

RECEIVED

By lopprojectop at 10:51 am, May 03, 2006

Denis L. Brown

Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

May 1, 2006

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: First Quarter 2006 Monitoring Report

Shell-branded Service Station

1784 150th Avenue San Leandro, California SAP Code 136019 Incident #98996068 Fuel Leak Case No. RO 0367

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *First Quarter 2006 Monitoring Report* for the above referenced site. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Sr. Environmental Engineer

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By lopprojectop at 10:51 am, May 03, 2006

Re:

First Quarter 2006 Groundwater Monitoring Report

Shell-branded Service Station 1784 150th Avenue San Leandro, California SAP Code 136019 Incident #98996068 Cambria Project #248-0612-002 Fuel Leak Case No. RO 00367

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell), Cambria Environmental Technology, Inc. (Cambria) is submitting this groundwater monitoring report in accordance with the reporting requirements of 23 CCR 2652d.

REMEDIATION HISTORY

2002-2004 Mobile Groundwater Extraction (GWE): From July 2002 through September 2004, Onyx Industrial Services (Onyx) of Benicia, California conducted GWE using monitoring well MW-2 and/or MW-11. Mobile GWE ceased following startup of a temporary GWE system in September 2004. As of August 24, 2004, approximately 19.6 pounds of total petroleum hydrocarbons as gasoline (TPHg), approximately 3.4 pounds of benzene, and approximately 4.8 pounds of methyl tertiary-butyl ether (MTBE) had been removed from the subsurface.

2004 Temporary GWE System: On September 13, 2004, Shell completed installing and began operating a temporary GWE system as an interim remedial measure to address the elevated petroleum hydrocarbon and MTBE concentrations in groundwater near the west corner of the site. Groundwater was extracted from monitoring well MW-2 using a pneumatic submersible pump. Extracted groundwater was pumped from the well into a 6,500-gallon storage tank located in the south corner of the site. The extracted water was periodically transported to Shell's Martinez Refinery located in Martinez, California for reclamation. Approximately 0.02 pounds of TPHg

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

CAMBRIA

and approximately 0.31 pounds of MTBE were removed from the subsurface. On November 11, 2004, Shell shut down the temporary GWE system to conduct an interim remediation test using dual-phase extraction (DPE).

2004 DPE Test: Because hydrocarbon concentrations in groundwater near the west corner of the site remained elevated, Cambia conducted interim remediation testing using DPE on wells MW-11 and MW-2 between November 8 and 13, 2004. Based on operating parameters and vapor sample analytical results, the total TPHg, benzene and MTBE vapor-phase mass removed from well MW-11 was estimated at 165, 0.291, and 0.063 pounds, respectively. The total TPHg, benzene, and MTBE vapor-phase mass removed from well MW-2 was estimated at 0.073, 0.0002, and 0.001 pounds, respectively.

Approximately, 7,445 gallons of groundwater were extracted from well MW-2. Approximately, 5,714 gallons of groundwater were extracted from well MW-1. The total TPHg, benzene and MTBE liquid-phase mass removed from wells MW-2 and MW-1 during interim remediation was estimated at 5.15, 0.719, and 1.69 pounds, respectively.

2005 Temporary GWE System: On January 10, 2005, the temporary GWE system was re-activated using well MW-11. Well MW-11 was chosen due to the higher TPHg and MTBE concentrations detected in this well during the most recent sampling events. Approximately 24.8 pounds of TPHg, approximately 1.9 pounds of benzene, and approximately 4.2 pounds of MTBE were removed from the subsurface by DPE and the temporary GWE system. Due to concern over possible damage during site upgrade activities, the temporary GWE system was shut down on March 14, 2005. The system was removed from the site on June 6, 2005 pending a determination of future site remediation activities.

2005-Present Mobile GWE: In a July 21, 2005 letter, the Alameda County Health Care Services Agency (ACHCSA) requested that interim remediation using GWE be re-initiated at the site. In September 2005, Onyx began conducting monthly GWE using monitoring well MW-11. Current activities are described below.

FIRST QUARTER 2006 ACTIVITIES

Groundwater Monitoring: Blaine Tech Services, Inc. (Blaine) of San Jose gauged all wells and sampled selected wells, calculated groundwater elevations, and compiled the analytical data. Because a measurable quantity of separate-phase hydrocarbons (SPH) was detected in monitoring well MW-1, no groundwater sample was collected from this well. Cambria prepared a vicinity map which includes previously submitted well survey information (Figure 1) and a groundwater

CAMBRIA

elevation contour map (Figure 2). Blaine's report, presenting the laboratory report and supporting field documents, is included as Attachment A.

Additional Analysis: At Shell's request, in addition to TPHg, benzene, toluene, ethylbenzene, xylenes, and MTBE, groundwater samples from on-site wells MW-2, MW-10, and MW-11 were analyzed for tertiary-amyl methyl ether (TAME), tertiary-butanol (TBA), and 1,2-dichloroethane (1,2-DCA). TBA was detected in wells MW-2 and MW-11, at concentrations of 3,800 parts per billion (ppb) and 420 ppb, respectively. The sample from MW-2 was originally analyzed within the Environmental Protection Agency recommended hold time, but the re-analysis after sample dilution was performed past the recommended hold time. The result for MW-11 was reported with a possible low bias because the analysis instrument's calibration verification fell outside the acceptance criteria. TAME was detected in wells MW-2 and MW-11 at concentrations of 5.7 ppb and 36 ppb, respectively. 1,2-DCA was not detected in any of the groundwater samples. However, the results were reported with a possible low bias because the analysis instrument's calibration verification fell outside the acceptance criteria.

Mobile GWE: Shell performed monthly mobile GWE from well MW-11 this quarter. Through March 22, 2006, mobile GWE has removed approximately 20.1 pounds of TPHg, approximately 3.5 pounds of benzene, and approximately 5.2 pounds of MTBE from the subsurface. Table 1 presents mobile GWE mass removal data.

Subsurface Investigation: On January 9, 2006, Cambria submitted a work plan to ACHCSA proposing the advancement of six on-site borings to investigate the vertical and lateral extent of petroleum hydrocarbons in soil beneath the site. The scope of work was discussed during a February 2, 2006 meeting between ACHCSA, Shell, and Cambria during which ACHCSA requested additional monitoring wells be installed. After modifying the proposed scope of work, Cambria emailed the changes and an updated map to ACHCSA on March 1, 2006. ACHCSA approved the modified scope of work in a March 3, 2006 letter to Shell.

ANTICIPATED SECOND QUARTER 2006 ACTIVITIES

Groundwater Monitoring: Blaine will gauge and sample all wells, and tabulate the data. Due to the observation of SPH during the first quarter sampling event, Blaine will also monitor well MW-1 for SPH during the second quarter sampling event. Cambria will prepare a monitoring report.

Mobile GWE: Mobile monthly GWE will continue using well MW-11.

CAMBRIA

Subsurface Investigation: The approved investigation will be performed in May 2006.

CLOSING

We appreciate the opportunity to work with you on this project. Please call David Gibbs at (510) 420-3363 if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

David M. Gibbs, P.G. Project Geologist

Aubrey K. Cool, P.G. Senior Project Geologist

Figures: 1 - Vicinity/Sensitive Receptor Survey Map

2 - Groundwater Elevation Contour Map

Tables: 1 - Groundwater Extraction – Mass Removal Data

Attachment: A - Blaine Groundwater Monitoring Report and Field Notes

cc: Denis Brown, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810

G:\San Leandro 1784 150th\QM\1q06\1q06qm.doc

Shell-branded Service Station

1784 150th Avenue San Leandro, California Incident #98996068

SOURCE: TOPO! MAPS

SCALE : 1" = 1/4 MILE

Vicinity/Sensitive Receptor Survey Map

(1/2-Mile Radius)

CAMBRIA

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98996068, 1784 150th Avenue, San Leandro, California

					T			1			•		
						TPPH			Benzene			MTBE	
			Cumulative		ļ		TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
07/03/02	MW-2	482	482	06/18/02	72,000	0.28958	0.28958	9,500	0.03821	0.03821	29,000	0.11664	0.11664
07/17/02	MW-2	834	1,316	06/18/02	72,000	0.50106	0.79064	9,500	0.06611	0.10432	29,000	0.20182	0.31845
07/31/02	MW-2	213	1,529	06/18/02	72,000	0.12797	0.91861	9,500	0.01688	0.12121	29,000	0.05154	0.37000
08/14/02	MW-2	664	2,193	06/18/02	72,000	0.39893	1.31754	9,500	0.05264	0.17384	29,000	0.16068	0.53068
09/16/02	MW-2	662	2,855	06/18/02	72,000	0.39773	1.71527	9,500	0.05248	0.17564	29,000	0.16019	0.69087
10/14/02	MW-2	501	3,356	09/18/02	48,000	0.20067	1.91593	7,600	0.03248	0.25809	8,700	0.03637	0.72724
11/11/02	MW-2	547	3,903	09/18/02	48,000	0.21909	2.13502	7,600	0.03177	0.29278	8,700	0.03037	0.72724
12/09/02	MW-2	106	4,009	09/18/02	48,000	0.04246	2.17748	7,600	0.00672	0.29278	8,700	0.00770	0.77465
01/08/03	MW-2	652	4,661	12/27/02	40,000	0.21762	2.39510	5,900	0.03210	0.33160	19,000	0.10337	0.87802
02/04/03	MW-2	326	4,987	12/27/02	40,000	0.10881	2.50391	5,900	0.03210	0.34765	19,000	0.10337	0.92970
03/05/03	MW-2	647	5,634	03/05/03	62,000	0.33473	2.83863	13,000	0.07018	0.41784	21,000	0.03108	1.04308
								1			1		
04/08/03	MW-2	434	6,068	03/05/03	62,000	0.22453	3.06316	13,000	0.04708	0.46491	21,000	0.07605	1.11913
05/06/03	MW-2	736	6,804	03/05/03	62,000	0.38077	3.44393	13,000	0.07984	0.54475	21,000	0.12897	1.24810
06/06/03	MW-2	348	7,152	03/05/03	62,000	0.18004	3.62397	13,000	0.03775	0.58250	21,000	0.06098	1.30908
07/14/03	MW-2	391	7,543	06/24/03	19,000	0.06199	3.68596	9,500	0.03100	0.61350	14,000	0.04568	1.35475
08/12/03	MW-2	591	8,134	06/24/03	19,000	0.09370	3.77966	9,500	0.04685	0.66035	14,000	0.06904	1.42380
09/12/03	MW-2	399	8,533	06/24/03	19,000	0.06326	3.84292	9,500	0.03163	0.69198	14,000	0.04661	1.47041
10/10/03	MW-2	837	9,370	09/25/03	65,000	0.45397	4.29689	24,000	0.16762	0.85960	19,000	0.13270	1.60311
11/12/03	MW-2	259	9,629	09/25/03	65,000	0.14048	4.43737	24,000	0.05187	0.91147	19,000	0.04106	1.64417
12/05/03	MW-2	727	10,356	09/25/03	65,000	0.39431	4.83168	24,000	0.14559	1.05706	19,000	0.11526	1.75943
01/02/04	MW-2	1,168	11,524	12/15/03	67,000	0.65300	5.48468	18,000	0.17543	1.23249	11,000	0.10721	1.86664
02/03/04	MW-2	962	12,486	12/15/03	67,000	0.53783	6.02251	18,000	0.14449	1.37698	11,000	0.08830	1.95494
03/02/04	MW-2	343	12,829	12/15/03	67,000	0.19176	6.21427	18,000	0.05152	1.42850	11,000	0.03148	1.98642
03/16/04	MW-2	856	13,685	03/04/04	72,000	0.51428	6.72855	27,000	0.19285	1.62136	13,000	0.09286	2.07928
04/06/04	MW-2	652	14,337	03/04/04	72,000	0.39172	7.12026	27,000	0.14689	1.76825	13,000	0.07073	2.15001
04/28/04	MW-2	400	14,737	03/04/04	72,000	0.24032	7.36058	27,000	0.09012	1.85837	13,000	0.04339	2.19340

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98996068, 1784 150th Avenue, San Leandro, California

					Ī	TPPH		1	Benzene		1	МТВЕ	
			Cumulative			11111	ТРРН		DCHECHE	Benzene		MIDE	MTBE
		Volume	Volume		ТРРН	ТРРН	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
05/04/04	MW-2	700	15,437	03/04/04	72,000	0.42056	7.78114	27,000	0.15771	2.01608	13,000	0.07593	2.26933
05/11/04	MW-2	600	16,037	03/04/04	72,000	0.36048	8.14161	27,000	0.13518	2.15126	13,000	0.06509	2.33442
05/18/04	MW-2	1,169	17,206	03/04/04	72,000	0.70233	8.84394	27,000	0.26337	2.41463	13,000	0.12681	2.46122
05/25/04	MW-2	867	18,073	03/04/04	72,000	0.52089	9.36483	27,000	0.19533	2.60996	13,000	0.09405	2.55527
06/02/04	MW-2	1,533	19,606	05/27/04	74,000	0.94660	10.31143	6,000	0.07675	2.68671	19,000	0.24305	2.79832
06/08/04	MW-2	809	20,415	05/27/04	74,000	0.49954	10.81097	6,000	0.04050	2.72722	19,000	0.12826	2.92658
06/15/04	MW-2	1,462	21,877	05/27/04	74,000	0.90276	11.71373	6,000	0.07320	2.80041	19,000	0.23179	3.15837
06/22/04	MW-2	1,720	23,597	05/27/04	74,000	1.06207	12.77580	6,000	0.08611	2.88653	19,000	0.27269	3.43106
06/29/04	MW-2	1,100	24,697	05/27/04	74,000	0.67923	13.45503	6,000	0.05507	2.94160	19,000	0.17440	3.60546
07/06/04	MW-2	1,595	26,292	05/27/04	74,000	0.98488	14.43992	6,000	0.07986	3.02145	19,000	0.25288	3.85834
07/16/04	MW-2	1,643	27,935	05/27/04	74,000	1.01452	15.45444	6,000	0.08226	3.10371	19,000	0.26049	4.11882
07/20/04	MW-2	1,578	29,513	05/27/04	74,000	0.97439	16.42883	6,000	0.07900	3.18272	19,000	0.25018	4.36900
07/27/04	MW-2	1,660	31,173	05/27/04	74,000	1.02502	17.45385	6,000	0.08311	3.26583	19,000	0.26318	4.63218
08/10/04	MW-2	28	31,201	05/27/04	74,000	0.01729	17.47114	6,000	0.00140	3.26723	19,000	0.00444	4.63662
08/24/04	MW-2	1,273	32,474	05/27/04	74,000	0.78606	18.25719	6,000	0.06373	3.33096	19,000	0.20182	4.83845
								1					
03/23/04	MW-11	142	142	03/04/04	68,000	0.08057	0.08057	5,300	0.00628	0.00628	8,300	0.00983	0.00983
04/20/04	MW-11	122	264	03/04/04	68,000	0.06922	0.14980	5,300	0.00540	0.01168	8,300	0.00845	0.01828
04/28/04	MW-11	101	365	03/04/04	68,000	0.05731	0.20711	5,300	0.00447	0.01614	8,300	0.00700	0.02528
05/04/04	MW-11	216	581	03/04/04	68,000	0.12256	0.32967	5,300	0.00955	0.02569	8,300	0.01496	0.04024
05/11/04	MW-11	268	849	03/04/04	68,000	0.15207	0.48174	5,300	0.01185	0.03755	8,300	0.01856	0.05880
05/18/04	MW-11	200	1,049	03/04/04	68,000	0.11348	0.59522	5,300	0.00885	0.04639	8,300	0.01385	0.07265
05/25/04	MW-11	60	1,109	03/04/04	68,000	0.03404	0.62926	5,300	0.00265	0.04905	8,300	0.00416	0.07681
06/02/04	MW-11	100	1,209	05/27/04	86,000	0.07176	0.70103	8,500	0.00709	0.05614	25,000	0.02086	0.09767
06/08/04	MW-11	250	1,459	05/27/04	86,000	0.17940	0.88043	8,500	0.01773	0.07387	25,000	0.05215	0.14982
	2.2		-,		,		0.00015	0,000	0.01775	0.07507	23,000	0.05215	0.14902

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98996068, 1784 150th Avenue, San Leandro, California

