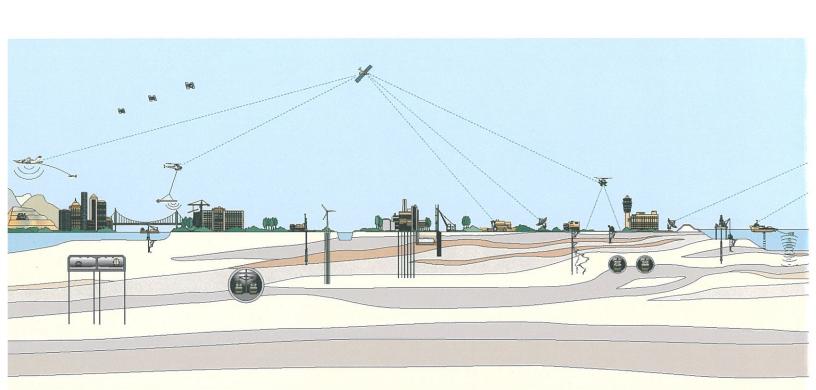


RECEIVED


11:38 am, Nov 23, 2009

Alameda County
Environmental Health

SITE INVESTIGATION REPORT AND SUMMER 2009 QUARTERLY GROUNDWATER MONITORING REPORT 2250 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

Prepared for:
ALAMEDA COUNTY ENVIRONMENTAL HEALTH

November 2009 Fugro Project No. 609.004

FUGRO WEST, INC.

1000 Broadway, Suite 440 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0545

November 20, 2009 Project No. 609.004

Ms. Barbara Jakub, Hazardous Materials Specialist Alameda County Health Care Services Agency 1161 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

Site Investigation Report and Summer 2009 Quarterly Groundwater

Monitoring Report

2250 Telegraph Avenue, Oakland, California, RO00000359

Dear Ms. Jakub:

Fugro West, Inc. (Fugro) is pleased to present this report that documents recent site investigation activities conducted to comply with Alameda County Environmental Health (ACEH) requirements. The report summarizes the results of studies conducted to date to characterize former releases from USTs and presents the results of additional site investigation as described in the ACEH approved Work Plan, dated January 16, 2009. In general, the study confirms that contaminated soil from former UST releases exists in both the vadose and groundwater zones, and that the limits of groundwater zone impacts have not been fully defined. However, the presence of the impacted soil and groundwater do not represent a significant risk to create an inhalation risk to current Site occupants based on recent soil-gas data. Fugro recommends continued groundwater monitoring on a semi-annual basis, and the installation of two new monitoring wells to evaluate the distal end of the groundwater plume. Once the new well data is obtained, we believe sufficient data will exist to prepare a Corrective Action Plan (CAP).

If you should have any questions regarding the information present in this report, please feel free to contact the undersigned at (510) 268-0461.

Sincerely:

FUGRO WEST INC.

Karen A. Emery Project Geologist

KAE/JNA:afp
Copies Submitted:

(1 pdf) Addressee

(1) Ms. Marianne Robison, Buttner Properties

No. REA 03130

exander PERFA

No. 03130 (exp. 6/10)

Civil Engineer 40469 (exp. 3/11)

OF CALL

CONTENTS

			Page
1.0	EXECUTIVE SUMMA	\RY	1
2.0	INTRODUCTION		3
3.0	LIMITATIONS		3
4.0	SITE DESCRIPTION		3
5.0	ENVIRONMENTAL S	SETTING	4
	5.2 General Geolog	jic Setting	4
		onditions	
6.0	OVERVIEW OF UST	REMOVAL, REMEDIATION, AND SITE STUDIES	5
	6.2 Former Waste	e UST Area and Dispenser Islands Dil Tank Area ater Monitoring well Installation	7
	6.4 1996 and 1997	Site Characterization Investigationsonitoring Activities	8
7.0		SATION STUDIES	
	•	pjectives	
	7.2.1 Soil and 7.2.2 Soil-Gas	Groundwater Investigations Investigationace Conditions	11 12
8.0		YSES	
	8.2 GRAB Groundy	vater Sampleses	15
9.0	•	OUNDWATER MONITORING EVENT	
	9.2 Event Results	t	18
10.0	UPDATED PREFERI	ENTIAL PATHWAY SURVEY	20
		nderground Utilities	
	_	l Survey operty Survey	
	10.3.1 2200 Te	elegraph Avenue – Chevron Service Station elegraph Avenue - Valero (formerly Exxon) Service Station	22
11.0	PRELIMINARY RISK	ASSESSMENT	23

11.1 Contar	minants of Concern	23
11.2 Subsu	rface Conditions	24
	of Soil Impacts	
	of Groundwater Impacts	
	s of Exposure and Completed Pathways	
12.0 RECOMME	NDATIONS	26
	TABLES	
Summary of Char	mical Concentrations – During Remediation	1
	nical Concentrations – Buring Remediation	
	/ation Data	
	mical Concentrations – Soil	
	mical Concentrations – Groundwater	
	mical Concentrations – Soil-Gas	
Summary of Cher	mical Concentrations – Groundwater Monitoring Wells	7
	PLATES	
Vicinity Map		1
. •	ns 1990 - 1997	
	ns 2009	
	A' 3'	
	ions in Groundwater	
•	trations in Groundwater	
TPHg Concentrat	ions in Soil-Gas	9
, ,	stered Wells	
Extent of Impacts		11
	APPENDICES	
APPENDIX A	ALAMEDA COUNTY PUBLIC WORKS AGENCY DRILLING PERMIT	
APPENDIX B	LOGS OF BORINGS B-1 THROUGH B-12	
APPENDIX C	LABORATORY ANALYTICAL REPORTS	
APPENDIX D	WELL SAMPLING FORMS	
APPENDIX E	UNDERGROUND UTILITY DOCUMENTS	
APPENDIX F	DEPARTMENT OF WATER RESOURCES WELL SEARCH	

1.0 EXECUTIVE SUMMARY

This report presents the findings of recent site investigation and groundwater monitoring activities conducted by Fugro West, Inc. (Fugro) for the property located at 2250 Telegraph Avenue, Oakland, California (Site). Fugro was retained by the property owner, Buttner Properties, to complete the scope of work described in our Work Plan, dated January 16, 2009. Fugro staff have been assisting Buttner Properties since early 1990 with underground storage tank (UST) removal actions, groundwater monitoring and site investigation activities in general accordance with requirements of the local regulatory agency, Alameda County Environmental Health (ACEH).

The Site is situated at the northeast corner of Telegraph Avenue and West Grand Avenue, in a commercially zoned area near downtown Oakland. The Site was historically used as a gasoline service station, up until the late 1980's when fuel dispensing ceased and the property changed over to operation as an automotive repair shop (Dave's Station). The Site is currently occupied by a one-story former service station building that still includes two vehicle servicing bays and an office. Exterior areas are completely covered by pavement.

Three USTs associated with the former service station were removed in 1990 under the observation of Fugro staff. Source removal activities conducted in 1990 removed about 500 cubic yards of gasoline impacted soil, and source removal activities conducted in 1994 removed about 70 cubic yards of waste-oil and gasoline impacted soils. Four monitoring wells (MW-1 through MW-4) are located onsite, and two additional wells (MW-5 and MW-6) are located offsite, in areas along West Grand Avenue, down and cross-gradient of the former UST improvements.

In general, investigations indicate that the Site is underlain by a layer of fill consisting of clayey and sandy gravel varying in depth from about 2 to 5 feet below existing grades. The fill materials are underlain by layers of fat to lean clays to the maximum depth explored of 20 feet below the existing ground surface (bgs). The clayey soils within the groundwater fluctuation zone are of relatively low permeability based on the low rates of water recharge within borings and wells. Groundwater at the Site has been monitored since 1994 and has fluctuated between depths of 8 to 13 feet bgs.

The contaminants of concern in both soil and groundwater include petroleum hydrocarbons within the gasoline, diesel, and motor oil range, and the volatile additives and constituents of petroleum fuels. Vadose zone soils in the former waste oil UST area also contain heavy metals and polynuclear aromatic hydrocarbons (PAHs) commonly found in waste oil products.

No free-floating hydrocarbon product has been observed by Fugro staff during groundwater monitoring events. Further, based on the existing data it appears that the existing contaminant plume is relatively stable.

The recent study confirms that vadose zone soil impacts are localized to the former waste oil tank vicinity and extend below the existing building. The groundwater zone impacts

appear to be limited as they do not appear to extend to the offsite wells (MW-5 and MW-6) located to the southeast and east of the Site. The presence of the impacted soil and groundwater do not however, represent a significant risk of exposure via an inhalation route based on recent soil-gas data and current Site use. Further, potential inhalation risks can be further mitigated through groundwater remediation efforts in the future. The possible risk of dermal contact and ingestion by future construction workers can be mitigated through implementing proper Site controls and Health and Safety measures during below grade repairs or future site construction.

As there is no imminent significant risk of human exposure, Fugro recommends the following:

- Abandon Wells MW-3, MW-4, and MW-6. Wells MW-3 and MW-4 are situated in close proximity to former UST pits and sufficient data exists to characterize these pit areas. Well MW-6 doesn't reflect groundwater contamination originating from the Site. As such these wells should be abandoned.
- Well MW-5 is located beyond the distal limit of the plume and should be abandoned
 after the installation and monitoring of two new wells located closer to the Site
 perimeter. The new wells should be positioned to provide boundary information to
 the south and east of the Site. One new well should be located between well
 locations MW-3 and MW-6, and the second new well should be located between well
 locations MW-4 and MW-5.
- A Corrective Action Plan (CAP) should be prepared once two monitoring events with the new well network have been completed. The CAP will evaluate several options for remediation at the Site.
- Continued groundwater monitoring on a semi-annual basis with the new network of wells.

2.0 INTRODUCTION

This report presents the findings of recent site investigation activities conducted by Fugro West, Inc. (Fugro) for the property located at 2250 Telegraph Avenue, Oakland, California (Site). Fugro was retained by the property owner, Buttner Properties, to complete the scope of work described in our Work Plan, dated January 16, 2009. Fugro staff have been assisting Buttner Properties since early 1990 with underground storage tank (UST) removal actions, groundwater monitoring and site investigation activities in general accordance with requirements of the local regulatory agency, Alameda County Environmental Health (ACEH).

This report summarizes past studies and presents the results of the most recent investigation to document the extent of onsite soil and groundwater contamination. The report includes a preliminary risk assessment, and provides ACEH requested information regarding preferential pathways and local registered monitoring wells. The report further documents the results of the Summer 2009 Groundwater Monitoring event.

3.0 LIMITATIONS

Fugro has prepared this report in a professional manner, using that degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. Fugro shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. Fugro also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. Fugro believes that conclusions stated wherein to be factual, but no guarantee is made or implied. This report has been prepared for the benefit of ACEH and Buttner Properties.

The information contained in this report, including all exhibits and attachments, may not be used by any party other than the ACEH or Buttner Properties, without the express written consent of Fugro West, Inc.

4.0 SITE DESCRIPTION

The Site is located at 2250 Telegraph Avenue, situated at the northeast corner of Telegraph Avenue and West Grand Avenue, in Oakland, California (Plates 1 and 2). The Site and immediately adjacent properties are zoned for commercial development and use. The Site was formerly occupied by a gasoline service station up until the late 1980's when fuel dispensing ceased and the property changed over to operation as an automotive repair shop (Dave's Station). The Site is currently occupied by a one-story former service station building that still includes two vehicle servicing bays and an office. Exterior areas are paved and used mainly as a parking/storage area for vehicles. A chain link fence and two rolling gates located along Telegraph Avenue and West Grand Avenue encompass the entire Site.

Three USTs associated with the former service station were removed in 1990 under the observation of Fugro staff. Four monitoring wells (MW-1 through MW-4) are located onsite, and two additional wells (MW-5 and MW-6) are located offsite, in areas along West Grand Avenue, down and cross-gradient of the former UST improvements.

The Site is bounded on the west by Telegraph Avenue and to the south by West Grand Avenue. The adjacent property to the east, also owned by Buttner Properties, is occupied by a single story structure and paved parking and use areas (460 West Grand Avenue). The 460 Grand Avenue site is currently used as a nursery school. The nursery school building is situated approximately 90 feet east, and down gradient of the former service station building, and cross and down gradient of the former USTs. An outdoor play area comprising play structures situated over a mat-covered, paved surface exists between the 2250 West Grand Avenue building and the nursery school building.

The adjacent property to the north and up-gradient of the former service station is used as a restaurant. A Chevron service station (2200 Telegraph Avenue) is located south of the Site, across West Grand Avenue, a Valero service station (2225 Telegraph Avenue) is located southwest of the Site, and a Taco Bell restaurant and parking area (2255 Telegraph Avenue) is located to the west, across Telegraph Avenue. Historic information suggests that the 2255 Telegraph Avenue site was also a service station in the past.

5.0 ENVIRONMENTAL SETTING

5.1 TOPOGRAPHY

The general terrain in the Site vicinity is flat with a gradual surface gradient to the southeast, toward Lake Merritt. Topography across the Site is relatively flat, with a ground surface elevation of approximately 20 feet mean sea level (MSL).

5.2 GENERAL GEOLOGIC SETTING

The geologic map titled: Geologic Map of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California (U.S. Geological Survey, dated 2000) shows that the Site area is geologically mapped as Holocene and Pleistocene-aged Merritt Sands (Qms). These deposits tend to be fine-grained, very well sorted, well-drained alluvial deposits of western Alameda County. Locally, the Merritt Sand formation is overlain by miscellaneous or artificial fill materials and alluvial deposits. The fill and alluvial deposits comprise interbedded deposits of clay, silt, and sandy soils which appear as discontinuous lenses and layers.

The Site is located in a seismically active region of California; however, it is not within an Alquist-Priolo Earthquake Fault Zone (CGS, 2007), a zone that delineates areas of known active faults, as defined by the State of California. The closest fault zone is associated with the Hayward fault system, a right lateral strike-slip fault, located approximately 3.2 miles northeast of the Site. The Site is also within the California Geological Survey Seismic Hazard Zone [formerly California Division of Mines and Geology (CDMG), 2003] for liquefaction.

5.3 SURFACE WATER

The nearest body of surface water is Lake Merritt, located approximately 0.36 miles southeast of the Site. Lake Merritt is a tidally influenced lake into which stormwater is allowed to drain from local upland areas. Other surface water bodies include the Oakland Inner Harbor Channel, located approximately 1.3 miles south of the Site and the San Francisco Bay, which is located approximately 2.1 miles to the northwest and 3.2 miles to the southwest.

5.4 GROUNDWATER CONDITIONS

Groundwater at the Site has been monitored since 1994 and has fluctuated between depths of 8 to 13 feet below the existing ground surface (bgs). No free-floating hydrocarbon product has been observed by Fugro staff during monitoring events. However, based on the results of the numerous monitoring events, dissolved hydrocarbons are present within the groundwater beneath the Site. The groundwater plume appears limited in that it has not reached offsite monitoring wells MW-5 or MW-6.

Groundwater monitoring has shown that the groundwater flow direction is predominately toward the east-southeast. The groundwater gradient has been shown to be consistently flat. Monitoring activities suggest that the water-bearing stratum below the Site is a relatively low permeability formation, in that groundwater recharges very slowly in onsite wells and borings.

6.0 OVERVIEW OF UST REMOVAL, REMEDIATION, AND SITE STUDIES

Long-term use of the Site as a service station and automobile repair facility have resulted in impacts to both soil and groundwater as described in the following sections.

6.1 FORMER GASOLINE UST AREA AND DISPENSER ISLANDS

Former gasoline USTs were situated in an area to the southwest of the existing station building. Upon removal of the USTs in August 1990, Fugro staff did not observe visible deterioration of the gasoline USTs and no free floating product was observed in the excavation. Two fuel dispensing islands (each with two dispensers), and all related piping, were also removed coincident with the UST removal project.

Analysis of thirteen (13) soil samples collected from the tank and dispenser island excavations indicated that elevated levels of total petroleum hydrocarbons within the gasoline range (TPHg) and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) were present in soil suggesting releases to the ground had occurred. In October 1990 a remedial effort was undertaken to remove significantly impacted materials within accessible limits. During the October 1990 excavation, additional fill material was encountered along the western wall of the extended excavation which varied in consistency and color from the material removed in August.

Research conducted into the Site's history indicated that two USTs were previously located adjacent to the west side of the excavation area. Records further indicated that the

tanks were removed in the early 1960's, and as a result, the additional fill material likely represented material from that former excavation. Analytical results indicated that the fill possessed elevated concentrations of petroleum hydrocarbons. As a result, the older fill material was also removed to its horizontal limits later in 1990. Fourteen (14) additional soil samples were collected from the expanded excavation area, as well as from the former dispenser island locations. The final gasoline UST excavation area measured approximately 31 by 35 feet in plan view and extended to a depth of about 17 feet below the adjacent ground surface. During removal activities, groundwater was encountered at approximately 10.5 feet bgs, and a noticeable band of impacted soil coincident with the groundwater fluctuation zone was observed at the limits of excavation. The limits of excavation completed in 1990 are shown on Plate 2.

Review of the analytical results from the additional excavation indicated that no TPHg nor BTEX were detected in any of the samples collected from the former dispenser locations. This indicated that excavation was successful in removing impacted soils from the dispenser island areas which were removed in 1990.

Analytical results of samples collected from the extended limits of the former UST excavation indicated that although soil remediation activities removed approximately 500 cubic yards of impacted soil, concentrations of petroleum hydrocarbons and their volatile constituents had been left in-place in soil at the limits of the excavation. The contamination appeared to exist in a thin layer coincident with the groundwater fluctuation zone, observed at the time to be situated between depths of about 9 and 11 feet bgs. Given the Site's active use and the location of existing building, it was determined that it was not feasible to extend the excavation limits any further. The excavation areas were backfilled with engineered fill and the areas were capped with asphalt pavement.

Maximum contaminant concentrations left in-place in the gasoline UST source area are summarized below. The locations of samples obtained from the dispenser island and gasoline UST excavation areas are presented in Plate 3. Historic chemical data is presented in Tables 1 and 2.

Maximum Soil Concentrations Left-In Place

Analyte	Gasoline UST Excavation Area	Dispenser Island Area
TPHg	310 mg/kg	<2.5 mg/kg
TPHd	100 mg/kg	<5.0 mg/kg
Benzene	820 μg/kg	<5.0 μg/kg
Toluene	59 μg/kg	<5.0 μg/kg
Ethylbenzene	1,300 μg/kg	<5.0 μg/kg
Xylene	1,600 μg/kg	<5.0 μg/kg

6.2 FORMER WASTE OIL TANK AREA

The former waste oil UST was situated adjacent to the east side of the existing former station building. The fill inlet for the tank was located within the former station building as a floor inlet. During tank removal activities in August 1990, Fugro staff observed numerous holes in the top of the waste oil UST and its bottom had been corroded through. A thin layer of oil was observed floating on the water surface in the pit following tank removal activities.

To characterize this potential source area, six (6) soil samples from within the UST excavation were obtained (sample locations are shown on Plate 3). Two soil samples were obtained from the soil present within the tank pit and four samples were obtained from the material removed from the tank pit.

Results of the analyses indicated that elevated levels of TPHg, total petroleum hydrocarbons within the diesel range (TPHd), lead, and oil and grease were present in soil at elevated concentrations within the former tank excavation. The excavation area was backfilled with soil which had been removed with the waste-oil UST pending further remediation. The soil was encapsulated in plastic and the area was resurfaced.

In February 1994, soil remediation was conducted in an attempt to remove the significantly impacted material within accessible limits in the area of the former waste oil UST. The final excavation measured approximately 10 by 15 feet in plan view and was extended to a depth of approximately 12 feet bgs. During removal activities, groundwater was encountered at approximately 11.5 feet bgs. A thin layer of residual soil possessing a green hue and a strong hydrocarbon odor was observed by Fugro staff between depths of 9 and 11 feet bgs, which coincides with the groundwater fluctuation zone observed onsite.

Nine (9) additional soil samples were collected from the former waste oil UST area following soil remediation activities. Analytical results of samples collected from the limits of the former UST excavation indicated that although soil remediation removed approximately 70 cubic yards of soil, impacted soil still remains in-place and likely extends below the existing repair shop building.

Maximum elevated contaminant concentrations left in-place in the waste-oil UST source area are summarized below. The locations of samples obtained from this excavation area are presented in Plate 3. Historic chemical data is presented in Tables 1 and 2.

Maximum Soil Concentrations Left-In Place

Analyte	Waste Oil UST Pit
TPHg	240 mg/kg
TPHd	680 mg/kg
TPHmo	1,700 mg/kg
Oil & Grease	3,900 mg/kg
Lead	590 mg/kg

Analyte	Waste Oil UST Pit
Benzene	580 μg/kg
Toluene	1800 μg/kg
Ethylbenzene	2500 μg/kg
Xylene	16,000 μg/kg
PNAs	varies

6.3 1994 GROUNDWATER MONITORING WELL INSTALLATION

In February 1994, four groundwater monitoring wells (MW-1 through MW-4) were installed onsite and a groundwater monitoring program was implemented. Soil samples were obtained from monitoring wells MW-1, MW-2, and MW-3, at a depth of 10 feet bgs, as these locations were all situated within about 5 feet of the limits of the former gasoline UST excavation. The concentrations of contaminants of concern in the samples obtained from the well borings showed a marked decrease when compared to the sidewall samples from the UST excavation. Water elevation and analytical data from Wells MW-1 to MW-4 are presented in Tables 2 and 3.

Soil samples were also obtained from monitoring well boring MW-4 installed immediately adjacent to the excavation for the former waste-oil UST. The concentrations of contaminants of concern in the sample from a depth of 10 feet bgs showed a marked decrease when compared to the sidewall samples from the excavation, which suggested that the release was limited to soil in the immediate vicinity of the UST.

Groundwater monitoring data from wells MW-1, MW-2, and MW-3 indicated that the releases from the gasoline UST source area had impacted groundwater, and that the plume may have extended offsite. Similarly, groundwater monitoring data from well MW-4 indicated that releases from the waste oil UST source area had also impacted groundwater, and that the plume may extend offsite to the east. However, given that the source areas had been remediated to the extent practical, areas directly above the plumes were paved, the plumes appeared stabilized, and there was no plan to redevelop the Site, the potential risks posed to human health appeared limited, and no further remedial action was deemed necessary.

6.4 1996 AND 1997 SITE CHARACTERIZATION INVESTIGATIONS

In a letter dated November 8, 1995, ACEH requested an investigation be performed to evaluate the extent of groundwater contamination downgradient of the Site. In May 1996, five temporary well points (TWPs) were installed and grab groundwater samples were obtained to assist in determining locations for two new offsite groundwater monitoring wells. Although the results of the samples obtained from the TWPs were not judged to be comparable to samples obtained from monitoring wells due to their observed turbid nature, the data could nonetheless be useful in evaluating the extent of the groundwater plume.

Grab groundwater sample data is presented in Table 5. The samples were noticeably turbid as they contained appreciable sediment. The samples were collected of the first

encountered water accumulated within temporary slotted casings which had been inserted into smaller diameter borings which did not have any filtering media. Review of the boring logs confirmed that the borings were extended to depths of about 19 feet bgs and soils encountered below a depth of 5 feet bgs comprised very fine grained silty and clayey materials with varying amounts of sand. As a result, the grab groundwater data is believed representative of both total and dissolved constituents.

Based on these results, monitoring wells MW-5 and MW-6 were installed at offsite locations in June 1997, cross-gradient and downgradient from the former UST excavations (Plate 3). Monitoring well MW-5 was located in the eastbound parking lane of West Grand Avenue while well MW-6 was located in the westbound lane close to the median. Wells MW-5 and MW-6 were completed to depths of 20 and 21.5 feet bgs, respectively. Water elevation and analytical data from Well MW-5 and MW-6 are presented in Tables 2 and 3.

No significant contaminants of concern were detected in soil or groundwater samples collected from Well MW-5. Elevated concentrations of contaminants of concern were detected in the groundwater sample from Well MW-6; however the fingerprint pattern is unique from the pattern detected in onsite groundwater samples. In addition, MTBE is a contaminant of concern in Well MW-6 and it is not an identified contaminant in onsite soils, which is reasonable given that fuel dispensing at the Site ceased prior to widespread use of MTBE. As such, Fugro believes the contamination observed in Well MW-6 is not related to releases from the Site. Further, since well MW-5 is a clean well, its data suggests that the plume has not migrated that far from the Site.

6.5 GROUNDWATER MONITORING ACTIVITIES

Fugro has conducted groundwater monitoring at the Site since 1994. The data generated to date confirms that the Site is impacted by releases from the petroleum UST source areas. The onsite wells are comprised of about 10 feet of slotted well screen positioned to intercept the groundwater fluctuation zone and the zone of observed soil contamination. Based on a review of the groundwater data from 1994 to current, the groundwater fluctuation zone has varied seasonally up to 1 to 2 feet. The well screens for the two offsite wells were composed of 15 feet of screen.

Groundwater at the Site flows within shallow, fine to very fine grained sediments, and for this reason the shallow wells recharge very slowly. Well construction details included a filter pack comprised of No.3 washed sand which appears now to have been an adequate choice and has allowed the filter pack to become well-graded over time. No appreciable sediment has been observed entrained in the water samples collected from the wells and submitted to the analytical laboratory for testing during our monitoring events. This is contrasted with the significant presence of sediment in the samples collected from the temporary wells installed and sampled in 1996 and those installed recently, as will be discussed subsequently. Petroleum hydrocarbons have an affinity to adhere to fine grained (silt and clay fraction) sediments and thus grab groundwater samples from borings/temporary wells extended into fine grained sediments have a tendency to not be very representative of dissolved groundwater conditions.

As a result, Fugro has used the data from grab groundwater samples only to qualitatively assess the nature of the plumes and to select other well locations.

7.0 2009 SITE INVESTIGATION STUDIES

7.1 INVESTIGATION OBJECTIVES

A review of soil and groundwater data collected during source removal activities, site characterization and monitoring well installation studies, and groundwater monitoring events conducted onsite since March 1994, indicates that soil and groundwater below the Site has been impacted by petroleum hydrocarbon releases. The groundwater plume has appeared stable, that is, the data does not suggest that the plume is expanding, and overall concentrations have not increased over time. Additionally, previous risk assessment activities suggest that no significant risk is posed to the ongoing commercial use of the property as a result of the underlying soil and groundwater impacts. These findings notwithstanding, ACEH requested that additional Site characterization be conducted to further define the lateral and vertical extent of contamination and to assess the potential volatilization pathway. In addition, ACEH also requested an update to the preferential pathway and well survey studies.

To meet these data investigation objectives the following tasks were performed in general accordance with our ACEH approved Work Plan:

- Conduct additional soil and groundwater sampling to further characterize the lateral and vertical extent of impacts onsite.
- Conduct a soil gas survey to assess the volatilization pathway. The methodology to conduct the soil gas survey was modified from the methods outlined in the work plan based on new information presented during the June 2009 ITRC 2-day training for Vapor Intrusion Pathway assessments which was attended by Fugro staff. The methods followed, as described herein are based on research conducted and presented by Dr. Blayne Hartman at the ITRC training event.
- Conduct additional research and review of preferential pathways and historic well information for the area to the extent practical.

Concurrent with this investigation Fugro also conducted the Summer 2009 groundwater monitoring event, the results of which are presented herein.

Boring locations for the 2009 Site Investigation are presented on Plate 4. Additionally, generalized cross-sections showing the relationship between the UST source areas, soil types encountered during the various studies, and groundwater elevation data is presented on Plates 5 and 6. Analytical data is not presented in the cross-sections due to the volume of the data available. The analytical data is presented in Tables 4 and 5.

7.2 FIELD ACTIVITIES

Prior to commencement of fieldwork, Fugro obtained a drilling permit from Alameda County Public Works Agency (ACPWA). A copy of the permit is presented in Appendix A. Fugro also retained a private utility locator to clear proposed sampling locations and alerted the Underground Service Alert (USA) at least 48 hours prior to intrusive field activities.

Field activities were conducted on July 27 through July 31, 2009, and September 8, 2009 using standard industry practices regarding worker health and safety. Vironex Inc., a State of California licensed drilling contractor, conducted soil and groundwater drilling activities at the Site using direct push drilling methods. In addition, TEG-Northern California, Inc. (TEG), a State of California licensed drilling contractor, conducted the soil-gas drilling activities at the Site in semi-permanent probes also installed using direct push drilling methods. Fieldwork included the completion of twelve (12) direct push borings/temporary well points (B-1 through B-12) to depths ranging from 15 feet to 20 feet bgs, and the installation of seven (7) semi-permanent soil-gas probes/borings (SG-1 through SG-7) completed to a depth of 5.0 feet bgs.

All drilling and sampling equipment was decontaminated prior to each use, using a high-pressure steam cleaner and/or by washing with a soap solution followed by water rinses. Soil cuttings and decontamination water were placed in Department of Transportation-approved and labeled 55-gallon drums, which were stored onsite, pending chemical classification and offsite disposal.

Upon completion, direct push borings B-1 through B-12 were backfilled with neat cement grout and restored to existing conditions. ACPWA has temporarily allowed soil-gas borings SG-1 through SG-7 to remain onsite pending the review of the data by ACEH.

7.2.1 Soil and Groundwater Investigation

Drilling and sampling activities were conducted under the supervision of Fugro's field personnel. Fugro's field geologist logged Borings B-1 through B-12 in accordance with the Unified Soil Classification System (USCS) and screened selected soil samples in the field using an Organic Vapor Meter (OVM). Discrete soil samples were collected from a variety of depths from each boring depending on field sample recovery. In general, soil samples were collected from the surface, 1.0, 2.0, 5.0, 7.5, 10, and 15 feet bgs within the direct push borings.

Selected soil samples for chemical analyses were retained in polyethylene tubing, sealed with Teflon[®] sheeting and plastic end-caps. Samples were stored in an ice-chilled cooler pending delivery to the analytical laboratory. All samples were delivered under appropriate chain-of-custody protocol to a state-certified analytical laboratory, for chemical analyses.

In accordance with the ACEH approved work plan, selected soil samples were submitted to a certified laboratory for various soil property tests. Samples were submitted from depths representing vadose zone soils within 0 to 5 feet and 5 to 10 feet bgs, as well as from a deeper soil zone, 10 to 15 feet bgs.

Groundwater was not immediately encountered during drilling activities. With permission from ACPWA, all borings were allowed to remain open over-night to allow groundwater to recharge into the borings. Clean PVC casing was placed in each boring to facilitate the collection of a grab groundwater sample from each location. Prior to obtaining water samples, the depth to water was measured. The depth to groundwater in the temporary borings ranged from 11.2 to 19.5 feet bgs. These depths do not represent the static groundwater surface based on data collected from existing groundwater monitoring wells.

Grab groundwater samples were collected from Borings B-1 through B-10 and B-12. Only trace amounts of groundwater were encountered in Boring B-11 even after allowing the boring to remain open overnight. As such, groundwater was not sampled from this location. Samples were collected from the other temporary borings using clean disposable bailers. Water was decanted into pre-cleaned laboratory provided bottles.

7.2.2 Soil-Gas Investigation

The soil-gas investigation was conducted using the expertise of TEG a company operating both mobile and stationary soil-gas laboratories from Rancho Cordova. TEG staff followed field sampling and testing methods approved by the DTSC as described in their standard operating procedures included with the soil-gas data in Appendix C. The soil-gas probe installation and subsequent sampling was conducted in accordance with one of the two industry-wide accepted methodologies described in the June 2009 Interstate Technical & Research Council (ITRC) Vapor Intrusion Pathway training by Dr. Blayne Hartman, an authority in the soil vapor sampling and testing arena and a primary ITRC technical trainer and researcher.

Each soil-gas boring/probe was completed using ¼ inch Teflon tubing fitted with a ¼ inch diameter sampling point with a compression fitting in accordance with one of the accepted methodologies described at the June 2009 ITRC training seminar. After the drill rod was retracted, the Teflon tubing and sampling point was emplaced within the borehole midway between a one foot thick sand pack. One foot of dry granular bentonite was placed over the sand pack, followed by hydrated bentonite grout to the surface. To prevent infiltration of surface water and ambient air, each tube was secured with a cap fitting and secured beneath a traffic grade well box.

Due to the low permeability clays present at the Site, TEG waited approximately 48 hours after the installation of the probes before commencing sampling. TEG sampled the soilgas probes using a 50 cubic centimeter glass syringe, connected to the ¼ inch Teflon tubing surface point via an on-off valve. The syringe was then used to place a vacuum on the sample train testing the integrity of all the connections.

A purge volume test was conducted at the beginning of the soil-gas survey at location SG-6 to purge ambient air from the sampling system. Three different volumes were sampled (1, 3, and 7 purge volumes) and analyzed immediately by TEG using their onsite mobile laboratory to determine the Site-specific draw volume with the highest concentration. Based on the result

of the purge volume test, a one-volume purge was deemed sufficient and used during the entire soil-gas investigation.

A tracer compound (1,1 Difluoroethane) was used during the soil-gas sampling investigation to test for leaks around the ground surface and near the syringe sampling system. Given that the syringe sample collection system is immediately ready to draw a sample and there is no waiting time, a shroud is not used in the sampling train following application of the tracer gas.

Soil-gas samples were obtained using gas-tight, 50 cubic centimeter glass syringes. Once soil-gas samples were obtained, they were immediately analyzed using TEG's onsite mobile laboratory. .

7.2.3 Subsurface Conditions

Boring and sampling locations for the 2009 Site Investigation are presented on Plate 4 and Logs of Borings are presented in Appendix B. Generalized cross-sections showing the relationship between the UST source areas, and soil conditions encountered during the various Site studies, are presented on Plates 5 and 6.

In general, the investigation confirmed our previous findings that the Site is underlain by a layer of fill consisting of clayey and sandy gravel varying in depth from about 2 to 5 feet. Artificial fill materials also exist in the former UST pit excavations to depths of 12 to 17 feet bgs. The fill materials are underlain by layers of silty clay to lean clay to the maximum depth explored of 20 feet bgs. As shown on the generalized geologic cross sections, a few pockets of silty sand were also encountered interlayered in the clayey soils (Borings B-3 through B-5 and B-10 through B-12).

Fugro's field geologist screened soil samples in the field using an OVM. Moderate to strong light and heavy hydrocarbon odors were detected within most borings from depths ranging from about 9 to 17 feet bgs coincident with the historic groundwater fluctuation zone. Sample B-4a @12.5' yielded the highest OVM reading of 113.9 ppm.

A total of four soil samples were obtained and submitted to Fugro's certified geotechnical testing laboratory for various soil property tests including some or all of the following:

- Grain-size distribution;
- Bulk density;
- Moisture content; and
- Porosity.

The gradation test results indicated that soil within the upper 5 feet of the Site would be classified as clayey sand (SC). Soil from depths of 5 to 15 feet bgs would be classified as fat clays (CH). Moisture content and dry density tests were conducted on soil from a depth of 0 to 5.0 feet bgs with average values of 21% and 102 pounds per cubic foot (pcf), respectively.

Percent porosity for 0 to 5.0 feet bgs, 5.0 to 10 feet bgs, and 10 to 15 feet bgs are reported as 36.2%, 41.0%, and 39.0%, respectively. The porosity results of about 40% are consistent with a characterization of a clayey material.

Depth to groundwater ranged from 11.2 to 19.5 feet bgs when encountered during this study. No free phase hydrocarbons were observed in any of the grab groundwater samples collected, however, strong hydrocarbon odors were detected in groundwater samples obtained from several of the borings.

8.0 RESULTS OF ANALYSES

Upon completion of field activities all soil and groundwater samples were transported under chain-of-custody documentation to Curtis and Tompkins, a State of California-certified testing laboratory. Soil-gas samples were immediately analyzed using TEG's onsite mobile laboratory. Analytical reports from Curtis and Tompkins Ltd and TEG are presented in Appendix C. TPHg and benzene concentrations in groundwater are illustrated on Plates 7 and 8. TPHg concentrations in soil-gas are illustrated on Plate 9. Results of chemical analyses for soil, groundwater, and soil-gas samples are summarized in Tables 4 through 6, and are discussed below.

8.1 SOIL SAMPLES

A total of fifty-six (56) soil samples were submitted for chemical analyses. In accordance with our work plan, samples were analyzed for some or all of the following:

- Total Petroleum Hydrocarbons as gasoline (TPHg) using EPA Method 5030/8260b;
- Total Petroleum Hydrocarbons as diesel and motor oil (TPHd and TPHmo) using EPA Methods 8015m, with silica gel cleanup;
- Lead scavengers (1,2,-dichloroethane and 1,2-dibromoethane) using EPA Method 5030/8260b;
- Five fuel oxygenates (MTBE, TAME, ETBE, TBA, and DIPE) using EPA Method 5030/8260b;
- BTEX using EPA Method 5030/8260b; and/or
- Total organic carbon.

Analyses did not detect the five fuel oxygenates or the two lead scavengers in any of the soil samples analyzed. Total organic carbon was measured at concentrations of 0.05 to 0.87 percent.

Benzene was detected in six (6) out of forty-nine (49) samples with concentrations ranging from 10 micrograms per kilogram (µg/kg) to 500µg/kg. Benzene concentrations exceeded residential land use Environmental Screening Levels (ESLs) in Sample B-8@20' bgs,

and both residential and commercial ESLs in Samples B-8@15' bgs; both samples were located within the groundwater fluctuation zone in an area directly adjacent to the former UST pit.

Ethylbenzene was encountered in ten (10) out of forty-nine (49) samples with concentrations ranging from 22 μ g/kg to 12,000 μ g/kg. Concentrations exceeding residential and/or commercial land use ESLs were detected in samples from the groundwater fluctuation zone at borings B-1@10', B-1@12', B-9@10', and B-9@15' bgs.

Concentrations of total xylenes were detected in eight (8) out of forty-nine (49) samples, ranging from 9.7 μ g/kg to 53,000 μ g/kg. Total xylenes exceeding residential and commercial land use ESLs were detected in samples from the groundwater fluctuation zone at borings B-1@10' bgs and B-1@12' bgs.

Toluene was encountered in three (3) out of forty-nine (49) samples with concentrations up to 4,000 µg/kg, below both the residential and commercial land use screening levels.

Analysis detected TPHg concentrations ranging from 1.1 mg/kg to 320 mg/kg in sixteen (16) out of forty-nine (49) samples analyzed. TPHg concentrations exceeded the residential land use ESL of 100 mg/kg in samples from the groundwater fluctuation zone at borings B-1@10' bgs, B-1@12' bgs, and B-9@15' bgs. TPHg concentrations exceeded the commercial land use ESL of 180 mg/kg in a sample from the groundwater fluctuation zone at boring B-1@12' bgs.

TPHd was detected in thirty-seven (37) out of forty-nine (49) samples analyzed with concentrations ranging from 1.0 mg/kg to 1,100 mg/kg. TPHd concentrations exceeded both residential and commercial land use ESLs in samples from the groundwater fluctuation zone at borings B-3@15' bgs, B-4a@12' bgs, B-4a@15' bgs, B-5@12' bgs, and B-12@12' bgs.

Analysis also detected TPHmo in thirty (30) out of forty-nine (49) samples analyzed with concentrations ranging from 5.9 mg/kg to 850 mg/kg. TPHmo concentrations also exceeded the residential land use ESL of 370 mg/kg in samples from the groundwater fluctuation zone at borings B-3@15'bgs, B-4a@12'bgs, B-4a@15' bgs, and B-5@12' bgs. TPHmo concentrations exceeded the residential land use ESL of 370 mg/kg in three shallow samples (B-1@2' bgs, B-6@2' bgs, and B-11@2' bgs). The impacts detected in the shallow samples are most likely related to shallow surficial releases at the Site which are not related to the UST sources.

8.2 GRAB GROUNDWATER SAMPLES

A total of eleven (11) grab groundwater samples were submitted for chemical analysis. The grab groundwater samples were analyzed for some or all of the following:

- TPHg using EPA Methods 5030/8015m;
- TPHd and TPHmo using EPA Method 8015m with silica gel clean up;
- BTEX and MTBE using EPA Method 5030/8260b;

- Lead scavengers (1,2,-dichloroethane and 1,2-dibromoethane) using EPA Method 5030/8260b;
- Five Fuel Oxygenates (MTBE TAME, ETBE, TBA, and DIPE) using EPA Method 5030/8260b; and/or
- Total Dissolved Solids using EPA Method 160.1.

Insufficient groundwater recharge in Boring B-6 prevented sample collection for TPHd and TPHmo. Additionally, the glass sample container containing the groundwater obtained from Boring B-1 for TPHd and TPHmo analysis broke on the way to the laboratory, therefore no sample from this location was submitted for TPHd and TPHmo analysis.

The data for the grab groundwater samples do reflect that the samples represent total and dissolved contaminant constituents. The detected total dissolved solids ranged from 460 milligrams per liter (mg/L) to 1,200 mg/L confirming that the samples were turbid and brackish.

Analyses detected total and dissolved petroleum hydrocarbon as TPHg ranging from 360 micrograms per liter (μ g/L) to 41,000 μ g/L and TPHd ranging from 290 μ g/L to 240,000 μ g/L. Additionally, TPHmo was detected in six (6) out of nine (9) samples analyzed with concentrations ranging from 400 μ g/L to 110,000 μ g/L.

With the exception of benzene, no other BTEX constituent was detected above the residential or commercial land use ESL for potential vapor intrusion concerns. Total and dissolved Benzene was detected in six (6) of the eleven (11) samples analyzed with concentrations ranging from 0.57 μ g/L to 2,800 μ g/L. Total and dissolved Toluene was detected in seven (7) out of eleven (11) samples analyzed with concentrations ranging from 0.58 μ g/L to 780 μ g/L. Analyses also detected total and dissolved ethylbenzene in six (6) out of the eleven (11) samples analyzed with concentrations ranging from 0.75 μ g/L to 950 μ g/L. Total and dissolved xylenes were detected in six (6) out of eleven (11) samples analyzed with concentrations ranging from 0.66 μ g/L to 3,700 μ g/L.

Of the five fuel oxygenates analyzed, only MTBE and TBA were detected in the grab groundwater samples collected from the Site. MTBE was detected in four (4) of the eleven (11) samples analyzed with concentrations ranging up to 2.1 μ g/L. TBA was detected in four (4) of the eleven (11) samples analyzed with concentrations ranging up to 32 μ g/L. 1,2-Dichloroethane was the only lead scavenger detected in the grab samples, being detected in four (4) of the eleven (11) samples with concentrations ranging up to 3.8 μ g/L.

8.3 SOIL-GAS SAMPLES

A total of eleven (11) samples were analyzed in an onsite laboratory, inclusive of 7 locations co-located to borings, one duplicate sample (SG-7dup), one resample for location SG-3), two additional purge volume samples from SG-6 and one ambient air sample collected for QA/QC purposes. The soil-gas samples were analyzed for the following:

Total petroleum hydrocarbons as gasoline (TPHg);

- Total petroleum hydrocarbons as diesel (TPHd);
- Benzene, toluene, ethlybenzene, xylenes (BTEX), and Methyl tert butyl ether (MTBE); and
- Carbon Dioxide, methane, oxygen, and 1,1 Difluoroethane content.

The ambient air sample was reported to contain 21% oxygen and none of the testing program compounds. All samples soil vapor samples contained oxygen and carbon dioxide.

Analysis only detected 36,000 micrograms per cubic meter ($\mu g/m^3$) of TPHg in Sample SG-7. This sample result exceeded the Lowest Residential Exposure ESL of 10,000 $\mu g/m^3$ and the Lowest Commercial Exposure ESL of 29,000 $\mu g/m^3$. Sample location SG-7 is located in an exterior area adjacent to a significant pocket of permeable fill placed during UST removal activities conducted in 1990. It is possible that the boring sample is more representative of soilgas vapor present in the permeable tank fill which is not representative of conditions across the Site.

Concentrations of m,p-Xylene and o-Xylene were detected in Samples SG-1 and SG-5 through SG-7 ranging up to 320 μ g/m³ and 140 μ g/m³, respectively. These concentrations are below the respective Lowest Residential and Commercial Exposure ESLs.

No TPHd, benzene, toluene, ethylbenzene, or MTBE concentrations were detected in any of the soil-gas samples analyzed.

Methane was not detected in any of the soil-gas samples obtained from the Site. Concentrations of Oxygen detected in the soil-gas samples ranged from 3.2% to 20%. Carbon Dioxide was detected with concentrations ranging from 1.5% to 16%.

The leak check compound used during this investigation was 1,1-Difluoroethane, which was only detected in Sample SG-3 at 37,000 μ g/m³. Since it was detected in SG-3, this location was resampled. The second soil-gas sample collected from this location reported 19,000 μ g/m³. It is unknown if there is an exposure to ambient air at the ground surface, around the top of the probe or if there was an insufficient seal between the tube fitting and the glass syringe. Although 19,000 μ g/m³ of the leak check compound was detected, this amount equates to 0.007% of the starting concentration. Since the second sampling attempt reported a decrease in the amount of leak check compound detected and the amount detected was so small compared to starting concentrations, in Fugro's opinion, the presence of leak check compound in the resample is considered insignificant and the data is considered useful and representative of actual conditions at this location.

9.0 SUMMER 2009 GROUNDWATER MONITORING EVENT

9.1 FIELD ACTIVITES

Fugro conducted this monitoring event on July 30, 2009. Prior to sampling, the presence of free product was checked and the depth to groundwater was measured in all six

wells. Fugro's field personnel noticed hydrocarbon odor during purging and sampling of monitoring wells MW-1, MW-2, MW-3, and MW-4; however, no free product was observed. Traffic control permit was not obtained in time; therefore, no sampling was conducted at monitoring well MW-6 located within West Grand Avenue.

Each well was then purged of approximately three casing volumes of water while monitoring for changes in pH, conductivity, and temperature. Due to the slow recharge of the monitoring wells, wells were sampled the next day once the groundwater levels had stabilized. The wells were then sampled with clean disposable bailers. Samples were retained in glass containers pre-cleaned by the laboratory in accordance with Environmental Protection Agency (EPA) protocols. The containers were placed in an ice-filled cooler and kept chilled, pending delivery to the laboratory.

The samples for this event were submitted under chain-of-custody documents to Curtis & Tompkins, Ltd., a laboratory certified by the State of California Department of Health Services for hazardous waste and water testing. A sample from each well was analyzed for the following constituents:

- TPHg, EPA Methods 5030/8015;
- TPHd and TPHmo, EPA Methods 8015m, using silica gel cleanup;
- Lead scavengers including: dichloroethane and dibromoethane;
- Five fuel oxygenates by EPA Methods 8260 including; MTBE, TBA, DIPE, ETBE, and TAME using EPA Method 8260; and
- BTEX using EPA method 8260.

Well sampling forms are presented in Appendix D. Groundwater elevation data are summarized in Table 3, analytical test results are summarized in Table 7.

9.2 EVENT RESULTS

The historic groundwater flow directions for this Site are presented in the Rose Diagram on Plate 2. As previously stated the gradient for this event was 0.02 feet/feet¹ directed towards the east-southeast. Based on the groundwater elevation data presented in Table 3, the groundwater gradient remains generally consistent with previous measurements. Groundwater was generally encountered at lower elevations compared to the March 2009 event, which is expected given that this monitoring event was conducted during the height of the dry season.

Concentrations of the analytes detected during this sampling event are generally within the historic range of data. TPHg was detected during this event in samples from wells MW-1 (160 μ g/L, MW-3 (360 μ g/L), and MW-4 (1,400 μ g/L). TPHd was detected in samples from

-

¹ Data based on current measurements in wells MW-1, MW-2, MW-3, and MW-4. Data from wells MW-5 and MW-6 are not judged to be representative of site conditions.

wells MW-3 (71 μ g/L) and MW-4 (1,100 μ g/L). TPHmo was detected in one of the samples collected from well MW-4 (1,300 μ g/L).

Analysis detected benzene and total xylenes in monitoring well MW-3 at concentrations of 14 μ g/L and 1.2 μ g/L, respectively. No concentrations of benzene, toluene, ethylbenzene, or total xylenes were detected in any of the remaining samples tested. No MTBE concentrations were detected in any of the samples tested during this event. None of the lead scavengers or fuel oxygenates were detected in any of the samples analyzed.

Based on a review of all groundwater data collected to date, it appears that sufficient data exists to characterize the plume in the vicinity of both former UST pit areas. Wells MW-3 and MW-4 have consistently shown elevated concentrations exist near the former UST pits, and this data is well documented. No further characterization data is needed from these areas. Additionally, it is apparent that wells MW-5 and MW-6 are situated beyond the distal limit of the plume. To address these issues, consideration should be given to abandoning wells MW-3, MW-4, MW-5, and MW-6, and installing two new wells (MW-7 and MW-8) to address the distal limit of the plume. One new well should be positioned between wells MW-3 and MW-6, and the other between wells MW-4 and MW-5. Abandonment activities should be conducted once the new wells have been installed and sampled to confirm better definition of the distal plume limits.

9.3 NO-PURGE EVENT

As discussed previously, Fugro has observed significant differences in contaminant concentrations measured in grab groundwater samples obtained from temporary well screens installed in borings and samples obtained from permanent well installations. Notwithstanding the notion that the grab groundwater samples represent a total and dissolved contaminant concentration, Fugro decided to conduct a limited no-purge sampling event, to provide data to check the effectiveness of the existing well screens, and to evaluate whether the plumes are experiencing any significant partitioning which the permanent wells may not be able to detect. As a result, Fugro re-sampled monitoring wells MW-1, MW-3, and MW-4 on September 8, 2009 without benefit of completing any purging event. The samples were submitted for TPHg and BTEX testing to compare with the data for the current event. A comparison of the TPHg data from the two events is presented below.

Well	Purge Event, TPHg	No-Purge Event, TPHg
MW-1	160 ug/L	56 ug/L
MW-3	360 ug/L	1,200 ug/L
MW-4	1,400 ug/L	580 ug/L

Although the results shown above indicate that there is sampling variation in concentrations between the purge and no-purge events (an expected finding), the data between the events do not vary substantially. The lack of significant sample result variation supports the notion that the wells are performing as designed, and are adequate to continue their use to monitor plume characteristics. This data also strongly suggests that there is no significant

partitioning of the hydrocarbon plumes and thus confirms that the grab groundwater samples are not detecting a layer of highly contaminated groundwater that the wells are not able to detect, but are significantly affected due to entrained contaminated sediments. Coupled with the observation that the grab groundwater samples are turbid, this experiment further substantiates our conclusion that the data from the grab groundwater sampling events should only be used to suggest where the plume boundaries may exist, and should not be considered representative of actual plume concentrations.

10.0 UPDATED PREFERENTIAL PATHWAY SURVEY

Fugro prepared a preferential pathway survey for the Site in February 2004. Based on comments from ACEH in July 2008, Fugro has updated the preferential pathway survey to include East Bay Municipal Utility District (EBMUD) water conveyance pipelines. In general, the updated research has not identified a preferential pathway or a known potable well which may be at risk of being impacted by the Site contaminant groundwater plume. All reported well locations in close proximity to the Site were visited by our staff to confirm their address and location as reported herein.

10.1 EVALUATION OF UNDERGROUND UTILITIES

Fugro previously contacted the City of Oakland Engineering and Building Department and reviewed available maps of subsurface utility lines in the area. A copy of one of the maps from the City of Oakland is presented in Appendix E. The City maps show a 16-inch diameter sanitary sewer main and a 12-inch storm drain conduit located beneath Telegraph Avenue. Also shown are a 16-inch diameter storm drain conduit and a 16-inch sanitary sewer line located (between 7.2 and 6.0 feet above sea level) beneath Valley Street, with a single 10-inch lateral line connecting to the property block near the eastern block line. The approximate location and orientation of the utility lines are shown on Plate 4.

As previously reported, a shallow sanitary sewer line extends from the Site, toward Telegraph Avenue. A small storm drain catch basin exists along the West Grand Avenue curb line just beyond the southeast corner of the Site. This under-curb drain is not shown on the City maps we reviewed. The drain is apparently shallow and connected to a shallow-bedded pipeline, which conveys flow into the storm drain collector at Valley Street. This pipeline is also shown on the Plate 4.

In accordance with the request from ACEH for additional information with respect to the potential presence of water conveyance pipelines, which may act as preferential migration pathways, Fugro contacted EBMUD and reviewed historic groundwater depth information collected at the Site since 1994. Fugro met with EBMUD engineers and reviewed a number of blueprints and historic pipeline installation data, which suggest that all EBMUD pipelines adjacent to the Site are situated above the groundwater table. Excluding discrete areas where short runs of pipelines were installed below City of Oakland infrastructures, EBMUD pipelines were generally embedded at depths ranging from approximately 3.5 to 9.5 feet below the existing grade on the north side of West Grand Avenue, and approximately 4.0 to 5.5 feet below the existing grade of Valley Street, situated 165 feet east of the Site. The as-built maps and

field data notes, which provide pipeline details, do not indicate the type of trench bedding used. Many of the original pipelines were installed in the early 1920s to 1930's. Based on data collected for the onsite wells (MW-1 through MW-4) since 1994, the depth to groundwater has fluctuated between approximate depths of about 8 to 13 feet below the existing groundsurface, which suggests that the groundwater surface is predominately located below the elevation of the pipelines. Copies of the EBMUD documents are also presented in Appendix E.

A continuing underground utility of interest is the Bay Area Rapid Transit (BART) tunnel, which may be influencing groundwater flow patterns in the area. The tunnel extends below the Chevron service station property located immediately south of the Site. The BART alignment runs from northwest to southeast below the Chevron property as shown on Plates 4 and 10. The construction and operation of the tunnel should be viewed as a contributing influence on changing groundwater flows in the area.

Based on our review of all underground utilities in the Site vicinity, we judge that it is unlikely that preferential contaminant migration along utility lines is occurring. By the time that the contaminant plume reaches the property lines to the west, east and south, the depth of the plume varies from 8 to 17 feet. The closest pipeline to the Site is a shallow under-curb drain along West Grand Avenue and a sanitary sewer pipeline below Telegraph Avenue, approximately 30 feet away from the Site. The flow lines of these pipelines are situated above the plume surface. The closest storm drain line is situated more than 60 feet away from the Site in a cross gradient direction from the plume, and therefore judged not likely to intercept the plume.

10.2 REGISTERED WELL SURVEY

Fugro's previous registered well survey conducted in 2004 identified nine registered wells located within close proximity (0.25-mile) of the Site. Of the nine registered wells, two were listed with a use of "irrigation" and seven were listed with a use as "unknown". Given the significant number of years since the previous pathway survey was completed, Fugro requested that the California Department of Water Resources (DWR) complete another search of wells within 0.25-mile of the Site. DWR identified fifteen registered well properties within the 0.25-mile radius. For the purposes of this report, Fugro assigned a number to each well and illustrated the approximate location of each well on Plate 10. The Water Well Drillers Reports provided by the DWR well search are presented in Appendix F.

In general, of the fifteen (15) "well" properties listed within the surrounding area, approximately ten (10) were upgradient/cross-gradient and five were downgradient of the Site. These 15 "well" properties account for a total of forty-two wells. According to information obtained in the well search, the nearest documented downgradient wells are located at the Old Oakland Tribune Garage at 23rd Street and Valdez Street, Kaiser Center Plaza at 300 Lakeside Drive, the Ordway Building at 1 Kaiser Plaza, and properties located at 327 21st Street and 21st Street and Broadway.

Fugro conducted a reconnaissance of the four downgradient properties, as well as the former Great Western Power Co. property located at 520 20th Street as requested by ACEH, to

confirm location of the wells if possible. The Old Oakland Tribune Garage has been redeveloped into a covered and uncovered parking garage; the Great Western Power Co. has been redeveloped into an indoor rock climbing gym, and 327 21st Street and the property located at 21st Street and Broadway have both been redeveloped into parking lots. Kaiser Center Plaza at 300 Lakeside Drive and the Ordway Building at 1 Kaiser Plaza are utilized as office buildings with an uncovered parking and a covered, multi-story parking garage. Fugro inquired about the presence of wells on each of these properties. Personnel at each location were unaware of any wells, and no wells were observed at any of the locations during our reconnaissance.

The most recent well inventory obtained from the DWR does not include information about wells installed for the LUST investigations in the area. As such, the well survey has been updated to include these monitoring wells.

10.3 SURROUNDING PROPERTY SURVEY

The Site is located in a predominantly commercial section of Oakland, California. The property is bounded on the west and south by Telegraph Avenue and West Grand Avenue, respectively. The adjacent property to the east, which is also owned by Buttner Properties, is occupied by a nursery school (460 West Grand Avenue). The outdoor paved play area used by the school abuts the eastern fence line of the Site. The nursery school building is situated about 90 feet to the east and downgradient of the former waste oil tank location. The adjacent property north of the Site is a restaurant (2270 Telegraph Avenue). A Chevron service station (2200 Telegraph Avenue) is located south of the Site, across West Grand Avenue, a Valero service station (2225 Telegraph Avenue) is located southwest of the Site, and a Taco Bell restaurant (2255 Telegraph Avenue) is located west of the Site, across Telegraph Avenue.

Fugro conducted a review of available files located on the Regional Water Quality Control Board's (RWQCB) GeoTracker website for some of the surrounding properties of environmental interest including the adjacent service station properties. Results of this file review are presented below.

10.3.1 2200 Telegraph Avenue – Chevron Service Station

This property is located cross-gradient from the Site. Available records for this property indicate at least two different UST locations. Additionally, as previously stated, a BART tunnel was constructed directly below this property. Studies have been periodically conducted to evaluate the UST locations and have documented two unauthorized releases of petroleum product which have impacted groundwater. In 1986, Blaine-Tech reported TPHg and benzene at concentrations of 480,000 μ g/L and 10,000 μ g/L, respectively, in a groundwater sample obtained from one of the tank pits. In 1992, Groundwater Technology reported TPHg and benzene at concentrations of 42,000 μ g/L and 3,300 μ g/L, respectively, in a grab groundwater sample from a vadose well. In 2000, Gettler-Ryan detected TPHg and benzene at concentrations of 29,000 μ g/L and 180 μ g/L, respectively in a grab groundwater sample obtained from a boring located on the north side of the station. This sample also contained 730 μ g/L of MTBE and 380 μ g/L of TBA. This property has reportedly undergone groundwater

monitoring activities since at least 2005. It is not clear from the GeoTracker review whether any of these groundwater releases were ever cleaned up.

10.3.2 2225 Telegraph Avenue - Valero (formerly Exxon) Service Station

This property is located cross-gradient from the Site. Available records for this property indicate that Texaco operated the gasoline station from 1963 until 1988 when the property was transferred to Exxon-Mobil. Exxon-Mobil sold the property to Valero in 2000, who subsequently sold the property to Mr. Lam Truong who currently operates the property as a Valero service station. Groundwater samples collected following tank removal detected elevated levels of TPHg, benzene, and MTBE onsite. The plume as depicted by Environmental Resolutions, Inc., in maps dated April 2009, was inferred to extend a limited distance into the adjacent streets. Prior to 1990, a pump and treat remediation system was installed onsite to remediate impacted groundwater and treated water was discharged to the sanitary sewer. The pump and treat system was shut down in 1990 and replaced with a SVE system which reportedly operated from approximately 1991 through 1996, when ownership transferred from Texaco to Exxon-Mobil. The SVE system has not been operated since then.

11.0 PRELIMINARY RISK ASSESSMENT

Several studies of the impacts to soil and groundwater have been conducted at the Site, all of which have been conducted by Fugro staff. These studies and the results of groundwater monitoring have provided sufficient information to assess potential risks posed to human health and the environment resulting from previous UST releases. To assist in the evaluation of the potential risks we have summarized the pertinent Site constraints and the exposure pathways, which in our opinion, would be considered driving forces.

11.1 CONTAMINANTS OF CONCERN

Contaminants of concern (COC) include those chemicals typically associated with service stations and automobile repair garages. Site research suggests at least three UST locations were onsite; two associated with dispensing fuels and one associated with the waste oil tank. Contaminants of potential concern would include the full range of petroleum hydrocarbon products, as well as products used to service automobiles including chlorinated solvents (used to increase the solubility of oils and greases, antifreeze, and fuel additives.

Since the service station was not in operation when the gasoline additive MTBE was in use, MTBE is not judged to represent a potential COC. Testing for MTBE has been conducted at various times to check for possible MTBE impacts, and with the exception of historic Well MW-6 data and a recent low hit of MTBE in Well MW-4, Site data supports the finding that MTBE is not a COC.

Automotive chemical usage is ongoing with the operation of the existing repair shop onsite. This facility uses lubricants and greases, and other chemicals in smaller quantities and has appropriate storage and disposal practices in place with respect to the chemicals in use. Site specific studies show that only oil based waste products discharged previously into the

waste oil UST system have been shown to impact soil and groundwater at the Site, and thus these would represent COC for the waste oil UST area.

Gasoline fuels were dispensed at the Site for at least the late 1940's. Site specific studies show that releases from these USTs have impacted soil and groundwater.

Based on the foregoing summation, COCs at the Site comprise the following compounds.

- TPHg = Total petroleum hydrocarbons within the gasoline range, present due to former gasoline and waste oil UST system releases.
- TPHd = Total petroleum hydrocarbons within the diesel range, may represent either releases from a former UST system or be observed as a degradation component of gasoline.
- TPHog and TPHmo = Total petroleum hydrocarbons within the oil and grease range and the motor oil range, present due to former waste oil UST system releases.
- BTEX, 1,2 DCA = Benzene, toluene, ethylbenzene, and total xylenes, and 1,2 Diclhoroethane present in both source areas as a result of releases of refined petroleum products from the former UST systems.
- Lead, PNAs, VOCs = Present due to releases from the former waste oil UST system.

11.2 SUBSURFACE CONDITIONS

With the exception of the vadose zone impacts to soil in the vicinity of the former waste oil UST system which extends below the existing shop building, soil impacts correlate with historic groundwater fluctuation across the Site. Residual soil impacted by UST source area releases is present between depths of 8 and 17 feet bgs across the Site. The predominate soil type within the groundwater fluctuation zone is clay.

Groundwater has been measured in the existing onsite wells at depths ranging from approximately 9 to 12 feet bgs. However, based on a review of analytical data of soil samples, it appears that the groundwater fluctuation zone extends from about 8 to 17 feet bgs.

No free product has ever been observed floating on the groundwater surface in any of the existing wells or in any of the borings drilled at the Site. The contaminant plume appears to be stable based on the lack of significant changes in concentrations over time, and the finding that it has not expanded as wells MW-6 and MW-5 are not showing any impacts resulting from the plume. Plume stability is also a reasonable finding given the existence of a flat gradient and the presence of clayey soils within the groundwater fluctuation zone which impede plume movement.

As shown on the Plate 4 and Cross-Section A-A', presented on Plate 5, no utility lines are present along West Grand Avenue in a location where they may otherwise have created

preferential pathways and conduits to spread contamination. The primary subsurface conduits extend below Telegraph Avenue, west of the Site.

11.3 EXTENT OF SOIL IMPACTS

The impacts to soil are localized to the area of the former waste oil UST system and within the groundwater fluctuation zone. To preliminarily evaluate the lateral and vertical extent of soil impacts we elected to compare measured TPHg, TPHd and TPHmo concentrations to 100mg/kg, the ESL threshold for a potential residential use of the Site.

Within the former waste oil UST area, soils are suspected to be impacted in the immediate area of previous UST system improvements located within and below the existing building. The improvements included a floor drain which has since been closed and conveyance piping leading over to the former waste oil UST. Sampling inside the structure has been limited due to the presence of a number of storage cabinets and improvements, and the presence of a long-standing viable repair business. Based on the limited sampling inside the structure and the data from the waste oil UST removal we believe that impacted soil extends from below the floor and east wall foundation wall to depths up to 17 feet. Once at the groundwater surface the plume extended along the groundwater flow path. The lateral extent of soil impacts within the groundwater fluctuation zone has not been defined to the 100 mg/kg level to the east. The area of impact is shown on Plate 11.

Within the former gasoline UST area, the vertical extent of soil impacts are coincident with the groundwater fluctuation zone. No other shallow pockets of vadose zone impacted soils have been identified to date. Using data collected from well installations, UST remediation efforts and borings it appears that once contamination encountered the groundwater surface the plume extended along the groundwater flow path. The lateral extent of soil impacts within the groundwater fluctuation zone has not been defined to the 100 mg/kg level at the west or east ends of the flow path. The area of impact is shown on Plate 11.

Based on the existing soil data, the area of the waste oil UST system improvements would only represent a risk to human health (potential dermal contact) for future construction workers on the Site during below grade repairs or future remediation/construction at the Site.

11.4 EXTENT OF GROUNDWATER IMPACTS

Groundwater below the Site has been impacted by releases of both gasoline and waste oil products. The two points of release have resulted in a commingling of contaminant plumes as there is not sufficient separation at the Site and no identified boundary conditions to keep the plume areas separate.

Based on a review of all groundwater data collected to date, it appears that sufficient data exists to characterize the plume in the vicinity of both former UST pit areas. The groundwater zone impacts appear to be limited as they do not appear to extend to the offsite wells (MW-5 and MW-6) located to the southeast and east of the Site. The presence of the impacted groundwater does not however, represent a significant risk of exposure via an

inhalation route based on recent soil-gas data and current Site use. Potential inhalation risks can be further mitigated through groundwater remediation efforts in the future. The possible risk of dermal contact and ingestion by future construction workers can be mitigated through implementing proper Site controls and Health and Safety measures during below grade repairs or future site construction.

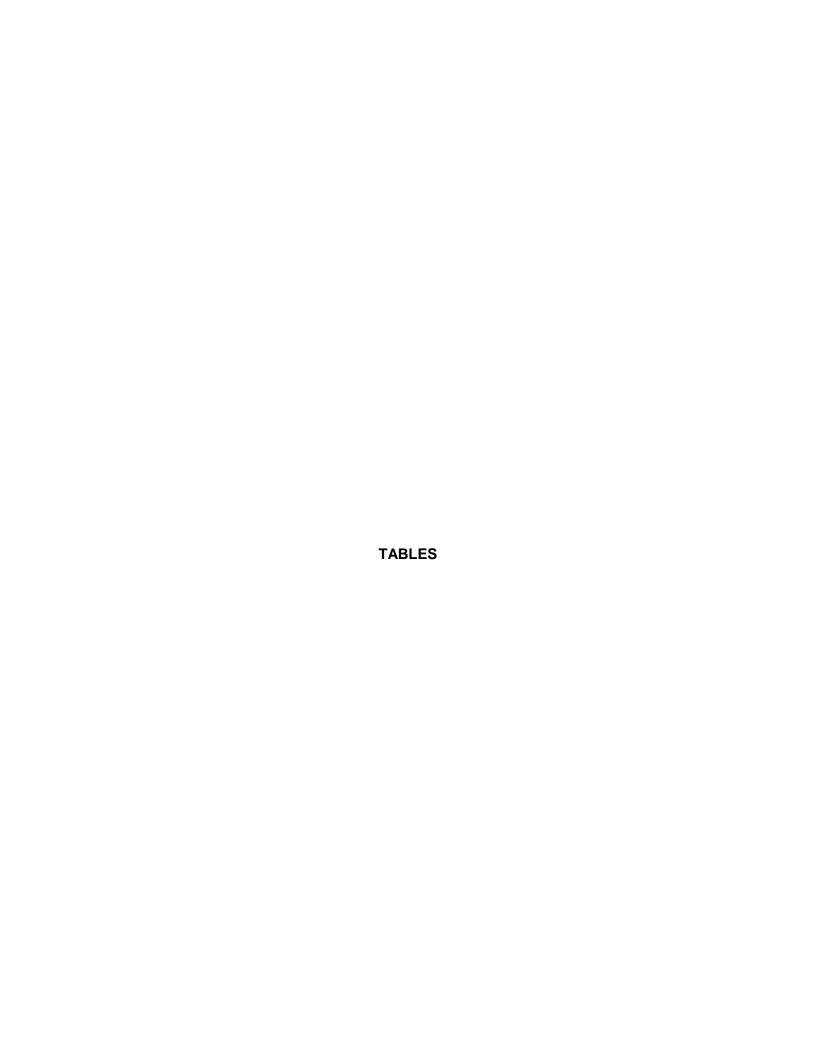
11.5 ROUTES OF EXPOSURE AND COMPLETED PATHWAYS

The potential routes of exposure to impacted soil or groundwater and whether there is an indication that the pathway is complete are shown below.

- Ingestion of soil or groundwater Pathway potentially complete for future construction workers. Risks can be mitigated through implementing proper Site controls and Health and Safety measures during below grade repairs or future site construction/remediation.
- Inhalation of TPHg vapors Pathway is not complete. No sensitive uses or structures are located over the portion of the existing plume where elevated soil gas vapors have been identified. Potential future risks can be mitigated prior to Site redevelopment through groundwater remediation efforts.
- Dermal contact with soil or groundwater Pathway potentially complete for future construction workers. Risks can be mitigated through implementing proper Site controls and Health and Safety measures during below grade repairs or future site construction/remediation.
- Environmental Impacts Pathway is complete with soil and groundwater being impacted. However, no viable beneficial use has been identified for the shallow water and the exiting plume is not threatening a surface water body. Further, no preferential pathways have been identified which could become impacted.

12.0 RECOMMENDATIONS

Considering the current commercial use of the Site, the areas of impacted soil and groundwater do not appear to pose a significant risk to human health or the environment. The rationale for this consideration is summarized below:


- The Site is zoned and used for commercial purposes and is likely to remain that way for the foreseeable future.
- Onsite source areas have been remediated to the extent feasible given the Site's current and continued commercial use.
- Residual impacted soil in the vadose zone is limited to the former waste oil UST area.
- Residual impacted soil and groundwater are coincident along the groundwater flow path.

- Detected COC do not appear to pose a significant risk to human health via an inhalation pathway based on the recently collected soil-gas study and considering that the site is paved and is under current commercial use. The extent of potential soil vapor appears limited to the area of the former gasoline USTs.
- There is no viable, current beneficial use of groundwater at the Site.
- No identified preferential pathways or sensitive surface waters in the immediate vicinity of the plume.

As there is no significant risk of human exposure and there is no immediate threat to a surface water body, it appears appropriate to continue to monitor groundwater conditions on a semi-annual basis using a new monitoring well network which identifies the limits of the plume. To evaluate the location of the distal end of the plume, Fugro proposes to abandon wells MW-3, MW-4, MW-5, and MW-6, and to install two new wells at the locations shown on Plate 11. The abandonment of the two wells should be done in a phased manner. Initially, Wells MW-3, MW-4, and MW-6 should be abandoned first. The abandonment of MW-5 would be delayed until the data from the monitoring of the two new wells has been reviewed.

Remediation and ultimate regulatory closure of the Site is the desired goal of the property owner, Buttner Properties. Following collection of data from two monitoring events using the new well network, sufficient data will exist to prepare a Corrective Action Plan (CAP). With the regulatory oversight of ACEH, Buttner Properties envisions obtaining approval of the CAP in late 2010, and completing remediation activities and obtaining Site closure in 2011.

