

RECEIVED

1:31 pm, Nov 05, 2008

Alameda County Environmental Health 475 14th Street, Suite 400 Oakland, California 94612 PH 510.836.3034 FAX 510.836.3036 www.geosyntec.com

21 October 2008

Mr. Roger Papler, P.G. California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Subject: Results of Third Quarter 2008 Groundwater and SVE Monitoring

Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California

Self-Monitoring Program No. R2-2006-0059

Dear Mr. Papler:

On behalf of the property owner, Ms. Clare Leung, Geosyntec Consultants (Geosyntec) prepared this third quarter 2008 groundwater and soil vapor extraction (SVE) monitoring report for Hopyard Cleaners located at 2771 Hopyard Road, in Pleasanton, California (the "Site"). A site location map is provided in Figure 1. The work described in this report was performed in compliance with the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Order No. R2-2008-0032, issued on 29 May 2008.

The Site monitoring well network consists of seven wells (MW-1 through MW-7). For discussion purposes, the uppermost groundwater zone beneath the Site, which occurs from about 20 to 35 feet below ground surface (ft bgs), is referred to as the A Zone, and the deep groundwater from about 40 to 60 ft bgs is referred to as the B Zone. Wells MW-1 through MW-4 are screened in the A Zone, and wells MW-5 through MW-7 are screened in the B Zone. Well completion details are summarized in Table 1. Well locations relative to the Site are shown on Figure 2. Wells MW-1 through MW-5 were sampled for this quarterly monitoring event. Wells MW-6 and MW-7 were installed in August 2008 after the third quarter monitoring was conducted. These two wells will be included in the site-wide groundwater monitoring program starting fourth quarter 2008.

The SVE system with five SVE wells was installed at the Site in the weeks of 4 and 11 August 2008. A pilot test of the SVE system was conducted on 19 and 21 August 2008, and full-scale

SVE operations began on 21 August 2008. The SVE installation, pilot test, and start-up were documented in the *SVE Installation and Pilot Test Report*, which was submitted to the RWQCB on 29 September 2008.

WORK PERFORMED THIS QUARTER

The following work was performed during the third quarter 2008:

- The third quarter groundwater monitoring event was performed on 14 July 2008 using passive diffusion bag (PDB) samplers. This work is discussed in detail in the following sections.
- Two additional B Zone groundwater monitoring wells were installed in August 2008 in the cul-de-sacs of Corte Mente and Corte Libre southwest of the Site, and monitoring of these two wells via PDB will begin in the fourth quarter 2008. The groundwater monitoring well installation was documented in the *B Zone Groundwater Monitoring Well Installation Report*, which was submitted to the RWQCB on 15 September 2008. Based on the 30 September 2008 comments from the RWQCB and a subsequent discussion with the RWQCB, the cross-sections that were included in the report were revised. The contact lines were modified to better reflect uncertainty in the subsurface stratigraphy. The revised figures are provided as Attachment 1.
- The Soil Vapor Extraction System Design and Operation Plan was submitted to the RWQCB on 15 July 2008 and the Revised Soil Vapor Extraction System Design and Operation Plan was submitted to the RWQCB on 31 July 2008.
- A technical report documenting the procedures to be used to minimize human exposure to soil and groundwater prior to meeting cleanup standards at the Site was submitted to the RWQCB on 27 July 2008 in the form of a deed restriction.
- The SVE was installed at the Site in August 2008. A pilot test was conducted on 19 and 21 August 2008, and SVE operations began on 21 August 2008. The SVE installation, pilot test, and start-up was documented in the SVE Installation and Pilot Test Report, which was submitted to the RWQCB on 26 September 2008.
- Soil oxidant demand (SOD) samples were collected on 21 August 2008 per the *Soil Oxidant Demand Characterization Work Plan* dated 20 June 2008.

QUARTERLY GROUNDWATER MONITORING

Quarterly groundwater monitoring was performed at the Site on 14 July 2008. PDBs were used to collect samples from MW-1 through MW-5. A study to test the appropriateness of using PDBs was proposed in the *Results of Fourth Quarter 2007 Groundwater Monitoring* report submitted to the RWQCB on 31 January 2008¹ and was verbally approved by the RWQCB in a conference call on 12 March 2008. The PDB study was completed in the first and second quarters 2008. In general, cis-1,2-DCE, PCE, and TCE concentrations were slightly higher in samples collected from PDBs compared to samples collected using a submersible pump. Sample results reported as non detect using the conventional sampling method were also non detect using the PDB sampling method. These results indicate that PDB samplers are an appropriate and reliable method of monitoring volatile organic compounds (VOCs) at this Site. Therefore, PDBs have replaced sampling via peristaltic pump beginning this quarter (third quarter 2008).

Sampling and Analytical Procedures

The groundwater sampling fieldwork was performed by Environmental Sampling Services, Inc. (ESS), of Martinez, California. ESS's report, including field procedures and sampling logs, is provided in Attachment 2.

The PDBs were deployed during the second quarter 2008 monitoring event. On 14 July 2008, the PDBs were removed from the wells and sampled. Samples were hand-delivered to Test America of Pleasanton, California, for analysis. Groundwater samples from the Site monitoring wells were analyzed for VOCs by EPA Method 8260B.

New PDBs for the fourth quarter 2008 sampling event in wells MW-1 through MW-5 were deployed on 14 July 2008 after third quarter 2008 monitoring was complete.

Groundwater Elevations and Flow Conditions

Table 2 summarizes groundwater elevations measured during this and previous sampling events. Groundwater in the A Zone (MW-1 through MW-4) beneath the Site was encountered between 13.23 and 14.21 feet bgs. These depths correspond to groundwater elevations between 311.98

¹ Geosyntec Consultants, 2008. Results of the Fourth Quarter 2007 Groundwater Monitoring, Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California, Self-Monitoring Program No. R2-2006-0059, 31 January 2008.

and 312.46 feet above Mean Sea Level (MSL). Groundwater in the B Zone monitored by MW-5 was encountered at 32.16 feet bgs, which corresponds to an elevation of 295.03 feet MSL.

Water levels measured in the A Zone wells taken during the third quarter 2008 event were used to construct groundwater elevation contours, as shown in Figure 3. The third quarter 2008 groundwater contours indicate a general groundwater flow to the north with an average gradient of 0.0048 feet per feet (ft/ft) (25.5 feet per mile (ft/mi)). This gradient and flow direction is consistent with previous monitoring events, as shown on Table 3.

Data QA/QC

Geosyntec performed a quality assurance/quality control (QA/QC) review of the analytical data. Data were reviewed for completeness, accuracy, precision, sample contamination, conformance with holding times, and detection limits within acceptable ranges. Based on this review, the data are acceptable.

Analytical Results

Laboratory analytical reports are provided in Attachment 3. Table 4 summarizes analytical results for groundwater samples collected during the third quarter 2008 event together with historical results. Analytical results for the current sampling event are also shown on Figure 3. Isoconcentration contour maps for tetrachloroethene (PCE) and trichloroethene (TCE) are shown on Figures 4 through 6. The isoconcentration contours were drawn using current data from monitoring wells along with results from grab groundwater samples previously collected at the Site.

This is the eighth monitoring event since wells MW-1 through MW-3 were installed in September 2006 and the fifth monitoring event for wells MW-4 and MW-5. Analytical results for samples taken from the five monitoring wells show the highest VOC concentrations at MW-2. The PCE concentrations at well MW-2 were 9,500 and 8,100 micrograms per liter (µg/L) in the sample and duplicate sample, respectively. Although the 9,500 µg/L result is above historical PCE concentrations, which have ranged from 4,700 to 8,200 µg/L, the increase in PCE concentration with respect to the last monitoring event is consistent with the seasonal fluctuations in concentration that have been observed in this well over the past two years. VOC concentrations observed in MW-1 and MW-3 through MW-5 were consistent with historical results.

SVE PERFORMANCE MONITORING

Startup monitoring of the SVE system was performed on day 1 through 5, day 7, and day 9 of system startup to evaluate system performance and air emissions for the Bay Area Air Quality Management District Permit to Operate (BAAQMD PTO). Monitoring was performed weekly for the first month and monthly thereafter. The first monthly monitoring was conducted on 18 September 2008. SVE monitoring was conducted by Geosyntec and Mako Industries (Mako) of Livermore, California. The SVE system layout is shown on Figure 2.

SVE Monitoring Procedures

SVE monitoring includes the following procedures:

- Perform photoionization detector (PID) screening via Tedlar® bags of:
 - Samples collected from the system influent, mid-point between the two granular activated carbon (GAC) vessels, and the system effluent to evaluate air emissions, and
 - o Samples collected at each SVE wellhead, shown on Figure 2.
- Record vacuum response at each SVE wellhead;
- Record flow rate and vacuum response at the manifold;
- Record vacuum, temperature, and flow rate readings at system influent;
- Record hour meter:
- Inspect the moisture separator water level and drain into 55-gallon drums, if necessary; and
- Record the electrical meter reading.

As discussed in the SVE Installation and Pilot Test Report, influent SVE samples were collected in 1-liter Summa canisters for laboratory analysis by TO-15 during start-up testing. The laboratory analytical results indicate that PCE is the primary constituent of concern being removed from the target remediation zone. The analytical results showed similar VOC concentrations to PID reading collected at the same time, indicating that PID screening is effective at monitoring SVE performance.

SVE Monitoring Results

Results of the system monitoring and mass removal are shown in Table 5, and results of the SVE well monitoring are shown in Table 6. SVE well locations are shown on Figure 2, Figure 7 shows system influent VOC concentrations over time, and Figure 8 shows the SVE cumulative mass removal.

Influent concentrations of VOCs into the SVE system have ranged from 0.7 to 13.0 parts per million by volume (ppmv) with the highest concentrations detected during system startup (Table 5 and Figure 7). After almost one month of operations, the SVE system has removed approximately 4.42 pounds (lbs) of VOCs as equivalent PCE (Table 5 and Figure 8).

As shown on Table 6, PID screening of the SVE wells indicate that the highest concentrations of VOCs are consistently being extracted from SVE-1, while the lowest concentrations are being extracted from SVE-3 and SVE-5.

SVE Operations and Maintenance

The system has been under continuous operation since startup on 21 August 2008, except for an approximately 2-hour time period on 29 August 2008 when the blower shut-off switch was tripped.

Maintenance on the system has been performed to reduce the noise from the effluent and blower, including installation of a larger muffler on the system effluent, splitting the effluent into two discharge pipes, and installing foam around the blower box and along the southwest fence of the compound. Although these measures have reduced the noise, Geosyntec received complaints concerning the noise at night from residents in the vicinity of the dry cleaners (both across Hopyard Road and Valley Road). In response to these complaints, the SVE system operation schedule was modified on 3 September 2008. A timer was installed by Mako to have the system run from the hours of 8 am to 10 pm.

In addition, the 0 to 30 in Hg vacuum gauges at each of the five wellheads were replaced on 18 September 2008 by Environmental Remediation Resources Group of Concord, California. More sensitive vacuum gauges that range from 0 to 100 inches of water were installed.

FUTURE WORK

The following work will be completed during the fourth quarter 2008:

- The Revised Remedial Action Plan, including a human health risk assessment will be submitted to the RWQCB during the fourth quarter 2008.
- The next quarterly groundwater monitoring event will be performed in the fourth quarter 2008. A stratification study will be conducted for MW-6 and MW-7 during the fourth quarter monitoring, with PDBs installed in the upper 5 feet and lower 5 feet of each screen interval. The results of the quarterly monitoring will be discussed in the fourth quarter 2008 monitoring report due to the RWQCB on 31 January 2008.
- SVE monitoring will continue on a monthly basis. Results of the October, November, and December monitoring will be discussed in the fourth quarter 2008 monitoring report due to the RWQCB on 31 January 2008.
- The results of the SOD sampling will be submitted to the RWQCB along with the ISCO implementation work plan by 3 November 2008.

If you have any questions or comments, please contact Angela Liang at (510) 285-2700.

Sincerely,

Melissa Asher, P.E.

Melissa ash

Harllet Liong

Engineer

ANGELA CERTIFICATION ANDELA CERTIFICATION ANGELA CE

Hanchih (Angela) Liang, Ph.D., P.E.