						<u>TPPH</u>			Benzene			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
06/22/04	MW-11	50	1,659	05/27/04	86,000	0.03588	1.02395	8,500	0.00355	0.08806	25,000	0.01043	0.19154
06/29/04	MW-11	100	1,759	05/27/04	86,000	0.07176	1.09571	8,500	0.00709	0.09515	25,000	0.02086	0.21240
07/06/04	MW-11	52	1,811	05/27/04	86,000	0.03732	1.13303	8,500	0.00369	0.09884	25,000	0.01085	0.22325
07/16/04	MW-11	100	1,911	05/27/04	86,000	0.07176	1.20479	8,500	0.00709	0.10593	25,000	0.02086	0.24411
07/20/04	MW-11	50	1,961	05/27/04	86,000	0.03588	1.24067	8,500	0.00355	0.10948	25,000	0.01043	0.25454
07/27/04	MW-11	50	2,011	05/27/04	86,000	0.03588	1.27655	8,500	0.00355	0.11302	25,000	0.01043	0.26497
08/10/04	MW-11	15	2,026	05/27/04	86,000	0.01076	1.28732	8,500	0.00106	0.11409	25,000	0.00313	0.26810
08/24/04	MW-11	80	2,106	05/27/04	86,000	0.05741	1.34473	8,500	0.00567	0.11976	25,000	0.01669	0.28479
09/02/05	MW-11	146	2,252	08/20/05	86,000	0.10477	1.44950	3,800	0.00463	0.12439	3,900	0.00475	0.28954
11/10/05	MW-11	46	2,298	08/20/05	86,000	0.03301	1.48251	3,800	0.00146	0.12585	3,900	0.00150	0.29104
12/20/05	MW-11	144	2,442	12/05/05	69,000	0.08291	1.56542	4,000	0.00481	0.13065	7,400	0.00889	0.29993
01/18/06	MW-11	112	2,554	12/05/05	69,000	0.06449	1.62990	4,000	0.00374	0.13439	7,400	0.00692	0.30685
02/15/06	MW-11	221	2,775	12/05/05	69,000	0.12724	1.75715	4,000	0.00738	0.14177	7,400	0.01365	0.32049
03/22/06	MW-11	112	2,887	03/02/06	76,000	0.07103	1.82817	4,000	0.00374	0.14551	6,100	0.00570	0.32619
								I					
Total Gallon	s Extracted:		35,361		Total Pound	ls Removed:	20.08537			3.47647			5.16464
					Total Gallor	s Removed:	3.29268			0.47623		AND GARGINARY CONTRACTORS FOR DISCRETE AND AND ARTHUR MEDICAL PROPERTY.	0.83301

Abbreviations & Notes:

TPPH = Total purgeable hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

ppb = Parts per billion

gal = Gallon

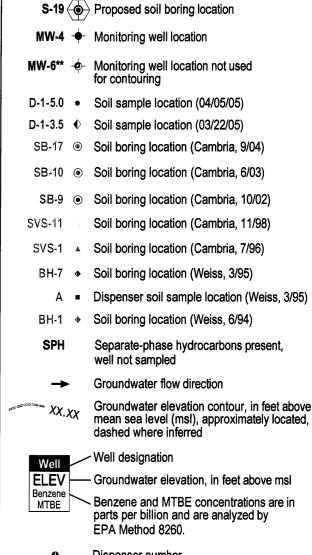
Mass removed based on the formula: volume extracted (gal) x Concentration (µg/L) x (g/10⁶µg) x (pound/453.6g) x (3.785 L/gal)

Volume removal data based on the formula: density (in gms/cc) x 9.339 (ccxlbs/gmsxgals)

TPPH, benzene, and MTBE analyzed by EPA Method 8260

If concentration is less than the laboratory detection limit, one half of the detection limit concentration is used in the mass removal calculation.

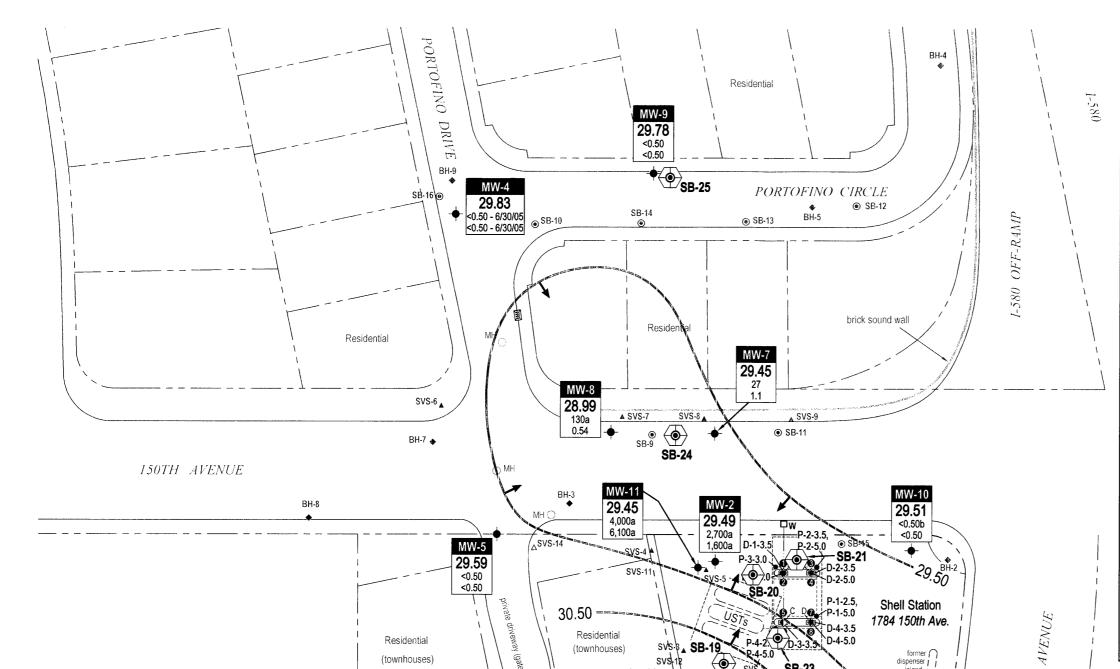
Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98996068, 1784 150th Avenue, San Leandro, California


						TPPH			Benzene			MTBE	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		ТРРН	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date W	Vell	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged I	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)

Groundwater extracted by vacuum trucks. Water disposed at the Shell Refinery in Martinez, CA.

March 2, 2006

FIGURE


EXPLANATION

a = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.

b = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.

Groundwater Flow Direction (12/15/03 through 3/02/06)

Residential

(townhouses)

Residential

(townhouses)

SVS-15

MW-6** 30.10

> < 0.50 < 0.50

> > SVS-16

SB-19

SB-17 @

3/50

MW-1

31.60

SPH

parking lot

Denny's Restaurant

15015 Freedom Ave.

31.50

SB-23

Building

SB-18

Z

Residential

(townhouses)

100

Scale (ft)

Dispenser number

Product piping

FREEDOM

BH-1 located

BH-6 located 360' SE

215' SE

former dispenser island

MW-3

29.36

<2.0 - 6/30/05 <2.0 - 6/30/05

ATTACHMENT A

Blaine Groundwater Monitoring Report and Field Notes

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

April 4, 2006

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> First Quarter 2006 Groundwater Monitoring at Shell-branded Service Station 1784 150th Avenue San Leandro, CA

Monitoring performed on March 2, 2006

Groundwater Monitoring Report 060302-MT-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Shell Martinez Manufacturing Complex.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

 SAN JOSE
 SACRAMENTO
 LOS ANGELES
 SAN DIEGO

 168D ROGERS AVENUE
 SAN JOSE, CA 95112-1105
 (408) 673-0565
 FAX (408) 673-7771
 LIC. 746684
 www.blginetech.com

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Coordinator

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheet

cc: Anni Kreml
Cambria Environmental Technology, Inc.
5900 Hollis Street, Suite A
Emeryville, CA 94608

								MTBE	MTBE			;					Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	1.2-DCA	EDB	тос	Water	Elevation	1	
1701112		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		<u> </u>	<u> </u>	·¥												<u> </u>		· · · · · · · · · · · · · · · · · · ·		
MW-1	03/08/1990	510	120	1.5	8.0	<0.5	5.4	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.29	23.84	NA	NA
MW-1	06/12/1990	390	100	86	1.3	0.7	6.2	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.85	23.28	NA	NA
MW-1	09/13/1990	100	130	56	0.75	2.4	2.8	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.49	21.64	NA	NA
MW-1	12/18/1990	480	<50	54	1.7	3.3	3.7	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.41	21.72	NA	NA
MW-1	03/07/1991	80	<50	266	<0.5	1.2	<1.5	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.79	23.34	NA	NA
MW-1	06/07/1991	510	<50	130	3.8	6.1	11	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.64	23.49	NA	NA.
MW-1	09/17/1991	330	120 a	67	<0.5	3.0	2.2	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.54	21.59	NA	NA
MW-1	12/09/1991	140a	80	<0.5	<0.5	1.7	4.7	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.81	21.32	NA	NA
MW-1	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.57	23.56	NA	NA
MW-1	02/24/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	49.13	22.83	26.30	NA	NA
MW-1	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.09	26.04	NA	NA
MW-1	03/01/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA _.	NA	NA	NA	NA	NA	NA	49.13	23.26	25.87	NA	NA
MW-1	06/03/1992	1,500	NA	520	180	72	230	NA	NA	NA	NA	NA	NA	NA	NA	49.13	24.64	24.49	NA	NA
MW-1	09/01/1992	130	NA	16	1.4	1.8	3.4	NA	NA	NA	NA	NA	NA	NA	NA	49.13	26.74	22.39	NA	NA
MW-1	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.18	21.95	NA	NA
MW-1	11/11/1992	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.99	21.14	NA ·	NA
MW-1	12/04/1992	150	NA	360	0.7	1.8	2.1	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.14	21.99	NA	NA
MW-1	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.09	29.04	NA	NA
MW-1	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	24.26	24.87	NA	NA
MW-1	03/03/1993	<50	NA	1.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.50	28.63	NA	NA
MW-1	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	21.70	27.43	NA	NA
MW-1	06/17/1993	1,600	NA	340	120	120	440	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.42	26.71	NA	NA
MW-1	09/10/1993	2,600	NA	670	340	310	730	NA	NA	NA	NA	NA	NA	NA	NA	49.13	24.11	25.02	NA	NA
MW-1	12/13/1993	11,000	NA	470	320	380	2,300	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.73	25.40	NA	NA
MW-1	03/03/1994	16,000	NA	700	690	480	3,200	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.08	27.05	NA	NA
MW-1	06/06/1994	7,500	NA	420	280	200	1,000	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.10	26.03	NA	NA
MW-1	09/12/1994	1,200	NA	110	21	3.3	420	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.19	23.94	NA	NA
MW-1	12/19/1994	4,600	NA	470	330	230	1,300	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.06	26.07	NA	NA
MW-1	02/28/1995	500	NA	59	32	6.8	68	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.90	28.23	NA	NA
MW-1	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	18.28	30.85	NA	NA
MW-1	06/26/1995	5,500	NA	740	420	300	1,800	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.40	28.73	NA	NA
MW-1	09/13/1995	84,000	NA	1,900	2,600	3,000	14,000	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.62	26.51	NA	NA

· 1								MTBE	MTBE			_					Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	1.2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
***	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		(-3/	\ <u>.</u> \		<u> </u>		· · · · ·	<u> </u>	<u> </u>											
MW-1	12/19/1995	80,000	NA	660	350	170	18,000	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.10	27.03	NA	NA
MW-1	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	18.83	30.34	0.05	NA
MW-1	06/28/1996	270,000	NA	2,800	820	1,000	16,000	<0.5	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA	NA
MW-1 (D)	06/28/1996	790,000	NA	2,200	780	1,000	13,000	15,000	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA _	NA
MW-1	09/26/1996	29,000	NA	1,100	260	270	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	23.57	25.57	0.01	NA
MW-1	09/26/1996	25,000	NA	1,200	320	240	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	NA	NA	NA	NA
MW-1	12/10/1996	13,000	NA	510	240	230	1,200	100	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1 (D)	12/10/1996	8,400	NA	420	130	140	680	81	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1	03/10/1997	4,200	NA	13	8.8	16	74	<12	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA _	2.0
MW-1 (D)	03/10/1997	5,100	NA _	12	8.9	17	79	<25	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA	2.0
MW-1	06/30/1997	5,700	NA	320	120	140	700	47	NA	NA	NA	NĄ	NA	NA	NA	49.13	21.68	27.45	NA NA	1.6
MW-1 (D)	06/30/1997	5,300	NA	300	95	120	580	45	NA	NA	NA	NA	NA	NA	NA	49.13	21.68	27.45	NA	1.6
MW-1	09/12/1997	6,300	NA	120	26	82	260	30	NA	NA	NA .	NA	NA	NA	NA _	49.13	21.78	27.35	NA	2.1
MW-1 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.78	28.35	NA	1.3
MW-1	02/02/1998	84	NA	5.1	<0.50	<0.50	2.1	2.5	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.0
MW-1	06/24/1998	13,000	NA	3,000	260	410	1,400	<250	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.5
MW-1 (D)	06/24/1998	12,000	NA	3,800	250	47	1,400	710	NA	NA	NA	NA	NA	NA	. NA	49.13	19.65	29.48	NA	2.5
MW-1	08/26/1998	3,100	NA	1,200	27	170	50	88	NA	ŅA	NA	NA	NA	NA	NA	49.13	20.49	28.64	NA	2.1
MW-1	12/23/1998	45,000	NA	5,300	220	1,000	3,600	970	NA	NA	NA	NA	NA	NA	NA	49.13	21.22	27.91	NA	3.8
MW-1	03/01/1999	22,300	NA	2,540	436	753	3,370	<400	NA	NA	NA	NA	, NA	NA	NA	49.13	19.27	29.86	NA	1.8
MW-1	06/14/1999	18,800	NA	6,820	210	436	958	1,360	NA	NA	NA	NA	NA	NA	NA	49.13	20.80	28.33	NA	2.2
MW-1	09/28/1999	21,500	NA	7,470	281	467	927	1,800	NA	NA	NA	NA	NA	NA	NA	49.13	22.55	26.58	NA	2.0
MW-1	12/08/1999	22,300	NA	6,140	135	256	367	232	NA	NA	NA	NA	NA	NA	NA	49.13	23.12	26.01	NA	2.1
MW-1	03/14/2000	6,690	NA	1,880	63.5	134	307	460	NA	NA	NA	NĄ	NA	NA	NA	49.13	18.87	30.26	NA	2.3
MW-1	06/28/2000	8,080	NA	2,690	85.1	149	514	701	NA	NA	NA	NA	NA	NA	NA	49.13	21.12	28.01	NA	2.4
MW-1	09/06/2000	17,800	NA	7,390	212	329	1,270	<1,000	NA	NA	NA	NA.	NA	NA	NA	49.13	21.90	27.23	NA	3.0
MW-1	12/14/2000	8,900	NA	4,870	79.2	106	370	1,840	673*	NA	NA	NA	NA	NA	NA	49.13	22.60	26.53	NA	2.0
MW-1	03/05/2001	7,520	NA	2,120	66.0	107	129	668	NA	NA	NA	NA	NA	NA	NA	49.13	20.06	29.07	NA	0.4
MW-1	06/11/2001	30,000	NA	7,400	390	600	2,300	NA	170	NA	NA	NA	NA	NA	NA	49.13	22.39	26.74	NA	1.6
MW-1	09/12/2001	23,000	NA	7,500	120	280	910	NA	320	NA	NA	NA	NA	NA	NA	49.13	23.37	25.76	NA.	2.2
MW-1	12/27/2001	16,000	NA	2,400	190	330	1,500	NA	350	NA	NA	NA	NA	NA	NA	49.13	20.97	28.16	NA	1.3
MW-1	02/27/2002	26,000	NA	6,100	330	510	2,000	NA	210	NA	NA	NA	NA	NA	NA	49.10	20.47	28.63	NA	1.3
MW-1	06/18/2002	29,000	NA	8,100	280	510	1,800	NA	140	NA	NA	NA	NA	NA	NA	49.10	21.99	27.11	NA _	2.2