October 2009 Project No. 609.004

Table 1 Summary of Chemical Concentrations in Soil - During Remediation 2250 Telegraph Avenue, Oakland, California

			Petroleu	ım Hydro	carbons		PCBs		Vola	itile Organ	ic Compou	nds		Metals					Semi-Vo	Semi-Volatile Organic Compounds			
Sample Location and Depth in Feet	Sample Date	TPH, Gasoline Range	TPH, Kerosene Range	TPH, Diesel Range	TPH, Motor Oil Range	Total Oil Grease	Polychlorinated Biphenyls	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	Chlorobenzene	Cadmium	Chromium	Lead	Zinc	Nickel	Copper	2-Methylphenol	2-Methylnaphthalene	Di-N-Butyl Phthalate	Naphthalene
Gasoline Tank and Dispenser Area		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
G3@ 10	8/29/1990	120		l				820	560	2,300	4,000					9.07							
G4@ 10	8/29/1990	18						89	11	150	520					19.2							
G5@ 10	8/29/1990	270						2,300	220	3,400	410					5.43							
G6@ 15	8/29/1990	8.3						320	6.3	170	220					4.93							
G7@ 11	8/29/1990	6.3						270	34	<5.0	160					8.45			-				
G8@16	8/29/1990	<2.5						19	5.6	<5.0	<5.0					6.65							
G9@ 10	8/29/1990	<2.5						<5.0	<5.0	<5.0	<5.0					5.54							
G10@ 16	8/29/1990	260						1,600	670	1,300	460					8.36							
G11@ 10	8/29/1990	<2.5						<5.0	<5.0	<5.0	<5.0					6.01			-				
D1@ 0.5	8/29/1990	<2.5						<5.0	<5.0	<5.0	<5.0					201			-				
D2@ 0.5	8/29/1990	1,700						2,300	9,500	35,000	77,000					107							
D3@ 0.5	8/29/1990	200						850	1,600	3,800	18,000					91.7							
D4@ 0.5	8/29/1990	<2.5				-		<5.0	<5.0	<5.0	9.1					537	-		1				
Waste Oil Tank Area																							
WO-1	8/31/1990	40		290	3,800	1,700	<0.05	1,800	880	800	1,200	39	40	0.431	23.4	151	167	32.5	38.4	0.9	2.4	0.5	1.3
WO-2	8/31/1990	740		640	5,100	3,600		12,000	15,000	10,000	18,000	470	<10	0.522	25.6	112	140	30.2	32.5				
WP1,2,3.4	8/31/1990	130		1,000	4,800	3,200		11000	1,700	2,100	3,900	66	<10	0.482	26.0	85.9	70.6	27.5	23.3				
ESLs Residential Land Use ¹		100	100	100	370	370	0.22	120	9,300	2,300	11,000	370	1,500	1.7	750	200	600	150	230	NE	0.25	NE	1.3
ESLs Commercial/Industrial Land Use ¹		180	180	180	2,500	2,500	0.74	270	9,300	4,700	11,000	950	1,500	7.4	750	750	600	150	230	NE	0.25	NE	2.8

Notes

TPH = Total petroleum hydrocarbons

DCA = Dichloroethane

TCA = Trichloroethane

PCE = Tetrachloroethene

NE = No value established

mg/kg = milligrams per kilogram = parts per million

μg/kg = micrograms per kilogram = parts per billion

<1 = Chemical not present at a concentration greater than the laboratory detection limit shown or stated on test reports</p>

- = Chemical not tested for

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

¹ = Table B Shallow Soil Screening Levels, Groundwater is not a Current or Potential Source of Drinking Water

															1												
			Petrole	eum Hydro	carbons				Vol	atile Organ	ic Compou	ınds			Metals					Semi-V	olatile Org	anic Comp	oounds				
Sample Location and Depth in Feet	Sample Date	, TPH, Gasoline Range	TPH, Kerosene Range	, TPH, Diesel Range	TPH, Motor Oil Range	, Total Oil Grease	, Benzene	, Toluene	, Ethylbenzene	Xylenes	1,1,1-TCA	, 1,2-DCA	PCE	, Chlorobenzene	Lead	, 2-Methylnaphthalene	, Anthracene	, Bis-2-ethylhexyl Phthalate	, Butylbenzylphthalate	, Di-N-Butyl Phthalate	, Fluoranthene	Fluorene	, Naphthalene	Nitrobenzene	, N-Nitrosodiphenylamine	, Phenanthrene	. Pyrene
Occaling Tout and Discourse Asset		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Tank and Dispenser Area	40/40/00	0.5			50		70	-	-								T 1				l						
G10@ 17	10/10/90	<2.5		<5	<50		73	<5 45	<5	<5																	
G12@ 10	10/5/90	52		110	<50 <50		110	45	480	140 130																	
G13@ 10 G14@ 7.5	10/8/90 10/8/90	12 <2.5		<5 <5	100		220 <5	43 <5	60 <5	<5																	
G15@ 9.5	10/8/90	310		<5	<50		820	59	1.300	1.600																	
G16@11	10/8/90	19		<5	<50		200	41	210	46																	
G17@ 6	10/10/90	24.0		<5	<50		38	20	12	18																	
G18@ 8	10/17/90	<2.5		<5	<50		<5	<5	<5	<5																	
G19@ 10	10/17/90	<2.5		<5	<50		<5	<5	<5	<5									-								
G20@ 17	10/17/90	<2.5		<5	<50		<5	<5	<5	<5																	
G21@ 10	10/17/90	<2.5		<5	<50		<5	<5	<5	<5																	
G22@ 10	10/17/90	<2.5		<5	87		<5	<5	<5	<5																	
D2@ 4.5	10/8/90	<2.5		<5	<50		<5	<5	<5	<5																	
D3@ 4.5	10/4/90	<2.5		<5	<50		<5	<5	<5	<5																	
Waste Oil Tank Area	10/1/00	42.0	_	10			10	- 10		10	_																
3@ 6	2/9/94	<1	<1	<1	27	<50	<5	<5	<5	<5					8												
4@ 11	2/9/94	<1	<1	<1	20	80	<5	<5	<5	<5					11												
5@ 6	2/9/94	240	<1	560	1.700	3.900	300	1.800	2.500	16.000	<5	36	29	16	590	2.7	0.13	< 0.05	<0.05	<0.05	0.14	0.12	1.8	0.39	< 0.05	0.45	0.26
6@ 11	2/9/94	31	<1	250	640	1,700	580	670	550	2,700	<5	<5	8.0	8.4	45	3.7	0.18	<0.05	<0.05	1.6	0.15	0.14	2.5	<0.05	0.21	0.39	0.27
7@ 6	2/9/94	<1	<1	<1	<10	<50	<5	<5	<5	31	<5	<5	<5	<5	19	< 0.05	< 0.05	0.32	0.93	1.7	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
8@ 11.5	2/9/94	100	<1	680	1,100	2,700	360	300	1,300	6,700					21												
9@ 6	2/9/94	<1	<1	<1	<10	<50	<5	<5	<5	<5		-		-	8.6				-	-						-	
10@ 11.5	2/9/94	6.5	<1	210	360	470	100	7.3	100	160					14												
11@ 13	2/9/94	15	<1	210	450	780	430	45	350	960	<5	<5	<5	7.6	60	0.39	< 0.05	<0.05	<0.05	2	0.05	0.08	0.34	< 0.05	< 0.05	0.2	0.1
Well Boring Samples																											
MW1 @10	3/2/94	260	<1	<1	<10		<20	<20	970	770	<5	<5	<5	<5					-								
MW2 @10	3/1/94	<1	<1	<1	<10		<90	<90	<5	<5	<5	<5	<5	<5					-	-			-				
MW3 @10	3/1/94	620	<1	5.6	<10		<90	<90	840	2,700	7.4	<5	11	<5					-	-							
MW4 @10	3/2/94	1.9	<1	8.9	22		<20	<20	<5	<5	<5	<5	<5	<5													
MW5 @4	6/23/97	<1		<1			<5	<5	<5	<5	<5	<5	<5	<5													
MW5 @8	6/23/97	3.1		5.1			<5	<5	5.7	17	<5	<5	<5	<5													
MW6 @6	6/23/97	<1		<1			<5	<5	<5	<5	<5	<5	<5	<5													
MW6 @10	6/23/97	4.4		6.5			<5	<5	26	<5	<5	<5	<5	<5													
ESLs Residential Land Use ¹		100	100	100	370	370	120	9,300	2,300	11,000	7,800	220	370	1,500	200	0.25	2.8	35	NE	NE	40	8.9	1.3	NE	NE	11	85
ESLs Commercial/Industrial Land Use ¹		180	180	180	2,500	2,500	270	9,300	4,700	11,000	7,800	480	950	1,500	750	0.25	2.8	120	NE	NE	40	8.9	2.8	NE	NE	11	85

Notes

TPH = Total petroleum hydrocarbons

DCA = Dichloroethane TCA = Trichloroethane

PCE = Tetrachloroethene

NE = No value established

mg/kg = milligrams per kilogram = parts per million

μg/kg = micrograms per kilogram = parts per billion
<1 = Chemical not present at a concentration greater than the labora

<1 = Chemical not present at a concentration greater than the laboratory detection limit shown or stated on test reports

-- = Chemical not tested for

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

¹ = Table B Shallow Soil Screening Levels, Groundwater is not a Current or Potential Source of Drinking Water

Table 3 Groundwater Elevation Data 2250 Telegraph Avenue, Oakland, California

Monitoring Well	Date	TOC Elevation (Feet MSL)	DTW (feet)	Elevation (Feet MSL)
MW-1	3/3/1994	20.55	10.39	10.16
	3/10/1994		10.54	10.01
	6/6/1994		11.36	9.19
	9/7/1994		11.92	8.63
	12/22/1994		10.83	9.72
	3/17/1995		9.73	10.82
	6/27/1995		10.51	10.04
	9/18/1995		11.12	9.43
	5/30/1996		10.49	10.06
	7/9/1997		11.79	8.76
	8/21/1998		11.00	9.55
	10/6/1998		11.84	8.71
	2/24/1999		9.74	10.81
	6/30/2000		11.28	9.27
	4/27/2001		10.56	9.99
	4/14/2005		10.12	10.43
	8/1/2005		10.56	9.99
	11/9/2005		12.53	8.02
	3/21/2006		9.71	10.84
	8/7/2006		11.40	9.15
	10/27/2006		11.39	9.16
	3/20/2007		10.94	9.61
	8/8/2007		11.21	9.34
	2/5/2008		9.52	11.03
	8/14/2008		11.00	9.55
	3/3/2009		9.69	10.86
	7/30/2009 9/8/2009		11.10 11.77	9.45 8.78
MW-2	3/3/1994	20.03	10.37	9.66
10100 2	3/10/1994	20.00	10.53	9.50
	6/6/1994		11.15	8.88
	9/7/1994		11.72	8.31
	12/22/1994		11.27	8.76
	3/17/1995		9.85	10.18
	6/27/1995		10.70	9.33
	9/18/1995		11.67	8.36
	5/30/1996		11.56	8.47
	7/9/1997		11.52	8.51
	8/21/1998		11.91	8.12
	10/6/1998		11.57	8.46
	2/24/1999		9.91	10.12
	6/30/2000		11.16	8.87
	4/27/2001		11.32	8.71
	4/14/2005		11.00	9.03
	8/1/2005		11.67	8.36
	11/9/2005		11.54	8.49
	3/21/2006		11.02	9.01
	8/7/2006		11.84	8.19
	10/27/2006		11.92	8.11
	3/20/2007		12.52	7.51
	8/8/2007		12.82	7.21
	2/5/2008		10.39	9.64
	8/14/2008		9.10	10.93
	3/3/2009		12.31	7.72
	7/30/2009		11.41	8.62

Table 3 Groundwater Elevation Data 2250 Telegraph Avenue, Oakland, California

Monitoring Well	Date	TOC Elevation (Feet MSL)	DTW (feet)	Elevation (Feet MSL)
MW-3	3/3/1994	18.97	9.50	9.47
10100-3	3/10/1994	10.97	9.51	9.46
	6/6/1994		10.28	8.69
	9/7/1994		10.75	8.22
	12/22/1994		9.74	9.23
	3/17/1995		8.85	10.12
	6/27/1995		9.94	9.03
	9/18/1995		10.54	8.43
	5/30/1996		9.69	9.28
	7/9/1997		10.60	8.37
	8/21/1998		10.36	8.61
	10/6/1998		10.64	8.33
	2/24/1999		8.58	10.39
	6/30/2000		10.21	8.76
	4/27/2001		9.85	9.12
	4/14/2005		9.58	9.39
	8/1/2005		10.24	8.73
	11/9/2005		10.45	8.52
	3/21/2006		8.77	10.20
	8/7/2006		10.30	8.67
	10/27/2006		10.63	8.34
	3/20/2007		9.72	9.25
	8/8/2007		10.48	8.49
	2/5/2008		8.61	10.36
	8/14/2008		10.53	8.44
	3/2/2009		8.11	10.86
	7/30/2009		10.41	8.56
MW-4	9/8/2009 3/3/1994	19.88	10.60 10.89	8.37 8.99
10100-4	3/10/1994	19.00	11.19	8.69
	6/6/1994		11.85	8.03
	9/7/1994		12.86	7.02
	12/22/1994		12.26	7.62
	3/17/1995		10.10	9.78
	6/27/1995		11.05	8.83
	9/18/1995		11.84	8.04
	5/30/1996		10.97	8.91
	7/9/1997		12.08	7.80
	8/21/1998		11.86	8.02
	10/6/1998		12.84	7.04
	2/24/1999		10.79	9.09
	6/30/2000		12.39	7.49
	4/27/2001		11.26	8.62
	4/14/2005		12.01	7.87
	8/1/2005		11.78	8.10
	11/9/2005		12.42	7.46
	3/21/2006		10.00	9.88
	8/7/2006		11.90	7.98
	10/27/2006		12.75	7.13
	3/20/2007		11.20	8.68
	8/8/2007		12.00	7.88
	2/5/2008		10.40	9.48
	8/14/2008		11.47	8.41
	3/2/2009		11.13	8.75
	7/30/2009 9/8/2009		11.81 12.11	8.07 7.77

Table 3 Groundwater Elevation Data 2250 Telegraph Avenue, Oakland, California

Monitoring Well	Date	TOC Elevation (Feet MSL)	DTW (feet)	Elevation (Feet MSL)
MW-5	6/26/1997	16.02	8.44	7.58
	7/9/1997		8.48	7.54
	8/21/1998		8.32	7.70
	10/6/1998		8.51	7.51
	2/24/1999		6.86	9.16
	6/30/2000		7.63	8.39
	4/27/2001		7.60	8.42
	4/15/2005		7.20	8.82
	8/1/2005		8.16	7.86
	11/9/2005		7.92	8.10
	3/21/2006		6.58	9.44
	8/7/2006		8.27	7.75
	10/27/2006		8.48	7.54
	3/20/2007		7.67	8.35
	8/8/2007		8.43	7.59
	2/5/2008		6.76	9.26
	8/14/2008		8.31	7.71
	3/2/2009		6.20	9.82
	7/30/2009		8.13	7.89
MW-6	6/26/1997	18.36	10.89	7.47
	7/9/1997		10.98	7.38
	8/21/1998		11.00	7.36
	10/6/1998		10.79	7.57
	2/24/1999		9.32	9.04
	6/30/2000		10.37	7.99
	4/27/2001		10.10	8.26 8.81
	4/15/2005 8/1/2005		9.55 10.54	7.82
	11/9/2005		10.54 NA	7.62 NA
	3/21/2006		9.11	9.25
	8/7/2006		10.59	9.25 7.77
	0/1/2006 NA		NA	NA
	3/20/2007		10.10	8.26
	8/8/2007		10.10	7.51
	2/5/2008		9.27	9.09
	8/14/2008		10.71	7.65
	3/3/2009		8.60	9.76
	7/30/2009			ccess

TOC = Top of Casing DTW = Depth to Water

Elevation Reference: USGS benchmark W1197, 1969 with a reported elevation of +21.06 feet MSL datum.

											Sam	ple ID										Reg	ulatory Criteria
Analyte	Units	B-1@2	B-1@ 7.5	B-1@10	B-1@12	B-1@15	B-1@17	B-1@20	B-2@5	B-2@7.5	B-2@10	B-2@12	B-2@15	B-2@17	B-2@19.5	B-3@1	B-3@5	B-3@10	B-3@12	B-3@15	B-3@17	ESLs ¹ Residential Land Use	ESLs ¹ Commerical/Industrial Land Use
Date		7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009		
Sample Depth	feet	2.0	7.5	10	12	15	17	20	5.0	7.5	10	12	15	17	19.5	1.0	5.0	10	12	15	17		
Petroleum Hydrocarbons																							
	mg/kg	<0.98	<0.97	170	320	1.1	2.0 ^Y	<1.0	<0.97	<1.0	<0.96	<1.0	16 ^Y	33 ^Y	< 0.99			<1.0	<0.98	8.7 ^Y		100	180
TPHd		29 ^Y	15 ^Y		57 ^Y				<1.0		1.9 ^Y		17 ^Y			<5.0	4.0 ^Y	7.6 ^Y	33 ^Y	150 ^Y	44 ^Y	100	180
TPHmo	0.0	450	98		<5.0				5.9		<5.0		<5.0			33	10	<5.0	110	400	140	370	2,500
TPHhy	mg/kg																					370	2,500
Volatile Organic Compounds																							
Benzene		<4.7	<4.6	<500	<830	10	34	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		120	270
Toluene	μg/kg	<4.7	<4.6	1,300	4,000	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		9,300	9,300
Ethylbenzene		<4.7	<4.6	6,900	12,000	22	23	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		2,300	4,700
Xylenes		<9.4	<9.2	28,000	53,000	65	<9.4	<9.2	<10	<9.4	<9.6	<9.4	<92	<100	<9.6			<9.8	<9.6	<9.6		11,000	11,000
MTBE	μg/kg	<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		8,400	8,400
TBA	μg/kg	<95	<92	<10,000	<17,000	<97	<95	<93	<100	<94	<96	<93	<930	<1,000	<96			<99	<95	<96		100,000	110,000
TAME	μg/kg	<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		NE	NE
DIPE	μg/kg	<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		NE	NE
ETBE	μg/kg	<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		NE	NE
1,2-DCA		<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		220	480
1,2-DBA	μg/kg	<4.7	<4.6	<500	<830	<4.9	<4.7	<4.6	<5.0	<4.7	<4.8	<4.7	<46	<50	<4.8			<4.9	<4.8	<4.8		19	44
Total Organic Carbon									0.50													NIT-	NE
	%								0.53													NE	NE

Notes

TVHg = Total Volatile Hydrocarbons as gasoline
TPHd = Total Petroleum Hydrocarbons as diesel
TPHmo = Total Petroleum Hydrocarbons as motor oil
TPHny = Total Petroleum Hydrocarbons as hydraulicfluid
DCA = Dichloroethane
DBA = Dibromoethane
TCA = Trichloroethane

TBA = tert-Butyl alcohol
DIPE = Diisopropyl ether
ETBE = Ethyl tert butyl ether
TAME = Methyl tert amyl ether

MTBE = tert-Butyl methyl ether

μg/kg = micrograms per kilogram
mg/kg = milligrams per kilogram
Detected concentrations are shown in **Bold**ND = Not detected at or above respective reporting limit
< = not detected at or above the listed laboratory reporting limit

NE = Not established
-- Not Analyzed

Y = Sample exhibits chromatographic pattern which does not resemble standard

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

1 = Table B Shallow Soil Screening Levels, Groundwater is not a Current or Potential Source of Drinking Water

										Sam	ole ID									Reg	ulatory Criteria
Analyte	Units	B-4a@5	B-4a@7.5	B-4a@10	B-4a@12	B-4a@15	B-4a@18	B-5@2	B-5@7.5	B-5@12	B-5@15	B-6@2	B-6@7.5	B-6@12	B-6@15	B-7@5	B-7@7.5	B-7@12	B-7@15	ESLs ² Residential Land Use	ESLs ² Commerical/Industrial Land Use
Date		7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009		
Sample Depth	feet	5.0	7.5	10	12	15	18	2.0	7.5	12	15	2.0	7.5	12	15	5.0	7.5	12	15		
Petroleum Hydrocarbons																					
TVHg	5 5	,	v	v	4.5 ^Y	< 0.99		< 0.96	<1.0	8.8 ^Y	< 0.96	<1.0	< 0.99	< 0.96	11 ^Y	<0.97	<1.0	<1.0	<0.97	100	180
TPHd	mg/kg	1.9 ^Y	1.0 ^Y	1.6 ^Y	1,100	310	42	4.1 ^Y	<1.0	1,100	2.8 ^Y	55 ^Y	< 0.99	29 ^Y	17 ^Y	10 ^Y	2.9 ^Y	1.6 ^Y	<1.0	100	180
TPHmo	mg/kg	10	9.8	13	850	120	23	32	6.9	520	<5.0	460	<5.0	39	<5.0	53	6.6	<5.0	<5.0	370	2,500
TPHhy	mg/kg																			370	2,500
Volatile Organic Compounds																					
Benzene	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	39	<4.8	<4.8	<4.8	<4.9	120	270
Toluene	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	9,300	9,300
Ethylbenzene	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	80	<4.8	<4.8	<4.8	<4.9	2,300	4,700
Xylenes	μg/kg				<94	<9.6		<9.6	<9.6	<10	<9.8	<9.8	<9.6	<9.6	<50	<9.6	<9.6	<9.6	<9.8	11,000	11,000
MTBE	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	8,400	8,400
TBA	μg/kg				<940	<97		<96	<96	<100	<99	<98	<97	<96	<500	<96	<96	<97	<98	100,000	110,000
TAME	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	NE	NE
DIPE	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	NE	NE
ETBE	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	NE	NE
1,2-DCA	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	220	480
1,2-DBA	μg/kg				<47	<4.8		<4.8	<4.8	<5.0	<4.9	<4.9	<4.8	<4.8	<25	<4.8	<4.8	<4.8	<4.9	19	44
Total Organic Carbon																				NIT-	NE
	%																			NE	NE

TVHg = Total Volatile Hydrocarbons as gasoline
TPHd = Total Petroleum Hydrocarbons as diesel
TPHmo = Total Petroleum Hydrocarbons as motor oil
TPHny = Total Petroleum Hydrocarbons as hydraulic fluid

DCA = Dichloroethane DBA = Dibromoethane TCA = Trichloroethane

MTBE = tert-Butyl methyl ether TBA = tert-Butyl alcohol

DIPE = Diisopropyl ether ETBE = Ethyl tert butyl ether TAME = Methyl tert amyl ether μg/kg = micrograms per kilogram mg/kg = milligrams per kilogram Detected concentrations are shown in **Bold**

ND = Not detected at or above respective reporting limit < = not detected at or above the listed laboratory reporting limit

NE = Not established

-- Not Analyzed

Y = Sample exhibits chromatographic pattern which does not resemble standard

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

1 = Table B Shallow Soil Screening Levels, Groundwater is not a Current or Potential Source of Drinking Water

										Samı	ple ID										Reg	ulatory Criteria
Analyte	Units	B-8@7.5	B-8@15	B-8@20	B-9@5	B-9@10	B-9@15	B-9@20	B-10@2	B-10@5	B-10@10	B-10@15	B-11@2	B-11@7.5	B-11@12	B-12@5	B-12@7.5	B-12@12	B-12@15	B-13@8	ESLs ² Residential Land Use	ESLs ² Commerical/Industrial Land Use
Date		7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	10/19/2009		
Sample Depth	feet	7.5	15	20	5.0	10	15	20	2.0	5.0	10	15	2.0	7.5	12	5.0	7.5	12	15	8.0		
Petroleum Hydrocarbons																						
TVHg	mg/kg	13 ^Y	8.0	<0.98	1.9	56	140	<1.0	<1.0	<1.0	< 0.97	<1.0	< 0.99	<1.0	<1.0	<1.0	<1.0	7.8 ^Y	< 0.97	<0.99	100	180
TPHd	mg/kg	9.3 ^Y	1.3 ^Y	<1.0	28 ^Y	44 ^Y	31 ^Y	< 0.99	<1.0	2.5 ^Y	5.7 ^Y	1.7 ^Y	42 ^Y	< 0.99	1.4 ^Y	<1.0	9.1 ^Y	590	<1.0	73 ^Y	100	180
TPHmo	mg/kg	<5.0	<5.0	<5.0	46	49	19	<5.0	<5.0	10	21	<5.0	440	<5.0	13	<5.0	88	270	<5.0	300 ^Y	370	2,500
TPHhy	mg/kg																			390	370	2,500
Volatile Organic Compounds																						
Benzene		28	500	140	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8	<5.0	120	270
Toluene	μg/kg	<26	140	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8	<5.0	9,300	9,300
Ethylbenzene	µg/kg	790	250	37	<4.9	3,300	2,800	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8	<5.0	2,300	4,700
Xylenes	μg/kg	320	770	9.7	<9.8	9,900	8,600	<9.6	<9.8	<9.4	<9.8	<9.4	<10	<9.6	<9.8	<9.8	<10	<500	<9.6	<10	11,000	11,000
MTBE	μg/kg	<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		8,400	8,400
TBA	μg/kg	<520	<390	<97	<97	<5,000	<5,000	<96	<98	<94	<99	<95	<100	<95	<98	<97	<99	<5,000	<96		100,000	110,000
TAME	μg/kg	<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		NE	NE
DIPE	µg/kg	<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		NE	NE
ETBE	μg/kg	<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		NE	NE 100
1,2-DCA		<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		220	480
1,2-DBA	μg/kg	<26	<19	<4.8	<4.9	<250	<250	<4.8	<4.9	<4.7	<4.9	<4.7	<5.0	<4.8	<4.9	<4.9	<5.0	<250	<4.8		19	44
Total Organic Carbon	0/	0.40								0.07				0.05							NE	NE
L	%	0.10								0.87				0.05							INL	INL

TVHg = Total Volatile Hydrocarbons as gasoline TPHd = Total Petroleum Hydrocarbons as diesel TPHmo = Total Petroleum Hydrocarbons as motor oil

TPHhy = Total Petroleum Hydrocarbons as hydraulic fluid

DCA = Dichloroethane DBA = Dibromoethane

TCA = Trichloroethane MTBE = tert-Butyl methyl ether

TBA = tert-Butyl alcohol
DIPE = Diisopropyl ether
ETBE = Ethyl tert butyl ether TAME = Methyl tert amyl ether µg/kg = micrograms per kilogram mg/kg = milligrams per kilogram Detected concentrations are shown in **Bold**

ND = Not detected at or above respective reporting limit

< = not detected at or above the listed laboratory reporting limit

NE = Not established

-- Not Analyzed

Y = Sample exhibits chromatographic pattern which does not resemble standard

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

¹ = Table B Shallow Soil Screening Levels, Groundwater is not a Current or Potential Source of Drinking Water

October 2009 Project No. 609.004

Table 5 Summary of Chemical Concentrations - Grab Groundwater 2250 Telegraph Avenue, Oakland, California

									Sam	ple ID									Regulatory C	riteria
Analyte	Units	TW-1	TW-2	TW-3	TW-4	TW-5	B-1 [†]	B-2	B-3	B-4a	B-5	B-6 [†]	B-7	B-8	B-9	B-10	B-12	ESLs ¹	ESLs ² Residential Land Use	ESLs ² Commerical/Industrial Land Use
Date		5/31/1996	5/30/1996	5/30/1996	5/31/1996	5/30/1996	7/30/2009	7/31/2009	7/28/2009	7/28/2009	7/28/2009	7/30/2009	7/28/2009	7/28/2009	7/28/2009	7/28/2009	7/28/2009			
Petroleum Hydrocarbons																				
TVHg	μg/L	13,000	250	<50	11,000	70	41,000	1,300 ^Y	360 ^Y	10,000 >LR,Y	410 ^Y	4,400 ^Y	1,200 ^Y	6,800 ^Y	25,000 ^Y	1,400 ^Y	500 ^{Y,b}	210	NE	NE
TPHd	μg/L	37,000	<50	83	1,900	180		530 ^Y	7,600 ^Y	240,000	3,400		910 ^Y	290 ^Y	1,600 ^Y	59,000	27,000	210	NE	NE
TPHmo	μg/L							<300	25,000	110,000	1,500		400	<300	<300	33,000	13,000	210	NE	NE
Volatile Organic Compounds																				
Benzene	μg/L	<50	<0.5	<0.5	130	<0.5	630	<0.50	0.57	<0.50	< 0.50	280	2.3	400	2,800	< 0.50	<2.5 ^b	46	540	1,800
Toluene	μg/L	<50	<0.5	<0.5	66	<0.5	780	< 0.50	0.65	0.58	< 0.50	4.1	1.3	73	50	< 0.50	<2.5 ^b	130	380,000	530,000
Ethylbenzene	μg/L	<50	13	<0.5	340	<0.5	910	<0.50	< 0.50	0.75	< 0.50	90	16	250	950	< 0.50	<2.5 ^b	43	170,000	170,000
Xylenes	μg/L	380	3.4	<0.5	260	<0.5	3,700	< 0.50	<0.50	0.66	< 0.50	14.71	2.46	760	2,850	< 0.50	<2.5 ^b	100	160,000	160,000
MTBE	μg/L						<13	<0.50	0.58	2.1	< 0.50	1.6	<0.50	<3.1	<17	1.5	<2.5 ^b	1,800	24,000	80,000
TBA	μg/L						<250	32	<10	12	<10	19	18	<63	<330	<10	<50 ^b	18,000	NE	NE
TAME	μg/L						<13	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<3.1	<17	<0.50	<2.5 ^b	NE	NE	NE
DIPE	μg/L						<13	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<3.1	<17	<0.50	<2.5 ^b	NE	NE	NE
ETBE	μg/L						<13	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<3.1	<17	<0.50	<2.5 ^b	NE	NE	NE
1,2-DCA	μg/L	<1.0	<1.0	20	<1.0	<1.0	<13	<0.50	<0.50	1.0	< 0.50	0.83	<0.50	3.8	<17	1.1	<2.5 ^b	200	200	690
1,2-DBA	μg/L						<13	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<3.1	<17	<0.50	<2.5 ^b	150	150	510
1,1,1-TCA	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0												62	130,000	360,000
PCE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0												120	120	420
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0												25	13,000	37,000
Total Dissolved Solids																				
	mg/L						880	770	880	1,200	520	730	990	720	770	970	460	NE	NE	NE

Notes:

TVHg = Total Volatile Hydrocarbons as gasoline TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

DCA = Dichloroethane DBA = Dibromoethane

MTBE = tert-Butyl methyl ether

TBA = tert-Butyl alcohol DIPE = Diisopropyl ether

ETBE = Ethyl tert butyl ether

TAME = Methyl tert amyl ether

TCA = Trichloroethane PCE = Tetrachloroethene μg/L = micrograms per liter

Detected concentrations are shown in **Bold**

ND = Not detected at or above respective reporting limit

< = not detected at or above the listed laboratory reporting limit

NE = Not established

-- Not Analyzed

>LR = Response exceeds instrument's linear range

Y = Sample exhibits chromatographic pattern which does not resemble standard

b = Sample analyzed two minutes after hold time expired. No technical impact on sample data

† = Sample for TPHd and TPHmo analysis were obtained from B-1, however sample container broke on way to laboratory. Sample for TPHd and TPHmo analysis were not obtained from B-6 due to inefficient groundwater recharge

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

² = Table E-1: Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (volatile chemicals only)

¹ = Table F-1b Final Groundwater Screening Levels

Table 5 Page 1 of 1 October 2009 Project No. 609.004

Table 6 Summary of Chemical Concentrations - Soil Gas 2250 Telegraph Avenue, Oakland, California

							Samı	ole ID						Regulato	ry Criteria
Analyte	Units	SG-1	SG-2	SG-3	SG-3 (Resample)	SG-4	SG-5	SG-6	SG-6	SG-6	SG-7	SG-7 (Duplicate)	Air Blank	ESLs ¹ Lowest Residential Exposure	ESLs ¹ Lowest Commerical/Industrial Exposure
Purge Volume		1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.0	7.0	1.0	1.0			
Date		7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009	7/31/2009		
Petroleum Hydrocarbons															
TPHg	μg/m³	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	36,000	31,000	<10,000	10,000	29,000
TPHd	μg/m³	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	10,000	29,000
Volatile Organic Compounds															
Benzene	μg/m³	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	84	280
Toluene	μg/m³	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	63,000	180,000
Ethylbenzene	μg/m ³	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	980	3,300
m,p-Xylene	μg/m ³	300	<200	<200	<200	<200	320	250	<200	<200	260	230	<200	21,000	21,000
o-Xylene		130	<100	<100	<100	<100	140	120	<100	<100	100	100	<100	21,000	21,000
MTBE	μg/m ³	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	9,400	31,000
Dissolved Gases															·
Methane	% Vol	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	NE	NE
Oxygen		16	9.6	20	19	11	13	8.7	3.2	9.7	16	6.8	21	NE	NE
Carbon Dioxide	% Vol	4.0	7.2	1.5	2.0	9.2	6.8	11	16	10	4.9	12	<1.0	NE	NE
Leak Check Compound	0.4	2.24	2.24			0.04	0.04	0.04		2.24	2.24	2.24	2.24		
% of 1,1-Difluoroethane Detected	%	<0.04	<0.04	0.14	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		
1,1-Difluoroethane	μg/m ³	<10,000	<10,000	37,000	19,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	<10,000	NE	NE

Notes:

TPHg = Total Petroleum Hydrocarbons as gasoline TPHd = Total Petroleum Hydrocarbons as diesel Detected concentrations are shown in **Bold**NE = Not established

µg/m³ = micrograms per cubic meter

-- = Not Applicable

< = not detected at or above the listed laboratory reporting limit

ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

¹ = Table E-2 Sahllow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (volatile chemicals only)

Table 7 Summary of Chemical Concentrations - Groundwater Monitoring Wells 2250 Telegraph Avenue, Oakland, California

				Petroleum H	ydrocarbons									Volatile	Organics						
Well	Date	Groundwater Elevation (Feet MSL)	TVH as Gasoline µg/L	TEH as Kerosene µg/L	TEH as Diesel µg/L	TEH as Motor Oil µg/L	Benzene µg/L	Toluene μg/L	Ethylbenzene µg/L	Total Xylenes µg/L	MTBE -8020 µg/L	MTBE -8260 μg/L	TBA μg/L	DIPE μg/L	ETBE μg/L	TAME μg/L	1,1,1-TCA μg/L	1,2-DCA μg/L	1,2-DBA μg/L	PCE μg/L	Chlorobenzene µg/L
	Soil Gas ESL* roundwater ES		NV 210	NV 210	NV 210	NE 210	540 46.0	380,000 130	170,000 43	160,000 100	24,000 1,800	24,000 1,800	NV 18,000	NE NE	NE NE	NE NE	130,000 62	200 200	150 150	120 120	13,000 25
MW-1	3/3/94	10.16	300	<50	<50	<500	1.3	<0.5	2.7	3.1							<0.5	5.5		<0.5	<0.5
	6/6/94	9.19	430	180+	<50	<500	10	2.2	6.1	7.6							<0.5	<0.5		<0.5	<0.5
	9/7/94	8.63	410	<50	<50	<500	6.4	8.0	2.6	3.8							<0.5	3.8		< 0.5	<0.5
	12/22/94	9.72	130	<50	<50	<500	0.7	<0.5	0.6	0.8							<0.5	3.4		<0.5	<0.5
	3/17/95	10.82	1,600	170	<50	<500	29	<0.5	9.1	6.9							<0.5	<0.5		< 0.5	<0.5
	6/27/95 9/18/95	10.04 9.43	1,100 370	<50 	<50 110+	<500 	14 4.4	<0.5 0.6	7.1 2.0	5.0 1.4							<0.5 <0.5	3.3 2.4		<0.5 <0.5	<0.5 <0.5
	8/21/98	9.55	170		62+		<0.5	0.6	0.79	<0.5	<2.0						<0.5 	2. 4 		<0.5 	<0.5
	2/24/99	10.81	20		280+		<0.5	<0.5	<0.5	<0.5		<2.0									
	6/30/00	13.47	240		<50		0.7	0.8	<0.5	0.74	4.0										
	4/27/01	9.99	160		<50		3.3	<0.5	0.86	< 0.50	<2.0										
	4/15/05	10.43	520		99 LY	<300	3.3 ^c	1.8	<0.5	4.6		<0.5	<10	<0.5	<0.5	<0.5		0.6	<0.5		
	8/1/05	9.99	480		62 ^{LY}	<300	<0.5	<0.5	<0.5	2.3		<0.5	18	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.02	290 ^Y		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	14	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06	10.84	390		97 ^{LY}	<300	1.0	<0.5	0.6	<0.5		<0.5	16	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/7/06	9.15	720		130 ^{LY}	<300	<0.5	<0.5	<0.5	<0.5		<0.5	18	<0.5	<0.5	<0.5		<0.5	<0.5		
	10/27/06	9.16	250		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	12	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/20/07	9.61	290 ^Y		74 ^{LY}	<300	<0.5	<0.5	0.58	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/8/07	9.34	300 ^{LY}		95 ^{LY}	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	2/5/08	11.03	100 ^Y		62 ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/14/08	9.55	71 ^Y		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/3/09	10.86	73 ^Y		93 ^Y	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	7/30/09 9/8/09	9.45 8.78	160 ^Y 56 ^Y		<50 	<300 	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 0.56^C		<0.5 <2.0	<10 	<0.5 	<0.5 	<0.5 		<0.5 	<0.5 		
MW-2	3/3/94	9.66	110	<50	<50	<500	<0.5	1.7	0.58	2.7		<2.0 					<0.5	<0.5		<0.5	<0.5
WWW Z	6/6/94	8.88	100	<50	<50	<500	11	<0.5	0.7	1.1							<0.5	<0.5		<0.5	<0.5
	9/7/94	8.31	<50	<50	<50	<500	<0.5	<0.5	<0.5	<0.5							<0.5	<0.5		<0.5	<0.5
	12/22/94	8.76	<50	<50	<50	< 500	0.8	<0.5	<0.5	8.0							<0.5	<0.5		< 0.5	< 0.5
	3/17/95	10.18	180	100	<50	<500	31	<0.5	1.0	1.8							<0.5	<0.5		<0.5	<0.5
	6/27/95	9.33	80	<50	<50	<500	6.0	<0.5	<0.5	<0.5							<0.5	<0.5		< 0.5	<0.5
	9/18/95 8/21/98	8.36 8.12	<50 <50		<50 <50		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<2.0						<0.5 	<0.5 		<0.5	<0.5
	2/24/99	10.12	<50 <50		<50 <50		<0.5 <0.5	<0.5	<0.5	<0.5	<2.0	<2.0									
	6/30/00	14.24	<50		<50		<0.5	<0.5	<0.5	<0.5	2.0										
	4/27/01	8.71	<50		<50		<0.5	< 0.5	<0.5	<0.5	<2.0										
	4/15/05	9.03	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/1/05	8.36	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.49	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06 8/7/06	9.01 8.19	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5		<0.5 <0.5	<10	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5		
	10/27/06	8.19	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5		
	3/20/07	7.51	<50 <50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/8/07	7.21	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	2/5/08	9.64	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/14/08	10.93	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/3/09	7.72	<50		<50	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	7/30/09	8.62	<50		<50	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		

Table 7 Summary of Chemical Concentrations - Groundwater Monitoring Wells 2250 Telegraph Avenue, Oakland, California

				Petroleum H	ydrocarbons									Volatile	Organics						
Well	Date	Groundwater Elevation (Feet MSL)	TVH as Gasoline µg/L	TEH as Kerosene µg/L	TEH as Diesel µg/L	TEH as Motor Oil µg/L	Benzene µg/L	Toluene μg/L	Ethylbenzene µg/L	Total Xylenes μg/L	MTBE -8020 μg/L	MTBE -8260 μg/L	TBA μg/L	DIPE μg/L	ETBE µg/L	TAME μg/L	1,1,1-TCA μg/L	1,2-DCA μg/L	1,2-DBA μg/L	PCE μg/L	Chlorobenzene µg/L
	Soil Gas ESL* oundwater ES	· I **	NV 210	NV 210	NV 210	NE 210	540 46.0	380,000 130	170,000 43	160,000 100	24,000 1,800	24,000 1,800	NV 18,000	NE NE	NE NE	NE NE	130,000 62	200 200	150 150	120 120	13,000 25
MW-3	3/3/94	9.47	85	<50	<50	<500	<0.5	0.77	<0.5	3.7							<0.5	<0.5		<0.5	<0.5
WW-3	6/6/94	8.69	100	110+	<50	<500	<0.5	<0.5	<0.5	<0.5							2.5	0.8		2.1	<0.5
	9/7/94	8.22	220	<50	<50	<500	11	1.8	2.6	3.5							<0.5	<0.5		0.6	<0.5
	12/22/94	9.23	130	95+	<50	<500	3.8	0.5	0.6	1.2							<0.5	<0.5		<0.5	<0.5
	3/17/95	10.12	1,500	270	<50	<500	83	6.0	10	15							<0.5	<0.5		<0.5	<0.5
	6/27/95 9/18/95	9.03 8.43	2,500 1,500	<50 	<50 770+	<500 	330 400	8.9 11	8.1 2.2	20 3.3	 						<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5
		8.61	•		600+		400 410	9.3	36	3.3 25											
	8/21/98 2/24/99	10.39	2,300 55	 	110+		<0.5	9.3 <0.5	<0.5	25 <0.5	<10 	<2.0					 				
	6/30/00	10.83	110		83+		<0.5	<0.5	0.51	<0.5	<2.0										
	4/27/01	8.67	<50		690+		<0.5	<0.5	<0.5	<0.5	<2.0										
	4/14/05	9.12	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/1/05	9.39	410		150 HLY	750	17	<0.5	0.87c	1.4		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.73	1,100 ¹		110 ^{LY}	<300	150	3.4	6.1	3.8		<0.5	13	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06	10.20	100		61 ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	12	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/7/06	8.67	4,000 ^y		280 ^{LY} 240 ^{LY}	<300	630	9	31	12		<0.5	18	<0.5	<0.5	<0.5		<0.5	<0.5		
	10/27/06	8.34	5,300 1,000 ^{LY}		240 180 ^{LY}	<300	950	13	17	11		<10	<200	<10	<10	<10		<10	<10		
	3/20/07 8/8/07	9.25 8.49	2,100 ^{LY}	 	130 ^{LY}	<300 <300	100 260	1.5 5.1	2.1 5.8	3.3 3.6		<0.5 <2.0	<10 <40	<0.5 <2.0	<0.5 <2.0	<0.5 <2.0		<0.5 <2.0	<0.5 <2.0		
	2/5/08	10.36	100	 	50 ^Y	<300	7.6	<0.5	<0.5	0.5		<2.0 <0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/14/08	8.44	1,400	 	200 ^Y	<300	7.0 510	8.2	22	7.2		<3.6	<71	<3.6	<3.6	<3.6		<3.6	<3.6		
	3/2/09	10.86	170 ^Y		<50	<300	16	<0.5	<0.5	2.4		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	7/30/09	8.56	360		71 ^Y	<300	14	<0.5	1.2	<1.0		<0.5	13	<0.5	<0.5	<0.5		<0.5	<0.5		
	9/8/09	8.37	1200 ^Y				280	2.4	9.2 ^c	3.08 ^C		<2.0									
MW-4	3/3/94	8.99	4,300	<50	240	<500	220	20	7.5	17							<0.5	5.9		<0.5	4.4
	6/6/94	8.03	4,400	<50	800 +	<500	140	<0.5	<0.5	<0.5							<0.5	<0.5		< 0.5	<0.5
	9/7/94	7.02	10,000	490+	280+	<500	84	<0.5	42	69							<0.5	4.4		0.5	4.3
	12/22/94 3/17/95	7.62 9.78	2,400 2,200	450+ 380	54+ 160+	<500 <500	11 <0.5	<0.5 <0.5	7.1 7.9	11 10	 						<0.5 <0.5	3.6 1.7	 	3.6 <0.5	<0.5 4.5
	6/27/95	8.83	3,100	<50	82	<500	<0.5	<0.5	13	19							<0.5	2.3		<0.5	4.8
	9/18/95	8.04	3,000		1,231+		12	<0.7	6.9	8.3							<0.5	1.9		<0.5	4.0
	8/21/98	8.02	1,700		600+		8.2	12	13	5.2	<2.0	-									
	2/24/99	9.09	2,700		2,100+		4.3	0.64	<0.5	0.54		<2.0									
	6/30/00	11.74	6,700		3,200+		3.1	1.7	11	16.7	27										
	4/27/01 4/14/05	8.62 7.87	1,900 2,900		710 2,200 ^{HLY}	 2 500	<0.5 <0.5	< 0.5	<0.5	<0.5	14	 -0.5		 -0 F	 -0.5	 -0.5		 -0 F	 -0.5		
	8/1/05		2,900		2,200 2,100 ^{HLY}	2,500 3400 ^L	<0.5 <0.5	<0.5	< 0.5	5.1 5.90		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.10 7.46	2,000 2,000Y		2,100 1,900 ^{HLY}	2,300 ^L	<0.5 1.2	<0.5 <0.5	<0.5 <0.5	5.8c 0.8		<0.5 <0.5	<10 <10	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5		
	3/21/06	9.88	2,200	 	2,800 ^{HLY}	4,000 ^L	1.2	<0.5	<0.5	0.8		<0.5 <0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5 <0.5		
	8/7/06	7.98	2,200 2.500 ^y	 	4,700 ^{HLY}	7,200 ^L	0.6	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5	 	<0.5	<0.5		
	10/27/06	7.13	2,200 ^y		2,500 ^{HLY}	3,200 ^L	0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/20/07	8.68	2,700		2,900 ^{HLY}	3,500 ^L	0.77	<0.5	<0.5	0.67		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/8/07	7.88	6,100 ^{LY}		9,200 ^{HL}	12,000 ^{HL}	0.7	<0.5	<0.5	0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	2/5/08	9.48	2,100		2,100 ^Y	2,200	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/14/08	8.41	1,900 ^Y		370 ^Y	<300	1.4	0.59	<0.5	0.85		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/2/09	8.75	1,300 ^Y		880 ^Y	850	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	7/30/09	8.07	1,400 ^Y		1,100 ^Y	1,300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	9/8/09	7.77	580 ^Y			<u>-</u>	<0.5	<0.5	<0.5	7.5 ^c		2.4 ^C									

October 2009 Project No. 609.004

Table 7 Summary of Chemical Concentrations - Groundwater Monitoring Wells 2250 Telegraph Avenue, Oakland, California

				Petroleum H	drocarbons									Volatile	Organics						
Well	Date	Groundwater Elevation (Feet MSL)	TVH as Gasoline µg/L	TEH as Kerosene μg/L	TEH as Diesel µg/L	TEH as Motor Oil µg/L	Benzene µg/L	Toluene μg/L	Ethylbenzene μg/L	Total Xylenes µg/L	MTBE -8020 μg/L	MTBE -8260 μg/L	TBA μg/L	DIPE μg/L	ETBE μg/L	TAME μg/L	1,1,1-TCA μg/L	1,2-DCA μg/L	1,2-DBA μg/L	PCE μg/L	Chlorobenzene µg/L
	Soil Gas ESL oundwater ES		NV 210	NV 210	NV 210	NE 210	540 46.0	380,000 130	170,000 43	160,000 100	24,000 1,800	24,000 1,800	NV 18,000	NE NE	NE NE	NE NE	130,000 62	200 200	150 150	120 120	13,000 25
MW-5	6/26/97	7.58	120		<50		<0.5	<0.5	<0.5	<0.5							<0.5	<0.5		1.6	<0.5
	8/21/98	7.70	<50		<50		<0.5	< 0.5	<0.5	<0.5	<2.0										
	2/24/99	9.16	<50		<50		<0.5	< 0.5	<0.5	<0.5		<2.0									
	6/30/00	8.39	<50		<50		< 0.5	<0.5	<0.5	<0.5	5.1										
	4/27/01	8.42	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0										
	4/14/05	8.82	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/1/05	7.86	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	< 0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.10	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	< 0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06	9.44	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/7/06	7.75	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	10/27/06	7.54	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/20/07 8/8/07	8.35 7.59	<50		<50 <50	<300 <300	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5 <0.5	<10	<0.5 <0.5	<0.5 <0.5	<0.5		<0.5 <0.5	<0.5 <0.5		
	2/5/08	9.26	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5		
	8/14/08	7.71	<50 <50		<50 <50	<300	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5		<0.5 <0.5	<10	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5		
	3/2/09	9.82	<50 <50		<50	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	7/30/09	7.89	<50 <50		<50 <50	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
MW-6	6/26/97	7.47	1.500+		450+		<0.5	<0.5	11	<0.5	-	-					<0.5	<0.5		<0.5	1.7
	8/21/98	7.36	1,400		540+		<0.5	3.6	5.6	0.4	5.7	3.2									
	2/24/99	9.04	1,600		600+		<0.5	< 0.5	0.56	< 0.5		2.3									
	6/30/00	8.04	1,900		360+		0.56	3.0	5.4	3.5	30										
	4/27/01	8.26	1,600		440		<0.5	<0.5	<0.5	< 0.5	3.3										
	4/14/05	8.81	2,100		890 ^{LY}	<300	<0.5	< 0.5	< 0.5	5.9		0.7	<10	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		
	8/1/05	7.82	2,100		670 ^{LY}	<300	<0.5	< 0.5	<0.5	<0.5		<0.5	<10	< 0.5	<0.5	<0.5		< 0.5	< 0.5		
	11/9/05	NA	ΝA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/21/06	9.25	1,900		850 ^{LY}	<300	<0.5	< 0.5	<0.5	<0.5		0.5	<10	< 0.5	< 0.5	<0.5		< 0.5	<0.5		
	8/7/06	7.77	2,200 ^y		940 ^{LY}	<300	<0.5	< 0.5	<0.5	<0.5		0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	10/27/06	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/20/07	8.26	2,000 ^Y		670L ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/8/07	7.51	2,100 ^{HLY}		680 ^{LY}	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	2/5/08	9.09	1.400		560 ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/14/08	7.65	1,100 ^Y		390 ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/3/09	9.76	990 ^Y		230 ^Y	<300	<0.5	<0.5	<0.5	<1.0		<0.5 <0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/3/09	9.70	330		230	<300	<0.5	<0.0	<υ.υ	<1.0	No Acces		<10	<υ.υ	<υ.υ	<υ.υ		<υ.υ	ζυ.υ		
											NO ACCES	5									

Notes:

TVH = Total Volatile Hydrocarbons

TEH = Total Extractable Hydrocarbons

DCA = Dichloroethane

DBA = Dibromoethane

TCA = Trichloroethane

PCE = Tetrachloroethene

MTBE = tert-Butyl methyl ether

TBA = Tert butyl alcohol

DIPE = Diisopropyl Ether

ETBE = Ethyl tert butyl ether

TAME = Methyl tert amyl ether -- = Chemical not tested for

NR = Hydrocarbon range not reported by laboratory

+ = Uncategorized hydrocarbons quantified in ranges specified

μg/L = micrograms per liter = parts per billion

<1 = Chemical not present at a concentration greater than the laboratory

detection limit shown or stated on test reports

C = Presence Confirmed, but RPD between colums exceeds 40%
Y = Sample exhibits chromatographic pattern which does not resemble standard

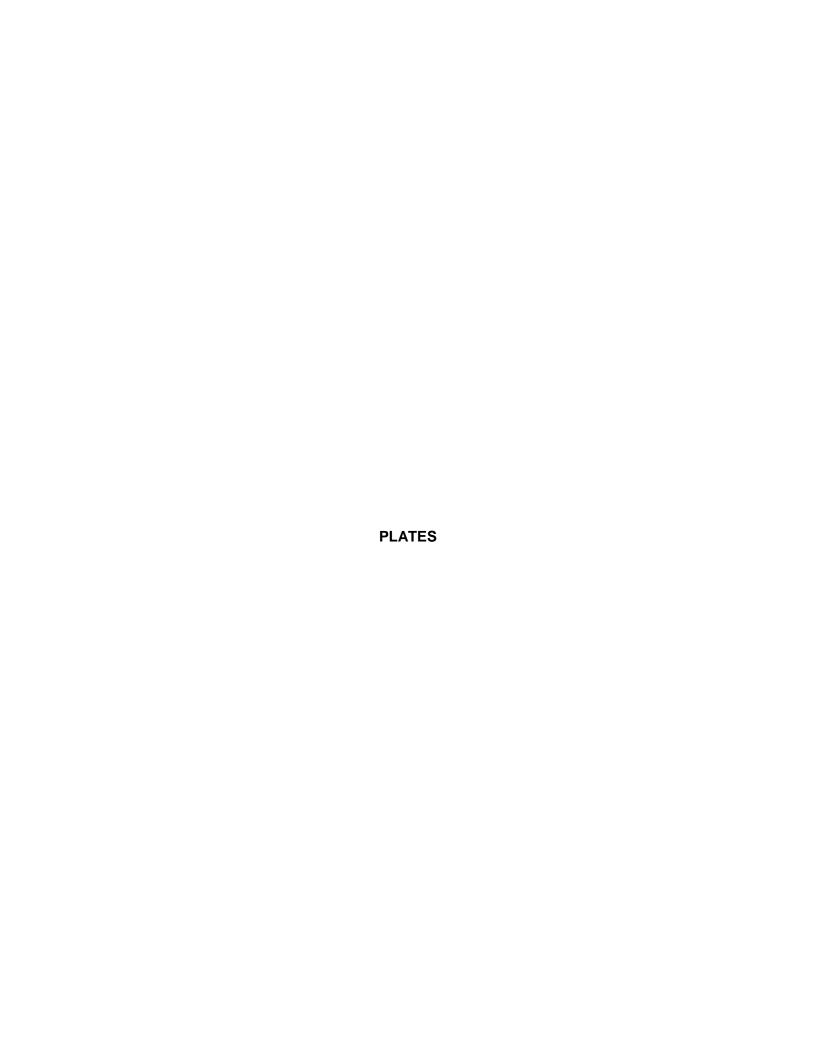
H = Heavier hydrocarbon contributed to the quantitation

L = Lighter hydrocarbon contributed to the quantitation

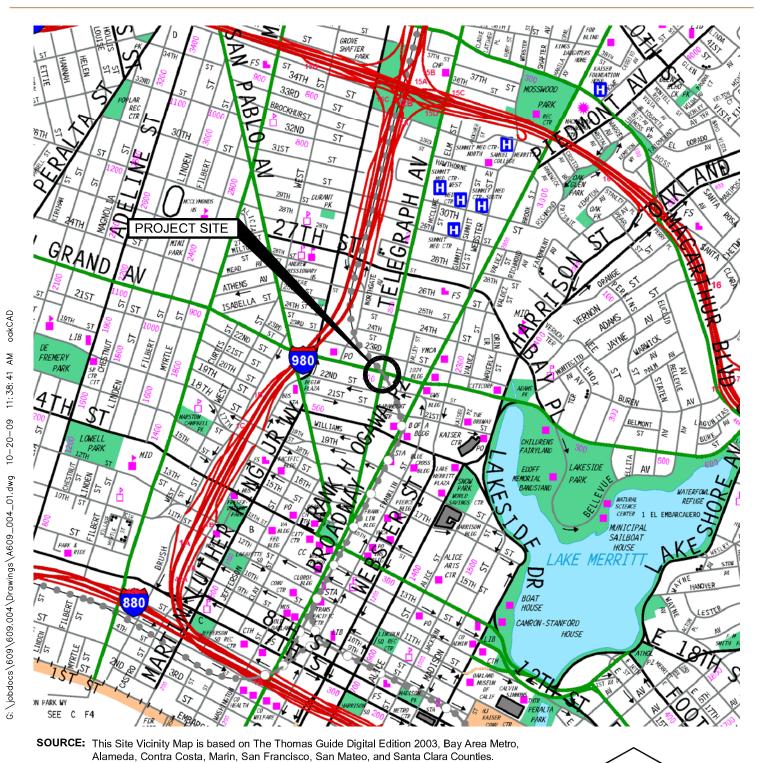
ESLs = San Francisco Bay Regional Water Quality Control Board, Screening for Environmental Concerns at

Sites with Contaminated Soil and Grounwater, Interim Final November 2007, Revised May 2008

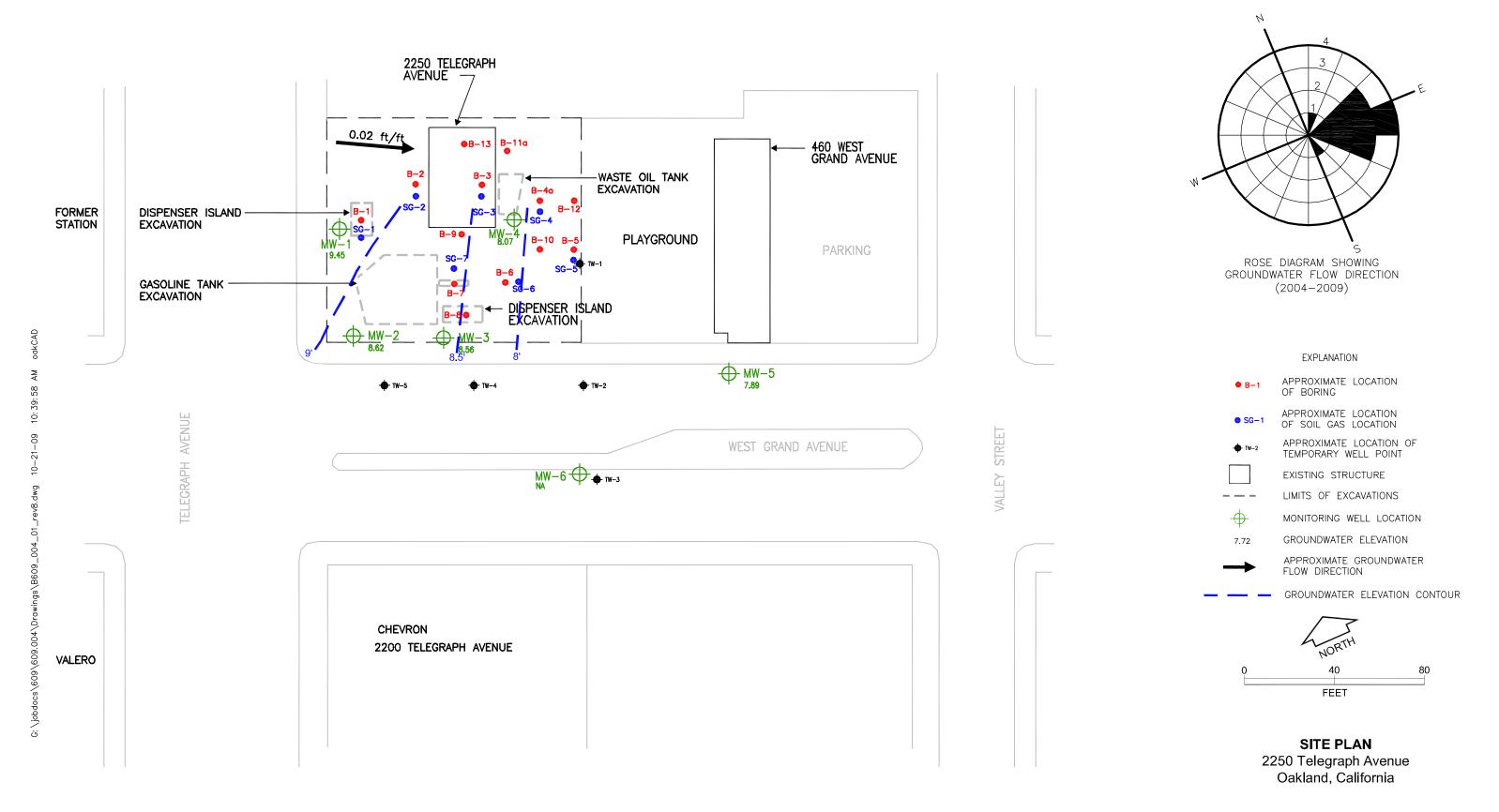
* = Table E-1 Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns


** = Table F-1a Groundwater Screening Levels (groundwater is a current potential drinking water resource)

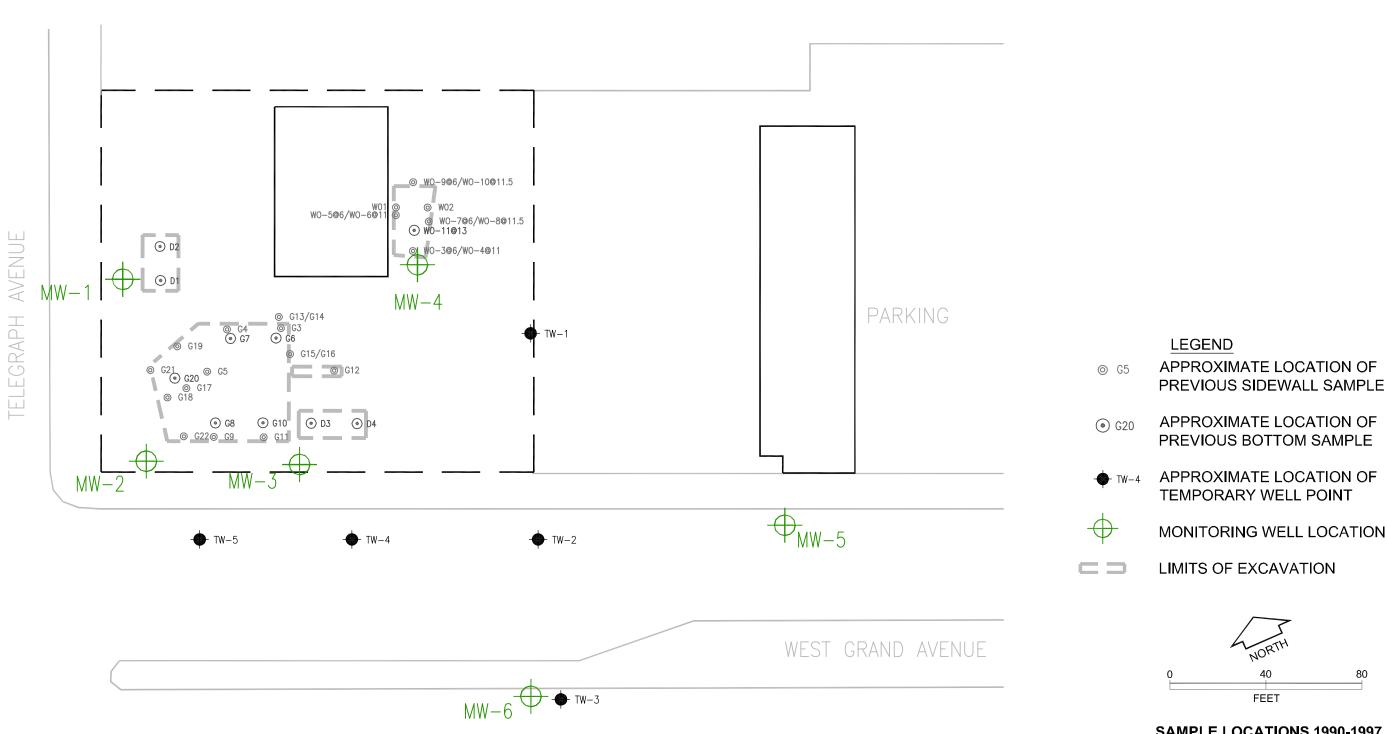
NA = Not Accessible During This Sampling Event


NE = Not Evaluated

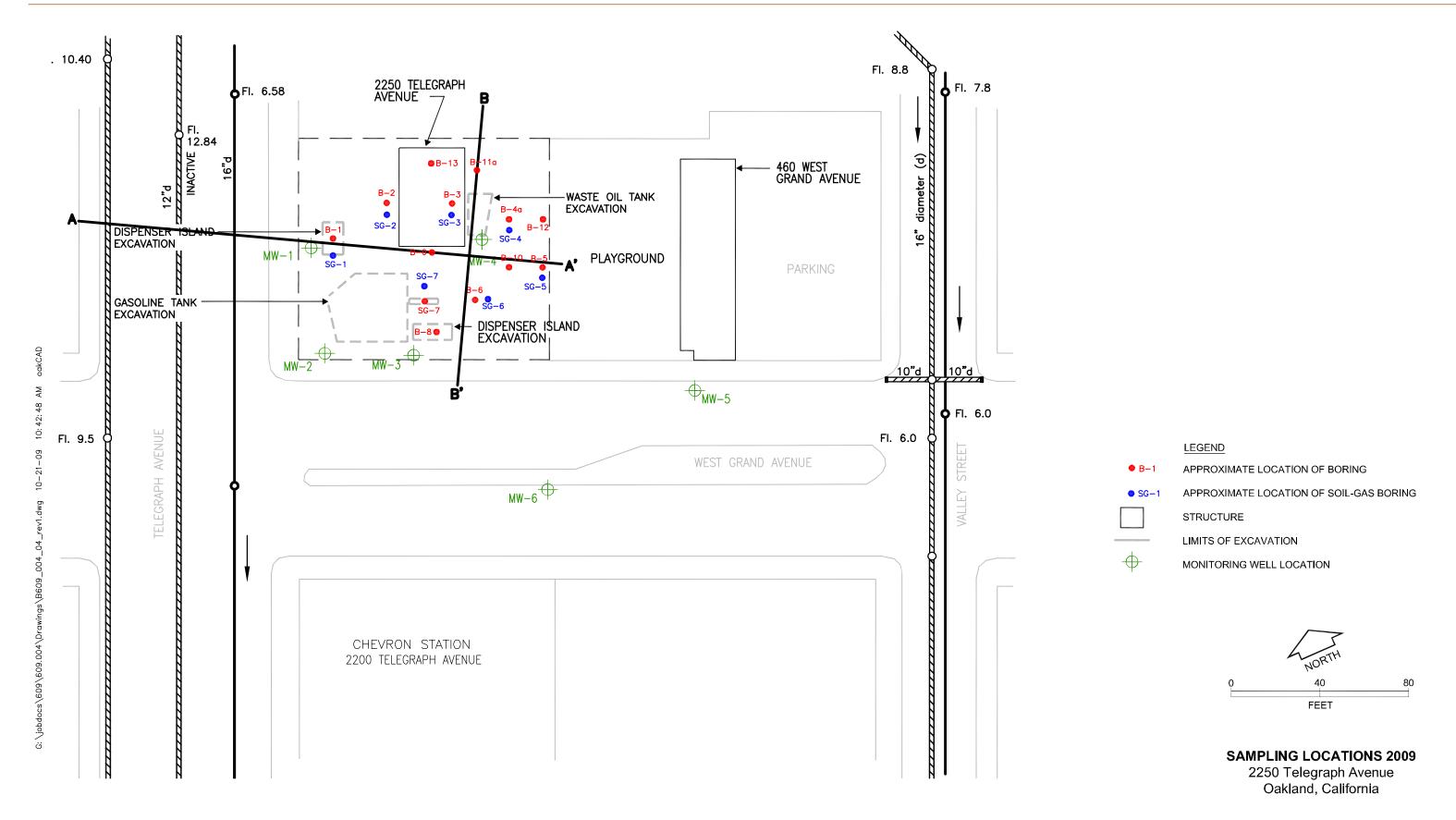
NV = No Value

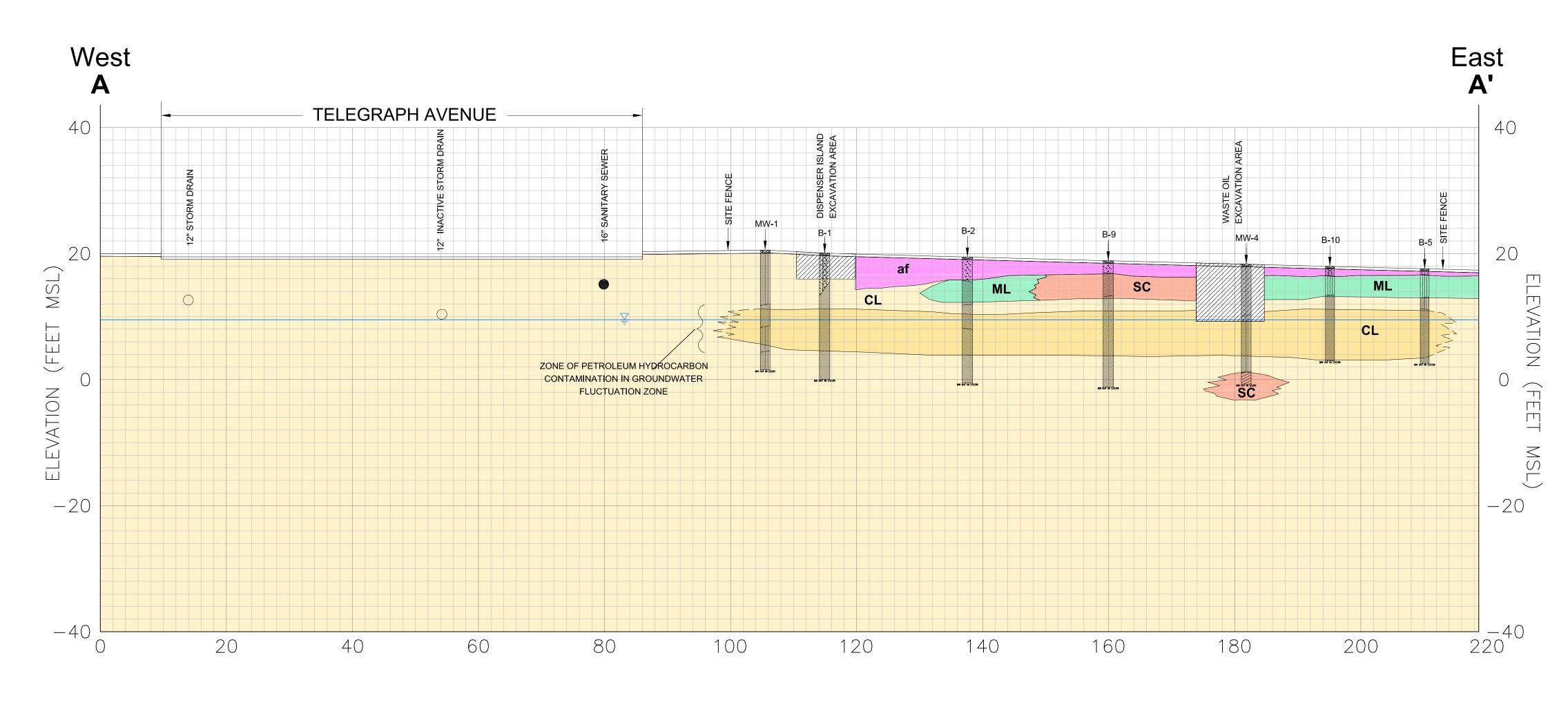


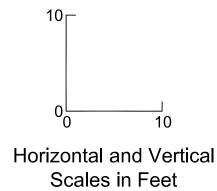
VICINITY MAP 2250 Telegraph Avenue Oakland, California 3000

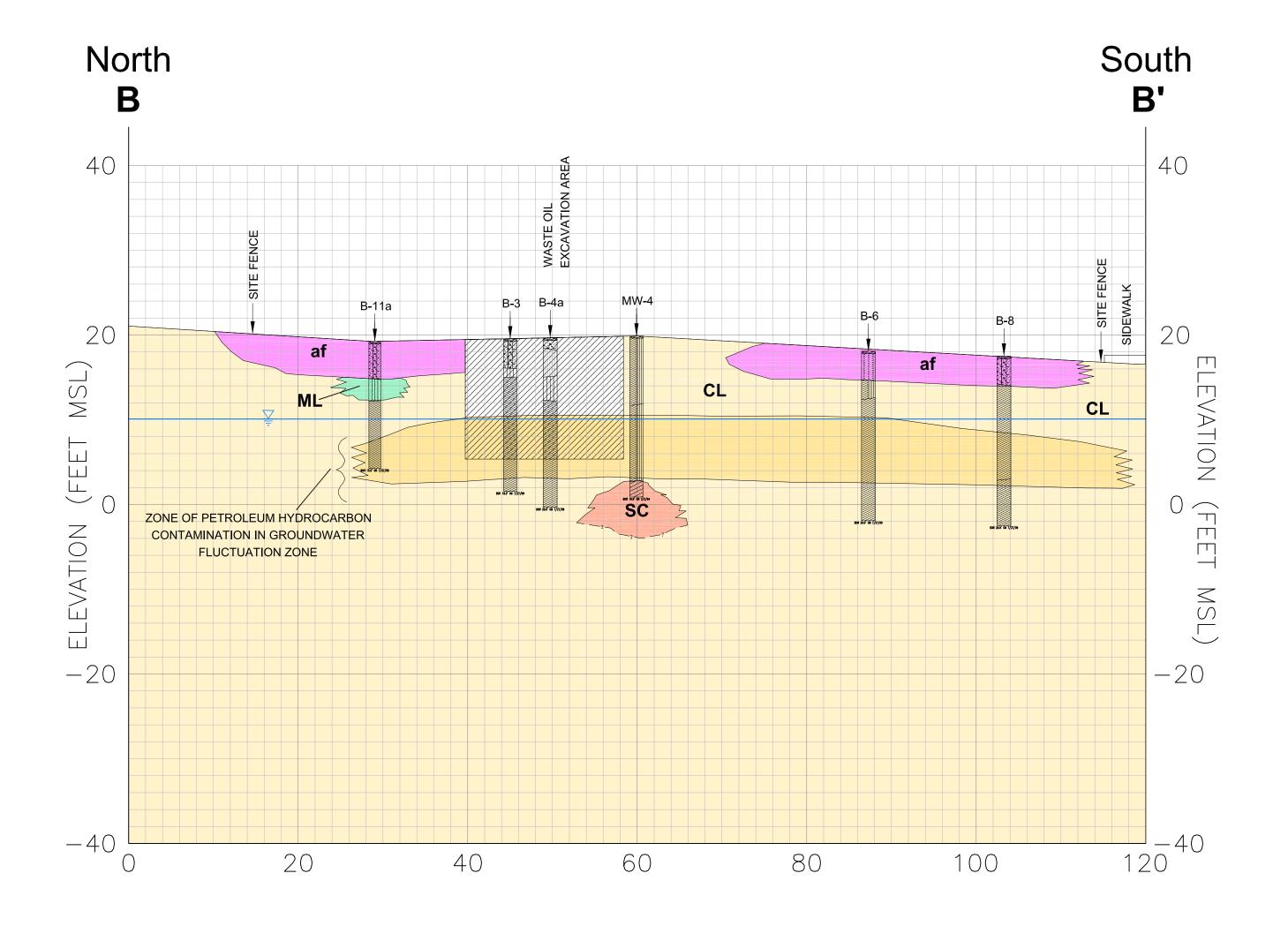

NORTH 1500

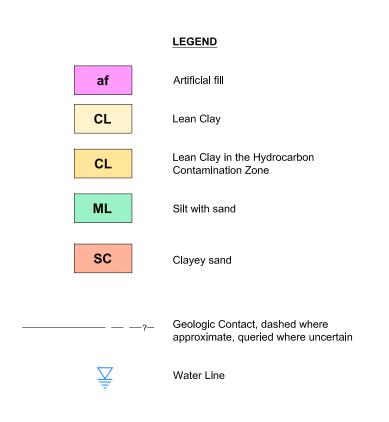
FEET

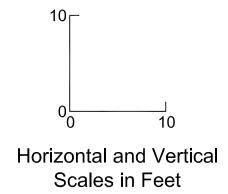




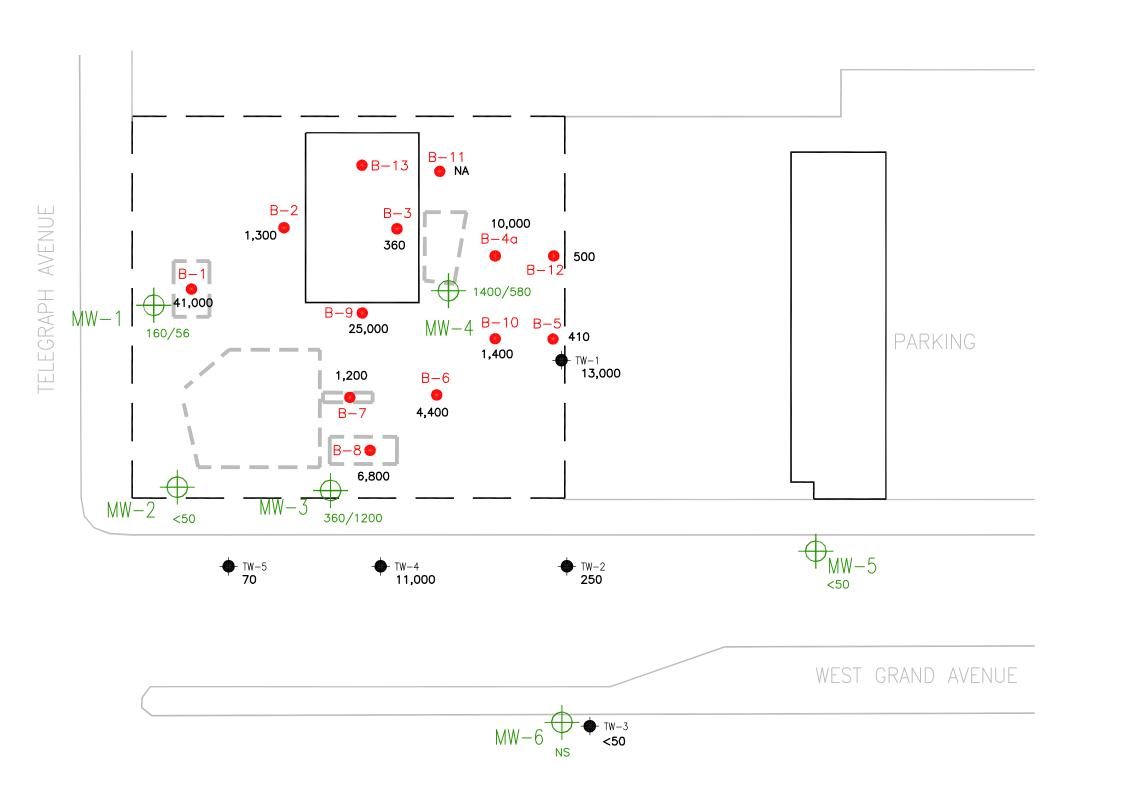


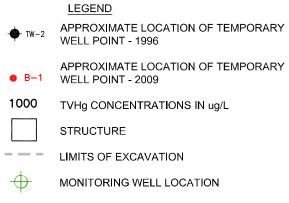


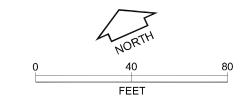




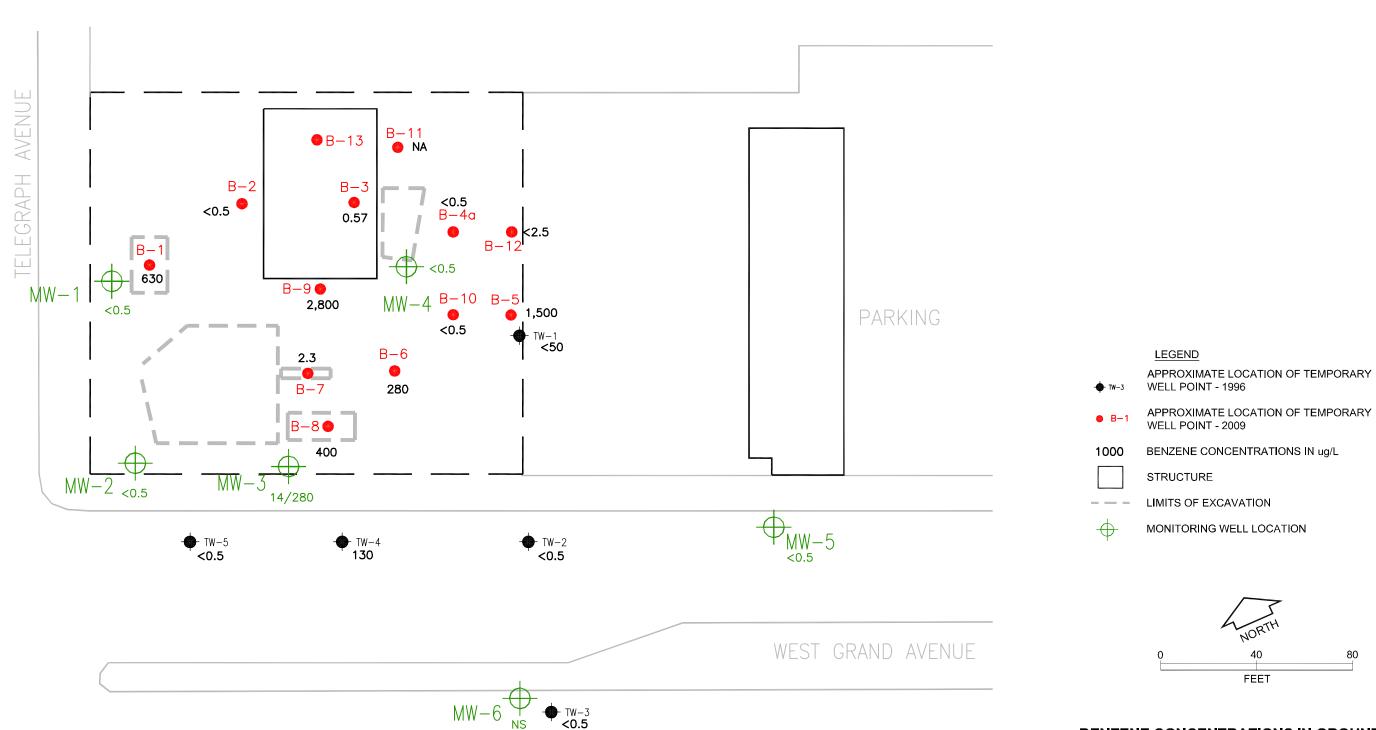
GENERALIZED CROSS SECTION A-A'



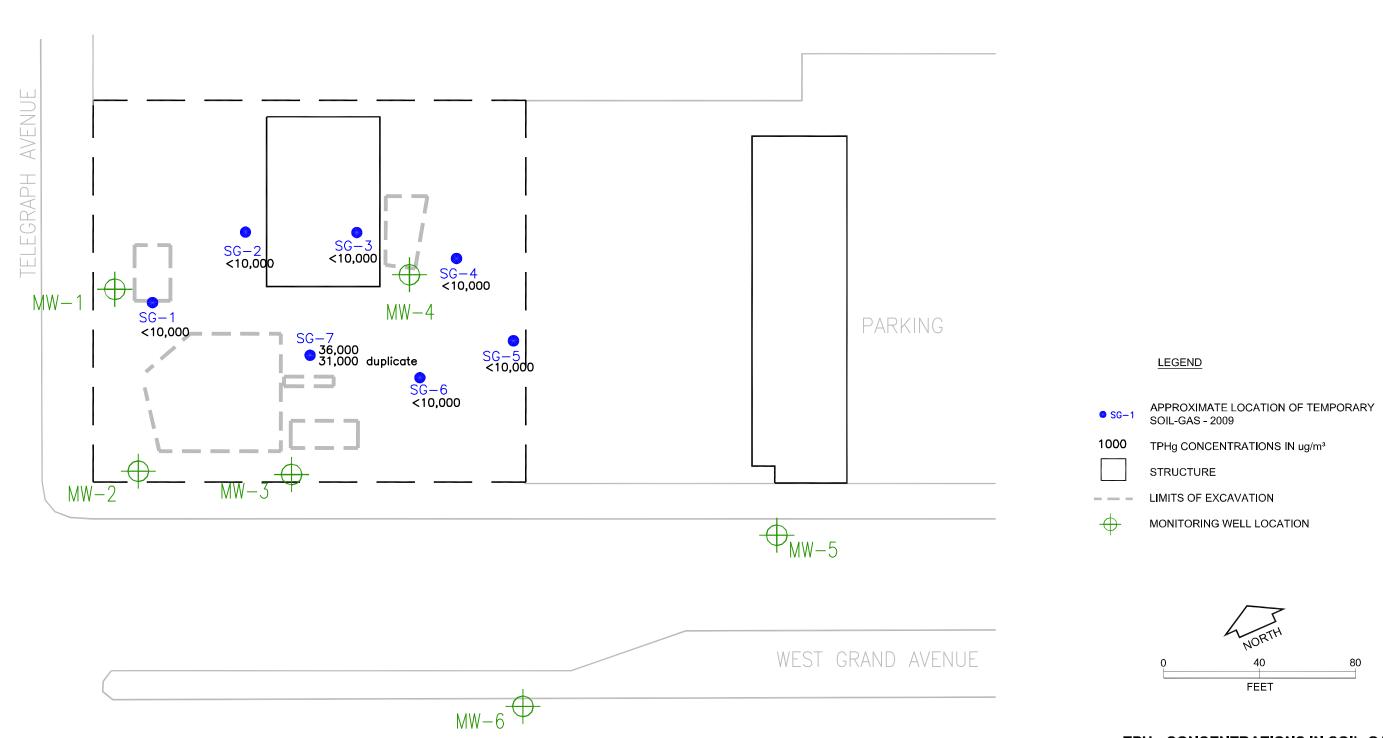




GENERALIZED CROSS SECTION B-B'



TVHg CONCENTRATIONS IN GROUNDWATER



BENZENE CONCENTRATIONS IN GROUNDWATER

2250 Telegraph Avenue Oakland, California

80

TPHg CONCENTRATIONS IN SOIL-GAS 2250 Telegraph Avenue

Oakland, California

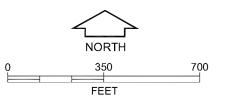
Location	Facility Name	Address	Direction from	Number of	Use
#	racinty Name	Address	Site	wells	V 30
1	Sears Automotive	2633 Telegraph Avenue	North	5	Monitoring
2	Old Oakland Tribune Garage	23rd Street and Valdez Street	East	7	Form er Monitoring
3	Negherbon Auto Center	2345 Broadway	Northeast	1	Monitoring
4	Texaco USA	2225 Telegraph Avenue	Southwest	10	Monitoring, 2 destroyed
5	Private	22nd and Grove Street	Southwest	1	Unknown
6	U.S. Postal Service Facility	577 West Grand Avenue	Southwest	1	Monitoring
	Redevelopment Agency of the				
7	City of Oakland	536-585 20th Street	Southwest	3	Monitoring
8	Chevron	1911 Telegraph Avenue	Southwest	1	Monitoring
9	Unknown	21st and Broadway	Southeast	1	Monitoring
10	Unknown	327 21st Street	Southeast	2	Test Borings
11	Great Western Power Co.	520 20th Street	Southwest	2	Former Industrial
12	B.P.O.E #171	20th and Broadway	Southeast	1	Unknown
	Redevelopment Agency of the				
13	City of Oakland	20th Street	South	1	Monitoring
14	Kais er Center Plaza	300 Lakeside Drive	Southeast	2	Irrigation, Monitoring
15	Ordway Building	1 Kais er Plaza	Southeast	3	Monitoring
16	Chevron	2200 Telegraph	South	3	Monitoring
17	Dave's Station	2250 Telegraph Avenue	Site	6	Monitoring

LEGEND

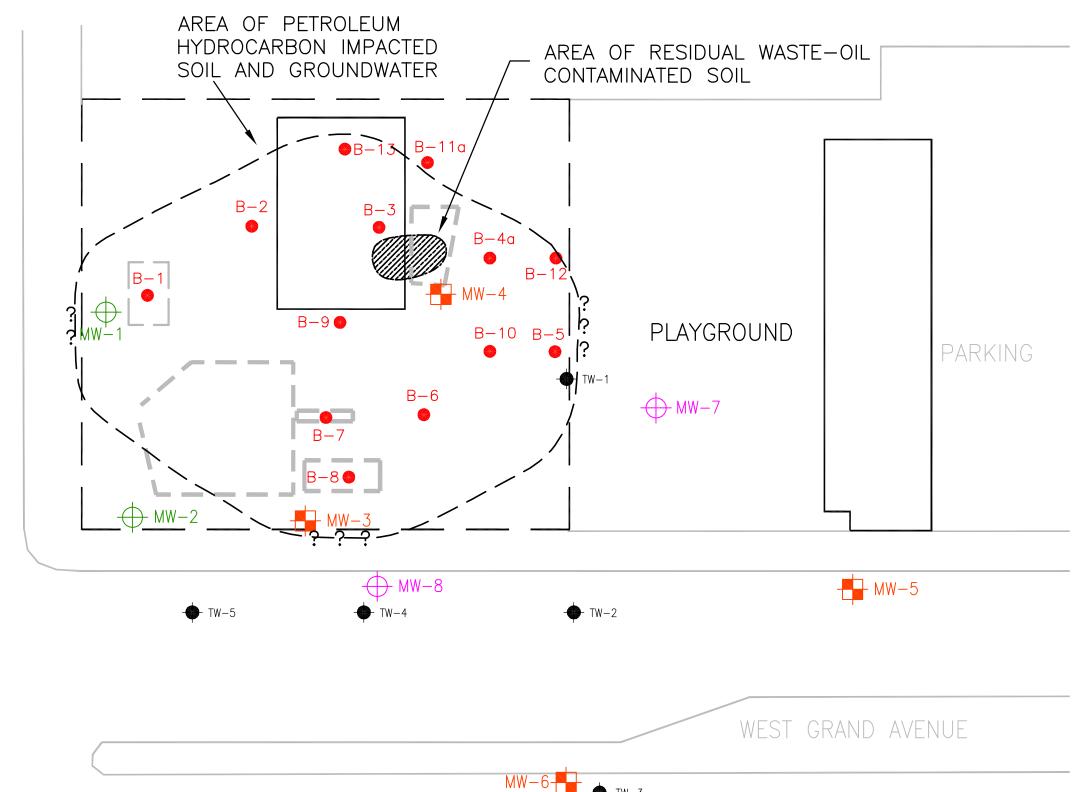
APPROXIMATE LOCATION OF WELL(S)

SITE LOCATION

1/4 MILE RADIUS AROUND SITE


BART TRACKS

— 12" STORM DRAIN


— 12" INACTIVE STORM DRAIN

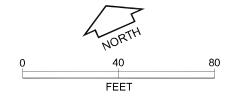
— 16" SANITARY SEWER

BASE MAP SOURCE: This aerial photo obtained from Google Earth Pro. **NOTE:** Utilities are only shown for the 2 block radius around the site.

