January 9, 1998

this CAP was not comproved by ACDETT

Mr. Scott O. Seery, CHMM
Alameda County Department of Environmental Health
Hazardous Materials Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Re: Corrective Action Plan

Shell Service Station 1784 150th Avenue San Leandro, California WIC #204-6852-1404 Cambria Project #240-612-1

Dear Mr. Seery:

The c

As requested in your December 2, 1997 letter to Mr. Alex Perez of Shell Oil Products Company (Shell), Cambria Environmental Technology, Inc. (Cambria) is submitting this Corrective Action Plan (CAP) to address hydrocarbons in ground water at the site referenced above. Discussed below are a site background, the historical hydrocarbon distribution, a risk-based corrective action (RBCA) summary, a remedial alternative evaluation, and our recommended corrective action. The site summary and historical data are based on previous reports submitted on behalf of Shell by Weiss Associates (WA) of Emeryville, California.

SITE BACKGROUND

Site Characteristics

Site Location: The site is an active service station located at the southern corner of the intersection of 150th and Freedom Avenues in San Leandro, California (Figure 1). The site is about 50 ft above mean sea level and the local topography slopes toward the west. San Leandro Creek is located about 1.5 miles to the north and the San Francisco Bay is located 6 miles to the west. The site is located in a

mixed residential/commercial area.

Site Lithology: Sediments beneath the site are Quaternary alluvial deposits derived from sedimentary and igneous rocks of the Diablo Range. The site is adjacent to active traces of the Hayward Fault. The site is underlain by low estimated permeability sediments (clays and silts) with interspersed moderate estimated permeability sediments (sands).

Oakland,

CA 94608

SUITE B

CAMBRIA

ENVIRONMENTAL

TECHNOLOGY, INC.

1144 65TH STREET.

PH: (510) 420-0700

Fax: (510) 420-9170

Mr. Scott O. Seery January 9, 1998

CAMBRIA

Ground Water Flow: Ground water is typically encountered 20 to 30 ft below ground surface (bgs). The ground water flow direction has a historical range from northwest to south. During 1995 and early 1996, the ground water flow was predominantly southward. In late 1996 and 1997 ground water monitoring results show the ground water flow to be north to northwest. These ground water flow direction variations are not easily attributed to seasonal changes and may be related to the proximity to the Hayward Fault. Historically, the ground water gradient beneath the site has ranged from 0.0008 ft/ft to 0.017 ft/ft.

Site Chronology

The following summarizes the environmental investigation activities that have occurred at the site. Tables summarizing the previous analytical data are included in Attachment A (RBCA Tier 1 Summary Report, Appendix A).

Waste Oil Underground Storage Tank (UST) Replacement: In 1986, a 550-gallon waste oil UST was removed. Soil samples collected from the tank pit contained petroleum oil and grease (POG) at 196 parts per million (ppm) at 8 ft bgs and 167 ppm at 11 ft bgs. Ground water was not encountered during the tank removal and sampling activities. A new 550-gallon fiberglass waste oil UST was installed at the same location.

Well Installation: In March 1990, monitoring well MW-1 was installed adjacent to the waste oil UST. Total petroleum hydrocarbons as gasoline (TPH-g) and benzene were detected in the initial ground water sample at 510 parts per billion (ppb) and 1.5 ppb, respectively. Up to 21 ppb 1,2-dichloroethane (DCA) has been detected in ground water samples from well MW-1 since that time.

Well Installation: In February 1992, wells MW-2 and MW-3 were installed to determine ground water gradient and define extent of hydrocarbons in soil and ground water. Well MW-2 was located adjacent to the gasoline underground storage tanks and well MW-3 was located in the eastern corner of the property. TPH-g, benzene and 1,2-DCA were detected in the initial ground water samples from well MW-2 at 17,000 ppb, 6,200 ppb, and 200 ppb, respectively, and from well MW-3 at 4,500 ppb, 97 ppb, and 9.1 ppb, respectively.

Well Survey: In 1992, a well survey identified 21 wells within a one half-mile radius of the site. The survey identified twelve monitoring wells, eight irrigation wells and one domestic well. No municipal wells were identified.

Mr. Scott O. Seery January 9, 1998

CAMBRIA

Subsurface Investigation: In June 1994, soil and ground water samples were collected from ten soil borings (BH-1 to BH-10). No hydrocarbons were detected in the soil samples analyzed except for benzene at 0.013 ppm in the 16 ft sample from boring BH-3. Ground water from borings BH-2 and BH-3 contained elevated TPH-g concentrations. Petroleum hydrocarbon concentrations in ground water samples collected from the other borings were low or below detection limits. The predominant ground water flow direction was assumed to be northwestward based on topography and distribution of dissolved hydrocarbons.

Well Installation: In March 1995, well MW-4 was installed northwest of the site in Portofino Drive. This well location was selected based on the predominant ground water flow direction and the distribution of dissolved hydrocarbons determined during the previous investigations. No petroleum hydrocarbons were detected in the initial ground water samples.

Ground Water Monitoring: Ground water has been monitored since March 1990. The monitoring results indicate that hydrocarbon concentrations are generally stable to decreasing. Analytic results are presented in Table 1.

Soil Vapor Survey and Soil Investigation: In July 1996, a subsurface investigation was conducted to obtain site-specific data for a risk-based corrective action evaluation of the site. Soil vapor and soil samples were collected from the vadose zone at ten onsite and offsite locations. Soil vapor samples were analyzed for petroleum hydrocarbons, total volatile hydrocarbons, oxygen, carbon dioxide and methane. Soil samples were analyzed for petroleum hydrocarbons, and physical and chemical parameters including moisture content, particle size distribution, dry and natural bulk densities and fraction organic carbon. The results of this investigation indicated that the vadose zone generally contains low petroleum hydrocarbon concentrations, but detected no total volatile hydrocarbons. Oxygen was locally depleted with elevated carbon dioxide and methane concentrations. The depleted oxygen, elevated carbon dioxide and methane concentrations in the vadose zone and the generally stable to decreasing hydrocarbons concentration trend in ground water indicate that biodegradation is occurring at the site.

RBCA Evaluation: In 1997, WA prepared a RBCA evaluation for the site (Attachment A). The RBCA is discussed in more detail below and the summary report produced by WA is included in Attachment A. WA recommended preparation of a CAP to address the potential risk associated with a hypothetical, but unlikely, ground water ingestion exposure pathway.

Dispenser and Turbine Sump Upgrade: In 1997, the dispensers and turbine sumps were upgraded at this site. Soil samples were collected during upgrade activities. A report summarizing these soil sample analytical results will be presented during the first quarter 1998.

JAN-09-1998 17:11

Mr. Scott O. Seery January 9, 1998

CAMBRIA

RBCA SUMMARY

A Tier 1 and Tier 2 RBCA evaluation for the site was performed by WA (RBCA Summary Reports are included as Attachment A). The constituents of concern (COC) used in the RBCA analysis include benzene, toluene, ethylbenzene, xylenes (BTEX), 1,2-DCA, methyl-tert-butyl-ether (MTBE), and tetrachloroethene (PCE).

Tier 1 Site Conditions: Two exposure pathways to an adjacent residential property were evaluated. First, potential risk due to inhalation of vapors by an offsite resident was determined by comparing COC concentrations in soil vapors, soil and ground water to risk based screening levels (RBSLs). Second, potential risk due to ingestion of ground water from a hypothetical (not actual) well located 25 ft from the site was determined by comparing the highest COC concentrations in monitoring wells MW-2 and MW-3 to RBSLs.

Tier 1 Results: Based on the site specific soil vapor results and the COC concentrations in soil and in ground water at well MW-1 and well MW-2, the air exposure pathway for offsite residential inhalation did not exceed Tier 1 RBSLs. The ground water exposure pathway for ingestion from a hypothetical well exceeded Tier 1 RBSLs. The Tier 1 evaluation concluded the following: (1) vapor concentrations, collectively attributed from soil vapor, soil and ground water, pose no short-term or long-term threat to human health due to inhalation to an offsite resident, and (2) proceed to Tier 2 to further evaluate the ground water ingestion pathway.

Tier 2 Site Conditions: A Tier 2 evaluation was conducted to continue the evaluation of the hypothetical ground water ingestion pathway. The evaluation involved comparison of dissolved ground water concentrations and soil leachate concentrations to site specific target levels (SSTLs). The point of exposure for benzene, toluene, MTBE and 1,2-DCA was 25 ft, the distance between the assumed source and hypothetical receptor (distance between well MW-2 and nearest residential property). The offsite point of exposure for PCE was 10 ft, the distance between the assumed source and hypothetical receptor (distance between well MW-1 and nearest residential property).

Tier 2 Results: The representative ground water COC concentrations did exceed SSTLs. Based on the Tier 2 revaluation, WA recommended preparing a corrective action plan to address hydrocarbons in ground water that may impact the hypothetical drinking water well. At this time, no ground water in the vicinity of this site is known to be used. Therefore, this pathway is not complete and the potential risk calculations for hypothetical ground water ingestion are not applicable to actual or likely future conditions.

CORRECTIVE ACTION PLAN

The current site conditions and complete exposure pathways were used in the evaluation of remediation alternatives:

(1) The site is an active service station. Aggressive remediation is not warranted based on this current commercial use of the site.

CAMBRIA

Mr. Scott O. Seery January 9, 1998

î=+

CAMBRIA

- (2) Although the residential inhalation of exposure pathway is complete, the Tier 1 RBCA evaluation indicates that vapor concentrations do not pose a significant risk to adjacent residential properties.
- (3) There are no sensitive ground water receptors identified within 600 ft of the site.
- (4) The ingestion of ground water from a potential well is not believed to be a plausible exposure scenario and was not used in the evaluation of remediation alternatives.

REMEDIATION ALTERNATIVE EVALUATION

Cambria evaluated four alternatives to remediation petroleum hydrocarbons at the site. A description of each alternative is presented below. In accordance with UST regulations presented in Title 23, we propose to implement the most cost-effective alternative that will meet the water quality objectives set for this site.

Remediation Alternative	Description/Recommendation	Relative Cost
Ground Water Extraction (GWE)	GWE uses pumps to extract and treat hydrocarbon- bearing ground water. The low volume of impacted ground water makes GWE impractical and overly expensive.	Very High (\$150,000 to \$250,000)
Soil Vapor Extraction (SVE)	SVE uses a vacuum to remove hydrocarbon vapors from soils in the vadose zone. The clayey soil beneath the site makes SVE impractical.	Very High (\$150,000 to \$250,000)
Enhanced Biodegradation with ORC Injection	Increasing the dissolved oxygen (DO)concentration in the upgradient and source area wells with ORC injection is practical and cost effective at sites with a limited ground water plume. This option is viable to enhance the natural biodegradation processes.	Moderate (\$50,000 to \$100,000)
Natural Attenuation and the Installation of Three Additional Ground Water Monitoring Wells for Improved Plume Monitoring	The stable to decreasing hydrocarbon concentrations in ground water and the depleted oxygen and elevated carbon dioxide and methane indicate biodegradation is occurring. However, due to the historical variation of the ground water flow, additional wells are needed to confirm plume dimensions and stability and to accurately determine flow direction. We recommend installing three ground water monitoring wells and to continue monitoring all wells for petroleum hydrocarbons, HVOCs and dissolved oxygen.	Low (\$25,000 to \$50,000)

Mr. Scott O. Seery January 9, 1998

CAMBRIA

PROPOSED SCOPE OF WORK

CAMBRIA

Based on the evaluation of the remedial alternatives above, Cambria recommends installing three monitoring wells at the locations illustrated on Figure 2, and adding these wells to the ground water monitoring program. This will increase the ground water monitoring network to seven wells. Additional ground water data should confirm that the hydrocarbon plume is stable and the predominant ground water flow direction is toward the northwest. Pre-purge DO measurements will be collected and used to assess natural biodegradation of the hydrocarbons.

Rationale for Well Locations

The proposed well locations complement previous soil and ground water investigations conducted at this site. The addition of three wells will increase the monitoring network to seven wells and will provide adequate coverage to determine plume definition, plume stability and the predominant ground water flow direction. Wells are not proposed in the adjacent residential property for the following reasons: (1) soil vapor survey points SVS-2 and SVS-3, along the southern boundary of the site, measured low concentrations of BTEX as compared to SVS-5 indicating the plume extends northwest, (2) no TPH-g, BTEX and MTBE concentrations detected in soil samples from SVS-3 and SVS-5, (3) the distribution of dissolved TPH-g in ground water indicates the plume extends northwestward, away from the adjacent residential.

Well MW-5 will be located in the northern corner of the site to provide ground water elevation data, northern plume definition, and confirmation of plume stability. It is located in close proximity to boring BH-2 where grab ground water samples had elevated concentrations of TPH-g and BTEX. Access limitations in this direction due to Interstate 580 and steep topography dictated the well location.

Well MW-6 will be located northwest (down gradient) of the site to provide ground water elevation data, northwestern plume definition, and confirmation of plume stability. The well is located in Portofino Circle and in close proximity to boring BH-5 where no hydrocarbons were detected in grab ground water samples.

Well MW-7 will be located south (up and cross gradient) of the site to provide ground water elevation data, southern plume definition, confirmation of plume stability and monitor potential impact to adjacent residential property. This well is located between borings BH-3, where hydrocarbons were detected, and boring BH-8 where no ground water was encountered.

* This is a mis leading statement. No sample points have been advanced into overs within the usidential development abutting the shell site, yet as stated on Page 2, "Ground water Flow," flow direction has included westerly and southerly components. The noted residential development is directly in the path of This flow. Further, independent of GW flow, the geometric shipe of the please may be significantly beneath structures at the residential development. To suggest that the please extends only to the NW is sumply because that is whose Shell looked for it.

CAMBRIA

1

Mr. Scott O. Seery January 9, 1998

CAMBRIA

Well Installation Procedure

Utility Location: Cambria will notify Underground Service Alert (USA) prior to drilling activities to identify any underground utilities that exist near the proposed drilling locations.

Permits: Cambria will obtain drilling permits from the Alameda County Department of Public Works. In addition, we will obtain encroachment permits from the City of San Leandro for the wells installed on public property.

Site Health and Safety Plan: Cambria will prepare a site health and safety plan identifying the potential site hazards associated with the drilling and will include a map of the route to the nearest hospital.

Soil Boring: Cambria will drill the soil borings using 7" diameter hollow-stem augers. We will collect soil samples at five ft intervals, at lithologic changes and from just above the water table. The borings will continue 10 ft below the first-encountered ground water and be converted into monitoring wells. The estimated depth of each boring will be 30-40 ft. We will select soil samples for chemical analysis based on observations of staining and odor and on the results of field screening with a organic vapor analyzer. Our standard field procedures are presented as Attachment B.

Soil Analysis: Selected soil samples will be analyzed for TPH-g by modified EPA Method 8015, BTEX and MTBE by EPA Method 8020.

Well Construction: The wells will be constructed using 2-inch diameter 0.010-inch slotted PVC and will be screened from 10 ft below to 5 ft above the static water table. The specific well construction details will be determined in the field based on boring lithology. The wells will be covered with a traffic-rated vault and a locking well cap. Our standard field procedures are included in Attachment B.

Well Development and Sampling: At least 72 hours after installation, the wells will be developed using consecutive episodes of surge block agitation and well evacuation. Evacuation will continue until at least 10 well-casing volumes of water have been removed and well purge water is as sediment-free as practical. Following well development, each well will be purged and sampled following our standard field procedures included in Attachment B.

Ground Water Analysis: Dissolved oxygen will be measured prior to purging. Samples collected from the wells will be analyzed for TPH-g by modified EPA Method 8015, BTEX and MTBE by EPA Method 8020, and HVOCs by EPA Method 8010. Selected samples may be analyzed using EPA Method 8260 to confirm the presence of MTBE.

Mr. Scott O. Seery January 9, 1998

71.

CAMBRIA

Reporting: Following well installation and sampling, we will prepare a report that will contain:

- A summary of the site background and history;
- Descriptions of the drilling, well installation, development and sampling methods;
- Boring log and well construction diagram for each well;
- Tabulated soil and ground water analytic results;
- Analytic reports and chain-of-custody forms;
- Soil and water disposal methods; and
- Hydrogeologic interpretation.

Natural Attenuation Monitoring

At sites undergoing natural hydrocarbon biodegradation in ground water, we commonly observe relationships between hydrocarbon concentrations and DO concentrations. For natural attenuation to occur by aerobic processes, there needs to be about 1 to 2 mg/l DO. At most hydrocarbon sites, DO concentrations are reduced in the hydrocarbon source area compared to the region up gradient and down gradient of the hydrocarbon source area.

Once oxygen is depleted, hydrocarbon biodegradation may produce methane through anaerobic processes. In the hydrocarbon source area where oxygen is depleted, sulfates and nitrates can also act as electron receptors and allow anaerobic hydrocarbon degradation. As with the hydrocarbon/DO relationship, there is an inverse relationship with sulfates and nitrates and the hydrocarbon concentrations. Finally, since the source area is commonly oxygen deficient and often becomes a reducing environment, oxidation/reduction potential is another indicator that natural attenuation is occurring. Because it is costly to analyze for each parameter listed above to confirm that hydrocarbons are biodegrading, we typically recommend analyzing for DO to confirm that sufficient concentrations exist to allow continued remediation by natural attenuation.

As described previously, the existing ground water and soil vapor sample data suggest that biodegradation of petroleum hydrocarbons is occurring at the site. Petroleum hydrocarbon and DO concentrations measured during sampling of ground water from the existing and proposed monitoring wells will be used to confirm the existing data.

SCHEDULE

Upon receiving written approval of this corrective action plan from the ACDEH, Cambria will obtain necessary permits and schedule field activities. We will submit our report approximately four to six weeks after completing the field work.

CAMBRIA

Mr. Scott O. Seery January 9, 1998

CONTINGENCY PLAN

if it becomes apparent that natural attenuation is not sufficient, we will re-evaluate the remedial alternatives discussed above and other applicable alternatives that may be appropriate for this site.

CLOSING

In summary, we recommend installing three wells to evaluate plume stability, assess the ground water flow direction, and confirm natural attenuation. We trust that this submittal meets your requirements. Please call if you have any questions.

Sincerely,

Cambria Environmental Technology, Inc.

Gina Kathuria, P.E. Senior Project Engineer

Khaled B. Rahman, R.G., C.H.G.