								MTBE	MTBE				-				Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)_	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
									_											
MW-1	09/18/2002	34,000	NA	5,900	350	700	3,000	NA	<250	NA .	NA	NA	NA	NA	NA	49.10	23.21	25.89	NA	0.8
MW-1	12/27/2002	7,500	NA	1,200	30	120	410	NA	230	<5.0	<5.0	<5.0	310	31	<5.0	49.10	20.10	29.00	NA	0.6
MW-1	03/05/2003	17,000	NA	1,600	88	400	1,400	NA	230	NA	NA	<10	290	<10	NA	49.10	21.05	28.05	NA NA	1.7
MW-1	06/24/2003	Well inacc	essible	NA	' NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	NA	NA	NA	NA
MW-1	06/25/2003	14,000	NA	5,300	250	440	2,100	NA	100	NA	NA	<200	<500	<50	NA	49.10	21.93	27.17	NA	0.9
MW-1	09/25/2003	33,000	NA	7,700	250	860	3,400	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.21	25.89	NA	1.7
MW-1	12/15/2003	63,000	NA	14,000	360	1,300	3,900	NA	150	NA	NA	<400	<1000	<100	NΑ	49.10	22.08	27.02	NA	1.5
MW-1	03/04/2004	28,000	NA	8,000	180	640	2,100	NA	79	NA	NA	<200	<500	<50	NA	49.10	19.85	29.25	NA	0.2
MW-1	05/27/2004	33,000	NA	8,700	260	840	2,700	NA	81	NA	NA	<200	<500	<50	NA	49.10	22.15	26.95	NA	0.2
MW-1	09/24/2004	26,000	NA	5,700	210	830	2,900	NA	<50	<200	<200	<200	<500	<50	<50	49.10	23.69	25.41	NA	1.5
MW-1	11/22/2004	100,000	NA	2,500	920	4,100	22,000	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.19	25.91	NA	NA
MW-1	03/02/2005	110,000	NA	1,300	670	4,000	23,000	NA	87	NA	NA	<100	<500	<25	NA	49.10	19.35	29.75	NA	NA
MW-1	06/30/2005	94,000	NA	6,500	1,100	3,900	21,000	NA	900	NA	NA	<1,000	<2,500	<250	NA	49.10	20.64	28.46	NA	0.6
MW-1	09/20/2005	63,000	NA	3,900	540	2,000	14,000	NA	1,100	<800	<800	<800	<2,000	<200	NA	49.10	22.06	27.04	NA	NA
MW-1	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	21.90	27.25	0.06	NA
MW-1	03/02/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	49.10	17.54	31.60	0.05	NA
MW-2	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	22.22	23.61	NA	NA
MW-2	02/24/1992	17,000	2,700 a	6,200	1,600	550	1,900	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.61	26.22	NA	NA
MW-2	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.92	25.91	NA NA	NA
MW-2	03/01/1992	86,000	1,000 a	30,000	34,000	2,300	16,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	21.11	24.72	NA	NA
MW-2	06/03/1992	87,000	NA	28,000	18,000	2,000	10,000	NA.	NA	NA	NA	NA.	NA	NA	NA	45.83	21.58	24.25	NA	NA
MW-2	09/01/1992	110,000	NA	21,000	13,000	1,900	7,800	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.46	22.37	NA	NA
MW-2	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	45.83	23.99	21.84	NA	NA NA
MW-2	11/11/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	24.25	21.58	NA	NA
MW-2	12/04/1992	42,000	NA	15,000	2,400	960	2,900	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.89	21.94	NA	NA
MW-2	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.03	28.80	NA	NA
MW-2	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.08	27.75	NA	NA
MW-2	03/03/1993	160,000	NA	36,000	3,800	32,000	21,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.28	28.55	NA	NA
MW-2 (D)	03/03/1993	150,000	NA	31,000	3,100	20,000	14,000	NA	NA	NA	ÑΑ	NA	NA	. NA	NA	45.83	17.28	28.55	NA NA	NA
MW-2	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.41	27.42	NA	NA
MW-2	06/17/1993	65,000	NA	34,000	15,000	3,200	11,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.06	26.77	NA	NA
MW-2 (D)	06/17/1993	62,000	NA	28,000	14,000	2,700	10,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.06	26.77	NA	NA

				1	<u> </u>		_	MTBE	MTBE		1						Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	E	x	8020	8260	DIPE	ЕТВЕ	TAME	ТВА	1,2-DCA	EDB	тос	Water		Thickness	1 - 1
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
	,					, , , ,				<u> </u>	<u> </u>						·			
MW-2	09/10/1993	72,000	NA	24,000	16,000	2,300	11,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.88	24.95	NA	NA
MW-2 (D)	09/10/1993	71,000	NA	23,000	15,000	2,300	10,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.88	24.95	NA	NA
MW-2	12/13/1993	19,000	NA	5,400	4,900	680	3,100	NA	NA	NA	NA	·NA	NA	NA	NA	45.83	20.42	25.41	NA	NA
MW-2 (D)	12/13/1993	17,000	NA	6,200	5,500	720	3,500	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.42	25.41	NA	NA
MW-2	03/03/1994	110,000	NA	21,000	24,000	2,000	13,000	NA	NA	NA	NA	NA	NA.	NA	NA	45.83	18.48	27.35	NA	. NA
MW-2 (D)	03/03/1994	93,000	NA	19,000	22,000	1,800	12,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.48	27.35	NA	NA
MW-2	06/06/1994	10,000	NA	1,900	3,300	2,500	13,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.26	25.57	NA	NA
MW-2 (D)	06/06/1994	99,000	NA	9,900	12,000	2,400	12,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.26	25.57	NA	NA
MW-2	09/12/1994	160,000	NA	22,000	33,000	3,400	23,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	21.80	24.03	NA	NA
MW-2 (D)	09/12/1994	150,000	NA	23,000	34,000	3,500	23,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	21.80	24.03	NA	NA
MW-2	12/19/1994	80,000	NA	17,000	16,000	2,300	14,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.66	26.17	NA	NA
MW-2 (D)	12/19/1994	100,000	NA	28,000	26,000	3,400	20,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.66	26.17	NA	NA
MW-2	02/28/1995	100,000	NA	24,000	18,000	2,300	17,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.51	28.32	NA	NA
MW-2 (D)	02/28/1995	100,000	NA	31,000	21,000	3,200	18,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.51	28.32	NA	NA
MW-2	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	14.88	30.95	NA	NA
MW-2	06/26/1995	45,000	NA	14,000	12,000	1,500	7,500	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.58	28.25	NA	NA
MW-2 (D)	06/26/1995	68,000	NA	13,000	11,000	1,800	7,700	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.58	28.25	NA NA	NA
MW-2	09/13/1995	110,000	NA	19,000	19,000	2,800	15,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.28	26.55	NA	NA
MW-2 (D)	09/13/1995	120,000	NA	20,000	20,000	2,900	15,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.28	26.55	NA	NA
MW-2	12/19/1995	180,000	NA	18,000	29,000	4,100	24,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.61	27.22	NA	NA
MW-2 (D)	12/19/1995	160,000	NA	18,000	28,000	3,800	24,000	NA	NA	NA	NA	NA	NA	NA	NA NA	45.83	18.61	27.22	NA	NA
MW-2	03/06/1996	120,000	NA	28,000	15,000	3,900	17,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	15.41	30.42	NA	NA
MW-2	06/28/1996	96,000	NA	20,000	20,000	4,100	22,000	2,400	NA	NA	NA	NA	NA	NA	NA	45.83	17.84	27. 9 9	NA	NA
MW-2	09/26/1996	87,000	NA	7,600	11,000	2,500	15,000	990	840	NA	NA	NA	_ NA	NA	NA	45.83	19.60	26.23	NA	NA
MW-2	12/10/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	45.83	18.15	27.88	0.25	NA
MW-2	03/10/1997	NA	NA	NA	NA	_ NA	NA	NA	NA	NA	_ NA	NA	NA	NA	NA	45.83	17.02	28.97	0.20	NA
MW-2	06/30/1997	57,000	NA	3,600	4,600	1,300	9,700	2,300	NA	NA	NA	NA	NA	NA	NA	45.83	19.42	26.41	NA	2.4
MW-2	09/12/1997	88,000	NA	7,800	8,800	2,600	16,000	3,200	NA	NA	NA	NA	NA	NA	NA	45.83	19.40	26.43	NA	1.7
MW-2 (D)	09/12/1997	90,000	NA	8,300	9,400	2,700	17,000	3,400	NA	NA	NA	NA	NA.	NA	NA	45.83	19.40	26.43	NA	1,7
MW-2 b	12/18/1997	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.56	28.27	NA	1.3
MW-2	02/02/1998	<50	NA	0.6	1.9	0.93	6.0	9.3	NA	NA	NA	NA	NA	NA	NA	45.83	18.14	27.69	NA	2
MW-2 (D)	02/02/1998	56	NA	1.0	2.8	1.4	9.3	13	NA	NA	NA	. NA	NA	NA	NA	45.83	18,14	27.69	NA	2
MW-2	06/24/1998	20,000	NA	<200	620	560	4,500	<1,000	NA	NA	NA	NA	NA	NA	NA	45.83	16.08	29.75	NA	2.4

			_					MTBE	MTBE								Depth to	GW	SPH	DQ
Well ID	Date	TPPH	TEPH	В	Т	E	x :	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2	08/26/1998	22,000	NA	380	1,100	560	4,400	330	NA	NA	NA	NA	NA	NA	NA	45.83	19.25	26.58	NA	NA
MW-2 (D)	08/26/1998	11,000	NA	180	130	290	500	1,400	NA	NA	NA	NA	NA	NA	NA	45.83	19.25	26.58	NA	NA
MW-2	12/23/1998	100,000	NA	4,100	6,500	2,400	16,000	<500	NA	NA	NA	NA	NA	NA	NA	45.83	18.29	27.54	NA	3.8
MW-2	03/01/1999	50,800	NA	3,910	7,480	1,890	13,100	9,620	NA	NA	NA	NA	NA	NA	NA	45.83	22.81	23.02	NA	2.0
MW-2	06/14/1999	4,930	NA	128	270	139	1,040	2,200	2,540*	NA	NA	NA	NA	NA	NA	45.83	18.86	26.97	NA	1.6
MW-2	09/28/1999	16,200	NA	647	1,070	542	4,130	5,320	4,790	NA	NA	NA	NA	NA	NA	45.83	21.41	24.42	NA	1.8
MW-2	12/08/1999	25,700	NA	1,670	2,110	977	6,600	6,190	5,970	NA	NA	NA	NA	NA	NA	45.83	21.89	23.94	NA	1.8
MW-2	03/14/2000	45,100	NA	2,070	4,710	1,920	12,800	16,700	18,300*	NA	NA	NA	NA	NA	NA	45.83	15.57	30.26	NA	2.0
MW-2	06/28/2000	52,100	NA	5,150	4,200	1,880	13,300	15,500	13,500*	NA	NA	NA	NΑ	NA	NA	45.83	17.79	28.04	NA	1.9
MW-2	09/06/2000	39,500	NA	4,490	3,290	2,100	14,000	18,500	9,060*	NA	NA	NA	NΑ	NA	NA	45.83	18.65	27.18	NA	3.5
MW-2	12/14/2000	209	NA	3.51	1.11	1.00	64.4	79.4	NA	NA	NA	NA	NA	NA	NA	45.83	19.00	26.83	NA	1.5
MW-2	03/05/2001	38,200	NA	2,010	927	1,250	8,300	13,100	15,400	NA	NA	NA	NA	NΑ	NA	45.83	16.66	29.17	NA	1.0
MW-2	06/11/2001	50,000	NA	4,400	2,200	1,800	11,000	NA	26,000	NA	NA	NA	NA	NA	NA	45.83	18.93	26.90	NA	1.7
MW-2	09/12/2001	59,000	NA	6,100	2,800	2,300	14,000	NA	21,000	NA	NA	NA	NA	NA	NA	45.83	19.85	25.98	NA	1.6
MW-2	12/27/2001	74,000	NA	8,600	2,500	2,500	17,000	NA	25,000	NA	NA	NA	NA	NA	NA	45.83	17.85	27.98	NA	2.6
MW-2	02/27/2002	70,000	NA	8,100	2,600	2,100	13,000	NA	32,000	NA	NA	NA	NA	NA	NA	45.79	17.15	28.64	NA	2.0
MW-2	06/18/2002	72,000	NA	9,500	3,000	2,200	13,000	NA	29,000	NA	NA	NA	NA	NA	NA	45.79	18.49	27.30	NA	0.6
MW-2	09/18/2002	48,000	NA	7,600	850	1,300	6,300	NA	8,700	NA	NA	NA	NA	NA	NA.	45.79	19.95	25.84	NA	1.0
MW-2	12/27/2002	40,000	NA	5,900	1,200	1,400	7,800	NA	19,000	<50	<50	55	10,000	<50	<50	45.79	16.71	29.08	NA	1.0
MW-2	03/05/2003	62,000	NA	13,000	1,400	2,000	7,900	NA	21,000	NA	NA	<50	10,000	<50	NA	45.79	17,72	28.07	NA	1.4
MW-2	06/24/2003	19,000	NA	9,500	530	700	2,900	NA	14,000	NA	NA	<400	6,000	<100	NA	45.79	18.30	27.49	NA	1.4
MW-2	09/25/2003	65,000	NA	24,000	1,500	2,400	9,700	NA	19,000	NA	NA	<1,000	6,400	<250	NA	45.79	20.05	25.74	NA	1.3
MW-2	12/15/2003	67,000	NA	18,000	1,800	1,900	7,200	NA	11,000	NA	NA	<400	3,700	<100	NA	45.79	18.80	26.99	NA	0.1
MW-2	03/04/2004	72,000	NA	27,000	1,200	2,100	7,600	NA	13,000	NA	NA	<400	6,800	<100	NA	45.79	16.75	29.04	NA	0.2
MW-2	05/27/2004	74,000	NA	6,000	2,000	2,500	15,000	NA	19,000	NA	NA	<400	8,500	<100	NA	45.79	18.85	26.94	NA	0.8
MW-2	09/24/2004	<100	NA	<1.0	<1.0	<1.0	<2.0	NA	130	<4.0	<4.0	<4.0	46	19	<1.0	45.79	16.10	29.69	NA	5.1
MW-2	11/22/2004	8,800	NA	1,200	230	350	1,900	NA	2,200	NA	NA	<40	1,300	<10	NA	45.79	19.83	25.96	NA	0.3
MW-2	03/02/2005	960	NA	150	21	30	220	NA	630	NA	NA	<10	460	<2.5	NA	45.79	15.90	29.89	NA	0.5
MW-2	06/30/2005	970	NA	130	19	27	210	NA	320 e	NA	NA	<2.0	220	0.98	NA	45.79	17.14	28.65	NA	0.7
MW-2	09/20/2005	890	NA	320	10	35	190	NA	440	<10	<10	<10	570	<2.5	NA	45.79	18.66	27.13	. NA	0.9
MW-2	12/05/2005	690	NA	150	6.1	21	130	NA.	450	NA	NA	<5.0	520	<5.0	NA	45.79	18.58	27.21	NA	0.51
MW-2	03/02/2006	11,000 g	NA.	2,700 g	150 g	440 g	2,300 g	NA	1,600 g	NA	NA	5.7	3,800 g	<0.50 j	NA	45.79	16.30	29.49	NA	1.2

Well ID	Date	ТРРН	TEPH	В	т	E	x	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Depth to Water	GW Elevation	SPH Thickness	DO Reading
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		\ -3 -7	<u> </u>	(\-3' -7		<u> </u>	<u> </u>	, , , ,			, , ,									
MW-3	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.97	24.00	NA	NA
MW-3	02/24/1992	4,500	1,300a	97	<5	78	18	NA	NA	NA .	NA	NA	NA	NA	NA	51.97	25.60	26.37	NA	NA
MW-3	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.88	26.09	NA	NA
MW-3	03/01/1992	2,200	440	69	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	26.00	25.97	NA	NA
MW-3	06/03/1992	4,100	NA	13	72	44	65	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.70	24.27	NA	NA NA
MW-3	09/01/1992	1,900	NA	20	6.8	5.5	<5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	29.46	22.51	NA	NA
MW-3 (D)	09/01/1992	1,900	NA	21	6.6	3.4	<5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	29.46	22.51	NA	NA
MW-3	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	30.01	21.96	NA	NA
MW-3	11/11/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	30.26	21.71	NA	NA
MW-3	12/04/1992	2,400	NA	8.2	<5	<5	<5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	29.93	22.04	NA	NA NA
MW-3 (D)	12/04/1992	2,100	NA	11	<0.5	5.7	<0.5	NA _	NA	NA	NA	. NA	NA	NA	NA	51.97	29.93	22.04	NA	NA
MW-3	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	22.76	29.21	NA_	NA
MW-3	02/10/1993	NA	NA	NA	NA	NA	NA	NA _	NA	NA	NA	.NA	NA	NA	NA	51.97	21.40	30.57	NA	NA
MW-3	03/03/1993	5,100_	NA	63	61	75	150	NA	NA	NA	NA_	NA	NA	NA	NA	51.97	23.08	28.89	NA NA	NA
MW-3	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	51.97	24.51	27.46	NA	NA
MW-3	06/17/1993	4,000	NA	94	140	82	150	NA	NA	NA	NA_	NA	NA	NA	NA	51.97	25.21	26.76	NA NA	NA
MW-3	09/10/1993	3,200	NA	140	12.5	12.5	12.5	NA	NA	NA _	NA	NA	NA	NA	NA	51.97	26.95	25.02	NA	NA
MW-3	12/13/1993	6,200	NA	<12.5	<12.5	<12.5	<12.5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	26.52	25.45	NA	NA
MW-3	03/03/1994	4,500	NA	73	<5	<5	<5	NA	NA	NA_	NA	NA	NA	NA _	NA	51.97	24.50	27.47	NA	NA
MW-3	06/06/1994	3,200	NA	<0.5	<0.5	3.1	<0.5	NA	NA	NA	NA	NA	NA	NA NA	NA	51.97	26.33	25.64	NA	NA .
MW-3	09/12/1994	3,900	NA	<0.5	<0.5	9.6	4.1	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.98	23.99	NA	NA
MW-3	12/19/1994	2,400	NA	21	22	4.2	2.6	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.63	26.34	NA	NA
MW-3	02/28/1995	4,000	NA	58	<0.5	7.1	3.5	NA_	NA	NA	NA	NA	NA	NA	NA	51.97	23.45	28.52	NA	NA
MW-3	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.07	30.90	NA	NA
MW-3	06/26/1995	3,900	NA_	8.1	<0.5	12	2.4	NA	NA	NA	NA	NA	NA	NA	NA	51.97	23.64	28.33	NA	NA
MW-3	09/13/1995	4,100	NA	58	5.5	5.5	<0.5	NA	NA	NA_	NA	NA	NA	NA	NA	51.97	25.40	26.57	NA	NA
MW-3	12/19/1995	3,600	NA	<0.5	4.3	2.1	1.1	NA	NA	NA	NA	NA	NA	NA	NA	51.97	24.53	27.44	NA	NA
MW-3	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.59	30.41	0.04	NA
MW-3	06/28/1996	2,400	NA	55	<0.5	<0.5	11	120	NA_	NA	NA	NA	NA	NA	NA	51.97	23.95	28.02	NA	NA
MW-3	09/26/1996	2,500	NA	<5.0	<5.0	<5.0	<5.0	160_	NA	NA	NA	NA	NA	NA	NA	51.97	25.89	26.08	NA	NA
MW-3	12/10/1996	1,600	NA	28	4.2	<2.0	3.9	110	NA	NA	NA	NA	NA	NA	NA	51.97	24.22	27.75	NA	0.8
MW-3	03/10/1997	130	NA	<0.50	<0.50	<0.50	1.4	4.2	NA	NA	NA	NA	NA	NA	NA	51.97	23.05	28.92	NA	2.8
MW-3	06/30/1997	1,200	NA	21	2.3	<2.0	<2.0	69	NA	NA	NA_	NA	NA	NA	NA	51.97	24.34	27.63	NA	2.3

