TRANSMITTAL

TO: Mr. Dave De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

DATE:

March 4, 1999

PROJ. #: 140107.02-3

SUBJECT:

Report

Tosco 76 Branded Facility

No. 7376

4191 First Street

Pleasanton, California

FROM:

Clyde J. Galantine

Project Geologist

Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

WE ARE SENDING YOU:

COPIES	DATED	DESCRIPTION
1	March 4, 1999	Well Installation and Soil Boring Report

THESE ARE TRANSMITTED as checked below:

[] For review and comment	[] Approved as submitted	[] Resubmit _ copies for approval
[X] As requested	[] Approved as noted	[] Submit _ copies for distribution
[] For approval	[] Return for corrections	[] Return corrected prints

[X] For Your Files

COMMENTS:

Enclosed is one copy of the above report. If you have any questions or comments, please call me at (925) 551-7555.

cc:

Scott Seery, Alameda County Health Care Services Agency

Chuck Headlee, Regional Water Quality Control Board, San Francisco Bay Region

WELL INSTALLATION AND SOIL BORING REPORT

at

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

Report No. 140107.02-3

Prepared for:

Mr. David B. DeWitt
Tosco Marketing Company
2000 Crow Canyon Place, Suite 400
San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

Clyde J. Galantine

Project Geologist

Stephen J. Carter Senior Geologist No. 5577

R.G. 5577

March 4, 1999

TABLE OF CONTENTS

INTRODUCTION	. 1
SITE DESCRIPTION.	. 1
SITE HISTORY/PREVIOUS ENVIRONMENTAL WORK	. 2
REGIONAL GEOLOGY	. 5
FIELD ACTIVITIES	. 6
Well Installation	. 7
Well Monitoring, Development, and Sampling	. 7
Wellhead Survey	
SUBSURFACE CONDITIONS	. 8
CHEMICAL ANALYTICAL RESULTS	. 8
Chemical Analytical Procedures	. 9
Soil Chemical Analytical Results	9
Groundwater Chemical Analytical Results	
Stockpile Chemical Analytical Results	
Free Product Geochemical Report Results	
WASTE DISPOSAL	13
DISCUSSION	13
DISTRIBUTION	14
REFERENCES	14

TABLES

- Table 1. Groundwater Monitoring and Chemical Analytical Data
- Table 2. Soil Chemical Analytical Data

FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Geologic Cross Section A A'
- Figure 4. Geologic Cross Section B B'
- Figure 5. June 26, 1998 Potentiometric Map
- Figure 6. August 18, 1998 Potentiometric Map
- Figure 7. September 22, 1998 Potentiometric Map
- Figure 8. Grab Groundwater Sample Concentration Map

APPENDICES

- Appendix A. GR Field Methods and Procedures
- Appendix B. Permits, Boring Logs, and Well Construction Details
- Appendix C. Well Development and Groundwater Sampling Field Data Sheets
- Appendix D. Surveyor's Report
- Appendix E. Laboratory Reports and Chain-of-Custody Forms
- Appendix F. Entrix, Inc. and Global Geochemistry Corp. Reports
- Appendix G. Waste Disposal Confirmation Form

WELL INSTALLATION AND SOIL BORING REPORT

at

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

Report No. 140107.02-3

INTRODUCTION

This report summarizes field activities performed by Gettler-Ryan Inc. (GR) from June 8 through September 22, 1998, at the subject site. The purpose of this subsurface investigation was to collect data to better understand the local geology/hydrogeology and to delineate the lateral and vertical extent of hydrocarbon-impacted soil and groundwater beneath and adjacent to the subject site. The work performed included: drilling seven soil borings and constructing groundwater monitoring wells in two of the off-site borings; collecting soil samples for description and chemical analysis; developing and sampling the newly installed groundwater monitoring wells; surveying all of the wells and borings; analyzing the soil and groundwater samples; and preparing this report. In addition to the delineation of the gasoline compounds, this document also reports GR's findings associated with the heavy hydrocarbons previously identified as "crude oil" known to exist beneath the site. This work was performed at the request of Tosco Marketing Company and in response to a letter from the Alameda County Health Care Services Agency (ACHCSA) dated February 9, 1998. This work was originally proposed in the Kaprealian Engineering Inc. (KEI) Report No. KEI-P94-0903.P3, Work Plan/Proposal, dated May 6, 1997 and amended by the GR Report No. 140107.02-1, Work Plan Addendum, dated May 11, 1998. The Work Plan was approved in a letter from the ACHCSA dated June 8, 1998. Subsequent direction from ACHCSA was received in a letter dated June 10, 1998, requesting the continuous sampling of additional borings proposed in GR's Work Plan Addendum.

SITE DESCRIPTION

The subject site is an operating service station located on the north corner of the intersection of First Street and Ray Street in Pleasanton, California (Figure 1). The site is bounded to the northwest by a former Southern Pacific Railroad right-of-way currently owned by Alameda County, to the north and northeast by a commercial building, to the southeast by First Street,

and to the southwest by Ray Street. Properties in the immediate site vicinity are used for a mix of residential and commercial purposes that include restaurants and shopping facilities. The site is located at an approximate elevation of 366 feet above sea level. Current site facilities consist of a kiosk with four product dispenser islands and two 12,000-gallon doublewall fiberglass gasoline underground storage tanks (USTs). Locations of the pertinent site features are shown on the Site Plan (Figure 2).

SITE HISTORY/PREVIOUS ENVIRONMENTAL WORK

The site was developed in 1899 as a warehouse to store grains and hay (Amador-Livermore Valley Historical Society, 1994). According to a Sanborn map, an "in-ground" storage tank for oil was installed on-site in 1907. The first service station was built on the site in 1976 (Enviros, 1995). Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site (PFD, 1988).

On June 30, 1987, exploratory soil borings B-1, B-2, and B-3 were drilled at the site and sampled by Applied GeoSystems (AGS). Borings B-1 and B-2 were drilled to a final depth of 46.5 feet below ground surface (bgs) and B-3 was drilled to 55 feet bgs. Three soil samples from each boring were analyzed for Total Petroleum Hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (BTEX), except for a sample collected at 35 feet bgs from B-1 (sample S-35-B1) which was also analyzed for Total Petroleum Hydrocarbons as diesel (TPHd). A sample collected at 10 feet bgs from B-3 was reported as not detected for all analytes. The remaining samples contained petroleum hydrocarbons at concentrations ranging from 7.72 to 188.8 parts per million (ppm) of TPHg and 0.07 to 17.1 ppm of benzene. Sample S-35-B1 also contained 1,325 ppm of TPHd. Groundwater was not encountered in the borings (AGS, 1987).

On August 21, 1987, soil boring B-4 was advanced by AGS to a total depth of 66.5 feet bgs. One soil sample collected at 35 feet bgs contained 100.5 ppm of TPHg, 1.4 ppm of benzene, and 1,835 ppm of TPHd. A second soil sample collected at 65 feet bgs was reported as not detected for TPHg, TPHd, and BTEX. Groundwater was not encountered in the boring (AGS, 1987a).

On December 2 through 7, 1987, AGS advanced three soil borings (B-5, B-6, B-7) to a total depth of 96.5 feet bgs and completed the borings as groundwater monitoring wells MW-1, MW-2, and MW-3. The wells were completed at depths of 96.5, 85, and 96.5 feet bgs, respectively. Saturated soil was initially encountered at approximately 80 feet bgs. Two soil samples collected at 35 and 70 feet bgs in boring B-5 were reported as not detected for TPHg,

TPHd, and BTEX. One soil sample collected at 35 feet bgs in boring B-6 contained 15.0 ppm of TPHg, 6,300 ppm of TPHd and was not detected for benzene. One soil sample collected at 70 feet bgs in Boring B-6 were reported as not detected for TPHg, TPHd, and BTEX. A sample collected at 55 feet bgs in boring B-7 contained 390 ppm of TPHg, 1.3 ppm of benzene, and 220 ppm of TPHd. A sample collected at 75 feet bgs in boring B-7 contained 5.0 ppm of TPHg, 30.0 ppm of TPHd, and was not detected for BTEX. Groundwater samples collected from well MW-1, MW-2, and MW-3 contained petroleum hydrocarbon concentrations ranging from 0.0500 to 24.000 ppm of TPHg, 0.058 to 2.600 ppm of benzene, and 0.620 to 2.300 ppm of TPHd (AGS, 1987b).

A 1/2-mile radius well survey was performed by AGS in the 10% and 1088. A maje was of the Albumeth County Flood Central and Water Conversation District - Zone 7 (Zone 7) files identified fire water wells are domestic wells and the fitth appears to be a monitoring well (AGS, 1987b and KEI, 1996).

Reportedly, in December 1987, the four 12,000-gallon USTs were replaced with two 12,000-gallon double-wall USTs. An unknown volume of contaminated soil was reportedly removed and transported to a Class I facility. The property and facilities were sold to the Unocal Corporation in February 1988 (KEI, 1996 and Enviros, 1995).

In September 1994, KEI performed soil sampling services during a dispenser and product piping upgrade at the site. A total of twelve trench soil samples were collected at approximately 3 feet bgs. Petroleum hydrocarbons were detected in the samples at concentrations ranging from not detected to 8,900 ppm of TPHg, and not detected to 65 ppm of benzene. Upon receipt of the analytical data, overexcavation was performed in the area of two soil samples with elevated hydrocarbon concentrations. Three soil samples were collected at approximately 9 feet bgs. The two overexcavation samples were reported to contain 13 and 17 ppm of TPHg and 0.020 to 0.029 ppm of benzene. The third soil sample, collected laterally between the two overexcavation samples contained 4,400 ppm of TPHg and 29 ppm of benzene (KEI, 1994).

On February 6 and 7, 1995, KEI destroyed monitoring well MW-2 and advanced two soil borings (MW-2B and EB-1). Boring MW-2B was completed as a monitoring well. Well MW-2 was destroyed due to asphalt tar being introduced into the well casing during repaving activities at the site. Soil boring EB-1 was drilled to a total depth of 66 feet bgs and well MW-2B was drilled and constructed to a total depth of 91 feet bgs. A total of twenty-nine soil samples were collected during boring EB-1 and MW-2B drilling activities. Samples collected from 5 to 50 feet bgs from EB-1 contained petroleum hydrocarbon concentrations

ranging from 27 to 15,000 ppm of TPHg, 0.29 to 340 ppm of benzene, and 55 to 3,600 ppm of TPHd. Samples collected from 55 to 65 feet bgs from EB-1 contained petroleum hydrocarbon concentrations ranging from not detected to 6.4 ppm of TPHg, not detected to 0.89 ppm of benzene, and not detected for TPHd. Soil samples collected from 5 to 65 feet bgs in well boring MW-2B contained petroleum hydrocarbons concentrations ranging from 1.0 to 720 ppm of TPHg, not detected to 9.5 ppm of benzene, and not detected to 2,400 ppm of TPHd. Soil samples collected from 70 to 80 feet bgs in well boring MW-2B were reported as not detected for TPHg, BTEX, and TPHd (KEI, 1995).

Enviros was contracted to perform a Phase I Environmental Site Assessment for the site in early 1995 (Enviros, 1995).

On July 23 and 24, 1996, KEI advanced three soil borings and completed them as groundwater monitoring wells MW-4, MW-5 and MW-6 to total depths of 73.5 to 93 feet bgs. Well MW-4 was installed on-site and wells MW-5 and MW-6 were installed off-site on the former Southern Pacific Railroad right-of-way. A total of forty-seven soil samples were collected from the well borings and analyzed for TPHg, BTEX, and fuel fingerprinting. Soil samples from well boring MW-4 contained low concentrations of petroleum hydrocarbons ranging from not detected to 47 ppm of TPHg, not detected to 0.27 ppm of benzene, not detected to 15 ppm of TPHd. Soil samples collected in the upper 50 feet of well boring and NW-5 were reported as not detected for TPHg and TPHd, and contained benzene in concentrations ranging from not detected to 0.038 ppm. Samples collected between 55 and 65 feet bgs in MW-5 contained petroleum hydrocarbon concentrations ranging from 32 to 560 ppm of TPHg, 0.28 to 3.9 ppm of benzene, and not detected to 450 ppm of TPHd. Samples collected from MW-6 contain petroleum hydrocarbon concentrations ranging from not detected to 5.0 ppm of TPHg, not detected to 1.2 ppm of benzene, and not detected for TPHd except for 200 ppm detected at 55 feet bgs. Petroleum hydrocarbon concentrations in the range of kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples collected from the well borings (KEI, 1996).

Free product was found in well MW-5 during quarterly monitoring activities on June 27, 1997. In December 1997, (Entrix) performed a forensic geochemical analysis of free product extracted from well MW-5. The Entrix study determined that the free product was most likely composed of a mixture of over 50% refined gasoline and heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh according to Entrix. The heavier hydrocarbon mixture had a carbon distribution ranging from about nC13 to nC33. This distribution is similar in nature to a very weathered crude oil or Bunker C fuel, not refined petroleum products such as diesel #2, motor oil, lube oil, etc. (Entrix, 1997).

Groundwater has been monitored on a quarterly basis from December 1994 to the present. Groundwater analytical data collected during monitoring indicates that free product or a product sheen has been present in well MW-5 since December 1996. Excluding MW-5, petroleum hydrocarbon concentrations in the groundwater on-and off-site has ranged from not detected to 19,000 ppb of TPHg, not detected to 950 ppb of benzene, not detected to 4,400 ppb of MTBE, and not detected to 4,000 ppb of TPHd. Depth to groundwater during this period fluctuated from approximately 49.63 to 86.02 feet bgs (GR, 1998).

REGIONAL GEOLOGY

The subject site is located at the base of the northwest end of the Valle De San Jose. The site is underlain by Holocene age coarse grain non-marine alluvium interpreted to be alluvial fan deposits. These deposits are composed of unconsolidated and well bedded, moderately sorted, permeable sand and silt, with coarse sand and gravel becoming abundant toward fan heads and in narrow canyons (Helley, 1979). The site is also located approximately 1,000 feet west of Pliocene and/or Pleistocene non-marine sedimentary Livermore Gravel (Diblee, 1980).

Previous subsurface studies performed by AGS and KEI indicate the site is underlain by alluvium to a maximum explored depth of 96.5 feet bgs. The alluvium consists of interbedded layers of silts, sands, clays and gravels in both the vadose and saturated zones (KEI, 1996).

Groundwater has been historically reported at approximately 67.15 to 87.26 feet below top of casing (TOC) in wells MW-1, MW-2B, MW-3, MW-4, and MW-6. Groundwater in well MW-5 has been historically reported at 49.63 to 69.47 feet below TOC. The water-bearing zone appears to be unconfined beneath the site. Groundwater in well MW-5 has historically displayed "perched" water table tendencies with a maximum 15 foot depth to water elevation variation, compared to nearby well water table elevations (Wells MW-6, MW-7 and MW-8). A review of Alameda County Flood Control and Water Conversation District-Zone 7 (1993) groundwater data determined that the regional groundwater flow direction in the vicinity of the site was toward the northwest. The nearest surface water is Arroyo Valle, located approximately 700 feet northwest of the site.

FIELD ACTIVITIES

Field work was performed in accordance with the GR Site Safety Plan No. 140038.02, dated May 19, 1998, GR Field Methods and Procedures and Site Safety Plan are presented in Appendix A. Underground Service Alert (USA) was notified prior to beginning the drilling activities and a utility locator service was employed to clear each drilling location. Drilling and well installation was performed under Zone 7 Drilling Permit No. 98020 and Alameda County Public Works Agency Roadway Encroachment Permit No. R00-LD0401. A copy of the permits is included in Appendix B.

Fieldwork was delayed during the implementation of this project because of weather, property and physical access, coordination with the adjacent property owner and concurrent construction activities. A transect of five on-site borings located along the northwest property boundary were drilled between June 8 and June 11, 1998 (B-8 through B-12) to total depths ranging from 71 to 86 feet below ground surface (bgs). These borings were installed to collect additional information regarding the subsurface conditions, geologic information and investigation into the source of the "crude oil" or "heavy" hydrocarbon identified in off-site well MW-5. Two off-site soil borings were drilled on June 12 and August 14, 1998 and completed as groundwater monitoring wells MW-8 and MW-7, respectively. The wells were installed to total depths of approximately 86 and 75 feet bgs, respectively. The purpose of installing these wells was to delineate impacted groundwater down-gradient. Locations of the borings and wells are shown on Figure 2.

All borings were drilled using a truck-mounted drill rig equipped with eight-inch diameter hollow stem augers. Drilling was performed by Woodward Drilling Company of Rio Vista, California (#C57 710079). A GR geologist observed the drilling and well installation activities, described the encountered soil, and prepared a log of each boring. Logs of the soil borings are included in Appendix B. A representative of ACHSCA was not present to witness placement of the well seals, but did intermittently witness drilling activities.

Soil cuttings generated during drilling were placed on and covered with plastic sheeting and stored at the site pending disposal. Sample US-1 (comp) was collected from the stockpiled soil cuttings and submitted to the laboratory to be composited and analyzed as one sample. Stockpile sampling procedures are presented in Appendix A. Water generated during the cleaning of the drilling equipment was placed in properly labeled drums and stored at the site pending disposal.

Well Installation

Each well was constructed using 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and 0.02-inch machine-slotted well screen. The annular space around the well screen in each well boring was packed with Lonestar #3 sand to approximately one foot above the top of the well screen. The sandpack in each well was followed by a bentonite transition seal and then completed with neat cement. The top of each well is protected by a vault box, locking well cap, and lock. Well construction details are included on the boring logs in Appendix B.

Well Monitoring, Development, and Sampling

Monitoring, development, and sampling of the two newly installed and six existing wells was performed by GR personnel. Copies of the well development and field monitoring data sheets are included in Appendix C.

Well MW-8 was developed on June 22, 1998 and sampled during the 2nd Quarter 1998 monitoring and sampling event on June 26, 1998. Well MW-7 (drilled on August 14, 1998), was developed and sampled on August 18, 1998. Depth to groundwater in the wells was measured and each well checked for the presence of floating product prior to development. The wells did not dewater during development, and each yielded a minimum of 10 well casing volumes of purge water. After the wells were properly developed, groundwater samples were collected in appropriate containers supplied by the laboratory. A hydrocarbon sheen was observed in well MW-5 on June 26 and August 18, 1998. Purge water generated during development and sampling procedures was discharged to a truck-mounted tank, then transported to the Tosco Refinery in Rodeo, California for disposal. Monitoring data are summarized in Table 1.

Wellhead Survey

Following installation of the wells, the well casing elevations were surveyed by Virgil Chavez Land Surveying of Vallejo, California (California Land Surveyor No. 6323). Top of casing and vault box elevations were measured relative to MSL, and the horizontal locations of the wells surveyed. Horizontal locations of the soil borings and other pertinent equipment were also surveyed. Well casing elevations are summarized in Table 1. A copy of the surveyor's report is included in Appendix D.

SUBSURFACE CONDITIONS

The unsaturated (vadose) zone is comprised predominantly of fill material overlying a fine-grained unit containing discontinuous strata, overlying a predominantly coarse-grained unit with silt and clay strata. The saturated zone is comprised of interbedded silts, sands, clay and gravels. Groundwater was initially encountered at depths of approximately 61.5 to 77 feet bgs. Two geologic cross sections (A-A' on Figure 3 and B-B' on Figure 4) were constructed from data generated during drilling activities. Cross section locations are shown on Figure 2.

Prior to groundwater sample collection on June 26, 1998, and well development and groundwater sample collection on August 18, 1998, GR personnel measured the depth to groundwater in wells MW-1 through MW-8 at 63.00 to 79.65 and 70.40 to 83.99 feet below top of well casing, respectively. A product sheen was observed in well MW-5 during both monitoring episodes. These data were used to construct two Potentiometric Maps (Figures 5 and 6). Based on these data, the Potentiometric Maps of the shallow groundwater beneath the subject site depicts a groundwater high in the area of wells MW-5 and MW-8, showing converging groundwater flows of northwest and southwest at a calculated hydraulic gradient of 0.07 to 0.17 feet /feet respectively. The third quarter monitoring event was performed on September 22, 1998, and reported to have a general groundwater flow of north-northwest at a calculated hydraulic gradient of 0.10 feet/feet (Figure 7). This map shows a possible perched water table in wells MW-5, MW-7 and MW-8 that may be imbricated in relation to the wells MW-1 through MW-4 (on-site). The difference in the groundwater elevations may also be a \times result of lithological or structural constraints, or possibly some offset or displacement in the soils beneath the site in the area between MW-2B and MW-5 (Figures 3 and 4). The encountered water-bearing zone(s) appears to be unconfined.

CHEMICAL ANALYTICAL RESULTS

A total of forty soil samples from the soil borings, one composite sample from the stockpiled drill cuttings, four grab groundwater samples and eight groundwater monitoring well samples were collected and submitted for chemical analysis. Soil samples were selected using OVM data and geologic interpretation. Columbia Analytical Services Inc. of Santa Clara, California (ELAP # 1426) performed analyses of soil and grab groundwater samples. Analyses of monitoring well groundwater samples were performed by Sequoia Analytical of Redwood City, California (ELAP #1210). Copies of the laboratory reports and chain-of-custody forms are included in Appendix E.

Chemical Analytical Procedures

Selected soil samples from the borings were analyzed for total petroleum hydrocarbons as gasoline (TPHg), diesel (TPHd), and oil (TPHo), benzene, toluene, ethylbenzene and xylenes (BTEX), and methyl tert-butyl ether (MtBE) according to Environmental Protection Agency (EPA) Method 5030/8015/8020. Groundwater samples were analyzed for TPHg, TPHd, BTEX, and MtBE. The soil stockpile sample was analyzed for TPHg, TPHd, TPHo, BTEX, MtBE, and CAM 17 metals. Groundwater chemical analytical data are summarized in Table 1. Soil chemical analytical data are summarized in Table 2 and shown on Figures 3 and 4.

Soil Chemical Analytical Results

Soil Boring B-8

No petroleum hydrocarbons were detected in soil samples collected at 61.5 and 71.5 feet bgs. In addition, field screening procedures conducted with a PID at five-foot depth intervals also confirmed the absence of any hydrocarbons in the soils at this location.

Soil Boring B-9

No petroleum hydrocarbons were detected in a soil sample collected at 61.5 feet bgs. A sample collected at 80.5 feet bgs contained 5 ppm of TPHg, 0.32 ppm of benzene, 280 ppm of a petroleum hydrocarbon that contained components that eluted in the diesel range, but the chromatogram did not match the typical diesel fingerprint, and was reported not detected for TPHo and MtBE. A sample collected at 81 feet bgs contained 4 ppm of TPHg, 0.29 ppm of benzene, and was reported as not detected for TPHd, TPHo, and MtBE.

Soil Boring B-10

Four soil samples collected from boring B-10 between 12 and 38 feet bgs contained petroleum hydrocarbons in concentrations ranging from 1 to 760 ppm of TPHg, 0.013 to 7.3 ppm of benzene, 1.8 to 1900 ppm of TPHd, not detected to 0.23 ppm of MtBE and not detected at elevated detection limits for TPHo. The highest petroleum hydrocarbon concentrations were identified at 24.5 and 31 feet bgs. Three soil samples collected between 49 and 75.5 feet bgs did not contain any petroleum hydrocarbons except for 0.012 ppm of benzene for the sample collected at 57 feet bgs.

Soil Boring B-11

Nine soil samples collected from boring B-11 between 5.5 and 61 feet bgs contained petroleum hydrocarbons in concentrations ranging from not detected to 580 ppm of TPHg, 0.008 to 12 ppm of benzene, 23 to 7,300 ppm of TPHd, and not detected to 2.5 ppm of MTBE. TPHo concentrations were detected in soil samples collected at 5.5 and 10.5 feet bgs at 590 and 5,200 ppm, respectively. Two soil samples collected at 66.5 and 73.5 feet bgs were reported as not detected for petroleum hydrocarbons except for 0.12 ppm of MTBE and 140 ppm of a petroleum hydrocarbon that contained components that eluted in the diesel range, but the chromatogram did not match the typical diesel fingerprint.

Visual evidence of "heavy" hydrocarbons were noted in boring B-11 from 15 to 62 feedbgs in varying quantities. Two samples, collected at 10.5 and 61 feet bgs were submitted to Global GeoChemistry Corporation for identification "finger print". The results are discussed in the following section; "Global GeoChemistry Corporation Report Results".

Soil Boring B-12

Five soil samples collected from boring B-12 between 10 and 47 feet bgs contained petroleum hydrocarbons in concentrations ranging from not detected to 1,700 ppm of TPHg, not detected to 21 ppm of benzene, not detected to 14,000 ppm of TPHd, and not detected to 2.6 ppm of MTBE. TPHo was not detected in any of the samples. The highest petroleum concentration was identified at 28.5 to 47 feet bgs. Two soil samples collected at 55 and 72 feet bgs were reported as not detected for all petroleum hydrocarbons.

Well Boring MW-7

No petroleum hydrocarbons were detected in five soil samples collected between 11 and 60.5 feet bgs. In addition, field screening procedures conducted on retrieved soil samples also indicated an absence of petroleum hydrocarbons in well boring MW-7.

Well Boring MW-8

Five soil samples collected from well boring MW-8 between 11 and 67 feet bgs were reported as not detected for TPHg, benzene, TPHd, TPHo, and MTBE, except for 60 ppm of TPHg and 79 ppm of TPHd detected in the sample collected at 45.5 feet bgs.

Groundwater Chemical Analytical Results

Grab Groundwater Samples

Grab groundwater sample B-8 was reported as not detected for TPHg, benzene, and MTBE. A representative groundwater sample was not collected from boring B-9, due to a ruptured water line in the area of the borehole that flooded the borehole. A groundwater sample collected from boring B-10 contained 980 ppb of TPHg, 39 ppb of benzene, 930 ppb of TPHd, 250 ppb of MtBE, and not detected for TPHo. A groundwater sample collected from boring B-11 contained 110 ppb of benzene, 600 ppb of TPHd, 6,200 ppb of MtBE and was reported as not detected for TPHg and TPHo. Groundwater samples collected from boring B-12 contained 5 ppb of benzene, 64 ppb of TPHd, 220 ppb of MtBE, and were reported as not detected for TPHg and TPHo. These data were used to construct the attached groundwater concentration map (Figure 8).

Monitoring Well Groundwater Samples

Groundwater samples MW-1 through MW-6 and MW-8 were collected on June 26, 1998 and sample MW-7 was collected on August 18, 1998, following installation. A groundwater sample was collected from well MW-5 after petroleum hydrocarbon sheen was detected. Petroleum hydrocarbons were detected in all groundwater samples at concentrations ranging from not detected to 4,000 ppb (MW-7) of TPHg, not detected to 1,900 ppb (MW-7) of benzene, not detected to 230,000 ppb (MW-5) of TPHd, and not detected to 4,000 ppb (MW-2B) of MTBE. TPHg and TPHd concentrations detected also contained discrete peaks and unidentified hydrocarbons outside of normal TPHg and TPHd parameters. See Table 1 for specific notes and explanations.

Stockpile Chemical Analytical Results

Soil stockpile sample US-1(comp) was reported as not detected for TPHo and MTBE and contained 100 ppm of TPHg, 0.27 ppm of benzene, 1,100 ppm of TPHd, and allowable concentrations of metals.

Free Product Geochemical Report Results

Tosco had previously initiated an investigation into the chemical make-up of the free product that has historically been observed in MW-5. Free product samples were collected and submitted to Entrix, Inc. of Walnut Creek California for forensic geochemical analysis to finger print and identify the free product found in MW-5. Entrix Inc. submitted a report dated

December 12, 1997, and found the free product in MW-5 to be a mixture of refined gasoline and a heavier hydrocarbon. The gasoline fraction, comprising at least 50% of the hydrocarbons, was reported to be somewhat fresh in composition. The remaining 50% was reported to be a heavy hydrocarbon that did not appear to contain any refined petroleum products such as diesel #2, motor oil, lube oil, etc. Rather, the heavy hydrocarbon fraction appeared to be a very weathered crude oil and comparable to Bunker C fuel. These results were derived from both chromatographic (high resolution gas chromatography or HRGC) and simulated distillation data types. A copy of the Entrix Inc. report dated December 12, 1997 is presented in Appendix F. These results initiated an inquiry into the type of products transported in the adjacent pipeline operated by Santa Fe Pacific. GR's findings indicated that according to the current pipeline operator, they lease out this pipeline for transportation of refined petroleum products only. Historically, the pipeline may have transported unrefined petroleum products and Bunker C fuel, however, the current operator has no data to document the transportation of unrefined petroleum products. In general, the Santa Fe Pacific Pipeline . but not and rail systems have in the past transported unrefined petroleum products as well as refined petroleum products.

During this investigation, soil samples collected from soil borings in the vicinity of the former. UST excavation exhibited evidence of a thick black hydrocarbon-type substance in the soil cracks and pore spaces. Two soil samples collected from boring B-11 at 10.5 and 61 feet bgs (B-11-10.5 and B-11-61) were submitted under a Chain-of-Custody to Global Geochemistry Corporation (Global) of Canoga Park, California for hydrocarbon fingerprinting chemical analysis. These samples were analyzed by the same methods as the free product sample from MW-5. The results of these analyses indicate that the hydrocarbon in the soil samples are a mixture of about 90% semi-volatile and high boiling components identified as crude oil and 10% gasoline. The gasoline fraction is not highly weathered and the crude oil fraction varies from highly weathered in sample B-11-61 to very severely weathered in sample B-11-10.5. The Global report dated August 7, 1998 is also included in Appendix F.

Both independent laboratories arrived at the same conclusion on the chemical components of the free product (heavy hydrocarbon) found at the site. The gasoline fractions are rather fresh and the heavy hydrocarbons are unrefined highly weathered crude type petroleum products. The source of the gasoline or refined fraction is likely from a retail fuel dispensing operation. The source of the heavy or crude type hydrocarbon product is still unknown and may never be identified. The soil analytical data from the site borings suggest a possible source of the heavy or crude oil found in boring B-11 at 11 feet bgs. The heavy hydrocarbon material may have been imported in the fill material found at the site, or possibly from activities prior to the sarvice station constitutes however, no conclusive documentation has been found it is unlikely though, that bulk crude type oil was ever stored, sold or used at this location.

WASTE DISPOSAL

Approximately 305 gallons of waste water generated by cleaning the drilling equipment and well development procedures were removed from the site by GR, and transported to the Tosco Refinery in Rodeo, California, for treatment. Approximately 29.91 tons of soil (drill cuttings) were removed from the site by Denbeste Transportation, Inc. of Windsor, California and transported to the Forward Incorporated facility in Manteca, California for disposal. A copy of the Forward disposal confirmation form included in Appendix G.

DISCUSSION

The purpose of this investigation was to collect additional site data to better understand the geology and potential migratory pathways that exist at the site through the installation of soil borings. In addition, monitoring wells MW-7 and MW-8 were installed down-gradient of the site to delineate the dissolved hydrocarbons and possibly the free product identified in MW-5.

The five on-site soil borings completed a fence of boreholes that transect the northwestern property boundary. Data from these borings, along with data generated by previous environmental studies performed at the site, identifies specific zones containing residual hydrocarbons. Geologic and hydraulic data generated during this investigation suggest the hydrogeologic conditions responsible for the elevated or perched water table identified in well. MW-5 as possibly a result of the discontinuous nature of the alluvial fan deposit or some small off-set or displacement of the soils that underlies the site (see cross-sections on Figures 3 and 4). Physical evidence of a possible fault or displacement feature has not been identified and is suggested based on the cross-section interpretation.

Soil samples from B-11 that contained visible hydrocarbons were analyzed by Global for a hydrocarbon fingerprint. The results were similar to the fingerprint analysis performed on a free product sample from MW-5 by Entrix Inc in December 1997. Both laboratories identified a fresh gasoline fraction as well as a highly weathered unrefined hydrocarbon such as crude oil or Bunker C fuel. This suggests that there was a separate source for the heavy unrefined hydrocarbon fraction. Unrefined hydrocarbons are not a result of the operations of a fuel dispensing operation. Historical records (Sandborn Maps, Enviros 1995) show a UST in the area of boring B-10 that was used from 1907 until approximately 1969 and contained oil for an oil-fired boiler. This former oil UST is believed to be the source of the heavy hydrocarbon identified in MW-5 and in borings B-10 and B-11. The source of the gasoline product is from the UST and piping facilities at the site. The fingerprint analysis for both the shallow and deep soils as well as the free product in MW-5 indicates that it is a mixture of

refined fresh gasoline and unrefined highly weathered heavy crude oil. It is likely that gasoline moved vertically in the same path of the unrefined hydrocarbon through the soil until it was trapped in the vicinity of MW-5. The two additional down-gradient wells installed delineated the heavy hydrocarbon but did not delineate the dissolved hydrocarbons as anticipated. TPHg and MtBE have been identified in newly installed wells MW-7 and MW-8. Further off-site (down-gradient) may not be feasible because of the new construction currently in progress. A well survey was previously prepared and did not identify any potential domestic, industrial, commercial or municipal wells within a 1/2-mile radius of the site. The closest municipal well located in the down gradient direction has already been impacted by MtBE (conversations with ACHCS, 1998).

DISTRIBUTION

GR recommends that a copy of this report be forwarded to Mr. Chuck Headlee of the California Regional Water Quality Control Board, San Francisco Bay Region at 1515 Clay Street Suite 1400, Oakland, California 94612 and Mr. Scott Seery of the Alameda County Health Care Services Agency at 1131 Harbor Bay Parkway, 2nd Floor, Alameda, California 94502.

REFERENCES

Alameda County Flood Control and Water Conservation District, 1993, Fall 1993 Groundwater Contour Map Report, dated December 17, 1993.

Amador-Livermore Valley Historical Society, 1994, Conversation with employee and mailed photocopy of site with history of on-site warehouse.

Applied GeoSystems, 1987, Subsurface Environmental Investigation No. 87065-1, dated July 14, 1987.

Applied GeoSystems, 1987a, Supplemental Subsurface Environmental Investigation No. 87086-1, dated September 9, 1987.

Applied GeoSystems, 1987b, Supplemental Subsurface Environmental Investigation No. 87086-3, dated late 1987 or early 1988.

Virgil Chavez Land Surveying, 1998, Survey Report dated August 31, 1998.

Diblee, T. W. Jr., 1980, Preliminary Geological Map of the Livermore Quadrangle, Alameda and Contra Costa Counties, California: United States Geologic Survey Open File Report 80-533B.

Entrix, Inc., 1997, Forensic Geochemical Analysis of Free Product from MW-5, UNOCAL SS# 7376, Pleasanton, California: Project 351301 dated December 12, 1997.

Enviros, 1995, Phase I Environmental Site Assessment dated February 24, 1995.

Helley, E.J. and Lajoie, K.R. et.al., 1979, Flatland Deposits of the San Francisco Bay Region, California, Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning: United States Geologic Survey Professional Paper 943.

Kaprealian Engineering Incorporated, 1994, Soil Sampling Investigation at Unocal Service Station No. 7376, 4191 First Street, Pleasanton, California: Report No. KEI-J94-0903.R1 dated October 21, 1994.

Kaprealian Engineering Incorporated, 1995, Continuing Groundwater Investigation at Unocal Service Station No. 7376, 4191 First Street, Pleasanton, California: Report No. KEI-P94-0903.R3 dated April 27, 1995.

Kaprealian Engineering Incorporated, 1996, Continuing Groundwater Investigation at Unocal Service Station No. 7376, 4191 First Street, Pleasanton, California: Report No. KEI-P94-0903.R5 dated November 4, 1996.

Pleasanton Fire Department, 1988, Correspondence dated January 29, 1988.

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555 Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

DATE

REVISED DATE

JOB NUMBER 140107

REVIEWED BY

February, 1999

EXPLANATION

- Groundwater monitoring well
- Soil boring
- ★ Destroyed monitoring well

↑ Geological Cross Section

FIRST STREET

Gettier - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555

SITE PLAN

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

DATE

September, 1998

REVISED DATE 02/99

JOB NUMBER 140107.02 REVIEWED BY

2

FIGURE

Gettler - Ryan Inc.

6747 Sierro Ct., Suite J Dublin, CA 94568 (925) 551-7555

POTENTIOMETRIC MAP

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

DATE

June 26, 1998

FIGURE

5

JOB NUMBER 140107.02 REVIEWED BY

REVISED DATE

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

DATE

REVISED DATE

REVIEWED BY

August 18, 1998

JOB NUMBER 140107.02

Gettier - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

DATE

September 22, 1998

REVISED DATE

JOB NUMBER 140107.02 REVIEWED BY

02/99

Ryan Inc. Gettler -

REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Tosco 76 Branded Facility No. 7376 4191 First Street Pleasanton, California

REVISED DATE

JOB NUMBER 140107.02

June 9, 10, and 11, 1998

TABLE 1 - GROUNDWATER MONITORING AND CHEMICAL ANALYTICAL DATA

Tosco (Unocal) Service Station No. 7376

4191 First Street Pleasanton, California

		Total Well	Well	Depth to	Floating	Groundwater				Ethyl-		100	
Sample	Sample	Depth	Elevation ¹	Water ²	Product	Elevation	TPHg	Benzene	Toluene	benzene	Xylenes	MIBE	TPHd
No.	Date	(ft.)	(ft. MSL)	(ft.)	(ft.)	(ft. MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Soil Borings	s												
B-8	6/10/98				0.0		ND	ND	1.6	ND	ND	ND	
B-10	6/11/98				0.0		980	39	13	23	100	250	93012
B-11	6/9/98		***	See day may	0.0		ND ⁵	110	220	ND ⁵	240	, 6,20 0	600 ¹²
B-12	6/10/98				0.0		ND ⁵	5	ND ⁵	ND ⁵	5	220	64 ¹²
Groundwate	er Monitor	ing Wells											
MW-1	6/26/98	86.43	366.98	79.93	0.0	287.05	59 ³	0.90	ND	ND	ND	570	ND
MW-2B	6/26/98	85.26	365.05	83.99	0.0	281.06	ND	ND	ND	ND	ND	4,000	790 ⁷
MW-3	6/26/98	94.11	367.03	83.29	0.0	283.74	400 ⁴	15	ND ⁵	ND ⁵	1.9	490	63 ³
MW-4	6/26/98	93.07	368.81	78.75	0.0	290.06	100 ³	62	ND	ND	ND	ND	630 ⁸
MW-5	6/26/98	72.51	363.21	70.40	sheen	292.81	490 ⁶	6.3	2.8	4.2	5.1	10	230,000 ⁹
MW-6	6/26/98	88.00	363.13	74.86	. 0.0	288.27	530	300	8.3	2.8	8.7	81	1807
MW-7	8/18/98	77 ²	355.97	68.75	0.0	287.22	4,000	1,900	48	160	ND ⁵	-1,700	1,40011
MW-8	6/26/98	86.40	362.37	73.38	0.0	288.99	ND	6.0	ND	ND	ND	150	80 ¹⁰
Trip Blank							ND	ND	ND	ND	ND	ND	ND

EXPLANATION:

ND = not detected

ft. = feet

ft. MSL = feet relative to Mean Sea Level.

ppb = parts per billion

--- = not applicable

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1210)

Columbia Analytical Services (ELAP #1426)

ANALYTICAL DATA:

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified

TPHd = Total Petroleum Hydrocarbons as diesel according to EPA Method 8015 Modified

MtBE = Methyl tertiary butyl ether according to EPA Method 8020,

- ² = Measurement taken on August 18, 1998.
- ³ = Laboratory report indicated discrete peaks
- ⁴ =Laboratory report indicated discrete peaks and unidentified hydrocarbons < C7.
- ⁵ = Elevated detection limit. See analytical report for detection limits.
- ⁶ = Laboratory report indicated gasoline and unidentified hydrocarbons > C8.
- ⁷ = Laboratory report indicated diesel and unidentified hydrocarbons > C20
- ⁸ = Laboratory report indicated diesel and unidentified hydrocarbons < C15.
- ⁹ = Laboratory report indicated diesel and unidentified hydrocarbons < C15 and > C20.
- ¹⁰ = Laboratory report indicated unidentified hydrocarbons > C16.
- ¹¹ = Laboratory report indicated unidentified hydrocarbon C9 C24.
- ¹² = Sample was also reported as not detected for total petroleum hydrocarbons as oil according to EPA Method 8015 Modified.

¹ = Well elevations reported as top of casing (TOC) surveyed by Virgil Chavez Land Surveying, Licensed California Land Surveyor No. 6323.

TABLE 2 - SOIL CHEMICAL ANALYTICAL DATA

Unocal Service Station No. 7376 4191 1st Street

Pleasanton, California

Sample Location	Sample Depth	Date Collected	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes	TPHd	TPH ₀	MtBE
and ID	(feet)		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Boring B-8										
B-8-61.5	61.5	6/8/98	ND	ND	ND	ND	ND	ND	ND	ND
B-8-71.5	71.5	6/8/98	ND	ND	ND	ND	ND	ND	ND	ND
Boring B-9										
B-9-61.5	61.5	6/8/98	ND	ND	ND	NĐ	ND	ND	ND	ND
B-9-80.5	80.5	6/8/98	5	0.32	0.025	0.032	0.43	280^{1}	ND	ND^3
B-9-81	81	6/8/98	4	0.29	0.59	0.039	0.31	ND	ND	ND
Boring B-10										
B-10-12	12	6/11/98	1	0.013	0.013	0.021	0.13	1.8^{1}	ND^3	0.23
B-10-24.5	24.5	6/11/98	760	5.1	0.9	22	25	1900	ND^3	ND
B-10-31	31	6/11/98	720	7.3	31	11	68	970	ND^3	ND^3
B-10-38	38	6/11/98	4	0.033	0.006	0.010	0.032	90	ND^3	0.08
B-10-49	. 49	6/11/98	ND	ND	ND	ND	ND	ND	ND	ND
B-10-57	57	6/11/98	ND	0.012	0.012	0.006	0.048	ND	ND	ND
B-10-75.5	75.5	6/11/98	ND	ND	ND	ND	ND	ND	ND	ND
Boring B-11										
B-11-5.5	5.5	6/9/98	54	0.28	0.2	0.3	3.6	23	590 ²	0.72
B-11-10.5	10.5	6/9/98	560	16	8.0	5.2	25	66	5200^{2}	ND^3
B-11-18	18	6/9/98	16	0.17	0.031	0.21	0.52	3500	ND^3	ND
B-11-23	23	6/9/98	580	12	1.3	6.0	17	6500	ND^3	ND^3
B-11-31	31	6/9/98	290	4.1	0.89	4.7	11	2200	ND^3	2
B-11-41	41	6/9/98	ND	0.02	ND	ND	ND	84	ND	0.25
B-11-45.5	45.5	6/9/98	2	0.036	0.15	0.022	0.15	7300	ND^3	ND
B-11-53	53	6/9/98	14	0.008	0.008	0.02	0.025	700	ND	ND
B-11-61	61	6/9/98	370	2.8	16	5.2	24	4000	ND^3	2.5
B-11-66.5	66.5	6/9/98	ND	ND	ND	ND	ND	140 ¹	ND	0.12
B-11-73.5	73.5	6/9/98	ND	ND	ND	ND	ND	ND	ND	ND

Sample	Sample	Date	TPHg	Benzene	Toluene	Ethyl-	Xylenes	TPHd	ТРНо	MtBE
Location	Depth	Collected	_			benzene				by 8020
and ID	(feet)		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Boring B-12										
B-12-10	10	6/10/98	5	0.16	0.073	0.02	0.22	ND	ND	1.1
B-12-16.5	16.5	6/10/98	ND	ND	ND	ND	ND	ND	ND	0.64
B-12-28.5	28.5	6/10/98	430	5.1	3.2	6,6	15	14000	ND^3	2.6
B-12-37.5	37.5	6/10/98	1700	21	3.8	8.7	7.6	4700	ND^3	ND^3
B-12-47	47	6/10/98	98	1.5	1.2	2.0	4.4	2600	ND^3	1.5
B-12-55	55	6/10/98	ND	ND	ND	ND	0.01	ND	ND	ND
B-12-72	72	6/10/98	ND	ND	ND	ND	ND	ND	ND	ND
Well Boring MW	-7									
MW-7-11	11	8/14/98	ND	ND	ND	ND	ND	ND	ND	ND
MW-7-28	28	8/14/98	ND	ND	ND	ND	ND	ND	ND	ND
MW-7-30.5	30.5	8/14/98	ND	ND	ND	ND	ND	ND	ND	ND
MW-7-42	42	8/14/98	ND	ND	ND	ND	ND	ND	ND	ND
MW-7-60.5	60.5	8/14/98	ND	ND	ND	ND	ND	ND	ND	ND
Well Boring MW	-8									
MW-8-11	11	6/12/98	ND	ND	0.007	ND	0.010	ND	ND	ND
MW-8-37	37	6/12/98	ND	ND	0.006	ND	ND	ND	ND	ND
MW-8-45.5	45.5	6/12/98	60	ND^3	0.058	0.27	0.58	79	ND	ND^3
MW-8-51.5	51.5	6/12/98	ND	ND	ND	ND	ND	ND	ND	ND
MW-8-67	67	6/12/98	ND	ND	ND	ND	ND	ND	ND	ND
Stockpile										
US-1(comp) ²		6/15/98	100	0.27	0.16	0.82	1.9	1100	ND^3	ND^3

ANALYTICAL METHODS:

ANALYTICAL LABORATORY:

Columbia Analytical Services(ELAP #1426)

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified.