Senior Geologist

cc:

Attachments: A - Weiss Associates RBCA Tier 1 and Tier 2

B - Standard Field Procedure for Monitoring Well Installation

A. E. (Alex) Perez, Shell Oil Products Company, P.O. Box 8080, Martinez, CA 94553

FAPROJECT\SHELL\SNL1784\Corrective Action Plan\Draft CAP.WPD

Figure 1. Site Location Map - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

F.PROJECTANELLENLY PRAFTIEWS SPROPADICAL

Table 1. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

	Date	Depth to	TPH-G	TPH-D	POG	В	E	T	x	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)				-parts per	billion (µg/l))				(mg/L
MW-i	03/08/90	25.29	510	120ª	<10,000	1.5	<0.5	0.8	5.4	12		
MI W - 1	05/08/90 06/12/90	25.85	390	100°	<10,000	86	0.7	1.3	6.2	< 0.4		_
	09/13/90	27.49	100	130°	<10,000	56	2.4	0.75	2.8	<0.4 ^b		
	12/18/90	27.41	480	<50°	<10,000	54	3.3	1.7	3.7	5.3		
	03/07/91	25.79	80	<50 ^a		266	1.2	<0.5	<1.5	6.7		
	06/07/91	25.64	510	<50°		130	6.1	3.8	11	7.9	. —	
	09/17/91	27.54	330	120 ^{ec}		67	3	<0.5	2.2	6		
	12/09/91	27.81	140 ^d	80	-	<0.5	1.7	<0.5	4.7	5.4		
	03/01/92	23.36	<50	< 5 0		<0.5	<0.5	<0.5	< 0.5	3		
	05/03/92	23.50 24.64	1,500			520	72	180	230	3		
	09/01/92	24.04 26.74	130	-1-		16	1.8	1.4	3.4	1.3°		
	12/04/92	27.14	150			360	1.8	0.7	2.1	3.3		
	03/03/93	20.50	<50			1.5	<0.5	<0.5	<0.5	0.76		
	06/17/93	20.30 22.42	1,600			340	120	120	440	3		
	09/10/93	24.11	2,600		-	670	310	340	730	2.3		_
	12/13/93	23.73	11,000			470	380	320	2,300	6.3		
	03/03/94	23.73 22.08	16,000			700	480	690	3,200		= 40×40	
		23.10	7,500			420	200	280	1,000	3.1		
	06/06/94	25.10 25.19	1,200			110	3.3	21	420	2.6		
	09/12/94	23.19	4, 6 00			470	230	330	1,300	3.7	••-	
	12/19/94	20.90	500			59	6.8	32	68	5.0		
	02/28/95	20.40	5,500			740	300	420	1,800	8.6		
	06/26/95	22.62	84,000	•		1,900	3,000	2,600	14,000	12		
	09/13/95	22.62 22.10	80,000			660	170	350	18,000	<0.4		 -
	12/19/95		80,00 0									
	03/06/96 ^{SFH}	21.46	270,000			2,800	1,000	820	16,000	-4-	<0.5	
	06/28/96	21.46				2,300	1,000	780	13,000		15,000	
	06/28/96 ^{dup}	21.46	790,000			1,100	270	260	1,900	9.8	<1.000	
	09/26/96	23.57	29,000			1,200	240	320	1,900	11	<1,000	
	09/26/96 ^{dop}	23.57	25,000				230	240	1,200	16	100	1
	1 2/1 0/96	21.43	13,000			510	230	4 9 0	1,400	10	100	•

C. Tet

MTBE 1,2-DCA DO POG В E Т X TPH-D TPH-G Date Depth to (mg/L)-parts per billion (µg/l)-Water (ft) Well ID Sampled 1.0 81 140 130 680 17 12/10/96^{dup} 420 21.43 8,400 ------12 2.0 8.8 <12 74 13 16 4,200 20.08 03/10/97 ------2.0 <25 79 11 03/10/97^{dup} 12 17 8.9 5,100 20.08 47 1.6 700 21 320 140 120 06/30/97 5,700 21.68 ---22 45 1.6 120 95 580 06/30/97^{dup} 300 21.68 5,300 ------2.1 30 82 26 260 12 120 21.78 6,300 09/12/97 ------200 1,600 1.900 6,200 550 ---2,700° 19.61 17,000 MW-2 02/24/92 82 30,000 2,300 34,000 16,000 1.000° 86,000 03/01/92 21.11 ---18,000 10,000 <50 28,000 2,000 21.58 97,000 06/03/92 83^b 21,000 13,000 7,800 1,900 110,000 09/01/92 23.46 2,900 100 2,400 15,000 960 42,000 12/04/92 23.89 36,000 3,800 21,000 7.7 32,000 ___ 160,000 03/03/93 17.28 14,000 16 3,100 31,000 20,000 O3/O3/93b 17.28 150,000 11,000 37 34,000 15,000 3,200 06/17/93 19.06 65,000 36 10,000 28,000 2,700 14,000 06/17/93h 19.06 62,000 28.0 16,000 11,000 2,300 72,000 24,000 09/10/93^f 20.88 27.0 09/10/93^{dup,f} 15,000 10,000 23,000 2,300 20.88 71,000 ---< 0.5 4,900 3,100 5,400 680 20.42 19,000 12/13/93 3,500 3.4 6,200 720 5,500 12/13/93^{dup} 17,000 13,000 24,000 21,000 2000 ------03/03/94 18.48 110,000 12,000 19,000 22,000 1,800 ------03/03/94^{dup} 18.48 93,600 5.8 13,000 1,900 2,500 3,300 10,000 06/06/94 20.26 12,000 5.7 12,000 06/06/94^{dap} 99,000 9,900 2,400 ---20.26 33,000 23,000 < 0.4 22,000 3,400 160,000 09/12/94 21.80 23,000 < 0.4 23,000 3,500 34,000 09/12/94^{dup} 21.80 150,000 < 0.4 17,000 2,300 16,000 14,000 12/19/94 19.66 80,000 3,400 26,000 20,000 <0.4 ___ 28,000 12/19/94^{dup} 19.66 100,000 17,000 24,000 18,000 < 0.4 2,300 100,000 02/28/95 17.51

77

Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro,

7.7

Table 1.

California (continued)

Table 1. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

	Date	Depth to	TPH-G	TPH-D	POG	В	E	T	X	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)	+			—parts per	billion (µg/l)		<u> </u>	→	(mg/L)
	02/28/95 ^{dup}	17.51	100,000			31,000	3,200	21,000	18,000	<0.4		
	06/26/95	17.58	45,000			14,000	1,500	12,000	7,500	3.4		
	06/26/95 ^{dup}	17.58	68,000			13,000	1,800	11,000	7,700			
	09/13/95	19.28	110,000			19,000	2,800	19,000	15,000	7.2		
	09/13/95 ^{dap}	19.28	120,000			20,000	2,900	20,000	15,000	< 0.4		
	12/19/95	18.61	180,000			18,000	4,100	29,000	24,000	<0.4	_	
	12/19/95 ^{dup}	18.61	160,000			18,000	3,800	28,000	24,000	<0.4		
	03/06/96	15,41	120,000			28,000	3,900	15,000	17,000	<20		-
	06/28/96	17.84	96,000			20,000	4,100	20,000	22,000		2,400	
	09/26/96	19.60	87,000			7,600	2,500	11,000	15,000	56**	990*	
	12/10/96 ^{5PH}	18.15										*
	03/10/97 ^{SPH}	17.02			4							
	06/30/97	19.42	57,000			3,600	1,300	4,600	9,700	<50 ⋅	2,300	2.4
	09/12/97	19.40	88,000			7,800	2,600	8,800	16,000	<25	3,200	1.7
	09/12/97 ^{дир}	19.40	90,000			8,300	2,700	9,400	17,000	<25	3,400	1.7
MW-3	02/24/92	25.60	4,500	1,300°		97	78	<5	18	9.1		
442 11 - 5	03/01/92	26.00	2,200	440	*	69	<0.5	<0.5	<0.5	13	**-	
	06/03/92	27.70	4,100			13	44	7 2	65	16		
	09/01/92	29.46	1,900			20	5. 5	6.8	భ	19		
	09/01/92 ^{dup}	29.46	1,900			21	3.4	6.6	< 5	21		
	12/04/92	29.93	2,400			8.2	⋖	<5	<5	16		
	12/04/92 ^{dap}	29.93	2,100			11	5.7	<0.5	<0.5	18		
	03/03/93	23.08	5,100			63	75	61	150	3.3		
	06/17/93	25.21	4,000			94	82	140	150	23		
	09/10/93	26.95	3,200			140	12.5	12.5	12.5	20.0		
	12/13/93	26.52	6,200			<12.5	<12.5	<12.5	<12.5	13		
	03/03/94	24.50	4,500		~-	73	<5	<5	ර			
	06/06/94	26.33	3,200			<0.5	3.1	<0.5	<0.5	16		-

Table 1. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

~

	Date	Depth to	TPH-G	TPH-D	POG	В	E	T	X	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)				parts per bi	llion (µg/l)—					(mg/L)
	09/12/94	27.98	3,900			<0.5	9.6	<0.5	4.1	7.8		
	12/19/94	25.63	2,400			21	4.2	22	2.6	25		
	02/28/95	23.45	4,000			58	7.1	<0.5	3.5	18		
	06/26/95	23.64	3,900			8.1	12	<0.5	2.4	15		_
	09/13/95	25.40	4,100			58	5.5	5.5	<0.5	6.7		
	12/19/95	24.53	3,600			<0.5	2.1	4.3	1.1	6.6		
	03/06/96 ^{SPH}											
	06/28/96	23.95	2,400			55	<0.5	<0.5	11	_	120	
	09/26/96	25.89	2,500	-		<5.0	<5.0	<5.0	<5.0	25	160	_
	12/10/96	24.22	1,600		 .	28	<2.0	4.2	3.9	34	110	0.
	03/10/97	23.05	130			< 0.50	<0.50	<0.50	1.4	3.5	4.2	2.
	06/30/97	24.34	1,200			21	<2.0	2.3	<2.0	97	69	2.
	09/12/97	24.47	440		*	8.3	<0.50	0.82	1.9	5.0	3.4	1.
MW-4	03/24/95	9.16	<50			<0.5	<0.5	<0.5	<0.5	<0.4		
	06/26/95	12.06	<50			<0.5	<0.5	<0.5	<0.5	<0.4		
	09/13/95	13. 90	<50			<0.5	<0.5	<0.5	<0.5	<0.4		
	1 2/19/ 95	12.90	<50			<0.5	<0.5	<0.5	<0.5	<0.4		
	03/06/96	9.63	<50			<0.5	<0.5	<0.5	<0.5	<0.4		
	06/28/96	12.30	40			<0.5	.97	.59	3.8		26	
	09/26/96	14.12	<50			<0.5	<0.5	<0.5	< 0.5	<0.5	<2.5	
	12/10/96	12.31	<50			<0.5	<0.5	<0.5	<0.5		<2.5	1.
	03/10/97 ^m	11.34	<50			<0.50	< 0.50	<0.50	<0.50		<2.5	
	06/30/97*	13.80	<50			<0.50	< 0.50	<0.50	<0.50	<0.50	<2.5	1.
	09/12/97	13.99	<50			<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	. 1.
Trip	03/08/90		<50			<0.5	<0.5	<0.5	<0.5			
Blank	06/12/90		ර 0			<0.5	<0.5	<0.5	<0.5			_
	12/18/90		<50			<0.5	< 0.5	<0.5	<0.5			

Table 1. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

-7

::I

	Date	Depth to	TPH-G	TPH-D	POG	В	E	T	х	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)				-parts per b	illion (µg/l)-				 →	(mg/L
	03/07/91		<50			<0.5	<0.5	<0.5	<0.5			
	06/07/91		₫ 0			< 0.5	<0.5	< 0.5	<0.5			
	09/17/91		ජ0			<0.5	<0.5	<0.5	<0.5		_	
	12/09/91		<50	**-		< 0.5	<0.5	<0.5	<0.5			
	02/24/92		₹ 0		***	<0.5	0.6	2.5	2.2	-		
	03/01/92		450			<0.5	< 0.5	< 0.5	<0.5		 -	
	06/03/92		450			<0.5	<0.5	<0.5	<0.5			
	09/01/92		<u>ح</u> 0			<0.5	< 0.5	<0.5	<0.5	< 0.5		
÷	12/04/92		<50		***	<0.5	<0.5	<0.5	<0.5	<0.5 ⁱ	 -	
	03/03/93		<50		,	<0.5	<0.5	<0.5	< 0.5	<0.5		
	05/03/93 06/17/ 93		<u>ح</u> 50			<0.5	<0.5	< 0.5	<0.5	<0.5		
	09/10/93		<50	= ==		<0.5	<0.5	< 0.5	< 0.5			
	12/13/93		45 0			<0.5	<0.5	<0.5	<0.5	<0.5 ^k		
	03/03/94		<50			<0.5	<0.5	<0.5	< 0.5			
	05/05/94		<50			<0.5	<0.5	<0.5	< 0.5			
	09/12/94		<50			< 0.5	<0.5	<0.5	<0.5			
	12/19/94		₹ 0			<0.5	<0.5	<0.5	< 0.5			
	02/28/95		<50			<0.5	<0.5	<0.5	<0.5		•	
			<50			<0.5	<0.5	<0.5	<0.5			
	03/24/95 06/26/95		. <50		n.=14	4.1	<0.5	3.0	1.5	-		
	09/13/95		. 45 0			<0.5	<0.5	< 0.5	< 0.5			
	12/19/95		450			<0.5	< 0.5	<0.5	< 0.5			
	12/17/73		~0								•	
Bailer	03/08/90		<50			<0.5	<0.5	<0.5	<0.5			
Blank	09/01/92		ح50			<0.5	<0.5	0.7	<0.5	<0.5		
DIGUE	12/04/92 ^j		60			<0.5	<0.5	<0.5	<0.5	<0.5		
MCLs			NE	NE	NE	1	700	150	1,750	0.5	NE	NE

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

Abbreviations:

TPR-G = Total Petroleum Hydrocarbons as Gasoline by Modified EPA Method 8015

TPH-D = Total Petroleum Hydrocarbons as Diesel by Modified EPA Method 3015

POG = Petroleum oil and grease by American Public Health Association Standard Method 503E or 5520F

MTBE = Methyl text-Butyl Ether by EPA Method 8020

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X=Xylenes by EPA Method 8020

1,2-DCA = 1,2-Dichlorocthane by EPA Method 8010. No other halogenated hydrocarbons detected unless otherwise noted.

DO = Dissolved oxygen

--- = Not analyzed

<n = Not detected above method detection limit of n ppb</p>

MCLs = California Primary maximum contaminant levels for drinking water (22 CCR 64444)

NE = Not established

SPH = Separate-phase hydrocarbons present in well

μg/L = Micrograms per liter

mg/L = Milligrams per liter

ppb = Parts per billion, which is equivalent to µg/L

ft = Feet

dup = duplicate sample

Notes:

- a = No total petroleum hydrocarbons as motor oil detected above modified EPA Method 8015 detection limit of 500 ppb
- b = Tetrachloroethene (PCE) detected at 24 ppb by EPA Method 8010; MCL for PCE is 5 ppb
- c = Result is due to hydrocarbon compounds lighter than diesel
- = Result due to a non-gasoline hydrocarbon
- e = In the matrix spike/matrix spike duplicate of sample MW-1, the RPD for Freon 113 and 1,3-dichlorobenzene was greater than 25%
- f = The MW-2 and duplicate samples each contained 1.6 ppb of methylene chloride which is within normal laboratory background levels
- h = Sample MW-2 was diluted 1:100 for EPA Method 8010 due to the interfering bydrocarbon peaks
- j = The trip and bailer blank samples contained 14 and 10 mg/L 1,3-dichlorobenzene, respectively
- k = 1.4 mg/L Chloroethene detected in equipment blank; trip blank not analyzed
- 1 = Tetrachloroethene (PCE) detected at 0.50 ppb by EPA Method 8010
 Trichloroethene (TCE) detected at 0.57 ppb by EPA Method 8010; MCL for TCE is 5 ppb
- m = Trichloroethene detected at 0.52 ppb by HPA Method 8010
- Trichloroethene detected at 0.55 ppb by EPA Method 8010
- mTBE confirmed by EPA Method 8260
- ** = Result should be considered estimated due to being reported under the detection limit of 125 ppb

FACSIMILE

To:

Mr. Scott Seery

Organization: Alameda County Department of

Environmental Health

Fax #:

337-9335

Re:

1784 150th Avenue, San Leandro

Corrective Action Plan

Date:

January 9, 1998

Pages:

18, including this cover sheet.

Please find attached the Corrective Action Plan for the above-referenced site. The hard copy will follow by mail. Please call Gina Kathuria at 420-3330 if you have any questions.

Thank you.

 \hat{V} ,

From the desk of...

Maureen D. Feineman Geologist Cambria Environmental Technology, Inc. 1144 65th Street, Sulte C Oakland, CA 94608

> (510) 420-0700 Fax: (510) 420-9170

RBCA

SUMMARY REPORT

■ TIER 1 / □ TIER 2 RBCA SITE EVALUATION

Shell Service Station, WIC #204-6852-1404

1784 150th Avenue, San Leandro, California

Weiss Associates

PREPARED BY

April 21, 1997

DATE ISSUED

REVIEWED BY

DATE 4/2/19-

The data, findings, recommendations and/or professional opinions contained in this document were prepared solely for the use of Shell Oil Company. Weiss Associates makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of the contents herein.