Senior Engineer

Attachments:

Table 1

Well Construction Summary

Table 2

Groundwater Elevations

Table 3

Groundwater Gradient Summary - A Zone

Table 4	Groundwater Analytical Summary
Table 5	SVE System Performance Monitoring Results
Table 6	SVE Well Monitoring Results
Figure 1	Site Location
Figure 2	Site Layout and Vicinity Map
Figure 3	Third Quarter 2008 Groundwater Elevation
S	Contours and Analytical Results
Figure 4	Third Quarter 2008 PCE Isoconcentration
8	Contours in A Zone Groundwater (20 to 35 ft
	bgs)
Figure 5	Third Quarter 2008 PCE Isoconcentration
1 18010 0	Contours in B Zone Groundwater (40 to 60 ft
	bgs)
Figure 6	Third Quarter 2008 TCE Isoconcentration
1 iguit o	Contours in A Zone Groundwater (20 to 35 ft
	bgs)
Figure 7	SVE Influent Concentrations Over Time
•	SVE Cumulative Mass Removal
Figure 8	SVE Cumulative Mass Removal
Attachment 1	Revised Cross-Sections
Attachment 2	Environmental Sampling Services Field Report
Attachment 3	Laboratory Analytical Report
M C1 T	

Copy with Attachments:

Ms. Clare Leung, Hopyard Cleaners

Ms. Joy Ricigliano, Zurich Insurance

Mr. Mark Peterson, GES

Mr. Wyman Hong, Zone 7 Water Agency

Mr. Jerry Wickham, Alameda County Environmental Health Ms. Danielle Stefani, City of Pleasanton Fire Department Mr. William Henderlong, Town & Country Properties

Table 1
Monitoring Well Construction Summary
Hopyard Cleaners
Pleasanton, California

Well I.D.	Date of Completion	Northing	Easting	TOC Elevation (MSL)	Total Depth (ft bgs)		Screen Inte	erval Depth ogs)	Well Casing Material	Well Diameter (inches)
					Borehole	Well	Top	Bottom		
A Zone Mor	A Zone Monitoring Wells									
MW-1	9/29/2006	2071427.29	6157712.24	325.77	30	30	20.00	30.00	SCH 40 PVC	2
MW-2	9/26/2006	2071357.03	6157791.18	325.69	30	30	20.00	30.00	SCH 40 PVC	2
MW-3	9/27/2006	2071461.21	6157787.94	326.27	30	30	20.00	30.00	SCH 40 PVC	2
MW-4	7/20/2007	2071382.30	6157557.57	326.27	36.5	35	25.00	35.00	SCH 40 PVC	2
B Zone Mon	nitoring Wells									
MW-5*	7/19/2007	2071292.25	6157654.24	327.19	60	60	50.00	60.00	SCH 40 PVC	2
MW-6**	8/19/2008	2071280.12	6157384.43	324.48	59	59	49.00	59.00	SCH 40 PVC	2
MW-7**	8/20/2008	2071076.06	6157645.52	324.55	56	55	45.00	55.00	SCH 40 PVC	2

Notes:

ft bgs = feet below ground surface

MSL = mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

^{*} Conductor casing was installed from 0 to 40 ft bgs.

^{**} Monitoring will begin in the fourth quarter 2008.

Table 2 Groundwater Elevations Hopyard Cleaners Pleasanton, California

***	TOC		Depth to	Groundwater
Well I.D.	Elevation	Sample Date	Groundwater Below	Elevation
(Screen Interval)	(ft MSL)	_	TOC (ft)	(ft MSL)
A Zone Monitoring				
MW-1	325.77	7/14/2008	13.79	311.98
(20-30 ft bgs)		5/16/2008	11.70	314.07
()		2/15/2008	11.38	314.39
		1/3/2008	13.63	312.14
		8/3/2007	14.40	311.37
		5/11/2007	12.27	313.50
		2/9/2007	13.98	311.79
		11/20/2006	14.88	310.89
MW-2	325.69	7/14/2008	13.23	312.46
(20-30 ft bgs)		5/16/2008	11.30	314.39
		2/15/2008	10.87	314.82
		1/3/2008	13.21	312.48
		8/3/2007	13.72	311.97
		5/11/2007	11.87	313.82
		2/9/2007	13.55	312.14
		11/20/2006	14.36	311.33
MW-3	326.27	7/14/2008	14.21	312.06
(20-30 ft bgs)		5/16/2008	12.18	314.09
		2/15/2008	11.68	314.59
		1/3/2008	14.02	312.25
		8/3/2007	14.68	311.59
		5/11/2007	12.72	313.55
		2/9/2007	14.41	311.86
		11/20/2006	15.28	310.99
MW-4	326.27	7/14/2008	13.81	312.46
(25-35 ft bgs)		5/16/2008	12.12	314.15
		2/15/2008	12.05	314.22
		1/3/2008	14.73	311.54
		8/3/2007	15.85	310.42
B Zone Monitoring				
MW-5	327.19	7/14/2008	32.16	295.03
(50-60 ft bgs)		5/16/2008	23.06	304.13
		2/15/2008	19.74	307.45
		1/3/2008	22.65	304.54
		8/3/2007	30.51	296.68

Notes:

ft MSL = feet above mean sea level

TOC = Top of Casing

ft bgs = feet below ground surface

Elevations are based on NAVD 88 Datum

Table 3 Groundwater Gradient Summary - A Zone Hopyard Cleaners Pleasanton, California

Date	Gra	dient	General
Date	ft/ft	ft/mi	Flow Direction
7/14/2008	0.0048	25.5	North
5/16/2008	0.0031	16.5	North-Northwest
2/15/2008	0.0038	20.5	Northwest
1/3/2008	0.0025	13.2	Northwest
8/3/2007	0.0070	37.0	West-Northwest
5/11/2007	0.0030	15.8	North-Northwest
2/9/2007	0.0010	5.3	North-Northwest
11/20/2006	0.0040	22.0	Northwest

Notes:

ft/ft = feet per feet

ft/mi = feet per mile

Table 4 Groundwater Analytical Summary Hopyard Cleaners Pleasanton, California

Well I.D.	Sample Date	Sampling Method		le Organic Compo Method 8260B (1		
(Screen Interval)			cis-1,2-DCE	PCE	TCE	
A Zone Monitoring Wel	ls		·			
MW-1	7/14/2008	PDB Sampler	230	1,700	250	
(20-30 ft bgs)	5/16/2008	Purge and Sample	250	1,600	280	
	5/16/2008	PDB Sampler*	260	1,900	310	
	2/29/2008	PDB Sampler*	330	2,000	330	
	2/15/2008	Purge and Sample	230	1,400	250	
	1/2/2008	Purge and Sample	230	1,600	270	
	8/3/2007	Purge and Sample	260	1,600	270	
	5/11/2007	Purge and Sample	310	2,500	310	
	2/9/2007	Purge and Sample	270 / 270	2,400 / 2,300	290 / 290	
	11/20/2006	Purge and Sample	370	3,100	370	
MW-2	7/14/2008	PDB Sampler	820 / 830	9,500 / 8,100	530 / 500	
(20-30 ft bgs)	5/16/2008	Purge and Sample	900 / 930	5,800 / 5,900	460 / 450	
	5/16/2008	PDB Sampler*	940	6,700	480	
	2/29/2008	PDB Sampler*	780	5,300	360	
	2/15/2008	Purge and Sample	690 / 690	4,100 / 4,000	320 / 300	
	1/2/2008	Purge and Sample	940 / 890	8,200 / 8,200	560 / 580	
	8/3/2007	Purge and Sample	1,200 / 1,100	8,000 / 8,100	590 / 570	
	5/11/2007	Purge and Sample	1,000 / 980	7,200 / 7,300	490 / 450	
	2/9/2007	Purge and Sample	760	4,700	350	
	11/20/2006	Purge and Sample	800 / 800	5,700 / 5,800	370 / 360	
MW-3	7/14/2008	PDB Sampler	4.3	43	4.0	
(20-30 ft bgs)	5/16/2008	Purge and Sample	5.0	39	4.3	
	5/16/2008	PDB Sampler*	5.4	46	4.4	
	2/29/2008	PDB Sampler*	6.9	58	5.9	
	2/15/2008	Purge and Sample	6.2	44	5.1	
	1/2/2008	Purge and Sample	5.2	46	4.6	
	8/3/2007	Purge and Sample	4.7	37	4.2	
	5/11/2007	Purge and Sample	5.5	43	4.4	
	2/9/2007	Purge and Sample	5.3	42	4.2	
	11/20/2006	Purge and Sample	10	93	7.2	
MW-4	7/14/2008	Purge and Sample	4.7	< 0.50	4.0	
(25-35 ft bgs)	5/16/2008	Purge and Sample	3.7	< 0.50	2.6	
	5/16/2008	PDB Sampler*	3.6	<0.50	2.7	
	2/29/2008	PDB Sampler*	3.4	<0.50	3.0	
	2/15/2008	Purge and Sample	4.2	<0.50	4.0	
	1/3/2008	Purge and Sample	4.2	<0.50	3.5	
	8/3/2007	Purge and Sample	4.6	<0.50	3.5	
B Zone Monitoring Wel				1		
MW-5	7/14/2008	PDB Sampler	< 0.50	31	< 0.50	
(50-60 ft bgs)	5/16/2008	Purge and Sample	<0.50	24	<0.50	
	5/16/2008	PDB Sampler*	<0.50	34	<0.50	
	2/29/2008 2/29/2008	PDB Sampler (52.5 ft bgs)*	<0.50 <0.50	41 33	<0.50 <0.50	
	2/29/2008	PDB Sampler (57.5 ft bgs)* Purge and Sample	<0.50	26	<0.50	
	1/3/2008		<0.50	38	<0.50	
		Purge and Sample	<0.50	38	<0.50	
	8/3/2007	Purge and Sample	~ 0.30	3/	~ 0.30	

Notes

Table shows only compounds detected above the laboratory reporting limit.

cis-1,2-DCE = cis-1,2-dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

"-- / --" = result on right represents duplicate sample

ft bgs = feet below ground surface

PDB = Passive Diffusion Bag Sampler

* Samples collected as part of the PDB comparison study. PDBs were deployed at two depths (52.5 and 57.5 ft bgs) in MW-5 during February 2008 to evaluate stratification in the well.

Table 5
SVE System Performance Monitoring Results
Hopyard Cleaners
2771 Hopyard Road, Pleasanton, California

			SYSTE	M MEAS	UREME	NTS						MASS REMO	OVAL CAI	CULATION	S	
Sample Date	Time	Operation Time (Hour)	Influent Flow Rate (ft/min)	System Temp. (°F)	Influent Vacuum (in Hg)	Influent Conc. (ppmv)	Mid- Point Conc. (ppmv)	Effluent Conc. (ppmv)	Vacuum (in water)	Flowrate (cfm)	Flowrate (scfm)	Total Operation Time (hr)	PCE Conc. (mg/m ³)	Mass Removal Rate (lbs/day)	Mass Removed Since Last Sampling Event (lbs)	Cumulative Mass Removal (lbs)
08/21/08	9:15	7,569.2			10.0	13.0	0.2	0.1	136		-		89.70		0.00	0.00
08/22/08	9:25	7,593.3	4,590	83.5	10.0	5.5	0.3	0.0	136	210.54	136.22	24.17	37.95	0.7817	0.79	0.79
08/23/08	10:00	7,618.0	4,690	78.3	9.5	0.7	0.2	0.1	129	215.13	144.06	48.75	4.83	0.2770	0.28	1.07
08/24/08	14:02	7,646.0	4,550	79.5	10	0.9	0.3	0.0	136	208.71	136.04	76.78	6.21	0.0675	0.08	1.15
08/25/08	16:22	7,672.4	4,450	87.2	10	1.1	0.3	0.1	136	204.12	131.17	103.12	7.59	0.0814	0.09	1.24
08/27/08	8:14	7,712.1	4,520	74.0	10	6.6	0.1	0.0	136	207.33	136.53	142.98	45.54	0.3261	0.54	1.78
08/29/08	8:02	7,757.7	4,380	77.9	9.5	1.8			129	200.91	134.64	190.78	12.42	0.3508	0.70	2.48
09/02/08	9:14	7,853.3	4,250	77.5	10	1.8	0.1	0.0	136	194.95	127.54	287.98	12.42	0.1424	0.58	3.06
09/08/08	8:40	7,996.2	4,290	76.8	8.5	2.1	0.1	0	116	196.78	138.60	379.14	14.49	0.1677	0.64	3.69
09/18/08	10:40	82,382.2	4,300	79.0	8.0	0.7	0.0	0.0	109	197.24	141.59	520.31	4.83	0.1230	0.72	4.42

Notes/Assumptions:

- 1. Inlet pipe diameter is 3".
- 2. SVE operations were reduced from 24 hours per day to 14 hours (8 am to 10 pm) per day on 3 September 2008.
- 3. Vapor density of PCE is estimated to be 6,900 g/m3 at 20C.
- 4. SCFM(at 14.7psia and 68°F) = CFM $x([(Pg + Patm)/(Patm)] \times [(68 + 460)/(Tact + 460)])$
- 5. Mass removal calculated as mass PCE

ft/min = feet per minute

°F = degrees fahrenheit

in Hg = inches mercury

in water = inches water

cfm = cubic feet per minute

scfm = standard cubic feet per minute

hr = hour

ppmv = volumetric parts per million

yr = year

lbs = pounds

Table 6 SVE Well Monitoring Results Hopyard Cleaners 2771 Hopyard Road, Pleasanton, California