<u> </u>	 				i :	-		MTBE	MTBE						_		Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	Х	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Water			
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(49/1-)	(ugit)	(ug/L)	(ugre/	(49/2/	(ug/L)	(09,2)	(49,-/	(49.47	<u> (= g, = /</u>	(-5,-/	1-3,-/_	(-3/		(\	(/		J <u> </u>	
MW-3	09/12/1997	440	NA	8.3	0.82	<0.50	1.9	3.4	NA	NA	NA	NA	NA	NA	NA	51.97	24.47	27.50	NA	1.9
MW-3 b	12/18/1997	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	23.54	28.43	NA	0.8
MW-3	02/02/1998	400	NA	9.3	0.68	<0.50	<0.50	9	NA	NA	NA	NA	NA	NA	NA	51.97	21.92	30.05	NA	1.5
MW-3	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	51.97	22.35	29.62	NA	1.9
MW-3	08/26/1998	140	NA	7.4	<0.50	<0.50	2.5	13	NA	NA	NA	NA	NA	NA	NA	51.97	23.45	28.52	NA	1.3
MW-3	12/23/1998	1,200	NA	50	<2.0	<2.0	<2.0	69	NA	NA	NA	NA	NA	NA	NA	51.97	24.01	27.96	NA	4.2
MW-3	03/01/1999	2,550	NA	<0.500	<0.500	<0.500	0.658	32.4	NA	NA	NA	NA	NA	NA	NA	51.97	22.08	29.89	NA	2.0
MW-3	06/14/1999	514	NA	18.1	0.728	<0.500	<0.500	15.9	NA	NA .	NA	NA	NA	NA	NA	51.97	23.15	28.82	NA	1.7
MW-3	09/28/1999	1,180	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	NA	NA	NA	NA	NA	NA	51.97	25.36	26.61	NA :	1.2
MW-3	12/08/1999	1,740	NA	71.5	23.0	24.2	61.3	103	NA	NA	NA	NA	NA	NA	NA	51.97	25.75	26.22	NA	2.0
MW-3	03/14/2000	1,410	NA	5.63	35.6	<5.00	8.41	38.7	NA_	NA	NA	NA	NA	NA	NA	51.97	21.64	30.33	NA	2.1
MW-3	06/28/2000	2,460	NA	<5.00	9.48	<5.00	28.4	64.0	NA	NA	NA	NA	NA	NA	NA	51.97	23.84	28.13	NA	2.87
MW-3	09/06/2000	887	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	NA	NA_	NA	NA	NA	NA	51.97	24.73	27.24	NA	2.0
MW-3	12/14/2000	955	NA	25.4	1.96	<0.500	1.13	10.2	NA	NA	NA	NA	NA	NA	NA	51.97	25.45	26.52	NA	2.1
MW-3	03/05/2001	2,100	NA	4.90	56.5	<2.00	3.62	261	NA	NA	NA	NA	NA	NA	NA	51.97	22.83	29.14	NA	0.8
MW-3	06/11/2001	2,000	NA	1.0	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	51.97	25.20	26.77	NA	0.7
MW-3	09/12/2001	1,500	NA	0.50	0.54	<0.50	1.8	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	26.15	25.82	NA	1.5
MW-3	12/27/2001	2,100	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	23.67	28.30	. NA	1.9
MW-3	02/27/2002	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.92	23.23	28.69	NA	1.5
MW-3	06/18/2002	2,000	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	51.92	24.74	27.18	NA	2.0
MW-3	09/18/2002	2,600	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.92	26.05	25.87	NA	1.4
MW-3	12/27/2002	Well inacc	essible	NA	NA	NA	NA	NA	51.92	NA	NA	NA	NA							
MW-3	03/05/2003	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	<2.0	<50	13	NA.	51.92	23.84	28.08	NA	1.3
MW-3	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	51.92	NA	NA	NA	NA							
MW-3	06/25/2003	1,800 c	NA	0.71	<0.50	<0.50	<1.0	NA	0.54	NA	NA	<2.0	<5.0	1.1	NA	51.92	24.48	27.44	NA	1.3
MW-3	09/25/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	25.99	25.93	NA	NA
MW-3	12/15/2003	NA	NA	NA	NA	NA	NA _	NA	NA	NA	NA	NA	NA_	NA	NA	51.92	24.94	26.98	NA	NA
MW-3	03/04/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.50	29.42	NA	NA .
MW-3	05/27/2004	2,500	NA	<0.50	<0.50	<0.50	<1.0	NA	1.1	NA	NA	<2.0	<5.0	0.82	NA_	51.92	24.94	26.98	NA	0.5
MW-3	09/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	51.92	26.55	25.37	NA	NA
MW-3	11/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	25.92	26.00	NA	NA
MW-3	03/02/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.12	29.80	NA	NA
MW-3	06/30/2005	3,700	NA	<2.0	2.4	<2.0	<4.0	NA	<2.0	<8.0	<8.0	<8.0	<20	<2.0	NA	51.92	23.31	28.61	NA	1.2

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		\ .V_/_	, , ,	<u> </u>		1.4/_	<u>, v , , , , , , , , , , , , , , , , , ,</u>	, <u>v</u> /	<u>, , , , , , , , , , , , , , , , , , , </u>			<u> </u>		<u> </u>						
MW-3	09/20/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.78	27.14	NA	NA
MW-3	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	51.92	24.65	27.27	NA	NA
MW-3	03/02/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.56	29.36	NA	NA
																				
MW-4	03/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.51	9.16	31.35	NA NA	NA
MW-4	06/26/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.51	12.06	28.45	NA	NA
MW-4	09/13/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.51	13.90	26.61	NA	NA
MW-4	12/19/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.51	12.90	27.61	NA	NA
MW-4	03/06/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	40.51	9.63	30.88	NA	NA
MW-4	06/28/1996	40	NA	<0.5	0.59	0.97	3.8	26	NA	NA	NA	NA	NA	NA	NA	40.51	12.30	28.21	NA	NA
MW-4	09/26/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	14.12	26.39	NA	NA
MW-4	12/10/1996	<50	NA .	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	12.31	28.20	NA	1.2
MW-4	03/10/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.34	29.17	NA NA	NA
MW-4	06/30/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA .	NA	40.51	13.80	26.71	NA	1.9
MW-4	09/12/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	13.99	26.52	NA NA	1.7
MW-4 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	12.02	28.49	NA	1.8
MW-4	02/02/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.23	29.28	NA NA	1
MW-4	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	10.58	29.93	. NA	1.9
MW-4	08/26/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.75	28.76	NA	1.2
MW-4	12/23/1998	<50	NA	0.60	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	12.41	28.10	NA NA	4.2
MW-4	03/01/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.38	30.13	NA_	2.1
MW-4	06/14/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	11.91	28.60	NA	2.4
MW-4	09/28/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.19	30.32	NA	2.2
MW-4	12/08/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	10.67	29.84	NA	1.8
MW-4	03/14/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	9.95	30.56	NA	2.5
MW-4	06/28/2000	<50.0	NA_	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	12.22	28.29	NA.	0.9
MW-4	09/06/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	13.17	27.34	NA	3.0
MW-4	12/14/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	40.51	8.65	31.86	NA	NA
MW-4	03/05/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	40.51	11.07	29.44	NA	NA
MW-4	06/11/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	40.51	13.62	26.89	NA	1.3
MW-4	09/12/2001	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	14.61	25.90	NA	NA
MW-4	12/27/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	12.19	28.32	NA	NA
MW-4	02/27/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	40.45	11.64	28.81	NA	NA

		1.7		1				MTBE	MTBE				.:				Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	E	x	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	TOC	Water		Thickness	
I Well ID	Bate	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		(-3,-/	<u> </u>	(\3·-/	1 1-37	\'. <u>\0</u> ' _/_				. \ _ \ _ /		7		· _ · _ ·			<u> </u>			
MW-4	06/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	40.45	13.22	27.23	NA	0.6
MW-4	09/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	14.46	25.99	NA	NA
MW-4	12/27/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	11.23	29.22	NA	NA
MW-4	03/05/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	12.22	28.23	NA	NA
MW-4	06/24/2003	57 c	NA	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	NA	NA	NA	40.45	12.79	27.66	NA	1.6
MW-4	09/25/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	14.45	26.00	NA	NA
MW-4	12/15/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	13.24	27.21	NA	NA_
MW-4	03/04/2004	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	10.93	29.52	NA	NA
MW-4	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	40.45	13.42	27.03	NA	0.5
MW-4	09/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	15.11	25.34	NA	NA
MW-4	11/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	40.45	14.42	26.03	NA	NA
MW-4	03/02/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	10.17	30.28	NA	NA
MW-4	06/30/2005	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	40.45	11.60	28.85	NA	8.0
MW-4	09/20/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	13.18	27.27	NA	NA
MW-4	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	13.08	27.37	NA	NA
MW-4	03/02/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _.	NA	40.45	10.62	29.83	NA	NA
												,					,			,
MW-5	01/29/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	.NA	41.46	12.82	28.64	NA	ŅĄ
MW-5	02/27/2002	190	NA	<0.50	<0.50	0.85	1.5	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.85	28.61	NA	1.9
MW-5	06/18/2002	650	NA	1.4	3.0	52	28	NA	<0.50	NA	NA .	NA_	NA	NA	NA	41.46	13.65	27.81	NA	0.8
MW-5	09/18/2002	390	NA	0.72	0.51	<0.50	<0.50	NA	<5.0	NA	NA	NA	NΑ	NA	NA	41.46	15.57	25.89	NA	1.1
MW-5	12/27/2002	380	NA	<0.50	<0.50	0.56	<0.50	NA	<0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.46	12.51	28.95	NA	1.9
MW-5	03/05/2003	290	NA .	<0.50	1.7	9.4	22	NA	<5.0	NA	NA	NA	NA	NA .	NA	41.46	13.39	28.07	NA	2.6
MW-5	06/24/2003	220	NA	<0.50	1.0	19	1.3	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.91	27.55	NA	1.7
MW-5	09/25/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	15.58	25.88	NA	2.1
MW-5	12/15/2003	200 с	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA_	NA	NA	41.46	14.45	27.01	NA NA	0.21
MW-5	03/04/2004	170 c	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	12.52	28.94	NA	0.1
MW-5	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.49	26.97	NA	0.5
MW-5	09/24/2004	<50	NA	0.71	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	16.08_	25.38	NA	1.7
MW-5	11/22/2004	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA .	NA	41.46	15.48	25.98	NA	0.3
MW-5	03/02/2005	190	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.46	11.52	29.94	NA	0.4
MW-5	06/30/2005	3,200	NA	<5.0	25	200	270	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.33	29.13	NA	0.9
MW-5	09/20/2005	310	NA	<0.50	1.3	47	2.5	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	14.36	27.10	NA NA	0.5

								MTBE	MTBE			TA 145	704	4 0 004	EDB	тос	Depth to Water	GW Elevation	SPH Thickness	DO Reading
Well ID	Date	TPPH	TEPH	В	T	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA		(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(IVISL)	(11.)	(MOL)	(it.)	(рріп)
				0.50			-0.50	NA	-0.50	NIA	N/A	NA	NA	NA	NA	41,46	14.25	27.21	NA	0.58
MW-5	12/05/2005	250	NA NA	<0.50	0.94	26	<0.50	NA NA	<0.50 <0.50	NA NA	NA NA	NA NA	NA NA	NA -	NA.	41.46	11.87	29.59	NA NA	0.7
MW-5	03/02/2006	3,000 g	NA	<0.50	17	230 g	390 g	NA	<0.50	NA	IVA	IVA	IVA	NA.	ILA	41.40	11.07	23.55	116	<u> </u>
			***	210	L NIA	110	NIA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	3.88	37.62	NA :	NA
MW-6	01/29/2002	NA	NA NA	NA	NA NA	NA	NA NA	NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	41.50	12.43	29.07	NA NA	NA NA
MW-6	01/31/2002	NA 50	NA NA	NA -0.50	NA 10.50	NA 10.50	NA_	NA NA	NA _	NA NA	NA NA	NA NA	NA	NA NA	NA NA	41.50	12.82	28.68	NA NA	4.1
MW-6	02/27/2002	<50	NA NA	<0.50	<0.50	<0.50	<0.50	NA NA	<5.0		NA NA	NA NA	NA NA	NA NA	NA.	41.50	4.26	37.24	NA NA	3.9
MW-6	06/18/2002	<50	NA NA	<0.50	<0.50	<0.50	<0.50	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA	41.50	5.26	36.24	NA NA	4.2
MW-6	09/18/2002	<50	NA	< 0.50	<0.50	<0.50	<0.50	NA NA	<5.0	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.50	12.11	29.39	NA NA	3.0
MW-6	12/27/2002	<50	NA_	<0.50	<0.50	<0.50	<0.50	NA NA	<0.50			NA	NA	NA	NA	41.50	13.47	28.03	NA NA	4.9
MW-6	03/05/2003	<50	NA NA	<0.50	<0.50	<0.50	<0.50	NA NA	<5.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	41.50	13.71	27.79	NA NA	5.8
MW-6	06/24/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	41.50	NA	NA NA	NA NA	NA
MW-6	09/25/2003	Well inacc		NA 10.50	NA 10.50	NA 10.50	NA _	NA NA	NA r0.50	NA NA	NA_		NA NA	NA NA	NA NA	41.50	13,17	28.33	NA NA	5.7
MW-6	12/15/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA _	NA NA	NA NA	NA NA	NA NA	41.50	11.15	30.35	NA NA	1.0
MW-6	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA NA		NA NA	NA NA	NA NA	41.50	13.68	27.82	NA NA	1.0
MW-6	05/27/2004	<50	NA NA	0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA_	NA NA	NA _	NA NA	NA NA	NA.	41.50	10.71	30.79	NA NA	3.1
MW-6	09/24/2004	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	41.50	7.60	33.90	NA NA	6.5
MW-6	11/22/2004	<50 d	NA 	0.65	<0.50	<0.50	<1.0	NA NA	<0.50	NA_		<2.0	<10	<0.50	NA NA	41.50	6.77	34.73	NA NA	6.2
MW-6	03/02/2005	<100	NA	<0.50	<1.0	<1.0	<1.0	NA NA	<1.0	NA NA	NA	NA	NA	\0.50 NA	NA NA	41.50	12.87	28.63	NA NA	1.2
MW-6	06/30/2005	<50	NA WA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	41.50	14.16	27.34	NA NA	5.5
MW-6	09/20/2005	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	<0.50	NA NA	NA NA				NA NA	41.50	14.18	27.27	NA NA	2.40
MW-6	12/05/2005	<50	NA NA	<0.50	<0.50	<0.50	<0.50	NA NA	<0.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	41.50	11.40	30.10	NA.	1.2
MW-6	03/02/2006	58 i	NA	<0.50	<0.50	0.73	1.5	NA	<0.50	NA	NA	NA	. NA	IVA	IVA	41.50	11.40	30.10	INA.	1.2
	1 -010410000		T 114	1 510	LAIA	- NIA	NIA.	1 110	TNA	L NA	NA NA	NA	NÄ	l NA	NA	44.45	18.90	25.55	NA .	NA
MW-7	10/21/2002	NA	NA	NA	NA	NA	NA 	NA	NA NA	NA -40	·							29.02	NA NA	2.1
MW-7	12/27/2002	49,000	NA H	830	980	2,000	5,200	NA NA	<10	<10	<10	<10	<100	<10	<10	44.45	15.43	29.02	NA NA	2.1
MW-7	03/05/2003	32,000	NA.	370	490	1,600	2,900	NA NA	<100_	NA NA	NA _	NA NA	NA NA	NA_	NA NA	44.45	16.34		NA NA	NA
MW-7	06/24/2003	Well inacc		NA	NA 0.1	NA	NA NA	NA NA	NA_	NA NA	NA_	NA NA	NA NA	NA_	NA NA	44.45	NA 19.26	NA 26.00	NA NA	1.2
MW-7	09/25/2003	8,700	NA_	57	34	450	290	NA	<5.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA	44.45	18.36	26.09		
MW-7	12/15/2003	27,000	NA NA	170	260	1,200	1,500	NA	<10	NA	NA_	NA NA	NA NA	NA_	NA NA	44.45	17.44	27.01	NA NA	1.3
MW-7	03/04/2004	13,000	NA NA	200	190	1,200	1,200	NA	<5.0	NA	NA NA	NA	NA_	NA NA	NA NA	44.45	15.45	29.00	NA NA	0.1
MW-7	05/27/2004	16,000	NA	76	56	860	420	NA	<5.0	NA	NA	NA .	NA .	NA	NA	44.45	17.50	26.95	NA NA	0.5
MW-7	09/24/2004	8,400	NA	26	14	340	200	NA	<5.0	<20	<20	<20	<50	NA NA	NA_	44.45	18.94	25.51	NA NA	1.1
MW-7	11/22/2004	14,000	NA	92	60	790	730	N <u>A</u>	<5.0	NA	NA	NĄ	NA NA	NA	NA	44.45	18.47	25.98	NA NA	0.2