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes according to EPA Method 8020.

MtBE = Methyl t-Butyl Ether according to EPA Method 8020.

EXPLANATION:

feet = feet below ground surface

ppm = parts per million

2

ND = Not Detected

1 = Sample contains components that eluted in the diesel range, but the chromatogram does not match the typical diesel fingerprint.

2 This sample was analyzed for CAM 17 metals. Concentrations were below allowable levels for disposal.

3 = Elevated detection limit. See analytical report for detection limits.

APPENDIX A

GR Field Methods and Procedures and Site Safety Plan

GETTLER-RYAN INC. FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a split-barrel sampler or other appropriate sampling device fitted with clean brass or stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Stockpile Sampling

Stockpile samples consist of four individual sample liners collected from each 100 cubic yards (yd³) of stockpiled soil material. Four arbitrary points on the stockpiled material are chosen, and discrete soil sample is collected at each of these points. Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless steel or brass tube into the stockpiled material with a wooden mallet or hand driven soil sampling device. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped,

labeled, placed in the cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory borings with Schedule 40 polyvinyl Chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which generally extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space adjacent to the entire screened interval. A bentonite transition seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting or stored in drums depending on site conditions and regulatory requirements. Stockpile samples are collected and analyzed on the basis of one composite sample per 50 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL).

Well Development

The purpose of well development is to improve hydraulic communication between the well and surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to sampling each well, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

Sample Collection and Labeling

A temporary PVC screen is installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each well or boring using the teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

SITE SAFETY PLAN, JOB #140107.02

GENERAL INFORMATION

SITE:

Client/Company:

Tosco Marketing Company Service Station No. 7376

Site Location:

4191 First Street, Pleasanton, CA

PLAN PREPARED BY:

Gettler-Ryan, May 19, 1998

OBJECTIVES:

To provide a safety plan for the safe completion of the

site work.

EFFECTIVE DATES:

June, 1998

SUMMARY:

Hazardous material may be present, caution is advised. Site work includes advancing seven soil borings to a minimum of 75 feet bgs, collecting soil samples, and installing two monitoring wells as stated in the Kaprealian Engineering Incorporated Work Plan/Proposal dated May 6, 1997 and the GR Work Plan Addendum dated May

1998.

SITE/WASTE CHARACTERISTICS

WASTE TYPE(S):

Solids (drill cuttings)

Liquids (steam cleaning rinsate)

CHARACTERISTIC(S):

Volatile, combustible, toxic (not expected)

FACILITY:

Active Unocal Service Station and former railroad right-

of-way.

HAZARD EVALUATION

PARAMETER: TLV 300 ppm organic vapors, as measured in the

breathing zone with a photoionization detector.

HEALTH CONCERNS: Ingestion, inhalation, adsorption (not expeted)

PRECAUTIONS: Correct safety procedures shall be followed, per GR

Health and Safety Plan.

SITE SAFETY WORK PLAN:

PERIMETER PROTECTION: Fencing, cones and flagging as needed.

PERSONAL PROTECTION: EPA Level D

Modifications: latex gloves, hard hats, and safety vests.

All personnel will wear safety vests.

Surveillance equipment: PID (if needed).

DECONTAMINATION: Personal: wash thoroughly with detergent solution and

water.

Equipment: wash thoroughly with detergent solution and

water, or steam clean.

FIRST AID: As applicable. At least one member of the crew will have

current first aid/CPR certification.

WORK LIMITATIONS: None

INVESTIGATION-DERIVED MATERIAL DISPOSAL:

All soil cuttings will be stored in approved storage containers (drums) or wrapped in visqueen until disposal. Steam cleaning rinsate will be stored in approved storage containers (drums) until disposal. All waste material will be transported in acordance with the appropriate regulations and statutes regarding these materials.

TEAM COMPOSITION:

Foreman/Safety Officer:

Subcontractors:

Clyde J. Galantine

Woodward Drilling

EMERGENCY:

Ambulance:

911

Fire Department:

911

Sheriff/Highway Patrol:

911

TELEPHONES:

Pay telephones are available at the station

SITE RESOURCES:

Fire extinguisher

First aid kit

EMERGENCY CONTACT:

Dave Vossler, GR

415-893-1515

Mr. Dave Byron

510-551-7555

EMERGENCY ROUTES:

Nearest emergency hospital and/or medical attention:

Valley Care Medical Center

5555 West Las Positas Boulevard

Pleasanton, California (510) 847-3000

DIRECTIONS:

Go right (west) on Ray Street to Santa Rita Road and turn right. Go north 2 miles on Santa Rita Road and turn left (west) on Las Positas Boulevard. Go 0.25 miles and turn right into Hospital parking lot.

I have read a	and understand the Site Safety Plan for	or GR Job #140107.02.7
Date:	Name (print):	Signature:
6-8-98	Scott Scener	2 / cm To
6-8-98	Van Leonard Ryan Kubli	Clark Fred
6-8-95	Keyan Kubh	4-13
6/8/98	Might Sahi	De Objete Entanture B-R
8/14/98	A A A	
/ /	Olphi San	- Clyde Galentine
8/14/98	Jobert Madrifa	Robert Modrigal AMADOR ARROYOZI
8/14/98	POD	- Amnoro among
8-14-98	Van Leart	Van Lonard

APPENDIX B

Permits, Boring Logs, and Well Construction Details

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE ORIVE

PLEASANTON, CALIFORNIA 94588-5127

PHONE (510) 484-2600 FAX (510) 462-3914

February 23, 1998

Mr. Clyde Galantine Gettler-Ryan, Inc. 6747 Sierra Court, Ste. J Dublin, CA 94568

Dear Mr. Galantine:

Enclosed is drilling permit 98020 for a monitoring well construction project at 4191 First Street in Pleasanton for Tosco Marketing Company.

Please note that permit condition A-2 requires that a well construction report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, and permit number. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact Wyman Hong at extension 235 or me at extension 240.

Very truly yours,

Craig A. Mayfield

Water Resources Engineer III

CAM:WH:arr

Enc.

399 Elmhurst St., (510) 6	Permit Number: 200 - 20040/ Permit Issuance Date: 1/26/98 Permit Expiration Date: 0,000 Permit Expiration Date: 0,000 Permit Expiration Date: 0,000 Permit Expiration Date: 0,000 Permit Number: 200 - 20040/ Permit Number: 200 - 20040/ Permit Number: 200 - 20040/ Permit Issuance Date: 1/26/98 Permit Expiration Date: 0,000 Permit Expirat
	Job Site Address: Transportation Corn. (4191) 1 st St., PLS)
Name & Address of Contractor: Phone Number: The Permittee intends to perform the following	This Permit authorizes an encroachment into the roadway right-of-way at the above address; this encroachment shall be subject to the terms and conditions of the said Chapter 12.08 and to all other provisions attached and written hereto.
Unless otherwise specified below, all work or	
conditions of the attached General Provisions: See attached. Bond Information: \$ 9000 Swrety	Insp. Fee: \$125
I certify that the information that I have entered into the	Inspector:

THICK COMMITTEE OF A COMMINISTRATION OF THE PROPERTY OF THE PR

Installation of the subject wells shall be in accordance with the requirements of the Alameda County Flood Control & Water Conservation District (Zone 7).

Removal or abandonment of the subject wells shall require a separate permit from the Public Works Agency.

ALAMEDA COUNTY PUBLIC WORKS AGENCY RECEIPT NO. LD-0401 399 Elmhurst Street, Hayward, CA 94544 Date: __ Amount \$ __/50 J-Revara Dic. Received From: 6747 Scalles CZ. STar Check No. 039559 Address: Dublan, CA 94568 Bank No. 70-2267 Manutaring Wille - Thomas Continephone 551-7555 MEMO: · # 25 20-509/23/1 6081 DIRECTOR OF PUBLIC WORKS Note: \$10 fee for returned checks CANARY - Engineer WHITE - Auditor GOLDENROD - Payee

เพียงที่ และเป็นเป็นเป็น เป็นสี เห็นสีเลยเลยเลยเลย เลยเลยให้แล้ว และเมื่อเป็นสี เลื่อวันได้ เป็นสีสิทธิ์ ได้แล้

LAND DEVELOPMENT (510) 670-5429

	MAJOR DIVIS	SIONS		TYPICAL NAMES
šve		CLEAN GRAVELS WITH LITTLE	GW	WELL GRADED GRAVELS WITH OR WITHOUT SAND, UTTLE OR NO FINES
3 0, 200 SIEVE	GRAVELS	OR NO FINES	GP	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO.	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GPAVELS WITH	GM	SILTY GRAVELS, SILTY GRAVELS WITH SAND
-GRAINE		OVER 15% FINES	GC	CLAYEY GRAVELS. CLAYEY GRAVELS WITH SAND
OARSE HALF IS (CLEAN SANDS WITH LITTLE	sw	WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
JE THAN	SANDS MORE THAN HALF COARSE FRACTION	CA NO FINES	SP	POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FIXES
MOR	S SWALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM	SILTY SANDS WITH OR WITHOUT GRAVEL
		CVER 15% FINES	sç	CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE		•	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
N NO. 200	SILTS AN	ID CLAYS 50% OR LESS	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
INED SC			OL	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE			МН	INCRGANIC SILTS, MICACEOUS OR CIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FI	SILTS AN UQUID UMIT GR	ND CLAYS · EATER THAN 50%	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MOR			ОН	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY OR	GANIC SOILS	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

LL - Liquid Limit (%)

PI - Plastic Index (%)

PID - Volatile Vapors in ppm

MA - Particle Size Analysis

2.5 YR 6/2 - Soil Color according to Munsell Soil Color Charts (1975 Edition)

5 GY 5/2 - GSA Rock Color Chart

- No Soil Sample Recovered
- "Undisturbed" Sample
- Bulk or Classification Sample
- First Encountered Ground Water Level
- Plezometric Ground Water Level

Penetration - Sample drive hammer weight - 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

Unified Soil Classification - ASTM D 2488-85 . and Key to Test Data

Gettler-Ryan Inc.								Log of Boring MW-7		
PROJECT: Tosco (Unocal) Service Station No. 7376								LOCATION: 419 First Street, Pleasanton, CA		
PRO	JECT N	0.:	140107.02	?				CASING ELEVATION: 355.97 feet	MSL	
DATI	E STAI	RTED	: 08/14/	98			·	WL (ft. bgs): 61.8 DATE: 08/14/98	TIME: 2:00 pm	
DATI	E FINI	SHEE	3: 08/14/	98				WL (ft. bgs): 64.30 DATE: 08/14/98	TIME: 2:00 pm	
DRIL	LING I	METH	00: 8" h	ollo	v-ste	m augu	er	TOTAL DEPTH: 75 Feet		
DRIL	LING (COMP	ANY: Woo	odw.	ard Dr	illing		GEOLOGIST: Clyde Galantine		
OEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	COLOGIC DESCRIPTION	WELL DIAGRAM	
5-	2	11	MW-7-8			ML	SILT (ML) – dari slight plasticity, trace gravel.	k brown (10YR 3/3), damp, stiff, 80% silt, 15% clay, 5% fine sand,		
10	1	42	MW-7-11	4		ML	very dense, 65% 20% silt, 15% fine	(GM) - brown (7.5YR 4/4), damp, subangular to rounded fine gravel, to coarse sand.	Schedule 40 PVC	
15 - - 20-	0	68	MW-7-16.5				SILT WITH SAND 4/4), damp, hard 10% clay.	O (ML) – dark yellowish brown (10YR d, 70% silt, 20% fine to coarse sand,	2" blank Schedd	
25-		51	MW-7-21.5				60% silt, 35% cla	lowish brown (10YR 5/4), damp, hard, ay, 5% fine to medium sand.		
] .					ЩЦ	01:1	gray (5G 5/1) m	ottling.	4	
	0	26	MW-7-28.	5		SW	dense, 95% fine	ive gray (5Y 4/2), moist, medium to medium sand, 5% clay.	1 1 1 1	
	3.2	34	MW-7-28				SILTY GRAVEL very dense, 75%	(GM) - olive gray (5Y 4/2), moist, 4 subangular to rounded gravel, 20%		
JOE	3 NUM	BER:	140107.0	02					Page I of 3	

		Ge	ettler-f	Ryan 1	inc.		Log of Boring MW-7		
PROJE	CT:	Tos		ai) Servic	e Stat	ion No. 7376	LOCATION: 419 First Street, Pleas	santon, CA	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM	
	2	73	MW-7-29		GM GW	Silt strata from 2	7.25 to 27.75 feet.		
-	-	44	MW-7-30.5	7	.	GRAVEL WITH SA saturated, very fine gravel, 25%	ND (GW) – olive gray (10YR 4/2), Jense, 70% subangular to rounded fine to coarse sand, 5% silt.		
33-	1.4	77	MW-7-32.5			Becomes 55% fin sand.	e gravel, 45% medium to coarse		
-		78	MW-7-34.5		CL				
38-	0	18	MW-7-36.5			CLAY (CL) – dar saturated, very 35% silt, 5% fine	k yellowish brown (10YR 4/8), stiff, medium plasticity, 60% clay, sand.		
43-	0	66	MW-7-42			Sand strata from Becomes dry, ha	n 40.25 to 40.5 feet. rd at 41 feet.	— 2" blank Schedule 40 PVC -	
-	0	48	MW-7-46.5						
53-	0	32	MW-7-51.5		ML	stiff, no plasticit SILTY SAND (S	lowish brown (10YR 5/4), moist, very sy, 80% silt, 15% clay, 5% fine sand. M) - dark yellowish brown (10YR amp, dense, 70% subangular to nd, 25% silt, 5% clay.	-slotted PVC slotted PVC	
58-	J							######################################	
JOB N	NUME	JER:	140107.0	02 .	GC	 		Page 2 of	

		Ge	ettler-f	Ryan	Inc.		Log of Boring MW-7		
PRO.	JECT:	Tos		al) Servic	ce Stat	tion No. 7376	LOCATION: 419 First Street, Pla	easanton, CA	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM	
-	0	70	MW-7-80.5		GW GC	vellowish brown	AY AND SAND (GW-GC) - dark (10YR 4/6), moist, very dense, 70% unded fine gravel, 25% medium to clay.		
	0		MW-7-62.5			Color change to becomes saturat	olive gray (5Y 5/2) at 62 feet, ed.		
65-	4.4		MW-7-64.5			·	64.25 to 64.5 feet.	PVC	
	-	57	MW-7-66.5			Abundant water	at 66 feet.	2" machine—slotted PVC (0.02 inch)	
70	10	57	MW-7-68.5					2" machi (C	
70-	0	58	MW-7-70.5		SW. SC	4/6), saturated,	r (SW-SC) - strong brown (7.5YR very dense, 85% subangular to very coarse sand, 10% clay, 5% fine	Cap 2" machine-slotted PVC (0.02 inch) (0.02 inch) (0.02 inch)	
75-	0	60	MW-7-73.5		CL	CLAY (CL) - dar hard, medium plas sand.	k yellowish brown (10YR 4/6), moist, sticity, 85% clay, 10% silt, 5% fine	Cap	
				-		(* Converted to	standard penetration blows/foot.)		
80-				_					
85— - -		i i							
90-					į.			-	
JOE	NUM	BER!	140107.0	1 D2			· · · · · · · · · · · · · · · · · · ·	Page 3 of 3	

		Ge	ettler-f	₹y.	an I	nc.		Log of Boring MW-8		
PRO	PROJECT: Tosco (Unocal) Service Station No. 7376							LOCATION: 419 First Street, Pleasanton, CA		
PRO	JECT N	Ю. :	140107.02	?				CASING ELEVATION: 362.37 feet MSL		
DAT	E STA	RTED	: 06/12/	98				WL (ft. bgs): 40 DATE: TIME:		
DAT	E FINI	SHEE): 06/12/	98				WL (ft. bgs): DATE: TIME:		
DRII	LLING	METH	00: <i>8" h</i>	ollo	w-ste	m auge	er	TOTAL DEPTH: 87.2 Feet		
DRII	LING	COMP	ANY: Wo	odw	ard D	rilling		GEOLOGIST: Clyde Galantine		
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	Ó	WELL DIAGRAM EOLOGIC DESCRIPTION		
5-	5	16	MW-8-8			GM	SILTY GRAVEL medium dense, gravel, 20% silt	(GM) - dark brown (10YR 3/3), damp, 70% subangular to rounded fine 10% fine to coarse sand.		
15-	2	14	MW-8-16.5			ML	SILT (ML) — ve damp to moist, clay, 5% fine s	ery dark grayish brown (10YR 3/2), very stiff, non plastic, 75% silt, 20% and.		
20-	4	22	MW-8-21.5				Color change 1	o dark brown (10YR 4/4).		
25- -	2	33	MW-8-26	Z			Becomes damp 10% fine to co	, hard, non plastic, 70% silt, 20% clay, arse sand.		

JOB NUMBER: 140107.02

	Gettler-Ryan Inc.						Log of Boring MW-8		
PRO						LOCATION: 419 First Street, Please	anton, CA		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM	
33-	2	38	MW-8-32		ML				
- - 38-	2	66	MW-8-37		SP	hard, slight plast sand. SAND (SP) - oliv	olive gray (5Y 4/2) with dark BG 4/1) mottling, becomes moist, Icity, 80% silt, 35% clay, 5% fine e gray (5Y 4/2), moist, very dense, o rounded fine to medium sand, 5%		
43-	7	41	MW-8-41		GW	GRAVEL WITH SA (5GY 4/1), satur rounded fine gra clay.	ND (GW) – dark greenish gray ated, very dense, 70% subangular to vel, 25% fine to coarse sand, 5%		
- - 48	321 23	1	MW-8-45.5 MW-8-46.5		ML	SILT (ML) – dar to damp, hard, n fine sand.	k yellowish brown (10YR 4/4), moist on plastic, 80% silt, 20% clay, trace	2" blank S	
- 53-	20	29	MW-8-51.5		CL	Becomes moist, sand.	75% silt, 20% clay, 5% fine to medium		
- - - 58-	39	51	MW-8-57			brown (10YR 47)	at brownish gray (10YR 8/2) to 8), damp to moist, hard, medium lay, 20% silt, trace fine to medium	Page 2 of 3	

Gettler-Ryan Inc.							Log of Boring MW-8		
PRO	JECT:	Tos		al) Servi	ce Stat	ion No. 7376	LOCATION: 419 First Street, Pleas	anton, CA	
OEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	WELL DIAGRAM	
	6	32	MW-8-62		CL			2" blank Schedule 40 PVC -	
65— - -	3	35	MW-8-67		GW	SILT (ML) - ligh (10YR 4/3), dam 65% silt, 30% cla	t brownish gray (10YR 6/2) to brown to moist, hard, slight plasticity, y, 5% fine sand.		
70-	11	48	MW-8-71		GW GC	4/6), saturated	IND (GW) — strong brown (10YR to moist, very dense, 60% anded fine grass, 35% fine to very		
-	6	16	MW-8-72.5		GC	GRAVEL WITH CL	AY AND SAND (GW-GC) - strong), saturated, very dense, 60% unded fine gravel, 30% fine to very		
75 <u> </u>	-	16	MW-8-75.5					2" machine-slotted PVC (0.02 inch)	
80-	12	71	MW-8-80		ML.	damo to moist, h	(ML) — strong brown (10YR 4/6), ard, non plastic, 80% silt, 25% clay, coarse sand, trace fine gravel.		
-	3	65 69	MW-8-81.5		SW SC	brown (10YR 5/4	AND GRAVEL (SW-SC) — yellowish), damp to moist, very dense, 70% unded fine to very coarse sand, 20% clay.		
85-	6	18	MW-8-84.5			No seeds	<i>(</i> *)		
	5 5	25 44				No sample. (* Converted to	standard penetration blows/foot.)	 -	
90- -								_	
JOB	NUME	BER:	140107.0	<u> </u> 2	ļ	1		Page 3 of 3	

		Ge	ttler-l	₹ya	∋n I	nc.		Log of Boring B-8		
PRO.	ECT:	Tos	co (Unoca	al) S	ervic	e Stati	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA		
PRO	JECT N	10. :	140107.02	?				CASING ELEVATION:		
DAT	E STAI	RTED	: 06/08/	98	•			WL (ft. bgs): 65 DATE:	TIME:	
DAT	E FINI	SHEC	: 06/08	/98			· · · · · · · · · · · · · · · · · · ·	WL (ft. bgs): DATE:	TIME:	
DRIL	LING I	METH	OD: 8" h	ollo	v-ste	m auge	er	TOTAL DEPTH: 71.5 Feet		
DRIL	LING	COMP.	ANY: Wo	odw	ard D	rilling		GEOLOGIST: Clyde Galantine		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	EOLOGIC DESCRIPTION	REMARKS	
					//		Asphalt.			
-	i			-		CL 1	CLAY (CL) - ver damp, stiff, medi	ry dark grayish brown (10YR 3/2), ium plasticity, 70% clay, 30% silt.	Boring backfilled to ground surface with neat cement containing 5% bentonite powder.	
5-	1	20	B-8-6				Color change to becomes damp, medium sand, tra			
10-	2	26	B-8-11.5						-	
15-	2	37	B-8-16			ML	hard, no plastici	rk yellowish brown (10YR 4/8), damp, ty, 55% silt, 40% clay, 5% fine sand. r from 15 to 15.5 feet.	-	
20-	2	50	B-8-21			G₩	1 (10YR 4/6), moi:	AND (GW) – dark yellowish brown st, dense, 65% subangular to rounded fine to coarse sand, 5% clay.	-	
25— -	2	66	B-8-25.5				Color change to	brown (10YR 4/3).		
-					• •	l 	 	· · · · · · · · · · · · · · · · · · ·		

	Gettler-Ryan Inc.							Log of Boring B-8		
PRO	JECT:	Tos	co (Unoc	al) :	Servic	e Stati	ion No. 7376	LOCATION: 419 First Street, Plea	santon, CA	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS	
- - - 33—	1	70	B-8-31			GW	Becomes 60% gr	avel, 35% sand, 5% clay.	-	
38-	3	62	B-8-36			SW	SAND (SW) - ye dense, 95% suba sand, 5% clay.	llowish brown (10YR 5/4), damp, very ngular to rounded fine to medium	-	
	2	67	B-8-40.5	2		ML	Becomes fine to	coarse sand, trace fine gravel.		
43-	1	38	8-8-46.5			ML	(2.5Y 8/3), damj	EL (ML) — light yellowish brown b, hard, no plasticity, 80% silt, 20% avel, 5% fine to coarse sand.		
	1	57	8-8-50.5			GC GW	brown (7.5YR 4)	AY AND SAND (GW-GC) – strong (6), moist, very dense, 60% ounded fine gravel, 30% fine to 6 clay.	- - -	
53— - - - 58—	1	44	B-8-56.5			OL ML	brown (10YR 3/6	own (10YR 5/3) to dark yellowish 3), damp, hard, medium plasticity, 70% ace fine gravel, trace fine sand, iron		
JOB	NUME	BER:	140107.0	02	Ш				Page 2 of 3	

		Ge	ettler-l	Ry	an]	Inc.		Log of Boring B-8		
PRO	JECT:	Tos	co (Unoca	al) 5	Servic	e Stat	tion No. 7376	LOCATION: 419 First Street, P	leasanton, CA	
DEPTH feet	PID (ppm)	BLOWS/FT, *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		OLOGIC DESCRIPTION ng brown (7.5YR 476), damp, hard,	REMARKS	
-	1	39	B-8-61.5			ML SW	no plasticity, 609 sand, 5% fine gra	silt, 30% clay, 5% fine to coarse		
65-	i	48	B-8-66			CL	SAND (SW) - dal very dense, 95% coarse sand, 5%	rk brown (7.5YR 4/4), saturated, subangular to rounded fine to very clay, trace fine gravel.		
70- - - -	1	41	B-8-71.5				CLAY (CL) - ligh strong brown (7, plasticity, 100% o iron oxide stainin	t yellowish brown (2.5Y 8/3) to 5YR 4/8), damp, hard, high lay, trace fine gravel in thin layers, g layers.		
75— - - -									-	
80-										
85— - -				_				:		
90- JOB	NUME	ER:	140107.0)2					Page 3 of 3	

		Ge	ttler-l	₹уа	an I	Inc.		Log of Boring B-9			
PRO	JECT:	Tos	co (Unoca	al) S	ervic	e Stat	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA			
PRO	JECT N	10. :	140107.02	?				CASING ELEVATION:			
DAT	E STA	RTED	: 06/08/	/98				WL (ft. bgs): 65 DATE:	TIME:		
DAT	E FINI	SHEC): <i>06/08</i>	/98				WL (ft. bgs): DATE:	TIME:		
DRI	LLING	METH	OD: 8" h	ollo	w-st	em aug	er	TOTAL DEPTH: 81 Feet			
DRI	DRILLING COMPANY: Woodward Drilling							GEOLOGIST: Clyde Galantine			
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
-						ML	Asphait. SILT (ML) - yell no plasticity, 100	owish brown (10YR 5/4), damp, hard, % silt, trace fine sand.	Boring backfilled to ground surface with neat cement containing 5% bentonite powder.		
5-		55					No recovery.		-		
10-	1	35	B-9-11				Color change to becomes 80% sil	yellowish brown (10YR 5/6), t, 20% clay, non oxide crenulations.	-		
15-	0	58	B-9-15.5			GC	l brown (10YR 4/4	WITH SAND (GC) – dark yellowish 4), damp, very dense, 60% unded fine gravel, 25% fine to 6 clay.	- - -		
20-	1	49	B-9-21.5			CL	4/6), damp, hard	O (CL) – dark yellowish brown (10YR I, slight plasticity, 80% clay, 20% silt, um sand, trace fine gravel.	-		
25-	- - - -	43	B-9-26			SW	SAND (SW) - ye dense, 95% suba coarse sand, 5%	-			

		Ge	ettler-l	Rya	an I	nc.		Log of Boring B-9			
PRO	JECT:	Tos		al) S	er vic	e Stati	ion No. 7376	LOCATION: 419 First Street, Pleas	anton, CA		
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
33-		70		Z		SW GW	dense, 65% subai	n shoe. Nive brown (2.5Y 4/3), damp, very Igular to rounded fine to coarse o coarse sand, trace silt.	-		
38-	t	70	B-9-36			ML	contact. SILT (ML) - darl	evel, 20% sand, 20% clay at yellowish brown (10YR 4/6), damp, y, 65% silt, 35% clay, trace sand.	-		
43	1	44	B-9-41				Color change to 25% clay, 10% fin	dark brown (10YR 3/3), 65% silt, e to medium sand.			
43-	1	38	B-9-48			SC	dense, 80% suba	SC) — dark brown (10YR 4/4), damp, ngular to rounded fine to very 6 clay, trace fine gravel.			
53-	_	58	B-9-50.5			GC	(7.5YR 4/6), dar	WITH SAND (GC) — strong brown np, very dense, 60% subangular to vel, 25% fine to coarse sand, 15%	-		
-	-	53	B-9-55.5								
58- - -						ML					

JOB NUMBER: 140107.02

		Ge	ettler-l	Ryar	n Inc.		Log of Boring B-9			
PRO	JECT:	Tos		el) Ser	vice Stat	tion No. 7376	LOCATION: 419 First Street, Pleas	anton, CA		
OEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.			OLOGIC DESCRIPTION	REMARKS		
-	1	33	B-9-61.5	-	ML	hard, no plasticit sand.	y yellowish Drown (10YR 4/4), damp, y, 95% slit, 5% clay, trace fine	-		
65-	1	41	B-9-66			saturated, dense	ND (GW) – olive brown (2.5Y 4/3), , 60% subangular to rounded fine to coarse sand, 5% clay.			
70-	1	64	8-9-70.5					-		
75— - - -	2	59 68	8-9-76		SW GH GC	100% subangular GRAVEL WITH CI vellowish brown	re gray (5Y 4/2), moist, very dense, to rounded fine to coarse sand. AY AND SAND (GW-GC) - dark (10YR 4/4), saturated, very dense, to rounded fine gravel, 30% fine to d, 10% clay.	-		
80 <u> </u>	65 746	11 29	B-9-80.5 B-9-81		ML.	no plasticity, 80	owish brown (10YR 5/4), damp, hard, % silt, 20% clay, trace fine sand. standard penetration blows/foot.)			
85— - - -								-		
90-	NUME	FR.	140107.0	02	·			Page 3 of 3		

Gettler-Ryan Inc. Log of Boring B-10 LOCATION: 419 First Street, Pleasanton, CA PROJECT: Tosco (Unocal) Service Station No. 7376 PROJECT NO.: 140107.02 CASING ELEVATION: TIME: DATE STARTED: 06/11/98 WL (ft. bgs): 77 DATE: 06/11/98 DATE: TIME: DATE FINISHED: WL (ft. bgs): DRILLING METHOD: 8" hollow-stem auger TOTAL DEPTH: 86.5 Feet DRILLING COMPANY: Woodward Drilling GEOLOGIST: Clyde Galantine NUMBE CLASS H BLOWS/FT. (mdd) GEOLOGIC DESCRIPTION REMARKS SAMPLE SAMPLE Asphalt. GRAVEL WITH SAND - fill material. Boring backfilled to ground surface with neat cement containing 5% bentonite powder. 5 SANDY SILT WITH GRAVEL (ML) - very dark gray (10YR 3/1), damp, hard, no plasticity, 65% silt, 15% B-10-6 2 43 fine gravel, 15% fine to coarse sand, 5% clay. Gravel strata from 7 to 7.25 feet. 132 28 B-10-8 Color change to dark brown (10YR 3/3). B-10-9.5 10 Color change to very dark grayish brown (2.5Y 3/2), becomes saturated, stiff, no plasticity. GW 260 10 B-10-12 GRAVEL WITH SAND (GW) - black (7.5YR N2/), saturated, very dense, 70% subangular to rounded fine gravel, 25% fine to coarse sand, 5% clay. B-10-14 313 35 ML SILT WITH SAND (ML) - clive brown (2.5Y 4/3) to B-10-15 dark yellowish brown (10YR 4/4), damp, hard, no plasticity, 75% silt, 15% fine to coarse sand, 5% fine 11 56 15 SM gravel, 5% clay, hydrocarbons (?) in cracks. B-10-16.5 30 79 SILTY SAND (SM) - very dark grayish brown (2.5Y 3/2), damp to moist, very dense, 50% subangular to rounded fine to coarse sand, 40% silt, 10% fine 24 63 B-10-18 gravel, hydrocarbons (?) in cracks. ML SILT WITH SAND (ML) - dark grayish brown (2.5Y 4/2), damp, hard, no plasticity, 50% silt, 25% clay, 20 20% fine to coarse sand, 5% fine gravel, hydrocarbons (?) in cracks. B-10-21 14 62 17 8-10-22.5 SM SILTY SAND (SM) - dark greenish gray (5G 4/1), damp to moist, dense, 70% subangular to rounded fine to coarse sand, 25% silt, 5% fine gravel, hydrocarbons (?) in void space and cracks. 578 B-10-24.5 26 25 GW GRAVEL WITH SAND (GW) - dark greenish gray (56 B-10-26 587 43 4/1), moist, very dense, 75% subangular to rounded fine gravel, 20% fine to coarse sand, 5% slit, hydrocarbons (?) in void spaces and cracks. Sand ML layer at contact. SILT (ML) - elive gray (EY 4/2), damp to melet, hard, no plasticity, 75% slit, 20% clay, 5% fine to JOB NUMBER: 140107.02

coarse sand, hydrocarbons (?) in void spaces.

Page 1 of 3

		Ge	ettler-I	Ry	an :	Inc.		Log of Boring B-10			
PRO	JECT:	Tos	co (Unoc	al) S	Servic	e Stat	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA			
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION REMARKS			
-	470 691	32 18	B-10-29 B-10-30.5			ML	Color change to feet.	dark greenish gray (56Y 4/1) at 29			
- 33–	401 636	60 44	B-10-32 B-10-34			GW	i dense, 80% suba	olive gray (5Y 4/2), moist, very ngular to rounded fine gravel, 15% and, 5% clay, abundant I) In void spaces.			
1				a :				ery; rock in shoe.			
38 -	4 462 250	18 73 62	B-10-37.5 B-10-38 B-10-40	4		ML	SILT WITH GRAV 5/4), damp, hard gravel, 10% clay,	re/hydrocarbons (?) at contact. EL (ML) - yellowish brown (10YR, no plasticity, 70% silt, 20% fine hydrocarbons (?) in cracks and			
1	89	62		L.			void spaces. Color change to yellowish brown	olive brown (2.5Y 4/4) to light (2.5Y 8/4).			
43- - -	120	50	B-10-44								
-	31	75	B-10-47				feet, becomes d 70% silt, 15% clay gravel, decrease Becomes 60% sil	strong brown (7.5YR 4/8) at 45.25 amp to moist, hard, no plasticity, 7, 10% fine to coarse sand, 5% fine in hydrocarbons (?). t, 35% clay, 5% fine to coarse sand,			
48— -	3	46	8-10-49				trace gravel, no	hydrocarbons (?) at 47.5 feet.			

Localized fine to coarse sand at 51.25 to 51.75 feet.

Color change to strong brown (7.5YR 4/6) with light brownish gray (10YR 6/3) mottling from 53.25 to 54 feet.

Localized fine gravel and fine to coarse gravel strata from 55.75 to 58.25 feet.

SILTY SAND WITH GRAVEL (SM) – dark yellowish brown (10YR 4/4), damp, very dense, 65% subangular to rounded sand, 20% silt, 15% fine

JOB NUMBER: 140107.02

40

41

25

58

62

53-

58

8

347

290

24

8-10-51

B-10-53

B-10-54.5

B-10-57

B-10-58

SM

gravel.

		Ge	ettler-f	Ryan	Inc.		Log of Boring B-10			
PRO	JECT:	Tos	co (Unoca	al) Servi	e Stat	ion No. 7376	LOCATION:	419 First Street, Pleas	anton, CA	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBEF	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION REMARKS		REMARKS	
, , , , , , ,	50 11 8	79 79 62	B-10-60.5 B-10-62 B-10-64		SM	(10YR 4/4), mois	t, very dense, 7	c yellowish brown 5% subangular to % fine gravel, 5%		
65-	-	66	B-10-65.5		ML	SILT (ML) – dar hard, no plastici	k yellowish brow ty, 75% silt, 20%	n (10YR 4/8), damp, clay, 5% fine sand.	-	
70-	6	69	B-10-69	-		Fine gravel stra			_	
-	7 6	50 63	8-10-71 B-10-72.5			Becomes 85% sil feet.	t, 15% clay, trac	e fine sand at 70	-	
- 75–	8	60	B-10-73.5		SW	SAND (SHI) - NO	Haustah braum (1)	OYR 5/4), damp, very		
-	4	70	B-10-75.5	2	. GW	dense, 90% suba coarse sand, 5% GRAVEL WITH SA	ingular to round silt, 5% fine gra AND (GW) - darl	ed fine to very evel	-	
-	5 -	72 72	B-10-78 B-10-79.5			to rounded fine sand, 5% clay.		isē, 60% subangular to very coarse	-	
80— - -	_		D 40 00 7		SW	SAND (SW) - sa very coarse san		ense, 95% medium to el.	- - -	
-	5 6	63 19	B-10-82.5 B-10-84			Becomes 80% sa	and, 20% fine gra	avel at 84 feet.	-	
85— - -	6	88	B-10-86.5		ML	4/6), moist, hard medium sand.	l, no plasticity, 8	ellowish brown (10YR 30% silt, 20% fine to tration blows/foot.)	-	
90- -			:						-	
JOB										

		Ge	ettler-l	Ry	an	Inc.		Log of Boring B-11			
PRO	JECT:	Tos	co (Unoci	al) S	Servi	ce Stat	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA			
PRO	JECT N	10. :	140107.02	2				CASING ELEVATION:			
DAT	E STA	RTED	: 06/09/	/98			,	WL (ft. bgs): 68 DATE:	TIME:		
DAT	E FINI	SHEC): <i>06/09</i>	/98	7		-	WL (ft. bgs): DATE:	TIME:		
DRIL	LING	METH	OD: 8" h	ollo	w-st	em augi	er	TOTAL DEPTH: 74 Feet			
DRIL	LING	COMP.	ANY: Wo	odu	ard I	Drilling	-	GEOLOGIST: Clyde Galantine			
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		OLOGIC DESCRIPTION	REMARKS		
					. •	. GW	Asphalt.	ND (CW) dark consists because	—		
-						CL	(2.5Y 4/2), damp fine gravel, 30%	ND (6W) - dark grayish brown b, dense, 65% subangular to rounded fine to coarse sand, 5% clay: FILL.	 Boring backfilled to ground - surface with neat cement containing 5% bentonite powder. 		
	:				• •	GW	CLAY (CL) - ver stiff, medium plas	y dark gray (5Y 3/1), damp, very sticity, 90% clay, 10% silt: FILL.]		
5-	202	72	B-11-5.5	Z			GRAVEL (GW) - damp, dense, 85 10% fine to coars				
	316	27	B-11-8			ML	SILT WITH SAND	4			
10-	584	26	B-11-10.5				hard, no plasticit sand, 5% fine gra Color change to	y, 75% silt, 20% fine to very coarse	-		
-	408	40	B-11-13						-		
	476	70	B-11-14				Aenhalt at 14 for	et; may still be backfill.	1 4		
15-	202	81	B-11-16				Color change to becomes 65% sill	olive brown (2.5Y 4/3) at 15 feet, t, 30% clay, 5% fine sand, r) in void spaces.			
	513	79	B-11-18		1 						
20-	463	62	B-11-19.5				Localized fine gr	avel strata from 19.25 to 19.5 feet.			
	361	51	8-11-21		- - 	:	Localized fine gr feet.	avel strata from 20.25 to 20.75			
-	552	55	B-11-23			GC	(2.5Y 4/3), damp rounded fine gra	WITH SAND (SC) - oilve brown b, very dense, 60% subangular to livel, 25% fine to coarse sand, 15% lydrocarbons (?) in all cracks and			
25 -	311	32	B-11-25.5			ML	SILT (ML) - dar slight plasticity, sand, localized f	k olive gray (5Y 3/2), damp, hard, 70% slit, 25% clay, 5% fine to coarse ine gravel.			
	459	32	B-11-27	Ø	Щ						

		Ge	ettler-F	Ryan Inc.		Log of Boring B-11			
PRO	JECT:	Tos	co (Unoca	al) Service Sta	ation No. 7376	LOCATION: 419 First Street, Pleas	anton, CA		
DEPTH feet	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
1 1	359 372	79 32	B-11-29.5 B-11-31	ML	Localized fine gr	avel and sand from 30.5 to 31.25	-		
33-	292	88	B-11-32.5	-	Sand strata from	32.4 to 32.8 feet.	1		
-	231	70 63	B-11-35 B-11-37		damp, very dens gravel, 25% fine	AND (GW) – very dark gray (5Y 3/1), e, 70% subangular to rounded fine to coarse sand, 5% clay, abundant r) in all cracks and and void spaces.			
38-				ML ML	yellowish brown plasticity, 65% s	enish gray (56 5/1) to dark (10YR 4/4), damp, hard, slight ilt, 35% clay, trace fine sand to fine			
- _	115 30	74	B-11-39.5 B-11-41	CL	CLAY (CL) - da hard, high plasti coarse sand, hy	thons (?) in cracks. rk yellowish brown (10YR 4/4), damp, city, 80% clay, 20% silt, trace fine to drocarbons (?) decreasing with			
43— -	320 356	72 82	B-11-43.5		plasticity, 70% s hydrocarbons (Color change to greenish gray (e brown (2.5Y 4/4), damp, hard, no ilt, 30% clay, trace fine sand, ?) in cracks. olive gray (5Y 4/2) with dark 58G 4/1) mottling at 44 feet, ocarbons (?) in cracks.	-		
-	209	70	B-11-47				-		
48-	321	70	B-11-49		Sand layer from hydrocarbons (48.4 to 48.6 feet, abundant ?) in cracks, trace fine gravel.			
-	97	70	B-11-51.5		50 feet, become coarse sand, tra	-	_		
53-	62	63	B-11-53		Decrease in hyd staining from 52	Irocarbons (?) at 52 feet, iron oxide .2 to 52.8 feet.			
-	141	77	B-11-55				-		
58-	148	79	8-11-58		Abundant hydro	carbons (?) in sand at 57 feet.			
	428	76	8-11-59		brown (2.5Y 3/3 subangular to re	Y (SW-SC) - very dark grayish 2), damp to moist, very dense, 85% bunded fine to coarse sand, 10% clay, saturated with hydrocarbons (2).	Page 2 of 3		

		Ge	ettler-l	Ry	an :	Inc.		Log of Boring B-11			
PRO	JECT:	Tos		al) S	Servic	e Stat	tion No. 7376	LOCATION: 419 First Street, Pla	easanton, CA		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
-	455 451	62 63	B-11-61 B-11-62.5	2		SM SC	brown (2.5Y 3/2 very dense, 80% coarse sand, 10%	(SW-SC) - very dark grayish to dark brown (10YR 4/3), damp, subangular to rounded fine to clay, 10% fine gravel, abundant			
-				Z .	• /	GW GC	GRAVEL WITH CL vellowish brown	AY AND SAND (GW-GC) - dark (10YR 4/6), damp, very dense, 60% unded fine gravel, 30% fine to			
65-	74 51	62 62	B-11-65 B-11-66.5					evel, 40% sand, 10% clay at 66			
-	24	57	B-11-69				Saturated above feet.	88 feet, sand strata above 68.2			
70-	6	62	B-11-70.5				Abundant water.		_		
-	6	62	B-11-73.5			CL	CLAY (CL) - bro hard, medium pla sand.	wnish yellow (10YR 6/6), damp, sticity, 80% clay, 20% silt, trace fine			
75-		02	B 11 70.3	<u> </u>			(* Converted to	standard penetration blows/foot.)	<u> </u>		
-					- - - -				-		
-									-		
80-				_	<u> </u>						
85-				-	-						
-	-										
90-	-			-	-				-		
					1						

	Ge	ttler-f	Rу	an I	nc.		Log of Boring B-12			
PROJECT:	Tos	co (Unoca	ə <i>i)</i> S	Service	Stati	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA			
PROJECT N	10. :	140107.02	?				CASING ELEVATION:			
DATE STA	RTED	: 06/10/	98				WL (ft. bgs): 73 DATE: TIME:			
DATE FINI	SHED): 06/10/	98	·			WL (ft. bgs): DATE: TIME:			
DRILLING	METH	OD: 8" h	ollo	w-ste	m augu	er	TOTAL DEPTH: 79 Feet			
DRILLING COMPANY: Woodward Drilling							GEOLOGIST: Clyde Galantine			
DEPTH feet PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION REMARK	(S		
DEP feet PID	ᇳ	<u>δ</u>	Ϋ́S	6	So					
				٧٥٧		Asphalt. GRAVEL WITH SI	LT - fil material. Boring backfilled	to ground =		
			'		CL	CLAY (CL) - ver	y dark gray (5Y 3/1), damp, very	cement		
		-				CLAYE WITH GRA	sticity, 90% clay, 10% silt. AVEL (CL) - yellowish brown (10YR, no plasticity, 80% clay, 20% fine	-		
5- 19	63	B-12-5.5	7			Color change to feet; fill material	very dark gray (10YR 3/1) at 5	-		
93	44	B-12-8				Asphalt in soil fro	om 7 to 8 feet.			
10-] 144	18	B-12-10				Asphalt, burnt wo	ood, and wood in soil.	-		
_ 118	12	B-12-12				Brick shards from	л 13 to 13.25 feet.	-		
39 15—	18	B-12-14.5					dark grayish brown (2.5Y 4/2) at	-		
56	79	B-12-16.5			ML	SANDY SILT (MI 4/8), damp, hard coarse sand, 10%	.) – dark yellowish brown (10YR I, no plasticity, 55% silt, 35% fine to 6 clay.	1		
32	70	B-12-17.5		1			from 16.4 to 16.5 feet.	1		
				<u> </u>		<u>-</u>	ML), 60% silt, 40% clay, trace fine	1		
20-	79	8-12-20.5	Z			to wet, no plasti medium sand, 10%		_		
58	70	B-12-22.5			GC	SANDY SILT (Mi 4/6), damp, hard medium sand, 103		-		
46	42	B-12-24			ML	CLAYEY GRAVEL dense, 55% suba fine to coarse s	WITH SAND (GC) - damp, very angular to rounded fine gravel, 25% and, 20% clay.	-		
25-	76	B-12-26			SW. SC	CLAYEY SILT st SAND WITH CLA damp, very dens to very coarse	rata from 24 to 24.5 feet. Y (SW-SC) - olive gray (5Y 4/2), se, 80% subangular to rounded fine sand, 10% clay, 10% fine gravel.	-		
		140107	20	<i>72</i> 2	SC	damp to moist, v	(SC) - dark greenish gray (5GY 4/1), ery dense, 70% subangular to le to fine sand, 30% clay.	age I of 3		
JOB NUMI	JEK:	140107.0	16				re			

		Ge	ettler-f	Ryan 1	Inc.		Log of Boring B-12			
PRO	JECT:	Tos	co (Unoca	al) Servic	e Stati	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA			
DEPTH feet	PID (ppm)	BLOWS/FT, *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	GEOLOGIC DESCRIPTION			
33-	415 449 _	76 70 59	B-12-28.5 B-12-30 B-12-31.5		SC GW	damp, very dense gravel, 15% fine t	GRAVEL WITH SAND (GW) — olive gray (5Y 4/2), damp, very dense, 80% subangular to rounded fine gravel, 15% fine to coarse sand, 5% clay.			
-	377	77	B-12-33.5 B-12-36			·	oon (?) liquid on surface of gravel. se in clay content to 70% gravel, by.			
38-	399	62	B-12-37.5		ML	SILT (ML) - darl gray (56 5/1) wi mottling, damp, h	Becomes saturated. SILT (ML) - dark olive gray (5Y 3/2) to greenish gray (5G 5/1) with yellowish brown (10YR 5/4) mottling, damp, hard, no plasticity, 70-85% silt, t0-25% clay, 5% fine to coarse sand, trace fine gravel, abundant hydrocarbons (?) In void spaces			
_	397	33	B-12-41	-		and cracks.	rocarbons (?) at 41 feet.	-		
43-	192 278	66	B-12-43 B-12-44.5			l with dark greenis	dark yellowish brown (10YR 4/6) sh gray (5GY 4/1) mottling at 43 hydrocarbons (?) in cracks.	-		
48	48	53 62 44	B-12-47 B-12-48.5 B-12-50.5	<u> </u>		No hydrocarbon:	s (?) visible below 47 feet.			
-	20			2.			um sand from 50.75 to 51.25 feet.	-		
53-	2	40	B-12-53	-		Color change to feet, becomes m	strong brown (7.5YR 5/6) at 53.5 oist to wet.			
.	2	59	B-12-56.5							
58-	3	48	B-12-59				ta from 58 to 58.5 feet.			