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 2

(u) = For Tier 2, update Tier 1 version as needed	= :	= ENCLOSED
E	Tier 1	Tier 2
1.0 EXECUTIVE SUMMARY	E MAYES SA	
1.1 Tier 1 Executive Summary Checklist		
1.2 Tier 2 Executive Summary Checklist		
1.3 Executive Summary Discussion		
1.4 Baseline Exposure Pathway Flowchart		□ (u)
1.5 Comparison of Site Data to RBSLs/SSTLs - Commercial/Industrial Receptors		Q .
1.6 Comparison of Site Data to RBSLs/SSTLs - Residential Receptors	, #	a
2.0 SITE HISTORY	趋的数据	
2.1 Site Description		(u)
2.2 Site Ownership & Activity Record		(m)
2.3 Past Releases or Source Areas		(u)
2.4 Summary of Current & Completed Site Activities		□ (u)
2.5 Summary of Potential Near-Term Site Activities	-	(u)
3.0 SITE ASSESSMENT INFORMATION	SHIP EXX	286-1907
3.1 Regional Hydrogeologic Conditions		(u)
3.2 Hydrogeologic Site Conditions		(u)
3.3 Beneficial Use Summary	1	(u)
3.4 Well Inventory Survey	ī	(u)
3.5 Ecological Assessment Summary	=	(u)
4.0 BASELINE EXPOSURE ASSESSMENT		STATE OF THE
4.1 Site Classification Summary		(u)
4.2 Baseline Exposure Flowchart		(u)
4.3 Tier 2 Exposure Factor Checklist	0	(u)
4.4 Tier 2 Exposure Pathway Screening		0
4.5 Tier 2 Exposure Scenarios & Risk Goals		a
5.0 SITE PARAMETERS	Processor (SA)	SECTION AND ADDRESS OF THE PARTY.
5.1 Site Parameter Checklist for RBSLs		(u)
5.2 Summary of Media Investigation and Chemical Analyses		□ (u)
5.3 Summary of Source Zone Characteristics	-	□ (u)
5.4 Surface Soil Concentration Data Summary	ū	□ (u)
5.5 Subsurface Soil Concentration Data Summary		□ (u)
5.6 Groundwater Concentration Data Summary	T.	□ (u)
5.7 Soil Vapor Concentration Data Summary		□ (u)
5.8 Tier 2 Exposure Pathway Transport Parameters		0
6.0 TIER 1 RISK-BASED SCREENING LEVEL EVALUATION	ess R	Harried .
6.1 Tier 1 RBSL Evaluation: Surface Soil		
6.2 Tier 1 RBSL Evaluation: Subsurface Soil		
6.3 Tier 1 RBSL Evaluation: Groundwater		1

RBCA SUMMARY REPORT

Table of Contents

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 2 of 2

TIER 1 / TIER 2 REPORT INDEX continued

	H =	ENCLOSED
(u) = For Tier 2, update Tier 1 version as needed.	Tier 1	Tier 2
7.0 NATURAL ATTENUATION FACTORS	BESTON ELECTRIC	THE SECTION
7.1 Tier 2 NAF Calculation Methods & Results		
8.0 TIER 2 SSTL EVALUATION		F213 8-1
8.1 Soil Vapor SSTL Values		0
8.2 Groundwater SSTL Values		
ATTACHMENTS TO THE RESERVE TO SELECT A SECURITION OF THE SECURITIES OF THE SECURITIE		Wastle-
Figure 1 Site Location Map		(u)
Figure 2 Extended Site Map		(u)
Figure 3 Site Plan		(u)
Figure 4 Site Photos		□ (u)
Figure 5 Groundwater Plume Maps		
Figure 6 Groundwater Elevation Map		(u)
Figure 7 Soil Boring Location Map		(u)
APPENDICES		15-1463 B
Appendix A Chemical Analysis Data Tables	=	□ (u)
Appendix B Well Logs		□ (u)
Appendix C Soil Vapor RBSL Calculations	- 1	a

Worksheet 1.1

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Weiss Associa

ne Locadon. 1764 156th Avenue, San Leandr	o, car	потпіа Сог	npietea	ву; у	Yeiss A	ssociates	Page 1 of
TIER :	1 E	XECUTIV	E S	UMMARY	1		
VISUAL/HISTORICAL ASSESSMENT	- (TO SELEC	r)			NEW E	医自己性皮肤
Site size (acres)		<1		<10		>10	□ N/A
Site use		undeveloped		commercial		residential	□ N/A
Site access		capped		fenced-in		open	□ N/A
Visual evidence of environmental impact		none		limited		extensive	□ N/A
Current site land use		undeveloped		commercial	-	residential	□ N/A
Contaminant sources		tanks/spills		trench/drums		ponds/pits	□ N/A
Affected environmental media	-	soil (>3 ft BGS)	-20	groundwater		surface soil (<3 ft BGS)	soil vapor
Types of compounds likely to be present	=0	petroleum hydr inorganic comp			etals OCs		
BASELINE RECEPTOR IDENTIFICATION	HT2	morganic com	Journas				E PATEUR E
Reasonable potential receptors (greatest concern)		none		ecological	100	human	□n/A
Distance from fenceline to nearest off-site receptor (ft)	Ō	>500	ā	100 - 500	4	<100	□N/A
Travel time to closest groundwater receptor (yr)		>10		2 - 10	11.00	2	□N/A
Depth to first encountered groundwater (ft)		>150		50 - 150	100	<50	□N/A
Complete exposure pathways		none	450	ingestion		inhalation	□N/A
		ecological		dermal		absorption	□N/A
■ Visual / historical assessment		Initial (screening		N. E. S. S.		prioritization /	
Classification No. Scenario Description by All Company Classification No. Scenario Description by Classification No. Scenario Description No. Scen			m RB	cribed Interim	, if nec		te <u>Implemented</u> March 1997
concentrations have bee soil adjacent to residentia Dissolved hydrocarbons an irrigation well, located downgradient of the site. Low hydrocarbon concer been detected in soil.	al buik may ii I abou	dings. evaluation evaluation in the determinant determinant extension in the determinant extension evaluation	ation, i carbor nine th	ation. For Tie model fate and is in ground w ne most appro	i transp ater an	d	
TIER 1 CORRECTIVE ACTION CRITERIA	D: I.		_	Level Criteria E	Ixceede		Total Carlotte
Affected Medium	Risk- Basec		Othe (spec			Not Applical	
• Surface Soil (< 3ft BGS)			(-p-c-			_	
Subsurface Soil (>3ft BGS)	_	<u> </u>					
Groundwater (potable/nonpotable)							0
• Soil Vapor	_	_					
Surface waters	Ö					_	
THE THE PROPERTY OF THE PARTY O	a wa	THE RESERVE OF THE PARTY OF	Elkely)	200 (2000) 220/9	ministra.		RIAMETER STATE
☐ No Action: Site does not exceed Tier 1 crit	-	Apply for class	40000		3	THE STATE OF	A CANADA
Interim Corrective Action: Site exceeds so corrective action and reprioritize site.				interim	NOT: Ratio	E: nale for proposi	ed action
☐ Final Corrective Action: Site exceeds som	ne Tier	I criteria - Prop	ose cor	rective	docu	mented on Worl	
action to achieve Tier 1 criteria. Tier 2 Evaluation: Site exceeds some Tier					ano	10.1-10.3.	

RECA SUMMARY REPORT

Worksheet 1.3

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 2

EXECUTIVE SUMMARY

Instructions: Provide brief description of site history, hydrogeologic conditions, ecological assessment, possible exposure pathways, RBSL / SSTL results, and the scope of work for proposed corrective action activity. Address proposed methods, implementation schedule, cost, and anticipated risk reduction at or near the site.

SITE DESCRIPTION AND HISTORY

Worksheets 2.1 - 2.5
 Figures 1 - 4

Briefly discuss site chronology, operations, features of potential concern, and future plans for site use.

The site is an active service station that dispenses gasoline and services automobiles. Three 10,000-gallon underground gasoline tanks, two pumps islands, an underground 550-gallon waste oil tank and garage are present on the property. Another pump island was previously located on the eastern portion of the property. Shell intends to operate the service station indefinitely.

In November 1986, Shell replaced the waste oil tank. Because soil beneath the former waste oil tank contained petroleum hydrocarbons, a subsurface investigation was performed. Between March 1990 and December 1996, soil and ground water samples have been collected from four ground water monitoring wells and about 23 soil borings. For the first time, separate-phase hydrocarbons were measured in the site's ground water monitoring wells in 1996. Dissolved hydrocarbons are beneath the site and beneath residential property and 150th Avenue to the west, the presumed ground water flow direction. To address concerns of potential indoor inhalation of hydrocarbon vapors emanating from the subsurface, WA collected soil vapor samples in July 1996.

SITE ASSESSMENT INFORMATION

GEOLOGIC AND HYDROGEOLOGIC SUMMARY

Worksheets 3.1 - 3.4
 Figures 6 and 7

Briefly describe regional site features, climate, vadose zone soils, and groundwater depth, quality, and use.

The site is located at the base of the Berkeley Hills on the eastern edge of the East Bay Plain Ground Water Basin in San Leandro, California. Active traces of the Hayward Fault have been mapped beneath Freedom Avenue adjacent to the site and beneath and east of Highway 580. Bedrock may be less than 100 ft deep beneath the site. On average, the area receives about 22 inches of precipitation per year, mostly during the winter.

Soil beneath the site consists of silty clay to silty sand with low to moderate estimated permeability. Ground water is typically 20 to 30 ft beneath ground surface. Ground water has flowed various directions between 1990 and 1997 with flat gradients relative to the topographical gradient. Ten irrigation wells are documented within one-half mile of the site. One of these wells is about 600 ft downgradient of the site.

BASELINE EXPOSURE ASSESSMENT

COMPLETE EXPOSURE PATHWAYS AND APPLICABLE RECEPTORS

Worksheets 4.1 - 4.5

Discuss current or potentially complete pathways for human or ecological exposure to site constituents.

WA has identified the following potentially complete exposure pathways:

- Volatilization of hydrocarbons from soil to outdoor air
- · Leachate of hydrocarbons from soil to ground water for ingestion
- · Volatilization of hydrocarbons from ground water to outdoor air
- Ingestion of ground water
- Intrusion of subsurface hydrocarbon vapors into buildings

ECOLOGICAL ASSESSMENT SUMMARY

• Worksheet 3.5

Discuss potentially sensitive ecological receptors and habitat in the vicinity of site, if any.

No ecological receptors were identified.

RBCA SUMMARY

Worksheet 1.3

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location: 1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 2 of 2

EXECUTIVE SUMMARY DISCUSSION Continued

TIER 1 RBSL OR TIER 2 SSTL EVALUATION

COMPARISON TO SOURCE MEDIA CONCENTRATIONS

• Worksheets 5.1 - 5.7, 6.1 - 6.3

For complete pathways, compare representative source concentrations to applicable RBSL or SSTL values.

Representative concentrations of the following chemical of concerns exceeded the conservatively derived RBSLs:

- · Benzene in ground water for ingestion
- Toluene in ground water for ingestion
- 1,2-Dichloroethane in ground water for ingestion
- Tetrachloroethane in ground water for ingestion
- Methyl tertlary-butyl ether in ground water for ingestion
- Benzene in soil leaching to ground water for ingestion.

QUALITATIVE UNCERTAINTY ASSESSMENT

Worksheets 4.2, 4.4, and 5.1 - 5.7

Discuss uncertainty / conservatism of the site data and calculation methods used in deriving RBSL or SSTL values.

Comparing the Tier 1 default input parameters with site-specific data and conditions indicate that the RBSLs are conservatively derived.

PROPOSED CORRECTIVE ACTION

Worksheets 10.1 - 10.3

Describe rationale for proposed action (i.e., no action, interim action, final action, or tier upgrade), considering site classification and land use. Discuss basis for remedy selection, if applicable.

The chemical of concern-exposure pathway combinations listed above will be further analyzed in a Tier 2 evaluation.

REFERENCE DOCUMENTS

Appendices

List the document sources for the data cited in this report.

Alameda County Zone 7 Water Agency, 1993, Geologic Framework of the East Bay Plain Groundwater Basin

Alameda County Zone 7 Water Agency, 1997, Supply well inventory database

RWQCB - San Francisco Bay Region, 1997, LUFT Case List

USGS, 1980, Preliminary Geologic Map of the Hayward Quadrangle

WA, 1992, Subsurface Investigation Report

WA, 1994, Subsurface Investigation Report

WA, 1995, First Quarter 1995 Status Report

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check boxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (= applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

Worksheet 1.6 Comparison of Site Characterization Data to Tier 1 Risk-Based Screening Levels - Residential Receptors - Shell Service Station, WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

			Benzei	ne	Toluer	ne	Ethy	lbenzene	Xylen	es
Source Medium	Exposure Pathway	Potentially Complete Pathway?	Maximum Detected Concentration*	RBSLb	Maximum Detected Concentration ^a	RBSL°	Maximum Detected Concentration	RBSL ^c	Maximum Detected Concentration ^a	RBSL°
Soil	Volatilization to Outdoor Air	Yes	0.59	0.79	1.5	RES	0.91	RES	4.1	RES
(mg/kg)	Surficial Soil (0-3 ft depth): Ingestion/Dermal/Inhalation	No	NA	16.8	NA	13,300	NA.	7,830	NA	145,000
	Leachate to Ground Water for Ingestion	Yes	0.59	0.05	1.5	129	0.91	575	4.1	RES
Ground Water	Volatilization to Outdoor Air	Yes	18.5	31.9	15	>S	3.5	>S	18	>S
(mg/l)	Ingestion	Yes	18.5	0.0085	15	7.30	3.5	3.65	18	73.0
Soil Vapor (ppmv)	Vapor Intrusion to Buildings ^d	Yes	0.41	2.07	0.56	904	0.19	2,310	0.66	16,800

Notes:

RBSL = ASTM RBCA Tier 1 Risk-Based Screening Level

RES = Selected risk level is not exceeded for pure compound present at any concentration in soil.

NA = Not Applicable. Impacted soil located at depths greater than 3 feet below ground surface.

>S = At pure compound solubility (mg/l), selected risk level is not exceeded.

a = Maximum concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX) in soit were detected in a sample collected on February 4, 1992 from 21.5 to 26.5 ft depth in the soil boring BH-B (MW-2). Maximum concentrations of BTEX to strangle were are averages of the results from the most recent year of ground water sampling (First Quarter 1996 - Fourth Quarter 1996) in well MW-2. Well MW-2 has consistently contained the highest dissolved BTEX concentrations since monitoring began at the subject site. Fourth quarter 1996 concentrations of dissolved BTEX were not available for MW-2 due to the presence of separate phase hydrocarbons. Maximum concentrations of BTEX in soil vapors near the potential receptor buildings were detected in a sample collected on July 18, 1996 from 1 foot depth in soil vapor sampling location SYS-3.

3 depth

b = RBSLs are based on a carcinogenic risk of 1 in 100,000 (10⁻⁵) and California's standard cancer slope factor of 0.1 mg/kg-day.

c = RBSLs are based on a chronic hazard quotient of 1.0.

d = RBSLs for soil vapor correspond to a depth of 3 feet below ground surface. RBSLs for other depths will differ.

Worksheet 1.6 (cont'd) - Comparison of Site Characterization Data to Tier 1 Risk-Based Screening Levels - Residential Receptors - Shell Service Station, WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

			1,2-Dichlor	oethane	Tetrachlor	oethene	Methyl-t-Bu	tyl-Ether
Source Medium	Exposure Pathway	Potentially Complete Pathway?	Maximum Detected Concentration ^a	RBSL⁵	Maximum Detected Concentration	RBSLb	Maximum Detected Concentration ^a	RBSL°
Soil	Volatilization to Outdoor Air	Yes	0.0064	78	<0.005	24,000	<0.025	RES
(mg/kg)	Vapor Intrusion to Buildings	Yes	0.0064	0.097	<0.005	490	<0.025	320
j	Surficial Soil (0-3 ft depth): Ingestion/Dermal/Inhalation	No	NA	6.0	NA	11	NA	120
	Leachate to Ground Water for Ingestion	Yes	0,0064	0.074	<0.005	260	<0.025	0.43
Ground Water	Volatilization to Outdoor Air	Yes	0.056	75	0.024	>S	0.99	>\$
(mg/l)	Vapor Intrusion to Buildings	Yes	0.056	0.22	0.024	L.Ó	0.99	1,400
	Ingestion	Yes	0.056	0.0094	0.024	0.016	0.99	0.18

Notes:

RBSL = ASTM RBCA Tier 1 Risk-Based Screening Level

RES =Selected risk level is not exceeded for pure compound present at any concentration in soil.

>S = At pure compound solubility (mg/l), selected risk level is not exceeded.

b = RBSLs based on a carcinogenic risk of 1 in 100,000 (10⁻⁵).

c = RBSLs based on a chronic hazard quotient of 1.0.

Representative concentration of 1,2-dichloroethane in soil was detected in a sample collected on March 5, 1990 from 29.2 ft depth in the soil boring BH-A (MW-1). Maximum concentration of 1,2-dichloroethane in ground water during the most recent year of ground water sampling (First Quarter 1996 - Fourth Quarter 1996) was detected in well MW-2 on September 26, 1996. The maximum concentration of tetrachloroethene in ground water was detected in well MW-1 on September 13, 1990. Maximum concentration of methyl-t-butyl-ether (MTBE) detected in ground water and confirmed by GC/MS analysis during the most recent year of ground water sampling (First Quarter 1996 - Fourth Quarter 1996) was detected in well MW-2 on September 26, 1996.

Worksheet 2.1 Site Name: Shell Service Station WIC #204-6852-1404 Date Completed: April 21, 1997 Site Location: 1784 150th Avenue, San Leandro, California Completed By: Weiss Associates Page 1 of 1 SITE DESCRIPTION Location Description (see Figure 1) Address: 1784 150th Avenue, San Leandro, California Cross-Street: Freedom Avenue City: San Leandro County: Alameda State: California Notes: Regulatory Agencies Identify regulatory authorities and regulatory / legal status of site. Alameda County Health Care Services Agency Agency: Contact: Scott Seerv Regional Water Quality Control Board - San Francisco Bay Region Agency: Contact: Kevin Graves Other Involved Parties: none (TO SELECT) □ Consent order ☐ Lawsuit Discussion: Other Comments: Local Land Use (See Figure 2) (TO SELECT) Discuss options for listed items (including anticipated future use) On-Site Use Current Potential Prior The site is currently an operating service station and is expected to Commercial remain in operation indefinittely. Residential Industrial Sensitive Habitat 0 Other: (below) Topography (See Figures 1 and 3) Other Comments: Terrain

Flat ■ Steep □ Variable Site Elevation Interval (ft-MSL) High Pt. 52 Low Pt. 45

Winter Temperature Range (°F): 40-75

Average Ground Surface Slope
Direction west Grade (ft/ft)

Local Climate

Average Annual Rainfall (in):

Evapotranspiration (in/yr): 51 (pan)
Within 100 Year Floodplain?: ☐ yes / ■ no
Summer Temperature Range (°F): 60-90

Annual Average

Other Comments:

Infiltration is probably low because most of site is paved.

RBCA SUMMARY REPORT

Worksheet 2.2

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page I of I

Time I	Period End	Instructions: Identify (past and present) property owner and operator. Describe past production and materials handling activities, waste disposal practices, and chemicals used.										
Jnknown	Present	The property is presently occupied by an operating service station. The station has dispensed leaded and unleaded gasoline. Currently, the site has three 10,000-gallon underground gasoline tanks, one underground 550-gallon waste oil tank, two dispenser islands and an automotive services garage.										
		a a										
		2943										
2	-											
	į.											

