

RECEIVED

1:32 pm, Nov 05, 2008

Alameda County Environmental Health 475 14th Street, Suite 400 Oakland, California 94612 PH 510.836.3034 FAX 510.836.3036 www.geosyntec.com

31 January 2008

Mr. Roger Papler, P.G.
California Regional Water Quality Control Board
San Francisco Bay Region
1515 Clay Street, Suite 1400
Oakland, California 94612

Subject: Results of Fourth Quarter 2007 Groundwater Monitoring

Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California

Self-Monitoring Program No. R2-2006-0059

Dear Mr. Papler:

On behalf of the property owner, Ms. Clare Leung, Geosyntec Consultants (Geosyntec) prepared this fourth quarter 2007 groundwater monitoring report for Hopyard Cleaners, 2771 Hopyard Road, in Pleasanton, California (the "Site"). A site location map is provided in Figure 1. The work described in this report was performed in compliance with the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Order No. R2-2006-0059.

The monitoring well network at the Site consists of five wells (MW-1 through MW-5). Wells MW-1 through MW-4 were installed to 30 feet below ground surface (bgs), in the shallow groundwater zone beneath the Site. Well MW-5 was installed to 60 feet bgs, in a deeper groundwater zone. Well completion details are summarized in Table 1. Well locations relative to the site are shown on Figure 2. Wells MW-1 through MW-3 were installed in September 2006. Wells MW-4 and MW-5 were installed in July 2007.

WORK PERFORMED THIS QUARTER

The fourth quarter groundwater monitoring event was performed on 2 and 3 January 2008. This work is discussed in detail in the following section.

A Remedial Action Plan was submitted to the RWQCB on 30 November 2007 to address chemicals of concern in the soil and groundwater at and in the vicinity of the Site.

P:\PRJ2003REM\Hopyard Cleaners\Quarterly Monitoring Reports\4Q07\Report\4Q07 Report.doc

Mr. Roger Papler, P.G. 31 January 2008 Page 2

QUARTERLY GROUNDWATER MONITORING

Quarterly groundwater monitoring was performed at the Site on 2 and 3 January 2008. Details are described below.

Sampling and Analytical Procedures

The groundwater sampling fieldwork was performed by Environmental Sampling Services, Inc. (ESS), of Martinez, California. ESS's report, including field procedures and sampling logs, is provided in Attachment 1. Samples were hand-delivered to Test America of Pleasanton, California for analysis. Groundwater samples from the Site monitoring wells were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.

Groundwater Elevations and Flow Conditions

Table 2 summarizes groundwater elevations measured during this sampling event. Groundwater in the shallow zone (MW-1 through MW-4) beneath the Site was encountered between approximately 13.21 and 14.73 feet bgs. These depths correspond to groundwater elevations between 312.07 and 312.48 feet above Mean Sea Level (MSL). Groundwater in the deeper zone monitored by MW-5 was encountered at 22.65 feet bgs, which corresponds to an elevation of 304.86 feet MSL.

Water level measurements taken during the fourth quarter 2007 event were used to construct groundwater elevation contours, as shown in Figure 2. The water levels measured in the Site monitoring wells in fourth quarter 2007 indicate a general flow to the northwest with an average gradient of 0.0025 ft/ft (13.2 ft/mile).

Data QA/QC

Geosyntec performed a quality assurance/quality control (QA/QC) review of the analytical data. Data were reviewed for completeness, accuracy, precision, sample contamination, conformance with holding times, and detection limits within acceptable ranges. Based on this review, the data are acceptable.

Mr. Roger Papler, P.G. 31 January 2008 Page 3

Analytical Results

Laboratory analytical reports are provided in Attachment 2. Table 3 summarizes analytical results for groundwater samples collected during the fourth quarter 2007 event together with historical results. Analytical results for the current sampling event are also shown in Figure 2. Isoconcentration contour maps for tetrachloroethene (PCE) and trichloroethene (TCE) are shown in Figures 3 through 5. The isoconcentration contours were drawn using current data from monitoring wells along with grab groundwater sample results previously collected at the Site.

This is the fifth monitoring event since wells MW-1 through MW-3 were installed in September 2006 and the second monitoring event for wells MW-4 and MW-5. Analytical results for samples taken from the five monitoring wells showed the highest VOC concentrations at MW-2. The PCE and TCE concentrations at well MW-2 were 8,200 and 560 µg/L, respectively. These results are similar to previous results for samples from this well. Additional monitoring will be necessary to assess any concentration trends.

FUTURE WORK

Due to the heavily trafficked nature of the Site and its vicinity, access to the monitoring wells is complicated, especially for the off-site monitoring wells (MW-4 and MW-5), which are located in the right-of-way of Hopyard Road. The City of Pleasanton requires full-time traffic control when the off-site wells are being sampled, which involves setting up signs and cones and closing one traffic lane on Hopyard Road. As more monitoring wells will be installed in the near future, performing monitoring activities will become more difficult and costly. Therefore, an alternative sampling method using passive diffusion bags (PDBs) will be evaluated at the Site.

The following section details a plan for evaluating the effectiveness of PDB samplers by comparing PDB sampling results to results using the current sampling method.

PASSIVE DIFFUSION BAG SAMPLER STUDY

As discussed below, PDB samplers have been shown to provide data of comparable quality to conventional purging and sampling with a submersible pump. The use of PDB samplers reduces the volume of groundwater produced during purging prior to sample collection and reduces the amount of time required for sampling. Considering this Site is located in a heavily trafficked area, the use of PDBs would significantly reduce traffic disruption. In particular, traffic control at

Mr. Roger Papler, P.G. 31 January 2008 Page 4

at the intersection of Hopyard Road and Valley Avenue would not be required to monitor MW-4 and MW-5.

Diffusion sampling techniques are relatively new, but are now used in groundwater monitoring programs across the United States. The technique was first approved for use at a Superfund site by EPA Region 2 for application at the GE Moreau Superfund Site in South Glen Falls, New York. At this site, the technology was pilot tested in 1998, and was subsequently approved by EPA in 1998 for long-term use. Since then, the technique has also been approved and used for long-term monitoring. PDBs have been approved and used in various sites in California by Regional Water Quality Control Boards. The PDB technique is applicable specifically to VOC sampling, and since VOCs are the compounds of concern at the subject Site, this is a relevant method¹.

General Information on PDBs

The PDB apparatus consists of a harness made of a stainless steal line and weight that hangs from the well cap and holds the PDB sampler vertically in the well screen. The PDB sampler is 24 inches long and made of a polyethylene bag pre-filled with deionized water by the manufacturer.

The PDB technique employs a diffusive-membrane bag that is filled with analyte-free water, sealed, mounted to a weighted line, and suspended at a specified depth within a monitoring well. Over a relatively short period of time (within a week or two), VOCs in the groundwater diffuse across the membrane and VOC concentrations within the bag attain equilibrium with the groundwater flowing through the screen of the monitoring well. At any time after equilibration, the bag is retrieved, cut open, and the contents are poured into a sample container (e.g. VOA vial) in a manner similar to the use of a bailer. The technique eliminates the need for purging, which helps to minimize the influence of turbidity on the sample integrity and reduces purge water waste. Passive diffusion samplers are disposable and thus reduce the risk of cross-contamination that results from incomplete decontamination of traditional samplers.

¹ Interstate Technology & Regulatory Council (ITRC), 2004, Technical and Regulatory Guidance for Using Polyethylene Diffusion Bag Sampler to Monitor Volatile Organic Compounds in Groundwater, February.

Mr. Roger Papler, P.G. 31 January 2008 Page 5

Prepared Deployment and Sampling Procedures

Comparison sampling at the Site will be conducted for two monitoring events, during the 1^{st} and 2^{nd} Quarter 2008.

During the first quarter sampling scheduled for the beginning of February, the PDBs will be deployed in all five wells after sampling is performed via a peristatic or submersible pump (traditional methods). The PDB samplers will be deployed at a specific depth in each well depending on the location of the water-bearing zone, as logged during well installation and previous investigations. Additionally, two PDBs will be deployed in MW-5 during this first sampling event, because the water bearing zone exceeds five feet in thickness² (USGS, 2001a). These PDBs will be placed at different depths to determine if stratification occurs within the water-bearing zone. Subsequent PDBs would then be deployed at the depth with the highest observed concentrations or in the middle of the water-bearing zone if the concentrations are similar. Table 4 provides the PDB deployment depth(s) for each well during the 1st quarter 2008 sampling event. Monitoring well boring logs are provided in Appendix A.

The PDBs will remain in the wells for a period of at least two weeks before being removed and immediately sampled. A new PDB will then be deployed in the wells for the 2nd quarter 2008 sampling event at least two weeks before sampling. During the 2nd quarter 2008 sampling event, PDBs will be removed from the wells and sampled, prior to sampling via submersible pump.

All samples will be sent to the analytical laboratory under standard chain of custody procedures and analyzed for VOCs by EPA Method 8260B.

Results of the PDB sampler comparison study will be reported along with the 1st and 2nd Quarter 2008 groundwater monitoring reports due to the RWQCB by 31 April and 31 July 2008, respectively.

² United States Geologic Survey (USGS), 2001a, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells, Part 1: Deployment, Recovery, Data Interpretation, and Quality Control and Assurance, Water Resource Investigations Report 01-4060. Part 2: Field Tests, Water-Resources Investigations Report 01-4061.

Mr. Roger Papler, P.G. 31 January 2008 Page 6

The next quarterly groundwater monitoring event will be performed in the first quarter 2008, and the results will be discussed in the quarterly monitoring report due to the RWQCB on 30 April 2008.

If you have any questions, please call Angela Liang at (510) 836-3034.

Sincerely,

Melissa Asher

Senior Staff Engineer

Milisson askur

Hanchih (Angela) Liang, Ph.D., P.E.

Environmental Sampling Services Field Report

Senior Engineer

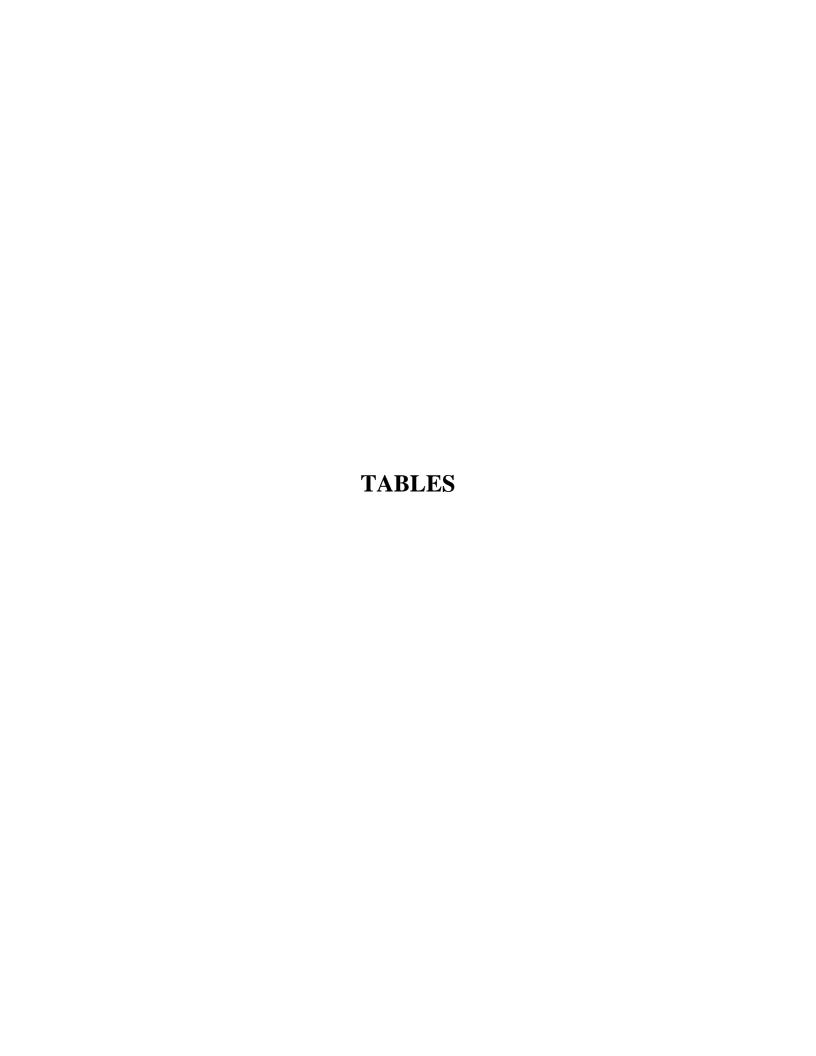
Attachments:	Table 1	Well Construction Summary
	Table 2	Groundwater Elevations
	Table 3	Groundwater Analytical Summary
	Table 4	Passive Diffusion Bag Study
	Figure 1	Site Location
	Figure 2	Fourth Quarter 2007 Groundwater Elevation
	□	Contours and Analytical Results
	Figure 3	Fourth Quarter 2007 PCE Isoconcentration
		Contours in Groundwater at 20 to 30 ft bgs
	Figure 4	Fourth Quarter 2007 PCE Isoconcentration
		Contours in Groundwater at 40 to 60 ft bgs
	Figure 5	Fourth Quarter 2007 TCE Isoconcentration
		Contours in Groundwater at 20 to 30 ft bgs

Attachment 1

Mr. Roger Papler, P.G. 31 January 2008 Page 7

Attachment 2 Laboratory Analytical Report

Copy with Attachments:


Ms. Clare Leung, Hopyard Cleaners

Ms. Joy Ricigliano, Zurich Insurance

Mr. Mark Peterson, GES

Mr. Wyman Hong, Zone 7 Water Agency

Mr. Jerry Wickham, Alameda County Environmental Health Ms. Danielle Stefani, City of Pleasanton Fire Department Mr. William Henderlong, Town & Country Properties

Table 1 Monitoring Well Construction Summary Hopyard Cleaners Pleasanton, California

Well I.D.	Date of Completion	Northing	Easting	TOC Elevation (MSL)	Total Depth (ft bgs)		Screen Inte	-	Well Casing Material	Well Diameter (inches)
					Borehole	Well	Top	Bottom		
MW-1	9/29/2006	2071427.29	6157712.24	325.77	30	30	20.00	30.00	SCH 40 PVC	2
MW-2	9/26/2006	2071357.03	6157791.18	325.69	30	30	20.00	30.00	SCH 40 PVC	2
MW-3	9/27/2006	2071461.21	6157787.94	326.27	30	30	20.00	30.00	SCH 40 PVC	2
MW-4	7/20/2007	2071382.30	6157557.57	326.27	36.5	35	25.00	35.00	SCH 40 PVC	2
MW-5*	7/19/2007	2071292.25	6157654.24	327.19	60	60	50.00	60.00	SCH 40 PVC	2

Notes:

ft bgs = feet below ground surface

MSL = mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

^{*} Conductor casing was installed from 0 to 40 ft bgs at MW-5.