INVENTORY OF REGISTERED/PERMITTED WELLS

• B-1 APPROXIMATE LOCATION OF BORING

♦ TW-2 APPROXIMATE LOCATION OF TEMPORARY WELL POINT


EXISTING STRUCTURE

--- LIMITS OF EXCAVATIONS

MONITORING WELL LOCATION

₩-5 PROPOSED WELL DESTRICTION

NW-7 PROPOSED LOCATION OF RE-LOCATED MONITORING WELLS

EXTENT OF IMPACTS 2250 Telegraph Avenue Oakland, California

APPENDIX A
ALAMEDA COUNTY PUBLIC WOKRS AGENCY DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/16/2009 By jamesy

Permit Numbers: W2009-0651

Permits Valid from 07/27/2009 to 07/31/2009

City of Project Site: Oakland Application Id: 1247762084523

Site Location: 2250 Telegraph Avenue **Project Start Date:**

07/27/2009 Completion Date: 07/31/2009

Assigned Inspector: Contact John Shouldice at (510) 670-5424 or johns@acpwa.org

Applicant: FUGRO West - Karen A Emery Phone: 510-267-4432

1000 Broadway, Ste 440, Oakland, CA 94607

Property Owner: Buttner Properties Phone: 510-832-3456 600 W Grand Avenue, Oakland, CA 94612

Client: ** same as Property Owner **

> Total Due: \$265.00 Receipt Number: WR2009-0260 **Total Amount Paid:** \$265.00

Payer Name : Fugro West Paid By: CHECK **PAID IN FULL**

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 19 Boreholes

Driller: Vironex, Inc and TEG - C57-706568 - Lic #: 705927 - Method: other Work Total: \$265.00

Specifications

Issued Dt Hole Diam Max Depth Permit Expire Dt Number **Boreholes** W2009-07/16/2009 10/25/2009 19 2.00 in. 15.00 ft

0651

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 5. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to

Alameda County Public Works Agency - Water Resources Well Permit

starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B LOGS OF BORINGS B-1 THROUGH B-12

	MAJOR	OIVISIONS		GROUP NAMES	
		Clean gravels	GW	Well-Graded Gravel	
	GRAVELS	less than 5% fines	GP	Poorly Graded Gravel	
SOILS	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	Gravels with	GM	Silty Gravel	
AINED 3% retail 200 siev		more than 12% fines	GC	Clayey Gravel	
COARSE-GRAINED SOILS More than 50% retained on the No. 200 sieve		Clean sand	sw	Well-Graded Sand	
OARS More	SANDS	less than 5% fines	SP	Poorly Graded Sand	
0	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4 SIEVE	Sands with more than	SM	Silty Sand	
		12% fines	sc	Clayey Sand	
	SII TS	AND CLAYS	ML	Silt	
SOILS es		mit Less than 50%	CL	Lean Clay	
NED S ore pass 200 siev	Elquid El	THE LOSS BIGH 5076	OL	Organic Silt	
FINE-GRAINED SOILS 50% or more passes the No. 200 sieve	SII TS	AND CLAYS	МН	Elastic Silt	
FINE		it Greater than 50%	СН	Fat Clay	
	Equid Elli	C.Cator truit 00/0	ОН	Organic Clay	
	HIGHLY ORG	SANIC SOILS	PT	Peat or Highly Organic Soils	
			FILL	Debris or Mixed Fill	
			AC	Asphalt Concrete Pavement with Aggregate Base	

GENERAL NOTES

Classification of Soils in general accordance with ASTM D2487 or D2488 (based on the Unified Soil Classification System)

Geologic Formation noted in bold font at the top of interpreted interval Sloped line in break column indicates

transitional boundary Blow counts for modified California Liner

Sampler shown in ()

Length of sample symbol approximates recovery length

SAMPLER DRIVING RESISTANCE

Number of blows with 140 lb. hammer, falling 30-in. to drive sampler 1-ft. after seating sampler 6-in.; for example,

25 25 blows drove sampler 12" after

initial 6" of seating

50/7" 50 blows drove sampler 7" after

initial 6" of seating

Ref/3" 50 blows drove sampler 3" during

initial 6" seating interval

(Ref=Refusal)

STRENGTH TEST METHOD

U = Unconfined Compression

Q = Unconsolidated Undrained Triaxial

T = Torvane

P = Pocket Penetrometer M = Miniature Vane

F = Field Vane

OTHER TESTS

EI = Expansion Index k = Permeability Consol = Consolidation OVM = Organic Vapor Gs = Specific Gravity Meter

MA = Particle Size Analysis

WATER LEVEL SYMBOLS

Initial or perched water level

Final ground water level

Seepages encountered

SAMPLER TYPE AND RECOVERY CA SH BB HA LS PS VS NR RC DP Samplers and sampler dimensions (unless otherwise noted in report text) are as follows

SPT Sampler, driven 1 3/8" ID, 2" OD

MOD CA Liner Sampler 2 3/8" ID, 3" OD 2

3 **CA Liner Sampler** 1 7/8" ID, 2.5" OD

Thin-walled Tube, pushed 2 7/8" ID, 3" OD

Bulk Bag Sample (from cuttings) 5 Hand Auger Sample

Lexan Sample

8 Pitcher Sample

9 Vibracore Sample

No Sample Recovered 10

11 Rock Core

12 Direct Push

Environmental Sample 13 Retained samples listed in sample No. column

SOIL STRUCTURE

Fissured: Containing shrinkage or relief cracks, often filled with fine sand or silt, usually more or less vertical.

Pocket: Inclusion of material of different texture that is smaller than the diameter of the sample.

Parting: Inclusion less than 1/8 inch thick extending through the sample.

Seam: Inclusion 1/8 inch to 3 inches thick extending through the sample.

Layer: Inclusion greater than 3 inches thick extending through the sample.

Laminated: Soil sample composed of alternating partings or seams of different

Interlayered: Soil sample composed of alternating layers of different soil type.

Intermixed: Soil sample composed of pockets of different soil type, and layered

or laminated structure is not evident.

C	ONSISTENCY (1)	
Clays	Blows/Foot SPT	Undrained Shear Strength (ksf)
Very Soft	0 - 2	0 - 0.25
Soft	2 - 4	0.25 - 0.5
Firm	4 - 8	0.5 - 1
Stiff	8 - 15	1 - 2
Very Stiff	15 - 30	2 - 4
Hard	Over 30	Over 4

REEATHE BEHOIL (1)	
Sands and Gravels	Blows/Foot SPT
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	Over 50

RELATIVE DENSITY (1)

MOISTURE CONTENT	
Dry	
Moist	
₩et	

Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of samples. Strata have been interpreted by commonly accepted procedures. The stratum lines on the logs may be transitional and approximate in nature. Water level measurements refer only to those observed at the time and places indicated, and can vary with time, geologic condition, or construction activity. (1) Terzaghi and Peck 1967

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Silty GRAVEL with sand (GM): loose, brown, dry to moist, no odor or staining 0.9 4.5-7.0 Feet: No Return Lean CLAY (CL): soft, brown, moist, some gray mottling, slight gasoline odor 6.3 firm, some gray mottling, stronger gasoline odor 15.2 -1@ soft, gray, moist, some brown mottling, decreasing gasoline odor 64.6 1@ 75.1 very sharp gasoline odor -1@ some brown mottling, slight gasoline odor 62 21.4 firm, brown, dry to moist, some gray mottling, no odor

BORING DEPTH: 20.0 ft DEPTH TO WATER: 18.3 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-1 Buttner Property Oakland, California

END OF BORING: 20 FT

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Clayey GRAVEL with sand (GC): loose, brown, moist, no odor or staining 3.6 3.9 Lean CLAY (CL): soft, dark brown, moist, no odor or staining 3.8 Lean CLAY with sand (CL): soft, brown, wet, no odor or staining 9.9 4.7 3-2@ 13.6 Lean CLAY (CL): firm, grayish brown, moist, some 2@ brown mottling, gasoline odor 36 soft, wet, gray and brown mottled, gasoline odor 3-2@ 42.9 60.2 70.3 very sharp gasoline odor 12.4 firm, moist, gray and brown mottling, no odor END OF BORING: 20 FT

BORING DEPTH: 20.0 ft DEPTH TO WATER: 19.5 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push

HAMMER TYPE: Automatic Trip RIG TYPE: GP6600

DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS 4.2 Silty GRAVEL with sand (GM): loose to medium dense, brown, moist, some gray mottling, slight motor 3.9 3.3 SILT with sand (ML): loose, dark brown, moist, some black motor oil staining, slight motor oil odor Lean CLAY (CL): firm, dark brown, moist, no odor or 3-3@ staining 3.5 1.4 3.9 firm, light gray, moist, slight motor oil odor -3@ 64.9 3@1 moist to wet, occasional fine grain sand, some slight motor oil odor 21.4 wet, saturated, free water, no free product, no odor 1.3 END OF BORING: 18 FT

BORING DEPTH: 18.0 ft DEPTH TO WATER: 13.5 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push

HAMMER TYPE: Automatic Trip RIG TYPE: GP6600

DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-3 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS 1.6 Clayey GRAVEL with sand (GC): loose, light brown, dry to moist, slight earthy odor, no staining Poorly-graded SAND (SP): loose to medium dense, dark brown, moist, slight earthy odor, no staining 1.3 SILT with sand (ML): firm, dark brown, moist, no odor or staining Lean CLAY (CL): firm, dark brown, moist to wet, some occasional sand, slight earthy odor no odor no staining 4a@ firm, dark gray, moist, slight motor oil odor, no staining 1.2 strong motor oil odor, no staining 113.9 32.9 26.7 stiff, some brown gray mottling, motor oil odor 4.3 soft, gray, wet, no odor 2 very stiff, some black mottling, no odor END OF BORING: 20 FT

BORING DEPTH: 20.0 ft DEPTH TO WATER: 11.9 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push

HAMMER TYPE: Automatic Trip RIG TYPE: GP6600

DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-4a Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Poorly-graded GRAVEL with sand (GP): loose, light brown, moist, no odor or staining SILT with sand (ML): soft, brown, moist, no odor or 0.2 staining B-5@ 0.9 1.1 Silty CLAY (CL-ML): very soft, brown, moist to wet, no odor or staining 0.7 Lean CLAY (CL): stiff, brown, moist, some gray 3.9 mottling, motor oil odor 5@7 0.1 dry to moist, some gray mottling, no odor -5@ 2.9 76.9 some gray mottling, strong motor oil odor 40.2 9.3 no odor 0.7 END OF BORING: 15 FT

BORING DEPTH: 15.0 ft DEPTH TO WATER: 11.3 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-5 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Poorly-graded GRAVEL with sand (GP): loose, brown, moist, no odor or staining 22.9 B-6@2 1.2 Silty CLAY (CL-ML): soft to firm, brown, moist, no odor or staining 1.9 3.1 Lean CLAY (CL): firm, brown, moist, some red and dark brown mottling no odor 0.9 6@7 10.2 motor oil odor, no staining 3-6@ 90.1 -6@ some gray mottling, strong motor oil odor 84.3 10.4 3-6@ some gray mottling, very slight motor oil odor 3.2 0.1 -6@ some gray mottling, no odor 0.3 END OF BORING: 20 FT

BORING DEPTH: 20.0 ft DEPTH TO WATER: 19.1 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push

HAMMER TYPE: Automatic Trip RIG TYPE: GP6600

DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-6 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Clayey GRAVEL with sand (GC): loose, light brown, moist, no odor or staining 0.1 no odor or staining no odor or staining Lean CLAY (CL): soft, dark brown, moist, occasional sand and gravels, no odor or staining 0.7 1.9 7@7 2.3 firm, brown, moist, some gray mottling, slight motor oil odor 7@ 4.7 firm, gray, dry, some dark brown mottling, stronger 6.6 motor oil odor

BORING DEPTH: 15.0 ft DEPTH TO WATER: 11.2 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

5.3

0.7

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-7 Buttner Property Oakland, California

moist, no mottling, no odor or staining

END OF BORING: 15 FT

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Silty GRAVEL with sand (GM): loose, light brown, moist, no odor or staining 0.4 0.9 Lean CLAY (CL): firm, brown, moist, slight motor oil odor, no staining 10.9 13 8@7 some gray mottling, motor oil odor 11 3-8@1 soft, gray, moist, motor oil odor, no staining 10 -8@ 9.3 Lean CLAY with sand (CL): firm, gray, moist, some 8-8@ green staining, motor oil odor 6.1 5.9 -8@ very slight motor oil odor 3.2 brown, no odor or staining END OF BORING: 20 FT

BORING DEPTH: 20.0 ft DEPTH TO WATER: 11.5 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-8 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Clayey GRAVEL with sand (GC): dense, brown, moist, no odor or staining 0.1 Lean CLAY with sand (CL): soft to firm, reddish brown, moist, some dark brown mottling, no odor 0.4 dark brown Lean CLAY (CL): soft, dark brown, moist to wet, no odor or staining 1.6 9@7 firm, brown, moist, no odor or staining 26.9 3-9@ slight motor oil odor no staining 40.5 gray, some brown mottling, strong motor oil odor -9@ 36.4 30.9 moist to wet, some gray mottling, strong motor oil odor 3-9@ 20.2 1.6 moist to wet, some gray mottling, no odor END OF BORING: 20 FT

BORING DEPTH: 20.0 ft DEPTH TO WATER: 15.3 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-9 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Silty GRAVEL with sand (GM): loose, brown, moist, some wood chips SILT with sand (ML): loose, brown, moist, no odor or staining 0.1 0.3 Lean CLAY (CL): stiff, brown, moist, no odor or staining 0.2 0.3 10@ 0.4 some gray mottling 10@ slight motor oil odor 12.9 gray 13.1 some brown mottling gray, no odor or staining END OF BORING: 15 FT

BORING DEPTH: 15.0 ft DEPTH TO WATER: 11.7 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-10 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS 0.3-1.0 Feet: No Recovery 0.9 Silty GRAVEL with sand (GM): loose, light brown, moist, no odor or staining SILT with sand (ML): soft, dark brown, moist, no odor 0.2 or staining 0.3 Lean CLAY (CL): firm, brown, dry, no odor or staining 0.2 some red gray mottling, no odor 0.1 stiff, moist, some red/gray mottling, very slight petroleum odor 0.3 stiff, brown, moist, no odor END OF BORING: 15 FT

BORING DEPTH: 15.0 ft

DEPTH TO WATER: Not Encountered

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push

HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-11 Buttner Property Oakland, California

Sheet 1 of 1 LOCATION: SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE OVM/PID (ppm) SAMPLE NO. MATERIAL SYMBOL DEPTH, ft SURFACE EL: ft +/- (rel. MSL datum) MATERIAL DESCRIPTION OTHER TESTS Poorly-graded SAND (SP): loose, brown, moist, -12@ medium grained, some occasional gravel, no odor or staining 0.2 -12@ SILT with sand (ML): firm, brown, moist, no odor or staining Lean CLAY (CL): firm, brown, dry to moist, some occasional sand, no odor or staining 0.2 12@ no odor or staining 1.3 12@ some gray mottling, no odor 20.9 gray, some black mottling, slight motor oil odor 17 brown, some gray mottling, no odor END OF BORING: 15 FT

BORING DEPTH: 15.0 ft DEPTH TO WATER: 11.2 ft

COMPLETION DATE: July 27, 2009

NOTES: 1. Terms and symbols defined on Plate B-1.

DRILLING METHOD: 2-in. dia. Direct Push HAMMER TYPE: Automatic Trip

RIG TYPE: GP6600 DRILLED BY: Vironex, Joel LOGGED BY: Russell Carter

LOG OF B-12 Buttner Property Oakland, California

Porosity Determination:

Specimen ID:

Project # 609.004 T11
Boring # 4
Depth 0 to 5 ft

Specimen Volume:

Diameter 1.64 inches Length 4.78 inches

Volume (V) 0.005843 ft³

Volume of Solids:

Weight Dry Soil 278 grams

or 0.612875 lbs

Specific Gravity 2.636

Volume (Vs) 0.003726

Volume of Voids:

V - Vs 0.002117

Porosity:

N 36.2 %

Porosity Determination:

Specimen ID:

Project # 609.004 T11
Boring # B-5
Depth 5-10 ft

Specimen Volume:

Diameter 1.32 inches Length 3.60 inches

Volume (V) 0.002851 ft³

Volume of Solids:

Weight Dry Soil 128.7 grams

or 0.28373 lbs

Specific Gravity 2.703

Volume (Vs) 0.001682 ft³

Volume of Voids:

V - Vs 0.001169 ft³

Porosity:

N 41.0 %

Porosity Determination:

Specimen ID:

Project # 609.004 T11 Boring # B-4a Depth 10-15 ft

Specimen Volume:

Diameter 1.42 inches Length 3.19 inches

0.002924 ft³ Volume (V)

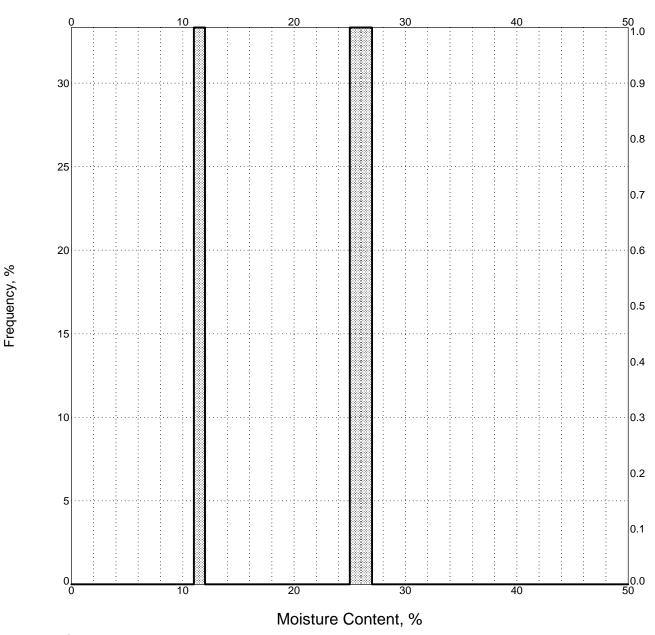
Volume of Solids:

Weight Dry Soil 133.2 grams

0.293651 lbs or

Specific Gravity 2.638

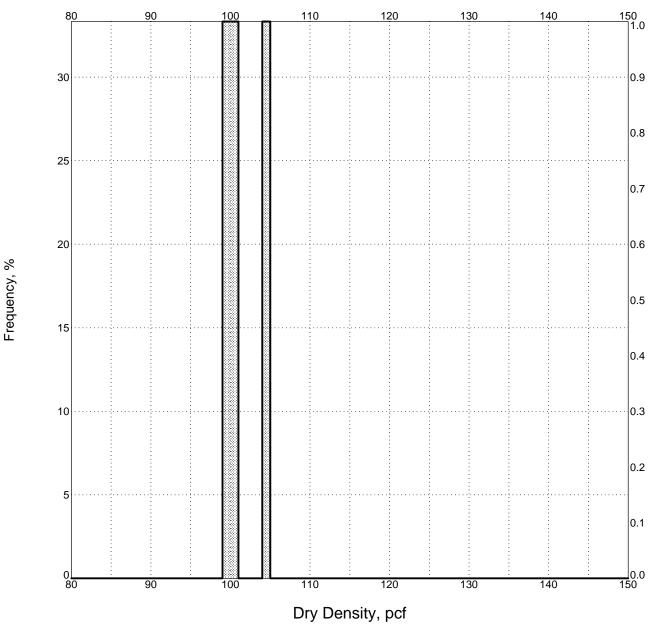
Volume (Vs) 0.001784 ft³


Volume of Voids:

 0.00114 ft^3 V - Vs

Porosity:

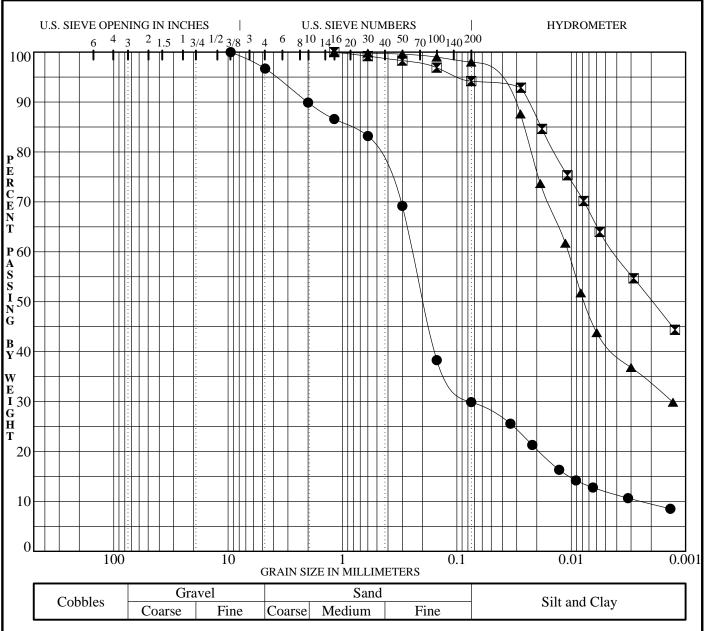
N 39.0 %



Point Id B-4a

Number of Tests: 3
Average: 21
Minimum: 12
Maximum: 26
Standard Dev: 8

MOISTURE CONTENT 2250 TELEGRAPH AVENUE



Point Id B-4a

Number of Tests:3Average:102Minimum:100Maximum:105Standard Dev:3

DRY DENSITY 2250 TELEGRAPH AVENUE

	Cobbles	010	4,01		Suna		Cilt and Clay	
	Coobles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay	
•						_		
	Key Boring		Passing No. %	Passing N	0.	Sample D	Descsription	USCS

Symbol	Boring No.	(Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	B-04	0.0	30	97	Dark brown clayey SAND	SC
×	B-05	5.0	94		Dark brown fat CLAY	СН
A	B-4a	10.0	98		Olive brown fat CLAY	СН

PREP'D BY:	GRADATION TEST DATA	FIGURE
APP'D BY:	OKKEKTION TEOT BKITK	5
DATE: 9/16/09	2250 TELEGRAPH AVENUE	B-1
DWG FILE:	Oakland, California	PROJECT No.
		609.004T11

GRADATION_B 609-004T11_V012505.GPJ STD.GDT 9/16/09

APPENDIX C
LABORATORY ANALYTICAL REPORTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 213901 ANALYTICAL REPORT

Fugro West Inc. Project : 609.004

1000 Broadway Location: 2250 Telgraph Av. Oakland

Oakland, CA 94607 Level : II

<u>Sample</u>	ID	<u>Lab ID</u>
MW-1		213901-001
MW-2		213901-002
MW-3		213901-003
MW-4		213901-004
MW-5		213901-005
TRIP BL	JANK	213901-006

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: MRJLD

Project Manager

Date: <u>08/07/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 213901

Client: Fugro West Inc.

Project: 609.004

Location: 2250 Telgraph Av. Oakland

Request Date: 07/31/09 Samples Received: 07/31/09

This data package contains sample and QC results for five water samples, requested for the above referenced project on 07/31/09. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

2/3901

silica gel cleanu

∞ŏ

ES	_F′	ın	CH	MIA	\cap E	CHIS	STODY	•
ᆮᇰ		ıv	UH/	-VI 1 V	UE	CU	1 001	

PAGE 1 OF 1 **ANALYSIS REQUESTED** PROJECT NAME: 2250 Telegraph Avenue - Oakland

PROJECT NO.: 609.004 LAB: Curtis & Tompkins

PROJECT CONTACT: Karen Emery **TURNAROUND:** 5 day TAT

ROJECT CONTACT: Karen Emery TURNAROUND: 5 day TAT AMPLED BY: Russell Carter														th silica gel	xygenates						1															
		M.	ATRIX	<u>x</u>		<u> c</u>	ON	ITAI	NERS			PR	ESE	RVA	ΠVE					SAM	PLIN	IG D	ATE						Hmo wii	i, Fuel O gers		<u>ğ</u>				ı
FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	FAIG	Z	TUBE		НСГ	H₂SO₄	HNO ₃	ICE	OTHER	NONE	МС	NTH	D.	ΑY	YE	AR		TII	ME		Quantity	TVHg	TPHd and TF	BTEX, MTBE Lead Scaven		EDF Reportir				
MW-1	Х				Х						Х			Х				7	3	0	0	9	1	2	2	5				Х		X		1		
MW-2	Х				Х	X					Х			Х			0	7	3			9	1	0		+		Х	Х	Х		Х		\top		
MW-3	Х				Х	X					Х			Х			0	7	3	0	0	9	τ	4	2.	0		Х	Х	Х		х		1	1	
MW-4	Х				Х	X					Х			Х			0	7		0	0	9	T	1	3	5		Х	х	Х		х		\top		
MW-5	Х				Х	X		Т			Х			Х			0	7					1	4	0	-	_	Х	Х	Х		х		1		_
Trio Blank							T																											\top	1	
Jan 7-31-09																										<u> </u>						_		+		
•																																		†		_
																																		1	\top	
																									-		1							\top	T	
																																		+	†	_
				Ī			Τ	T																			-					\dashv		+	+	
			1	T	1		1	1	—																	<u> </u>			\vdash				+	+-	+	
	FIELD SAMPLE I.D. MW-1 MW-2 MW-3 MW-4 MW-5	FIELD SAMPLE I.D. MW-1 MW-2 X MW-3 X MW-4 X MW-5 X	FIELD SAMPLE I.D. MW-1 MW-2 MW-3 MW-4 MW-5 TCO Bisn &	### FIELD SAMPLE I.D. MATRI FIELD SAMPLE I.D. WATRI WW-1	Russell Carter	MATRIX CONTAINERS MATRIX MATRIX CONTAINERS MATRIX MA	MATRIX CONTAINERS MATRIX CONTAINERS MATRIX MATRIX MATRIX MATRIX MATRIX MATRIX MATRIX MATRIX MATRIX MATRIX	MATRIX CONTAINERS MATRIX CONTAINERS MATRIX CONTAINERS MATRIX MATRIX CONTAINERS MATRIX MAT	MATRIX CONTAINERS PRI	MATRIX CONTAINERS PRESERVENCE PRESER	MATRIX CONTAINERS PRESERVATE	Natrix Containers Preservative Natrix Natrix	Natrix Solution Preservative Preservative	NATRIX CONTAINERS PRESERVATIVE NATRIX CONTAINERS PRESERVATIVE NATRIX CONTAINERS PRESERVATIVE NATRIX NATRIX	Russell Carter	Natrix Containers Preservative Natrix Natrix	NATRIX CONTAINERS PRESERVATIVE SAM	FIELD SAMPLE I.D. MATRIX CONTAINERS PRESERVATIVE SAMPLIN	Russell Carter	Russell Carter SAMPLE I.D.	Russell Carter	Russell Carter	Russell Carter	MATRIX CONTAINERS PRESERVATIVE SAMPLING DATE SAMPLIN	Natrix Containers Preservative Sampling Date Time William Will											

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES: USE QUOTATION # CT17200909MP WHEN INVOICING.
RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	DATE/TIME DATE/TIME	RECEIVED BY: (Signature) RECEIVED BY: (Signature)	DATE/TIME	
			37.11.71	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC. 1000 Broadway, Suite 440
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607 Tel: 510.268.0461 Fax: 510.268.0545

COOLER RECEIPT CHECKLIST

Login # 2/3991 Date Received 7/3/09 Number of coolers 2 Client FUGYO Project 2250 TRUCKYOPH WE	-oxvico
Date Opened 7/31/09 By (print) M VIU ANUVC (sign) The Date Logged in 7-31-19 By (print) Try Windsor (sign) Legt EM/	Ly in X
1. Did cooler come with a shipping slip (airbill, etc) YES & Shipping info	
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES N 3. Were custody papers dry and intact when received? YES N 4. Were custody papers filled out properly (ink, signed, etc)?	・(ゾ
Bubble Wrap Poam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation:	h h
Type of ice used: Wet Blue/Gel None Temp(°C)	· .
Samples Received on ice & cold without a temperature blank	
☐ Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? YES If YES, what time were they transferred to freezer?	ÑÒ
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests?	NO NO
	D NO
12. Do the sample labels agree with custody papers?	NO 4
) NO
14. Are the samples appropriately preserved?	
4 / 177 4 44	N/A
If YES, Who was called? By Date:	S NO
COMMENTS FECTO 5 TRIP BLANK NOT ON COC.	
'A	

SOP Volume:

Client Services

Section:

1.1.2

Page:

I of i

Rev. 6 Number 1 of 3

Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Total Extractable Hydrocarbons										
Lab #:	213901	Location:	2250 Telgraph Av. Oakland							
Client:	Fugro West Inc.	Prep:	EPA 3520C							
Project#:	609.004	Analysis:	EPA 8015B							
Matrix:	Water	Sampled:	07/30/09							
Units:	ug/L	Received:	07/31/09							
Diln Fac:	1.000	Prepared:	08/03/09							
Batch#:	153484	Analyzed:	08/04/09							

Field ID: MW-1Lab ID: 213901-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	112	61-127

Field ID: MW-2Lab ID: 213901-002 SAMPLE Cleanup Method: EPA 3630C Type:

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	114	61-127

Lab ID: 213901-003 Field ID: MW-3Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	71 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	108	61-127

RL= Reporting Limit

Page 1 of 2 11.0

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

Total Extractable Hydrocarbons Lab #: 213901 2250 Telgraph Av. Oakland Location: Client: EPA 3520C Fugro West Inc. Prep: 609.004 EPA 8015B Project#: Analysis: Water 07/30/09 Matrix: Sampled: Units: ug/L Received: 07/31/09 Diln Fac: 1.000 Prepared: 08/03/09 Batch#: 153484 Analyzed: 08/04/09

Field ID: MW-4 Lab ID: 213901-004 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL
Diesel C10-C24	1,100 Y	50
Motor Oil C24-C36	1,300	300

Surrogate	%REC	Limits
o-Terphenyl	87	61-127

Field ID: MW-5 Lab ID: 213901-005 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	104	61-127

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC505977

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	106	61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

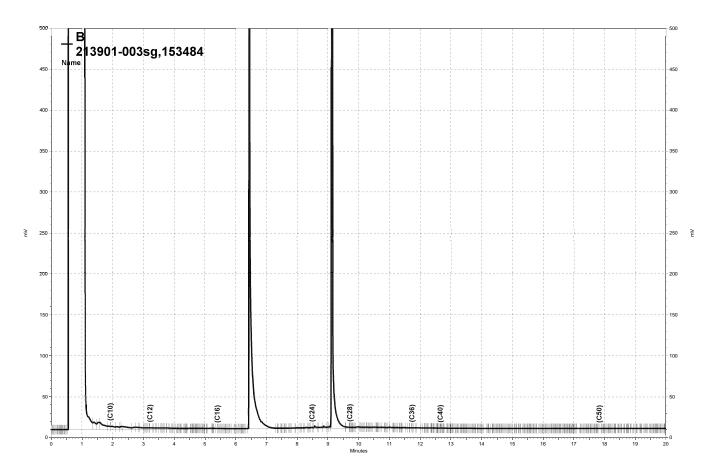
Page 2 of 2

	Total Extr	actable Hydrocar	rbons
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 3520C
Project#:	609.004	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	153484
Units:	ug/L	Prepared:	08/03/09
Diln Fac:	1.000	Analyzed:	08/04/09

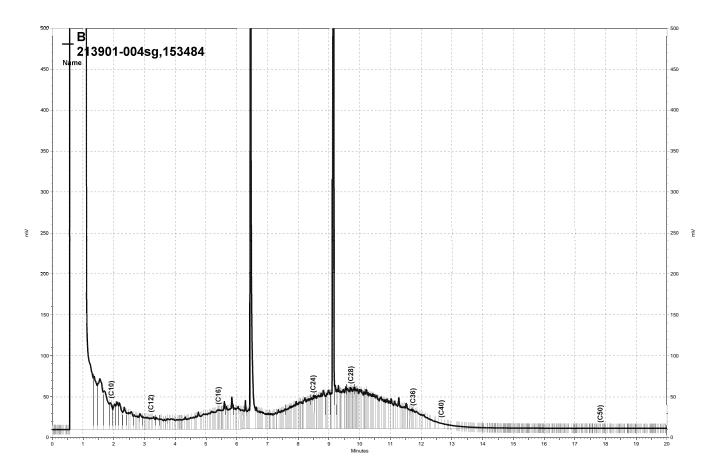
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC505978

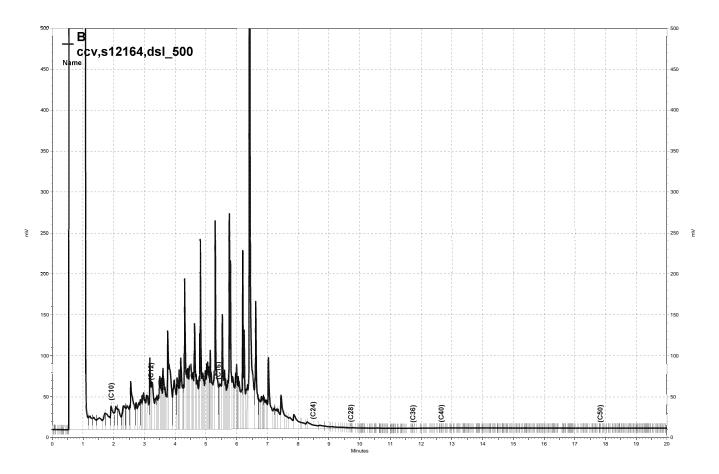
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,726	109	50-120

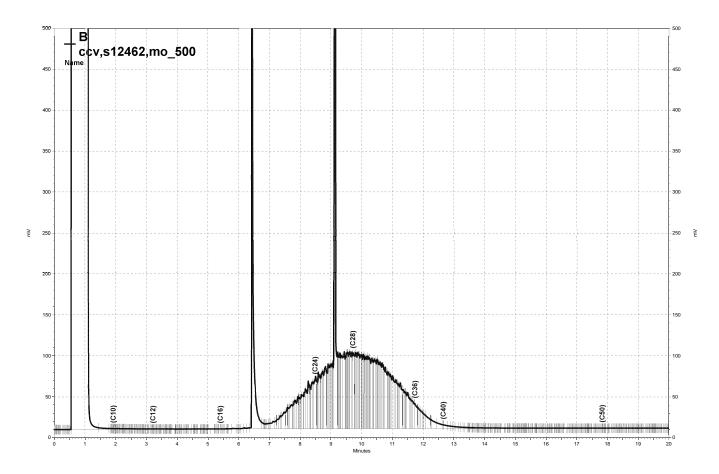

Surrogate	%REC	Limits
o-Terphenyl	102	61-127

Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC505979

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,576	103	50-120	6	37


Surrogate	%REC	Limits	
o-Terphenyl	96	61-127	


\Lims\gdrive\ezchrom\Projects\GC14B\Data\216b019, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\216b020, B

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\216b010, B

\Lims\gdrive\ezchrom\Projects\GC14B\Data\216b011, B

	Ga	soline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	153470
Lab ID:	213901-001	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	160 Y	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	104	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	105	80-125

Page 1 of 1

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	asoline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	153470
Lab ID:	213901-002	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-122
1,2-Dichloroethane-d4	106	77-137
Toluene-d8	98	80-120
Bromofluorobenzene	105	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

3.0

	Ga	soline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	153587
Lab ID:	213901-003	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/06/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	360	50	
tert-Butyl Alcohol (TBA)	13	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	14	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	1.2	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-122
1,2-Dichloroethane-d4	102	77-137
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

4.1

	Ga	asoline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	153470
Lab ID:	213901-004	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL
Gasoline C7-C12	1,400 Y	50
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	100	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	106	80-125

Page 1 of 1

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-5	Batch#:	153470
Lab ID:	213901-005	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-122
1,2-Dichloroethane-d4	103	77-137
Toluene-d8	98	80-120
Bromofluorobenzene	104	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

ge 1 of 1

	C	Gasoline by GC/MS	
Lab #: Client: Project#:	213901 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153470 08/03/09

Type: BS Lab ID: QC505922

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	75.00	70.76	94	55-151
Isopropyl Ether (DIPE)	15.00	13.76	92	65-131
Ethyl tert-Butyl Ether (ETBE)	15.00	14.03	93	75-128
Methyl tert-Amyl Ether (TAME)	15.00	14.73	98	80-121
MTBE	15.00	13.90	93	73-122
1,2-Dichloroethane	15.00	15.87	106	73-141
Benzene	15.00	16.56	110	80-120
Toluene	15.00	16.41	109	80-120
1,2-Dibromoethane	15.00	15.92	106	80-120
Ethylbenzene	15.00	17.09	114	80-121
m,p-Xylenes	30.00	34.17	114	80-122
o-Xylene	15.00	16.98	113	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-122	
1,2-Dichloroethane-d4	98	77-137	
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-125	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	75.00	58.20	78	55-151	19	21
Isopropyl Ether (DIPE)	15.00	13.24	88	65-131	4	20
Ethyl tert-Butyl Ether (ETBE)	15.00	13.12	87	75-128	7	20
Methyl tert-Amyl Ether (TAME)	15.00	13.78	92	80-121	7	20
MTBE	15.00	12.91	86	73-122	7	20
1,2-Dichloroethane	15.00	14.75	98	73-141	7	20
Benzene	15.00	15.75	105	80-120	5	20
Toluene	15.00	15.16	101	80-120	8	20
1,2-Dibromoethane	15.00	14.78	99	80-120	7	20
Ethylbenzene	15.00	16.22	108	80-121	5	20
m,p-Xylenes	30.00	32.04	107	80-122	6	20
o-Xylene	15.00	16.34	109	80-120	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-122
1,2-Dichloroethane-d4	96	77-137
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-125

Gasoline by GC/MS					
Lab #:	213901	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC505924	Batch#:	153470		
Matrix:	Water	Analyzed:	08/03/09		
Units:	ug/L				

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	102	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	104	80-125

ND= Not Detected RL= Reporting Limit

Page 1 of 1

		Gasoline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	153470
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000		

Type: BS Lab ID: QC505927

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	850.0	909.4	107	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	95	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-125

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	850.0	898.3	106	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-122
1,2-Dichloroethane-d4	100	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-125

	(Gasoline by GC/MS	
Lab #: Client: Project#:	213901 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153587 08/06/09

Type: BS Lab ID: QC506412

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	75.00	58.53	78	55-151
Isopropyl Ether (DIPE)	15.00	13.38	89	65-131
Ethyl tert-Butyl Ether (ETBE)	15.00	13.17	88	75-128
Methyl tert-Amyl Ether (TAME)	15.00	13.66	91	80-121
MTBE	15.00	12.87	86	73-122
1,2-Dichloroethane	15.00	15.49	103	73-141
Benzene	15.00	16.15	108	80-120
Toluene	15.00	16.01	107	80-120
1,2-Dibromoethane	15.00	14.88	99	80-120
Ethylbenzene	15.00	16.39	109	80-121
m,p-Xylenes	30.00	32.49	108	80-122
o-Xylene	15.00	16.49	110	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-122	
1,2-Dichloroethane-d4	96	77-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	102	80-125	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	75.00	63.35	84	55-151	8	21
Isopropyl Ether (DIPE)	15.00	13.43	90	65-131	0	20
Ethyl tert-Butyl Ether (ETBE)	15.00	13.46	90	75-128	2	20
Methyl tert-Amyl Ether (TAME)	15.00	13.81	92	80-121	1	20
MTBE	15.00	13.10	87	73-122	2	20
1,2-Dichloroethane	15.00	15.30	102	73-141	1	20
Benzene	15.00	15.75	105	80-120	2	20
Toluene	15.00	15.80	105	80-120	1	20
1,2-Dibromoethane	15.00	15.34	102	80-120	3	20
Ethylbenzene	15.00	16.04	107	80-121	2	20
m,p-Xylenes	30.00	32.19	107	80-122	1	20
o-Xylene	15.00	16.48	110	80-120	0	20

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	96	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	102	80-125

		Gasoline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	153587
Units:	ug/L	Analyzed:	08/06/09
Diln Fac:	1.000		

Type: BS Lab ID: QC506414

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	850.0	882.7	104	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	102	77-137
Toluene-d8	106	80-120
Bromofluorobenzene	103	80-125

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	850.0	891.3	105	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	100	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	103	80-125

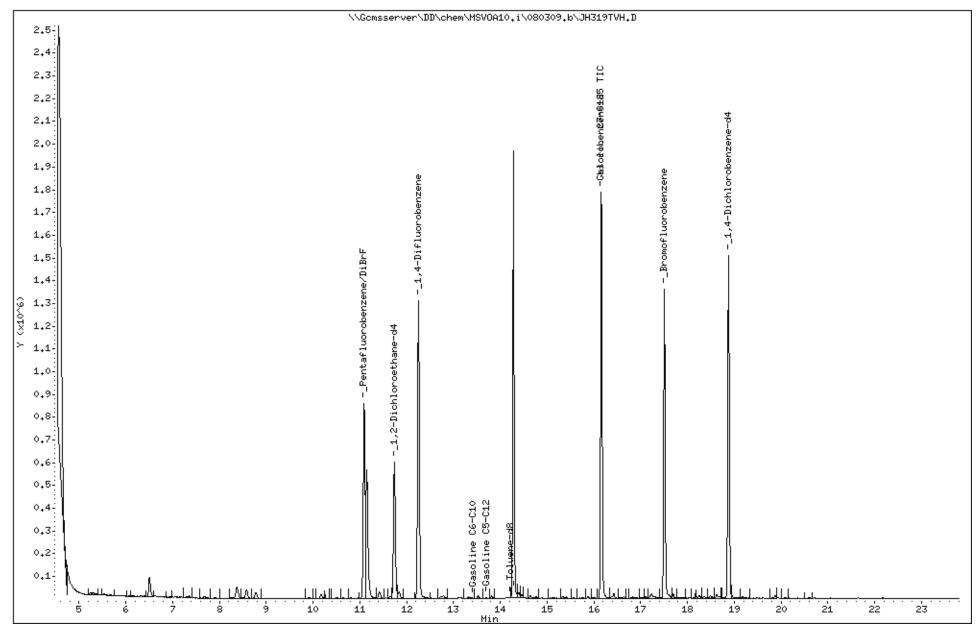
		Gasoline by GC/MS	
Lab #:	213901	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506416	Batch#:	153587
Matrix:	Water	Analyzed:	08/06/09
Units:	ug/L		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	103	77-137
Toluene-d8	100	80-120
Bromofluorobenzene	105	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

age 1 of 1

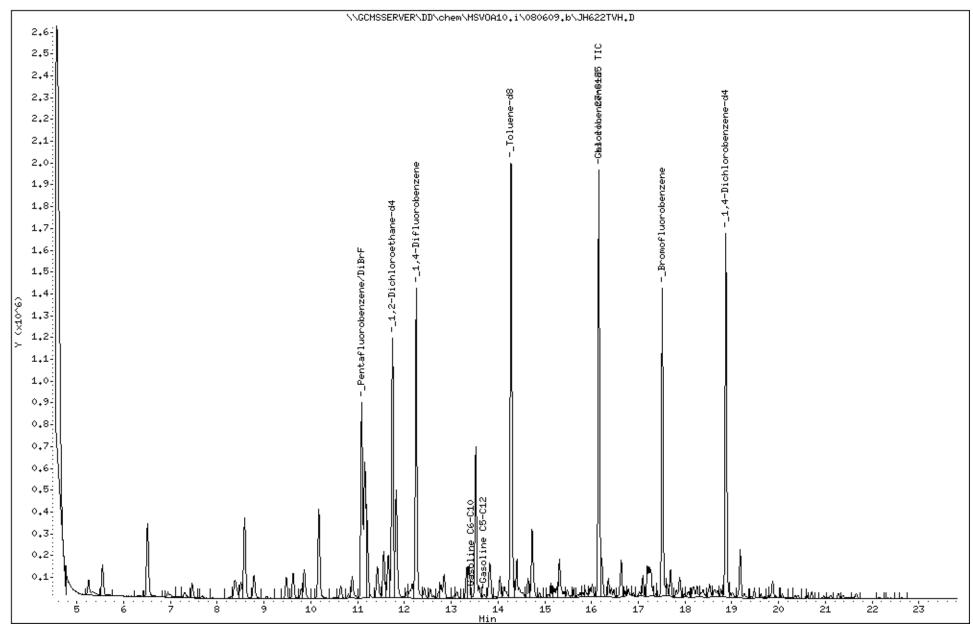

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\080309.b\JH319TVH.D

Date : 03-AUG-2009 20:01 Client ID: DYNA P&T Sample Info: S,213901-001

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2,00

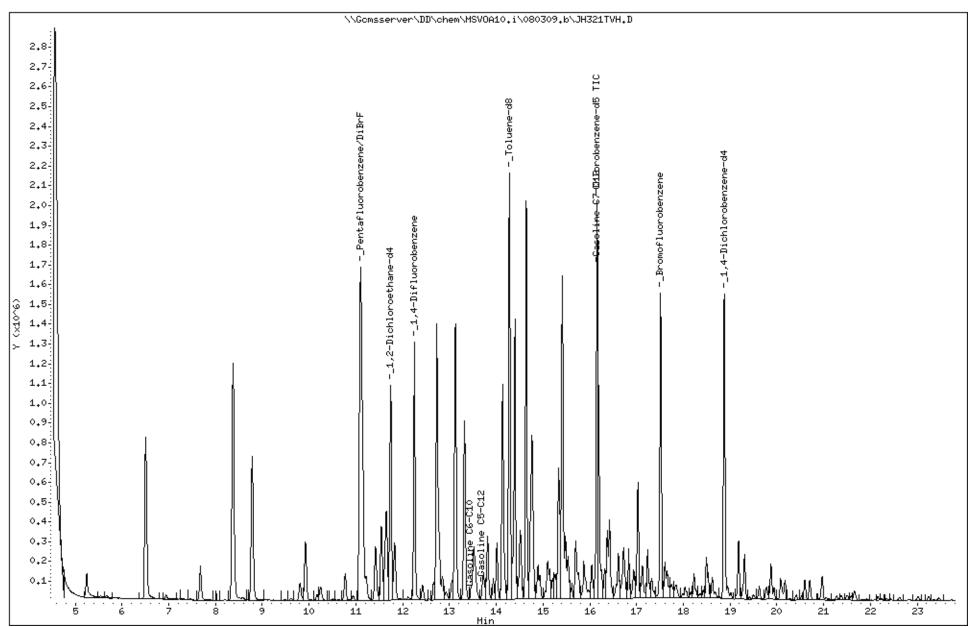

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\080609.b\JH622TVH.D

Date : 06-AUG-2009 19:07 Client ID: DYNA P&T Sample Info: S,213901-003

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2.00

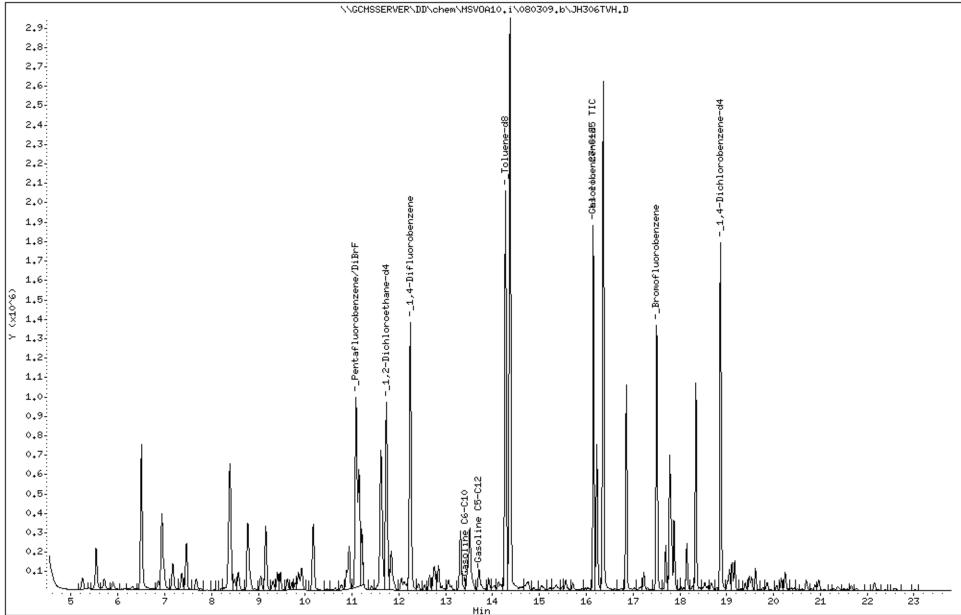

Data File: \\Gcmsserver\DD\chem\MSVOA10.i\080309.b\JH321TVH.D

Date : 03-AUG-2009 21:09 Client ID: DYNA P&T Sample Info: S,213901-004

Instrument: MSVOA10.i

Operator: VOA

Column phase: Column diameter: 2.00


Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\080309.b\JH306TVH.D

Date : 03-AUG-2009 12:19 Client ID: DYNA P&T

Sample Info: CCV/BS,QC505927

Instrument: MSVOA10.i

Operator: VOA Column phase: Column diameter: 2.00 2.9-

Oakland, CA 94607

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 213902 ANALYTICAL REPORT

Fugro West Inc. Project : 609.004

1000 Broadway Location: 2250 Telgraph Av. Oakland

Level : II

Sample ID	<u>Lab ID</u>
B-1	213902-001
B-2	213902-002
B-3	213902-003
B-4A	213902-004
B-5	213902-005
B-6	213902-006
B-7	213902-007
B-8	213902-008
B-9	213902-009
B-10	213902-010
B-12	213902-011
B-2	213902-012
TRIP BLANK	213902-013

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: MRJLD

Project Manager

Date: <u>08/10/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 213902

Client: Fugro West Inc.

Project: 609.004

Location: 2250 Telgraph Av. Oakland

Request Date: 07/31/09 Samples Received: 07/31/09

This data package contains sample and QC results for twelve water samples, requested for the above referenced project on 07/31/09. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Sample B-12 (lab # 213902-011) was analyzed two minutes past the 12 hour tune standard shift clock; affected data was qualified with "b". There is no technical impact on the sample data. Response exceeding the instrument's linear range was observed for gasoline C7-C12 in B-4A (lab # 213902-004); affected data was qualified with "b". There were anomalous results between the multiple vials; therefore, the highest value was reported. A number of samples had pH greater than 2. No other analytical problems were encountered.

Total Dissolved Solids (TDS) (SM2540C):

No analytical problems were encountered.

213912

ES-F10 CHAIN OF CUSTODY

PROJECT NAME: 2250 Telegraph Avenue - Oakland

PROJECT NO.: 609.004

PROJECT CONTACT: Karen Emery

LAB: Curtis & Tompkins

TURNAROUND: 5 day TAT

PAGE 1 OF 1

silica gel cleanu genates & Lead

ANALYSIS REQUESTED

SAMPLED BY: Russell Carter

	I					_																								with s	Oxyg						
			MA ⁻	<u> </u>	<u>(</u>		cc	<u>TNC</u>	AINE	RS			PRI	SEI	RVA.	TIVE					SAN	<u> IPLI</u>	NG E	ATI	Ē					TPHmo w	Fuel		6				
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE	500 mL		HCL	H₂SO₄	HNO3	ICE	OTHER	NONE	M	ONTH	ם	ΑΥ	YI	EAR		TI	ME		Quantity	TVHg	TPHd and TP	BTEX, MTBE, Scavengers	TDS	EDF Reporting				
	B-1	Х				Х				Х		Х			Х			О	7	3	0	0	9	1	2	0	0		Х	Х	Х	Х	Х				\Box
	B-2	Х				Х				Х		Х			Х			0	7	3	0	0	9	1	2	2	0		Х	Х	X	Х	Х			1	\top
3	B-3	Х				Х	Х			Х		Х			Х			0	7	2	8	0	9	Ó	8	2	7		Х	Х	Х	х	Х			\dagger	11
4	B-4a	Х				Х	Х			Х	1	χ	<u>2</u> v)(Х		X	0	7	2	8	0	9	ī	3	Z	0		Х	Х	Х	Х	x			\top	\top
5	B-5	Х				Х	Х			Х		Х			Х			0	7	2	8	0	9	Ì	2	0	ပ		Х	Х	X	x	Ιx		\top	\dagger	+ =
6	B-6	Х				Х				Х		Х			Х			0	7	3	+	0	9	ì	3	3	0		Х	Х	Х	x	l x			\dagger	1
7	B-7	Х				Х	Х			Х	_	×	Q V9'		х		X		7	2	8	0	9	1	٥	7	5		Х	Х	Х	X	-		+	+	+
В	B-8	Х				Х	Х			Х		Х			Х		1	0	7	2	 	0	9	0	9	4	5		х	Х	X	X	├		+	+	1
9.	B-9	Х				Х	Х			Х		Х			Х		_	0	7	2	†	0	9	1	1	0	0		Х	Х	X	X		+	+	+	+
10	B-10	Х				Х	Х			Х		*	eu	c	Х		X		7	2	1	0	9	1	İ	2	5		Х	X	X	x	-	 	+	+	+
11	B-12	Х				х	Х			Х		-	6040		x		1	0	7	2	8	0	9	1	2	5	+		X	X	X	X		 	+	+	+
12	B-2	Х					Х						<u> </u>	-	Х		 ``	0	7	3	1	0	9	7	9	3	¥			X		H	广		+	+	+-1
	B-1	×				H	X	_				=	 -	_	Х			ار	<u> </u>	3	ļ <u>.</u>	0	٥	1		ر_				×			+-	\vdash	+	+	+

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES: USE QUOTATION # CT17200909MP WHEN INVOICING.
RELINOUTS/HED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature).	DATE/TIME	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC. 1000 Broadway, Suite 440
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607 Tel: 510.268.0461 Fax: 510.268.0545

COOLER RECEIPT CHECKLIST

Login # 213902 Date Received 75100 Client FUGYO Project 725	Number of coolers = OXKLONO
Date Opened 7/31/09 By (print) M. VILLANUVO(s Date Logged in 7-31-01 By (print) Tray Windson (s	ign) This Pull
1. Did cooler come with a shipping slip (airbill, etc)Shipping info	YES Ø
2A. Were custody seals present? YES (circle) on coordinate the packing in cooler: (if other, describe)	Date YES NO TOTAL
Bubble Wrap Poam blocks Bags Cloth material Cardboard Styrofo 7. Temperature documentation:	None
Type of ice used:	Temp(°C)
Samples Received on ice & cold without a tempera	
☐ Samples received on ice directly from the field. Coo	
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened?	YES NO
10. Are samples in the appropriate containers for indicated test 11. Are sample labels present, in good condition and complete	sts?
12. Do the sample labels agree with custody papers?	CYES NO
13. Was sufficient amount of sample sent for tests requested?	
14 Are the complex emperied land 10	
14. Are the samples appropriately preserved?	VES NO N/A
14. Are the samples appropriately preserved?15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A YES NO N/A
 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 	YES NO N/A YES NO N/A YES NO
14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS # U # Z SHAPUE B-1, B-6 # B-7 WO CONTAINE	VES NO N/A YES NO N/A YES NO Date: PECO FOR TEHM
 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By 	VES NO N/A YES NO N/A YES NO Date: PECO FOR TEHM
14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS # U # Z SHAPUE B-1 B-6 # B-7 WO CONTAINE	VES NO N/A VES NO N/A YES NO Date: FECO FOR TREHIM
14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS # U # Z SHAPLIE B-1, B-6 & B-2 NO CONTAINE SAMPLE 4, 7, 10 \$ 11 PROD WAS UND. NO	VES NO N/A VES NO N/A YES NO Date: FECO FOR TREHIM
14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS # U # Z SHAPLIE B-1, B-6 & B-2 NO CONTAINE SAMPLE 4, 7, 10 \$ 11 PROD WAS UND. NO	VES NO N/A VES NO N/A YES NO Date: FECO FOR TREHIM

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

 $Z:\qc\forms\checklists\cdolor\ Receipt\ Checklist_rv6.doc$

Total Extractable Hydrocarbons 2250 Telgraph Av. Oakland EPA 3520C Lab #: 213902 Location: Client: Fugro West Inc. Prep: 609.004 Project#: Analysis: EPA 8015B Matrix: Water Received: 07/31/09 Units: ug/L

Field ID: 07/28/09 B-3Sampled: Type: SAMPLE Prepared: 08/05/09 Lab ID: 213902-003 08/07/09 Analyzed: 1.000 Diln Fac: Cleanup Method: EPA 3630C Batch#: 153575

Analyte Result Diesel C10-C24 50 7,600 Ү Motor Oil C24-C36 25,000 300

Surrogate %REC Limits o-Terphenyl 74 61-127

Field ID: B-4A Sampled: 07/28/09 Type: SAMPLE Prepared: 08/03/09 213902-004 Lab ID: Analyzed: 08/05/09 Diln Fac: 20.00 Cleanup Method: EPA 3630C Batch#: 153484

Analyte Result Diesel C10-C24 Motor Oil C24-C36 1,000 240,000 110,000 6,000

%REC Limits Surrogate o-Terphenyl 61-127

Field ID: 07/28/09 B-5 Sampled: Type: SAMPLE Prepared: 08/03/09 08/04/09 213902-005 Lab ID: Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 153484

Analyte Result RL3,400 Diesel C10-C24 Motor Oil C24-C36 300 1,500

Limits %REC Surrogate o-Terphenyl 96 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Total Extractable Hydrocarbons 213902 Lab #: Location: 2250 Telgraph Av. Oakland Client: Fugro West Inc. EPA 3520C Prep: EPA 8015B 07/31/09 Project#: 609.004 Analysis: Matrix: Water Received: Units: ug/L

Field ID: B-7Sampled: 07/28/09 Type: SAMPLE Prepared: 08/03/09 Lab ID: 213902-007 Analyzed: 08/04/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 153484

Analyte Result Diesel C10-C24 Motor Oil C24-C36 910 50 400 300

Surrogate %REC Limits o-Terphenyl 61-127

Field ID: B-8 Sampled: 07/28/09 SAMPLE Prepared: 08/03/09 Type: 213902-008 Lab ID: Analyzed: 08/04/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 153484

Result RLAnalyte Diesel C10-C24 290 Y 50 Motor Oil C24-C36 ND 300

Surrogate %REC Limits o-Terphenyl 88 61-127

Field ID: B-9 Sampled: 07/28/09 SAMPLE 08/03/09 Type: Prepared: 08/04/09 Lab ID: 213902-009 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 153484

Result Analyte RL Diesel C10-C24 1,600 Y 50 Motor Oil C24-C36 300

Surrogate %REC Limits 74 61-127 o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 2 of 4

Total Extractable Hydrocarbons 213902 2250 Telgraph Av. Oakland Lab #: Location: Client: Fugro West Inc. EPA 3520C Prep: Analysis: Received: EPA 8015B 07/31/09 Project#: 609.004 Matrix: Water Units: ug/L

Field ID: B-10 Sampled: 07/28/09 Type: SAMPLE Prepared: 08/05/09 213902-010 08/08/09 Lab ID: Analyzed: Diln Fac: 5.000 Cleanup Method: EPA 3630C Batch#: 153575

Analyte	Result	RL	
Diesel C10-C24	59,000	250	
Motor Oil C24-C36	33,000	1,500	

Surrogate	%REC	Limits
o-Terphenyl	94	61-127

Field ID: B-12 Sampled: 07/28/09 Type: SAMPLE Prepared: 08/05/09 213902-011 Lab ID: 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 153575

Analyte	Result	RL	
Diesel C10-C24	27,000	56	
Motor Oil C24-C36	13,000	330	

Surrogate	%REC	Limits
o-Terphenyl	87	61-127

Field ID: B-2 Sampled: 07/31/09 Prepared: SAMPLE 08/03/09 Type: Lab ID: 08/04/09 213902-012 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 153484

Analyte	Result	RL	
Diesel C10-C24	530 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	97	61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 3 of 4

Total Extractable Hydrocarbons 2250 Telgraph Av. Oakland EPA 3520C Lab #: 213902 Location: Client: Fugro West Inc. Prep: Analysis: Received: EPA 8015B 07/31/09 Project#: 609.004 Matrix: Water Units: ug/L

Type: BLANK Prepared: 08/03/09
Lab ID: QC505977 Analyzed: 08/04/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 153484

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
o-Terphenyl	106	61-127	

Type: BLANK Prepared: 08/05/09
Lab ID: QC506358 Analyzed: 08/07/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Batch#: 153575

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	103	61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out
ND= Not Detected
DI= Percenting Limi

RL= Reporting Limit

Page 4 of 4

Total Extractable Hydrocarbons						
Lab #:	213902	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	EPA 3520C			
Project#:	609.004	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	153484			
Units:	ug/L	Prepared:	08/03/09			
Diln Fac:	1.000	Analyzed:	08/04/09			

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC505978

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,726	109	50-120

Surrogate	%REC	Limits
o-Terphenyl	102	61-127

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC505979

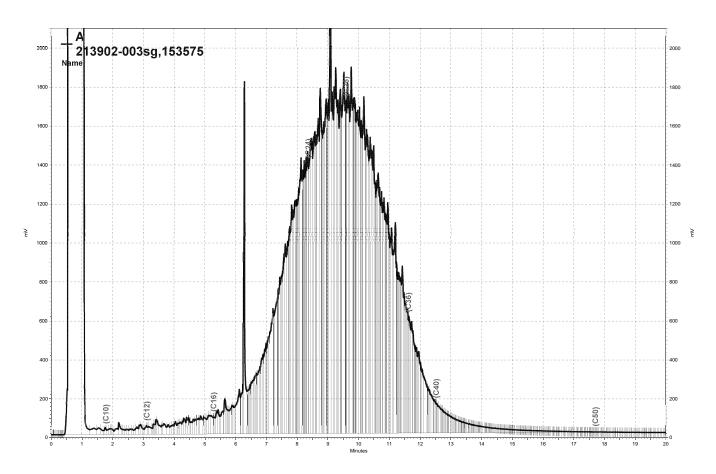
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,576	103	50-120	6	37

Surrogate	%REC	Limits	
o-Terphenyl	96	61-127	

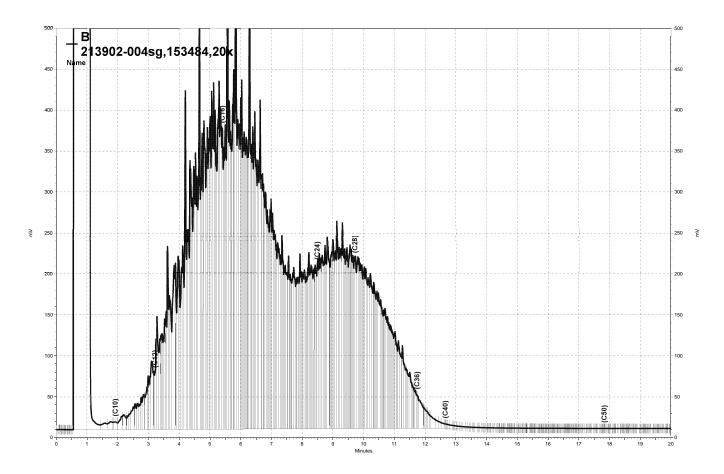
Total Extractable Hydrocarbons						
Lab #:	213902	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	EPA 3520C			
Project#:	609.004	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	153575			
Units:	ug/L	Prepared:	08/05/09			
Diln Fac:	1.000					

Type: BS Analyzed: 08/08/09
Lab ID: QC506359 Cleanup Method: EPA 3630C

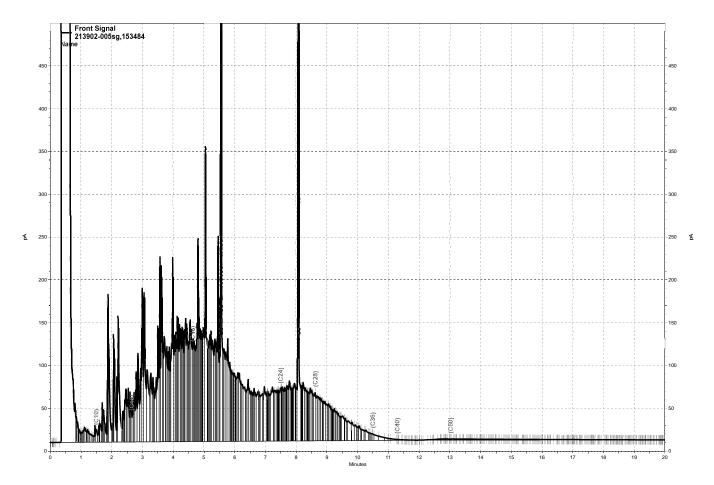
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,529	101	50-120

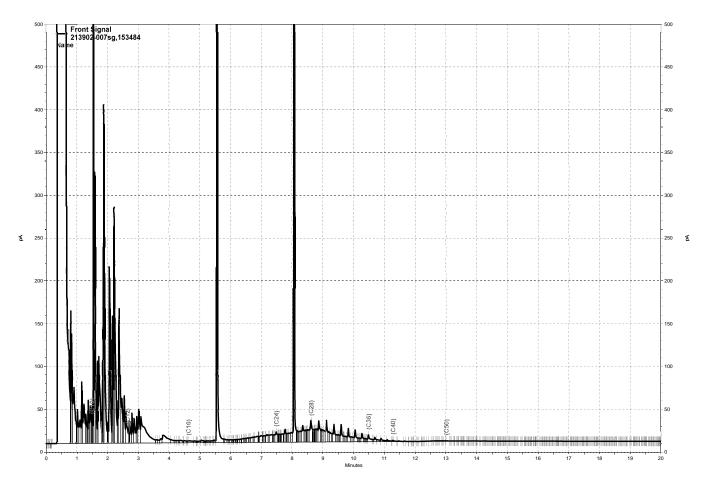

Surrogate	%REC	Limits
o-Terphenyl	103	61-127

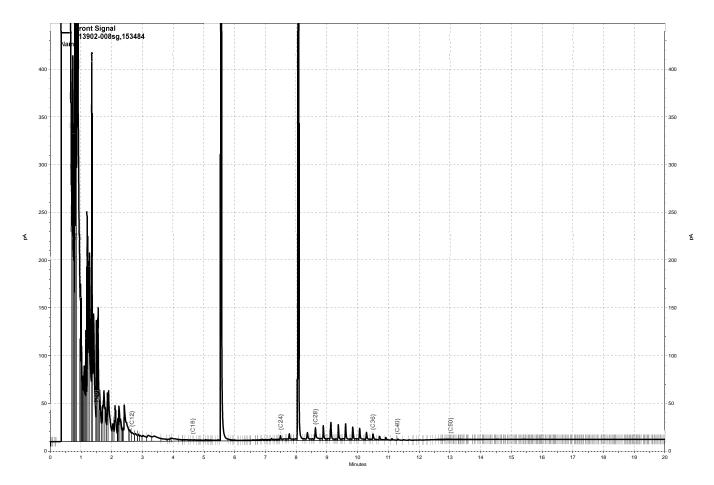
 Type:
 BSD
 Analyzed:
 08/07/09

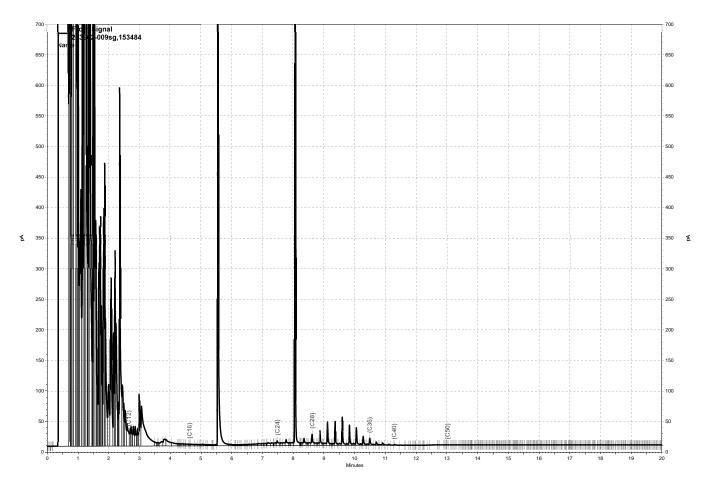

 Lab ID:
 QC506360
 Cleanup Method:
 EPA 3630C

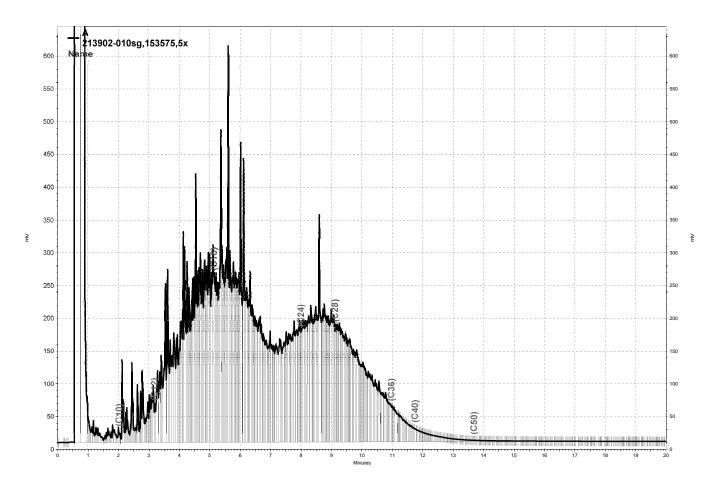
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,367	95	50-120	7	37