JOB NUMBER: 140107.02

	Gettler-Ryan Inc.								Log of Boring B-12			
PRO	JECT:	Tos	co (Unoca	al) Se	ervic	e Stat	ion N	o. 7376	LOCATION:	419 First Street, F	Pleasanton, CA	
DEPTH feet	PID (ppm)	BLOWS/FT. ★	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS			OLOGIC DESCI		RE	MARKS
	3	53	B-12-61			ML		Gravel strata fro	m 80 to 80.5 te	eet.]
-	3	75	8-12-62.5			SW SC		5/6), damp to mo	ist, very dense	rong brown (7.5YR , 80% subangular to nd, 10% fine gravel,		-
-	4	63	B-12-64				1	Silt layer from 63	3.25 to 63.5 fe 6	et.		4
65 -	5	55	B-12-65.5					Localized gravel	at 85.5 feet.			-
-						GW GC		No sample recov	ery; rock in sho	e.		-
70-	3	79	B-12-70					GRAVEL WITH CL 4/6), moist, very fine gravel, 15% f	.AY (GW-GC) - dense, 75% sul line to coarse s	strong brown (7.5YR pangular to rounded and, 10% clay.		-
-	3	62	8-12-72									-
-	5	55	B-12-73.5				₹	Becomes wet to	saturated.			-
75- -	5	53	B-12-75.5									-
- - 80-	4	60	B-12-79			ML -		hard, no plasticit and gravel.	ty, 70% silt, 30%	vn (10YR 4/6), damp, clay, trace sand etration blows/foot.)		-
-												
85-									e e e e e e e e e e e e e e e e e e e			_
-									:			-
-												-
-												-
90-			į									
-												-
JOE	OB NUMBER: 140107.02 Page 3 of 3											

APPENDIX C

Well Development and Groundwater Sampling Field Data Sheets

DAILY REPORT

Gettler - Ryan Inc.

	TAGS
	FORMS
COMPANY Unocal Tosco #75/6	JOB NO. 140/87.CZ
COMPANY Unocal Tosco #7376 LOCATION 4/9/ First Street Pleasanten CA	DATE 6-22-98
Measanten. CA	ARRIVAL TIME
	DEPARTURE TIME:
JOB INSTRUCTIONS: Develope	irell.
- Notific i	
Tua	up. 70 514,
WORK PERFORMED (CONT. ON REVERSE SIDE): 7/a	a vii Cond
Develope new well MNW-	3 VIW Saise 4
Parge Method,	Well Sarged with
Block in the screen	inavoal. Avell Then
Bailed with Bailer 7	Then pamp with
to Gundlas za chemi	is clearing
<u>g</u> ()tino 103 (0 (0 (0)	
Ma	- 2/06
	angles
MATERIALS:	· · · · · · · · · · · · · · · · · · ·
SUBCONTRACTORS:	
EQUIPMENT:	
AIR COMPRESSOR CONCRETE SAWING	HELIUM TESTER
DUMP TRUCK STEAM CLEANER	HYDROCARBON SURVEYOR
SPECIALTY TRUCK 20-30(2) WATER/TRANSFER PUMP	HORIBA
BACKHOE/LOADER PETRO-TITE LINE TESTER	VR-3
KOMATSU PETRO-TITE TANK TESTER	OVA
PAVING EQUIPMENT VAPOR TESTER	ELECTRONIC INTERFACE PROBE
FOREMAN	

WELL MONITORING/DEVELOPMENT

	FIELD DATA SHEET
Client/ Facility	Unocal Posco #7376 Job#: = 140107.02
Address:	4/9/ First /Lay Date: 6-22-98
City:	Pleasanier CA Sampler: F. Clin
Well ID	MW-8 Well Condition: Ofay
Well Diameter	2'1 in. Hydrocarbon Amount Bailed
Total Depth	SS (SS) Thickness:
-	Volume 2" = 0.17 3" = 0.38 4" = 0.66 Factor (VF) 6" = 1.50 12" = 5.80
Depth to Water	3 st.
	$\frac{9500}{100}$ x VFG:17 = $\frac{9.7}{100}$ x d(case volume) = Estimated Purge Volume: $\frac{97}{100}$ (gal.)
Purge	Disposable Bailer Sampling Bailer Equipment: Disposable Bailer
Equipment:	Stack Bailer
	Suction Pressure Bailer Grandfos Grab Sample
	Other:
	12/5
Starting Time:	Weather Conditions: Clar Warm 1825 Water Color: Clar Odor: None
Sampling Time: Purging Flow Rat	
Did well de-wate	
	Clavity Color
	gal.) μ mhos/cm \circ C (mg/L) (\mathfrak{p} V), (\mathfrak{p} pm)
17:15	3 6.77 1919, 20,9 Cha Frient Inner
17:40 -	5 (0.71 1305 1918 Mady Surger Surger
17:45	
17:50	0 6,55 1147 2015 Muddy Brown Pampis/7
17:55	(15) +4 11/2 17,5 Muddy Clardy Brown
# 00 20	(44) 1076, 18,7 Midely)
810 30	1.96 1070 18,7 Cloudy
815 35	6,49 10372 1810 Clary
1820 40	6,45 1090 18,7 Cland 4
1825 45	6144 LABORATORY INFORMATION Cleny & Bound
SAMPLE ID	(#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES
COMMENTS:	Herelche CN/4 Sampling to Be donc

MONITORING WELL OBSERVATION SUMMARY SHEET

LIENT FAILUTY #:	U/T 7		G-R JOB #:	140107,02	
LOCATION:	4191 F	Just Street	DATE:		
CITY:	4191 FIVST STREET ENVENMENTE CA Pleasanten CA		TIME:	FiCline	
-	Pleasanze	in CA			
Weil ID	Total Depth	Depth to Water	Product Thickness	TOB or TOC	Comments
MW-1	N/T	79.93	B	70C	
MNW-2B		83.99			
MW3		83.29			
MW-4		78,25	_ 	<u>-</u>	
MW-5	7360	70.40	0.005 To Hawy	IFILM TOC	
MW-6		84.86			
MW-7	<u> 77'</u>	68.25			
MW-8	N17	73.38			
	•				
	<u> </u>				
					<u>:.</u>
		• —		. 	
					
·					,
Comments:	<u> </u>				
					•
		<u> </u>	Assistant		

GETTLER - RYAN INC.

Site Location: Unocal Toxo # 7376	Job# 140107,02
4191 First Street	Date: 8-18-98
Phasanton CH	Date: 8 70 20
DESCRIPTION OF WORK PERFORMED:	CHECK LIST:
Monitor	Transfer Purge Water To: Drums on site:
Purge	Holding tank:
Sample	Total Purge Water (gals): 205a/S
Total # of Wells @ site:	Sampling Truck: 20 30
Water levels only: 7	Purge water trailer: Mc
Monitored/Sampled:	Traffic Control:
Bailed Product:	Arrow board/road signs/cones
	SAMPLING EQUIPMENT:
PURGING EQUIPMENT:	Teflon bailer
Disposal bailer	Disposable bailer
Teflon bailer 3/8" stack pumps	Grab sample
1" double diaphram	Pressure bailer
Grundfo's	
OTHER EQUIPMENT:	SPECIAL EQUIPMENT:
Gloves 5 pairs	Turbidity Meter
Bailer cord	D O Meter
Well plug size ##	Re-Dox Meter Alkalinity test
COMMENTS: Devaloped & Sampled	(MW-7) Wave levels In
The 7 wells Floating produ	ut (a)457e Oil like)
frand in MW-5 Heavy Film	to 0.005 thickness coaled
Sampled by: Cel Cel -	Bailer & prose.
Assistant:	Time Billed: 3 hvs.

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET Client/ 140107,02 Facility___ Job#: STreet 419 Address: Date: CA Sampler: City: Well ID Well Condition: 11 Amount Bailed Well Diameter Hydrocarbon | nila Thickness: (product/water): Total Depth Volume $2^* = 0.17$ 3" = 0.386" = 1.50 $12^{\circ} = 5.80$ Factor (VF) Depth to Water 19 X3 (case volume) = Estimated Purge Volume: Purge Disposable Bailer Sampling Equipment: Bailer Equipment: Disposable Bailer) Stack Bailer Suction Pressure Bailer Grundfos Grab Sample Other: Other: _ Warm Starting Time: Weather Conditions: 1020 None Water Color: Brown Odor: Sampling Time: 0,6 Cight Purging Flow Rate: Sediment Description: __ Nlo Did well de-water? Volume: if yes; Time: _____ (lsp) ORP D.O. **Alkalinity** Volume pН Conductivity Temperature Time ₽C (mV) umhos/cm (mg/L)(ppm) (gal.) Brown Mudel Brown 7.03 18.8 1008 1910 19. 020 LABORATORY INFORMATION (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY **ANALYSES** SAMPLE ID

LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-7 3 & 4 Gm/ UCA Y HCC SEQ GESBYE MIBSC MW-7 2 x liw Y MM SEQ TOH. Assel COMMENTS: CEMENT avour of Casing Jupped

9/97-fleidat.fm

Admor - riyan mis	ENVIRONMENTAL DIVISION	HUIR GIUC
COMPANY TOSCO MEN	keting Co # 7376	JOB NO. 140107.02
OBLOCATION 4191 First	<i>H</i> •	
erry Pleasanton	/ 3	HONE NO
AUTHORIZED Plyde Galanti	ne DATE 8/14/88 P.	O. NO
The Or	w for all well	
		-7 (it is
10-000p 4 542	aple well Mw	1 - 6
in a Stoveppe	e in drainage swale). L parameters (TPHqd,	174442E 18C
preset analytica	parametes (194gd,	BIEX, MIBE - Zo
Do not leav	re any purge water	DALITE =
	Dauf	
WORK PERFORMED/MATERIAL	DIO 100	
-		-
	frank Cli	08
· · · · · · · · · · · · · · · · · · ·		
•		· · · · · · · · · · · · · · · · · · ·
-		
		A
COMP. HRS. PICKUP HRS.	DUMP HRS ROLLER HRS	CONC. SAW LF.
DATE COMPLETED		The country of the co
UNIE COMPLETED		

GETTLER-RYAN INC.

DAILY SAMPLING REPORT

Site Location: UNOCAL SS #7376 (ToSco	Job# <u>180075</u>
4191 FIXST STREET	
PLEASANTON (A	Date: <u>6-26-</u> 97
DESCRIPTION OF WORK PERFORMED: Monitor	CHECK LIST:
Purge	Transfer Purge Water To:
	Drums on site:
Sample	Holding tank:
Develop	Total Purge Water (gals): 48.5
Total # of Wells @ site: 7 Water levels only: Monitored/Sampled: 7	Sampling Truck: Purge water trailer:
Bailed Product:	_ Traffic Control:
	Arrow board/road signs/cones
PURGING EQUIPMENT: Disposal bailer	SAMPLING EQUIPMENT: Teflon bailer
Teflon bailer	_ Disposable bailer _ 7
3/8" stack pumps	Grab sample
1" double diaphram	Pressure bailer
Grundfo's	
OTHER EQUIPMENT: Gloves Bailer cord 400	SPECIAL EQUIPMENT: Turbidity Meter
Well plug size *	_ D O Meter # Re-Dox Meter
	Alkalinity test
	Alkamity test
COMMENTS:	
Sampled by: STEVE BALLAN	MILAGE:
Assistant:	Time Billed: X HRS

• Dublin, California 94568 - (510) 551-7555

MONITORING WELL OBSERVATION SUMMARY SHEET

CLIENT/ FACILITY#	: UNOCAL S5#7	376 (705co)	G-R JOB #:	18007	.5
LOCATION	: <u>4191 First</u>	STREET	DATE:	6-26-9	8
CITY	: <u>PLEASANTOA</u>	, CA	TIME:		
Well ID	Total Depth	Depth to Water	Product Thickness	TOB or TOC	Comments
MW_ 1_	86.43	79.29	4	Toc	
MW-2B	85.26	77.78	<u></u> \$		
Mw-3	94.11	79.65	<u></u>		
MW-4	93.07	73.81	#		
MW-5	72.51	64.13			SHEEN
MW-6	88.00	75.71	<u> </u>	- 	
MW-8	86.40	63,00	<u> </u>		
	 -				
				 	
			<u>'</u>		
	·				
					
					
			1.7		
				والمساحد والمساورة	
Comments:					
Sampler:	STEVE BAL	iAN	Assistant:		

Client/ Facility <u>Uvcr</u>	AL SS# 7376	(705	<u>=0)</u> Jo	ob#:	1800	75	
	91 FiRST S	•	•	ate: _	6-26-9	8	
	IS ANTON C		_			BALIAN	
Well ID	Mw-	. w	ell Condition:	0.1			
Well Diameter	2″ in		/drocarbon nickness: %	,	Amount E		
Total Depth	86.43		= /			ater): 8 4	
Depth to Water	79.29 n	1.	factor (VF)	6" = 1			0.00
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:	r	∠ = × 3 (d Samplii Equipm	ng lent: Di Ba Pro Gr	sposable B iller essure Bail ab Sample ther:	ailer	3. 6 4 (gal.)
Sampling Time:			Weather Cond Water Color: _ Sediment Des	U	ER_	Odor:	
Did well de-wat	er? <u>// /</u>		If yes; Time:		Volun	ne:	(gal.)
Time (4:13 - 14:16 - 14:19 -	Volume pH (gal.) 6.68 3 6.77	μ r	nhos/cm	mperature °F 7 9 . 7 73. 2	D.O. (mg/L)	ORP (mV)	- Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	REFRIG.	RATORY INFOR	LABO	RATORY	ANALY	
MW-1 MW-1	3-VOA'S	Y //	1+cl	SEQUOIA		TPH(G)/btex/m	
V-1 - 1	I - MINDER	.,	, , , , , , , , , , , , , , , , , , ,	7		1633-974	
COMMENTS:							

Client/ Facility <u>UNCLAC</u>	ss# 7376	(7050	.o) Jo	ob#: _	1800	75	
Address: <u>4191</u>		•	•	ate: _	6-26-	98	·
City: PLEAS	4N70N C	<u>A</u>	\$a	ampler: _	STEVE	BALIAN	
Well ID	Mw-2B	We	ell Condition:	0.1		· · · · · · · · · · · · · · · · · ·	
Well Diameter	2″ in.	-	drocarbon	∠	Amount E		
Total Depth	85,26 m	F	olume 2*			iter):8 4'	
Depth to Water	77.78 ft.	l E	actor (VF)	6" =	1.50	12" = 5.80	- 0.00
Purge Equipment:	7.48 x Disposable Bailer) = <u>1.2.7</u> x 3 k Sampli Equipm	ng	= Estimated P		3 . 8 / (gal.)
	Stack Suction Grundfos Other:			Bi Pr G	ailer ressure Baile rab Sample ther:	er	
Starting Time:	14:48		Weather Cond	ditions: _	5 UNN	7	
Sampling Time:	15:10		Water Color:	رد	<u>EA!</u>	Odor:	· · · · · · · · · · · · · · · · · · ·
Purging Flow Rate			Sediment Des				
Did well de-water?	,		If yes; Time:	·	Volun	ne:	[qal.)
14:51 (g	ume pH al.) 6.61	μπ	thos/cm	mperature 72.6	D.O. (mg/L)		Alkalinity (ppm)
<u> </u>	6.66		552 I	1.7			
			<u> </u>	· · · · · · · · · · · · · · · · · · ·			
			ATORY INFOR		RATORY	ANALY	eec
	(#) - CONTAINER 3 - VoA')	REFRIG.	Hel	SEQUOIA	" "	TPH(G)/btex/m	
F	- AMBER	1,	#	,		TPH-DIE	JE L
			·		<u> </u>	<u>-</u> .	
COMMENTS:				· · · · · · · · · · · · · · · · · · ·			

Address: <u>419</u>	I FIRST S	•	<u>: •) </u>	ate:	6-26	-98	
	SANTON ,			ampler:	STEVE	BALIAN	<u> </u>
Well ID	Mw- 3	_ w	ell Condition:	0.5			
Well Diameter	2 <u>i</u>		/drocarbon	£ (50.00)	Amount E		(Gallons
Total Depth	94.11 +		olume 2"	= 0.17	(product/wa 3" = 0.3		l" = 0.66
Depth to Water	79.65	t.	factor (VF)	6* = 1	.50	12" = 5.80	
Purge	14.46 p		Sampli	ng			7 . 3 7 _{iqat.}
Equipment:	Bailer Stack		Equipm		sposable B	ailei	
	Suction			Pr	essure Bail		
	Grundfos Other:				ab Sample her:		
							
	15:24		Weather Cond			•	
	15:40		Water Color:		`		
· -	te: <u>/ </u>		Sediment Des				
Dig well ge-wati	er: <u>/º 0</u>	<u>-</u>	n yes, time	·	• • • • • • • • • • • • • • • • • •		(89
Time \\\\ 15: 26	Volume pH (gal.) 6.7	γ μ r	nductivity Te nhos/cm	%F √F mperature	D.O. (mg/L)	ORP (mV)	- Alkalinir (ppm)
<u> 15:27</u>	5 6.6	9 4	49'4 _	75.1			
(3:27 _	7.3 6.67		77/ _	17.6			
0.44401.5.10	(4) CONTAINED	LABO REFRIG.	RATORY INFOR		RATORY	ANAL	YSES
SAMPLE ID	#) - CONTAINER 3-VoA'	Y Y	Hel	SEQUOIA		TPH(G)/btex/r	
IMW- イー!	1-AMBER	11	*	4		TPH-Di	<u>ಾ೯</u> ୮
MW- 3	1-AMBE					ı	
	1=AMBEX		<u> </u>		· · · · · · · · · · · · · · · · · · ·		

Client/ Facility <u>UNCLA</u>	oc 55# 7376	(705	<u>co)</u> Jo	ob#: .	1800	75	·
	I FIRST S		•	ate: .	6-26-	98	
	SANTON C			ampler:	STEVE	BALIAN	
Well ID	Mw-4	. w	ell Condition:	0.	٢		
Well Diameter			ydrocarbon	5	Amount 8		(C-#)
Total Depth	93.07 4		nickness: 2*	= 0.17	<u>st) (product/wa</u> 3" = 0.3	8 4	(Gallons) " = 0.66
Depth to Water	73.81		Factor (VF)	6" :	= 1.50	12" = 5.80	
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfoe		7 = <u>3.2</u>	ng ent: C	e Estimated P Disposable B Bailer Pressure Bail Grab Sample Other:	ailer	7.8 Z _(gal.)
	13:30 13:50 te: 1.5		Weather Cond Water Color: Sediment Des		CEAR	Odor:	
Did well de-wate	er?		If yes; Time	:	Volur	ne:	(qal.
Time \\ \(\frac{1}{3} \cdot \frac{3}{4} \) \\ \(\frac{1}{3} \cdot \frac{3}{4} \) \\ \(\frac{3}{3} \cdot \frac{3}{4} \) \\ \(\frac{1}{3} \cdot \frac{3}{4} \cdot \frac{1}{3} \cdot \frac{1}{3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		mhos/cm	mperature •F 78.4 76.7 77.0	D.O. (mg/L)	ORP (mV)	- Alkalinity (ppm)
	(#) GONTAINES		RATORY INFOR		BORATORY	ANALY	/SES
SAMPLE ID	3-VOA'S	REFRIG.	PRESERV. TYPE	SEQUO		TPH(G)/btex/n	
MW-4	I-AMBER	1,	4	1		TPH-Di	<u> </u>
		•					
COMMENTS: _							

	AC 55# 7376	`			800		.
Address: <u>4/</u>	91 FIRST	TREET	D:		<u>-26-9</u>		
City: PLEA	CANTON ,	CA_	Sa	ampler: <u>S</u>	TEVE	BACIAN	
Well ID	Mu-5	We	ell Condition:	0·K			
Well Diameter			drocarbon ickness:9	(feet)	Amount E		(Gallons)
Total Depth	72.51 +	v F		= 0.17	3" = 0.3	· · · · · · · · · · · · · · · · · · ·	" = 0.66
Depth to Water	<u>8.38</u> ,	_	7 = 1.42×31	case volume) =	Estimated Pr	urge Volume: _	7.27(gal.)
Purge Equipment: ⁽	Disposable Baile Bailer Stack Suction Grundfos Other:		Sampli Equipn	nent: Dis Bai Pre Gra	posable 8 ler ssure Baild ab Sample ner:	er	
Purging Flow Ra	16:55 17:20 ate: eer?	apm.	Weather Con- Water Color: Sediment Des If yes; Time	C_s	A.R	Odor: Y	
Time 16:59 15:03	Volume pH (gal.) (.5 6.5 3 6.5	Cor	iductivity To	emperature • F 76	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
GAMPI 5 ID	(#) CONTAINED	LABOI REFRIG.	RATORY INFOF		IATORY	ANAL	YSES
	(#) - CONTAINER	Y Y	HESERV. TIP	SEQUOIA		TPH(G)/btex/r	
SAMPLE ID	1 7 - 5 - 5 / 1 /		1/9	#		TP14-1	
Mw. S Mw. S	1_AMBER	У					
Mw.S	1-AMBER	У			·		
Mw.5 Mw.5	1-AMBER SHEEN	<i>y</i>					

9/97-fleidet.fm

Client/ Facility <u>Uvcr</u>	ac ss#7376	(705)	ot <u>(02</u>	b#:	1800	7 <i>S</i>	
	I FIRST ST	`	•	ite:	6-26-	-98	
	SANTON C			mpler:	STEVE	BALIAN	
Well ID	мш-6	w	ell Condition:	0.4			
Well Diameter	$2^{"}$ in		/drocarbon	, 	Amount I		
Total Depth	88.00 tt		rickness: #			ater):	" = 0.66
Depth to Water	75.71 #	1	actor (VF)	6" = 1	1.50	12" = 5.80	- 0.00
	(2,29 x	VF <u>©</u> ,	17 <u>=209</u> x 3 (c	ase volume) =	Estimated P	Purge Volume:	. 27 _(gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction— Grundfos Other:		Samplin Equipme	ent: Di Ba Pr Gr	sposable B iller essure Bail ab Sample her:	er	
Sampling Time:	<u>(5:49</u> <u>16:10</u>		Weather Cond	C	EAR	Odor:	
-	te: er?		Sediment Desc If yes; Time:				
	Volume pH (gal.) 6.64 4.5 6.65	μτ		9, 1 5, 1 14, 4	D.O. (mg/L)		Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABO! REFRIG.	RATORY INFORM PRESERV. TYPE		RATORY	ANALY	SES
MW- 6	3-VOA'S	Υ	Hel	SEQUOIA		TPH(G)/btex/m	tbe
MW-6	I-AMBER	"	*	1		TPH-Dix	SE C
COMMENTS: _						-	

Client/ Facility UNCLA	nc ss# 7376	(70SC	<u>o)</u> Jo	b#: _	1800	75	
	I FIRST S	•		ate: _	6-26	-98	
City: PLEA	SANTON C	<u>'4</u>	Sa	ampler: _	STEVE	BALIAN	
Well ID	Mw-8		II Condition:	0./	4		
Well Diameter	2in		drocarbon ckness:	5 /5===1	Amount E	Bailed	(C-II)
Total Depth Depth to Water	86.40 m	- <u>v</u>	plume 2* ctor (VF)	= 0.17	3" = 0.3		{Gallons} " = 0.66
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	·	= <u>3.98</u> x 3 (d Samplii Equipm	ng ent: Di Bi Pr G	Estimated Pales Bailer Baines	ailer	1.93 _(gal.)
	16:40		Weather Conc Water Color: _ Sediment Des	CCE	<u>AR</u>	Odor:	
	r? <u>No</u>		If yes; Time:		Volun	ne:	(gal.)
16:22	Colume pH (gal.) 8 6.43 (2 6.48	μ ml	luctivity Te	mperature 14.5 72.8 72.4	D.O. (mg/L)		Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER 3-VOA'3	LABOR.	ATORY INFOR		RATORY	ANALY	
Mm- 8	I-AMBER	"	1700	.4		TPH-Di	
COMMENTS: _							

Chain-ot-Custody-Record

24 Hre.

48 Hre.

5 Days

10 Days

As Contracted

Dole/Ilmg

Date/Ilme

6/24/18 2:50

1	•
TOSCO	

Touce Marketing Company 2000 Crow Conyon PL, Sta. 400 San Ramon, Castomia 94563

inquished By (Signature)

Facility Number TOSCO (UNOCAL) SS#7376
Facility Address 4191 First Street, Pleasanton, CA
Consultant Project Number 180075.85
Consultant Name Gettler-Ryan Inc. (G-R Inc.)
Address 6747 Sierra Court, Suite I. Dublin, CA 94568
Project Contact (Name) Deanna L. Harding
(Phone)510-551-7555 (Fax Number)510-551-7888

6-26-98

Dote/Time

Dote/Time 659/9/

G-R Inc.

Organization

nollesinegyO

Contact (Name) Ms. Tina R. Berry	
	-
(Phone) (510) 277-2321	_
Loborolory Name Sequoia Analytical	_
·	_
Laboratory Release Number	_
Collegiion Date: 6-26-98	_
Signature_STRVE BALIAN Prylum	_

			7						Analyses To Be Performed					, <u>.</u>	DO NOT BILL						
Sampie Number	Lab Sample Number	Number of Containers	Metric S = Sol A = Ar W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	Тme	Sample Preservation	load (Yes or No.)	TPH Gas + BTEX WANTBE (B015) (B020)	TPH Dissel (8015)	Oil and Greams (5520)	Purpeable Halocarbons (8010)	Purgeable Aromatics (8020)	Purgeable Organics (8240)	Extractable Organica (8270)	Metals CLCT.Pb.Zn.Ni (ICAP or AA)						TB-LB ANALYSIS
B-LB		1	w	G		Hel	Y	X							<u> </u>			<u> </u>		<u>· </u>	
w_ 1.		4	11.	11	14:35		У	X	X				<u>.</u> .					<u> </u>	-	ļ	
w- 28		4	"	"	15:10		У	X	X					ļ						<u> </u>	
1w-3		4	"	"	15.40	11	У	X	X					ļ		<u> </u>			 		
1ω-4		4	11	"	13:20		<u> </u>	X	X	ļ				 -	ļ						
w-S		4	"	11/4	17:20	11	y	X	X	<u> </u>	<u> </u>			<u> </u>	,				<u> </u>		
1w-6		4	"	11	16:10		X	X	X	<u> </u>	<u> </u>	ļ	ļ	 	ļ					ļ <u>.</u> .	
1w-8		4	"	"	16:40	1,	<u>></u>	X	X	<u> </u>				<u> </u>	<u> </u>			 	 		
-		ļ	· ·		<u> </u>			\ <u></u>		<u> </u>				┨—	-						
			 	 			-	<u> </u>	 	-			-	<u> </u>	 		-				
		 	 											· · · · · ·	1						·
		\vdash																			
		\vdash	 	 	 		 	1													
nquished By	(Signature)	ــــــــــــــــــــــــــــــــــــــ	000	anization	0	ode/Time /8:	30 Res	B belle	y (Slyn	ature)	/	9)Fganiza	llon	Date	/11m=	10	- - سر ب	Turn Ar	IT bnue	me (Cirole Chaloe)

Recleved For Laboratory By (Signature)

APPENDIX D

Surveyor's Report

Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

KEGEIVEU

SEY 02 1998

August 84, 1998

O 1 1 N Project No. 1604-20

OL MAN LUMINACTORS

Clyde Galantine Gettler-Ryan, Inc. 6747 Sierra Ct. Suite J Dublin, Ca. 94568

Subject: Monitoring Well Survey

Unocal Service Sta. #7376 4191 First Street Pleasanton, Ca.

Dear Clyde:

This is to confirm that we have proceeded at your request to survey the monitoring wells at the above referenced location. Our findings for the are shown in the table below. The survey was performed August 15, 1998. Measurements were taken at notches on the top of casing. Please find attached a Site Plan, based on our survey. The benchmark for the survey was a cut "+" on a concrete transformer pad on the north side of the project under construction adjacent to this site. Benchmark Elev. = 353.92 feet, MSL.

Well No.	Rim Elevation	TOC Elevation
MW-1	367.45	366.98
MW-2B	365.64	365.05
MM-3	367.47	367.03
MW-4	369.09	368.81
MW-5	363.67	363.21
MW-6	363.72	363.13
MW-7	353.82(grd)	355.97
MW-8	362.87	362.37

No. 6323
Esp. 12-71-978

Sincerely,

Virgil D. Chavez, PLS 6325

COORDINATE FILE NAME: C:\SURVEY\160420.CRD
Job Number: 1604-20
Job Description: Pleasanton -Ray & First
First Point Number: 1 Last Point Number: 90
Number of characters in description: 20

POINT	NORTHING	EASTING	ELEVATION DESCRIPTION
1	5000.000	5000.000	367.195 SET N&S
2	5200.000	5000.000	367.195 BS ONLY
1 2 3	5381.430	4950.357	353.920 BM
4	5179.411	5073.641	362.865 MW-8 RIM
5	5179.301	5073.655	362.375 MW-8 TOC
6	5114.585	5012.980	363.673 MW-5 RIM
_7	5114.599	5012.973	363.672 MW-5 RIM
<u>8</u>	5114.424	5012.945	363.212 MW-5 TOC
9	5071.607	5032.074	365.312 BLD COR
10	5057.946	5050.250	364.9235BLD COR
$\frac{11}{2}$	5032.315	4954.418	363.718 MW-6 RIM
(12)	5032.082	4954.415	363.127 MW-6 TOC 365.817 TC
13	5047.784	5047.673 5068.794	365.411 B
14	5056.222 5045.076	5050.139	365.645 MW-2B RIM
15	5044.852	5050.346	365.054 MW-2B TOC
<u> 16</u> 17	5035.760	5042.523	365.936 B
18	5011.759	5018.753	367.002 B
19	5000.226	5007.950	367.473 MW-3 RIM
(20)	4999.740	5008.071	367.035 MW-3 TOC
21	4961.145	4994.826	368.951 P.IS
22	4965.333	5028.103	368.897 P.IS
23	4989.568	5033.696	368.125 P.IS
24.	4987.513	5022.023	368.127 P.IS
25	4941.497	5061.143	368.483 TC
26	4978.757	5088.290	367.342 TC
27	4984.642	5080.153	367.266 TCFC
28	4986.710	5077.092	367.740 PO
29	4999.328	5078.836	367.539 RET
30	4991.859	5074.790	367.625 POC
31	4990.015	5066.070	367.449 MW-1 RIM
(32)	4989.647	5066.311	366.985 MW-1 TOC 367.041 TCRET
33	5008.348	5091.923 5098.048	366.434 TCRET
34	5009.213 5009.401	5094.446	366.930 POC
35 36	5004.005	5106.734	366.279 TC
37	5032.638	5127.687	364.791 TC
38	5032.030	5120.050	364.952 TCFC
39	5044.772	5120.247	365.684 WALL
40	5061.760	5097.790	365.872 WALL
41	5065.730	5085.273	365.691 TCFC
42	4936.627	4974.754	369.549 BLD.COR
43	4940.833	5007.408	369.685 BLD.COR
44	4965.263	4961.736	368.679 TC.ANG.
45	4968.350	4958.848	368.863 FWALL
46	4954.504	4958.928	368.565 B
47	4909.367	4925.944	369.095 MW-4 RIM
48	4909.071	4925.932	368.806 MW-4 TOC
49	4863.822	4893.409 4887.996	368.551 B 368.967 TC COR
50 51	4864.509	4880.402	368.987 IC COR 369.016 T
51	4856.982	7000.402	307.010 1

	<u> </u> 52	4858.935	4878.509	368.933	FWALL
_/	53	4888.958	5016.127	370.165	N-S
	54	4903.702	4954.229	369.944	P.IS
•	55	4878.966	4944.254	369.756	P.IS
	56	4895.909	4935.617	369.722	В
	57	5000.018	4999.993	367.207	BS
	58	4863.870	4893.424	368.527	В
	59	4833.748	4862.129	367.999	TC
	60	4837.812	4902.952	369.215	TC
	61	4844.164	4915.147	369.904	TC.RET
	62	4849.356	4919.729	369.757	TC.RET
	63	4847.486	4915.865	369.841	POC
	64	4852.719	4953.353	370.275	
	65	4864.073	4981.554	370.378	
	66	4884.083	5001.124	370.214	RET
	67	4899.653	5012.700	370.107	
	68	4899.478	5018.081	369.969	RET
	69	4900.674	5015.045	370.030	
	70	4893.207	5025.820	369.750	TC
	71	4929.273	5052.283	368.768	TC
	72	4947.313	5053.075	368.547	RET
	73	4947.549	5043.355	368.974	RET
	74	4941.974	5037.487	369.280	POC
	75	4935.981	5039.685	369.320	RET
	76	4933.399	5042.923	369.007	RET
	77	4932.545	5008.148	369.770	BLD
i	78	4928.611	4975.456	373.032	BLD
:	79	4908.552	4987.470	370.252	P.IS
	80	4880.683	4955.912	369.875	P.IS
	81	4839.123	4863.796	369.189	FWALL ~
	82	4990.023	5066.094	367.445	MW-1 RIM
	83	5045.041	5050.033	365.632	MW-2B RIM
	84.	5000.238	5007.969	367.470	MW-3 RIM (Check
	85	5045.200	5050.376	365.627	MW-2B RIM (ow)
	86	5032.321	4954.586	363.757	MW-6 RIM) '''√ -
	87	5114.598	5012.960		MW-5 RIM /
	88	5179.504	5073.801	362.864	MW-8 RIM
	89	5157.796	4986.814	355.971	MW-7 RIM TOC
	90	5158.280	4986.743	353.818	GRD

Exited COGO

Tue Sep 01 07:10:08 1998

-north assumed.

APPENDIX E

Laboratory Reports and Chain-of-Custody Forms

RECEIVED

SEP 02 1998

GETTLER-RYAN INC.

September 1, 1998

Service Request No.: S9802144

Clyde Galantine Gettler-Ryan, Inc. 6747 Sierra Court Suite J Dublin, CA 94568

RE:

7376 PLEASANTON

Dear Mr. Galantine:

The following pages contain analytical results for sample(s) received by the laboratory on August 18, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 13, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

Project Chemist

Acronyms

A2LA American Association for Laboratory Accreditation
ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chiorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services

DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected fon Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: 8/14/98

Date Received: 8/18/98

TPH as Diesel

Prep Method:

LUFT

Analysis Method: California DHS LUFT

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-7-11	S9802144-002	1	1	8/19/98	8/21/98	ND	
MW-7-28	S9802144-006	1	1	8/19/98	8/21/98	ND	
MW-7-30.5	S9802144-008	1	1	8/19/98	8/21/98	ND	
MW-7-42	S9802144-012	1	1	8/19/98	8/22/98	ND	
MW-7-60.5	S9802144-016	1	1	8/19/98	8/22/98	ND	
Method Blank	S980819-MB	1	1	8/19/98	8/21/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: 8/14/98 Date Received: 8/18/98

TPH as Oil

Prep Method:

LUFT

Analysis Method: Modified EPA 8015

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
MW-7-11	S9802144-002	1	1	8/19/98	8/21/98	ND	
MW-7-28	S9802144-006	1	1	8/19/98	8/21/98	ND	
MW-7-30.5	S9802144-008	1	1	8/19/98	8/21/98	ND	
MW-7-42	S9802144-012	1	1	8/19/98	8/22/98	ND	
MW-7-60.5	S9802144-016	1	1	8/19/98	8/22/98	ND	
Method Blank	S980819-MB	1	1	8/19/98	8/21/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: 8/14/98

Date Received: 8/18/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7-11

Lab Code: Test Notes:

S9802144-002

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	8/18/98	8/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: 8/14/98
Date Received: 8/18/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7-28

Lab Code:

\$9802144-006

Test Notes:

8 Units: mg/Kg (ppm)
14-006 Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	I	1	8/18/98	8/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: \$9802144

Date Collected: 8/14/98

Date Received: 8/18/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7-30.5

Lab Code:

S9802144-008

Units: mg/Kg (ppm) Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	8/18/98	8/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: \$9802144

Date Collected: 8/14/98

Date Received: 8/18/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7-42

Lab Code:

S9802144-012

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	8/18/98	8/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: 8/14/98 Date Received: 8/18/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7-60.5

\$9802144-016

Test Notes:

Lab Code:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	8/18/98	8/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: mg/Kg (ppm)

Lab Code:

Code: S980818-SB1

Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	8/18/98	8/19/98	ND	
Benzene	EPA 5030	8020	0.005	1	8/18/98	8/19/98	ND	
Toluene	EPA 5030	8020	0.005	1	8/18/98	8/19/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	8/18/98	8/19/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	8/18/98	8/19/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	8/18/98	8/19/98	ND	

QA/QC Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: NA

Date Received: NA

Date Extracted: NA Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

LUFT

Analysis Method: Modified EPA 8015

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	p-Terphenyl
MW-7-11	S9802144-002		46
MW-7-28	S9802144-006		60
MW-7-30.5	S9802144-008		57
MW-7-42	S9802144-012		46
MW-7-60.5	S9802144-016		51
Method Blank	S980819-MB		58

CAS Acceptance Limits:

41-140

QA/QC Report

Client:

TOSCO

Project:

7376 PLEASANTON

Sample Matrix:

Soil

Service Request: S9802144

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

BTEX and TPH as Gasoline

Prep Method:

EPA 5030

Analysis Method: 8020 CA/LUFT

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
MW-7-11	S9802144-002		104	89
MW-7-28	S9802144-006		104	89
MW-7-30.5	S9802144-008		105	86
MW-7-42	S9802144-012		101	87
MW-7-60.5	S9802144-016		101	84
Method Blank	S980818-SB1		103	90

CAS Acceptance Limits:

51-137

51-137

TPHVOA	EX1.
UNOCAL	. 76

Approved by: __

ompany Name: Cct	Her-Pray			140	/07.8	5	roject N	Vame:	•	73	74						lop
ddress: 6747 Sici			$\overline{}$		<u>/ </u>		NOCA	L Proje			: :	Ti	1વ	Ber			
ity: Oublin	State:	CA		Zip Code:	34.56	5 ₽ R	elease	#:							J –		
elephone:(StO) 55	5/-7855	,	•	<u>(0)55</u>		1	ite#:	72	76		Pla	454	nto	<u> </u>	24		
eport To: Clayalc (C Data) (Stanc				,	_evel B		Level A
urnaround 🔏 10 Wo			,		Ī	Drin			.6	_				equeste			
ime: 🗓 2 Wor	•	Vork Day		Hours -		□ Wa:	_		50%		///		/	/		$\overline{}$	7
CODE: 🗅 Misc. 💥 🗅	etect. 🚨 Eval.	🚨 Reme	d. 🚨 De	mol. 🖵 Cl	osure	🗀 Oth	er	At S	$\lambda^{25}\lambda$						/ /	/ /	/
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	L	oratory mple #	NO.	49	Office							<u></u>	omments
MW-7-6	314489:55	Soil	-	tube		1											
mw-7-11	10:00					2_	X	X_{-}									
mw-7-165	10:05					3											
MW-7-215	10:15					Lf											
mw-7-265	10:25					5							ļ				
mw-7-28	10:30					6	X	X				ļ <u>.</u>	ļ	ļ			
mw-7-29	10:35	1		<u> </u>		7	ļ				ļ	ļ	<u> </u>				
mw-7-30.5	10:40	}			7)	X	X				1					
mw-7-325	10:45	1								ļ	ļ	ļ	 	<u> </u>			
0.mw-7-345	¥ 10:50	V	<u> </u>	<u> </u>	(1	2					<u> </u>	<u> </u>					
	N. 1 2	1/2 1	- I ₋ .	diulo	<u></u>	1	-]_		11	9 cle	<u> </u>	124	-V	. 71	b 60	- .	10 . 1
Relinquished By:	<u>ryki/Si</u>	14423	> Date	: 8/14/98	Time:	/ /.73	Hece	eived E	M-C	<u>- </u>		40	FC D	ate:۵/	13 17 X	Hme:	120 A
Relinquished By:			Date		Time:		Rece	eived E	ly:				D	ate:		Time:	
Relinguished By:			Date		Time:		Rece	eived E	lv Lah					Date:		Time:	

To be completed 1) Were the 2) Was the report issued within the requested turnaround time?

