x 0.53 mm DB-624 or DB-1 megabore capillary column (J&W Scientific). Identification of vinyl chloride and alkyl benzenes may be performed using the aforementioned capillary columns and a PID. Analyte separation for compounds detected by the TCD is performed by using either a molecular sieve or CTR-1 2 m stainless steel packed columns (Alltech Associates), ranging in diameter from 0.64 to 0.32 cm. Difficulties associated with peak separation are minimized by the use of low viscosity carrier gases, compound-specific detectors, megabore capillary columns, and method-specific temperature programs.

Analyte concentrations are estimated by comparing the detector response for a known concentration or mass of the external standard with the detector response for the sample. Multi-point calibration curves are computer-generated by plotting the detector response for external standards against a range of analyte concentrations. The detector response is checked at the beginning and end of each day during a survey to ensure that the calibration curves are accurate. Analyte detection limits are determined by the response factor for each day.

Although preliminary results are often available in the field, all chromatograms generated during a soil gas survey are subsequently reviewed by another chemist to ensure that computer identification and quantification of analytes are correct. The InterPhase van operates directly under the supervision of a degreed project chemist.

The following procedures are employed during all soil gas surveys:

- * High-volume sampling and subsampling syringes are decontaminated by washing with a mild detergent and drying at a minimum temperature of 90 degrees Celsius;
- * Microliter syringes (used for sample injection onto the GC column) are solvent rinsed, purged with an inert gas, and checked for contamination by immediate injection into the appropriate gas chromatograph;
- * External standards are either commercially-prepared EPA chemical standards or mixtures of commercially-prepared gases;
- * Detector response to analytes is documented over a 10 to 50-fold range in mass or concentration and compared to the theoretical responses in order to check the linearity of the detector response to analytes;

- * Septa on the GC column injectors are replaced daily to minimize the possibility of carrier gas leaks (only UHP gases are used for chromatography); and
- * All analytical data (e.g., chromatograms, calibration curves, integration reports) are stored on a computer floppy disk or hard copy, transmitted to the InterPhase office, and reviewed by a second chemist.

In the unlikely event that chromatograph sensitivity is affected by electrical surges or vibration, resulting changes are immediately observed by continuously monitoring the baseline voltage for all detectors. It should be noted that the analytical instruments are powered by a generator system which is completely separate from that running either the hydraulic/pneumatic equipment or the motor vehicle.

Determination of Detection Limits

Limits of detection for quantitative analysis are determined by the following factors:

- 1) Analytical Method
- 2) Specific Analyte
- 3) Instrumentation (detector)
- 4) Injection Size

Practical quantitation limits (PQLs) are tabulated in the results describing analyte concentrations. PQLs are defined by the precision of a detector's response to an analyte over the range of mass the detector is calibrated for the selected method.

Data Interpretation

Vapor-phase diffusion is the prevailing mechanism by which soil gas analytes are transported in the subsurface. The presence of an analyte in soil gas is a function of the phase, location and concentration of the source, physical properties of the analyte, and the media through which transport occurs. The site-specific variability among soil properties profoundly affect vapor-phase diffusion and must be considered in the interpretation of analyte distribution in the soil gas. Among these soil properties are: soil moisture, soil particle size and distribution, and air-filled porosity. Anomalies in the spatial distribution (vertically or laterally) of analyte concentrations in soil gas samples will be noted. InterPhase provides an interpretive report upon request of the client.

Although isoconcentration contours of soil gas data can be plotted on site maps, it should be emphasized that these isotherms are only representative of the

contaminant distribution in soil vapor. Isoconcentration contours for compounds in soil or groundwater may differ in extent and orientation from those delineated in soil gas. Inherent assumptions that are infrequently discussed in preparing soil gas isotherms are:

- * Soil gas concentration data are adequate to describe the spatial distribution of contaminants underlying the site;
- * Vertical anisotropy is either insignificant or can be described by existing site data;
- * Vapor barriers that may impede the gaseous diffusion of analytes are either nonexistent or do not vary over the investigation site; and
- * Soil texture, water content, and air-filled porosity are spatially uniform over the site.