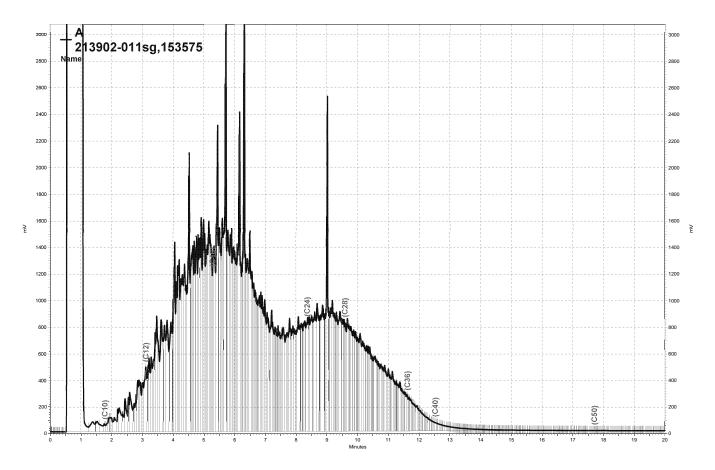

Surrogate	%REC	Limits	
o-Terphenyl	97	61-127	

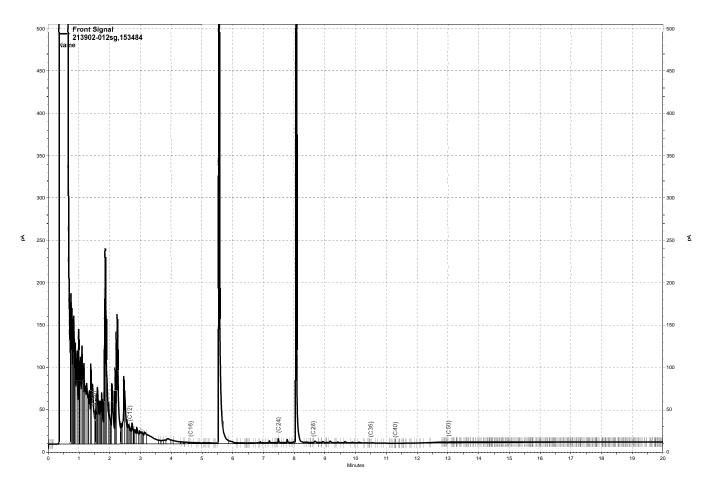

\Lims\gdrive\ezchrom\Projects\GC17A\Data\219a017, A

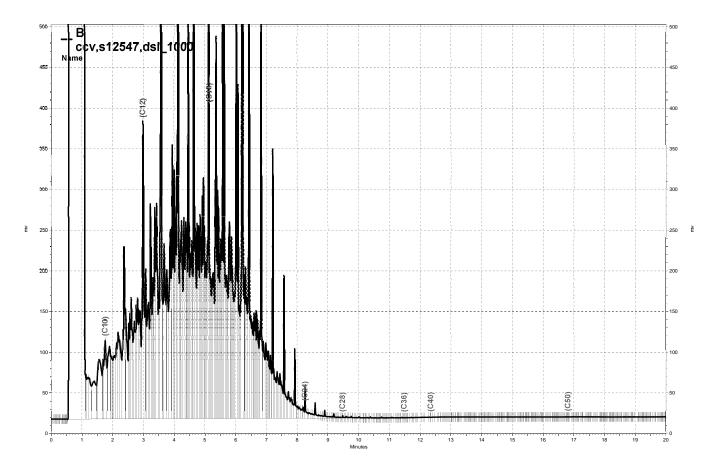

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b009, B

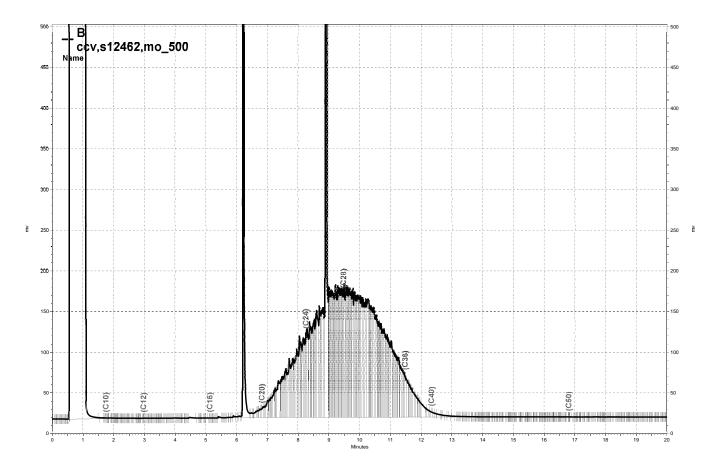

G:\ezchrom\Projects\GC27\Data\216a009.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\216a010.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\216a011.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\216a012.dat, Front Signal


\Lims\gdrive\ezchrom\Projects\GC26\Data\220a023, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\219a019, A

G:\ezchrom\Projects\GC27\Data\216a015.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\219b012, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\219b013, B

	(Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1	Units:	ug/L
Lab ID:	213902-001	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	41,000	6,300	125.0	153505 08/04/09
tert-Butyl Alcohol (TBA)	ND	250	25.00	153563 08/06/09
Isopropyl Ether (DIPE)	ND	13	25.00	153563 08/06/09
Ethyl tert-Butyl Ether (ETBE)	ND	13	25.00	153563 08/06/09
Methyl tert-Amyl Ether (TAME)	ND	13	25.00	153563 08/06/09
MTBE	ND	13	25.00	153563 08/06/09
1,2-Dichloroethane	ND	13	25.00	153563 08/06/09
Benzene	630	13	25.00	153563 08/06/09
Toluene	780	13	25.00	153563 08/06/09
1,2-Dibromoethane	ND	13	25.00	153563 08/06/09
Ethylbenzene	910	13	25.00	153563 08/06/09
m,p-Xylenes	2,600	13	25.00	153563 08/06/09
o-Xylene	1,100	13	25.00	153563 08/06/09

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	121	80-122	25.00	153563 08/06/09
1,2-Dichloroethane-d4	115	77-137	25.00	153563 08/06/09
Toluene-d8	105	80-120	25.00	153563 08/06/09
Bromofluorobenzene	105	80-125	25.00	153563 08/06/09

ND= Not Detected RL= Reporting Limit

Page 1 of 1 4.0

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2	Batch#:	153505
Lab ID:	213902-002	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	1,300 Y	50	
tert-Butyl Alcohol (TBA)	32	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	95	77-137
Toluene-d8	96	80-120
Bromofluorobenzene	106	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-3	Batch#:	153505
Lab ID:	213902-003	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	360 Y	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	0.58	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	0.57	0.50	
Toluene	0.65	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-122
1,2-Dichloroethane-d4	92	77–137
Toluene-d8	95	80-120
Bromofluorobenzene	102	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Gasoline by GC/MS				
Lab #:	213902	Location:	2250 Telgraph Av. Oakland	
Client:	Fugro West Inc.	Prep:	EPA 5030B	
Project#:	609.004	Analysis:	EPA 8260B	
Field ID:	B-4A	Batch#:	153505	
Lab ID:	213902-004	Sampled:	07/28/09	
Matrix:	Water	Received:	07/31/09	
Units:	ug/L	Analyzed:	08/04/09	
Diln Fac:	1.000			

Analyte	Result	RL
Gasoline C7-C12	10,000 >LR Y b	50
tert-Butyl Alcohol (TBA)	12	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	2.1	0.50
1,2-Dichloroethane	1.0	0.50
Benzene	ND	0.50
Toluene	0.58	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	0.75	0.50
m,p-Xylenes	ND	0.50
o-Xylene	0.66	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	83	77-137
Toluene-d8	93	80-120
Bromofluorobenzene	105	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

ND= Not Detected

RL= Reporting Limit

>LR= Response exceeds instrument's linear range

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5	Batch#:	153477
Lab ID:	213902-005	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	410 Y	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	90	77-137
Toluene-d8	96	80-120
Bromofluorobenzene	101	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

		Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-6	Units:	ug/L
Lab ID:	213902-006	Sampled:	07/30/09
Matrix:	Water	Received:	07/31/09

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	4,400 Y	200	4.000	153505 08/04/09
tert-Butyl Alcohol (TBA)	19	10	1.000	153544 08/05/09
Isopropyl Ether (DIPE)	ND	0.50	1.000	153544 08/05/09
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	1.000	153544 08/05/09
Methyl tert-Amyl Ether (TAME)	ND	0.50	1.000	153544 08/05/09
MTBE	1.6	0.50	1.000	153544 08/05/09
1,2-Dichloroethane	0.83	0.50	1.000	153544 08/05/09
Benzene	280	2.0	4.000	153505 08/04/09
Toluene	4.1	0.50	1.000	153544 08/05/09
1,2-Dibromoethane	ND	0.50	1.000	153544 08/05/09
Ethylbenzene	90	0.50	1.000	153544 08/05/09
m,p-Xylenes	14	0.50	1.000	153544 08/05/09
o-Xylene	0.71	0.50	1.000	153544 08/05/09

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	96	80-122	1.000	153544 08/05/09
1,2-Dichloroethane-d4	87	77-137	1.000	153544 08/05/09
Toluene-d8	98	80-120	1.000	153544 08/05/09
Bromofluorobenzene	101	80-125	1.000	153544 08/05/09

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-7	Batch#:	153477
Lab ID:	213902-007	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Gasoline C7-C12	1,200 Y	50	
tert-Butyl Alcohol (TBA)	18	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	2.3	0.50	
Toluene	1.3	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	16	0.50	
m,p-Xylenes	1.6	0.50	
o-Xylene	0.86	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	86	77-137
Toluene-d8	95	80-120
Bromofluorobenzene	102	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-8	Batch#:	153505
Lab ID:	213902-008	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	6.250	_	

Analyte	Result	RL	
Gasoline C7-C12	6,800 Y	310	
tert-Butyl Alcohol (TBA)	ND	63	
Isopropyl Ether (DIPE)	ND	3.1	
Ethyl tert-Butyl Ether (ETBE)	ND	3.1	
Methyl tert-Amyl Ether (TAME)	ND	3.1	
MTBE	ND	3.1	
1,2-Dichloroethane	3.8	3.1	
Benzene	400	3.1	
Toluene	73	3.1	
1,2-Dibromoethane	ND	3.1	
Ethylbenzene	250	3.1	
m,p-Xylenes	550	3.1	
o-Xylene	210	3.1	

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-122
1,2-Dichloroethane-d4	86	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	103	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9	Batch#:	153505
Lab ID:	213902-009	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	33.33	_	

Analyte	Result	RL	
Gasoline C7-C12	25,000 Y	1,700	
tert-Butyl Alcohol (TBA)	ND	330	
Isopropyl Ether (DIPE)	ND	17	
Ethyl tert-Butyl Ether (ETBE)	ND	17	
Methyl tert-Amyl Ether (TAME)	ND	17	
MTBE	ND	17	
1,2-Dichloroethane	ND	17	
Benzene	2,800	17	
Toluene	50	17	
1,2-Dibromoethane	ND	17	
Ethylbenzene	950	17	
m,p-Xylenes	2,300	17	
o-Xylene	550	17	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-122
1,2-Dichloroethane-d4	83	77–137
Toluene-d8	96	80-120
Bromofluorobenzene	106	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-10	Batch#:	153505
Lab ID:	213902-010	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	1,400 Y	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	1.5	0.50	
1,2-Dichloroethane	1.1	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-122
1,2-Dichloroethane-d4	92	77–137
Toluene-d8	98	80-120
Bromofluorobenzene	103	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Ga	soline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12	Batch#:	153477
Lab ID:	213902-011	Sampled:	07/28/09
Matrix:	Water	Received:	07/31/09
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	5.000	_	

Analyte	Result	RL	
Gasoline C7-C12	510 Y b	250	
tert-Butyl Alcohol (TBA)	ND b	50	
Isopropyl Ether (DIPE)	ND b	2.5	
Ethyl tert-Butyl Ether (ETBE)	ND b	2.5	
Methyl tert-Amyl Ether (TAME)	ND b	2.5	
MTBE	ND b	2.5	
1,2-Dichloroethane	ND b	2.5	
Benzene	ND b	2.5	
Toluene	ND b	2.5	
1,2-Dibromoethane	ND b	2.5	
Ethylbenzene	ND b	2.5	
m,p-Xylenes	ND b	2.5	
o-Xylene	ND b	2.5	

Surrogate	%REC	Limits
Dibromofluoromethane	104 b	80-122
1,2-Dichloroethane-d4	95 b	77-137
Toluene-d8	97 b	80-120
Bromofluorobenzene	103 b	80-125

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

ND= Not Detected

RL= Reporting Limit

	Q	Gasoline by GC/MS	
Lab #: Client: Project#:	213902 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153477 08/03/09

Type: BS Lab ID: QC505936

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	98.72	79	55-151
Isopropyl Ether (DIPE)	25.00	25.29	101	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	23.02	92	75-128
Methyl tert-Amyl Ether (TAME)	25.00	21.51	86	80-121
MTBE	25.00	22.19	89	73-122
1,2-Dichloroethane	25.00	21.84	87	73-141
Benzene	25.00	26.74	107	80-120
Toluene	25.00	26.30	105	80-120
1,2-Dibromoethane	25.00	24.07	96	80-120
Ethylbenzene	25.00	27.25	109	80-121
m,p-Xylenes	50.00	55.88	112	80-122
o-Xylene	25.00	27.66	111	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	85	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	102	80-125

Type: BSD Lab ID: QC505937

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	103.1	82	55-151	4	21
Isopropyl Ether (DIPE)	25.00	25.87	103	65-131	2	20
Ethyl tert-Butyl Ether (ETBE)	25.00	23.77	95	75-128	3	20
Methyl tert-Amyl Ether (TAME)	25.00	23.09	92	80-121	7	20
MTBE	25.00	23.33	93	73-122	5	20
1,2-Dichloroethane	25.00	22.67	91	73-141	4	20
Benzene	25.00	27.39	110	80-120	2	20
Toluene	25.00	27.13	109	80-120	3	20
1,2-Dibromoethane	25.00	25.90	104	80-120	7	20
Ethylbenzene	25.00	28.34	113	80-121	4	20
m,p-Xylenes	50.00	58.30	117	80-122	4	20
o-Xylene	25.00	29.04	116	80-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-122
1,2-Dichloroethane-d4	86	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	104	80-125

	(Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	153477
Units:	ug/L	Analyzed:	08/03/09
Diln Fac:	1.000		

Type: BS Lab ID: QC505938

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,971	99	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	89	77-137
Toluene-d8	96	80-120
Bromofluorobenzene 1	107	80-125

Type: BSD Lab ID: QC505939

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,032	102	80-120	3	20

	^===	
Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	86	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	105	80-125

		Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC505940	Batch#:	153477
Matrix:	Water	Analyzed:	08/03/09
Units:	ug/L		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	89	77-137
Toluene-d8	96	80-120
Bromofluorobenzene	102	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

	G	asoline by GC/MS	
Lab #: Client: Project#:	213902 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153505 08/04/09

Type: BS Lab ID: QC506071

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	98.33	79	55-151
Isopropyl Ether (DIPE)	25.00	27.70	111	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	25.22	101	75-128
Methyl tert-Amyl Ether (TAME)	25.00	22.77	91	80-121
MTBE	25.00	23.70	95	73-122
1,2-Dichloroethane	25.00	24.01	96	73-141
Benzene	25.00	27.60	110	80-120
Toluene	25.00	25.02	100	80-120
1,2-Dibromoethane	25.00	23.02	92	80-120
Ethylbenzene	25.00	26.91	108	80-121
m,p-Xylenes	50.00	55.07	110	80-122
o-Xylene	25.00	27.28	109	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-122	
1,2-Dichloroethane-d4	93	77-137	
Toluene-d8	97	80-120	
Bromofluorobenzene	101	80-125	

Type: BSD Lab ID: QC506072

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	104.6	84	55-151	6	21
Isopropyl Ether (DIPE)	25.00	28.50	114	65-131	3	20
Ethyl tert-Butyl Ether (ETBE)	25.00	26.40	106	75-128	5	20
Methyl tert-Amyl Ether (TAME)	25.00	23.76	95	80-121	4	20
MTBE	25.00	24.85	99	73-122	5	20
1,2-Dichloroethane	25.00	24.78	99	73-141	3	20
Benzene	25.00	28.58	114	80-120	4	20
Toluene	25.00	26.26	105	80-120	5	20
1,2-Dibromoethane	25.00	24.84	99	80-120	8	20
Ethylbenzene	25.00	27.80	111	80-121	3	20
m,p-Xylenes	50.00	57.21	114	80-122	4	20
o-Xylene	25.00	28.28	113	80-120	4	20

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-122	
1,2-Dichloroethane-d4	91	77-137	
Toluene-d8	98	80-120	
Bromofluorobenzene	103	80-125	

		Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	153505
Units:	ug/L	Analyzed:	08/04/09
Diln Fac:	1.000		

Type: BS Lab ID: QC506073

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,030	103	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-122
1,2-Dichloroethane-d4	94	77-137
Toluene-d8	98	80-120
Bromofluorobenzene	102	80-125

Type: BSD Lab ID: QC506080

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	941.7	94	80-120	9	20

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	90	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	102	80-125

		Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506081	Batch#:	153505
Matrix:	Water	Analyzed:	08/04/09
Units:	ug/L		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane 1	106	80-122
1,2-Dichloroethane-d4	97	77-137
Toluene-d8	97	80-120
Bromofluorobenzene 1	105	80-125

ND= Not Detected RL= Reporting Limit

Page 1 of 1

20.0

		Gasoline by GC/MS	
Lab #: Client: Project#:	213902 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153544 08/05/09

Type: BS Lab ID: QC506241

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	104.0	83	55-151
Isopropyl Ether (DIPE)	25.00	22.78	91	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	22.73	91	75-128
Methyl tert-Amyl Ether (TAME)	25.00	23.58	94	80-121
MTBE	25.00	22.23	89	73-122
1,2-Dichloroethane	25.00	25.92	104	73-141
Benzene	25.00	26.65	107	80-120
Toluene	25.00	25.54	102	80-120
1,2-Dibromoethane	25.00	25.59	102	80-120
Ethylbenzene	25.00	26.53	106	80-121
m,p-Xylenes	50.00	53.59	107	80-122
o-Xylene	25.00	27.15	109	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-122	
1,2-Dichloroethane-d4	98	77-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	101	80-125	

Type: BSD Lab ID: QC506242

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	119.9	96	55-151	14	21
Isopropyl Ether (DIPE)	25.00	22.50	90	65-131	1	20
Ethyl tert-Butyl Ether (ETBE)	25.00	22.76	91	75-128	0	20
Methyl tert-Amyl Ether (TAME)	25.00	23.32	93	80-121	1	20
MTBE	25.00	22.72	91	73-122	2	20
1,2-Dichloroethane	25.00	25.50	102	73-141	2	20
Benzene	25.00	25.20	101	80-120	6	20
Toluene	25.00	24.38	98	80-120	5	20
1,2-Dibromoethane	25.00	25.39	102	80-120	1	20
Ethylbenzene	25.00	24.96	100	80-121	6	20
m,p-Xylenes	50.00	50.50	101	80-122	6	20
o-Xylene	25.00	25.99	104	80-120	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-122
1,2-Dichloroethane-d4	100	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	103	80-125

Gasoline by GC/MS							
Lab #:	213902	Location:	2250 Telgraph Av. Oakland				
Client:	Fugro West Inc.	Prep:	EPA 5030B				
Project#:	609.004	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	153544				
Units:	ug/L	Analyzed:	08/05/09				
Diln Fac:	1.000						

Type: BS Lab ID: QC506243

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,106	111	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-122
1,2-Dichloroethane-d4	100	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	105	80-125

Type: BSD Lab ID: QC506244

Analyte	Spiked	Result	%REC	Limits	RPD Lim
Gasoline C7-C12	1,000	1,106	111	80-120	0 20

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	101	77-137
Toluene-d8	100	80-120
Bromofluorobenzene	103	80-125

		Gasoline by GC/MS	
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506245	Batch#:	153544
Matrix:	Water	Analyzed:	08/05/09
Units:	ug/L		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-122
1,2-Dichloroethane-d4	104	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	106	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

23.0

	G	asoline by GC/MS	
Lab #: Client: Project#:	213902 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	153563 08/05/09

Type: BS Lab ID: QC506311

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	109.5	88	55-151
Isopropyl Ether (DIPE)	25.00	25.18	101	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	23.39	94	75-128
Methyl tert-Amyl Ether (TAME)	25.00	22.38	90	80-121
MTBE	25.00	23.09	92	73-122
1,2-Dichloroethane	25.00	27.20	109	73-141
Benzene	25.00	26.92	108	80-120
Toluene	25.00	26.35	105	80-120
1,2-Dibromoethane	25.00	26.30	105	80-120
Ethylbenzene	25.00	25.56	102	80-121
m,p-Xylenes	50.00	49.76	100	80-122
o-Xylene	25.00	24.47	98	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	112	80-122
1,2-Dichloroethane-d4	110	77-137
Toluene-d8	106	80-120
Bromofluorobenzene	101	80-125

Type: BSD Lab ID: QC506312

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	113.5	91	55-151	4	21
Isopropyl Ether (DIPE)	25.00	25.07	100	65-131	0	20
Ethyl tert-Butyl Ether (ETBE)	25.00	23.47	94	75-128	0	20
Methyl tert-Amyl Ether (TAME)	25.00	22.60	90	80-121	1	20
MTBE	25.00	23.70	95	73-122	3	20
1,2-Dichloroethane	25.00	26.72	107	73-141	2	20
Benzene	25.00	25.93	104	80-120	4	20
Toluene	25.00	25.46	102	80-120	3	20
1,2-Dibromoethane	25.00	26.12	104	80-120	1	20
Ethylbenzene	25.00	24.63	99	80-121	4	20
m,p-Xylenes	50.00	48.98	98	80-122	2	20
o-Xylene	25.00	23.72	95	80-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-122
1,2-Dichloroethane-d4	110	77-137
Toluene-d8	104	80-120
Bromofluorobenzene	102	80-125

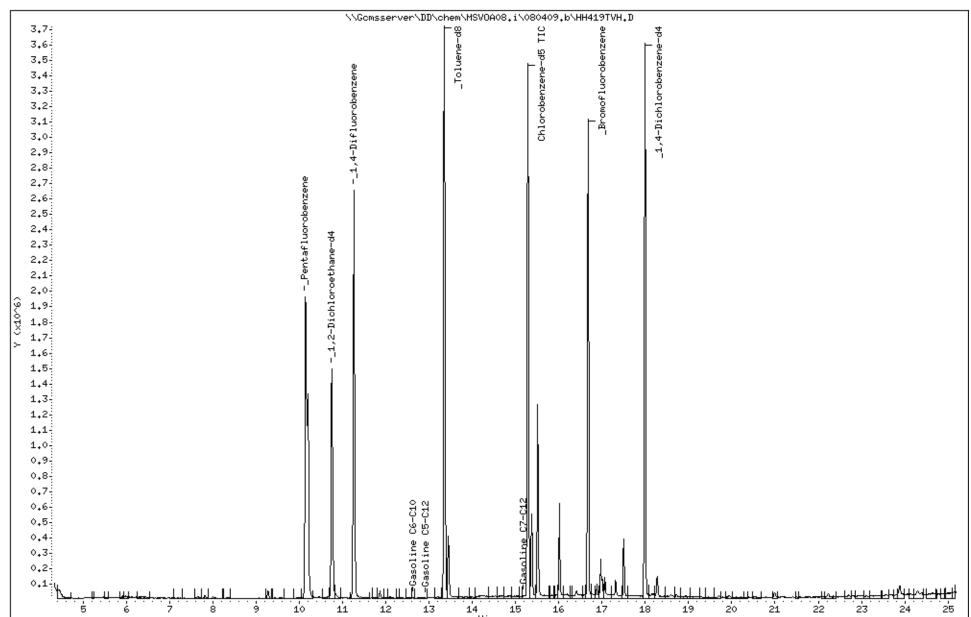
Gasoline by GC/MS								
Lab #:	213902	Location:	2250 Telgraph Av. Oakland					
Client:	Fugro West Inc.	Prep:	EPA 5030B					
Project#:	609.004	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC506313	Batch#:	153563					
Matrix:	Water	Analyzed:	08/05/09					
Units:	ug/L							

Analyte	Result	RL	
Gasoline C7-C12	NA		
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	113	80-122
1,2-Dichloroethane-d4	108	77-137
Toluene-d8	103	80-120
Bromofluorobenzene	109	80-125

NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

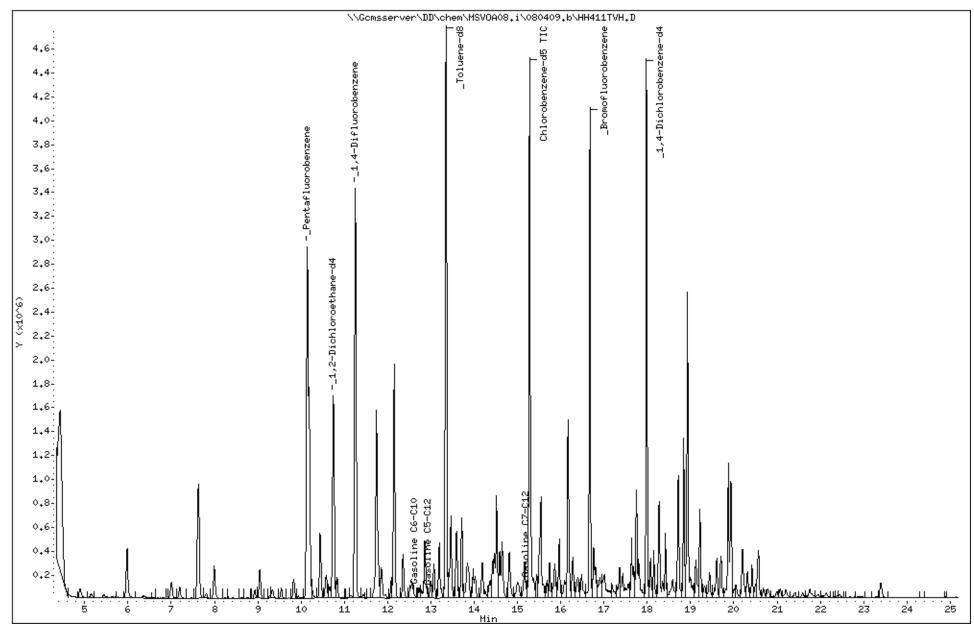

Page 1 of 1

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH419TVH.D

Date : 04-AUG-2009 19:24 Client ID: DYNA P&T Sample Info: S,213902-001

Instrument: MSVOA08.i

Operator: voc

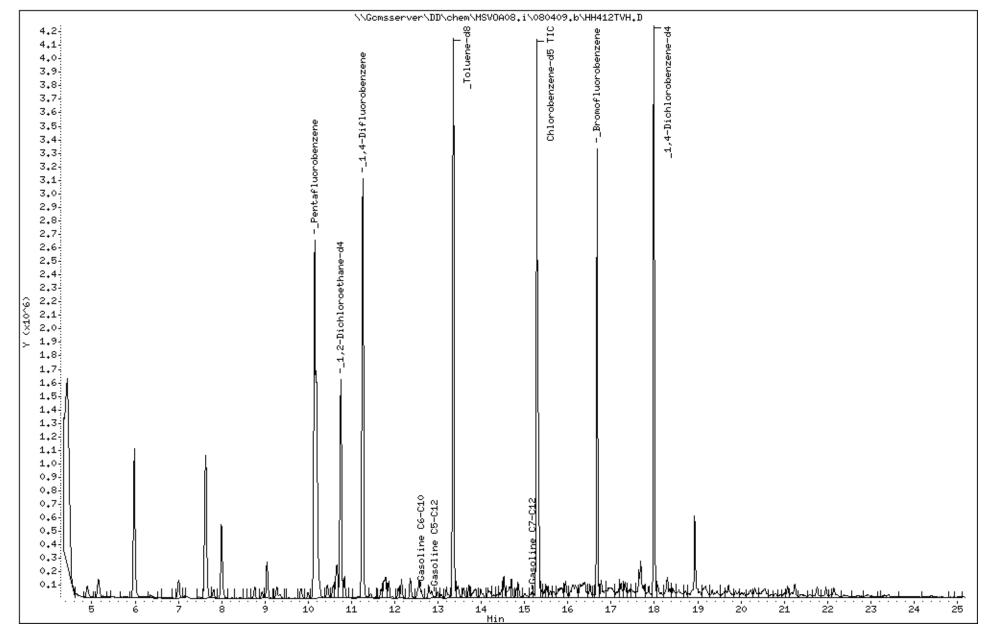


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH411TVH.D

Date : 04-AUG-2009 14:36 Client ID: DYNA P&T Sample Info: S,213902-002

Instrument: MSVOA08.i

Operator: voc

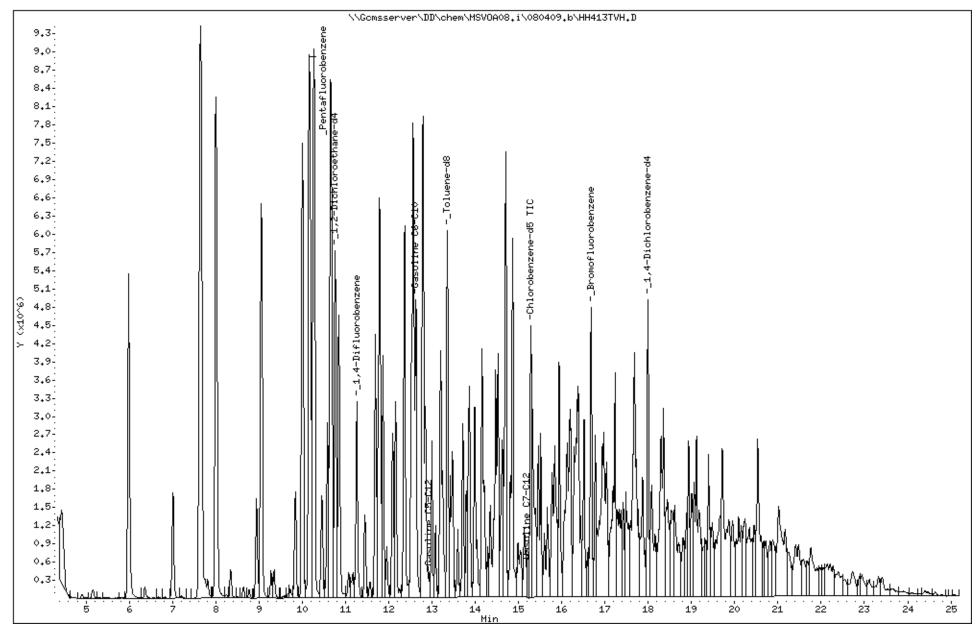


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH412TVH.D

Date : 04-AUG-2009 15:12 Client ID: DYNA P&T Sample Info: S,213902-003

Instrument: MSVOA08.i

Operator: voc



Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH413TVH.D

Date : 04-AUG-2009 15:48 Client ID: DYNA P&T Sample Info: S,213902-003

Instrument: MSVOA08.i

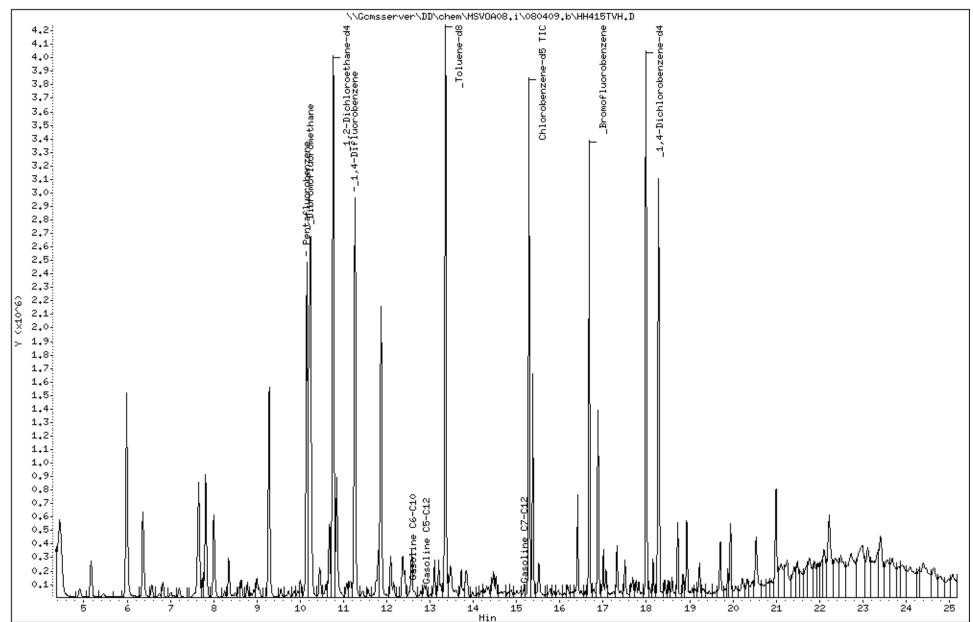
Operator: voc

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080309.b\HH313TVH.D

Date : 03-AUG-2009 14:58 Client ID: DYNA P&T Sample Info: S,213902-005

Instrument: MSVOA08.i

Operator: voc

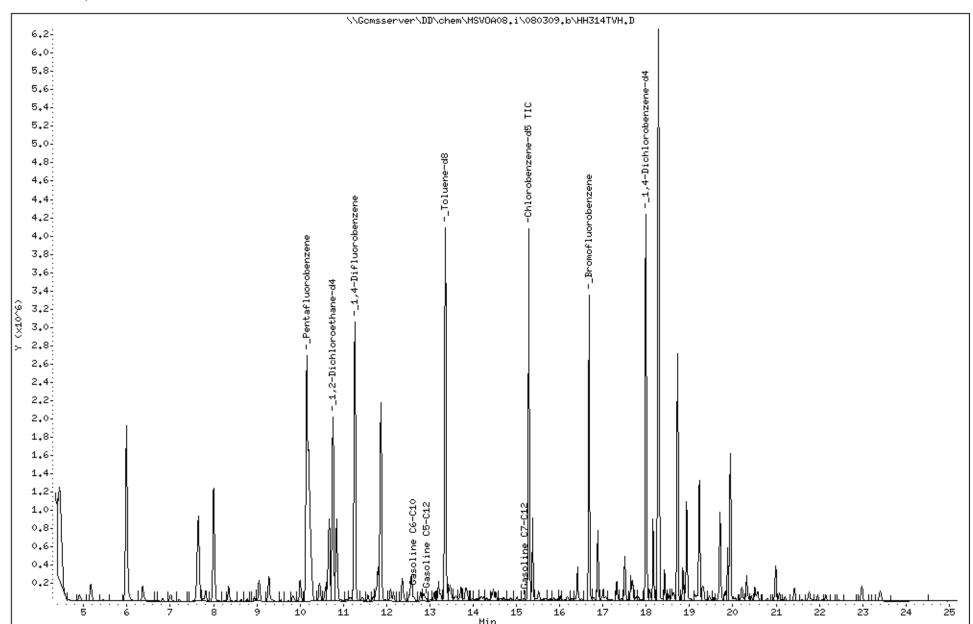


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH415TVH.D

Date : 04-AUG-2009 17:00 Client ID: DYNA P&T Sample Info: S,213902-006

Instrument: MSVOA08.i

Operator: voc

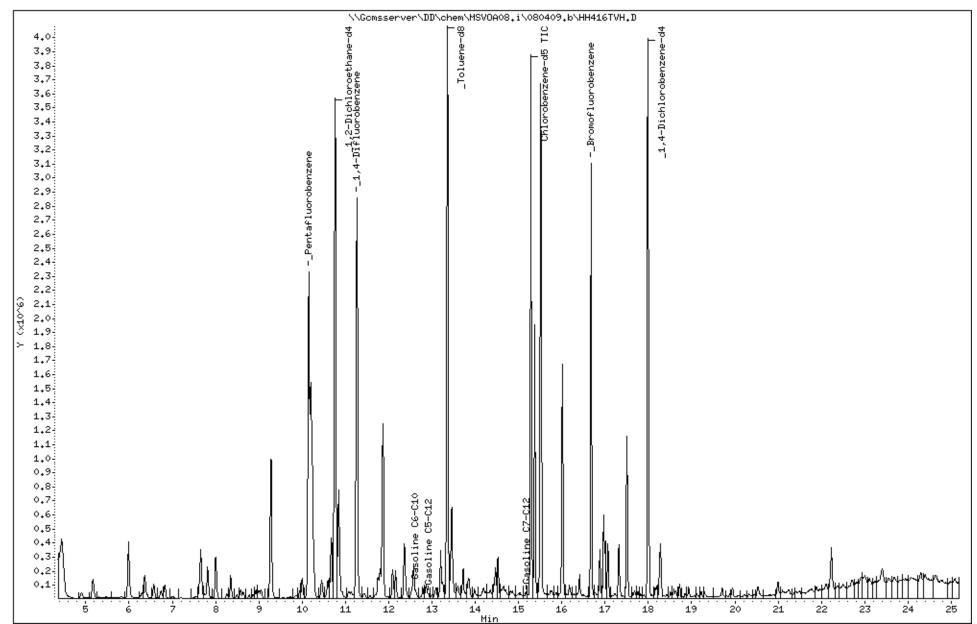


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080309.b\HH314TVH.D

Date : 03-AUG-2009 15:34 Client ID: DYNA P&T Sample Info: S,213902-007

Instrument: MSVOA08.i

Operator: voc

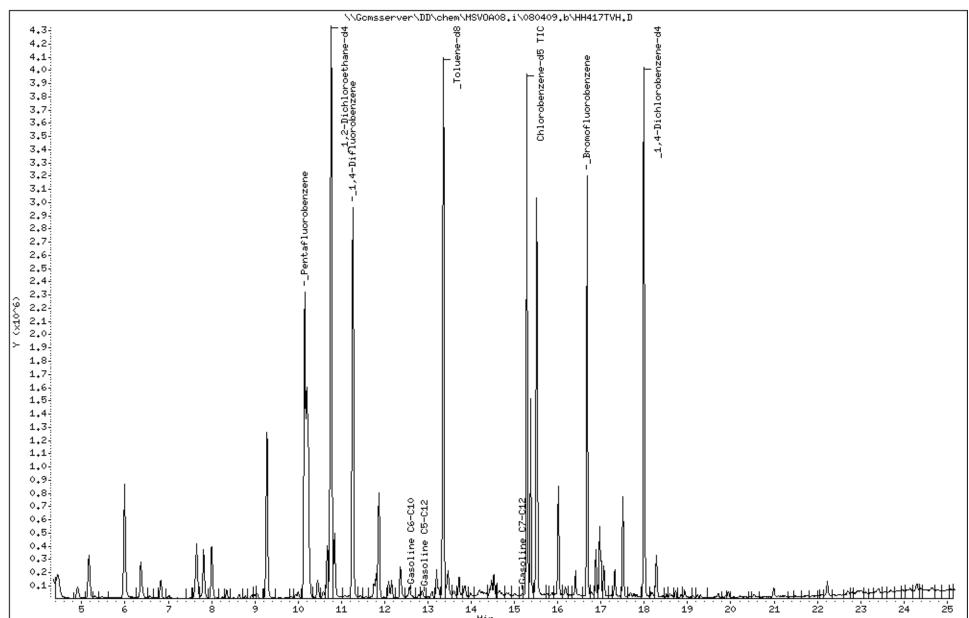


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH416TVH.D

Date : 04-AUG-2009 17:36 Client ID: DYNA P&T Sample Info: S,213902-008

Instrument: MSVOA08.i

Operator: voc

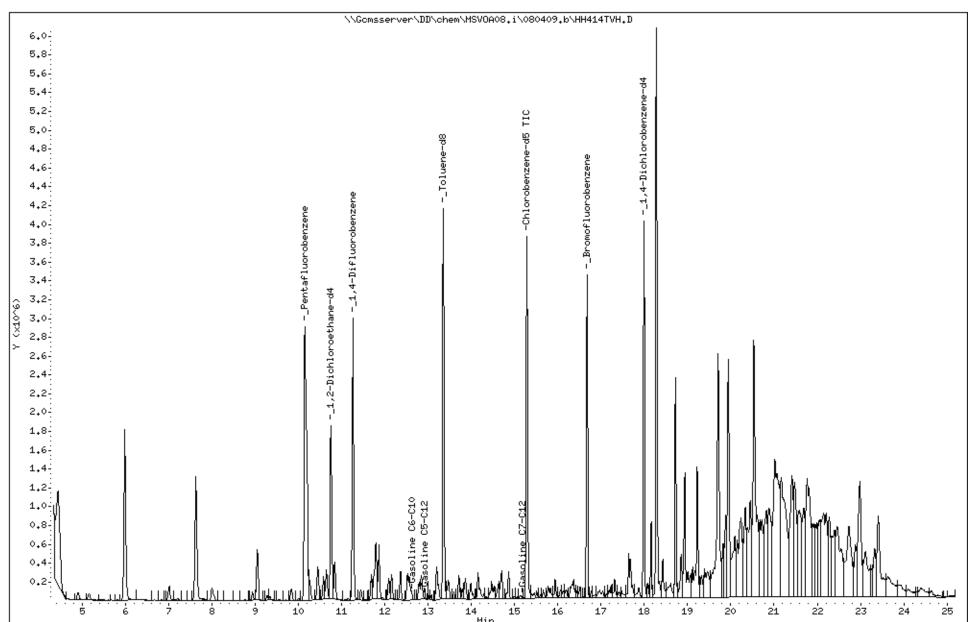


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH417TVH.D

Date : 04-AUG-2009 18:12 Client ID: DYNA P&T Sample Info: S,213902-009

Instrument: MSVOA08.i

Operator: voc

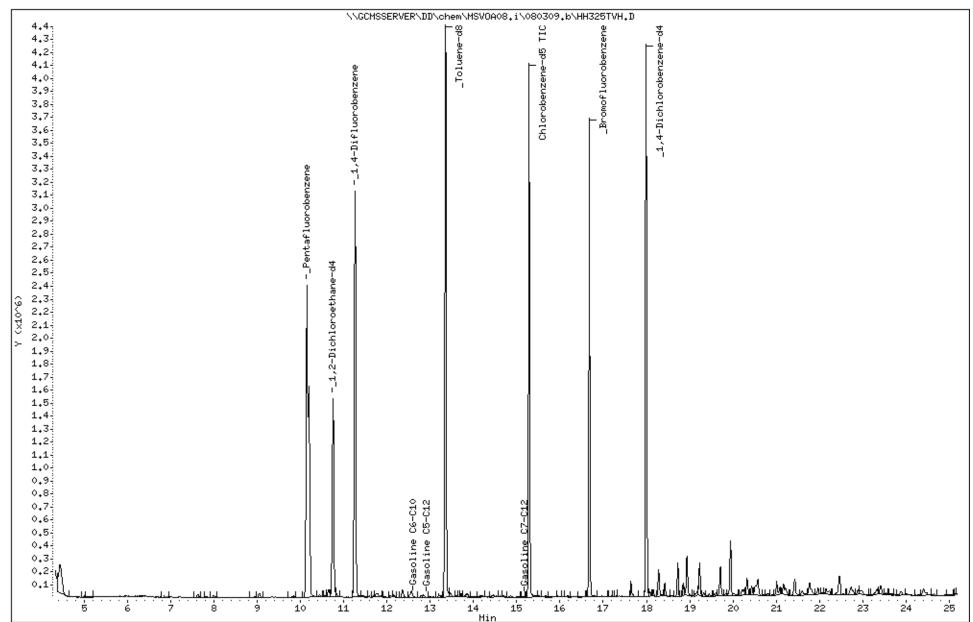


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080409.b\HH414TVH.D

Date : 04-AUG-2009 16:24 Client ID: DYNA P&T Sample Info: S,213902-010

Instrument: MSVOA08.i

Operator: voc

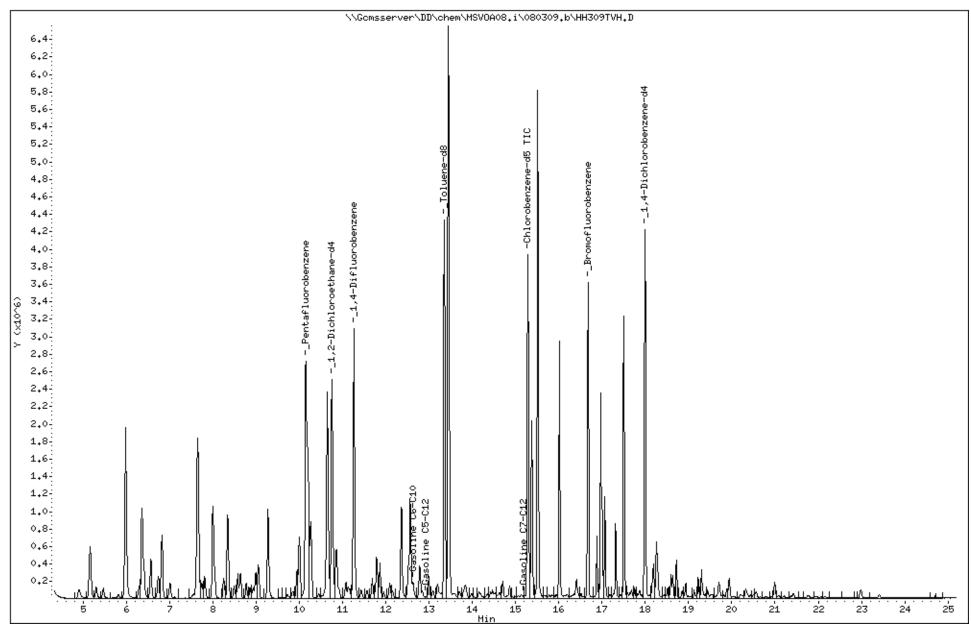

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\080309.b\\HH325TVH.D

Date : 03-AUG-2009 22:10 Client ID: DYNA P&T

Instrument: MSVOA08.i

Sample Info: S,213902-011

Operator: voc


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\080309.b\HH309TVH.D

Date : 03-AUG-2009 12:34 Client ID: DYNA P&T

lient ID: DYNA P&T Instrument: MSVOA08.i

Sample Info: CCV/BS,QC505938

Operator: voc

Total Dissolved Solids (TDS)							
Lab #:	213902	Location:	2250 Telgraph Av. Oakland				
Client:	Fugro West Inc.	Prep:	METHOD				
Project#:	609.004	Analysis:	SM2540C				
Analyte:	Total Dissolved Solids	Received:	07/31/09				
Matrix:	Water	Prepared:	08/04/09				
Units:	mg/L	Analyzed:	08/05/09				
Batch#:	153532						

Field ID	Type	Lab ID	Result	RL	Diln Fac	Sampled
B-1	SAMPLE 2	213902-001	880	10	1.000	07/30/09
B-2	SAMPLE 2	213902-002	770	10	1.000	07/30/09
B-3	SAMPLE 2	213902-003	880	10	1.000	07/28/09
B-4A	SAMPLE 2	213902-004	1,200	11	1.111	07/28/09
B-5	SAMPLE 2	213902-005	520	10	1.000	07/28/09
B-6	SAMPLE 2	213902-006	730	10	1.000	07/30/09
B-7	SAMPLE 2	213902-007	990	11	1.111	07/28/09
B-8	SAMPLE 2	213902-008	720	10	1.000	07/28/09
B-9	SAMPLE 2	213902-009	770	10	1.000	07/28/09
B-10	SAMPLE 2	213902-010	970	11	1.111	07/28/09
B-12	SAMPLE 2	213902-011	460	10	1.000	07/28/09
	BLANK Ç	C506190	ND	10	1.000	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Total Dissolv	ed Solids (TDS)
Lab #:	213902	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	METHOD
Project#:	609.004	Analysis:	SM2540C
Analyte:	Total Dissolved Solids	Batch#:	153532
Field ID:	B-1	Sampled:	07/30/09
MSS Lab ID:	213902-001	Received:	07/31/09
Matrix:	Water	Prepared:	08/04/09
Units:	mg/L	Analyzed:	08/05/09
Diln Fac:	1.000		

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC506191		104.0	92.00		88	75-120		
BSD	QC506192		104.0	96.00		92	75-120	4	20
SDUP	QC506193	878.0		868.0	10.00			1	20

RL= Reporting Limit

RPD= Relative Percent Difference

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 213913 ANALYTICAL REPORT

Fugro West Inc. Project : 609.004

1000 Broadway Location: 2250 Telgraph Av. Oakland

Oakland, CA 94607 Level : II

Sample ID B-1@2 B-1@7.5 B-1@10 B-1@12 B-1@15	Lab ID 213913-001 213913-002 213913-003 213913-004 213913-005	Sample ID B-5@12 B-5@15 B-6@2 B-6@7.5 B-6@12	Lab ID 213913-029 213913-030 213913-031 213913-032 213913-033
B-1@17	213913-006	B-6@15	213913-034
B-1@20	213913-007	B-7@5	213913-035
B-2@5	213913-008	B-7@7.5	213913-036
B-2@7.5	213913-009	B-7@12	213913-037
B-2@10	213913-010	B-7@15	213913-038
B-2@12	213913-011	B-8@7.5	213913-039
B-2@15	213913-012	B-8@15	213913-040
B-2@17	213913-013	B-8@20	213913-041
B-2@19.5	213913-014	B-9@5	213913-042
B-3@1	213913-015	B-9@10	213913-043
B-3@5	213913-016	B-9@15	213913-044
B-3@10	213913-017	B-9@20	213913-045
B-3@12	213913-018	B-10@2	213913-046
B-3@15	213913-019 213913-020	B-10@5	213913-047 213913-048
B-3@17 B-4A@5	213913-020	B-10@10 B-10@15	213913-048
B-4A@5 B-4A@7.5	213913-021	B-10@15 B-11@2	213913-049
B-4A@10	213913-022	B-11@2 B-11@7.5	213913-050
B-4A@12	213913-023	B-11@7.5 B-11@12	213913-051
B-4A@15	213913-025	B-12@5	213913-052
B-4A@18	213913-026	B-12@7.5	213913-054
B-5@2	213913-027	B-12@12	213913-055
B-5@7.5	213913-028	B-12@15	213913-056

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Manager

Project Manager

Date: <u>08/12/2009</u>

CASE NARRATIVE

Laboratory number: 213913

Client: Fugro West Inc.

Project: 609.004

Location: 2250 Telgraph Av. Oakland

Request Date: 08/03/09 Samples Received: 08/03/09

This data package contains sample and QC results for fifty six soil samples, requested for the above referenced project on 08/03/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recoveries were observed for bromofluorobenzene (FID) and trifluorotoluene (FID) in many samples, due to interference from coeluting hydrocarbon peaks. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

High recovery was observed for diesel C10-C24 in the MS of B-3@1 (lab # 213913-015); the LCS was within limits. High RPD was also observed for diesel C10-C24 in the MS/MSD of B-3@1 (lab # 213913-015). B-1@2 (lab # 213913-001), B-6@2 (lab # 213913-031), and B-11@2 (lab # 213913-050) were diluted due to the dark and viscous nature of the sample extracts. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High response was observed for tert-butyl alcohol (TBA) in the CCV analyzed 08/05/09 13:38; affected data was qualified with "b". High recovery was observed for tert-butyl alcohol (TBA) in the MSD of B-11@2 (lab # 213913-050); the LCS was within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated samples. High recovery was observed for tert-butyl alcohol (TBA) in the LCS for batch 153546; this analyte was not detected at or above the RL in the associated samples. High recoveries were observed for 1,2-dichloroethane and tert-butyl alcohol (TBA) in the MS/MSD of B-12@15 (lab # 213913-056); the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated samples. Low recoveries were observed for ethylbenzene and methyl tert-amyl ether (TAME) in the MS/MSD of B-8@20 (lab # 213913-041); the LCS was within limits, and the associated RPDs were within limits. High RPD was observed for benzene. High surrogate recovery was observed for dibromofluoromethane in B-2@10 (lab # 213913-010); no target analytes were detected in the sample. High surrogate recovery was observed for bromofluorobenzene in B-2@15 (lab # 213913-012); no target analytes were detected in the sample. High surrogate recoveries were observed for 1,2-dichloroethane-d4 in many samples. A number of samples were diluted due to high hydrocarbons. B-9@10 (lab # 213913-043) and B-9@15 (lab # 213913-044) were diluted due to high non-target analytes. No other analytical problems were encountered.

Page 1 of 2

CASE NARRATIVE

Laboratory number: 213913

Client: Fugro West Inc.

Project: 609.004

Location: 2250 Telgraph Av. Oakland

Request Date: 08/03/09 Samples Received: 08/03/09

Total Organic Carbon (TOC) (WALKLEY-BLACK):

No analytical problems were encountered.

ES-F10 CHAIN OF CUSTODY

PROJECT NO.: 609.004

RELINQUISHED BY: (Signature)

RELINQUISHED BY: (Signature)

RELINQUISHED BY: (Signature)

PROJECT NAME: 2250 Telegraph Avenue - Oakland

213913

PAGE \ OF 5

ANALYSIS REQUESTED

cleanu

	JNTACT: Karen Eme	ery									TU	JRN.	AR	OUN	ID:	5 d	ay TAT		<u></u>				la gel	tes		1				
SAMPLED BY	Y: Russell Carter																						silica	Oxygenates		1				
		_		-							_						<u> </u>						with	õ		i				
			MA [*]	TRIX			COI	NTAI	NER	<u>s</u>		PR	ESE	RVA	TIVE	<u>E</u>		SAN	IPLING D	ATE				Fuel		6	i			
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.																						and TPHmo	ATBE, aveng	<u> </u>	portin				
		WATER	SOIL	AIR		VOA	LITER	PINT	TUBE		걸	H ₂ SO ₄	HNO3	30	OTHER	NONE	MONTH	DAY	YEAR	TIME	Quantity	TVHg	TPHd a	BTEX, MTBE, Fue Lead Scavengers		EDF Reporting				
	B-102		X				_	_	X		T	T_		\\\		† <u> </u>	07	27	019	1533		1	X	Ž		X		1	+	+-
	B-1@75		X						X					1			07	27	09	1535	1	1/2	X	X		X		\top	\top	\top
	B-1@10		X			<u>. . </u>			K					X			07	27	09	1839		X	\Box	/ X						
	B-1@12		X						\mathbf{X}					X			07	27	09	1540	1	X	XT	X		X				T
	B-1015		X						χL		L			X			07	27	09	1244	1	X		χ		X				
	B-1@17		X						X					X			07	27	09	1547	Ī	X		X		7				T
	B-1@20		X						X					X			07	27	09	1549	1	K		X		X		\neg		\top
	B-2@5		X					`	X					X			07	27	09	1603			X	X	X			\top		\top
	B-2@7.5		X					`	X					Ý			107	27	09	1605	7	X		X		V		\top	\top	1
	B-2010		X					7	XI					X			07	27		1606	\Box		\mathbf{x}	X		X		\top	十	1
	B-2012		X											X			07	77		1 608	1	X		<u> </u>		X	_	\top	\top	+
	B-2@15		X					1	1					文		1	07	27	09	1610	\		X	Ŷ		X	+	+	+	+-
	B-2@17		X					X						1	†	1	di	27		1611	1	X	+	欠	\vdash	ΙΧ̈́Ι	\dashv	十	+	+
			7			*	ŧ	*						-/-								<u> </u>			اا	<u> </u>	<u> </u>			
	CI	HAIN	I OF	cus	TOD	YR	FCC)BD									COMME	NTS & N	OTES: 1	USE OUOTATIO	V# (CT172	20090	9MP	WHE	N IN	IVOL	CINC	3	

DATE/TIME

DATE/TIME

DATE/TIME

8/3/09

1300

LAB: Curtis & Tompkins

RELINQUISHED BY: (Signature)

DATE/TIME

RECEIVED BY: (Signature)

DATE/TIME

DATE/TIME

DATE/TIME

RECEIVED BY: (Signature)

RECEIVED BY: (Signature)

RECEIVED BY: (Signature)

JUGRO

FUGRO WEST, INC.

1000 Broadway, Suite 440

Oakland, California 94607

Tel: 510.268.0461 Fax: 510.268.0545

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06 Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

intact cold RC

213913

ES-F10 CHAIN OF CUSTODY

PROJECT NAME: 2250 Telegraph Avenue - Oakland

PROJECT NO.: 609.004

PROJECT CONTACT: Karen Emery

TURNAROUND: 5 day TAT

SAMPLED BY: Russell Carter

	· · · · · · · · · · · · · · · · · · ·																					with	Öxòč					- 1
			<u>M.</u>	ATRIX		<u>c</u>	<u>ONT</u>	AINER	<u>s</u>		PRE	SEF	RVAT	IVE			SAM	PLING D	ATE			TPHmo w	_		0			
	LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	AIR	¥ OX	LITER	PINT	TUBE		HCL	H₂SO₄	HNO ₃	ICE	OTHER	NONE	MONTH	DAY	YEAR	TIME	Quantity	TVHg	TPHd and TP	BTEX, MTBE, Fue Lead Scavengers	<u>Jac</u>	EDF Reporting			
-14		0-2019.5	7					X					Ϋ́			197	27	Oa	1012	Ť					X		11	\exists
-15		B-30 (X					X			07	27	09	1000	1		χ			X	1	+ +	
-16		B-3(25	1					7					Y			01	27	09	1557			Ý			\mathbf{x}	 	1	-
-17		B-3000	7					K					X			07	27	00	1014	1	V				X	1 1	++	_
-18		B-3012	Ý					X					X			07	27	09	1523	_	文	Ŷ	X		X	1	1	\exists
-19		B-36015	X					K					X			01	17	0 9	1033		X		X		χ̈́	++-	++	ㅓ
- 20		B.3@17	Ŋ					V					X			02	27	Oa	1030	<u>.</u>		$ \langle \rangle $			幻		+	\dashv
- 21		B-42@5	X					Ý					X			07	17	09	0931	1		$\langle \cdot \rangle$		-	X	+ +-	+	\dashv
ースス		B-4a(0)7.5	X		T			X					V			07	27	56	0934	1	\vdash	1			$\langle \cdot $	+ +	++	\dashv
-73		B-40010	1					X					X			5/1	57	ŏ a	0937	1					X		++	\dashv
一头		B-4a(0) 12	Ϋ́					文					V			07	71	o a	0939	$\dot{}$	7	分	-X		$\langle \cdot $	++	++	
-25		B-4@ 15	X		T			ΙχΊ					X				27	Oa	0947	\exists	7	$ \langle\rangle $	$\frac{1}{2}$		Ϋ́		+++	\dashv
-26		B-42018	X					义				·	X			07	21	0	1132	1	$ +\rangle$	$\langle \rangle$	_/		χÌ	+	++	ㅓ

	CHAIN OF	CUSTO	DDY RECORD		C
RELINQUISHED BY: (Signature)	DATE/	TIME	RECEIVED BY: (Signature)	DATE/TIME \$ 13/9 1300	
RELINQUISHED BY: (Signature)	DATE		RECEIVED BY: (Signature)	DATE/TIME	7
RELINQUISHED BY: (Signature)	DATE/T	IME	RECEIVED BY: (Signature)	DATE/TIME	ļ.
RELINQUISHED BY: (Signature)	DATE/T	IME	RECEIVED BY: (Signature)	DATE/TIME	

COMMENTS & NOTES: USE QUOTATION # CT17200909MP WHEN INVOICING.

FUGRO WEST, INC.

PAGE OF 5

ANALYSIS REQUESTED

silica gel cleanu

1000 Broadway, Suite 440

Oakland, California 94607

Tel: 510.268.0461 Fax: 510.268.0545

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06

Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

intact cold RC

ES-F10 CHAIN OF CUSTODY

PROJECT NAME: 2250 Telegraph Avenue - Oakland

213913

PAGE 3 of 5

ANALYSIS REQUESTED

PROJECT NO	D.: 609.004			LAB: Curtis & Tompki	ins	. lean clean	
PROJECT CO	ONTACT: Karen Eme	ery		TURNAROUND: 5 da	ay TAT		
SAMPLED BY	: Russell Carter					silica gel	
	_					silica ygenat	
						with with	
		MATRIX	CONTAINERS	PRESERVATIVE	SAMPLING DATE	Hmo v	
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.					Quantity TVHg TPHd and TPHmo BTEX, MTBE, Fue Lead Scavengers TD C EDF Reporting	
I.D. NOWBER		<u> </u>		4	MONTH DAY YEAR TIME	and and Scav Scav Seepo	
		WATER SOIL AIR	VOA LITER PINT TUBE	HCL H ₂ SO ₄ HNO ₃ ICE OTHER		Quantity TVHg TPHd a BTEX, I Lead Sc EDF Re	
,	B-5@ 2	X	X	I I I U O Z	07 27 09 1321	V X X X	
6	B-50 7.5	X					+++
1	B-5@12	X		X	0727091328		
2	B-50 is	X			0727091332		-
	B-662	X			0727091345		
٧	B-6@7.5	Ϋ́	X	X	0727091349	TXXXX	
3	B-6@12	X	X	X	9727091451		† † † † -
<u> </u>	B-60 15	X		X	0727091354	1 X X X	
7	B-705	X	X	X	0727091443	IXXXXXX	
,	B-7@7.5 B-7@12	X	X	X	0727091445		
		X	1	X		YXXX X	142
<u> </u>	B-7@15 B-8@7.5	X		, in the second	0727091455	1 X X X X	
	D 0 W 1.3				0727091415		
	CH	IAIN OF CUSTO	ODY RECORD		COMMENTS & NOTES: USE QUOTATION	N # CT17200909MP WHEN INVOICING	;.
DELINOUIGUED		DATE					i

	CHAIN OF CUS	TODT RECORD	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME
Karen Em	8 3/09 130	Plushy In	8/3/09 1300
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME

UGRO

FUGRO WEST, INC.

1000 Broadway, Suite 440

Oakland, California 94607

Tel: 510.268.0461 Fax: 510.268.0545

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06

Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

intact code RL

B-1@7.5 time 14:53

213913

ES-F10 CHAIN OF CUSTODY

PAGE 40F S PROJECT NAME: 2250 Telegraph Avenue - Oakland **ANALYSIS REQUESTED** ith silica gel cleanu PROJECT NO.: 609.004 LAB: Curtis & Tompkins PROJECT CONTACT: Karen Emery ⋖ర **TURNAROUND: 5 day TAT** Oxygenates SAMPLED BY: Russell Carter

				MAT	<u>RIX</u>	İ		CON	TAIN	IERS	<u> </u>		PRI	ESEF	RVAT	ΓIVE			SAM	PLING D	ATE			TPHmo w	Fuel (ers					
	LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER		1000		HCL	H ₂ SO₄	HNO3	ICE	отнек	NONE	монтн	DAY	YEAR	TIME	Quantity	TVHg	TPHd and TPH	BTEX, MTBE, Fu Lead Scavengers		EDF Reporting			
49		13-8@15		X			\perp		•	X					X			07	27	<u>a</u>	1428	1	X	X	Y		X			
۲۲.		B-8@20		X					3						X			07	77	09	1431		Ý	X	×		X	1		
42		B-9@5		X					7	3					X			07	717	<u>5</u> a	1513	i	$\langle \cdot \rangle$	Ý	X		X			
43		B-9@10		X					15	7					X			07	2/7	09	1516		Ŷ	V	~			+		+
44		B-9015		X			\top		15						X			07	77	Ω	1519		V	\checkmark	->-		XX	+	\vdash	-+-1
45		13-90,20		X					X		+				X			05	1/1	ca	1527	Н	Ŷ	\Diamond	$\frac{}{}$		X	+-	\vdash	-
46		B-106 2		X				\top	15			-			X		_	01	27	O a		1	KH	$\frac{1}{2}$	<u> </u>			+	$\vdash \vdash$	\dashv
47		B-1005		Ϋ́			\dashv	-	┪	` _	+			-	V			0 1	27	\sim 1 \sim 1		H	$ \dot{\lambda} $	Ÿ	X		Ϋ́	_	\vdash	-
48		B-100 10		X	+	\dashv	+		Ж	\geq	+-	\vdash	-		\Diamond		-			\smile \vdash \vdash		Н	X	Ž	<u> </u>	X	X		\vdash	
49		72		R	\dashv		+		╁	} 	_			-	\Diamond		_	$9 \pm$		09	1319	<u> </u>	1	X	<u> </u>	$\vdash \vdash$	Χ		1	
50		B-10@15		\$	-+	\dashv	+					<u> </u>			$\dot{\nabla}$		ļ	97	2 7	09	1314	1	Ž	X	X		X		\perp	
ارًا م				↲					_\>		_				X			07	4 1	09	7110	1	X	X	X		X			
ر رس		B-11@75		λ			_	_	X			Ī			X			07	27	9	1125		IXI	X	X	X	*		ΙΤ	
52		B-110-12		∇					_ 7	<u> </u>					X			07	27	09	1136	1	X	X	X		X			

	CHAIN OF CUSTO	DDY RECORD		COMMENTS & NOTES: USE QUOTATION # CT17200909MP WHEN INVOICING.
RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	8/3/09 1300	RECEIVED BY: (Signature)	DATE/TIME 8/3/01 Dae DATE/TIME	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	FUGRO WEST, INC. 1000 Broadway, Suite 440
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Oakland, California 94607 Tel: 510.268.0461 Fax: 510.268.0545

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06

Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

213913

ES-F10 CHAIN OF CUSTODY

SAMPLED BY: Russell Carter

 $\infty_{\mathbf{r}}$

PROJECT NAME: 2250 Telegraph Avenue - Oakland

PROJECT NO.: 609.004

PROJECT CONTACT: Karen Emery

TURNAROUND: 5 day TAT

ANALYSIS REQUESTED

All cases of the control of the

PAGE 5 OF 5

				MA.	TRIX			cc	ONT/	INE	RS			PRE	SEF	RVA	ΓΙVE					SAM	PLIN	G DA	\TE					Hmo with	Fuel Oxy		٥				
:3	LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	AIR		VOA	LITER	PINT	TUBE			нсг	H ₂ SO₄	HNO3	ICE	отнек	NONE	МС	НТИ	D/	AY	YEA	\R		TIMI	E	Outsite	TVHg	TPHd and TPHmo with	BTEX, MTBE, Fuel Oxy Lead Scavengers	1	EDF Reporting				
7		B-12(0),5		Ι Χ						X						X			0	7	2	7	\sim	9	1	2 5	€ C		X	X	X		X				1
55		B-12@,75		X						χ						Χ̈́			$\mathcal{L}_{\mathcal{C}}$	4	2	7	-	9	1/2	2 \) (X	X	X		X]
/		B-12@12		_/_						Χ̈́			_			X			Ċ	7	2	7	<u> </u>	9	11	2	11	0 1	X	X	X		X]
ام (B-12@15		X						4						X			\mathcal{C}	7	1	<u>: 1</u>	0	9	1.	<u> </u>	+ □	111	X	X	×		X		\perp		
Ì																								\perp		1				L					_[_		
ŀ																			<u> </u>	<u> </u>					_			_ _	_								
ŀ								_						_					<u> </u>	<u> </u>		_				\perp		\bot	_	_					\perp		╛
ŀ														-					ļ					_		_	\downarrow	\perp	.		ļ <u>.</u>	丄	\perp	 \perp	\bot		
Ì					\vdash				_			-	_						<u> </u>					4		_		1	┸		<u> </u>	1_	\perp			\perp	1
ŀ				_	\vdash			_						_					<u> </u>				_	4	_	4		\bot			<u> </u>	\perp	4			\perp	╛
ŀ													-							ļ						<u> </u> _	_	1				\perp			\perp	\bot	1
ł						-			_		\dashv								<u> </u>				.	_		_	4	\perp	丄		ļ	\perp	\perp				1
L				L															L									\perp									

	CHAIN OF CUSTO	DDY RECORD		
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIM	ſΕ
Karen Enge	3/3/09 1302		8/3/29 13	00
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIM	1E
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	=
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE/TIME	Ē

TUGRO

FUGRO WEST, INC.

1000 Broadway, Suite 440 Oakland, California 94607

Tel: 510.268.0461 Fax: 510.268.0545

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06

Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

intact wid Ru

COMMENTS & NOTES: USE QUOTATION # CT17200909MP WHEN INVOICING.

Micah Smith

From:

"Emery, Karen [FWI]" < kemery@fugro.com>

To:

"Micah Smith" <micah.smith@ctberk.com>; "Young, Glenn [FWI]" <gyoung@fugro.com>

Sent:

Wednesday, August 05, 2009 8:30 AM

Attach:

Revised COC pg2.PDF

Subject:

RE: 609.004 - C&T Login Summary (213913)

Hi Micah-

Please find revised page 2 of COC. Please analyze sample <u>B-2@19.5</u> for TVHg and BTEX, MTBE, fuel oxygenates & lead scavengers.

8260 will be fine for the water samples. Please let me know if you have any questions.

Thanks, Karen

From: Micah Smith [mailto:micah.smith@ctberk.com]

Sent: Monday, August 03, 2009 5:33 PM **To:** Young, Glenn [FWI]; Emery, Karen [FWI] **Subject:** 609.004 - C&T Login Summary (213913)

Sample B-2@19.5 (lab # 213913-014) did not have any anlyses selected and is logged in on hold. Also the water samples that came in last week were logged in to run the TPH-gas by 8260. With soils we can only run TPH-gas by GC 8015. Do you need the waters reported by GC as well or will 8260 be fine for the waters. Thanks Micah

C&T Login Summary for 213913

Project: 609.004	Report To: Fugro West Inc.	Bill To: Fugro West 1
Site: 2250 Telgraph Av. Oakland	1000 Broadway	1000 Broadv
Lab Login #: 213913	Suite 440	Suite 440
Report Due: 08/10/09	Oakland, CA 94607	Oakland, CA
PO#:	ATTN: Karen Emery	ATTN: Kare
C&T Proj Mgr: Micah Smith	(510) 268-0461	(510) 268-04

Client ID	Lab ID	Sampled	Received	Matrix	Analyses	COC#	Comments
-							
B-1@2	001	07/27	08/03				
				Soil	ВТОХ		
				Soil	EDF		
				Soil	SILICA GEL		
				Soil	ТЕНМ		Silica Gel

	CHAIN OF CUST																						P	AGI	= (2 _ OF	5	
	ME: 2250 Telegraph	1 Av	enue	e - Oa	kland	1										************************	***************************************				Г	·			-	QUES	-	
PROJECT NO		******		·					***********	LA	B: (Curti	s & *	Tom	pki	ns				_		Banı		T				
	PROJECT CONTACT: Karen Emery TURNAROUND: 5 day TAT										lel C	80 80																
SAMPLED BY	: Russell Carter								VT	~~~~~	·	•		· * · · · · · · · · · · · · · · · · · · ·			·····	·		_		silica g	genate					
MATRIX CONTAIN				AINER	es	PRESERVATIVE						SAMPLING DATE					1	no with:	Fuel Oxygenates									
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER			4							13			ш	MONTH	DAY	YEAR	TIME	<u>}</u>		TPHd and TPHmo with silica gel cleanu	BTEX, MTBE, Fue Lead Scavengers	, D	Reporting	T- Harry Aven Selvine		
	B-2019.5	×	SOIL	AIR	VOA	LITER	NI N	TUBE		호	H ₂ SO ₄	HNO3		OTHER	NONE	W A		 		Quantity	₹ PHS	F	BTE	(ᇤ			
	B-3@(1	f	-	+		T)	_	╂─			X	-		07	77	09	1000	1	‡×	-	 X	-	Χ	1	€.8	12
	B-365		X					4					文			07	25	09	1000	1	+	1	 	+	X	-	╁╌┨	
	B-3000	┣-	X	-	-	┼—		X		_			X	\perp		07	22	09	1014		X	Ŷ	X		X		11	
	6-36015	 	X	\vdash	┪	╁		X		-	-		X	-	-	07	77	09	1023	L	ΙX	X	X		X			
	B-3@17		V			T	-	\Diamond	_	 			X	\dashv	\dashv	03	2/7	09	1033	1	+7	1X	1	-	X		-	_
	B-4005		文					V					文		7	07	2/1	09	0931	1	╁	X			Θ		+	
	B-4007.5	 	X	↓ ↓		<u> </u>		X					X			07	27	09	0934	1	T	₩	ļ	+		_	+	
	15.400,10 15-400 12	┨	X	┼┼		┼	_	X					X	_	_	Ď 7	27	09	0937	Ī		X			X	_	† †	_
	B-460 15	l	X	$\dagger \pm \dagger$	-	\vdash	_						分	-	-	97	<u> </u>	09	0939	ļ	X	X	Ž		X			
	B-42@18		文		上			2							1	07	27	09	0991	-	1/2	X	1	 	X	+	-	_
	CI	IAIN	OF	CUST	ODY	REC	ORI)							_	COMMEN	ets & N	<u> </u>	ISE QUOTATION	1.4		100						
RELINQUISHED	BY: (Signature)			TIME					gnature)	*****************	D/	ATE/	ГІМЕ				O'LL.	SE QUOINING	T # 1	CII	/ 4003	JUYINIP	WHE	NIN	VOIC	NG.	
Kau (m 8/3	6	9	130	zφ ,	Øi.	h	2. 1			. \$	13/	9	300	٥													
RELINQUISHED	BY: (Signature)	D	ATE	TIME		CEIV	ED É	Y: (Si	gnature)	-		ATE/I	TIME	1													
RELINQUISHED	BY: (Signature)	DA	TE/I	TIME	REG	CEIVI	ED B	Y: (Si	gnature	.)		DA.	TE/TI	ME	-											·		······································
								•		•						f	GR	PC)		11			RO WE					
RELINQUISHED	BY: (Signature)	DA	TE/Ţ	ГІМЕ	REC	EIVE	D B	Y: (Si	gnature)	·	DA'	re/TI	ME	┪								, Calif					
																	^	\equiv	Tel:				, Calli 461 F				EAE.	

