

RECEIVED

1:28 pm, Nov 05, 2008

Alameda County Environmental Health 475 14th Street, Suite 400 Oakland, California 94612 PH 510.836.3034 FAX 510.836.3036 www.geosyntec.com

31 July 2007

Mr. Roger Papler, P.G. California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Subject: Results of Second Quarter 2007 Groundwater Monitoring

Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California

Self-Monitoring Program No. R5-2006-0059

Dear Mr. Papler:

This report transmits the subject monitoring results for Hopyard Cleaners, 2771 Hopyard Road, (the "Site") in Pleasanton, California. A site location map is provided in Figure 1. The work described in this report was performed in compliance with the California Regional Water Quality Control Board (RWQCB) Monitoring and Reporting Program (MRP) No. R5-2006-0059.

The monitoring well network at the Site consists of three wells installed to 30 feet below ground surface (ft bgs), in the uppermost groundwater beneath the Site. Well completion details are summarized in Table 1. Well locations relative to the site are shown on Figure 2. Two additional wells (MW-4 and MW-5) were installed in July 2007. Well installation details and monitoring results for these two wells will be included in the third quarter 2007 monitoring report.

WORK PERFORMED THIS QUARTER

The second quarter groundwater monitoring event was performed on 11 May 2007. A temporary well was installed northwest of the commercial building containing the bookstore and pizzeria on 27 June 2007. This work is discussed in the following sections.

QUARTERLY GROUNDWATER MONITORING

Quarterly groundwater monitoring was performed at the Site on 11 May 2007. Details are described below.

P:\PRJ2003REM\Hopyard Cleaners\Quarterly Monitoring Reports\2Q07\2Q07 Report_FINAL.doc

Mr. Roger Papler 31 July 2007 Page 2

Sampling and Analytical Procedures

The groundwater sampling fieldwork was performed by Environmental Sampling Services, Inc. (ESS), of Martinez, California. ESS's report, including field procedures and sampling logs, is provided in Attachment 1. Samples were hand-delivered to Severn Trent Laboratories, Inc. (STL) of Pleasanton, California for analysis. Groundwater samples from the Site monitoring wells were analyzed for volatile organic compounds (VOCs) by EPA method 8260B.

Groundwater Elevations and Flow Conditions

Table 2 summarizes groundwater elevations measured during this sampling event. Groundwater beneath the Site was encountered between approximately 11.9 and 12.7 ft bgs. This depth corresponds to an elevation approximately between 313.5 and 314 ft above Mean Sea Level (MSL). Groundwater elevations in the second quarter 2007 are the highest since monitoring began in November 2006.

Water level measurements taken during the May 2007 event were used to construct groundwater elevation contours, as presented on Figure 2. The water levels measured in the Site monitoring wells in second quarter 2007 indicate a general flow to the north-northwest with an average gradient of 0.003 ft/ft (15.8 ft/mile).

Data QA/QC

Geosyntec performed a quality assurance/quality control (QA/QC) review of the analytical data. Data were reviewed for completeness, accuracy, precision, sample contamination, conformance with holding times, and detection limits within acceptable ranges. The results of the QA/QC review indicate that groundwater data are of acceptable quality.

Analytical Results

Laboratory analytical reports are provided in Attachment 2. Table 3 summarizes analytical results for groundwater samples collected during the second quarter 2007 event and previous events. Analytical results for the current sampling event are also shown on Figure 2. Isoconcentration contour maps for tetrachloroethene (PCE) and trichloroethene (TCE) are shown on Figures 3 through 5. The isoconcentration contours were drawn using current data from monitoring wells along with grab groundwater sample results previously collected at the Site.

This is the third monitoring event since the wells were installed in September 2006. Analytical results for samples taken from the three monitoring wells showed the highest VOC

Mr. Roger Papler 31 July 2007 Page 3

concentrations at MW-2. The PCE and TCE concentrations at well MW-2 were 1,000 and 7,200 μ g/L, respectively. These results are greater than the results from the previous sampling event (first quarter 2007) for this well. Additional monitoring will be conducted to assess any concentration trends.

TEMPORARY WELL INSTALLATION

A temporary well was installed on 27 June 2007 to investigate whether adequate groundwater yield exists at the downgradient end of the shallow zone plume, between boring locations B-41 and B-30, for a monitoring well to be installed at this location. Confirmation of inadequate groundwater yield in this area was requested by the RWQCB in a conditional approval letter dated 18 June 2007.

Before drilling, Geosyntec obtained a drilling permit from the Alameda County Flood Control and Water Conservation District, Zone 7. The boring locations were marked with white paint and Subtronics Corporation of Concord, California cleared the area northwest of the pizzeria, between B-41 and B-30, of potential underground utilities. Underground Service Alert was notified on 22 June 2007.

On 27 June 2007, temporary well B-43 was drilled at the location shown on Figures 3 and 5. The soil boring was advanced using a Geoprobe® 6600 direct-push rig operated by Cascade Drilling, Inc (Cascade) of Rancho Cordova, California. The borehole was hand augered for the first 6 ft bgs and then advanced to 30 ft bgs using 2-inch diameter steel rods. The boring was continuously cored using vinyl acetate liners. After retrieving the core, the acetate liner was cut open to visually observe and log the samples using the Unified Soil Classification System (USCS). The geologic materials primarily consisted of sandy silts from 6-12 ft bgs and clay from 12-30 ft bgs with a 1-foot layer of sandy silt from 16.5-17.5 ft bgs. A photoionization device (PID) was used to screen the soil cores for VOCs. No VOCs were detected by the PID.

Soil samples were collected at intervals of 25 to 26 ft bgs and 29 to 30 ft bgs. The samples were shipped to Cooper Testing Laboratory of Palo Alto, California and were analyzed for particle size distribution and Atterberg limits. The results of the testing indicated the material at both intervals is a lean clay. The soil properties report is provided in Attachment 3. The boring log of B-43 is provided as Attachment 4.

Mr. Roger Papler 31 July 2007 Page 4

A ¾-inch Schedule 40 PVC pipe was placed in the borehole with a screen section over the bottom 20 to 30 ft bgs. The pipe remained in the borehole for three and a half hours before a Geosyntec field engineer attempted to sample the well using a stainless steel bailer. No water was present in the well and a sample could not be collected.

The PVC pipe was removed from the boring and the borehole was grouted using 95% neat cement and 5% bentonite mixture with asphalt surface completion. All investigation derived waste was stored on-site pending disposal.

FUTURE WORK

The next quarterly groundwater monitoring event will be performed in August 2007 and the results will be discussed in the quarterly monitoring report due to the RWQCB on 31 October 2007.

Monitoring wells MW-4 and MW-5 (Figure 6) were installed from 16 July through 23 July 2007. Installation and well development activities will be reported to the RWQCB in the third quarter monitoring report. These two wells will be included in the third quarter monitoring event.

Beginning 30 July 2007, Scott Felton will no longer be the primary contact for this Site. Angela Liang, Ph.D., P.E. will be the new project manager from Geosyntec. If you have any questions, please call Angela at (510) 836-3034.

Sincerely,

Melissa Asher Staff Engineer

Hanchih (Angela) Liang, Ph.D., P.E.