Table 2 Groundwater Elevations Hopyard Cleaners Pleasanton, California

Well I.D.	TOC Elevation (ft MSL)	Sample Date	Depth to Groundwater Below TOC (ft)	Groundwater Elevation (ft MSL)
MW-1	325.77	1/3/2008	13.63	312.14
		8/3/2007	14.40	311.37
		5/11/2007	12.27	313.50
		2/9/2007	13.98	311.79
		11/20/2006	14.88	310.89
MW-2	325.69	1/3/2008	13.21	312.48
		8/3/2007	13.72	311.97
		5/11/2007	11.87	313.82
		2/9/2007	13.55	312.14
		11/20/2006	14.36	311.33
MW-3	326.27	1/3/2008	14.02	312.25
		8/3/2007	14.68	311.59
		5/11/2007	12.72	313.55
		2/9/2007	14.41	311.86
		11/20/2006	15.28	310.99
MW-4	326.80	1/3/2008	14.73	312.07
		8/3/2007	15.85	310.95
MW-5	327.51	1/3/2008	22.65	304.86
		8/3/2007	30.51	297.00

Notes:

ft MSL = feet above mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

Table 3 Groundwater Analytical Summary Hopyard Cleaners Pleasanton, California

			e Organic Compo Method 8260B (1	
Well I.D.	Sample Date	cis-1,2-DCE	PCE	TCE
MW-1	1/2/2008	230	1,600	270
	8/3/2007	260	1,600	270
	5/11/2007	310	2,500	310
	2/9/2007	270 / 270	2,400 / 2,300	290 / 290
	11/20/2006	370	3,100	370
MW-2	1/2/2008	940/890	8,200/8,200	560/580
	8/3/2007	1,200/1,100	8,000/8,100	590/570
	5/11/2007	1,000 / 980	1,000 / 980 7,200 / 7,300	
	2/9/2007	760	4,700	350
	11/20/2006	800 / 800	5,700 / 5,800	370 / 360
MW-3	1/2/2008	5.2	46	4.6
	8/3/2007	4.7	37	4.2
	5/11/2007	5.5	43	4.4
	2/9/2007	5.3	42	4.2
	11/20/2006	10	93	7.2
MW-4	1/3/2008	4.2	< 0.50	3.5
	8/3/2007	4.6	< 0.50	3.5
MW-5	1/3/2008	< 0.50	38	< 0.50
	8/3/2007	< 0.50	37	< 0.50

Notes:

Table shows only compounds detected above the laboratory reporting limit

cis-1,2-DCE - cis-1,2-dichloroethene

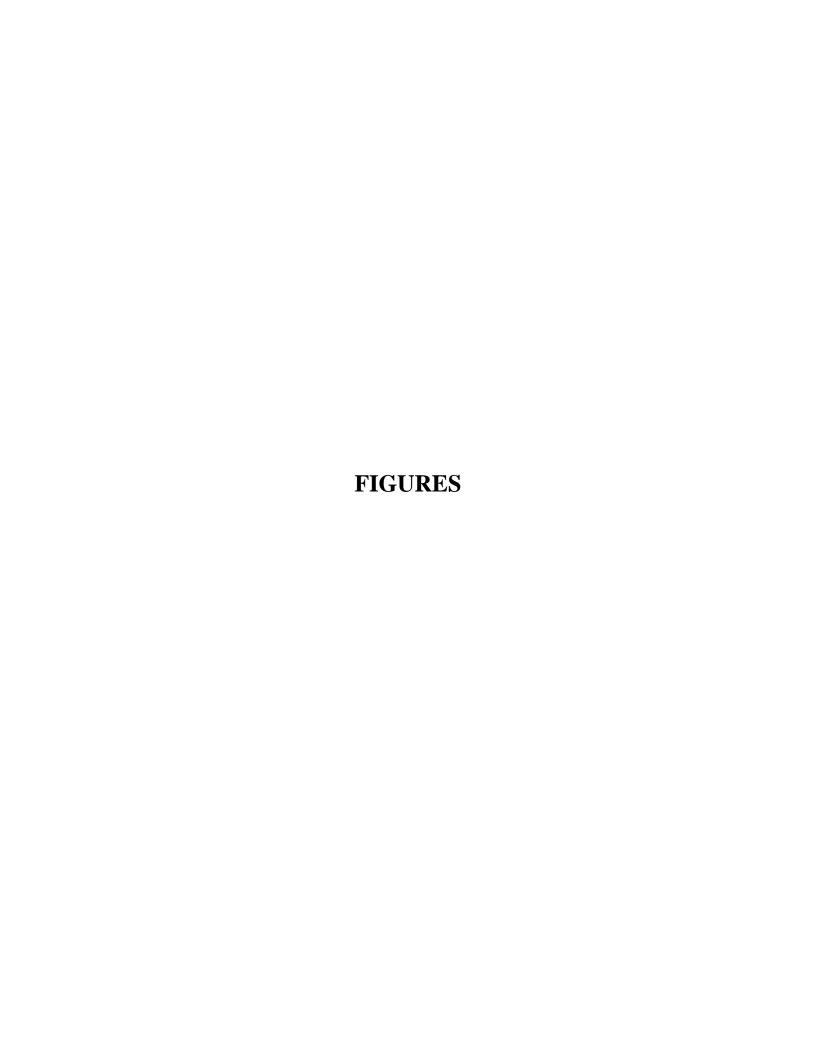
PCE - tetrachloroethene

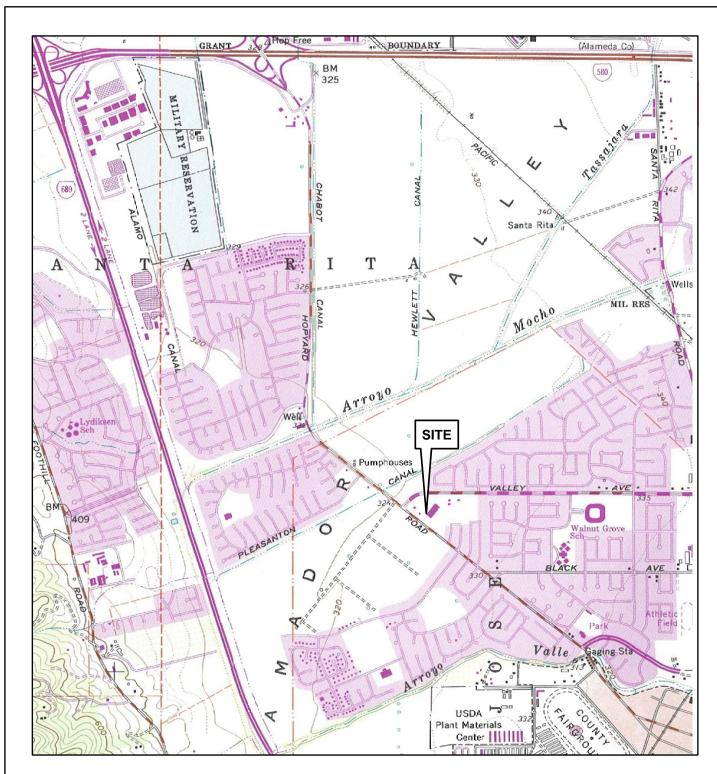
TCE - trichloroethene

"-- / --" - result on right represents duplicate sample

Table 4
Passive Diffusion Bag Study
Hopyard Cleaners
Pleasanton, California

Well ID	Screen Interval (ft bgs)	Water-bearing Zone (ft bgs)	PDB Deployment Depth (ft bgs)*	Comments
MW-1	20 - 30	24 - 26**	25.0	PDB to be deployed in center of 2 feet thick water-bearing zone
MW-2	20 - 30	23 - 28	25.5	PDB to be deployed in center of 5 feet thick water-bearing zone
MW-3	20 - 30	24 - 26**	25.0	PDB to be deployed in center of 2 feet thick water-bearing zone
MW-4	25 - 35	25 - 30	27.5	PDB to be deployed in center of 5 feet thick water-bearing zone
MW-5	50 - 60	50 - 60	52.5	Water-bearing zone spans 10 feet. Therefore, two PDBs will be deployed
			57.5	for 1st Quarter 2008: one for 50-55 ft bgs and one for 55-60 ft bgs


^{*} Depth provided is depth below ground surface of the center of the 24-inch PDB