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
																				,
MW-7	03/02/2005	13,000	NA	130	140	740	980	NA	<10	NA	NA	<20	<100	<5.0	NA	44.45	14.53	29.92	NA	0.7
MW-7	06/30/2005	9,900	NA	27	48	380	520	NA	<10	NA	NA	NA	NA	NA	NA	44.45	15.92	28.53	NA	0.9
MW-7	09/20/2005	7,700	NA	30	53_	380	570	NA	<5.0	36	<20	<20	<50	NA	NA	44.45	17.28	27.17	NA	1.4
MW-7	12/05/2005	2,900	NA	20	<2.5	270	19	NA	<2.5	NA	NA	NA	NA	NA	NA	44.45	17.40	27.05	NA	0.56
MW-7	03/02/2006	3,900 g	NA	27	31	240 g	190	NA	1.1	NA	NA	NA	NA	NA	NA	44.45	15.00	29.45	NA	0.9
MW-8	10/21/2002	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	17.70	25.57	NA	NA
MW-8	12/27/2002	30,000	NA	280	220	2,000	5,300	NA	<10	<10	<10	<10	<100	<10	<10	43.27	14.25	29.02	NA	1.2
MW-8	03/05/2003	30,000	NA	220	150	2,100	4,200	NA	<100	NA	NA	NA	NA	NA	NA	43.27	15.36	27.91	NA	1.3
MW-8	06/24/2003	Well inacc	essible	NA	NA	NA	NA.	NA	NA	43.27	NA	NA	NA	NA						
MW-8	09/25/2003	26,000	NA	240	53	1,600	2,600_	NA	<50	NA	NA_	NA	NA	NA	NA	43.27	17.43	25.84	NA	1.0
MW-8	12/15/2003	38,000	NA	290	140	2,200	5,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.24	27.03	NA	0.4
MW-8	03/04/2004	19,000	NA	180	95	1,400	3,900	NA	<13	NA	NA	NA	NA	NA	NA	43.27	14.63	28.64	NA	0.1
MW-8	05/27/2004	19,000	NA	230	41	1,100	2,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.41	26.86	NA	0.5
MW-8	09/24/2004	21,000	NA	270	42	1,200	2,600	NA	<13	<50	<50	<50	<130	NA _	NA	43.27	18.10	25.17	. NA	0.7
MW-8	11/22/2004	24,000	NA	200	64	1,400	4,100	NA	<13	NA	NA	NA	NA	NA	NA	43.27	17.28	25.99	NA	1.0
MW-8	03/02/2005	16,000	NA	100	44	890	2,300	NA	<10	NA	NA	<20	<100	<5.0	NA	43.27	13.35	29.92	NA	0.6
MW-8	06/30/2005	19,000	NA	110	41	700	2,100	NA	<10	NA	NA	NA	NA	NA .	NA	43.27	14.91	28.36	NA	0.8
MW-8	09/20/2005	10,000	NA	86	25	600	1,400	NA	<10	<40	<40	<40	<100	NA	NA	43.27	16.11	27.16	NA	0.8
MW-8	12/05/2005	9,900	NA	130	16	600	1,300	NA	<10	NA	NA	NA	NA	NA	NA	43.27	16.20	27.07	NA	0.56
MW-8	03/02/2006	13,000 g	NA	130 g	45	790 g	2,000 g	NA	0.54	NA	NA	NA	NA	NA	NA	43.27	14.28	28.99	NA	1.1
											-									
MW-9	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.65	15.15	26.50	NA	NA
MW-9	12/15/2003	<50	NA	<0.50	<0.50	<0.50	1.3	NA	2.5	NA	NA	NA	NA	NA	NA	41.65	14.48	27.17	NA	0.9
MW-9	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.15	29.50	NA	0.2
MW-9	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.55	27.10	NA	0.5
MW-9	09/24/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA _	NA	41.65	16.37	25.28	NA	1.0
MW-9	11/22/2004	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	15.62	26.03	NA	0.3
MW-9	03/02/2005	100	NA	<0.50	<1.0	1.4	3.8	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.65	11.40	30.25	NA	0.4
MW-9	06/30/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.70	28.95	NA	1.3
MW-9	09/20/2005	<50	NA	<0.50	<0.50	<0.50	1.8	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.65	14.38	27.27	NA	1.2
MW-9	12/05/2005	<50	NA	<0.50	<0.50	<0.50	0.65	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.25	27.40	NA	1.13
MW-9	03/02/2006	<50 h	NA	<0.50	<0.50	<0.50 h	<0.50 h	NA	<0.50	NA	NA	NA	NA	NA .	NA	41.65	11.87	29.78	NA	0.9

	_				_			MTBE	MTBE					40.004		700	Depth to	GW	SPH	DO
Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	(ug/L)	E (ug/L)	X (ug/L)	8020 (ug/L)	8260 (ug/L)	DIPE (ug/L)	ETBE ((ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)	TOC (MSL)	Water (ft.)	Elevation (MSL)	Thickness (ft.)	Reading (ppm)
<u> </u>	1	(ug/L)	(ug/L)	(ug/L)	(ug/L)	<u> (49/L)</u>	(49/11)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(49,2)	(09/2)	(49,2)	(MOL)		(111012)	(14.7	(PP)
MW-10	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	24.33	26.31	NA	NA
MW-10	12/15/2003	6,400	NA	3.1	<1.0	33	20	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.58	27.06	NA	0.3
MW-10	03/04/2004	1,400	NA	1.2	<1.0	16	3.4	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	21.20	29.44	NA	0.1
MW-10	05/27/2004	810	NA	<1.0	<1.0	8.3	<2.0	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.63	27.01	NA	0.5
MW-10	09/24/2004	790	NA	1.2	<1.0	7.3	<2.0	NA	<1.0	<4.0	<4.0	<4.0	<10	<1.0	<1.0	50.64	25.30	25.34	NA	1.5
MW-10	11/22/2004	1,100	NA	1,1	<0.50	17	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	24.62	26.02	NA	0.4
MW-10	03/02/2005	920	NA	0.60	<1.0	3.5	<1.0	NA_	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	20.72	29.92	NA	0.4
MW-10	06/30/2005	470 f	NA	<0.50	<0.50	1.4	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	21.48	29.16	NA	1.4
MW-10	09/20/2005	420	NA .	<0.50	<0.50	1.2	2.1	NA NA	<0.50	<2.0	<2.0	<2.0	<5.0	<0.50	NA	50.64	23.45	27.19	NA	2.0°
MW-10	12/05/2005	420	NA	<0.50	<0.50	1.1	<0.50	NA	<0.50	NA	NA	<0.50	<5.0	<0.50_	NA	50.64	23.42	27.22	NA	0.97
MW-10	03/02/2006	230 h	NA	<0.50 h	<0.50	0.83 h	<0.50 h	NA	<0.50	NA	NA	<0.50	<5.0 h	<0.50 j	NA	50.64	21.13	29.51	NA	1.1
MW-11	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	45.58	19.10	26.48	NA NA	NΑ
MW-11	12/15/2003	110,000	NA	9,900	3,300	3,900	23,000	NA	20,000	NA	NA	<800	18,000	<200	NA	45.58	18.50	27.08	NA	0.3
MW-11	03/04/2004	68,000	NA	5,300	3,000	3,600	23,000	NA	8,300	NA	NA	<200	12,000	<50	NA	45.58	16.67	28.91	NA	0.1
MW-11	05/27/2004	86,000	NA	8,500	3,200	13,000	22,000	NA	25,000	NA	NA.	<400	18,000	<100	NA	45.58	18.60	26.98	NA	1.6
MW-11	09/24/2004	63,000	NA_	7,200	2,000	3,000	15,000	NA	26,000	<400	<400	<400	17,000	<100	<100	45.58	20.22	25.36	NA	2.2
MW-11	11/22/2004	96,000	NA	7,100	3,700	2,800	15,000	NA	20,000	NA	NA_	<400	14,000	<100	NA	45.58	19.56	26.02	NA	0.3
MW-11	03/02/2005	63,000	NA	6,200	6,800	2,200	15,000	NA	16,000	NA	NA	<200	7,800	<50	NA	45.58	15.75	29.83	NA	4.6
MW-11	06/30/2005	100,000	NA	4,200	18,000	3,800	25,000	NA	2,500	NA	NA	<400	3,400	<100	NA	45.58	16.92	28.66	NA	1.0
MW-11	09/20/2005	65,000	NA	3,800	10,000	3,100	19,000	NA_	3,900	<400	<400	<400	4,600	<100	NA	45.58	18.43	27.15	NA	NA
MW-11	12/05/2005	69,000	NA	4,000	10,000	3,100	16,000	NA	7,400	NA	NA	<50	4,400	<50	NA	45.58	18.26	27.32	NA	0.70
MW-11	03/02/2006	76,000 g	NA	4,000 g	13,000 g	2,900 g	16,000 g	NA	6,100 g	NA	NA	36	420 k	<0.50 j	NA	45.58	16.13	29.45	NA NA	0.9

WELL CONCENTRATIONS

Shell-branded Service Station 1784 150th Avenue San Leandro, CA

Well ID	Date	TPPH	TEPH	B (1.5/1)	T	E /110/11\	X (ug(L)	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA (ug/L)	EDB	TOC (MSL)	Depth to Water (ft.)		SPH Thickness (ft.)	DO Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)_	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(M2r)	(π.)	(IM2F)	[(π.)	(ppm)

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260

EDB = 1,2-dibromomethane or ethlyene dibromide, analyzed by EPA Method 8260

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feel

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

									MTBE	MTBE								Depth to	GW	SPH	OO
Well	ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
li .			(ug/L)	(ug/L)_	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)												

Notes:

- a = Chromatogram pattern indicates an unidentified hydrocarbon.
- b = Samples not analyzed due to laboratory oversight.
- c = Hydrocarbon does not match pattern of laboratory's standard.
- d = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.
- e = Estimated value. The concentration exceeded the calibration of analysis.
- f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- g = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.
- h = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.
- i = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- i = Result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.
- k = The result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.
- * = Sample analyzed out of EPA recommended hold time.

Site surveyed January 23, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Survey data for wells MW-7 and MW-8 provided by Cambria Environmental Technology.

Wells MW-9, MW-10, and MW-11 surveyed December 11, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

31 March, 2006

Michael Ninokata Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose, CA 95112

RE: 1784 150th Ave., San Leandro

Grever aller

Work Order: MPC0103

Enclosed are the results of analyses for samples received by the laboratory on 03/02/06 17:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Theresa Allen Project Manager

CA ELAP Certificate #1210

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 1784 150th Ave., San Leandro Project Number: 060302-MT1 Project Manager: Michael Ninokata MPC0103 Reported: 03/31/06 09:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	MPC0103-01	Water	03/02/06 11:45	03/02/06 17:30
MW-5	MPC0103-02	Water	03/02/06 10:55	03/02/06 17:30
MW-6	MPC0103-03	Water	03/02/06 14:40	03/02/06 17:30
MW-7	MPC0103-04	Water	03/02/06 12:30	03/02/06 17:30
MW-8	MPC0103-05	Water	03/02/06 12:45	03/02/06 17:30
MW-9	MPC0103-06	Water	03/02/06 10:15	03/02/06 17:30
MW-10	MPC0103-07	Water	03/02/06 11:20	03/02/06 17:30
MW-11	MPC0103-08	Water	03/02/06 13:30	03/02/06 17:30

Blaine Tech Services - San Jose (Shell)

1680 Rogers Avenue San Jose CA, 95112 Project:1784 150th Ave., San Leandro

Project Number:060302-MT1

Project Manager: Michael Ninokata

MPC0103 Reported: 03/31/06 09:45

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (MPC0103-02) Water S					24411	1100000	7111-17244		
Methyl tert-butyl ether	ND	0.50	ug/l	1	6C15030	03/15/06	03/16/06	EPA 8260B	
Gasoline Range Organics (C4-C		50	ug)ı	4	"	11	"	DI A 0200D	E
Benzene	ND	0.50	IF	н	D	11	11	85	_
Toluene	17	0.50	IF	11	n	п	"	u	
Ethylbenzene	260	0.50	u	•		11	н	**	E
Xylenes (total)	390	0.50	IP.	н	u .	11	"	*1	E
Surrogate: 1,2-Dichloroethane-d4	,	189 %	60-	135	"	"	"	"	S01
MW-5 (MPC0103-02RE1) Wate	r Sampled: 03/02/06 10):55 Recei	ved: 03/0	02/06 17:30	0				HT-RD
Gasoline Range Organics (C4-C	12) 3000	250	ug/l	5	6C17017	03/17/06	03/17/06	EPA 8260B	
Ethylbenzene	230	2.5	"	11	n	11	"	11	
Xylenes (total)	390	2.5	U	11	tr .	R	н	11	
Surrogate: 1,2-Dichloroethane-d4	!	123 %	60-	135	"	a	"	#	
MW-6 (MPC0103-03) Water S	Sampled: 03/02/06 14:40	Received:	03/02/06	5 17:30					
Methyl tert-butyl ether	ND	0.50	ug/l	1	6C15030	03/15/06	03/16/06	EPA 8260B	
Gasoline Range Organics (C4-C	12) 58	50	4	11		te	11	11	HC-11
Benzene	ND	0.50	н	II .	ч	U	11	11	
Toluene	ND	0.50	**	II.	"	ţ=	11	71	
Ethylbenzene	0.73	0.50	"	11	*1		n	11	
Xylenes (total)	1.5	0.50	"				11	11	
Surrogate: 1,2-Dichloroethane-d4	!	108 %	60-	135	"	n	"	"	
MW-7 (MPC0103-04) Water S	Sampled: 03/02/06 12:30	Received:	03/02/06	17:30					
Methyl tert-butyl ether	1.1	0.50	ug/l	1	6C15030	03/15/06	03/16/06	EPA 8260B	
Gasoline Range Organics (C4-C	12) 4400	50	п	· ·	11	**	11	11	Е
Benzene	27	0.50	п	II .	11	,,	11	11	
Toluene	31	0.50	II .	II.	11	**	п	II .	
I oluene	31	0.50							
Ethylbenzene	250	0.50	ıı	11	11	**	1)	11	Е
			"	11	11	**	11	1)	E

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue

San Jose CA, 95112

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B Sequoia Analytical - Morgan Hill