Senior Engineer

P:\PRJ2003REM\Hopyard Cleaners\Quarterly Monitoring Reports\2Q07\2Q07 Report FINAL.doc

Attachments:	Table 1	Well Construction Summary					
	Table 2	Groundwater Elevations					
	Table 3	Groundwater Analytical Summary					
	Figure 1	Site Location					
	Figure 2	Second Quarter 2007 Groundwater Elevation					
		Contours and Analytical Results					
	Figure 3	Second Quarter 2007 PCE Isoconcentration					
		Contours in Groundwater at 20 to 30 ft bgs					
	Figure 4	Second Quarter 2007 PCE Isoconcentration					
		Contours in Groundwater at 40 to 60 ft bgs					
	Figure 5	Second Quarter 2007 TCE Isoconcentration					
		Contours in Groundwater at 20 to 30 ft bgs					
	Figure 6	Proposed Monitoring Well Locations					
	Attachment 1	Environmental Sampling Services Field Report					
	Attachment 2	Laboratory Analytical Report					
	Attachment 3	Soil Properties Analytical Report					
	Attachment 4	Boring Logs					
Copy with Attachments:	Ms. Clare Leun	g, Hopyard Cleaners					
	Ms. Joy Ricigli	ano, Zurich Insurance					

Mr. Wyman Hong, Zone 7 Water Agency

Mr. Jerry Wickham, Alameda County Environmental Health Ms. Danielle Stefani, City of Pleasanton Fire Department Mr. William Henderlong, Town & Country Properties

Mr. Mark Peterson, GES

Table 1 Monitoring Well Construction Summary Hopyard Cleaners Pleasanton, California

Well I.D.	Date of Completion	Northing	Easting	TOC Elevation (MSL)	Total l	-	(ft bgs)		Well Casing Material	Well Diameter (inches)
					Borehole	Well	Top	Bottom		` '
MW-1	9/29/2006	2071427.29	6157712.24	325.77	30	30	20.00	30.00	SCH 40 PVC	2.
MW-2	9/26/2006	2071357.03	6157791.18	325.69	30	30	20.00	30.00	SCH 40 PVC	2
MW-3	9/27/2006	2071461.21	6157787.94	326.27	30	30	20.00		SCH 40 PVC	2

Notes:

MSL = mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

Table 2 Groundwater Elevations Hopyard Cleaners Pleasanton, California

Well I.D.	TOC Elevation (ft MSL)	Sample Date	Depth to Groundwater Below TOC (ft)	Groundwater Elevation (ft MSL)
MW-1	325.77	5/11/2007	12.27	313.50
		2/9/2007	13.98	311.79
		11/20/2006	14.88	310.89
MW-2	325.69	5/11/2007	11.87	313.82
		2/9/2007	13.55	312.14
		11/20/2006	14.36	311.33
MW-3	326.27	5/11/2007	12.72	313.55
		2/9/2007	14.41	311.86
		11/20/2006	15.28	310.99

Notes:

ft MSL = feet above mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

Table 3 Groundwater Analytical Summary Hopyard Cleaners Pleasanton, California

		Volatile Organic Compounds - EPA Method 8260B (ug/L)						
Well I.D.	Sample Date	cis-1,2-DCE	PCE	TCE				
MW-1	5/11/2007	310	2500	310				
	2/9/2007	270 / 270	2,400 / 2,300	290 / 290				
	11/20/2006	370	3100	370				
MW-2	5/11/2007	1,000 / 980	7,200 / 7,300	490 / 450				
	2/9/2007	760	4700	350				
	11/20/2006	800 / 800	5,700 / 5,800	370 / 360				
MW-3	5/11/2007	5.5	43	4.4				
	2/9/2007	5.3	42	4.2				
	11/20/2006	9.5	93	7.2				

Notes:

Table shows only compounds detected above the laboratory reporting limit

cis-1,2-DCE - cis-1,2-dichloroethene

PCE - tetrachloroethene

TCE - trichloroethene

"-- / --" - result on right represents duplicate sample

Topo Source: U.S.G.S 7.5 Minute Series, Dublin, CA Quadrangle (1980) Contour Interval = 40 Feet

SITE LOCATION MAP HOPYARD CLEANERS 2771 HOPYARD RPAD PLEASANTON, CALIFORNIA

FIGURE NO.	1
PROJECT NO.	WR0574
DATE:	JULY 2007
FILE NO.	

ATTACHMENT 1 ESS FIELD REPORT

FIELD ACTIVITY REPORT

MAY 2007 QUARTERLY GROUNDWATER SAMPLING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

> Prepared for: GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

> > Date Prepared: May 16, 2007

FIELD ACTIVITY REPORT FOR

MAY 2007 QUARTERLY GROUNDWATER SAMPLING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

> Prepared for: GeoSyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

> > Date Prepared: May 16, 2007

FIELD ACTIVITY REPORT FOR

MAY 2007 QUARTERLY GROUNDWATER SAMPLING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

Task: Quarterly Groundwater Sampling Event

ESS Personnel: Stephen Penman Date of Activities: May 11, 2007

Decontamination Procedures

All downhole equipment was cleaned with Liqui-Nox® laboratory-grade soap, potable water, and rinsed with distilled water prior to use and between each monitoring well.

Field Equipment Calibration

A YSI® Multiparameter instrument with in-line flow through chamber and Turbidity meter was used to monitor water quality parameters during well purging. The meters were calibrated to standard solutions (see Daily Equipment Calibration Sheet) prior to purging activities.

Groundwater Level Measurements

Following atmospheric equilibration of approximately twenty minutes, depth to groundwater was measured and recorded for each monitoring well. All readings were performed with a Solinst® Water Level Meter, Serial Number 25083, and referenced to the surveyor's mark at the top of PVC well casing (Table 1). Three successive readings that agreed to within one-hundredth of a foot determined depth to groundwater.

Organic vapor readings were not required.

Water Quality Parameters

The following water quality parameters were monitored and recorded during well purging: pH, Specific Conductance (uS), Temperature (Celsius), Dissolved Oxygen (mg/L), Oxidation/Reduction Potential (mV), and physical characteristics such as pumping water level, color, and odor (see Water Quality Sample Log Sheets).

Well Purging & Sampling Procedures

A peristaltic pump and dedicated pump tubing was used for purging and sampling. Each monitoring well was purged at a rate no greater than 500-ml per minute until water quality parameters stabilized for three consecutive readings.

EPA stabilization guidelines were used. The readings were within \pm 0.1 for pH, \pm 3 % for Specific Conductivity, \pm 10 mV for ORP, \pm 10 NTUs for Turbidity, and \pm 10% for Dissolved Oxygen.

Groundwater samples were collected immediately following stabilization of water quality parameters by disconnecting the tubing from the flow through chamber.

Chemical Analyses

All wells were sampled for Volatile Organic Compounds by EPA Method 8260B.

Sample Containers

Severn Trent Laboratories (STL-SF) of Pleasanton, California provided all sample containers.

Each VOCs sample set was contained in three, 40-ml VOA clear glass containers preserved with hydrochloric acid.

Sample Handling

All sample labels were completed with waterproof ink and affixed to sample containers.

During decanting, 40-ml VOA sample containers were slightly tilted to avoid aeration or degassing. Each sample container was inverted and tapped lightly to check for air bubbles. The absence of air bubbles indicated a successful seal.

All sample containers were wiped dry, sealed in Ziploc® bags, and placed a chilled cooler for storage and shipment.

QA/QC

A Trip Blank set, supplied by STL-SF, was stored in the cooler throughout the sampling event and submitted for analysis.

One blind duplicate set was collected from MW-2 and labeled "MW-DUP @ 11:17".

An equipment blank set was collected between after sampling MW-2. Laboratory-supplied distilled water and a short section of new pump tubing was used. The equipment blank was labeled "ER-1 @ 12:02".

No other QA/QC samples were requested.

Chain of Custody (COC) Form

All sample handling was conducted under standard chain of custody procedures. The COC included: sampler's name and signature, sample identification, sample date and time, and analysis request section.

Shipment of Samples

Samples were relinquished to STL-SF May 11, 2007.

Storage of Investigative Derived Wastewater (IDW)

The existing drum from last quarter was gone. Approximately 5 gallons of purged groundwater and decontamination water generated from this sampling event were stored a new, labeled 55-gallon drum. The drum is stored along the southeast corner of the property.