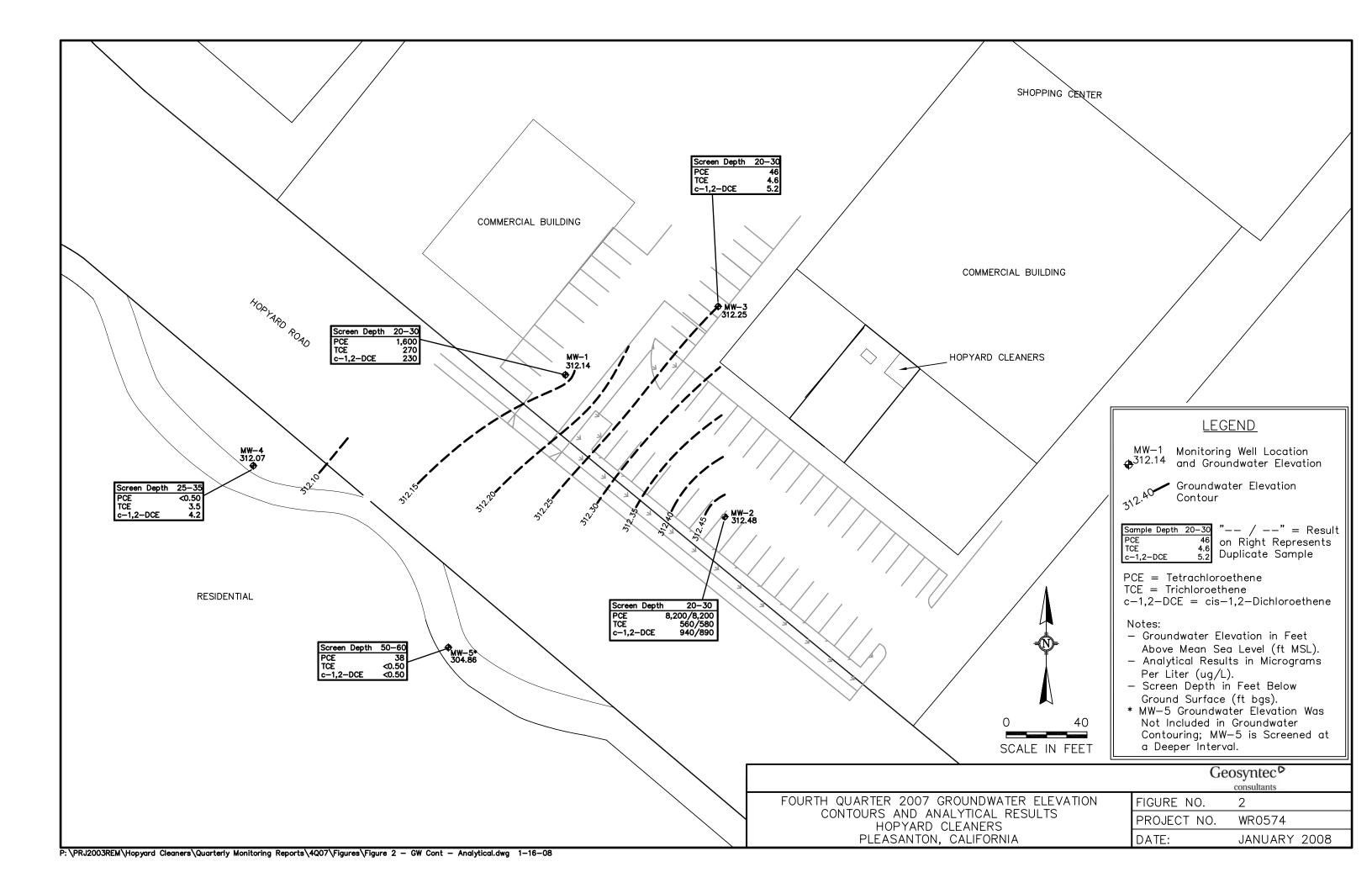

Boring logs are provided in Appendix A

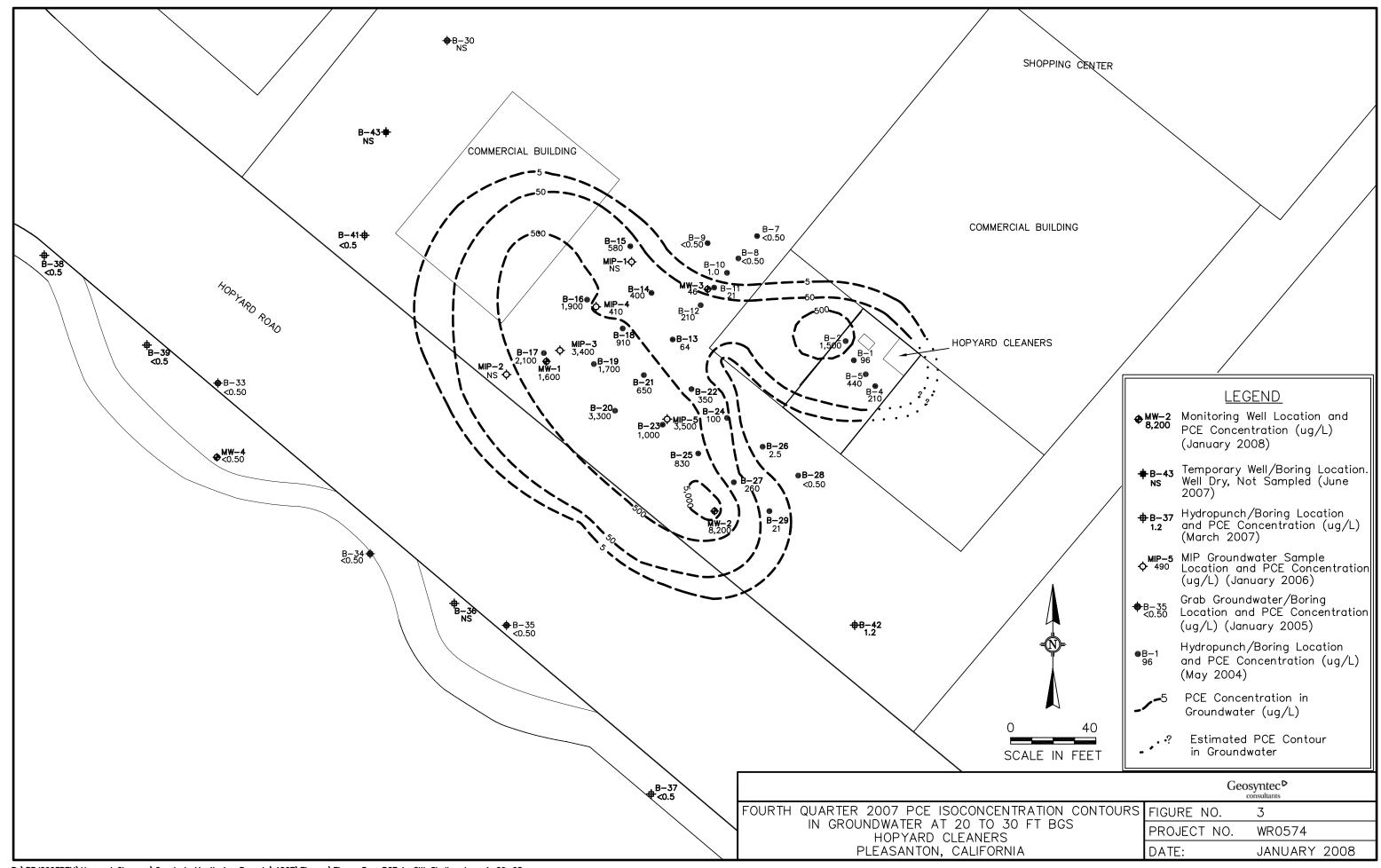
ft bgs - feet below ground surface

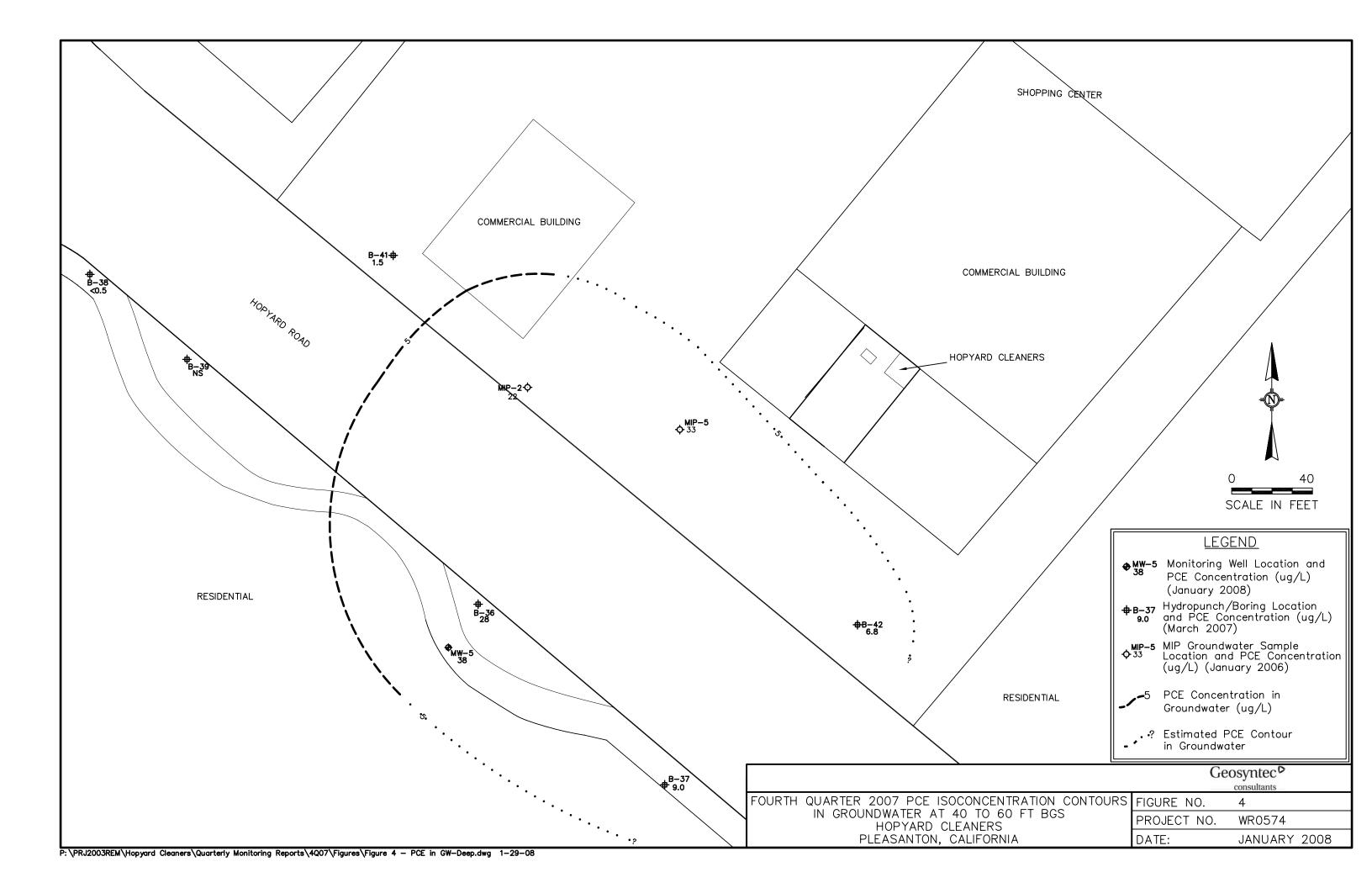
PDB - Passive Diffision Bag

^{**} Stratigraphy based on soil electrical conductivity responses at MIP borings near well

Topo Source: U.S.G.S 7.5 Minute Series,


Dublin, CA Quadrangle (1980) Contour Interval = 40 Feet


SITE LOCATION MAP HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA



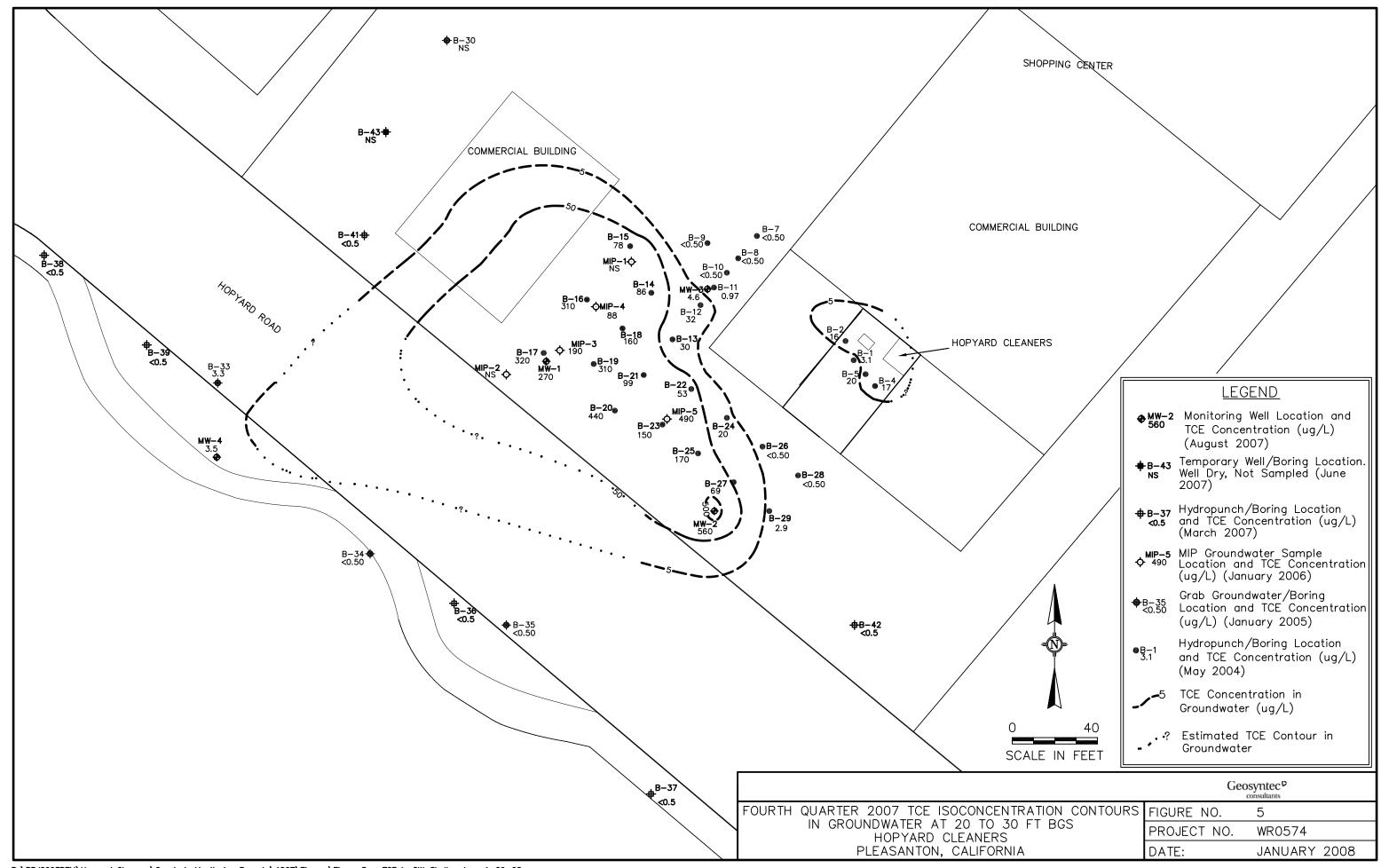


FIGURE NO.	1
PROJECT NO.	WR0574
DATE:	JANUARY 2008

ATTACHMENT 1 ESS FIELD REPORT

January 4, 2008

Ms. Melissa Asher GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

SUBJECT: 2007 Fourth Quarter Groundwater Sampling Event for Hopyard Cleaners, Pleasanton, California

Dear Ms. Asher,

Please find enclosed the Field Activity Report for the quarterly groundwater sampling event at 2771 Hopyard Road that occurred January 2 and 3, 2008.