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sampled: 03/02/06 12	:30 Recei	ved: 03/0	2/06 17:30)			-	HT-RD
3900	250	ug/l	5	6C17017	03/17/06	03/17/06	EPA 8260B	•
240	2.5	ıı .	н	11	"	ш	11	
•	132 %	60-	135	"	tt.	Ħ	"	
pled: 03/02/06 12:45	Received:	03/02/06	17:30					
0.54	0.50	ug/l	1	6C15030	03/15/06	03/16/06	EPA 8260B	
12000	50	Ħ	•	IF	10	II	11	E
130	0.50	n	11	11	**	11*	11	E
45	0.50	n		п	h	IP	11	
	366 %	60-	135	"	"	n	"	S01
Sampled: 03/02/06 12	:45 Recei	ved: 03/0	2/06 17:30)				HT-RD
13000	1000	ug/l	20	6C17017	03/17/06	03/17/06	EPA 8260B	
130	10		II .	11	н	H	II	
790	10	"	IF	II	"	tr	n	
2000	10			tı		"	П	
	120 %	60-	135	rt	"	n	n	
pled: 03/02/06 10:15	Received:	03/02/06	17:30					
ND	0.50	ug/l	1	6C15030	03/15/06	03/16/06	EPA 8260B	
ND	0.50		11	"	*1		II	
ND	0.50	II .	n		"	"	n	
	93 %	60-	135	Ħ	"	"	"	
Sampled: 03/02/06 10	:15 Recei	ved: 03/0	02/06 17:30)				HT-RC
ND	50	ug/l	1	6C27021	03/27/06	03/28/06	EPA 8260B	
ND	0.50	п	11	91	u		п	
ND	0.50	п	ft	1)		by		
	97 %	60-	135	"	"	"	n.	
	Sampled: 03/02/06 12 3900 240 pled: 03/02/06 12:45 0.54 12000 130 45 Sampled: 03/02/06 12 13000 130 790 2000 pled: 03/02/06 10:15 ND ND ND Sampled: 03/02/06 10 ND ND ND	Result Limit	Result Limit Units	Result Limit Units Dilution	Result	Result	Result Limit Units Dilution Batch Prepared Analyzed Sampled: 03/02/06 12:30 Received: 03/02/06 17:30 3900 250 ug/l 5 6C17017 03/17/06 03/17/06 240 2.5 " " " " " " " " " pled: 03/02/06 12:45 Received: 03/02/06 17:30 0.54 0.50 ug/l 1 6C15030 03/15/06 03/16/06 1300 0.50 " " " " " 1306 % 60-135 " " " " " " Sampled: 03/02/06 12:45 Received: 03/02/06 17:30 1 " " " " " " " " " " " " " " " " " 03/17/06 03/17/06 03/17/06 03/17/06 03/17/06 03/17/06 03/17/06	Result

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

		TOIH TRIKH		1,1016					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (MPC0103-01) Water Sa	mpled: 03/02/06 11:45	Received:	03/02/06	17:30					
tert-Amyl methyl ether	5.7	0.50	ug/l	1	6C15019	03/15/06	03/16/06	EPA 8260B	
tert-Butyl alcohol	550	5.0	11	II .	**	11	11	U	A-01
1,2-Dichloroethane	ND	0.50			н	11	11		CC02
Surrogate: 1,2-Dichloroethane-d4		75 %	60-	135	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		102 %	<i>70</i>	120	n	"	"	"	
Surrogate: Dibromofluoromethane		90 %	65-	130	n	**	"	"	
Surrogate: Toluene-d8		105 %	70	120	"	"	n	"	
MW-2 (MPC0103-01RE1) Water	Sampled: 03/02/06 1	1:45 Recei	ved: 03/0	2/06 17:30	9				HT-RD
Gasoline Range Organics (C4-C1	2) 11000	2500	ug/l	50	6C16033	03/16/06	03/17/06	EPA 8260B	
Benzene	2700	25	b	н	11	u	IP	h	
Toluene	150	25	**	II	11	II.	If	rı .	
Ethylbenzene	440	25		.,	11	D.	11	n	
Xylenes (total)	2300	25	н	н	11	tr	ı	н	
Methyl tert-butyl ether	1600	25	*1	*1	ш	II.	"		
tert-Butyl alcohol	3800	250	"	"	,ii	n		п	
Surrogate: 1,2-Dichloroethane-d4		101 %	60-	135	"	n	n	"	
Surrogate: 4-Bromofluorobenzene		92 %	70-	120	"	n	"	"	
Surrogate: Dibromofluoromethane		100 %	65-	130	"	n	"	"	
Surrogate: Toluene-d8		101 %	70-	120	"	"	"	"	
MW-10 (MPC0103-07) Water S	Sampled: 03/02/06 11:20	D Received	: 03/02/0	6 17:30					
Gasoline Range Organics (C4-C1	2) 410	50	ug/l	1	6C15019	03/15/06	03/16/06	EPA 8260B	CY01
Benzene	1.1	0.50	п	п	17	"		11	CY01
Toluene	ND	0.50	"	11	n	11	"	11	
Ethylbenzene	1.6	0.50		"	*	**	11	11	CY01
Xylenes (total)	3.9	0.50	D	II	"	11	н	II	CY01
Methyl tert-butyl ether	ND	0.50	řę.	11	"	11	"	11	
tert-Amyl methyl ether	ND	0.50							
tert-Butyl alcohol	130	5.0		11	"	"	,,	11	A-01
1,2-Dichloroethane	ND	0.50	"						CC02
Surrogate: 1,2-Dichloroethane-d4		75 %	60-		"	**	H	#	
${\it Surrogate: 4-Bromofluor obenzene}$		91 %	70-	120	"	"	"	,,	
Surrogate: Dibromofluoromethane		88 %	65-	130	"	"	u	11	
Surrogate: Toluene-d8		102 %	70-	120	"	"	"	"	

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue

San Jose CA, 95112

Project:1784 150th Ave., San Leandro

Project Number:060302-MTI
Project Manager:Michael Ninokata

MPC0103 Reported: 03/31/06 09:45

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-10 (MPC0103-07RE1) Water	Sampled: 03/02/06 1	1:20 Rece	eived: 03/0	2/06 17:3	30				HT-RC
Gasoline Range Organics (C4-C12)	230	50	ug/l	1	6C16033	03/16/06	03/17/06	EPA 8260B	
Benzene	ND	0.50	u	"	II .	(r	*1	11	
Ethylbenzene	0.83	0.50	u u	11	II .	u	"	11	
Xylenes (total)	ND	0.50		11	D	D	н	II	
tert-Butyl alcohol	ND	5.0	"	11	P		н		
Surrogate: 1,2-Dichloroethane-d4		114%	60-1	35	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96 %	70-1	20	n	n	#	"	
Surrogate: Dibromofluoromethane		96 %	65-I	30	"	"	"	"	
Surrogate: Toluene-d8		103 %	70-1	20	"	"	"	•	
MW-11 (MPC0103-08) Water Sam	npled: 03/02/06 13:30	Received	: 03/02/06	17:30					
Gasoline Range Organics (C4-C12)	13000	50	ug/l	1	6C15019	03/15/06	03/16/06	EPA 8260B	E
Benzene	24	0.50	11*	11	n	n	"	11*	Е
Toluene	250	0.50	D	11	"	"	91	IP .	E
							"	10	
Ethylbenzene	270	0.50	lt.	II.	H	,,	••	ır	E
Ethylbenzene Xylenes (total)	270 550	0.50 0.50	11	17)1 11	ji h		IF	E E
•									
Xylenes (total)	550	0.50	P	17	h		11 11		E
Xylenes (total) Methyl tert-butyl ether	550 820	0.50 0.50	IP U	II.	н	h H	11		E
Xylenes (total) Methyl tert-butyl ether tert-Amyl methyl ether	550 820 36	0.50 0.50 0.50	D U	17 17	н И	H H	11 11	11 11	E E
Xylenes (total) Methyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol	550 820 36 420	0.50 0.50 0.50 5.0	17 17 10	10 10 10	11 11 11		11 11 11	17 17 19	E E A-01
Xylenes (total) Methyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane	550 820 36 420	0.50 0.50 0.50 5.0 0.50	12 17 10 10	35	11 14 11 11	H H H H H H H H H H H H H H H H H H H	11 11 11 11	11 11 11	A-01 CC02
Xylenes (total) Methyl tert-butyl ether tert-Amyl methyl ether tert-Butyl alcohol 1,2-Dichloroethane Surrogate: 1,2-Dichloroethane-d4	550 820 36 420	0.50 0.50 0.50 5.0 0.50	" " " 60-1	35	11 11 11 11 11	11 11 11	11 11 11 11	11 10 14 11	A-01 CC02

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project:1784 150th Ave., San Leandro Project Number:060302-MT1

MPC0103 Reported: 03/31/06 09:45

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Project Manager: Michael Ninokata

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-11 (MPC0103-08RE1) Water	Sampled: 03/02/06	13:30 Rece	ived: 03/	02/06 17:3	30				HT-RD
Gasoline Range Organics (C4-C12)	68000	5000	ug/l	100	6C16033	03/16/06	03/17/06	EPA 8260B	
Benzene	4000	50	1)	10	"	11	"	11	
Ethylbenzene	2900	50	"	11	ii .	D	"	IJ	
Methyl tert-butyl ether	6100	50		н					
Surrogate: 1,2-Dichloroethane-d4		102 %	60-	135	H	"	"	"	
Surrogate: 4-Bromofluorobenzene		96 %	70-	120	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	65-	130	"	"	#	"	
Surrogate: Toluene-d8		108 %	70-	120	"	"	. "	"	
MW-11 (MPC0103-08RE2) Water	Sampled: 03/02/06	13:30 Rece	eived: 03/	/ <mark>02/06 17:</mark> 3	30				HT-RD
Gasoline Range Organics (C4-C12)	76000	25000	ug/l	500	6C25001	03/25/06	03/25/06	EPA 8260B	
Toluene	13000	250	U	11	II.	п	"	u	
Xylenes (total)	16000	250	þ	11	n		11	II .	
Surrogate: 1,2-Dichloroethane-d4		114 %	80-	135	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		92 %	60-	115	"	"	#	"	
Surrogate: Dibromofluoromethane		106 %	85-	130	#	"	"	"	
Surrogate: Toluene-d8		96 %	70-	130	"	"	u	rr .	

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112 Project: 1784 150th Ave., San Leandro Project Number: 060302-MT1 Project Manager: Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C15030 - EPA 5030B P/T	EPA 8260B									
Blank (6C15030-BLK1)				Prepared:	03/15/06	Analyzed	l: 03/16/06			
Methyl tert-butyl ether	ND	0.50	ug/l							
Gasoline Range Organics (C4-C12)	ND	50	IP							
Benzene	ND	0.50	17							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	fr							
Xylenes (total)	ND	0.50	IP.							
Surrogate: 1,2-Dichloroethane-d4	2.90	<u> </u>	"	2.50		116	60-135			
Laboratory Control Sample (6C15030		Prepared: 03/15/06 Analyzed: 03/16/06								
Methyl tert-butyl ether	8.09	0.50	ug/l	7.84		103	65-125			
Gasoline Range Organics (C4-C12)	485	50	17	440		110	53-126			
Benzene	5.80	0.50	**	5.04		115	65-115			
Toluene	39.0	0.50	**	38.0		103	85-120			
Ethylbenzene	6.63	0.50	,,	7.28		91	75-135			
Xylenes (total)	37.2	0.50		40.8		91	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.37		п	2.50		95	60-135		·	
Laboratory Control Sample Dup (6C1	15030-BSD1)			Prepared:	03/15/06	Analyzed	l: 03/16/06			
Methyl tert-butyl ether	8.30	0.50	ug/l	7.84		106	65-125	3	20	
Gasoline Range Organics (C4-C12)	458	50	•	440		104	53-126	6	20	
Benzene	5.84	0.50	**	5.04		116	65-115	0.7	20	QC0
Toluene	39.4	0.50	•1	38.0		104	85-120	1	20	
Ethylbenzene	6.99	0.50	.,	7.28		96	75-135	5	15	
Xylenes (total)	38.7	0.50	*1	40.8		95	85-125	4	20	
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96	60-135			
Batch 6C17017 - EPA 5030B P/T	EPA 8260B									
Blank (6C17017-BLK1)		Prepared & Analyzed: 03/17/06								
Methyl tert-butyl ether	ND	0.50	ug/l	-	•					
Gasoline Range Organics (C4-C12)	ND	50	1)							
Benzene	ND	0.50	п							
Toluene	ND	0.50	1)							
Ethylbenzene	ND	0.50	ıı .							
Xylenes (total)	ND	0.50	11							
Surrogate: 1,2-Dichloroethane-d4	2.91		"	2.50		116	60-135			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

San Jose CA, 95112

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 6C17017 - EPA 5030B P/T / J								<u>_</u>			
Laboratory Control Sample (6C17017-1			<u>.</u>	Prepared	& Analyze	ed: 03/17/	06			<u> </u>	
Methyl tert-butyl ether	9.14	0.50	ug/l	7.84		117	65-125				
Gasoline Range Organics (C4-C12)	507	50	11	440		115	53-126				
Benzene	5.99	0.50	11	5.04		119	65-115			QC0	
Toluene	40.1	0.50	"	38.0		106	85-120				
Ethylbenzene	6.93	0.50	**	7.28		95	75-135				
Xylenes (total)	39.0	0.50	"	40.8		96	85-125				
Surrogate: 1,2-Dichloroethane-d4	2.97		"	2.50		119	60-135				
Laboratory Control Sample Dup (6C17	017-BSD2) Prepared & Analyzed: 03/17/06										
Methyl tert-butyl ether	9.15	0.50	ug/l	7.84	·	117	65-125	0.1	20		
Gasoline Range Organics (C4-C12)	512	50	"	440		116	53-126	1	20		
Benzene	6.14	0.50	,,	5.04		122	65-115	2	20	QC0	
Toluene	40.8	0.50	"	38.0		107	85-120	2	20		
Ethylbenzene	6.99	0.50		7.28		96	75-135	0.9	15		
Xylenes (total)	39.7	0.50	n	40.8		97	85-125	2	20		
Surrogate: 1,2-Dichloroethane-d4	2.91		n	2.50		116	60-135				
Batch 6C27021 - EPA 5030B/5035A	MeOH / EPA	A 8260B									
Blank (6C27021-BLK1)				Prepared	& Analyze	ed: 03/27/	06				
Methyl tert-butyl ether	ND	0.50	ug/l								
Gasoline Range Organics (C4-C12)	ND	50	u								
Benzene	ND	0.50	п								
Toluene	ND	0.50	11								
Ethylbenzene	ND	0.50	п								
Xylenes (total)	ND	0.50	п								
Surrogate: 1,2-Dichloroethane-d4	4.74		"	5.00		95	60-135				

San Jose CA, 95112

Project:1784 150th Ave., San Leandro

Project Number:060302-MT1

Project Manager: Michael Ninokata

MPC0103 Reported: 03/31/06 09:45

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C27021 - EPA 5030B/5035A Me	OH / EPA	8260B								
Laboratory Control Sample (6C27021-BS1)				Prepared	& Analyze	d: 03/27/	06			
Methyl tert-butyl ether	7.22	0.50	ug/l	7.84		92	65-125			
Gasoline Range Organics (C4-C12)	466	50	**	440		106	75-140			
Benzenc	5.80	0.50		5.04		115	65-115			
Toluene	36.8	0.50		38.0		97	85-120			
Ethylbenzene	7.54	0.50	"	7.28		104	75-135			
Xylenes (total)	42.8	0.50		40.8		105	85-125			
Surrogate: 1,2-Dichloroethane-d4	4.95		"	5.00		99	60-135			
Laboratory Control Sample Dup (6C27021-E	SD1)	Prepared & Analyzed: 03/27/06								
Methyl tert-butyl ether	6.31	0.50	ug/l	7.84		80	65-125	13	20	
Gasoline Range Organics (C4-C12)	442	50	b	440		100	75-140	5	20	
Benzene	5.45	0.50	.,	5.04		108	65-115	6	20	
Toluene	37.0	0.50	"	38.0		97	85-120	0.5	20	
Ethylbenzene	7.46	0.50	"	7.28		102	75-135	1	15	
Xylenes (total)	42.8	0.50	H	40.8		105	85-125	0	20	
Surrogate: 1,2-Dichloroethane-d4	4.61		"	5.00		92	60-135			

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6C15019 - EPA 5030B P/T /	EPA 8260B									
Blank (6C15019-BLK1)				Prepared:	03/15/06	Analyzed	l: 03/16/06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Benzene	ND	0.50	**							
Toluenc	ND	0.50	**							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50	.,							
Methyl tert-butyl ether	ND	0.50	.,							
tert-Amyl methyl ether	ND	0.50	*1							
tert-Butyl alcohol	ND	5.0	"							
1,2-Dichloroethane	ND	0.50	11							CC02
Surrogate: 1,2-Dichloroethane-d4	1.89		"	2.50		76	60-135			
Surrogate: 4-Bromofluorobenzene	2.25		"	2.50		90	70-120			
Surrogate: Dibromofluoromethane	2.27		"	2.50		91	65-130			
Surrogate: Toluene-d8	2.52		"	2.50		101	70-120			
Laboratory Control Sample (6C15019	-BS1)			Prepared:	03/15/06	Analyzed	1: 03/16/06			
Gasoline Range Organics (C4-C12)	442	50	ug/l	440		100	60-140			
Benzene	5.77	0.50	H	5.04		114	65-115			
Toluene	37.2	0.50	н	38.0		98	85-120			
Ethylbenzene	7.58	0.50	• 1	7.28		104	75-135			
Xylenes (total)	45.0	0.50	*1	40.8		110	85-125			
Methyl tert-butyl ether	7.45	0.50	"	7.84		95	65-125			
tert-Amyl methyl ether	17.6	0.50	11	16.3		108	80-115			
tert-Butyl alcohol	136	5.0	11	169		80	75-150			
1,2-Dichloroethane	11.5	0.50	11	15.5		74	85-130			QC02, CC02
Surrogate: 1,2-Dichloroethane-d4	1.72		"	2.50		69	60-135			
Surrogate: 4-Bromofluorobenzene	2.35		"	2.50		94	70-120			
Surrogate: Dibromofluoromethane	2.30		n	2.50		92	65-130			
Surrogate: Toluene-d8	2.61		"	2.50		104	70-120			