Jacqueline Lee

Partner

Enclosure

Table 1: Summary of Groundwater Sampling Event

Water Sample Log Sheets Equipment Calibration Sheet

Chain of Custody

Table 1: Summary of May 2007 Quarterly Groundwater Sampling Event

Project Name: Hopyard Cleaners

Project Location: 2771 Hopyard Road, Pleasanton, California

Well/Sample Identification	Date of Measurement	Time of Measurement	Depth to Groundwater (Ft., TOC)	Well Depth (Ft., TOC)	Sample Date	Sample Time	QA/QC Type	QA/QC Sample Identification
MW-1	5/11/2007	10:25	12.27	30.27	5/11/2007	10:57	None	NA
MW-2	5/11/2007	10:23	11.87	30.31	5/11/2007	11:40	Duplicate	MW-DUP
MW-3	5/11/2007	10:20	12.72	30.29	5/11/2007	12:25	Equipment Blank	ER-1

Legend:

TOC = Top of Well Casing
NA = Not Applicable

					THE RESERVE AND ADDRESS OF THE PARTY OF THE					THE RESERVE OF THE PERSON NAMED IN	
WATER	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-1 DATE: 5/11/2007										
	Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574										
Project Manager: Melissa Asher - Geosyntec Cons. Lab: STL San Francisco Weather Conditions: Claur Coal bree											
Well Description. 2" 3.5" 4" 5" 6" Other: Well Type: PVC Stainless Steel Other:											
Is Well Secured Yes No Bolt Size: 9/16" Type of lock / Lock number: Master											
Observations / Comments: set pump intake @ 35,27 ft.(BTOC) Screen Interval: 20' to 30' Purge Method: Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other:											
	Pump Lines: NA New / Cleaned Dedicated Bailer Line NA New / Cleaned / Dedicated										
Method of Cleaning Pump: NA Alconox Liqui-nox Tap Water DI Rinse Other:											
Method of Cleaning Bailer: NA Alconox Liqui-nox Tap Water DI Rinse Other:											
Method of Cleaning Bailer: NA Alconox Liqui-nox Tap Water Di Rinse Other:											
					S - 05F1258A				2		
		ion: See Da									
					ial No.: 25083	25742	P.I.D. F	Reading: <u>NA</u>	<u>v</u> ppm		
) Water Leve					(BTOC)	
					water) x "K" = <u></u>					Sals.)	
("K"≠ 0.163 (2" well) > "K	" = 0.50 (3.5	o" well) "K"	' = .653 (4" well)	"K" = 1	.02 (5" well) "k" = 1.4	6 (6" well)		
			FIEL	D WATER	QUALITY PAR	RAMETER	RS				
					Specific			Dissolved	1		
Date	Time	Discharge	pН	Temp.	Conductance		Redox	Oxygen	Level	Color	
		(Liters)	+/- 0.1	(°C)	mS (uS) +/- 3%	(NTU's) +/- 10	(mV) +/- 10	(mg/L) +/- 10%	(BTOC)		
5/11/07	10:31	Initial	7.11	21.24	1305	2.18	141.8		12.49	Clear	
	10:33	0.5	6.86	20.78	1308	1.89			12.48	4.5	
	10:35	1.0	6.74	20.64	1308	1.58			12.48	e)	
	10:37	1.5	6.68	20.65	1308	1.52			12.48	e g	
	10:39	2.0	83.6	20.77	1303	1.33	124.6	0.72	12.48	51	
	10:41	2.5	6.68	20.76	1303	1.27	122.0	0.67	12.48	8 9	
	10:43	3.0	6.70	20.73	1304	1.11	116.0	0.60	12,48	Er	
	10:45	3.5	6.73	20.54	1306	1.08	0.80	0.53	12.48	91	
V	10:47	4.0	6.72	20.62	1305	0.95	105.2	0.49	12.48	87	
Total Dis	charge:	6.5 Li	ters		Casing Volum	es Remov	ved: <u>NA</u>				
Method o	of disposal o	of discharge	d water: 5	5 Gallon Dr	um(s) Poly T	ank Tre	atment Sy	ystem Oth	ner:		
Date/Tim	ne Sampled	: 5/11/07	@ 10:	57	Analysis:	VOCs (82	60B) - 3 V	OAs w/HCI			
QA/QC:	None	_@	Du	plicate MS	MSD Equip	ment Rins	eate Fiel	d Blank La	ab Split		
Commer	its:										
								***************************************	***************************************		
Recorde	d by Stenh	ien Penman	/ Jacki Le	e Signatu	ire: 10	P		_	Page 1 of	_	
	J. CLOPI	Jillian	, Judici Lot	- Jigilatti						_	

WATER QUALITY SAMPLE LOG SHEET				WELL IDENTIFICATION: MW-I Page 2						
Project	Name: F				unton, CA					
		FIELD WA	TER QUAL	ITY PARA	METERS CON	ITINUED F	ROM PA			
Date	Time	Discharge (Liters)	pH +/- 0.1	Temp. (°C)	Specific Conductance mS uS +/- 3%	Turbidity (NTUs) +/-10	Redox (mV) +/-10	Dissolved Oxygen (mg/L) 10%	Water Level (BTOC)	Color
5/11/07	10:49	4.5	6.74	20.52	1302	08.0	101.1	0.44	12.48	Clear
	10:51	5.0	6.74	20.42	1303	0.81	97.0	0.40	12.48	11
	10:53	5.5	6.74	20.39	1303	0.76	95.0	0.40	12.48	61
	10:55	6.0	6.75	20.45	1304	0.71	92.3	0.39	12.48	01
		6.5								
		7.0			•					
_		7.5								
		8.0					***************************************			
		8.5								
		9.0								
		9.5								
		10.0			***************************************					
		10.5								
		11.0								
		11.5								
		12.0								
		12.5								
		13.0								
		13.5								
		14.0		I	0		.d. N12	I		
	charge: ts:	<u>6.5</u> Lit	ers		Casing Volum	es Remove	ea: <u>NA</u>			
Common					***************************************		***************************************			
			***************************************		-1-1-	0				
Recorded	by (Stephe	en Penman	Jacki Lee	Signatur	e: W	1		1	Page 2 of 2	

WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-2 DATE: 5/11/07										
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574										
Project Manager: Melissa Asher - Geosyntec Cons. Lab: STL San Francisco Weather Conditions:										
Well Description 2" 3.5" 4" 5" 6" Other: Well Type: PVC Stainless Steel Other:										
Is Well Secured Yes No Bolt Size: 9/16" Type of lock / Lock number: Master										
Observations / Comments: set pump intake @ 35.31 ft.(BTOC) Screen Interval: 20' to 30'										
Purge Method: Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other: Pump Lines: NA New / Cleaned Dedicated Bailer Line. NA New / Cleaned / Dedicated										
Pump Lines: NA New / Cleaned Dedicated Baller Line: NA New / Cleaned / Dedicated Method of Cleaning Pump. NA Alconox Liqui-nox Tap Water DI Rinse Other:										
Method of Cleaning Bailer NA Alconox Liqui-nox Tap Water DI Rinse Other:										
Method of Cleaning Bailer NA Alconox Liqui-nox Tap Water Di Rinse Other:										
YSI Muti-Parameter Meter/Probe Serial No. 556 MPS - 05F1258AH / 600XL 319340R - 00C1522										
Equipment Calibration: See Daily Equipment Calibration Sheet										
Method to Measure Water Level: Slope Indicator Serial No. 25083/ 25742 P.I.D. Reading: NA ppm										
Water Level at Start (DTW): 11.87e 10:23 (втос) Water Level Prior To Sampling: 12.08 (втос										
TD = $30.31' - 11.87$ (DTW) = 18.44 (ft. of water) x "K" = 3.0 (Gals./CV) x NA (No. of CV) = NA (Gals.)										
"K"= 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "k" = 1.46 (6" well)										
FIELD WATER QUALITY PARAMETERS										
Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color										
Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color (C) mS (NTU's) (mV) (mg/L) (BTOC)										
+/- 0.1 +/- 3% +/- 10 +/- 10%										
5/11/07 11:17 Initial 7.04 20.15 1411 2.04 91.3 1.72 12.07 Clean										
11:20 0.5 6.91 19.86 1417 1.61 95.0 0.90 12.07 "										
11:22 1.0 6.89 19.86 1417 1.49 96.1 0.90 12.07 "										
11:24 1.5 6.88 19.86 1416 1.28 97.3 0.85 12.07 11										
11:26 2.0 6.88 19.88 1417 0.84 98.3 0.73 12.07 "										
11:28 2.5 6.88 19.85 1418 0.80 99.4 0.63 12.07 "										
11:30 3.0 6.88 19.94 1417 0.76 99.9 0.59 12.08 "										
11:32 3.5 6.88 19.94 1417 0.41 100.4 0.53 12.08 "										
V 11:34 4.0 6.88 19.94 1417 0.53 100.2 0.51 12.08 "										
Total Discharge: Liters Casing Volumes Removed: NA										
Method of disposal of discharged water: 55 Gallon Drum(s) Poly Tank Treatment System Other:										
Date/Time Sampled: SILOT @ ILYO Analysis: VOCs (8260B) - 3 VOAs w/HCl										
QA/QC: MW-WP@ 11:17 Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split										
Comments:										
Recorded by: Stephen Penman Jacki Lee Signature: Page 1 of 2										