Yes
No If no, what was the turnaround time?

Signature: ____ _

Company:

1 7 (1 4 - 7)	EX7. T	☐ 680 Che	sapeake D	rive • Redwoo	od City, CA	94063	(415) 36	4-9600	ü	18939	120th A	ve., N.E.	, Suite	101 • Bot	hell, WA	98011 •	(206) 481	9200
UNOCAL	_ 76			Suite 8 • Sacra Suite LM • Cor 4		94520 •		6-9600				-	_	-			• (509) 924 • (503) 624 • (503) 624	
Company Name:	Her-Ry	cus		(2107,	•		roject l		*	737	6							
Address: 747									UNOCAL Project Manager: Tina Berry									
city: Dechlin	State:	CA		Zip Code:	94.CE	<\$ F	Release	#:				_1		_1:	'J			*****
elephone: (5/2) S.				512)55			Site #:	7-	376	-	$\overline{\Omega}$		uti	na /	n A			
Report To: Oylc (\sim	le Gelo	,		C Data				lard)	Leve	el C	<u></u>	_evel B	Ţ	Level	<u> </u>
urnaround 10 W	ork Days 🚨 5 V	Work Day		Work Days		🚨 Drir	nking W	/ater	A			Analy	ses R	equest	ed .			
	rk Days 🚨 1 V			B Hours			ste Wa	ter /		10/		//		//				
CODE: 🗆 Misc. 🔀 [· · · · · · · · · · · · · · · · · · ·	d. 🖵 D		osure	Oth	er	Kar		X	/ .				/ /	/ /		
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	1	oratory nple #	R	19 19 X	376								Comme	nts
mw-7-365	N14 68 60! 55	Soil	l	tube	[1]													
Mw-7-42	11110	P	1	1	12		X	X						,				
mw-7-46.5	11:15				13	•		Ì										
mw-7-565	11:20				14	(
MW-7-56.5	11:3=				15	<u>,</u>												
mw-7-60.5	11:35	†]			((و	X	X										
mw-7-625	11:40				1-	7			ļ									
MW-7-64.5	11:45				Li	В				ļ		<u>.</u>						
mw-7-665	11:50				19		ļ	ļ					<u> </u>	<u> </u>				
0. NW-7-68.5	12:05	Y	<u> </u>	V	20)					:	<u> </u>						
	A 12 12 1		· · · · · · · · · · · · · · · · · · ·	1.10		4				<u> </u>		C4.		5)	1-1-	ī		
Relinquished By:	404 Dala	into	Date	8/14/98	Time: [7:15	Rece	ived E	19:1 <u>2</u>	ليكسب	\triangle	*En	[Date: X	18178	Time:	((1-	<u>, </u>
Relinquished By:			Date		Time:		Rece	eived E	By:					Date:		Time:		
Relinguished By:			Date	:	Time:		Rece	eived E	By Lab):				Date:		Time:		
ere Samples Receive	ed in Good Cond	ition? 🗅 Y	'es 🗅 No	Sa	amples o	on Ice?	🗅 Yes	□ No	Met	hod of	Shipm	ent				Pag	ge of	
Fo be completed upon 1) Were the analy 2) Was the report Approved by:	ses requested o issued within the	n the Cha e requesto	ed turna	round time	? 🗅 Yes	oN ⊑	If no, w	hat wa	as the	turnar	ound t	ime? ~					eate:	

P78 /8 1

RECEIVED

SEP 0.9 1998

September 4, 1998

GETTLER-RYAN INC. Service Request No.: S9801483

DEMERAL CONTRACTORS

Mr. Clyde Galantine Gettler- Ryan Inc. 6747 Sierra Court Suite J Dublin, CA 94568

RE:

7376 TOSCO/140107.02

Dear Mr. Galantine:

The following pages contain analytical results for sample(s) received by the laboratory on June 10, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 30, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely

Steven L. Green

Project Chemist

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable

NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/8 - 6/9/98

Date Received: 6/10/98

TPH as Diesel

Prep Method:

Analysis Method:

LUFT

California DHS LUFT

Units: mg/Kg (ppm)

Basis: Wet

Test Notes:

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
B-9-61.5	S9801483-004	1	1	6/16/98	6/17/98	ND	
B-9-80.5	S9801483-008	1	1	6/16/98	6/17/98	280	D1
B-9-81	S9801483-009	1	1	6/16/98	6/17/98	ND	
B-11-31	S9801483-013	1	4	6/16/98	6/18/98	2200	
B-11-41	S9801483-018	1	1	6/16/98	6/17/98	84	
B-11-45.5	S9801483-020	1	20	6/16/98	6/18/98	7300	
B-11-53	\$9801483-024	1	1	6/16/98	6/18/98	700	
B-11-61	S9801483-028	1	10	6/16/98	6/18/98	4000	
B-11-66.5	S9801483-031	1	1	6/16/98	6/17/98	140	- D1
B-11-73.5	\$9801483-034	1	I	6/16/98	6/17/98	ND	
B-8-61.5	\$9801483-046	1	1	6/16/98	6/17/98	ND	
B-8-71.5	S9801483-048	. 1	1	6/16/98	6/17/98	ND	
B-11-5.5	\$9801483-055	1	1	6/16/98	6/18/98	23	D1
B-11-10.5	\$9801483-057	1	20	6/16/98	6/18/98	66	DI
B-11-18	S9801483-061	1	10	6/16/98	6/19/98	3500	
B-11-23	S9801483-064	1	20	6/16/98	6/19/98	6500	
Method Blank	S980616-MB	1	1	6/16/98	6/17/98	ND	

Dl

Quantitated as diesel. The sample contains components that eluted in the diesel range, but the

chromatogram does not match the typical diesel fingerprint.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix: Soil

Service Request: S9801483

Date Collected: 6/8 - 6/9/98

Date Received: 6/10/98

TPH as Oil

Prep Method:

LUFT

Units: mg/Kg (ppm)

Analysis Method:

8015M

Basis: Wet

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
B-9-61.5	S9801483-004	5	1	6/16/98	6/17/98	ND	
B-9-80.5	S9801483-008	5	1	6/16/98	6/17/98	ND	
B-9-81	S9801483-009	5	1	6/16/98	6/17/98	ND	
B-11-31	S9801483-013	5	4	6/16/98	6/18/98	<20	C1
B-11-41	S9801483-018	5	1	6/16/98	6/17/98	ND	
B-11-45.5	S9801483-020	5	20	6/16/98	6/18/98	<100	C1
B-11-53	S9801483-024	5	1	6/16/98	6/18/98	ND	
B-11-61	S9801483-028	5	10	6/16/98	6/18/98	<50	C1
B-11-66.5	S9801483-031	5	1	6/16/98	6/17/98	ND	•
B-11-73.5	S9801483-034	5	1	6/16/98	6/17/98	ND	
B-8-61.5	S9801483-046	5	1	6/16/98	6/17/98	ND	
B-8-71.5	S9801483-048	5	1	6/16/98	6/17/98	ND	
B-11-5.5	S9801483-055	5	1	6/16/98	6/18/98	590	
B-11-10.5	S9801483-057	5	20	6/16/98	6/18/98	5200	
B-11-18	S9801483-061	5	10	6/16/98	6/19/98	<50	CI
B-11-23	S9801483-064	5	20	6/16/98	6/19/98	<100	C1
Method Blank	S980616-MB	5	1	6/16/98	6/17/98	ND	

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: 6/9/98

Date Received: 6/10/98

Hydrocarbon Scan

Sample Name:

B-11

Units: ug/L (ppb)

Lab Code:

S9801483-065

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50	1	6/20/98	6/22/98	600	LBPT
Oil	EPA 3510	Modified EPA 8015	250	1	6/20/98	6/22/98	ND	

LBPT

The sample contains a lower boiling point hydrocarbon mixture quantitated as diesel. The chromatogram

does not match the typical diesel fingerprint.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: NA Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

S980620-MB

Test Notes:

Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50	1	6/20/98	6.22/98	ND	
Oil	EPA 3510	Modified EPA 8015	250	1	6/20/98	6/22/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/8/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-9-61.5

Lab Code:

S9801483-004

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	ı	6/16/98	6/21/98	ND	
Benzene	EPA 5030	8020	0.005	Ļ	6/16/98	6/21/98	ND	
Toluene	EPA 5030	8020	0.005	i	6/16/98	6/21/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/21/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/16/98	6/21/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/8/98
Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-9-80.5

Lab Code:

Test Notes:

S9801483-008

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	2.5	6/16/98	6/21/98	5	
Benzene	EPA 5030	8020	0.005	2.5	6/16/98	6/21/98	0.32	
Toluene	EPA 5030	8020	0.005	2.5	6/16/98	6/21/98	0.025	
Ethylbenzene	EPA 5030	8020	0.005	2.5	6/16/98	6/21/98	0.032	
Xylenes, Total	EPA 5030	8020	0.005	2.5	6/16/98	6/21/98	0.43	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	2.5	6/16/98	6/21/98	<0.12	C1

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1822/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/8/98
Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-9-81

Lab Code: Test Notes: S9801483-009

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/16/98	6/22/98	4	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/22/98	0.29	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/22/98	0.59	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/22/98	0.039	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/22/98	0.31	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/16/98	6/22/98	ND	

1822/020397p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-31

Units: mg/Kg (ppm)

Lab Code:

S9801483-013

Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	25	6/16/98	6/23/98	290	
Benzene	EPA 5030	8020	0.005	25	6/16/98	6/23/98	4.1	
Toluene	EPA 5030	8020	0.005	25	6/16/98	6/23/98	0.89	
Ethylbenzene	EPA 5030	8020	0.005	25	6/16/98	6/23/98	4.7	
Xylenes, Total	EPA 5030	8020	0.005	25	6/16/98	6/23/98	11	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	25	6/16/98	6/23/98	2	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98 Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-41

Lab Code:

S9801483-018

Units: mg/Kg (ppm) Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	i	6/16/98	6/21/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.02	
Toluene	EPA 5030	8020	0.005	I	6/16/98	6/21/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/21/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	i	6/16/98	6/21/98	0.25	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-45.5

Lab Code:

S9801483-020

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/16/98	6/21/98	2	
Benzene	EPA 5030	8020	0.005	I	6/16/98	6/21/98	0.036	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.15	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.022	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.15	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/16/98	6/21/98	ND	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483 Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-53

Lab Code:

S9801483-024

Units: mg/Kg (ppm) Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	l	6/16/98	6/21/98	14	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.008	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.008	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6:21/98	0.02	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6,21,98	0.025	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	Ī	6/16/98	6:21/98	ND	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

Methyl-tert-butyl ether

B-11-61

Units: mg/Kg (ppm)
Basis: Wet

Lab Code:

S9801483-028

EPA 5030

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	25	6/16/98	6/23 98	370	
Benzene	EPA 5030	8020	0.005	25	6/16/98	6/23:98	2.8	
Toluene	EPA 5030	8020	0.005	25	6/16/98	6/23.98	16	
Ethylbenzene	EPA 5030	8020	0.005	25	6/16/98	6/23:98	5.2	
Xylenes, Total	EPA 5030	8020	0.005	25	6/16/98	6/23/98	24	

0.05

25

6/16/98

6/23.98

2.5

8020

1822/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-66.5

Lab Code:

S9801483-031

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/16/98	6/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Toluene	EPA 5030	8020	0.005	I	6/16/98	6/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	I	6/16/98	6/20/98	0.12	-

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-73.5

Lab Code:

S9801483-034

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/16/98	6/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/16/98	6/20/98	ND	-

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/8/98
Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-8-61.5

Lab Code:

S9801483-046

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	t	6/16/98	6/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Ethylbenzene	EPA 5030	8020	0,005	1	6/16/98	6/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	l	6/16/98	6/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	t	6/16/98	6/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/8/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-8-71.5

Lab Code:

S9801483-048

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	I	1	6/16/98	6/20/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/16/98	6/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-5.5

Lab Code:

S9801483-055

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	12.5	6/16/98	6/22/98	54	
Benzene	EPA 5030	8020	0.005	12.5	6/16/98	6/22/98	0.28	
Toluene	EPA 5030	8020	0.005	12.5	6/16/98	6/22/98	0.2	
Ethylbenzene	EPA 5030	8020	0.005	12.5	6/16/98	6/22/98	0.3	
Xylenes, Total	EPA 5030	8020	0.005	12.5	6/16/98	6/22/98	3.6	_
Methyl-tert-butyl ether	EPA 5030	8020	0.05	12.5	6/16/98	6/22/98	0.72	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

Methyl-tert-butyl ether

B-11-10.5

Lab Code:

S9801483-057

EPA 5030

Units: mg/Kg (ppm)
Basis: Wet

<2.5

6/22/98

CI

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	50	6/16/98	6/22/98	560	
Benzene	EPA 5030	8020	0.005	50	6/16/98	6/22/98	16	
Toluene	EPA 5030	8020	0.005	50	6/16/98	6/22/98	8.0	
Ethylbenzene	EPA 5030	8020	0.005	50	6/16/98	6/22/98	5.2	
Xylenes, Total	EPA 5030	8020	0.005	50	6/16/98	6/22/98	25	

0.05

8020

50

6/16/98

The MRL was elevated due to high analyte concentration requiring sample dilution.

1**322/020**597**9**

C1

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: 6/9/98 Date Received: 6/10/98

Units: mg/Kg (ppm)

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-18

Lab Code:

S9801483-061

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/16/98	6/21/98	16	
Benzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.17	
Toluene	EPA 5030	8020	0.005	ı	6/16/98	6/21/98	0.031	
Ethylbenzene	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.21	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/21/98	0.52	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/16/98	6/21/98	ND	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11-23

Lab Code: Test Notes:

S9801483-064

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	50	6/16/98	6/22/98	580	
Benzene	EPA 5030	8020	0.005	5 0	6/16/98	6/22/98	12	
Toluene	EPA 5030	8020	0.005	50	6/16/98	6/22/98	1.3	
Ethylbenzene	EPA 5030	8020	0.005	50	6/16/98	6/22/98	6.0	
Xylenes, Total	EPA 5030	8020	0.005	50	6/16/98	6/22/98	17	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	50	6/16/98	6/22/98	<2.5	Cl

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1822/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801483

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S980616-SBI

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	l	6/16/98	6/20/98	ND	
Benzene	EPA 5030	8020	0.005	I	6/16/98	6/20/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	Ţ	6/16/98	6/20/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/16/98	6/20/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	ı	6/16/98	6/20/98	ND	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: 6/9/98

Date Received: 6/10/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-11

Lab Code:

S9801483-065

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	100	NA	6/18/98	<5000	Cl
Benzene	EPA 5030	8020	0.5	100	NA	6/18/98	110	
Toluene	EPA 5030	8020	0.5	100	NA	6/18/98	220	
Ethylbenzene	EPA 5030	8020	0.5	100	NA	6/18/98	<50	Cl
Xylenes, Total	EPA 5030	8020	0.5	100	NA	6/18/98	240	
Methyl tert -Butyl Ether	EPA 5030	8020	3	100	NA	6/18/98	6200	-

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

LS22/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S980617-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	I	NA	6/17/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	6/17/98	ND	

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Service Request: S9801483

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary TPH as Diesel and Oil

Prep Method:

LUFT

Analysis Method: California DHS LUFT

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	p-Terphenyl
B-9-61.5	S9801483-004		74
B-9-80.5	\$9801483-008		81
B-9-81	S9801483-009		81
B-11-31	S9801483-013		56
B-11-41	S9801483-018		72
B-11-45.5	S9801483-020		61
B-11-53	S9801483-024		64
B-11-61	S9801483-028		64
B-11-66.5	S9801483-031		74
B-11-73.5	S9801483-034		74
B-8-61.5	S9801483-046		67
B-8-71.5	S9801483-048		66
B-11-5.5	S9801483-055		57
B-11-10.5	S9801483-057		59
B-11-18	S9801483-061		62
B-11-23	S9801483-064		68
Method Blank	S980616-MB		83

CAS Acceptance Limits:

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

EPA 3510

Units: PERCENT

Basis: NA

Analysis Method: Modified EPA 8015

Test **Percent Recovery** Sample Name Lab Code Notes p-Terphenyl B-11 S9801483-065 106 Method Blank S980620-MB 94

CAS Acceptance Limits:

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

CA/LUFT

Sample Matrix:

Service Request: S9801483

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX and TPH as Gasoline

Prep Method:

Analysis Method: 8020

EPA 5030

Units: PERCENT

Basis: NA

Cample Name	Lab Code	Test		Recovery
Sample Name	Lab Code	Notes	4-Bromofluorobenzene	a,a,a-Trifluorotoluene
B-9-61.5	S9801483-004		72	82
B-9-80.5	S9801483-008		82	80
B-9-81	S9801483-009		88	93
B-11-31	S9801483-013		85	113
B-11-41	S9801483-018		75	79
B-11-45.5	S9801483-020		80	87
B-11-53	S9801483-024		83	82
B-11-61	S9801483-028		88	115
B-11-66.5	S9801483-031		81	81
B-11-73.5	S9801483-034		73	80
B-8-61.5	S9801483-046		72	85
B-8-71.5	S9801483-048		78	84
B-11-5.5	S9801483-055		77	91
B-11-10.5	S9801483-057		78	119
B-11-18	S9801483-061		85	126
B-11-23	S9801483-064		97	105
Method Blank	S980616-SB1		74	86

CAS Acceptance Limits:

51-137

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801483

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Units: PERCENT

Basis: NA

Analysis Method:

8020

CA/LUFT

Percent Recovery

Test Sample Name Lab Code Notes 4-Bromofluorobenzene a,a,a-Trifluorotoluene B-11 99 S9801483-065 98 Method Blank S980617-WB1 108 101

CAS Acceptance Limits:

69-116

RECEIVED

June 29, 1998

Service Request No.: S9801550

JUL 0 2 1998

GETTLER-RYAN INC. GENERAL CONTRACTORS

Mr. Clyde Galantine Gettler-Ryan Inc. 6747 Sierra Court Suite J Dublin, CA 94568

RE:

7376 TOSCO/140107.02

Dear Mr. Galantine:

The following pages contain analytical results for sample(s) received by the laboratory on June 15, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 37, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Bernadette T. Cox

Project Chemist

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUST Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: \$9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-[0

Lab Code: Test Notes: S9801550-001

S98

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50	1	6/20/98	6/23/98	930	
Motor Oil	EPA 3510	Modified EPA 8015	2 50	1	6/20/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix: Water Service Request: S9801550

Date Collected: NA

Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

S980620-MB

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50	1	6/20/98	6/22/98	ND	
Motor Oil	EPA 3510	Modified EPA 8015	250	1	6/20/98	6/22/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-12

19-10-12

Lab Code:

\$9801550-005

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/22/98	6/23/98	1.8	Dl
Motor Oil	LUFT	Modified EPA 8015	5	1	6/22/98	6/23/98	ND	

D1

Quantitated as diesel. The sample contains components that eluted in the diesel range, but the chromatogram does not match the typical diesel fingerprint.

1822/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-24.5

Lab Code:

S9801550-012

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	4	6/22/98	6/24/98	1900	
Motor Oil	LUFT	Modified EPA 8015	5	4	6/22/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-31

Lab Code:

S9801550-016

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	2	6/22/98	6/24/98	970	
Motor Oil	LUFT	Modified EPA 8015	5	2	6/22/98	6/24/98	ND	

Analytical Report

Hydrocarbon Scan

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98 **Date Received:** 6/15/98

Sample Name:

B-10-38

Lab Code:

S9801550-020

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	t	!	6/22/98	6 24/98	90	
Motor Oil	LUFT	Modified EPA 8015	5	!	6/22/98	6 24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-49

Lab Code:

S9801550-025

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	l	6/22/98	6/23/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	t	6/22/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-57

Lab Code:

Test Notes:

\$9801550-029

Basis: Wet

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	Ī	6/22/98	6.23/98	ND	
Motor Oil	LUFT	Modified EPA 8015	ń	1	6/22/98	6.23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

B-10-75.5

Lab Code:

Test Notes:

S9801550-039

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	l	6/22/98	6/23/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	l	6/22/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

MW-8-11

Lab Code:

S9801550-046

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/22/98	6.24/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/22/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

MW-8-37

Lab Code:

S9801550-051

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	!	6/22/98	6.24/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/22/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

MW-8-45.5

Lab Code:

Motor Oil

\$9801550-053

LUFT

Units: mg/Kg (ppm) Basis: Wet

ND

Test Notes:

Dilution Date Date Result Analysis Prep Method Method Factor Extracted Analyzed Result Notes Analyte MRL 79 Diesel LUTT Modified EPA 8015 1 1 6/22/98 6/24/98

5

1

6/22/98

6/24/98

Modified EPA 8015

1S22/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

MW-8-51.5

Lab Code:

Test Notes:

S9801550-055

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUTT	Modified EPA 8015	l	1	6/22/98	6/24/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/22/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

Hydrocarbon Scan

Sample Name:

MW-8-67

Lab Code:

S9801550-058

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	ī	6/22/98	6.24/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	I	6/22/98	6 24/98	ND	

Analytical Report

Client:

TOSCO

Soil

Project:

7376 TOSCO/140107.02

Sample Matrix:

Service Request: S9801550 Date Collected: NA

Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Units: mg/Kg (ppm)

Lab Code:

S980622-MB

Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor		Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	I	6/22/98	6/23/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	I	6/22/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801550

Date Collected: 6/11/98
Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-10

Lab Code:

89801550-001

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CALUFT	50	4	NA	6/23/98	980	
Benzene	EPA 5030	8020	0.5	4	NA	6/23/98	39	
Toluene	EPA 5030	8020	0.5	4	NA	6/23/98	13	
Ethylbenzene	EPA 5030	8020	0.5	4	NA	6/23/98	23	
Xylenes, Total	EPA 5030	8020	0.5	4	NA	6/23/98	100	
Methyl tert -Butyl Ether	EPA 5030	8020	3	4	NA	6/23/98	250	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801550

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Methyl tert-Butyl Ether

Method Blank

Lab Code:

S9806222-WB1

Test Notes:

EPA 5030

Units: ug/L (ppb) Basis: NA

Dilution Prep Analysis Date Date Result Analyte Method Method MRL Factor Extracted Analyzed Notes Result TPH as Gasoline EPA 5030 CA/LUFT 50 1 NA 6/22/98 ND Benzene EPA 5030 8020 0.5 1 NA 6/22/98 ND Toluene EPA 5030 8020 0.5 l NA 6/22/98 ND Ethylbenzene EPA 5030 8020 0.5 l NA 6/22/98 ND Xylenes, Total EPA 5030 8020 0.5 1 NA 6/22/98 ND

3

NA

6/22/98

ND

8020

LS22/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550 Date Collected: 6/11/98

Date Received: 6/15/98

Units: mg/Kg (ppm)

Basis: Wet

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-12

Lab Code:

Test Notes:

S9801550-005

Prop Applysis Dilution Data Data Data

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	l	1	6/22/98	6/25/98	1	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.013	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.013	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.021	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.13	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/22/98	6,25,98	0.23	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-24.5 -

Lab Code:

S9801550-012

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	100	6/22/98	6/25/98	760	
Benzene	EPA 5030	8020	0.005	100	6/22/98	6/25/98	5.1	
Toluene	EPA 5030	8020	0.005	100	6/22/98	6/25/98	0.9	
Ethylbenzene	EPA 5030	8020	0.005	100	6/22/98	6/25/98	22	
Xylenes, Total	EPA 5030	8020	0.005	100	6/22/98	6/25/98	25	_
Methyl-tert-butyl ether	EPA 5030	8020	0.05	100	6/22.98	6/25/98	<5	Cl

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550 Date Collected: 6/11/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-31

Lab Code:

Test Notes:

S9801550-016

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	I	125	6/22/98	6/25/98	720	
Benzene	EPA 5030	8020	0.005	125	6/22/98	6/25/98	7.3	
Toluene	EPA 5030	8020	0.005	125	6/22/98	6/25/98	31	
Ethylbenzene	EPA 5030	8020	0.005	125	6/22/98	6/25/98	11	
Xylenes, Total	EPA 5030	8020	0.005	125	6/22/98	6/25/98	68	,
Methyl-tert-butyl other	EPA 5030	8020	0.05	125	6/22/98	6:25/98	<6	Cl

The MRL was elevated due to high analyte concentration requiring sample dilution.

1822/020597p

CI

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550

Date Collected: 6/11/98 Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-10-38

Lab Code:

S9801550-020

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	ι	6/22/98	6/25/98	4	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.033	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.006	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6:25:98	0.010	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.032	
Methyl-tert-butyl other	EPA 5030	8020	0.05	1	6/22/98	6.25/98	0.08	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550

Date Collected: 6/11/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-49

Units: mg/Kg (ppm)

Lab Code:

S9801550-025

Basis: Wet

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6.24.98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	,
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/22/98	6-24-98	ND	

1822/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-57

Lab Code:

S9801550-029

Basis: Wet

Units: mg/Kg (ppm)

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	l	6/22/98	6/25/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.012	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.012	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.006	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.048	-
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/22/98	6/25/98	ND	

1322/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/11/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-10-75.5

Lab Code:

\$9801550-039

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA-LUFT	l	1	6/22/98	6/24/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6,24,98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	_
Methyl-tert-butyl other	EPA 5030	8020	0.05	1	6/22/98	6.24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550 Date Collected: 6/12/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-8-11

Lab Code:

S9801550-046

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	ī	1	6/22/98	6/25/98	ND	
Benzene	EPA 5030	8020	0.005	I	6/22/98	6, 25, 98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.007	
Ethylbenzene	EPA 5030	8020	0.005	I	6/22/98	6/25/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	0.010	-
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/22/98	6/25/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-8-37

Lab Code:

S9801550-051

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CALUIT	I	1	6/22/98	6/25/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	ND	
Toluene	EPA 5030	8020	0.005	ι	6/22/98	6/25/98	0.006	
Ethylbenzene	EPA 5030	8020	0.005	l	6/22/98	6/25/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/22/98	6/25/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-8-45.5

Lab Code:

S9801550-053

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EPA 5030	CA/LUFT	1	10	6/22/98	6/25/98	60	
EPA 5030	8020	0.005	10	6/22/98	6/25/98	< 0.05	Cl
EPA 5030	8020	0.005	10	6/22/98	6/25/98	0.058	
EPA 5030	8020	0.005	10	6/22/98	6/25/98	0.27	
EPA 5030	8020	0.005	10	6/22/98	6/25/98	0.58	
EPA 5030	8020	0.05	10	6/22/98	6/25/98	< 0.5	Cl
	Method EPA 5030 EPA 5030 EPA 5030 EPA 5030	Method Method EPA 5030 CA/LUFT EPA 5030 8020 EPA 5030 8020 EPA 5030 8020 EPA 5030 8020 EPA 5030 8020	Method MRL EPA 5030 CA/LUFT 1 EPA 5030 8020 0.005 EPA 5030 8020 0.005 EPA 5030 8020 0.005 EPA 5030 8020 0.005 EPA 5030 8020 0.005	Method MRL Factor EPA 5030 CA/LUFT 1 10 EPA 5030 8020 0.005 10	Method MRL Factor Extracted EPA 5030 CA/LUFT 1 10 6/22/98 EPA 5030 8020 0.005 10 6/22/98	Method MRL Factor Extracted Analyzed EPA 5030 CA/LUFT 1 10 6/22/98 6/25/98 EPA 5030 8020 0.005 10 6/22/98 6/25/98	Method MRL Factor Extracted Analyzed Result EPA 5030 CA/LUFT 1 10 6/22/98 6/25/98 60 EPA 5030 8020 0.005 10 6/22/98 6/25/98 <0.05

Сl

The MRL was elevated due to high analyte concentration requiring sample dilution.

LS22/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550 Date Collected: 6/12/98

Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-8-51.5

Lab Code:

Test Notes:

S9801550-055

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA:LUIT	I	1	6/22/98	6/25.98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6:25:98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6:25:98	ND	
Ethylbenzene	EPA 5030	8020	0.005	l	6/22/98	6:25 98	ND	
Xylenes, Total	EPA 5030	8020	0.005	l	6/22/98	6.25.98	ND	-
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/22:98	6-25-98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: 6/12/98
Date Received: 6/15/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-8-67

Lab Code:

S9801550-058

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/25/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6 25/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/25/98	ND	
Ethylbenzene	EPA 5030	8020	0,005	I	6/22/98	6 25/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/25/98	ND	
Methyl-tert-butyl other	EPA 5030	8020	0.05	Ī	6/22/98	6.25/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801550

Date Collected: NA Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

Test Notes:

S980622-SB1

Units: mg/Kg (ppm)

Basis: Wet

	•							
Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/24/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/24/98	ND	_
Methyl-tert-butyl other	EPA 5030	8020	0.05	1	6/22/98	6/24/98	ND	

1322/020597p

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801550

Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

EPA 3510

Analysis Method:

Modified EPA 8015

Units: PERCENT

Basis: NA

 Sample Name
 Lab Code
 Test Notes
 Percent Recovery p-Terphenyl

 B-10
 \$9801550-001
 117

 Method Blank
 \$980620-MB
 94

CAS Acceptance Limits:

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801550

Date Collected: NA Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary Hydrocarbon Scan

Prep Method:

LUFT

Analysis Method: Modified EPA 8015

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	p-Terphenyl
B-10-12	S9801550-005		82
B-10-24.5	S9801550-012		60
B-10-31	\$9801550-016		61
B-10-38	S9801550-020		67
B-10-49	S9801550-025		75
B-10-57	S9801550-029		74
B-10-75.5	S9801550-039		70
MW-8-11	S9801550-046		76
MW-8-37	S9801550-051		64
MW-8-45.5	S9801550-053		72
MW-8-51.5	S9801550-055		74
MW-8-67	S9801550-058		82
Method Blank	S980622-MB		60

CAS Acceptance Limits:

QA/QC Report

Client:

TOSCO

Service Request: S9801550

Project:

7376 TOSCO/140107.02

CA/LUFT

Date Collected: NA

Sample Matrix:

Water

Date Received: NA Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

Analysis Method:

EPA 5030

8020

. ----**,** ----- ---- -----

Units: PERCENT

Basis: NA

 Sample Name
 Lab Code
 Test Notes
 Percent 4-Bromofluorobenzene
 Recovery a.a.a.a-Trifluorotoluene

 B-10
 \$9801550-001
 95
 96

 Method Blank
 \$9806222-WB1
 97
 98

CAS Acceptance Limits:

69-116

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Service Request: S9801550

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX and TPH as Gasoline

Prep Method:

Units: PERCENT

EPA 5030 Analysis Method: 8020 CA/LUFT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromotluorobenzene	Recovery a,a,a-Trifluorotoluene
B-10-12	\$9801550-005		99	97
B-10-24.5	\$9801550-012		89	114
B-10-31	89801550-016		95	93
B-10-38	\$9801550-020		98	96
B-10-49	S9801550-025		80	81
B-10-57	89801550-029		99	94
B-10-75.5	\$9801550-039		67	82
MW-8-11	89801550-046		79	82
MW-8-37	S9801550-051		74	83
MW-8-45.5	89801550-053		94	116
MW-8-51.5	S9801550-055		76	81
MW-8-67	S9801550-058		76	18
Method Blank	S980622-SB1		72	88

CAS Acceptance Limits:

51-137

Company Name: C	-Her-Rya	y In		1401	07.02	Project I	Name:			73	76				
Address: 6747			ite;	7		UNOCA	L Proje	ect Ma	nager	7	ina	B	c814		
City: Oublin	State:	CA		Zip Code:	94568	Release	#:								···
elephone: (Sた) '	551-755	5	FAX #;/	(SO) SS	1-7888	Site #:		73	76		Plea	SCILL	ton	CA	· · · · · · · · · · · · · · · · · · ·
Report To: Classe	Edantin	Sampler	C/40	le Ga	lantine	QC Data	a: 🖵 L	.evel E) (Stand		🖸 Leve			evel B	Level A
Turnaround ₩ 10 V						inking V		Ç.,			Analys	ses R	equeste	ed	
ime: 02W	ork Days 🔲 1 V	Vork Day	□ 2-8	Hours		aste Wa		100/	χo/	/ /	//		/ /		//
CODE: 🖸 Misc. 🏻	Detect. 🚨 Eval.	☐ Remed	i. 🖸 De	mol. 🖵 Ck	osure 🚨 Ot	her	REN	30/1/	·/		/ .		/ ,	/ /	′ <u>/</u>
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laboratory Sample #	XQt.	SE CO	kor (Comment
B-10	6/418 3:15	H20	S	ucas ambels		X	X								
	/ /				···	_			<u></u>				ļ		
3.		·									ļ				
							<u> </u>	ļ							
5.	· .														
S.							ļ								
·						ļ	ļ						ļi		
B					***		ļ						<u> </u>		
).							1		_	ļ	<u> </u>		<u> </u>		
10.							ļ		1 17 A	1					
Datinguished Dur	Clinks 241	Sul	Data	41498	Time: [8 ! 3	Bace	aived F	3vr /		7 () c (10		Date: /	1,190	Time: /6/5
Relinquished By: _ Relinquished By:	Cyp+ No.		Date	, , , , , , , , , , , , , , , , , , , ,	Time:		eived E	•	8	~ ~ ~	16	`	Date:	` 'Ψ	Γime:
· •							eived E						Date:		Γime:
Relinguished By:	ed in Good Condi		Date		Time: mples on Ice?								Dale:		Page \perp of $\stackrel{\bigcirc}{\mathcal{D}}$

- □ 680 Chesapeake Drive Redwood City, CA 94063 (415) 364-9600
- ☐ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600
- u. 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200 ☐ East 11115 Montgomery, Suite B • Spokane, WA 99206 • (509) 924-9200
- ⊔ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company:	Cettley-	- R1a	4	140	010707	Project	Name:		1376	>						
Address: 6747		XI.	ite_	.5			AL Proje	ct Mana	iger:	Tin	<u> B</u>	-117				
city: Dublin	State:	CA		Zip Code:	84568	AFE #:										_ ;
	551-7555		AX #/S	(9)55/	- 7888	Site #,	City, Sta	te:	737	6	Med	esen	<u>ton,</u>	<u></u>	}	
Report To: Clyde (relatine	Sampler:	Ma	Ge Ga	autino	QC Da	ta: 🚨 Le	evel D (Standard)	🗋 Le	vel C		_evel B	_	Level A	
Turnaround 10 W	/ork Days □ 5 V	Vork Days	□/3 W	Vork Days		Drinking '		()		Ana	lyses R	equeste	ed	,		EL
Time: 2 Wo	ork Days 🚨 1 V	Vork Day	2-8	Hours		Waste W	ater	SC VV	0 /		/ /	/ /				
CODE: A Misc.	Detect. 🚨 Eval.	🛚 Remed	. 🖵 De	mol. 🖵 Cl	osure 🚨	Other		KV)	/ /				/ ,	/ /		
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laborat Sample			3 1/	//	//			\angle	/ 0	omments	4
1. B-10-6	C/11/48 9:0	tube		Soul	2						- NO.	Sampl	e-60	+ Hue	was	- Coterode
2. B-10-8	9:05		1	1	3						سالم الم	3 -10	15.5	- 1200	9-1Ce	- ₹
3.B-10-9.S	9:10				4			_			_		ļ			_ -
4. B-10-12	9:15				5	X	$ \times $						ļ			
5. B-10-14	9:70	1 1 1			6					_			<u> </u>			_ `
6. B-10-15	9:20				7						_		<u> </u>			
7. B-10-16.5	9:25	-			€		_					 	 	<u> </u>		
8. B-10-18	9:30			<u> </u>	9		_		_			<u>.</u>	╁			_
9. B-10-21	10:10		__		10		_	 -					 			
10. B-10-22.5	K 10:15	V .	V	V	it									<u> </u>		
	110	And A	Doto	6/4/98	Time: /8'	2-\ Re	ceived B	w A	10		2	Date:	WC 8	xTime:	(015	
Relinquished By:	ypi 50	ywnes,	Date	0/478	Tane. 70 :			. 0	<i>juc</i>	<u> </u>			19-1			
Relinquished By: _			Date	<u> </u>	Time:	Re	ceived B	By:				Date:		Time:		[}
Relinguished By:			Date);	Time:	Re	ceived E	βy Lab:				Date:		Time:	- C	
Were Samples Receiv	red in Good Cond	lition? ⊔ Ye	es 🗀 No	s S	amples on I	ce? ⊔ Ye	es 🗀 No	Metho	od of Sh	ipment_				Pag	e <u>2 of 8</u>	
To be completed upon		a tha Chai	n of Cu	stody repo	orted? 🗆 Ye	es 🗅 No li	f no, wha	at analy:	ses are	still nee	ded? _					
Were the ana Was the repo Approved by:	rt issued within th	e requeste	d turnai	round time Signature:	? U Yes U	No It no,	wnat wa	as tne tu _Comp	ırnarour any:	ia ume:	·			Da	ıte:	

- ☐ 680 Chesapeake Drive Redwood City, CA 94063 (415) 364-9600
- Q 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600
- ☐ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ⊔ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company:	Cettler-K	Eu au	Inc	140.	107.02	Project N	lame:	7	37£)			<u> </u>	
Address: 6747 Sive	va Ct Se	ute -				UNOCA	L Project	Manage	r:	Ting	Bei	114		. <u> </u>
city: Nublen	State:	CA		Code: 4	74568	AFE #:				21	,			
Telephone: (5/5) S	551-7555	, F	4X #(SI	5)551-	7888	Site #, C	ity, State	: 73	376	Pl	eastert	5~ <u>(</u>	A_	
Report To: C/40	4		- A	4 1		QC Data						Level B		evel A
Turnaround 🖄 10 W	ork Days 🚨 5 V	Vork Days	□ 3′Wo	rk Days		rinking W	later	4		Analyse	s Reques	ted	,	
Time: 2 Wo	rk Days 🚨 1 V	Vork Day	□ 2-8 F	lours	u v	√aste Wa	ter 3	i/oko/	/ /		//	/ /		
CODE: 🗅 Misc. 🥍	Detect. 🛭 Eval.	Remed.	☐ Dem	ol. 🗀 Clos	sure 🗔 C	ther	A \%		/ ,	/ /			/ /	
. Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laborator Sample	∠ (1)						<u>/</u>	<u></u>	omments
1.B-10-24.5	6/11/98 10:45	Sal	1	tube	17	\times	X							
2. B-10-26	10150	I I			13							 		·
3. p-20-29	10:55			<u> </u>	4									
4.13-10-30.5	11:00		1 -	1 1	5				_					· · · · · · · · · · · · · · · · · · ·
5. B-10-31	11:00			/	(p	\perp	X							
6. B-10-32	1/105			1	7							_		
7. B-10-34	11:25		1		14,		-			-				
8. B-10-37.5	11:35			_\/	4									
9. B-10-38	11:35		1/	1,	Ю	<u> </u>	X			<u> </u>				<u> </u>
10. 13-16-40	11:40		<u> </u>	\sqrt{V}	<u> </u>									
Relinquished By:	Ald So	Dans de	Date:	11/98	Time: 1843	Rece	CA: eived By:	77	rl	SRC	Date:	0/16/5	ime:	60.15
Relinquished By:			Date:	7"7"	Time:		eived By:	V			Date:		Time:	,
Relinguished By:			Date:		Time:	Rec	eived By	Lab:			Date:		Time:	
Were Samples Receive	ed in Good Cond	ition? ☐ Ye	s 🔾 No	Sar	nples on Ice	? 🗓 Yes	□No	Method c	of Shipm	ent			Page	3 of 8
To be completed upor 1) Were the analy 2) Was the report	vses requested o	n the Chair	of Custo	ody report	ed? 🗆 Yes	□ No Ifr o Ifno.v	no, what a	analyses the turna	are still around t	needed	?			
Approved by:														e:

- ⊔ 680 Chesapeake Drive Redwood City, CA 94063 (415) 364-9600
- □ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- □ 404 N. Wiget Lane Watnut Creek, CA 94598 (510) 988-9600
- ⊔ 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- ⊔ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company: (Gettler-R.	ian I	٠ <u>ر</u>	14	0107,02	Project I	Vame:	۳	1376							_
Address: 6947	Siera Ct	Suit	: (UNOCA	L Proje	ect Ma	nager:	7	ina	Bel	74			
city: Dublin		CA		Zip Code:	94568	AFE#:							<i></i>			_ :
Telephone: (5/0) S	SS1-7555	F		-		1	City, Sta	ate:	737	4	Plea	usante	on (1	<u>4</u>		Client
_/ /	Calgutine		~~\	. 11° ^								C [Level B		Level A	 ¥
Turnaround 15 10 W						rinking V		_6	,			s Reque	sted			Ф
Time: 🗋 2 Wo	ork Days 🚨 1 V	Vork Day	2-8	Hours	o v	/aste Wa	iter /	N 19	×0/				/ /			
CODE: Misc.	Detect. 🛭 Eval.	☐ Remed	. 🖵 De	mol. 🚨 Cl	osure 🗀 C	ther	SE TO	199 (X		/ /	/ /	/ /		/ 4	<u></u>	
. Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laborator Sample			XO-			//	//			Comments	
1.B-10-415	6/1/98 11:50	Scil		tube	22											Laboratory
2. B-10-44	1:55	1	4		23										•	igg
3. B-10-47	12100	1 1			24											1 1
4. B-10-49	12105				25	X	X	!					_			Yellow
5. B-10-51	12:10				26											
6. B-10-53	12:15				27			<u> </u>								_
7. B-10-54.5	12:30				26											
8. B-10-57	12:30				29	<u> </u>	X									_
9. B-10-58	120			11.	30											≥
10. B-10-605	1:25	Y	V	V	31											ratory
		- · · ·					RA	-4_	CA	5	71		-23 - 1			abo.
Relinquished By: (Up Sol	and -	Date	6/1498	Time:/8!3	Rec	eived E	3y ([ul	(bc	Ver	Date:	415 199	Time:	1013A	
Relinquished By:	<i></i>		Date		Time:		eived E					Date:		Time:		White
Relinguished By:			Date	•	Time:	Rec	eived E	3y Lab	:			Date	• •	Time:		
Were Samples Receive	ed in Good Cond	ition? □ Ye	s 🗅 No	Sa	amples on Ice	? 🗆 Yes	i □ No	Met	hod of S	hipme	nt			Pag	e <u>4</u> of <u>8</u>	
To be completed upor 1) Were the analy	receipt of report	: n the Chai	n of Cus	stody repo	rted? 🗅 Yes	———— □ No If r	no, wha	at anal	vses ar	e still r	needed?	·				
2) Was the report	t issued within the	e requeste	d turnar	ound time	? 🖸 Yes 🗅 N	o If no, v	vhat wa	as the	turnaro	und tin	ne?					_
Approved by:				Signature:				Com	pany:					Da	ite:	_]