COOLER RECEIPT CHECKLIST

d	Curtis & Tompkins, Ltd.
---	-------------------------

Login #		5-3-09 ect	Number of cooler	s
Date Opened By (Date Logged in By ((print) Tray Wa	(sign)	Frof EM	(m)
Did cooler come with a shipping info	ping slip (airbill, etc		YES	NO
2A. Were custody seals present How many 2B. Were custody seals intact us 3. Were custody papers dry and 4. Were custody papers filled of 5. Is the project identifiable from 6. Indicate the packing in cooled	Name upon arrival? I intact when receive ut properly (ink, sigom custody papers?	ed?_ ned, etc)? (If so fill out to	DateYES YES YES P of form)	NO MA
Bubble Wrap Cloth material Temperature documentation:] Cardboard	_ ~	None Paper to	wels
Type of ice used: 🛛 W	et □ Blue/Gel	□None	Temp(°C)	
	n ice & cold without	a temperature	blank	
☐ Samples received on	ice directly from th	e field. Cooling	process had begun	1
8. Were Method 5035 sampling	g containers present	?	'	YES (NO)
If YES, what time were 9. Did all bottles arrive unbroke	they transferred to 1	freezer?		
10. Are samples in the appropri	iate containers for in	adicated tests?		ES NO ·
11. Are sample labels present, in	n good condition an	d complete?	7	ZES NO
12. Do the sample labels agree	with custody paners	?	*	YES NO
13. Was sufficient amount of sa	mple sent for tests r	equested?	<u>এ</u>	ES NO
14. Are the samples appropriate	ely preserved?			NO (N/A)
15. Are bubbles > 6mm absent i	in VOA samples? _	1.11	YES	NO NA
16. Was the client contacted con	ncerning this sample	delivery?		YES NO
If YES, Who was called	•	_ ву	Date:	
COMMENTS				
*				

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3
Effective: 23 July 2008
Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Total Volatile Hydrocarbons Lab #: 213913 2250 Telgraph Av. Oakland Location: EPA 5030B Client: Fugro West Inc. Prep: Project#: 609.004 Analysis: EPA 8015B Matrix: Soil Sampled: 07/27/09 08/03/09 Units: mg/Kg Received: Basis: as received

Field ID: B-1@2 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-001 Analyzed: 08/04/09

AnalyteResultRLGasoline C7-C12ND0.98

Surrogate%RECLimitsTrifluorotoluene (FID)9454-152Bromofluorobenzene (FID)9150-152

Field ID: B-1@7.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-002 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate%RECLimitsTrifluorotoluene (FID)9554-152Bromofluorobenzene (FID)9250-152

Field ID: B-1@10 Diln Fac: 20.00 Type: SAMPLE Batch#: 153638 Lab ID: 213913-003 Analyzed: 08/07/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 170
 20

Surrogate %REC Limits
Trifluorotoluene (FID) 161 * 54-152
Bromofluorobenzene (FID) 155 * 50-152

Field ID: B-1@12 Diln Fac: 20.00 Type: SAMPLE Batch#: 153638 Lab ID: 213913-004 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C1232020

Surrogate%RECLimitsTrifluorotoluene (FID)10854-152Bromofluorobenzene (FID)207 * 50-152

ND= Not Detected

Page 1 of 14

4 0

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Total Volatile Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Client: EPA 5030B Fugro West Inc. Prep: Analysis: Sampled: Project#: 609.004 EPA 8015B 07/27/09 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

 Field ID:
 B-1@15
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153520

 Lab ID:
 213913-005
 Analyzed:
 08/04/09

Analyte Result RL
Gasoline C7-C12 1.1 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)11254-152Bromofluorobenzene (FID)11150-152

Field ID: B-1@17 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-006 Analyzed: 08/04/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 2.0 Y
 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 160 * 54-152
Bromofluorobenzene (FID) 128 50-152

Field ID: B-1@20 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-007 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 86 54-152
Bromofluorobenzene (FID) 84 50-152

Field ID: B-2@5 Diln Fac: 1.000
Type: SAMPLE Batch#: 153520
Lab ID: 213913-008 Analyzed: 08/04/09

AnalyteResultRLGasoline C7-C12ND0.97

Surrogate%RECLimitsTrifluorotoluene (FID)9754-152Bromofluorobenzene (FID)8850-152

Page 2 of 14

4.0

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

 Field ID:
 B-2@7.5
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153520

 Lab ID:
 213913-009
 Analyzed:
 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9654-152Bromofluorobenzene (FID)8750-152

Field ID: B-2@10 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-010 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 0.96

Surrogate %REC Limits
Trifluorotoluene (FID) 119 54-152
Bromofluorobenzene (FID) 119 50-152

Field ID: B-2@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-011 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)11854-152Bromofluorobenzene (FID)12150-152

Field ID: B-2@15 Diln Fac: 10.00 Type: SAMPLE Batch#: 153638 Lab ID: 213913-012 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C1216 Y10

Surrogate%RECLimitsTrifluorotoluene (FID)11654-152Bromofluorobenzene (FID)12650-152

Page 3 of 14

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

 Field ID:
 B-2@17
 Diln Fac:
 5.000

 Type:
 SAMPLE
 Batch#:
 153638

 Lab ID:
 213913-013
 Analyzed:
 08/08/09

Analyte Result RL
Gasoline C7-C12 33 Y 5.0

Surrogate %REC Limits
Trifluorotoluene (FID) 173 * 54-152
Bromofluorobenzene (FID) 189 * 50-152

Field ID: B-2@19.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-014 Analyzed: 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 0.99

Surrogate %REC Limits
Trifluorotoluene (FID) 101 54-152
Bromofluorobenzene (FID) 103 50-152

Field ID: B-3@10 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-017 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9454-152Bromofluorobenzene (FID)9550-152

Field ID: B-3@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-018 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 0.98

Surrogate%RECLimitsTrifluorotoluene (FID)12054-152Bromofluorobenzene (FID)9550-152

4.0

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 4 of 14

 Field ID:
 B-3@15
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153520

 Lab ID:
 213913-019
 Analyzed:
 08/05/09

Analyte Result RL
Gasoline C7-C12 8.7 Y 0.99

Surrogate %REC Limits
Trifluorotoluene (FID) 434 * 54-152
Bromofluorobenzene (FID) 295 * 50-152

Field ID: B-4A@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-024 Analyzed: 08/05/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 4.5 Y
 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 166 * 54-152
Bromofluorobenzene (FID) 166 * 50-152

Field ID: B-4A@15 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-025 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 0.99

Surrogate %REC Limits
Trifluorotoluene (FID) 98 54-152
Bromofluorobenzene (FID) 98 50-152

Field ID: B-5@2 Diln Fac: 1.000 Type: SAMPLE Batch#: 153520 Lab ID: 213913-027 Analyzed: 08/05/09

AnalyteResultRLGasoline C7-C12ND0.96

Surrogate%RECLimitsTrifluorotoluene (FID)9354-152Bromofluorobenzene (FID)9150-152

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 5 of 14

 Field ID:
 B-5@7.5
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153520

 Lab ID:
 213913-028
 Analyzed:
 08/05/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9454-152Bromofluorobenzene (FID)8750-152

Field ID: B-5@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-029 Analyzed: 08/05/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 8.8 Y
 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 144 54-152
Bromofluorobenzene (FID) 130 50-152

Field ID: B-5@15 Diln Fac: 1.000
Type: SAMPLE Batch#: 153530
Lab ID: 213913-030 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 0.96

Surrogate %REC Limits
Trifluorotoluene (FID) 104 54-152
Bromofluorobenzene (FID) 104 50-152

Field ID: B-6@2 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-031 Analyzed: 08/04/09

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9154-152Bromofluorobenzene (FID)9050-152

Page 6 of 14

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: B-6@7.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-032 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 0.99

Surrogate%RECLimitsTrifluorotoluene (FID)11054-152Bromofluorobenzene (FID)10950-152

Field ID: B-6@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-033 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 0.96

Surrogate %REC Limits
Trifluorotoluene (FID) 112 54-152
Bromofluorobenzene (FID) 110 50-152

Field ID: B-6@15 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-034 Analyzed: 08/05/09

Analyte Result RL
Gasoline C7-C12 11 Y 0.98

Surrogate%RECLimitsTrifluorotoluene (FID)176 * 54-152Bromofluorobenzene (FID)180 * 50-152

Field ID: B-7@5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-035 Analyzed: 08/05/09

AnalyteResultRLGasoline C7-C12ND0.97

Surrogate%RECLimitsTrifluorotoluene (FID)10654-152Bromofluorobenzene (FID)10750-152

Page 7 of 14

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Total Volatile Hydrocarbons 2250 Telgraph Av. Oakland EPA 5030B 213913 Lab #: Location: Client: Fugro West Inc. Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

 Field ID:
 B-7@7.5
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153530

 Lab ID:
 213913-036
 Analyzed:
 08/05/09

Ana	yte Result	RL	
Gasoline C7-C12	ND	1.0	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	106	54-152
Bromofluorobenzene (FID)	106	50-152

Field ID: B-7@12 Diln Fac: 1.000
Type: SAMPLE Batch#: 153530
Lab ID: 213913-037 Analyzed: 08/05/09

Analyte	Result	RL	
Gasoline C7-C12	ND	1.0	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	102	54-152	
Bromofluorobenzene (FID)	101	50-152	

Field ID: B-7@15 Diln Fac: 1.000
Type: SAMPLE Batch#: 153530
Lab ID: 213913-038 Analyzed: 08/05/09

	Analyte	Result	RL	
G	asoline C7-C12	ND	0.97	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	103	54-152	
Bromofluorobenzene (FID)	103	50-152	

Field ID: B-8@7.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-039 Analyzed: 08/06/09

Analyte	Result	RL	
Gasoline C7-C12	13 Y	1.0	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	174 *	54-152
Bromofluorobenzene (FID)	140	50-152

Page 8 of 14

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: B-8@15 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-040 Analyzed: 08/06/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 8.0
 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)164 * 54-152Bromofluorobenzene (FID)111 50-152

Field ID: B-8@20 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-041 Analyzed: 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 0.98

Surrogate %REC Limits
Trifluorotoluene (FID) 107 54-152
Bromofluorobenzene (FID) 101 50-152

Field ID: B-9@5 Diln Fac: 1.000
Type: SAMPLE Batch#: 153600
Lab ID: 213913-042 Analyzed: 08/06/09

Analyte Result RL
Gasoline C7-C12 1.9 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 101 54-152
Bromofluorobenzene (FID) 96 50-152

Field ID: B-9@10 Diln Fac: 10.00 Type: SAMPLE Batch#: 153638 Lab ID: 213913-043 Analyzed: 08/08/09

AnalyteResultRLGasoline C7-C125610

Surrogate%RECLimitsTrifluorotoluene (FID)13354-152Bromofluorobenzene (FID)13350-152

Page 9 of 14

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: B-9@15 Diln Fac: 10.00 Type: SAMPLE Batch#: 153638 Lab ID: 213913-044 Analyzed: 08/08/09

Analyte Result RL
Gasoline C7-C12 140 10

Surrogate%RECLimitsTrifluorotoluene (FID)14354-152Bromofluorobenzene (FID)153 * 50-152

Field ID: B-9@20 Diln Fac: 1.000
Type: SAMPLE Batch#: 153600
Lab ID: 213913-045 Analyzed: 08/06/09

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 100 54-152
Bromofluorobenzene (FID) 98 50-152

Field ID: B-10@2 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-046 Analyzed: 08/06/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10054-152Bromofluorobenzene (FID)9650-152

Field ID: B-10@5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-047 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10554-152Bromofluorobenzene (FID)9950-152

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 10 of 14

Field ID: B-10@10 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-048 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C12ND0.97

Surrogate%RECLimitsTrifluorotoluene (FID)10454-152Bromofluorobenzene (FID)9950-152

Field ID: B-10@15 Diln Fac: 1.000 Type: SAMPLE Batch#: 153530 Lab ID: 213913-049 Analyzed: 08/04/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 106 54-152
Bromofluorobenzene (FID) 113 50-152

Field ID: B-11@2 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-050 Analyzed: 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 0.99

Surrogate%RECLimitsTrifluorotoluene (FID)10454-152Bromofluorobenzene (FID)10150-152

Field ID: B-11@7.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-051 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10454-152Bromofluorobenzene (FID)10250-152

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 11 of 14

Field ID: B-11@12 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-052 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10154-152Bromofluorobenzene (FID)10150-152

Field ID: B-12@5 Diln Fac: 1.000
Type: SAMPLE Batch#: 153600
Lab ID: 213913-053 Analyzed: 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 98 54-152
Bromofluorobenzene (FID) 99 50-152

Field ID: B-12@7.5 Diln Fac: 1.000 Type: SAMPLE Batch#: 153600 Lab ID: 213913-054 Analyzed: 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)10354-152Bromofluorobenzene (FID)10150-152

Field ID: B-12@12 Diln Fac: 1.000
Type: SAMPLE Batch#: 153600
Lab ID: 213913-055 Analyzed: 08/07/09

AnalyteResultRLGasoline C7-C127.8 Y1.0

Surrogate%RECLimitsTrifluorotoluene (FID)12054-152Bromofluorobenzene (FID)12450-152

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 12 of 14

 Field ID:
 B-12@15
 Diln Fac:
 1.000

 Type:
 SAMPLE
 Batch#:
 153600

 Lab ID:
 213913-056
 Analyzed:
 08/07/09

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate%RECLimitsTrifluorotoluene (FID)10054-152Bromofluorobenzene (FID)10150-152

Type: BLANK Batch#: 153520 Lab ID: QC506135 Analyzed: 08/04/09

Diln Fac: 1.000

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Trifluorotoluene (FID) 90 54-152
Bromofluorobenzene (FID) 88 50-152

Type: BLANK Batch#: 153530 Lab ID: QC506178 Analyzed: 08/04/09

Diln Fac: 1.000

AnalyteResultRLGasoline C7-C12ND1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9754-152Bromofluorobenzene (FID)9750-152

Type: BLANK Batch#: 153600
Lab ID: QC506460 Analyzed: 08/06/09
Diln Fac: 1.000

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate%RECLimitsTrifluorotoluene (FID)9754-152Bromofluorobenzene (FID)9750-152

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 13 of 14

	Total Volatile Hydrocarbons				
Lab #: Client:	213913 Fugro West Inc.	Location: Prep:	2250 Telgraph Av. Oakland EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Matrix:	Soil	Sampled:	07/27/09		
Units:	mg/Kg	Received:	08/03/09		
Basis:	as received				

Type: Lab ID: Diln Fac: 153638 08/07/09 BLANK Batch#: QC506613 1.000 Analyzed:

Analyte	Result	RL	
Gasoline C7-C12	ND	1.0	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	93	54-152	
Bromofluorobenzene (FID)	86	50-152	

Page 14 of 14

^{*=} Value outside of QC limits; see narrative
Y= Sample exhibits chromatographic pattern which does not resemble standard
ND= Not Detected

RL= Reporting Limit

Total Volatile Hydrocarbons				
Lab #:	213913	Location:	2250 Telgraph Av. Oakland	
Client:	Fugro West Inc.	Prep:	EPA 5030B	
Project#:	609.004	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC506136	Batch#:	153520	
Matrix:	Soil	Analyzed:	08/04/09	
Units:	mg/Kg			

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.195	104	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	125	54-152
Bromofluorobenzene (FID)	115	50-152

Page 1 of 1 5.0

	Total Volatile Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland				
Client:	Fugro West Inc.	Prep:	EPA 5030B				
Project#:	609.004	Analysis:	EPA 8015B				
Field ID:	B-1@2	Diln Fac:	1.000				
MSS Lab ID:	213913-001	Batch#:	153520				
Matrix:	Soil	Sampled:	07/27/09				
Units:	mg/Kg	Received:	08/03/09				
Basis:	as received	Analyzed:	08/04/09				

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.05494	10.00	10.71	107	31-120

Lab ID: QC506137

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	140	54-152	
Bromofluorobenzene (FID)	123	50-152	

Type: MSD Lab ID: QC506138

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.00	10.41	104	31-120	3	34

	Total Vo	platile Hydrocarbo	ons
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506179	Batch#:	153530
Matrix:	Soil	Analyzed:	08/04/09
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	4.486	90	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	127	54-152
Bromofluorobenzene (FID)	112	50-152

Page 1 of 1 7.0

	Total Volatile Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland				
Client:	Fugro West Inc.	Prep:	EPA 5030B				
Project#:	609.004	Analysis:	EPA 8015B				
Field ID:	B-10@15	Diln Fac:	1.000				
MSS Lab ID:	213913-049	Batch#:	153530				
Matrix:	Soil	Sampled:	07/27/09				
Units:	mg/Kg	Received:	08/03/09				
Basis:	as received	Analyzed:	08/04/09				

Type: MS Lab ID: QC506180

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07892	9.901	9.174	92	31-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	131	54-152	
Bromofluorobenzene (FID)	119	50-152	

Type: MSD Lab ID: QC506181

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.804	9.492	96	31-120	4	34

Total Volatile Hydrocarbons					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC506461	Batch#:	153600		
Matrix:	Soil	Analyzed:	08/06/09		
Units:	mg/Kg				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	4.842	97	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	118	54-152
Bromofluorobenzene (FID)	101	50-152

Page 1 of 1 9.0

Total Volatile Hydrocarbons					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Field ID:	B-10@2	Diln Fac:	1.000		
MSS Lab ID:	213913-046	Batch#:	153600		
Matrix:	Soil	Sampled:	07/27/09		
Units:	mg/Kg	Received:	08/03/09		
Basis:	as received	Analyzed:	08/06/09		

Type: MS Lab ID: QC506462

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.07514	10.10	9.512	93	31-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	142	54-152	
Bromofluorobenzene (FID)	102	50-152	

Type: MSD Lab ID: QC506463

Analyte	Spiked	Result	%REC	Limits	RPD L
Gasoline C7-C12	9.804	9.747	99	31-120	5 34

Total Volatile Hydrocarbons					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC506616	Batch#:	153638		
Matrix:	Soil	Analyzed:	08/07/09		
Units:	mg/Kg				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.519	110	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	149	54-152
Bromofluorobenzene (FID)	121	50-152

Page 1 of 1

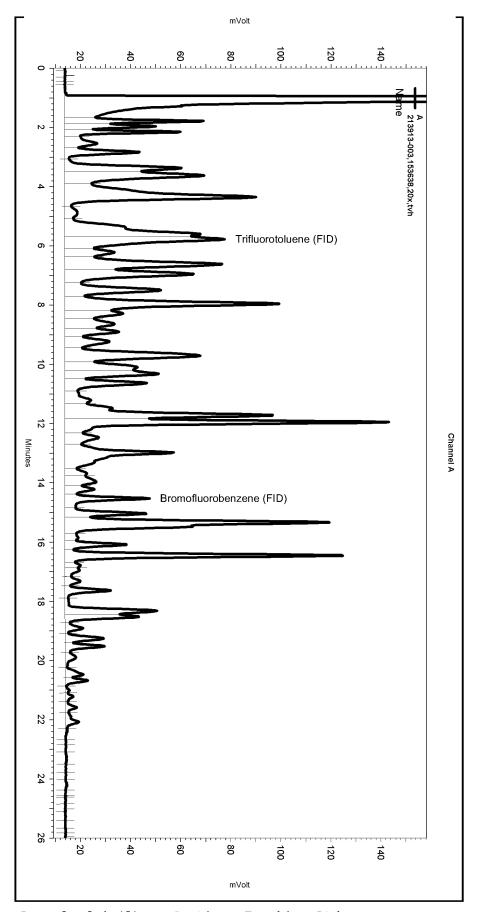
Total Volatile Hydrocarbons				
Lab #:	213913	Location:	2250 Telgraph Av. Oakland	
Client:	Fugro West Inc.	Prep:	EPA 5030B	
Project#:	609.004	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000	
MSS Lab ID:	214030-001	Batch#:	153638	
Matrix:	Soil	Sampled:	08/05/09	
Units:	mg/Kg	Received:	08/06/09	
Basis:	as received	Analyzed:	08/07/09	

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.1087	10.31	7.630	73	31-120

Lab ID: QC506617

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	112	54-152	
Bromofluorobenzene (FID)	120	50-152	


Type: MSD Lab ID: QC506618

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.42	7.588	72	31-120	2	34

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

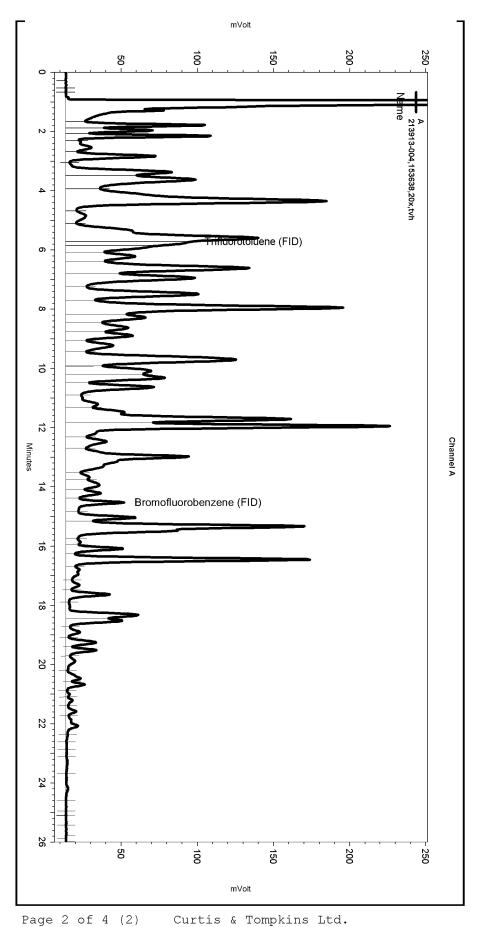
Software Version 3.1.7 Run Date: 8/7/2009 10:23:06 PM Analysis Date: 8/8/2009 12:41:11 PM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: a

< Ger	neral Method Para	ameters >-			 	
No item	s selected for this	section				
< A >-					 	
No item	s selected for this	section				
Integrati	on Events					
Enable	ed Event Type	Start	Stop (Minutes)	(Min	utes)	Value
	Width Threshold		0 0	0.:	2 50	
Manual	Integration Fixes	_				
Data F	ile: \\Lims\gdrive	- \ezchrom\F Start	Projects\G0 Stop	C04\D	ata\21	9_022
Enable	ed Event Type	Gtart	(Minutes)	(Min	utes)	Value
Yes	Split Peak		5.683	0	0	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

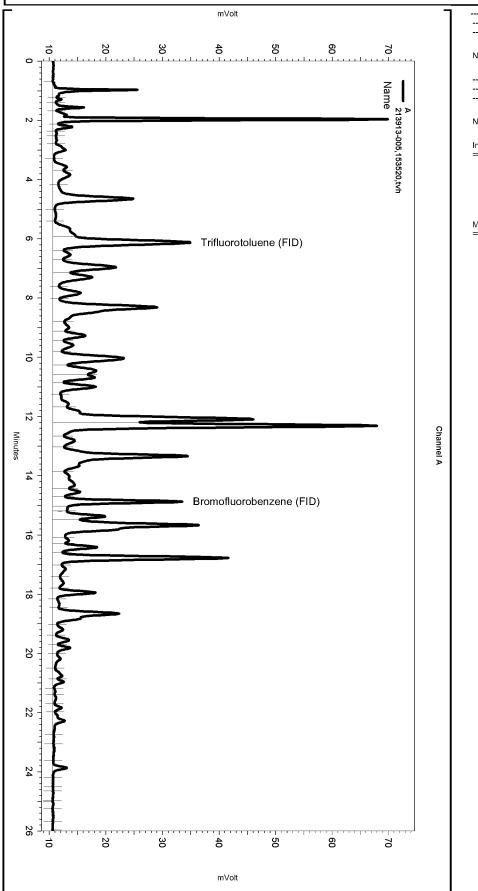
Sample Name: 213913-004,153638,20x,tvh


Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_023

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/7/2009 11:00:42 PM Analysis Date: 8/8/2009 12:42:08 PM

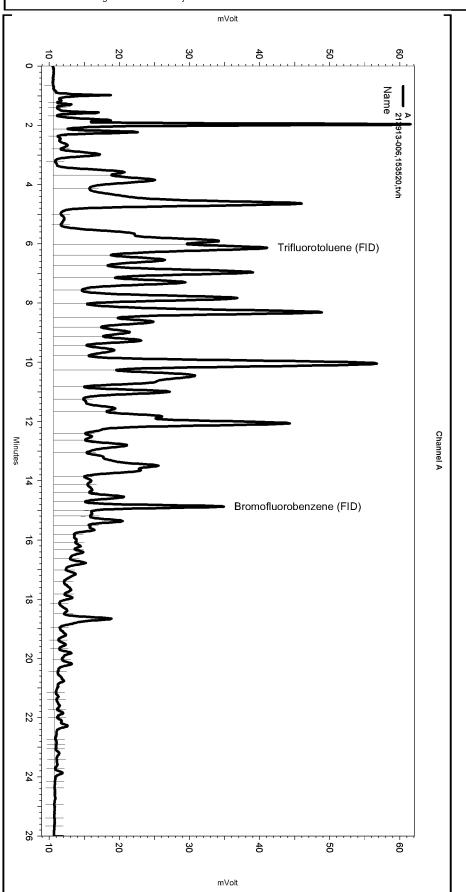

Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

	neral Method Par					
No item	s selected for this	s section				
No item	s selected for this	s section				
Integrat	ion Events					
Enabl	ed Event Type	Start			inutes)	Value
	Width Threshold		0	0 (0.2 50	
Manual	Integration Fixes	<u>. </u>				
Data I	ile: \\Lims\gdrive	– e\ezchrom\F Start	Projects\ Stor		Data\21	9_023
Enabl	ed Event Type	Start	(Minute		inutes)	Value
	Split Peak Split Peak		5.722 5.858	0 0	0 0	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\216.seq Sample Name: 213913-005,153520,tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_012
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe188.met

Software Version 3.1.7 Run Date: 8/4/2009 8:00:53 PM Analysis Date: 8/6/2009 12:36:04 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_012
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Split Peak 5.934 0 0 Yes Split Peak 15.026 0 0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\216.seq Sample Name: 213913-006,153520,tvh

Data File: \\Lims\gdrive\ezchrom\\Projects\GC19\Data\216_013

Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

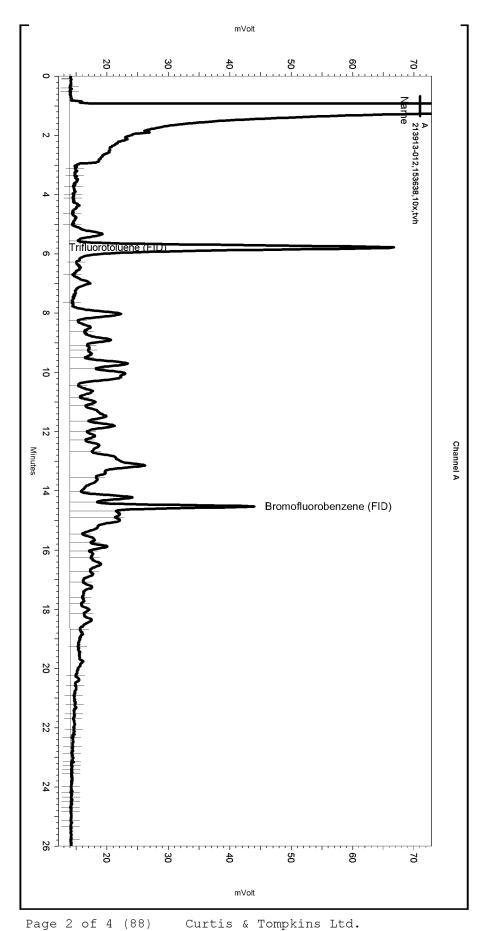
Method Name: \\Lims\gdrive\ezchrom\\Projects\GC19\Method\tvhbtxe188.met

Software Version 3.1.7 Run Date: 8/4/2009 8:38:30 PM Analysis Date: 8/6/2009 12:37:01 PM Sample Amount: 0.98 Multiplier: 0.98 Vial & pH or Core ID: a

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_013
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Split Peak 15.019 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

Sample Name: 213913-012,153638,10x,tvh


Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_024

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

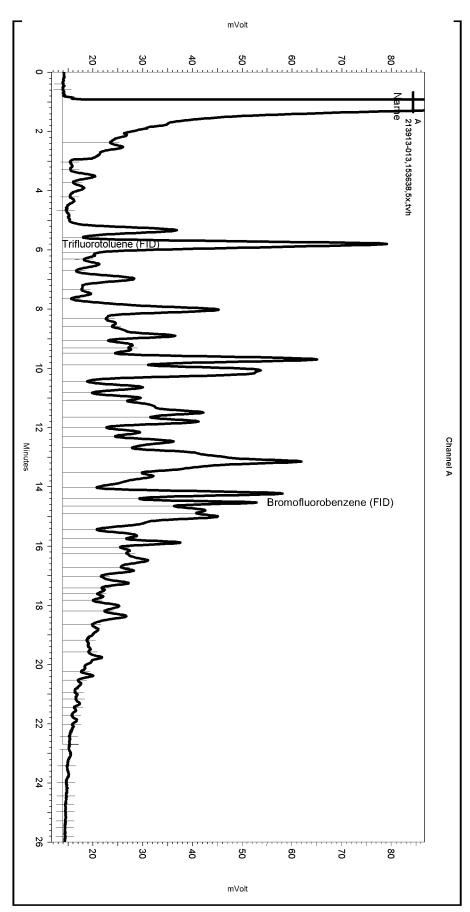
Software Version 3.1.7 Run Date: 8/7/2009 11:38:16 PM Analysis Date: 8/8/2009 7:57:29 AM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: a

< General Method Parameters >	·
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Star Enabled Event Type	t Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom'	
Enabled Event Type	(Minutes) (Minutes) Value
None	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

Sample Name: 213913-013,153638,5x,tvh

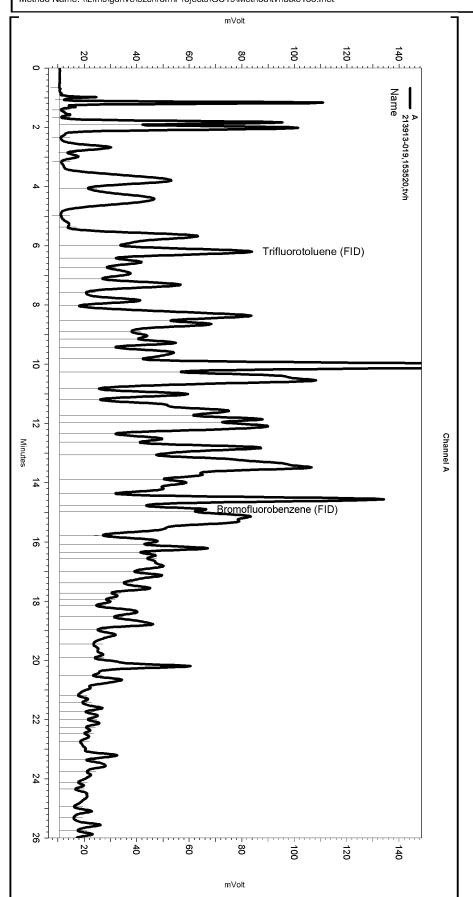

Data File: \\Lims\gdrive\ezchrom\\Projects\GC04\Data\219_025

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/8/2009 12:15:52 AM Analysis Date: 8/8/2009 12:44:24 PM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: a

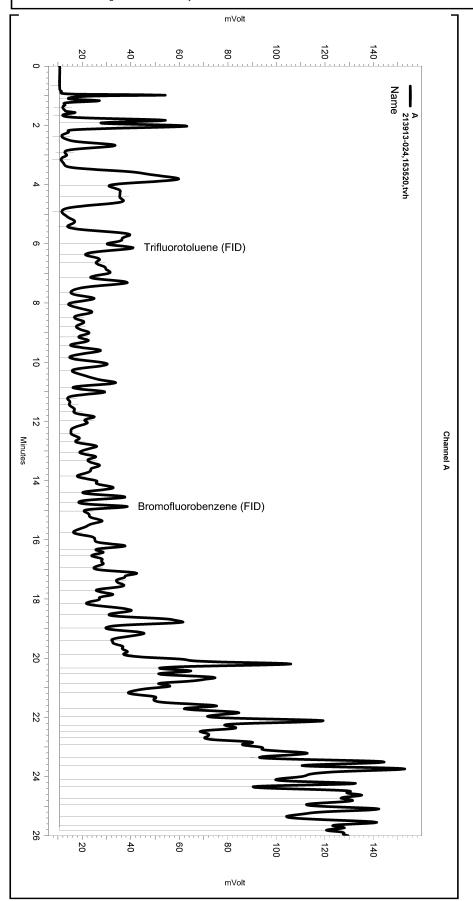


< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	(Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\F	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal Ba	aseli 0 26.017 0 6.077 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\216.seq Sample Name: 213913-019,153520,tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_026 Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe188.met

Software Version 3.1.7 Run Date: 8/5/2009 4:47:08 AM Analysis Date: 8/6/2009 12:39:57 PM Sample Amount: 1.01 Multiplier: 1.01 Vial & pH or Core ID: a

Sample Amount: 1.01 I Vial & pH or Core ID: a



< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Stop Enabled Event Type (Minutes) (Minutes)	/alue
Yes Width 0 0.2 Yes Threshold 0 0.50	
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_	_026
Start Stop Enabled Event Type (Minutes) (Minutes)	/alue
Yes Lowest Point Horizontal Baseli 0 26.017 Yes Split Peak 14.973 0 0	0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\216.seq

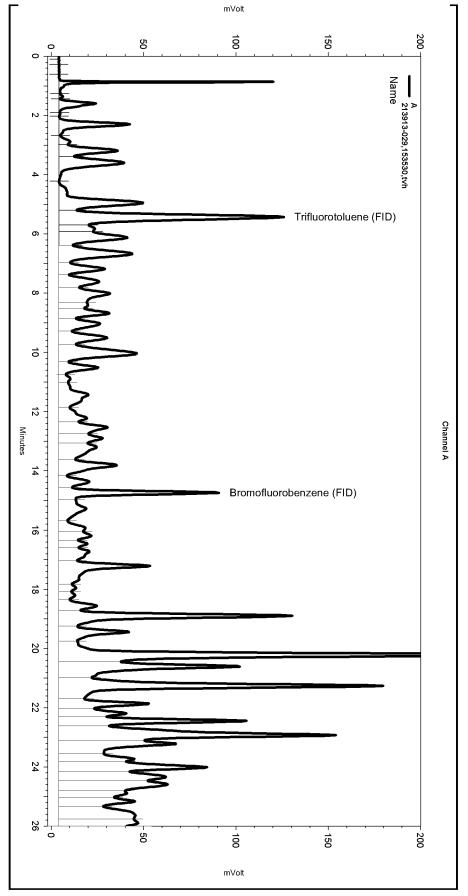
Sample Name: 213913-024,153520,tvh

Software Version 3.1.7 Run Date: 8/5/2009 7:17:31 AM Analysis Date: 8/5/2009 10:59:16 AM Sample Amount: 0.99 Multiplier: 0.99 Vial & pH or Core ID: a

< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Stop Enabled Event Type (Minutes) (Minutes) Valu	ıe
Yes Width 0 0 0.2 Yes Threshold 0 0 50	
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\216_03	0
Start Stop Enabled Event Type (Minutes) (Minutes) Valu	ıe

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\216.seq

Sample Name: 213913-029,153530,tvh


Data File: \\Lims\\gdrive\ezchrom\\Projects\\GC05\\Data\\216_023

Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\\gdrive\ezchrom\\Projects\\GC05\\Method\\tvhbtxe195.met

Software Version 3.1.7 Run Date: 8/5/2009 3:23:36 AM Analysis Date: 8/5/2009 10:07:27 AM Sample Amount: 0.97 Multiplier: 0.97

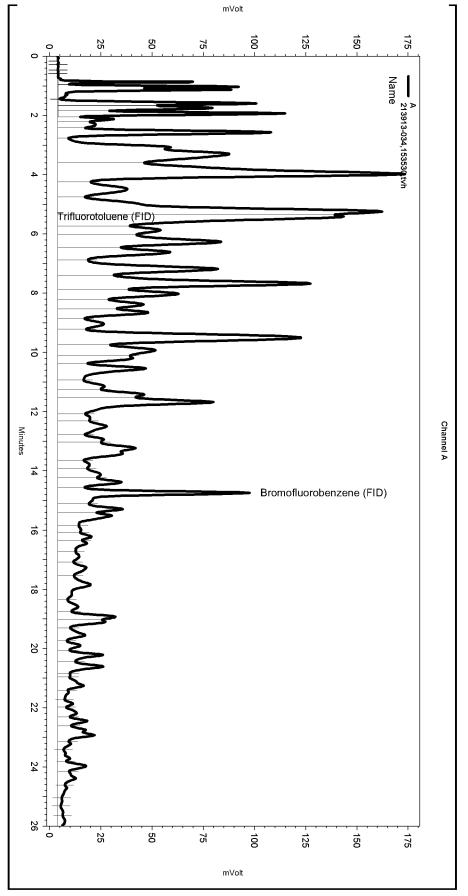
Vial & pH or Core ID: a

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\f	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal B	aseli 0 26.017 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\216.seq

Sample Name: 213913-034,153530,tvh

Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\216_018

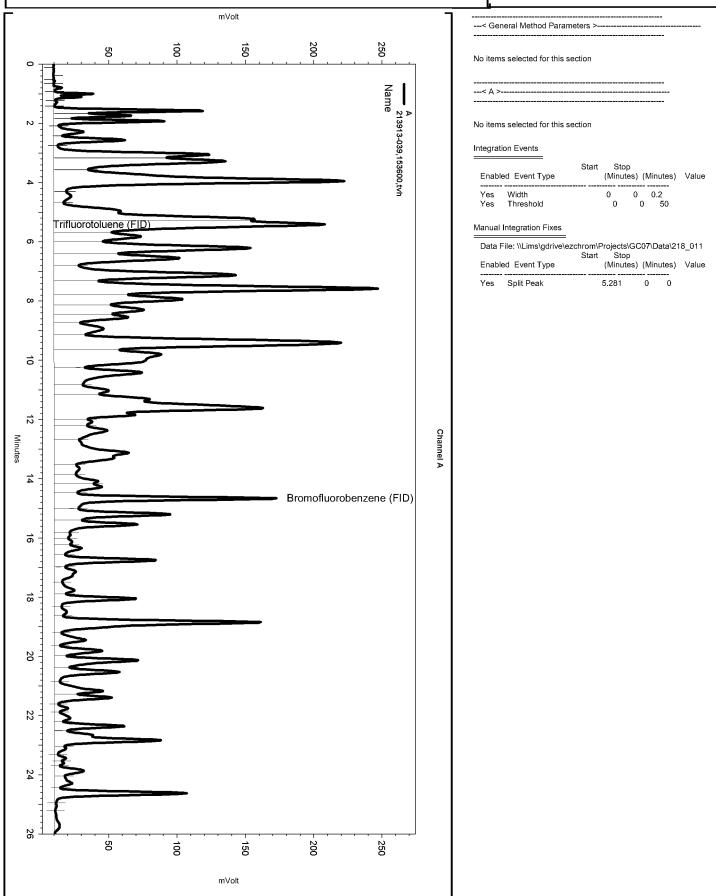

Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe195.met

Software Version 3.1.7

Run Date: 8/5/2009 12:25:45 AM Analysis Date: 8/5/2009 10:06:07 AM Sample Amount: 1.02 Multiplier: 1.02

Vial & pH or Core ID: a



< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\	
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizontal B Yes Split Peak	Baseli 0 26.017 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\218.seq Sample Name: 213913-039,153600,tvh

Data File: \\Lims\gdrive\ezchrom\\Projects\\GC07\\Data\218_011 \\Instrument: GC07 \(Offline\) \\Vial: \N/A \\Operator: \Tvh 2. \Analyst \((\lims\2k3\\tvh2)\) \\Method \\Name: \\Lims\gdrive\ezchrom\\Projects\\GC07\\Method\\tvhbtxe194.met

Software Version 3.1.7 Run Date: 8/6/2009 4:35:39 PM Analysis Date: 8/8/2009 1:25:25 PM Sample Amount: 1.01 Multiplier: 1.01 Vial & pH or Core ID: a

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\218.seq Sample Name: 213913-040,153600,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\218_023

Software Version 3.1.7 Run Date: 8/6/2009 11:42:04 PM Analysis Date: 8/7/2009 12:10:47 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3 Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe194.met mVolt ---< General Method Parameters >----200 300 50 8 150 No items selected for this section Name A 213913-040,153600,tvh No items selected for this section Integration Events Stop Enabled Event Type (Minutes) (Minutes) Value Width 0 0.2 Yes 0 Threshold Trifluorotoluene (FID) Manual Integration Fixes 0 Data File: C:\Documents and Settings\All Users\Application Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

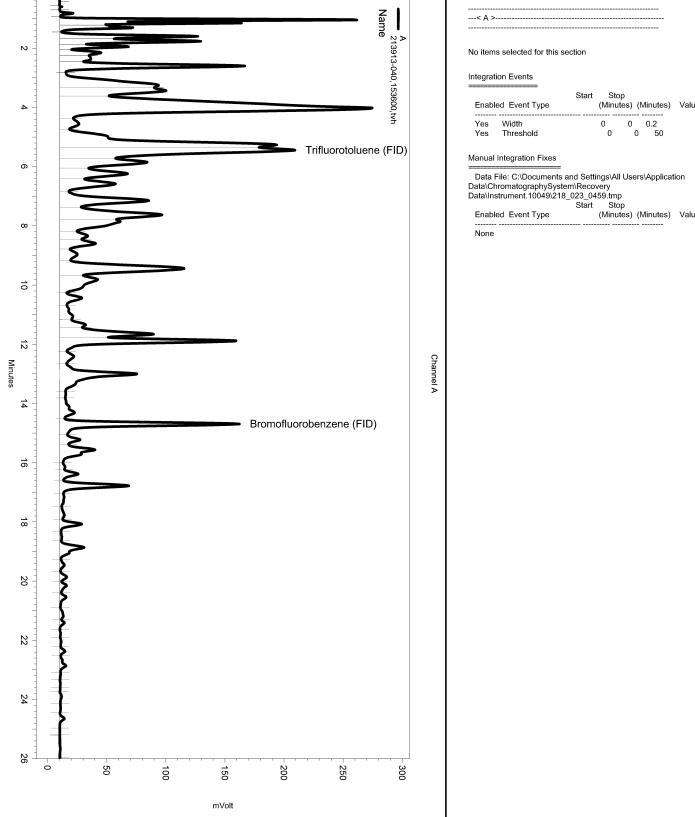
Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

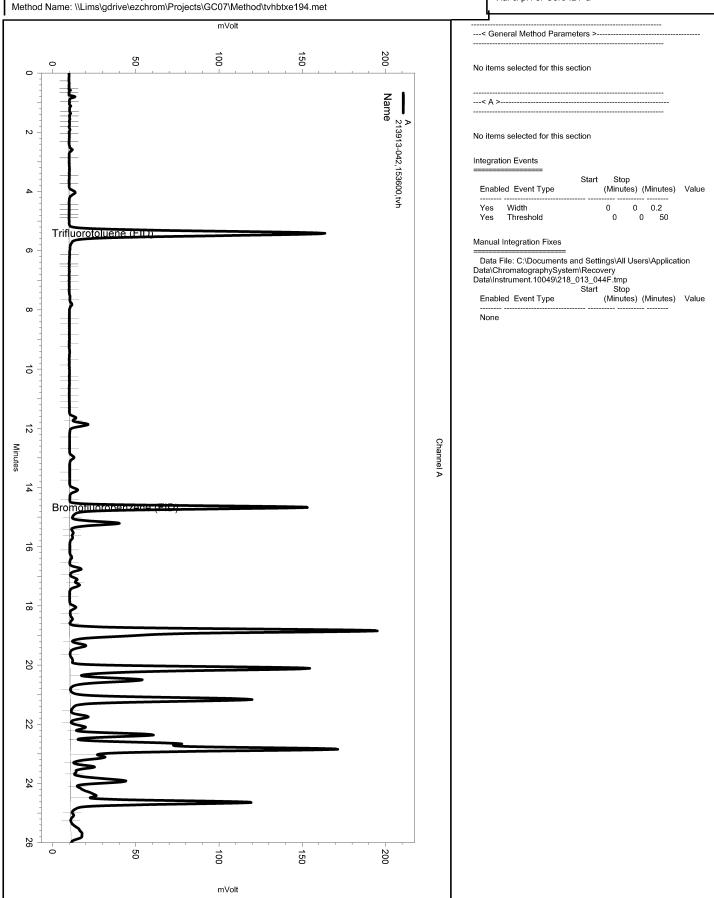
Data File: C.IDocuments and Settingsval Osersvapplication


Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication

Data File: C.IDocuments and Settingsval Osersvapplication


Settingsval Osersval O ω None 10

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\218.seq Sample Name: 213913-042,153600,tvh

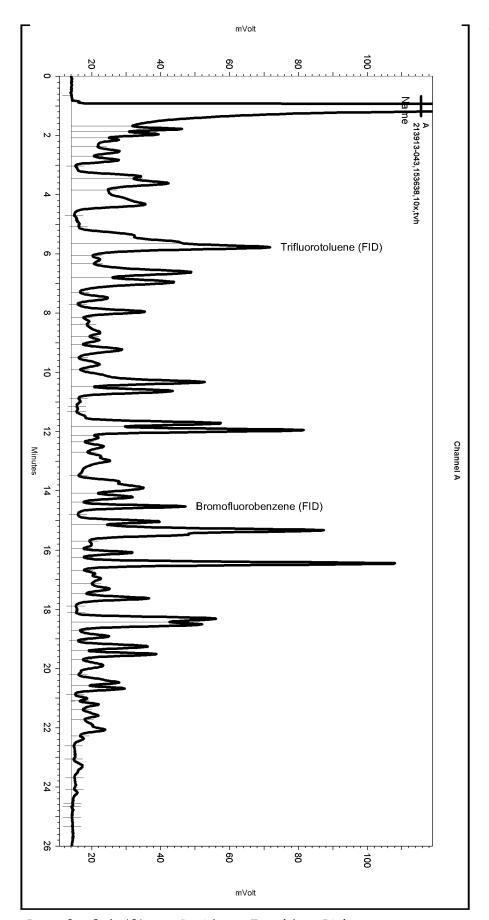
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\218_013
Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Software Version 3.1.7 Run Date: 8/6/2009 5:47:03 PM Analysis Date: 8/6/2009 6:15:46 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

Sample Name: 213913-043,153638,10x,tvh

Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_026


Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/8/2009 12:53:26 AM

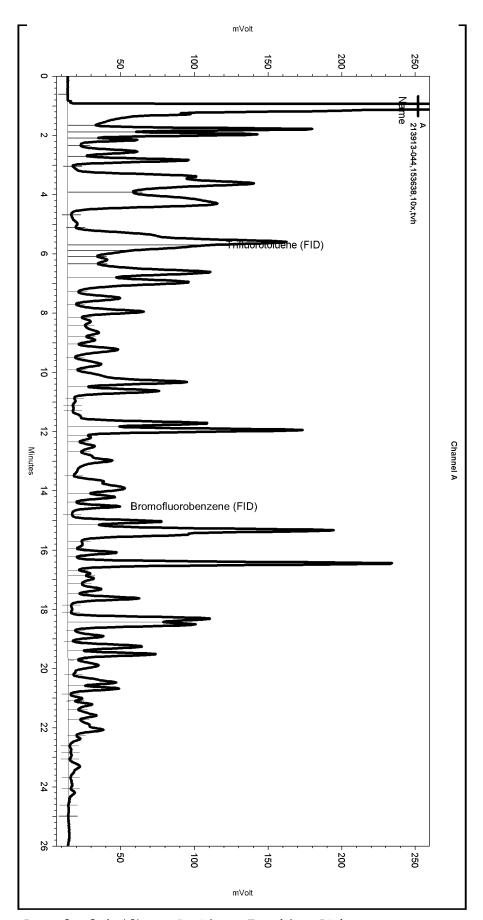
Analysis Date: 8/8/2009 12:45:28 PM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: a

					_	
< Ge	neral Method Para	meters >			- 	
No item	s selected for this	section				
< A >						
	s selected for this	section				
Integrat	ion Events					
Enabl	ed Event Type	Start	Stop (Minutes)	(Min	utes)	Value
Yes Yes	Width Threshold		0 0	0.	2 50	
Manual	Integration Fixes	_				
Data	File: \\Lims\gdrive\	- ezchrom\F Start	rojects\G0 Stop	04\D	ata\21	9_026
Enabl	ed Event Type		(Minutes)	(Min	utes)	Value
Yes	Split Peak		5.654	0	0	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq

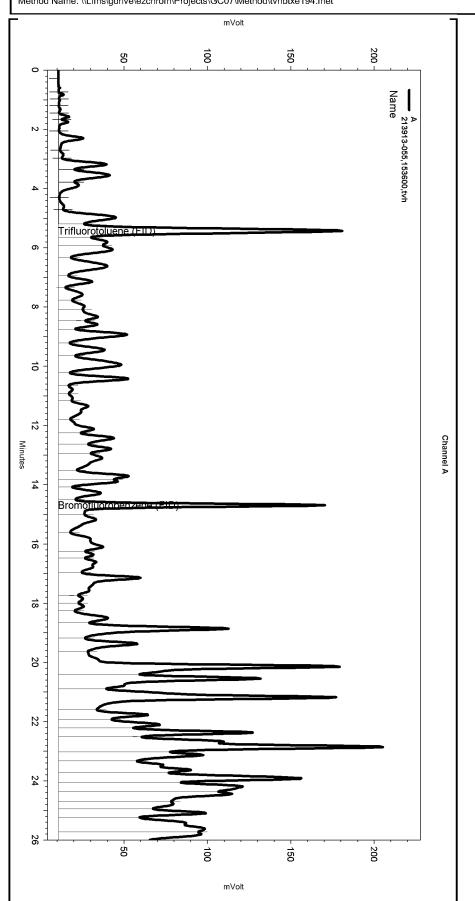
Sample Name: 213913-044,153638,10x,tvh


Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_027

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

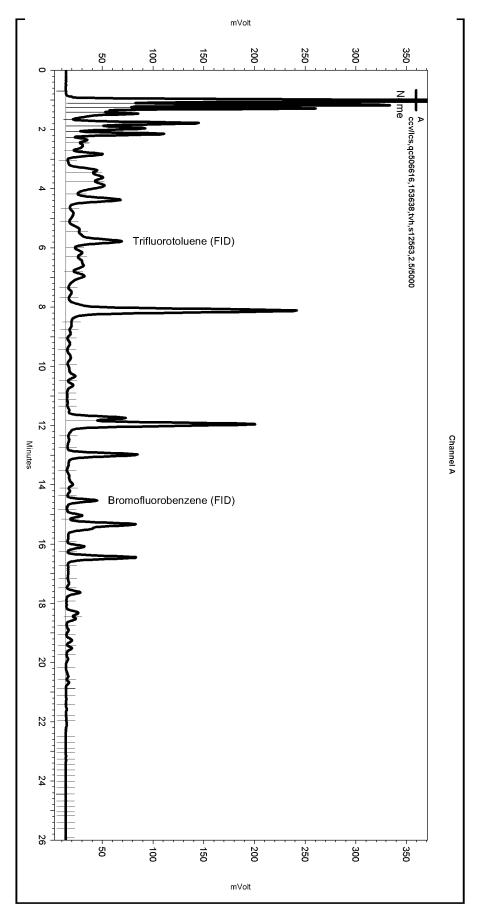
Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/8/2009 1:31:01 AM Analysis Date: 8/8/2009 12:45:31 PM Sample Amount: 1 Multiplier: 1


Vial & pH or Core ID: a

< Ge	neral Method Par	ameters >-				
	s selected for thi					
	s selected for thi	s section				
integra	tion Events					
Enab	led Event Type	Start	Stop (Minutes	s) (Mi	nutes)	Value
Yes Yes	Width Threshold		0	0 (0.2 50	
Manual	Integration Fixes	<u>; </u>				
Data	File: \\Lims\gdrive	– e\ezchrom\F Start		C04\	Data\21	9_027
Enab	led Event Type	otan	(Minutes	s) (Mi	nutes)	Value
	Split Peak Split Peak		5.706	0 0	0 0	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\218.seq Sample Name: 213913-055,153600,tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\218_032
Instrument: GC07 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxe194.met


Software Version 3.1.7 Run Date: 8/7/2009 5:00:56 AM Analysis Date: 8/8/2009 1:42:45 PM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: a

< General Method Parameters >
No items selected for this section
< A >
No items selected for this section
Integration Events
Start Stop Enabled Event Type (Minutes) (Minutes) Value
Yes Width 0 0 0.2 Yes Threshold 0 0 50
Manual Integration Fixes
Data File: \\Lims\gdrive\ezchrom\Projects\GC07\Data\218_032
Enabled Event Type (Minutes) (Minutes) Value
Yes Lowest Point Horizontal Baseli 0 26.017 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\219.seq Sample Name: ccv/lcs,qc506616,153638,tvh,s12563,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_003 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe219.met

Software Version 3.1.7 Run Date: 8/7/2009 10:04:48 AM Analysis Date: 8/8/2009 7:55:52 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: {Data Description}

< General Method Parameters >					
No items selected for this section					
< A >					
No items selected for this section					
Integration Events					
Start Stop Enabled Event Type (Minutes) (Minutes) Value					
Yes Width 0 0 0.2 Yes Threshold 0 0 50					
Manual Integration Fixes					
Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\219_003					
Enabled Event Type (Minutes) (Minutes) Value					
None					

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland SHAKER TÄBLE Client: Fugro West Inc. Prep: Project#: 609.004 Analysis: EPA 8015B Matrix: Soil Sampled: 07/27/09 08/03/09 Units: mg/Kg Received: Basis: as received

Field ID: B-1@2 Batch#: 153518 08/04/09 Type: SAMPLE Prepared: Lab ID: 08/06/09 213913-001 Analyzed: Cleanup Method: Diln Fac: 25.00 EPA 3630C

Analyte Result Diesel C10-C24 29 Y 25 450 Motor Oil C24-C36 120

Surrogate %REC Limits o-Terphenyl DO 53-133

Field ID: B-1@7.5Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-002 Analyzed: 08/06/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte Result RLDiesel C10-C24 15 Y 0.99 98 Motor Oil C24-C36 5.0

Surrogate %REC Limits 88 53-133 o-Terphenyl

Field ID: B-1@12 Batch#: 153518 SAMPLE 08/04/09 Type: Prepared: Lab ID: 213913-004 Analyzed: 08/06/09 1.000 Diln Fac: Cleanup Method: EPA 3630C

Analyte Result 0.99 Diesel C10-C24 Motor Oil C24-C36 ND 5.0

Surrogate %REC Limits o-<u>Te</u>rphenyl 82 53-133

Field ID: B - 2@5Batch#: 153518 Type: 08/04/09 SAMPLE Prepared: 213913-008 Lab ID: Analyzed: 08/06/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte Result Diesel C10-C24 Motor Oil C24-C36 ND 1.0 5.9

%REC Limits Surrogate o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 13

Field ID: B - 2@10Batch#: 153518 Type: SAMPLE 08/04/09 Prepared: Lab ID: 213913-010 Analyzed: 08/06/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Result Analyte Diesel C10-C24 Motor Oil C24-C36 1.9 1.0 ND 5.0

%REC Limits 72 53-133 Surrogate o-Terphenyl

Field ID: B-2@15 Batch#: 153518 SAMPLE 08/04/09 Type: Prepared: Lab ID: 213913-012 Analyzed: 08/06/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Result Analyte RLDiesel C10-C24 0.99 Motor Oil C24-C36 ND 5.0

Surrogate %REC Limits o-Terphenyl 82

Field ID: B - 3@1Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 213913-015 Lab ID: Analyzed: 08/06/09 EPA 3630C Diln Fac: 5.000 Cleanup Method:

Analyte Result RLDiesel C10-C24 ND 5.0 Motor Oil C24-C36 33 25

%REC Limits Surrogate 85 53-133 o-Terphenyl

Field ID: B-3@5 Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-016 Analyzed: 08/06/09 Diln Fac: 1.000 EPA 3630C Cleanup Method:

Analyte Result Diesel C10-C24 4.0 1.0 Motor Oil C24-C36 10 5.0

Surrogate %REC Limits 53-133 o-Terphenyl 82

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 2 of 13 13.1

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Client: SHAKER TABLE Fugro West Inc. Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

Field ID: B-3@10 Batch#: 153518
Type: SAMPLE Prepared: 08/04/09
Lab ID: 213913-017 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	7.6 Y	0.99	
Motor Oil C24-C36	ND	5.0	

Surrogate %REC Limits	
buildace onec minica	
o-Terphenyl 65 53-133	

Field ID: B-3@12 Batch#: 153518
Type: SAMPLE Prepared: 08/04/09
Lab ID: 213913-018 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	33 Y	0.99	
Motor Oil C24-C36	110	5.0	

Field ID: B-3@15 Batch#: 153518
Type: SAMPLE Prepared: 08/04/09
Lab ID: 213913-019 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	150 Y	1.0	
Motor Oil C24-C36	400	5.0	

Surrogate	%REC	Limits
o-Terphenyl	69	53-133

Field ID: B-3@17 Batch#: 153518
Type: SAMPLE Prepared: 08/04/09
Lab ID: 213913-020 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	44 Y	1.0	
Motor Oil C24-C36	140	5.0	

Surrogate	%REC	Limits
o-Terphenyl	68	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 3 of 13

Field ID: B-4A@5 Batch#: 153518 Type: SAMPLE 08/04/09 Prepared: 213913-021 Lab ID: Analyzed: 08/06/09 1.000 Diln Fac: Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 1.9 Y
 1.0

 Motor Oil C24-C36
 10
 5.0

Surrogate %REC Limits
o-Terphenyl 83 53-133

Field ID: B-4A@7.5 Batch#: 153518
Type: SAMPLE Prepared: 08/04/09
Lab ID: 213913-022 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 1.0 Y
 0.99

 Motor Oil C24-C36
 9.8
 5.0

Surrogate %REC Limits
o-Terphenyl 71 53-133

Field ID: Batch#: B-4A@10 153518 Type: SAMPLE Prepared: 08/04/09 213913-023 Lab ID: Analyzed: 08/06/09 1.000 EPA 3630C Diln Fac: Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 1.6 Y
 1.0

 Motor Oil C24-C36
 13
 5.0

Surrogate %REC Limits
o-Terphenyl 79 53-133

Field ID: B-4A@12 Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-024 Analyzed: 08/07/09 Diln Fac: 10.00 EPA 3630C Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 1,100
 10

 Motor Oil C24-C36
 850
 50

 Surrogate
 %REC
 Limits

 o-Terphenyl
 DO
 53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 4 of 13

Field ID: B-4A@15 Batch#: 153518 Type: SAMPLE 08/04/09 Prepared: 213913-025 Lab ID: Analyzed: 08/10/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Result Analyte Diesel C10-C24 Motor Oil C24-C36 310 1.0 120 5.0

Surrogate %REC Limits 53-133 o-Terphenyl 102

Field ID: B-4A@18 Batch#: 153518 SAMPLE 08/04/09 Type: Prepared: Lab ID: 213913-026 Analyzed: 08/06/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte Result RLDiesel C10-C24 42 1.0 Motor Oil C24-C36 5.<u>0</u> 23

Surrogate %REC Limits o-Terphenyl 73

Field ID: B-5@2 Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 213913-027 Lab ID: Analyzed: 08/06/09 EPA 3630C Diln Fac: 1.000 Cleanup Method:

Analyte Result RLDiesel C10-C24 4.1 1.0 Motor Oil C24-C36 32 5.0

%REC Limits Surrogate 88 53-133 o-Terphenyl

Field ID: B-5@7.5Batch#: 153518 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-028 Analyzed: 08/06/09 Diln Fac: 1.000 EPA 3630C Cleanup Method:

Analyte Result Diesel C10-C24 ND 1.0 Motor Oil C24-C36 6.9 5.0

Surrogate %REC Limits o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 5 of 13

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Fugro West Inc. Client: SHAKER TABLE Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

Field ID: B-5@12 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-029 Analyzed: 08/08/09 Diln Fac: 10.00 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	1,100	9.9	
Motor Oil C24-C36	520	50	

Surrogate	%REC	Limits	
Bullogace	-9KEC	HIMICS	
o-Terphenyl	DO	53-133	

Field ID: B-5@15 153540 Batch#: Prepared: SAMPLE 08/04/09 Type: Lab ID: 213913-030 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	2.8 Y	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	61	53-133	

153540 Field ID: B-6@2 Batch#: Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-031 08/07/09 Analyzed: Diln Fac: 10.00 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	55 Y	10	
Motor Oil C24-C36	460	50	

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Field ID: B-6@7.5Batch#: 153540 08/04/09 SAMPLE Type: Prepared: Lab ID: 213913-032 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	0.99	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	64	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 6 of 13

56 of 187

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Fugro West Inc. Client: SHAKER TABLE Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

Field ID: B-6@12 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-033 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	29 Y	0.99	
Motor Oil C24-C36	39	5.0	

Surrogate	%REC	Limits	
Builogace	OREC	DIMI CB	
o-Terphenyl	85	53-133	

Field ID: B-6@15 153540 Batch#: Prepared: SAMPLE 08/04/09 Type: Lab ID: 213913-034 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	17 Y	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	84	53-133

Field ID: B-7@5 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-035 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	10 Y	1.0	
Motor Oil C24-C36	53	5.0	

Surrogate	%REC	Limits
o-Terphenyl	81	53-133

Field ID: B-7@7.5Batch#: 153540 08/04/09 SAMPLE Type: Prepared: Lab ID: 213913-036 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	2.9 Y	0.99	
Motor Oil C24-C36	6.6	5.0	

Surrogate	%REC	Limits
o-Terphenyl	67	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 7 of 13

Field ID: B - 7@12Batch#: 153540 Type: SAMPLE 08/04/09 Prepared: 213913-037 Lab ID: Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Result Analyte Diesel C10-C24 Motor Oil C24-C36 1.0 1.6 Y ND 5.0

%REC Limits 53-133 Surrogate o-Terphenyl

Field ID: B - 7@15Batch#: 153711 SAMPLE 08/10/09 Type: Prepared: Lab ID: 213913-038 Analyzed: 08/11/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Result Analyte RLDiesel C10-C24 ND 0.99 Motor Oil C24-C36 5.0 ND

Surrogate %REC Limits o-Terphenyl 86

B-8@7.5Field ID: Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 213913-039 08/07/09 Lab ID: Analyzed: 1.000 EPA 3630C Diln Fac: Cleanup Method:

Analyte Result RLDiesel C10-C24 9.3 1.0 Motor Oil C24-C36 5.0 ND

%REC Limits Surrogate 53-133 63 o-Terphenyl

Field ID: B-8@15 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-040 Analyzed: 08/07/09 Diln Fac: 1.000 EPA 3630C Cleanup Method:

Analyte Result RL 0.99 Diesel C10-C24 1.3 Y Motor Oil C24-C36 ND 5.0

Surrogate %REC Limits o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 8 of 13

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Fugro West Inc. Client: SHAKER TABLE Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

Field ID: B-8@20 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-041 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
Bulloguee	01110		
o-Terphenyl	59	53-133	

Field ID: B-9@5 153540 Batch#: Prepared: SAMPLE 08/04/09 Type: Lab ID: 213913-042 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	28 Y	1.0	
Motor Oil C24-C36	46	5.0	

Surrogate %REC Limits
henyl 72 53-1

B-9@10 153540 Field ID: Batch#: Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-043 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	44 Y	1.0	
Motor Oil C24-C36	49	5.0	

Surrogate	%REC	Limits
o-Terphenyl	61	53-133

Field ID: B-9@15 Batch#: 153540 08/04/09 Type: SAMPLE Prepared: Lab ID: 213913-044 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	31 Y	1.0	
Motor Oil C24-C36	19	5.0	

Surrogate	%REC	Limits
o-Terphenyl	80	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 9 of 13

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Fugro West Inc. Client: SHAKER TABLE Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Matrix: Soil Units: mg/Kg Received: 08/03/09 Basis: as received

Field ID: B-9@20 Batch#: 153540 Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-045 Analyzed: 08/07/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	0.99	
Motor Oil C24-C36	ND	5.0	

Gurrogato	%REC	Limits	
Surrogate	∂KEC	птштср	
o-Ternhenyl	63	53-133	
O ICI PIICII I	0.5	JJ <u> </u>	

Field ID: B-10@2 153540 Batch#: SAMPLE Prepared: 08/04/09 Type: Lab ID: 213913-046 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

153540 Field ID: B-10@5 Batch#: Type: SAMPLE Prepared: 08/04/09 Lab ID: 213913-047 08/07/09 Analyzed: Diln Fac: 1.000 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	2.5 Y	0.99	
Motor Oil C24-C36	10	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	75	53-133	

Field ID: B-10@10 Batch#: 153540 SAMPLE Prepared: 08/04/09 Type: Lab ID: 213913-048 Analyzed: 08/07/09 1.000 Diln Fac: Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	5.7 Y	1.0	
Motor Oil C24-C36	21	5.0	

Surrogate	%REC	Limits
o-Terphenyl	53	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 10 of 13

Field ID: B-10@15 Batch#: 153564

Type: SAMPLE Prepared: 08/05/09

Lab ID: 213913-049 Analyzed: 08/06/09

Diln Fac: 1.000 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 1.7 Y
 1.0

 Motor Oil C24-C36
 ND
 5.0

Surrogate %REC Limits
o-Terphenyl 71 53-133

Field ID: B-11@2 Batch#: 153564 SAMPLE 08/05/09 Type: Prepared: Lab ID: 213913-050 Analyzed: 08/06/09 Diln Fac: 20.00 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 42 Y
 20

 Motor Oil C24-C36
 440
 100

 Surrogate
 %REC
 Limits

 o-Terphenyl
 DO
 53-133

Field ID: B-11@7.5 Batch#: 153564 Type: SAMPLE Prepared: 08/05/09 213913-051 Lab ID: Analyzed: 08/06/09 EPA 3630C Diln Fac: 1.000 Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 0.99

 Motor Oil C24-C36
 ND
 5.0

Surrogate %REC Limits
o-Terphenyl 59 53-133

Field ID: B-11@12 Batch#: 153564 Type: SAMPLE Prepared: 08/05/09 Lab ID: 213913-052 Analyzed: 08/06/09 EPA 3630C Diln Fac: 1.000 Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 1.4 Y
 1.0

 Motor Oil C24-C36
 13
 5.0

 Surrogate
 %REC
 Limits

 o-Terphenyl
 72
 53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 11 of 13

Field ID: B-12@5 Batch#: 153564

Type: SAMPLE Prepared: 08/05/09

Lab ID: 213913-053 Analyzed: 08/06/09

Diln Fac: 1.000 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

 Motor Oil C24-C36
 ND
 5.0

Surrogate%RECLimitso-Terphenyl5953-133

Field ID: B-12@7.5 Batch#: 153564
Type: SAMPLE Prepared: 08/05/09
Lab ID: 213913-054 Analyzed: 08/06/09
Diln Fac: 1.000 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 9.1 Y
 1.0

 Motor Oil C24-C36
 88
 5.0

Surrogate %REC Limits
O-Terphenyl 69 53-133

Field ID: Batch#: B-12@12 153564 Type: SAMPLE Prepared: 08/05/09 213913-055 Lab ID: Analyzed: 08/06/09 1.000 EPA 3630C Diln Fac: Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 590
 0.99

 Motor Oil C24-C36
 270
 5.0

Surrogate %REC Limits
o-Terphenyl 81 53-133

Field ID: B-12@15 Batch#: 153711 Type: SAMPLE Prepared: 08/10/09 Lab ID: 213913-056 Analyzed: 08/11/09 Diln Fac: 1.000 EPA 3630C Cleanup Method:

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

 Motor Oil C24-C36
 ND
 5.0

 Surrogate
 %REC
 Limits

 o-Terphenyl
 73
 53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out
ND= Not Detected
DI= Reporting Limit

RL= Reporting Limit

Page 12 of 13

Total Extractable Hydrocarbons Lab #: 213913 Location: 2250 Telgraph Av. Oakland Fugro West Inc. Client: SHAKER TABLE Prep: Analysis: Sampled: EPA 8015B 07/27/09 Project#: 609.004 Soil Matrix: Units: mg/Kg Received: 08/03/09 Basis: as received

Type: BLANK Prepared: 08/04/09 Lab ID: QC506127 Analyzed: 08/05/09 1.000 Diln Fac: Cleanup Method: EPA 3630C

Batch#: 153518

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
Builogace	OREC	DITHE CO	
o-Terphenyl	83	53-133	

BLANK 08/04/09 Type: Prepared: Lab ID: QC506227 Analyzed: 08/07/09 Diln Fac: $\tilde{1}.000$ Cleanup Method: EPA 3630C

Batch#: 153540

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate
Terphenyl

08/05/09 Type: BLANK Prepared: Lab ID: QC506314 Analyzed: 08/07/09 1.000 Diln Fac: Cleanup Method: EPA 3630C Batch#: 153564

Result Analyte RL Diesel C10-C24 ND 0.99 Motor Oil C24-C36 5.0 ND

Surrogate	%REC	Limits
o-Terphenyl	71	53-133

BLANK 08/10/09 Type: Prepared: QC506927 Lab ID: Analyzed: 08/11/09 Diln Fac: 1.000 Cleanup Method: EPA 3630C Batch#: 153711

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	80	53-133

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 13 of 13

Total Extractable Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	SHAKER TABLE			
Project#:	609.004	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC506128	Batch#:	153518			
Matrix:	Soil	Prepared:	08/04/09			
Units:	mg/Kg	Analyzed:	08/06/09			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.66	42.29	85	52-128

Surrogate	%REC	Limits
o-Terphenyl	80	53-133

Page 1 of 1

Total Extractable Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	SHAKER TABLE			
Project#:	609.004	Analysis:	EPA 8015B			
Field ID:	B-3@1	Batch#:	153518			
MSS Lab ID:	213913-015	Sampled:	07/27/09			
Matrix:	Soil	Received:	08/03/09			
Units:	mg/Kg	Prepared:	08/04/09			
Basis:	as received	Analyzed:	08/06/09			
Diln Fac:	10.00					

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC506129

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	2.705	49.89	91.41	178 *	33-145

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC506130

Analyte	Spiked	Result	%REC	Limits RPD Li	im
Diesel C10-C24	49.93	57.83	110	33-145 45 * 44	4

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

^{*=} Value outside of QC limits; see narrative

DO= Diluted Out

RPD= Relative Percent Difference

Total Extractable Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	SHAKER TABLE			
Project#:	609.004	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC506228	Batch#:	153540			
Matrix:	Soil	Prepared:	08/04/09			
Units:	mg/Kg	Analyzed:	08/07/09			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.85	48.76	98	52-128

Surrogate	%REC	Limits
o-Terphenyl	100	53-133

Page 1 of 1

Total Extractable Hydrocarbons						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	SHAKER TABLE			
Project#:	609.004	Analysis:	EPA 8015B			
Field ID:	B-10@10	Batch#:	153540			
MSS Lab ID:	213913-048	Sampled:	07/27/09			
Matrix:	Soil	Received:	08/03/09			
Units:	mg/Kg	Prepared:	08/04/09			
Basis:	as received	Analyzed:	08/07/09			
Diln Fac:	1.000					

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC506229

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	5.675	49.73	52.77	95	33-145

Surrogate	%REC	Limits
o-Terphenyl	97	53-133

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC506230

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.84	36.20	61	33-145	37	44

Total Extractable Hydrocarbons					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	SHAKER TABLE		
Project#:	609.004	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC506315	Batch#:	153564		
Matrix:	Soil	Prepared:	08/05/09		
Units:	mg/Kg	Analyzed:	08/07/09		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.60	45.72	92	52-128

Surrogate	%REC	Limits
o-Terphenyl	95	53-133

Page 1 of 1

Total Extractable Hydrocarbons					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	SHAKER TABLE		
Project#:	609.004	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	153564		
MSS Lab ID:	213937-001	Sampled:	08/03/09		
Matrix:	Soil	Received:	08/04/09		
Units:	mg/Kg	Prepared:	08/05/09		
Basis:	as received	Analyzed:	08/07/09		
Diln Fac:	2.000				

Type: MS Cleanup Method: EPA 3630C

Lab ID: QC506316

Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	1,065	49.84	883.1	-366 NM 33-145

Surrogate	%REC	Limits
o-Terphenyl	83	53-133

Type: MSD Cleanup Method: EPA 3630C

Lab ID: QC506317

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.72	937.0	-258 NM	33-145	6	44

Surrogate	%REC	Limits	
o-Terphenyl	89	53-133	

 $\mbox{NM=}$ Not Meaningful: Sample concentration > 4X spike concentration RPD= Relative Percent Difference

	Total Ext	ractable Hydrocar	rbons
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	SHAKER TABLE
Project#:	609.004	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506928	Batch#:	153711
Matrix:	Soil	Prepared:	08/10/09
Units:	mg/Kg	Analyzed:	08/11/09

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	50.32	38.23	76	52-128

Surrogate	%REC	Limits
o-Terphenyl	69	53-133

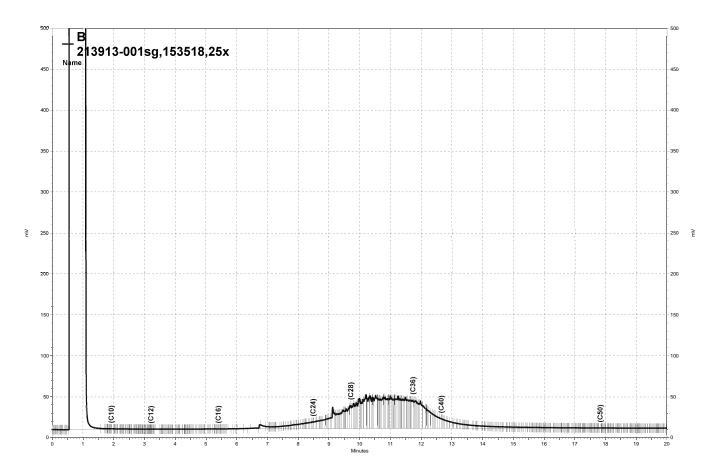
Page 1 of 1 94.0

	Total Extractable Hydrocarbons				
Lab #:	213913	Location:	2250 Telgraph Av. Oakland		
Client:	Fugro West Inc.	Prep:	SHAKER TABLE		
Project#:	609.004	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	153711		
MSS Lab ID:	214078-003	Sampled:	08/10/09		
Matrix:	Soil	Received:	08/10/09		
Units:	mg/Kg	Prepared:	08/10/09		
Basis:	as received	Analyzed:	08/11/09		
Diln Fac:	1.000				

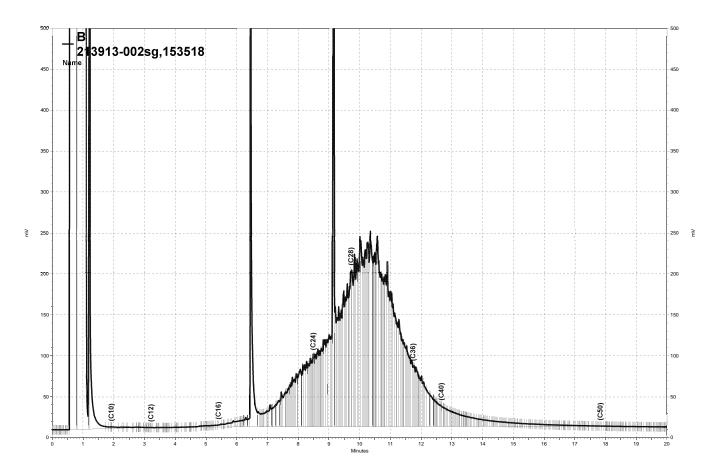
Type: MS Cleanup Method: EPA 3630C

Lab ID: QC506929

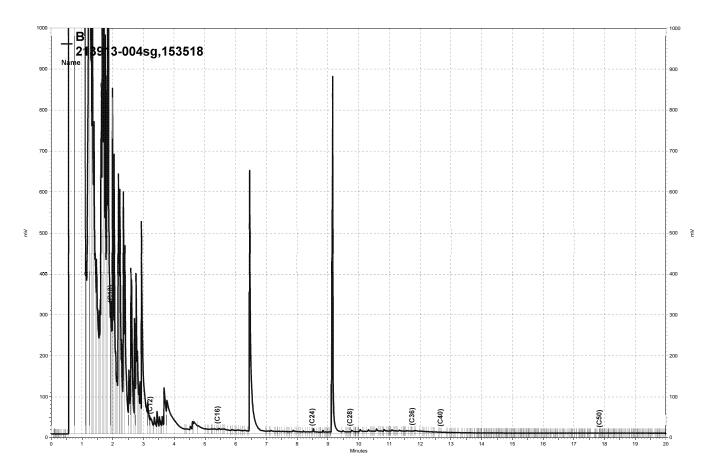
Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	0.1686	49.78	51.46	103	33-145