If you have any questions or concerns regarding this Field Activity Report, please do not hesitate to call me.

Sincerely,

Jacqueline Lee

Partner

Enclosure

FIELD ACTIVITY REPORT FOR

2007 FOURTH QUARTER GROUNDWATER SAMPLING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

> Prepared for: GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

> > Date Prepared: January 4, 2008

FIELD ACTIVITY REPORT FOR

2007 FOURTH QUARTERLY GROUNDWATER SAMPLING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

Task: Quarterly Groundwater Sampling Event

ESS Personnel: Jacqueline Lee

Date of Activities: January 2 and 3, 2008

Decontamination Procedures

All downhole equipment was cleaned with Liqui-Nox® laboratory-grade soap, potable water, and rinsed with distilled water prior to use and between each monitoring well.

Field Equipment Calibration

A YSI® Multiparameter instrument with in-line flow through chamber and Turbidity meter was used to monitor water quality parameters during well purging. The meters were calibrated to standard solutions (see Daily Equipment Calibration Sheet) prior to purging activities.

Groundwater Level and Well Depth Measurements

Depth to groundwater for five monitoring wells were measured and recorded following atmospheric equilibration of approximately twenty minutes. All readings were performed with a Solinst® Water Level Meter, Serial Number 21758, and referenced to the surveyor's mark or north rim at the top of PVC well casing (Table 1). Three successive readings that agreed to within one-hundredth of a foot determined depth to groundwater.

Organic vapor readings were not required.

Water Quality Parameters

The following water quality parameters were monitored and recorded during well purging: pH, Specific Conductance (uS), Temperature (Celsius), Dissolved Oxygen (mg/L),

Oxidation/Reduction Potential (mV), and physical characteristics such as pumping water level, color, and odor (see Water Quality Sample Log Sheets).

Well Purging & Sampling Procedures

A peristaltic pump with dedicated or new pump tubing was used to purge and sample MW-1 through MW-4. Due to the depth to groundwater, a Fultz submersible pump and new tubing was used to purge and sample MW-5. Each monitoring well was purged at a rate no greater than 500-ml per minute until water quality parameters stabilized for three consecutive readings.

EPA stabilization guidelines were used. The readings were within \pm 0.1 for pH, \pm 3 % for Specific Conductivity, \pm 10% for Dissolved Oxygen, \pm 10 mV for ORP, and \pm 10 NTUs for Turbidity.

Groundwater samples were collected immediately following stabilization of water quality parameters by disconnecting the tubing from the flow through chamber.

Chemical Analyses

All wells were sampled for Volatile Organic Compounds by EPA Method 8260B.

Sample Containers

Test America of Pleasanton, California provided all sample containers.

Each VOCs sample set was contained in three, 40-ml VOA clear glass containers preserved with hydrochloric acid.

Sample Handling

All sample labels were completed with waterproof ink and affixed to sample containers.

During decanting, 40-ml VOA sample containers were slightly tilted to avoid aeration or degassing. Each sample container was inverted and tapped lightly to check for air bubbles. The absence of air bubbles indicated a successful seal.

All sample containers were wiped dry, sealed in Ziploc® bags, and placed a chilled cooler for storage and shipment.

QA/QC

One Trip Blank set, supplied by Test America, was stored in the cooler throughout the sampling event and submitted for analysis.

One blind duplicate set was collected from MW-2 and labeled "MW-DUP @ 12:30".

An equipment blank set was collected. After decontamination of the Fultz pump, laboratory-supplied distilled water and a short section of new pump tubing was used. The equipment blank was labeled "EB-1 @ 11:40".

No other QA/QC samples were requested.

Chain of Custody (COC) Form

All sample handling was conducted under standard chain of custody procedures. The COC included: sampler's name and signature, sample identification, sample date and time, and analysis request section.

Shipment of Samples

Samples were relinquished to Test America January 3, 2008.

Storage of Investigative Derived Wastewater (IDW)

Approximately 30 gallons of purged groundwater and decontamination water generated from this sampling event were stored a new, labeled 55-gallon drum. The drum is stored along the southeast corner of the property.

Comments

Ms. Deborah Hunter with United Rentals Highway Technologies indicated that "Lane Closure" not "Shoulder Closed" Signs are needed for future sampling events. The lane adjacent to MW-4 is not wide enough to accommodate parked vehicles.

The non-working well cap at MW-3 was replaced with an Ergo® Well plug.

Jacqueline Lee

Partner

Attachments:

Table 1: Summary of Groundwater Sampling Event

Water Sample Log Sheets

Equipment Calibration Sheet

Chain of Custody

Highway Technologies Delivery Receipt

Table 1: Summary of 2007 Fourth Quarter Groundwater Sampling Event

Project Name: Hopyard Cleaners

Project Location: 2771 Hopyard Road, Pleasanton, California

Well/Sample Identification	Date of Measurement	Time of Measurement	Depth to Groundwater (Ft., TOC)	Well Depth (Ft., TOC)	Sample Date	Sample Time	QA/QC Type	QA/QC Sample Identification
MW-1	1/3/2008	13:04	13.63	30.27	1/2/2008	14:22	None	NA
MW-2	1/3/2008	13:07	13.21	30.31	1/2/2008	15:35	Duplicate	MW-DUP
MW-3	1/3/2008	13:01	14.02	30.29	1/2/2008	13:45	None	NA
MW-4	1/3/2008	13:12	14.73	34.56	1/3/2008	12:25	none	NA
MW-5	1/3/2008	13:10	22.65	59.96	1/3/2008	11:15	Equipment Blank	EB-1

Legend:

TOC = Top of Well Casing

NA = Not Applicable

WATER	QUALIT	Y SAMPLE	LOG SHI	EET	WELL IDEN	TIFICAT	ON: MW	/-1 DAT	E: 1/:	2008
Project N Project N Well Des Is Well S Observa Purge M Pump Li Method of Sampling YSI Muti Equipme Method t Water Le	Name: Hop Manager: Manager: Ma	yard Cleaner Melissa Ashe 2 3.5" 4" esy No Boloments: set flon / PE Displew / Cleaner Pump: NA Bailer: W Disp. Teflon r Meter/Prob ion: See Da Water Leve t (DTW):	r - Geosyn 5" 6" Ot t Size: 9/1 pump intal cosable Ba d / Cedica Alconox Alconox Bailer Di e Serial No ily Equipm i: Slope In 13.63	ton, CA Protection, C	ial No.: 25083 c) Water Leve water) x "K" = _	rica Wea VC Sta / Lock nur Screen Ir Peristaltic A New / Rinse Oth Pump C H / 600XI / 21758 / 25742 I Prior To 1.71 (Ga	ather Condinless Stember: Mainterval: 2 Pump O Cleaned / Ider: other: P.I.D. R Sampling: Idis./CV) x N	el Other: ster 0' to 30' ther: Dedicated R - 00C1522 Reading: NA	ppm S	(BTOC)
	- 0 163	(2" well) "K"			" = .653 (4" well)) "K" ∓ 1.4	6 (6" Well)	
Date	Time	Discharge (Liters)	pH -/- 0.1	Temp (°C)	Specific Conductance mS uS +/- 3%			Dissolved Oxygen (mg/L) +/- 10%	Water Level (BTOC)	Color
1/2/08	14:08	Initial	6.95	19.30	1424	3.2	235.7	2.32	13.6141	obe set
1	19:11	0.5	6.93	20.02	1430	3.0	219.0	0.71	13.73	b
	14:13	1.0	6.92	19.93	1432	1.9	204.1	0.64	13.75	٠
	14:16	1.5	6.92	1991	1432	1.8	\$ 192.6	0.51	13,75	4
	14:18	2.0	6.92	36-08 g	1434	10.59	181.5	0.48	13.75	4
1	14:20	2.5	6.92	20.22	1437	0.8	173.7	0.50	(3.45	
		3.0								
		3.5								
		4.0	milden or community there are many						<u></u>	
Date/Tim QA/QC:	of disposal ne Sampleo None	of discharge i: 1/2/08	@_14:	22	Casing Volumum(s) Poly 1 Analysis: S/MSD Equip	Tank Tre VOCs (82	eatment Sy 60B) - 3 V	OAs w/HCI		
Recorded	d by: Stepl	nen Penman	Jacki Le	Signati	ur y: \			*	Page 1 of	ı

WATER	QUALITY	SAMPLE	LOG SHE	ET	WELL IDEN	TIFICATI	ON: MW	1-2 DAT	E: 1/2/	2008		
Project N Well Des	Project Name: <u>Hopyard Cleaners Pleasanton, CA</u> Project Task: <u>Quarterly Monitoring</u> Project/Task No. <u>WR0574</u> Project Manager: <u>Melissa Asher - Geosyntec Cons.</u> Lab: <u>TestAmerica</u> Weather Conditions: <u>Partly seaw, mid</u> 50 Well Description: (2) 3.5" 4" 5" 6" Other: Well Type: PVC Stainless Steel Other:											
Is Well S	Secured? (No Bolt	Size: 9/1	6"	Type of lock	Lock nur	nber: <u>Ma</u>	ster				
Observa	tions / Com	ments: set	pump intak	ce @ 25.31	ft.(BTOC)	Screen In	iterval: 2	0' to 30'				
Purge M	ethod: Tefl	on / PE Disp	osable Ba	iler Centri	fugal Pump 🧲	eristaltic	Pump O	ther:				
					Bailer Line:							
Method	of Cleaning	Pump: (NA)	Alconox l	_iqui-nox T	ap Water DI F	Rinse Oth	er:					
Method	of Cleaning	Bailer: NA	Alconox L	_iqui-nox T	ap Water DIF	Rinse Oth	er:					
					er Peristaltic							
2192 400000 100010000000					S - 05F1258AH	1 / <u>600XI</u>	_ 319340F	R - 00C1522				
Equipme	ent Calibrati	on: See Dai	ily Equipm	ent Calibrat	tion Sheet ial No.: 25083	21758)					
Method t	to Measure	Water Level	I: Slope In	dicator Seri	ial No.: 25083	1 25742	P.I.D. F	Reading: <u>NA</u>	ppm	(
Water Le	evel at Start	(DTW):	13.21	(втос	c) Water Leve	Prior To	Sampling:	13.3	() = N/A (6	(BTOC)		
TD =	30.31' -	13.21 (DTW) = _17	.10 (ft.of	water) x "K" = _	(Ga	als./CV) x <u>N</u>	<u>IA</u> (No. of C\	V = NA (C)	eals.)		
	TD = $30.31'$ - 13.21 (DTW) = 17.10 (ft. of water) x "K" = 2.78 (Gals./CV) x NA (No. of CV) = NA (Gals.) "K" = 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = $.653$ (4" well) "K" = 1.02 (5" well) "k" = 1.46 (6" well)											
			FIEL	D WATER	QUALITY PAR	RAMETER	RS			227771		
		Le v	76.5		Specific		Deden	Dissolved		Color		
Date	Time	Discharge	рН	Temp.	Conductance	(NTU's)	Redox (mV)	Oxygen (mg/L)	Level (BTOC)	Color		
		(Liters)	+/- 0.1	(°C)	mS (uS) +/- 3%	+/- 10	+/- 10	+/- 10%	(6100)			
1/2/08	14:43	Initial	7.15	17. 84	1656	2.0	209,9	5.04	13.23 W/h	de set		
1	14:46	0.5	7.11	19.03	1662	0.6	210.9	4.33	13.32	-64		
	14:49	1.0	7.11	19.16	1663	0.6	214.8	3,93	13.35	4		
	14:51	1.5	7.03	19.22	1664	0.7	216.9	3.51	13.35	4		
	14:54	2.0	6.98	19.20	1667	0.5	219.4	2.07	13.35	*		
	14:56	2.5	6.96	19.23	1668	0.3	220.5	140	13.35	*		
	14:59	3.0	6.93	19.17	1691	0.3	z21.9	1.27	13.34	tio .		
	15:02	3.5	6.89	19.16	1713	0.1	224.4	0.74	13.34			
7	15:05	4.0	6.88	19.13	1720	0.13	225.5	0.62	13.34	**		
	scharge:		ters		Casing Volum							
Method	of disposal	of discharge	d water: 5	5 Gallon Dr	rum(s) Poly	Tank Tre	eatment S	ystem Otl	ner:			
Date/Tin	ne Sampled	1/2/08	@_15:					OAs w/HCI				
Date/Time Sampled: 12.08 @ 15:35 Analysis: VOCs (8260B) - 3 VOAs w/HCl QA/QC: 400												
12100												
Comments:												
	d k Orat	on Donman	(lacki La	à Signati	ure:	200			Page 1 of	.5		
Recorde	u by: Stept	ien renman	MURCKI LE	o oignati	uip.	-			90 1 01	3		