- @ 680 Chesapeake Drive Redwood City, CA 94063 (415) 364-9600
- □ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- □ 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600
- ⊔ 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- ù East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company:	Gettler-	Ryan	Inc	- 148	0/07.02	Project N	lame:	73	76					
Address: 6747 S	_	-				UNOCA	L Project	Manage	r: 7	ina	Ben	4		
city: Publin	State: (\sim		Zip Code:	94568									
Telephone: (516)	501-755	<	FAX #	(s) SS	1-7888	Site #, C	ity, State	7	376		Pleasa	inton	<u>. CA</u>	
Report To: Clybe (Colcution	Sampler	· Clu	Or Carl	autine	QC Data	: 🛭 Lev	el D (Stan	dard)	Level	С	Level B) Dite	evel A
Turnaround AX 10 W					i l	rinking W		,			es Reques	sted	. <u> </u>	
•	rk Days 🚨 1 V	•				aste Wa	_		/ /			77		7
CODE: Misc. 🔀 t	Detect. 🚨 Eval.	☐ Reme	d. 🔾 De	mol. 🚨 Cl	osure 🚨 O	ther	Est Hilly		. / .	/ /	/ /	//	/ _	
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laborator Sample #	<i>.</i>	374	//			//		Cor	nments
1.B-10-62	61148 1:30	Sort		tube	32									
2.0-10-64	1:35				33				_					
3. B70-65.5	1145				34				<u> </u>					
4. B-10-69	1:50				35									
5.B-10-71	2! ∝	>			36								··	
6. B-10-72.5	2:05				37				ļ	<u> </u>				
7. B-10-73.5	2!/0				3E	_			<u> </u>					
8. B-10-75,5	2:20				39	X	MALL		<u> </u>	-				
9.B-10-78	1 2!25	1	1		40	_				<u> </u>				
10.B-10-79.5	V 2135	V	V	V	41									
	1100			116			<u> </u> (ZA		AS	, 		ا ا	4	
Relinquished By:	le Dala	1000	Date	:6/1498	Time:/8:3	ن Rece	eived By	Joseph		100	Date: 6	· (1847)	Time: 1	<u>> √</u>
Relinquished By:			Date	<u>; </u>	Time:	Rece	eived By:				Date:		Time:	
Relinguished By:			Date	:	Time:	Rece	eived By	Lab:			Date:		Time:	
Were Samples Receive	ed in Good Cond	ition? 🗅 Y			amples on Ice	? ☐ Yes	□ No	Method o	f Shipm	ent			Page _	5 of 8
To be completed upor 1) Were the analy 2) Was the report	receipt of report	: n the Cha	in of Cu	stody repo	rted? □ Yes □ ? □ Yes □ No	⊇Nolfr olfno.w	o, what	analyses the turna	are still	needed	l?			
Approved by:	, ioodoo miiiiii (ii)			Signature:				Company	:				Date	; <u> </u>

59801	ISSO
-------	------

☐ 680 Chesapeake Drive • Redwood City, CA	94063 • (415) 364-960

- ☐ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600
- U 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- ☐ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company:	Gettler-1	Pyau	Inc	14010	57,02	Project I	lame:	<u></u>	73	76								_
Address: 6747	Siera C+					UNOCA	L Projec	ct Mar	nager:		11/n=	i fi	err	У		<u>. </u>		-
City: Dublin	State: (_ ~	Zip Code: '	94568	AFE #:					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							- ;
Telephone: (5(6)	5<1-7555	· 	=AX #: (5(0) 55	51-7888	Site #, C	ity, Sta	te:	73	76	Pla	Pasc	uto	<u> </u>				
Report To: Olyde	Costant inc	Sampler	CU	de 6	claritine	QC Data	a: 🚨 Le	evel D	(Standa	ard) [Leve	I C	O L	evel B	[☐ Level	Α	اَ اِ
Turnaround 10 10 W						Orinking V	/ater	\0¢					equeste	d	.,	, , , , , , , , , , , , , , , , , , , 		U
	ork Days 🔲 1 W					Naste Wa			0/				/ /					
CODE: D Misc.	Detect. 🖸 Eval.	☐ Remed	i. 🗖 De	mol. 🚨 Cl	osure 🚨 (Other	KIX C	\%\\	//	/ ,	/ /	Ι,	/ ,	/ ,	/ ,			٦
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laborato Sample		3/40/4	(8 /							_	Comm	ents	
1.B-10-82.S	6/4/98 2:40	401	l	tube	42								<u> </u>					_ ;
2.B-10-84	1/ 2150		l		43					mple	lend	2	<u>\$-10</u>	-84.	5 -	RNG	-16	- ₹
3. B-10-86,5	3:35				44		<u> </u>											_ -
4. MW 8-6	6/12/98 10:00	• [45								<u> </u>					
5. mw-8-11	1 10:05				46	×_	X						_					- ^
6.mw-8-16.5	10:10				47		1				<u>. </u>		ļ	<u> </u>				-
7.100-8-21.5	10:12				4¢ <u>c</u>		<u> </u>			<u> </u>			<u> </u>					4
8. MW-8-26	10:20			\	49									<u> </u>				-
9.mw-8-32	10:25			<u> </u>	50		1 1	ļ	ļ				 					4
10.MW-8-37	10:30	<u> </u>	Ψ_	V	\$(X	$ \times_{\rho} $	A1 .	<u> </u>	Δ (<u> </u>	<u> </u>			ٔ لــ
	A 1	1	>	6/12/18			-	77	8	<u>A S</u>	$\overline{}$	-	2010/	160	7 Time	e: (0)		٦
Relinquished By:	Up Da	Longe	Date	:411/98	Time: <i>LS."</i> .	Rec	eived B	Y (C	nk.	Sign	- Dry	L.	Jale D	12(4	OTHER	<u>, (0)</u>		1
Relinquished By:	V		Date):	Time:	Rec	eived B	y:					Date:		Time) :		4
Delineviahad Pv			Date	7.	Time:	Rec	eived B	y Lab	:				Date:		Time			
Relinquished By: Were Samples Receiv	red in Good Cond	ition? 🗀 V			amples on lo					Shipm	ent				Pá	age <u>&</u> c	₁₁ 8	=
·			55 140							<u>.</u>				****				7
To be completed upo 1) Were the anal	Long required of	n tha Chr	in of Cu	stody repo	orted? Yes	s □ No If	no, wha	it anal	yses a	re still	neede	d? _						-
2) Was the repor	rt issued within the	e request	ed turna	round time	e? 🖸 Yes 🗀 !	Vo It no, '	what wa	is the	turnar	ouna t	ıme?	 						-
Approved by:				Signature:				_Com	pany:		77 /	· / 5	12 50	11 -	c /	Date: _		旦

S9801SSO UNOCAL 76

	680 Chesa	peake Drive •	Redwood City, CA	94063	• (415)	364-9600
--	-----------	---------------	------------------	-------	---------	----------

- □ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 1900 Bates Ave., Suite LM Concord, CA 94520 (510) 686-9600
- ⊔ 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- © East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ⊔ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Company Name: (Settler-R	yan In	د	1431	67.02	Pro	oject N	lame:		73	306		_					·	
Address: 6747 Sic						U١	IOCA	L Proje	ect Mar	nager:		lir	4	Be	4				
city: Dublin	State:	CA		Zip Code	9456	g⁄ Re	lease	#:											¥
Telephone: (5/ひ) S	51-7555	F	-AX #:(S	5/0) S	51-788	Sit	e #:		737	6		Dea	scurt		CA	-			Client
Report To: Clybe C			Cly	de Ge	Contine	_ Q	C Data	ı: 🗀 L	evel D	(Standa	rd)	Level	С	□ Le	evel B		Level A	١	J ž
Turnaround \$110 W		Vork Days	□ 3 V	Vork Days	s 📗 🗀	Drink Was	-		<u>k</u>	, ,		Analyse	es Req	uested	1		_		£.L.
CODE: Misc. 4						J Othe	er.	X				/	/ ,		/ /	/ ,			
. Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Labor Samp	•	N. S.										Commer	nts	
1.1463-8-41	6/12/98 10:40	321	(tube	- 52														- Laboratory
2.mw-8-45,5	1 10:45				5.3		×	×										<u></u>	abor
3. MW-8-46,5	10:45				54														<u> </u>
4. MW-8-51.5	10:50		_ .		<i>6</i> 5		<u>×</u>	<u> </u>											Yellow
5. MW-8-57	11:20				56														 >
6.MW-8-62	11:25				57														-
7. MW-8-67	11:30	1 1		ļi_	5%		_×_	_X_											{
8. MW-8-71	11:40	1		<u> </u>	59			-		<u> </u>									-
9. MW ~8-72,5	12:00				6														│
10. MW-8-75,5	V 12:05	<u> </u>	<u> </u>	LV	Col.			<u> </u>	Ay	L	- A						<u>.</u>	·····	orați Orați
Relinquished By:	Vide Da	Part	> Date	:6/12/98	8 Time: (8	₹: 3 >	Rece	eived E	~ + > 		23/	<u>U</u>	z Da	te: 😉	15 9	time:	lor		- Lab
Relinquished By:	cy		Date): 	Time:	<u>.</u>	Rece	eived E	3y: ∵ C	>			Da	te:		Time:			White
Relinguished By:			Date):	Time:		Rece	eived E	By Lab				Dá	ate:		Time:]
Were Samples Receive	ed in Good Cond	ition? 🗅 Y	es 🗅 No) S	Samples or	lce?	ב Yes	□ No	Meth	nod of S	Shipme	ent			_	Pag	je <u>7</u> of 9	<u>{</u>	
1) Were the analy	To be completed upon receipt of report: 1) Were the analyses requested on the Chain of Custody reported? 2) Was the report issued within the requested turnaround time? 2) Yes No If no, what analyses are still needed? 2) Was the report issued within the requested turnaround time? Signature: Company: Date:																		

59601550	
UNOCAL	76

☐ 680 Chesapeake Drive • Redwood City, CA	94063 • (415) 364-9600
Ci 000 Chesapeake Diles - Houseon City, Co.	01000 (110)001000

- ☐ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 1900 Bates Ave., Suite LM Concord, CA 94520 (510) 686-9600
- ⊔ 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- © East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- (i) 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Company Name: Cettler-Ryan Inc	140107,02	Project Name: 7376								
Address: 6747 Sicila Ct Suites		UNOCAL Project Manager: Time	Berry							
City: Dublin State: CA	Zip Code: 94568	Release #:								
	x#(510)551-7888	Site #: 7376 Plcus	auton CA							
Report To: Clyle Galantine Sampler: C9	Tyle Galactine	QC Data: Level D (Standard) Level C	☐ Level B ☐ Level A							
Turnaround 10 Work Days 5 Work Days	7	Drinking Water & Analyses	Requested							
Time: 2 Work Days 1 Work Day		Waste Water	/////							
CODE: Misc. M Detect. D Eval. D Remed.		Other CA A STATE OF THE OTHER PROPERTY OTHER PROPERTY OF THE OTHER PROPERTY OTHER PROPERTY OF THE OTHER PROPERTY OTHER PR								
Client Date/Time Matrix # 6 Sample I.D. Sampled Desc. Co			Comments							
1. MW-8-80 6/12/98 12:10 Soil 1	tube 62									
2.MW-8-81,5 1 1:10 1	1 43	Sample 100								
3. MW-8-83 1:15 1	4		honge COC to live 8-81,5 pres							
4.mw-8-84.5 1:20	\		Gole Certa of the If							
5.	HCI, HOUZ									
6. MW - 4 6-12-99 10:90 HJ)	1 Punk peplate 66		4562 Llwingston							
700 TAH 6/B TEX / MTBS / 82601	(5) Oxy-Cap/ (2									
8.		BU COUS FUI								
9. TB - CB 6-12-88 420 1	HCL Von 67	1 1 1 1 1 1 1 1 1	4563 Lidingston							
10. TPHGRTFX		721 74 5	Crs							
BA O A A	al laur &	RAY BAHON	Date: 6/15 98 Time: 10 15							
Relinquished By. Why Sulants [Date:6/12/78 Time: 181	Heceived By?	Date. 6[18 (VX Time. (V ')							
Relinquished By:	Date: Time:	Received By:	Date: Time:							
Relinguished By:	Date: Time;	Received By Lab:	Date: Time:							
Were Samples Received in Good Condition? ⊔ Yes □		ee? LI Yes LI No Method of Shipment	Page <u></u> 8 of <u>8</u>							
To be completed upon receipt of report:	To be completed upon receipt of report: 1) Were the analyses requested on the Chain of Custody reported? Yes No If no, what analyses are still needed?									
 Were the analyses requested on the Chain of Was the report issued within the requested to 	t Custody reported? ☐ Yes Jrnaround time? ☐ Yes ☐ I	s uno ir no, what analyses are still needed? No If no, what was the turnaround time? ——								
Approved by:	Signature:	Company:	Date:							

June 25, 1998

Service Request No.: S9801512

GETTLER-RYAN INC. GENERAL CONTRACTORS

Mr. Clyde Galantine Gettler-Ryan Inc. 6747 Sierra Court Suite J Dublin, CA 94568

RE: 7376 TOSCO/140107.02

Dear Mr. Galantine:

The following pages contain analytical results for sample(s) received by the laboratory on June 11, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 29, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely.

Steven L. Green Project Chemist

Acronyms

A2LA American Association for Laboratory Accreditation **ASTM** American Society for Testing and Materials

BOD **Biochemical Oxygen Demand**

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit COD Chemical Oxygen Demand

DEC Department of Environmental Conservation DEQ Department of Environmental Quality DHS Department of Health Services DLCS **Duplicate Laboratory Control Sample**

DMS Duplicate Matrix Spike DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

Ion Chromatography IC

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

Л Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample LUFT Leaking Underground Fuel Tank

М Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit MPN Most Probable Number MRĹ Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NΑ Not Applicable NAN Not Analyzed NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit QA/QC Quality Assurance/Quality Control **RCRA** Resource Conservation and Recovery Act

RPD

Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids **TPH** Total Petroleum Hydrocarbons

Trace level. The concentration of an analyte that is less than the PQL but greater than or equal tr

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS **Total Suspended Solids**

TTLC **Total Threshold Limit Concentration**

VOA Volatile Organic Analyte(s) ACRONLST, DOC 7/14/95

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

13-12

Lab Code:

S9801512-002

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50]	6/20/98	6/22/98	64	D1
Motor Oil	EPA 3510	Modified EPA 8015	250]	6/20/98	6/22/98	ND	

DI

Quantitated as diesel. The sample contains components that eluted in the diesel range, but the chromatogram does not match the typical diesel fingerprint.

1S22/020597p

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801512

Date Collected: NA

Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

S980620-MB

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	EPA 3510	Modified EPA 8015	50	1	6/20/98	6/22/98	ND	
Motor Oil	EPA 3510	Modified EPA 8015	250	1	6/20/98	6/22/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-10

Lab Code:

S9801512-005

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/19/98	6/20/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/19/98	6/20/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-16.5

Lab Code:

S9801512-008

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/19/98	6/19/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/19/98	6/19/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-28.5

Lab Code: Test Notes:

\$9801512-014

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	50	6/19/98	6/23/98	14000	
Motor Oil	LUFT	Modified EPA 8015	5	50	6/19/98	6/23/98	<250	C1

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-37.5

Lab Code:

S9801512-019

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	10	6/19/98	6/23/98	4700	C1
Motor Oil	LUFT	Modified EPA 8015	5	10	6/19/98	6/23/98	<50	

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-47

Lab Code: Test Notes:

\$9801512-023

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date · Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	5	6/19/98	6/23/98	2600	
Motor Oil	LUFT	Modified EPA 8015	5	5	6/19/98	6/23/98	<25	C 1

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

: Hydrocarbon Scan

Sample Name:

B-12-55

Lab Code:

S9801512-027

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/19/98	6/19/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/19/98	6/19/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801512

Date Collected: 6/10/98

Date Received: 6/11/98

Hydrocarbon Scan

Sample Name:

B-12-72

Lab Code:

S9801512-035

Test Notes:

Units: mg/Kg (ppm)

Basis; Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/19/98	6/19/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/19/98	6/19/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: NA

Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

S980619-MB

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel Motor Oil	LUFT LUFT	Modified EPA 8015 Modified EPA 8015	1 5	1	6/19/98 6/19/98	6/19/98 6/19/98	ND ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801512

Date Collected: 6/10/98
Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-8

Units: ug/L (ppb)
Basis: NA

Lab Code:

S9801512-001

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA .	6/17/98	ND	G3
Benzene	EPA 5030	8020	0.5	t	NA	6/17/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	6/17/98	1.6	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	l	NA	6/17/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	6/17/98	ND	

G3

The sample contains a single non-fuel component eluting in the gasoline range.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: \$9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-12

Units: ug/L (ppb)
Basis: NA

Lab Code:

S9801512-002

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	5	NA	6/18/98	<250	Cl
Benzene	EPA 5030	8020	0.5	5	NA	6/18/98	5	
Toluene	EPA 5030	8020	0.5	5	NA	6/18/98	<2.5	Cl
Ethylbenzene	EPA 5030	8020	0.5	5	NA	6/18/98	<2.5	Cl
Xylenes, Total	EPA 5030	8020	0.5	5	NA	6/18/98	5	
Methyl tert -Butyl Ether	EPA 5030	8020	3	5	NA	6/18/98	220	

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: \$9801512

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S980616-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50 ·	1	NA	6/16/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	6/16/98	ND	
Toluene	EPA 5030	8020	0.5	ì	NA .	6/16/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	ì	NA	6/16/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	6/16/98	ND	
Methyl tert - Butyl Ether	EPA 5030	8020	3	1	NA	6/16/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801512

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S980617-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	6/17/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	6/17/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	t	NA	6/17/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98
Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-12-10

Lab Code:

S9801512-005

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/23/98	5	
Benzene	EPA 5030	8020	0.005	ī	6/22/98	6/23/98	0.16	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	0.073	
Ethylbenzene	EPA 5030	8020	0.005	Į.	6/22/98	6/23/98	0.02	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/23/98	0.22	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	l	6/22/98	6/23/98	1.1	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-12-16.5

Lab Code:

\$9801512-008

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/23/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Methyl-tert-butyl other	EPA 5030	8020	0.05	1	6/22/98	6/23/98	0.64	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-12-28.5

Lab Code:

S9801512-014

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	50	6/22/98	6/23/98	430	
Benzene	EPA 5030	8020	0.005	50	6/22/98	6/23/98	5.1	
Toluene	EPA 5030	8020	0.005	50	6/22/98	6/23/98	3.2	
Ethylbenzene	EPA 5030	8020	0.005	50	6/22/98	6/23/98	6.6	
Xylenes, Total	EPA 5030	8020	0.005	50	6/22/98	6/23/98	15	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	50	6/22/98	6/23/98	2.6	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-12-37.5

Lab Code: Test Notes: S9801512-019

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	125	6/22/98	6/23/98	1700	
Benzene	EPA 5030	8020	0.005	125	6/22/98	6/23/98	21	
Toluene	EPA 5030	8020	0.005	125	6/22/98	6/23/98	3.8	
Ethylbenzene	EPA 5030	8020	0.005	125	6/22/98	6/23/98	8.7	
Xylenes, Total	EPA 5030	8020	0.005	125	6/22/98	6/23/98	7.6	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	125	6/22/98	6/23/98	<6.2	C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

C1

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-12-47

Lab Code:

S9801512-023

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	12.5	6/22/98	6/24/98	98	
Benzene	EPA 5030	8020	0.005	12.5	6/22/98	6/24/98	1.5	
Toluene	EPA 5030	8020	0.005	12.5	6/22/98	6/24/98	1.2	
Ethylbenzene	EPA 5030	8020	0.005	12.5	6/22/98	6/24/98	2.0	
Xylenes, Total	EPA 5030	8020	0.005	12.5	6/22/98	6/24/98	4.4	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	12.5	6/22/98	6/24/98	1.5	•

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98

Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

B-12-55

Units: mg/Kg (ppm)

Lab Code:

S9801512-027

Basis: Wet

Test Notes:

					•			
Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/22/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	0.005	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/22/98	0.01	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/22/98	6/22/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: 6/10/98
Date Received: 6/11/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

13-12-72

Lab Code:

S9801512-035

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/23/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/23/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	I	6/22/98	6/23/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	I	6/22/98	6/23/98	ND	
Methyl-tert-butyl other	EPA 5030	8020	0.05	1	6/22/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: \$9801512

Date Collected: NA Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S980622-SB1

Test Notes:

Units: mg/Kg (ppm) Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Datę Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	l	6/22/98	6/22/98	ND	
Benzene	EPA 5030	8020	0.005	į.	6/22/98	6/22/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	1	6/22/98	6/22/98	ND	

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: S9801512

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

EPA 3510

Analysis Method: Modified EPA 8015

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent Recovery p-Terphenyl
B-12	S9801512-002		109
Method Blank	S980620-MB		· 94

CAS Acceptance Limits:

41-140

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

LUIT

Analysis Method: Modified EPA 8015

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	p-Terphenyl
B-12-10	S9801512-005		80
B-12-16.5	S9801512-008		86
B-12-28.5	S9801512-014		62
B-12-37.5	S9801512-019		68
B-12-47	S9801512-023		68
B-12-55	S9801512-027		77
B-12-72	S9801512-035		68
Method Blank	S980619-MB		108

CAS Acceptance Limits:

41-140

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Water

Service Request: \$9801512

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Analysis Method: 8020 CA/LUFT

Units: PERCENT

Basis: NA

		Test	Percent	Recovery
Sample Name	Lab Code	Notes	4-Bromotluorobenzene	a,a,a-Trifluorotoluene
B-8	S9801512-001	•	100	106
B-12	S9801512-002		101	92
Method Blank	S980616-WB1		I12 .	96
Method Blank	S980617-WB1		108	101

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

TOSCO

Project:

7376 TOSCO/140107.02

Sample Matrix:

Soil

Service Request: S9801512

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

BTEX and TPH as Gasoline

Prep Method:

EPA 5030

Analysis Method: 8020 CA/LUFT

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
B-12-10	S9801512-005		93	101
B-12-16.5	S9801512-008		79	84
B-12-28.5	S9801512-014		97	98
B-12-37.5	S9801512-019		71	85 B1
B-12-47	S9801512-023		92	99
B-12-55	S9801512-027		75	80
B-12-72	S9801512-035		75	75
Method Blank	S980622-SB1		77	85

CAS Acceptance Limits:

51-137

51-137

₿l

The surrogate used for this sample was 4-Bromofluorobenzene.

ι	JN	00	CAL	76
•	,,,	U	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

u	680 Chesapeake Drive •	Redwood City, CA	94063 • (415)	364-9600
---	------------------------	------------------	---------------	----------

- ⊔ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 1900 Bates Ave., Suite LM Concord, CA 94520 (510) 686-9600
- U 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- ☐ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Company Name:	Her- Ru	an		140	107.02	Project N	lame:	73	76					
Address: 6747 S			7:		I	UNOCA	L Projec	t Manag	ger:	Tino	<u>Be</u>	(14		
city: Dublin		CA		Zip Code: '	74568	Release	#:							
Telephone: (5(5) 5	51-755	5-					73	76		Pleas	antor	(,	<u> </u>	;
Report To: Clyly (ı: 🖵 Le	vel D (si	andard)	☐ Level	IC [Level B	☐ Level	<u> </u>
Turnaround 10 Work Days 15 Work Days 13 Work Days 1 Drinking Water Analyses Requested														
Time: 2 Work Days 1 Work Day 2-8 Hours Waste Water														
CODE: Misc. 🔀 [her	(\$\frac{1}{2}\)			/ /		//	/ /	 1
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laboratory Sample #			/					Comme	nts
1. B-12-505	61098 9:20	501	1	Tube	3									
2. B-12-8	9:25	1		1	Ч	ļ <u>.</u>				1				
3. B-12-10	9:30				5	X	X			_				-
4. B-12-12	9:40				6	`_								
5. B-12-14.5	9:45													
6.13-12-16-5	9:50				8	X_	X			1				
7. B-12-17.5	1010				9									
8. B-12-20.5	10:05	1 \			(0									
8. B-12-22.5	10:10	1			- ()	ļ								
10. B-12-24	V 10:15	Ψ	V	V	12	<u> </u>	<u> </u>		1					
	A A O	17 1					AY	7	A 462		9	. 100	1.0	
Relinquished By:	Laple Si	Sout	Date	6/w/9 <u>8</u>	Time: <i>\(\gamma\)</i> . €	Rece	eived By	" [G	n (150X	Date:	6/11/90	Time: \ 20	0/14
Relinquished By:			Date	· ,	Time:	Rece	eived By	r:			Date:		Time:	
Relinquished By:			Date	<u> </u>	Time:	Rece	eived By	/ Lab:		···	Date	:	Time:	
Were Samples Receive	ed in Good Cond	ition? 🗀 Y	es 🗅 No	Sa	mples on Ice	? 🗀 Yes	□ No	Method	l of Shipi	ment			Page 2 of	_5
To be completed upor	receipt of report	:			. 10 11111					II	١٥			
Were the analy Was the report	yses requested o	n the Cha	in of Cus ed turner	stody repoi ound time?	ted? IJ Yes↓ ? IJ Yes IJ No	JNO Ifr olfno.w	io, what /hat was	analyse the turi	es are st naround	ıı needed time? —	J/			
Approved by:				Signature:		,	<u> </u>	Compai	ny:				Date:	

680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 □ 18939 120th Ave., N.E., Suite 101 • Bothell, WA 98011 • (206) 481-9200 JNOCAL 🜃 ☐ East 11115 Montgomery, Suite B • Spokane, WA 99206 • (509) 924-9200 ■ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 15055 S.W. Sequoia Pkwy, Suite 110 • Portland, OR 97222 • (503) 624-9800 ☐ 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 Project Name: Company Name: 7376 140107.02 UNOCAL Project Manager: Tina Berry Suite Address: Zip Code: 74568 Release #: City: State: FAX # S(0) SS1-7888 | Site #: 5/0 Telephone: Galantino Sampler Clydic Cog lantine QC Data: Level D (Standard) Level C Level B Level A Report To: Turnaround \$\square\$10 Work Days \$\square\$5 Work Days \$\square\$3 Work Days Analyses Requested Drinking Water ☐ 2 Work Days ☐ 1 Work Day ☐ 2-8 Hours Time: ☐ Waste Water CODE: ☐ Misc. ☑ Detect. ☐ Eval. ☐ Remed. ☐ Demol. ☐ Closure ☐ Other Cont. Date/Time Matrix # of Laboratory Client Comments Type Sample # Sample I.D. Sampled Desc. Cont. Anbel HLO 3145 Deas Hz anhers 8. 9. 10. Time: 18100 Date: 6 (1) 97 Time: 1200 MM Received By: Relinquished By: Date: 🕼 Received By: Relinquished By: Date: Time: Date: Time: Date: Time: Received By Lab: Time Date: Relinquished By: Page \perp of \leq Samples on Ice? Yes No Method of Shipment Were Samples Received in Good Condition?

Yes

No To be completed upon receipt of report: 1) Were the analyses requested on the Chain of Custody reported? U Yes U No. If no, what analyses are still needed? — 2) Was the report issued within the requested turnaround time? \square Yes \square No. If no, what was the turnaround time? Signature: Company: Approved by:

UNOCAL 76

u	680 Chesapeake Drive	Redwood City, CA	94063 • (415)	364-960
_	oco oncoapouno zinte	1,00,1000 0.1,1		

- ⊔ 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- □ 1900 Bates Ave., Suite LM Concord, CA 94520 (510) 686-9600 \$\int \frac{9}{50} \frac{5}{5} \fr
- 니 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- ☐ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Company Name:	ettler- Kyan	1401	107.02	roject Name:	737	6			
Address:				INOCAL Project	Manager:	Tina	Berry		
City:	State:	Zip Code:		Release #:					
Telephone:	F	AX #:		Site #: 7	376	Please	auton (?A	
Report To: Clylic	Calantine Sampler:	Clyde Coak	retore	C Data: 🚨 Leve	el D (Standard)	☐ Level C	Leve		
	Turnaround 😂 10 Work Days 🗅 5 Work Days 🗀 3 Work Days 🗀 Drinking Water 💢 Analyses Requested								
Time: ☐ 2 Work Days ☐ 1 Work Day ☐ 2-8 Hours ☐ Waste Water ☐ 2 Work Days ☐ 1 Work Day ☐ 2-8 Hours									
CODE: 🗅 Misc. 💬	Detect. 🚨 Eval. 🚨 Remed	. 🗖 Demol. 🗖 Clo	osure 🗀 O	ier (1)	(10×2)/				
Client Sample I.D.	Date/Time Matrix Sampled Desc.	# of Cont. Cont. Type	Laboratory Sample #	ner Silver	<i>Y</i> / /			Comments	
1-B-12-26	410/48 10:40 soil	1 tube	13						
2. B-12-28-5	(0:50)		14	1717					
3.B-12-30	11:00		15						
4. B-12-31,5	11:65		(6						
5. 13-12-33.S	11:10		17			<u> </u>			
6. B-12-36	11:15		18						
7.B-12-37.S	11:25		19	X X _		- 			
8. B-12-41	11:3=		20			 			
9. B-12-43	11:45		21	<u> </u>					
10. B-12-44,5	V 11:50 V	VIV	22				į		
Relinquished By:	Mil Solat	2 Date: 4/6/98	Time: /%/e	Received By:	C-A	2000	Date: 6	198 Time: 1200 /2	
_	CAJON /CUXINO				I CEAN (-Hylen-			
Relinquished By:		Date:	Time:	Received By:			Date:	Time:	
Relinguished By:		Date:	Time:	Received By L	_ab:		Date:	Time:	
Were Samples Receiv	ed in Good Condition? 🗅 Ye	as ⊔ No Sa	imples on Ice	☐ Yes ☐ No M	Method of Ship	ment		Page 3 of 5	
To be completed upor 1) Were the analy	n receipt of report: yses requested on the Chai t issued within the requeste	n of Custody repor	rted? Li Yes [No If no, what a	inalyses are s	till needed?			
· ·	t issued within the requeste				ompany:			Date:	
, , , , , , , , , , , , , , , , , , , ,						1.			

UNOCAL	76
---------------	----

⊔ 680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600	⊔ 18939 120th Ave., N.E., Suite 101 • Bothell, WA 98011 • (206) 481-9200
© 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600	☐ East 11115 Montgomery, Suite B • Spokane, WA 99206 • (509) 924-9200
☐ 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600	☐ 15055 S.W. Sequoia Pkwy, Suite 110 • Portland, OR 97222 • (503) 624-9800

Company Name: (Settler-	Rugi	Л	[4]	3107,02 F	Project N	ame:	73	76			
Address: 6747			suite			JNOCAL	. Project M	anager:	Tina	Berl	Ч	
city: Dablen	State:				94563 F	Release	#:		•			
Telephone: (5(5)	551-75	SS	FAX #:((چرنی) چ	51-7888	Site #:	737	16	Please	santon	CA	
Report To: Clale (Level	D (Standard)	🚨 Level	с 🗓 Ц	, evel B	☐ Level A
Turnaround 14 10 W			,	r	1	nking W		Į.		es Requeste	d	
	ork Days 🚨 1 V				1	aste Wat	er 🙌	0/			<i>'</i>	//
CODE: Misc. XI	Detect. 🖵 Eval.	☐ Reme	d. 🖵 De	mol. 🚨 Ck	osure 🖵 Oth	ner	2474°K	(°/ /		///	/ /	
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Laboratory Sample #	Red						Comments
1.B-12-47	6/6/98 11:55	Soul	1	tube	2-3	X	\times					
2.13-12-48,5	1 12145				24							
8.13-12-50.5	12:50				25	<u> </u>						
4. B-12-53	1,00			<u> </u>	26							
5.13-12-55	1305	·			27	$\perp X \perp$	X					
6. B-12-56,5	1110				2.8		,					
7. B-12-59	1:15				29							
8. B-12-61	1:20				30							
B-12-62.5	6:30				31							
10.13-12-64	1:35	4	V	V	32							
	000	2					ZAY	<u>C</u>	15		, , ,	
Relinquished By:	Upr. To	Lege	フ Date	6/10/98	Time: 18:02	⇒ Rece	ved By:/	uls	Bula	Date:	11 (98 Tin	ne: (200 / A
Relinquished By: _			Date	:	Time:	Rece	ved By:		· · ·	Date:	Tin	me:
Relinguished By:			Da <u>te</u>	:	Time:	Rece	ved By La	b:		Date:	Tin	ne:
Were Samples Receiv	ed in Good Cond	ition? 🗀 Y	'es Ū No	Sa	mples on Ice?	Ü Yes □	i No Me	thod of Ship	oment			Page $\underline{\mathcal{Y}}$ of $\underline{\mathcal{S}}$
To be completed upon 1) Were the anal	n receipt of report	: n the Cha	in of Cus	stody repor	ted? ⊔ Yes ⊔	No If no	o, what ana	alyses are s	still needed	?		
2) Was the repor	t issued within the	e request	ed turnar	ound time?	? 🗓 Yes 🗓 No	If no, w	nat was the	e turnaroun	d time? —			
Approved by:				Signature:			Cor	npany:				_ Date:

UNOCAL 76

- ☐ 680 Chesapeake Drive Redwood City, CA 94063 (415) 364-9600
- © 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- 1900 Bates Ave., Suite LM Concord, CA 94520 (510) 686-9600
- ☐ 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
- 🗀 East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
- ⊔ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Company Name: Gettler - Ryan 143107.02 Project Name: 7376	
Address: 6747 Sierra Cf Suite T UNOCAL Project Manager: Tin	a Berry
City: Ochin: State: CA Zip Code: 94568 Release #:	
Telephone: (50) 551-7555 FAX #(50)551-7888 Site #: 7376 Pleas	santon
Report To: Cycle Galantine Sampler: Club, Colontine QC Data: Devel D (Standard) Dev	vel C 🖸 Level B 🚨 Level A
	yses Requested
Time: ☐ 2 Work Days ☐ 1 Work Day ☐ 2-8 Hours ☐ Waste Water	
CODE: Misc. Detect. Eval. Remed. Demol. Closure Other	
Client Date/Time Matrix # of Cont. Laboratory Sample I.D. Sampled Desc. Cont. Type Sample #	Comments
1.B-12-65.5 410/28 1:40 Soil 1 tube 33	
2.12-70 1/ 1:55 1 34	
3. B-12-72 2:00 35 XX	
4.13-12-73-5 2:05 36	
5. B-12-75.5 2:20 37	
6. B-12-79 V 2135 W 38	
7.	
8.	
9.	
10.	
Relinquished By: Alas Date: 6/9/98 Time: LSD Received By: Alas Date	Date: 6 (1 93 Time: 1200 Pm
Relinquished By: Date: Time: Received By:	Date: Time:
Relinguished By: Date: Time: Received By Lab:	Date: Time:
Were Samples Received in Good Condition? ☐ Yes ☐ No Samples on Ice? ☐ Yes ☐ No Method of Shipment	Page <u>5</u> of <u>5</u>
To be completed upon receipt of report: 1) Were the analyses requested on the Chain of Custody reported? Yes No If no, what analyses are still need the chain of Custody reported? Yes No If no, what analyses are still need the chain of Custody reported?	ded?
2) Was the report issued within the requested turnaround time? If Yes I No. If no, what was the turnaround time?	
Approved by: Signature: Company:	1

June 30, 1998

Mr. Clyde Galantine Gettler-Ryan, Inc. 6747 Sierra Court Suite J Dublin, CA 94568

RE: 7676 Pleasanton/140107.02

Dear Mr. Galantine:

The following pages contain analytical results for sample(s) received by the laboratory on June 17, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 11, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

ven L. Green **Project Chemist**

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality

DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TBH Total Petroleum Hydro

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564

Date Collected: 6/15/98 Date Received: 6/17/98

Total Metals

Sample Name:

Comp US-1-(1,2,COMP,4)

S9801564-005

Lab Code: Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Prepared	Analyzed	Result	Notes
Antimony	EPA 3050BM	601 0A	5	1	6/24/98	6/24/98	ND	
Arsenic	EPA 3050BM	6010A	5	1	6/24/98	6/24/98	ND	
Barium	EPA 3050BM	6010A	1	1	6/24/98	6/24/98	130	
Beryllium	EPA 3050BM	6010A	0.5	1	6/24/98	6/24/98	ИD	
Cadmium	EPA 3050BM	6010A	0.5	1	6/24/98	6/24/98	ND	
Chromium	EPA 3050BM	6010A	1-	1	6/24/98	6/24/98	66	
Cobalt	EPA 3050BM	6010A	1	1	6/24/98	6/24/98	10	
Copper	EPA 3050BM	6010A	1	1	6/24/98	6/24/98	21	
Lead	EPA 3050BM	6010A	5	1	6/24/98	6/24/98	8	
Mercury	METHOD	7470	0.4	1	6/29/98	6/29/98	ИD	
Molybdenum	EPA 3050BM	6010A	1	1	6/24/98	6/24/98	5	
Nickel	EPA 3050BM	A010A	2	1	6/24/98	6/24/98	58	
Selenium	EPA 3050BM	601 0A	5	1	6/24/98	6/24/98	ИD	
Silver	EPA 3050BM	A010a	2	1	6/24/98	6/24/98	ND	
Thallium	EPA 3050BM	601 0A	5	1	6/24 98	6/24/98	ИD	
Vanadium	EPA 3050BM	A010A	1	1	6,24 98	6/24/98	31	
Zinc	EPA 3050BM	6010A	2	1	6/24/98	6/24/98	43	

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564

Date Collected: NA

Date Received: NA

Total Metals

Sample Name:

Method Blank

Units: mg/Kg (ppm)

Lab Code:

S980624-MB

Basis: Wet

Test Notes:

A. B.A.	Prep	Analysis	\	Dilution	Date	Date	D 14	Result
Analyte	Method	Method	MRL	Factor	Prepared	Analyzed	Result	Notes
Antimony	EPA 3050BM	A010A	5	I	6/24/98	6/24/98	ND	
Arsenic	EPA 3050BM	601 0A	5	1	6/24/98	6/24/98	ND .	
Barium	EPA 3050BM	601 0A	1	1	6/24/98	6/24/98	ИD	
Beryllium	EPA 3050BM	A0106	0.5	1	6/24/98	6/24/98	ND	
Cadmium	EPA 3050BM	601 0A	0.5	1	6/24/98	6/24/98	ND	
Chromium	EPA 3050BM	601 0A	l	1	6/24/98	6/24/98	ND	
Cobalt	EPA 3050BM	601 0A	1	1	6/24/98	6/24/98	ND	
Capper	EPA 3050BM	601 0A	1	1	6/24/98	6/24/98	ИD	
Lead	EPA 3050BM	60 10A	5	1	6/24/98	6/24/98	ND	
Мегсигу	METHOD	7470	0.4	1	6/29/98	6/29/98	ND	
Molybdenum	EPA 3050BM	6010A	1	1	6/24/98	6/24/98	ND	
Nickel	EPA 3050BM	6010A	2	1	6/24/98	6/24/98	ИD	
Selenium	EPA 3050BM	601 0A	5	1	6/24/98	6/24/98	ND	
Silver	EPA 3050BM	A010A	- 2	1	6/24/98	6/24/98	ND	
Thallium	EPA 3050BM	A010A	5	1	6/24/98	6/24/98	ИD	
Vanadium	EPA 3050BM	A010A	1	1	6/24/98	6/24/98	ND	
Zinc	EPA 3050BM	60 10A	2	1	6/24/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564

Date Collected: 6/15/98

Date Received: 6/17/98

, Hydrocarbon Scan

Sample Name:

Comp US-1-(1.2.COMP,4)

Lab Code:

\$9801564-005

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	2	6/22/98	6/24/98	1100	
Motor Oil	LUFT	Modified EPA 8015	5	2	6/22/98	6/24/98	ND	

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564

Date Collected: NA

Date Received: NA

Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

S980622-MB

Test Notes:

Units: mg/Kg (ppm)

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Diesel	LUFT	Modified EPA 8015	1	1	6/22/98	6/23/98	ND	
Motor Oil	LUFT	Modified EPA 8015	5	1	6/22/98	6/23/98	ND	

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564
Date Collected: 6/15/98

Date Received: 6/17/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

Comp US-1-(1.2.COMP,4)

Lab Code:

\$9801564-005

Test Notes:

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	10	6/22/98	6/27/98	100	
Benzene	EPA 5030	8020	0.005	10	6/22/98	6/27/98	0.27	
Toluene	EPA 5030	8020	0.005	10	6/22/98	6/27/98	0.16	
Ethylbenzene	EPA 5030	8020	0.005	10	6/22/98	6/27/98	0.82	
Xylenes, Total	EPA 5030	8020	0.005	10	6/22/98	6/27/98	1.9	
Methyl-tert-butyl other	EPA 5030	8020	0.05	10	6/22/98	6/27/98	<0.5	C 1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

Cl

Analytical Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: \$9801564

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

Test Notes:

S980622-SB1

Units: mg/Kg (ppm)

Basis: Wet

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	1	1	6/22/98	6/22/98	ND	
Benzene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Toluene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.005	1	6/22/98	6/22/98	ND	
Methyl-tert-butyl ether	EPA 5030	8020	0.05	3	6/22/98	6/22/98	ND	

QA/QC Report

Client:

TOSCO

Project:

7676 Pleasanton/140107.02

Sample Matrix:

Soil

Service Request: S9801564

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

Hydrocarbon Scan

Prep Method:

Analysis Method:

LUFT

Modified EPA 8015

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent Recovery p-Terphenyl
Comp US-1-(1,2,COMP.4)	S9801564-005		62
Method Blank	S980622-MB		60

CAS Acceptance Limits:

41-140

QA/QC Report

Client:

TOSCO

Soil

Project: 7676 Pleasanton/140107.02 Service Request: S9801564

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX and TPH as Gasoline

Prep Method:

Sample Matrix:

EPA 5030

Analysis Method: 8020 CA/LUFT

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
Comp US-1-(1,2,COMP,4)	S9801564-005		110	96
Method Blank	S980622-SB1		100	103

CAS Acceptance Limits:

51-137

51-137

			11	•	•	U	,	
山 68	0 Chesapeake Drive	 Redwood 	City, C	A 940)63 • (4°	15) 3	64-96	00

- © 819 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600
- ☐ 404 N. Wiget Lane Walnut Creek, CA 94598 (510) 988-9600
- 18939 120th Ave., N.E., Suite 101 Bothell, WA 98011 (206) 481-9200
 - ☐ East 11115 Montgomery, Suite B Spokane, WA 99206 (509) 924-9200
 - ☐ 15055 S.W. Sequoia Pkwy, Suite 110 Portland, OR 97222 (503) 624-9800

Consultant Company: Cettler-Ryan	140/07,02 Pro	oject Name: 7376	
Address: 6747 Siccia Ct Suite J	UN	OCAL Project Manager: Ting of	elly
City: Dablin State: CA	Zip Code: 44568 AF		<i>J</i>
	(S10) SS1-7888 Site	e #, City, State: 7376 Pla	esaution, CA
Report To: Clyde Galactine Sampler: Cly	ا ما		し Level A こ Level A こ こ
Turnaround 10 Work Days 5 Work Days 3			ä. Requested
Time: 🔲 2 Work Days 🖫 1 Work Day 🔲 2		e Water	
CODE: Misc. Detect. Deval. Remed. DE			
Client Date/Time Matrix # of Sample I.D. Sampled Desc. Cont.	Cont. Laboratory Type Sample #	RESPONDED TO THE PARTY OF THE P	Comments
1.US-1 (3mp) 6/15/98 SOIL 4	tube 1-4	* * *	at of the control of
2. (5)	<u> </u>		
3.			+ + +
4.			
6.			+ +
7			
8.			
9.			
10.			
11111		PAY CAS	
Relinquished By Dar	te: 6/15/58 Time: 17:30	Received By: A for al S Algor	Date:6 (1) 198 Time: (0 0 5
Relinquished By: Dai	te: Time:	Received By:	Date: Time:
Relinguished By: Da	te: Time:	Received By Lab:	Date: Time:
Were Samples Received in Good Condition? □ Yes □ N	lo Samples on Ice?	☐ Yes ☐ No Method of Shipment	Page <u>i</u> of <u>l</u>
To be completed upon receipt of report: 1) Were the analyses requested on the Chain of C 2) Was the report issued within the requested turns	ustody reported? ☐ Yes ☐ N around time? ☐ Yes ☐ No If	o If no, what analyses are still needed? _ no, what was the turnaround time?	
Approved by:			
			// 02

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Sample Matrix:

Tosco (Unocal) SS#7376, Pleasanton

Water

Analysis Method: 807-0071

First Sample #:

EPA 5030/8015 Mod./8020

Sampled: Received:

Jun 26, 1998 Jun 30, 1998

Jul 15, 1998 Reported:

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Reporting Limit μg/L	Sample I.D. 807-0071 TB-LB	Sample I.D. 807-0072 MW-1	Sample I.D. 807-0073 MW-2B	Sample I.D. 807-0074 MW-3	Sample I.D. 807-0075 MW-4	Sample I.D. 807-0076 MW-5
Purgeable Hydrocarbons	50	N.D.	59	N.D.	400	100	490
Benzene	0.50	N.D.	0.90	N.D.	15	62	6.3
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	2.8
Ethyl Benzene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	4.2
Total Xylenes	0.50	N.D.	N.D.	N.D.	1.9	N.D.	5.1
MTBE	2.5	N.D.	570	4,000	490	N.D.	10
Chromatogram Pai			Discrete Peaks		Discrete Peaks & Unidentified Hydrocarbons < C7	Discrete Peaks	Gasoline & Unidentified Hydrocarbons > C8
Report Limit Multip	·	1.0	1.0	1.0	2.0	1.0	1.0
Date Analyzed:		7/10/98	7/10/98	7/10/98	7/11/98	7/10/98	7/10/98
Instrument Identific	cation:	HP-5	HP-5	HP-5	HP-4	HP-5	HP-5
Surrogate Recover (QC Limits = 70-13		78	77	76	123	84	82

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

Jugley

SEQUOIA ANALYTICAL, #1271

llanne Fegley Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd, North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 9459B Sacramento, CA 95834 Petaluma, CA 94954

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Sample Matrix:

Tosco (Unocal) SS#7376, Pleasanton

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

807-0077

Sampled: Jun 26, 1998 Received:

Jun 30, 1998 Jul 15, 1998 Reported:

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Reporting Limit μg/Ļ	Sample I.D. 807-0077 MW-6	Sample I.D. 807-0078 MW-8	 	
Purgeable Hydrocarbons	50	530	N.D.		
Benzene	0.50	300	6.0		
Toluene	0.50	8.3	N.D.		
Ethyl Benzene	0.50	2.8	N.D.		
Total Xylenes	0.50	8.7	N.D.		
MTBE	2.5	81	150		
Chromatogram Pa	ttern:	Gasoline			

Quality Control Data

Report Limit Multiplication Factor:	4.0	1.0	•
Date Analyzed:	7/11/98	7/10/98	
Instrument Identification:	HP-5	HP-5	
Surrogate Recovery, %: (QC Limits = 70-130%)	81	76	; ;

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDoweil Blvd. North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 (650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Dublin, CA 94568 Attention: Deanna Harding Client Project ID: Sample Matrix:

Tosco (Unocal) SS#7376, Pleasanton

Water

Analysis Method: EPA 3510/8015 Mod.