Standard Operating Procedures Prepared for the California Regional Water Quality Control Board (CRWQCB) Well Investigation Program (WIP)

SCOPE OF THE METHOD

This document describes a procedure for the analysis of volatile organic compounds (VOCs) in soil gas. The method is based on EPA Method TO-14 (The Determination of VOCs in Ambient Air Using Summa Passivated Canister Sampling & Gas Chromatographic Analysis) with modifications for the collection of subsurface rather than above-ground air. This method describes the procedures for analyzing samples collected with glass syringes at ambient atmospheric pressures. Soil gas surveys are performed by collecting vapor samples from probes installed within a specified area and analyzing these samples on-site using laboratory grade, multi-detector gas chromatographs (GC). The primary objective of soil gas surveys is the real-time collection of semi-quantitative and qualitative data regarding the presence and spatial distribution of subsurface contamination.

SYSTEM DESCRIPTION

The analytical system is comprised of traditional stationary laboratory grade gas chromatographs configured with capillary and packed columns and a combination of compound-selective detectors. The three gas chromatographs employed in the analysis of soil gas and ambient air include Varian 3400, Hewlett-Packard 5890a, and SRI 8610 instruments. A total of five detectors are used for vapor and air analyses. These detectors include electron capture (ECD), electrolytic conductivity (ELCD or Hall), photoionization (PID), flame ionization (FID), and thermal conductivity (TCD).

Analyte separation for compounds detected by the FID (e.g. petroleum hydrocarbons and ketones) is performed using a 30 m x 0.53 mm DB-1 or DB-624 megabore capillary column (J&W Scientific). Analyte separation for compounds detected by the ECD and ELCD (e.g., halogenated hydrocarbons) is performed by using a 30 m x 0.53 mm DB-624 or DB-1 megabore capillary column (J&W Scientific). Analyte separation of vinyl chloride and alkylbenzenes is performed using a 30 m x 0.53 mm DB-1 megabore capillary column (J&W Scientific), quantification is by PID. Analyte separation for compounds detected by the TCD is performed by using a molecular sieve/porous polymer CTR-1, 2 m stainless steel packed column (Alltech Associates) with diameters of 0.64 and 0.32 cm.

Samples are introduced into the instruments by direct injection in volumes ranging from 25 μ L to 1000 μ L; aliquots are injected within 30 minutes of collection in order to preserve the integrity of the sample. Once introduced into the injector, samples are transported by carrier gas (i.e., the mobile phase) at a rate of 4 to 30 cm³/min; makeup gas flow rates designed to maximize detector responses are adjusted according to manufacturer's instructions. Detector response is integrated by a data processing software system loaded on an IBM-compatible 486DX personal computer.

Only UHP helium, hydrogen, and nitrogen are used as carrier and make-up gases. Air required by the FID is filtered through a drierite/silica gel and 5Å molecular sieve in order to remove moisture and organic impurities.

GC System Performance Criteria

Initial Certification of the Instrument

Prior to system calibration and sample analysis, the chromatographic instruments are checked according to (i) manufacturer's instructions, (ii) method requirements, and (iii) temporal conditions [e.g., warm-up period, baseline stabilization]. Upon satisfying these check procedures, an injection of UHP nitrogen is made to document that unacceptable levels of residual contamination are not present. The target compounds must not be present above their respective limits of detection (LOD) to be considered acceptable.

Retention Time Determination

Windows for analyte retention time are determined prior to GC analyses. After assuring that the operating conditions for the daily analyses have been satisfied, three injections are made using a mixed standard containing all of the required analytes. For each single component of the standard mixture, standard deviations are calculated from a total of three absolute measurements. The retention window is describe as the mean \pm 3 $\,$ 0 standard deviations. A recalculated window is calculated for each compound on each GC column whenever (i) a new column is installed, (ii) changes are made in operational parameters, or (iii) reprogramming of oven temperature profiles or carrier gas flow rates occurs. Windows are re-established at no greater than 72 hour intervals during system operation. These data are noted in a log book, which is kept in the analytical van as part of the standard operating procedure (SOP). Hence, a quality check on the new operating parameters of the system is conducted.

Analyte Confirmation

Confirmation of the designated analytes may be performed by submitting samples to a certified laboratory for GC/MS analysis. Vapor samples are collected in 1 liter Tedlar bags or Summa Canisters and submitted under chain-of-custody procedures. Due to differences in the degradability, volatility and sorption among VOC's holding times should not exceed 48 hours and 2 weeks respectively. The independent analysis of samples by an outside laboratory allows a positive identification of the analyte by atomic mass in a separate and independent environment.