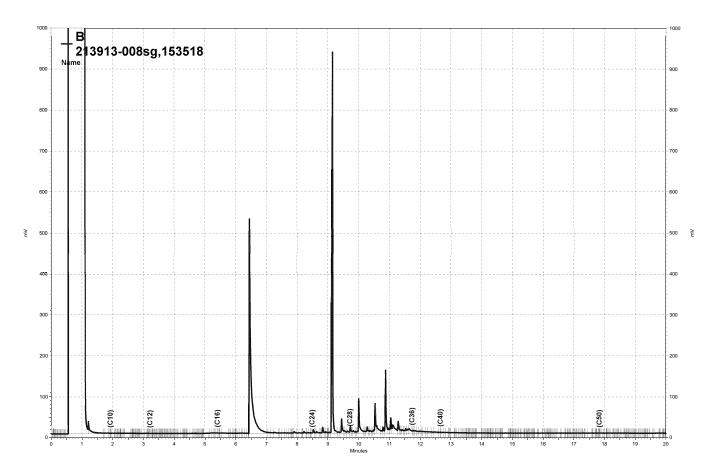

Surrogate	%REC	Limits
o-Terphenyl	108	53-133

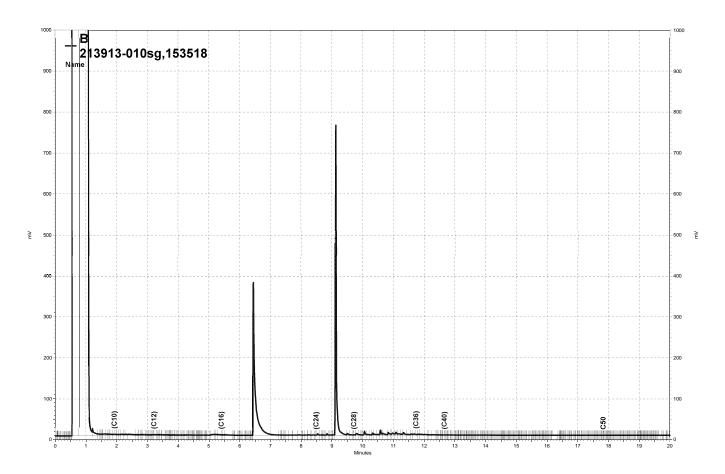
Type: MSD Cleanup Method: EPA 3630C

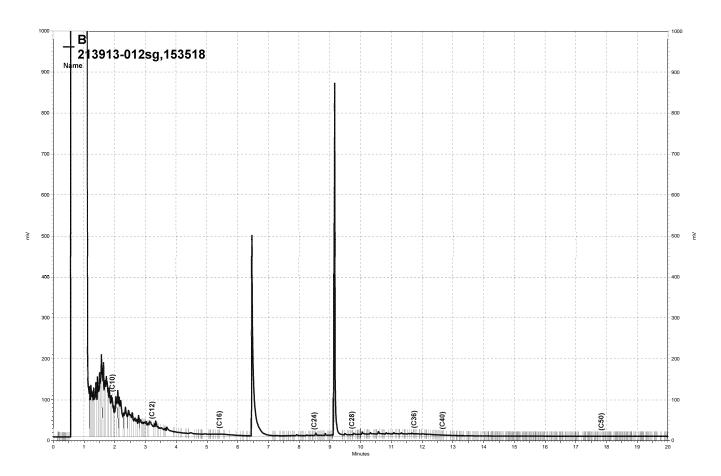

Lab ID: QC506930

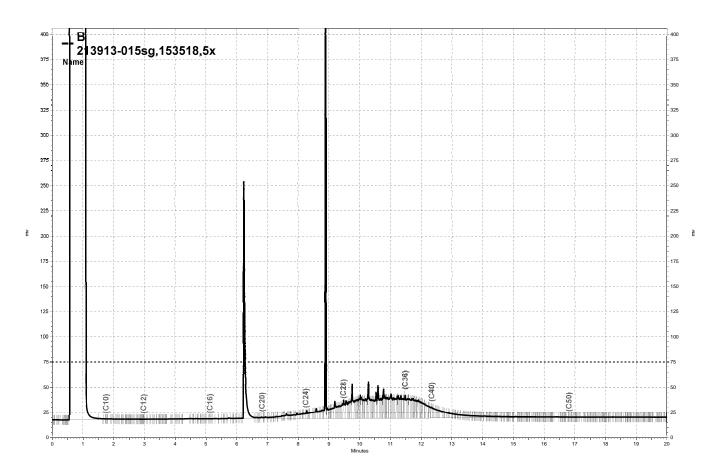
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.79	46.90	94	33-145	9	44

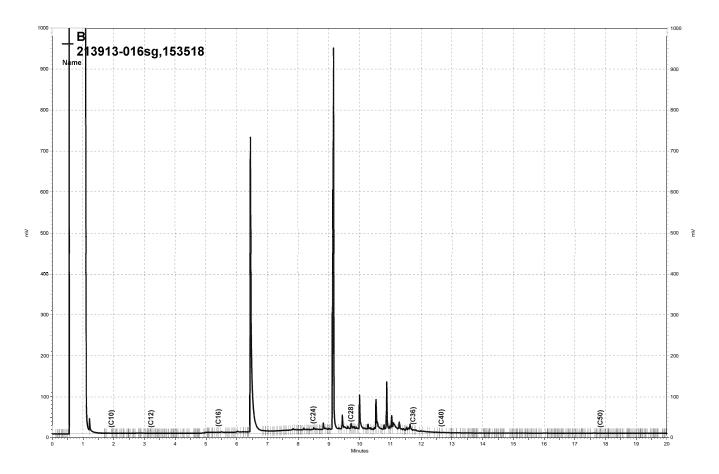

Surro	ogate %REC	Limits	
o-Terphenyl	100	53-133	

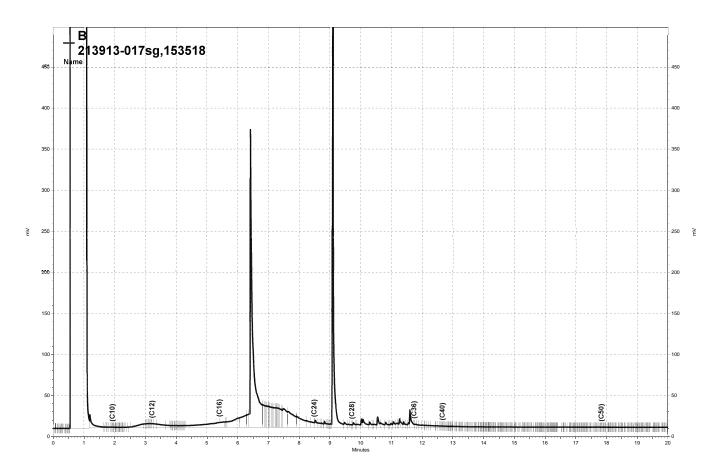

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b030, B

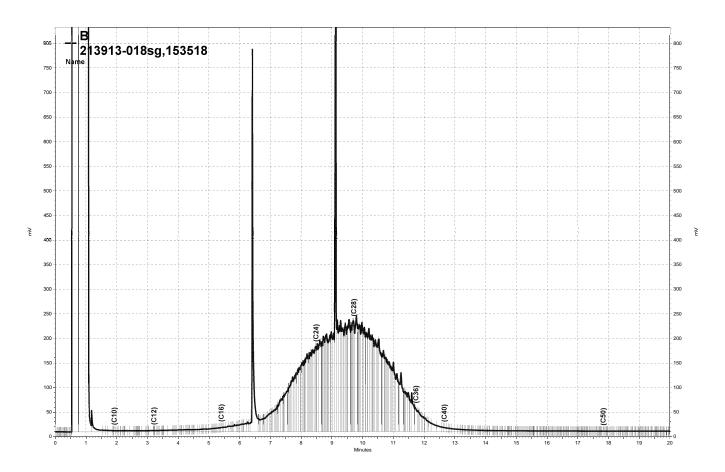

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b031, B

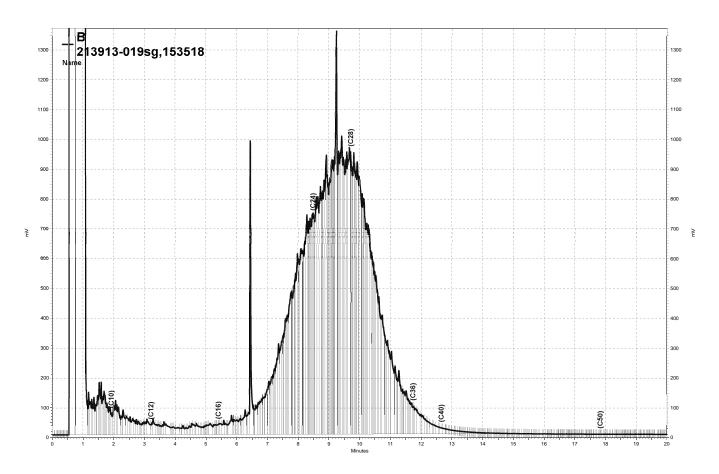

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b034, B

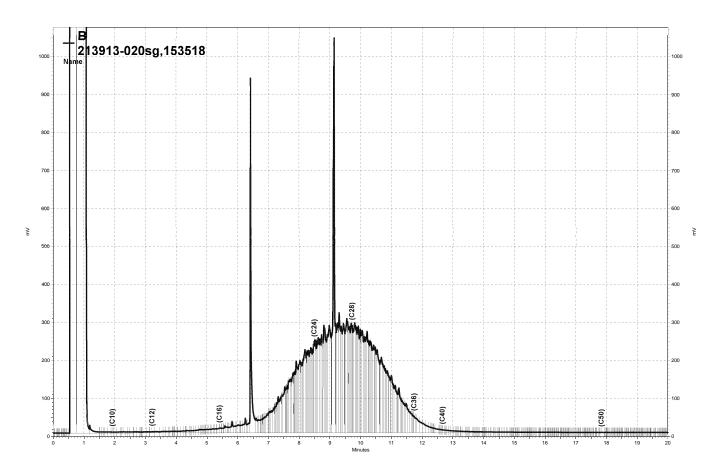

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b035, B

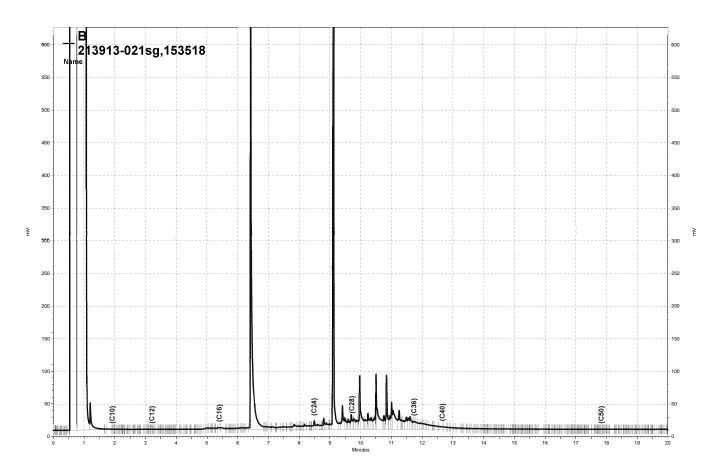

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b036, B

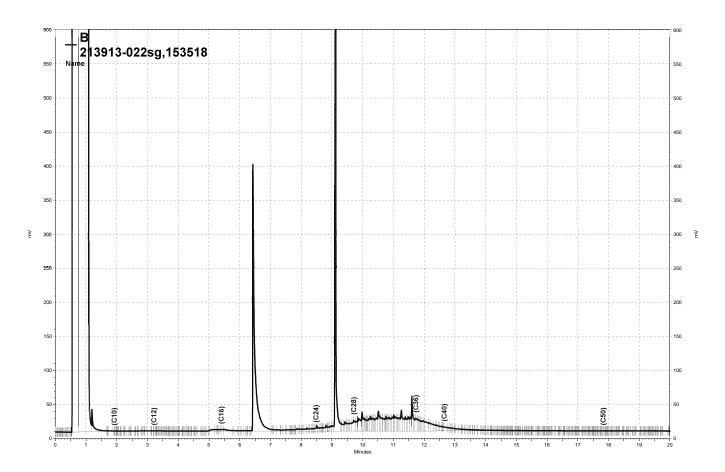

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b037, B

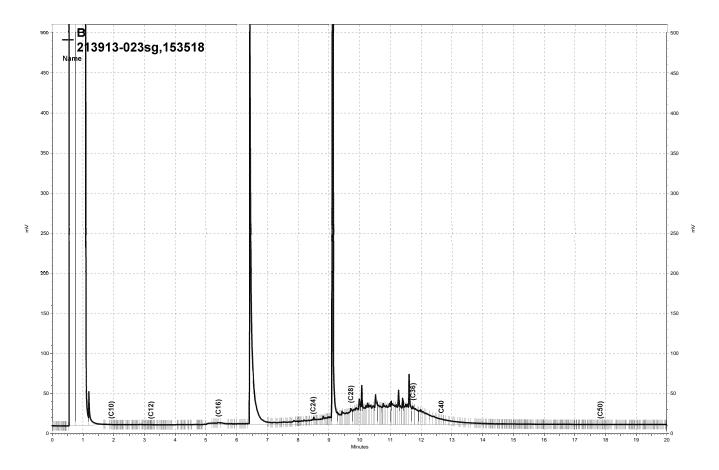

\Lims\gdrive\ezchrom\Projects\GC15B\Data\218b006, B

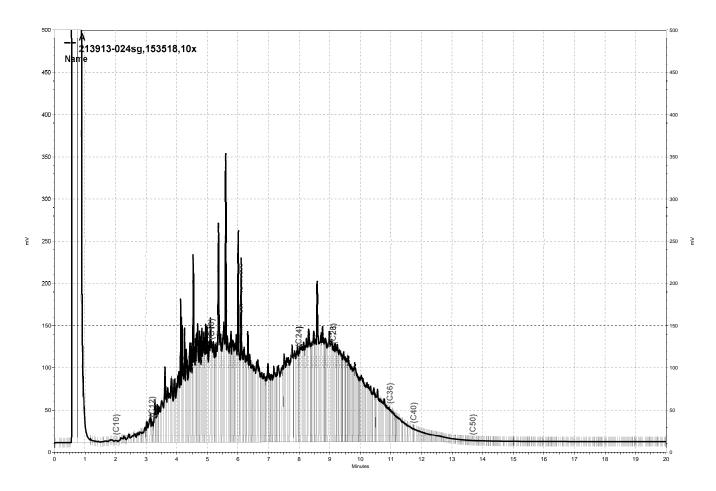

\Lims\gdrive\ezchrom\Projects\GC14B\Data\217b038, B

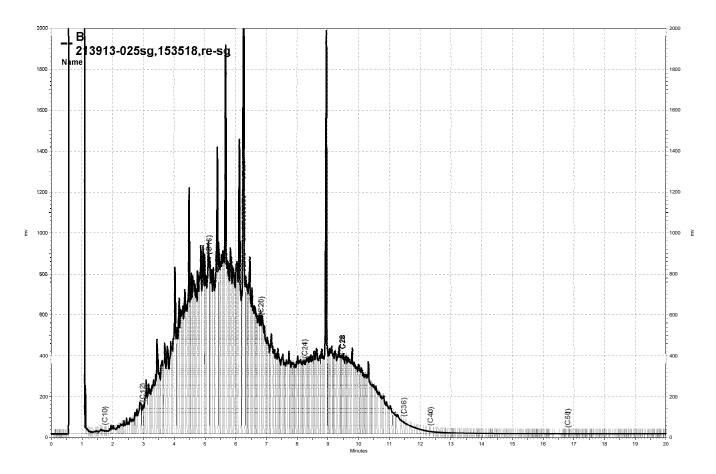

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b006, B

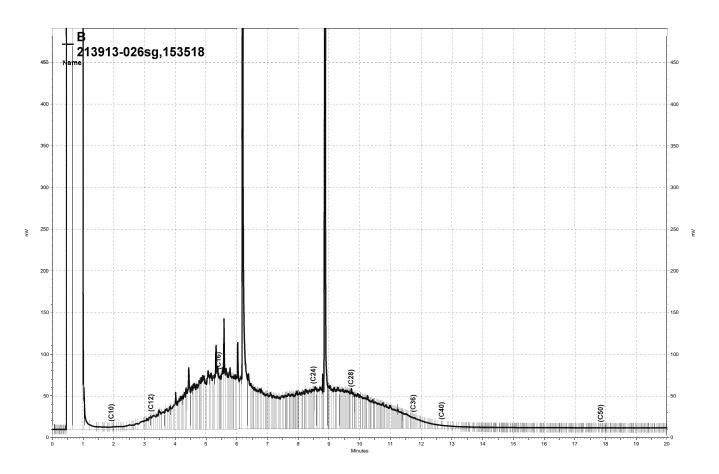

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b007, B

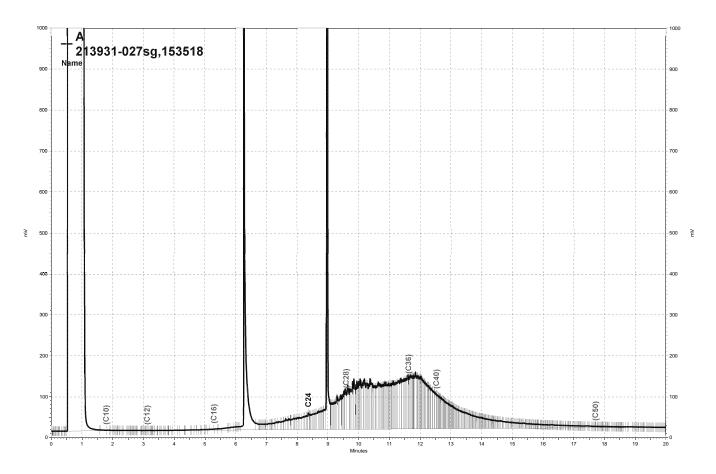

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b008, B

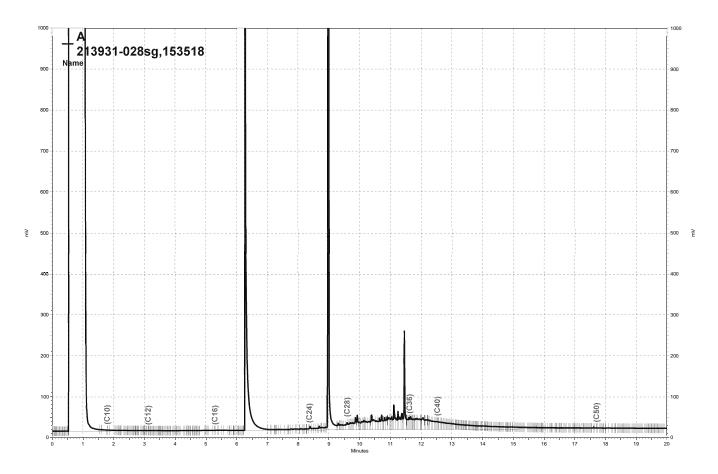

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b009, B

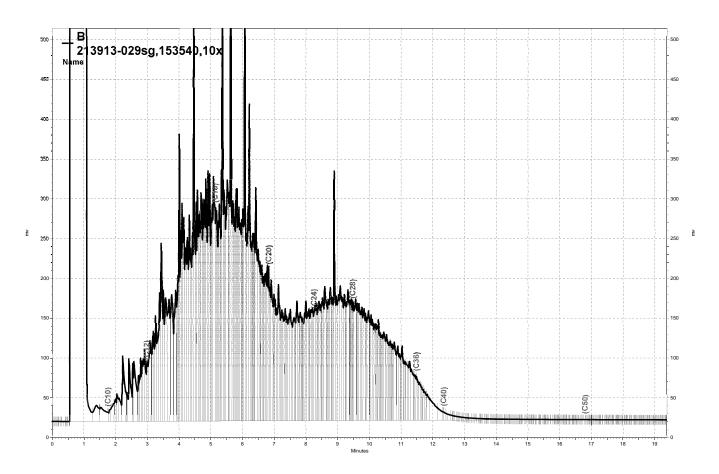

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b010, B

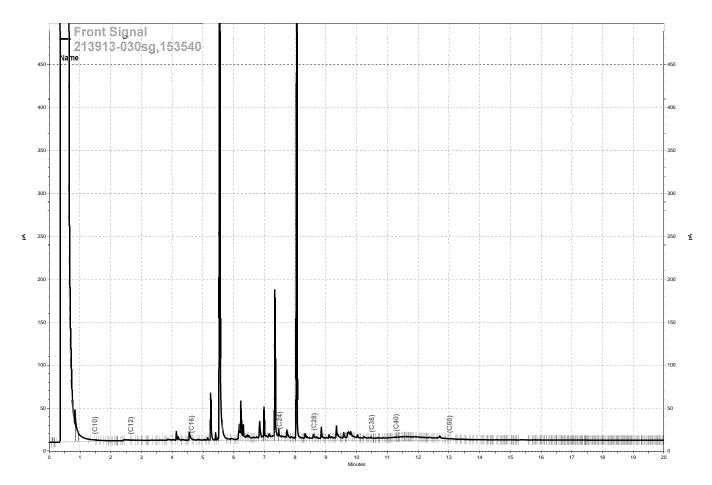

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b011, B

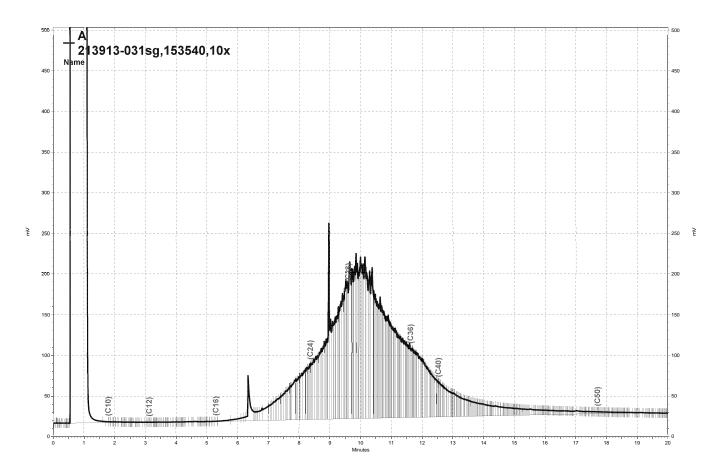

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b012, B

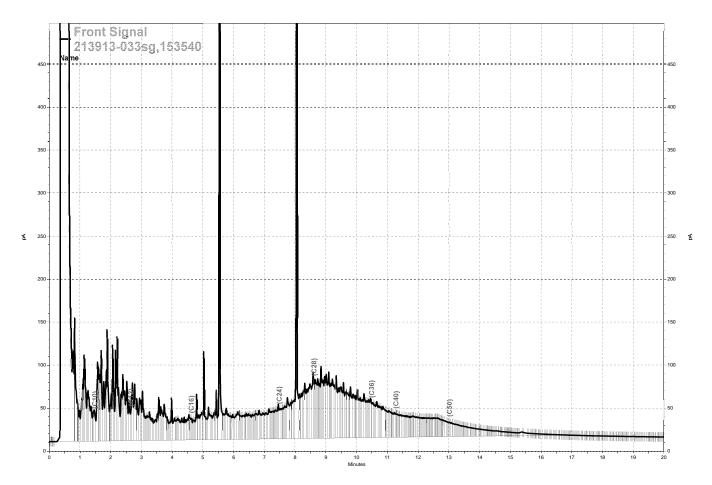

\Lims\gdrive\ezchrom\Projects\GC26\Data\218a021, A

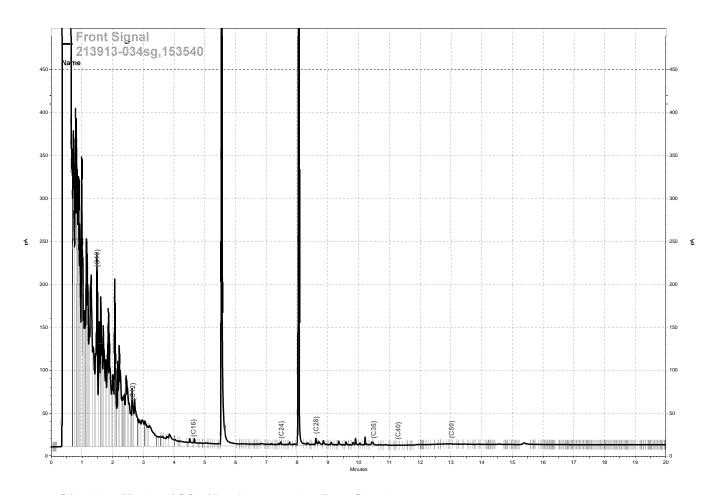

\Lims\gdrive\ezchrom\Projects\GC15B\Data\222b005, B

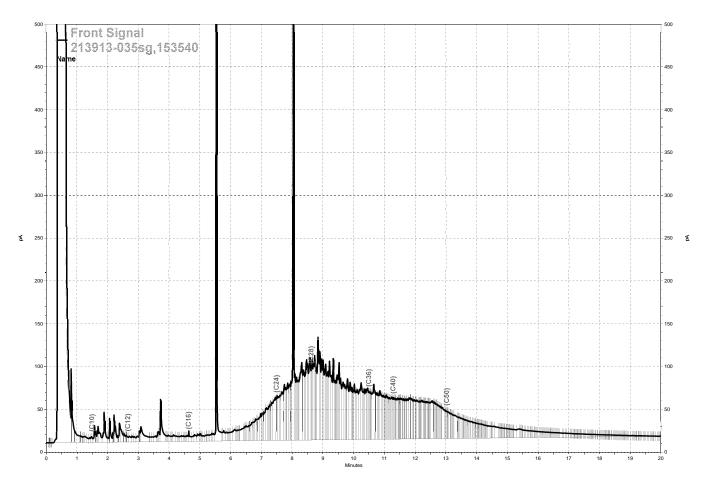

\Lims\gdrive\ezchrom\Projects\GC14B\Data\218b015, B

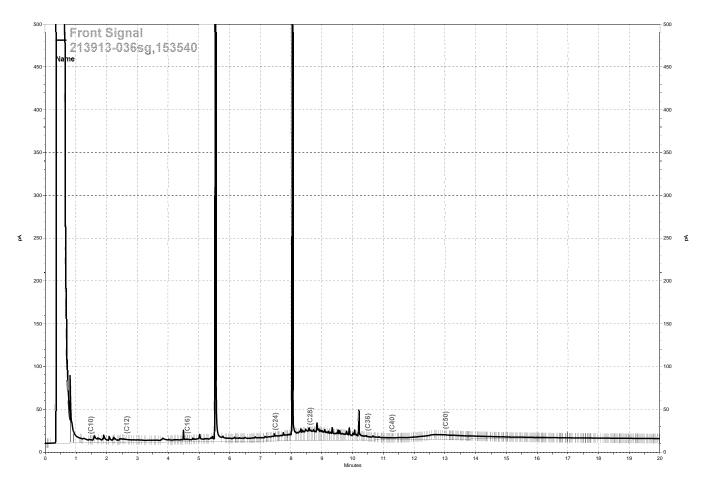

\Lims\gdrive\ezchrom\Projects\GC17A\Data\218a012, A

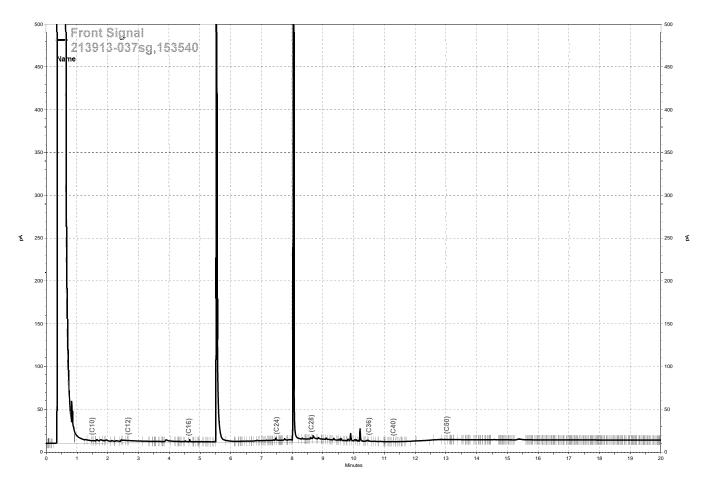

\Lims\gdrive\ezchrom\Projects\GC17A\Data\218a013, A

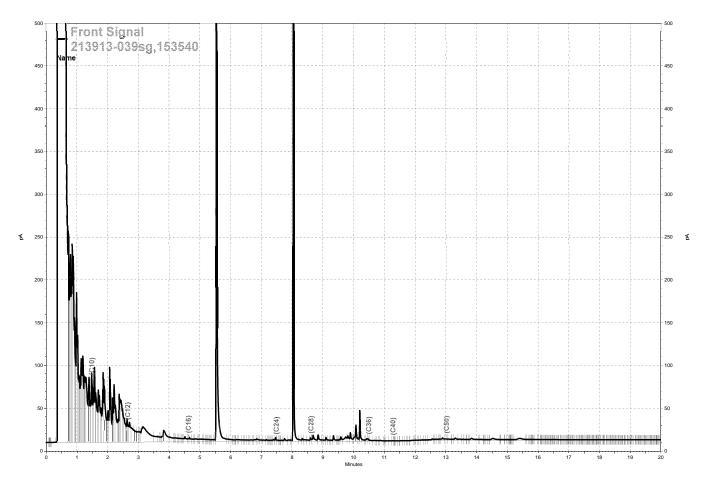

\Lims\gdrive\ezchrom\Projects\GC15B\Data\220b006, B

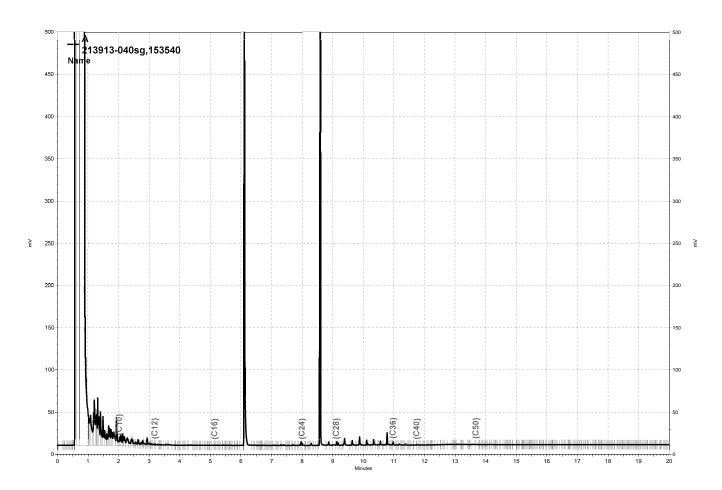

G:\ezchrom\Projects\GC27\Data\218a037.dat, Front Signal

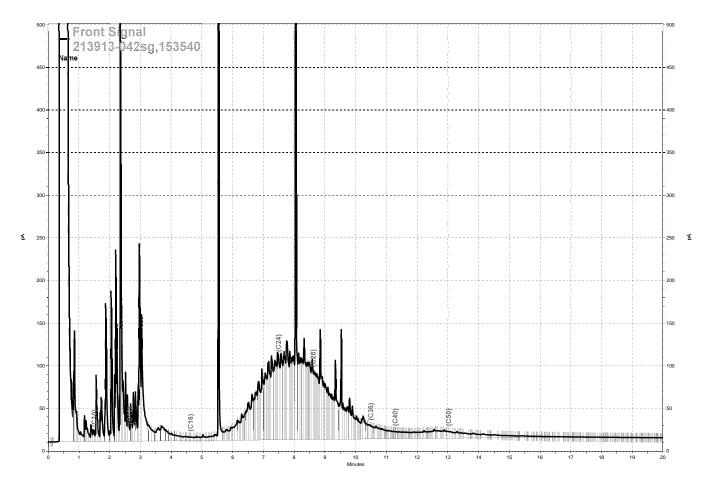

\Lims\gdrive\ezchrom\Projects\GC17A\Data\218a040, A

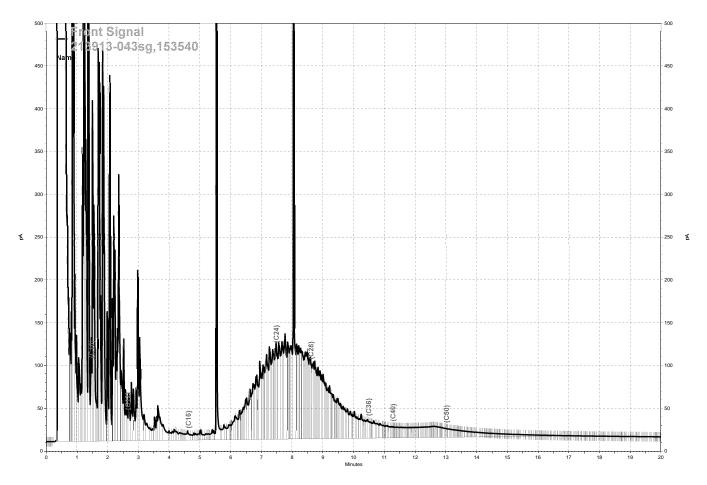

G:\ezchrom\Projects\GC27\Data\218a049.dat, Front Signal

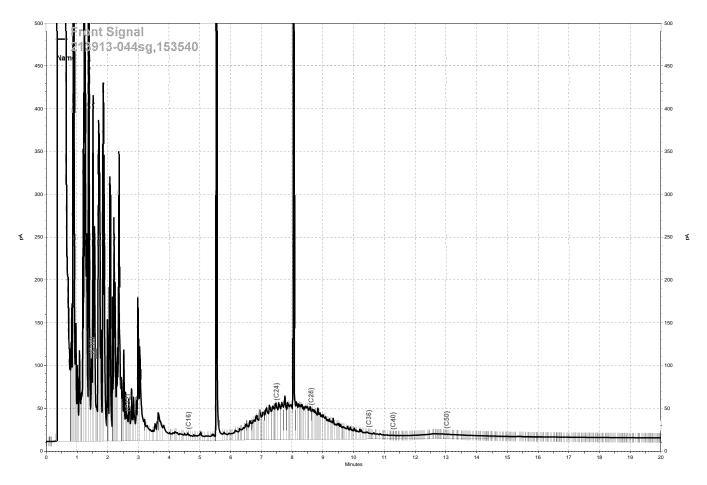

G:\ezchrom\Projects\GC27\Data\218a043.dat, Front Signal

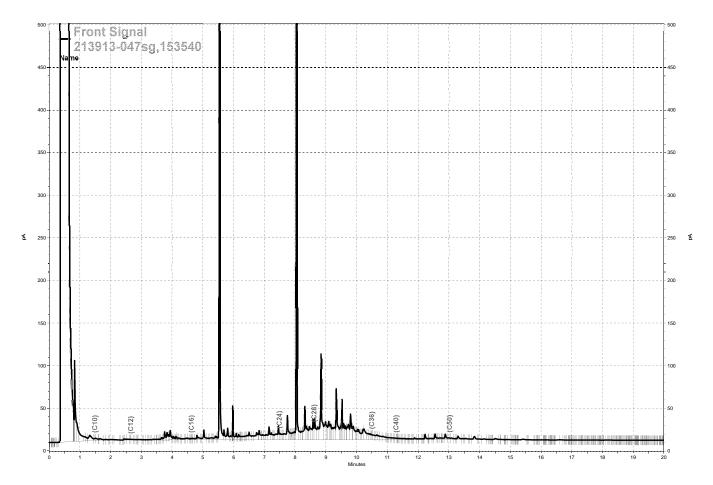

G:\ezchrom\Projects\GC27\Data\218a053.dat, Front Signal

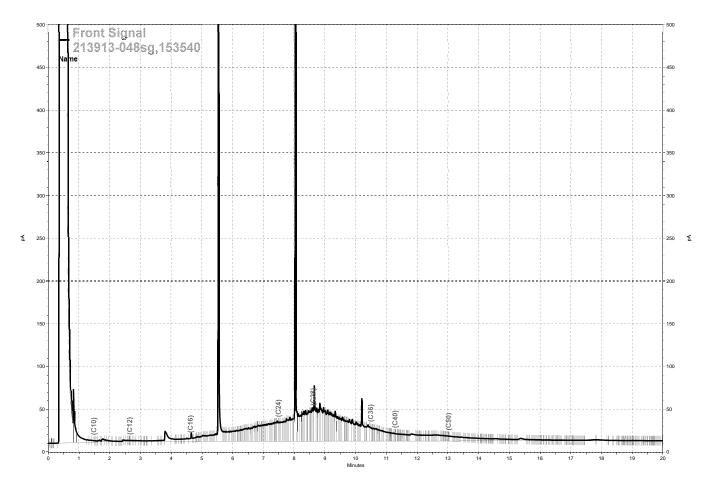

G:\ezchrom\Projects\GC27\Data\218a054.dat, Front Signal

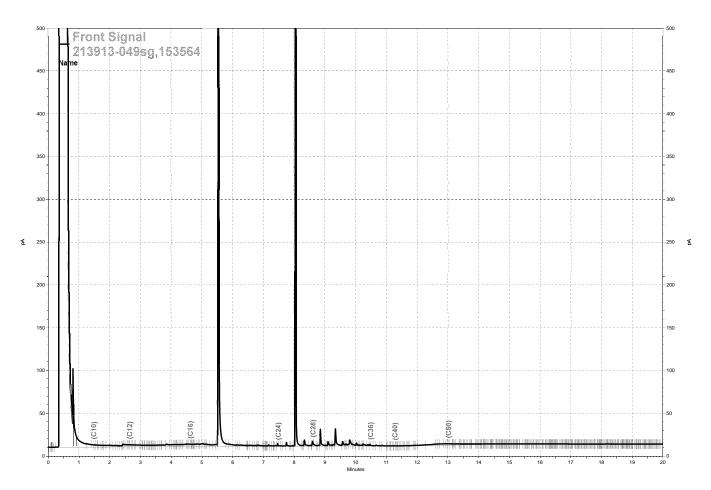

G:\ezchrom\Projects\GC27\Data\218a056.dat, Front Signal

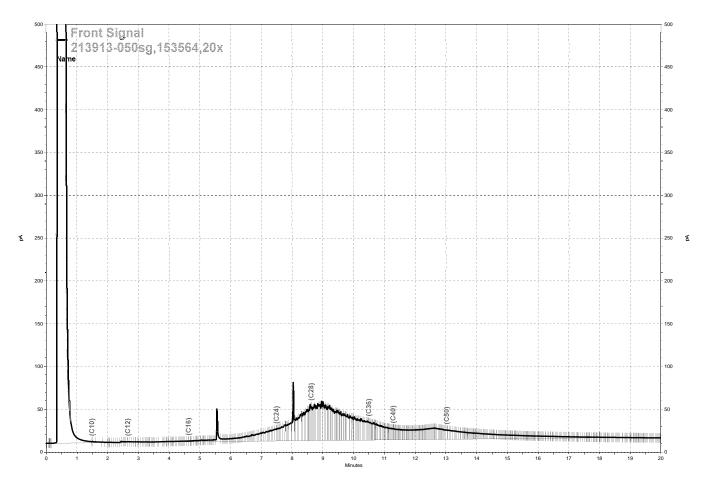

G:\ezchrom\Projects\GC27\Data\218a058.dat, Front Signal

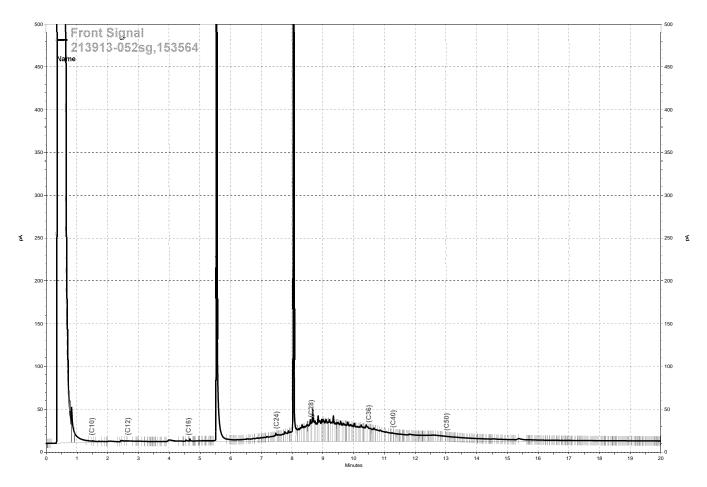

\Lims\gdrive\ezchrom\Projects\GC26\Data\218a019, A

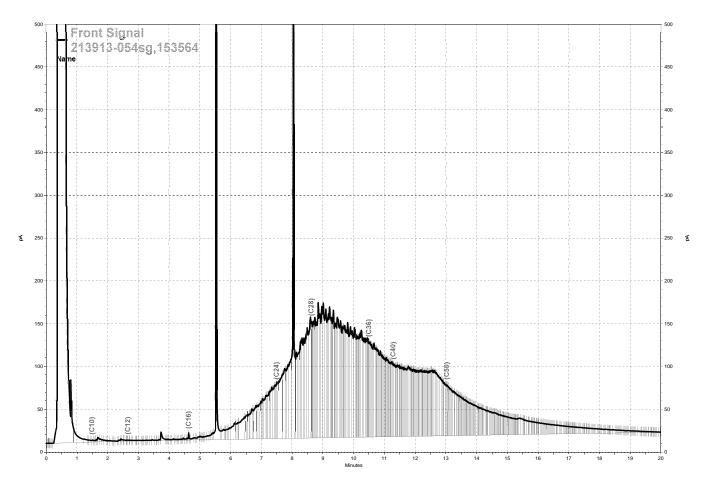

G:\ezchrom\Projects\GC27\Data\218a050.dat, Front Signal

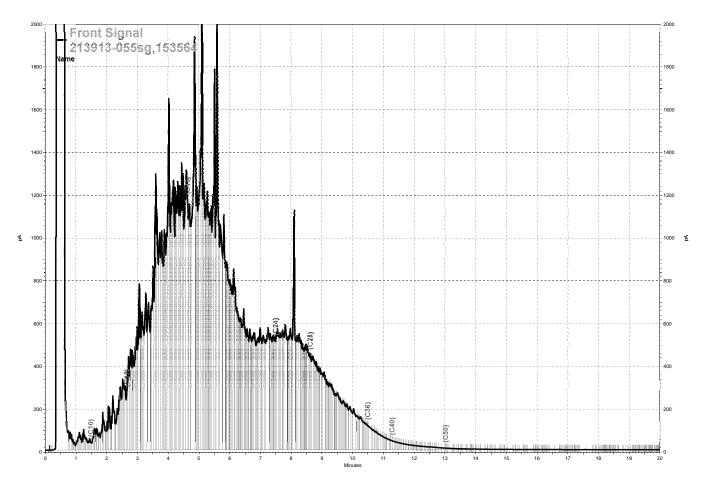

G:\ezchrom\Projects\GC27\Data\218a051.dat, Front Signal

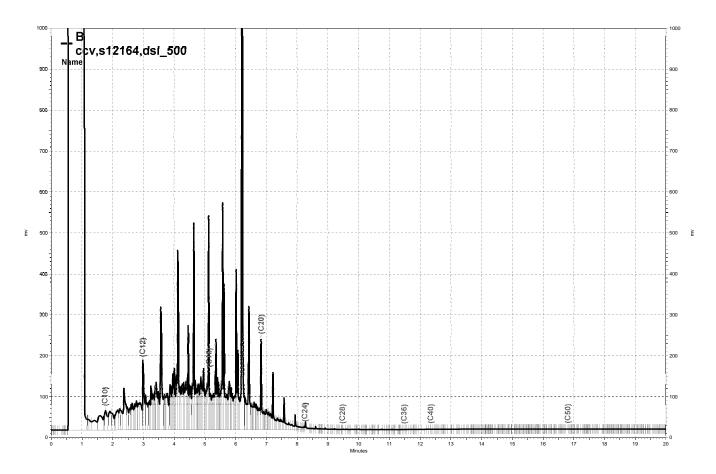

G:\ezchrom\Projects\GC27\Data\218a052.dat, Front Signal

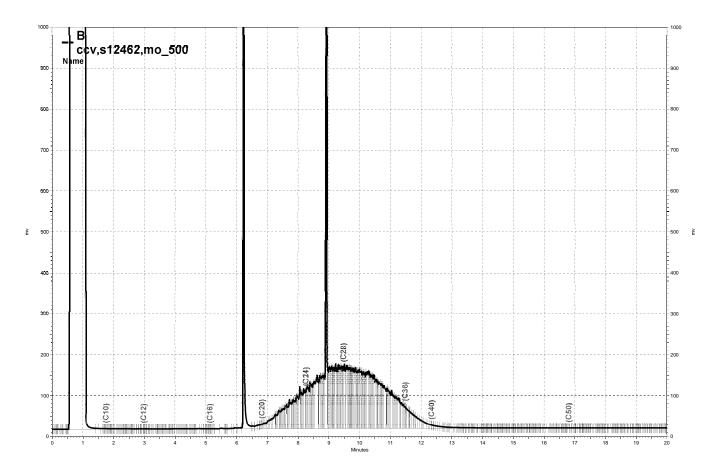

G:\ezchrom\Projects\GC27\Data\218a035.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\218a038.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\218a027.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\218a024.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\218a020.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\218a021.dat, Front Signal

G:\ezchrom\Projects\GC27\Data\218a016.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\218b004, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\218b005, B

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@2	Diln Fac:	0.9470
Lab ID:	213913-001	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	95	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits
Dibromofluoromethane	124	71-128
1,2-Dichloroethane-d4	119	69-135
Toluene-d8	87	80-120
Bromofluorobenzene	115	77-131

ge 1 of 1 21.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@7.5	Diln Fac:	0.9242
Lab ID:	213913-002	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	92	
MTBE	ND	4.6	
Isopropyl Ether (DIPE)	ND	4.6	
Ethyl tert-Butyl Ether (ETBE)	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Methyl tert-Amyl Ether (TAME)	ND	4.6	
Toluene	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	

Surrogate	%REC	Limits
Dibromofluoromethane 1:	.25	71-128
1,2-Dichloroethane-d4	.16	69-135
Toluene-d8 8'	37	80-120
Bromofluorobenzene 1:	.15	77-131

age 1 of 1 22.0

	BT	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@10	Diln Fac:	100.0
Lab ID:	213913-003	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/06/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10,000	
MTBE	ND	500	
Isopropyl Ether (DIPE)	ND	500	
Ethyl tert-Butyl Ether (ETBE)	ND	500	
1,2-Dichloroethane	ND	500	
Benzene	ND	500	
Methyl tert-Amyl Ether (TAME)	ND	500	
Toluene	1,300	500	
1,2-Dibromoethane	ND	500	
Ethylbenzene	6,900	500	
m,p-Xylenes	21,000	500	
o-Xylene	7,000	500	

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	94	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	124	77-131
Trifluorotoluene (MeOH)	102	56-147

ND= Not Detected
RL= Reporting Limit

Page 1 of 1 23.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@12	Diln Fac:	166.7
Lab ID:	213913-004	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/06/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	17,000	
MTBE	ND	830	
Isopropyl Ether (DIPE)	ND	830	
Ethyl tert-Butyl Ether (ETBE)	ND	830	
1,2-Dichloroethane	ND	830	
Benzene	ND	830	
Methyl tert-Amyl Ether (TAME)	ND	830	
Toluene	4,000	830	
1,2-Dibromoethane	ND	830	
Ethylbenzene	12,000	830	
m,p-Xylenes	39,000	830	
o-Xylene	14,000	830	

Surrogate	%REC	Limits
Dibromofluoromethane 8	34	71-128
1,2-Dichloroethane-d4 8	34	69-135
Toluene-d8 9	91	80-120
Bromofluorobenzene 1	111	77-131
Trifluorotoluene (MeOH) 1	105	56-147

age 1 of 1 24.0

	BT	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@15	Diln Fac:	0.9709
Lab ID:	213913-005	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	97
MTBE	ND	4.9
Isopropyl Ether (DIPE)	ND	4.9
Ethyl tert-Butyl Ether (ETBE)	ND	4.9
1,2-Dichloroethane	ND	4.9
Benzene	10	4.9
Methyl tert-Amyl Ether (TAME)	ND	4.9
Toluene	ND	4.9
1,2-Dibromoethane	ND	4.9
Ethylbenzene	22	4.9
m,p-Xylenes	48	4.9
o-Xylene	17	4.9

Surrogate	%REC	Limits
Dibromofluoromethane 1	125	71-128
1,2-Dichloroethane-d4 1	116	69-135
Toluene-d8 8	83	80-120
Bromofluorobenzene 1	104	77-131

ge 1 of 1 25.0

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@17	Diln Fac:	0.9488
Lab ID:	213913-006	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	95	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	34	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	23	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate %	%REC	Limits
Dibromofluoromethane 12	24	71-128
1,2-Dichloroethane-d4 11	14	69-135
Toluene-d8 83	3	80-120
Bromofluorobenzene 10	05	77-131

Page 1 of 1

26.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@20	Diln Fac:	0.9276
Lab ID:	213913-007	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	93	
MTBE	ND	4.6	
Isopropyl Ether (DIPE)	ND	4.6	
Ethyl tert-Butyl Ether (ETBE)	ND	4.6	
1,2-Dichloroethane	ND	4.6	
Benzene	ND	4.6	
Methyl tert-Amyl Ether (TAME)	ND	4.6	
Toluene	ND	4.6	
1,2-Dibromoethane	ND	4.6	
Ethylbenzene	ND	4.6	
m,p-Xylenes	ND	4.6	
o-Xylene	ND	4.6	

Surrogate	%REC	Limits
Dibromofluoromethane	120	71-128
1,2-Dichloroethane-d4	111	69-135
Toluene-d8	86	80-120
Bromofluorobenzene	107	77-131

27.0

	BT	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@5	Diln Fac:	1.000
Lab ID:	213913-008	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 1	121	71-128
1,2-Dichloroethane-d4 1	110	69-135
Toluene-d8	87	80-120
Bromofluorobenzene 1	113	77-131

age 1 of 1 28.0

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@7.5	Diln Fac:	0.9381
Lab ID:	213913-009	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	94	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits
Dibromofluoromethane	125	71-128
1,2-Dichloroethane-d4	113	69-135
Toluene-d8	92	80-120
Bromofluorobenzene	114	77-131

	вт	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@10	Diln Fac:	0.9560
Lab ID:	213913-010	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	130 *	71–128	
1,2-Dichloroethane-d4	122	69-135	
Toluene-d8	82	80-120	
Bromofluorobenzene	113	77-131	

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@12	Diln Fac:	0.9311
Lab ID:	213913-011	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	93	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits
Dibromofluoromethane 1	124	71-128
1,2-Dichloroethane-d4 1	112	69-135
Toluene-d8	86	80-120
Bromofluorobenzene 1	111	77-131

Page 1 or 1

	В	TXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@15	Diln Fac:	9.259
Lab ID:	213913-012	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/07/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	930	
MTBE	ND	46	
Isopropyl Ether (DIPE)	ND	46	
Ethyl tert-Butyl Ether (ETBE)	ND	46	
1,2-Dichloroethane	ND	46	
Benzene	ND	46	
Methyl tert-Amyl Ether (TAME)	ND	46	
Toluene	ND	46	
1,2-Dibromoethane	ND	46	
Ethylbenzene	ND	46	
m,p-Xylenes	ND	46	
o-Xylene	ND	46	

Surrogate	%REC	Limits
Dibromofluoromethane	84	71–128
1,2-Dichloroethane-d4	82	69-135
Toluene-d8	94	80-120
Bromofluorobenzene	149 *	77–131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@17	Diln Fac:	10.00
Lab ID:	213913-013	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/07/09

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	1,000
MTBE	ND	50
Isopropyl Ether (DIPE)	ND	50
Ethyl tert-Butyl Ether (ETBE)	ND	50
1,2-Dichloroethane	ND	50
Benzene	ND	50
Methyl tert-Amyl Ether (TAME)	ND	50
Toluene	ND	50
1,2-Dibromoethane	ND	50
Ethylbenzene	ND	50
m,p-Xylenes	ND	50
o-Xylene	ND	50

Surrogate %	%REC	Limits
Dibromofluoromethane 85	5	71-128
1,2-Dichloroethane-d4 82	2	69-135
Toluene-d8 94	4	80-120
Bromofluorobenzene 97	7	77-131

age 1 of 1 33.0

	В	TXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-2@19.5	Diln Fac:	0.9615
Lab ID:	213913-014	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/06/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate %R	REC	Limits
Dibromofluoromethane 90		71-128
1,2-Dichloroethane-d4 96		69-135
Toluene-d8 98		80-120
Bromofluorobenzene 88		77-131

age 1 of 1 34.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-3@10	Diln Fac:	0.9862
Lab ID:	213913-017	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	113	71-128
1,2-Dichloroethane-d4	106	69-135
Toluene-d8	85	80-120
Bromofluorobenzene	96	77-131

ge 1 of 1 35.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-3@12	Diln Fac:	0.9506
Lab ID:	213913-018	Batch#:	153504
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	95	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	114	71-128
1,2-Dichloroethane-d4	102	69-135
Toluene-d8	87	80-120
Bromofluorobenzene	97	77-131

ge 1 of 1

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-3@15	Diln Fac:	0.9615
Lab ID:	213913-019	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	92	71-128
1,2-Dichloroethane-d4	102	69-135
Toluene-d8	99	80-120
Bromofluorobenzene	112	77-131

age 1 of 1 37.0

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-4A@12	Diln Fac:	9.434
Lab ID:	213913-024	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	940	
MTBE	ND	47	
Isopropyl Ether (DIPE)	ND	47	
Ethyl tert-Butyl Ether (ETBE)	ND	47	
1,2-Dichloroethane	ND	47	
Benzene	ND	47	
Methyl tert-Amyl Ether (TAME)	ND	47	
Toluene	ND	47	
1,2-Dibromoethane	ND	47	
Ethylbenzene	ND	47	
m,p-Xylenes	ND	47	
o-Xylene	ND	47	

Surrogate %	%REC	Limits
Dibromofluoromethane 84	4	71-128
1,2-Dichloroethane-d4 85	5	69-135
Toluene-d8 92	2	80-120
Bromofluorobenzene 91	1	77-131

age 1 of 1 38.0

	BT	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-4A@15	Diln Fac:	0.9690
Lab ID:	213913-025	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	88	69-135
Toluene-d8	94	80-120
Bromofluorobenzene	93	77-131

Page 1 of 1

132 of 187

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5@2	Diln Fac:	0.9579
Lab ID:	213913-027	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane 84	4	71-128
1,2-Dichloroethane-d4 85	5	69-135
Toluene-d8 98	8	80-120
Bromofluorobenzene 93	3	77-131

ND= Not Detected
RL= Reporting Limit

Page 1 of 1 40.0

	вт	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5@7.5	Diln Fac:	0.9615
Lab ID:	213913-028	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate %1	REC	Limits
Dibromofluoromethane 86		71-128
1,2-Dichloroethane-d4 88		69-135
Toluene-d8 98		80-120
Bromofluorobenzene 93		77-131

ge 1 of 1 41.0

	ВТУ	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5@12	Diln Fac:	0.9960
Lab ID:	213913-029	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 9	0	71-128
1,2-Dichloroethane-d4 8	34	69-135
Toluene-d8 9	92	80-120
Bromofluorobenzene 1	.09	77-131

age 1 of 1 42.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5@15	Diln Fac:	0.9881
Lab ID:	213913-030	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	85	71-128
1,2-Dichloroethane-d4	88	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	93	77-131

age 1 of 1 43.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-6@2	Diln Fac:	0.9823
Lab ID:	213913-031	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane 9!	5	71-128
1,2-Dichloroethane-d4 8'	37	69-135
Toluene-d8 9'	7	80-120
Bromofluorobenzene 9!	5	77-131

age 1 of 1 44.0

	ВТ	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-6@7.5	Diln Fac:	0.9671
Lab ID:	213913-032	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	89	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	87	77-131

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-6@12	Diln Fac:	0.9579
Lab ID:	213913-033	Batch#:	153510
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane 8	39	71-128
1,2-Dichloroethane-d4 8	88	69-135
Toluene-d8 9	5	80-120
Bromofluorobenzene 1	.02	77-131

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-6@15	Diln Fac:	5.000
Lab ID:	213913-034	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/06/09

Analyte	Resul	lt RL
tert-Butyl Alcohol (TBA)	ND	500
MTBE	ND	25
Isopropyl Ether (DIPE)	ND	25
Ethyl tert-Butyl Ether (ETBE)	ND	25
1,2-Dichloroethane	ND	25
Benzene	39	25
Methyl tert-Amyl Ether (TAME)	ND	25
Toluene	ND	25
1,2-Dibromoethane	ND	25
Ethylbenzene	80	25
m,p-Xylenes	ND	25
o-Xylene	ND	25

Surrogate	%REC	Limits
Dibromofluoromethane	87	71-128
1,2-Dichloroethane-d4	84	69-135
Toluene-d8	90	80-120
Bromofluorobenzene	95	77-131

age 1 of 1 47.0

	BT	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-7@5	Diln Fac:	0.9634
Lab ID:	213913-035	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	107	71-128
1,2-Dichloroethane-d4	136 *	69-135
Toluene-d8	81	80-120
Bromofluorobenzene	98	77-131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-7@7.5	Diln Fac:	0.9597
Lab ID:	213913-036	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	107	71-128	
1,2-Dichloroethane-d4	137 *	69-135	
Toluene-d8	84	80-120	
Bromofluorobenzene	103	77-131	

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-7@12	Diln Fac:	0.9671
Lab ID:	213913-037	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	104	71-128
1,2-Dichloroethane-d4	140 *	69-135
Toluene-d8	99	80-120
Bromofluorobenzene	104	77-131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-7@15	Diln Fac:	0.9785
Lab ID:	213913-038	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	109	71-128
1,2-Dichloroethane-d4	133	69-135
Toluene-d8	89	80-120
Bromofluorobenzene	109	77-131

ge 1 of 1 51.0

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-8@7.5	Diln Fac:	5.208
Lab ID:	213913-039	Batch#:	153547
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Resul	lt RL
tert-Butyl Alcohol (TBA)	ND	520
MTBE	ND	26
Isopropyl Ether (DIPE)	ND	26
Ethyl tert-Butyl Ether (ETBE)	ND	26
1,2-Dichloroethane	ND	26
Benzene	28	3 26
Methyl tert-Amyl Ether (TAME)	ND	26
Toluene	ND	26
1,2-Dibromoethane	ND	26
Ethylbenzene	790	26
m,p-Xylenes	320	26
o-Xylene	ND	26

Surrogate	%REC	Limits
Dibromofluoromethane 86	6	71-128
1,2-Dichloroethane-d4 83	3	69-135
Toluene-d8 88	8	80-120
Bromofluorobenzene 12	23	77-131

ge 1 of 1 52.0

	В	IXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-8@15	Basis:	as received
Lab ID:	213913-040	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg		

Analyte	Result	RL	Diln Fac	Batch# Analyzed
tert-Butyl Alcohol (TBA)	ND	390	3.876	153589 08/06/09
MTBE	ND	19	3.876	153589 08/06/09
Isopropyl Ether (DIPE)	ND	19	3.876	153589 08/06/09
Ethyl tert-Butyl Ether (ETBE)	ND	19	3.876	153589 08/06/09
1,2-Dichloroethane	ND	19	3.876	153589 08/06/09
Benzene	500	46	9.259	153547 08/05/09
Methyl tert-Amyl Ether (TAME)	ND	19	3.876	153589 08/06/09
Toluene	140	19	3.876	153589 08/06/09
1,2-Dibromoethane	ND	19	3.876	153589 08/06/09
Ethylbenzene	250	19	3.876	153589 08/06/09
m,p-Xylenes	560	19	3.876	153589 08/06/09
o-Xylene	210	19	3.876	153589 08/06/09

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	93	71-128	3.876	153589 08/06/09
1,2-Dichloroethane-d4	81	69-135	3.876	153589 08/06/09
Toluene-d8	96	80-120	3.876	153589 08/06/09
Bromofluorobenzene	87	77-131	3.876	153589 08/06/09

ND= Not Detected
RL= Reporting Limit

Page 1 of 1 53.0

	В	TXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-8@20	Basis:	as received
Lab ID:	213913-041	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg		

Analyte	Result	RL	Diln Fac	Batch# Analyzed
tert-Butyl Alcohol (TBA)	ND	97	0.9671	153589 08/06/09
MTBE	ND	4.8	0.9671	153589 08/06/09
Isopropyl Ether (DIPE)	ND	4.8	0.9671	153589 08/06/09
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	0.9671	153589 08/06/09
1,2-Dichloroethane	ND	4.8	0.9671	153589 08/06/09
Benzene	140	10	1.992	153634 08/07/09
Methyl tert-Amyl Ether (TAME)	ND	4.8	0.9671	153589 08/06/09
Toluene	ND	4.8	0.9671	153589 08/06/09
1,2-Dibromoethane	ND	4.8	0.9671	153589 08/06/09
Ethylbenzene	37	4.8	0.9671	153589 08/06/09
m,p-Xylenes	9.7	4.8	0.9671	153589 08/06/09
o-Xylene	ND	4.8	0.9671	153589 08/06/09

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	93	71-128	0.9671	153589 08/06/09
1,2-Dichloroethane-d4	100	69-135	0.9671	153589 08/06/09
Toluene-d8	100	80-120	0.9671	153589 08/06/09
Bromofluorobenzene	90	77-131	0.9671	153589 08/06/09

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9@5	Diln Fac:	0.9728
Lab ID:	213913-042	Batch#:	153589
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/06/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane 8	39	71-128
1,2-Dichloroethane-d4 1	L01	69-135
Toluene-d8 1	L02	80-120
Bromofluorobenzene 9	92	77-131

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9@10	Diln Fac:	50.00
Lab ID:	213913-043	Batch#:	153547
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	5,000	
MTBE	ND	250	
Isopropyl Ether (DIPE)	ND	250	
Ethyl tert-Butyl Ether (ETBE)	ND	250	
1,2-Dichloroethane	ND	250	
Benzene	ND	250	
Methyl tert-Amyl Ether (TAME)	ND	250	
Toluene	ND	250	
1,2-Dibromoethane	ND	250	
Ethylbenzene	3,300	250	
m,p-Xylenes	8,800	250	
o-Xylene	1,100	250	

Surrogate	%REC	Limits
Dibromofluoromethane	82	71-128
1,2-Dichloroethane-d4	80	69-135
Toluene-d8	91	80-120
Bromofluorobenzene	112	77-131
Trifluorotoluene (MeOH)	96	56-147

ge 1 of 1 56.0

	BT	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9@15	Diln Fac:	50.00
Lab ID:	213913-044	Batch#:	153547
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	5,000	
MTBE	ND	250	
Isopropyl Ether (DIPE)	ND	250	
Ethyl tert-Butyl Ether (ETBE)	ND	250	
1,2-Dichloroethane	ND	250	
Benzene	ND	250	
Methyl tert-Amyl Ether (TAME)	ND	250	
Toluene	ND	250	
1,2-Dibromoethane	ND	250	
Ethylbenzene	2,800	250	
m,p-Xylenes	7,500	250	
o-Xylene	1,100	250	

Surrogate	%REC	Limits
Dibromofluoromethane	80	71-128
1,2-Dichloroethane-d4	79	69-135
Toluene-d8	94	80-120
Bromofluorobenzene	112	77-131
Trifluorotoluene (MeOH)	104	56-147

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9@20	Diln Fac:	0.9597
Lab ID:	213913-045	Batch#:	153547
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate %	%REC	Limits
Dibromofluoromethane 89	9	71-128
1,2-Dichloroethane-d4 10	00	69-135
Toluene-d8 99	9	80-120
Bromofluorobenzene 92	2	77-131

ge 1 of 1 58.0

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-10@2	Diln Fac:	0.9785
Lab ID:	213913-046	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	111	71-128
1,2-Dichloroethane-d4	131	69-135
Toluene-d8	94	80-120
Bromofluorobenzene	102	77-131

ge 1 of 1 59.0

	вт	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-10@5	Diln Fac:	0.9416
Lab ID:	213913-047	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	94	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits
Dibromofluoromethane 1	L10	71-128
1,2-Dichloroethane-d4 1	L34	69-135
Toluene-d8 9	95	80-120
Bromofluorobenzene 9	98	77-131

Page I of I

	BT	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-10@10	Diln Fac:	0.9881
Lab ID:	213913-048	Batch#:	153546
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane 10	08	71-128
1,2-Dichloroethane-d4	22	69-135
Toluene-d8 92	2	80-120
Bromofluorobenzene 10	02	77-131

ge 1 of 1 61.0

	BTXE & Oxygenates					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	EPA 5030B			
Project#:	609.004	Analysis:	EPA 8260B			
Field ID:	B-10@15	Diln Fac:	0.9488			
Lab ID:	213913-049	Batch#:	153509			
Matrix:	Soil	Sampled:	07/27/09			
Units:	ug/Kg	Received:	08/03/09			
Basis:	as received	Analyzed:	08/04/09			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	95	
MTBE	ND	4.7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
Toluene	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethylbenzene	ND	4.7	
m,p-Xylenes	ND	4.7	
o-Xylene	ND	4.7	

Surrogate	%REC	Limits
Dibromofluoromethane	108	71–128
1,2-Dichloroethane-d4	152 *	69-135
Toluene-d8	83	80-120
Bromofluorobenzene	104	77-131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	BTXE & Oxygenates					
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	EPA 5030B			
Project#:	609.004	Analysis:	EPA 8260B			
Field ID:	B-11@2	Diln Fac:	0.9960			
Lab ID:	213913-050	Batch#:	153509			
Matrix:	Soil	Sampled:	07/27/09			
Units:	ug/Kg	Received:	08/03/09			
Basis:	as received	Analyzed:	08/04/09			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	110	71–128
1,2-Dichloroethane-d4	138 *	69-135
Toluene-d8	83	80-120
Bromofluorobenzene	113	77-131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-11@7.5	Diln Fac:	0.9506
Lab ID:	213913-051	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	95	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	110	71-128
1,2-Dichloroethane-d4	136 *	69-135
Toluene-d8	80	80-120
Bromofluorobenzene	108	77-131

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-11@12	Diln Fac:	0.9804
Lab ID:	213913-052	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	98	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	112	71-128
1,2-Dichloroethane-d4	143 *	69-135
Toluene-d8	84	80-120
Bromofluorobenzene	108	77-131

ND= Not Detected

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12@5	Diln Fac:	0.9747
Lab ID:	213913-053	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/04/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	97	
MTBE	ND	4.9	
Isopropyl Ether (DIPE)	ND	4.9	
Ethyl tert-Butyl Ether (ETBE)	ND	4.9	
1,2-Dichloroethane	ND	4.9	
Benzene	ND	4.9	
Methyl tert-Amyl Ether (TAME)	ND	4.9	
Toluene	ND	4.9	
1,2-Dibromoethane	ND	4.9	
Ethylbenzene	ND	4.9	
m,p-Xylenes	ND	4.9	
o-Xylene	ND	4.9	

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	151 *	69-135
Toluene-d8	80	80-120
Bromofluorobenzene	103	77-131

ND= Not Detected

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

	ВТ	XE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12@7.5	Diln Fac:	0.9901
Lab ID:	213913-054	Batch#:	153546
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	99	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 1	L08	71-128
1,2-Dichloroethane-d4 1	L27	69-135
Toluene-d8 8	38	80-120
Bromofluorobenzene 1	103	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

age 1 of 1 67.0

	В.	TXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12@12	Diln Fac:	50.00
Lab ID:	213913-055	Batch#:	153547
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	5,000	
MTBE	ND	250	
Isopropyl Ether (DIPE)	ND	250	
Ethyl tert-Butyl Ether (ETBE)	ND	250	
1,2-Dichloroethane	ND	250	
Benzene	ND	250	
Methyl tert-Amyl Ether (TAME)	ND	250	
Toluene	ND	250	
1,2-Dibromoethane	ND	250	
Ethylbenzene	ND	250	
m,p-Xylenes	ND	250	
o-Xylene	ND	250	

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	97	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	102	77-131
Trifluorotoluene (MeOH)	98	56-147

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 or 1

68.0

	вт	KE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12@15	Diln Fac:	0.9560
Lab ID:	213913-056	Batch#:	153546
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09
Basis:	as received	Analyzed:	08/05/09

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	96	
MTBE	ND	4.8	
Isopropyl Ether (DIPE)	ND	4.8	
Ethyl tert-Butyl Ether (ETBE)	ND	4.8	
1,2-Dichloroethane	ND	4.8	
Benzene	ND	4.8	
Methyl tert-Amyl Ether (TAME)	ND	4.8	
Toluene	ND	4.8	
1,2-Dibromoethane	ND	4.8	
Ethylbenzene	ND	4.8	
m,p-Xylenes	ND	4.8	
o-Xylene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	130	69-135
Toluene-d8	85	80-120
Bromofluorobenzene	103	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

age 1 of 1 69.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506069	Batch#:	153504
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	110.7	89	56-140
MTBE	25.00	26.31	105	66-129
Isopropyl Ether (DIPE)	25.00	26.27	105	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	26.96	108	66-132
1,2-Dichloroethane	25.00	28.68	115	70-128
Benzene	25.00	25.25	101	80-125
Methyl tert-Amyl Ether (TAME)	25.00	23.82	95	75-128
Toluene	25.00	22.36	89	80-126
1,2-Dibromoethane	25.00	24.22	97	80-122
Ethylbenzene	25.00	22.56	90	80-127
m,p-Xylenes	50.00	43.28	87	80-125
o-Xylene	25.00	20.95	84	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	125	71-128
1,2-Dichloroethane-d4	112	69-135
Toluene-d8	93	80-120
Bromofluorobenzene	109	77–131

Page 1 of 1 70.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506070	Batch#:	153504
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	119	71-128
1,2-Dichloroethane-d4	116	69-135
Toluene-d8	92	80-120
Bromofluorobenzene	112	77-131

ND= Not Detected RL= Reporting Limit

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-1@2	Batch#:	153504
MSS Lab ID:	213913-001	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg	Analyzed:	08/04/09
Basis:	as received	<u>*</u>	

Type: Lab ID: MS QC506074 Diln Fac: 0.9690

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<18.94	242.2	245.0	101	42-139
MTBE	<0.9470	48.45	52.95	109	53-127
Isopropyl Ether (DIPE)	<0.9470	48.45	56.20	116	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9470	48.45	56.23	116	52-130
1,2-Dichloroethane	<0.9470	48.45	49.22	102	51-124
Benzene	<0.9470	48.45	52.18	108	56-126
Methyl tert-Amyl Ether (TAME)	<0.9470	48.45	51.07	105	58-126
Toluene	<0.9470	48.45	41.37	85	52-125
1,2-Dibromoethane	<0.9470	48.45	36.69	76	52-121
Ethylbenzene	<0.9470	48.45	41.00	85	48-126
m,p-Xylenes	<0.9470	96.90	79.23	82	46-125
o-Xylene	<0.9470	48.45	38.44	79	46-122

Surrogate	%REC	Limits	
Dibromofluoromethane	111	71-128	
1,2-Dichloroethane-d4	97	69-135	
Toluene-d8	87	80-120	
Bromofluorobenzene	100	77-131	

Type: Lab ID: MSD QC506075 Diln Fac: 0.9208

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	230.2	251.1	109	42-139	8	36
MTBE	46.04	50.41	109	53-127	0	28
Isopropyl Ether (DIPE)	46.04	52.57	114	49-130	2	27
Ethyl tert-Butyl Ether (ETBE)	46.04	51.71	112	52-130	3	26
1,2-Dichloroethane	46.04	47.08	102	51-124	1	23
Benzene	46.04	48.17	105	56-126	3	26
Methyl tert-Amyl Ether (TAME)	46.04	48.65	106	58-126	0	25
Toluene	46.04	36.36	79	52-125	8	29
1,2-Dibromoethane	46.04	35.47	77	52-121	2	26
Ethylbenzene	46.04	34.82	76	48-126	11	29
m,p-Xylenes	92.08	67.89	74	46-125	10	30
o-Xylene	46.04	33.80	73	46-122	8	30

Currogato	%REC	Limits
Surrogate	%REC	
Dibromofluoromethane	113	71-128
1,2-Dichloroethane-d4	99	69-135
Toluene-d8	85	80-120
Bromofluorobenzene	101	77-131

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506091	Batch#:	153509
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	126	69-135
Toluene-d8	92	80-120
Bromofluorobenzene	104	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

73.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506092	Batch#:	153509
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	154.8	124	56-140
MTBE	25.00	23.04	92	66-129
Isopropyl Ether (DIPE)	25.00	22.06	88	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	22.24	89	66-132
1,2-Dichloroethane	25.00	27.05	108	70-128
Benzene	25.00	24.61	98	80-125
Methyl tert-Amyl Ether (TAME)	25.00	23.40	94	75-128
Toluene	25.00	21.43	86	80-126
1,2-Dibromoethane	25.00	24.22	97	80-122
Ethylbenzene	25.00	22.67	91	80-127
m,p-Xylenes	50.00	45.64	91	80-125
o-Xylene	25.00	21.57	86	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	116	69-135
Toluene-d8	93	80-120
Bromofluorobenzene	103	77-131

Page 1 of 1 74.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506093	Batch#:	153510
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 88	8	71-128
1,2-Dichloroethane-d4 93	3	69-135
Toluene-d8 97	7	80-120
Bromofluorobenzene 94	4	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506094	Batch#:	153510
Matrix:	Soil	Analyzed:	08/04/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	95.45	76	56-140
MTBE	25.00	19.50	78	66-129
Isopropyl Ether (DIPE)	25.00	18.69	75	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	19.69	79	66-132
1,2-Dichloroethane	25.00	21.97	88	70-128
Benzene	25.00	25.61	102	80-125
Methyl tert-Amyl Ether (TAME)	25.00	23.07	92	75-128
Toluene	25.00	24.83	99	80-126
1,2-Dibromoethane	25.00	24.28	97	80-122
Ethylbenzene	25.00	24.76	99	80-127
m,p-Xylenes	50.00	52.06	104	80-125
o-Xylene	25.00	25.26	101	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	91	69-135
Toluene-d8	97	80-120
Bromofluorobenzene	94	77-131

Page 1 of 1 76.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-11@2	Basis:	as received
MSS Lab ID:	213913-050	Batch#:	153509
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09

Type: MS Diln Fac: 0.9747 Lab ID: QC506186 Diln Fac: 08/04/09

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<19.92	243.7	328.1	135	42-139
MTBE	<0.9960	48.73	43.87	90	53-127
Isopropyl Ether (DIPE)	<0.9960	48.73	40.51	83	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9960	48.73	39.90	82	52-130
1,2-Dichloroethane	<0.9960	48.73	46.44	95	51-124
Benzene	<0.9960	48.73	36.57	75	56-126
Methyl tert-Amyl Ether (TAME)	<0.9960	48.73	38.12	78	58-126
Toluene	<0.9960	48.73	35.74	73	52-125
1,2-Dibromoethane	<0.9960	48.73	38.69	79	52-121
Ethylbenzene	<0.9960	48.73	35.19	72	48-126
m,p-Xylenes	1.903	97.47	68.29	68	46-125
o-Xylene	<0.9960	48.73	33.81	69	46-122

Surrogate	%REC	Limits	
Dibromofluoromethane	107	71-128	
1,2-Dichloroethane-d4	129	69-135	
Toluene-d8	87	80-120	
Bromofluorobenzene	102	77-131	

Type: MSD Diln Fac: 0.9690 Lab ID: QC506187 Diln Fac: 0.9690 Analyzed: 08/05/09

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	242.2	339.1	140 *	42-139	4	36
MTBE	48.45	48.09	99	53-127	10	28
Isopropyl Ether (DIPE)	48.45	42.48	88	49-130	5	27
Ethyl tert-Butyl Ether (ETBE)	48.45	44.88	93	52-130	12	26
1,2-Dichloroethane	48.45	47.83	99	51-124	4	23
Benzene	48.45	39.55	82	56-126	8	26
Methyl tert-Amyl Ether (TAME)	48.45	45.48	94	58-126	18	25
Toluene	48.45	37.67	78	52-125	6	29
1,2-Dibromoethane	48.45	42.44	88	52-121	10	26
Ethylbenzene	48.45	37.07	77	48-126	6	29
m,p-Xylenes	96.90	74.48	75	46-125	9	30
o-Xylene	48.45	38.03	78	46-122	12	30

Surrogate	%REC	Limits
Dibromofluoromethane	110	71-128
1,2-Dichloroethane-d4	128	69-135
Toluene-d8	95	80-120
Bromofluorobenzene	104	77-131

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-5@2	Batch#:	153510
MSS Lab ID:	213913-027	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg	Analyzed:	08/05/09
Basis:	as received		

Type: Lab ID: MS QC506188 Diln Fac: 0.9940

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<19.16	248.5	170.7	69	42-139
MTBE	<0.9579	49.70	39.91	80	53-127
Isopropyl Ether (DIPE)	<0.9579	49.70	36.59	74	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9579	49.70	37.49	75	52-130
1,2-Dichloroethane	<0.9579	49.70	39.66	80	51-124
Benzene	<0.9579	49.70	47.78	96	56-126
Methyl tert-Amyl Ether (TAME)	<0.9579	49.70	44.85	90	58-126
Toluene	<0.9579	49.70	46.12	93	52-125
1,2-Dibromoethane	<0.9579	49.70	44.77	90	52-121
Ethylbenzene	<1.264	49.70	46.28	93	48-126
m,p-Xylenes	<0.9579	99.40	96.30	97	46-125
o-Xylene	<0.9579	49.70	47.42	95	46-122

Surrogate	%REC	Limits
Dibromofluoromethane	87	71-128
1,2-Dichloroethane-d4	81	69-135
Toluene-d8	97	80-120
Bromofluorobenzene	90	77-131

Type: Lab ID: MSD QC506189 Diln Fac: 0.9709

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	242.7	178.1	73	42-139	7	36
MTBE	48.54	39.91	82	53-127	2	28
Isopropyl Ether (DIPE)	48.54	36.85	76	49-130	3	27
Ethyl tert-Butyl Ether (ETBE)	48.54	38.71	80	52-130	6	26
1,2-Dichloroethane	48.54	38.55	79	51-124	0	23
Benzene	48.54	45.30	93	56-126	3	26
Methyl tert-Amyl Ether (TAME)	48.54	41.92	86	58-126	4	25
Toluene	48.54	46.19	95	52-125	3	29
1,2-Dibromoethane	48.54	43.80	90	52-121	0	26
Ethylbenzene	48.54	48.10	99	48-126	6	29
m,p-Xylenes	97.09	101.0	104	46-125	7	30
o-Xylene	48.54	49.70	102	46-122	7	30