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

l		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C15019 - EPA 5030B P/T	/EPA 8260B									
Laboratory Control Sample Dup (6C	15019-BSD1)			Prepared:	03/15/06	Analyzed	l: 03/16/06			
Gasoline Range Organics (C4-C12)	449	50	ug/l	440		102	60-140	2	25	
Benzene	5.99	0.50	D.	5.04		119	65-115	4	20	QC0
Toluene	38.1	0.50	(r	38.0		100	85-120	2	20	
Ethylbenzene	7.70	0.50	D	7.28		106	75-135	2	15	
Xylenes (total)	45.8	0.50	H	40.8		112	85-125	2	20	
Methyl tert-butyl ether	7.33	0.50	н	7.84		93	65-125	2	20	
tert-Amyl methyl ether	17.2	0.50	II.	16.3		106	80-115	2	15	
tert-Butyl alcohol	142	5.0	n	169		84	75-150	4	25	
1,2-Dichloroethane	11.6	0.50	,,	15.5		75	85-130	0.9	20	QC02, CC02
Surrogate: 1,2-Dichloroethane-d4	1.74		"	2.50		70	60-135			
Surrogate: 4-Bromofluorobenzene	2.34		"	2.50		94	70-120			
Surrogate: Dibromofluoromethane	2.27		n	2.50		91	65-130			
Surrogate: Toluene-d8	2.60		"	2.50		104	70-120			
Batch 6C16033 - EPA 5030B P/T	/ EPA 8260B									
Blank (6C16033-BLK1)				Prepared	& Analyze	ed: 03/16/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l	•	-					
Benzene	ND	0.50	**							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	п							
Xylenes (total)	ND	0.50	11							
Methyl tert-butyl ether	ND	0.50	U							
tert-Amyl methyl ether	ND	0.50	п							
tert-Butyl alcohol	ND	5.0	II.							
1,2-Dichloroethane	ND	0.50	IF							
Surrogate: 1,2-Dichloroethane-d4	4.68		"	5.00		94	60-135		•	
Surrogate: 4-Bromofluorobenzene	4.93		"	5.00		99	70-120			
Surrogate: Dibromofluoromethane	4.74		n	5.00		95	65-130			

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6C16033 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample (6C16033	3-BS1)			Prepared	& Analyzo	ed: 03/16/	06			
Gasoline Range Organics (C4-C12)	403	50	ug/l	440		92	60-140			
Benzene	5.35	0.50	н	5.04		106	65-115			
Toluene	33.5	0.50	н	38.0		88	85-120			
Ethylbenzene	7.36	0.50		7.28		101	75-135			
Xylenes (total)	41.3	0.50		40.8		101	85-125			
Methyl tert-butyl ether	7.69	0.50	н	7.84		98	65-125			
tert-Amyl methyl ether	15.7	0.50	"	16.3		96	80-115			
tert-Butyl alcohol	168	5.0	"	169		99	75-150			
1,2-Dichloroethane	15.9	0.50	17	15.5		103	85-130			
Surrogate: 1,2-Dichloroethane-d4	4.60		"	5.00		92	60-135			
Surrogate: 4-Bromofluorobenzene	4.98		"	5.00		100	70-120			
Surrogate: Dibromofluoromethane	4.74		н	5.00		95	65-130			
Surrogate: Toluene-d8	4.93		"	5.00		99	70-120			
Matrix Spike (6C16033-MS1)	Source: M	PB1058-04R	E2	Prepared:	03/16/06	Analyzed	l: 03/17/06			
Gasoline Range Organics (C4-C12)	50600	5000	ug/l	44000	4600	105	60-140			
Benzene	4210	50	11	504	3800	81	65-115			
Toluenc	3710	50	11	3800	63	96	85-120			
Ethylbenzene	1040	50	17	728	250	109	75-135			
Xylenes (total)	4560	50	11	4080	310	104	85-125			
Methyl tert-butyl ether	870	50	II	784	36	106	65-125			
tert-Amyl methyl ether	1640	50	IF	1630	ND	101	80-115			
tert-Butyl alcohol	17300	500	"	16900	ND	102	75-120			
1,2-Dichloroethane	1760	50	11	1550	ND	114	85-130			
Surrogate: 1,2-Dichloroethane-d4	4.89		н	5.00	······	98	60-135			
Surrogate: 4-Bromofluorobenzene	4.93		"	5.00		99	70-120			
Surrogate: Dibromofluoromethane	4.97		n	5.00		99	65-130			
Surrogate: Toluene-d8	<i>5.35</i>		**	5.00		107	70-120			

San Jose CA, 95112

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Reporting Spike Source %REC RPD Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes	 								
L	Reporting		Spike	Source		%REC		RPD	
	 Limit	Units	Level	Result	%REC	Limits	RPD		

Batch 6C16033 - EPA 5030B P/T / EPA 8260B

Matrix Spike Dup (6C16033-MSD1)	Source: MP	B1058-04R	E2	Prepared:	03/16/06	Analyze	d: 03/17/06			
Gasoline Range Organics (C4-C12)	48600	5000	ug/l	44000	4600	100	60-140	4	25	
Benzene	4180	50		504	3800	75	65-115	0.7	20	
Toluenc	3700	50		3800	63	96	85-120	0.3	20	
Ethylbenzene	1020	50	н	728	250	106	75-135	2	15	
Xylenes (total)	4550	50	.,	4080	310	104	85-125	0.2	20	
Methyl tert-butyl ether	864	50	.,	784	36	106	65-125	0.7	20	
tert-Amyl methyl ether	1590	50		1630	ND	98	80-115	3	15	
tert-Butyl alcohol	15700	500	*1	16900	ND	93	75-120	10	25	
1,2-Dichloroethane	1640	50	u	1550	ND	106	85-130	7	20	
Surrogate: 1,2-Dichloroethane-d4	4.67		"	5.00		93	60-135			
Surrogate: 4-Bromofluorobenzene	5.00		"	5.00		100	70-120			
Surrogate: Dibromofluoromethane	4.88		"	5.00		98	65-130			
Surrogate: Toluene-d8	5.11		"	5.00		102	70-120			

Batch 6C25001 - EPA 5030B/5035A MeOH / EPA 8260B

Blank (6C25001-BLK1)	Prepared & Analyzed: 03/25/06								
Benzene	ND	0.50	ug/l						
Toluene	ND	0.50	11						
Ethylbenzene	ND	0.50	U						
Xylenes (total)	ND	0.50	н						
Methyl tert-butyl ether	ND	0.50	rı						
tert-Amyl methyl ether	ND	0.50	U						
tert-Butyl alcohol	ND	10	Ħ						
1,2-Dichloroethane	ND	0.50	**						
Surrogate: 1,2-Dichloroethane-d4	2.85		zį	2.50	114	80-135			
Surrogate: 4-Bromofluorobenzene	2.23		"	2.50	89	60-115			
Surrogate: Dibromofluoromethane	2.75		"	2.50	110	85-130			
Surrogate: Toluene-d8	2.47		"	2.50	99	70-130			

Project:1784 150th Ave., San Leandro Project Number:060302-MT1 Project Manager:Michael Ninokata MPC0103 Reported: 03/31/06 09:45

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6C25001 - EPA	5030B/5035A	MeOH	EPA 8260B
---------------------	-------------	------	-----------

Laboratory Control Sample (6C25001-	·BS1)			Prepared & An	alyzed: 03/25/	06			
Benzene	9.04	0.50	ug/l	10.0	90	70-125			
Tolucne	10.9	0.50	*1	10.0	109	70-120			
Ethylbenzene	11.0	0.50	11	10.0	110	80-130			
Xylenes (total)	30.7	0.50	11	30.0	102	85-125			
Methyl tert-butyl ether	9.66	0.50	1)	10.0	97	50-140			
tert-Amyl methyl ether	10.0	0.50	11	10.0	100	65-135			
tert-Butyl alcohol	244	20		200	122	60-135			
1,2-Dichloroethane	11.6	0.50	n	10.0	116	75-125			
Surrogate: 1,2-Dichloroethane-d4	2.81	•	"	2.50	112	80-135			
Surrogate: 4-Bromofluorobenzene	2.47		"	2.50	99	60-115			
Surrogate: Dibromofluoromethane	2.74		"	2.50	110	<i>85-130</i>			
Surrogate: Toluene-d8	2.62		n	2.50	105	70-130			
Laboratory Control Sample Dup (6C2	5001-BSD1)			Prepared & An	alyzed: 03/25/	06			
Benzene	9.21	0.50	ug/i	10.0	92	70-125	2	15	
Toluene	11.0	0.50	U	10.0	110	70-120	0.9	15	
Ethylbenzene	11.5	0.50	II .	10.0	115	80-130	4	15	
Xylenes (total)	30.9	0.50	D	30.0	103	85-125	0.6	15	
Methyl tert-butyl ether	9.89	0.50	u ·	10.0	99	50-140	2	25	
tert-Amyl methyl ether	10.2	0.50	11	10.0	102	65-135	2	25	
tert-Butyl alcohol	212	20	tr.	200	106	60-135	14	35	
1,2-Dichloroethane	11.6	0.50	IF.	10.0	116	75-125	0	10	
Surrogate: 1,2-Dichloroethane-d4	2.74		"	2.50	110	80-135			
Surrogate: 4-Bromofluorobenzene	2.46		,,	2.50	98	60-115			
n . nu	2.75		"	2.50	110	85-130			
Surrogate: Dibromofluoromethane	2.75			2.50	210	05-150			

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MPC0103
1680 Rogers Avenue	Project Number:060302-MT1	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	03/31/06 09:45

Notes and Definitions

S01	The surrogate recovery was above control limits.
QC02	The percent recovery was below the control limits.
QC01	The percent recovery was above the control limits.
HT-RD	This sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.
HT-RC	This sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.
HC-11	The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
E	The concentration indicated for this analyte is an estimated value above the calibration range of the instrument.
CY01	This result may be biased high due to carry over from a preceding analysis. The sample was re-run outside of the recommended holding time.
CC02	The result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.
A-01	This analyte could not be properly quantitated at this dilution due to interference with the internal standard by a coeluting hydrocarbon. The result may be biased low.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

LAB: Test America STL Othe	(A)			SHELL Chain Of Custody Record																							
TA - Irvine, California		Shel	Projec	Mana	ger to k	o in	voio	od.									_										
☐ TA - Morgan Hill, California		i)C	VOIC	eu.										INGIDENT NUMBER (ES ONLY)									
☐ TA - Nashville, Tennesee		Ų į	NYTRONMEN	TAUSERVI	DES :	De	nis	Bro	own	1							9	8		9	6	0 6	8 8	,]		alala	· <u>_</u>
□ sn.		白第	CHNICAL SE	RVICES	8															*** ********			_		DATE:	3/2/0	<u> </u>
Other (tocation)		1	unt houst			T FOR (ENV. F	REMED	LATIO.	N - NO	епм	- SENI	D PAPE	R INV	OICE		5/	(F 0)	CR	MTNUM	BER	(T9/C	PMT		PAGE:	10	of
SAMPLING COMPANY:		LOG CODE	<u>s</u>			OT FOR ENV. REMEDIATION - NO ETIM - SEND PAPER INVOICE SITE ADDRESS: Street and City State						Ł	1 000	D. I.O.		Щ,	⊥_,										
Blaine Tech Services		BTSS				178	34 1	50t	h A	ve	Sa	n Le	an	dro			CA		T0600101230								
1680 Rogers Avenue, San Jose, CA 95	5112			_		EOF DE	LIVERA	BLE TO	(Кеврос	nsible Pe	rly of D	esignec):			PHON	E NO.:	1	E-MAIL: CONSULTANT PR				PROJECT NO.:					
PROJECT CONTACT (Hardcopy or PDF Report to):			-	· · ·		Aani	i Kre	ml. C	amh	ria. F	mer	wille	Offi		1/640	N 490	222			05						1	2-MT1
Michael Ninokata						SAMP	Anni Kremi, Cambria, Emeryville Office (510) 420-3335 Shell.em.edf@cambria-env.com																				
TURNAROUND TIME (STANDARD IS 10 CALENDAR DAYS): FAX: #MAIL: mninokata@biainelech.com RESULTS NEEDED						L	NIKTOU HPC0103																				
STD 5 DAY 3 DAY 2 DAY	eded No		REQUESTED ANALYSIS																								
☐ LA - RWQCB REPORT FORMAT ☐ UST AGE		\vdash		1	l	1	Γ	-			Г	_	Γ-	Τ	Τ-				Τ-	 -			_				
GC/MS MTBE CONFIRMATION: HIGHEST		IEST per	BUBING								1				1		ĺ							بهِ			હા.:
SPECIAL INSTRUCTIONS OR NOTES:				AL	. ——					1 .										1 [-	-		See Note		FIELD NO	TES:
or Early Marked House of Moles:	CHEC	K BUX IF	EDD IS NOT	NEEDED	Ц] _	Î					ŀ]	ĺ	1					1	1	ľ	8	i	Container/Pres	
1							(8015M)	li	<u>~</u>															l e	'	or PID Read	Servative dinos
						8			(8260B)					'		ł					-			Ē		or Laboratory	y Notes
						음	aple	_	8	_			_		面 :		€	8	ļ		- 1	- 1		Ě		•	
						Purgeable (8260B)	Extractable	30B)	ates	8	窗	6	30B)	8	260	a a	2601	801		1				(8260B) Confirmation,			
30-A931	RECE		FICATION E	REQUEST	<u>:D</u> 🗹	∄	ă	82	ge ii	(8)	3260	826	(82	826	B) A	8	8)	<u></u>	}			-		780	-		
LAB LAB LAB DNLS DNLS DNLS	- $+$	DATE		MATRIX	NO. OF CONT.	표	тън.	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (9015M)						MTBE (8	TEMPE	RATURE ON RE	_
uw.2	101	3/2/06	1145	_W	3	X		¥		X	X	#	×		X						T			 -	_	7 -	
Mw.5	or		1055		3	¥		X		K					•						╁	+	+		 		
MW-60	W3)	1440		3	×		X		×										 	+	+	+	╁	+-		
Mw.7	by	\neg	1230	T	3	¥		¥		*							_			 	+	+	+	-	┼		
MW.8	45	7	1245		3	¥		χ		¥				\exists			-	_		 	╁	+-	+-	┼-	+-		<u></u> -[
11554545454	04	\neg / \neg	1015		3	V		8		Y		$\vdash \dashv$		_						- -	+	+	╁	├-	 		<u> </u>
MW-10	64	1	1120	1	っっ	¥	\neg	أرّ			V		7	\dashv	1/		-	-		├─├-	╀	+	╁		 		
MW-11	b8	V	1330	¥	3	-•┼		-		¥-	-	\vdash	_X.		Y	\rightarrow	\dashv			 	+-	+-	┼-	 	—		
			1770	<u> </u>	 -	¥		¥		Y	V		Y		K			_			\perp			1	L		
										1		ľ		ŀ	ı			İ		1 1			1				
<u> </u>					1									7	$\neg \uparrow$		T				+	+-	十	\vdash	 		
Relinquished by: (Signature)				Received by:	(Signature)				1										Date:	_بــا	Щ.			Time	<u></u>		
The state of the s				5			- '	SH	100	<u>م</u>	α	1/2		11/				3	/2/0	6			<i>"]</i> /	622			
geliniquished by (Signature)	Received by: (Signalu						O I a d					Oate: Time):												
Shad by (Shinature)	CUSTO	Received by: (Signature)					SM Teg) Ansira					<u> </u>				16	CUM	:									
1 Doll				vocalved by:	(Signalure)	n	·												Daje:	-J -	6			Тіпе	7 3		
White with final report, Green to File, Yellow	and Pink to (Clant								-					-			1						Ь		(00 Revision	

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	Manie EB MPC 0103			DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	178		· .	•	_	tory Purposes? WATER YES (NO)
CIRCLE THE APPROPE	RIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	pН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
Custody Seal(s)	Present / Absent						•			
2. Chain-of-Custody	resent Absent*									
Traffic Reports or Packing List:	Present / Assept									
4. Airbili:	Airbill / Sticker Present Absent					1				
5. Airbill #:										
6, Sample Labels:	Present / Absent									
7. Sample IDs:	Listed / Not Listed	<u>.</u>	<u> </u>	•	·	Nº7		·		
	on Chain-of-Custody		<u> </u>		<u> </u>	//	· · ·			
8. Sample Condition:	Infact) Broken*/		<u> </u>							
	Leaking*				2/	<u> </u>		<u> </u>		
9. Does information on cl				_	3				<u> </u>	
traffic reports and san			\-\ <u> </u>						·	
agree?	. (Yes //No*	<u> </u>	,							
10. Sample received within	$\overline{}$		<u>:</u>	<u></u>		ļ	·	ļ.,		
hold time?	(Yes) No*		<u> </u>					<u> </u>	·	
11. Adequate sample volum			ļ		·	· · · · ·	 		<u> </u>	
received?	Yes No*			/		 				
12. Proper preservatives us		ļ		<u> </u>		<u> </u>		<u> </u>	 -	
13. Trip Blank / Temp Blank			/	·		· · · · ·		 	· ·	
(circle which, if yes)	Yes (1 No) .		 		 	 		 		
14. Read Temp: Corrected Temp:	4.20		 	· · · · · · · · · · · · · · · · · · ·		-				,
Is corrected temp 4 +/-2			<u> </u>	· · · · ·		 				
(Acceptance range for samples rec	· -	}			 	 		 		<u> </u>
**Exception (if any): META		 -	· ·			 		 		
or Problem COC	LG / DET ON NOE	 -	 			-			''	- 17
OI I TODICITI OOO					NIEWS WORKS STELLED	NAMES OF STREET	30 - 31 - 31 - 31 - 31 - 31 - 31 - 31 -	and the second sections		