RRCA SHMMARY REPORT

Worksheet 2.3

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page I of I

		PAST RELEASES OR SOURCE AREAS
<u>Time</u> Begin	Period End	Instructions: Describe potential sources and spill events, including location, type and estimated volume of materials stored or released, time and duration of release, and affected media (soil, groundwater, surface water, etc.). Discuss past corrective action efforts as appropriate.
Unknown	Unknown	The presence of petroleum hydrocarbons in the subsurface indicates a release has occurred. However, no documented releases have been confirmed. The underground waste oil and gasoline tanks, product piping, dispenser islands and garage are potential hydrocarbon sources.
	.==	
	*	
	120	
	*	× 0
	-	22 AP

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

SUMMARY OF CURRENT & COMPLETED SITE ACTIVITIES

Typical site activities to be recorded include:

Preliminary Site Assessment/Site Inspection

Emergency Response

Review Hazard Ranking System

■ Risk/Exposure Assessment ■ Remedy Selection ■ Remedy Implementation

Types of sampling & testing include:

● Soll ● Groundwater ● Surface Water ● Vapors

Date Completed	Description of Task	Sampling and Testing Conducted	Goal / Result / Product / Impact
November 1986 Replaced waste oil tank		Sampled soil beneath former tank for petroleum oil and grease (POG)	Soil samples between 8 and 11 ft depth contained up to 196 parts per million (ppm) POG. The lead agency requested a subsurface investigation.
March 1990	Installed ground water monitoring well MW- 1 adjacent to former waste oil tank	Sampled soil from boring for POG, total petroleum hydrocarbons as gasoline (TPH-G), TPH as diesel (TPH-D), benzene toluene, ethylbenzene and xylenes (BTEX) and halogenated volatile organic compounds (HVOCs).	Soil contained hydrocarbons only at the capillary fringe: 35 ppm TPH-G, 0.23 ppm benzene and 0.0064 ppm 1,2-dichloroethane (1,2-DCA). No TPH-D or POG detected.
February 1992	Installed ground water monitoring wells MW-2 (located adjacent to the underground gasoline tanks) and MW-3 (located adjacent to the upgradient corner of the service station property)	Sampled soil from borings for TPH·G, BTEX and HVOCs.	Only soil at the capillary fringe or in the saturated zone contained hydrocarbons. Up to 79 ppm TPH-G and 0.59 ppm benzene detected. No HVOCs were detected.
June 1994 through March 1995	Collected soil and grab ground water samples from soil borings BH-1 through BH-10 and installed downgradient ground water monitoring well MW-4	Soil samples from between 15 and 21 ft depth and ground water samples from these borings were sampled for hydrocarbons.	Only one sample contained hydrocarbons: soil from 16 ft depth in boring BH-3 contained 0.013 ppm benzene. No TPH-G, toluene, ethylbenzene, xylenes or HVOCs detected in any soil samples. The water samples from borings BH-2 and BH-3 contained 5,200 and 120,000 parts per billion (ppb) TPH-G, respectively. The water sample from boring BH-3 also contained 25,000 ppb benzene.
July 1996	Collected soil and soil vapor samples from borings SVS-1 through SVS-10	Selected soil samples were analyzed for petroleum hydrocarbons and geotechnical parameters. Soil vapor samples were analyzed for BTEX and atmospheric gases	No TPH-G, BTEX or methyl tertiary-butyl ether (MTBE) were detected in the soil samples, except 1.1 ppm TPH-G in one sample. BTEX vapors were detected in vapor from depths between 1 and 20 ft depth in all borings. Vapors from three different depths were sampled in borings SVS-3, SVS-5 and SVS-9. These samples did not show a declining concentration trend from the water table toward ground surface. Some samples contained atmospheric gas concentrations that differed from concentrations in ambient air, suggesting that biodegradation of hydrocarbons is occuring.
March 1990 through present	Measured ground water depths and sampled ground water quarterly	Ground water samples from wells MW-1 through MW-4 were analyzed for petroleum hydrocarbons and HVOCs	Ground water samples from wells MW-1 and MW-2 have contained more than 10,000 ppb TPH-G and 1,000 ppb benzene. No hydrocarbons or low concentrations of petroleum hydrocarbons have been detected in ground water from downgradient well MW-4. In December 1996, 0.25 ft of separate-phase hydrocarbons were measured in well MW-2.

PP also in MW-1 (3/96) and MW-3 (3/96) RBCA REPORT SUMMARY

Worksheet 2.5

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

SUMMARY OF POTENTIAL NEAR-TERM SITE ACTIVITIES (1-2 YRS.)

Typical site activities to be recorded include: Preliminary Site Assessment/Site Inspection • Emergency Response • Review Hazard Ranking System

■ Risk/Exposure Assessment ■ Remedy Selection ■ Remedy Implementation

Types of sampling & testing include:

● Soll • Groundwater • Surface Water • Vapors

Date	Description of Tools	Sampling and Testing Conducted	Goal / Result / Product / Impact	Declart Cart	
Completed March 1997	Description of Task Submittal of a corrective action plan and RBCA evaluation	none	Determine the most appropriate corrective action for the site and implement corrective action	Project Cost NA	
Ongoing	Ground Water Monitoring	Sampling of ground water monitoring wells for petroleum hydrocarbons	Assess whether dissolved hydrocarbons in ground water are declining	NA	
	167	5 20	08		
	75			- ×	
		8			

RECA SUMMARY REPORT

Worksheet 3.1

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page 1 of 1

REGIONAL HYDROGEOLOGIC CONDITIONS REGIONAL HYDROGEOLOGY (See Figure 5) Instructions: Describe regional geologic framework through depth of principal regional aquifer and any other potentially impacted lithologic units. Identify principal formations and water-bearing units. Regional Stratigraphy Principal Aquifers Identify principal water-bearing zones. Identify principal formations, soil or rock type, depth intervals, etc. Add horizontal lines to Indicate aquifer use designation (if any), 03-1-W inherent water quality (TDS, etc.), and potential yield ("low" = <1500 gpd/well; "medium" = 1500 to 15000 gpm/well; segregate units. HPT Stratum Description: *high* = >15000 gpd/well) (Ground Surface) 0 Quaternary alluvial deposits Predominately clay and silt to 15 to 25 ft depth Water table between 20 and 25 ft depth; first water-bearing zone appears semi-confined beneath parts of site Clayey sand to silty sand from about 25 ft depth to total depth explored of about 40 ft depth Contact depth beneath site uncertain Gabbro - diabase bedrock 100 NOTES: Actively creeping trace of Hayward Fault underlies Freedom Avenue adjacent to site 175 Alluvium-bedrock contact depth increases toward the west from the Hayward Fault.

RECA SUMMARY REPORT

Worksheet 3.2

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page 1 of 1

HYDF	TOULUE	DOUGLES WAREN TO	and the second second second second			
SITE HYDROGEOLOGY	Profession .	ON CHEST OF ST	The second second	2011年2月	W. Carlot	
A. UNSATURATED / VADOSE ZONE (Se	ee Figure 6)					
Depth to first encountered water (ft.): 20-30						
Unsaturated zone permeability:	low to moderate - estimated					
Soil or rock type:	silty clay t	o silty sand				
Soil affected by hydrocarbons (Y/N)?	yes					
Discussion:						
81						
B. WATER-BEARING UNITS (See Figures 5 and	6)	The	6	-	KTT	
11		TO 1	Encountered ater Unit		Drinking r Unit	
Aquifer type (perched, confined, unconfined)):		, possibly semi-	NA NA		
			infined			
Depth to groundwater (ft):		1	20-30	N.A		
Aquifer thickness (ft):		un	known	NA.	1	
Seasonal/Historical water level fluctuations (± ft):		10	N.A		
Gradient (ft/ft)/ and flow direction:		0.00007 t	o 0.002/varies	NA.		
Soil or rock type:		silty clay	to silty sand	NA.		
Maximum well yield (gpm/ft):		un	known	NA NA		
Saturated hydraulic conductivity (ft/day):		un	known	NA NA		
Hydraulic conductivity test method:		O grain size	slug test	grain size C	alug test	
ayuraune conductivity test memou:						
Discussion: Based on ground water elemants varied. Discussion the distribution of hydrich is consistent with the topographical calculated from depth to water data from	ydrodautoru gradient. C	pump tes flow direction sits ground to cradient mag	t other (specifin of ground water start, ground water initially ground water)	r in the first water er in this zone to	r-bearing zone	
(TO SELECT)	ydrodautoru gradient. C	pump tes flow direction sith grounds aradient mag MW-3 and	t other (specifin of ground water start, ground water initially ground water)	r in the first wate er in this zone to st encountered w	r-bearing zone wastward, vater unit were	
Discussion: Based on ground water ele has varied. Based on the distribution of he which is consistent with the topographica calculated from depth to water data from	ydrodautoru gradient. C	pump tes flow directions in ground to a radient mag MW-3 and	t other (specifin of ground water along ground water ground water) the fluor of the	r in the first wate er in this zone to st encountered w Above I	r-bearing zone	
Discussion: Based on ground water ele has varied. Based on the distribution of he which is consistent with the topographica calculated from depth to water data from	ydrodautoru gradient. C	pump tes flow directions in ground to a radient mag MW-3 and	t other (specifin of ground water specific ground water land the find the find the find the find the first land	r in the first wate er in this zone to st ericountered w Above I Drinking N	r-bearing zone water unit were Primary Water Unit	
Discussion: Based on ground water ele- has varied. Based on the distribution of I which is consistent with the topographica- calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known)	ydrodautoru gradient. C	pump tes flow directions in ground to a radient mag MW-3 and	t other (specifin of ground water of ground water of the fluctuation o	r in the first wate er in the first wate est ericountered w Above I Drinking NA	r-bearing zone water unit were Primary Water Unit	
Discussion: Based on ground water ele- has varied. Based on the distribution of I which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type:	ydrodautoru gradient. C	pump tes flow directions in ground to a radient mag MW-3 and	t other (specifin of ground water of ground water of the find wate	r in the first wate er in this zone to st ericountered w Above I Drinking N	r-bearing zone water unit were Primary Water Unit	
Discussion: Based on ground water elected has varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft):	ydrodarbora I gradient. G wells MW-2,	pump tes flow directions in ground was and in the mag MW-3 and in the mag Be Encounted	t other (specifin of ground water ground water initudes for the flamward. Idow First cred Water Unit NA NA NA	r in the first wate er in this zone fie st encountered w Above I Drinking NA NA	r-bearing zone water unit were vater unit were Primary Water Unit	
Discussion: Based on ground water elected that varied allowed the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion:	ydrodarbora I gradient. G wells MW-2,	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted	t other (specifin of ground water ground water ground water initudes for the flamward. Idow First cred Water Unit NA NA NA	r in the first wate er in this zone its st encountered w Above I Drinking NA NA	r-bearing zone was wastward, vater unit were Primary Water Unit	
Discussion: Based on ground water elemas varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion:	ydrodarbora I gradient. G wells MW-2,	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted	t 🗆 other (specifin of ground water of ground water initudes for the flam.) It was to the flam. It was to the f	r in the first wate er in this zone its st encountered w Above I Drinking NA NA NA	r-bearing zone water unit were Primary Water Unit Drinking r Unit	
Discussion: Based on ground water elected as varied, is a seed on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DA	ydrodarbora I gradient. G wells MW-2,	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted	t other (specifin of ground water of ground water initudes for the flamward water initudes for the flamward water Unit NA	r in the first wateer in the first wateer in the first water steed of the steed of	r-bearing zone water unit were Primary Water Unit Drinking r Unit	
Discussion: Based on ground water elements varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DATE dissolved solids: (rng/L) Observed groundwater quality impact (Y/N):	ydrodarbora I gradient. G wells MW-2,	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted	t other (specifin of ground water of ground water pluckers for the flamward water the flamward water unit of the flawward water u	Above I Drinking NA NA Primary Wate	r-bearing zone water unit were Primary Water Unit Drinking r Unit	
Discussion: Based on ground water elemants varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DA Total dissolved solids: (mg/L) Observed groundwater quality impact (Y/N): Separate phase product present (Y/N):	gradient. G wells MW-2,	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted First	t other (specifin of ground water of ground water states of the flamward water initially of the flamward water water water water unit of the flamward water unit of the flawward water	Above I Drinking NA NA Primary Wate NA	r-bearing zone water unit were Primary Water Unit Drinking r Unit	
Discussion: Based on ground water elemants varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DA Total dissolved solids: (mg/L) Observed groundwater quality impact (Y/N): Separate phase product present (Y/N): Off-site hydrocarbon sources (Y/N, Identify)	TA (see Figure	pump tes flow directions in grounds aradient mag MW-3 and Be Encounted W	t other (specifin of ground water of ground water states of the flat MW-4. It was a specific of the flat MW-4. It was a	Primary Wate NA Output Primary Wate NA Output NA Output NA NA NA NA NA NA NA NA NA N	r-bearing zone water unit were Primary Water Unit Drinking r Unit	
Discussion: Based on ground water elemas varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DATA dissolved solids: (mg/L) Observed groundwater quality impact (Y/N): Separate phase product present (Y/N)?: Off-site hydrocarbon sources (Y/N, Identify): Discussion: An ARCO station is about located about 0.25 miles east (upgradien	TA (see Figure	pump tes flow directions in grounds aradient mag MW-3 and Be Encounte T) First W	t other (specifin of ground water of ground water pluces for the flamward water initially of the flamward water Unit NA	Above I Drinking NA NA Primary Wate NA no unkno	Primary Water Unit Drinking r Unit wm	
Discussion: Based on ground water elemas varied. Based on the distribution of heats varied by the heats of the distribution of the heat varied by the heat vari	TA (see Figure	pump tes flow directions in grounds aradient mag MW-3 and Be Encounte T) First W	t other (specifin of ground water of ground water pluces for the flamward water initially of the flamward water Unit NA	Above I Drinking NA NA Primary Wate NA no unkno	Primary Water Unit Drinking r Unit wm	
Discussion: Based on ground water elemants varied. Based on the distribution of the which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: D. CURRENT GROUNDWATER QUALITY DA Total dissolved solids: (mg/L) Observed groundwater quality impact (Y/N): Separate phase product present (Y/N): Off-site hydrocarbon sources (Y/N, Identify)	TA (see Figure	pump tes flow directions in grounds aradient mag MW-3 and Be Encounte T) First W	t Dother (specifin of ground water of ground water pluckers for the flam.) It was a specific water the flam. It was a s	Above I Drinking NA NA Primary Wate NA no unkno	Primary Water Unit Drinking r Unit Own The Storage case	
Discussion: Based on ground water elemants varied. Based on the distribution of head varied by which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ff): Soil or rock type: Discussion: Discussion: Discussion: OCURRENT GROUNDWATER QUALITY DA Total dissolved solids: (rng/L) Observed groundwater quality impact (Y/N): Separate phase product present (Y/N)?: Off-site hydrocarbon sources (Y/N, Identify): Discussion: An ARCO station is about located about 0.25 miles east (upgradien site with the Regional Water Quality Contributed REFERENCE DOCUMENTS FOR SITE	TA (see Figure	pump tes flow directions in ground was and in mag MW-3 and in mag MW-3 and in mag Encounter The pump tes First in mag William tes The pump tes First in mag MW-3 and in mag	t Dother (specifin of ground water of ground water place of the flam.) In the flam.	Above I Drinking NA	Primary Water Unit Drinking r Unit Own The Country Own	
Discussion: Based on ground water eleman varied. Based on the distribution of head varied by which is consistent with the topographical calculated from depth to water data from C. AQUITARD/CONFINING LAYER (if known) Depth below grade (ft): Thickness (ft): Soil or rock type: Discussion: Discussion: Discussion: Discussion: Off-site hydrocarbon sources (Y/N): Discussion: An ARCO station is about located about 0.25 miles east (upgradien site with the Regional Water Quality Control REFERENCE DOCUMENTS FOR SITE	TA (see Figure	pump tes flow directions in ground was and in mag MW-3 and in mag MW-3 and in mag Encounter The pump tes First in mag William tes The pump tes First in mag MW-3 and in mag	t Oother (specifin of ground water of ground water initudes for the flam.) Iow First and Water Unit NA	Above I Drinking NA	Primary Water Unit Drinking r Unit Drinking r Unit Date Issued	

^{*} Items not required for Tier 1 analysis.

Worksheet 3.3

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page 1 of 1

BENEFICIAL USE SUMMARY

Instructions: The purpose of this worksheet is to identify existing and reasonable beneficial uses for land, groundwater, and surface water. These uses will help establish any existing or potential receptors.

Site Land Use (Se	ee Figures	1 and 3)		Surrounding Land	Use (S	ee Fi	gure 2)		
	Current	Potential	Prior			rrent	Potential	Prior	
Residential				Residential		10000	A SECULIAR SECULIAR	10000000	
Commercial		=		Commercial					
Industrial				Industrial	- 1			Q	
Sensitive Habitat			Q	Sensitive Habitat	1				
Other:				Other:	772				

Notes: Discuss options for listed items (including anticipated future use).

SURFACE AND GROUNDWA	110000000000000000000000000000000000000	CONT. CONT. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	一个一种的数据的	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	新疆的 的第三人称	
Surface Water Use (See Figures 1 and 3)			First Encountered Groundwater(See Worksheet 2.1, 3.2, 4 Figure 6)			
	Current	Potential		Current	Potential	Π
Recreational			Domestic Supply			
Domestic/Municipal Supply			Public/Municipal Supply			
Industrial Process Supply		a l	Industrial Process Supply		Q	
Sensitive Habitat			Freshwater Replenishment	Q		
Commercial/Sport Fishing			None			
None		0	Other: Irrigation	=		
Other: Not applicable						

Notes: Discuss options for listed items (including anticipated future use). Based on USGS topographical maps, no surface water exists within 1 mile of the site.