	Surrogate	%REC	Limits
Dil	promofluoromethane	89	71-128
			-
1,2	2-Dichloroethane-d4	76	69-135
Tol	luene-d8	95	80-120
Bro	omofluorobenzene	90	77-131

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506251	Batch#:	153546
Matrix:	Soil	Analyzed:	08/05/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	107	71-128
1,2-Dichloroethane-d4	136 *	69-135
Toluene-d8	98	80-120
Bromofluorobenzene	105	77-131

ND= Not Detected

RL= Reporting Limit

^{*=} Value outside of QC limits; see narrative

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506252	Batch#:	153546
Matrix:	Soil	Analyzed:	08/05/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	185.6 b	148 *	56-140
MTBE	25.00	25.02	100	66-129
Isopropyl Ether (DIPE)	25.00	24.08	96	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	25.84	103	66-132
1,2-Dichloroethane	25.00	30.02	120	70-128
Benzene	25.00	22.30	89	80-125
Methyl tert-Amyl Ether (TAME)	25.00	22.23	89	75-128
Toluene	25.00	20.94	84	80-126
1,2-Dibromoethane	25.00	28.33	113	80-122
Ethylbenzene	25.00	25.01	100	80-127
m,p-Xylenes	50.00	48.91	98	80-125
o-Xylene	25.00	24.76	99	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	117	69-135
Toluene-d8	87	80-120
Bromofluorobenzene	101	77-131

80.0

^{*=} Value outside of QC limits; see narrative b= See narrative

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506253	Batch#:	153547
Matrix:	Soil	Analyzed:	08/05/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane 8	86	71-128
1,2-Dichloroethane-d4	95	69-135
Toluene-d8	98	80-120
Bromofluorobenzene	91	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506254	Batch#:	153547
Matrix:	Soil	Analyzed:	08/05/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	97.24	78	56-140
MTBE	25.00	19.71	79	66-129
Isopropyl Ether (DIPE)	25.00	19.62	78	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	20.20	81	66-132
1,2-Dichloroethane	25.00	22.51	90	70-128
Benzene	25.00	25.36	101	80-125
Methyl tert-Amyl Ether (TAME)	25.00	22.52	90	75-128
Toluene	25.00	25.24	101	80-126
1,2-Dibromoethane	25.00	23.43	94	80-122
Ethylbenzene	25.00	26.98	108	80-127
m,p-Xylenes	50.00	55.79	112	80-125
o-Xylene	25.00	26.47	106	80-122

Surrogate	%REC	Limits	
Dibromofluoromethane	91	71-128	
1,2-Dichloroethane-d4	91	69-135	
Toluene-d8	97	80-120	
Bromofluorobenzene	94	77-131	

Page 1 of 1 82.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-9@20	Batch#:	153547
MSS Lab ID:	213913-045	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg	Analyzed:	08/05/09
Basis:	as received		

Type: Lab ID: MS QC506294 Diln Fac: 0.9615

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	28.46	240.4	218.7	79	42-139
MTBE	<0.9597	48.08	38.32	80	53-127
Isopropyl Ether (DIPE)	<0.9597	48.08	34.88	73	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9597	48.08	36.13	75	52-130
1,2-Dichloroethane	<0.9597	48.08	37.32	78	51-124
Benzene	2.167	48.08	45.62	90	56-126
Methyl tert-Amyl Ether (TAME)	<0.9597	48.08	40.27	84	58-126
Toluene	<0.9597	48.08	43.63	91	52-125
1,2-Dibromoethane	<0.9597	48.08	43.58	91	52-121
Ethylbenzene	<1.266	48.08	44.26	92	48-126
m,p-Xylenes	1.026	96.15	94.42	97	46-125
o-Xylene	<0.9597	48.08	45.60	95	46-122

Surrogate	%REC	Limits
Dibromofluoromethane	91	71-128
1,2-Dichloroethane-d4	81	69-135
Toluene-d8	97	80-120
Bromofluorobenzene	95	77-131

Type: Lab ID: MSD QC506295 Diln Fac: 0.9542

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	238.5	209.2	76	42-139	4	36
MTBE	47.71	38.57	81	53-127	1	28
Isopropyl Ether (DIPE)	47.71	34.88	73	49-130	1	27
Ethyl tert-Butyl Ether (ETBE)	47.71	35.87	75	52-130	0	26
1,2-Dichloroethane	47.71	38.41	81	51-124	4	23
Benzene	47.71	50.62	102	56-126	11	26
Methyl tert-Amyl Ether (TAME)	47.71	40.12	84	58-126	0	25
Toluene	47.71	45.95	96	52-125	6	29
1,2-Dibromoethane	47.71	43.80	92	52-121	1	26
Ethylbenzene	47.71	45.45	95	48-126	3	29
m,p-Xylenes	95.42	96.46	100	46-125	3	30
o-Xylene	47.71	48.34	101	46-122	7	30

Surrogate	%REC	Limits
Dibromofluoromethane	91	71-128
1,2-Dichloroethane-d4	83	69-135
Toluene-d8	95	80-120
Bromofluorobenzene	89	77-131

		BTXE & Oxygenates	
Lab #: Client:	213913 Fugro West Inc.	Location: Prep:	2250 Telgraph Av. Oakland EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-12@15	Basis:	as received
MSS Lab ID:	213913-056	Batch#:	153546
Matrix:	Soil	Sampled:	07/27/09
Units:	ug/Kg	Received:	08/03/09

0.9398 08/05/09 Type: MSDiln Fac: Lab ID: QC506340 Analyzed:

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<19.12	235.0	376.7 b	160 *	42-139
MTBE	<0.9560	46.99	48.90	104	53-127
Isopropyl Ether (DIPE)	<0.9560	46.99	44.84	95	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9560	46.99	42.43	90	52-130
1,2-Dichloroethane	<0.9560	46.99	59.48	127 *	51-124
Benzene	<0.9560	46.99	44.75	95	56-126
Methyl tert-Amyl Ether (TAME)	<0.9560	46.99	45.55	97	58-126
Toluene	<0.9560	46.99	38.61	82	52-125
1,2-Dibromoethane	<0.9560	46.99	48.18	103	52-121
Ethylbenzene	<0.9560	46.99	46.85	100	48-126
m,p-Xylenes	<0.9560	93.98	92.93	99	46-125
o-Xylene	<0.9560	46.99	45.63	97	46-122

Surrogate	%REC	Limits
Dibromofluoromethane	102	71-128
1,2-Dichloroethane-d4	144 *	69-135
Toluene-d8	83	80-120
Bromofluorobenzene	97	77-131

Type: Lab ID: Diln Fac: Analyzed: 0.9709 MSD 08/06/09 QC506341

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	242.7	360.8 b	149 *	42-139	8	36
MTBE	48.54	44.37	91	53-127	13	28
Isopropyl Ether (DIPE)	48.54	42.50	88	49-130	9	27
Ethyl tert-Butyl Ether (ETBE)	48.54	41.65	86	52-130	5	26
1,2-Dichloroethane	48.54	54.97	113	51-124	11	23
Benzene	48.54	43.66	90	56-126	6	26
Methyl tert-Amyl Ether (TAME)	48.54	42.86	88	58-126	9	25
Toluene	48.54	38.44	79	52-125	4	29
1,2-Dibromoethane	48.54	45.37	93	52-121	9	26
Ethylbenzene	48.54	47.03	97	48-126	3	29
m,p-Xylenes	97.09	91.94	95	46-125	4	30
o-Xylene	48.54	44.69	92	46-122	5	30

Surrogate	%REC	Limits
Dibromofluoromethane	107	71-128
1,2-Dichloroethane-d4	136 *	69-135
Toluene-d8	92	80-120
Bromofluorobenzene	99	77-131

Page 1 of 1

84.0

^{*=} Value outside of QC limits; see narrative b= See narrative

RPD= Relative Percent Difference

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506420	Batch#:	153589
Matrix:	Soil	Analyzed:	08/06/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	86	71-128
1,2-Dichloroethane-d4	94	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	94	77-131

ND= Not Detected RL= Reporting Limit

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506421	Batch#:	153589
Matrix:	Soil	Analyzed:	08/06/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	94.77	76	56-140
MTBE	25.00	18.76	75	66-129
Isopropyl Ether (DIPE)	25.00	18.51	74	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	19.15	77	66-132
1,2-Dichloroethane	25.00	23.02	92	70-128
Benzene	25.00	25.21	101	80-125
Methyl tert-Amyl Ether (TAME)	25.00	22.62	90	75-128
Toluene	25.00	24.67	99	80-126
1,2-Dibromoethane	25.00	23.96	96	80-122
Ethylbenzene	25.00	25.89	104	80-127
m,p-Xylenes	50.00	54.17	108	80-125
o-Xylene	25.00	26.80	107	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	87	71–128
1,2-Dichloroethane-d4	89	69-135
Toluene-d8	99	80-120
Bromofluorobenzene	94	77-131

Page 1 of 1 86.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506489	Batch#:	153589
Matrix:	Soil	Analyzed:	08/06/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	91	71-128
1,2-Dichloroethane-d4	102	69-135
Toluene-d8	101	80-120
Bromofluorobenzene	95	77-131

ND= Not Detected RL= Reporting Limit

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	B-8@20	Batch#:	153589
MSS Lab ID:	213913-041	Sampled:	07/27/09
Matrix:	Soil	Received:	08/03/09
Units:	ug/Kg	Analyzed:	08/07/09
Basis:	as received	-	

Diln Fac: 0.9728

Type: Lab ID: QC506508

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<19.34	243.2	172.6	71	42-139
MTBE	<0.9671	48.64	33.69	69	53-127
Isopropyl Ether (DIPE)	<0.9671	48.64	31.66	65	49-130
Ethyl tert-Butyl Ether (ETBE)	<0.9671	48.64	33.31	68	52-130
1,2-Dichloroethane	<0.9671	48.64	35.31	73	51-124
Benzene	216.4 >LR	48.64	102.6	-234 NI	M 56-126
Methyl tert-Amyl Ether (TAME)	6.324	48.64	37.17	63	58-126
Toluene	3.158	48.64	45.62	87	52-125
1,2-Dibromoethane	<0.9671	48.64	40.59	83	52-121
Ethylbenzene	37.40	48.64	52.60	31 *	48-126
m,p-Xylenes	9.680	97.28	90.28	83	46-125
o-Xylene	2.984	48.64	43.64	84	46-122

Surrogate	%REC	Limits	
Dibromofluoromethane	91	71-128	
1,2-Dichloroethane-d4	86	69-135	
Toluene-d8	96	80-120	
Bromofluorobenzene	91	77-131	

Type: Lab ID: MSD Diln Fac: 0.9709 QC506509

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	242.7	150.6	62	42-139	13	36
MTBE	48.54	29.71	61	53-127	12	28
Isopropyl Ether (DIPE)	48.54	30.46	63	49-130	4	27
Ethyl tert-Butyl Ether (ETBE)	48.54	31.26	64	52-130	6	26
1,2-Dichloroethane	48.54	31.85	66	51-124	10	23
Benzene	48.54	134.6	-169 NM	56-126	27 *	26
Methyl tert-Amyl Ether (TAME)	48.54	33.70	56 *	58-126	10	25
Toluene	48.54	44.52	85	52-125	2	29
1,2-Dibromoethane	48.54	37.63	78	52-121	7	26
Ethylbenzene	48.54	61.17	49	48-126	15	29
m,p-Xylenes	97.09	90.95	84	46-125	1	30
o-Xylene	48.54	43.86	84	46-122	1	30

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	79	69-135
Toluene-d8	95	80-120
Bromofluorobenzene	94	77-131

Page 1 of 1 88.0

^{*=} Value outside of QC limits; see narrative NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference

	BTXE & Oxygenates							
Lab #:	213913	Location:	2250 Telgraph Av. Oakland					
Client:	Fugro West Inc.	Prep:	EPA 5030B					
Project#:	609.004	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC506594	Batch#:	153634					
Matrix:	Soil	Analyzed:	08/07/09					
Units:	ug/Kg							

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate %	%REC	Limits
Dibromofluoromethane 85	5	71-128
1,2-Dichloroethane-d4 95	5	69-135
Toluene-d8 97	7	80-120
Bromofluorobenzene 88	8	77-131

ND= Not Detected RL= Reporting Limit Page 1 of 1

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC506595	Batch#:	153634
Matrix:	Soil	Analyzed:	08/07/09
Units:	ug/Kg		

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	101.4	81	56-140
MTBE	25.00	19.67	79	66-129
Isopropyl Ether (DIPE)	25.00	19.04	76	65-131
Ethyl tert-Butyl Ether (ETBE)	25.00	19.44	78	66-132
1,2-Dichloroethane	25.00	22.23	89	70-128
Benzene	25.00	24.68	99	80-125
Methyl tert-Amyl Ether (TAME)	25.00	22.24	89	75-128
Toluene	25.00	25.12	100	80-126
1,2-Dibromoethane	25.00	23.75	95	80-122
Ethylbenzene	25.00	26.55	106	80-127
m,p-Xylenes	50.00	53.72	107	80-125
o-Xylene	25.00	25.83	103	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	90	71–128
1,2-Dichloroethane-d4	88	69-135
Toluene-d8	98	80-120
Bromofluorobenzene	89	77-131

Page 1 of 1 90.0

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ	Batch#:	153634
MSS Lab ID:	213929-017	Sampled:	08/03/09
Matrix:	Soil	Received:	08/04/09
Units:	ug/Kg	Analyzed:	08/08/09
Basis:	as received		

Type: Lab ID: MS QC506640 Diln Fac: 1.022

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<21.83	255.6	203.0 b	79	42-139
MTBE	<1.092	51.12	41.05 b	80	53-127
Isopropyl Ether (DIPE)	<1.092	51.12	39.53 b	77	49-130
Ethyl tert-Butyl Ether (ETBE)	<1.092	51.12	39.04 b	76	52-130
1,2-Dichloroethane	<1.092	51.12	48.12	94	51-124
Benzene	<1.092	51.12	47.63	93	56-126
Methyl tert-Amyl Ether (TAME)	<1.092	51.12	47.29 b	92	58-126
Toluene	<1.092	51.12	47.79	93	52-125
1,2-Dibromoethane	<1.092	51.12	38.69	76	52-121
Ethylbenzene	<1.441	51.12	51.12	100	48-126
m,p-Xylenes	<1.092	102.2	102.2	100	46-125
o-Xylene	<1.092	51.12	51.45	101	46-122

Surrogate	%REC	Limits
Dibromofluoromethane	94	71-128
1,2-Dichloroethane-d4	107	69-135
Toluene-d8	99	80-120
Bromofluorobenzene	100	77-131

Type: Lab ID: MSD QC506641 Diln Fac: 1.220

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	304.9	284.4 b	93	42-139	16	36
MTBE	60.98	53.05 b	87	53-127	8	28
Isopropyl Ether (DIPE)	60.98	50.23 b	82	49-130	6	27
Ethyl tert-Butyl Ether (ETBE)	60.98	51.72 b	85	52-130	10	26
1,2-Dichloroethane	60.98	58.99	97	51-124	3	23
Benzene	60.98	59.74	98	56-126	5	26
Methyl tert-Amyl Ether (TAME)	60.98	59.57 b	98	58-126	5	25
Toluene	60.98	59.64	98	52-125	5	29
1,2-Dibromoethane	60.98	51.18	84	52-121	10	26
Ethylbenzene	60.98	60.14	99	48-126	1	29
m,p-Xylenes	122.0	123.3	101	46-125	1	30
o-Xylene	60.98	61.13	100	46-122	0	30

	Surrogate	%REC	Limits
D:	ibromofluoromethane	96	71-128
1	,2-Dichloroethane-d4	108	69-135
T	oluene-d8	99	80-120
B	romofluorobenzene	98	77-131

b= See narrative RPD= Relative Percent Difference Page 1 of 1

		BTXE & Oxygenates	
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC506684	Batch#:	153634
Matrix:	Soil	Analyzed:	08/07/09
Units:	ug/Kg		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
Toluene	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	90	71-128
1,2-Dichloroethane-d4	103	69-135
Toluene-d8	100	80-120
Bromofluorobenzene	101	77-131

ND= Not Detected
RL= Reporting Limit

Page 1 of 1

92.0

	Total Org	anic Carbon (TC	OC)
Lab #:	213913	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	METHOD
Project#:	609.004	Analysis:	WALKLEY-BLACK
Analyte:	Total Organic Carbon	Batch#:	153643
Matrix:	Soil	Sampled:	07/27/09
Units:	%	Received:	08/03/09
Basis:	as received	Analyzed:	08/07/09
Diln Fac:	1.000		

Field ID	Type	Lab ID	Result	RL
B-2@5	SAMPLE	213913-008	0.53	0.02
B-8@7.5	SAMPLE	213913-039	0.10	0.02
B-10@5	SAMPLE	213913-047	0.87	0.05
B-11@7.5	SAMPLE	213913-051	0.05	0.01
	BLANK	QC506635	ND	0.01

ND= Not Detected RL= Reporting Limit

Total Organic Carbon (TOC)						
Lab #:	213913	Location:	2250 Telgraph Av. Oakland			
Client:	Fugro West Inc.	Prep:	METHOD			
Project#:	609.004	Analysis:	WALKLEY-BLACK			
Analyte:	Total Organic Carbon	Diln Fac:	1.000			
Field ID:	B-2@5	Batch#:	153643			
MSS Lab ID:	213913-008	Sampled:	07/27/09			
Matrix:	Soil	Received:	08/03/09			
Units:	8	Analyzed:	08/07/09			
Basis:	as received					

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC506636		0.1300	0.1360	104	80-120		
MS	QC506637	0.5330	0.2637	0.7270	73	37-120		
MSD	QC506638		0.2616	0.7340	77	37-120	1	30

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 214704 ANALYTICAL REPORT

Fugro West Inc. 1000 Broadway Oakland, CA 94607

Project : 609.004 Location : Buttner

Level : II

Sample ID	<u>Lab ID</u>
MW-1	214704-001
MW-3	214704-002
MW-4	214704-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: MRJLD

Project Manager

Date: <u>09/10/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 214704

Client: Fugro West Inc.

Project: 609.004
Location: Buttner
Request Date: 09/08/09
Samples Received: 09/08/09

This data package contains sample and QC results for three water samples, requested for the above referenced project on 09/08/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low recoveries were observed for gasoline C7-C12 in the MS/MSD for batch 154713; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. High surrogate recovery was observed for trifluorotoluene (PID) in MW-3 (lab # 214704-002), due to interference from coeluting hydrocarbon peaks; the corresponding bromofluorobenzene (PID) surrogate recovery was within limits. High surrogate recoveries were observed for bromofluorobenzene (FID) and trifluorotoluene (FID) in MW-3 (lab # 214704-002), MW-4 (lab # 214704-003), and the LCS/MS/MSD for batch 154713, due to interference from coeluting hydrocarbon peaks. High surrogate recovery was observed for bromofluorobenzene (PID) in MW-4 (lab # 214704-003), due to interference from coeluting hydrocarbon peaks; the corresponding trifluorotoluene (PID) surrogate recovery was within limits. MW-4 (lab # 214704-003) had pH greater than 2. No other analytical problems were encountered.

214704 **ES-F10 CHAIN_OF CUSTODY PAGE** OF PROJECT NAME: BUTTNER **ANALYSIS REQUESTED** PROJECT NO.: LAB: 48-hour PROJECT CONTACT: Emen **TURNAROUND:** SAMPLED BY: **MATRIX CONTAINERS PRESERVATIVE** SAMPLING DATE LABORATORY FIELD SAMPLE I.D. I.D. NUMBER ≫WATER OTHER LITER MONTH NONE DAY Quantity TUBE **YEAR** TIME H₂SO₄ HNO3 SOIL PINT XEC NW WVOA AR MIN -08 0 $MM \sim 3$ 0908 09 <u> 3 lo</u> O MW ~4 9080 D CHAIN OF CUSTODY RECORD COMMENTS & NOTES: RELINQUISHED BY: (Signature) RECEJVED,BY: (Signature) DATE/TIME DATE/TIME 9/8/09 1349 RELINQUISHED BY: (Signature) RECEIVE BY: (Signature) DATE/TIME DATE/TIME RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME **FUGRO WEST, INC.** 1000 Broadway, Suite 440 RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME Oakland, California 94607

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06

Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

intact cold Ra

Tel: 510.268.0461 Fax: 510.268.0545

COOLER RECEIPT CHECKLIST

Login # <u>7/1/104</u> Date Client Fyll	Received <u>9-8-9</u>	Number of coo	olers
•			
Date Opened 9-8-9 By (print)	SKND-5 ((sign) full	
Date Opened 9-8-9 By (print) Date Logged in By (print)		sign)	
Did cooler come with a shipping slip Shipping info		0	ES NO
2A. Were custody seals present? How many	Name	poler on samples Date	NO
2B. Were custody seals intact upon arr	ival?	Y	ES NO WA
3. Were custody papers dry and intact	when received?	X	ES) NO
4. Were custody papers filled out prope	erly (ink, signed, etc)?	(X)	NO 8
5. Is the project identifiable from custo6. Indicate the packing in cooler: (if ot	dy papers? (If so fill of her, describe)	out top of form) (X	BS NO
Bubble Wrap Foam back Cloth material Cardbo 7. Temperature documentation:	locks Bags ard Styrofo	□ None □ Paper	towels
Type of ice used: Wet	□ Blue/Gel □ None	e Temp(°C)	
Samples Received on ice & o			
☐ Samples received on ice dire	ctly from the field. Co	oling process had bee	กเท
8. Were Method 5035 sampling contain If YES, what time were they train	ners present?nsferred to freezer?		YES NO
Did all bottles arrive unbroken/unope	ned?		YES NO
10. Are samples in the appropriate cont	ainers for indicated te	sts?	YES NO
11. Are sample labels present, in good of	ondition and complete	e?	YES NO
12. Do the sample labels agree with cus	tody papers?		YES NO
13. Was sufficient amount of sample ser	nt for tests requested?		STÉS , NO
14. Are the samples appropriately present	rved?	ŒS	NÒ N/A
15. Are bubbles > 6mm absent in VOA	samples?	OES.	ONO N/A
16. Was the client contacted concerning If YES, Who was called?	By		_YES NO
		Duto.	
COMMENTS			

SOP Volume: Section:

Client Services

1.1.2

Page: 1 of 1 Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report						
Lab #: Client:	214704 Fugro West Inc.	Location: Prep:	Buttner EPA 5030B			
Project#: Matrix:	609.004 Water	Sampled:	09/08/09			
Units: Diln Fac:	ug/L 1.000	Received:	09/08/09			

Field ID: MW-1Lab ID: 214704-001

Type: SAMPLE

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	56 Y	50	154713 09/09/09	EPA 8015B
MTBE	ND	2.0	154738 09/10/09	EPA 8021B
Benzene	ND	0.50	154738 09/10/09	EPA 8021B
Toluene	ND	0.50	154738 09/10/09	EPA 8021B
Ethylbenzene	ND	0.50	154738 09/10/09	EPA 8021B
m,p-Xylenes	0.56 C	0.50	154738 09/10/09	EPA 8021B
o-Xylene	ND	0.50	154738 09/10/09	EPA 8021B

Surrogate	%REC	Limits	Batch# Analy	yzed	Analysis
Trifluorotoluene (FID)	132	64-147	154713 09/09	9/09 EP	A 8015B
Bromofluorobenzene (FID)	120	71-138	154713 09/09	9/09 EP	A 8015B
Trifluorotoluene (PID)	97	45-151	154738 09/10	0/09 EP	A 8021B
Bromofluorobenzene (PID)	100	54-134	154738 09/10	0/09 EP	A 8021B

Field ID: MW-3Lab ID: 214704-002

SAMPLE Type:

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	1,200 Y	50	154713 09/09/09	EPA 8015B
MTBE	ND	2.0	154738 09/10/09	EPA 8021B
Benzene	280	0.50	154738 09/10/09	EPA 8021B
Toluene	2.4	0.50	154738 09/10/09	EPA 8021B
Ethylbenzene	9.2 C	0.50	154738 09/10/09	EPA 8021B
m,p-Xylenes	2.3 C	0.50	154738 09/10/09	EPA 8021B
o-Xylene	0.78	0.50	154738 09/10/09	EPA 8021B

Surrogate	%REC	Limits	Batch# Analyzed	Analysis
Trifluorotoluene (FID)	169 *	64-147	154713 09/09/09	EPA 8015B
Bromofluorobenzene (FID)	129	71-138	154713 09/09/09	EPA 8015B
Trifluorotoluene (PID)	157 *	45-151	154738 09/10/09	EPA 8021B
Bromofluorobenzene (PID)	110	54-134	154738 09/10/09	EPA 8021B

Page 1 of 3

2.0

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report Lab #: 214704 Location: Buttner EPA 5030B Client: Fugro West Inc. Prep: Project#: 609.004 09/08/09 Water Matrix: Sampled: Units: ug/L Received: 09/08/09 Diln Fac: 1.000

Field ID: MW-4Lab ID: 214704-003

SAMPLE Type:

Analyte	Result	RL	Batch# Analyzed	Analysis
Gasoline C7-C12	580 Y	50	154713 09/09/09	EPA 8015B
MTBE	2.4 C	2.0	154738 09/10/09	EPA 8021B
Benzene	ND	0.50	154738 09/10/09	EPA 8021B
Toluene	ND	0.50	154738 09/10/09	EPA 8021B
Ethylbenzene	ND	0.50	154738 09/10/09	EPA 8021B
m,p-Xylenes	2.5 C	0.50	154738 09/10/09	EPA 8021B
o-Xylene	5.0 C	0.50	154738 09/10/09	EPA 8021B

Surrogate	%REC	Limits	Batch#	Analyzed	Analysis
Trifluorotoluene (FID)	174 *	64-147	154713	09/09/09	EPA 8015B
Bromofluorobenzene (FID)	140 *	71-138	154713	09/09/09	EPA 8015B
Trifluorotoluene (PID)	107	45-151	154738	09/10/09	EPA 8021B
Bromofluorobenzene (PID)	152 *	54-134	154738	09/10/09	EPA 8021B

Type: BLANK Analyzed: 09/09/09 Lab ID: QC511287 154713 Analysis: EPA 8015B

Batch#:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate]	Result	%REC	Limits
Trifluorotoluene (FID)			127	64-147
Bromofluorobenzene (FID)			108	71-138
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

NA= Not Analyzed

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

2.0

Curtis & Tompkins Laboratories Analytical Report				
Lab #: Client: Project#:	214704 Fugro West Inc. 609.004	Location: Prep:	Buttner EPA 5030B	
Matrix: Units: Diln Fac:	Water ug/L 1.000	Sampled: Received:	09/08/09 09/08/09	

Type: Lab ID: Batch#: 09/10/09 EPA 8021B BLANK Analyzed: QC511383 154738 Analysis:

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	Re	esult	%REC	Limits
Trifluorotoluene (FID)	NA			
Bromofluorobenzene (FID)	NA			
Trifluorotoluene (PID)			99	45-151
Bromofluorobenzene (PID)			101	54-134

Page 3 of 3

^{*=} Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	214704	Location:	Buttner		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC511288	Batch#:	154713		
Matrix:	Water	Analyzed:	09/09/09		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,814	91	77-118

Surrogate	%REC	Limits
Trifluorotoluene (FID)	158 *	64-147
Bromofluorobenzene (FID)	129	71-138

^{*=} Value outside of QC limits; see narrative Page 1 of 1 $\,$

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	214704	Location:	Buttner		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	154713		
MSS Lab ID:	214710-002	Sampled:	09/03/09		
Matrix:	Water	Received:	09/05/09		
Units:	ug/L	Analyzed:	09/09/09		
Diln Fac:	1.000				

Type: MS

Lab ID: QC511289

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,810	2,000	3,318	25 *	66-110

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	178 *	64-147	
Bromofluorobenzene (FID)	144 *	71-138	

Type: MSD Lab ID: QC511290

Analyte	Spiked	Result	%REC	Limits	RPD L	Lim
Gasoline C7-C12	2,000	3,621	41 *	66-110	9 1	L1

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	173 *	64-147	
Bromofluorobenzene (FID)	147 *	71-138	

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	214704	Location:	Buttner		
Client:	Fugro West Inc.	Prep:	EPA 5030B		
Project#:	609.004	Analysis:	EPA 8021B		
Matrix:	Water	Batch#:	154738		
Units:	ug/L	Analyzed:	09/10/09		
Diln Fac:	1.000				

Type: BS Lab ID: QC511381

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.00	100	58-143
Benzene	10.00	8.473	85	75-116
Toluene	10.00	9.093	91	72-124
Ethylbenzene	10.00	9.586	96	74-127
m,p-Xylenes	10.00	9.552	96	73-128
o-Xylene	10.00	9.506	95	73-126

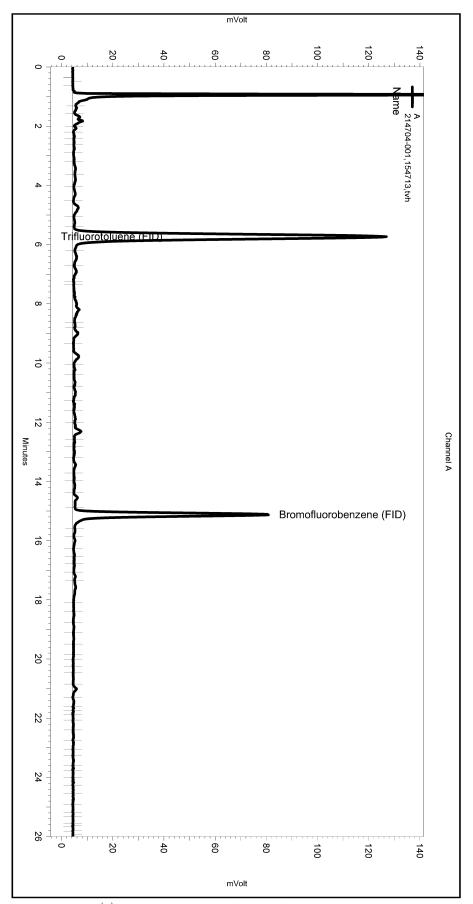
Surrogate	%REC	Limits
Trifluorotoluene (PID)	99	45-151
Bromofluorobenzene (PID)	105	54-134

Type: BSD Lab ID: QC511382

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.321	93	58-143	7	31
Benzene	10.00	8.276	83	75-116	2	22
Toluene	10.00	8.775	88	72-124	4	24
Ethylbenzene	10.00	9.144	91	74-127	5	25
m,p-Xylenes	10.00	9.092	91	73-128	5	27
o-Xylene	10.00	9.177	92	73-126	4	25

Surrogate	%REC	Limits
Trifluorotoluene (PID)	101	45-151
Bromofluorobenzene (PID)	104	54-134

 $\label{lem:convergence} Sequence \ File: \verb|\Lims\gdrive\ezchrom\Projects\GC05\Sequence\252.seq| \\$

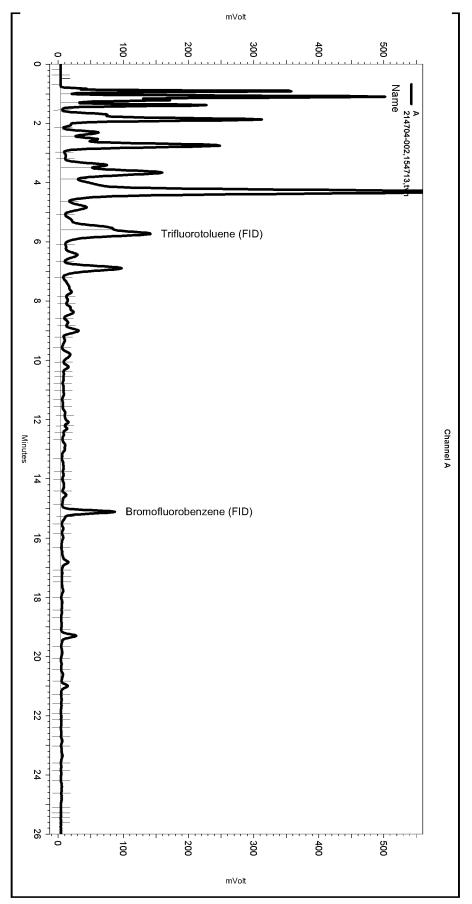

Sample Name: 214704-001,154713,tvh

Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\252_014

Instrument: GC05 Vial: N/A Operator: lims2k3\tvh3 Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe252.met

Software Version 3.1.7 Run Date: 9/9/2009 7:35:41 PM Analysis Date: 9/9/2009 8:04:24 PM Sample Amount: 5 Multiplier: 5

Vial & pH or Core ID: b1.0

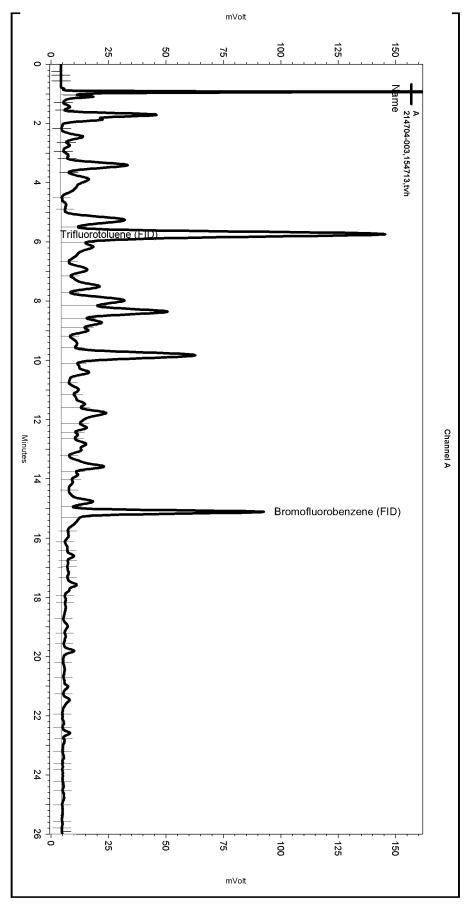


< General Method Parame					
No items selected for this sec	ction				
< A >					
No items selected for this sec	ction				
Integration Events					
Enabled Event Type			s) (1	Minutes)	Value
Yes Width Yes Threshold			0	0.2 50	
Manual Integration Fixes					
Data File: C:\Documents ar Data\ChromatographySysten Data\Instrument.10048\252_0	n\Reco 014_79	very	sers	s\Applicat	ion
Enabled Event Type				vinutes)	Value
None					

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\252.seq

Software Version 3.1.7 Run Date: 9/9/2009 8:11:13 PM Analysis Date: 9/10/2009 11:25:13 AM Sample Amount: 5 Multiplier: 5

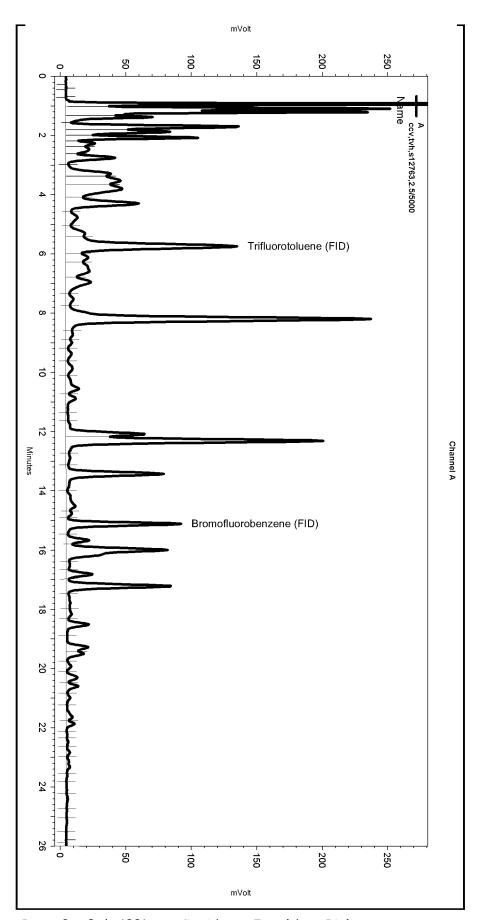
Vial & pH or Core ID: a1.0



< General Method Parameters >	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
	top utes) (Minutes) Value
Yes Width 0 Yes Threshold 0	0 0.2 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\Project	ts\GC05\Data\252_015
	utes) (Minutes) Value
Yes Split Peak 5.597 Yes Split Peak 15.28	7 0 0 4 0 0

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\252.seq

Software Version 3.1.7 Run Date: 9/9/2009 8:46:46 PM Analysis Date: 9/10/2009 11:26:13 AM Sample Amount: 5 Multiplier: 5


Vial & pH or Core ID: a1.3

					-	
	neral Method Para					
No item	s selected for this	section				
					-	
					-	
No item	s selected for this	section				
Integrat	ion Events					
Enabl	ed Event Type	Start) (Minı	utes)	Value
	Width		0		_	
Yes	Threshold		0	0	50	
Manual	Integration Fixes	=				
Data F	File: \\Lims\gdrive\	ezchrom\l Start		C05\Da	ata\25	2_016
Enabl	ed Event Type	Start	(Minutes) (Minı	utes)	Value
Yes	Split Peak		15.297	0	0	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\252.seq Sample Name: ccv,tvh,s12763,2.5/5000

Software Version 3.1.7 Run Date: 9/9/2009 1:06:32 PM Analysis Date: 9/10/2009 8:11:10 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\F	
Enabled Event Type	(Minutes) (Minutes) Value
None	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 215816 ANALYTICAL REPORT

Fugro West Inc. 1000 Broadway

Oakland, CA 94607

Project : 609.004

Location: 2250 Telgraph Ave.

Level : II

Sample ID B-13@8'

<u>Lab ID</u> 215816-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Manager

Project Manager

Date: <u>10/26/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 215816

Client: Fugro West Inc.

Project: 609.004

Location: 2250 Telgraph Ave.

Request Date: 10/19/09 Samples Received: 10/19/09

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 10/19/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

	CHAIN OF CUST											7	<u>U</u> S	- <i>&</i>	بر (•														20.5	<u>_</u>	<u>4G</u>	<u>E</u>) ()F	1		
PROJECT NA	AME: 2250 D.: 404,00	Tl	<u>le</u>	Gra	ap	<u> </u>	· F	tv	Q.	<u> </u>																		_					SIS	REQ	UES	TED		
PROJECT NO	D: 100100	7										LA	B:	<u> </u>	.4	- 7							_					_		1.7								
PROJECT CO	ONTACT: KOY	er	IE	W	Q1	14						TU	RNA	ARC	UN	Ø:	2	S C	la	N	7	A	T	-)					I,									
SAMPLED BY	ONTACT: KAY Y: KAVEN	En	<u>M</u> 1	n	_											_	_											_			}							
				_ <i>0</i>						_						:												-	1		1							
			MA	TRIX			cc	NT	AINE	RS			PRE	SEI	RVAT	ΓΙVE					SAN	IPLIN	IG E	ATE				-			1		;					
LABORATORY I.D. NUMBER	FIELD SAMPLE I.D.	WATER		~		ď	LITER	<u>⊢</u>	BE				04	ပ်		OTHER	뮏	МС	NTH	D	AY	YE	AR		TI	ME		ntity	2110	上	<u>.</u>							
	11 12 0 61	\$	ဖြွ	AIR		Λον	크	PINT	TUBE			НСГ	H ₂ SO ₄	HNO3	ICE E	ō	NONE											Quantil	٢	Œ	1							
	B-1308	L _X	1 /			—	X		X			¥			/		_	Ļ	18	1	19	8	9	1	1	1	2	_	¥	X	ــــــ	₽	K	_			_	
	0 0	7		-		Δ	_					Δ			\wedge				1	1	4	U	-4					⊨		 	丰	1			-		\dashv	_
																					-						-		-	+	\vdash	+	-	_		\dashv	+	
														,										ļ								T	T	<u> </u>			\top	_
		_	ļ																																			
	-		-															┡	 									_		_	<u> </u>	\perp		<u> </u>		\perp	_	
		-	-	-														┞	ļ	_	_			ļ				-	_		┼	┼	-				+	
		1														_		╁╌		-		-						-	-	1	\vdash	+	+	-		\dashv	+	-
																										-			-	-	\vdash	+	+	-		\dashv	+	
		1																														t	1				\top	_
												L						<u> </u>														$oxed{oxed}$						_
	(CHAI	l OF	CU	STO	DY	REC	OR	D									CO	MME	NTS	& N	ОТЕ	S:															
RELINQUISHED	BY: (Signature)		ATE	/TIM	E	REC	EIVE	D E	3Y: (8	Signa	ture)		, D	ATE	/TIM	E	1 7	le	UZ	e	ĺ	00	m/2	w	٤	R	٤٥١	rl	13		さ	C	16	S .	di	e sé) ک
Kares	Pm-1	0/10	ilsa	112	20-	, –	1	2	. /	/5,	1	1	I	D/	1/9	ر ا	5	$ \vee $	\sqrt{v}	μ 00	- S	i	•	α'	لمٰ	1	.Α.λ	٨٨	VZ	ı ii	Ci	6	Č	ر ان:	\ 			
RELINQUISHED	BY: (Signature)		ATE	/TIM	E	REC	EIVI	20 E	3Y: (§	Signa	ture)	_	D	ATE.	/TIM	E		Te No- Ch	UV.		`a	1	D 0)γ. (Y	h:	<i>کار</i> ک			 C (٠,	`			
RELINQUISHED	DV: (Cianal																	_																				
RELINGUISHED	BY: (Signature)	Di	ATE/	TIME 		REC	CEIVE	ED E	3Y: (\$	Signa	iture)		DA	TE/1	ГІМЕ	:		Ē	JE		20		\cap)C	1	+						T, I Su		40			
RELINQUISHED	BY: (Signature)	D/	ATE/	TIME		REC	EIVE	D E	3Y: (S	Signa	ture)		DA	TE/1	ГІМЕ	•								ا، ح	7 Ta							rnia			054	E	

Approved by Glenn Young, AC 62 Manager, Fugro West, Inc. 10/13/06 Note: If this is a printed copy, please check the online QMS to ensure that it is the latest version.

COOLER RECEIPT CHECKLIST

	d 10-19	Number of coolers O
Client Fugro	Project 2250	Telegraph Ace.
Date Opened By (print) Date Logged in O By (print) By (print)	(sign) (sign)	Elvin Tradik
1. Did cooler come with a shipping slip (airbill Shipping info	-	YES NO
2A. Were custody seals present? TYES (How many Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when re 4. Were custody papers filled out properly (ink	ceived?	DateYES_NO_N/A
5. Is the project identifiable from custody paper 6. Indicate the packing in cooler: (if other, des	ers? (If so fill out to	 / \
☐ Bubble Wrap ☐ Foam blocks☐ Cloth material ☐ Cardboard 7. Temperature documentation:	□ Bags □ Styrofoam	Mone ☐ Paper towels
Type of ice used: ☐ Wet ☐ Blue/	Gel None	Temp(°C)
☐ Samples Received on ice & cold with	hout a temperature	blank
☐ Samples received on ice directly fro	m the field. Cooling	g process had begun
8. Were Method 5035 sampling containers predictions of the sampling containers of the samplin	esent?	YES TO
if i E.S. what time were they transferred		
· · · · · · · · · · · · · · · · · · ·		YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers	for indicated tests?	YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers11. Are sample labels present, in good condition	for indicated tests? on and complete?	YES NO YES NO YES NO
 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody pages 	for indicated tests? on and complete? _ opers?	YES NO YES NO YES NO YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody part 13. Was sufficient amount of sample sent for the	for indicated tests? on and complete? _ upers? ests requested?	YES NO YES NO YES NO YES NO YES NO YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody part 13. Was sufficient amount of sample sent for the 14. Are the samples appropriately preserved?_	for indicated tests? on and complete? _ upers? _ ests requested?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody part 13. Was sufficient amount of sample sent for the 14. Are the samples appropriately preserved?_15. Are bubbles > 6mm absent in VOA samples	for indicated tests? on and complete? upers? ests requested? es?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody part 13. Was sufficient amount of sample sent for the 14. Are the samples appropriately preserved?_	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA
9. Did all bottles arrive unbroken/unopened?10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody part 13. Was sufficient amount of sample sent for the samples appropriately preserved?_15. Are bubbles > 6mm absent in VOA samples 16. Was the client contacted concerning this samples	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers 11. Are sample labels present, in good condition 12. Do the sample labels agree with custody partial. Was sufficient amount of sample sent for the samples appropriately preserved?_ 14. Are the samples appropriately preserved?_ 15. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 16. Was the client contacted concerning this samples appropriately preserved?_ 17. Are bubbles > 6mm absent in VOA samples appropriately preserved?_ 18. Was the client contacted concerning this samples appropriately preserved?_ 19. Was the client contacted concerning this samples appropriately preserved.	for indicated tests? on and complete? _ upers? ests requested? es? mple delivery?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO WA YES NO WA YES NO

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis & Tompkins Labor	atories Analyt	ical Report
Lab #:	215816	Location:	2250 Telgraph Ave.
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004		
Field ID:	B-13@8'	Batch#:	156279
Matrix:	Soil	Sampled:	10/19/09
Basis:	as received	Received:	10/19/09
Diln Fac:	1.000	Analyzed:	10/20/09

Type: SAMPLE Lab ID: 215816-001

Analyte	Result	RL	Units	Analysis
Gasoline C7-C12	ND	0.99	mg/Kg EPA	A 8015B
Benzene	ND	5.0	ug/Kg EPA	A 8021B
Toluene	ND	5.0	ug/Kg EPA	A 8021B
Ethylbenzene	ND	5.0	ug/Kg EPA	A 8021B
m,p-Xylenes	ND	5.0	ug/Kg EPA	A 8021B
o-Xylene	ND	5.0	ug/Kg EPA	A 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	108	38-168	EPA 8015B	
Bromofluorobenzene (FID)	106	27-175	EPA 8015B	
Trifluorotoluene (PID)	80	10-183	EPA 8021B	
Bromofluorobenzene (PID)	79	7-180	EPA 8021B	

Type: BLANK Lab ID: QC517501

Analyte	Result	RL	Units	Analysis
Gasoline C7-C12	ND	0.20	mg/Kg EPA	8015B
Benzene	ND	1.0	ug/Kg EPA	8021B
Toluene	ND	1.0	ug/Kg EPA	8021B
Ethylbenzene	ND	1.0	ug/Kg EPA	8021B
m,p-Xylenes	ND	1.0	ug/Kg EPA	8021B
o-Xylene	ND	1.0	ug/Kg EPA	8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	101	38-168	EPA 8015B	
Bromofluorobenzene (FID)	98	27-175	EPA 8015B	
Trifluorotoluene (PID)	75	10-183	EPA 8021B	
Bromofluorobenzene (PID)	71	7-180	EPA 8021B	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Curtis & Tompkins	Laboratories Anal	Lytical Report	
Lab #:	215816	Location:	2250 Telgraph Ave.	
Client:	Fugro West Inc.	Prep:	EPA 5030B	
Project#:	609.004	Analysis:	EPA 8021B	
Matrix:	Soil	Batch#:	156279	
Units:	ug/Kg	Analyzed:	10/20/09	
Diln Fac:	1.000			

Type: BS Lab ID: QC517502

Analyte	Spiked	Result	%REC	Limits
Benzene	100.0	101.5	102	67-124
Toluene	100.0	95.94	96	63-135
Ethylbenzene	100.0	101.0	101	65-138
m,p-Xylenes	100.0	100.8	101	66-136
o-Xylene	100.0	101.6	102	64-138

Surrogate	%REC	Limits
Trifluorotoluene (PID)	80	10-183
Bromofluorobenzene (PID)	77	7-180

Type: BSD Lab ID: QC517503

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	100.0	98.63	99	67-124	3	30
Toluene	100.0	93.60	94	63-135	2	32
Ethylbenzene	100.0	96.60	97	65-138	4	28
m,p-Xylenes	100.0	95.54	96	66-136	5	28
o-Xylene	100.0	98.02	98	64-138	4	27

Surrogate	%REC	imits	
Trifluorotoluene (PID)	77	0-183	
Bromofluorobenzene (PID)	79	-180	

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	215816	Location:	2250 Telgraph Ave.			
Client:	Fugro West Inc.	Prep:	EPA 5030B			
Project#:	609.004	Analysis:	EPA 8015B			
Type:	LCS	Diln Fac:	1.000			
Lab ID:	QC517504	Batch#:	156279			
Matrix:	Soil	Analyzed:	10/20/09			
Units:	mg/Kg					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.077	102	74-123

Surrogate	%REC	Limits
Trifluorotoluene (FID)	120	38-168
Bromofluorobenzene (FID)	105	27-175

Page 1 of 1 5.0

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	215816	Location:	2250 Telgraph Ave.				
Client:	Fugro West Inc.	Prep:	EPA 5030B				
Project#:	609.004	Analysis:	EPA 8015B				
Field ID:	B-13@8'	Diln Fac:	1.000				
MSS Lab ID:	215816-001	Batch#:	156279				
Matrix:	Soil	Sampled:	10/19/09				
Units:	mg/Kg	Received:	10/19/09				
Basis:	as received	Analyzed:	10/20/09				

Type: MS Lab ID: QC517505

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.08520	10.10	8.656	85	14-138

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	137	38-168	
Bromofluorobenzene (FID)	106	27-175	

Type: MSD Lab ID: QC517506

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.10	9.691	95	14-138	11	52

Surrogate	%REC	Limits
Trifluorotoluene (FID)) 147	38-168
Bromofluorobenzene (FI	ID) 112	27-175

	Total Extractable Hydrocarbons						
Lab #:	215816	Location:	2250 Telgraph Ave.				
Client:	Fugro West Inc.	Prep:	SHAKER TABLE				
Project#:	609.004	Analysis:	EPA 8015B				
Field ID:	B-13@8'	Batch#:	156217				
Matrix:	Soil	Sampled:	10/19/09				
Units:	mg/Kg	Received:	10/19/09				
Basis:	as received	Prepared:	10/19/09				
Diln Fac:	1.000	Analyzed:	10/22/09				

Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 215816-001

Analyte	Result	RL	
Diesel C10-C24	73 Y	1.0	
Motor Oil C24-C36	300 Y	5.0	
Hydraulic Fluid, C12-40	390	5.0	

Surrogate	%REC	Limits
o-Terphenyl	79	16-164

Type: BLANK Cleanup Method: EPA 3630C

Lab ID: QC517243

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	
Hydraulic Fluid, C12-40	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	84	16-164	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

8.0

	Total Ext	ractable Hydrocar	rbons
Lab #:	215816	Location:	2250 Telgraph Ave.
Client:	Fugro West Inc.	Prep:	SHAKER TABLE
Project#:	609.004	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC517244	Batch#:	156217
Matrix:	Soil	Prepared:	10/19/09
Units:	mg/Kg	Analyzed:	10/20/09

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.74	39.29	79	36-151

Surrogate	%REC	Limits
o-Terphenyl	68	16-164

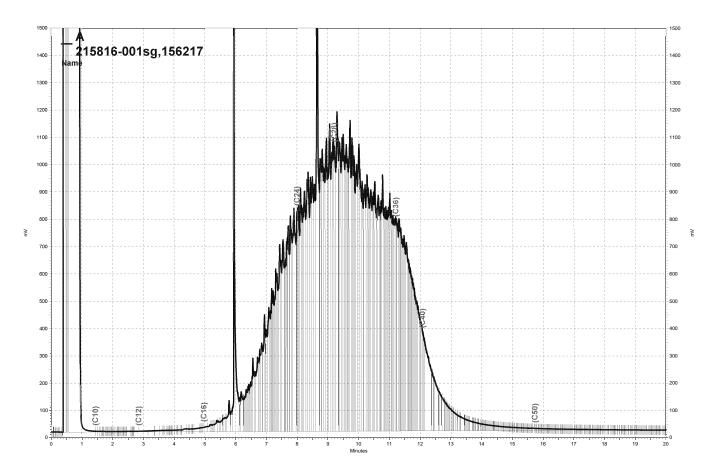
Page 1 of 1 9.0

	Total Ext	ractable Hydrocar	rbons
Lab #:	215816	Location:	2250 Telgraph Ave.
Client:	Fugro West Inc.	Prep:	SHAKER TABLE
Project#:	609.004	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	156217
MSS Lab ID:	215796-007	Sampled:	10/16/09
Matrix:	Soil	Received:	10/16/09
Units:	mg/Kg	Prepared:	10/19/09
Basis:	as received	Analyzed:	10/20/09
Diln Fac:	1.000		

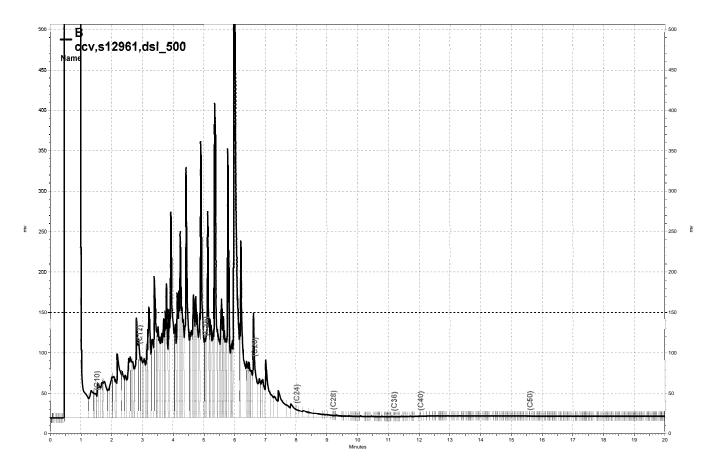
Type: MS Cleanup Method: EPA 3630C

Lab ID: QC517245

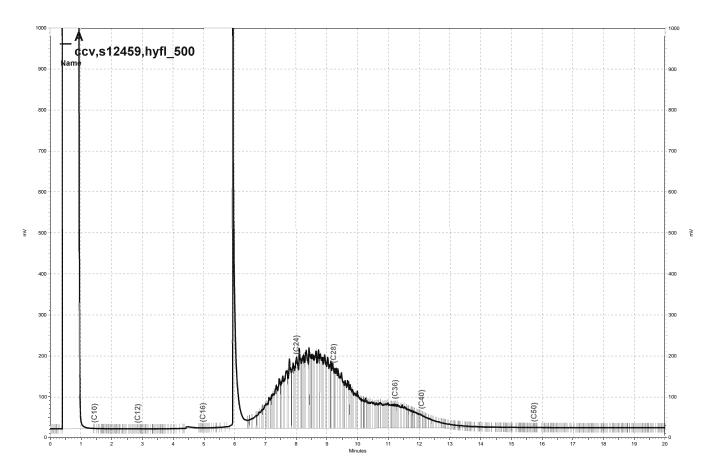
Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	0.7457	50.27	40.64	79	3-174

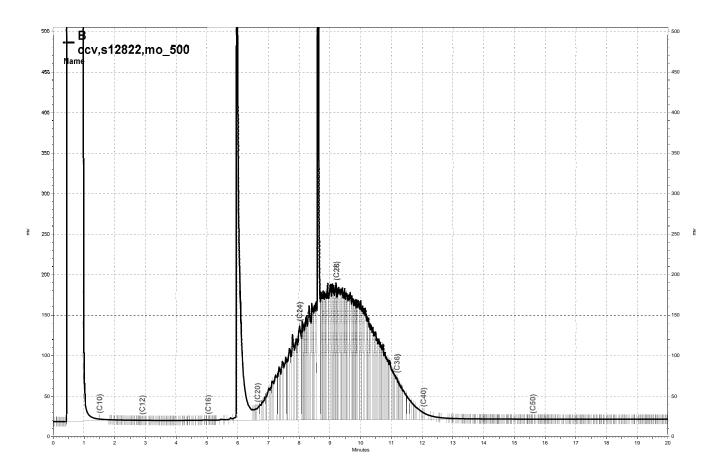

Surrogate	%REC	Limits
o-Terphenyl	76	16-164

Type: MSD Cleanup Method: EPA 3630C


Lab ID: QC517246

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.80	44.26	87	3-174	9	54


Surrogate	%REC	Limits
o-Terphenyl	86	16-164


\Lims\gdrive\ezchrom\Projects\GC17A\Data\295a010, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\292b019, B

\Lims\gdrive\ezchrom\Projects\GC17A\Data\295a008, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\292b018, B

TEG SOIL VAPOR SURVEY METHODOLOGY

Active Soil Vapor Sampling System

TEG's low-dead volume soil vapor sampling system has been inspected, endorsed, and is favored by all regulatory agencies who have seen it, including the EPA and CA DTSC. The design eliminates the risk of air leakage down the soil vapor probe, ensures sample collection from the tip, and greatly facilitates decontamination procedures.

Soil Gas Sampling

Soil vapor is withdrawn from inert tubing installed in temporary probes using a calibrated syringe connected via an on-off valve. A purge volume test is conducted by sampling at the first soil vapor location three times after sequentially collecting and discarding one, three, and seven dead volumes of soil vapor gas to flush the sample tubing and fill it with in-situ soil vapor. The purge volume used prior to the sample yielding the highest analytical value is used for all subsequent sampling. After purging, the next 20cc to 50cc of soil vapor are withdrawn in the syringe, plugged, and immediately transferred to the mobile lab for analysis within the required holding time. During sampling, a leak check gas is used to confirm that the sample train and probe rod is tight and leak free. Additional soil vapor may be collected and stored in gas-tight containers (e.g. Summa canisters) as desired.

Flushing & Decontamination Procedures

To minimize the potential for cross-contamination between sites, all external probe parts are cleaned of excess dirt and moisture prior to insertion. The internal inert tubing and sampling syringes are flushed with large volumes of ambient air between samples or discarded as required. If water, dirt, or any material is observed in the tubing, the tubing is discarded and replaced with fresh tubing.

Analytical Methodology

Soil vapor samples collected from each probe will be transferred directly to the on-site mobile laboratory and analyzed immediately. There will be minimal lag time between sample collection and analysis, ensuring that the integrity of the sample is maintained.

Samples will be analyzed on a gas chromatograph equipped with capillary columns and a combination of mass spectrometer (GC/MS), TCD, and FID detectors as needed. This combination of columns and detectors ensures compound separation, recognition, and detection at the required levels.

These detectors enable on-site analysis for petroleum hydrocarbons, volatile aromatics (BTEX), and volatile organic compounds (e.g. DCE, TCE, PCE, vinyl chloride) using EPA approved analytical methodology outlined in methods 8260B and 8015m. Output signals from each detector are processed by computer chromatography software and the results entered into a laboratory computer for on-site processing.

Daily instrument Calibration

Daily continuing calibration is performed at the start of each day by injecting and analyzing a midrange calibration standard. Acceptable continuing calibration agreement: +/- 15% to 25% to the calibration curve, depending on the compound.

Blanks & Duplicates

Blanks are analyzed at the start of each day and more often as appropriate depending upon the measured concentrations. Typically, when high sample values are encountered, additional blanks may be analyzed. Duplicate samples are analyzed as needed or as requested by the client or regulatory agency.

Compound Confirmation

A MS (mass spectrometer) detector is used for absolute compound identification of VOCs. Also, a surrogate compound is added to each sample during analysis to confirm that the chromatographic retention times have not shifted during the course of the day and that surrogate recovery is adequate showing proper instrument operation and integrity.

Health and Safety - Training and Medical Monitoring Programs

In order to reduce potential employee exposure to hazardous materials and reduce the risk of injury incurred during the normal performance of work, TEG maintains active participation of personnel in a Injury and Illness Prevention Program (IIPP). Each TEG employee that performs work in a laboratory or in the field, is required to have completed a 40-hour training session in accordance with 29 CFR 1910.120. The Health and Safety Officer coordinates all aspects of training and maintaining the Injury and Illness Prevention program, including, but not limited to:

- -- annual physical examination of field personnel (including an initial baseline exam upon hiring)
- -- health, safety and hazardous material training
- -- first aid and Cardio-Pulmonary Resuscitation (CPR) training
- -- safety equipment inventory and purchasing
- -- review of health and safety procedures, exposure limits, and plans for each project.

Work procedures and required safety conditions are determined on the basis of anticipated work, environmental conditions and levels of toxic chemicals at a given site. Consultation with client safety personnel or representatives is undertaken to determine potential health hazards to workers at that site. Each TEG employee participates in all pre-job safety meetings at each job site.

19 August 2009

Ms. Karen Emery Fugro West Inc. 1000 Broadway, Suite 440 Oakland, CA 94607

SUBJECT: DATA REPORT - Fugro West Inc. Project # 609.004
2250 Telegraph Avenue, Oakland, California

TEG Project # 90731F

Ms. Emery:

Please find enclosed a data report for the samples analyzed from the above referenced project for Fugro West Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 33 analyses on 11 soil vapor samples.

- 11 analyses on soil vapors for aromatic volatile hydrocarbons (BTEX), fuel oxygenate MtBE, and total petroleum hydrocarbons-gasoline by EPA method 8260B.
- -- 11 analyses on soil vapors for total petroleum hydrocarbons-diesel by EPA method mod8015.
- -- 11 analyses on soil vapors for methane, oxygen and carbon dioxide by GC/TCD.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Fugro West Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak

Director, TEG-Northern California

Fugro West Inc. Project # 609.004 2250 Telegraph Avenue Oakland, California

TEG Project #90731F

Analyses of SOIL VAPOR

BTEX, MtBE, & TPH-gasoline (EPA method 8260B) in micrograms per cubic meter of Vapor TPH-diesel (EPA method 8015m) in micrograms per cubic meter of Vapor

Methane in ppmV, and Oxygen and Carbon Dioxide in percent by Volume

SAMPLE NUMBE	īR:	Air	SG-1	SG-2	SG-3	SG-3	SG-4
•		Blank				resample	
SAMPLE DEPTH (fee	et):		5.0	5.0	5.0	5.0	5.0
PURGE VOLUM	1E:		1	1	1	1	1
COLLECTION DAT	E:	7/31/09	7/31/09	7/31/09	7/31/09	7/31/09	7/31/09
COLLECTION TIM	IE:	09:55	13:01	13:34	13:58	15:57	14:26
DILUTION FACTOR (VOC	(s):	1	1	1	1	1	1
<u> </u>	RL						
Benzene	80	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	300	nd	nd	nd	nd
o-Xylene	100	nd	130	nd	nd	nd	nd
Methyl-t-butyl ether (MtBE)	10	nd	nd	nd	nd	nd	nd
TPH (gasoline range)	10000	nd	nd	nd	nd	nd	nd
TPH (diesel range)	50000	nd	nd	nd	nd	nd	nd
Methane	500	nd	nd	nd	nd	nd	nd
Oxygen	5.0	21	16	9.6	20	19	11
Carbon Dioxide	1.0	nd	4.0	7.2	1.5	2.0	9.2
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	37000	19000	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,4-BFB)	•	88% 96%	91% 90%	90% 97%	90% 91%	94% 90%	93% 88%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Jon Edmondson

page 1

Phone: (916) 853-8010

Fax: (916) 853-8020

Fugro West Inc. Project # 609.004 2250 Telegraph Avenue Oakland, California

TEG Project #90731F

Analyses of SOIL VAPOR

BTEX, MtBE, & TPH-gasoline (EPA method 8260B) in micrograms per cubic meter of Vapor

TPH-diesel (EPA method 8015m) in micrograms per cubic meter of Vapor

Methane in ppmV, and Oxygen and Carbon Dioxide in percent by Volume

SAMPLE NUMBE	R:	SG-5	SG-6	SG-6	SG-6	SG-7	SG-7
SAMOLE DEDTH (for	×41,	5.0	5.0	5.0	5.0	5.0	dup 5.0
SAMPLE DEPTH (fee	-				7	3.0 1	
PURGE VOLUM		1 7/31/09	1 7/31/09	3 7/31/09	/ 7/31/09	7/31/09	1 7/31/09
COLLECTION DAT							
COLLECTION TIM		12:41	10:30	11:02	11:36	12:05	16:27
DILUTION FACTOR (VOC	s): RL	1	1	1	1	1	1
Benzene	80	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	320	250	nd	nd	260	230
o-Xylene	100	140	120	nd	nd	100	100
Methyl-t-butyl ether (MtBE)	10	nd	nd	nd	nd	nd	nd
TPH (gasoline range)	10000	nd	nd	nd	nd	36000	31000
TPH (diesel range)	50000	nd	nd	nd	nd	nd	nd
Methane	500	nd	nd	nd	nd	nd	nd
Oxygen	5.0	13	<i>8.7</i>	3.2	9.7	16	6.8
Carbon Dioxide	1.0	6.8	11	16	10	4.9	12
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,4-BFB)		87% 95%	90% 96%	87% 96%	92% 95%	90% 97%	89% 95%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Jon Edmondson

page 2

Phone: (916) 853-8010

Fax: (916) 853-8020

Fugro West Inc. Project # 609.004 2250 Telegraph Avenue Oakland, California

TEG Project #90731F

Continuing Calibration

		7/31/09			
	INITIAL	Daily Midpoint			
COMPOUND	RF	RF	%DIFF		
Benzene	1.129	1.210	7.2%		
Toluene	0.674	0.718	6.5%		
Ethylbenzene	0.512	0.543	6.1%		
m,p-Xylene	0.610	0.661	8.4%		
o-Xylene	0.586	0.640	9.2%		
Methyl-t-butyl ether (MtBE)	0.592	0.621	4.9%		
TPH (gasoline range)	0.908	0.917	1.0%		
TPH (diesel range)	8.052	7.424	7.8%		
Methane	0.0106	0.0118	11.1%		
Oxygen	123	130	6.0%		
Carbon Dioxide	56.9	58.0	2.0%		

Phone: (916) 853-8010

Fax: (916) 853-8020

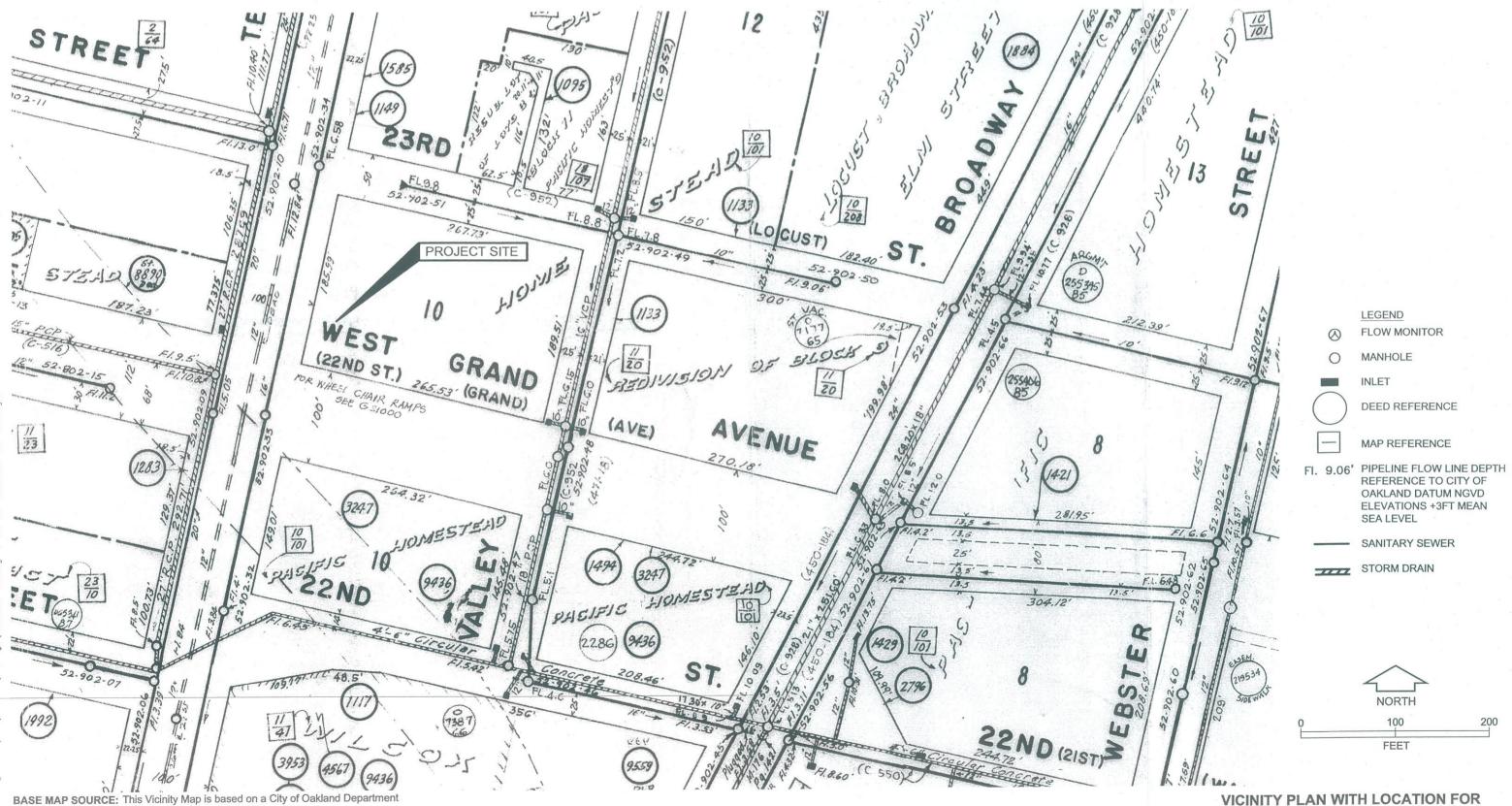
APPENDIX D
WELL SAMPLING FORMS

PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	Fire Clore	9'10'	ER 34			- WELI	L CASING DI		<u> </u>	
TOTAL DEPTH OF CAS	ING (BTOC):	18	<u>(C.S</u>	FEET	CALCULATED			5 5 3	gallons	
DEPTH TO GROUNDWA	ATER (BTOC): 111	10	FEET	•	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o,a, iiooy		
FEET OF WATER IN WELL: 7.2)				FEET	ICT: HOD:	2:1046				
MEASUREMENT METH	OD: ELECTI	RONIC SO	UNDER	or OTHER						
		· · · · · · · · · · · · · · · · · · ·		FIELD MEASURE	EMENTS	÷		•		
GALLONS REMOVED	TIME	Temp	pH	CONDUCTIVITY (µMHOS/CM)	TDS (g/L)	ORP (mV)	DO (mg/l)	COMMENT (odor, color,		
Downhole (Pre-Purge)	विशेष	30.45	5 A4	860		37.2	3.4	clonastikt	1467) = 0 8 #	
2.4	1015	50.12		1057	-	-12.3	मं उठ	4,72 2015		
3.0	1055	20-18	认 辞社	1043	*****	- 10.10	501		7	
ACTUAL DEPTH TO GR	OUNDWATE	ER BEFOR	E SAMPLI	NG (BTOC):	12.2	2	_TIME SAMI	PLED: 122	5	
SAMPLING METHOD	_/	y \	.110	3		1	. 1	. 1		
CONTAINERS / PRESE	RVATIVE:		40	1				<u>か</u> り		
		40	ML			L	.ITER			
			/	_						
			oly			0	THER			
	TEHd, TEH	mo (8015 v	v/ Silica ge			Pesticides (8 PCBs (8080)				
TVHg, BTEX, MTBE (8015/8020) VOCs (8260)					Sulfate (300.0)					
	HVOCs (82				***************************************	Nitrate (300.0 Fe ²⁺ - Field I				
	Title 22 Met	ais (6010/9	1 1			_re -rieldi	rintered /	1	1	
MISC FIELD OBSERVAT	TION: 8	Sligh Obs	rech	we issues	2 Tok	a te	w ho	va fo	rechasy	
Equipment	Serial No.	Calibratio	n	_ , /]					
Conductivity	YS168	Sw	12CO (Calsheet						
pH Turbidity		1 - >	1							
Temperature					1				• •	
		 			1					

PROJECT NAME: PROJECT NO.; SAMPLED BY: DATE: WEATHER:	Butt 609:00	-				- - WEL -	L CASING D	WELL NO.: 2) DIAMETER: Z LEVATION:	NW 2
TOTAL DEPTH OF CAS DEPTH TO GROUNDW. FEET OF WATER IN WI	ATER (BTOC	5,4	11 4	FEET FEET or OTHER	CALCULATED (feet of water * FREE PRODU PURGE METH	casing dia ² *		2.66 Volumes)	gallons
CALLONG DEMOVED	W120 5200		-11	FIELD MEASURI		ORP	DO (ma/l)	COMMENTS	
GALLONS REMOVED Downhole (Pre-Purge) 2	TIME 950 953 955 957	20.01	pH 7.20 7.05 7.03 7.03	(µMHOS/CM) 57 (C) 55 (G) 5 (G) 5 (G) 5 (G) 5 (G)	TDS (g/L)	(mV) 143.7 76.2 84.2	(Nem) (Nem)		t mo-03 n
ACTUAL DEPTH TO GR	\ •	ERBEFORE	ı	ING (BTOC):	1152		_TIME SAN	MPLED: 1050	
CONTAINERS / PRESE	RVATIVE:	40	ML ML	- Company		de la constanta de la constant	JTER	anneally	
	v samples are TEHd, TEH TVHg, BTE VOCs (826 HVOCs (82 Title 22 Me	i field filtered Imo (8015 w IX, MTBE (8 0)	/ Silica ge 015/8020			Pesticides (8 PCBs (8080) Sulfate (300. Nitrate (300. Fe ²⁺ - Field	0) 0)		
MISC FIELD OBSERVA	TION:								
Equipment Conductivity \(\sum_{5} \) PH Turbidity Temperature	Serial No.	Calibration	_	4					•

PROJECT NAME:		NEIL						··-·· · · · · · · · · · · · · · · · · ·	M14/ ~	?
PROJECT NO.: SAMPLED BY:	<u> 604</u>	<u> </u>		·		 \∧/⊊i	V L CASINIC D	VELL NO.: / IAMETER: _	2	<u> </u>
DATE:	17代	<u>3</u> 0.09	***************************************				TOC EL	EVATION: _		
WEATHER:		10 V	******************************		······································	****				***************************************
TOTAL DEPTH OF CAS			0	FEET	CALCULATE	 D PURGE VOL	.UME:	2,88	>	galions
						* casing dia ² *		/olumes)	***************************************	
DEPTH TO GROUNDW	ATER (BTO) <u>: 10 , </u>	1	FEET	FREE PRODU	JCT:				
FEET OF WATER IN W	ELL:		21_	FEET	PURGE METI	HOD:	Pois	LQH:	<u> </u>	1004/444AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
MEASUREMENT METH	OD: ELECT	RONIC SOU	INDER	or OTHER						
				FIELD MEASURI	EMENTS					
GALLONS REMOVED	TIME	Temp	, pH , , ,	CONDUCTIVITY (µMHOS/CM)	TDS (g/L)	ORP (mV)	DO (mg/l)	(odor,	MENTS color,)	
Downhole (Pre-Purge)	1002		0'0	1027 176	ps-	1-1-1-	7 1750	cloar.	slint	Petrolum inh
	1005	201H	ا کا کا این ا الایل جیا	<u> </u>	Physics.	+0.p	5,		1 5\1.h	Pition.
	liðir	20,4	7F. 1	1116	p	- D16	5.)		1/1
		-							· . · · ·	
ACTUAL DEPTH TO GF SAMPLING METHOD CONTAINERS / PRESE		ER BEFORE	SAMPLIN	NG (BTOC):	11.12		_TIME SAM	PLED: \	1,20	
		40 (VIL			l	LITER			
		/	,				18			
		Po	iv			0	THER			
ANALYSES: (Note if any	samples are		-			•				
· .	TEHd, TEH				***************************************	_ Pesticides (8				
		X, MTBE (8	015/8020)			_ PCBs (8080) Sulfate (300.		***************************************	***************************************	
	_ VOCs (826 _ HVOCs (82					_ Suirate (300. _ Nitrate (300.0	-			
		tals (6010/90	000)			Fe ²⁺ - Field	-			
MISC FIELD OBSERVA		Pun	4	of recho	rg d	ATH P)V (V	but	touk	
		,	014 13		1 800 2 9	ON R I V				
Equipment	Serial No.	Calibration			7					
) ()	1.50	\mathcal{C}	0.00						
Conductivity pH	1771	1000	<u>-</u> Gv	WEL.+	-					
Turbidity										
Temperature					4					

PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	BUTNER 609:004 PC 7:10:09			WELL	. CASING E	WELL NO.: YN W DIAMETER: 2 LEVATION:	
DEPTH TO GROUNDW.	ATER (BTOC): 11, 81 F	FEET	CALCULATED (feet of water * FREE PRODUC PURGE METH	casing dia ² * .(0408 * # of	SITY Volumes) OUE Which	gallons
	ı	FIELD MEASURE	MENTS				
GALLONS REMOVED Downhole (Pre-Purge)	TIME Temp pH 10.29 19.35 U.91 1034 19.95 U.99 1034 20.05 U.79 1036 19.95 U.94	CONDUCTIVITY (µMHOS/CM) 2105 1606 1504 1660	TDS (g/L)	ORP (mV) -30,0 -91,4 -96,0	DO (mg/l) 1.07 2.25 4.35 3.23	COMMENTS (odor, color,) Ank gray, slight	shown more
ACTUAL DEPTH TO GR SAMPLING METHOD CONTAINERS / PRESE!	COUNDWATER BEFORE SAMPLING On'Un RVATIVE: 6 / H 0 1	G (BTOC):	12,91		TIME SAM	ipled: 1135 NG	
ANALYSES: (Note if any	A0 ML Poly samples are field filtered) TEHd, TEHmo (8015 w/ Silica gel) TVHg, BTEX, MTBE (8015/8020) VOCs (8260) HVOCs (8260) Title 22 Metals (6010/9000)			······································)		\$*************************************
MISC FIELD OBSERVAT	FION:						
Equipment Conductivity \(\frac{\sqrt{\sq}}}}}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sinq}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}} \enditinitenden	Serial No. Calibration	Cal Screet					


	\sim			ES-F50 WELL SA	MPLING FO	RM			
PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	ISN.	4 NO 38.80 28.80 28.80))	7		 WELI		WELL NO.: MW ~ DIAMETER: ELEVATION:	5
TOTAL DEPTH OF CAS DEPTH TO GROUNDW FEET OF WATER IN W MEASUREMENT METH	ATER (BTOO	9	40 13 27	FEET FEET or OTHER				Volumes)	gallon
	1			FIELD MEASURE	MENTS				
GALLONS REMOVED Downhole (Pre-Purge) (5) (1)	TIME 1341 1341 1350	Temp 2032 2092 2082 2081	6.59 6.48 6.40	CONDUCTIVITY (µMHOS/CM) Y Y S Y S I	TDS (g/L)	ORP (mV) 173.1 195.1 195.1 202.1	DO (mg/l) 2 (ob 2 - 58	COMMENTS (odor, color,) MILLY DRAF O	, oda ij
ACTUAL DEPTH TO GR SAMPLING METHOD CONTAINERS / PRESEI	<u>Le</u>	~ <u>\</u>	E SAMPLII	NG (BTOC):	1.3		TIME SAN	MPLED: 1409	
	samples are TEHd, TEH TVHg, BTE VOCs (8260 HVOCs (826 Title 22 Met	field filtered no (8015 w K, MTBE (8 i) 50)	/ Silica gel 015/8020))			HER 80)		
MISC FIELD OBSERVAT	TION:						-		
Equipment Conductivity H Turbidity Temperature	Serial No.	Calibration Sq.v	ipco	Calsher	*				

APPENDIX E UNDERGROUND UTILITY DOCUMENTS

of Engineering drawing, number 1488B482-238,

dated 12/31/96.