		MANIFOLD		SVE-1		SVE-2			SVE-3			SVE-4		SVE-5					
Date	Monitoring Event	Time	Flow Rate (scfm)	Vacuum (in Hg)	Time	Vacuum (in Hg)	PID (ppmv)												
21-Aug-08	Start up Day 1	9:22	240	-	9:24	0	46.8	9:22	1.5	23.8	9:21	2.0	5.0	9:25	1.5	24.3	9:20	2.0	8.8
22-Aug-08	Start-up Day 2	9:41	240		9:42	0	20.5	9:40	1.75	12.0	9:38	2.0	2.1	9:44	1.5	8.4	9:37	2.0	4.2
23-Aug-08	Start-up Day 3	10:35	240		10:38	0	12.5	10:34	1.5	7.8	10:28	0	2.3	10:26	1.0	6.4	10:31	2.0	3.6
25-Aug-08	Start-up Day 5	16:52	235		16:50	0	9.3	16:58	0	4.9	16:55	1.0	1.6	4:46	1.0	4.8	16:53	2.0	2.6
27-Aug-08	Start-up Day 7	8:36	240		8:38	0	7.2	8:36	1.5	3.6	8:35	2.0	0.6	8:39	1.5	8.9	8:34	2.0	1.5
2-Sep-08	Start-up Day 13/Week 2	9:43	230	3.5	9:44	0	3.5	9:42	1.5	2.2	9:40	1.75	0.7	9:45	1.5	1.9	9:36	1.5	1.2
8-Sep-08	Start-up Week 3	8:58	230	3.75	9:01	0	2.6	8:59	1.25	2.8	8:58	1.5	2.4	9:02	1.25	1.2	8:57	1.5	2.1
18-Sep-08	1st Month	11:14	235	4	11:16	1.2	1.8	11:14	1.5	0.8	11:12	1.5	0.0	11:17	1.3	0.8	11:10	1.5	0.5

Notes:

ft = feet

min = minute

in Hg = inches of mercury

 $ppmv = parts \ per \ million \ volume$

scfm = standard cubic feet per minute

Topo Source: U.S.G.S 7.5 Minute Series, Dublin, CA Quadrangle (1980) Contour Interval = 40 Feet

SITE LOCATION MAP HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

FIGURE NO.	1
PROJECT NO.	WR0574
DATE:	OCTOBER 2008

ATTACHMENT 1 REVISED CROSS-SECTIONS

ATTACHMENT 2 ESS FIELD REPORT

July 16, 2008

Ms. Melissa Asher Senior Staff Engineer GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

SUBJECT: July 2008 Quarterly Groundwater Monitoring Event for Hopyard Cleaners, Pleasanton, California

Dear Ms. Asher,

Please find enclosed the Field Activity Report for the quarterly groundwater monitoring event at 2771 Hopyard Road that occurred July 14, 2008.

If you have any questions or concerns regarding this Field Activity Report, please do not hesitate to call me.

Sincerely,

Environmental Sampling Services, LLC

Jacqueline Lee

Manager

Enclosure

FIELD ACTIVITY REPORT

JULY 2008
QUARTER GROUNDWATER
MONITORING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

> Prepared for: GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

> > Date Prepared: July 15, 2008

FIELD ACTIVITY REPORT FOR

JULY 2008
QUARTERLY GROUNDWATER
MONITORING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

Task: Quarterly Groundwater Sampling Event

ESS Personnel: Jacqueline Lee Date of Activities: July 14, 2008

Decontamination Procedures

All downhole equipment was cleaned with Liqui-Nox® laboratory-grade soap, potable water, and rinsed with distilled water prior to use and between each monitoring well.

Groundwater Level Measurements

Depth to groundwater for five monitoring wells were measured and recorded following atmospheric equilibration of approximately thirty minutes. All readings were performed with a Slope® Water Level Meter, Serial Number 25742, and referenced to the surveyor's mark or north rim at the top of PVC well casing (Table 1). Three successive readings that agreed to within one-hundredth of a foot determined depth to groundwater.

Organic vapor readings were not required.

Field Equipment and Calibration

pH, Specific Conductance, Temperature, Dissolved Oxygen, and Oxidation Reduction Potential (ORP) were monitored with a YSI® Multi-parameter meter equipped with an in-line flow through cell. Turbidity readings were measured with a HF Scientific® Turbidity meter.

Equipment calibration was performed in accordance with the instrument's calibration and operating procedures. Calibration was performed prior to any monitoring activities (see Daily Equipment Calibration Sheet).

Solution standards: pH 4, 7, and 10, Specific Conductance @ 1,000 uS/cm, and Zobell for ORP were used for calibration purposes. Dissolved Oxygen was calibrated to air. Turbidity was checked against a 0.02 NTU standard. All equipment calibrated and functioned properly during the July 2008 monitoring event.

Passive Diffusion Bag Sampling

After completion of groundwater level measurements, groundwater samples for Volatile Organic analyses were obtained from each Passive Diffusion Bag Sampler (PDBS). Volatile Organic samples were contained in 40-ml, clear glass, VOAs preserved with hydrochloric acid. Following completion of sampling effort, a new PDBS was installed in each monitoring well.

Low-Flow Well Purging & Sampling Procedures

A peristaltic pump with new pump tubing was used to purge and sample MW-2 for Chloride and Title 22 Metals. The monitoring well was purged at a rate no greater than 500-ml per minute until water quality parameters stabilized for three consecutive readings.

During low-flow purging activities, pH, Specific Conductance (uS), Temperature (Celsius), Dissolved Oxygen (mg/L), Oxidation/Reduction Potential (mV), and physical characteristics such as pumping water level, color, and odor (see Water Quality Sample Log Sheets) were monitored and recorded (see Water Quality Log Sheets).

EPA stabilization guidelines for low-flow sampling were used: \pm 0.1 for pH, \pm 3 % for Specific Conductivity, \pm 10% for Dissolved Oxygen, \pm 10 mV for ORP, and \pm 10% NTUs for Turbidity, if more than 10 NTUs.

Groundwater samples for Chloride and Title 22 Metals were collected immediately following stabilization of water quality parameters by disconnecting the tubing from the flow through chamber. Groundwater sample for Chloride was pumped directly into the appropriate sample container. A 0.45-micron filter was attached to the pump tubing for the collection of metals sample.

All sample labels were completed with waterproof ink and affixed to sample containers. All sample containers were wiped dry, sealed in Ziploc® bags, and placed a chilled cooler for storage and shipment to the laboratory.

Following completion of low-flow groundwater sampling, a new Passive Diffusion Bag was installed.

Laboratory

TestAmerica of Pleasanton, California provided Trip Blank, sample containers with appropriate preservative, and conducted all laboratory analyses.

All wells were sampled for Volatile Organic Compounds (VOC) by EPA Method 8260B. Additional samples were collected from MW-2 for Chloride and Title 22 Metals (Dissolved) by EPA 6010B.

Sample Containers /Sample Handling

Each VOC sample set was contained in two or three, 40-ml VOA clear glass containers preserved with hydrochloric acid.

Each Chloride sample was contained in a non-preserved, 500-ml plastic container.

Each Title 22 Metals sample was field filtered and contained in a 500-ml plastic container preserved with nitric acid.

All samples were placed in the cooler containing the Trip Blank for storage and transportation.

Quality Assurance /Quality Control Samples

All QA/QC samples were submitted to TestAmerica for analysis.

Trip Blank

One Trip Blank set, labeled Trip Blank, was stored in a chilled cooler throughout the sampling event and submitted for analysis.

Equipment Blank

One equipment blank set for Chloride and Title 22 metals was collected prior to purging MW-2. The equipment blank was collected at well location MW-2 and labeled "EB-1 @ 11:15". Distilled water and short section of downhole pump and silicon tubing were used. Distilled water was pumped directly into the Chloride sample container. Approximately 50-ml of distilled water was flushed through a new 0.45-micron filter prior to containment of metals sample collection.

Duplicate

One blind duplicate set was collected from MW-2 and labeled "MW-DUP @ 11:40". Primary and duplicate sets of VOCs for MW-2 were obtained by collecting two 40-ml VOA containers from the PDB for each set. Chloride and metals duplicate samples were collected using low-flow sampling and the peristaltic pump. The filter used for the equipment blank was re-used for sample collection. Approximately 100 ml of groundwater was flushed through the filter prior to sample collection.

No other QA/QC samples were requested.

Chain of Custody (COC) Form

Standard chain of custody procedures were used to documentation purposes. The COC included: sampler's name and signature, sample identification, sample date and time, and analysis request section. Electronic Data Format (EDF) and standard turnaround time was requested.

Shipment of Samples

All groundwater samples were relinquished directly to TestAmerica July 14, 2008.

Storage of Investigative Derived Wastewater (IDW)

Approximately 10 gallons of purged groundwater and decontamination water generated from this sampling event were stored a new, labeled 55-gallon drum. The drum is stored along the southeast corner of the property.

Comments

Sample collection time for MW-2 at 12:00 was used for documentation purposes, the actual sample time of the primary and duplicate VOCs samples was 10:59 (see "Comments" in MW-2's Water Quality Sample Log Sheet)

All work was performed in accordance with Geosyntec's directive for Hopyard Cleaners, dated June 11, 2008 and subsequent directives.

Environmental Sampling Services, LLC

Jacqueline Lee Manager

Attachments:

Table 1: Summary of Groundwater Monitoring Event

Water Sample Log Sheets

Equipment Calibration Sheet

Chain of Custody

Table 1: Summary of July 2008 Quarterly Groundwater Sampling Event

Project Name: Hopyard Cleaners

Project Location: 2771 Hopyard Road, Pleasanton, California

Passive Diffusion Bags:

Well/Sample Identification	Date of Measurement	Time of Measurement	Depth to Groundwater (Ft., below TOC)	PDB Sample Date	PDB Sample Time
MW-1	7/14/2008	9:13	13.79	7/14/2008	9:38
MW-2	7/14/2008	9:07	13.23	7/14/2008	10:59
MW-3	7/14/2008	9:09	14.21	7/14/2008	9:50
MW-4	7/14/2008	9:20	13.81	7/14/2008	10:10
MW-5	7/14/2008	9:16	32.16	7/14/2008	10:27

Low-Flow Sampling:

	Date		QA/QC
Well/Sample Identification	of Measurement	Sample Time	Type (QA/QC Sample Identification
MW-2	7/14/2008	12:00	Equipment Blank (EB-1) & Duplicate (MW-DUP)

Legend:

TOC = Top of Well Casing

NA = Not Applicable

WATER	QUALIT	Y SAMPLE	LOG SHE	EET	WELL IDEN	TIFICATI	ON: MV	/-1 DAT	E: 7/14	109
A STATE OF THE RESIDENCE OF	Call Control of the same	CATALOGUE SETTING SELECTION OF STATE			roject Task: Qu					
					Lab: TestAme					ni d
Company of the Compan		andre.			Well Type: (·	
					Type of lock			ster P288		
					Screen Interv			00 - 1182102045304		
150	and the same		7.27		Centrifugal Pur					
to the art of the Parison of the		lew / Cleaned			Bailer Line:					
		VIII.	Alconox I	Liqui-nox T	ap Water DI	Rinse Oth	er:			
Control of the second section		Bailer: (NA) Passive Disp	acabla Ca	mples Bag						
					, S - 05F1258Al	4 / 600XI	3193405	2 - 000152	2	
Colorada beserves		ion: See Dai				1 / 000/1	_ 0130401	(- 000 132		
					ator Serial No.:	21758	25742	P.I.D. Read	ding: NA n	pm
Water Le	evel at Star	t (DTW): 13	7909:	13 NR) Water Leve	I Prior To	After Sa	mpling: 1	JA (BTC	oc)
					water) x "K" = _					
					" = .653 (4" well)					
		in and the second			QUALITY PAR					
			200		Specific			Dissolved	Water	
Date	Time	Discharge	pН	Temp.	Conductance	Annual Control of the	5 5 5 5 5 5 5	Oxygen	Level	Color
		(Liters)	+/- 0.1	(°C)	μS +/- 3%	(NTU's) +/- 10	(mV) +/- 10	(mg/L) +/- 10%	(BTOC)	
\		Initial	+/- 0.1		17- 370	17- 10	17- 10	17-1070		
/		0.5		n ====================================						
		1.0								
	1	1.5								
		2.0								
		2.5		-NA					In	
		3.0		-101	\					
		3.5				-				
		4.0					/			
Total Die	charge:	-	ters		Casing Volum	nes Remov	ved: NA			
				5 Gallon Dr	rum(s) Poly			ystem Ot	her:	7
					Analysis:					
OA/OC:	LA- AR	@ -	_ @	nlicate MS	S/MSD Equip	ment Rins	eate Fie	ld Blank L	ab Split	
				priodice inc	canob Equip				in let all the	
Commen	IS. NK.	North Rim								
	Type or operation	A.M. 50 Philippin			->-1/0					
Recorded	by: Step	hen Penman	/ (lacki Le	e) Signati	upe: کو	_			Page 1 of 1	11/0/ 5

WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-2 DATE: 7/14/08												
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574												
Project Manager: Melissa Asher - Geosyntec Cons. Lab: TestAmerica Weather Conditions: twild warm												
Well Description: 2" 3.5" 4" 5" 6" Other: Well Type: PVC Stainless Steel Other:												
Is Well Secured Yes No Bolt Size: 9/16" Type of lock / Lock number: Master Observations / Comments: set pump intake @ 25 ft.(BTOC) Screen Interval: 20' to 30'												
					ifugal Pump	-		CONTRACTOR OF THE PARTY OF THE				
Of the state of th	100	The same of the sa			Bailer Line:							
		- Approximately and a second s			ap Water DI							
Method of Cleaning Bailer: NA Alconox Liqui-nox Tap Water DI Rinse Other:												
YSI Muti-Parameter Meter/Probe Serial No.: 556 MPS - 05F1258AH / 600XL 319340R - 00C1522												
YSI Muti-Parameter Meter/Probe Serial No.: 556 MPS - 05F1258AH / 600XL 319340R - 00C15222 Equipment Calibration: See Daily Equipment Calibration Sheet												
Equipment Calibration: See Daily Equipment Calibration Sheet Method to Measure Water Level: Slope/Solinst Indicator Serial No.: 21758 (25742) P.I.D. Reading: NA ppm												
Method to Measure Water Level: Slope/Solinst Indicator Serial No.: 21758 (25742) P.I.D. Reading: NA ppm Water Level at Start (DTW): 13.236 9:07 sm (BTOC) Water Level Prior To Sampling: 13.39 (BTOC)												
Water Level at Start (DTW): 13.23c 9'07 sm (BTOC) Water Level Prior To Sampling: 13.38 (BTOC) TD = 30.31' - 13.23 (DTW) = 17.03 (ft.of water) x "K" = 2.78 (Gals./CV) x NA (No. of CV) = NA (Gals.)												
TD = 30.31' - 15.25 (DTW) = 17.05 (ft.of water) x "K" = 2.45 (Gais./CV) x NA (No. of CV) = NA (Gais.) ("K"= 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "K" = 1.46 (6" well)												
FIELD WATER QUALITY PARAMETERS												
Specific Dissolved Water												
Date	Time	Discharge	pН	Temp.	Conductance	-245 C. C. Select C. L. C. L. Sel.	0.000	Oxygen	Level	Color		
l		(Liters)	+/- 0.1	(°C)	μS +/- 3%	(NTU's) +/- 10	(mV) +/- 10	(mg/L) +/- 10%	(BTOC)			
1/4/09	11:24	Initial	7.25	21.14	2009	36	190.3	3.97	13.37	clear		
1	11:27	0.5	6.59	21.32	1990	33	188.5	2.48	13.36	4		
	11:29	1.0	6.45	21.14	1977	29	1873	1-88	13.36	64		
	11:31	1.5	6.43	21.29	1970	24	186.4	1.60	13.36	**		
	11:34	2.0	6.43	21.24	1966	21	186.3	1.52	(3.36	64		
	11:37	2.5	6.42	21.20	1960	17	186.2	1.39	13.36	64		
11540 3.0 6.42 21.18 1951 15 186.5 1.25 13.37												
11:43 3.5 6.43 21.18 1954 13 186.5 1.11 13.38 "												
11:45 4.0 6.43 21.12 1950 11 187.0 1.02 13.38 "												
Total Discharge: Liters												
Method	of disposal	of discharge	d water: 5	5 Gallon Di	rum(s) Poly	Tank Tre	eatment S	ystem Ot	her:			
		1: 7/14/08			Analysis/Cont					Title 22		
					(300.0) (1-250	ml Poly N	I/P)					
Preserv	atives Used	: HCI HNO	03 None									
QA/QC: MW-DUP & EB-1 @ 11:15/11:10 Quplicate MS/MSD Equipment Blank Field Blank Lab Split												
Comments: Metals sample field filtered with 0.45 micron filter. Actual Sample Time of vocs = 10:59												
POST MARKET		hen Penman		48.00			_		Page 1 of			
, toodide	a by. Otopi	Torri omman	oundrou		3							

WATER	QUALI	TY SAMPL	E LOG S	HEET	WELL IDEN	TIFICATIO	N: MW-	-2	Page 2	
Project I	Vame:	Hopyard	Cleaner	s, Pleas	anton, CA METERS CON	TIMUED ER	OM PAGE	= 1		
Date	Time	Discharge (Liters)	pH (± 0.1)	Temp.	Specific Conductance mS uS (± 3%)	Turbidity (NTU's) (±10%)	Redox (mV) (±10)	Dissolved Oxygen (mg/L) (±10%)	Water Level (BTOC)	Color
7/14/0E	11:47	4.5	6.43	20.81	1944	10	187.8	1.02	13.38	clear
	11:50	5.0	6.44	21.03	1944	6.8	1889	0.98	13.38	u
	11:53	5.5	6.43	20.95	1943	6.1	188.5	0.93	13.38	٠
V	11:55	6.0	6.44	21.05	1939	5.8	1893	0.91	13,38	*
		6.5								
		7.0								
		7.5								
		8.0								
		8.5								
		9.0								-
		9.5								
		10.0								
		10.5								
		11.0								
		11.5								
		12.0								
		12.5								
		13.0								
		13.5								
		14.0								
		6.2 Surveyor			Casing Volum	es Remove	d: <u>NA</u>		l.	
D		queline Lee	Notanha-	Donmon	Signature:	1/-				

Date Time Discharge (Liters) pH +/- 0.1 Temp. (°C) Conductance μS +/- 3% Turbidity (NTU's) (mV) +/- 10 Redox (mV) (mg/L) +/- 10% Conductance (mg/L) +/- 10% Lead (mg/L)	ATER	QUALITY	SAMPLE	LOG SHE	ET	WELL IDEN	TIFICATI	ON: MW	I-3 DAT	E: 7/14	108
Date Time Discharge (Liters) pH Temp. (°C) μS (NTU's) (mV) (mg/L) (mg/L)	roject Ma /ell Desc Well Se bservatio urge Met ump Line lethod of lethod of ampling SI Muti-F quipmen lethod to /ater Lev TD =	lanager: Moription: 2 ecured? (victors / Comethod: NA) f Cleaning f Cleaning f Method: Parameter nt Calibratio Measure vel at Star	Meter/Probon: See Dail Water Level (DTW): 14"	F - Geosyn 5" 6" Ott Size: 9/1 Disposable d / Dedicat Alconox I Dosable Sa e Serial No ily Equipm I: Slope/S	tec Cons. her: 6" le Bailer ted iqui-nox mpler Bag o.: 556 MF ent Calibra olinst Indic	Lab: TestAme Well Type: Type of lock Screen Inten Centrifugal Pun Bailer Line: Tap Water DI I PS - 05F1258Al ation Sheet sator Serial No.: () Water Leve () water) x "K" =	rica Weal PVC Sta / Lock nur /al: 20' to np Perist /A New / Rinse Oth 1 / 600XL 21758 (I Prior To	altic Pum Cleaned / er:	ditions: House let Other: ster P288 p Other: Dedicated R - 00C1522 P.I.D. Read mpling: NA (No. of C	ding: <u>NA</u> p	opm oc)
Date Time Discharge (Liters) pH +/- 0.1 Temp. (°C) Specific Conductance µS +/- 3% Turbidity (NTU's) (mV) +/- 10 Redox (mV) (mg/L) +/- 10% V (mV) (mg/L) +/- 10% L (mg/L) +/- 10% Conductance (mg/L) +/- 10% N (my/L) +/- 10% <th< td=""><td>"}</td><td>'K"= 0,163 (</td><td>2" well) "K"</td><td></td><td></td><td>- Transportation</td><td>CONTRACTOR OF SERVICE</td><td>710</td><td>) "K" = 1.4</td><td>6 (6" Well)</td><td></td></th<>	"}	'K"= 0,163 (2" well) "K"			- Transportation	CONTRACTOR OF SERVICE	710) "K" = 1.4	6 (6" Well)	
Initial 0.5 1.0 1.5 NA 2.0 2.5 3.0 3.5 4.0	Date	Time	CONTRACTOR OF THE	рН	Temp.	Specific Conductance µS	Turbidity (NTU's)	Redox (mV)	Oxygen (mg/L)	Water Level (BTOC)	Color
1.0 1.5 NA 2.0 2.5 3.0 3.5 4.0			Initial								
1.5 NA 2.0 2.5 3.0 3.5 4.0			0.5								
2.0 2.5 3.0 3.5 4.0			1.0								
2.5 3.0 3.5 4.0			1.5		NA						
3.0 3.5 4.0			2.0								
3.5 4.0			2.5								
4.0			3.0								
			3.5								
Tatal Disabarra:			4.0							-	
Method of disposal of discharged water: (55 Gallon Drum(s) Poly Tank Treatment System Other Date/Time Sampled: 1(4 08 @ 9:50 Analysis: VOCs (8260B) - 3 VOAs w/HCl QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Comments: SM* (20024001) wark	lethod of ate/Time A/QC: _	f disposal e Sampleo	of discharge d: <u>₹1,14,108</u> @	Du	50	Orum(s) Poly Analysis:	Tank Tre VOCs (82	eatment S 60B) - 3 \	OAs w/HC	<u> </u>	

WATER	QUALIT	Y SAMPLE	LOG SHE	ET	WELL IDEN	TIFICATI	ON: MV	I-4 DAT	E: 7114	108
Project M Project M Well Des Is Well S Observa Purge M Pump Li Method of Sampling YSI Muti Equipme Method t Water Le	Name: Hop Manager: 1 Secured? (Value of Cleaning of Cleaning of Cleaning of Method: (I-Paramete ent Calibrate to Measure evel at Star	yard Cleaner Melissa Ashe 2 3.5" 4" (es) No Both ments: Teflon / PE New / Cleaner pump. NA passive Disp r Meter/Prob ion: See Dai Water Leve rt (DTW): 13.81 (f	s Pleasanto r - Geosynt 5" 6" Oth siste: 9/16 Disposable d / Dedicate Alconox L posable Sar e Serial No lly Equipme Slope/So 3.816 9:40 DTW) = 20	e Bailer ed iqui-nox mpler Bag .: 556 MF ent Calibra olinst Indic	roject Task: Qu Lab: TestAme Well Type: (Type of lock Screen Inten Centrifugal Pur Bailer Line: (Tap Water DI I	rica Wearica Wearica Wearica Wearica Wearica Wearica Peristria New / Rinse Oth	onitoring on ther Condiness Stember: Ma on 30' altic Pum Cleaned / cer:	Project/Tas ditions: Na el Other: ster P288 p Other: Dedicated R - 00C1522 P.I.D. Read mpling: Na (No. of C	k No. <u>WR</u>	ppm oc)
	K = 0.163	(2 well) K			QUALITY PAI	Donorster fallen er et) K - 1.4	o (o well)	
Date	Time	Discharge (Liters)	pH +/- 0.1	Temp.	Specific Conductance µS +/- 3%			Dissolved Oxygen (mg/L) +/- 10%	Water Level (BTOC)	Color
	\	Initial	_							
		0.5								
		1.0		//						
		1.5		-						
		2.0			NA					
		2.5								
		3.0								
		3.5								
		4.0								
Method of Date/Time QA/QC:	of disposal ne Sampleo	d: 7/14/08	d water: (55 @10:1 Dur	0	Casing Volum rum(s) Poly Analysis: S/MSD Equip	Tank Tre VOCs (82	atment S 60B) - 3 V	OAs w/HC	<u> </u>	
Recorde	d by: Step	hen Penman	Jacquelin	ne Lee	Signature:	= K			Page 1 of 1	