POTENTIAL RECEPTOR SURVEY

Comments: Discuss type of utility (water, storm sewer, sanitary sewer, electical, etc.). Discuss type of building construction (slab on grade, crawl space, basement). Listing of receptor is not necessary if not near source or if a deep water table is present. (Indicate N/A in table where appropriate). Discuss nearest and other receptors and indicate on Figure 1.

metric description are all		Distance & Direction
Underground Utility Survey (Figure 1,	2, 3) Name & Type:	from Source Area:
Nearest Underground Utility	storm and sanitary sewer	30 ft northwest (estimated)
Nearest Off-Site Underground Utility	storm and sanitary sewer	30 ft northwest (estimated)
Neurest Downgradient Utility	storm and sanitary sewer	40 ft west (estimated)
Building Survey (Figure 1, 2, 3)		
Nearest Building	residential	25 ft southwest
Nearest Inhabited Building	residential	25 ft southwest
Nearest Off-Site Inhabited Building	residential	25 ft southwest
Surface Water Hydrology		
Nearest Surface Water	Lake Chabot	1.1 miles east
Nearest Downgradient Surface Water	San Francisco Bav	3.5 miles west
Notage		

VERSION: 1.0

PAGE 3-3

RBCA SUMMARY REPORT

Worksheet 3.4

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page I of I

WELL INVENTORY SURVEY

SUMMARY OF WELLS WITHIN 0.5 MILE RADIUS OF SITE

See Figure 1 for the well inventory survey within a 0.5 mile radius of the site.

	Radial	Distance	Downgradient Direction		
Well Type	Total No.	Active No.	Total No.	Active No.	No. Screened in Potentially Impacted Aquifer
Public/Municipal	0	0	0	0	0
Industrial	0	0	0	0	0
Domestic	1	up to 1	0	0	0
Irrigation	10	up to 10	4	up to 4	up to 4

POTENTIAL RECEPTOR POINTS

	Closest Downgradient Supply Well (1)	Closest Downgradient Drinking Water Well	Closest Actual Down- gradient Receptor (3)	Closest Reasonable Potential Well (4)
Well No. or Designation:	3S/2W 6C	none	3S/2W 6C	NA
Distance from Site (ft):	600	NA	600	25
Total Well Depth (ft):	30	NA	30	any depth
Current Use of Water:	irrigation	NA	irrigation	any use
Screened Interval below Ground Surface (ft):	unknown	NA	unknown	any interval
Seal Interval below Ground Surface (ft):	unknown	NA	unknown	minimum 20
Year Constructed:	unknown	NA	unknown	future
Water Use Classification (see Worksheet 3.3):	irrigation	NA	irrigation	any classification

Information Sources:

- (1) Well 3S/2W6C is located at 1524 150th Avenue, San Leandro.
- (2) No drinking water wells were identified within 0.5 mile downgradient of the site.
- (3) Well 3S/2W6C is considered the closest downgradient ground water receptor.
- (4) The closest reasonable location in the downgradient direction for a supply well is beneath the adjacent residential property.

Source of (1,2,3): Alameda County Zone 7 Water Agency well inventory databsae.

Notes:

- 1. Supply Well: Any water supply well (drinking water, agricultural, industrial, etc.), which has not been abandoned and is completed through any lithologic unit that could be potentially impacted.
- 2. Drinking Water Well: Municipal or residential drinking water suppy completed in any lithologic unit.
- 3. Actual Receptor: Municipal or residential drinking water supply well completed in same lithologic unit in which plume is migrating.
- 4. Potential Well: Closest resonable placement for the future location of an off-site well.

Worksheet 3.5

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page I of 1

ECOLO	GICAL AS	SESSME	NT SUMMA	ARY
QUALITATIVE ECOLOGICAL IMPAC	T ASSESSMEN	T (TO	SELECT	Y Cash Micaki Zerzin
Visual Site Inspection	· ADOLOGINE	11 10	Vinteda to 1	
Date Conducted: February 27, 1997	By: We	iss Associat	es	
Observed Impacts Associated with S				
On-site vegetation	none		limited	☐ extensive
Off-site vegetation	none		limited	extensive
On-site mammals, birds, fish, etc.	none		suspected	☐ observed
Off-site mammals, birds, fish, etc.	none		suspected	□ observed
Other impacts	none		yes (explain bel	
Discussion:	- none		yes (explain bel	04)
small planters in the northern property properties are landscaped. No impacts HABITAT CHARACTERIZATION	s to vegetation	were observe	ed.	
Presence of Sensitive Habitat	The way to the control and	attraction of the same	CHECK TO SEC.	THE PERSON NAMED OF PERSON NAMED OF THE PERSON
Site located within or impacts a sensitive of	or protected habit	tat? no	ves (ex	plain below)
Description of Sensitive Habitat	Protection institution	M. – 110	—)05(0x)	Pilli 000017)
Name:				
Location:				
	☐ Wetland	. 0.1	tourism F	T. MOROUS
Habitat Type:	77 97110010			Upland
Discussion: Provide other information rela	-			Late Recovery
protection, etc.				uatory authority, basis jor
To the best of WA's knowledge, no ser	nsitave nabitats	are near the	sne.	
	9.1			
		-		
ECOLOGICAL RECEPTORS	St. Parkets	30000000000000000000000000000000000000	SALVEDINO N	《中国》的《中国》的《中国》
ECOLOGICAL RECEPTORS Presence of Impacted Ecological Re Site conditions have impacted sensitive eco		and the second	AND THE SHOP IN THE SECOND	no 🔘 yes (explain below)
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco		and the second	AND THE SHOP IN THE SECOND	no 🚨 yes (explain below)
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors		s, either on-si	te or off-site? ■	
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors		s, either on-si	te or off-site? ■	no yes (explain below) rt Significant Species
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors		s, either on-si	te or off-site? ■	
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors		s, either on-si	te or off-site? ■	
Presence of Impacted Ecological Re		s, either on-si	te or off-site? ■	
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors		s, either on-si	te or off-site? ■	
Presence of Impacted Ecological Re Site conditions have impacted sensitive eco List of Affected Receptors Threatened or Endangered Species	ological receptor	s, either on-si	te or off-site?	rt Significant Species
Presence of Impacted Ecological Reside conditions have impacted sensitive ecological Affected Receptors Threatened or Endangered Species ECOLOGICAL ASSESSMENT SUMM	ological receptor	s, either on-si	te or off-site?	rt Significant Species
Presence of Impacted Ecological Reside conditions have impacted sensitive ecological of Affected Receptors Threatened or Endangered Species ECOLOGICAL ASSESSMENT SUMM Observed or Potential Impacts	IARY AND REC	s, either on-si Eco COMMENDE	te or off-site?	rt Significant Species
Presence of Impacted Ecological Resite conditions have impacted sensitive ecological of Affected Receptors Threatened or Endangered Species ECOLOGICAL ASSESSMENT SUMM Observed or Potential Impacts None observed or anticipated	IARY AND REC	s, either on-si Eco COMMENDE commended action require	te or off-site?	rt Significant Species
Presence of Impacted Ecological Resite conditions have impacted sensitive ecological of Affected Receptors Threatened or Endangered Species ECOLOGICAL ASSESSMENT SUMM Observed or Potential Impacts	IARY AND REC	Ecommended action requirements	nomically/Spo. D ACTION Action ed puired (describe b	rt Significant Species

REPORT RBCA SUMMARY

Worksheet 4.1

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page 1 of 1

RBCA SITE CLASSIFICATION SUMMARY

Instructions: Determine RBCA Site Classification using site classification flowcharts provided in Tier I RBCA Guidance Manual, as follows:

Evaluate available information on site soils, vapors, groundwater, surface water, and Record critical site classification scenario and initial response miscellaneous impacts using the corresponding flowcharts. Record two-digit site classification number for each medium.

action in space provided. If there is more than one number within the lowest classification group (e.g., Class 2), record both (e.g., 2.1, 2.3).

Compare numerical values from individual media to identify critical site classification(s) (i.e., lowest values).

As site evaluation progresses, update site classification as appropriate by repeating Steps 1 - 3, based upon additional site data or completion of corrective measure.

SITE STATUS

MEDIUM-SPECIFIC **CLASSIFICATION VALUES**

CRITICAL CLASSIFICATION(S)

Date	Status Description	Sell	Ground- water	Vapor	Surface Water	Miss	Classification No. and Scenario	Prescribed Initial Response
March 1997	Low hydrocarbon concentrations detected in soil. Separate-phase hydrocarbons measured on water table. BTEX vapors detected in soil pore spaces.	4	3	4	NA		4 Soil vapor concentrations indicate no short-term or long-term threat to human health due to inhalation 3 Downgradient irrigation well may be impacted by petroleum hydrocarbons in the future 4 Soil not severely impacted based on analytic data	Perform Tier 2 svaluation to determine risk to irrigation well using fate and transport of dissolved hydrocarbons in ground water.
EVISED CL	ASSIFICATION		346Hr 4	77 - 386-2	Service Chapter			
						•		N T

Worksheet 4.2

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check boxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (n = applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

Worksheet 5.1

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page I of I

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier 1 evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (•).

Note: * Confirm conservatism of these values for Tier 1 evaluation.

Ş	Provide	site-specific	: measurement or	estimate for	Tier 2 evaluation.
---	---------	---------------	------------------	--------------	--------------------

Soil Para	meters	Defe	zult Value Used	Site-Specific Value	Used
	soil type		sandy soil		
Θ_T	Soil porosity		0.38 (dim)	<u> </u>	§
Θ_{ws}	water content - vadose zone		0.12 (dim)	<u> </u>	
Θ_{as}	air content - vadose zone $(=\Theta_T - \Theta_{ws})$		0.26 (dim)	<u> </u>	2
Θ _{wcap}	water content - capillary fringe	Π,	0.342 (dim)	<u> </u>	-
⊖ _{acap}	air content - capillary fringe $(=\Theta_T - \Theta_{WCAD})$		0.038 (dim)	o	
ρ _s	Soil density		1.7 g/cm ³	α	§
foc	mass fraction of organic carbon in soil		0.01 (dim)	o	03 03 00 00
Lş	Depth to contaminated soil		100 cm	-	ş
Lgw	Depth to groundwater		300 cm	Q	§
heap	capillary zone thickness		5 cm		
hv	vadose zone thickness (= Lgw - hc)		295 cm	<u> </u>	
pН	Soil/water pH		6.5	<u> </u>	
Groundw	vater Parameters				
I _	Water infiltration rate		30 cm/yr	<u> </u>	-
V _{gw}			82.0 ft/yr	<u> </u>	*§
δ_{gw}	groundwater mixing zone depth		200 cm	<u> </u>	*§
DF	aquifer dilution factor (= 1 + $V_{gw} \delta_{gw} / (IW)$)		12.1		-
Surface I	Parameters			8	
Uair	Amb. air velocity in mixing zone		225 cm/s	o	*§
δ_{air}	Mixing zone height		200 cm	o	*§
Α	Contaminated Area		2250000 cm ²	0	2
W	Width of Contaminated Area		1500 cm	0	_
d	Thickness of Surficial Soils		100 cm	0	§
Pe	Particulate areal emission rate		2.17E-10 g/cm ² -s		_ §
Building	Parameters				
Lcrack	Foundation crack thickness		15 cm	o	-
η	Foundation crack fraction		0.01 (dim)	-	2
Lbr	Building Volume/Foundation Area Ratio (res.)		200 cm		
Lbc	Building Volume/Foundation Area Ratio (com/ind.)		300 cm	<u> </u>	
ER _T	Building vapor volume exchange rate (res.)		12 dy ⁻¹	0	
ERc	Building vapor volume exchange rate (com/ind.)		20 dy-1	<u> </u>	

Discussion: Provide rationale for default parameter revision; discuss additional site-specific features of note; etc

(continue on next page if needed)

Worksheet 5.2

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page 1 of 1

	. 1	Site N	fedi	a Analyze	d (🗷 70	SELECT)	
		Gro		Surface Soil	Subsurf. Soil	Soil Vapor	Ambien Vapor	Surface Water
	Applicable?							
	Sampled?							
Chemical Analysis	EPA Analysis Metho	d •aı	1a. =	chemica	analyzed	; •det. =	chemical	detected
Organic Chemicals		ana.	det.	ana_/det.	ana./det.	ana./det.	ana./det.	ana./det.
Volatile Organics	8240 / 624							
Semi-Volatile Organics	8270 / 625							
Polynuclear Aromatic Hydrocarbons	8310 / 8270							
Pargeobie Aromatics	8020 / 602				A 40	福力		
Total Petroleum Hydrocarbons (GC)	8015G / 8015D							
Halogenated Organic Chemicals		ana./	det.	ana./det.	ana./det.	ana_/det.	ana./det.	ana./det.
Natogenated Volatile-Organics	8010 / 601	100						
Organochlorine & PCBs	8080			a a			امما	
Inorganic Chemicals		ana	det	ana/det	ana_/det_	ana./det.	ana./det.	ana_/det_
Metals	6010 / 7xxx series			00	00	00		
Others		ana./	det.	ana./det.	ana./det.	ana./det.	ana./det.	ana./det.
Petroleum oil and grease	APHA 5520							
A STANSON IN STREET, STANSON S							ا و ہ ا	8 0
(
1		_	Ξ					0 0
1		0	<u>u</u>	00	00	0 0	0	0

Items						
Subsurface soil and ground water	Samples collected water will continu			carbons in subsurface	soil and ground water	er. Ground
- 5			¥ .	T		
Soil vapor	Soil vapor sample ground surface.			ether BTEX vapors ar ing is planned.	e attenuating as they	migrate toward
			V24			
			V34			
		<u> </u>	V/A			
		(4)	V/4 III			
		34	V24		Δ.	æ
		94	V94 III		e.	a

Worksheet 5.3

Site Name:

Shell Service Station, WIC 204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Ave, San Leandro, CA

Completed By:

Weiss Associates

Page I of I

SUMMARY OF SOURCE ZONE CHARACTERISTICS

Instructions: Provide information regarding presence and dimensions of affected soil and groundwater zones. For each affected medium, list constituents of concern (COCs) and representative concentration data on Worksheets 5.4 - 5.6. Describe source area histories on Worksheets 2.2 and 2.3 and show locations on Figures 3 through 7. (Under RBCA, the affected soil or groundwater zone is defined as the area or volume containing COC concentrations in excess of Tier 1 screening levels.)

-3			
AFFECTED SURFACE	ESOILS (≤3 ft BGS) = (■ TO SELECT)	MATHEMATICAL HEAVY	建 国建设。1915年
☐ Present ☐ Not Present ■Not Measured	If present, complete the following: • Maximum areal extent (ft ²): • Width of affected zone (ft): • Length of affected zone (ft): • Depth interval (ft,BGS):		(Provide COC data on Worksheet 5.4)
AFFECTED SUBSURI	FACE SOILS (>3 ft BGS)		启然 和原用是1000年
■ Present	If present, complete the following:		
☐ Not Present☐ Not Measured	• Depth to top of affected soil (ft) (min. 3 ft, BGS):		(Provide COC data
	Depth to base of affected soil (ft, BGS):		on Worksheet 5.5)
	 Maximum areal extent (ft²): 		
Except for petroleum o	il and grease beneath the former waste oil tank, n ry fringe.	o hydrocarbons have bee	en detected in the vadose
AFFECTED GROUND		郑顺张 《黄色经知》	\$500°/5型排稿位面信节样表
■ Present □ Not Present	If present, complete the following: • Maximum areal extent (ft ²):	42,700	27, 200 ft2.
☐ Not Measured	• Length of plume (ft):	170	(Provide COC data
	Width of plume (ft):	160	on Worksheet 5.6)
	Depth to top of affected water-bearing unit (ft, BGS):	20-30	- 100 - 100 - 100
	Depth to base of plume (ft, BGS):	35 (estimated)	
			÷
OTHER SOURCE ME	DIUM	电影影响 (1985年)	國際 《神経的英語·27节》
■ Present	If present, describe nature of material and d	imensions:	
□ Not Present	Hydrocarbons are present in soil vapor near t	he underground	
	gasoline tanks, along the Shell station's south		— (Provide COC data
	boundary and beneath 150th Avenue.		on separate table)
P			

plane is longer tha

Worksheet 5.5

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed: April 21, 1997

Site

1784 150th Avenue, San Leandro, California

Completed By: Weiss Associates

ciates Page 1 of 1

Location:

SUBSURFACE SOIL CONCENTRATION DATA SUMMARY (>3 FT BGS)

Source of Data:

Previous subsurface investigation data

Sample ID or Sample Set Used:

All unsaturated soil data used

Worse Case Depth to Max. Impact

8 ft

Sample Date:

November 1986 through July 1996

		ANALYTIC	CAL METHOD	SA POPI	MPLE ULATION	DETECT	ED CONCENTR		SELECTED REPRESEN-
CONSTITUENTS	S DETECTED Name	Method No.	Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Max Conc. (mg/kg)	Mean Conc. (mg/kg)	Upper 90%CL Conc. (mg/kg)	TATIVE CONC. (mg/kg)
CAS No.	Name						, , , ,	1 2 3	(86)
71-43-2	Benzene	EPA 8020	0,0025	28	8	0.69	NA	NA NA	0.59
108-88-3	Toluene	EPA 8020	0.0025	28	3	1.5	NA	NA	1.5
100-41-4	Ethylbenzene	EPA 8020	0.0025	28	4	0.91	NA	NA	0.91
1330-20-7	Xylenes	EPA 8020	0.0025	28	4	4.1	NA	NA	4.1
107-06-2	1,2-Dichloroethane	EPA 8010	0.0005	11	1	0.0064	NA	NA	0.0064
1643-04-4	Methyl tertlary-bulyl ether	EPA 8020	0.0025	7	0	<0.025	NA	NA	<0.025
127-18-4	Tetrachloroethene	EPA 8010	0.0005	11	0	<0.005	NA	NA	<0.005
				-					

Worksheet 5.6

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

GROUNDWATER CONCENTRATION DATA SUMMARY

Source of Data:

Ground water monitoring data

Sample ID or Sample Set Used:

All data used from between first and fourth quarters 1996; mean concentrations are for most impacted well: MW-2

Worse Case Depth to Max. Impact

20 ft

Sample Date:

See notes

		ANALYTIC	CAL METHOD		MPLE JLATION	DETECT	ED CONCENTR	ATIONS	SELECTED REPRESEN-
CAS No.	S DETECTED Name	Method No.	Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Max Conc. (mg/kg)	Mean Cone, (mg/kg)	Upper 90%CL Conc. (mg/kg)	TATIVE CONC. (mg/kg)
	Bergana*	EPA 8020	0.0005	13	8	28	18.5	NA	49.7
108-88-3	Toluene"	EPA 8020	0.0005	13	8	20	15	NA	15
100-41-4	Ethylbenzene ^a	EPA 8020	0.0005	13	7	4.1	3.5	NA	3.5
1330-20-7	Kylenes*	EPA 8020	0.0005	13	9	22	18	NA	18
107-06-2	1,2-Dichloroethane ^b	EPA 8010	0.0005	8	5	0.056	NA	NA	0.056
1643-04-4	Methyl tertlary-butyl ether	EPA 8260	0.0025	11	8	0.99	NA	NA	0.99
127-18-4	Tetrachloroethene ^d	EPA 8010	0.0005	68	3	0.024	NA	NA	0.024
	=								
	0								8
24			0						

a = Representative value is the mean concentration for samples from most impacted well (MW-2) between March and December 1996.

b = Representative value is the maximum concentration for samples from the most impacted well (MW-2) between March and December 1996.

c = Representative value is maximum concentration for well MW-2 that was confirmed by EPA Method 8260.

d = Representative value is the maximum concentration for ground water.