			E LOG S		WELL IDEN	TIFICATIO	N: MW	-2	Page 2	
roject	Name:	topyard	Clearer	8				all the same of th		
Date	Time	Discharge (Liters)	pH (± 0.1)	Temp. (°C) (± 1°C)	METERS CON Specific Conductance mS (uS) (± 3%)		Redox (mV) (±10 mV)	Dissolved Oxygen (mg/L)	Water Level (BTOC)	Colo
12/08	15:08	4.5	6.88	19.20	1721	0.22	228.2 99.53	0.53	13.35	dear
	15:10	5.0	6.88	19.26	1719	0.28	228.5	0.54	13.35	6.0
	15:13	5.5	6.87	19.21	1721	0.36	229.8	0.44	13.35	42
	15:16	6.0	6.88	19.15	1221	0.18	230.0	0.49	13.36	•
	15:19	6.5	6.88	19.30	1722	0.23	230.0	0.39	13.36	44
	15:21	7.0	6.88	19.17	1722	0.21	230.3	0.37	13.36	69
	15:24	7.5	6.87	19.19	1723	0.27	230.7	0.41	13.36	96
	15:26	8.0	6.87	19.22	1724	0.23	231.0	0.38	13.36	44
	15:28	8.5	6.87	19.25	1722	0.20	231.4	0.33	13.36	or
	15:31	9.0	6.88	19.23	1722	0.18	231.0	0.35	13.36	da
V	15:33	9.5	6.87	19.38	1723	0.26	230.9	0.34	13.36	u
		10.0								
		10.5								
		11.0								
		11.5								
		12.0								
		12.5								
		13.0								
		13.5								
		14.0		l	1					
					Casing Volume	es Removed	: <u>NA</u>			

WATER	QUALITY	SAMPLE	LOG SH	EET	WELL IDEN	TIFICAT	ION: MW	<i>I-</i> 3 DAT	E:01/0	2/2008		
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574												
	Project Manager: Melissa Asher - Geosyntec Cons. Lab: TestAmerica Weather Conditions: Partly cloudy, wid 50%											
Well Des	scription: 🙋	3.5" 4"	5" 6" Ot	her:	Well Type: (F	Sta	inless Ste	el Other:				
A STATE OF THE PARTY OF THE PAR					Type of lock							
					Zaft.(BTOC)							
10/35/					fugal Pump	-200						
					Bailer Line: (
The state of the s	A CONTRACTOR OF THE PARTY OF TH			Contract to the Contract of th	ap Water DI							
E-The Control of the Country of					ap Water DI							
	3//				er <u>Peristaltic</u>							
1					S - 05F1258A	4 / 600XI	_ 319340F	R - 00C1522	ט			
		on: See Da				21758)					
					ial No.: 25083					7		
					c) Water Leve					(BTOC)		
	TD = <u>30.29'</u> - <u>14.02</u> (DTW) = <u>16.27</u> (ft. of water) x "K" = <u>2.65</u> (Gals./CV) x <u>NA</u> (No. of CV) = <u>NA</u> (Gals.) "K" = 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "k" = 1.46 (6" well)											
			FIEL	D WATER	QUALITY PAR	RAMETER	RS					
	1905	Marian Have	99.7	1947/200	Specific		V-20-00 V 00.00	Dissolved				
Date	Time	Discharge	рН	Temp.	Conductance			Oxygen	Level	Color		
		(Liters)	+/- 0.1	(°C)	mS (uS) +/- 3%	(NTU's) +/- 10	(mV) +/- 10	(mg/L) +/- 10%	(BTOC)			
1/2 /08	1330	Initial	6.93	19.30	1923	1.20	294.7	Ø.39	14.04 ण 14.04			
1	13:32	0.5	6.89	19.62	1925	1.37	244.3	4.79	14.36	7		
	13:34	1.0	6.85	19.33	1927	1.52	242.8	2.84	14.30	4		
	12:37	1.5	6.85	19.39	1926	1.23	242,8	7.61	14.30	и		
	13:40	2.0	6.84	19.27	1935	1.56	249.5	0.84	14.32			
	13:42	2.5	6.84	19.37	1932	1.87	249.2	0.79	14.34	4		
	13:45	3.0	6.84	19.38	1931	2.00	2 49.3	54.0	1434	*		
4	13:48	3.5	6.84	19.42	1927	1.25	250.5	0.79	14.34			
		4.0										
Total Dis	charge:	3.7 Li	ters		Casing Volum	nes Remo	ved: NA					
		of discharge	d water: 5	5 Gallon Dr	um(s) Poly	Tank Tre	eatment S	ystem Otl	ner:			
	Method of disposal of discharged water: 55 Gallon Drum(s) Poly Tank Treatment System Other: Date/Time Sampled: 0102/08 @ 13:45 Analysis: VOCs (8260B) - 3 VOAs w/HCl/											
OA/OC:	Matabase	1 1/2/08/2.	300	nlicate MS	S/MSD Equip	ment Rins	eate Fie	ld Blank L	ab Split			
									2			
No QA/QC Sample collected.												
THE PRINCE STREET												
Recorde	d bv: Steph	nen Penman	/Jacki Le	e) Signatu	ire:	_			Page 1 of	1		

the state of the s											
WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-4 DATE: 1/3/2009											
	Project Name: <u>Hopyard Cleaners Pleasanton, CA</u> Project Task: <u>Quarterly Monitoring</u> Project/Task No. <u>WR0574</u>										
					Lab: <u>TestAme</u>					50's of	
	(-				Well Type: (
					Type of lock						
					ft.(BTOC)						
					fugal Pump						
1,0.7			THE REAL PROPERTY.		Bailer Line:						
					ap Water DI						
					ap Water DI I er P eristaltic	Control of the control					
		- CONTACTO - POST CHICAGO			S - 05F1258Al		Control of the Control		2		
Cauloma	nt Calibrati	on: Coo Do	ily Equipm	ant Calibra	tion Choot	(=					
Method t	to Measure	Water Leve	l: Slope In	dicator Ser	ial No.: 25083	21798	P.I.D. F	Reading: NA	nom		
					c) Water Leve					(BTOC)	
					vater) x "K" = 3						
10000000 000				CANADA CANADA	' = .653 (4" well)				New American	200	
					QUALITY PAR			·	e de como de la como de		
					Specific			Dissolved	Water		
Date	Time	Discharge	рН	Temp.	Conductance	Turbidity	Redox	Oxygen	Level	Color	
		(Liters)		(°C)	mS (S)	(NTU's)	(mV)	(mg/L)	(BTOC)		
1/- 1 -			+/- 0.1		+/- 3%	+/- 10	+/- 10	+/- 10%	14.92		
1/3/08	11:28	Initial	6.66	17.01	2336	172	38.6	0,75		Utan	
	11:59	0.5	6.67	17.05	2334	18	38.6	1.80	15.40	Ut clody	
	12:00	1.0	6.67	16.95	2534	18	23.5	0.84	15,40	dear	
	12:03	1.5	6.66	17.09	2336	7.2	-1.1	0,40	15.40	٧	
	12:05	2.0	6.67	17.12	2339	6.3	-18.3	0.53	15.40	**	
	12:07	2.5	6.66	17.20	2343	7.8	-38.4	0.48	15.40	•	
	12:09	3.0	6.66	17.04	2342	5.0	~51.3	0.43	15.40	*	
	12:11	3.5	6.67	17.17	2342	6.8	-60.8	0.46	15.40	go	
4	12:14	4.0	6.64	17.30	2340	4.7	-73.1	0.43	15.40	44	
Total Dis	charge:	7.0 Li	ters		Casing Volum	es Remov	/ed: NA			2.2.7.101	
Method o	of disposal of	of discharge	d water: 🛭	5 Gallon Dr	rum(s) Poly 7	Tank Tre	atment S	ystem Oth	ner:		
	Method of disposal of discharged water: 85 Gallon Drum(s) Poly Tank Treatment System Other:										
QA/QC: 58-129 Duplicate MS/MSD Equipment Rinscate Field Blank Lab Split											
Commer	ts: Called	ed trolac	10 20	13/98	4 APP de	JO 113/0	ums C	MW 5/	see A	11 -5 Par	
Comments: Collected prior to starting MW.4, Apt cleaning pump C MW-5 (See MW-5)											
					· 10						
Recorded	d by: Steph	en Penman	/Jacki Lee	Signatu	ire:	-			Page 1 of	2	

WATER	R QUALI	ITY SAMPL	E LOG S	HEET	WELL IDEN	TIFICATIO	N: MW	<i>j</i> _4	Page 2	2
Project	Name: /	Hopyard								
Date	Time	Discharge (Liters)		Temp. (°C) (± 1°C)	Specific Conductance mS uS (± 3%)		Redox (mV)	Dissolved Oxygen (mg/L)	Water Level (BTOC)	Color
1/3/08	12'.16	4,5	6.64	17.28	2340	5.6	-82.2	0.42	15.40	dior
	12:18	5.0	6.69	17.25	2339	7.3	-88.4	0.42	15.40	ч
	12:20	5.5	6.64	17.27	2341	5.5	-97.6	0.37	15.40	- to
	12:21	6.0	6.14	17.41	2341	5.1	~102.1	0.36	15.40	u
	12.23	6.5	6.64	17.23	2340	4.2	-105.8	0.35	15.40	64
1	12:25	7.0	6.64	17.25	2335	6.1	-111.4	0.34	15.40	ч
		7.5								
		8.0								
		8.5								
		9.0								
		9.5								
		10.0		j						
		10.5								
		11.0								
		11.5	-							
		12.0	-							
		12,5								
		13.0								
		13.5	-							
		14.0								
	scharge: _ nts:	7.0	Liters		Casing Volume	s Removed	: <u>NA</u>			
Recorder	1 by Gaco	queline Le	/ Stephen F	Penman	Signature:	Lak				

WAT	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-5 DATE: 1/3/2008											
Project Project Well Is W Obsect Purg Pum Meth	ect Na ect M Desc ell Se ervati e Me p Lin and o	ame: Hopy: anager: M cription: 2" ecured? Ye ions / Comi ethod: Teflo es: NA No f Cleaning f Cleaning	elissa Asher 3.5" 4" No Bolt ments: set r on / PE Disp ew Cleaned Pump: NA Bailer: NA Disp. Teflon	s Pleasanto - Geosynt 5" 6" Oth Size: 15/16 bump intak osable Bai d / Dedicate Alconox L Alconox L Bailer Dis	on, CA Proec Cons. Laer: e @ 55 ler Centrifed igui-nox Taigui-nox	ab: TestAmer Well Type: Type of lock / ft.(BTOC) fugal Pump P Bailer Line: DE ap Water DE ap Water DE	arterly Mo ica Wea VC Stai Lock nun Screen In eristaltic F A New / C Rinse Oth Pump O	nitoring P ther Condi nless Stee nber: Mas terval: 50 Pump Ot Cleaned / I er: er: ther:	roject/Task tions: Over def Other: ter o' to 60' her: Fu Dedicated	No. WR cast, 50	0574 S q brersible	
Faui	YSI Muti-Parameter Meter/Probe Serial No.: 556 MPS - 05F1258AH / 600XL 319340R - 00C1522 Equipment Calibration: See Daily Equipment Calibration Sheet											
Method to Measure Water Level: Slope Indicator Serial No.: 25083 / 257429 P.I.D. Reading: NA ppm Water Level at Start (DTW): 22.56 (BTOC) Water Level Prior To Sampling: 23.52 (BTOC) TD = 59.96' - 22.56 (DTW) = 37.40 (ft.of water) x "K" = 6.09 (Gals./CV) x NA (No. of CV) = NA (Gals.) "K"= 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "k" = 1.46 (6" well)												
FIELD WATER QUALITY PARAMETERS												
Da	ite	Specific Dissolved V							Water Level (BTOC)	Color		
1/2	07	1106	Initial	7-16	17.17	1937	957	194.0	3.98	getread. BRN		
13	7	1106	0.5	688	1831	1900	380	203.5	2.52	to far away.	16	
		1007	1.0	6.88	18.37	1911	239	2015	5.70	V	M	
		11:08	1.5	6.87	18.32	1704	327	2029	2.73	\perp	4	
		1109	2.0	6.85	18.17	1907	371	203.Z	2.41		и	
		LU: 09	2.5	6.85	18.02	ાવજ	542	203.6	Z .78	\vdash	6.	
		11:10	3.0	6.85	17.98	1901	639	204.1	2.34		bq	
		11:10	3.5	6.84	17.84	1902	608	204.2	2.38		<i>n</i>	
•	/	11:10	4.0	6.84	17.83	1903	630	204.5	2.45	W		
Met	Total Discharge: 7.0 Liters Casing Volumes Removed: NA Method of disposal of discharged water: 55 Gallon Drum(s) Poly Tank Treatment System Other: Analysis: VOCs (8260B) - 3 VOAs w/HCI											
	QA/QC: QA/QC: QUIDENTE MS/MSD Equipment Rinseate Field Blank Lab Split Comments:											
Des	ords	d by: Sten	hen Penmar	Jacki Le	ee Signat	ure: 2 K				Page 1 of	Z	