WATER	QUALITY	SAMPLE	LOG SHE	EET	WELL IDEN	TIFICATI	ON: MV	/-5 DAT	E: 7/14	los
Project M Well Des Is Well S Observat Purge Me Pump Lin Method o Method o Sampling YSI Muti- Equipment Method to Water Le	lanager: Macription: 2 ecured? Yellions / Comethod: (NA) Note Cleaning Method: (Parameter Calibration Measure vel at Star	Melissa Ashe " 3.5" 4" es/ No Bolt ments: Teflon / PE lew / Cleaned Pump: NA Passive Disp Meter/Prob ion: See Dai Water Level t (DTW):	F - Geosyn 5" 6" Otl Size: 15/ Disposab d / Dedicat Alconox I Dosable Sa e Serial No ily Equipm : Slope/S	tec Cons. her: 16" le Bailer led Liqui-nox impler Bag o.: 556 MF ent Calibra olinst Indic	S - 05F1258A	rica Wear Pool Sta Lock nur Val: 50' to New / Rinse Oth Compared to 1 / 600XI Compared to 21758 / 1 Compared t	ther Condinless Stember: Ma 0 60' altic Pum Cleaned / er: 319340F	ditions: Hu el Other: ster P288 p Other: Dedicated R - 00C152: P.I.D. Read mpling:	ding: NA p	opm
					(" = .653 (4" well)					
	11 0.100	2 11011/	midding)	and the state of	QUALITY PAI	DESCRIPTION OF THE PARTY	340			
Date	Time	Discharge (Liters)	pH +/- 0.1	Temp. (°C)	Specific Conductance µS +/- 3%	Turbidity (NTU's) +/- 10	Redox (mV) +/- 10	Oxygen (mg/L) +/- 10%	Water Level (BTOC)	Color
_		Initial								
	_	0.5		0						
		1.0		0						
		1.5	_							
		2.0		~ N	A					
		2.5			_ `				-	
		3.0					_			
		3.5								
		4.0								
Method o Date/Tim QA/QC:	f disposal e Sampleo	1: 7/14/08	d water: 5 @_ !0: Du	27	Casing Volum rum(s) Poly T Analysis: S/MSD Equip	Tank Tre VOCs (82	eatment S 60B) - 3 V	OAs w/HC	1	<u> </u>
Recorded	by: Step	hen Penman	Jacqueli	ne Lee	Signature:				Page 1 of 1	

SITE NAME: Hopyard Cleaners SITE LOCATION: Pleasanton, CA

TASK: July 2008 Quarterly Groundwater Monitoring Event

DAILY EQUIPMENT CALIBRATION SHEET

LITTOCKEN PROCESS			10 100	Dissolved		pH		Specific Conductance	ORP	TURBIDITY
DATE	TIME	Instrument Serial Number	Probe Serial Number	Oxygen (%)	4	7	10	1,000 uS/cm	mV	NTU's
7/14/08	10:45	319340R	00CIS22	100.1	3.98	6.98	10.00	1,001	237.0	0.02
						-	-			
								0		
						-				

Envi	ironmental
Sam	pling Services
6680 Alhambra Avenue, #102 Telephone: (925) 372-8108 www.envsampling.com	• Martinez, California 9455 Fax: (925) 372-6705 Log Code: ESSM
Send Report To: Melissa Asher Company: GeoSyntec Consultants	Bill To: SAME Company:
Address: 475 14th Street, Suite 450	Address:

SAMPLING

7/14/08 8:30

7/14/08 9:38

7/14/08 9:50

7/14/08 10:10

7/14/08 10:27

7/14/08/ 12:00

11:15

11:40

Time:

14.10

Time:

Time:

7/14/08

1/14/08

Date:

1/14/08

Date:

Date:

Time

Date

Fax: ()

3

Project Number: WR0574

Stephen Penman

MATRIX

CODE

Water

GS

WG

X

X

X

X

1,3

Received By:

Received By:

Received By:

Oakland, CA 94612 E-Mail: masher@geosyntec.com

Project Name: Hopyard Cleaners

Sampler's Name: Jacqueline Lee

Field Point Name

QCTB !

MW-I

MW-3

MW-4

MW-5

DCEB

DUP1

MW-2.

Tel: (510) 285-2782

Fax: (510) 836-3036

SAMPLE ID

Trip Blank

MW-1

MW-3

MW-4

EB-1

MW-5

MW-DUP

Relinquished By:

Relinquished By:

Relinquished By:

MW-2

				CHAIN OF CUSTODY RECORD TURN AROUND TIME																						
						ÜΙ	. IX .	ながエノ	· ·	O 14.	ו ע	T TA	I L	24	D GU	Δ	O L	al TD		20 سر	כוזי	4	راند. 1			1
				ı	R	еро	rti	ng	For	rma	ıt:	ED	$_{\mathbf{F}}\mathbf{Z}$, ¬	ПК	4 E	DE) [12	PD.	F 🗋	מוצ			-
3-6	:10	١5			Gi	eoT	`rac	ke:	rS	ite	Ide	nti	fica	itio	n:							L' source	0.			
ა-ს) T C	JO		- 1	Fe	edE	x []	UP	s 🗆] _	E	35	5	· 1	Trac	cki	ng	Nu	mb	er:	***************************************				
					L	abe	rat	tory	v:]	Γest	t Ar	nei	rica	400	207							Lab	Co	rde:	STO	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						<u>`</u>					Red		est			W/A				ield				
						Filtered Comments													nts							
																										1
																	-									.]
]
74	-															,])B)					
Ĺ																.					Title 22 Metals (EPA 6010B)					
<u> </u>	ΛE.	TH	OD		<u></u>	0.0)		1								.					PA 6					-
			RVE		VOCs (EPA 8260B)	Chloride (EPA 300.0)		I													s (E					
					A 82	EPA															etal					
		n	4		(EP.	le (7															2 Mc					1
<u>ս</u> է	5	HNO_3	H ₂ SO ₄		CS	oric															e 22					
201	H	H	H		00	CH															Titl					
1	X	××××			X																-					
4/5	<				X																					
V.	X				X					-					 							-				
χ.	×				1					 					-						<u> </u>			ļ		
	×		-	 	1			-	-	†	+	-	-			-						1				
	a	v	-	-	X X 落	8/	-				+				-	\vdash		-								
	Z .,	^	+	-	李	X		-			-				-			ļ			X					
X	×	X			×	X	-		ļ	-			ļ		 						X					
×ŀ	X	X	<u> </u>	<u> </u>	X	X	ļ	ļ													X					
		L			150	108			<u> </u>																	
+		Y	-	1	1117	1.				\bigcap	1	_														
					IC	E/°	c	2.0	2		<u> </u>	J.,,,,,,	1	I			HE	AD	SPA	CE	E AB	SEI	VT:	Yes		No
						eceiv									No		_							~ ~ .	•	110
					M	etal	s sa	ımı	ole(s) F	ield	Fil	tere	:d:	Yes	N	ĺO	NA								
					C	uest OMI	MEN	S TO	ega.	ram	ıg C	OC:	: Ca	lii ı	SSS											
			******		1																					
			FIFLD POINT: MW=Monitoring Well QCFD=Field Duplicate QCFB=Field Blank																							

1=VOAs 2=Glass 3=Poly 4=Liner 5=Air Canister 6=Tedlar Bag

94553-6105

Ice

XXX

XX

XX

XX

XXX

ATTACHMENT 3 LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Job Number: 720-15168-1

Job Description: Hopyard Cleaners

For:

GeoSyntec Consultants 475 14th Street, Suite 450 Oakland, CA 94612

Attention: Ms. Melissa Asher

Melissa Brewer
Project Manager I
melissa.brewer@testamericainc.com
07/18/2008

cc: Ms. Angela Liang

Job Narrative 720-J15168-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-15168-2	MW-1				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	230 1700 250	20 20 20	ug/L ug/L ug/L	8260B 8260B 8260B
720-15168-3	MW-3				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	4.3 43 4.0	0.50 0.50 0.50	ug/L ug/L ug/L	8260B 8260B 8260B
720-15168-4	MW-4				
cis-1,2-Dichloroethe Trichloroethene	ene	4.7 4.0	0.50 0.50	ug/L ug/L	8260B 8260B
720-15168-5	MW-5				
Tetrachloroethene		31	0.50	ug/L	8260B
720-15168-6EB	EB-1				
Antimony Zinc		0.0089 0.016	0.0050 0.010	mg/L mg/L	6010B 6010B
720-15168-7FD	MW-DUP				
cis-1,2-Dichloroether Tetrachloroethene Trichloroethene Antimony Barium Molybdenum Nickel Chloride	ene	830 8100 500 0.0061 0.13 0.0056 0.010	50 50 50 0.0050 0.0050 0.0050 0.0050	ug/L ug/L ug/L mg/L mg/L mg/L mg/L	8260B 8260B 8260B 6010B 6010B 6010B 6010B 300.0

EXECUTIVE SUMMARY - Detections

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Sample ID	Client Sample ID		Reporting		
Analyte		Result / Qualifier	Limit	Units	Method
720-15168-8	MW-2				
cis-1,2-Dichloroeth	ene	820	100	ug/L	8260B
Tetrachloroethene		9500	100	ug/L	8260B
Trichloroethene		530	100	ug/L	8260B
Barium		0.13	0.0050	mg/L	6010B
Molybdenum		0.0067	0.0050	mg/L	6010B
Nickel		0.010	0.0050	mg/L	6010B
Chloride		110	10	mg/L	300.0

METHOD SUMMARY

Client: GeoSyntec Consultants Job Number: 720-15168-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level) Purge-and-Trap	TAL SF TAL SF	SW846 8260B	SW846 5030B
Inductively Coupled Plasma - Atomic Emission Spectrometry Acid Digestion of Aqueous Samples and Extracts for	TAL SF TAL SF	SW846 6010B	SW846 3010A
Mercury in Liquid Waste (Manual Cold Vapor Technique) Mercury in Liquid Waste (Manual Cold Vapor	TAL SF TAL SF	SW846 7470A	SW846 7470A
Anions by Ion Chromatography	TAL SF	MCAWW 300.0)

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-15168-1TB	TRIP BLANK	Water	07/14/2008 0830	07/14/2008 1410
720-15168-2	MW-1	Water	07/14/2008 0938	07/14/2008 1410
720-15168-3	MW-3	Water	07/14/2008 0950	07/14/2008 1410
720-15168-4	MW-4	Water	07/14/2008 1010	07/14/2008 1410
720-15168-5	MW-5	Water	07/14/2008 1027	07/14/2008 1410
720-15168-6EB	EB-1	Water	07/14/2008 1115	07/14/2008 1410
720-15168-7FD	MW-DUP	Water	07/14/2008 1140	07/14/2008 1410
720-15168-8	MW-2	Water	07/14/2008 1200	07/14/2008 1410

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-15168-1TB
 Date Sampled:
 07/14/2008 0830

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Analysis Batch: 720-38208 Agilent75MSD Method: 8260B Instrument ID: 071508013.D Preparation: 5030B Lab File ID: Dilution: 1.0 Initial Weight/Volume: 40 mL 40 mL Date Analyzed: 07/15/2008 1339 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-15168-1TB
 Date Sampled:
 07/14/2008 0830

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38208 Agilent75MSD Instrument ID: 071508013.D Preparation: 5030B Lab File ID: Dilution: 1.0 Initial Weight/Volume: 40 mL 40 mL Date Analyzed: 07/15/2008 1339 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec	Acceptar	nce Limits
4-Bromofluorobenzene	110	74 - 13	
1,2-Dichloroethane-d4 (Surr)	109	88 - 11	
Toluene-d8 (Surr)	111	82 - 12	
,			

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-15168-2
 Date Sampled:
 07/14/2008 0938

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1553 Final Weight/Volume: 40 mL

)
)
)
]

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-15168-2
 Date Sampled:
 07/14/2008 0938

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1553 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		2000
Naphthalene	ND		40
N-Propylbenzene	ND		40
Styrene	ND		20
1,1,1,2-Tetrachloroethane	ND		20
1,1,2,2-Tetrachloroethane	ND		20
Tetrachloroethene	1700		20
Toluene	ND		20
1,2,3-Trichlorobenzene	ND		40
1,2,4-Trichlorobenzene	ND		40
1,1,1-Trichloroethane	ND		20
1,1,2-Trichloroethane	ND		20
Trichloroethene	250		20
Trichlorofluoromethane	ND		40
1,2,3-Trichloropropane	ND		20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
1,2,4-Trimethylbenzene	ND		20
1,3,5-Trimethylbenzene	ND		20
Vinyl acetate	ND		2000
Vinyl chloride	ND		20
Xylenes, Total	ND		40
2,2-Dichloropropane	ND		20
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	113		74 - 131
	104		88 - 119
1,2-Dichloroethane-d4 (Surr)			82 - 120
Toluene-d8 (Surr)	99		02 - 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-15168-3
 Date Sampled:
 07/14/2008 0950

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1230 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	4.3		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-15168-3
 Date Sampled:
 07/14/2008 0950

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1230 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	43		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	4.0		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	116		74 - 131
1,2-Dichloroethane-d4 (Surr)	104		88 - 119
Toluene-d8 (Surr)	101		82 - 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-15168-4
 Date Sampled:
 07/14/2008 1010

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1304 Final Weight/Volume: 40 mL