Worksheet 5.7

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

SOIL VAPOR CONCENTRATION DATA SUMMARY

Source of Data:

July 1996 Soil Vapor Investigation

Sample ID or Sample Set Used:

Soil vapor sample locations SVS-2, SVS-3, SVS-4. These sample locations were nearest the residential receptor buildings.

Worse Case Depth to Max. Impact

1 ft

Sample Date:

July 18, 1996

- appears to only be 505.3 @ 1 Samples

12)		ANALYTIC	AL METHOD	SA POPE	MPLE ULATION	DETECT	ED CONCENTR	ATIONS	SELECTED REPRESEN-
CONSTITUENT	S DETECTED Name	Method No.	Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Max Conc. (mg/kg)	Mean Conc. (mg/kg)	Upper 94%CL Cone. (mg/kg)	TATIVE CONG. (mg/kg)
CAS No.	Name			State State	TO HATTAGE.		Amily may	Company of	(mg/kg)
71-43-2	Benzene	CARB 410A	2	7	7	0.41	NA	NA	0.41
108-88-3	Toluene	CARB 410A	2	7	7	0.56	NA	NA	0,56
100-41-4	Ethylbenzene	CARB 410A	2	7	7	0.19	NA	NA	0.19
1330-20-7	Xylenes	CARB 410A	. 2	7	7	0.66	NA	NA .	0.66
			4						
			÷ (#						
	<u>₩</u>								
				α					
	0								
				<u> </u>					

Worksheet 6.2

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page I of I

TIER 1 RBSL EVALUATION: SUBSURFACE SOIL (> 3 FT BGS)

Tier 1 Target Risk Limits:

Exposure Scenario = Residential

TR = 10⁻⁵ Individual Con

HQ = 1.0 Individual Con

Instructions: Specify target risk limits upon which Tier I risk-based acreening levels (RBSLs) are based. Identify complete exposure pathways for site (= complete). Record site sample measurements for constituents of concern (COCs) and corresponding RBSL values for complete pathways. Identify minimum RBSL value for each COC. Note whether site concentration exceeds minimum RBSL value.

RBSL RESULTS FOR COMPLETE EXPOSURE PATHWAYS (MI IF COMPLETE)

CONSTITUE	NTS OF CON	CERN	REP. CONC.	Leaching to Grdwtr.	Leaching to GW MCL	■ Vol. to. Amb. Air.	■ Vol. to Indoor Air	Minimum RBSL Value	RBSL Exceeded?
Sample ID (optional)	CAS No.	Name	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	If yes
	71-43-2	Benzana	6000	0.05	NA	0.79	a	0.05	10 M
	108-88-3	Toluene	1.5	129	NA	RES	а	129	
	100-41-4	Ethylbenzene	0.91	575	NA	RES	a	575	0
	1330-20-7	Xylenes	4.1	RES	NA	RES	a	RES	
	107-06-2	1,2-Dichoroethane	0.0064	0.074	NA	78	0.097	0.074	
	1643-04-3	Methyl tertlary-butyl ether	<0.025	0.43	NA	RES	320	0.43	a
	127-18-4	Tetrachloroethene	<0.005	260	. NA	24,000	490	260	Q
	8			12					a
	- V							-	
									0

Notes:

TR = Target risk limit for excess lifetime carcinogenic risk.

HQ = Hazard quotient for individual constituent non-carcinogenic effects.

MCL = Drinking Water Maximum Contaminant Level, if applicable.

RES = Selected rink level not exceeded for pur compound present at any concentration in soil.

a = The volatilization from soil to indoor air is a potentially complete pathway but is evaluated as a soil vapor pathway (refer to Worksheet 6.4).

Worksheet 6.3

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page 1 of 1

TIER 1 RBSL EVALUATION: GROUNDWATER

Tier 1 Target Risk Limits:

Exposure Scenario = Residential

 $TR = 10^{-6}$ HQ = 1.0

_ Individual Cos _ Individual Cos

Instructions: Specify target risk limits upon which Tier I risk-based screening levels (RBSLs) are based. Identify complete exposure pathways for site (= complete). Record site sample measurements for constituents of concern (COCs) and corresponding RBSL values for complete pathways. Identify minimum RBSL value for each COC. Note whether site concentration exceeds minimum RBSL value.

RBSL RESULTS FOR COMPLETE EXPOSURE PATHWAYS (■ IF COMPLETE)

CONSTITUE	NTS OF CON	CERN	REP.	Grdwtr. Ingestion	GW MCL Limit	■ Vol. to. Amb. Air.	■ Vol. to Indoor Air	Minimum RBSL Value	RBSL Exceeded?
Sample ID (optional)	CAS No.	Name	. (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	■ If yes
	71-43-2	Benzene	18.5	0.0085	NA -	31.9	а	0.0085	(III)
	108-88-3	Toluene	15	7.30	NA	>8	а	7.30	
	100-41-4	Ethylbenzene	3.5	3.65	NA	>8	а	36.5	0
	1330-20-7	Xylenes	18	73.0	NA	>8	а	73.0	а
	107-06-2	1,2-Dichlorcethane	0.056	0.0094	NA	75	0.22	0.0094	- AE.
	1643-04-3	Methyl tertlary-butyl ether	0.99	0.18	NA.	>8	1,400	0.18	
	127-18-4	Tetrachloroethene	0.024	0.016	NA	>8	1.0	0.016	1
	l Vi								
									<u>D</u>
						-1			
						iii			

Note:

TR = Target risk limit for excess lifetime carcinogenic risk.

HQ = Hazard quotient for individual constituent non-carcinogenic effects.

MCL = Drinking Water Maximum Contaminant Level, if applicable.

>S = At pure compound solubility, selected risk is not exceeded.

a = The volatilization from ground water to indoor air is a potentially complete pathway but is evaluated as a soil vapor pathway (refer to Worksheet 6.4).

Worksheet 6.4

Site Name:

Shell Service Station WIC #204-6852-1404

Date Completed:

April 21, 1997

Site Location:

1784 150th Avenue, San Leandro, California

Completed By:

Weiss Associates

Page I of I

TIER 1 RBSL EVALUATION: SOIL VAPOR

Tier 1 Target Risk Limits:

Exposure Scenario = Residential

 $TR = 10^5$ HQ = 1.0 Individual Cons
Individual Cons

Instructions: Specify target risk limits upon which Tier 1 risk-based screening levels (RBSLs) are based. Identify complete exposure pathways for site (= complete). Record site sample measurements for constituents of concern (COCs) and corresponding RBSL values for complete pathways. Identify minimum RBSL value for each COC. Note whether site concentration exceeds minimum RBSL value.

RBSL RESULTS FOR COMPLETE EXPOSURE PATHWAYS (■ IF COMPLETE)

CONSTITUE	NTS OF CON	CERN	AEP. CONC.	Indoor Inhafation*	Outdoor Inhalation	0	Minimum RBSL Value	RBSL Exceeded
Sample ID (optional)	CAS No.	Name	(ppmv)	(ppmv)	(ppmv)		(ppmv)	■ If yes
	71-43-2	Benzene	0.41	2.07	b			
	108-88-3	Toluene	0.56	904	b			
	100-41-4	Ethylbenzene	0.19	2,310	b			
	1330-20-7	Xylenes	0.66	16,800	b			
				- 17	- 51			
					2.			
					0			
								0
								0
	ii .							0
								0

Notes:

TR = Target risk limit for excess lifetime carcinogenic risk.

HQ = Hazard quotient for individual constituent non-carcinogenic effects.

a = RBSLs correspond to 1 ft depth below ground surface; RBSLs will differ for other depths.

b = Although pathway is potentially complete, WA has opted to evaluate it as a subsurface soil pathway (refer to Worksheet 6.2.)

Figure 1. Site Location Map - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

able 2. Anal	ytic Resu	lts for Soil	- Shell Service	Station WI	C #204-6852-140	4. 1784 15	Oth Avenue, Sa	n Leandro, C	alifornia		
Boring ID (Well ID)	Sample Depth (ft)	Date Sampled	Ground Water Depth (ft)	TPH-G <	TPH-D	POG*	β rts per millio	E n (mg/kg)	тт	X	HVOCs
8H-A (MW-1)	5.0 15.7 24.7 29.2 41.2	03/05/90	34.1	<1 <1 <1 35 <1	«]«	<100 <100 <100 <100 <100	<0.0025 <0.0025 0.020 0.23 <0.0025	<0.0025 <0.0025 <0.0025 0.20 <0.0025	<0.0025 <0.0025 <0.0025 <0.025 <0.0025	<0.0025 <0.0025 <0.0025 0.64 <0.0025	b b d b
BH-B (MW-2)	11.5 16.5 21.5 26.5	02/04/92	23.8	<1 <1 79 74	23*	***	0.0026 0.0058 0.20 0.59	<0.0025 <0.0025 0.60 0.91	<0.0025 <0.0025 1.0 1.5	<0.0025 <0.0025 4.1 3.9	b.
BH-C (MW-3)	11.5 21.5 26.5 31.5	02/05/92	28.8	<1 <1 3.9 68	4.9		0.0042 <0.0025 <0.0025 <0.05	0.0029 <0.0025 <0.0025 <0.05	0.0039 <0.0025 <0.0025 <0.05	<0.0025 <0.0025 - 0.0054 0.17	b b

TPH-G - Total Petroleum Hydrocarbons as Gasoline by Modified EPA Method

TPH-D - Total Petroleum Hydrocarbons as Diesel by Modified EPA Method 8015

POG - Petroleum Oil and Grease by American Public Health Association (APHA) Standard Method 503E

B - Benzene by EPA Method 8020
E - Ethylbenzene by EPA Method 8020
T - Toluene by EPA Method 8020
X - Xylenes by EPA Method 8020

HVOCs - Halogenated volatile organic compounds by EPA Method 8010

<n = Not detected above method detection limit of n ppm</p>

Analytical Laboratory:

National Environmental Testing (NET) Pacific, Inc., Santa Rosa, California

Notes:

- a No total oil and grease detected above APHA Standard Method 503D detection limit of 50 ppm in any soil samples from boring BH-A
- b No HVOCs detected
- c = No total petroleum hydrocarbons as motor oil detected above Modified EPA Method 8015 detection limit of 10 ppm
- d = 0.0064 ppm 1,2-dichloroethane detected
- e NET reported that detected compounds are hydrocarbons lighter than diesel

Table 3. Hydrocarbons and Volatile Organic Compounds in Soil - Shell Service station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

Borehole/ Sample ID	Date Sampled	трн-G ←	В	T parts p	E er million (mg/kg) —	х	VOCs
BH-1-21	06/06/94	<1.0	< 0.0050	<0.0050	<0.0050	< 0.0050	***
BH-2-20	06/06/94	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	See .
ВН-3-16	06/06/94	<1.0	0.013	< 0.0050	< 0.0050	< 0.0050	ND
ВН-4-20.6	06/07/94	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
BH-5-15.6	06/07/94	<1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050	
ВН-6-20.5	06/07/94	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	***
ВН-7-15.8	02/14/95	<1.0	< 0.0025	< 0.0025	< 0.0025	< 0.0025	
ВН-8-16.0	02/14/95	<1.0	< 0.0025	< 0.0025	<0,0025	< 0.0025	
ВН-9-19.5	02/14/95	<1.0	< 0.0025	<0.0025	< 0.0025	< 0.0025	227
BH-10-15.2	03/03/95	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	5. ***

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

B = Benzene by EPA Method 8020

T = Tolucne by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

X = Xylenes by EPA Method 8020

VOCs = Volatile organic compounds by EPA Method 8010

ND = Not detected between detection limits of 0.005 and 0.050 ppm

--- = Not analyzed

Analytical Laboratory:

Sequoia Analytical, Inc. of Redwood City, California

Table 2. Analytic Results for Soil Samples - Shell Service Station, WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California

	Depth	TPH-G	MTBE	В	Е	T	x
Sample ID	(feet)	+		parts per m	illion (mg/kg)-		
SVS-3	16-18	<1.0	<0.025	< 0.005	< 0.005	< 0.005	< 0.005
SVS-5	4-6	<1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	8-10	< 1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	18-20	1.1	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
SVS-9	3-5	<1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	8-10	<1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
	16-18	< 1.0	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

MTBE = Methyl-t-buryl-ether by EPA Method 8020

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Total xylenes by EPA Method 8020

< n = Not detected at laboratory reporting limit of n ppm

Notes:

Samples collected on 7/18/96 and 7/19/96 and analyzed by Sequoia Analytical of Redwood City, California.

Table 3. Analytic Results for Soil Samples - Shell Service Station, WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California

Sample ID	Depth (feet)	Moisture (%)	pH (pH units)	Particle Size Distribution (<70%)	Dry Bulk Density (gm/cc)	Natural Bulk Density (gm/cc)	Fraction O.C. (%)
			0.0	4 07	1.79	2.11	0.31
SVS-3	4. 6	16	9.0	4.87			
	16-18	16	8.8	15.89	1.65	2.04	0.13
	- 3						
SVS-5	4-6	24	8.9	4.1	1.37	1.84	1.20
	8-10	24	9.0	1.28	1.42	1.87	1.00
	18-20	14	9.2	5.27	1.69	2.07	0.12
			2		- 8		
SVS-9	3-5	23	9.0	1.79	1.45	1.90	0.98
0,00	8-10	21	8.9	2.44	1.53	1.95	0.43
	16-18	14	8.7	4.37	1.91	2.22	0.14

Notes:

Moisture Percent by EPA Method 160.3. pH by EPA Method 9045.

Particle Size Distribution by ASTM Method D422.

Dry Bulk Density by American Petroleum Institute Recommended Procedure-40.

Natural Bulk Density by American Petroleum Institute Recommended Procedure-40.

Samples collected on 7/18/96 and 7/19/96 and analyzed by Sequoia Analytical of Redwood City, California and Core Laboratories of Bakersfield, California.

Abbreviations:

Fraction O.C. = Organic Carbon by Walkey Black Method gm/cc = grams per cubic centimeter

1 of 1

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

1	Date	Depth to	TPH-G	TPH-D	POG	В	ЕЕ	T	X	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)	-			—parts pe	r billion (μg	/1)				(mg/L)
	02/00/00	25.20	510	120°	<10,000	1.5	<0.5	0.8	5.4	12		
MW-1	03/08/90	25.29		120 100*	<10,000	86	0.7	1.3	6.2	<0.4		
	06/12/90	25.85	390	130°	<10,000	56	2.4	0.75	2.8	<0.4 ^b		
	09/13/90	27.49	100	<50°	<10,000	54	3.3	1.7	3.7	5.3		
	12/18/90	27.41	480	<50°	•		1.2	<0.5	<1.5	5.5 6.7		
	03/07/91	25.79	80			266		:3.8		7.9		
	06/07/91	25.64	510	<50°		130	6.1		11			
	09/17/91	27.54	330	120 ^{ac}	***	.67	3	<0.5	2.2	6		
	12/09/91	27.81	140 ^d	80		<0.5	1.7	<0.5	4.7	5.4		
	03/01/92	23.36	<50	<50		<0.5	<0.5	<0.5	<0.5	3		
	06/03/92	24.64	1,500			520	72	180	230	3		
	09/01/92	26.74	130			16.	1.8	1.4	3.4	1.3°		
	12/04/92	27.14	150			360	1.8	0.7	2.1	3,3		
(0)	03/03/93	20.50	<50			1.5	<0.5	< 0.5	< 0.5	0.76		
	06/17/93	22.42	1,600			340	120	120	440	3		
	09/10/93	24.11	2,600			670	310	340	730	2.3		
	12/13/93	23.73	11,000			470	380	320	2,300	6.3		
	03/03/94	22.08	16,000			700	480	690	3,200			
	06/06/94	23.10	7,500		444	420	200	280	1,000	3.1		
	09/12/94	25.19	1,200			110	3.3	21	420	2.6		
	12/19/94	23.06	4,600			470	230	330	1,300	3.7		
	02/28/95	20.90	500	***		59	6.8	32	68	5.0	the rap sale	
20	06/26/95	20,40	5,500			740	300	420	1,800	8.6		
1	09/13/95	22.62	84,000			1,900	3,000	2,600	14,000	12		
	12/19/95	22.10	80,000			660	170	350	18,000	< 0.4		
	03/06/96 ^{SPII}	mad.	,									
	06/28/96	21.46	270,000			2,800	1,000	820	16,000		< 0.5	
	06/28/96 ^{DUP}	21.46	790,000			2,200	1,000	780	13,000		15,000	
	09/26/96	23.57	29,000			1,100	270	260	1,900	9.8	<1,000	B44
	09/26/96 ^{DUP}	23.57	25,000			1,200	240	320	1,900	11	<1,000	
	12/10/96	21.43	13,000	37 W 1 19	GTB CLASS I SOLA	510	230	240	1,200	16	100	MARKA 1.
	12/10/96 dup	21.43	8,400	80.00	7.03 4	420	140	130	680	17	81	