WATER QUALITY SAMPLE LOG SHEET				ET	WELL IDENTIFICATION: MW-2				Page 2	
		opyard			ASANJOS CA					
		FIELD WA	TER QUAL	ITY PARAI	WE LEKS CON	ITINUED F	ROM PA			
Date	Time	Discharge (Liters)	pH +/- 0.1	Temp. (°C)	Specific Conductance mS uS +/- 3%	Turbidity (NTUs) +/-10	Redox (mV) +/-10	Dissolved Oxygen (mg/L) 10%	Water Level (BTOC)	Color
5/11/07	11:36	4.5	6.87	19.87	1416	0.48	100.7	0.49	12.08	Clear
		5.0								
		5.5			•					
		6.0								
		6.5								
		7.0								
		7.5								
		8.0								
		8.5								
		9.0								
		9.5								
		10.0								
		10.5								
		11.0								
		11.5								
		12.0								
		12.5								
		13.0								
		13.5								
		14.0								
		5.0 Lit			Casing Volume	es Remove	ed: <u>NA</u>			
Commen	ts:				was the control of th					
Recorded	by Stephe	en Penman	Jacki Lee	Signatur	e: Xtul	72			Page 2 of 2	

WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-3 DATE: 5/11/07										
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574										
Project Manager: Melissa Asher - Geosyntec Cons. Lab: STL San Francisco Weather Conditions: Clear + Characteristics										
Well Description: 3.5" 4" 5" 6" Other: Well Type: PVC Stainless Steel Other:										
Is Well Secured Yes / No Bolt Size: 9/16" Type of lock / Lock number: Master										
Observations / Comments: set pump intake @ 25.19 ft.(BTOC) Screen Interval: 20' to 30'										
Purge Method: Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other:										
Method of Cleaning Pump: NA Alconox Liqui-nox Tap Water DI Rinse Other:										
Method of Cleaning Bailer: NA Alconox Liqui-nox Tap Water DI Rinse Other:										
YSI Muti-Parameter Meter/Probe Serial No. 556 MPS - 05F1258AH / 600XL 319340R - 00C1522										
Equipment Calibration: See Daily Equipment Calibration Sheet										
Method to Measure Water Level: Slope Indicator Serial No.: 25083 25742 P.I.D. Reading: NA ppm										
Water Level at Start (DTW): 12.710 10:20 (BTOC) Water Level Prior To Sampling: 13.14 (BTOC)										
TD = $30.29' - 12.72$ (DTW) = 17.57 (ft. of water) x "K" = 2.9 (Gals./CV) x NA (No. of CV) = NA (Gals.)										
"K"= 0.163 (2" well) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "k" = 1.46 (6" well)										
FIELD WATER QUALITY PARAMETERS										
Specific Dissolved Water										
Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Colo (Liters) mS uS (NTU's) (mV) (mg/L) (BTOC)										
(Liters) (°C) mS (us) (NTU's) (mV) (mg/L) (BTOC) (+/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10%										
5/11/07 12:09 Initial 6.98 20.35 1648 1.93 105.6 2.30 13.12 Clem										
12:12 0.5 6.87 20.16 1652 1.24 104.4 1.23 13.13 "										
12:14 1.0 6.85 20.06 1654 1.15 104.1 1.08 13.14 "										
12:16 1.5 6.84 19.89 1658 0.93 103.9 0.94 13.14 "										
12:18 2.0 6.83 19.98 1653 0.88 104.1 0.88 13.14 "										
12:20 2.5 6-83 20.04 1655 0.72 104.6 0.84 13.14 "										
12:22 3.0 6.83 20.05 1654 0.66 104.7 0.80 13.14 "										
3.5										
4.0										
Total Discharge: 3.5 Liters Casing Volumes Removed: NA										
Method of disposal of discharged water: 55 Gallon Drum(s) Poly Tank Treatment System Other:										
Date/Time Sampled: 5/11/07 @ 12:25 Analysis: VOCs (8260B) - 3 VOAs w/HCl										
QA/QC: ER-1 @ 12:02 Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split										
Comments:										
Recorded by Stephen Penman Jacki Lee Signature:										

SITE NAME: Hopyard Cleaners SITE LOCATION: Pleasanton, CA

TASK: Mayy 2007 Quarterly Groundwater Monitoring Event

DAILY EQUIPMENT CALIBRATION SHEET

				Dissolved		pН		Specific Conductance	ORP	TURBIDITY
DATE	TIME	Instrument	Probe	Oxygen	4	7	10	1,000		
		Serial Number	Serial Number	(%)				uS/cm	mV	NTU's
5/11/07	09:50	556 MPS	OSFL258AH	99,9	3.99	7.00	10.03	1.000	237.4	0.02
				•						

STL San Francisco Chain of Custody 1220 Quarry Lane ● Pleasanton CA 94566-4756 Phone: (925) 484-1919 ● Fax: (925) 484-1096 Email: sflogin@stl-inc.com

Reference	#:	
, , , , , , , , , , , , , , , , , ,	• • •	

iddina (in intradiadia (iliza)						1 11011	C. (32 [tl-inc.		1011	000			Date 1	May 1	1,20	o ∓ Pa	ige _	1	of <u></u>	<u> </u>
Report To	: .					;; ;		:	•	-:		An	alvsis	Real	est						÷	T 18		
Altn: Melissa AS	ihe-						100																	1
Company Gressinke Address: His 14 th S Cakloud Phone (5 v) 92: -55	Consul	oxt5		308 BE	İ	a Gel	8TEX D Etha	8)Cs)		8	1 608 1 608	0		CRA	B/602((O,	賣口	, i				
Address: 475 14th S	1-4. 200	Hec		D 826	32608	Silic	sas D EDB C	8260) S (VC		troleu	81 U	1 8310		10 1	A 200.	}	For H	Alkalinity TDS 🗅	000				
Phone: (5/C) 836-30	r cinali.			18021 EX	ics	* 0	<u> </u>	rbons 21 by	SC/M	MS 625	J Pe	EPA 8081 EPA 8082	0 0	471)	L.C.F.	by EP	5	Chron	00	0 SO, 0 NO, 0 F				ers
BILL TO: SAME	Samp	led By: Es	55 Ma√	- C 8015/8021 CJ 82608 CJ 8TEX CJ MTBE	Purgeable Aromatics BTEX EPA - CI 8021 CI 82608	TEPH EPA 8015M* CI Silica Gel	Fuel Tests EPA 8260B: Cl Gas Cl 8TEX Cl Five Oxyenates Cl DCA, EDB Cl Ethanol	Purgeable Halocarbons (HVOCs) EPA 8021 by 82608	Volatile Organics GCIMS (VOCs)	Semivolatiles GC/MS	Oil and Grease Detroleum (EPA 1664) Otal			CAM17 Metals (EPA 6010/7470/7471)	Metals: © Lead © LUFT © RCRA	Low Level Metals by EPA 200.B/6020 (ICP-MS):	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	Spec Cond. TSS	000				Number of Containers
Attn:	Phone	(925)372	3013-	EPA 3s w/	eable X EP	4 EP	ests &	eable ICs)	le O	volat PA 8	nd Gr 166	cides	by	17 M 601(s: 🗆	MS):	¥.E	Hex PH (Spe(1]				er of
Sample ID	Date Ti	me Mat	Pres	TPH EPA	Purg BTE	TEP!	Fuel 1	Purg (HVC	X volat	Semi	Oit ar (EPA	Pesticides PCBs	PNAs by	CAM (EPA	Metal	Low I	00	00	00	Anions				Num
Trip Blook	5/11/07 18 5/11/07 10	30H20	HCI						X															〕
MW-1	5/11/07/10	57 H201	101						X															<u>1</u>
MW-Dup	5/407/1	17/00/	10						X															3
MW-2'	5/11/07/11	+OCHOY:	(C)						X														~~~~~	3
ER-1	19/11/2012	UN HO	HC1						X															3
MW-3	5/11/07 12	25 H20	HCI						X										· 1 · d					3
																								\Box
													 											\Box
																	-							\vdash
Project Info.	Sa					1), Re	linguish	ea by:		- i -	2 \-\\$\	2) F	l Relinqui:	shed by			**************************************	3)	Relinqu	uished b	y:		,	
Project Name: Horpard (Cleavers #0	f Containers	; ;			Signa	ilure	1		Tim	<u>3.`tv</u>	Sig	nalure			Tii	me	- s i	gnature	····		7	Time	-
Project# NR057		ad Space:	·····			Sle	P) Run d Name	7	ΛΛc ~		1/07 te								_					
PO#.		mp. // -	30			Printe	d Name)		Dа	te	Prir	nled Nar	ne		C	ale	Pr	inled N	ame			Date	-
Coodii Coodii						Em	Colve any	<u> 2 let</u>	DNA	ling [<u>Svcs.</u>	-	mpany					_ _		~				
Credit Card#;	0	nform\$ to re	сога.			Cont	any	,	•	.)		Cor	npany					Co	mpany					ĺ
T 5 72h 48h	24h Oth	ner:			(1) Re	ceived t	Sul		13	08	-	Receive	d by:		,		3)	Receiv	ed by:	Organización de Auguston	Name of State of Stat	· · · · · · · · · · · · · · · · · · ·	
Report: Routine D Leve	el 3 🔲 Level 4	O EDD D	Slate Ta	nk Fund E	DF	Signa	lure -	<i>/</i> //	+	Tim	e/	Sign	nalure			Tir	ne	Sig	gnalure	·····		Ť	ime	_
		_				Printe	· <u>S</u> ed Name	1/oc	<u> </u>	1/11	107	Prin	nled Nar	ne			ate	_ 	inted N	ame			Date	_
						1 11110	(- -		سن -		' '''						' '		0.710			COIC	
						Com	pany					Cor	mpany					- C c	mpany		···			-
*STL SF reports 8015M from	C ₉ -C ₂₄ (industry	norm). Defai	ult for 80	158 is	C,0-C ₂₈																		Revi	06/04