Initial GC Calibration

An initial multi-point dynamic calibration is performed before samples are analyzed. The calibration procedure employs traceable, commercially-prepared standards in methanolic solution. Aliquots are flash evaporated into 125 mL glass bombs to provide standard concentrations over 2 orders-of-magnitude. This method of sample preparation is specifically described by EPA in the SW-846 protocols for the headspace analysis of solid waste. After permitting the system to equilibrate, the standard vapor mixture is injected into the GC system. Injection sizes may vary from 50 to 200 μ L, with greater ranges in mass addressed by dilutionary admixtures. Response factors are calculated by the following equation:

 $RF_{analyte} = concentration_{analyte} \times volume (\mu L) \div area units_{analyte}$

Once the GC is initially calibrated, a 1-point calibration is performed daily on the analytical system to verify the initial 3-point calibration. Criteria for the acceptance of the initial calibration procedure include: (i) a variation among the determined response factors from the multi-point calibration of less than 15% relative standard deviation (RSD), (ii) agreement between static and initial calibration checks within 15% relative percent difference (RPD), and (iii) agreement within 15% RPD between average calibration RF and a laboratory control standard. In the event that variance exceeds the stated confidence intervals, recalibration is performed until acceptable confidence intervals are achieved.

The concentration of each analyte in the vapor sample can then be determined by using the previously calculated response factor, the area under the peak, and the volume of sample injected as shown in the following equation:

concentration_{analyte} = RF_{analyte} x area units_{analyte} ÷ volume (μL)

Linearity of Response

Linearity in detector response for an analyte is established by the constancy of the calculated response factors over the range of concentrations used for the calibration standards. Variations in response factors not exceeding 15% RSD permit the use of average calibration factors, while greater variations in response factors over the linear range of the detector require the use of calibration curves to quantitate peak area counts as analyte concentrations.

Response Out-of-Range

Response factors exceeding the linear range of the detector are unacceptable because the calibration curves may not be representative. Responses within the working range of the instrument are provided by sample dilution into a 125 mL glass sampling bulb, which is blanked with nitrogen gas prior to each use. Target compounds must not be present above the limits of detection (LOD) to be considered acceptable.

Control Charts

The historical performance of the system is tracked through the used of control charts. Outof-control events are identified by wide or consistent fluctuations in detector response and logged as to the time and cause. Control charts are maintained in a log book as part of the standard operating procedure (SOP).

Calibration Checks

The detector response is checked (i) after the initial multi-point calibration, (ii) after every daily 1-point calibration, and (iii) at the completion of GC analyses each day. This procedure evaluates the accuracy of the initial calibration and the reproducibility of that detector response over the duration of each day's analyses. Laboratory Control Samples which are employed to perform a calibration check are prepared by the same procedure as initial calibration standards (see section titled Initial GC Calibration). Acceptable concentrations for check standards must differ from concentrations of standards employed in other calibrations. Commercially prepared gas standards (e.g., Scotty Specialty Gases) may be utilized as a check

standard. Accuracy of these standards are reported to be \pm 2%. Detector stability is assessed by comparing these periodic response factors to those generated in the initial calibration. A difference in response of less than 15% is considered to be acceptable.

Instrument Detection Limits

Background noise is for each of the detectors is monitored and recorded throughout the survey to identify any temporal changes in chromatographic conditions. Detection limits are defined as detector signals that are two-fold greater than background levels.

Chromatographic Performance

The performance of the chromatographic system is assessed on the basis of compound identification and the resolution of target analytes. A quantitative indication of chromatographic separation among analytes is provided by calculating the resolution, "R", of two peaks as follows:

Peak Resolution:

$$R = 2 \cdot [RT(A) - RT(B)] \div [width(A) - width(B)]$$

where.

A & B = contiguous chromatographic peaks; width = peak width at the baseline of each peak; RT = analyte retention time.

An "R" value equal to or greater than 1.0 indicates complete baseline resolution of peaks A and B, indicating that the detector response signal drops to the baseline between the peaks. Excessive dead volume, fluctuations in operating conditions or column variations are signaled by variations in resolution between peaks over the course of a survey.

As an indication of chromatographic efficiency, the number of theoretical plates (N) is calculated.

Theoretical Plates:

 $N = 16 (RT/width)^2$