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

	Date	Depth to	TPH-G	TPH-D	POG	В	E	Т	X	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)				parts pe	r billion (μ	g/l)				(mg/L
	•						•					
MW-2	02/24/92	19.61	17,000	2,700°		6,200	550	1,600	1,900	200		
	03/01/92	21.11	86,000	1,000°		30,000	2,300	34,000	16,000	82		
	06/03/92	21.58	87,000		*~*	28,000	2,000	18,000	10,000	<50	***	
	09/01/92	23.46	110,000			21,000	1,900	13,000	7,800	83 ^h		
	12/04/92	23.89	42,000			15,000	960	2,400	2,900	100		
	03/03/93	17.28	160,000			36,000	32,000	3,800	21,000	7.7		
	03/03/93 ^b	17.28	150,000			31,000	20,000	3,100	14,000	16		
	06/17/93	19.06	65,000			34,000	3,200	15,000	11,000	37		
	06/17/93 ^h	19.06	62,000			28,000	2,700	14,000	10,000	36		
	09/10/93 ^f	20.88	72,000			24,000	2,300	16,000	11,000	28.0		
	09/10/93 ^{dup,f}	20.88	71,000			23,000	2,300	15,000	10,000	27.0		
	12/13/93	20.42	19,000			5,400	680	4,900	3,100	<0.5		
	12/13/93 ^{dup}		17,000			6,200	720	5,500	3,500	3.4		
	03/03/94	18.48	110,000			21,000	2000	24,000	13,000			
	03/03/94 ^{dup}	18.48	93,000			19,000	1,800	22,000	12,000			
	06/06/94	20.26	10,000			1,900	2,500	3,300	13,000	5.8		·
	06/06/94 ^{dup}	20.26	99,000			9,900	2,400	12,000	12,000	5.7		
	09/12/94	21.80	160,000			22,000	3,400	33,000	23,000	< 0.4		
	09/12/94 ^{dup}	21.80	150,000			23,000	3,500	34,000	23,000	<0.4		
	12/19/94	19.66	80,000			17,000	2,300	16,000	14,000	< 0.4		
	12/19/94 ^{dup}	19.66	100,000			28,000	3,400	26,000	20,000	< 0.4		
	02/28/95	17.51	100,000			24,000	2,300	18,000	17,000	<0.4		
	02/28/95 ^{dup}	17.51	100,000			31,000	3,200	21,000	18,000	<0.4		
	06/26/95	17.58	45,000			14,000	1,500	12,000	7,500	3.4		
	06/26/95 ^{dup}	17.58	68,000			13,000	1,800	11,000	7,700			
	09/13/95	19.28	110,000			19,000	2,800	19,000	15,000	7.2		
	09/13/95 ^{dup}	19.28	120,000			20,000	2,900	20,000	15,000	< 0.4		
	12/19/95	18.61	180,000			18,000	4,100	29,000	24,000	< 0.4		
	12/19/95 ^{dup}	18.61	160,000			18,000	3,800	28,000	24,000	<0.4		
	03/06/96	15.41	120,000			28,000	3,900	15,000	17,000	<20		
	06/28/96	17.84	96,000			20,000	4,100	20,000	22,000		2,400	
	09/26/96	19.60	87,000		***	7,600	2,500	11,000	15,000	56**	990*	

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

	Date	Depth to	TPH-G	TPH-D	POG	B	E	T	X	1,2-DCA	MTBE	DO
Well ID	Sampled	Water (ft)				parts per	billion (μg/l)				(mg/L)
	12/10/96 ^{SPH}	18.15					(v) ter					
MW-3	02/24/92	25.60	4,500	1,300°		97	78	<5	18	9.1		
	03/01/92	26.00	2,200	440		69	<0,5	<0.5	<0.5	13		
	06/03/92	27.70	4,100			13	44	72	65	16		
	09/01/92	29.46	. 1,900	,		20	5.5	6.8	<5	19		
	09/01/92 ^{dup}	29.46	1,900			21	3.4	6.6	<5	21		
	12/04/92	29.93	2,400			8.2	<5	<5	<5 .	16		
	12/04/92 ^{dup}	29.93	2,100			11	5.7	<0.5	< 0.5	18		
	03/03/93	23.08	5,100			63	75	61	150	3.3		
	06/17/93	25.21	4,000			94	82	140	150.	23		
	09/10/93	26.95	3,200			140	12.5	12.5	12.5	20.0		
	12/13/93	26.52	6,200			<12.5	<12.5	<12.5	<12.5	13		
	03/03/94	24.50	4,500			73	<5	<5	<5			
	06/06/94	26.33	3,200			<0.5	3.1	<0.5	< 0.5	16		•
	09/12/94	27.98	3,900			< 0.5	9.6	<0.5	4.1	7.8		
	12/19/94	25.63	2,400			21	4.2	22	2.6	25		
	02/28/95	23.45	4,000			58	7.1	<0.5	3.5	18		
	06/26/95	23.64	3,900			8.1	12	<0.5	2.4	15		
	09/13/95	25.40	4,100			58	5.5	5.5	< 0.5	6.7		
	12/19/95	24.53	3,600			< 0.5	2.1	4.3	1.1	6.6		
	03/06/96 ^{SPH}				*				,			
	06/28/96	23.95	2,400			55	· <0,5	<0.5	11		120	
	09/26/96	25.89	2,500			<5,0	<5.0	<5.0	<5.0	25	160	
	12/10/96	24.22	1,600			28	<2.0	4.2	3.9	34	110	0.8
MW-4	03/24/95	9.16	<50		·	<0.5	<0.5	<0.5	<0.5	<0.4		
	06/26/95	12.06	<50			< 0.5	<0.5	<0.5	<0.5	< 0.4		
	09/13/95	13.90	<50			<0.5	< 0.5	<0.5	<0.5	<0.4		
	12/19/95	12.90	<50			< 0.5	< 0.5	< 0.5	<0.5	< 0.4		
	03/06/96	9.63	<50			< 0.5	<0.5	< 0.5	< 0.5	< 0.4		
	06/28/96	12.30	40		-	< 0.5	.97	.59	3.8		26	
	09/26/96	14.12	<50			< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<2.5	

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

Well ID	Date Sampled	Depth to Water (ft)	TPH-G ←	TPH-D	POG	B —narts ner l	E billion (μg/l)	T	Х	1,2-DCA	МТВЕ	DO (mg/L)
Mell ID	Sampled	water (it)				parts per	инон (рви)	<u>'</u>				(mg/L)
-	12/10/96 ^m	12.31	<50			<0.5	<0.5	<0.5	<0.5		<2.5	1.2
				•								
Frip .	03/08/90	•	<50	***		< 0.5	<0.5	< 0.5	<0.5			
Blank	06/12/90		<50			<0.5	<0.5	< 0.5	<0.5			
	12/18/90	,	<50			<0.5	< 0.5	<0.5	< 0.5			
	03/07/91		<50			<0.5	<0.5	<0.5	< 0.5			
	06/07/91		<50			<0.5	< 0.5	<0.5	< 0.5			
	09/17/91		<50		***	<0.5	< 0.5	<0.5	<0.5			
	12/09/91		. <50			<0.5	<0.5	<0.5	< 0.5			
	02/24/92		<50			<0.5	0.6	2.5	2.2			
	03/01/92		<50	***		< 0.5	< 0.5	< 0.5	< 0.5			
	06/03/92		<50			<0.5	<0.5	<0.5	<0.5			
	09/01/92		<50			<0.5	<0.5	<0.5	<0.5	<0.5		
	12/04/92		<50			<0.5	<0.5	<0.5	<0.5	<0.5 ^j		
	03/03/93		<50			<0.5	<0.5	<0.5	<0.5	<0.5	***	
	06/17/93		<50			<0.5	<0.5	<0.5	<0.5	<0.5		
	09/10/93		<50		***	<0.5	<0.5	<0.5	< 0.5			
	12/13/93		<50			<0.5	<0.5	<0.5	<0.5	<0.5 ^k		
	03/03/94		<50			< 0.5	<0.5	< 0.5	<0.5			
	06/06/94		<50			<0.5	<0.5	<0.5	<0.5			
	09/12/94		<50			<0.5	<0.5	<0.5	<0.5			
	12/19/94		<50			<0.5	<0.5	<0.5	<0.5			
	02/28/95		<50			< 0.5	< 0.5	<0.5	<0.5	240		
	03/24/95		<50			<0.5	<0.5	<0.5	<0.5			
	06/26/95		<50			4.1	<0.5	3.0	1.5			
	09/13/95		<50			<0.5	<0.5	<0.5	<0.5			
	12/19/95		<50			<0.5	<0.5	<0.5	<0.5			
	12117173		-J U			0.5	*	3,0				
lailer	03/08/90		<50			<0.5	<0.5	< 0.5	<0.5			***
Blank	09/01/92		<50			<0.5	<0.5	0.7	<0.5	<0.5		
) (III) K	12/04/92		60			<0.5	<0.5	<0.5	<0.5	<0.5 ^j		
	12/04/72		UV			-0,0	-0,5	~V.J	~V.J	,		4

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

Well ID	Date Sampled	Depth to Water (ft)	TPH-G	TPH-D	POG	B Darts per	E billion (μg	T	х	1,2-DCA	мтве	DO (mg/L)
DHS		NE	NE	N	1	680	1001	1,750	0.5			
MCLs	•			•								

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California (continued)

Abbreviations

TPII-G = Total Petroleum Hydrocarbons as Gasoline by Modified EPA Method 8015

TPII-D = Total Petroleum Hydrocarbons as Diesel by Modified EPA Method 8015

POG = Petroleum oil and grease by American Public Health Association Standard
Method 503E or 5520F

MTBE = Methyl t-Butyl Ether by EPA Method 8020

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

1,2-DCA = 1,2-Dichloroethane by EPA Method 8010

--- = Not analyzed

<n = Not detected above method detection limit of n ppb

DHS MCLs = California Department of Health Services maximum contaminant levels for drinking water

NE = Not established

SPH = Seperate-phase hydrocarbons present in well

Notes

- a = No total petroleum hydrocarbons as motor oil detected above modified EPA
 Method 8015 detection limit of 500 ppb
- b = Tetrachloroethene (PCE) detected at 24 ppb by EPA Method 601; DHS MCL for PCE = 5 ppb
- c = Result is due to hydrocarbon compounds lighter than diesel
- d = Result due to a non-gasoline hydrocarbon
- e = In the matrix spike/matrix spike duplicate of sample MW-1, the RPD for Freon 113 and 1,3-dichlorobenzene was greater than 25%
- f = The MW-2 and duplicate samples each contained 1.6 ppb of methylene chloride which is within normal laboratory background levels.
- h = Sample MW-2 was diluted 1:100 for EPA Method 8010 due to the interfering hydrocarbon peaks
- = The trip and bailer blank samples contained 14 and 10 mg/L 1,3-dichlorobenzene, respectively
- k = 1.4 mg/L Chloroethene detected in equipment blank, trip blank not analyzed
- = DHS recommended action level for drinking water; MCL not established
- Tetrachloroethene (PCE) detected at 0.50 ppb by EPA Method 601; DHS MCL for PCE = 5 ppb
 Tetrachloroethene detected at 0.57 ppb by EPA Method 8010
- = MTBE confirmed by EPA Method 8260
- ** = Result should be considered estimated due to being reported under the detection limit of 125 ppb.

Table 4. Hydrocarbon and Volatile Organic Compounds in Grab Ground Water Samples - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

Borehole/ Sample ID	Date Sampled	TPH-G ←—	В	T	E - parts per billion (χ μg/L)	VOC	:s →
BH-1	06/06/94	< 50	< 0.50	< 0.50	<0.50	< 0.50		
ВН-2	06/06/94	5,200ª	8.8	< 0.50	9.1	< 0.50		
ВН-3	06/06/94	120,000 ^b	25,000	14,000	3,100	13,000	ND	
ВН-4	06/07/94	< 50	< 0.50	< 0.50	< 0.50	<0.50		
BH-5	.06/07/94	< 50	< 0.50	<0.50	< 0.50	<0.50	 -	
ВН-6	06/07/94	< 50	< 0.50	< 0.50	<0.50	< 0.50	en en en	
BH-7-17-W	02/14/95	100	1.0	1.0	<0.5	< 0.5		
BH-9-20-W	02/14/95	90	0.9	0.9	<0.5	< 0.5	· ===	

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

B = Benzene by EPA Method 8020

T = Toluene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

X = Xylenes by EPA Method 8020

VOCs = Volatile organic compounds by EPA Method 8010

--- = Not analyzed

ND = Not detected between detection limits of 10 and 100 ppb.

Analytical Laboratory:

Sequoia Analytical, Inc. of Redwood City, California

Notes:

- a = Chromatogram pattern as weathered gasoline.
- b = Chromatogram pattern as gasoline.

Table 1. Analytic Results for Vapor Samples - Shell Service Station WIC #204-6852-1404, 1784 - 150th Avenue, San Leandro, California.

Sample ID	Sample Depth (ft)	B	E –narts per hillion	T by volume (ppbv	X	O ₂	CO ₂	CH ₄
	29/11 (14)		-parts per biliton	by volume (ppov) 		percent by volu	me-
SVS-1	· 4 .	37	130	100	390	18	2.1	<0.002
SVS-2	4	50	36	85	150	19	2.8	<0.002
SVS-3	1	410	190	560	660	18	3.8	<0.002
SVS-3	2	130	· 75	350	220 ^m	18	3.0	0.002
SVS-3	3	230	84	420	200 th	17	5.4	< 0.003
SVS-3	8	210	210	190	340	21	0.23	< 0.002
SVS-3	18	26	61	170	230	20	0.45	0.002
SVS-4	4	140	160	320	280 ^m	15	7.9	<0.002
SVS-5	3	7,600	1,200	4,900	4,500 ^m	5.8	23	1.6
SVS-5	13	1,400	55 ^m	260	660 ^m	21	0.57	0.036
SVS-5dup	· 13	1,400	96 ^m	270	620 ^m	N/A	N/A	N/A
SVS-5	20	2,500	300	570	740	20	0.38	0.039
SV-6	4	180 ^m	33	.180	170 ^m	21	0.066	<0.002
SVS-7	4	25	66	21	70	20	0.049	<0.002
VS-8	5	180	88	190	330	21	0.057	<0.002
VS-8dup	5	N/A	N/A	N/A	N/A	22	0.057	<0.002
VS-9	3	21	25	24	230 ^m	21	0.058	<0.002
VS-9	6.5	150 ^m	68	.72	380	21	0.099	<0.002
VS-9	13	360	290	180	220	21	0.056	0.002
VS-9	18	320	49	110	70	21	0.046	<0.002
VS-10	3	. 110	100	89	430 ^m	19	1.8	<0.002

B = Benzene by Modified California Air Resources Board Method 410A

E = Ethylbenzene by Modified California Air Resources Board Method 410A

T = Toluene by Modified California Air Resources Board Method 410A

X = Xylenes by Modified California Air Resources Board Method 410A

O₂ = Oxygen by ASTM Method D3416

CO₂ = Carbon dioxide by ASTM Method D3416

CII. = Methane by ASTM Method D3416

<n = Not detected at detection limits of n ppbv

m = Reported value may be biased due to apparent matrix interferences

N/A = Duplicate sample not analyzed for these compounds

Notes:

Samples collected on 7/18/96 and 7/19/96 by Weiss Associates and analyzed by Air Toxics, Folsom, California

WELL MW-1 (BH-A)

DESCRIPTION

Asphaltic concrete

Sandy SILT (ML); dark brown; soft; damp; <5% clay; 75% silt; 25% fine to medium sand; low plasticity; low to moderate K

Gravelly SAND (SW); brown; medium dense; dry; 15%.silt; 60% sand; 25% weathered gravel to 2" diameter; moderate to high K

Silty CLAY (CL); dark brown mottled orange and green; stiff; damp; 45% clay; 30% silt; 25% sand; medium to high plasticity; very low K

Gravelly sand lens at 5.3'

Silty SAND (SM); dark brown; loose; moist; <5% clay; 35% silt; 45% fine to coarse sand; 20% gravel to 1" diameter; moderate to high K

Clayey SILT/Silty CLAY (OH); black; medium stiff; 40% clay; 40% silt; 20% very fine sand; roots and grasses; high plasticity; very low K

Tile shard at 9.7'

Sandy SILT/Clayey SILT (ML); green-gray; very stiff; damp; 20% clay; 60% silt; 20% fine to coarse sand; medium to high plasticity; low K

3" sandy GRAVEL lens at 18.0'

Rootlets at 18.7'

Light brown-gray from 19.5'

6" sand lens at 22'

EXPLANATION

▼ Water level during drilling (date)

☑ Water level (date)

Contact (dotted where approximate)

بالتليليليليليليليليليليليليل

-?---?- Uncertain contact

Cocation of recovered drive sample

Location of drive sample sealed for chemical analysis

Cutting sample

K = Estimated hydraulic conductivity

Logged By: Karen Sixt

Supervisor: Richard Weiss; CEG 1112

Drilling Company: HEW Drilling, East Palo Alto, CA

License Number: Lic. #C57-61384167

Driller: Casto Pineda

Drilling Method: Hollow-stem auger

Date Drilled: March 6, 1990

Well Head Completion: 4" locking well-plug, traffic-rated vault

Type of Sampler: Split barrel (2" ID)

Ground Surface Elevation: 49.48 feet above mean sea level

TPH-G: Total petroleum hydrocarbon as gasoline in soil by modified EPA Method 8015

Boring Log and Well Construction Details - Well MW-1 (BH-A) - Shell Service Station WIC #204-6852-1404, 1784 150th Avenue, San Leandro, California

EXPLANATION

▼ Water level during drilling (date)

Contact (dotted where approximate)

—?—?— Uncertain contact

 $\langle c \rangle = I \sin \beta / (c \epsilon)$

vvvvv Gradational contact

Location of recovered drive sample

Location of drive sample sealed

for chemical analysis

Cutting sample

K = Estimated hydraulic conductivity

Logged By: Tom Fojut

Supervisor: Joseph P. Theisen; CEG 1645

Drilling Company: Soils Exploration Services, Benicia, CA

License Number: Lic. #C57-582696

Driller: Courtney Mossman

Drilling Method: Hollow-stem auger

Date Drilled: February 4, 1992

Well Head Completion: 4" locking well-plug, traffic-rated vault

Type of Sampler: Split barrel (2" ID)

Ground Surface Elevation: 46.18 feet above mean sea level

TPH-G: Total petroleum hydrocarbon as gasoline

in soil by modified EPA Method 8015

Boring Log and Well Construction Details - Well MW-2 (BH-B) - Shell Service Station WIC #204-6852-1404 - 1784 150th Avenue, San Leandro, California

又 Water level (date)

Contact (dotted where approximate)

?- Uncertain contact Gradational contact

Part of the second

Location of recovered drive sample

Location of drive sample sealed for chemical analysis

Cutting Sample K = Estimated hydraulic conductivity Supervisor: Joseph P. Theisen; CEG 1645

Drilling Company: Soils Exploration Services, Benicia, CA

License Number: Lic. #C57-582696

Driller: Courtney Mossman Drilling Method: Hollow-stem auger

Date Drilled: February 5, 1992 Well Head Completion: 4" locking well-plug, traffic-rated vault

Type of Sampler: Split barrel (2" ID)

Ground Surface Elevation: 52.35 feet above mean sea level

TPH-G: Total petroleum hydrocarbon as gasoline in soil by modified EPA Method 8015

Boring Log and Well Construction Details - Well MW-3 (BH-C) - Shell Service Station WIC #204-6852-1404 -1784 150th Avenue, San Leandro, California

LITHOLOGIC LOG SVS-3

EXPLANATION

- ¥ Water level during drilling (date)
- Water level (date)
 - Contact (dotted where approximate)
- -?- Uncertain contact
- """ Gradational contact
- Location of recovered drive sample
 - Location of drive sample sealed
 - for chemical analysis
- **Cutting** sample
 - K = Estimated hydraulic conductivity

- Logged By: Chuck Headlee
- Supervisor: Jim Carmody; CEG 1576
- Drilling Company: Interphase Inc.
- License Number: C57-485165
 - Driller: Rick Nessinger
- Drilling Method: Geoprobe
- Date Drilled: August 18, 1996
- Type of Sampler: Geoprobe Sampler
 - PID: Photoionization detector

Lithographic Log Details - Lithographic Log SVS-3, Shell Service Station WIC# 204-6852-1404, 1784 150th Avenue, San Leandro, California

6 Ko K

LITHOLOGIC LOG SVS-5

EXPLANATION

▼ Water level during drilling (date)

✓ Water level (date)

- Contact (dotted where approximate)

-?--?- Uncertain contact

Gradational contact

Location of recovered drive sample

Location of drive sample sealed

for chemical analysis

Cutting sample

K = Estimated hydraulic conductivity

Logged By: Chuck Headlee

Supervisor: Jim Carmody, CEG 1576

Drilling Company: Interphase Inc.