ATTACHMENT 2 LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Job Number: 720-9104-1

Job Description: Hopyard Cleaners

For: GeoSyntec Consultants 475 14th Street, Suite 450 Oakland, CA 94612

Attention: Ms. Melissa Asher

miliasa Brewer

Melissa Brewer
Project Manager I
mbrewer@stl-inc.com
05/17/2007

cc: Mr. Sergio Santos

Project Manager: Melissa Brewer

Job Narrative 720-J9104-1

- I. Comments
 No additional comments.
- Receipt
 All samples were received in good condition within temperature requirements.
- III. GC/MS VOA

 No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: GeoSyntec Consultants

Job Number: 720-9104-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-9104-2	MW-1				
cis-1,2-Dichloroethe	ene	310	20	ug/L	8260B
Tetrachloroethene		2500	20	ug/L	8260B
Trichloroethene		310	20	ug/L	8260B
720-9104-3	MW-DUP				
cis-1,2-Dichloroethe	ana	980	50	ug/L	8260B
Tetrachloroethene	CITO	7300	50	ug/L	8260B
Trichloroethene		450	50	ug/L	8260B
720-9104-4	MW-2				
cis-1,2-Dichloroethe	ene	1000	50	ug/L	8260B
Tetrachloroethene		7200	50	ug/L	8260B
Trichloroethene		490	50	ug/L	8260B
720-9104-6	MW-3				
cis-1,2-Dichloroethe	ene	5.5	0.50	ug/L	8260B
Tetrachloroethene		43	0.50	ug/L	8260B
Trichloroethene		4.4	0.50	ug/L	8260B
THOMOTOGRACIO					

METHOD SUMMARY

Client: GeoSyntec Consultants

Job Number: 720-9104-1

Description	Lab Location Method		Preparation Method			
Matrix: Water						
Volatile Organic Compounds by GC/MS (Low Level)	STL SF	SW846 8260	3			
Purge-and-Trap	STL SF		SW846 5030B			

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: GeoSyntec Consultants

Job Number: 720-9104-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received			
720-9104-1	TRIP BLANK	Water	05/11/2007 0930	05/11/2007 1308			
720-9104-2	MVV-1	Water	05/11/2007 1057	05/11/2007 1308			
720-9104-3	MW-DUP	Water	05/11/2007 1117	05/11/2007 1308			
720-9104-4	MW-2	Water	05/11/2007 1140	05/11/2007 1308			
720-9104-5	ER-1	Water	05/11/2007 1202	05/11/2007 1308			
720-9104-6	MW-3	Water	05/11/2007 1225	05/11/2007 1308			

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-9104-1
 Date Sampled:
 05/11/2007
 0930

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1230 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 720-9104-1
 Date Sampled:
 05/11/2007
 0930

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1230 Final Weight/Volume: 40 mL

Anglyta	Result (ug/L)	Qualifier	RL
Analyte	, ,	Qualifici	
Methylene Chloride	ND		5.0
methyl isobutyl ketone	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	116		83 - 127
1,2-Dichloroethane-d4 (Surr)	108		86 - 129
Toluene-d8 (Surr)	117		82 - 126

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-9104-2
 Date Sampled:
 05/11/2007
 1057

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21613 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 40 Initial Weight/Volume: 40 mL

Date Analyzed: 05/16/2007 1443 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		200
Acetone	ND		2000
Benzene	ND		20
Dichlorobromomethane	ND		20
Bromobenzene	ND		40
Chlorobromomethane	ND		40
Bromoform	ND		40
Bromomethane	ND		40
Methyl Ethyl Ketone	ND		2000
n-Butylbenzene	ND		40
sec-Butylbenzene	ND		40
tert-Butylbenzene	ND		40
Carbon disulfide	ND		200
Carbon tetrachloride	ND		20
Chlorobenzene	ND		20
Chloroethane	ND		40
Chloroform	ND		40
Chloromethane	ND		40
2-Chlorotoluene	ND		20
4-Chlorotoluene	ND		20
Chlorodibromomethane	ND		20
1,2-Dichlorobenzene	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,3-Dichloropropane	ND		40
1,1-Dichloropropene	ND		20
1,2-Dibromo-3-Chloropropane	ND		40
Ethylene Dibromide	ND		20
Dibromomethane	ND		20
Dichlorodifluoromethane	ND		20
1,1-Dichloroethane	ND		20
1,2-Dichloroethane	ND		20
1,1-Dichloroethene	ND		20
cis-1,2-Dichloroethene	310		20
trans-1,2-Dichloroethene	ND		20
1,2-Dichloropropane	ND		20
cis-1,3-Dichloropropene	ND		20
trans-1,3-Dichloropropene	ND		20
Ethylbenzene	ND		20
Hexachlorobutadiene	ND		40
2-Hexanone	ND		2000
Isopropylbenzene	ND		20
4-Isopropyltoluene	ND		40

Job Number: 720-9104-1 Client: GeoSyntec Consultants

Client Sample ID:

MW-1

Lab Sample ID: Client Matrix:

720-9104-2

Water

Date Sampled:

05/11/2007 1057

Date Received: 05/11/2007 1308

8260B Volatile Organic	Compounds by	GC/MS (Low Level)
------------------------	--------------	-------------------

Method:

8260B

Analysis Batch: 720-21613

Instrument ID:

Varian 3900F

Preparation:

5030B

Lab File ID:

c:\saturnws\data\200705\05

Dilution:

40

Initial Weight/Volume:

40 mL

Date Analyzed:

05/16/2007 1443

Final Weight/Volume:

40 mL

20

Date Prepared:

05/16/2007 1443

Analyte	Result (ug/L)
Methylene Chloride	ND
methyl isobutyl ketone	ND
Naphthalene	ND
N-Propylbenzene	ND
Styrene	ND
1,1,1,2-Tetrachloroethane	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethene	2500
Toluene	ND
1,2,3-Trichlorobenzene	ND
1,2,4-Trichlorobenzene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	310
Trichlorofluoromethane	ND
1,2,3-Trichloropropane	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	ND
1,2,4-Trimethylbenzene	ND
1,3,5-Trimethylbenzene	ND
Vinyl acetate	ND
Vinyl chloride	ND
Xylenes, Total	ND
2,2-Dichloropropane	ND
Surrogate	%Rec
	100

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	103	83 - 127
1,2-Dichloroethane-d4 (Surr)	102	86 - 129
Toluene-d8 (Surr)	97	82 - 126

Job Number: 720-9104-1 Client: GeoSyntec Consultants

Client Sample ID:

MW-DUP

Lab Sample ID: Client Matrix:

720-9104-3

Water

Date Sampled:

05/11/2007 1117

Date Received:

05/11/2007 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-21589

Instrument ID:

Varian 3900D

Preparation:

5030B

Lab File ID:

c:\saturnws\data\200705\05

Dilution:

Analyte

100

40 mL

Date Analyzed:

05/15/2007 1559

Date Prepared:

05/15/2007 1559

Result (ug/L)

RL 500

Methyl tert-butyl ether Acetone Benzene

Dichlorobromomethane Bromobenzene Chlorobromomethane Bromoform

Bromomethane Methyl Ethyl Ketone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide

Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene

4-Chlorotoluene Chlorodibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene

1,4-Dichlorobenzene 1,3-Dichloropropane 1,1-Dichloropropene 1,2-Dibromo-3-Chloropropane Ethylene Dibromide

Dibromomethane Dichlorodifluoromethane 1.1-Dichloroethane 1.2-Dichloroethane 1.1-Dichloroethene cis-1.2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene

STL San Francisco

Initial Weight/Volume:

Final Weight/Volume:

40 mL

Qualifier ND ND 5000 ND 50 ND 50 100 ND ND 100 ND 100 ND
ND ND ND ND ND ND ND ND ND ND ND

ND

980 ND ND ND ND ND ND ND ND

ND

100

5000

50

100

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-DUP

 Lab Sample ID:
 720-9104-3
 Date Sampled:
 05/11/2007
 1117

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 100 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1559 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methylene Chloride	ND		500
methyl isobutyl ketone	ND		5000
Naphthalene	ND		100
N-Propylbenzene	ND		100
Styrene	ND		50
1,1,1,2-Tetrachloroethane	ND		50
1,1,2,2-Tetrachloroethane	ND		50
Tetrachloroethene	7300		50
Toluene	ND		50
1,2,3-Trichlorobenzene	ND		100
1,2,4-Trichlorobenzene	ND		100
1,1,1-Trichloroethane	ND		50
1,1,2-Trichloroethane	ND		50
Trichloroethene	450		50
Trichlorofluoromethane	ND		100
1,2,3-Trichloropropane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50
1,2,4-Trimethylbenzene	ND		50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		5000
Vinyl chloride	ND		50
Xylenes, Total	ND		100
2,2-Dichloropropane	ND		50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	113		83 - 127
1,2-Dichloroethane-d4 (Surr)	106		86 - 129
Toluene-d8 (Surr)	114		82 - 126

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-9104-4
 Date Sampled:
 05/11/2007
 1140

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 05/15/2007 1634 Final Weight/Volume: 40 mL

 Date Analyzed:
 05/15/2007 1634
 Final Weight/Volume:

 Date Prepared:
 05/15/2007 1634
 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		500
Acetone	ND		5000
Benzene	ND		50
Dichlorobromomethane	ND		50
Bromobenzene	ND		100
Chlorobromomethane	ND		100
Bromoform	ND		100
Bromomethane	ND		100
Methyl Ethyl Ketone	ND		5000
n-Butylbenzene	ND		100
sec-Butylbenzene	ND		100
tert-Butylbenzene	ND		100
Carbon disulfide	ND		500
Carbon tetrachloride	ND		50
Chlorobenzene	ND		50
Chloroethane	ND		100
Chloroform	ND		100
Chloromethane	ND		100
2-Chlorotoluene	ND		50
4-Chlorotoluene	ND		50
Chlorodibromomethane	ND		50
1,2-Dichlorobenzene	ND		50
1,3-Dichlorobenzene	ND		50
1,4-Dichlorobenzene	ND		50
1,3-Dichloropropane	ND		100
1,1-Dichloropropene	ND		50
1,2-Dibromo-3-Chloropropane	ND		100
Ethylene Dibromide	ND		50
Dibromomethane	ND		50
Dichlorodifluoromethane	ND		50
1,1-Dichloroethane	ND		50
1,2-Dichloroethane	ND		50
1,1-Dichloroethene	ND		50
cis-1,2-Dichloroethene	1000		50
trans-1,2-Dichloroethene	ND		50
1,2-Dichloropropane	ND		50
cis-1,3-Dichloropropene	ND		50
trans-1,3-Dichloropropene	ND		50
Ethylbenzene	ND		50
Hexachlorobutadiene	ND		100
2-Hexanone	ND		5000
Isopropylbenzene	ND		50
4-Isopropyltoluene	ND		100

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-9104-4
 Date Sampled:
 05/11/2007
 1140

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 100 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1634 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methylene Chloride	ND		500
methyl isobutyl ketone	ND		5000
Naphthalene	ND		100
N-Propylbenzene	ND		100
Styrene	ND		50
1,1,1,2-Tetrachloroethane	ND		50
1,1,2,2-Tetrachloroethane	ND		50
Tetrachloroethene	7200		50
Toluene	ND		50
1,2,3-Trichlorobenzene	ND		100
1,2,4-Trichlorobenzene	ND		100
1,1,1-Trichloroethane	ND		50
1,1,2-Trichloroethane	ND		50
Trichloroethene	490		50
Trichlorofluoromethane	ND		100
1,2,3-Trichloropropane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50
1,2,4-Trimethylbenzene	ND		50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		5000
Vinyl chloride	ND		50
Xylenes, Total	ND		100
2,2-Dichloropropane	ND		50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	114		83 - 127
1,2-Dichloroethane-d4 (Surr)	109		86 - 129
Toluene-d8 (Surr)	119		82 - 126

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: ER-1

 Lab Sample ID:
 720-9104-5
 Date Sampled:
 05/11/2007
 1202

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1340 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: ER-1

 Lab Sample ID:
 720-9104-5
 Date Sampled:
 05/11/2007
 1202

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1340 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methylene Chloride	ND		5.0
methyl isobutyl ketone	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	115		83 - 127
1,2-Dichloroethane-d4 (Surr)	107		86 - 129
Toluene-d8 (Surr)	113		82 - 126

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-9104-6
 Date Sampled:
 05/11/2007
 1225

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1305 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	5.5		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0

Client: GeoSyntec Consultants Job Number: 720-9104-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-9104-6
 Date Sampled:
 05/11/2007
 1225

 Client Matrix:
 Water
 Date Received:
 05/11/2007
 1308

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1305 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Methylene Chloride	ND		5.0
methyl isobutyl ketone	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	43		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	4.4		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	%Rec	Ac	cceptance Limits
4-Bromofluorobenzene	114	3	33 - 127
1,2-Dichloroethane-d4 (Surr)	110	3	86 - 129
Toluene-d8 (Surr)	116	8	32 - 126

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: GeoSyntec Consultants

Job Number: 720-9104-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-2158	39				
LCS 720-21589/1	Lab Control Spike	Τ	Water	8260B	
MB 720-21589/2	Method Blank	Τ	Water	8260B	
720-9104-1	TRIP BLANK	Τ	Water	8260B	
720-9104-3	MW-DUP	T	Water	8260B	
720-9104-4	MW-2	T	Water	8260B	
720-9104-5	ER-1	Т	Water	8260B	
720-9104-6	MW-3	Т	Water	8260B	
720-9104-6MS	Matrix Spike	Т	Water	8260B	
720-9104-6MSD	Matrix Spike Duplicate	Т	Water	8260B	
Analysis Batch:720-216	13				
LCS 720-21613/1	Lab Control Spike	T	Water	8260B	
MB 720-21613/2	Method Blank	Т	Water	8260B	
720-9104-2	MW-1	Т	Water	8260B	