WATER	R QUALI	TY SAMPL	E LOG SI	HEET	WELL IDENTIFICATION: MW-5 Page 2								
Project	Name:	Hopyard	Cleaners		METERS CON			- 100K-					
		FIELD WA	TER QUAL	ITY PARA	METERS CON	TINUED FR	OM PAGI	≣ 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Date	Time	Discharge (Liters)	pH (± 0.1)	Temp. (°C) (± 1°C)	Specific Conductance mS (±3%)		Redox (mV)	Oxygen (mg/L)	Water Level (BTOC)	Color			
13/07	11344	4.5	6.84	17.85	1899	467	204.6	2.45	couldn't get readin	BEN			
	11'12	5.0	6.84	17.96	1901	684	204.8	2.39	too fer	И			
	11:12	5.5	6.84	17.98	1902	698	204.9	2.56		ч			
	11:13	6.0	6.83	19.02	1901	702	205.1	2.55		4			
V	11:13	6.5	6.83	18.11	1899	705	205.1	2,49	4	44			
		7.0											
		7.5											
		8.0											
		8 5											
		9 0											
		9.5											
		10.0											
		10.5											
		11.0											
		11.5											
		12.0											
		12.5											
		13.0											
		13.5					-311-00-11-221						
		14.0											
Total Dis		7.0	Liters		Casing Volum	es Removed	: <u>NA</u>						
Recorded	d by: Jac	queline Lee	/ Stephen F	Penman	Signatur¢: - ኢ								

SITE NAME: Hopyard Cleaners SITE LOCATION: Pleasanton, CA

TASK: December 2007 Quarterly Groundwater Monitoring Event

DAILY EQUIPMENT CALIBRATION SHEET

			Dissolved		pН		Specific Conductance	ORP	TURBIDITY	
TIME	Instrument Serial Number	Probe Serial Number	Oxygen (%)	4	7	10	1,000 uS/cm	mV	NTU's	
11:04	319340R	00C1522	100%	4.00	7.00	[0.05	1,002	237.6	0.02	
9:43	319340R	60CL522	98.8	4.00	7.01	10.02	1,001	237.4	0.02	
100										
	11:04	Serial Number	Serial Number Serial Number 11:04 319340R DOC1522	TIME Instrument Probe Oxygen Serial Number (%) 11:04 31934012 0001522 100%	TIME Instrument Probe Oxygen 4 Serial Number Serial Number (%) 11:04 319340R 6001522 100% 4.00	TIME Instrument Serial Number Probe Serial Number Oxygen (%) 4 7 11:04 319340R 60001522 100% 4.00 7.00	TIME Instrument Serial Number Probe Serial Number Oxygen (%) 4 7 10 11:04 3193401 0001522 100% 4.00 7.00 10.05	TIME Instrument Serial Number Probe Serial Number Oxygen (%) 4 7 10 1,000 us/cm 11:04 3193401 00C1522 100% 4.00 7.00 10.05 1,002	TIME Instrument Serial Number Probe Serial Number Oxygen (%) 4 7 10 1,000 us/cm mV II: 04 319.340k 00c.1522 100% 4.00 7.00 10.05 1,002 237.6	

SAMPLING

Time

1Z: DO

1/2/08 12:30

1/2/08 13:45

12/08 14:22

1/2/08 15:35 3

1/3/08 11:15 3

11:40 3

12:25 3

Time:

14:10

Time:

Time:

Date

1/2/08

1/3/08

1/3/08

Date:

Date:

Date:

1/3/08

Send Report To: Melissa Asher

Address: 475 14th Street, Suite 450

Tel: (510) 285-2782

Fax: (510) 836-3036

SAMPLE ID

Trip Blank

MW-DUP

MW-3

MW-1

MW-2

MW-5

EB-1

MW-4

Relinquished By:

Relinquished By:

Company: GeoSyntec Consultants

Oakland, CA 94612 E-Mail: masher@geosyntec.com

Project Name: Hopyard Cleaners

Sampler's Name: Jacqueline Lee

Field Point Name

6680 Alhambra Avenue, #102 • Martinez, California 94553-6105 Telephone: (925) 372-8108 Fax: (925) 372-6705 www.envsampling.com

Bill To: SAME

Project Number: WR0574

Received By:

Received By:

Received By:

Stephen Penman MATRIX

Company:

Address:

Fax: (

Containers

3

													(1	ΙA	II.	IC	F	C	U	S 1	O'	D,	Y	R	E	CC	R	$\overline{\mathbf{D}}$			
ent	al								1	TURN AROUND TIME 🖳 📮 📮																						
Ser	νĩ	ce	S																24 !	HR		48	HR		7	'2 F	IR.	,	-		,	
									F	Reporting Format: EDF EDD/Excel PDF PDF																						
_		_							10	ieo ieo	Τr	ack	er	Si	te '	Ide	nti	fics	tio	n·	,	LA	CCI					(, eco	А.			
nez, California 94553-6105 Fax: (925) 372-6705																						-							***************************************			
Log									[eu	L.X.	100000	U	F) Logic					j.	Tra	ack	an	g N	un	1be	ber:					
				COINT					1	∠at	or	ato	ry:	<u>T</u>	est	Aı	ner	<u>ica</u>								Lab Code: S					ST	CL
): S	$\mathbf{A}\mathbf{M}$	Œ							1	Analysis Request										T	O	the	r									
any	:															-														Co	mm	ents
ss:										T			Т	T								T	Т			\dashv			-1			
									1																							
									1																	-			 			
,									+																				 			
						···			4																				i i			
									_																					Į		
Nun	abe	r:	WF	205	574	Ļ			-																		Ì			l		
tepl	ıen	Pe	enr	na	n				1																					l		
						aastalii			_																İ							
* MATRIX METHOD							۩۩																				i					
/pe	_	co	DE		P	RES	SER	VED	8260B																	-						
Container Type*									8																		Ì		ı I			
neı	١.	_						4	(EPA																				il			
tai		7		2		_	ဝိ	Ö																		\perp				l		
, on	S	SO	Š	1	၅	HCI	N	H ₂ SO ₄	VOCs																İ					l		
0	^	0,1	Ç	2	I	14	F	111	>																	1				1		
1				×	X	X			×												<u> </u>		1		\top	Ť		****				
1	X				X	X	1		X													\top				\top						
i	X				X	X			1			1												+	_	\neg						
1	x				X	×			\v_X												+		+-	+								
1	x				X	K			×	1	+								ļ <u> </u>		\vdash	+	-	+		+				<u> </u>		
1	X					×			/	_			\top	7				-			-	-	-	-	+	+						
	×			_		×					\top										+	+-	+		-	\dashv						
,	×					×	1		×	- 1	+							-				-		-	-	_						
	1/-	<u> </u>			~	_	 		>	-			\dashv								-		+	-	_	_				 		
	#		<u> </u>				<u> </u>				-		ightharpoons	_									_	\downarrow								
	L					1			1						•		-									Ŧ	=					
eived	Ву	; ,	`		_	_	· ·	1/3/18	I	CE.	/°C						-			J		H	EAT	2 (PA	ᇁ	ΔP		ur.	Ye		NT -
ر داک	Λ ί Λ	D	1 1	پک	ر ح	1U	1 Vi	1/3/4	R			in (300	- d C	ond	litio	n: Y	es	1	No		44.		- W	. 431	ىندى	ΔD	اندن	1,1.	1 6	3	No
eived			7,0	٩		, ,,	1	4-10	- N	let:	als	san	ıpl	e(s) Fi	eld	Fili	tere			s	No	(N	A	1				0			
-TACH	y	•										ons											_		•			9	1			
												ENT				-												0	_			
eived	Ву	:							1																							
									l c	ELD ONT. =VO	AINE	NT: I R TY 2=Gl	PES:												=Fie	ld Bl	lank					
												- 41	~~~	Ų-,	· Ory	4-	THEL	ა≃,	THE C	anist	.er	0=1,6	cuar	Bag								

MATRIX CODE: WG=Grdwtr. SO=Soil GS=Soil Gas

R 00376

1277 OLD BAYSHORE HIGHWAY SAN JOSE, CA 95112-2800

TRAFFIC CONTROL RENTAL

408-295-8210 1-800-479-8210 FAX: 408-998-5939

					s Pleas	enton "					
DATE CALLED		ORDERED B	Y	PHONE		JOB NO.	B NO.				
DATE OUT/IN		BRANCH	SALESMAN	PURCHASE ORI	DER NO.	Type I					
☐ RENTAL OUT	☐ RENTAL	☐ MISSING UNITS	DESC	RIPTION		RATE	TOTAL				
			Person, Truck and Eg	woment	Up to Shrs	800 W					
			Person, Truck and Eq	'	OT/hr	7500					
							-				
					1						
						1					
							1:				
RENTAL POLICI	ES:	- 598.	6. All accounts are due and payable 30	days after receiving in	voices. occasioned by the op	eration, handling, transportation	n and/or use of any				

- Minimum rental rate \$75.00
- 2. The customer is responsible for all equipment rented.
- 3. It is the customers responsibility to notify this office within 15 days after receiving rental invoices, where their charges are in question
- 4. All calls for deliveries after 4 P.M. on weekdays are subject to \$47.50 per hour late charge.
- 5. All weekend and holiday deliveries are subject to a \$65.00 per hour charge
- LESSEE AGREES: To pay the specified rent for use of said equipment To not release this equipment from Lessee's control without prior authorization from Lessor - To not move said equipment to any other job without prior consent of Lessor - To assume sole responsibility for proper placing of said equipment on the job location - To indemnify Lessor against all loss, damage, expense and penalty arising from any action or claim on account of any injury to person or property of any character whatsoever

of the barricades and/or warning lights during rental period, and while said barricadesare in possession or under the custody of Lessee.

To pay the Lessor reasonable attorney's fees and collection costs incurred by Lessor in enforcing the terms of this agreement, in the event Lessee breaches any of the terms of this agreement, or Lessee fails to pay rent or to pay for damages to said equipment while in Lessee's possession.

RECEIVED BY (for Goo) yetec	DELIVERED BY	Unter	DATE 1-3-08

DELIVERY RECEIPT

Coppet ... established

THIS IS NOT AN INVOICE

INVOICE TO FOLLOW

ATTACHMENT 2 LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Job Number: 720-12463-1

Job Description: Hopyard Cleaners

For:

GeoSyntec Consultants 475 14th Street, Suite 450 Oakland, CA 94612

Attention: Ms. Melissa Asher

Melissa Brewer
Project Manager I
melissa.brewer@testamericainc.com
01/10/2008

cc: Ms. Angela Liang

Job Narrative 720-J12463-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOANo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: GeoSyntec Consultants Job Number: 720-12463-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-12463-2	MW-DUP				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	890 8200 580	50 50 50	ug/L ug/L ug/L	8260B 8260B 8260B
720-12463-3	MW-3				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	5.2 46 4.6	0.50 0.50 0.50	ug/L ug/L ug/L	8260B 8260B 8260B
720-12463-4	MW-1				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	230 1600 270	20 20 20	ug/L ug/L ug/L	8260B 8260B 8260B
720-12463-5	MW-2				
cis-1,2-Dichloroethe Tetrachloroethene Trichloroethene	ene	940 8200 560	50 50 50	ug/L ug/L ug/L	8260B 8260B 8260B
720-12463-6	MW-5				
Tetrachloroethene		38	0.50	ug/L	8260B
720-12463-8	MW-4				
cis-1,2-Dichloroethe Trichloroethene	ene	4.2 3.5	0.50 0.50	ug/L ug/L	8260B 8260B

METHOD SUMMARY

Client: GeoSyntec Consultants Job Number: 720-12463-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	TAL SF	SW846 8260B	
Purge-and-Trap	TAL SF		SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: GeoSyntec Consultants Job Number: 720-12463-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-12463-1TB	TRIP BLANK	Water	01/02/2008 1200	01/03/2008 1410
720-12463-2	MW-DUP	Water	01/02/2008 1230	01/03/2008 1410
720-12463-3	MW-3	Water	01/02/2008 1345	01/03/2008 1410
720-12463-4	MW-1	Water	01/02/2008 1422	01/03/2008 1410
720-12463-5	MW-2	Water	01/02/2008 1535	01/03/2008 1410
720-12463-6	MW-5	Water	01/03/2008 1115	01/03/2008 1410
720-12463-7EB	EB-1	Water	01/03/2008 1140	01/03/2008 1410
720-12463-8	MW-4	Water	01/03/2008 1225	01/03/2008 1410

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-12463-1TB
 Date Sampled:
 01/02/2008 1200

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1304 Final Weight/Volume: 40 mL

Methyl tert-butyl ether ND 5.0 Acetone ND 50 Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50
Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0
DichlorobromomethaneND0.50BromobenzeneND1.0ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
BromobenzeneND1.0ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
Bromoform ND 1.0 Bromomethane ND 1.0
Bromomethane ND 1.0
2-Rutanone (MEK) ND 50
2 Datations (WEIX) 14D 50
n-Butylbenzene ND 1.0
sec-Butylbenzene ND 1.0
tert-Butylbenzene ND 1.0
Carbon disulfide ND 5.0
Carbon tetrachloride ND 0.50
Chlorobenzene ND 0.50
Chloroethane ND 1.0
Chloroform ND 1.0
Chloromethane ND 1.0
2-Chlorotoluene ND 0.50
4-Chlorotoluene ND 0.50
Chlorodibromomethane ND 0.50
1,2-Dichlorobenzene ND 0.50
1,3-Dichlorobenzene ND 0.50
1,4-Dichlorobenzene ND 0.50
1,3-Dichloropropane ND 1.0
1,1-Dichloropropene ND 0.50
1,2-Dibromo-3-Chloropropane ND 1.0
Ethylene Dibromide ND 0.50
Dibromomethane ND 0.50
Dichlorodifluoromethane ND 0.50
1,1-Dichloroethane ND 0.50
1,2-Dichloroethane ND 0.50
1,1-Dichloroethene ND 0.50
cis-1,2-Dichloroethene ND 0.50
trans-1,2-Dichloroethene ND 0.50
1,2-Dichloropropane ND 0.50
cis-1,3-Dichloropropene ND 0.50
trans-1,3-Dichloropropene ND 0.50
Ethylbenzene ND 0.50
Hexachlorobutadiene ND 1.0
2-Hexanone ND 50
Isopropylbenzene ND 0.50
4-Isopropyltoluene ND 1.0
Methylene Chloride ND 5.0