First Sample #: 807-0072

Sampled: Received:

Reported:

Jun 26, 1998 Jun 30, 1998

Jul 15, 1998

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit $\mu g/L$	Sample I.D. 807-0072 MW-1	Sample I.D. 807-0073 MW-2B	Sample I.D. 807-0074 MW-3	Sample I.D. 807-0075 MW-4	Sample I.D. 807-0076 MW-5	Sample I.D. 807-0077 MW-6
Extractable Hydrocarbons	50	N.D.	790	63	630	230,000	180
Chromatogram Pa	ittern:		Diesel & Unidentified Hydrocarbons > C20	Discrete Peaks	Diesel & Unidentified	Diesel & Unidentified Hydrocarbons <c15 &="">C20</c15>	Diesel & Unidentified Hydrocarbons > C20

Quality Control Data

Report Limit Multiplication Factor:	1.1	1.1	1.2	1.1	100	1.1
Date Extracted:	7/1/98	7/1/98	7/1/98	7/1/98	7/1/98	7/1/98
Date Analyzed:	7/7/98	7/7/98	7/7/98	7/7/98	7/7/98	7/7/98
Instrument Identification:	GCHP-3A	GCHP-3A	GCHP-3A	GCHP-3B	GCHP-3B	GCHP-3B
i			•			

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Whann Fregling

Julanne Fegley Project Manager

8070071.GET <3>

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Sample Matrix:

Tosco (Unocal) SS#7376, Pleasanton

Water

Analysis Method:

>C16

EPA 3510/8015 Mod.

First Sample #: 807-0078 Sampled: Jun 26, 1998

Received: Jun 30, 1998 Reported:

Jul 15, 1998

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 807-0078 MW-8	<i>1</i>		
Extractable Hydrocarbons	50	80	,		
Chromatogram Pa	ttern:	Unidentified Hydrocarbons			

Quality Control Data

Report Limit Multiplication Factor:

1.1

Date Extracted:

7/1/98

Date Analyzed:

7/7/98

Instrument Identification:

GCHP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager

8070071.GET <4>

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd, North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 (650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J

Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Tosco (Unocal) \$\$#7376, Pleasanton

Matrix: Liqu

QC Sample Group: 8070071-078

Reported:

Jul 15, 1998

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	Diesel
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015M
Analyst:	C. Westwater	C. Westwater	C. Westwater	C. Westwater	L. Diaz
MS/MSD					
Batch#:	8062743	8062743	8062743	8062743	BLK070198
Date Prepared:	7/11/98	7/11/98	7/11/98	7/11/98	7/1/98
Date Analyzed:	7/11/98	7/11/98	7/11/98	7/11/98	7/1/98
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	HP-3B
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	500 μg/L
Matrix Spike					
% Recovery:	105	105	105	108	88
Matrix Spike					
Duplicate %					
Recovery:	105	100	105	107	80
Relative %					
Difference:	0.0	4.9	0.0	1.6	9.5
LCS Batch#:	4LCS071198	4LCS071198	4LCS071198	4LCS071198 .	LCS070198
Date Prepared:	7/11/98	7/11/98	7/11/98	7/11/98	7/1/98
Date Analyzed:	7/11/98	7/11/98	7/11/98	7/11/98	7/1/98
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	HP-3B
LCS %					•
Recovery:	95	100	105	107	74
% Recovery			-,	<u> </u>	
Control Limits:	70-130	70-130	70-130	70-130	60-140

SEQUOIA ANALYTICAL, #1271

Udlianne Fegley Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954

(650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J

Dublin, CA 94568

Attention: Deanna Harding

Tosco (Unocal) SS#7376, Pleasanton Client Project ID:

Matrix:

QC Sample Group: 8070071-078

Reported:

Jul 15, 1998

QUALITY CONTROL DATA REPORT

			·		_
ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	C. Westwater	C. Westwater	C. Westwater	C. Westwater	
MS/MSD					
Batch#:	8062520	8062520	8062520	8062520	
Date Prepared:	7/10/98	7/10/98	7/10/98	7/10/98	
Date Analyzed:	7/10/98	7/10/98	7/10/98	7/10/98	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	20 µg/L	20 μg/L	20 µg/L	60 µg/L	
Manhaire Carilea					
Matrix Spike	400	0.5	110	102	
% Recovery:	100	95	110	102	
Matrix Spike					
Duplicate %					
Recovery:	90	100	100	103	
Difference:	11	5.1	9.5	1.6	
Difference.	11	3. 1	3.0	1.0	
LCS Batch#:	5LCS071098	5LCS071098	5LCS071098	5LCS071098	
Date Prepared:	7/10/98	7/10/98	7/10/98	7/10/98	
Date Analyzed:	7/10/98 7/10/98	7/10/98 7/10/98	7/10/98 7/10/98	7/10/98	
Instrument I.D.#:	7/10/96 HP-5	7/10/96 HP-5	7/10/96 HP-5	7710796 HP-5	
msaumem i.b.#.	nr-3	nr-a	nr-3	HE-3	
LCS %					
Recovery:	90	100	105	, 10 5	
% Recovery	-		· -	,	
Control Limits:	70-130	70-130	70-130	70-130	

SEQUOIA ANALYTICAL, #1271 Juhum Alyly

dulianne Fegley Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd, North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954 (650) 364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865 FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J

Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Tosco (Unocal) SS#7376, Pleasanton

Matrix: Liquid

QC Sample Group: 8070071-078

Reported:

Jul 15, 1998

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	C. Westwater	C. Westwater	C. Westwater	C. Westwater	
MC/MCD					
MS/MSD Batch#:	8070042	8070042	8070042	8070042	
<i>Da.</i> (311,,, 1	00,00.12	33.33			
Date Prepared:	7/11/98	7/11/98	7/11/98	7/11/98	
Date Analyzed:	7/11/98	7/11/98	7/11/98	7/11/98	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	20 µg/L	20 μg/L	20 μg/L	60 µg/L	
Matrix Spike					
% Recovery:	90	95	95	97	
Matrix Spike					
Duplicate %					•
Recovery:	90	95	95	98	
Relative %					
Difference:	0.0	0.0	0.0	1.7	
LCS Batch#:	5LCS071198	5LCS071198	5LCS071198	5LCS071198	
Date Prepared:	7/11/98	7/11/98	7/11/98	7/11/98	
Date Analyzed:	7/11/98	7/11/98	7/11/98	7/11/98	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
LCS %					·
Recovery:	100	100	100	.102	
1100010131	100				
% Recovery			70.400	70.100	
Control Limits:	70-130	70-130	70-130	70-130	

SEQUOIA ANALYTICAL, #1271

Juliana Fright

Julianne Fegley Project Manager Piease Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

8070071.GET <7>

Tonco Markolag Campony 2000 Crow Carpon PL, Sta. 409 San Remon, Caldonie 94343

Reilingitehed By (Signature)

Resingulahed By (Signoture)

	te mit
TOOO (INOCAL) CC#7376	Contact (Name) Ms. Tir
Facility Number TOSCO (UNOCAL) SS#7376	(Phone) (510) 2
/101 Piece Ctroot Pleasanion, UA	(Phone)
190075 95	Laboratory Name Sequoia Anal
Consultant Protect Rustual	Education) warms
Cottler-Puen Inc (G-R Inc.)	Laboratory Release Number
Consultant Name VELLIEL MY MI	
Address 6747 Sterra Court, Suite J. Dublin, CA 94568	Samples Collected by (Notice)
Address	Collection Date 6-26-98
Desired Contact (Name) Deattile 21 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04. 44.5
(Phone) 510-551-7555 (Fax Number) 510-551-7888	Signature STEVE BALIANS
(Phone) <u>510-551-7555</u> (Fax Rumber) <u>510-551</u>	L

	Contect (Name)Ms. Tina R. Berry (Phone) (510) 277-2321
	Laboratory Name Sequoia Analytical
	Laboratory Release Number Samples Collected by (Name) STEVE BALIAN
	Collection Date 6-26-98 Signature STEVE BALIAN Tryon 9807016
_	Signoture Tropy PTIT

C 12 Ch 12 1

6/14/18 2:50

Date/Time

6-30 155

1.120

الما والموا

10 Dove

As Contracted

ETV LINGS COMM		••	5,001 25	(P)	none) <u>510</u>	-551-755	<u>5_(Fox</u>	Number) <u>510-</u>	<u> 551-</u>	7888				EVE_		TV	A T L			TA NOT DIVI
			7							····			Analyse	a To B	Perfort	ned				\dashv	DO NOT BILL TB-LB ANALYSIS
Sample Number	Lab Sample Number	Number of Containers	Motors S = Soil A = Ar W = Water C = Charcool	Type 6 = Grab C = Composite D = Discrete	Time	Sample Preservation	load (Yes or No.)	TPH Gas - BTEX WANTBE (8016) (8020)	TPH Diesed (8015)	Oil and Gream (5520)	Purgeable Holocarbons (8010)	Purpeoble Aromotics (8020)	Purpeable Organics (8240)	Extractable Organica (8270)	Metals C4.C2.Pb.Zn.Mi (ICAP or AX)	-					Remarks 8070071
BELBIS E			w	G		Hel	Υ	Χ		<u> </u>		ļ	<u> </u>	}	<u> </u>			 	 		8070072 A
	<u> </u>	4	"	"	14:35		У	X	X		<u> </u>		<u> </u>	<u> </u>	ļ			 -	· · ·		8070073
w_ / 28		4	"	11	15:10		У	X	X					<u> </u>	ļ			 	 		8070074
w- 3		4	"	11	15:40	"	У	X	X	_	<u> </u>			- 	<u> </u>		-	 	╂		8070075
1ω-4		4	11	"	13:50		· <u>></u>	X	X	_		<u> </u>	 	-		<u> </u>		╂			8070076
1w - S		4	"	// .	17:20	11:	Y	<u>X</u>	X	_	<u> </u>	<u> </u>	<u> </u>		 	 					8070077
1w-6		4	"	11	16:10	"	Y	X				 	. -	-		<u> </u>	 				8070078
4w-8		4	"	11	16:4		7	X	X		_	<u> </u>		 		 		╂			80.00.0
		-	1				<u> </u>	_	_	_	_		- 			 -	-				
		1-	1							_	_	_				<u> </u>	 		11		
		1.										<u> </u>				 	 		-	 -	
		1	-					<u>. </u>		_	_	<u> </u>	_	_	_\	-	-			 	
· · ·	 -	1	1					_	_			_					+-	-{	 		
		 	1									<u> </u>		<u> -</u>		le/Time		1	Turn Ara	ound TI	me (Cirole Choloe)
elinquished By			1 .	ganizatio -R In	c.	Date/Time /8 6-26-98 Date/Time	الأدر	X).	$\int U$	(nature) (nature)	(1)		Organia Organia	2	Do	2/20	<u>n/4</u>		;	2- 4-	4 Hrs. B Hrs. Doys

Realeved For Laboratory By (Signature)

Date/Time

Organization

Organization

SIGUE

APPENDIX F

Entrix Inc. and Global Geochemistry Corporation Reports

05 : 6 Hg 5-8M/66

Since 1984 - Environmental Excellence

ENTRIX, Inc. 590 Ygnacio Valley Road Suite 200 Walnut Creek, CA 94596 (510) 935-9920 (510) 935-5368 FAX Project 351301

December 12, 1997

Ms. T. Berry TOSCO, Environmental Compliance 2000 Crow Canyon Place, Suite 400 San Ramon, CA 94583

Mr. Sarkis A. Soghomonian Kaprealian Engineering Inc., 2401 Stanwell Dr., Suite 400 Concord, CA 94520

Re: Forensic Geochemical Analysis of Free Product from MW-5, UNOCAL SS# 7376, Pleasanton, CA

Dear Tina and Sarkis:

At your request, I have reviewed the following data sets and present the following conclusions:

- Elevation data and associated laboratory analytical data for ground water from site monitoring wells (Tables 1 and 2 from an April 10, 1997 ground water monitoring report);
- High resolution gas chromatography and simulated distillation data recently obtained for free product from the MW-5 well.

The free product obtained from the MW-5 well contains hydrocarbons in the nC₃-nC₃₃ range (i.e., in the gasoline, diesel, and residual ranges). Evaluation of the high resolution gas chromatograph (HRGC) trace indicates that the free product is most likely composed of a mixture of refined gasoline and heavier hydrocarbons. The refined gasoline appears to be moderately fresh based on compound distributions and comparison with similar distributions in fresh gasoline. The heavier hydrocarbon mixture has a carbon distribution ranging from about nC₁₃ to nC₃₃ and, based on the hydrocarbon distribution, does not appear to contain refined petroleum products (e.g., diesel #2, motor oil, lube oil, etc.). Rather, the distribution is similar in nature to what might be expected from the HRGC analysis of a very weathered crude oil. The simulated distillation results clearly support the presence of both gasoline and heavier hydrocarbon fractions in the MW-5 free product and are consistent with the

crude oil.						
heavier	hy					
	. L					

December 12, 1997 Page 2

conclusions derived from evaluation of the HRGC analysis presented above regarding the presence of both gasoline and a heavier hydrocarbon mixture.

The integration of both chromatographic and simulated distillation data types indicates that over 50% of the MW-5 free product is derived from the gasoline source and that this material is relatively fresh. Additionally, the data indicate that the MW-5 free product (1) must contain material which has an ending boiling point similar to crude oils or residual Bunker C fuel, (2) has a distribution of heavier hydrocarbons which are not chromatographically related to refined petroleum mixtures (e.g., motor or lube oils), (3) contains a full range of hydrocarbon compounds in the nC₁₀-nC₃₃ range (i.e., hydrocarbons in both the diesel range [e.g., the isoprenoids] and the nC₂₀-nC₃₀ range [e.g., the UCM]), and (4) has a heavier hydrocarbon distribution chromatographically consistent with a weathered crude oil.

INTRODUCTION

In June, 1997, free product was found in the MW-5 well at the UNOCAL Service Station #7376 in Pleasanton, California. At your request, a sample of this free product was forwarded by Kaprealian Engineering Inc. (KEI) to ENTRIX and on to Global Geochemistry Corporation (GGC) for (1) high resolution gas chromatography (HRGC) and (2) simulated distillation using a modified ASTM 2887. The objective of this analysis was to evaluate the nature (i.e., hydrocarbon distribution) of the free product and to assess potential source(s) of the free product.

RESULTS AND DISCUSSION

The results of the GGC HRGC and simulated distillation analyses (see Attachment 1) consist of (1) a high resolution gas chromatogram for the sample (MW-5) and for a duplicate analysis (MW-5[D]), (2) quantification and tabulation of the hydrocarbon compounds found in both analyses in the gasoline range (nC3-nC12), and (3) simulated distillation curves for MW-5 and MW-5(D). An initial review of both the HRGC analyses and the simulated distillation results suggests that the MW-5 free product is composed of gasoline and a heavier hydrocarbon eluting in the nC₁₃-nC₃₃ (i.e., the diesel and heavier) hydrocarbon ranges. The following discussion will first focus on the nC₃-nC₁₀ hydrocarbon range in terms of evaluating the likely source(s) of these hydrocarbons and providing an estimate of the degree of weathering that they have been subjected to. The heavier hydrocarbons (nC₁₀-nC₃₃) will also be discussed in terms of their potential source(s) and degree of weathering. These

¹ GGC data report and chain of custody are presented as Attachment 1 to this letter report.

ENTRIX

December 12, 1997 Page 3

analyses will then be integrated into a conclusion regarding the potential sources of the hydrocarbons measured in the MW-5 free product.

GASOLINE FRACTION EVALUATION

Table 1 presents the relative percent concentrations of gasoline compounds found in the nC₃-nC₁₀ range of the sample and duplicate. Of specific interest is the abundance of compounds identified in the nC₃-nC₇ range, especially 2,2,4-trimethylpentane (iso-octane). The presence of this compound provides evidence that the free product contains refined gasoline. The overall nC₃-nC₁₀ hydrocarbon distribution as presented in Table 1 and in the gas chromatogram (Figure 1) also indicate that the free product contains gasoline. Finally, Figure 2 provides a comparison of the major compound classes found in the nC₃-C₁₀ fraction of the MW-5 free product. These classes include the paraffins (straight chain alkanes), the isoparaffins (branched alkanes), the aromatics, the naphthenes (cyclic alkanes), and the olefins (unsaturated -alkenes and alkynes). The analysis is often called the PIANO analysis. Figure 2 provides a comparison of PIANO results from the MW-5 free product with those obtained using the same analysis from 18 fresh gasolines contained in the ENTRIX gasoline database. While this comparison shows some subtle differences (e.g., lower total aromatics see below), the general agreement for the relative amount of the various major compound classes supports the prior contention that the MW-5 free product contains gasoline.

In order to assess the degree of weathering of the gasoline component of the MW-5 free product, its important to understand that environmental weathering processes include (1) evaporation, solubilization (water washing), and biodegradation. Each of these processes affects the hydrocarbon distribution in a predictable way. For example, if the gasoline was subjected to considerable evaporation, one would predict a preferential loss of the lighter relative to the heavy ends of the mixture. If one looked at a ratio of nC3-nC7 versus nC7nC13 compounds, evaporative losses would be expected to move the ratio to lower values as the mixture became preferentially enriched in the higher molecular weight compounds. Thus, comparison of this type of parameter between free product samples and fresh gasolines can provide a sense of the degree of evaporation to which the gasoline in the MW-5 free product has been subjected to. Similarly, parameters such as benzene/cyclohexane or total aromatics/total paraffins can provide insight into the degree to which the gasoline in the free product has been solubilized into the ground water. Finally, comparing branched and nonbranched alkanes can be useful in determining the degree to which the gasoline in the free product has been subjected to biodegradation. Due to energetic needs, bacteria will preferentially degrade straight chain hydrocarbons relative to branched hydrocarbons. Thus, comparison of 3-methylhexane to n-heptane can provide information regarding the degree of biodegradation.

ENTRIX

December 12, 1997 Page 4

The nC_3 - nC_7 range of the MW-5 free product sample accounts for $55.1\pm0.4\%$ of the compounds quantified in the nC_3 - nC_{10} range. Comparing this value to values obtained from the ENTRIX fresh gasoline database (n=18 separate gasolines; 35.1 to 57%), suggests that the gasoline present in the MW-5 free product contains a substantial amount of material in the nC_3 - nC_7 range (relative to the > nC_7 range). This comparison suggests that the gasoline fraction of the MW-5 free product has not undergone substantial evaporative weathering. A similar comparison of the total aromatic/total paraffins ratios calculated for the MW-5 free product (0.38) and obtained from the ENTRX fresh gasoline database (range: 0.66 to 1.25) argues that the gasoline in the MW-5 free product has preferentially lost aromatic compounds, most likely due to preferential loss of aromatics due to their increased aqueous solubility from the gasoline mixture. Finally, a comparison of 3-methylhexane to n-heptane ratios (1.11 versus 1.28 to 2.33) argues against a substantial amount of biodegradation (biodegradation would preferentially remove the n-heptane and lead to an increase in the ratio).

Taken altogether, the weathering parameters are consistent with the conclusion that the gasoline found in the MW-5 free product has only been subjected to a moderate degree of weathering (predominantly due to aqueous solubilization). Further, these individual parameters are consistent with the results presented in the PIANO analysis (see Figure 2) and support the hypothesis that the gasoline component of the MW-5 free product is relatively fresh.

HEAVIER HYDROCARBON EVALUATION

As noted above, Figure 1 is the gas chromatogram from the HRGC analysis of the MW-5 free product and demonstrates that the sample contains hydrocarbons extending from nC₃ into the nC₃₀ range. The slight hump in the gas chromatogram's baseline in the nC₂₀-nC₃₃ range is termed an unresolved complex mixture (UCM) and is often indicative of petroleum derived material. In general, a UCM or "hump" results from the inability of the HRGC analysis to completely resolve and separate the complex compounds associated with petroleum mixtures. In environmental samples not related with crude oil, UCM humps are often found in the nC₁₀-nC₂₅ or diesel range. Complex compounds known as petroleum biomarkers (e.g., steranes and pentacyclic triterpanes) are found to elute in the nC₃₀ range and have been known to fairly stable to degradation processes (e.g., Peters and Moldowan, 1993²). The fact that the MW-5 free product (1) does not contain a diesel range UCM and (2) does contain a UCM hump in nC₂₀-nC₃₃ range is consistent with a heavily degraded crude oil

² Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Inc.

December 12, 1997 Page 5

source. Further, the presence of apparently low amounts of isoprenoids in the nC_{10} - nC_{20} range (e.g., pristane and phytane) would seem to indicate that (1) the MW-5 free product has some source of hydrocarbons in the nC_{10} - nC_{20} range and (2) rule out the possibility that the heavier hydrocarbons are derived solely from refined heavier hydrocarbon mixtures (e.g., motor and/or lube oils).

Figure 3 contains the results of the simulated distillation performed on standard mixtures of gasoline, diesel #2, and a bunker C. This figure is presented as a comparison of the amount of material which is distilled from (i.e., boiled off of) the hydrocarbon mixture as a function of the boiling point. The curves provide a view of the cumulative % material that distills out of the mixture (% OFF). For example, the simulated distillation results for the gasoline standard shows that (1) this material has an initial boiling point <200 degrees F, (2) approximately 65% of the gasoline boils off below 300 F, and (3) the mixture has a final boiling point of about 400 F. Comparing this with the Bunker C standard simulated distillation curve indicates that (1) the Bunker C mixture has an initial oiling point well above that of gasoline (>300 F versus <200 F), and (2) contains components that do not boil off at temperatures less than 1000 F. As might be expected for a mid-range distillate, the diesel #2 fuel has a simulated distillation curve between that of the heavy Bunker C residual fuel and the much lighter gasoline. One additional point to be made in this discussion of the simulated distillation curves is that a fresh crude oil contains compounds that boil below 200 F and above 1000 F. Thus, the simulated distillation curve for a fresh crude would be expected to begin at about 100-150 F move across the diesel #2 curve and end at a final boiling point over 1000 F.

Figure 4 contains the same standard simulated distillation curves along with the curves produced from a simulated distillation analysis of the MW-5 free product. The MW-5 curve closely follows the gasoline simulated distillation curve until about 60% of the MW-5 material has distilled off. After this point, the MW-5 curve clearly indicates the presence of a much heavier (higher boiling point) hydrocarbon. Comparison of the final boiling points shows that the MW-5 free product has a final boiling point comparable to that of residual Bunker C fuel. These results are consistent with a hydrocarbon mixture containing both gasoline and a heavier hydrocarbon fraction. The fact that the final boiling point for the MW-5 free product is similar to what one would see in a residual Bunker C fuel or in a crude oil supports prior assertions that the heavier hydrocarbon mixture is not simply derived from a motor oil or lube oil.

CONCLUSIONS

The free product obtained from the MW-5 well contains hydrocarbons in the nC₃-nC₃₃ range (i.e., in the gasoline, diesel, and residual ranges). Evaluation of the HRGC trace indicates that the free product is most likely composed of a mixture of refined gasoline and heavier

ENTRIX

Global Geochemistry Corp. C3-C10 Gasoline analysis ENTRIX Project # 351301 UNOCAL SS#7376 Pleasanton

Matrix	FP	FP
Sample ID	MW-5	MW-5D
Date Collected	6/27/97	6/27/97
Date Extracted	7/19/97	7/19/97
Date Analyzed	7/31/97	7/31/97
Lab ID	4027-1	4027-1D
Test	C3-C10	C3-C10
Units	Rel%*	Rel%
I n-Propane		
2 Isobutane	0.13	0.14
3 Isobutene	4-13	V.1-1
4 Butane/Methanol	0.85	0.87
5 trans-2-Butene	0.05	0.07
6 cis-2-Butene		
	0.07	0.07
7 3-Methyl-1-butene	7.65	7.73
8 Isopentane	0.29	0.29
9 I-Pentene	0.29	0.29
10 2-Methyl-1-butene		
11 n-Pentane	3.27	3.27
12 trans-2-Pentene	0.78	0.78
13 cis-2-Pentene/t-Butanol		
14 2-Methyl-2-butene	1.05	1.06
15 2, 2-Dimethylbutane	0.19	0.19
16 Cyclopentane	0.17	0.17
17 2, 3-Dimethylbutane/MTBE	2.14	2.11
18 2-Methylpentane	5.65	
19 3-Methylpentane	3.37	
20 n-Hexane	3.04	
21 trans-2-Hexene	0.28	0.28
22 3-Methylcyclopentene	0.49	0.49
23 3-Methyl-2-pentene	0.46	0.42
24 cis-2-Hexene	0.43	0.39
25 3-Methyl-trans-2-pentene	0.25	0.24
26 Methylcyclopentane	4.9	4.83
27 2, 4-Dimethylpentane	1.37	1.32
28 Benzene	0.3	0.3
29 5-Methyl-1-hexene	0.39	0.36
30 Cyclohexane	1.69	1.66
31 2-Methylhexane	2.26	2.24
32 2, 3-Dimethylpentane	2.02	2.02
33 3-Methylhexane	3.13	3.07
34 2-Methyl-1-hexene	1.2	1.26
35 2, 2, 4-Trimethylpentane	4.05	3.96
36 n-Heptane	3.11	3.03
37 Methylcyclohexane	3.46	3.39
38 2, 5-Dimethylhexane	1.13	1.09
39 2, 4-Dimethylhexane	1.06	1.07
40 2, 3, 4-Trimethylpentane	1.49	1.48
41 Toluene	1.97	
42 2, 3-Dimethylhexane	0.88	0.88
43 2-Methylheptane	1.13	
44 4-Methylheptane	0.56	0.58
•		4.2

ENTRIX

45 3, 4-Dimethylhexane	0.41	0.41
46 3-Ethyl-3-methylpentane	0.96	0.98
47 3-Methylheptane	0.95	0.96
48 2-Methyl-1-heptene	0.43	0.43
49 n-Octane	1.72	1.71
50 2, 2-Dimethylheptane	0.12	0.13
51 2, 4-Dimethylheptane	0.28	0.29
52 Ethylcyclohexane	0.44	0.46
53 2, 6-Dimethylheptane	0.39	0.41
54 Ethylbenzene	0.51	0.54
55 m - p Xylenes	6.09	6.26
56 4-Methyloctane	0.38	0.39
57 2-Methyloctane	1.11	1.12
58 3-Ethylheptane	0.71	0.73
59 3-Methyloctane		
60 o-Xylene	1.75	1.73
61 1-Nonene		
62 n-Nonane	0.27	0.28
63 Isopropyibenzene	0.28	0.3
64 3, 3, 5-Trimethylheptane		
65 2, 4, 5-Trimethylheptane	0.28	0.29
66 n-Propylbenzene	0.12	0.12
67 1-Methyl-3-ethylbenzene	1.12	1.13
68 1-Methyl-4-ethylbenzene	0.9	0.91
69 1, 3, 5-Trimethylbenzene	1.3	1.3
70 3, 3, 4-Trimethylheptane	0.58	0.62
71 1-Methyl-2-ethylbenzene	I	1.04
72 3-Methylnonane	0.17	0.18
73 1, 2, 4-Trimethylbenzene	3.47	3.48
74 Isobutyibenzene	0.18	0.18
75 sec-Butylbenzene	0.11	0.11
76 n-Decane	0.32	0.33
77 I, 2, 3-Trimethylbenzene	0.8	0.84
78 Indan	0.45	0.5
79 1, 3-Diethylbenzene	0.44	0.45
80 1, 4-Diethylbenzene		-
81 n-Butylbenzene	0.85	0.88
82 1, 3-Dimethyl-5-ethylbenzene	0.18	0.19
83 1, 4-Dimethyl-2-ethylbenzene	0.21	0.22
84 1, 3-Dimethyl-4-ethylbenzene	1	1
85 1, 2-Dimethyl-4-ethylbenzene	0.78	0.83
86 Undecene		
87 1, 2, 4, 5-Tetramethylbenzene	0.33	0.32
88 1, 2, 3, 5-Tetramethylbenzene	0.94	0.93
89 1, 2, 3, 4-Tetramethylbenzene	0.31	0.31
90 Naphthalene	0.15	0.15
91 2-Methyl-naphthalene	0.04	0.04
92 I-Methyl-naphthalene	0.15	0.16
•		
* = % of C3-C10		. •
Total	100.02	100

(ALO-CAI + RWM) GI-TSOA-AMAN ALGRAR

Comparison Between Average "PIANO" Values for Fresh Gasolines and the Gasoline Component of the MW-5 FP

Simulated Distillation Curve(s) (ASTM 2887)

Simulated Distillation Curve(s) (ASTM 2887)

Attachment 1

Laboratory Results from Global Geochemistry Corporation
Chain of Custody Document

```
0.0 to 100.0 min. Low Y=6.29 High Y=180.892 mv Span=174.602
```



```
0.0 to 33.333 min. Low Y=5.0 High Y=80.0 mv Span=75.0
```

```
cdx+
                                           -- 5.55 =- 4
                                                                                                                           - 6.23 ⇒-11
                                                       - $.58 =- CSZ
                                                                                                                      -- 7.49 =-19
             元
                                                                                                                                                             -8.56 >- 26
                                                                        9.88 == 31
--- 10.20 == 33
10.
                                                                                                      - 10.69 =- 35
                                                         -11.17 = 76 -11.09 =- IS#1
            -- 11.61
12.
                                                                                  —- 12.00 <del>-- 3</del>7
               -- 12.14
                — 12.94
— 12.94
— 13.78
                                        -13.40=-40.60=-41
              13.95 = 42
13.95 = 42
14.26 = 43
14.5974-16.61 = 46
14.
               75 25 18 ⇒ 48
- 15.70
16.
                       46.016.06=-49
             - 16.34
           16.55=50
             17 ) 14 30 - 51
- 17 : 60 : 58 - 52
- 18 : 027 ! 18 - 53
18.
           30K € 70 - 54
                                            -- 19.08⊃-55
                   171至995457
20.
            19.96 -- 58
20.29 -- 60
              22.
               12.1329-63
              - 22.94
21.20
- 23.41 ⇒-65
              23.88 -- 66
 24.
                 24 1563 67
24 154 = 69
              24.7 19:00 = 71
25.00 = 72
                                                 -- 25.84 -- 73
 26.
                 13=1
              99 >-76
------27 , 28 >-77
              - 27.88 =- 78
- 28.13
28.13
 28.
                到到37739 =- 01
              = 19:86 =-82
  30.
               31,64=-16
  32
              Man State of the last
```

66.27

```
33.333 to 66.667 min. Low Y=5.0 High Y=80.0 mv Span=75.0
            $-35.58
$:36:12
  36.
                    ⇒-n-C12
              - 37.60 ⇒-1-C13
- 37.93
  36.
               39.53
  40.
               10 88 3193 1 - C24
              40,0865-92
               COH- SBAT-C13
  42
               - 42.23
               43.47
               - 44.05 ⇒ 1-015
-- 44.37
-- 44.76 ⇒ n-014
              $- 45.68
45.95
                       -- 46.42 -- 1-C16
                 -46.78
-47.05
⇒-n-C15
  48.
               $= 48:99
- 48.53
                  -- 49.65 n-C16
   50.
                       -- 50.38 -- f-C18
                   1999 Pristane
   52.
                           -- 55:648-Phytana
                    5-544785n-C19
                          ⇒-n-C20
5€ 00
   56.
                                                                           -- 56.17 =- IS#3
                       - 56.69
⊐-n-C21
                         58.04-n-C22
58.35-n-C22
                                ⇒n-023
    60.
                                ⇒-n-C24
                                  ⇒-n-C25
                                  -n-026
                            - 63.33n-c27
                             - 64.76<sup>-n-028</sup>
                              e-65.19
                                    ⇒-η-C29
```



```
Gas Chromatography by Global GeoChemistry
 TODAY'S DATE....07-31-1997
                                      TIME.....15:09:45
                                                                            *
 RAW DATA FILE NAME..E:\DATA7\C344199.18R
 SAMPLE NAME.....4027-1D (MWS + IS3-014)
 DATE TAKEN..Jul 19, 1997
                             19:06:31
* METHOD FILE.....!!!!!E:\DATA7\C344199Q.MET
* METHOD: .. Whole Oil Analysis
 CALIBRATION FILE...!!!!!!E:\DATA7\C344199Q.CALCAL. FILE VERSION...-4
  INSTRUMENT..... HP6890 FID--FID
                                               OPERATOR.... Lev Baycher
* RUN TIME..... 100
                                    COM PORT....
 AREA REJECT.... 0
 HEADING 1..C3-C44 Analysis
 HEADING 2..GC-analysis: method 1 (split 400:1)
  FORMAT FILE..E:\DATA7\NORMAL.FMT
**********
      ****** PEAKS DETECTED IN THIS CHROMATOGRAM **********
 Peak Ret Time
                                      Peak
                                             Peak
       (min)
                                      Area
                                            <u> Height</u>
                2
                                        3085
   1
        5.423
                                               3136
   2
        5.548
                4
                                       19782
                                              16508
                7
                                        1623
   3
        5.857
                                               1099
   4
        5.986
                8
                                      175907 165187
   5
        6.132
                9
                                        6502
                                               3233
   6
        6.187
                10
                                        8811
                                               5682
   7
        6.227
                11
                                       74552
                                              52230
        6.326
                                       17771
   8
                                               5966
   9
        6.415
                DCM
                                               3655
                                       8013
  10
        6.462
                14
                                       24031
                                              10623
  11
        6.580
                CS2
                                       34240
                                              20996
  12
        6.663
                15
                                        4219
                                               2794
  13
        6.948
                                        2039
                                               1065
        7.000
                                        1100
  14
                                               1065
        7.020
  15
                                        3976
                16
                                               1447
  16
        7.135
                                       48011
                                              25669
  17
        7.205
                18
                                      126411
                                              82608
  18
        7.487
                                       75563
                                              49972
  19
        7.627
                                       17302
                                               2273
  20
        7.872
                20
                                       67140
                                              27380
        8.046
  21
                21
                                        6475
                                               2655
  22
        8.067
                                       11185
                                               4307
  23
        8.136
                                       17613
                                                4468
        8.275
                23
                                        9546
  24
                                               1480
  25
        8.411
                                        8927
                24
                                               2624
        8.494
                                        5491
                                               .1964
  26
                25
                                              66832
  27
        8.558
                26
                                      109900
  28
         8.661
                                       29980
                                              12224
  29
         9.284
                                        9110
                                                2555
         9.359
  30
                28
                                        6805
                                                1544
  31
         9.451
                29
                                        8175
                                               2091
  32
        9.575
                30
                                       37799
                                              18058
  33
         9.879
                31
                                       51087
                                               28355
         9.939
                32
  34
                                       45901
                                               20020
  35
        10,196
                33
                                       70006
                                               30109
  36
        10.442
                                       33730
                                               15546
      :10.549
  37
                34
                                       28623
                                               13878
        10.582
  38
                                        6783
                                                5027
```

، 39	10.650		26254	15199
40		35	90149	42314
41	11.087	IS#1	80381	29746
42	11.168	36	68933	21958
43	11.252		34937	5087
44	11.610		14696	2466
45 46	11.969 12.002	37	12643 77208	7929
40 47	12.002	37	14561	34750 3936
48	12.581	38	24773	7711
49	12.624	30	8155	4051
50	12.670	39	24275	8002
51	12.939		19383	4331
52	13.280		11636	3499
53	13.400	40	33736	15925
54	13.596	41	44455	20109
55	13.768		17066	1809
56	13.951	42	19991	6065
57	14.006		9473	2281
58	14.257	43	26426	10234
59	14.339	44	13144	4808
60	14.376	4.5	3970	2966
61 62	14.397 14.547	45	9321 7366	2677 1621
63	14.633	46	22365	10057
64	14.689	40	3291	5900
65	14.703	47	21757	8277
66	14.732		10506	5494
67	15.175	48	9886	3942
68 -	15.281		9544	2462
69	15.445		18978	3000
70	15.697		14812	3636
71	16.041		6385	5924
72	16.065	49	38929	7678
73	16.337	50	8145	1816
74 75	16.874 16.994	50	3016	860
75 76	17.298	51	3688 6549	983 2210
77	17.339	21	2530	951
78	17.584	52	10459	4432
79	17.636		8764	2437
80	17.859		11359	3759
81	17.989	53	9439	3295
82	18.043		3471	1024
83	18.588		5008	1287
84	18.700	54	12287	2720
85	18.760		9154	1618
86	19.080	55	142622	16105
87 88	19.316 19.549	56	34984	3838
89	19.549	57	8896	3597
90	19.963	58	25567 16667	4912 4175
91	20.291	60	39385	9766
92	20.373	- -	19821	3835
93	20.645		9833	2187
94	20.761	61	9131	1722
95	21.509		1704	983
96	21.536	62	6394	2199
. 97	21.645	IS#2	118706	10535
98	22.191	63	6855	1611

. 99	. 22.228		12385	2476
100	22.940		11286	1725 972
101 102	23.205 23.413	65	8223 6673	1708
102	23.413	66	2661	1304
104	23.812		7122	1258
105	24.148	67	25840	5351
106	24.274	68	20719	3818
107	24.543	69	29612	6697
108	24.923	70	14039	3027
109	25.055	71	23707	5354
110	25.144		6631	2079
111 112	25.405	70	14708	2173 761
113	25.599 25.839	72 73	4145 79344	17910
114	25.986	73	30760	2933
115	26.326	74	4039	742
116	26.598	75	2452	593
117	26.873		10920	862
118	26.987	76	7619	1102
119	27.277	77	19148	3981
120	27.391		12402	1304
121	27.882	78	11342	1788
122	28.179		6893	1357
123 124	28.434 28.861	•	5740 11782	849 1487
125	28.992	79	10299	1953
126	29.066	, 9	5863	1446
127	29.228		6984	1328
128	29.269	81	20048	4350
129	29.350		20844	1793
130	29.737	82	4371	1104
131	29.856		17211	1165
132	30.239	83	5092	1948
133	30.325 30.458	84	22819	3334
134 135	30.458		1726 8261	839 2256
136	30.621	85	18812	3797
137	30.682	03	33136	2068
138	31.622		3732	1039
139	31.661	86	9891	865
140	32.109		1090	526
141	32.134	n-C11	1892	630
142	32.229	87	7340	1791
143 144	32.272 32.375	88	2814	1250
145	32.375	00	21104 8689	3599 530
146	33.143		2842	. 982
147	33.267		15392	1562
148	33.652		17434	3969
149	33.731	89	6977	1321
150	33.913		7038	1219
151	34.187		9927	849
152	34.474	۵٥	7155	715
153 154	35.166 35.214	90	3452 14460	1148 1526
155	35.582		16327	1435
156	36.023		6384	1154
157	36.161		26109	1100
158	37.599	i-C13	5390	1176
	Y	OCHEMICEDY Cons	· COMPETAN WENT	

159	. 37.935		29198	1115
160	39.529		4173	712
161	39.942		5119	684
162	40.239	91	1002	382
163	40.303	i-C14	6339	1845
164	40.528		14615	1694
165	40.860	92	3549	832
166	40.955		36181	1512
167	42.233		2027	624
168	43.469		2492	483
169	44.054	i-C15	9196	3550
170	44.368		3686	820
171	44.698		2727	830
172	45.679		1705.	440
173	45.952		2659	532
174	46.420	i-C16	9662	3931
175	46.781		1297	613
176	47.051		1104	413
177	47.956		2635	625
178	48.113		3005	589
179	48.527		1895	688
180	49.653		1551	843
181	50.376	i-C18	7017	2851
182	50.805		1339	757
183	50.961		2142	933
184	51.114		1916	636
185	51.236		2652	595
186	51.389	Pristane	9117	3964
187	51.747		2881	915
188	51.959		3415	1026
189	52.131		2967	725
190	53.040	Phytane	8039	3618
191	53.353	_	2388	700
192	53.514		1959	519
193	54.163		1772	690
194	54.251		1961	993
195	56.089		2518	1321
196	56.169	IS#3	43425	25709
197	56.688		3251	781
198	57.660		1737	676
199	58.038		2565	404
200	58.346		3438	- 588
201	58.624		3896	875
202	58.728		1522	851
203	63.330		2202	1210
204	63.719		1664	724
205	64.756		2358	555
206	65.186		2482	1071
207	66.271		4476	765
208	68.190		2634	822
209	68.565		1669	685
210	69.907		3737	1182

Group Group Amount Group Percent 0 0.0000 0.0000%

TOTAL AREA DETECTED = 3641084

Checked by Shank, In Date 7/31/97

0.0 to 100.0 min. Low Y=6.293 High Y=173.076 mv Span=166.783


```
0.0 to 33.333 min. Low Y=5.0 High Y=80.0 mv Span=75.0
```