Report Basis T = Total

Client: GeoSyntec Consultants Job Number: 720-9104-1

Method Blank - Batch: 720-21589

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-21589/2 Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 05/15/2007 1155 Final Weight/Volume: 40 mL

Date Prepared: 05/15/2007 1155

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

RL

Client: GeoSyntec Consultants Job Number: 720-9104-1

Method Blank - Batch: 720-21589

Analyte

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-21589/2 Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 05/15/2007 1155 Final Weight/Volume: 40 mL Date Prepared: 05/15/2007 1155

Result

Qual

Analyte	resuit	Quai		1 1
Isopropylbenzene	ND			0.50
4-Isopropyltoluene	ND			1.0
Methylene Chloride	ND			5.0
methyl isobutyl ketone	ND			50
Naphthalene	ND			1.0
N-Propylbenzene	ND			1.0
Styrene	ND			0.50
1,1,1,2-Tetrachloroethane	ND			0.50
1,1,2,2-Tetrachloroethane	ND			0.50
Tetrachloroethene	ND			0.50
Toluene	ND			0.50
1,2,3-Trichlorobenzene	ND			1.0
1,2,4-Trichlorobenzene	ND			1.0
1,1,1-Trichloroethane	ND			0.50
1,1,2-Trichloroethane	ND			0.50
Trichloroethene	ND			0.50
Trichlorofluoromethane	ND			1.0
1,2,3-Trichloropropane	ND			0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND			0.50
1,2,4-Trimethylbenzene	ND			0.50
1,3,5-Trimethylbenzene	ND			0.50
Vinyl acetate	ND			50
Vinyl chloride	ND			0.50
Xylenes, Total	ND			1.0
2,2-Dichloropropane	ND			0.50
Surrogate	% Rec	Ac	cceptance Limits	
4-Bromofluorobenzene	115		83 - 127	
1,2-Dichloroethane-d4 (Surr)	108		8 6 - 129	
Toluene-d8 (Surr)	114		82 - 126	
			· - -	

Client: GeoSyntec Consultants

Job Number: 720-9104-1

Lab Control Spike - Batch: 720-21589

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-21589/1

Client Matrix: Water

Dilution: 1.0

Date Analyzed: 05/15/2007 1120 Date Prepared: 05/15/2007 1120 Analysis Batch: 720-21589

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900D

Lab File ID: c:\saturnws\data\200705\05

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	20.0	19.2	9 6	6 9 - 129	
Chlorobenzene	20.0	20.7	103	61 - 121	
1,1-Dichloroethene	20.0	19. 6	98	6 5 - 125	
Toluene	20.0	19.7	98	70 - 130	
Trichloroethene	20.0	17.5	88	74 - 134	
Surrogate	% R	ec	Acc	eptance Limits	
4-Bromofluorobenzene	11	0		83 - 127	
1,2-Dichloroethane-d4 (Surr)	99			86 - 129	
Toluene-d8 (Surr)	10	7		82 - 126	

82 - 126

Client: GeoSyntec Consultants Job Number: 720-9104-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-21589 Preparation: 5030B

Date Prepared:

Date Prepared:

Toluene-d8 (Surr)

05/15/2007 1415

05/15/2007 1449

MS Lab Sample ID: 720-9104-6 Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\footnote{1.0}

Dilution: 1.0 Initial Weight/Volume: 40 mL

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 05/15/2007 1415 Final Weight/Volume: 40 mL

MSD Lab Sample ID: 720-9104-6 Analysis Batch: 720-21589 Instrument ID: Varian 3900D

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 05/15/2007 1449 Final Weight/Volume: 40 mL

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Represe 100 104 69 130 4 30

•							-
Benzene	100	104	6 9 - 129	4	20		
Chlorobenzene	106	109	61 - 121	3	20		
1,1-Dichloroethene	99	101	65 - 125	2	20		
Toluene	100	107	70 - 130	7	20		
Trichloroethene	8 6	89	74 - 134	3	20		
Surrogate		MS % Rec	MSD %	% Rec		Acceptance Limits	
4-Bromofluorobenzene		108	110			83 - 127	
1,2-Dichloroethane-d4 (Surr)		109	104			8 6 - 129	

112

111

Client: GeoSyntec Consultants Job Number: 720-9104-1

Method Blank - Batch: 720-21613

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-21613/2 Analysis Batch: 720-21613 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\05

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 05/16/2007 1156 Final Weight/Volume: 40 mL

Date Prepared: 05/16/2007 1156

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		5.0
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
Methyl Ethyl Ketone	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: GeoSyntec Consultants Job Number: 720-9104-1

Method Blank - Batch: 720-21613 Method: 8260B Preparation: 5030B

Date Prepared: 05/16/2007 1156

Lab Sample ID: MB 720-21613/2 Analysis Batch: 720-21613 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\0{\circ}

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 05/16/2007 1156 Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
methyl isobutyl ketone	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acce	otance Limits
4-Bromofluorobenzene	100	ę	3 - 127
1,2-Dichloroethane-d4 (Surr)	107	-	6 - 129
Toluene-d8 (Surr)	98		2 - 126
10100110 40 (0411)	30	_	_ ,

Client: GeoSyntec Consultants Job Number: 720-9104-1

Lab Control Spike - Batch: 720-21613

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-21613/1 Analysis Batch: 720-21613 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200705\0\forall to Initial Weight/Volume: 40 mL

Date Analyzed: 05/16/2007 1122 Final Weight/Volume: 40 mL
Date Prepared: 05/16/2007 1122

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	20.0	19.3	97	69 - 129	
Chlorobenzene	20.0	22.3	111	61 - 121	
1,1-Dichloroethene	20.0	22.6	113	6 5 - 125	
Toluene	20.0	19.2	9 6	70 - 130	
Trichloroethene	20.0	19.2	9 6	74 - 134	
Surrogate	% R	ec	Acc	eptance Limits	
4-Bromofluorobenzene	96			83 - 127	
1,2-Dichloroethane-d4 (Surr)	99			86 - 129	
Toluene-d8 (Surr)	94			82 - 126	

STL San Francisco Chain of Custody Reference #: <u>/05</u>45 220 Quary Lane • Pleasanton CA 94566-1756 484-1919 • Fax: (925) 484-1096 Email: silogin@stl-inc.com Date May II, 2007 Page Report To · Analysis Request All Melissa Veletis Croonies OCMS INDESI Company Goodyntee Consultarts Moxipalists Chromatin on 1245 cod healts H.O. 35 ₫ g ₽ 0 以高岭水 D 7 7 7 1 7 1 ENTE SAME Sampled By F.55 CB 343 UAA359 ្រូវ ប្រ Stephen tennon Prond(925)37.1-8108 Attro Sample ID : Date 20 19/1/67/19/30/H20/HC Trip Blook Page (27.0 f.286 | 12 | Mini-MW-DUR MW-2 =R-1 5/1/6/1202/1/20 HC MW-3 15 H 10 H 35 SE Project Info Sample Receipt 1) Relignais (all ty) 2) Retriguished by 3) Relinquished by Project Name: Hoppard Cloauca Pleasant on JA # of Containers: Signathic Serverine ERG Time ក្រក្រាងស្រែម Project#: nesd Space Fade Parise Name Dunlas Hairy Date Credit Cord#: Conformà la record Company ริยากลล_า D) Resewed by 3) Pocewed by: 43ts 2.4 Cuber. Report Regime Discrete Discrete Discrete Special Instructions / Comments 13 3 day 2 Sarature Tube Signature Tarage Printed Hartle D'ate Sharted Name Diate

Campany

Согадану

Company

 $^{\circ}$ 57). SF reports 80 (5M from C_{s} - C_{cs} (industry norm). Data A for 80 (53 is D_{cs} - C_{cs}