License Number: C57-606481

Driller: Rick Nessinger

Drilling Method: Geoprobe

Date Drilled: August 18, 1996

Type of Sampler: Geoprobe Sampler

PID: Photoionization detector

Lithographic Log Details - Lithographic Log SVS-5, Shell Service Station, WIC#204-6852-1404, 1784 150th Avenue, San Leandro, California

LITHOLOGIC LOG SVS-9

EXPLANATION

Water level during drilling (date)

 ∇ Water level (date)

Contact (dotted where approximate)

?--?- Uncertain contact

Gradational contact

Location of recovered drive sample

Location of drive sample sealed

for chemical analysis

Example Cutting sample

K = Estimated hydraulic conductivity

Logged By: Chuck Headlee

Supervisor: Jim Carmody, CEG 1576

Drilling Company: Interphase Inc. License Number: C57-606481

Driller: Rick Nessinger

Drilling Method: Geoprobe

Date Drilled: July 19, 1996

Type of Sampler: Geoprobe Sampler

PID: Photionization detector

Lithographic Log Details - Lithographic Log SVS-9, Shell Service Station, WIC#204-6852-1404, 1784 150th Avenue San Leandro, California

APPENDIX C

SOIL VAPOR RBSL CALCULATIONS

RBSL For Benzene in Vapor at 1 Foot Below Ground Surface

© 1997 Weiss Associates

© 1997 Weiss	Associates		
	Soll Sp	ecific Para	•
ASTM 95	ρ_{s}	1.7	Bulk Density(g/cm^3) or (kg/L)
ASTM 95	θ_{as}	0.26	Air Content (v/v)
ASTM 95	θ_{acrack}	0.26	Air Content in foundation cracks(v/v)
ASTM 95	θ_{ws}	0.12	Water Content (v/v)
ASTM 95	θ_{wcrack}	0.12	Water Content in foundation cracks(v/v)
ASTM 95	$\mathbf{o_t}$	0.38	Porosity (v/v)
Actual	d	30	Depth to (location of) vapor sample (cm) - 1 foot depth
	Diffus	ivity Paran	nelers
ASTM 95	H		Henry's Constant for Benzene
ASTM 95	D ^{air}	9.30E-02	Air Diffusion Coefficient (cm^2/s)
ASTM 95	D ^{wat}		Water Diffusion Coefficient (cm^2/s)
Calculated	Deu.		Effective Diffusion Coefficient soil (cm^2/s)
Calculated	D ^{eff} crack	0.007258	Effective Diffusion Coefficient through foundation cracks (cm^2/s)
Prediction of	of Flux From B	enzene Co	ncentration in Soll Vapor
Iterative Calc	$C_{v,max}$	2,070	RBSL - Benzene Concentration in Vapor (ppbv)
Unit Conv	C _{v,max}	6.71	Benzene Concentration in Vapor (ug/L)
Calculated	F _{max}	1.60E-06	Maximum Diffusive Vapor Flux Predicted by
			Benzene Concentration in Soil Vapor (ug/cm²-sec)
	Indoor	Air Concei	ntration
ASTM 95	Lb		Enclosed Space Volume/Infiltration Area Ratio (cm)
ASTM 95	ER _{air} -indoor	0.00014	Enclosed Space Air Exchange Rate (sec ⁻¹)
ASTM 95	L _{crack}		Enclosed Space Foundation Thickness (cm)
ASTM 95	n		Areal Fraction of Cracks in Foundation (cm ² /cm ²)
Calculated	C_{indoor}	1.14E-06	Enclosed Space Air Concentration (ug/cm³)
		Dose	_
ASTM 95	IR _{air} -indoor	15	Daily Indoor Inhalation Rate (m ³ /day)
ASTM 95	EF		Exposure Frequency (days/year)
ASTM 95	ED		Exposure Duration (years)
Calculated	Dose	179.0158	Dose (mg)
		Risk	
CAL EPA	SF,		California Cancer Slope Factor for Benzene (kg-day/mg)
4			PS 1 5AJ 5.3 5.753
ASTM 95	BW		Body Weight (kg)
ASTM 95 ASTM 95	BW AT _c	70	Averaging Time for Carcinogens (years) Risk (positives/population)

Formulas
$$D_{s}^{eff} = D^{air} \frac{\theta_{as}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$D_{crack}^{eff} = D^{air} \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2}}$$

$$F_{uux} = D_{s}^{eff} \frac{C_{eax}}{d}$$

$$C_{inchor} = \frac{\left[\frac{F_{nax}}{ER_{air-inchor} \times L_{b}}\right]}{\left[1 + \left(\frac{D_{s}^{eff}/d}{ER_{air-inchor} L_{b}}\right) + \left(\frac{D_{s}^{eff}/d}{\left(D_{cnck}^{eff}/L_{crack}\right)_{1}}\right)\right]}$$

$$Dose = C_{inchor} \times IR_{air-inchor} \times FF \times FD$$

$$Risk = \frac{Dose}{BW \times AT}$$

Notes:

ASTM 95 = American Society for Testing and Materials, 1995. Standard Guide for Risk Based Corrective Action Applied at Petroleum Release Sites, E 1739-95.

Calculations: Effective diffusivity, diffusive vapor flux, enclosed space air concentration, dose and risk calculations from ASTM 95 guidance. Formulas presented above. Maximum allowable vapor concentration calculated by iteration to achieve acceptable risk level.

RBSL For Toluene in Vapor at 1 Foot Below Ground Surface

© 1997 Weiss Associates

@ Laat Areiza	ASSOCIATES		
	Soil Sp	ecific Para	
ASTM 95	ρε		Bulk Density(g/cm^3) or (kg/L)
ASTM 95	θ_{as}	0,26	Air Content (v/v)
ASTM 95	θ_{acrack}	0.26	Air Content in foundation cracks(v/v)
ASTM 95	θ_{ws}	0.12	Water Content (v/v)
ASTM 95	Θ_{wcrack}	0.12	Water Content in foundation cracks(v/v)
ASTM 95	θ_{t}	0.38	Porosity (v/v)
Actual	d	30	Depth to (location of) vapor sample (cm) - 1 foot depth
	Diffus	ivity Paran	neters
ASTM 95	Ĥ		Henry's Constant for Toluene
ASTM 95	Dair		Air Diffusion Coefficient (cm^2/s)
ASTM 95	D ^{wat}		Water Diffusion Coefficient (cm^2/s)
Calculated	Deff.		Effective Diffusion Coefficient soil (cm^2/s)
Calculated	D ^{eff} crack	0.006633	Effective Diffusion Coefficient through foundation cracks (cm^2/s)
Prediction o	f Flux From To	oluene Coi	ncentration in Soil Vapor
Iterative Calc	C _{v,max}	904,000	RBSL - Toluene Concentration in Vapor (ppbv)
Unit Conv	C _{v,max}	3457.54	Toluene Concentration in Vapor (ug/L)
Calculated	Fmax	7.52E-04	Maximum Diffusive Vapor Flux Predicted by
			Toluene Concentration in Soil Vapor (ug/cm²-sec)
	Indoor	Air Conces	ntration
ASTM 95	Lb.	200	Enclosed Space Volume/Infiltration Area Ratio (cm)
ASTM 95	ER _{air} -indoor		Enclosed Space Air Exchange Rate (sec ⁻¹)
ASTM 95	L_{crack}		Enclosed Space Foundation Thickness (cm)
ASTM 95	n	0.01	Areal Fraction of Cracks in Foundation (cm ² /cm ²)
Calculated	Cindoor	0.000535	Enclosed Space Air Concentration (ug/cm³)
		Dose	
ASTM 95	IR _{air} -indoor	15	Daily Indoor Inhalation Rate (m³/day)
ASTM 95	EF		Exposure Frequency (days/year)
ASTM 95	ED		Exposure Duration (years)
Calculated	Dose	84279.37	Dose (mg)
		Risk	
ASTM 95	RfD _i		Reference Dose for Inhalation Exposure (mg/kg-day)
ASTM 95	BW		Body Weight (kg)
ASTM 95	AT _n	30	Averaging Time for noncarcinogens (years)
Calculated	THQ		Target Hazard Quotient

Formulas
$$D_{s}^{eff} = D^{air} \frac{\theta_{as}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$D_{crack}^{eff} = D^{air} \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2}}$$

$$F_{nik} = D^{eff} \frac{C_{enik}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2}}$$

$$F_{nik} = D^{eff} \frac{C_{enik}}{d}$$

$$C_{inther} = \left[\frac{F_{max}}{ER_{air-inther} \times L_{b}} \right] + \left(\frac{D_{s}^{eff}/d}{D_{vrack}^{eff}/L_{crack}} \right)_{0}$$

$$Dose = C_{better} \times IR_{air-inter} \times FF \times FD$$

$$THQ = \frac{Dose}{BW \times AT \times RfD_{i}}$$

Notes:

ASTM 95 = American Society for Testing and Materials, 1995. Standard Guide for Risk Based Corrective Action Applied at Petroleum Release Sites, E 1739-95.

Calculations: Effective diffusivity, diffusive vapor flux, enclosed space air concentration, dose and risk calculations from ASTM 95 guidance. Formulas presented above. Maximum allowable vapor concentration calculated by iteration to achieve acceptable target hazard quotient.

RBSL For Ethyl Benzene in Vapor at 1 Foot Below Ground Surface

© 1997 Weiss Associates

O 1007 TTGIEG7	Associates					
Soil Specific Parameters						
ASTM 95	ρ _s		Bulk Density(g/cm^3) or (kg/L)			
ASTM 95	θ_{as}		Air Content (v/v)			
ASTM 95	θ_{acrack}		Air Content in foundation cracks(v/v)			
ASTM 95	θ _{ws}		Water Content (v/v)			
ASTM 95	θ_{wcrack}		Water Content in foundation cracks(v/v)			
ASTM 95	θ_{t}		Porosity (v/v)			
Actual	d	30	Depth to (location of) vapor sample (cm) - 1 foot depth			
	Diffus	ivity Paran	neters			
ASTM 95	Ĥ		Henry's Constant for Ethyl Benzene			
ASTM 95	D ^{air}		Air Diffusion Coefficient (cm^2/s)			
ASTM 95	D ^{wat}		Water Diffusion Coefficient (cm^2/s)			
Calculated	D _{elt} *		Effective Diffusion Coefficient soil (cm^2/s)			
Calculated	D ^{eff} crack	0.005931	Effective Diffusion Coefficient through foundation cracks (cm^2/s)			
Prediction of	Flux From E	thyl Benze	ne Concentration in Soil Vapor			
Iterative Calc	C _{v.max}	2,310,000	RBSL - Ethyl Benzene Concentration in Vapor (ppbv)			
Unit Conv	C _{v,max}	10,180	Ethyl Benzene Concentration in Vapor (ug/L)			
Calculated	F _{max}	1.98E-03	Maximum Diffusive Vapor Flux Predicted by			
			Ethyl Benzene Concentration in Soil Vapor (ug/cm²-sec)			
	lu da a u	Air Concei				
ASTM 95	ingoor . Lb		Enclosed Space Volume/Infiltration Area Ratio (cm)			
ASTM 95 ASTM 95	ER _{air} -indoor		Enclosed Space Air Exchange Rate (sec 1)			
ASTM 95	Lcrack		Enclosed Space Foundation Thickness (cm)			
ASTM 95	⊷crack Π		Areal Fraction of Cracks in Foundation (cm²/cm²)			
Calculated	C _{indeer}		Enclosed Space Air Concentration (ug/cm³)			
		Dose	Daily Indian behalation Data /m3/day			
ASTM 95	IR _{air} -indoor		Daily Indoor Inhalation Rate (m³/day)			
ASTM 95	EF ED		Exposure Puration (years)			
ASTM 95 Calculated	ED		Exposure Duration (years) Dose (mg)			
	DOSE		pose (mg)			
		Risk	D. f Constitutional form of the decay			
ASTM 95	RfD _i		Reference Dose for Inhalation Exposure (mg/kg-day)			
ASTM 95	BW		Body Weight (kg)			
ASTM 95 ASTM 95 Calculated	AT _n THQ		Averaging Time for noncarcinogens (years) Target Hazard Quotient			

Formulas
$$D_{s}^{eff} = D^{air} \frac{\theta_{as}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$D_{crack}^{eff} = D^{air} \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$F_{max} = D_{s}^{eff} \frac{C_{cour}}{d}$$

$$C_{index} = \frac{\left[F_{max} - \frac{C_{cour}}{d} \right]}{\left[1 + \left(\frac{D_{s}^{eff}/d}{ER_{cdr-bukker}} \right) + \left(\frac{D_{s}^{eff}/d}{D_{crack}^{eff}/L_{crack}} \right) \right]}$$

$$Dose = C_{betar} \times IR_{dr-bukker} \times FF \times FD$$

$$THQ = \frac{Dose}{BW \times AT \times RfD_{s}}$$

Notes:

ASTM 95 = American Society for Testing and Materials, 1995. Standard Guide for Risk Based Corrective Action Applied at Petroleum Release Sites, E 1739-95.

Calculations: Effective diffusivity, diffusive vapor flux, enclosed space air concentration, dose and risk calculations from ASTM 95 guidance. Formulas presented above. Maximum allowable vapor concentration calculated by iteration to achieve acceptable target hazard quotient.

RBSL For Xylenes in Vapor at 1 Foot Below Ground Surface

© 1997 Weiss Associates

	Soil Sp	ecific Para	
ASTM 95	ρ_{s}	1.7	Bulk Density(g/cm^3) or (kg/L)
ASTM 95	θ_{as}		Air Content (v/v)
ASTM 95	θ_{acrack}	0.26	Air Content in foundation cracks(v/v)
ASTM 95	θ_{ws}		Water Content (v/v)
ASTM 95	θ _{wcrack}	0.12	Water Content in foundation cracks(v/v)
ASTM 95	$\theta_{\rm t}$	0.38	Porosity (v/v)
Actual	đ	30	Depth to (location of) vapor sample (cm) - 1 foot depth
	Diffus	sivity Paran	
ASTM 95	Н		Henry's Constant for Xylenes
ASTM 95	Dair		Air Diffusion Coefficient (cm^2/s)
ASTM 95	D ^{wat}		Water Diffusion Coefficient (cm^2/s)
Calculated	Deff.		Effective Diffusion Coefficient soil (cm^2/s)
Calculated	Deff crack	0.0056188	Effective Diffusion Coefficient through foundation cracks (cm^2/s)
Prediction of	of Flux From X	·	centration in Soil Vapor
Iterative Calc	$C_{v,max}$	16,800,000	RBSL - Xylenes Concentration in Vapor (ppbv)
Unit Conv	C _{v,max}	74,033	Xylenes Concentration in Vapor (ug/L)
Calculated	F _{max}	1.36E-02	Maximum Diffusive Vapor Flux Predicted by
			Xylenes Concentration in Soil Vapor (ug/cm²-sec)
· .	Indoor	Air Concen	
ASTM 95	Łb		Enclosed Space Volume/Infiltration Area Ratio (cm)
ASTM 95	ER _{air} -indoor		Enclosed Space Air Exchange Rate (sec ⁻¹)
ASTM 95	L _{crack}		Enclosed Space Foundation Thickness (cm)
ASTM 95	n		Areal Fraction of Cracks in Foundation (cm²/cm²)
Calculated	C _{indoor}	0.0097056	Enclosed Space Air Concentration (ug/cm³)
		Dose	
ASTM 95	IR _{air} -indoor	15	Daily Indoor Inhalation Rate (m³/day)
ASTM 95	EF		Exposure Frequency (days/year)
ASTM 95	ED		Exposure Duration (years)
Calculated	Dose	.1528633.7	Dose (mg)
		Risk	
ASTM 95	RfD _i		Reference Dose for Inhalation Exposure (mg/kg-day)
ASTM 95	BW		Body Weight (kg)
ASTM 95	AT _n		Averaging Time for noncarcinogens (years)
Calculated	THQ	. 1.00	Target Hazard Quotient

Formulas
$$D_{s}^{eff} = D^{air} \frac{\theta_{as}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$D_{crack}^{eff} = D^{ir} \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2}} + D^{wat} \frac{1}{H} \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2}}$$

$$F_{max} = D_{s}^{eff} \frac{C_{max}}{d}$$

$$C_{bediev} = \frac{\left[\frac{F_{max}}{ER_{air-bukker} \times L_{b}}\right]}{\left[1 + \left(\frac{D_{s}^{eff}/d}{ER_{air-bukker} \setminus L_{b}}\right) + \left(\frac{D_{s}^{eff}/d}{\left(D_{crack}^{eff}/L_{crack}\right)_{i}}\right)\right]}$$

$$Dose = C_{botor} \times IR_{ir-bukker} \times FF \times FD$$

$$THQ = \frac{Dose}{BW \times AT \times RfD_{i}}$$

Notes:

ASTM 95 = American Society for Testing and Materials, 1995. Standard Guide for Risk Based Corrective Action Applied at Petroleum Release Sites, E 1739-95.

Calculations: Effective diffusivity, diffusive vapor flux, enclosed space air concentration, dose and risk calculations from ASTM 95 guidance. Formulas presented above. Maximum allowable vapor concentration calculated by iteration to achieve acceptable target hazard quotient.