GLOBAL GEOCHEMISTRY CORP. 6919 ETON AVENUE • CANOGA PARK, CA 91303-2194 • (818) 992-4103

-33.793-80 34. - 34.49 - 34.81 \$ 35,60 \$ - 36.60 \$ - 36.04 36_ }-36.71 ⇒n-C12 38_ 40. 2- 39.95 -40.3399-1-014 - 10BB67-92 -COM- SBXP+C13 42. }- 42.24 - 42.74 -\$:11:18 44. 44.06 - 1-015 -- 44.37 -- 44.72 - n-014 46_ - 46.42=-1-C16 €- 46.78 →n-C15 48.. \$-49.91 n-C16 50. -- 50.38⇒-1-C18 60.88 - 31:25-gr¢i∮⇒-Pristane 52. <u>- 52.84=59.648</u>-Phytane **≨- }3:3**5 54. }-54.25-n-C19 - 55.29 ⇒-n-C20 \$6. -- 56.17=-1S#3 >- 56.69 ⇒-n-C21 و 57.39 - ح 58. **⇒-π-**C22 \$9.593 **→n-C23** 60_ - 60.02 ⇒-n-C24 ⇒-n-C25 62. - 62.01 ⇒-n-C26 -- 63.<u>33</u>n-027 64. - 64.29 - 64.76-n-C28 -- 65.19 -n-C29 66.


```
Gas Chromatography by Global GeoChemistry
 TODAY'S DATE....07-31-1997
                                      TIME.....13:33:13
 RAW DATA FILE NAME..E:\DATA7\C344199.17R
 SAMPLE NAME.....4027-1 (MWS + IS3-014)
 DATE TAKEN..Jul 19, 1997
                            17:15:02
 METHOD FILE....!!!e:\data7\C3441990.MET
 METHOD:..Whole Oil Analysis
 CALIBRATION FILE...!!!E:\DATA7\C344199Q.CALCAL. FILE VERSION...-2
 INSTRUMENT..... HP6890 FID--FID
                                              OPERATOR.... Lev Baycher
 RUN TIME..... 100
 AREA REJECT.... 0
                                    COM PORT....
 HEADING 1..C3-C44 Analysis
 HEADING 2..GC-analysis: method 1 (split 400:1)
 FORMAT FILE..E:\DATA7\NORMAL.FMT
****** PEAKS DETECTED IN THIS CHROMATOGRAM ***********
Peak Ret Time
                                     Peak
                                            Peak
       (min)
               Peak Name
                                     Area
                                          Height
   1
        5.422
               2
                                       2791
                                               2819
   2
        5.547
               4
                                             15165
                                      18704
               7
   3
        5.857
                                       1624
                                              1026
   4
        5.986
               8
                                     169098 157758
   5
        6.133
                                       6331
                                              3077
   6
        6.189
               10
                                       8427
                                               5429
   7
        6.228
               11
                                      72262
                                             49811
   8
        6.329
               12
                                      17143
                                              5707
   9
        6.418
               DCM
                                       7900
                                              3521
  10
        6.465
               14
                                             10173
                                      23128
  11
        6.582
               CS2
                                      34379
                                             20985
  12
        6.665
                                       4252
                                              2697
  13
        6.952
                                       2262
                                              1139
  14
        7.021
                                       1801
                                              1334
  15
        7.022
               16
                                       3759
                                              1485
  16
        7.138
               17
                                      47247
                                             24812
        7.208
  17
               18
                                     124945
                                             79038
  18
        7.491
               19
                                     74470
                                             48023
  19
        7.634
                                      18426
                                              2296
  20
        7.878
               20
                                      67087
                                             25781
  21
        8.053
               21
                                       6178
                                               2752
  22
        8.073
                                      10852
                                               4261
  23
        8.141
                                      25224
                                               4425
  24
        8.283
               23
                                      10175
                                              1548
  25
        8.421
               24
                                       9443
                                               2606
  26
        8.499
               25
                                       5437
                                              2051
  27
        8.563
               26
                                     108271
                                             64165
  28
        8.667
               27
                                      30266
                                             11728
  29
        9.292
                                      10138
                                               2499
  30
        9.374
               28
                                               1562
                                       6650
  31
        9,456
               29
                                       8634
                                               2120
  32
        9.581
               30
                                             17492
                                      37263
  33
        9.886
               31
                                      50015
                                             26859
  34
        9.945
               32
                                      44719
                                             19597
  35
       10.202
                                              28654
                                      69265
```

10.448

38 10.592 8348 4958 40 10.700 35 89586 41092 41 11.096 IS#1 78414 28516 42 11.175 36 68754 21403 43 11.258 35937 5219 44 11.619 15233 2418 45 11.975 12313 7721 46 12.008 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 51 12.770 4303 1006 52 12.945 16235 4135 53 3.286 11158 3376 54 13.405 40 32893 15350 55 13.601 4	- 37	10.556	34	26613	13359
40 10.700 35 89586 41092 41 11.096 IS#1 78414 28516 42 11.175 36 68754 21403 43 11.258 35937 5219 44 11.619 15233 2418 45 11.975 12313 7721 46 12.008 37 76372 33284 47 12.50 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 3.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 59 14.					
41 11.096 IS#1 78414 28516 42 11.175 36 68754 21403 43 11.258 35937 5219 44 11.619 15233 2418 45 11.975 14808 3899 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 61 14.346 44 12457 4626 61 14.3			25		
42 11.175 36 68754 21403 43 11.258 35937 5219 44 11.619 15233 2418 45 11.975 12313 7721 46 12.008 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 57 13.958 42 19338 5821 58 14.010 9340 2286 60 14.346 44 12457 4626 61 14.380					
43 11.258 35937 5219 44 11.619 15233 2418 45 11.975 12313 7721 46 12.008 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 58 14.010 9340 2286 61 14.346 44 1245					
44 11.619 15233 2418 45 11.975 12313 7721 46 12.008 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 16647 1647 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.394 45 8970 2776 <			3 0		
45 11.975 12313 7721 46 12.088 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 61 14.380 4550 3009 62 14.394 44 12457 4626 61 14.394 45 8970 2776 63 14.640 46 21152 9320 66					
46 12.008 37 76372 33284 47 12.150 14808 3899 48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 16647 1665 71 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.394 45 8970 2776 63 14.566 74 3890 2824 <td></td> <td></td> <td></td> <td></td> <td></td>					
48 12.588 38 24907 7411 49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19388 5821 58 14.010 9340 2286 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.566 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 70 15.794	46		37		
49 12.629 7191 4123 50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 3220 65 14.741 9332 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 <td></td> <td></td> <td></td> <td>14808</td> <td>3899</td>				14808	3899
50 12.676 39 23470 7679 51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.340 4550 3009 62 14.394 45 870 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9433 373 70			38		
51 12.770 4303 1006 52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.566 4339 5824 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48					
52 12.945 16235 4135 53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4339 5824 66 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 49 38110 7412 75 16.345 7405 <td></td> <td></td> <td>39</td> <td></td> <td></td>			39		
53 13.286 11158 3376 54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.346 44 12457 4626 61 14.394 45 8970 2776 63 14.556 7428 1581 48 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.289 8808 2283					
54 13.405 40 32893 15350 55 13.601 41 43605 19415 56 13.791 1664 1647 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704					
55 13.601 41 43605 19415 56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.999 6023 869 78 17.354 2220 697 80 17.589 29 9629			40		
56 13.791 16147 1664 57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.884 50 2662 746 76 16.884 50 2662 746 76 16.884 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
57 13.958 42 19338 5821 58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667					
58 14.010 9340 2286 59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746			42		
59 14.265 43 25041 9487 60 14.346 44 12457 4626 61 14.380 4550 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 76 16.884 50 2662 746<				•	
61 14.380 45 3009 62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 93 20.382			43		
62 14.394 45 8970 2776 63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3899 94 20.056 5377 1231 95 20.301 60 38591 8751			44	12457	4626
63 14.556 7428 1581 64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 209009 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 80 17.589 52 9629 4060 81 17.642 8099 237 82 17.863 10148 3542 83 17.994 53 8590 2993 84<					3009
64 14.640 46 21152 9320 65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 8590 2993 84 <td></td> <td></td> <td>45</td> <td></td> <td></td>			45		
65 14.689 4439 5824 66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2847 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8099 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 <td></td> <td></td> <td></td> <td></td> <td></td>					
66 14.709 47 20909 8090 67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 <td></td> <td></td> <td>46</td> <td></td> <td></td>			46		
67 14.741 9322 5170 68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.796 54 11295 2383 87 <td></td> <td>A. Control of the Con</td> <td>17</td> <td></td> <td></td>		A. Control of the Con	17		
68 14.819 14975 2975 69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 <td></td> <td></td> <td>** /</td> <td></td> <td></td>			** /		
69 15.181 48 9493 3738 70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.794 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
70 15.289 8808 2283 71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 90 </td <td></td> <td></td> <td>48</td> <td></td> <td></td>			48		
71 15.452 15169 2847 72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90<					
72 15.704 13513 3413 73 16.047 4755 4880 74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 <	71				
74 16.070 49 38110 7412 75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 8590 293 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 <td>72</td> <td>15.704</td> <td></td> <td>13513</td> <td></td>	72	15.704		13513	
75 16.345 7405 1667 76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 <td></td> <td></td> <td></td> <td>4755</td> <td>4880</td>				4755	4880
76 16.884 50 2662 746 77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 <td></td> <td></td> <td>49</td> <td></td> <td></td>			49		
77 16.999 6023 869 78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751<					
78 17.303 51 6175 2030 79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 379			50		
79 17.354 2220 697 80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			E1		
80 17.589 52 9629 4060 81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			21		
81 17.642 8009 2237 82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			52		
82 17.863 10148 3542 83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792		17.642			
83 17.994 53 8590 2993 84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792					
84 18.051 2901 907 85 18.595 4196 1122 86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792	83	17.994	53		
86 18.706 54 11295 2383 87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792					
87 18.774 7477 1445 88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			_		
88 19.092 55 134471 15194 89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			54		
89 19.320 34605 3849 90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			e e		
90 19.557 56 8361 3306 91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			22		
91 19.606 57 24578 4551 92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			56		
92 19.913 6481 1496 93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792					
93 19.968 58 15789 3809 94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			- ·		
94 20.056 5377 1231 95 20.301 60 38591 8751 96 20.382 19012 3792			58		
95 20.301 60 38591 8751 96 20.382 19012 3792					
			60		8751
				19012	3792

GLOBAL GEOCHEMISTRY CORP. 6919 ETON AVENUE • CANOGA PARK, CA 91303-2194 • (818) 992-4103

- 97	20.767	61	8246	1536
98 99	20.851 21.505		3574 1589	566
100	21.503	62	5917	821 1885
101	21.651	IS#2	115153	10224
102	22.197	63	6175	1564
103	22.229		12025	2362
104	22.948		9425	1502
105 106	23.213 23.379	•	5399	824
107	23.379	65	691 6230	298 1497
108	23.809	66	2569	932
109	23.852	• -	5753	1021
110	24.161	67	24845	4677
111	24.283	68	19796	3484
112 113	24.555 24.642	69	28674	6180
113	24.927	70	13071 12709	2233 2826
115	25.066	71	22106	4761
116	25.150	, <u>–</u>	11678	2097
117	25.409		12994	1982
118	25.597	72	3857	672
119	25.849	73	76604	15482
120 121	26.008 26.334	74	28033 3944	2904 707
122	26.522	7 %	2641	642
123	26.597	75	2332	501
124	26.873		7661	743
125	27.000	76	7050	978
126	27.292	77	17750	3432
127 128	27.402 27.912	78	10225 9972	1150 1559
129	28.186	, 0	5848	1165
130	28.448		4383	698
131	28.677		2500	506
132	28.865	70	4314	1264
133 134	29.001 29.281	79 81	9717 18747	1705 3804
135	29.749	82	4045	899
136	29.858	•-	12250	1056
137	30.253	83	4588	1613
138	30.333	84	22097	2962
139 140	30.554 30.640	85	6475	2011
141	31.590	63	17281 1782	3165 500
142	31.653	86	3430	733
143	31.728		4501	585
144	32.135	n-C11	1707	409
145	32.243	87	7245	1446
146 147	32.390 33.151	88	20692 ³ 2733	2995 901
148	33.273		14380	1463
149	33.667		17284	3572
150	33.752	89	6837	1254
151	34.485		6698	670
152 153	34.810 35.156	90	8194 3279	776
154	35.227	- 30	15544	599 1396
155	35.602	, ,		1386
156	36.036		6652	
C.	LOBAL GE	OCHEMISTRY CORP	CO40 ETON AVENUE	

GLOBAL GEOCHEMISTRY CORP. 6919 ETON AVENUE • CANOGA PARK, CA 91303-2194 • (818) 992-4103

Detailed Gasoline Range (C3-C10) Hydrocarbon Analysis for One product sample submitted by ENTRIK, Inc. (relative *)

Şanı	ala	MWS	NWS
GGC		4027-1	4027-1D
1	Propane		
2	Isobutane	0.13	0.14
3	Isobutena		
4	Butane/Methanol	0.85	0.87
5	trans-2-Butene		
6	cis-2-Butene		
7	3-Methyl-1-butene	0.07	0.07
8	Isopentane	7.65	7.73
9	1-Pentene	0.29	0.29
10	2-Methyl-1-butene	0.38	0.39
11	Pentane	3.27	3.27
12	trans-2-Pentene	0.78	0.78
13	cis-2-Pentene/t-Butanol		
14	2-Methyl-2-butene	1.05	1.06
15	2,2-Dimethylbutane	0.19	0.19
16	Cyclopentane	0.17	0.17
17	2,3-Dimethylbutane/MTBE	2.14	2.11
18	2-Methylpentane	5.65	5.55
19	3-Methylpentane	3.37	3.32
20	Hexane	3.04	2.95
21	trans-2-Hexene	0.28	0.28
22	3-Methylcyclopentene	0.49	0.49
23	3-Methyl-2-pentene	0.46	0.42
24	cis-2-Hexene	0.43	0.39
25	3-Methyl-trans-2-pentene	0.25	0.24
26	Methylcyclopentane	4.90	4.83
27	2,4-Dimethylpentane	1.37	1.32
28	Benzene	0.30	0.30
29	5-Methyl-1-hexene	0.39	0.36
30	Cyclohexane	1.69	1.66
31	2-Methylhexane/TAMB	2.26	2.24
32	2,3-Dimethylpentane	2.02	2.02
33	3-Methylhexane	3.13	3.07
34	2-Methyl-1-hexene	1.20	1.26
35	2,2,4-Trimethylpentane	4.05	3.96
ĮS1	a,a,a-Trifluorotoluene		
36	n-Heptane	3.11	3.03
37	·	3.46	3.39
36	•	1.13	1.09
39		1.06	1.07
40	• • •	1.49	1.48
41	Toluene	1.97	1.95
42	2,3-Dimothylhexane	0.88	0.88

Detailed Gasoline Range (C3-C10) Hydrocarbon Analysis for One product sample submitted by RNTRIX, Inc. (relative %)

Sample	RWM	MWS
eec id	4027-1	4027-1D
•		
81 n-Butylbenzene	0.85	0.88
82 1,3-Dimethyl-5-ethylbenzene	0.18	0.19
83 1,4-Dimethyl-2-ethylbenzene	0.21	0.22
84 1,3-Dimethyl-4-ethylbenzene	1.00	1.00
85 1,2-Dimethyl-4-ethylbenzene	0.78	0.83
86 Undecene		
87 1,2,4,5-Tetramethylbenzene	0.33	0.32
88 1,2,3,5-Tetramethylbenzene	0.94	0.93
89 1,2,3,4-Tetramethylbenzene	0.31	0.31
90 Naphthalene	0.15	0.15
91 2-Methyl-naphthalene	0.04	0.04
92 1-Methyl-naphthalene	0.15	0.16

Degradation ratios and bulk composition calculated from the gasoline range (C3-C10) analysis One product sample submitted by ENTRIX, Inc.

Sample	MWS	MWS
GGC ID	4027-1	4027-1D
Evaporation		
n-Pentane/n-Heptane	1.05	1.08
2-Methylpentane/2-Methylheptane	4.99	4.78
Waterwashing		
Benzene/Cyclohexane	0.18	0.18
Toluene/Methylcyclohexane	0.57	0.58
Aromatics/Total Paraffins(n+iso+cyc)	0.35	0.36
Aromatics/Naphthenes	2.23	2.30
Biodegradation		
(C4-C8 Para+Isopara)/C4-C8 Olefins	8.63	8.61
3-Methylhexane/n-Heptane	1.01	1.02
Methylcyclohexane/n-Heptane	1.11	1.12
Isoparaffins+Naphthenes/Total Paraffins	4.39	4.41
Octane rating		
2,2,4-Trimethylpentane/Methylcyclohexane	1.17	1.17
Relative percentages - Bulk hydrocarbon composit	ion as PIANO	
* Paraffinic	12.62	12.69
* Isoparaffinic	45.44	45.29
* Aromatic	24.25	24.70
* Naphthenic	10.86	10.72
% Olefinic	6.62	6.59

Supervisor

Simulated Distillation Curve(s) (ASTM 2887)

ENTRIX, Inc. 590 Ygnacio Valley Road Suite 200 Walnut Creek. CA 94596 (510) 935-9920 (510) 935-5368 FAX

351301

July 16, 1997

Mr. Ian Kaplan Global Geochemistry Corporation 6919 Eton Ave. Canoga Park, CA 91303

Re: Enclosed Free Product Sample

Dear Mr. Kaplan,

Please analyze the enclosed sample MWS as whole oil and sim-distillation according to ASTM 2887. Please send results to Bob Haddad and invoice directly to ENTRIX referring to project number 351301. Please call Bob Haddad or myself with any questions. Thank you for your assistance.

Sincerely,

ENTRIX, Inc.

zudy Nedoff

Judy Nedoff Chemist

JN/jn

cc:

Bob Haddad

KAPREALIAN ENGINEERING

CHAIN OF CUSTODY

SAMPLER			1(1	10.00.0	.) <	-/ <s< th=""><th>LJE NY</th><th>ME & ADDRESS</th><th>1</th><th></th><th>ANALYS</th><th></th><th>JESTED</th><th></th><th></th><th>TURN AROUND TIME:</th></s<>	LJE NY	ME & ADDRESS	1		ANALYS		JESTED			TURN AROUND TIME:
Steve WITHESSING	Balia. AGENCY	<u>n</u>	4	191-	130	٠. ح	her	-	47154	10:1	0.5 3883					K O O O
SAMPLE ID NO.	DATE	TIKE	soit	Produ		СОНР	NO. OF CONT.	SAMPLING LOCATION	मिलक क्रमि	lio alcula	S.mI ASTIVI					REMARKS
HWS	6/27/97			✓			Z	monitoring well	1	X	×	<u>-</u>		-		-
			<u> </u> 			-			-		-		 			
									-						-	: :
			<u></u>		_	ļ			-	_	-		·	ļ <u>.</u>		· - -,,
		:			 				_	-						-
> TENS		12	\	2/9		را	4m	ed by: (signature)		tor	analvsi	g :				the laboratory accepting sam analysis been stored in ice?
Relinquish Trace Relinquish		gnature)	7-Z		/Sioc	<u> </u>		ed by: (Signature) ed by: (Signature)				-				ed until analyzed? nalysis have head space?
7.77	ed by: (Si		_	ate/fi ? 47/ Date/fi		-1	Receiv		<u></u> ادر از	۷.	Were sa	nples	in app	aropria	ite con	ntainers and properly packaged
Alex		onel	<i>,</i> ,	19:1		K	Ly	ed by: (Signature) Length Lab-los	(47)		Sign	ature				litle Date

July Nedolf

7/16/97 1600

2401 Stanwell Drive, Suite 400 Concord, California 94520 Tel: 510 602 5100 - Eox 510 687 0602

6919 ETON AVENUE • CANOGA PARK • CALIFORNIA 91303-2194

E-mail: globalg1@idt.net FAX: (818) 992-8940

August 7, 1998

(818) 992-4103

Ms. Tina Berry Tosco Marketing Company 2000 Crow Canyon, Suite 400 San Ramon, CA 94583

Re: Unocal #7376 - 4191 First Street, Pleasanton, California

Dear Ms. Berry:

I have examined the analytical data derived from the chemical analysis of two soil samples. Several different analytical procedures were used to derive the information needed for interpretation.

The samples were first extracted with carbon disulfide and an aliquot of the extract was injected into a gas chromatograph with an FID detector calibrated to measure the amount and time of elution of a series of n-alkanes at various elution times. This is known as a Simulated Distillation Method developed by ASTM. The curves showed that there is a small amount of volatile components and a larger proportion of semi-volatile and high boiling components, with final boiling temperatures exceeding 1300°F. Based on the curves generated by this method, it is evident that sample B-11-10.5 has a dominantly higher boiling point than sample B-11-61 (see Figure 1).

Because of the presence of a low boiling point components, the soil samples were tested for the presence of gasoline range hydrocarbons using a purge and trap coupled to a gas chromatograph with an FID detector. The results shown in Tables 1 and 2 and the attached chromatograms demonstrate that the low boiling fuel component is a low octane (regular) gasoline. Sample B-11-61 appears to show very little weathering, whereas sample B-11-10.5 is more weathered. This latter sample is highly concentrated in the BTEX hydrocarbons, which constitute about 54% of the total light end composition. This finding suggests that the volatile fuel component appears to constitute a mixture of gasoline and refined aromatics.

Evidence for the presence of a relatively recently released gasoline (post-1987) comes from the presence of MTBE in both sample B-11-61 and sample B-11-10.5. The latter sample contains about ten times higher concentration than B-11-61 (i.e., 2520 versus μ g/kg, see Table 3).

Another portion of soil was extracted with methylene chloride and the extracts were analyzed using gas chromatography. The results of analyses are shown in Figures 2-4 and a reference diesel chromatogram is shown in Figure 5. The chromatograms (in duplicate) for sample B-11-61 (Figures 2 and 3) illustrates a highly weathered mid-range to high boiling hydrocarbon component. The individual peaks represent iso-alkanes with no n-alkanes (n-paraffins) present. The gas chromatogram for sample extract B-11-10.5 (Figure 4) demonstrates a very severely weathered component with no recognizable individual peaks (except the internal standard).

To confirm the composition of the soil extracts, they were further analyzed by GCmass spectrometry. The data shown in the package labeled Figures 6 plus are the mass chromatograms generated at different ion fragments. The data show that sample B-11-61 has a wide range of hydrocarbons from about C_{10} to $>C_{20}$. It has a suite of iso-alkanes, methylcyclohexanes, C₄-alkylbenzenes, terpanes and steranes all characteristic of a widecarbon-range petroleum product. This wide range is also visible from the distribution pattern in the bar diagram displaying the PAH compounds. This pattern is indicative of a weathered crude oil. Present in only trace amounts in the PAH measurements are the "pyrogenic" hydrocarbons. This argues against the petroleum derivative being a refined product, such as heating oil #6 or Bunker C oil. Sample B-11-10.5 has almost no recognizable hydrocarbons remaining, with the exception of the highly resistant terpanes and steranes. Among the polynuclear aromatic hydrocarbons, the monoaromatic- and triaromatic steranes dominate with only very small amounts of other PAH compounds. This attests to the state of degradation of the hydrocarbon suite. Because of the state of degradation of the hydrocarbons in sample B-11-10.5 it is more difficult to assign a fuel origin, however, the lack of "pyrogenic" PAH compounds in this sample also suggests that it is a crude oil.

To summarize, hydrocarbons in the soil represent a mixture of about 10% gasoline and 90% semi-volatile and high boiling components identified as crude oil. Whereas the gasoline fraction is not highly weathered, the crude oil fraction varies from highly weathered (B-11-61) to very severely weathered (B-11-10.5).

Sincerely,

Isaac Kaplan, Ph.D.

President

A4483-report.wpd

TABLES

Detailed Gasoline Range (C3-C10) Hydrocarbon Analysis for two soil samples submitted by Unocal (relative %)

Table 1

Sam	ple	B-11-61	B-11-61	B-11-10.5
GGC	ID	4483-1	4483-1D	4483-2
1	Propane	0.01	0.01	0.05
2	Isobutane	0.17	0.19	0.05
3	Isobutene			0.04
4	Butane/Methanol	0.48	0.53	
5	trans-2-Butene			
6	cis-2-Butene	0.03	0.03	
7	3-Methyl-1-butene	0.04	0.04	
8	Isopentane	4.06	4.39	0.34
9	1-Pentene	0.19	0.18	
10	2-Methyl-1-butene	0.13	0.14	0.02
11	Pentane	1.95	2.03	0.17
12	trans-2-Pentene	0.42	0.46	0.03
13	cis-2-Pentene/t-Butanol	0.18	0.19	
14	2-Methy1-2-butene	0.62	0.66	0.28
15	2,2-Dimethylbutane	0.13	0.13	0.05
16	Cyclopentane	0.18	0.18	0.01
17	2,3-Dimethylbutane/MTBE	1.39	1.45	4.09
18	2-Methylpentane	4.12	4.26	1.38
i 19	3-Methylpentane	2.54	2.62	1.03
20	Hexane	2.59	2.67	1.03
21	trans-2-Hexene	0.42	0.43	0.06
22	3-Methylcyclopentene	0.46	0.48	0.63
23	3-Methyl-2-pentene	0.33	0.31	0.10
	cis-2-Hexene	0.45	0.46	0.67
25	3-Methyl-trans-2-pentene	0.07	0.07	0.05
26	Methylcyclopentane	4.30	4.35	4.47
27	2,4-Dimethylpentane	0.94	1.01	0.68
28	Benzene	1.50	1.60	28.18
29	5-Methyl-1-hexene	0.21	0.21	0.21
30	Cyclohexane	1.60	1.61	2.26
31	2-Methylhexane/TAME	2.35	2.47	1.69
32	2,3-Dimethylpentane	1.41	1.50	1.47
33	3-Methylhexane	2.54	2.68	2.32
34	2-Methyl-1-hexene	1.77	1.82	1.60
35	2,2,4-Trimethylpentane	2.73	3.00	1.85
	a,a,a-Trifluorotoluene			
36	n-Heptane	2.51	2.62	2.24
37	Methylcyclohexane 2,5-Dimethylhexane	4.63	4.49	4.27
38	2,4-Dimethylhexane	1.31	1.37	1.34
39	2,3,4-Trimethylpentane	0.92	0.99	0.84
40		2.00	2.06	2.35
41	Toluene 2,3-Dimethylhexane	13.69	13.60	11.63
42	a, 3-51mg city thexane	0.59	0.62	0.57

Detailed Gasoline Range (C3-C10) Hydrocarbon Analysis for two soil samples submitted by Unocal (relative %)

Table 1 (cont)

Samp	ole ·	B-11-61	B-11-61	B-11-10.5
GGC	ID	4483-1	4483-1D	4483-2
				•
43	2-Methylheptane	1.32	1.18	0.82
44	4-Methylheptane	0.42	0.45	0.35
45	3,4-Dimethylhexane	0.23	0.24	0.20
46	3-Ethyl-3-methylpentane	1.22	1.30	0.98
47	3-Methylheptane	0.24	0.25	0.22
48	2-Methyl-1-heptene	0.57	0.59	0.27
49	n-Octane	1.03	1.09	0.56
50	2,2-Dimethylheptane	0.20	0.21	0.05
51	2,4-Dimethylheptane	0.19	0.19	0.04
52	Ethylcyclohexane	0.32	0.31	0.06
53	2,6-Dimethylheptane	0.19	0.20	0.07
54	Ethylbenzene	4.11	3.80	4,49
55	m + p Xylenes	9.93	9.00	11.03
56	4-Methyloctane	0.26	0.26	0.08
57	2-Methyloctane	0.42	0.43	0.08
58	3-Ethylheptane	0.51	0.52	0.08
59	3-Methyloctane	0.22	0.22	0.04
60	o-Xylene	3.76	3.39	1.91
" 61	1-Nonene			
62	n-Nonane	0.36	0.36	0.02
IS2	p-Bromofluorobenzene			
63	Isopropylbenzene	0.30	0.27	0.11
64	3,3,5-Trimethylheptane	0.03	0.03	
65	2,4,5-Trimethylheptane	0.23	0.22	
66	n-Propylbenzene	0.72	0.69	0.11
67	1-Methyl-3-ethylbenzene	1.75	1.63	0.16
68	1-Methyl-4-ethylbenzene	0.78	0.72	0.11
69	1,3,5-Trimethylbenzene	0.61	0.58	
70	3,3,4-Trimethylheptane	0.18	0.17	
71	1-Methyl-2-ethylbenzene	0.63	0.59	0.03
72	3-Methylnonane	0.15	0.15	
73	1,2,4-Trimethylbenzene	1.51	1.40	
74	Isobutylbenzene	0.12	0.13	
75	sec-Butylbenzene	0.09	0.09	
76	n-Decane	0.12	0.12	0.05
77	1,2,3-Trimethylbenzene	0.34	0.35	
78	Indan	0.40	0.40	0.01
79	1,3-Diethylbenzene	0.14	0.13	
80	1,4-Diethylbenzene	0.08	0.08	•

Table 1 (cont)

Detailed Gasoline Range (C3-C10) Hydrocarbon Analysis for two soil samples submitted by Unocal (relative %)

Sam	ple	B-11-61	B-11-61	B-11-10.5
GGC	ID	4483-1	4483-1D	4483-2
81	n-Butylbenzene	0.08	0.07	
82	1,3-Dimethyl-5-ethylbenzene	0.04	0.04	
83	1,4-Dimethyl-2-ethylbenzene	0.05	0.05	
84	1,3-Dimethyl-4-ethylbenzene	0.06	0.07	
85	1,2-Dimethyl-4-ethylbenzene	0.04	0.04	
86	Undecene			
87	1,2,4,5-Tetramethylbenzene			
88	1,2,3,5-Tetramethylbenzene			
89	1,2,3,4-Tetramethylbenzene	0.08	0.09	
90	Naphthalene			
91	2-Methyl-naphthalene			
92	1-Methyl-naphthalene			

Table 2

Degradation ratios and bulk composition calculated from the gasoline range (C3-C10) analysis for two soil samples submitted by Unocal

Sample	B-11-61	B-11-61	B-11-10.5
GGC ID	4483-1	4483-1D	4483-2
	4405-1	1103 12	4103 .
Evaporation			
n-Pentane/n-Heptane	0.78	0.77	0.08
2-Methylpentane/2-Methylheptane	3.12	3.62	1.68
Waterwashing			
Benzene/Cyclohexane	0.93	1.00	12.46
Toluene/Methylcyclohexane	2.96	3.03	2.73
Aromatics/Total Paraffins(n+iso+cyc)	0.71	0.65	1.40
Aromatics/Naphthenes	3.42	3.28	4.83
Biodegradation			
(C4-C8 Para+Isopara)/C4-C8 Olefins	7.38	7.49	7.20
3-Methylhexane/n-Heptane	1.01	1.02	1.04
Methylcyclohexane/n-Heptane	1.84	1.71	1.91
Isoparaffins+Naphthenes/Paraffins	4.88	4.85	8.28
Octane rating			
2,2,4-Trimethylpentane/Methylcyclohexane	0.59	0.67	0.43
Relative percentages - Bulk hydrocarbon composi	tion as PIANO		
* Paraffinic	9.35	9.71	4.31
* Isoparaffinic	34.28	35.78	24.13
* Aromatic	38.95	36.98	55.85
* Naphthenic	11.38	11.28	11.57
* Olefinic	6.05	6,24	4.14

Table 3

Date sampled:6/9/98 Date analyzed:7/29/98 Sample type: Soil Method:GGC (OXY)

Oxygenate data for samples submitted by Tosco

Sample ID	GGC ID	Ethanol	tert- Butanol	MTBE	DIPE	ETBE	TAME	
		μg/kg						
Method Blank:		<200	<40	<2	<2	<10	<10	
B-11-61	4483-1	<1000	<200	228	<10	<50	<50	
B-11-10.5	4483-2	<2000	<400	2520	<20	<100	<100	

MTBE:Methyl tert-Butyl Ether DIPE: Diisopropyl Ether ETBE: Ethyl tert-Butyl Ether TAME: tert-Amyl Methyl Ether

Table 4

Concentration of extracts and hydrocarbon fractions for samples submitted by Unocal

Sample ID	GGC ID	Sample Weight for Extraction (g)	Extract Weight (mg)	Sample Concentration (mg/g)	Saturate+ Aromatic (%)	Polar+ Asphaltenes (%)
B-11-61	4483-1	30.2	172	5.70	77.1	22.9
B-11-10.5	4483-2	15.0	178	11.9	31.3	68.7

Figure 1: Simulated Distillation Curves

Global Geochemistry Corporation

Figure 2 - Sample B-11-61, gas chromatogram of soil extract

Figure 3 - Sample B-11-61 (duplicate), gas chromatogram of soil extract

Figure 4 - Sample B-11-10.5, gas chromatogram of soil extract

FIGURES 6+

Mass Chromatograms of the Extracts of Two Soils (B-11-61 & B-11-10.5) Analyzed at Various Mass Fragments

Table

Key to Chromatogram Symbol Identification

Symbol	Detail		
i-10	Iso-alkane with 10 carbon atoms		
i-15	Farnesane (isoprenoid with 15 carbon atoms)		
i-16	Isoprenoid with 16 carbon atoms		
Pr	Pristane (isoprenoid with 19 carbon atoms)		
Ph	Phytane (isoprenoid with 20 carbon atoms)		
nC _B	n-C ₃ normal alkane		
nC ₁₅	n-C ₁₅ normal alkane		
i-8	2,5-(2,4)-Dimethylhexane		
i-8'	2.3,4-Trimethylpentane		
i-8"	2.3-Dimethylhexane		
CH-n	Alkylcyclohexane (where n indicates number of carbon atoms in the side chain)		

Table

Key for C₄-Alkylbenzenes (m/z 134 chromatogram)

16	Sec-Butylbenzene		
17	1-Methyl-3-isopropylbenzene		
18	1-Methyl-4-Isopropylbenzene		
19	1-Methyl-2-Isopropylbenzene		
20	1,3-Diethylbenzene		
21	1-Methyl-3-Propylbenzene		
22	Butylbenzene		
23	1,3-Diemethyl-5-Ethylbenzene		
24	1,2-Diethylbenzene		
25	1-Methy-2-Propylbenzene		
26	1,4-Dimethyl-2-Ethylbenzene		
27	1,3-Dimethyl-4-Ethylbenzene		
28	1,2-Dimethyl-4-Ethylbenzene		
29	1,3-Dimethyl-2-Ethylbenzene		
30	1,2-Dimethyl-3-Ethylbenzene		
31a	1,2,4,5-Tetramethylbenzene		
31	1,2,3,5-Tetramethylbenzene		
32	1.2.3.4-Tetramethylhenzene		

Key for identification of the bicyclanes (m/z 123)

Peak No.	Identity	<u>Formula</u>	<u>M.W.</u>
a	2,2,3-Trimethylbicyloheptane	$C_{10}H_{1g}$	138
b	C ₁₀ bicyclic	$C_{10}H_{16}$	138
С	3,3,7-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
d	C,, decalin	C ₁₁ H ₂₀	152
f	Nordrimane	C ₁₄ H ₂₆	194
g	Nordrimane	C₁₄H₂e	194
h	Rearranged drimane	C ₁₅ H ₂₈	208
j	Rearranged drimane	C ₁₅ H ₂₈	208
k	Isomer of eudesmane	C ₁₅ H ₂₈	208
	4β(H) Eudesmane	C ₁₅ H ₂₈	208
m	C ₁₅ bicyclic sesquiterpane	C ₁₅ H ₂₈	208
n	8β(H) Drimane	C ₁₅ H ₂₈	208
o	C ₁₅ bicyclic sesquiterpane	C ₁₅ H ₂₉	208
p	C ₁₆ bicyclic sesquiterpane	C ¹⁶ H ₃₀	222
q	C ₁₆ bicyclic sesquiterpane	C₁₄H₃₀	222
ŗ.	8β(H) Homodrimane	C₁₅H₃∞	222

Figure 10: The compound structures of pristane, C4-alkylbenzene, sterane; terpanes; monoaromatic and triaromatic steranes

Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 mass chromatograms)

Code	Identity	Carbon #			
0	C ₂₀ -Tricyclic Terpane				
1	C ₂₁ -Tricyclic Terpane	20			
ż		21			
2 3	C ₂₂ -Tricyclic Terpane	22			
4	C ₂₃ -Tricyclic Terpane	23			
5	C ₂₄ -Tricyclic Terpane	24			
	C ₂₅ -Tricyclic Terpane	25			
Z4	C ₂₄ -Tetracyclic Terpane	24			
6a	C ₂₆ -Tricyclic Terpane	26			
6b	C ₂₆ -Tricyclic Terpane	26			
7	C ₂₇ -Tricyclic Terpane	27			
Α	C ₂₈ -Tricyclic Terpane #1	28			
В	C ₂₈ -Tricyclic Terpane #2	28			
С	C ₂₉ -Tricyclic Terpane #1	29			
D E F	C ₂₉ -Tricyclic Terpane #2	29			
E	18α-22,29,30-Trisnorneohopane (Ts)	27			
F	17α-22,29,30-Trisnorhopane (Tm)	27			
G	17ß-22,29-30-Trisnorhopane				
H	17α-23,28-Bisnorlupane	27			
10a	C. Tripuelle Terran #1	28			
10b	C ₃₀ -Tricyclic Terpane #1	30			
100	C ₃₀ -Tricyclic Terpane #2	30			
11-	17α-28,30-Bisnorhopane	28			
11a	C ₃₁ -Tricyclic Terpane #1	31			
J	17α-25-Norhopane	29			
11b	C ₃₁ -Tricyclic Terpane #2	31			
K _	17α,21β-30-Norhopane	29			
C ₂₉ Ts	18α-30-Norneohopane	29			
C ₃₀ *	17α-Diahopane	30			
L	17β-21α-30-Normoretane	29			
Ma	18α-Oleanane	30			
Mb	18ß-Oleanane	30			
N	17α,21 3-Hopane	30			
0	17β,21α-Moretane	30			
13a	C ₃₃ -Tricyclic Terpane #1	33			
13b	C ₃₃ -Tricyclic Terpane #2	33			
Р	22S-17α,21ß-30-Homohopane	31			
Q	22R-17a,21ß-30-Homohopane	31			
R	Gammacerane				
14a	C ₃₄ -Tricyclic Terpane #1	30			
S	178,21α-Homomoretane	34			
14b		31			
T	C ₃₄ -Tricyclic Terpane #2	34			
Ü	22S-17α,21β-30-Bishomohopane	32			
15a	22R-17α,21β-30-Bishomohopane	32			
	C ₃₅ -Tricyclic Terpane #1	35			
156	C ₃₅ -Tricyclic Terpane #2	35			
V	17β.21α-C ₃₂ -Bishomomoretane	32			
WS	22S-17α,21β-30,31,32-Trishomohopane	33			
WR	22R-17α,21β-30,31,32-Trishomohopane	33			
16a	C ₃₆ -Tricyclic Terpane #1	36 · ·			
16b	C ₃₆ -Tricyclic Terpane #2	36			
XS	22S-17α,21β-30,31,32,33-Tetrahomohopane	34			
XR	22R-17α,21β-30,31,32,33-Tetrahomohopane	34			
Y\$	22S-17a,21ß-30,31,32,33,34-Pentahomohopane	35			
YR	22R-17α,21β-30,31,32,33,34-Pentahomohopane	35			
•	, , , , , , , , , , , , , , , , , , ,				

Table: Key for Steranes Identification (m/z 217 chromatogram)

Code	Identity	Carbon No
1	13ß,17α-diacholestane (20S)	27
2	13ß,17α-diacholestane (20R)	27
3	13α,17β-diacholestane (20S)	27
4	13α,17β-diacholestane (20R)	27
5	24-methyl-13β,17α-diacholestane (20S)	28
6	24-methyl-13β,17α-diacholestane (20R)	28
7D	24-methyl-13α,17β-diacholestane (20S)	28
7	14α,17α-cholestane (20S)	27
8+8D	14β,17β-cholestane (20R) + 24-ethyl-13β,17α-diacholestane (20S)	27+29
9	14ß,17ß-cholestane (20S)	27
9D	24-methyl-13α,17β-diacholestane (20R)	2 8
10	14α,17α-cholestane (20R)	2 7 .
11	24-ethyl-13β,17α-diacholestane (20R)	29
12	24-ethyl-13α,17β-diacholestane (20S)	29
13	24-methyl-14α,17α-cholestane (20S)	28 ·
14+14D	24-methyl-14β,17β-cholestane (20R) + 24-ethyl-13α,17β-diacholestane (20R)	28+29
15	24-methyl-14ß,17ß-cholestane (20S)	28
16	24-methyl-14α,17α-cholestane (20R)	28
17	24-ethyl-14α-cholestane (20S)	29
18	24-ethyl-14ß,17ß-cholestane (20R)	29
19	24-ethyl-14ß,17ß-cholestane (20S)	29
20	24-ethyl-14α,17α-cholestane (20R)	29
21A	24-n-Propylcholestanes .	30
21B	4-Methyl-24-ethylcholestane	30

CODE	IDENTITY	ELEMENTAL COMPOSITION
a	20S, 5β C ₂₇ -Monoaromatic sterane	C ₂₇ H ₄₂
b	20S, dia C ₂₇ -Monoaromatic sterane	C ₂₇ H ₄₂
С	20R, 5β C ₂₇ -Monoaromatic sterane + 20R C ₂₇ dia MAS	C ₂₇ H ₄₂
d	20S, 5α C_{27} -Monoaromatic sterane	C ₂₇ H ₄₂
е	20S, 5β C ₂₈ -Monoaromatic sterane + 20S C ₂₈ dia MAS	C ₂₈ H ₄₄
f	20R, 5α C ₂₇ -Monoaromatic sterane	C ₂₇ H ₄₂
g	20S, 5α C ₂₈ -Monoaromatic sterane	C ₂₈ H4 ₄
h	20R, 5β C ₂₈ -Monoaromatic sterane + 20R C ₂₈ dia MAS	C ₂₈ H ₄₄
i	20S, 5β C ₂₉ -Monoaromatic sterane + 20S C ₂₉ dia MAS	
j	20S, 5α C ₂₉ -Monoaromatic sterane	C ₂₉ H ₄₆
k	20R, 5α C ₂₈ -Monoaromatic sterane	C ₂₈ H ₄₄
1	20R, 5β C ₂₉ -Monoaromatic sterane + 20R C ₂₉ dia MAS	
m	20R, 5α C ₂₉ -Monoaromatic sterane	C ₂₉ H ₄₆

Key for Triaromatic Steranes Identification (m/z 231 chromatogram)

Code	Identity	Elemental Composition
T1	C ₂₀ Triaromatic sterane	C ₂₀ H ₂₀
T2	C ₂₁ Triaromatic sterane	C ₂₁ H ₂₂
T3	20S C ₂₆ Triaromatic sterane	$C_{26}H_{32}$
T4	20R C_{26} + 20S C_{27} -Triarematic steranes	$C_{26}H_{32} + C_{27}H_{34}$
T5	20S C ₂₈ -Triaromatic sterane	C ₂₈ H ₃₆
T6	20R C ₂₇ -Triaromatic sterane	C ₂₇ H ₃₄
T7	20R C ₂₈ -Triaromatic sterane	$C_{28}H_{36}$

Key for Aromatic Compound Identification

AB: C₃-C₆ Alkylbenzenes

NAPH: C_p-C₄ Naphthalenes

FL: C₂-C₄ Fluorenes

BP: C,-C, BP Biphenyi/Dibenzofuran

PHEN: C.-C. Phenanthrenes

PY: C₃-C₄ Pyrenes/Fluoranthenes

CHR: C₂-C₂ Chrysenes

BT: C₁-C₅ Benzothiophenes

DBT: C₃-C₄ Dibenzothiophenes

NBT: C₂-C₄ Naphthobenzothiophenes

MAS: Monoaromatic Steranes

TAS: Triaromatic Steranes

Key for Identifying Aromatic Hydrocarbons

No.	m/z	Compound
1	120	C ₃ -alkylbenzenes
2	134	C ₄ -alkylbenzenes
3	148	C₅-alkylbenzenes
4	162	C ₆ -alkylbenzenes
5	128	C _o -naphthalene
6	142	C ₁ -naphthalenes
7	156	C ₂ -naphthalenes
8	170	C ₃ -naphthalenes
9	184	C₄-naphthalenes
10	166	C _o -fluorene
11	180	C ₁ -fluorenes
12	194	C₂-fluorenes
13	208	C ₃ -fluorenes
14	222	C₄-fluorenes
15	154	C _o -biphenyl
16	168	C ₁ -biphenyls + dibenzofuran
17	182	
18	178	C ₂ -biphenyls + C ₁ -dibenzofuran
19	192	C ₀ -phenanthrene
20	206	C ₁ -phenanthrenes
21	220	C ₂ -phenanthrenes
22	234	C ₃ -phenanthrenes
23	202	C _a -phenanthrenes
		C _o -pyrene/fluoranthene
24 25	216	C ₁ -pyrenes/fluoranthenes
26	230	C ₂ -pyrenes/fluoranthenes
27	244	C ₃ -pyrenes/fluoranthenes
28	258	C ₄ -pyrenes/fluoranthenes
25 29	228	C ₀ -chrysene
29 30	242	C ₁ -chrysenes
30	256	C ₂ -chrysenes
	270	C ₃ -chrysenes
32 33	284	C ₄ -chrysenes
	148	C ₁ -benzothiophenes
34	162	C ₂ -benzothiophenes
35	176	C ₃ -benzothiophenes
36	190	C_4 -benzothiophenes
37	204	C _s -benzothiophenes
28	184	C _o -dibenzothiophene
39	198	C ₁ -dibenzothiophenes
40	212	C ₂ -dibenzothiophenes
41	226	C ₃ -dibenzothiophenes
42	240	C ₄ -dibenzothiophenes
43	234	C _o -naphthobenzothiophene
44	248	C ₁ -naphthobenzothiophenes
45 46	262	C ₂ -naphthobenzothiophenes
46	276	C ₃ -naphthobenzothiophenes
47	290	C _a -naphthobenzothiophenes
48	253	Monoaromatic steranes
49	267	Monoaromatic steranes
50	239	Monoaromatic steranes
51 50	231	Triaromatic steranes
5 2	245	Triaromatic steranes

Aromatic Hydrocarbon Distribution

Aromatic Hydrocarbon Distribution

APPENDIX

QA/QC DATA

8

CHAIN OF CUSTODY

Surrogate Recovery

Sample ID	GGC ID	Acetone Recovery (%)
Method Blank		106
B-11-61	4483-1	87
B-11-10.5	4483-2	88
	Blk MS	103
	Blk MSD	97

Batch Matrix Spike and Matrix Spike Duplicate Recovery

Sample ID	GGC ID	Ethanol	tert- Butanol	MTBE	DIPE	ETBE	TAME	
		Recovery %						
METHOD BLA	NK	ND	ND	ND	ND	ND	ND	
	Blk MS	118	117	101	96	100	102	
	BIK MSD	117	109	94	90	94	93	
Spike Added (r	opb):	25000	2000	250	250	250	250_	

MS = Matrix Spike MSD= Matrix Spike Duplicate

. ... Commence Comment Comment of the comment of th

Quality control data for oxygenate analysis

Sample ID	GGCID	Ethanol	Acetone (surrogate)	tert- Butanol	MTBE	DIPE	ETBE	TAME	Acceptance Limit
			_		Retentio	n Time (min)		
Standard oxyge	enate	16.41	17.14	18.05	20.48	22.11	22.99	25.74	±0.5
B-11-61	4483-1	ND	17.17	ND	20.47	ND	ND	ND	±0.5
B-11-10.5	4483-2	ND	17.11	ND	20.40	ND	ND	ND	±0.5
	Blk MS	16.44	17.15	18.09	20.45	22.06	22.93	25.64	±0.5
	Blk MSD	16.52	17.17	18.18	20.46	22.06	22.93	25.63	±0.5

ND: Not Detected

Date analyzed:7/29/98

Instrument calibration control for oxygenate analysis

Analytes	RF	RF _D	% Difference	Acceptance Limit (%)
Ethanol	7649	7732	1.1	± 15
tert-Butanol	73070	75193	2.9	± 15
MTBE	752379	696332	-7.4	± 15
DIPE	996303	1030148	3.4	± 15
ETBE	807293	768404	-4.8	± 15
TAME	1018701	946068	-7.1	± 15

RF = Linear response factor from 3 point calibration

RF_D = Daily response factor from calibration check standards

MTBE: Methyl tert-Butyl Ether

DIPE: Diisopropyl Ether ETBE: Ethyl tert-Butyl Ether TAME: tert-Amyl Methyl Ether

Calibration file:OXPT208.CAL

Chromatography by GLOBAL GEOCHEMISTRY CORPORATION

TODAY'S DATE....7/20/98 TIME..