3

190000000

Car Clife

LOGIN SAMPLE RECEIPT CHECK LIST

Client: GeoSyntec Consultants Job Number: 720-9104-1

Login Number: 9104

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ATTACHMENT 3 SOIL PROPERTIES LABORATORY REPORT

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #30 #40 #50 #100 #200 0.0357 mm. 0.0256 mm. 0.0167 mm. 0.0099 mm. 0.0072 mm. 0.0053 mm. 0.0028 mm. 0.0028 mm. 0.0020 mm.	100.0 99.4 99.2 99.0 98.6 97.3 94.2 91.7 84.7 78.7 73.2 65.2 59.0 51.0 45.0 39.2		

Brown Lean CL/	Soil Description AY	
PL= 27	Atterberg Limits LL= 49	PI= 22
D ₈₅ = 0.0171 D ₃₀ = C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{60} = 0.0040 \\ D_{15} = \\ C_{\text{C}} = \end{array}$	D ₅₀ = 0.0027 D ₁₀ =
USCS= CL	Classification AASHT	-O=
	Remarks	

* (no specification provided)

Sample No.:

Source of Sample: B-43

Date:

Location:

Elev./Depth: 25-26'

COOPER TESTING LABORATORY

Client: Geosyntec Consultants

Project: Hopyard Cleaners - WR0574

Project No: 461-055

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #30 #40 #50 #100 #200 0.0360 mm. 0.0267 mm. 0.0178 mm. 0.0109 mm. 0.0079 mm. 0.0058 mm. 0.0042 mm. 0.0030 mm. 0.0022 mm.	100.0 99.5 99.3 99.1 98.9 98.7 96.5 87.7 76.9 62.6 54.8 46.4 40.1 33.9 29.5 24.3		

Soil Description Greenish Gray Lean CLAY							
PL= 23	Atterberg Limits	PI= 16					
D ₈₅ = 0.0241 D ₃₀ = 0.0023 C _u =	Coefficients D ₆₀ = 0.0098 D ₁₅ = C _c =	D ₅₀ = 0.0067 D ₁₀ =					
USCS= CL	Classification AASHT						
	<u>Remarks</u>						

Sample No.:

Source of Sample: B-43

Date:

Location:

Elev./Depth: 29-30'

COOPER TESTING LABORATORY

Client: Geosyntec Consultants

Project: Hopyard Cleaners - WR0574

Project No: 461-055

Figure

⁽no specification provided)

ATTACHMENT 4 BORING LOGS

consultants

475 14th Street, Suite 400 Oakland, California 94612 Telephone: 510.836.3034 Fax: 510.836.3036

KEY SHEET CLASSIFICATIONS AND SYMBOLS

Project: Hopyard Cleaners

Location: 2771 Hopyard Road, Pleasanton

Project Number: WR0574

EMPIRICAL CORRELATIONS WITH STANDARD PENETRATION RESISTANCE N VALUES *

FINE	
GRAINED	
J. J	
SOILS	

lows/ft)	
0 - 2	
3 - 4	
5 - 8	
9 - 15	
16 - 30	
>30	

Consistency Very Soft Medium Stiff Stiff Very Stiff

Unconfined Compressive Strength (tons/sq ft) <0.25 0.25 - 0.50 0.50 - 1.00 1.00 - 2.00 2.00 - 4.00

COARSE **GRAINED** SOILS

N Value *

Density Very Loose Loose Medium Dense Dense Very Dense

Relative

* ASTM D 1586; number of blows of 140-pound hammer falling 30 inches to drive a 2-inch-O.D., 1.4-inch-I.D. sampler one foot.

UNIFIED SOIL CLASSIFICATION AND SYMBOL CHART **MAJOR DIVISIONS** SYMBOLS **DESCRIPTIONS** WELL-GRADED GRAVELS **GRAVEL CLEAN** GW GRAVEL-SAND MIXTURES **GRAVELS** LITTLE OR NO FINES AND POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, **GRAVELLY** LITTLE OR NO COARSE GP SOILS FINES LITTLE OR NO FINES GRAINED GRAVELS WITH FINES MORE THAN SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES 50% OF COARSE FRACTION GM SOILS APPRECIABLE AMOUNT OF CLAYEY GRAVELS, GRAVEL -SAND-CLAY MIXTURES RETAINED ON NO.4 SIEVE GC FINES WELL GRADED SANDS CLEAN SAND GRAVELLY SANDS, LITTLE OR NO FINES MORE THAN 50% OF AND SANDS SANDY POORLY GRADED SANDS. LITTLE OR NO MATERIAL SP GRAVELLY SANDS, LITTLE OR NO FINES COARSER THAN NO. 200 SOILS **FINES** MORE THAN SIEVE SIZE SILTY SANDS, SAND-SILT SANDS 50% OF COARSE SM MIXTURES WITH FINES FRACTION APPRECIABLE CLAYEY SANDS, SAND-CLAY PASSING NO.4 SIEVE SC AMOUNT OF MIXTURES INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY ML FINE SILTS INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS LIQUID LIMIT GRAINED AND CL LESS THAN 50 SOILS CLAYS ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW OL PLASTICITY INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILT MORE THAN 50% OF MH

PARTICLE SIZE IDENTIFICATION

BOULDERS >300 mm COBBLES. 75 - 300 mm GRAVEL: COARSE 19.0 - 75 mm **GRAVEL: FINE** 4.75 - 19 mm SAND: COARSE 2.00 - 4.75 mm SAND: MEDIUM 0.425 - 2.00 mm SAND: FINE 0.075 - 0.425 mm SILT 0.075 - 0.002 mm CLAY <0.002 mm

WELL GRADED - HAVING WIDE RANGE OF GRAIN SIZES AND APPRECIABLE AMOUNTS OF ALL INTERMEDIATE PARTICLE SIZES

POORLY GRADED - PREDOMINANTLY ONE GRAIN SIZE, OR HAVING A RANGE OF SIZES WITH SOME INTERMEDIATE SIZES MISSING

PLASTICITY CHART INDEX СН =0.73(LL-20) LASTICITY CL CL-ML мь & фь LIQUID LIMIT (LL) (%)

SAMPLE SYMBOLS

MATERIAL

FINER THAN

Geoprobe or dual-tube acetate liner

SILTS

AND

CLAYS

HIGHLY ORGANIC SOILS

Retained portion of direct push sample

Hydropunch water sample

SPT split spoon drive sampler

WELL SYMBOLS

СН

ОН

PT

INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS

ORGANIC CLAYS OF MEDIUM

TO HIGH PLASTICITY, ORGANIC SILTS

PEAT, HUMUS, SWAMP SOILS

WITH HIGH ORGANIC

CONTENT

NOTE: DUAL SYMBOLS USED FOR BORDERLINE CLASSIFICATIONS

LIQUID LIMIT GREATER

THAN 50

Concrete

Cement grout

Bentonite seal

Filter sand

Screen in filter sand

Slough / soil backfill

WATER LEVEL SYMBOLS

- Water level at time of drilling
- Static water level measured at specified time after drilling/sampling or well completion

GENERAL NOTES

- 1. Soil classifications are based on the Unified Soil Classification System. Soil descriptions and stratum lines are interpretive, and actual changes may be gradual. Field descriptions may have been modified to reflect results of laboratory tests.
- 2. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

475 14th Street, Suite 400 Oakland, California 94612 Telephone: 510.836.3034 Fax: 510.836.3036

LOG OF BORING B-43

Sheet 1 of 1

Project: Hopyard Cleaners

Location: 2771 Hopyard Road, Pleasanton Project Number: WR0574

Start Date	6/27/07 at 09:00	Finish Date	6/27/07 at 10:30	Total Depth Drilled (ft bgs)	30.0
Drilling Method	Direct Push	Drilling Contractor	Cascade Drilling	Ground Surface Elevation (ft MSL)	Not surveyed
Drill Rig	Geoprobe 6600	Sampling Method	Vinyl acetate geoprobe liner	Groundwater Observations Not encountered	
Borehole Backfill	Grout mix of 95% neat cement and 5% bentonite	Borehole Diameter	2 inches	Logger M. Asher	Reviewer S. Felton
Coordinates	Not surveyed	Remarks	Boring hand augered to 6 feet.		