Acetone ND 50 Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Carbon disulfide ND 1.0 Carbon tetrachloride ND 1.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chloroform ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorofotluene ND 0.50 Chlorofotlouene ND 0.50 Chlorofobromethane ND 0.50 Chlorofobromethane ND 0.50	Analyte	Result (ug/L)	Qualifier	RL
Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 Bromomethane ND 1.0 Ebutanore (MEK) ND 1.0 n-Butylbenzene ND 1.0 es-Butylbenzene ND 1.0 ett-Eutylbenzene ND 1.0 carbon disulfide ND 5.0 Chlorodivene ND 5.0 Chlorodivene ND 1.0 Chlorodivenene ND 1.0 <t< td=""><td>Methyl tert-butyl ether</td><td></td><td></td><td></td></t<>	Methyl tert-butyl ether			
Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Carbon disulfide ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 5.0 Carbon tetrachloride ND 5.0 Carbon tetrachloride ND 5.0 Chlorobenzene ND 0.50 Chlorofform ND 1.0 Chlorofform ND 1.0 Chlorofform ND 1.0 Chlorofform ND 1.0 Chlorofform ND 0.50 Chlorofformomethane ND 0.50 Chlorofformomethane ND 0.50 1,4-Dichlorofpopane ND 0.50 </td <td>Acetone</td> <td>ND</td> <td></td> <td></td>	Acetone	ND		
Bromobenzene	Benzene	ND		0.50
Chlorobromomethane	Dichlorobromomethane			
Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 0.50 Carbon tetrachlorde ND 0.50 Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroethane ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorobenzene ND 0.50 1-2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50<	Bromobenzene	ND		1.0
Brommethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobere ND 0.50 Chlorodethane ND 1.0 Chlorodethane ND 1.0 Chlorodoform ND 1.0 Chlorodofuene ND 1.0 4-Chlorotoluene ND 0.50 1,2-Dichlorothane ND 0.50 1,2-Dichlorothane ND 0.50 1,3-Dichloropopane ND 0.50 1,1-Dichlorotethane ND 0.50<	Chlorobromomethane	ND		1.0
2-Butanone (MEK) n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 carbon disulfide ND 5.0 Carbon disulfide ND 0.50 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chloroethane ND 0.50 Chloroethane ND 0.50 Chloroethane ND 0.50 Chloroethane ND 0.50 Chloroethouene ND 0.50 1,3-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Dibromomethane ND 0.50 Dichloroethane ND 0.50 Li-Dichloroethane ND 0	Bromoform			
n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tetr-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorobethane ND 1.0 Chlorobethane ND 1.0 Chlorobethane ND 1.0 Chlorobethane ND 1.0 Chlorotoluene ND 0.50 Chlorotoluene ND 0.50 Chlorotoluene ND 0.50 Chlorotoluene ND 0.50 Chlorobenzene ND 0.50 Chlorotoluene ND 0.50 Chlorotoluen	Bromomethane	ND		1.0
sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 1.0 Chloroform ND 1.0 Chlorotethane ND 1.0 Chlorotelune ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromo-3-Chloropropane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloro	2-Butanone (MEK)	ND		50
tert-Burylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroethane ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Dibromothane ND 0.50 Dichloroethane ND 0.50 1,1-Dichlo	n-Butylbenzene	ND		1.0
Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chloroethane ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloroformethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodiformemethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromod-3-Chloropropane ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dibromothane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroe	sec-Butylbenzene	ND		1.0
Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 1.0 Chloroform ND 1.0 Chlorotethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,4-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0.50 Dibromomethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 trans-1,2-Dichloropthene ND 0.50	tert-Butylbenzene	ND		1.0
Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodifromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloroptopane ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloro	Carbon disulfide	ND		5.0
Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroptopene ND 0.50 trans-1,2-Dichloroptopene ND 0.50 <t< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>0.50</td></t<>	Carbon tetrachloride	ND		0.50
Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 trans-1,2-Dichloropropene ND 0.50	Chlorobenzene			0.50
Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloroporpane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 cis-1,3-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND	Chloroethane	ND		1.0
2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND <td< td=""><td>Chloroform</td><td>ND</td><td></td><td>1.0</td></td<>	Chloroform	ND		1.0
4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Di-lohlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 cis-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 ctrans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50 2-Hexanone ND 0.50	Chloromethane	ND		1.0
Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene 4.7 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Hexachlorobutadiene	2-Chlorotoluene			
Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,2-Dichloroethene 4.7 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Hexachlorobutadiene	4-Chlorotoluene			
1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene 4.7 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50 2-Hexanone ND 0.50 Isopropylbenzene ND 0.50 4	Chlorodibromomethane	ND		
1,3-Dichlorobenzene ND 0.50 1,4-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene 4.7 0.50 1so-1,2-Dichloroethene 4.7 0.50 1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropene ND 0.50 1,2-Dichloropropene ND 0.50 1trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4	1,2-Dichlorobenzene	ND		
1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylenzene ND 0.50 Hexachlorobutadiene ND 0.50 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 0.50		ND		
1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,1-Dichloroethene 4.7 0.50 cis-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 0.50 1-dexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 0.50		ND		0.50
1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethene ND 0.50 1,1-Dichloroethene 4.7 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 0.50				
1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 0.50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0		ND		
Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 0.50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0				
Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50 trans-1,2-Dichloroptopethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 0.50		ND		
Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	•			
1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0				
1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	1.1-Dichloroethane			
1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	1,2-Dichloroethane	ND		0.50
cis-1,2-Dichloroethene 4.7 0.50 trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	•			
trans-1,2-Dichloroethene ND 0.50 1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	•			0.50
1,2-Dichloropropane ND 0.50 cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0		ND		
cis-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0				
trans-1,3-Dichloropropene ND 0.50 Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0				
Ethylbenzene ND 0.50 Hexachlorobutadiene ND 1.0 2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0				
HexachlorobutadieneND1.02-HexanoneND50IsopropylbenzeneND0.504-IsopropyltolueneND1.0				
2-Hexanone ND 50 Isopropylbenzene ND 0.50 4-Isopropyltoluene ND 1.0	=			
IsopropylbenzeneND0.504-IsopropyltolueneND1.0				
4-Isopropyltoluene ND 1.0				
· ·····				
Metriviere Uniorige ND 5.0	Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-15168-4
 Date Sampled:
 07/14/2008
 1010

 Client Matrix:
 Water
 Date Received:
 07/14/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1304 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	4.0		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	109		74 - 131
1,2-Dichloroethane-d4 (Surr)	101		88 - 119
Toluene-d8 (Surr)	100		82 - 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-5

 Lab Sample ID:
 720-15168-5
 Date Sampled:
 07/14/2008 1027

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1338 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-5

 Lab Sample ID:
 720-15168-5
 Date Sampled:
 07/14/2008 1027

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1338 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	31		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	105		74 - 131
1,2-Dichloroethane-d4 (Surr)	103		88 - 119
Toluene-d8 (Surr)	96		82 - 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-15168-7FD
 Date Sampled:
 07/14/2008
 1140

 Client Matrix:
 Water
 Date Received:
 07/14/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1626 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		500
Acetone	ND		5000
Benzene	ND		50
Dichlorobromomethane	ND		50
Bromobenzene	ND		100
Chlorobromomethane	ND		100
Bromoform	ND		100
Bromomethane	ND		100
2-Butanone (MEK)	ND		5000
n-Butylbenzene	ND		100
sec-Butylbenzene	ND		100
tert-Butylbenzene	ND		100
Carbon disulfide	ND		500
Carbon tetrachloride	ND		50
Chlorobenzene	ND		50
Chloroethane	ND		100
Chloroform	ND		100
Chloromethane	ND		100
2-Chlorotoluene	ND		50
4-Chlorotoluene	ND		50
Chlorodibromomethane	ND		50
1,2-Dichlorobenzene	ND		50
1,3-Dichlorobenzene	ND		50
1,4-Dichlorobenzene	ND		50
1,3-Dichloropropane	ND		100
1,1-Dichloropropene	ND		50
1,2-Dibromo-3-Chloropropane	ND		100
Ethylene Dibromide	ND		50
Dibromomethane	ND		50
Dichlorodifluoromethane	ND		50
1,1-Dichloroethane	ND		50
1,2-Dichloroethane	ND		50
1,1-Dichloroethene	ND		50
cis-1,2-Dichloroethene	830		50
trans-1,2-Dichloroethene	ND		50
1,2-Dichloropropane	ND		50
cis-1,3-Dichloropropene	ND		50
trans-1,3-Dichloropropene	ND		50
Ethylbenzene	ND		50
Hexachlorobutadiene	ND		100
2-Hexanone	ND		5000
Isopropylbenzene	ND		50
4-Isopropyltoluene	ND		100
Methylene Chloride	ND		500
Isopropylbenzene 4-Isopropyltoluene	ND ND		50 100

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-15168-7FD
 Date Sampled:
 07/14/2008
 1140

 Client Matrix:
 Water
 Date Received:
 07/14/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1626 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		5000
Naphthalene	ND		100
N-Propylbenzene	ND		100
Styrene	ND		50
1,1,1,2-Tetrachloroethane	ND		50
1,1,2,2-Tetrachloroethane	ND		50
Tetrachloroethene	8100		50
Toluene	ND		50
1,2,3-Trichlorobenzene	ND		100
1,2,4-Trichlorobenzene	ND		100
1,1,1-Trichloroethane	ND		50
1,1,2-Trichloroethane	ND		50
Trichloroethene	500		50
Trichlorofluoromethane	ND		100
1,2,3-Trichloropropane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50
1,2,4-Trimethylbenzene	ND		50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		5000
Vinyl chloride	ND		50
Xylenes, Total	ND		100
2,2-Dichloropropane	ND		50
Surrogate	%Rec	Acce	eptance Limits
4-Bromofluorobenzene	104	74	- 131
1,2-Dichloroethane-d4 (Surr)	105	88	- 119
Toluene-d8 (Surr)	97	82	- 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-15168-8
 Date Sampled:
 07/14/2008 1200

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 200 Initial Weight/Volume: 40 mL Date Analyzed: 07/16/2008 1447 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		1000
Acetone	ND		10000
Benzene	ND		100
Dichlorobromomethane	ND		100
Bromobenzene	ND		200
Chlorobromomethane	ND		200
Bromoform	ND		200
Bromomethane	ND		200
2-Butanone (MEK)	ND		10000
n-Butylbenzene	ND		200
sec-Butylbenzene	ND		200
tert-Butylbenzene	ND		200
Carbon disulfide	ND		1000
Carbon tetrachloride	ND		100
Chlorobenzene	ND		100
Chloroethane	ND		200
Chloroform	ND		200
Chloromethane	ND		200
2-Chlorotoluene	ND		100
4-Chlorotoluene	ND		100
Chlorodibromomethane	ND		100
1,2-Dichlorobenzene	ND		100
1,3-Dichlorobenzene	ND		100
1,4-Dichlorobenzene	ND		100
1,3-Dichloropropane	ND		200
1,1-Dichloropropene	ND		100
1,2-Dibromo-3-Chloropropane	ND		200
Ethylene Dibromide	ND		100
Dibromomethane	ND		100
Dichlorodifluoromethane	ND		100
1,1-Dichloroethane	ND		100
1,2-Dichloroethane	ND		100
1,1-Dichloroethene	ND		100
cis-1,2-Dichloroethene	820		100
trans-1,2-Dichloroethene	ND		100
1,2-Dichloropropane	ND		100
cis-1,3-Dichloropropene	ND		100
trans-1,3-Dichloropropene	ND		100
Ethylbenzene	ND		100
Hexachlorobutadiene	ND		200
2-Hexanone	ND		10000
Isopropylbenzene	ND		100
4-Isopropyltoluene	ND		200
Methylene Chloride	ND		1000
Metrylene Chloride	טא		1000

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-15168-8
 Date Sampled:
 07/14/2008
 1200

 Client Matrix:
 Water
 Date Received:
 07/14/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200807\07

Dilution: 200 Initial Weight/Volume: 40 mL Date Analyzed: 07/16/2008 1447 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		10000
Naphthalene	ND		200
N-Propylbenzene	ND		200
Styrene	ND		100
1,1,1,2-Tetrachloroethane	ND		100
1,1,2,2-Tetrachloroethane	ND		100
Tetrachloroethene	9500		100
Toluene	ND		100
1,2,3-Trichlorobenzene	ND		200
1,2,4-Trichlorobenzene	ND		200
1,1,1-Trichloroethane	ND		100
1,1,2-Trichloroethane	ND		100
Trichloroethene	530		100
Trichlorofluoromethane	ND		200
1,2,3-Trichloropropane	ND		100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100
1,2,4-Trimethylbenzene	ND		100
1,3,5-Trimethylbenzene	ND		100
Vinyl acetate	ND		10000
Vinyl chloride	ND		100
Xylenes, Total	ND		200
2,2-Dichloropropane	ND		100
Surrogate	%Rec	Acce	ptance Limits
4-Bromofluorobenzene	108	74 -	131
1,2-Dichloroethane-d4 (Surr)	104	88 -	119
Toluene-d8 (Surr)	97	82 -	120