TIME.....1:51:10 PM

CAL, FILE VERSION....3

COM PORT....3

OPERATOR....Lev Baycher

RAW DATA FILE NAME..E:\DATA3\C10196.04R

SAMPLE NAME.....B-11-61 (4483-1) 3.0 of 1300ul + (IS) .3ul inj.2

DATE TAKEN..07-15-1998 18:05:24

METHOD FILE.....E:\DATA3\C8196B.MET

METHOD:..C8+ Analysis

CALIBRATION FILE...E:\DATA3\C8_196B.CAL

INSTRUMENT.....Carlo Erba-FID

RUN TIME......90

AREA REJECT.....100

HEADING 1..C8+ Analysis

HEADING 2..

FORMAT FILE..E:\DATA3\NORMAL.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM

	Peak	Ret Time		Peak	Peak	Component
	#	(min)	Peak Name	Area	Height	Amount
		` .				
1	1	4.053		2552158	987681	
2	2	4.857		396961	63775	
2 3 4	3	5.012	n-C8	499708	254919	
4	4	5.833		1136658	180108	
5	5 6	6.185		1126375	269016	
6	6	6.455		3638945	712368	
6 7	7	6.953		516796	99535	
8	8	7.084		1320067	328052	
. 9	9	7.284		786289	79704	
10	10	7.846	n-C9	996798	134043	
11	11	8.194		507247	69183	
12	12	8.664		503262	76496	
13	13	9.038		1524207	99228	
14	14	9.408		2157651	245071	
15	15	9.689		875285	123859	
16	16	9.995		2054476	130706	
17	17	10.554		2629337	270529	
18	18	11.043		302928	39989	
19	19	11.479	n-C10	1226522	91865	
20	20	11.819		407750	52536	
21	21	12.005		538086	63692	
22	22	12.28		868581	70824	
23	23	12.807		2306020	99924	
24	24	13.607		975446	83735	
25	25	13.884		1769190	102952	
26	26	14.574		903882	44882	
27	27	15.116	n-C11	1329393	111430	,
28	28	15.689		1238540	87546	
29	29	16.071		/ 929298	60444	
30	30	16.456		396112	35235	
31	31	17.055		813850	59412	
32	32	17.177		513678	56866	
33	33	17,726		2647513	97111	
34	34	18.348		1276845	80915	
35	35	19,35	i-C13	2192441	132187	
36	36	19.953		796096	44872	
37	37	20.568		220293	34512	
38	38	21.05		141761	34014	-
39	39	21.417	i-C14	2074284	144783	
40	40	22.86		1529467	62530	
41	41	23.252		477079	69458	
• •						

	Peak	Ret Time		Peak	Peak	Component
	#	(min)	Peak Name	Area	Height	Amount
42	42	24.309	,	1054552	54195	
43	43	24.898	i-C15	2540591	174667	
44	44	25.201		372272	46860	
45	45	27.294		1056033	38783	
46	46	27.625	i-C16	1954788	176067	
47	47	27.852	•	294277	54582	
48	48	28.407		868251	66930	
49	49	29.206		785165	55952	
50	50	30.009		4949878	112956	
51	51	31.394		3667110	124737	
52	52	32.721		402962	61820	
53	53	33.101	i-C18	2880145	193454	
54	54	33.524		3068158	167159	
55	55	33.832		2288922	112401	
56	56	34.693	PR ·	4668803	196549	
57	57	35.155		7572944	149708	
58	58	37.405	PH	4037997	167913	
59	59	40.307	•	1174061	77155	
60	60	41.015		758480	70919	
61	61	41.446		395144	65865	
62	62	41.818	Internal Standard	4661651	224276	
63	63	43.909		1157831	80109	
64	64	45.051		540855	54723	
65	65	45.832		320027	38179	
66	66	48.238	•	489846	41486	
67	67	49.48		329540	34526	
68	68	51.114		1837148	40127	
69	69	55.193		339403	36221	
70	70	57.105		253303	19554	
71	71	59.304		887357	31494	
72	72	60.544		285934	30741	
Group	Grou	p Amount	Amount %			
0		0.000	N/A			

TOTAL	DETECTED	1	AAAAA	フレナハR

Analyzed by __ Checked by Sham.

Lev Baycher

Date 7/20 (9)

GEOCHEMISTRY CORPORATION Chromatography by GLOBAL

CAL, FILE VERSION....3

COM PORT....3

OPERATOR....Lev Baycher

TIME.....1:37:40 PM TODAY'S DATE 7/20/98

RAW DATA FILE NAME..E:\DATA3\C10196.02R

SAMPLE NAME....B-11-61 (4483-1D) 3.0 of 2000ul + (IS) .3ul inj.1

DATE TAKEN..07-15-1998 13:48:14

METHOD FILE.....E:\DATA3\C8196B.MET

METHOD:..C8+ Analysis

CALIBRATION FILE...E:\DATA3\C8_196B.CAL

INSTRUMENT.....Carlo Erba-FID

RUN TIME.....90 AREA REJECT.....100

HEADING 1..C8+ Analysis

HEADING 2...

FORMAT FILE..E:\DATA3\NORMAL.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM

	Peak	Ret Time		Peak	Peak	Component
	#	(min)	Peak Name	Area	Height	Amount
		4.400		4706240	865018	
1 2 3	1	4.103		1726340	115493	
2	2 3	4.336	00	278956	260078	
3	3	5.053	n-C8	2765850	358255	
4	4	6.205		1042705		
5	5	6.466		3358173	699185 433895	
5 6 7	6	7.078		2403341		
	7	7.833	n-C9	1054272	154714	
8	8	8.158		821251	84956	
9	9	8.633		487145	67142	
10	10	8.996		939831	92099	
11	11	9.392		1933300	251931	
12	12	9.676		872045	141193	
13	13	9.955		1990665	128931	
14	14	10.517		2444279	299801	
15	15	11.159		622813	48801	
16	16	11.443	n-C10	1145921	83115	
17	17	11.805		383981	51423	
18	18	11.991		540200	70452	
19	19	12.266		611864	73824	
20	20	12.699		1125045	95900	
21	21	12.945		1242008	89261	
22	22	13.606		928251	78793	
23	23	13.851		1609015	93428	
24	24	14.543		922337	38902	
25	25	15.116	n-C11	1210875	107391	
26	26	15.708		1967879	81738	
27	27	16.453		3 65512	31807	
28	28	17.07		721347	52127	
29	29	17.741		∕1828933	90799	
30	30	18.18		605918	46176	
31	31	18.347		1076892	71780	
32	32	19.385	i-C13	2391492	142231	
33	33	19.942		1536158	70287	
34	34	20.547		747613	81196	
35	35	20.702		1126303	84075	
36	36	21.221		851302	64665	
37	37	21.449	i-C14	3511124	174136	
38	38	22.875		1578967	63930	
39	39	23.236		864810	61573	
40	40	24.303		654288	46557	
41	41	24.913	i-C15	2095295	170201	

	Peak	Ret Time		Peak	Peak	Component
	#	(min)	Peak Name	Area	Height	Amount
42 ,	42	25.253		522228	37245	
43 ´	43	26.057		123783	38501	
44	44	26.916		553838	51753	
45	45	27.42		910959	99321	
46	46	27.614	i-C16	1721015	179490	
47	47	28.214		1976261	71857	
48	48	29.662		787595	61230	
49	49	30.001		2150413	80767	
50	50	30.892		101453	28618	
51	51	31.355		834922	80621	
52	52	31.389		1430743	85272	
53	53	32.189		255685	40286	
54	54	33.059	i-C18	2227365	155862	
55	5 5	34.566	PR	5932445	136105	
56	56	35.18	•	2491068	98299	
57	57	36.536		1637664	70867	
58	58	37.34	PH	1687716	126239	
59	59	41.541		2103052	84537	
60	60	41.814	Internal Standard	3452867	262513	
61	61	43.01		786408	43610	
62	62	43.785		602712	59703	
63	63	44.828		41 44 81	43026	
64	64	45.337		749046	57107	
65	65	47.591		207639	42181	
66	66	48.334		143230	37943	
67	67	55.159		766143	30559	
68	68	58.816		302380	25569	
69	69	60.462		183723	15990	
Group	Grou	ıp Amount	Amount %			
0		0.000	N/A			

TOTAL	DETECTED =	2 0//11	1 ニュハブ

Analyzed by		Buy
•	1. 1	D 2
Checked by	Shim The	dry-

Lev Baycher

Date 7/20 198

GEOCHEMISTRY CORPORATION Chromatography by GLOBAL

TODAY'S DATE....7/20/98

TIME.....1:43:07 PM

RAW DATA FILE NAME..E:\DATA3\C10196.03R

SAMPLE NAME.....B-11-10.5 (4483-2) 3.0 of 2000ul + (IS) .3ul inj.1

DATE TAKEN..07-15-1998 15:43:10

METHOD FILE.....E:\DATA3\C8196C.MET

METHOD:..C8+ Analysis

CALIBRATION FILE...E:\DATA3\C8_196B.CAL

INSTRUMENT.....Carlo Erba-FID

RUN TIME.....90

AREA REJECT.....100

HEADING 1..C8+ Analysis

HEADING 2..

FORMAT FILE..E:\DATA3\NORMAL.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM

	Peak	Ret Time		Peak	Peak	Component
	#	(min)	Peak Name	Area	Height	Amount
1	1	4.09		1401149	325703	
2	2	4.475		457734	15 44 08	
3	3	4.693		295227	46971	
4	4	5.044	n-C8	808027	167392	
5	5	6.196		380708	152197	
6	6	6.445		1368673	296384	
7	7	7.059		461438	68269	
8	8	7.806	n-C9	76394	16138	
. 9	9	41.536	Internal Standard	1883333	214953	
10	10	49.337		101856	9917	
Group	Grou	ip Amount	Amount %			
0		0.000	N/A			

TOTAL AREA DETECTED = 7234540

Analyzed by

Checked by

Lev Baycher

CAL. FILE VERSION....3

COM PORT....3

OPERATOR....Lev Baycher

Chromatography by GLOBAL GEOCHEMISTRY CORPORATION

TODAY'S DATE....7/20/98

TIME.....3:49:03 PM

RAW DATA FILE NAME...E:\DATA3\C10201.01R SAMPLE NAME....Method-Blank for W.O. #4483

DATE TAKEN..07-20-1998 15:43:19

METHOD FILE.....E:\DATA3\C8196B.MET

METHOD:..C8+ Analysis

CALIBRATION FILE...E:\DATA3\C8_196B.CAL

INSTRUMENT.....Carlo Erba-FID

RUN TIME......90 AREA REJECT.....100

HEADING 1...C8+ Analysis

Peak

HEADING 2...

FORMAT FILE..E:\DATA3\NORMAL.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM

Ret Time

(min)

Peak Area Peak Height Component Amount

1 1

41.672

internal Standard

3074563

508614

CAL. FILE VERSION....3

COM PORT....3

OPERATOR....Lev Baycher

Group

Group Amount

Amount %

Peak Name

0

0.000

N/A

TOTAL AREA DETECTED = 3074563

Analyzed by

Checked by

Lev Baycher

- 7/-0

ወላይ የመወደነ እንምዩነባር ም በለዩነውውና ወደወነና ወደ በተወሰብ ወላወደ ም (ፀብፀ) ፀቡብ ለተወረ

Chromatography by GLOBAL GEOCHEMISTRY CORPORATION

CAL. FILE VERSION....1

COM PORT....3

OPERATOR....Lev Baycher

TODAY'S DATE....7/20/98 TIME.....12:58:25 PM

RAW DATA FILE NAME..E:\DATA3\C10197.01R

SAMPLE NAME.....Diesel Std 07/15/98 DATE TAKEN..07-16-1998 16:22:05

METHOD FILE.....!E:\DATA3\C8187B.MET

METHOD:..C8+ Analysis

CALIBRATION FILE...!E:\DATA3\C8_187B.CAL

INSTRUMENT.....Carlo Erba-FID

RUN TIME......90 AREA REJECT.....100

HEADING 1..C8+ Analysis

HEADING 2..

FORMAT FILE..E:\DATA3\NORMAL.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM

29.806

30.468

31.183

31.423

32.85

33.37

33.039

n-C16

i-C18

Peak Peak Component Ret Time Peak Height Amount (min) Peak Name Area 4.951 n-C8 n-C9 7.79 9.914 10.437 11.28 n-C10 12.145 13.673 15. n-C11 15.696 16.032 16.807 17.388 18.29 18.666 n-C12 19.2 i-C13 20.016 20.5 20.873 21.272 i-C14 21.93 22,128 n-C13 22.725 23.904 24.226 24.705 i-C15 25.392 n-C14 26.105 26.654 27.056 27.403 i-C16 27.586 28.164 n-C15 28.492 29.431

Minutes

E:\DATA6\C310191.03R — 4483-1 (1g sample/5mL water) + 3uL IS-007 — 07-10-1998 19:48:16

C3 to C10 ANALYSIS by GLOBAL GEOCHEMISTRY CORPORATION

TODAY'S DATE: 7/15/98 TIME: 8:14:48 AM

RAW DATA FILE NAME: E:\DATA6\C310191.03R SAMPLE NAME.....4483-1 (1g sample/5mL water) + 3uL IS-007

DATE TAKEN: 07-10-1998 19:48:16 METHOD FILE: !E:\DATA6\C310191C.MET METHOD: C3-C10 Analysis CALIBRATION FILE: !E:\DATA6\C310191C.CAL

INSTRUMENT: HP5890/ALS-FID

OPERATOR: R.deLeon

RUN TIME: 110min COM PORT: 6

HEADING 1: HP5890/Autosampler purge&trap

HEADING 2: GC range=2^1 FORMAT FILE: E:\DATA6\C3C10.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM:

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
1	11.67	1	4148	324
2	12.29	2	73480	5452
3 4	12.81	4	211718	14576
4	13.28	6	11825	857
5	14.15	7	16192	1153
5 6 7	14.75	8	1781157	135400
7	15.30	9	80128	6435
8	15.60	10	57382	9126
9	15.79	11	857428	65274
10	16.13	12	183265	14315
11	16.53	13	78602	7157
12	16.78	14	271164	19695 4413
13 14	17.71	15	58077 39511	3663
15	18.83 19.11	16	80569	4748
16	19.71	17	611185	48659
17	20.01	18	1807313	144449
18	20.79	10	7003	605
19	21.16	19	1115795	96697
20	21.61	, ,	280151	19650
21	22.64	20	1138466	92155
22	23.06	21	184027	17541
23	23.28	22	202809	18564
24	23.58		199895	15468
25	23.94	23	143295	10364
26	24.55	24	195919	18080
27	25.01	25	28593	3615
28	25.27	26	1885928	177172
29	25.62	2 7	412993	38545
30	26.20		38846	3106 2037
31	27.33 27.64		17223 193900	38394
32 33	27.73	28	658426	57517
33 34	28.32	29	93285	5543
35	28.79	30	704254	65699
36	29.31		63518	6055
37	29.57		50673	10772
38	29.73	31	1031275	108592
39	29.95	32	618781	69007 ⁻
40	30.30		108654	11447
41	30.57		34898	8566
42	30.73	33	1113549	122928
43	31.12		40657	4192
44	31.52		673572	76177
45	31.85	34	776586	79233
46 47	32.17	35	599791 1198725	78703 136333
47 48	32.32 32.93	35	58586	7009
46 49	32.93 33.19	IS#1	1281479	141863
50	33.58	36	1102200	114769
51	33.79	~~	307853	29067
52	34.11		115259	14961
53	34.34		69268	8264
54	34.69		99170	14713

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
55	34.82		130653	16075
56	35.11		114073	9841
57 58	35.37 35.69		17494 24654	2201 2828
59	36.10	37	2031223	219392
60	36.41		213229	27940
61 62	36.75 37.03		17393 13342	2086 1681
63	37.44	38	576237	78872
64	37.70	39	404694	53291
65 66	37.83 38.04		45074 17229	10221 2269
67	38.47		326404	40131
68 60	39.08 39.35		39129 305668	3553 37891
69 70	39.70	40	879858	100942
71	39.87	-	67198	9821
72 73	40.29 40.46	41	6008502 ⁻ 104388	712914 10963
73 74	40.80		18197	4484
75	40.92	42	260100	39374
76 77	41.14	43	179975 579351	20396 73329
77 78	41.59 41.77	43 44	183953	29521
79	42.03	45	102315	10974
80	42.20 42.37		18544 24872	3372 6024
81 82	42.57 42.50	46	535685	82597
83	42.64	47	103389	19084
84	42.92		543113	56661 33520
85 86	43.14 43.66		211739 6032	1040
87	43.82	48	250624	33067
88 89	43.99 44.15		35439 194669	6336 27585
90	44.40		165672	26970
91	44.57		201471	32712
92 93	44.72 44.93		25266 146002	4770 17459
94	45.26		397351	57136
95	45.43		35921	7328
96 97	45.60 45.89	49	452623 193259	80781 24960
98	46.08		303340	43529
99	46.29		23504	4292
100 101	46.43 46.90		182181 153395	30397 1 92 68
102	47.18		7566	1311
103	47.30		24872	3868
104 105	47.41 47.59	50	12967 89130	2567 13209
106	48.04		125446	17857
107	48.19	E4	28125	4937 10429
108 109	48.41 48.85	51	84472 156292	21151
110	49.13	52	140555	19667
111	49.19		63527 314068	14993 49066
112 113	49.40 49.66		95994	12096
114	49.90	53	85472	17139
115 116	50.03 50.33		519161 91777	84685 12443
116 117	50.33 50.60		53118	8727
118	50.75		90650	11894
119	51.01 51.21		22118 15645	2917 4701
120 121	51.21 51.41	54	1804699	276610
122	51.63		34860	5741
123 124	51.76 52.12		148144 59073	23641 6218
125	52.42	55	4357595	399734

	BAT	Dool: None	Dook Asses	Peak Height
Peak #	Ret Time (min)	Peak Name	Peak Area	reak Height
126	52.73		42643	6770
127	52.88	50	23802 115930	4125 21799
128 129	53.03 53.13	56 57	115930 184225	33863
130	53.27	5 ,	144558	25512
131	53.62		19828	3434
132	53.82	50	57304 223741	10152 36327
133 134	53.92 54.23	58	81636	10485
135	54.36		65238	11310
136	54.49	59	97787	13222
137	54.95	60	1648423 130484	255541 16724
138 139	55.17 55.42		88415	12314
140	55.54	61	86679	13384
141	55. 6 7		106351	18164
142	55.93		83869 151364	13766 14617
143 144	56.20 56.57		21124	3302
145	56.87	62	156266	29947
146	57.13		42580	5260
147	57.31	1040	104717 555120	17951 92676
148 149	57.48 57.64	IS#2	18192	4123
150	57.79		183836	21762
151	58.08		33442	5770
152	58.37	63	23874 131019	7804 22539
153 154	58,44 58.68	63	22095	3363
155	58.82	64	14945	2705
156	59.07		352082	47120 6997
157 158	59.33 59.75		55214 114973	10478
159	60.19		201033	15024
160	60.49		62049	9922
161	60.64 60.92	65	99333 76393	17665 7098
162 163	61.09		20978	3665
164	61.33		90327	8195
165	61.57	66	318164 85037	48662 9405
166 167	61.82 61.98		97996	14213
168	62.25		44390	25601
169	62.33	67	770386	. 135952
170	62.56	68	342295 38699	60877 7087
171 172	62.71 62.83		83997	11451
173	63.11	69	269200	43058
174	63.30		121885 56058	19160 10859
175 176	63.40 63.55		39595	6920
177	63.67	70	77928	12104
178	63.87		29171	2947 3716
179	64.07 64.18	71	14127 276198	46734 /
180 181	64.34	, ,	91892	13904
182	64.51		26301	4469 5094
183	64.62		35234 101590	5094 15145
184 185	64.82 64.99	72	65609	9987
186	65.16	. -	48990	6713
187	65.48	72	693 96 660 679	5070 99345
188 189	65.71 65.85	73	65785	7499
190	66.11		39961	5709
191	66.24	= 4	75792 53048	11649 6995
192	66.42 66.55	74	52918 53 56	2505
193 194	66.63		19112	2846
195	66.87	75	38910	4479 4111
196	66.92		21165	4111

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
197	67,10	76	53974	9346
198	67.23	. •	54236	7548
199	67.51		89312	9747
200	67.93		42396	5703
201	68.20		66435	6281
202	68.43		46903	10643
203	68.50	7 7	148847	20639
204	68.69		74336	7366
205	69.19		28767	2953
206	69.32		22635	3314
207	69.49		42514	7129
208	69.70	78	175022	25924
209	69.95		82175	7767
210	70.25		40400	3860
211	70.53		88060	5288
212	71.01		77483	7909
213	71.27	79	60771	7263
214	71.35		48085	5350
215	71.70		36608	5445
216	71.76	80	36589	5669
217	71.87	81	36470	5421
218	71.95		19453	3729 5666
219	72.22		59420	1852
220	72.45		13401 22371	2597
221 222	72.65 72.82	82	19222	2583
223	73.04	02	56699	7044
224	73.19		26940	2710
225	73.41		30668	2140
226	73.77	83	23442	3187
227	73.89	00	28779	3854
228	74.03	84	26366	3827
229	74.17		26426	3135
230	74.54	85	17569	3370
231	74.66		81349	7058
232	75.11		26087	2643
233	75.22		22286	3031
234	75.46		23815	3169
235	75.70		22425	2991
236	76.06		22490	1641
237	76.39	86	19311	1837
238	76.84		13552	1604
239	77.56		17791	1832
240	77.89	••	14975	1343
241	78.06	88	2155	461 645
242	78.19		3149	2320
243	78.34		17608 3505	∠320 665
244 245	78.91 79.54		9572	989
245 246	79.86		26346	1924
240	79.50 80.48	89	33976	961
247 248	83.27	OB	3916 3916	537
240	00.21		5310	301

TOTAL AREA DETECTED = 6.026092E+07

Processed by:

Date: 7-15-98

CHARLE CONCERNATIONNY CORD - COMMETAN NUCHUE & DANDON DADY DA 04000 0404 & 10401000, 410

Minutes

E:\DATA6\C310191.04R — 4483-1D (1g sample/5mL water) + 3uL IS-007 — 07-10-1998 21:56:45

OPERATOR: R.deLeon

C3 to C10 ANALYSIS by GLOBAL GEOCHEMISTRY CORPORATION

TODAY'S DATE: 7/15/98 TIME: 8:10:36 AM RAW DATA FILE NAME: E:\DATA6\C310191.04R

SAMPLE NAME.....4483-1D (1g sample/5mL water) + 3uL IS-007

DATE TAKEN: 07-10-1998 21:56:45 METHOD FILE: IE:\DATA6\C310191D.MET METHOD: C3-C10 Analysis CALIBRATION FILE: !E:\DATA6\C310191D.CAL

INSTRUMENT: HP5890/ALS-FID

RUN TIME: 110min COM PORT: 6

HEADING 1: HP5890/Autosampler purge&trap

HEADING 2: GC range=2^1 FORMAT FILE: E:\DATA6\C3C10.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM:

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
1	11.67	1	4376	387
2	12.29	2	77543	5757
3	12.82	4	215706	15300
4	13.07		10376	2305
5	13.24	6	12385	907
6	14.16	7	15422	1222
7	14.76	8	1801995	134896
8	15.30	9	72557	6551
9	15.41		14157	3941
10	15.61	10	58497	9497
11	15.80	11	834157	62936
12	16.13	12	187175	14374
13 14	16.53 16.79	13	77101 272468	7109 19852
15	17.70	14 15	52151	4227
16	18.84	13	41347	3787
17	19.12	16	75670	4565
18	19.71	17	593849	46985
19	20.02	18	1750406	138174
20	21.17	19	1074660	91860
21	21.62		267780	18757
22	22.65	20	1095594	88033
23	23.07	21	176862	16651
24	23.28	22	195921	17749
25	23.59		198451	14818
26	23.95	23	128895	9812
27	24.56	24	186947	17161
28	25.01	25	27819	3522
29	25.28	26	1788287	166193
30	25.63	27	414547	38037
31	26.21		37053	3007
32	27.01		18353 17101	1115 1895
33	27.35 27.66		204528	39586
34 35	27.74	28	659057	59464
36	28.33	29	88168	5419
37	28.79	30	659256	61364
38	29.31	00	61967	5600
39	29.58		51747	10756
40	29.74	31	1014062	107351
41	29.96	32	617775	67868
42	30.30		103187	10925
43	30.58		37765	8913
44	30.74	33	1100816	121569
45	31.13		38523	3891
46	31.52		647665	72935
47	31.86	34	746035	75677 75001
48	32.17	26	565657 1230681	75001 139559
49 50	32.33	35	1230681 53889	139559 6461
50 51	32.93 33.20	.IS#1	1240731	137377
51 52	33.58	36	1077078	113269
52 53	33.79	-	281545	26942
54	34.12		106904	13758

E:WATA	000310191.046	(4403-1D (19	sample/omit water) +	30L 13-007 07-10
Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
55	34.34		63208	7604
56	34.69		90308	13525
57	34.82		120431	14762
58	35.12		104556	8996
59	35.37		14754	1955
60	35.71		23663	2503
61	35.93		84378	33104
62	36.11	37	1845074 209278	207494 27475
63 64	36.42 36.75		15350	1902
65	37.03		11604	1520
66	37.45	38	560984	76993
67	37.71	39	406155	53806
68	37.83		41507	9689
69	38.05		15354	2029
70	38.48		319814 35045	39357 3274
71 72	39.08 39.36		296737	37204
73	39.70	40	847232	99985
74	39.86	-10	67820	9298
75	40.29	41	5582789	67 287 1
76	40.46		95173	10248
77	40.81		19191	4492
78	40.92	42	254418	38929
79	41.15		174217	19791 24436
80	41.50	43	86545 483248	73717
81 82	41.59 41.78	43 44	183821	29701
83	42.04	45	99900	10865
84	42.37		23795	5568
85	42.51	46	531937	82596
86	42.65	47	101518	18997
87	42.93		521164	54112
88	43.14		198576	31611 951
89	43.67	48	5052 241801	32304
90 91	43.83 44.00	40	33537	5816
92 `	44,16		185382	26553
93	44.41		156451	25801
94	44.57		193165	31393
95	44.72		22781	4445
96	44.93		133528	15804 53921
97	45.26		369846 34989	6710
98 99	45.43 45.61	49	449074	80107
100	45.89	73	184466	24375
101	46.09		290276	41621
102	46.29		20923	3879
103	46.44		162634	27183
104	46.90		145579	18444
105	47.18		6017 24507	1154 3607
106 107	47.31 47.60	50	85095	12950
107	48.05	50	117128	16584
109	48.19		24038	4426
110	48.41	51	79100	10132
111	48.85		147917	19936
112	49.14	52	128810	19192
113	49.18		67243	14538 46473
114	49.41 49.67		295908 88142	11132
115 116	49.67 49.90	53	82618	16845
117	50.04	-	500009	81639
118	50.20		15877	3540
119	50.34		87400	11776
120	50.61		50015	8377
121	50.75		86986 20275	11528 2701
122	51.02	64	20375 1560904	240004
123 124	51.41 51.63	54	32901	5520
125	51.76		141767	22600
·				

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
126	52.12		54808	5962
127	52.41	55	3694040	353399
128 129	52.74 52.88		39593 24761	6273 3876
130	53.04	56	105577	20819
131	53.13	57	174950	32044
132 133	53.27 53.63		134866 18309	23521 3203
133	53.82		52462	9506
135	53.92	58	213613	34420
136	54.23		75019	9597
137 138	54.36 54.50	59	61842 92159	10666 12608
139	54.95	60	1393075	220111
140	55.17		124879	15679
141 142	55.42 55.55	61	83635 78570	11608 12517
143	55.67	01	101918	17081
144	55.94		77110	12897
145	56.21		143262	13668
146 147	56.57 56.88	62	. 19950 145995	3100 27976
148	57.13	02	39207	4887
149	57.32		97310	16546
150 151	57.48 57.64	IS#2	507924 18533	85362 3840
152	57.80		171786	20292
153	58.09		30456	5404
154	58.37	CO	18585	6139
155 156	58.45 58.68	63	112370 19120	18543 3102
157	58.82	64	13228	2430
158	59.08		326276	43481
159 160	59.34 59.75		49552 105557	6421 9681
161	60.20		185384	14063
162	60.49		56862	9280
163	60.65	65	89803	15976
164 165	60.92 61.09		69661 1906 7	6471 3406
166	61.33		70839	7523
167	61.58	66	284506	39664
168 169	61.82 61.99		71001 89717	8640 13094
170	62.33	67	668920	111649
171	62.56	68	296610	49080
172	62.72 63.84		23722 72854	6545 10492
173 174	62.84 63.11	69	237433	34320
175	63.31		101601	18111
176	63.41		51291	9916 6463
177 178	63.56 63.67	70	39841 69072	6463 11172
179	63.87	, 0	26322	2788
180	64.00		1649	1760
181 182	64.18 64.34	71	241167 81527	37471 12973
183	64.51		25689	4207
184	64.63		32675	4791
185 186	64.83 64.99	72	95025 62812	14212 9393
187	65.17	14	43665	6264
188	65.48		63854	4748
189	65.71	73	574400 65371	77570 6581
190 191	65.94 66.25		65371 69400	10719
192	66.42	74	52814	6473
193	66.64	75	21135	2679
194 195	66.87 66.94	75	38010 16826	4194 3718
195	67.11	76	51022	8753

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height	
197	67.24		49224	6655	
198	67.52		79985	8546	
199	67.93		39909	5357	
200	68.21		62131	5864	
201	68.40		25471	6947	
202	68,50	7 7	141854	16721	
203	68.70		67329	6888	
204	69.19		18936	2837	
205	69.33		21540	3122	
206	69.49		30999	6759	
207	69.71	78	163233	21193	
208	69.95	, •	69027	7417	
209	70.25	•	37393	3638	
210	70.53		46936	5041	
211	71.03		69831	6771	
212	71.29	79	52850	5885	
213	71.72		30018	4802	
214	71.75	80	32933	4944	
215	71.88	81	29391	4600	
216	71.95		19549	3703	
217	72.22		60031	5385	
218	72.47		11503	1743	
219	72.67		21997	2555	
220	72.84	82	16697	2117	
221	73.04		55900	6908	
222	73.42		16340	2123	
223	73.67		5134	1351	
224	73.78	83	22139	2831	
225	73.90		26406	3639	
226	74.05	84	29996	3792	
227	74.18		32117	2710	
228	74.57	85	16842	3204	
229	74.67		70312	6157	
230	75.10		19050	2523	
231	75.23		20813	2948	
232	75.48		23772	3144	
233	75.72		22081	2824	
234	76.05		21823	1633	
235	76.39	86	19762	1806	
236	76.85		15658	1570	
237	77.11		8139	990	
238	77.56		16589	1790	
239	77.86		14592	1369	
240	78.09	88	1897	385	
241	78.19		4014	627	
242	78.35		17926	2351	
243	79.35		4644	758 909	
244	79.53		8355	1940	
245	79.86	90	15814 36796	909	
246	80.49	89	36786	609	
247	83.28		5133	909	

TOTAL AREA DETECTED = 5.641705E+07

Processed by:

Date: 7-15-98

E:\DATA6\C310191.06R -- 4483-2 (0.1182g sample/5mL water) + 3uL IS-007 -- 07-11-1998 02:15:14

C3 to C10 ANALYSIS by GLOBAL GEOCHEMISTRY CORPORATION

TODAY'S DATE: 7/15/98 TIME: 8:07:46 AM RAW DATA FILE NAME: E:\DATA6\C310191.06R

SAMPLE NAME.....4483-2 (0.1182g sample/5mL water) + 3uL IS-007

DATE TAKEN: 07-11-1998 02:15:14
METHOD FILE: IE:\DATA6\C310191F.MET
METHOD: C3-C10 Analysis

CALIBRATION FILE: !E:\DATA6\C310191F.CAL

INSTRUMENT: HP5890/ALS-FID

OPERATOR: R.deLeon

RUN TIME: 110min COM PORT: 6

HEADING 1: HP5890/Autosampler purge&trap

HEADING 2: GC range=2^1

FORMAT FILE: E:\DATA6\C3C10.FMT

PEAKS DETECTED IN THIS CHROMATOGRAM:

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height	
1	11.68	1	5673	317	
2	12.33	2	5931	435	
3	12.63	3	4795	454	
4	12.76		4173	396	
5 6	13.21		5007	156	
6	14.75	8	40652	3361	
7	15.60	10	2600	288	
8	15.79	11	20795	1856 284	
9	16.12	12	3249 33832	2747	
10	16.78	14	513	97	
11	17.39	15	6320	570	
12 13	17.71 18.18	15	681	110	
14	18.83		17952	1577	
15	19.12	16	1757	275	
16	19.74	17	491358	45709	
17	20.01	18	165778	14921	
18	21.16	19	124081	12250	
19	21.56		18137	1586	
20	22.65	20	124078	11658	
21	23.07	21	7615	1000 7851	
22	23.29	22	75255 54007	5059	
23	23.60	22	54097 12575	1084	
24	23.83 24.57	23 24	80411	8582	
25 26	25.01	25	5514	731	
26 27	25.28	26	536315	57627	
28	25.64	27	82033	8260	
29	26.20	-	5553	486	
30	27.05		3883	363	
31	27.36		3648	493	
32	27.79	28	3383672	34847 8 3260	
33	28.23		30351	2775	
34	28.33	29 30	24991 271645	30197	
35 36	28.81 29.34	30	14692	1599	
36 37	29.59		16139	2827	
38	29.75	31	202797	25229	
39	29.96	32	176197	21586	
40	30.32		24185	2955	
41	30.59		41752	7347	
42	30.75	33	278785	34285	
43	31.14		10164	1283 21152	
44	31,54	•	162961	22100	
45	31.87	34	192606 156485	21256	
46	32.18	25	222325	28767	
47 48	32. 3 3 32. 9 5	35	22563	2999	
46 49	33.21	IS#1	549124	73934	
50	33.49	••••	52095	10106	
51	33.59	36	268422	30025	
52	33.82		128868	12712	
53	34.14		15586	2120 3526	
54	34,36		26056	35∠6	

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Helght	
55	34.71		44493	6945	
56	34.84		65416	9108	
57 58	35.21 35.39		31711 8495	3418 1074	
59	35.72		10072	1074	
60	36.01		81920	17580	
61 62	36.11 36.44	37	512268 31159	69898 4218	
63	36.78		6526	761	
64	37.05		5527	670	
65 66	37.47 37.73	38 39	160584 101375	24495 13786	
67	38.49		73578	6365	
68	39.37	40	39273	5144	
69 70	39.71 39.91	40	282745 41378	39044 6150	
71	40.24	41	1396979	201364	
72 72	40.48 40.04	42	31783	2728 10808	
73 74	40.94 41.16	42	68477 32349	3595	
75	41.52		51011	10778	
76	41.60 41.70	43 44	98828 42476	15743 7052	
77 78	41,79 42.05	45	24123	2684	
79	42.38		10101	2006	
80 81	42.52 42.66	46 47	118071 26153	19493 4838	
82	42.00 42.94	47	71024	8632	
83	43.16		27060	4274	
84 85	43.84 44.02	48	31902 10105	4361 1607	
86	44.18		30128	4806	
87	44.43		29615	5091	
88 89	44.60 44.75		30227 4929	5079 964	
90	44.96		32057	4198	
91	45.28		47072	6316	
92 93	45.62 45.82	49	67735 9280	12291 1403	
94	46.10		38725	5815	
95	46.32		4946	1074 7176	
96 97	46.46 46.92		41100 14389	1677	
98	47.44		2989	544	
99	47.63	50	6080	827 2630	
100 101	48.08 48.22		17252 5549	991	
102	48.46	51	5297	1103	
103 104	48.88 49.15	52	16521 6809	1724 1190	
105	49.23	JZ	8517	1520	
106	49.43		21981	3779	
107 108	49.67 49.93	53	9341 8055	1486 1486	
109	50.05	55	12322	1852	
110	50.40		5918	787	
111 112	50.66 51.42	54	3608 539308	624 92091	
113	51.78		6540	798	
114	52.39	55	1324136	129391	
115 116	52.73 53.06	56	12656 9676	1389 1591	
117	53.16	57	10130	1890	
118	53.29		8784 2484	1387 284	
119 120	53.43 53.80		4859	603	
121	53.92	58	9251	1573	
122 123	54.23 54.51	59	3955 4545	465 442	
123 124 125	54.66 54.94	60	793 229475	159 36808	
	,		. ——— · · · -		

Peak #	Ret Time (min)	Peak Name	Peak Area	Peak Height
126	55.12		6542	851
127	55.46		4055	456
128	55.55	61	2085	427
129	55.70		3448	455
130	56.25		7444	332
131	56.91	62	2844	542
132	57.51	IS#2	434281	70856
133	58.48	63	12939	2180
134	58.71		857	197
135	58.96		707	140
136	59.10		4845	660
137	60.24		6249	263
138	60.53		3452	241
139	61.62	66	12649	1428
140	62.03		1275	215
141	62.36	67	18732	1804
142	62.59	68	13668	1143
143	62.83		1998	291
144	63.26		8936	402
145	64.24	71	3392	515
146	64.32		3373	502
147	64.87		4454	215
148	65.83		7909	466
149	66.28		1930	223
150	67.11	76	5768	152
151	68.46		2160	261
152	69.75	78	1068	170

TOTAL AREA DETECTED = 1.497777E+07

Processed by:

Date: <u>7-15-98</u>

Chan a Constitution of Constitution with the contraction of the contra

MATERIAL ANALYSIS REPORT BY ACCOUNT

For the period / / - 10/18/98

Detailed report for sites 00 - 99

Accounts 722623 - 722623 Customer Types - 7 Materials

	HEEDANDS	Hrronnie Jecora		Lustomer lypes - Z		Materials		- 2222222	ZZZ Materi	Material Types	
Date	Material	Type	Customer	Type	Tickets	Count	Est. vol.	Act. Vol.	Est. Wt. Ac	tual Wt.	
		_									
VB/21/98	CII SOIL T	-	722623	B	01-097685	0	18	18	17.34	17.34	
09/01/98	CII SOIL T	C	722623	₽ .	01-098809	0	18	18	12.57	12.57	
	TOSCO MARK	ETING	(T.BERRY)		2	Û	36	36	29.91		
	yverage					ð	18	18	15.00	15.00	
	Report Tota	- 1			-	,					
					2	0	36	36	29.91	29.91	
	Recort Aver	race				9	81	18	15.00	15.00	

July 10, 1998

Gettler-Ryan, Inc. 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Clyde Galantine

OCT 22 1998
OCT 22 1998
GETTLER-RYAN INC.
GENERAL GOVERNMENT

RE:

FORWARD, INC. Approval No. 722623

Contaminated Soil w/Hydrocarbon from Unocal S/S# 7376 - 4191 First Street

Dear Mr. Galantine:

FORWARD, INC. is pleased to confirm the disposal of 29.91 of material from the referenced site. The material was received at our Manteca, California facility on 8/21/98 and 9/1/98. The waste was placed in a Class II waste management unit.

Approval for this material was based on the information provided in the waste profile and associated materials submitted by Gettler-Ryan, dated July 10, 1998 on behalf of the Tosco Marketing Company. Acceptance of the waste is subject to the "Terms and Conditions" agreed to and signed by Gettler-Ryan in the waste profile.

Thank you for the opportunity to be of service. Should you have any questions regarding this matter, please do not hesitate to contact me or our Customer Service at (800) 204-4242.

Sincerely,

FORWARD, INC.

Brad Binner/SR Sales Manager

BB/sr

F:\FORWARD\MERGE FORMS\CONSULTANT CONFIRMATION OF DISPOSAL