SRL Revision 7 Replaces Rev 5 (07/13/04) `Elfective 07/19/05

Page <u>| | | | | |</u> of _____

WELL GAUGING DATA

Project	# <i>040</i> 2	302-1111	Date _	3/2/06	_Client _	She//
Site	784	150th Ave.	San	Leander		

	111-11	<u> </u>		Thickness	Volume of				<u> </u>
	Well Size	Sheen /	Depth to Immiscible	of Immiscible	Immiscibles			Survey	
Well ID	(in.)	Odor	Liquid (ft.)		Removed (ml)	Depth to water	Depth to well	1	
			Diquid (IL)	Diguid (IL.)	(1111)	(ft.)	bottom (ft.)	or 🔘	·
NW-1	4	SPH	17.49	0.05		17.54			
14/N· 2	4					16.30	43.90		
UW-3	4	· · · · · · · · · · · · · · · · · · ·				22.56	41.51		·
MW-4	2					10.62	24.90		
MW-5	2					11.87	24.85		
NW-6	2					1140	19.40		
MN-7	2					15.00	26.90		
MN-8	2			-		14.28	24.15		
MW. 9	2					11.87	34.75		
NW-10	4					21.13	41.62		
NW-11	4					16.13	24.63	Ý	
	Pop	ped Ca	ps 15	MIN P	ior to	gaugin	3		
	* 1					V			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

BTS #: 060302-MT1	Site: 98996068						
Sampler: MT	Date: 3/2/00						
Well I.D.: Mw-l	Well Diameter: 2 3 4 6 8						
Total Well Depth (TD):	Depth to Water (DTW): 17.54						
Depth to Free Product: 17.49	Thickness of Free Product (feet): 0.05						
Referenced to: PVC Grade	D.O. Meter (if req'd): YSL HACH						
DTW with 80% Recharge [(Height of Water	er Column x 0.20) + DTW]:						
Electric Submersible Other	Waterra Sampling Method: Peristaltic Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47						
1 Case Volume Specified Volumes Calculated	Volume 3" 0.37 Other radius ² * 0.163						
Time Temp (°F) pH (mS or μS)	Turbidity (NTUs) Gals. Removed Observations						
- No Dunn on site to							
Did well dewater? Yes No	Gallons actually evacuated:						
Sampling Date: 3/2/de Sampling Ti							
Sample I.D.: NWF	Laboratory: STL Other (TA)						
Analyzed for: TPA-G RTEX MTBE TPH-D	7						
EB I.D. (if applicable):	Duplicate I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE TPH-D							
D.O. (if req'd): Pre-purge:	mg/L Post-purge:						
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV						

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: <i>Olo</i>	0302-1	TI		Site: 98996068							
Sampler: 🎤	17			الم Date:							
Well I.D.:	NW-2			Well D	iameter:	2 3	Ø	6 8			
Total Well I	Depth (TD): 43.	90	Depth to Water (DTW): 1630							
Depth to Fre	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. M	eter (if	req'd):	(YSI HACH			
DTW with 8	30% Recha	rge [(H	eight of Water	Column	x 0.20)	+ DTW]	21.	82			
Purge Method:	Bailer Disposable Ba Positive Air F Electric Subm Gals.) X Speci	isplaceme	Other	_ Gals.	Well Diamole I" 2" 3"	Sampling Management of the Control o	Other:	Disposable Bailer Disposable Bailer Extraction Port Dedicated Tubir Diameter Multiplier 0.65 1.47 radius² * 0.163	ng		
T:	Town (°E)	7.7	Cond.		idity	G					
Time 1/2/	Temp (°F)	рН 6.3	(mS or μS)		Us)	Gals. Rem	iovea	Observations	3		
1135	183.8	7.0	129/2	 	3	36		U-Gy II			
1140	19.0	69	1459		9	54		11			
1	1.0										
Did well de	water?	Yes	Mg 1	Gallons	actuall	y evacuate	ed: 54	4			
Sampling D	ate: 3/2/2	Xe	Sampling Tim	e: 1/4	5	Depth to	Water	r: 20.62			
Sample I.D.	· NW-	2		Labora	tory: 、	STL Ot		k)			
Analyzed for	or: TPH-G	RTEX	MTBE TPH-D	Other:		-	,				
EB I.D. (if	applicable)		@ Time	Duplica	ate I.D.	(if applica	ble):				
Analyzed for	or: TPH-G	втех	МТВЕ ТРН-О	Other:							
D.O. (if req	'd): Pi	e-purge:		mg/L	P	ost-purge:	>	1.2	mg/L		
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge:			mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: <i>06</i>	0302-2	MI		Site: 9	8996	068					
Sampler: A				اع :Date	• • • • • • • • • • • • • • • • • • • •	0					
Well I.D.:	UW-5			Well D	iameter	: (2) 3	4	6 8			
Total Well	Depth (TD): 24.	85	Depth to Water (DTW): 11.87							
Depth to Fro	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. M	eter (if	req'd):	(YSI HACH			
DTW with 8	80% Recha	arge [(H	leight of Water			 	14.4				
Purge Method:	Bailer Disposable Bailer Positive Air I	ailer Displaceme		Waterra Peristaltic		Sampling M		Bailer Disposable Bailer Extraction Port Dedicated Tubing			
<u> </u>		<u> </u>			Well Diamete	Multiplier 0.04	Well I	Diameter Multiplier			
2.1_((Gals.) X Speci	3 fied Volum	es <u>Calculated Vo</u>	_ Gals.	2" 3"	0.04 0.16 0.37	6" Other	0.65 1.47 radius ² * 0.163			
		<u> </u>	Cond.	Turb	idity	 					
Time	Temp (°F)	pН	(mS or µS)	(NT	_	Gals. Rem	oved	Observations			
10:48	65.3	7.60	1335	7/0	00	2.1					
1049	ldg.0	7.4	1328	7	1000	4.2	<u>, </u>				
1050	106.7	7.3	1325	7	1000	10.2	,				
					·						
					<u> </u>						
Did well de	water?	Yes	100	Gallons	actuall	y evacuate	ed: 💪	.3			
Sampling D	ate: 3 2	de	Sampling Time	ie: 175°	5	Depth to	Water	r: 14.02			
Sample I.D.	· NW-	.5		Laborat	tory:	STL Oth	ier (7	4)			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:			-				
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if applica	ble):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req	'd): Pi	re-purge:		mg/L	F	ost-purge:	>	0.7 ing/L			
ORP (if re	eaid). D	ra purga		mV	E	Oost purger		mV			

BTS #: <i>Olo</i>	0302-N	TT		Site: 9	899/0	068					
Sampler: 🎤				Date: ¿	• • • • • • • • • • • • • • • • • • •						
Well I.D.:	1W-6			Well D	iameter:	2 3 4	6 8				
Total Well I	Depth (TD): 19.4	160	Depth to Water (DTW): 1.40							
Depth to Fre	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSD HACH							
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]: /3	3.02				
Purge Method:	Bailer Disposable Bailer Positive Air L Electric Subm	isplaceme	nt Extrac Other	_	Well Diamete	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing				
1.3 (Case Volume	Gals.) X Speci	3 fied Volum	= 3.9 Calculated Vo	_ Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47				
Time	Temp (°F)	pН	Cond. (mS or μS)		idity 'Us)	Gals. Removed	Observations				
1100	Nobed	1/ 11/	is time I	Left	9 ML	strige to a	ntact me.				
1429	69.6	6.6	12.2	>10	90	1.3					
1430	70.0	6.9	1976	7	92	2.6					
1431	70.2	6.9	2003	4	30	3.9					
		,									
Did well de	water?	Yes	NO .	Gallons	actuall	y evacuated: 3	.9				
Sampling D	ate: 3 2_0	Xe_	Sampling Tim	e: <i>[44]</i>	2	Depth to Water	r: 13.92				
Sample I.D.	· MW-	6		Labora	tory:	STL Other	4)				
Analyzed for	or: TPH-G	RTEX	MTBE TPH-D	Other:			<i>"</i>				
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req	d): Pi	e-purge:		mg/L	P	ost-purge:	1.Z mg/L				
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:	mV				

<u></u>			2 11 XXXXX 11X Q1		110 07	TA BILLET	
BTS #: <i>06</i>	0302-N	MI		Site: 9	8996	n68	
Sampler: 🏃	_			ے :Date	, J.	, 	
Well I.D.:	NW-7			Well D	iameter:	2 3 4	6 8
Total Well I	Depth (TD): 26.9	10	Depth t	o Water	·(DTW): 15.6	76
Depth to Fre	· '-			Thickne	ess of Fi	ree Product (fee	et):
Referenced	to:	PVC	Grade	D.O. M	eter (if	req'd):	YSI HACH
DTW with 8	80% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]: /7.	38
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	ailer Displacemen		Waterra Peristaltic ction Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
1.9(Case Volume	Gals.) X Specif	3 fied Volum	= 5.7 Calculated Vo	_ Gals,	Well Diamete, 1" 2" 3"	r Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS o µS)	Turb (NT	•	Gals. Removed	Observations
/221	63.4	7.0	6.43	1	OS)	/.9	Observations
1223	689	69	6.82	54		3.8	
1225	63.7	67	6.71	4	-	5.7	
	1						

Did well de	water?	Yes ((No)	Gallons	actuall	y evacuated: 5 .	.7
Sampling D	ate: 3/2/	Xe	Sampling Time	e: /23	0	Depth to Water	r: 19.76
Sample I.D.	NW-	7		Laborat	tory:	STL Other	1)
Analyzed for	эг: Фен-С	BTEXX	MTBE TPH-D	Other:			·
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:			
D.O. (if req	'd): P1	re-purge:		mg/L	P	ost-purge:	0.9 ¹¹¹ / _L
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:	mV

										
BTS #: <i>06</i>	0302-N	MI		Site: 9	8994	n68				
Sampler: 🚜				Date: ¿	• • •	0				
Well I.D.:	NW-8			Well D	iameter:	· <i>(</i> 2) 3 4	6 8			
Total Well	Depth (TD): 24,1	5			r (DTW): 14.				
Depth to Fre	ee Product	:		Thickness of Free Product (feet):						
Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):	YSI HACH			
DTW with	80% Recha	arge [(H	leight of Water				·			
Purge Method:	Bailer Disposable Ba Positive Air D Blectric Subm	Displaceme		_		Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing			
1.6 (0 1 Case Volume	Gals.) XSpeci	3 fied Volum	nes Calculated Vo	_ Gals.	Well Diamete 1" 2" 3"	or Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163			
Time	Temp (°F)	рН	Cond. (mS oruS)	L .	oidity 'Us)	Gals. Removed	Observations			
1240	663	_	6.95	1	26	1.6	ster			
1241	107.5	6.9	1351		12	3.2	"			
1242	67.9	6.8	1356		7	4.8	41			
			ĺ							
Did well de	water?	Yes	P)	Gallons	actuall	y evacuated: 4	.8			
Sampling D	ate: 3 2	Xe_	Sampling Time	e: 124	5	Depth to Wate	r: 19.20			
Sample I.D.	NW-	8	 :	Labora	tory:	STL Other_	TA)			
Analyzed for	or: TPH-G	(BTEX)		Other:						
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req	'd): Pr	e-purge:		mg/L	P	ost-purge:	/-/			
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:	n			

BTS #: <i>06</i>	0302-N	TI		Site: 98990	0068						
Sampler: 🎤	17			Date: 3/2/0	6						
Well I.D.:	NW-9			Well Diameter	r: ② 3 4	6 8					
Total Well I	Depth (TD): 34. 7	15	Depth to Wate	er (DTW): //.37						
Depth to Fre				Thickness of Free Product (feet):							
Referenced		PVC	Grade	D.O. Meter (if req'd): YSD HACH							
DTW with 8	30% Recha	ırge [(H	leight of Water	Column x 0.20) + DTW]: 16.45							
3.7 ((Bailer Disposable Ba Positive Air D Electric Subm Gals.) X	Displacement of the control of the c	Other	Well Diamed 1" 2"	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47 radius² * 0.163					
1 Case Volume	Specif	fied Volum	nes Calculated Vo	olume	0.37 Other	radius v.to3					
Time	Temp (°F)	pН	(mS or us)	Turbidity (NTUs)	Gals. Removed	Observations					
1005	05.1	7.3	1012	70	3.7						
inble	05.9	7.4	1010	40	7.4						
1007	06.5	7.4	1009	36	4-1						
70											
Did well de	water?	Yes (N ₀	Gallons actual	ly evacuated: /	1.1					
Sampling D	ate: 3/2/0	No.	Sampling Time	ie: 1015	Depth to Wate	r: 16.43					
Sample I.D.	• •			Laboratory:	STL Other_	TA)					
Analyzed for			MTBE TPH-D	Other:							
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):						
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:							
D.O. (if req	'd): Pr	e-purge:		mg/ _L	Post-purge:	09 mg/L					
ORP (if re	-a ₁ q). Pr	re-nurge:		mV	Post-nurge:	mV					

	SHELL	C ANDIT MOL	MITORIN	GDA	1 A SHEET	
BTS #: <i>060302</i>	Site: 98996068					
Sampler: MT	Date: 3/2/00					
Well I.D.: Mw	Well Diameter: 2 3 40 6 8					
Total Well Depth	Depth to Water (DTW): 21.13					
Depth to Free Pro	Thickness of Free Product (feet):					
Referenced to:	D.O. Meter (if req'd): YSL HACH					
DTW with 80%	Recharge [(H	eight of Water	Column x	(0.20)	+ DTW]: 25	310
Purge Method: Bailer Dispos Positiv			Waterra Peristaltic ction Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
12.7		200		ll Diameter	0.04 4"	biameter Multiplier.
13.3 (Gals.) X 1 Case Volume	Specified Volum	= 39.9 nes Calculated Vo	_ Gals. olume	3°	0.16 6" 0.37 Other	1.47 radius ² * 0.163
Time Temp	p (°F) pH	Cond.	Turbid	- 1	Cala Barra and	
	4	(mS or μS)	(NTU)		Gals. Removed	Observations
1114 6	24	1147	121		13.3	
4/1	8.4 6.9 8.3 6.8				<u>26.6</u> 39.9	
III T	7.7	1138	92	=	77.1	
			 			
Did well dewater	r? Yes ((No)	Gallons ε	lactually	y evacuated: 3	99
Sampling Date:	3/2/010	Sampling Time			Depth to Water	-
Sample I.D.: //	1W-ID		Laborato		STL Other	TA
		MTBE TPH-D	Other:			
EB I.D. (if applic	Duplicate I.D. (if applicable):					
Analyzed for:	грн-с втех	MTBE TPH-D	Other:			
D.O. (if req'd):	Pre-purge:		^{mg} /∟	Po	ost-purge:	/./ ""g/1
O.R.P. (if req'd):	mV	Post-purge:				

BTS #: 060302-MT1				Site: 98996068					
Sampler: MT				Date: 3/2/00					
Well I.D.: Mw-[]				Well Diameter: 2 3 49 6 8					
Total Well Depth (TD): 24.63				Depth to Water (DTW): 16.13					
Depth to Free Product:				Thickness of Free Product (feet):					
Referenced to: PVC Grade				D.O. Meter (if req'd): YSL HACH					
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 17.93									
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subm)isplacemer	nt Extrac Other	_	Well Djamcie	-	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
5.5 (I Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{10.5}{\text{Calculated Vo}}$		1 ⁴ 2" 3"	0.04 4* 0.16 6* 0.37 Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or uS)	Turb (NT	•	Gals. Removed	Observations		
1324	68.6	6.9	977	//	<u>/</u>	5.5	Odar		
1325	69.5	08	990	12	<i>b</i>	11	11 Frothy		
1326	69.8	6.8	997	7/	rov	16.5	11 , 11		
					<u>.</u>		·		
				,					
Did well de	water?	Yes	®	Gallons	actuall	y evacuated: /	2.5		
Sampling Date: 3/2/06 Sampling Time: 1330 Depth to Water: 21.20									
Sample I.D.: NW- Laboratory: STL Other TA									
Analyzed for: TPH-G RTEX MTBE TPH-D Other:									
EB I.D. (if applicable): @ Time					Duplicate I.D. (if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:					
D.O. (if rec	ı'd): P	re-purge:		mg/ _L	F	ost-purge:	0.9 ing/1		
O.R.P. (if req'd): Pre-purge: m\						Post-purge: mV			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558