0.0050

0.010

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: EB-1

Date Prepared:

Vanadium

Date Prepared:

Zinc

07/15/2008 1752

07/15/2008 0600

 Lab Sample ID:
 720-15168-6EB
 Date Sampled:
 07/14/2008 1115

 Client Matrix:
 Water
 Date Received:
 07/14/2008 1410

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry

Method:6010BAnalysis Batch: 720-38267Instrument ID:Varian ICPPreparation:3010APrep Batch: 720-38248Lab File ID:N/A

Dilution: 1.0 Initial Weight/Volume: 50 mL

Date Analyzed: 07/16/2008 1014 Final Weight/Volume: 50 mL

Result (mg/L) Analyte Qualifier RLAntimony 0.0089 0.0050 Arsenic ND 0.0050 Barium ND 0.0050 Beryllium ND 0.0050 Cadmium ND 0.0020 Chromium ND 0.0050 Cobalt ND 0.0050 Copper ND 0.0050 Lead ND 0.0050 Molybdenum ND 0.0050 Nickel ND 0.0050 Selenium ND 0.0050 ND 0.0050 Silver Thallium ND 0.0050

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: 7470A Analysis Batch: 720-38169 Instrument ID: FIMS 100
Preparation: 7470A Prep Batch: 720-38155 Lab File ID: N/A

ND

0.016

Dilution: 1.0 Initial Weight/Volume: 25 mL

Date Analyzed: 07/15/2008 1030 Final Weight/Volume: 50 mL

Analyte Result (mg/L) Qualifier RL

Mercury ND 0.00020

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-15168-7FD
 Date Sampled:
 07/14/2008
 1140

 Client Matrix:
 Water
 Date Received:
 07/14/2008
 1410

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry

Method:6010BAnalysis Batch: 720-38267Instrument ID:Varian ICPPreparation:3010APrep Batch: 720-38248Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Dilution: 1.0 Initial Weight/Volume: 50 mL

Date Analyzed: 07/16/2008 1017 Final Weight/Volume: 50 mL

Date Prepared: 07/15/2008 1752

Analyte	Result (mg/L)	Qualifier	RL
Antimony	0.0061		0.0050
Arsenic	ND		0.0050
Barium	0.13		0.0050
Beryllium	ND		0.0050
Cadmium	ND		0.0020
Chromium	ND		0.0050
Cobalt	ND		0.0050
Copper	ND		0.0050
Lead	ND		0.0050
Molybdenum	0.0056		0.0050
Nickel	0.010		0.0050
Selenium	ND		0.0050
Silver	ND		0.0050
Thallium	ND		0.0050
Vanadium	ND		0.0050
Zinc	ND		0.010

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: 7470A Analysis Batch: 720-38169 Instrument ID: FIMS 100 Preparation: 7470A Prep Batch: 720-38155 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 25 mL

Date Analyzed: 07/15/2008 1034 Final Weight/Volume: 50 mL Date Prepared: 07/15/2008 0600

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Mercury
 ND
 0.00020

Client: GeoSyntec Consultants Job Number: 720-15168-1

Client Sample ID: MW-2

Lab Sample ID: 720-15168-8 Date Sampled: 07/14/2008 1200 Client Matrix: Water Date Received: 07/14/2008 1410

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry

Method: 6010B Preparation: 3010A Dilution: 1.0

Date Analyzed: 07/16/2008 1027 Date Prepared: 07/15/2008 1752 Analysis Batch: 720-38267

Prep Batch: 720-38248

Instrument ID: Lab File ID: Initial Weight/Volume:

Varian ICP N/A 50 mL

Final Weight/Volume: 50 mL

Analyte	Result (mg/L)	Qualifier	RL
Antimony	ND		0.0050
Arsenic	ND		0.0050
Barium	0.13		0.0050
Beryllium	ND		0.0050
Cadmium	ND		0.0020
Chromium	ND		0.0050
Cobalt	ND		0.0050
Copper	ND		0.0050
Lead	ND		0.0050
Molybdenum	0.0067		0.0050
Nickel	0.010		0.0050
Selenium	ND		0.0050
Silver	ND		0.0050
Thallium	ND		0.0050
Vanadium	ND		0.0050
Zinc	ND		0.010

7470A Mercury in Liquid Waste (Manual Cold Vapor Technique)

Method: 7470A Preparation: 7470A Dilution: 1.0

Date Analyzed: 07/15/2008 1035 Date Prepared: 07/15/2008 0600 Analysis Batch: 720-38169 Prep Batch: 720-38155

Instrument ID: **FIMS 100** Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 50 mL

Analyte Result (mg/L) Qualifier RL

Mercury ND 0.00020

Client: GeoSyntec Consultants Job Number: 720-15168-1

General Chemistry					
Client Sample ID:	EB-1				
Lab Sample ID:	720-15168-6EB		Date Sampled: 07/14/2008 1115		
Client Matrix:	Water		Date Received: 07/14/2008 1410		
Analyte	Result	Qual Units	RL Dil Method		
Chloride	ND	mg/L	1.0 1.0 300.0		
	Anly Batch: 720-38418	Date Analyzed 07/17/2008 2044			
Client Sample ID:	MW-DUP				
Lab Sample ID:	720-15168-7FD		Date Sampled: 07/14/2008 1140		
Client Matrix:	Water		Date Received: 07/14/2008 1410		
Analyte	Result	Qual Units	RL Dil Method		
Chloride	110	mg/L	10 10 300.0		
	Anly Batch: 720-38418	Date Analyzed 07/17/2008 2118			
Client Sample ID:	MW-2				
Lab Sample ID:	720-15168-8		Date Sampled: 07/14/2008 1200		
Client Matrix:	Water		Date Received: 07/14/2008 1410		
Analyte	Result	Qual Units	RL Dil Method		
Chloride	110	mg/L	10 10 300.0		
	Anly Batch: 720-38418	Date Analyzed 07/17/2008 2135			

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Quality Control Results

Client: GeoSyntec Consultants Job Number: 720-15168-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-3	88203				
LCS 720-38203/2	Lab Control Spike	T	Water	8260B	
LCSD 720-38203/1	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-38203/3	Method Blank	T	Water	8260B	
720-15168-2	MW-1	Т	Water	8260B	
720-15168-3	MW-3	Т	Water	8260B	
720-15168-3MS	Matrix Spike	Т	Water	8260B	
720-15168-3MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-15168-4	MW-4	T	Water	8260B	
720-15168-5	MW-5	Т	Water	8260B	
720-15168-7FD	MW-DUP	T	Water	8260B	
Analysis Batch:720-3	88208				
LCS 720-38208/1	Lab Control Spike	T	Water	8260B	
LCSD 720-38208/2	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-38208/3	Method Blank	T	Water	8260B	
720-15168-1TB	TRIP BLANK	Т	Water	8260B	
Analysis Batch:720-3	88332				
LCS 720-38332/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-38332/1	Lab Control Spike Duplicate	Ť	Water	8260B	
MB 720-38332/3	Method Blank	Ť	Water	8260B	
720-15168-8	MW-2	Ť	Water	8260B	
-	=				

Report Basis

T = Total

Client: GeoSyntec Consultants Job Number: 720-15168-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 720-3815	5				
LCS 720-38155/2-A	Lab Control Spike	T	Water	7470A	
LCSD 720-38155/3-A	Lab Control Spike Duplicate	T	Water	7470A	
MB 720-38155/1-A	Method Blank	T	Water	7470A	
720-15168-6EB	EB-1	T	Water	7470A	
720-15168-7FD	MW-DUP	T	Water	7470A	
720-15168-8	MW-2	Т	Water	7470A	
Analysis Batch:720-38	3169				
LCS 720-38155/2-A	Lab Control Spike	Т	Water	7470A	720-38155
LCSD 720-38155/3-A	Lab Control Spike Duplicate	Т	Water	7470A	720-38155
MB 720-38155/1-A	Method Blank	Т	Water	7470A	720-38155
720-15168-6EB	EB-1	Т	Water	7470A	720-38155
720-15168-7FD	MW-DUP	Т	Water	7470A	720-38155
720-15168-8	MW-2	Т	Water	7470A	720-38155
Prep Batch: 720-3824	8				
LCS 720-38248/2-A	Lab Control Spike	Т	Water	3010A	
LCSD 720-38248/3-A	Lab Control Spike Duplicate	Т	Water	3010A	
MB 720-38248/1-A	Method Blank	Т	Water	3010A	
720-15168-6EB	EB-1	Т	Water	3010A	
720-15168-7FD	MW-DUP	Т	Water	3010A	
720-15168-8	MW-2	Ť	Water	3010A	
Analysis Batch:720-38	3267				
LCS 720-38248/2-A	Lab Control Spike	Т	Water	6010B	720-38248
LCSD 720-38248/3-A	Lab Control Spike Duplicate	T.	Water	6010B	720-38248
MB 720-38248/1-A	Method Blank	Ť	Water	6010B	720-38248
720-15168-6EB	EB-1	T	Water	6010B	720-38248
720-15168-7FD	MW-DUP	T.	Water	6010B	720-38248
720-15168-8	MW-2	Ť	Water	6010B	720-38248

Report Basis T = Total

Quality Control Results

Client: GeoSyntec Consultants Job Number: 720-15168-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:720-38	3418				
LCS 720-38418/2	Lab Control Spike	T	Water	300.0	
LCSD 720-38418/3	Lab Control Spike Duplicate	T	Water	300.0	
MB 720-38418/1	Method Blank	T	Water	300.0	
720-15168-6EB	EB-1	T	Water	300.0	
720-15168-7FD	MW-DUP	T	Water	300.0	
720-15168-8	MW-2	T	Water	300.0	

Report Basis

T = Total

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38203 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38203/3 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1049 Final Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1049 Date Prepared: 07/15/2008 1049

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Job Number: 720-15168-1 Client: GeoSyntec Consultants

Method Blank - Batch: 720-38203 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38203/3 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1049

Date Prepared: 07/15/2008 1049

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limit	s
4-Bromofluorobenzene	108	74 - 131	
1,2-Dichloroethane-d4 (Surr)	97	88 - 119	
Toluene-d8 (Surr)	95	82 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-38203 Preparation: 5030B

LCS Lab Sample ID: LCS 720-38203/2 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 0942 Final Weight/Volume: 40 mL Date Prepared: 07/15/2008 0942

LCSD Lab Sample ID: LCSD 720-38203/1 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\071

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1015 Final Weight/Volume: 40 mL Date Prepared: 07/15/2008 1015

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	95	95	70 - 130	1	20		
Chlorobenzene	104	106	70 - 130	2	20		
1,1-Dichloroethene	85	84	70 - 130	1	20		
Toluene	85	85	70 - 130	0	20		
Trichloroethene	75	73	70 - 130	3	20		
Surrogate		LCS % Rec	LCSD %	Rec	Acce	otance Limits	
4-Bromofluorobenzene		100	102		7	'4 - 131	
1,2-Dichloroethane-d4 (Surr)		92	97		8	88 - 119	
Toluene-d8 (Surr)		90	90		8	32 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-38203 Preparation: 5030B

MS Lab Sample ID: 720-15168-3 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\((

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1412 Final Weight/Volume: 40 mL Date Prepared: 07/15/2008 1412

MSD Lab Sample ID: 720-15168-3 Analysis Batch: 720-38203 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 07/15/2008 1445 Final Weight/Volume: 40 mL Date Prepared: 07/15/2008 1445

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Benzene	97	97	70 - 130	0	20	
Chlorobenzene	107	106	70 - 130	2	20	
1,1-Dichloroethene	88	89	70 - 130	2	20	
Toluene	88	91	70 - 130	3	20	
Trichloroethene	77	81	70 - 130	4	20	
Surrogate		MS % Rec	MSD %	% Rec	Acce	eptance Limits
4-Bromofluorobenzene		108	109		74	4 - 131
1,2-Dichloroethane-d4 (Surr)		101	104		88	8 - 119
Toluene-d8 (Surr)		96	100		82	2 - 120

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38208 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38208/3 Analysis Batch: 720-38208 Instrument ID: Agilent75MSD

Client Matrix: Water Prep Batch: N/A Lab File ID: 071508005.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 07/15/2008 1006 Final Weight/Volume: 40 mL

Date Prepared: 07/15/2008 1006

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Job Number: 720-15168-1 Client: GeoSyntec Consultants

Method Blank - Batch: 720-38208 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38208/3 Analysis Batch: 720-38208