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-12463-1TB
 Date Sampled:
 01/02/2008 1200

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1304 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec	Accer	otance Limits
4-Bromofluorobenzene	107	71 -	139
1,2-Dichloroethane-d4 (Surr)	100	62 -	118
Toluene-d8 (Surr)	101	73 -	117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-12463-2
 Date Sampled:
 01/02/2008 1230

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 01/09/2008 1739 Final Weight/Volume: 40 mL

Methyl tert-butyl ether ND 500	
Acetone ND 5000	
Benzene ND 50	
Dichlorobromomethane ND 50	
Bromobenzene ND 100	
Chlorobromomethane ND 100	
Bromoform ND 100	
Bromomethane ND 100	
2-Butanone (MEK) ND 5000	
n-Butylbenzene ND 100	
sec-Butylbenzene ND 100	
tert-Butylbenzene ND 100	
Carbon disulfide ND 500	
Carbon tetrachloride ND 50	
Chlorobenzene ND 50	
Chloroethane ND 100	
Chloroform ND 100	
Chloromethane ND 100	
2-Chlorotoluene ND 50	
4-Chlorotoluene ND 50	
Chlorodibromomethane ND 50	
1,2-Dichlorobenzene ND 50	
1,3-Dichlorobenzene ND 50	
1,4-Dichlorobenzene ND 50	
1,3-Dichloropropane ND 100	
1,1-Dichloropropene ND 50	
1,2-Dibromo-3-Chloropropane ND 100	
Ethylene Dibromide ND 50	
Dibromomethane ND 50	
Dichlorodifluoromethane ND 50	
1,1-Dichloroethane ND 50	
1,2-Dichloroethane ND 50	
1,1-Dichloroethene ND 50	
cis-1,2-Dichloroethene 890 50	
trans-1,2-Dichloroethene ND 50	
1,2-Dichloropropane ND 50	
cis-1,3-Dichloropropene ND 50	
trans-1,3-Dichloropropene ND 50	
Ethylbenzene ND 50	
Hexachlorobutadiene ND 100	
2-Hexanone ND 5000	
Isopropylbenzene ND 50	
4-Isopropyltoluene ND 100	
Methylene Chloride ND 500	

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-12463-2
 Date Sampled:
 01/02/2008 1230

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 01/09/2008 1739 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		5000
Naphthalene	ND		100
N-Propylbenzene	ND		100
Styrene	ND		50
1,1,1,2-Tetrachloroethane	ND		50
1,1,2,2-Tetrachloroethane	ND		50
Tetrachloroethene	8200		50
Toluene	ND		50
1,2,3-Trichlorobenzene	ND		100
1,2,4-Trichlorobenzene	ND		100
1,1,1-Trichloroethane	ND		50
1,1,2-Trichloroethane	ND		50
Trichloroethene	580		50
Trichlorofluoromethane	ND		100
1,2,3-Trichloropropane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50
1,2,4-Trimethylbenzene	ND		50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		5000
Vinyl chloride	ND		50
Xylenes, Total	ND		100
2,2-Dichloropropane	ND		50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	103		71 - 139
1,2-Dichloroethane-d4 (Surr)	99		62 - 118
Toluene-d8 (Surr)	104		73 - 117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-12463-3
 Date Sampled:
 01/02/2008 1345

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1337 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	5.2		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-12463-3
 Date Sampled:
 01/02/2008 1345

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1337 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	46		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	4.6		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec	Acceptance	Limits
4-Bromofluorobenzene	106	71 - 139	
1,2-Dichloroethane-d4 (Surr)	101	62 - 118	
Toluene-d8 (Surr)	102	73 - 117	

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-12463-4
 Date Sampled:
 01/02/2008 1422

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 40 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 2037 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		200
Acetone	ND		2000
Benzene	ND		20
Dichlorobromomethane	ND		20
Bromobenzene	ND		40
Chlorobromomethane	ND		40
Bromoform	ND		40
Bromomethane	ND		40
2-Butanone (MEK)	ND		2000
n-Butylbenzene	ND		40
sec-Butylbenzene	ND		40
tert-Butylbenzene	ND		40
Carbon disulfide	ND		200
Carbon tetrachloride	ND		20
Chlorobenzene	ND		20
Chloroethane	ND		40
Chloroform	ND		40
Chloromethane	ND		40
2-Chlorotoluene	ND		20
4-Chlorotoluene	ND		20
Chlorodibromomethane	ND		20
1,2-Dichlorobenzene	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,3-Dichloropropane	ND		40
1,1-Dichloropropene	ND		20
1,2-Dibromo-3-Chloropropane	ND		40
Ethylene Dibromide	ND		20
Dibromomethane	ND		20
Dichlorodifluoromethane	ND		20
1,1-Dichloroethane	ND		20
1,2-Dichloroethane	ND		20
1,1-Dichloroethene	ND		20
cis-1,2-Dichloroethene	230		20
trans-1,2-Dichloroethene	ND		20
1,2-Dichloropropane	ND		20
cis-1,3-Dichloropropene	ND		20
trans-1,3-Dichloropropene	ND		20
Ethylbenzene	ND		20
Hexachlorobutadiene	ND		40
2-Hexanone	ND		2000
Isopropylbenzene	ND		20
4-Isopropyltoluene	ND		40
Methylene Chloride	ND		200

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-12463-4
 Date Sampled:
 01/02/2008 1422

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 2037 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		2000
Naphthalene	ND		40
N-Propylbenzene	ND		40
Styrene	ND		20
1,1,1,2-Tetrachloroethane	ND		20
1,1,2,2-Tetrachloroethane	ND		20
Tetrachloroethene	1600		20
Toluene	ND		20
1,2,3-Trichlorobenzene	ND		40
1,2,4-Trichlorobenzene	ND		40
1,1,1-Trichloroethane	ND		20
1,1,2-Trichloroethane	ND		20
Trichloroethene	270		20
Trichlorofluoromethane	ND		40
1,2,3-Trichloropropane	ND		20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
1,2,4-Trimethylbenzene	ND		20
1,3,5-Trimethylbenzene	ND		20
Vinyl acetate	ND		2000
Vinyl chloride	ND		20
Xylenes, Total	ND		40
2,2-Dichloropropane	ND		20
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	110		71 - 139
1,2-Dichloroethane-d4 (Surr)	98		62 - 118
Toluene-d8 (Surr)	105		73 - 117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-12463-5
 Date Sampled:
 01/02/2008 1535

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 01/09/2008 1813 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		500
Acetone	ND		5000
Benzene	ND		50
Dichlorobromomethane	ND		50
Bromobenzene	ND		100
Chlorobromomethane	ND		100
Bromoform	ND		100
Bromomethane	ND		100
2-Butanone (MEK)	ND		5000
n-Butylbenzene	ND		100
sec-Butylbenzene	ND		100
tert-Butylbenzene	ND		100
Carbon disulfide	ND		500
Carbon tetrachloride	ND		50
Chlorobenzene	ND		50
Chloroethane	ND		100
Chloroform	ND		100
Chloromethane	ND		100
2-Chlorotoluene	ND		50
4-Chlorotoluene	ND		50
Chlorodibromomethane	ND		50
1,2-Dichlorobenzene	ND		50
1,3-Dichlorobenzene	ND		50
1,4-Dichlorobenzene	ND		50
1,3-Dichloropropane	ND		100
1,1-Dichloropropene	ND		50
1,2-Dibromo-3-Chloropropane	ND		100
Ethylene Dibromide	ND		50
Dibromomethane	ND		50
Dichlorodifluoromethane	ND		50
1,1-Dichloroethane	ND		50
1,2-Dichloroethane	ND		50
1,1-Dichloroethene	ND		50
cis-1,2-Dichloroethene	940		50
trans-1,2-Dichloroethene	ND		50
1,2-Dichloropropane	ND		50
cis-1,3-Dichloropropene	ND		50
trans-1,3-Dichloropropene	ND		50
Ethylbenzene	ND		50
Hexachlorobutadiene	ND		100
2-Hexanone	ND		5000
Isopropylbenzene	ND		50
4-Isopropyltoluene	ND		100
Methylene Chloride	ND		500

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-12463-5
 Date Sampled:
 01/02/2008 1535

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 01/09/2008 1813 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		5000
Naphthalene	ND		100
N-Propylbenzene	ND		100
Styrene	ND		50
1,1,1,2-Tetrachloroethane	ND		50
1,1,2,2-Tetrachloroethane	ND		50
Tetrachloroethene	8200		50
Toluene	ND		50
1,2,3-Trichlorobenzene	ND		100
1,2,4-Trichlorobenzene	ND		100
1,1,1-Trichloroethane	ND		50
1,1,2-Trichloroethane	ND		50
Trichloroethene	560		50
Trichlorofluoromethane	ND		100
1,2,3-Trichloropropane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50
1,2,4-Trimethylbenzene	ND		50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		5000
Vinyl chloride	ND		50
Xylenes, Total	ND		100
2,2-Dichloropropane	ND		50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	104		71 - 139
1,2-Dichloroethane-d4 (Surr)	95		62 - 118
Toluene-d8 (Surr)	99		73 - 117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-5

 Lab Sample ID:
 720-12463-6
 Date Sampled:
 01/03/2008
 1115

 Client Matrix:
 Water
 Date Received:
 01/03/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1410 Final Weight/Volume: 40 mL

Methyl tert-butyl ether ND 5.0 Acetone ND 50 Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50
Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0
DichlorobromomethaneND0.50BromobenzeneND1.0ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
BromobenzeneND1.0ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
ChlorobromomethaneND1.0BromoformND1.0BromomethaneND1.0
Bromoform ND 1.0 Bromomethane ND 1.0
Bromomethane ND 1.0
2-Rutanone (MEK) ND 50
2 Datations (WEIX) 14D 50
n-Butylbenzene ND 1.0
sec-Butylbenzene ND 1.0
tert-Butylbenzene ND 1.0
Carbon disulfide ND 5.0
Carbon tetrachloride ND 0.50
Chlorobenzene ND 0.50
Chloroethane ND 1.0
Chloroform ND 1.0
Chloromethane ND 1.0
2-Chlorotoluene ND 0.50
4-Chlorotoluene ND 0.50
Chlorodibromomethane ND 0.50
1,2-Dichlorobenzene ND 0.50
1,3-Dichlorobenzene ND 0.50
1,4-Dichlorobenzene ND 0.50
1,3-Dichloropropane ND 1.0
1,1-Dichloropropene ND 0.50
1,2-Dibromo-3-Chloropropane ND 1.0
Ethylene Dibromide ND 0.50
Dibromomethane ND 0.50
Dichlorodifluoromethane ND 0.50
1,1-Dichloroethane ND 0.50
1,2-Dichloroethane ND 0.50
1,1-Dichloroethene ND 0.50
cis-1,2-Dichloroethene ND 0.50
trans-1,2-Dichloroethene ND 0.50
1,2-Dichloropropane ND 0.50
cis-1,3-Dichloropropene ND 0.50
trans-1,3-Dichloropropene ND 0.50
Ethylbenzene ND 0.50
Hexachlorobutadiene ND 1.0
2-Hexanone ND 50
Isopropylbenzene ND 0.50
4-Isopropyltoluene ND 1.0
Methylene Chloride ND 5.0

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-5

 Lab Sample ID:
 720-12463-6
 Date Sampled:
 01/03/2008
 1115

 Client Matrix:
 Water
 Date Received:
 01/03/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1410 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	38		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	112		71 - 139
1,2-Dichloroethane-d4 (Surr)	99		62 - 118
Toluene-d8 (Surr)	98		73 - 117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: EB-1

 Lab Sample ID:
 720-12463-7EB
 Date Sampled:
 01/03/2008
 1140

 Client Matrix:
 Water
 Date Received:
 01/03/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1559 Final Weight/Volume: 40 mL