Instrument ID: Agilent75MSD Client Matrix: Water Prep Batch: N/A Lab File ID: 071508005.D Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 07/15/2008 1006 Final Weight/Volume: 40 mL Date Prepared: 07/15/2008 1006

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	105	74 - 131	
1,2-Dichloroethane-d4 (Surr)	104	88 - 119	
Toluene-d8 (Surr)	107	82 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-38208 Preparation: 5030B

LCS Lab Sample ID: LCS 720-38208/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 07/15/2008 0916 Date Prepared: 07/15/2008 0916 Analysis Batch: 720-38208

Prep Batch: N/A Units: ug/L Instrument ID: Agilent75MSD

Lab File ID: 071508003.D Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

LCSD Lab Sample ID: LCSD 720-38208/2

Client Matrix: Water Dilution: 1.0

Date Analyzed: 07/15/2008 0941 Date Prepared: 07/15/2008 0941 Analysis Batch: 720-38208

Prep Batch: N/A Units: ug/L

Instrument ID: Agilent75MSD

Lab File ID: 071508004.D Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	%	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	94	95	70 - 130	1	20		
Chlorobenzene	91	94	70 - 130	2	20		
1,1-Dichloroethene	106	106	70 - 130	0	20		
Toluene	96	97	70 - 130	1	20		
Trichloroethene	92	93	70 - 130	2	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Acce	otance Limits	
4-Bromofluorobenzene	10	03	104		7	4 - 131	
1,2-Dichloroethane-d4 (Surr)	99	9	99		8	8 - 119	
Toluene-d8 (Surr)	10	03	102		8	2 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38332 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38332/3 Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 07/16/2008 1339 Final Weight/Volume: 40 mL

Date Analyzed: 07/16/2008 1339 Date Prepared: 07/16/2008 1339

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38332 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-38332/3 Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 07/16/2008 1339 Final Weight/Volume: 40 mL

Date Analyzed: 07/16/2008 1339 Final Date Prepared: 07/16/2008 1339

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	110	74 - 131	
1,2-Dichloroethane-d4 (Surr)	103	88 - 119	
Toluene-d8 (Surr)	98	82 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-38332 Preparation: 5030B

LCS Lab Sample ID: LCS 720-38332/2 Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\07

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/16/2008 1232 Final Weight/Volume: 40 mL Date Prepared: 07/16/2008 1232

LCSD Lab Sample ID: LCSD 720-38332/1 Analysis Batch: 720-38332 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200807\071

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 07/16/2008 1305 Final Weight/Volume: 40 mL Date Prepared: 07/16/2008 1305

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	101	98	70 - 130	4	20		
Chlorobenzene	108	108	70 - 130	0	20		
1,1-Dichloroethene	89	85	70 - 130	4	20		
Toluene	94	90	70 - 130	4	20		
Trichloroethene	80	76	70 - 130	5	20		
Surrogate		LCS % Rec	LCSD %	Rec	Acce	otance Limits	
4-Bromofluorobenzene		107	101		7	4 - 131	
1,2-Dichloroethane-d4 (Surr)		103	96		8	8 - 119	
Toluene-d8 (Surr)		100	90		8	32 - 120	

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38248 Method: 6010B Preparation: 3010A

Lab Sample ID: MB 720-38248/1-A Analysis Batch: 720-38267 Instrument ID: Varian ICP

Client Matrix: Water Prep Batch: 720-38248 Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 50 mL

Date Analyzed: 07/16/2008 0946 Final Weight/Volume: 50 mL Date Prepared: 07/15/2008 1752

Analyte	Result	Qual	RL
Antimony	ND		0.0050
Arsenic	ND		0.0050
Barium	ND		0.0050
Beryllium	ND		0.0050
Cadmium	ND		0.0020
Chromium	ND		0.0050
Cobalt	ND		0.0050
Copper	ND		0.0050
Lead	ND		0.0050
Molybdenum	ND		0.0050
Nickel	ND		0.0050
Selenium	ND		0.0050
Silver	ND		0.0050
Thallium	ND		0.0050
Vanadium	ND		0.0050
Zinc	ND		0.010

Job Number: 720-15168-1 Client: GeoSyntec Consultants

Lab Control Spike/ Method: 6010B Lab Control Spike Duplicate Recovery Report - Batch: 720-38248 Preparation: 3010A

LCS Lab Sample ID: LCS 720-38248/2-A Analysis Batch: 720-38267 Instrument ID: Varian ICP

Prep Batch: 720-38248 Client Matrix: Water Lab File ID: N/A

Units: mg/L Initial Weight/Volume: Dilution: 1.0 50 mL

Date Analyzed: 07/16/2008 0949 Final Weight/Volume: 50 mL Date Prepared: 07/15/2008 1752

LCSD Lab Sample ID: LCSD 720-38248/3-A Analysis Batch: 720-38267 Varian ICP Instrument ID:

Client Matrix: Water Prep Batch: 720-38248 Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 50 mL

07/16/2008 0953 Final Weight/Volume: 50 mL Date Analyzed: Date Prepared: 07/15/2008 1752

	9	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Antimony	97	96	80 - 120	2	20		
Arsenic	103	102	80 - 120	1	20		
Barium	108	107	80 - 120	1	20		
Beryllium	104	102	80 - 120	1	20		
Cadmium	104	102	80 - 120	1	20		
Chromium	107	105	80 - 120	2	20		
Cobalt	104	102	80 - 120	1	20		
Copper	105	103	80 - 120	2	20		
Lead	105	104	80 - 120	1	20		
Molybdenum	106	105	80 - 120	1	20		
Nickel	105	103	80 - 120	2	20		
Selenium	103	102	80 - 120	1	20		
Silver	97	96	80 - 120	0	20		
Thallium	106	105	80 - 120	1	20		
Vanadium	105	104	80 - 120	2	20		
Zinc	105	104	80 - 120	1	20		

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38155 Method: 7470A Preparation: 7470A

Lab Sample ID: MB 720-38155/1-A Analysis Batch: 720-38169 Instrument ID: FIMS 100

Client Matrix: Water Prep Batch: 720-38155 Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 25 mL Date Analyzed: 07/15/2008 1019 Final Weight/Volume: 50 mL Date Prepared: 07/15/2008 0600

Analyte Result Qual RL

Mercury ND 0.00020

Lab Control Spike/ Method: 7470A
Lab Control Spike Duplicate Recovery Report - Batch: 720-38155 Preparation: 7470A

LCS Lab Sample ID: LCS 720-38155/2-A Analysis Batch: 720-38169 Instrument ID: FIMS 100

Client Matrix: Water Prep Batch: 720-38155 Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 25 mL

Date Analyzed: 07/15/2008 1021 Final Weight/Volume: 50 mL Date Prepared: 07/15/2008 0600

LCSD Lab Sample ID: LCSD 720-38155/3-A Analysis Batch: 720-38169 Instrument ID: FIMS 100

Client Matrix: Water Prep Batch: 720-38155 Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 25 mL Date Analyzed: 07/15/2008 1022 Final Weight/Volume: 50 mL

Date Prepared: 07/15/2008 0600

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Mercury 98 100 80 - 120 2 20

Client: GeoSyntec Consultants Job Number: 720-15168-1

Method Blank - Batch: 720-38418 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 720-38418/1 Analysis Batch: 720-38418 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 5 mL

Date Analyzed: 07/17/2008 1643 Final Weight/Volume: 5 mL Date Prepared: N/A

Analyte Result Qual RL
Chloride ND 1.0

Chloride ND

Lab Control Spike/ Method: 300.0
Lab Control Spike Duplicate Recovery Report - Batch: 720-38418 Preparation: N/A

LCS Lab Sample ID: LCS 720-38418/2 Analysis Batch: 720-38418 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 5 mL

Date Analyzed: 07/17/2008 1701 Final Weight/Volume: 5 mL

Date Prepared: N/A

LCSD Lab Sample ID: LCSD 720-38418/3 Analysis Batch: 720-38418 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 5 mL

Date Analyzed: 07/17/2008 1718 Final Weight/Volume: 5 mL

Date Analyzed: 07/17/2008 1718 Final Weight/Volume: 5 mL Date Prepared: N/A

 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Republication
 Republication
 LCS Qual LCSD Q

		•	71			1	- 1	,	C													i	11:	59	0_		
			11.	T)		15	T	t			Т				CF	ŦΑΙ	N.	OF	C	US'	ro	DY	RE	CO	RD		
										CHAIN OF CUSTODY RECORD TURN AROUND TIME																	
Environmental Sampling Services										24 HR 48 HR 72 HR STD																	
Jamping Services									R	er	orti	ng l	For	mat	: EI	$_{ m F}$			EDI	D 🗆		PDF	· 🛄				
4100 - Montines Colifornio 04EE2 610E											Tra																
6680 Alhambra Avenue, #102 • Martinez, California 94553-6105 Telephone: (925) 372-8108 Fax: (925) 372-6705																			Tı	rack	ing N	lumb	er:_				
www.envsampling.com Log Code: ESSM										L	al	ora	tory	/: <u>T</u>	est ,	4me	rica	_					_		ode: S	TCL	
Send Report To: Melissa Asher Bill To: SAME											Analysis Request Field Filtered Commo												ments				
Company: GeoSyntec Consultants Company:									┺	_						,			,			Fin	erea				
Address: 475 14th Street, Suite 450 Address:										_																	
Oakland, CA 94612										-							.				.					1	
E-Mail: masher@geosyntec.com										4						1											
Tel: (510) 285-2782 Fax: ()										-		Ì		:													
Fax: (510) 836-3036									4				:									_					
Project Name: Hopyard Cleaners Project Number: WR0574										1				İ									10B				
Sampler's Name: Jacqueline Lee 📝 Stephen Penman 🗌											_ ا			ļ		i							Metals (EPA 6010B)			İ	
		SAMP	TING		*	MAT			MET		7 🗑	300.0			!									EP/		1	
		SAMI	LING	ý	Type*	COI	DE	P	RESE	RVED	8260B	3				-								als			Ì
SAMPLE ID	Field Point			Containers	Ę, ,						8	(E.P.A	[ĺ									Met			
	Name	Date	Time	tai	Container		Ļ		2	2 4	VOCs (EPA	4									ļ			22		İ	
		Date	Time	Ö	nta	اماما	ကျည်	Se	HCI	H ₂ SO ₄	្ត័	Chloride					i				1			Title		ŀ	
				#	ပိ	SO SO	GS Wat	ျိ	H	H	×	כֿ	5		i									Ĥ		<u> </u>	
Thip Blank	QCTB	7/14/08	g:30	2.	1		X	X	X		×	_					-				+		_		-	<u> </u>	
MW-I	MW-I	7/14/08	9:38	3	1	X		X	X		$\perp \times$						_				<u>.</u>	L		L	_ +-	ļ	
MW-3		7/14/08		ω	1	X		١٨	X		_ X							.				:			_		
MW-4		7/14/08		3	ī	X		X			X					-					i			1 .		L	
		7/14/08		3	ì	X		x	χ		×		1														
MW-5 EB-1		7/14/08		3	1	×		1	4 >	<	净	. >	<u> </u>				+	Ť			i		1	X			
	DUP1	1/14/08		4	1,3	x		_			×)												X			
MW-DUP					_	x		_				5	<u> </u>			-		+	1	+		1	-+-	X			
MW-2	MW-2	7/14 loe	12:00	4	1,3	^		1^	* >	<u>- </u>	 ^	1.2	`		+	-			\vdash		+	1 -+		^	+-		
					L			4			311	el c	78	\vdash	\rightarrow	$\overline{}$	_ +		-		_	+	\rightarrow				
		<u></u>							1		1"	L					\perp	_						تِــا		<u> </u>	NT -
Relinquished By: D			Time:	Received By:							ICE/°C_?.O HEAD SPACE ABSENT: Yes No																
1 aok	1/14/08	14.10	De la la la la la la la la la la la la la								Received in Good Condition: Yes No Metals sample(s) Field Filtered: Yes No NA																
Relinguished By: D			Time:								Questions regarding COC: Call ESS																
													ME														
Relinquished By: Date: Time:			Received By:]	FUELD POINT: MW=Monitoring Well OCFD=Field Duplicate OCFB=Field Blank																
				,						FIFLD POINT: MW=Monitoring Well QCFD=Field Duplicate QCFB=Field Blank CONTAINER TYPES: 1=VOAs 2=Glass 3=Poly 4=Liner 5=Air Canister 6=Tedlar Bag																	
		<u> </u>				ODE: U							As 2 IGae	-Glass	3=	Poly	4=Lin	er 5=.	Air Ca	nister	6=Te	niar Bag					

MATRIX CODE: WG=Grdwtr. SO=Soil GS=Soil Gas

Login Sample Receipt Check List

Client: GeoSyntec Consultants Job Number: 720-15168-1

Login Number: 15168
List Source: TestAmerica San Francisco
Creator: Thomas, Bryan

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	