Methyl tert-butyl ether ND 5.0 Acetone ND 50 Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 chard ND 1.0 Carbon disulfide ND 0.50 Chlorotolitide ND 0.50 Chlorotoltane ND 0.50 Chlorotoltuene ND 0.50
Benzene ND 0.50 Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromomethane ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 carbon disulfide ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorothane ND 0.50 Chlorothane ND 1.0 Chlorothane ND 1.0 Chlorothane ND 1.0 Chlorothane ND 0.50 4-Chlorothuene ND 0.50 Chlorothoromethane ND 0.50 1,2-Dichlorobenzene ND 0.50
Dichlorobromomethane ND 0.50 Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 1.0 2-Butanone (MEK) ND 1.0 sec-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 carbon disulfide ND 1.0 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorothane ND 1.0 Chlorothane ND 1.0 Chlorotoluene ND 0.50
Bromobenzene ND 1.0 Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 se-Butylbenzene ND 1.0 se-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon disulfide ND 5.0 Carbon disulfide ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 1.0 Chlorotothane ND 1.0 Chlorotoluene ND 0.50 Chlorotoluene ND 0.50 Chlorotolibromomethane ND 0.50 Chlorotolibromomethane ND 0.50 1,4-Dichlorobenzene ND 0.50 1,2-Dichloropropane ND 0.50 1,2-Dichloropropane ND 0
Chlorobromomethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 carbon disulfide ND 5.0 Carbon disulfide ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 0.50 Chloroform ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50
Bromoform ND 1.0 Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 0.50 Carbon detrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 0.50 Chloroform ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromomethane ND
Bromomethane ND 1.0 2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 0.50 Chlorotethane ND 1.0 Chlorotoform ND 1.0 Chlorotoluene ND 1.0 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromomethane <td< td=""></td<>
2-Butanone (MEK) ND 50 n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorofoluene ND 1.0 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane
n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorotethane ND 1.0 Chloroform ND 1.0 Chlorotofluene ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane
sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloroform ND 1.0 Chlorotoluene ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane
tert-But/lbenzene ND 1.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chlorobenzene ND 1.0 Chlorothane ND 1.0 Chlorothane ND 1.0 Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoliene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene<
Carbon disulfide ND 5.0 Carbon tetrachloride ND 0.50 Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,
Carbon tetrachloride ND 0.50 Chloroebenzene ND 0.50 Chloroethane ND 1.0 Chlorofform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Dibromomethane ND 0.50 Dibromomethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 1,1-Dichloroethene ND 0.50 ci
Chlorobenzene ND 0.50 Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,2-Diblromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Chloroethane ND 1.0 Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromodifluoromethane ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Chloroform ND 1.0 Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Chloromethane ND 1.0 2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 4-Chlorodibromomethane ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 2thylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
2-Chlorotoluene ND 0.50 4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 0.50 1,1-Dichloropropane ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
4-Chlorotoluene ND 0.50 Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Chlorodibromomethane ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 1,2-Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichloropropane ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 0.50 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,4-Dichlorobenzene ND 0.50 1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,3-Dichloropropane ND 1.0 1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,1-Dichloropropene ND 0.50 1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,2-Dibromo-3-Chloropropane ND 1.0 Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Ethylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
DichlorodifluoromethaneND0.501,1-DichloroethaneND0.501,2-DichloroethaneND0.501,1-DichloroetheneND0.50cis-1,2-DichloroetheneND0.50
1,1-Dichloroethane ND 0.50 1,2-Dichloroethane ND 0.50 1,1-Dichloroethene ND 0.50 cis-1,2-Dichloroethene ND 0.50
1,2-DichloroethaneND0.501,1-DichloroetheneND0.50cis-1,2-DichloroetheneND0.50
1,1-DichloroetheneND0.50cis-1,2-DichloroetheneND0.50
cis-1,2-Dichloroethene ND 0.50
trans-1,2-Dichloroethene ND 0.50
,
1,2-Dichloropropane ND 0.50
cis-1,3-Dichloropropene ND 0.50
trans-1,3-Dichloropropene ND 0.50
Ethylbenzene ND 0.50
Hexachlorobutadiene ND 1.0
2-Hexanone ND 50
Isopropylbenzene ND 0.50
4-Isopropyltoluene ND 1.0
Methylene Chloride ND 5.0

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: EB-1

 Lab Sample ID:
 720-12463-7EB
 Date Sampled:
 01/03/2008
 1140

 Client Matrix:
 Water
 Date Received:
 01/03/2008
 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1559 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec	Accept	ance Limits
4-Bromofluorobenzene	109	71 - 1	139
1,2-Dichloroethane-d4 (Surr)	107	62 - 1	18
Toluene-d8 (Surr)	104	73 - 1	17

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-12463-8
 Date Sampled:
 01/03/2008 1225

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1632 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	4.2		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0

Client: GeoSyntec Consultants Job Number: 720-12463-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-12463-8
 Date Sampled:
 01/03/2008 1225

 Client Matrix:
 Water
 Date Received:
 01/03/2008 1410

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1632 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	3.5		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	110		71 - 139
1,2-Dichloroethane-d4 (Surr)	104		62 - 118
Toluene-d8 (Surr)	102		73 - 117

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: GeoSyntec Consultants Job Number: 720-12463-1

QC Association Summary

1.1.0	011-110-1110	Report		NA . 41 1	D D. t. l
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-304	96				
LCS 720-30496/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-30496/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-30496/3	Method Blank	Т	Water	8260B	
720-12463-4	MW-1	Т	Water	8260B	
Analysis Batch:720-304	97				
LCS 720-30497/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-30497/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-30497/3	Method Blank	Т	Water	8260B	
720-12463-1TB	TRIP BLANK	Т	Water	8260B	
720-12463-3	MW-3	Т	Water	8260B	
720-12463-3MS	Matrix Spike	Т	Water	8260B	
720-12463-3MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-12463-6	MW-5	Т	Water	8260B	
720-12463-7EB	EB-1	Т	Water	8260B	
720-12463-8	MW-4	Т	Water	8260B	
Analysis Batch:720-30542					
LCS 720-30542/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-30542/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-30542/3	Method Blank	Т	Water	8260B	
720-12463-2	MW-DUP	Т	Water	8260B	
720-12463-5	MW-2	T	Water	8260B	

Report Basis

T = Total

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30496 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30496/3 Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1108 Final Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1108 Date Prepared: 01/08/2008 1108

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30496 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30496/3 Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1108 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1108

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	116	71 - 139	
1,2-Dichloroethane-d4 (Surr)	103	62 - 118	
Toluene-d8 (Surr)	108	73 - 117	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-30496 Preparation: 5030B

LCS Lab Sample ID: LCS 720-30496/2 Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\0'

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1002 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1002

LCSD Lab Sample ID: LCSD 720-30496/1 Analysis Batch: 720-30496 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01(

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1035 Final Weight/Volume: 40 mL

Date Prepared:

01/08/2008 1035

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit Benzene 90 87 69 - 129 3 20 Chlorobenzene 103 99 61 - 121 20 4 1.1-Dichloroethene 97 92 65 - 125 5 20 Toluene 98 92 70 - 130 6 20 Trichloroethene 74 - 134 20 92 88 4 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 92 4-Bromofluorobenzene 103 71 - 139 1,2-Dichloroethane-d4 (Surr) 91 85 62 - 118 100 73 - 117 Toluene-d8 (Surr) 89

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30497 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30497/3 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1214 Final Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1214 Date Prepared: 01/08/2008 1214

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30497 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30497/3 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1214 Final Weight/Volume: 40 mL

Date Prepared: 01/08/2008 1214

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	111	71 - 139	
1,2-Dichloroethane-d4 (Surr)	101	62 - 118	
Toluene-d8 (Surr)	104	73 - 117	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-30497 Preparation: 5030B

LCS Lab Sample ID: LCS 720-30497/2 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\0

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1108 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1108

LCSD Lab Sample ID: LCSD 720-30497/1 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\010

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/08/2008 1141 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1141

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit Benzene 87 91 69 - 129 4 20 Chlorobenzene 104 102 61 - 121 2 20 1.1-Dichloroethene 94 90 65 - 125 4 20 Toluene 94 95 70 - 130 2 20 Trichloroethene 87 74 - 134 2 20 89 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 108 100 71 - 139 1,2-Dichloroethane-d4 (Surr) 96 92 62 - 118 73 - 117 Toluene-d8 (Surr) 99 97

Client: GeoSyntec Consultants Job Number: 720-12463-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-30497 Preparation: 5030B

MS Lab Sample ID: 720-12463-3 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\(

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1452 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1452

MSD Lab Sample ID: 720-12463-3 Analysis Batch: 720-30497 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 01/08/2008 1526 Final Weight/Volume: 40 mL Date Prepared: 01/08/2008 1526

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Benzene	85	94	69 - 129	10	20	
Chlorobenzene	100	105	61 - 121	5	20	
1,1-Dichloroethene	86	95	65 - 125	10	20	
Toluene	90	93	70 - 130	4	20	
Trichloroethene	85	90	74 - 134	5	20	
Surrogate		MS % Rec	MSD %	Rec	Acce	ptance Limits
4-Bromofluorobenzene		104	102		71	1 - 139
1,2-Dichloroethane-d4 (Surr)		99	96		62	2 - 118
Toluene-d8 (Surr)		93	88		73	3 - 117

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30542 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30542/3 Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 01/09/2008 1058 Final Weight/Volume: 40 mL

Date Analyzed: 01/09/2008 1058 Date Prepared: 01/09/2008 1058

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Method Blank - Batch: 720-30542 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-30542/3 Analysis Batch: 720-30542 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/09/2008 1058 Final Weight/Volume: 40 mL Date Prepared: 01/09/2008 1058

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	105	71 - 139	
1,2-Dichloroethane-d4 (Surr)	98	62 - 118	
Toluene-d8 (Surr)	104	73 - 117	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-12463-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-30542 Preparation: 5030B

LCS Lab Sample ID: LCS 720-30542/2 Analysis Batch: 720-30542 Instrument ID: Varian 3900G

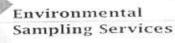
Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\0'

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/09/2008 0952 Final Weight/Volume: 40 ml

Date Analyzed: 01/09/2008 0952 Final Weight/Volume: 40 mL Date Prepared: 01/09/2008 0952

LCSD Lab Sample ID: LCSD 720-30542/1 Analysis Batch: 720-30542 Instrument ID: Varian 3900G


Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200801\01(

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 01/09/2008 1025 Final Weight/Volume: 40 mL Date Prepared: 01/09/2008 1025

	9	% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	81	83	69 - 129	3	20		
Chlorobenzene	96	95	61 - 121	0	20		
1,1-Dichloroethene	84	89	65 - 125	6	20		
Toluene	86	87	70 - 130	2	20		
Trichloroethene	79	79	74 - 134	1	20		
Surrogate	L	.CS % Rec	LCSD %	Rec	Accep	otance Limits	3
4-Bromofluorobenzene	9)6	100		7	1 - 139	
1,2-Dichloroethane-d4 (Surr)	9	00	90		6	2 - 118	
Toluene-d8 (Surr)	9)5	93		7	3 - 117	

720-12463

Bill To: SAME

Project Number: WR0574

Type,

Stephen Penman

MATRIX

CODE

SO

Nater

PRESERV

HCI Ice

X

×

XK

XX

XX

XX

Company: Address:

Fax: (

Containers

3

3

3

×

und

Received By:

Received By:

Received By:

6680 Alhambra Avenue, #102 . Martinez, California 94553-6105 Fax: (925) 372-6705 Telephone: (925) 372-8108

SAMPLING

Time

12:00

12:30

14:22

11:15 3

12:25 3

11:40

Time:

14:10

Time:

Time:

1/2/08 13:45

12/08 15:35

Date

1/2/08

1/2/08

IZLOB

1/3/08

1/3/08

1/3/08

Date:

/3/08

Date:

Date:

www.envsampling.com

Send Report To: Melissa Asher

Address: 475 14th Street, Suite 450 Oakland, CA 94612 E-Mail: masher@geosyntec.com

Project Name: Hopyard Cleaners

Sampler's Name: Jacqueline Lee

Field Point Name

Tel: (510) 285-2782 Fax: (510) 836-3036

SAMPLE ID

Trip Blank

MW-DOP

MW-3

MW-1

MW-2

MW-5

EB-1

MW-4

Ralinquished By

Relinquished By:

Relinquished By:

Company: GeoSyntec Consultants

Log Code: ESSM

1000
108862

Reporting GeoTrack FedEx	CHAIN ROUND T Format: 1 er Site Iden UPS Ty: Test An Analys	EDF 24 H EDF 1 ntification	IR 48 I EDD/Exc	⊒ [HR 72 el ☑	HR ST PDF	
FedEx 🗆	ups □ y: <u>Test An</u>	ess 🛭		ing Num		
FedEx 🗔	y: Test An	nerica	Track	ing Num		
Laborator						a a concor
	Anarys	is reques	est.		Other	Code: STCI
			st		Other	Comment
ETHOD m						
ESERVED S						ر. بر
ETHOD GENERAL STORMS						,,
HNO3 H2SO4						.1
H ₂ SC Vocs						4.6
(X						0 0 0
×						, a
1						
×						
×						
×						
×						
. ×						7273
			_			
						1
		Filtered: Y	o 'es No(E ABSENT:	Yes No

3

4

CONTAINER TYPES:

1-VOAs 2-Glass 3-Poly 4-Liner 5-Air Canister 6-Tedlar Bag

Login Sample Receipt Check List

Client: GeoSyntec Consultants

Job Number: 720-12463-1

Login Number: 12463 List Source: TestAmerica San Francisco Creator: Sidhu, Surinder

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	