STORM DRAINS AND SANITERY SEWER

2250 Telegraph Oakland, California

FRWIND ENG SEKNICES

A97.T/AZATC

CC.CD 0002 (CZ (C

EA_	TITLE	OAKLAN	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, where the Owner, where the Owner, which is the Owner, where the Owner, which is the Ow						MAP		- I	48	148	888482		
ESSU	RE ZONE		VTRAL		4				REF	ERENCE	=	104	3/			
STIF	CATION_	/mp	roving s	istem.					-0							
				-												
			+++									1				
1																
												+ +				
							+						-	3		
							+ +									1
														477, 734	.)	17.15
													-			- 0
															. 15 2 2	
1	4															100
															A. 12 (2. 12) (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12) (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12) (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12 (2. 12)	131
															4 th 2 1	8171Ú
5							上上					土土				
	4												mtin.	nd City		
7	14.								LEVAI	IUNS /	ARE II	0		70		AI
5	D	. [1													
É		1						_								
N N N N N N N N N N N N N N N N N N N	1 1		1		15'70	1/3		2								
ı.	17 3		Ü			67 570		60	0	on						
	D	. [0	1				C=15"	N	6:58						
	figt .			.				Ü	Ü	6.1						
1 1	12.	31954	1.	3'	,	2000 NO		n n	a	0						
	14		T		2300	51 6		d d	5609				1			
	8.34			-				1	67	1			-			
					1 4			,					//			
		<u>ā</u>	Ţ+		=				order				1/			
	1						_	, X	, ?	01	74.		1/			
		- 11			4	4		4	760				1	7		
		24			6	à		0.00	1 3	0			/			
					21.5	9'32'9'		To.		3			- 1	\		
		4.			.0	5		8"60	846 See,	N.		a.		11		
	1	416				D		200	000	40		¥*	1	M		
	1	A				01		0 7	00	9			,	' \		
1	1	X		12				2	3.	3				/		
ery		TELEGRAPH		1				0+00	0+02.8	0+05						
614	1	7						0	G	O						
9	1	T.														
10	1	9														
1	1	7														
		LW														
B	ll .										REVIC	TIN AC	0.0	water a me agent transport the transport	The Married and Adjust Belleville	
0											o 1 - √1 0 1	LU AS	COM	STRUCTI	ED T	
X										St	arted.	-26-5	410 0-	rvice 5-5	ا. س. په د	
CHECKED																
E E										and the same of th	Con	Pieted	2.27	7-54	- Control	
7 22	14									I Rec	orded	arrin	2400	P	lando	
										REV	ised. /	2.58	7 D.	B. 5n	- 1//	
										l			Dy	J JM	1119	
	14													-		
	1. 11															
	12 4		×													
,	N A	1	"=100"								· ·	720				
1	SALE							JOINT	'S	6-6	3 Le	ads				
	DATE		7-54					MAKE	OF PI	PE						
	PAVIN	OM	and the south of the first of the south							ION BY						
			ARD WALL	200	400	TA	P			NO						
			COLUMN I DANKE I		. 700	1 1 60								and the second s		

MAPNO. 1488 B 482 REFERENCES C/455150 Installed feet of inch C.I. Pipe on East side of Telegraph Ave. -_ between __ across Grand Ave. Connected to 8x4 inch Cross on N/S of Grand Ave and to 4" Main on S/S of Grand Are With 4" Tee SIDE CONNECTIONS Connected inch main on the Side of Connected inch main on the Side of Connected inch main on the Side of Connected inch main on the Side of Connected inch main on the Side of VALVES AND COCKS SET ON MAINS: inch HE Value at the N. Curb Line of Grand Ave inch at the Line of inch at the Line of inch at the Line of inch at the Line of VALVES AND COCKS SET ON SIDE CONNECTIONS: inch at the of inch at the of inch at the of inch at the inch at the of Number of Gate Covers and Gate Pots Used /- 8" Conc. Valve Box - 30" 8" CI Pipe (Pot) Depth of trench to top of pipe 38 to 50 inches. Width of trench > 2 inches. Length of trench Main is feet from property line. Work Started. ORIGINAL ORDER RECEIVED DATE MAPPED Work Completed Water Turned on

MAPPED 100'

EAST BAY MUNICIPAL UTILITY DISTRICT CITY Oakland REFERENCES 6/22/32 0/055150 Installed 595 feet of inch Pipe on South side of Grand Ave. between Telegraph Ave. Braodway Connected to 4" inch Tee of Telegraph Ave and to 8" Main on W/S Broadway with BX4 Tee SIDE CONNECTIONS 6 inch main on the West Side of Valley St Connected Connected inch main on the Side of Connected inch main on the Side of Connected inch main on the Side of Connected inch main on the Side of VALVES AND COCKS SET ON MAINS: Line of Telegraph inch Value at the West ! Line of Broadway inch at the Line of inch at the Line of inch at the Line of VALVES AND COCKS SET ON SIDE CONNECTIONS: inch at the inch at the of inch at the of inch at the of inch at the of Number of Gate Covers and Gate Pots Used 2-8" Conc. Valve Boxes - 43"-8 CI Pipe (Pots) Depth of trench to top of pipe 32 1648 inches. Width of trench >> inches. Length of trench 602 feet. Main is feet from property line. Work Started_ ORIGINAL ORDER RECEIVED DATE MAPPED Date Work Completed_ Water Turned on-MAPPED 100' W. C. FORM A-33 1M 1-31

PIPE EXTENSION

MAP RECORD

--D A T A--

E 17486

Feet and Tenths

```
½ 4" Tee inside Curb S/s Grand Ave
½ 4" HE Valve E/o E/L Telegraph Ave

0+00
0+10.6
                     4.5 S/o S Curb - (East)

Ø 3" Pipe Diag - 24" Cover

W Curb Valley St
0+86.7
2+83.5
                     Ø 6" x 4" Cross W/s Valley St
4.5'S/o S Curb Grand - 42" Cover
2+87.4
                    4.5'S/o S Curb Grand - 42 Cover

Ø 8" x 4" Tile Teleph Conduit - 33" Cover

Ø 2" Pipe - 16" Cover

Ø 3" Pipe - 28" Cover

Ø 1½" Pipe - 12" Cover

Ø 3" Gas Main - Diag across 4" CI Pipe

28" Cover
2+89.3
2+90.2
2+91.7
3+05.5
3+06.4
3+13.5
                     E Curb Valley St
                    2" Pipe - 24" Cover

3" Gas Main - Diag 32" Cover

4" CI Pipe - 39" Cover

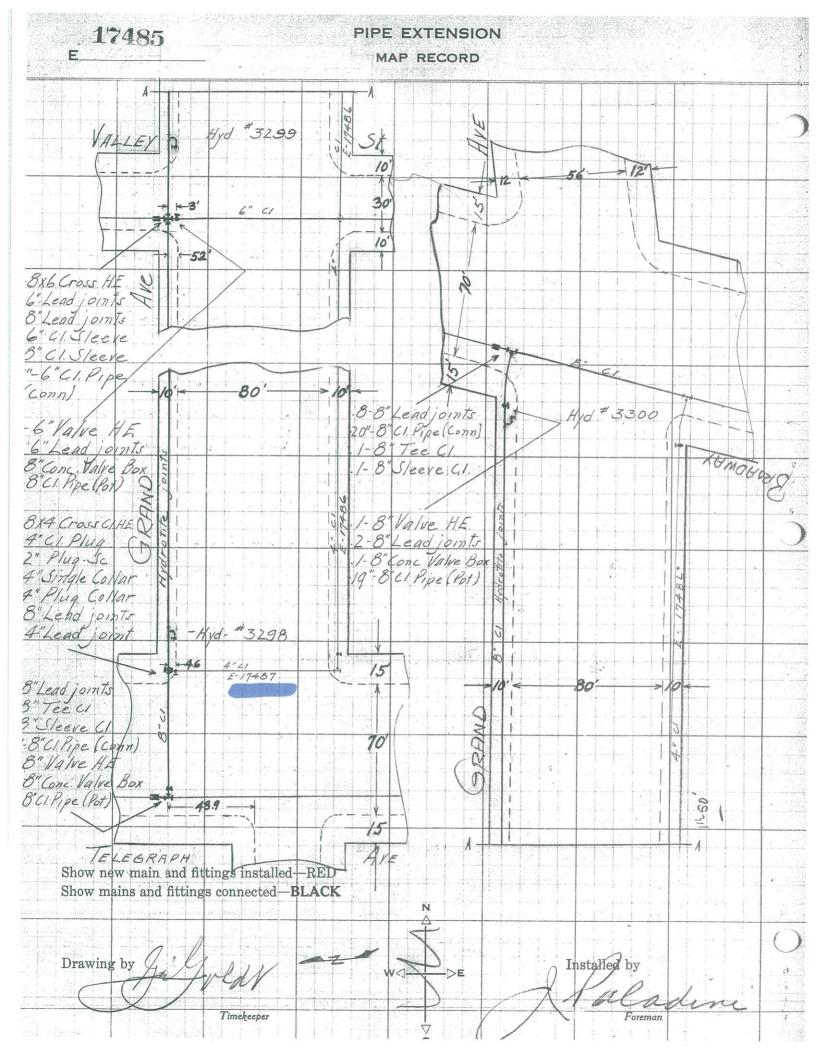
4" HE Valve W/L Broadway

4.4' S/o S Curb Grand (West)
3+15.9
3+26.9
5+64.75
5+82.7
                     Slight Angle Rt
                    W C/L Broadway

g 1" Pipe - 26" Cover

New 8" x 4" Tee W/s Broadway
5+85.2
5+93.6
                    End 4" CI Pipe conn to 8" CI Main
                    32" Cover - 5.8' S/o S C/L Grand (West) Ø 6" Gas Main - W/s Broadway - 28" Cover
```

Party extra 3 Mappings


S

340

	-	_	+	+	3	10.	5.	5	-	1	4	1%	7	M	10.	4	-		12	"	C	OV	er	1							10		1.	
				1	3	10	6.4	1		1	#	3	~	9	2	1	8	in	-	DV	ia	9	ac	ro.	15	4	2 1/2	1. 1	Pi	10			1.	_
		4												1.0		4	8	11	C	V	ex	1			1			T	1	1			\top	
					3.	1/	3.1	5		=	F	7.	1	/,	l n	-6	-1	10	111	-	1	1								T	+	1	+	
					3	11:	5	2		-	V V	2	1	D:	1		>	1 11	/	Or	1	5/		-		-	\vdash	-	-	+-	1	-	+	-
			1	1	3	45	1	2	+	=	T	-	"	Pij	16	1	2.		1	Or	0	-		-	7	-	11	_	-	-	-	-	-	1
		-		1,	1		7	+	+	+			+	00	10	1	101	17			1	1/1	19	-	2	2	(10	10	1	+	+-	+	+
			+	+	5	16-		7 -	-	+	1	1.	10	4	1	0	-	7	P	e	-	7	9	13	C	0	di	- 1	_	_	1	-	-	4
	H		+	+	77	6-	10/	1	+	1	Z	1	-	14	5	11	1	V	2	A	N	1	<	21	10	a	0/1	7/2	21		,	-	_	1
	-	-	+	+	-	(/)	-	1	-	+	4	.4	- (50	47		of	1	04	14	(Ch	r	6	G,	ra	27	1.	1- 1	W	25	1)	1	
	+	-	+	-	5%	8	4.	7	-	1	0	11	71	17	1	1/	19	1/8		X	1	24	1		-									
	-			-	57	18.	5.	2	1	1	W	2	57	1	C	411	6	6	-/	7	e/	6	Sr	00	10	w	a	V						
					5	19.	5.	6		-	E	/	11	P	0	e.		20	11	1		Ve	-				1							T
					5	19.	7.	8		=	# H	1	le	W	8	X	1	4 -	Te	e	1		15	1	3r	20	d	in	101			1		1
						1		I			32	20	1/-	4	II C	-/	Ú.	177 4	9 .		- 0	7	n S.	10	500	3 11	-	YY	M	2:	-	Ve.		+
							1			1	3	11	1	- "	0 1		1	5	8	1	- 0	1	-	0	1	, (1.6	1	1	1/2		1
				1	54	9	7	/			X.	1	K	1/2	25	N	91	70		10	1	7	12	<u>_</u>	40	7	71	1	710	γ-	11	re	11.	1
				\top	1	1	1		T	T		6		10	U	1.1	20	5 11			~			0	40	YIM	1 a	1/			-	-	_	+
			+		1	1		+-	1	+	-	-					-4	2	9	.0	Ve	مسز		\dashv		-			-	-		-	_	1
			-	+	+	-	-	-	+	-	+	-		-							-			_									5	1
	-	-	+		-	-	-	-	-	-	+-	-	-						_															1
	\vdash	_	+	-	-			-	-	-	-															2								
	\vdash	-	+	+	-	-	_	-	-	_	-																							
	-		-	-	_					-																								
		ļ.	-																		-			1		-								T
																																		T
																		1000															-	t
																				1	1			1	1	7							-	1
,		1	1																\dashv		+	-	+	+	+	-	-	-	-				_	+
+1												-	-					-	\dashv	-	+	-	-	+	-	-		-	-		-			-
,																-		+	-	+	+	-	+	+	-	-	- 1		-					L
			+						١.								-	-	\dashv	+	+	-		+	-	-			-		-		_	L
		-	-	-						_		-				-		_		_	4			_										
		+	+							-	-			_	-	-		-	4	_	_	_	_											
4.	-	-		-												1.																		
		-	-		-													-																
		-	<u></u>																															
			-																															7
1	-				- 1		gents	0.70	:	estation of	a. ~	1		11.51							1			-					7. 1. 1	1.12	-		-	100

Feet & Tenths 0+00 # # 0+86.7 2+83.5 2+87.4 4.5. 42" Cover 2+89.3 33" Cover A WA 2+90. 2+91. 2" Pipe 3" Pipe 16" Cover

E-17486

PIPE EXTENSION

MAP RECORD

E 17485

--D A T A--

```
W Curb Telegraph Ave
0-09.8
              Ø New 8" Tee - W/s Telegraph Ave
43.9' N/o N C/L 22nd St (West) - 28" Cover
0+00
              Ø 8" Valve - 32" Cover
0+03.4
0+07
              Elect Conduit - 60" Cover
              Ø 4" Pipe - 24" Cover
0+08.1
              Elect Conduit - 16" Cover
0+10.9
0+16.9
              W Rail Car Track
              8" CI Pipe 39" Cover

20" Sewer Pipe - 61" Cover

E Rail Car Track
0+25.7
0 + 33.5
              8" CI Pipe - 54" Cover
              24" Elect Conduit - 33" Cover
0+42.8
              24" Teleph Conduit - 33" Cover
0+48.1
0+60.2
              E C/L Telegraph Ave
              la" Light Conduit
la" Police Teleph Conduit
la" Fire Alarm Conduit
0+61.2
0+64.8
0+65.4
              Ø8" x 4" Cross - N/s Grand Ave
0+66.5 -
              Pt Opp 6" Hyd Valve
0+83
              28" x 6" Tee for Hyd - 46" Cover (beneath Sidewalk)
4.6! N/o N Curb Grand
0+86
             2 Valley St

2 Valley St

2 Valley St

3 Valley St

4.0 Valley St

CL Valley St

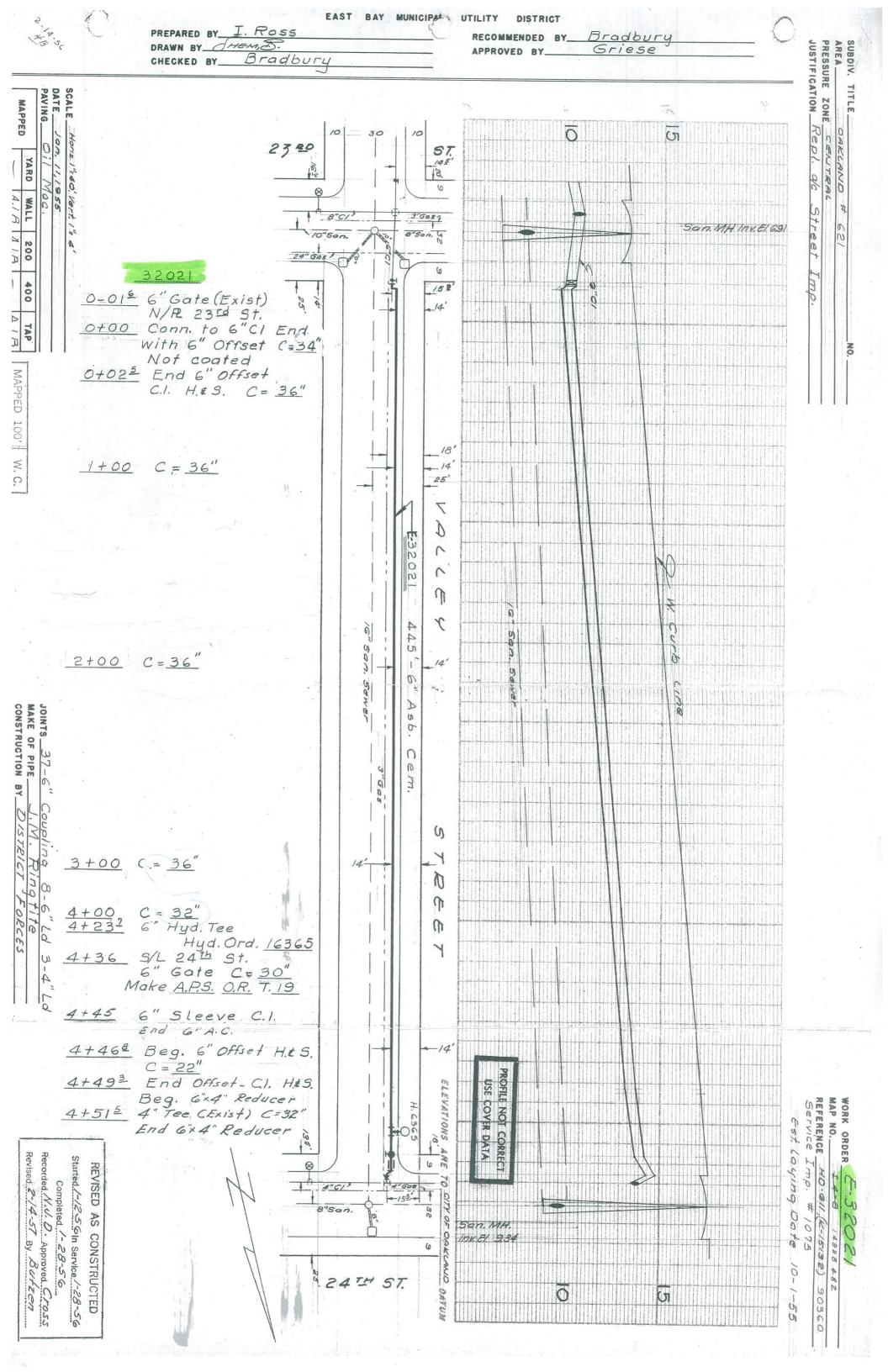
Cover
3+49.5
3+50.8
3+56
3+57.3
3+58.9
3+80.8
              3" Gas Main - 24" Cover
3+81.7
             Pt opp 6" Hyd Valve
3+95.1
             Ø 8" x 6" Tee for Hyd - 37" Cover under sidewalk 5' N/o N Curb - Grand Ave
3+97.7
             \emptyset 8" x 6" Tee for Hyd (under S/W)
6+46
             Pt opp 6" Hyd Valve
6+48.9
             Ø 8" HE Valve
Ø 2" Pipe - 29" Cover
Ø 2" Pipe - 33" Cover
Ø 2" Gas Main - 34" Cover
W Curb Broadway
6+56.2
6+68.1
6+68.5
6 + 74.6
6+75.5
             Ø 8" CI Tee W/s Broadway
3.5' N/o N Curb Grand (West)
6+85.1
             End of 8" CI Pipe - 31" Cover
             Ø 6" Gas Main W/s Broadway
6+87
             26" Cover
```

	100									-															1	E	- ,	1	74	28	3.5	-	
										1							0											ľ		I			T
-			-						_	-	-	4	4	1	1	7	H		_		-		_	1		-		_	L	1	1	_	1
+	-	-	F .							. /	+	1	-	_	1			,	L		-			- "		1	_		1	1	1		
-	-		_	0	_ (00	.8	;	1	Ve	2	4	C	11	16	2	le	Ve	9	1	9	OF		40	e								
_	+-	1	_	0	+	00		:	9	7	W	en	1 6	7"	7	e	9	1	1/	V	1	le	1/6	9	n	11	ph	1	1V	2			
				7.1						1	3.	7 -	7	1	10	2 - /4	W.	1	in	6	L,	in	9.	2	2 :	24	5	7	1	Ne	252	1)	
-					٠							/			1	2	8	er	1	0	Ve	m								1			T
				0	+0	3.	4		<	£	8	11	KA	VV	e.	+	1	2	11	C	01	Ve.	-										T
				0	10	7			_	-	le	27	4	10	270	Ve	117			6	0	4	10	Ve	1				T	-			T
				0+	-0	8.	1		- 2	7	4	11	P	10	0	-	1	4	11	1	21	10	-						T	1	1		t
						0.9		. ;	. /	4	-	4	10	1/2	20	V,	1,7		\vdash	11	11	-	0.1	10	in		\top	+	\dagger	+	+	+	+
			- 1	0+	11	6.9	, .		1	1/2	-	4	P	1	1	7	-	-		- 1			-	-		1		+	+	+		-	+
1			- 6	1	16	2./	-		_,/_	1 =	5	1		0		- 4	1	, ,	-	-1		-			-	-	1	+	+	+-	+	-	+
-	+-			04	7	- 1	,		100			10	1	1	re	3	7	2.	10	VE		,					-	+	+	+-	-	-	+
+	1	\vdash	- 6	21	7	5.1	-		Z	Ta	40	1	H	1	ve	-	P	P	E	-	1	3/	(10	re	1	-	-	+-	+-	-	-	+
+	+		-	1.7	2	2.0				10	5/	11	1	1	1	5	11	-	1	110	7/1	1		-	_	-	-	+	-	+	-	-	+
+	-		-		1 5		-		_		0	-	61	-	1	FO	e	- ,	5-	7	1	10	ve	.1		-		-	1	_		,	1
-	+					.8	-	3	1	4	1.	4		4.7	1.6	10	770	101	17	1	-	3	3	"	C	OV	21		_	_		_	-
-	-		- 4	2/	48	3. /		-		4	1	1	e /.	4	4	C	0	70	11	17		_:	33	1/	(OV	21	+ .					
	_		(24	60	2. 2		-	1	10	Kr	1	C	el	-2	2	1	ne		1	E/	le	70	-	16	h	1	1/	e				
_				27	61	2				1/	2 "	1	10	14	X	(10	270	1	11	1				/								I
			- 4	27	64	18		. 1	1	1/4	"	P	1	100	=	1-0	1/4	P	6.	1	10	270	V2	11	+								T
			6	14	63	7.4		-	/	1/4	2 11	1	17	e	A	1/0	1	57	- 6	10	200	1	117	4									1
			1	27	66	.5		=	2	1.	3	12	4	1	0	5	+ -	1	1/	1 2	91	ma.	no	VA	1/				T		T		T
			L	24	8	3			: /	04		20	20	5.0	1)	fo	1	11	4	100	1	1/1	1/1	0		T		1	T	T			T
			1	7	B	2		-	3	24	8	61	1	7	-	+	-	4	1	1	1	11	1	111	-	1	o vi	101	16	((id.	0 10	1
1			T	1			\neg			-		1	1 /		-	/	V.	7,	-	11	7	14	1	7	10	6	1	54	100	210	1	- 64	6
-	-			7	11	7 5	-		_	×.	8	"	C/	17	5	20		1	/	Y C	-	14	(- 21	1		2	1	7 /	140	1	-	+
\vdash	-		1	3 1	17	2.5			1	1/		4	/	-	1	20	. //	e	1	-	11			_	,			-	-	+-	1	-	-
-	+		7	3+	51	1.0		-]	V	VE	0	1		1	0	4	27	11	1.	A	1.1.	ey		الما	Z	-		-	-	-	-	-	+
-			-+	7	96	-	-+	-1	Z	-	0,	16		-/		2	N	1	6	11	7/1	e	1)7			-	-	-	-	-		-
+	-	-	-	7 /			-	-		4	-		5.			10	7	NO	1	h	6	11	6	0	1/2	971	d	-	-	_			L
-	-		-	7/	5/	. 3			9	+	2	<u></u>	W	7	Er	- /	1	0-	2		1	2	70		7								
-	-		E	3 /4	58	3.9		-	. 9	<u> </u>	-	3 "	9	1	1	1/	ai	7															-
			3	3 42	34	2,8	3	-	1	Ea	57	- (C 1	11	6	1	12	e	1	a	1/2	e y	. \	51									
			4	3+8	31	7		-	-	3 "	6	1	5.	M	11	77	-	24	1"	6	0	ve	-										
			3	3+9	15	1		=	1	20	12%	1	0	01	2.	6	"	40	d,	1	11	re											
			1	3/	97	7		Ξ	2	£ /	81	6	1-4	ee	to	200	40	la	. =		31	111	6	or	61	a	217	Vd	er.	5/	de	W	7
					/	/					5	1	N	0	4	N	ah	th	1	11	h	- /	9	-		1:						,,,	ľ
			6	1	41	'		=	9	(BX	1	1-	1	7	64	1/	100	/	1	11.	720	0	ton	-	d	1		,	e			
		7	Z	4	1,9	30		1	,	0	127	+	0	0	1	2	1	2	1 1		4/1	1	1	a	111	0	- 1	Ve.	1	11/			H
				1	56	2	7		_/	£.	3	*	15	1	1/	01	1/6		0	_/	1	9_	4	41	// (_			-	-			-
7	\vdash	+		1	10	-	+	-		7	2	"	1		1	11	VE	011		_			-							-	-		_
	\vdash	-	E	1,	10	. /	-	-	2	7 7	2	11	1	1.	2	-	3	7	7		Ve								-	-			
	-		- 6	1	20	2.0	+	-1	7	4	4	11	1	10	0	111	0.	2	-	_(2/1	2"							_				-
-	\vdash	+	(1/	14	-6	_	=	- 2	-	1		7	a	5/	170	71	n	-	,	24	-	4	0	1/2	Ex							
		_	6	7	7-	.5	1	=	1	Ve	S	1	C	CIP	6	×	15,	0	40	dy	1/0	TY					94						
		_	6	7	95	./	1	=	4	Z	3	-	C1.		70	e	10	/	5	15	10	Sa	14	10	V	- 1							
					-	-						3	5	+1	. ,	N.	0)	2/	10	nt	4	60	11	51	6	ira	n	d.	1	1	e	+)
					-					E	27	d	10	F	2	9 "	1	5	1,	1	2/	0	2	-	-	3/		-0	12	E. F	-		
1			6	76	3			=	2	E	6	"	9	1	5	1	10	12		1	1/	5	1	3,	0	10	In	1/2	11				
		- [/										2	26	11	1	0	Ve	Ex		-				- 1	1					
		-		-	4.1				iox i						5	4					-									-			

LASI BAY MUNICIPAL UTILITY DISTRICT CITY Oakland MAP NO 1488B 482 MAP RECORD TECHNICAL DEPARTMENT 16716 REFERENCES K-7008 4/27/31 528 feet of 6 Installed C.I. inch Pipe on side of between 21st St. Valley Street 23rd St. and Connected to 2 inch End on N/L of 23 St 4 T6 8 C1 5/5 215t. 95755 Kines 14 SIDE CONNECTIONS Connected & inch main on the South Side of 23 St. Connected inch main on the Side of Connected inch main on the Side of inch main on the Connected Side of Connected inch main on the Side of VALVES AND COCKS SET ON MAINS: 1-6 inch Valve at the North Line of 23 rd St 1-6 inch Valve at the South Line of 23rd St. inch Valve at the North Line of 2/5t 5t. Line of inch at the Line of VALVES AND COCKS SET ON SIDE CONNECTIONS: inch at the of inch at the inch at the inch at the of inch at the of 1-6 Cover G. 29:6 Pipe CI. 2-8 Box Valve Cone 54-8 Pipe CI. Number of Gate Covers and Gate Pots Used Depth of trench to top of pipe 30 inches. Width of trench 22 inches. Length of trench 535 feet. /4 feet from property line. Main is Work Started_ ORIGINAL ORDER RECEIVED DATE Date Work Completed _ Date Water Turned on-Date MAPPED 100' W.C.

DATE

with the state with the state of the state o	FORNIA	SHEET Zof 2 Sheet
		A C Par The Land Company of the Comp
ļ		
0+00	Beg &"C.I. Conn. Old 2" Se (21" Coven	
0+01.7	6" Value H.E (32" Cover) (5.9 To W Corb)	
7+10.9	N Curb 23 nd St	
0+32.3	3" Gas Main (34" Cover)	
0+35.3	8x6 Cross 5/5 235t. (26"Cover)	
0+42.60	S CO16 23nd 5t	atta terra i da en archina en la colo con porta managari estada el para parte en esta mener
0+51.5	6" Value H.E. (31" Cover) (4,5 To W Corb)	
2+35	(36" Cover) (5' To W Cunb)	
2+67.3	4"Gas Pipe (24"Cover)	
2+73.8	12" Saver (33" (over)	
2+82.6	N/C R+ of Way (22 udst)	the large state of the property state and the state of th
2+94.113	Key Tracks 4.11 Cover over 6"C.1.	
5+00)		
3+02.53	Key Tracks Switch	
3+07.75	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3+10.106	Key Tracks 4.3 Guer over 6" C.I.	
3+16		
3+337	5/4 R+ of Way (22nd St)	
3+50	(36" Cover) (4" to w Conb)	
4+14	644 Tee CI for Breuners Service	
4+35	Main 15 3.6 To W CUMB	
4+82.4	6" Tee for Hyd	
4+84.2	6" Value H.E. 4.9 To W Conb	Horizontal Measure
4+88.11	6" 450 Ell D.H. (Angle Down) (2.7 Coven)	4+88.11
4+95.6	6" 45° Ell. D. H. (Angle to Houszontal & Cover	4+93.8
4+98.9	N-C+6215+S+	9+96.3
A+99.3	12x18 Tel. Condit (9 Cover)	9496,9
5+05.3	Storm Seven (4 Cover)	5+02.9
5 H12.3	6"450EII D.H. (Angle Up) (8 Cover)	5+09.9
	M-Rail S.P. Elec.	5+10.7
	S Rail S.P. Elec	5+158
5+20.9	6"450 Ell. D.H. (Angle to Horizontal) (4.3 Cover	
5+25.9	3" Gas Main	5+21,10
5 +27.9	8x6 Tee Cl. 5/5 2/5+ (3.8 Cover)	5+23.10
5+32.2	5. Coub 215+57	S+28.3
	196	rain a commencia com com a commencia com commencia com commencia com commencia com commencia com commencia com
+		
		+


PIPE EXTENSION

	MAP RECORD	v 49
Norman		
2300 2-5< 0 H264	57.—	
	Hyp# 2664 set at same installed - no sleeve -	time value was recessary on the order
INSTALLED 4/26/27 REFERENCE		
MAP NO. 1488-482 COVER 26 Show new main and fittings ins Show mains and fittings connec	etalled—RED eted— BLACK	
Drawing by Property Timekeeper	W← → E Ins	Stalled by A ally Foremen

MAP No. 4 1488 B 482

MAP RECORD **ENGINEERING DEPARTMENT**

	p.	REFERENCES		ENGI	NEERI	NG DE	PART	MENT	4/25	5/27	
		Installed	O feet of	8	inch		J.I	•	Pipe on	South	side of
		23rd St	•	bei	ween	Wast	/L]	Broadw	ay and		
		Connected to	inch	on		of	3.				*
		and to	inch	on		of				4	4
		SIDE CONNEC	TIONS								* ,1
		Connected	inch main on th	ie		Side	of		v 9		,
	~	Connected	inch main on th	ie		Side	of				
		Connected	inch main on th	ie		Side	of				
		Connected	inch main on th	e		Side	of				
		Connected	inch main on th	.e		Side	of			¥	
		VALVES AND C	COCKS SET ON I	MAINS							
		§ inch	gate at the	ie U	J	Line	of	Br	vad	11 1	
()		inch	at th	ie	and the second	Line	of .				- Sanita be not any many many
		inch	at th	ie		Line	of				
		inch	at th	ie		Line	of				
		inch	at th	ie		Line	of				
		VALVES AND C	OCKS SET ON S	IDE C	ONNE	CTIONS	5:				
		inch	at th	.e		of				142	
	-it	inch	at th	e		of		*			
		inch	at th	e		of		,			
		inch	at th	.e		of			v		*
	*,	inch	at th	e		of					-3 **
		Number of Gat	e Covers and Ga	ate Pot	s Use	d /- /	8 ° E	POVER	12/8	PER	0.1
		Depth of trench		25				ftrench	\	inches.	
		Length of trench	n feet.			Main i	s	fee	t from pro	operty lin	ie.
		ORIGINAL ORDER	MAPPED MAPPEI WÄLL MAP TRACING		Work	Started	ł	apri	126	0-16	727
•		RECEIVED DATE	JEW HAR	9	Work	Compl	eted_	dep	11/2	0 - 10	9 2 7
			1800	£ ;	AND REAL PROPERTY.	turne	The residence of the last of t	an	rul 2	6-1	Date 7
		FORM A-33 2M-1-27	Y(5.P)	Milleren	MAPPE	D 100'	W. (C.			Date

APPENDIX F
DEPARTMENT OF WATER RESOURCES WELL SEARCH

GROUNDWATER
TECHNOLOGY

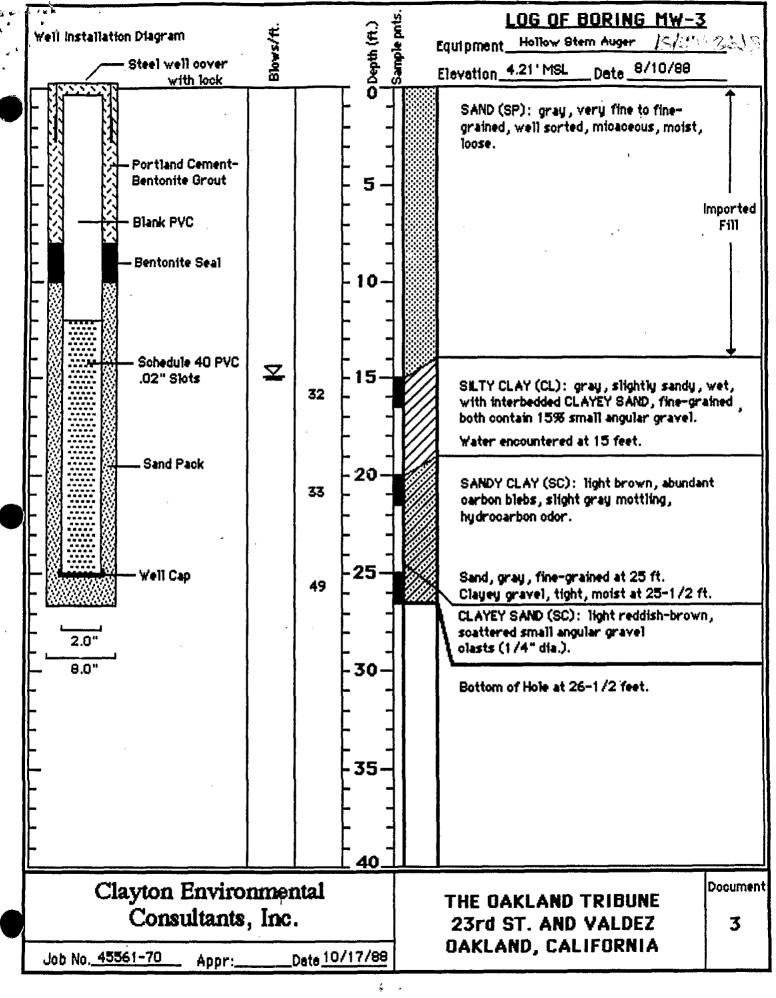
Project &	2633 Sears Aut Oakland,	Telegra omotive CA	iph Are	Proiec	0	wner <u>Sears Roebuck & Co.</u> . <u>020503392</u> Date drilled <u>12/8/92</u>	See Site Map For Boring Location
Surface I	Elev. <u>26.9</u>	95 ft. To	otal Hole (Depth .	22.0	ft. Dlameter 10.5 in.	COMMENTS:
Top of C	asing <u>26.</u>	<u>20 ft.</u> Wa	ater Level	Initial	11.7	<u>ft.</u> Static <u>12.2 ft.</u>	COMMENTO.
						Type/Size <u>0.020 in.</u>	
						Type <u>PVC</u>	
						lig/Core Type <u>B-53</u>	
Oriller Mil						og By Kenneth Johnson	J
			 el	Licer	_ L	No. RG 5136 Day Floarth	
	Well		Sample ID Blow Count/ % Recovery		S.	Descripti	on
Depth (ft.)	Well Pe	PID (ppm)	를 다 하다. - 보고 있다. - 보고 있다.	Graphic Log	ប	(Color, Texture, S	
۵	S E		S S S S S S S S S S S S S S S S S S S	້ວ	SCS	Trace < 10%, Little 10% to 20%, Some	
			37 EL 61)		
2 - -							
-0	×17			*******		ASPHALT over clayey GRAVEL	
				7,97	ASD/ GM/	(coarse base aggregate)	
- 2 -	74 74				ML	Grayish brown clayey SILT	
	74			لبلبل		(soft, moist, no odor)	
	< < <				CL	Dark yellowish brown silty CLAY	
F 4 7					OL.	(soft, moist, some sand, no odor)	
				1			
6 -		1	□			Moderate yellowish brown gravelly CLA	ΔΥ
 						(soft, moist, no odor, angular to s	
- 8 -	劉三屬				CL		
١ , ١	▓≣▓						
- 10 -	∅≣₩		g				
-		2				(slight product odor)	
- 12 -	$\otimes \equiv \otimes$					Groundwater Encountered 12/8/92; 90	00 hours
-	⋒≣⋒	>2000	⊠			Static water level 12/8/92	
- 14 -						Colive gray coarse SAND (loose, saturated, strong product	ador some silt)
	Ø ≡ Ø				SM	(1003c, Saturated, Strong product	t odor, some sitt)
L 16 -							
├		123					и
- 18 -			[]			Dork vollouists areas to a desire	Hardah Buarne 1907 04395
`					SM	Dark yellowish orange to moderate ye (loose, saturated slight product o	ilowish drown silty SANU odor)
- 20 -					CL	Dark yellowish orange to moderate ye	
22		1	×			(soft, saturated, very slight prod little very fine sand)	uct odor,
- 22 -						End of boring, installed groundwater m	nonitoring well.
[_,							
- 24 -							
7 00 1							
- 26 -							

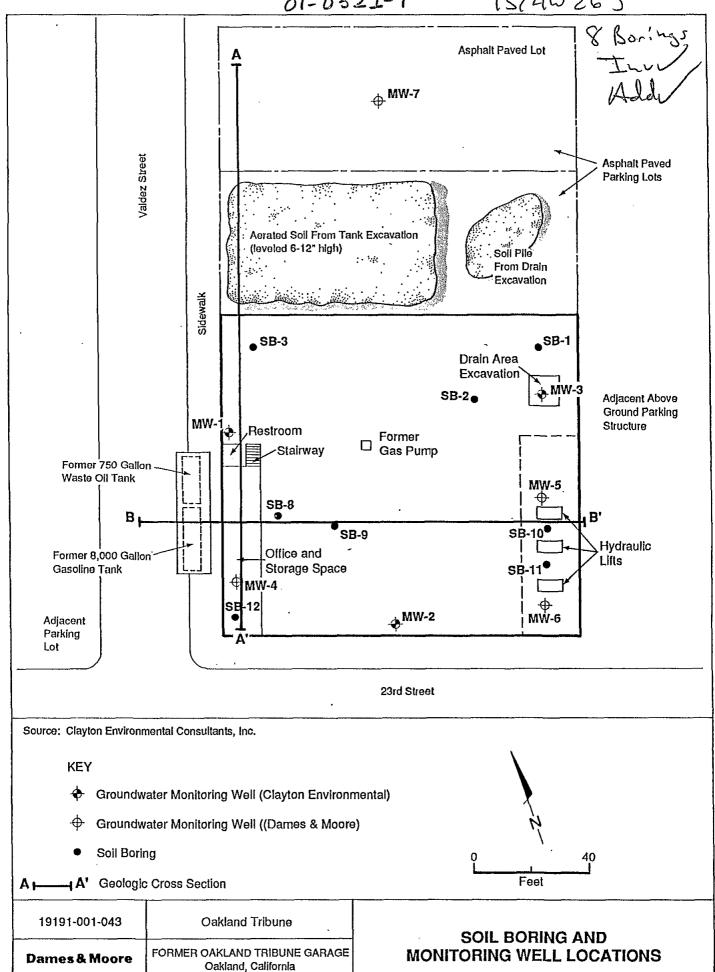
		Wher <u>Sears Roebuck & Co.</u> . <u>020503392</u> Date drilled <u>12/8/92</u>	See Site Map For Boring Location								
Surface Elev. 26.83 ft. Top of Casing 26.50 ft. W Screen: Dia 2.0 in. L Casing: Dia 2.0 in. L Filter Pack Material #3 Lon Drilling Company Kvilhaug W Driller Mike Crocker	professing 26.83 ft. Total Hole Depth 22.0 ft. Diameter 10.5 in propose Casing 26.50 ft. Water Level Initial 11.7 ft. Static 11.6 ft. preen: Dia 2.0 in. Length 15 ft. Type/Size 0.020 in. pasing: Dia 2.0 in. Length 6.5 ft. Type PVC pasing										
Depth (ft.) Well Completion PID (ppm)	Sample ID Blow Count/ % Recovery Graphic Log	USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	itructure)							
2- 0- 2- 4- 6- 10- 12- 14- 16- 18- 18- 20- 22- 24- 26- 26- 		(최명) 보 6 명 - 6	ASPHALT over clayey GRAVEL (coarse base aggregate) Grayish brown clayey sandy SILT (soft, moist, no odor) Dark yellowish brown silty CLAY (soft, moist, trace organic matericle) Groundwater Level 12/9/92 Olive gray clayey, very fine SAND (loose, saturated, strong product odor) Groundwater Encountered 12/8/92; 110 (grades to moderate product odor) Dark yellowish orange to moderate yellowish orange to moderate yellowish, saturated, very slight product odor) Dark gray silty clayey GRAVEL (dense, saturated, no odor) End of boring, installed groundwater materials.	t odor, trace gravel) 20 hours or) Illowish brown sandy CLAY luct odor)							

						Wher <u>Sears Roebuck & Co.</u>	See Site Map For Boring Location
Location .						. <u>020503392</u> Date drilled <u>12/7/92</u>	r or Boring Education
						ft. Diameter 10.5 in.	COMMENTS:
						<u>ft.</u> Static <u>13.2 ft.</u>	1
Screen: L	Jia <u>2.0 in</u>	L	ength <u>19 1</u>	f‡		Type/Size <u>0.020 in.</u> Type <u>PVC</u>	
						Nig/Core Type <u>B-53</u>	
						Hollow Stem Auger Permit # 92601	
Driller Mik			20 23 min 134			og By Kenneth Johnson	
			el	Lice	nse I	No. RG 5136 De Martin	
		1		1			
ਜ਼੍ਹਾ	Well Completion		Sample ID Blow Count/ % Recovery	Graphic Log	lass.	Descripti	on
Depth (ft.)	Wei Pie	PID (ppm)	200	apt Log	Ö	(Color, Texture, S	
	E O		R Sea	G	SCS	Trace < 10%, Little 10% to 20%, Some	
	-		отшак)		
-2-							
+ 4							
L 0 -	<u> </u>					ASPHALT over clayey GRAVEL	
	1			797	Asp/ GC/	(coarse base aggregate)	
- 2 -	h h		<u> </u>			Dusky yellowish brown sandy CLAY	
	.					(soft, moist to wet, no odor)	
1	``\						
F 4 -	<u> </u>						
├							
- 6 -		ND			CL		
						(sand interbed)	
- 8 -							
- 10 -	=						
├ ∦	₩≡₩	12	×			01/2-2-2-2	
- 12 -						Olive gray fine sandy CLAY (soft, wet, strong product odor)	
↓		1216			CL	(very strong product odor)	
- 14 -	MEM					Static Water Level 12/8/92	
[' -				144		17	
						Froundwater Encountered 12/7/92; 13.	20 hours
- 16 -	MEM	12				Dark yellowish brown sandy CLAY (soft, saturated, moderate produ	of oder)
├ ∦	※三級					(fine clayey sand interbed)	ct odor)
<u> </u> 18	三		(4		CL	(fine clayey sand interbed)	
I ↓	⋒≣⋒						
L 20 -	※国際		ا ا				
[-~	劉三陽	28					
1 1	侧三侧	20			H		
- 22 -	斜三陽			- -	SM	Grayish olive silty SAND	odor)
∤	劉≣閼		_	: . : .	"	(loose, saturated, slight product	odor)
- 24 -	#I≡#	,				Dark yellowish orange to Moderate ye	llowish brown gravelly SAND
}	州王城	2		• • • •	SW	(loose, saturated, no odor)	
- 26 -					-	End of boring, installed groundwater m	onitoring well.
[~]						·	

						wner <u>Sears Roebuck & Co.</u> . <u>020503392</u> Date drilled <u>12/8/92</u>	See Site Map For Boring Location
Surface	Elev. <u>26.8</u>	<u>34 ft.</u> To	tal Hole (Depth 4	<u> 23.0</u>	ft. Diameter 10.5 in.	COMMENTS:
						<u>ft.</u> Static <u>12.5 ft.</u> Type/Size <u>0.020 in.</u>	
Casing: C)ia <i>2.0 in.</i>	Le	ngth <u>7.5</u>	ft.		Type <u>PVC</u>	
						Ig/Core Type B-53	
	ompany <u>∧</u> <u>ke Crocke</u>		ar Drilling			og By Kenneth Johnson	
	By <u>David</u>				nse N	40. RG 5136 Dail Mall	
ŧ;	Well Completion	O.Ē	e ID ount/ overy	S Pic	Class.	Descripti	on
Depth (ft.)	We	PIO (mpq)	Sample Blow Cou X Recove	Graphic Log	SCS ((Color, Texture, S	
	ပိ	<u> </u>	Ŵ <u>@</u> ×		ရှ	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
-2-							
						ASPLIALT OVER CLOVEY CRAVEL	
				7.197.	Asp/ GC	ASPHALT over clayey GRAVEL (coarse base aggregate)	
- 2 -	1 2 V				<u> </u>	Grayish brown silty organic CLAY (soft, moist, no odor)	
h	\\ \\ \\					Dark yellowish brown silty CLAY (soft, moist, no odor)	
4 -					CL	(3011, 110131, 110 0001)	
- 6 -		ND	X		-		
 					CL	Olive gray very fine sandy CLAY (soft, saturated, no odor)	
- 8 -			i		J.	, , , , , , , , , , , , , , , , , , , ,	
- 10 -		25			-		
1,			X		CL	Oliver gray silty CLAY (soft, saturated, moderate produ	ict odor)
- 12 -		198	^			Static Water Level 12/8/92	
14						Groundwater Encountered 12/8/92; 15	00 hours
-						Light olive gray clayey fine SAND	Image and and
- 16 -			×		sc	(soft, saturated, moderate petro	ieum odor)
- 18 -						(grades yellowish orange)	
-				1.1.			
- 20 -					SW	Yellowish orange gravelly coarse SAN	n
– 22 –		ND ND				(medium dense, saturated, no od	or)
- 24 -	201 == 122 					End of boring, installed groundwater n	nonitoring well.
- 26 -							
+ -				}			•

1. . .


Drilling Log


Well Installation Diagram Steel well cover with lock	Bloss/ft.		LOG OF BORING	ger
Cement Blank PVC Bentonite Seal Sohedule 40 PVC .02" Slots We'll Cap	-15 -20 -25 -30-	SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL	TY CLAY (CL): light yellow \$5 sand, 3% organios, 0-1%. TY CLAY (CL): yellowish-bi organios, hard, dry. AVELLY SILT (GC): olive gravely hard drilling at 14-1/2 for angular clasts of chert (up turated, hydrocarbon odor. TY GRAVEL (GM): olive gravely hard, hydrocarbon odor. Ty GRAVEL (GE): mottled pall whish-yellow, 0-1% gravel anios, hard, wet. Ty SILT (EE): mottled pall whish-yellow, 0-1% gravel anios, hard, wet.	rish-brown, spebbles 1/8" rown, 10% sand, ay, 15% sand, carbon odor. t. 6 ft. Ny, gravels are to 1" dia.),
Clayton Environs Consultants, 1 Job No. 45661-70 Appr:	mental Inc. Dete 10/17/88	23rd	AKLAND TRIBUNE ST. AND VALDEZ AND, CALIFORNIA	Pocument 2

01-4152

01-032I-T

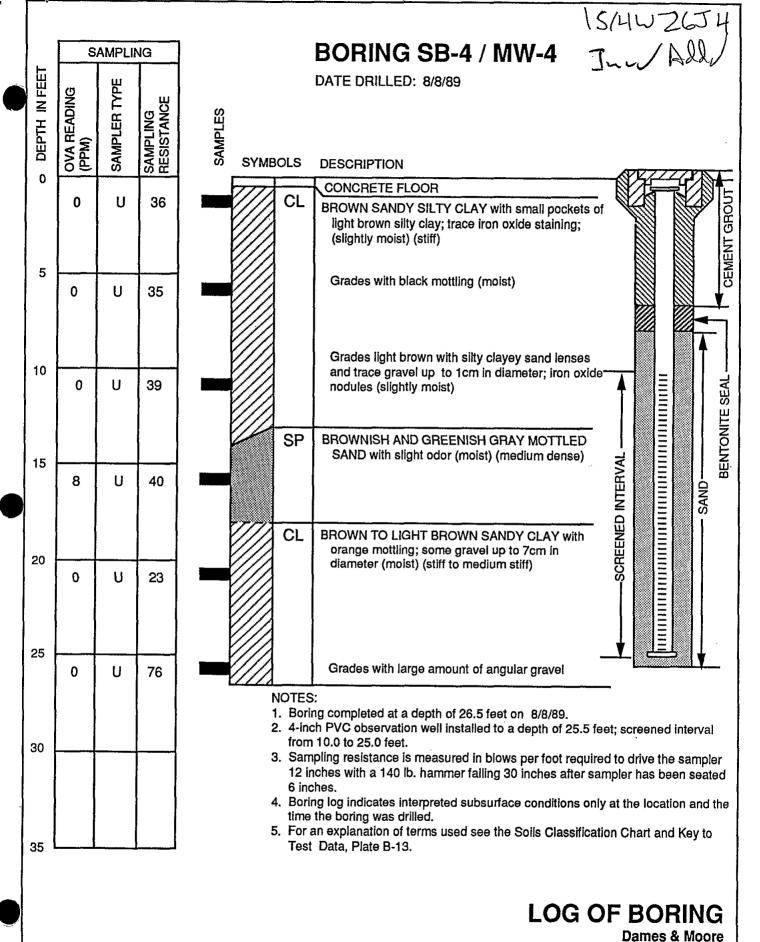
15/4W26J4-7 15/4W26J

415-896 5858

1369

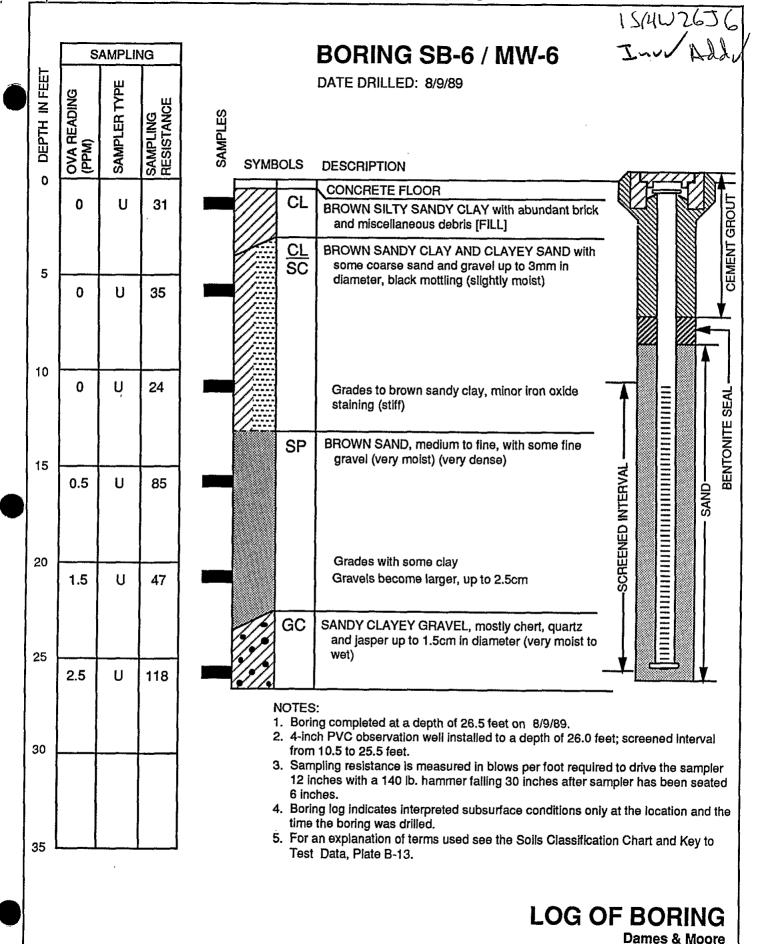
PLATE 3

15/4W26J Inv/Addu **BORING SB-1 SAMPLING** DEPTH IN FEET DATE DRILLED: 8/3/89 SAMPLER TYPE OVA READING (PPM) SAMPLING RESISTANCE SYMBOLS **DESCRIPTION** CONCRETE FLOOR SC U 0 3 DARK BROWN CLAYEY SAND, fine (slightly moist) (very loose) [FILL] CL BROWN SANDY CLAY with some small gravel, 2-5 mm in diamater (slightly moist) (medium stiff) 5 0 U 20 Grades with brownish yellow mottling and large amount of subangular to subrounded gravel, 2-35 mm in diameter (slightly moist) (very stiff) 10 0 U 68 Decreasing gravel, increasing moisture 15 0 U 17 20 Grades with gray mottling; gravel 2-15 mm in diameter (moist) (very 0 U 70 stiff to hard) 25 Gravel increasing in diameter up to 7 cm, mostly jasper and chert (wet) 0 U 46 NOTES: 1. Boring completed at a depth of 26.5 feet on 8/3/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler 30 has been seated 6 inches. 3. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate B-13. 35

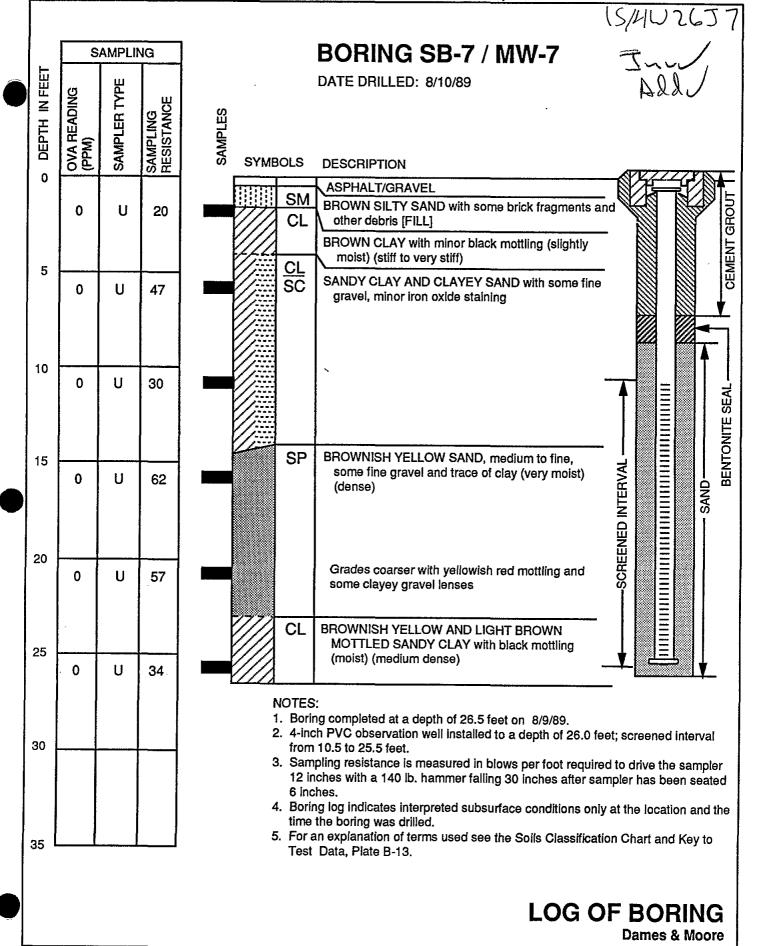

Dames & Moore

LOG OF BORING

								15/46265		
		SAMPLING					BORING SB-2 Inv All			
	DEPTH IN FEET	OVA READING (PPM)	SAMPLER TYPE	SAMPLING RESISTANCE	SAMPLES	SYMB		DATE DRILLED: 8/3/89 DESCRIPTION		
Ì	0					1111111	014	CONCRETE FLOOR		
		0	U	6			SM	DARK BROWN SILTY SAND, fine (slightly moist) (loose to very loose) [FILL]		
	5						CL	BROWN TO BROWNISH YELLOW SANDY GRAVELLY CLAY with minor black mottling, gravels up to 5mm in diameter (very stiff to hard)		
		0	υ	72						
	10						sc	BROWN TO BROWNISH YELLOW CLAYEY SAND with some gravel (slightly moist) (very dense)		
		0	U	50						
	15	0	U	57				Grades with some clay pockets and gravel up to 30mm in diameter		
	20	0	U	91			SP	BROWN AND BROWNISH YELLOW GRAVELLY SAND (very moist) (very dense)		
		0	IJ	68			CL	BROWN SANDY CLAY with some gravel (hard)		
30	25				NOTES: 1. Boring completed at a depth of 24.5 feet on 8/3/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches.					
	30				 3. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate B-13. 					
	35									
								LOG OF BORING		


Dames & Moore

15/4W 265 Inv All **BORING SB-3** SAMPLING DEPTH IN FEET DATE DRILLED: 8/3/89 SAMPLER TYPE OVA READING (PPM) SAMPLING RESISTANCE SAMPLES **SYMBOLS** DESCRIPTION 0 CONCRETE FLOOR CL 0 U 35 BROWN GRAVELLY SANDY CLAY with rootlets (slightly moist) (stiff to very stiff) 5 Grades with decreasing organics, less gravel U 29 0 10 U 0 36 Grades light brown with some iron oxide staining BROWN GRAVELLY SAND with some clay and strong gasoline odor; SP gravels angular to subrounded 5-10mm in diameter (moist) (stiff to hard) 15 >1000 U 76 Grades with sand and angular to subrounded gravel up to 30mm in diameter CLAYEY SANDY GRAVEL with slight gasoline odor, gravels up to 20mm GC in diameter (wet) (dense) 20 U 10 95 NOTES: 1. Boring completed at a depth of 21.5 feet on 8/3/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb, hammer falling 30 inches after sampler 25 has been seated 6 inches. 3. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate B-13. 30 35 **LOG OF BORING** Dames & Moore



19191-001-043

15HU 2655 BORING SB-5/MW-5 ユーン 私儿 SAMPLING DEPTH IN FEE DATE DRILLED: 8/9/89 SAMPLER TYPE OVA READING (PPM) SAMPLING RESISTANCE SAMPLES **SYMBOLS DESCRIPTION CONCRETE FLOOR** ML CEMENT GROUT BROWN SILT with abundant brick and miscellaneous CL debris [FILL] BROWN SILTY CLAY with iron oxide staining and minor black mottling (slightly moist) (stiff) 5 0 U 41 10 2 U 38 Grades light brown, with increasing gravel **SENTONITE SEAL** BROWN SANDY GRAVEL with some silt, slight GP gasoline odor 15 200 U 60 SCREENED INTERVAL CL BROWN TO LIGHT BROWN SANDY GRAVELLY CLAY, gravels up to 1cm in diameter (moist) (stiff to very stiff) 20 U 0 41 **GW** BROWN SANDY CLAYEY GRAVEL, gravel up 2cm in diameter, composed of chert, jasper & Ö ø 25 quartz (very moist to wet) 2 U 86 NOTES: 1. Boring completed at a depth of 26,5 feet on 8/9/89. 2. 4-inch PVC observation well installed to a depth of 27.5 feet; screened interval 30 from 12.0 to 27.0 feet. 3. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. 4. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 5. For an explanation of terms used see the Soils Classification Chart and Key to 35 Test Data, Plate B-13. LOG OF BORING Dames & Moore

19191-001-043

19191-001-043

01-032P ISHWZ6J June Addy **BORING SB-8** DATE DRILLED: 8/7/89 **SYMBOLS** DESCRIPTION CONCRETE FLOOR CL BROWN SILTY CLAY with some sand, minor black mottling, trace fine, angular gravels up to 5mm in diameter (slightly moist) (stiff) Decreasing gravel, becomes slightly stiffer Grades with light brown color and black and tan mottling Grades with brownish yellow color Becomes very sandy with trace gravel, slight odor GC LIGHT BROWN CLAYEY GRAVEL (moist to wet) NOTES: 1. Boring completed at a depth of 21.5 feet on 8/3/89. sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. and the time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate B-13.

- 2. Sampling resistance is measured in blows per foot required to drive the
- 3. Boring log indicates interpreted subsurface conditions only at the location

LOG OF BORING

Dames & Moore

SAMPLING

SAMPLER TYPE

U

U

U

U

U

SAMPLING RESISTANCE

28

46

30

38

46

SAMPLES

DEPTH IN FEET

5

10

15

20

25

30

35

OVA READING (PPM)

0

1

1

20

10

15/4W 26J Inv/ Addr **BORING SB-9 SAMPLING** DEPTH IN FEET DATE DRILLED: 8/7/89 OVA READING (PPM) SAMPLER TYPE SAMPLING RESISTANCE SAMPLES **SYMBOLS** DESCRIPTION **CONCRETE FLOOR** CL 0 U 26 BROWNISH YELLOW SILTY SANDY CLAY with dark brown and orange mottling (slightly moist) (stiff) 5 Grades brown with iron oxide staining (hard) 0 U 46 10 0 U 32 Grades lighter brown with less sand CL GREENISH GRAY SANDY GRAVELLY CLAY with slight odor (slightly 15 moist) (stiff to very stiff) U 10 31 **GW** BROWN SILTY SANDY GRAVEL with trace clay (very moist to wet) 20 U 10 80 NOTES: 1. Boring completed at a depth of 21.5 feet on 8/7/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler 25 has been seated 6 inches. 3. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate B-13. 30 35

LOG OF BORING

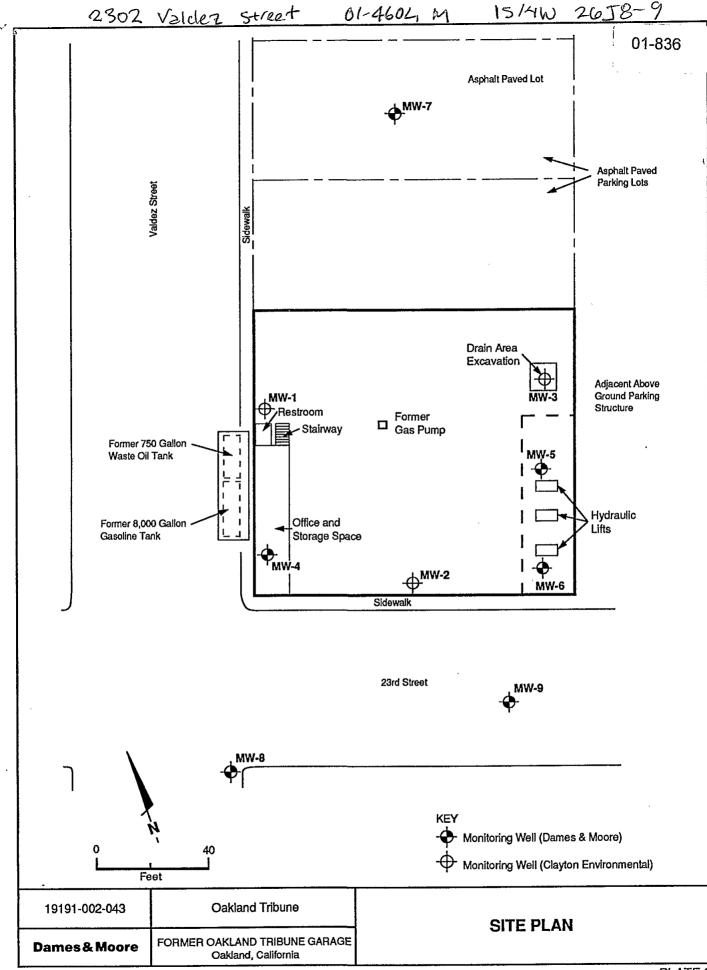
Dames & Moore

									15/4W265				
		s	AMPLI	NG	-			BORING SB-10	15/4W26J Inu/Add				
	ET		ш					DATE DRILLED: 8/7/89					
	DEPTH IN FEET	OVA READING (PPM)	SAMPLER TYPE	SAMPLING RESISTANCE	SAMPLES	SAMPLES SAMBORS		DESCRIPTION	•				
Į	0					muul .		CONCRETE FLOOR					
	5	0	U	14			/IL	DARK BROWN CLAYEY SILT with some (loose) [FILL]	sand (dry to slightly moist)				
	,	0	U	58			CL	BROWN TO BROWNISH YELLOW SILTY black mottling (stiff to hard)	' SANDY CLAY with gravel,				
	10	0	U	41				Grades to brown to light brown with less nodules (slightly moist) (very stiff)	sand, iron oxide or manganese				
	15	2	U	25				Grades brown to brownish yellow with I	more sand				
	20					<i>////</i> S	SC	LIGHT BROWN CLAYEY SAND, medium gravel (moist) (medium dense)	to fine, with black mottling and				
		0	U	57									
		0	U	37			3C	BROWN CLAYEY SANDY GRAVEL, fine	(very moist)				
	25					 NOTES: 1. Boring completed at a depth of 24.0 feet on 8/7/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. 3. Boring log indicates interpreted subsurface conditions only at the location 							
	30				,		Classification Chart and						
	35												

LOG OF BORING

Dames & Moore

	<u>- </u>			•			BORING SB-11 Inv Add
		S	AMPLIN	VG			BORING SB-11 In / All
	EET	(K	'n				DATE DRILLED: 8/7/89
	DEPTH IN FEET	OVA READING (PPM)	SAMPLER TYPE	SAMPLING RESISTANCE	S		
	ЕРТН	A RE/ M)	MPLE	APLIN SISTA	SAMPLES		
	0	S d d	SAI	SAN	တ် SYME	BOLS	DESCRIPTION
	•	0	U	21		CL	CONCRETE FLOOR BROWN SANDY CLAY with some fine gravel up to 4mm (slightly moist)
							(stiff)
	E						
	5	0	U	53			Grades with increasing sand
	10	5	U	32		1	Grades with black and tan mottling, some silt, decreasing sand
						SC	BROWN-ORANGE TO BROWN CLAYEY GRAVELLY SAND with gravel lenses, gravel primarily chert, up to 2cm in diameter (slightly moist)
	15	0	U	76			·
	20					CL	BROWN TO LIGHT BROWN SANDY GRAVELLY CLAY with orange and
		0.5	U	26			black mottling (moist) (stiff)
		0.0		20		NOTE	 s:
						1. Bor 2. Sar	ing completed at a depth of 24.0 feet on 8/7/89. mpling resistance is measured in blows per foot required to drive the
	25					san has	npler 12 inches with a 140 lb. hammer falling 30 inches after sampler been seated 6 inches.
						and	ring log indicates interpreted subsurface conditions only at the location if the time the boring was drilled.
							an explanation of terms used see the Soils Classification Chart and to Test Data, Plate B-13.
	30						
	35						
							LOG OF BORING

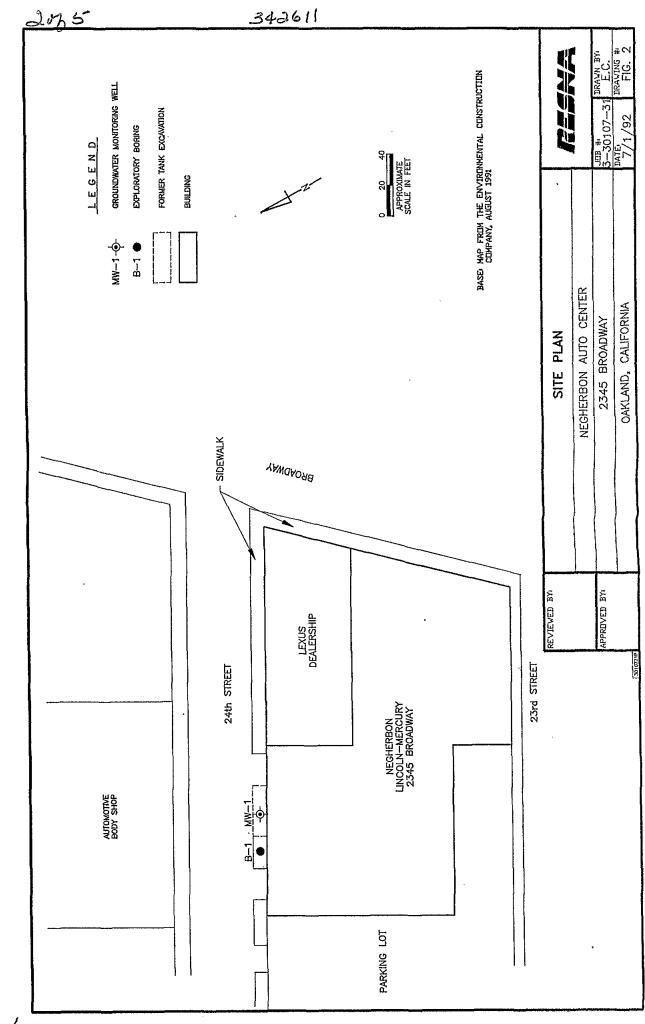

LOG OF BORING

Dames & Moore

r								01-0321
	•							BORING SB-12 Inv All
		, 						BORING SB-12
	DEPTH IN FEET	(n	Ⅱ					DATE DRILLED: 8/8/89
	Z	DINC	T.	SG A	ပ္သ			
	РТН	OVA READING (PPM) SAMPLER TYPE SAMPLING RESISTANCE		PLIN	SAMPLES			
		OVA (PPI	SAM	SAMPLING RESISTANCE	SAI	SYMB	OLS	DESCRIPTION
	0					///	CL	CONCRETE FLOOR
		0	U	32			UL.	BROWN TO LIGHT BROWN SANDY CLAY with iron oxide staining (slightly moist) (stiff)
	ı							(cognity morely (com)
	5							
		0	U	26				Grades brown with minor black mottling and some very fine gravel 1-3mm in diameter
	10	0	U	27				Grades lighter brown with increasing sand, iron oxide staining and
		Ŭ						black mottling
							GW	BROWN AND GREENISH GRAY SANDY CLAYEY GRAVEL, angular to
	15							subrounded up to 4cm, gasoline odor (very moist)
		20	U	94				
								LIGHT BROWN CLAYEY SAND with some brownish yellow mottling and
							SC	gravel, rounded to subangular up to 5cm, mostly chert, jasper and
١	20	20	U	59				quartz
		20	U	59			NOTE	<u></u>
l		•						ing completed at a depth of 21.5 feet on 8/7/89.
	25					,	sam	npling resistance is measured in blows per foot required to drive the npler 12 inches with a 140 lb. hammer falling 30 inches after sampler
						;		been seated 6 inches. ing log indicates interpreted subsurface conditions only at the location
							and 4. For	the time the boring was drilled. an explanation of terms used see the Soils Classification Chart and
								to Test Data, Plate B-13.
	30							
l								
	`							
	35							
ŀ								1

Dames & Moore

LOG OF BORING


MW-8 SAMPLING OVM READING (ppm) TYPE OF SAMPLER DATE DRILLED: 5/14/90 DEPTH IN FEET SAMPLING RESISTANCE **ELEVATION: 22.41 Feet** SAMPLES **SYMBOLS** DESCRIPTION **ASPHALT** CL YELLOWISH RED CLAY with black and brownish 0 U 30 yellow mottling (slightly moist) (stiff) [FILL] 5 0 U 45 CL DARK BROWN CLAY with trace of black mottling and trace coarse sand and fine gravel (moist) 10 U 38 O BENTONITE SEAL BROWN SILTY SAND with some iron oxide SM mottling, trace fine gravel, chert and jasper 15 clasts, subrounded to angular 0 U SCREENED INTERVAL SAND BROWN GRAVELLY SAND AND SANDY GRAVEL, SP subrounded to subangular, chert and jasper clasts **GP** 20 up to 1.5" in diameter 0 U 24 25 Increase in chert and jasper clasts up to 1" in diameter U 0 21 NOTES: 1. Boring completed at a depth of 28.0 feet on 5/14/90. 30 2. 4-inch PVC observation well installed to a depth of 27.0 feet; screened interval from 14.0 to 27.0 feet. 3. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. 4. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 5. For an explanation of terms used see the Soils Classification Chart and Key to Test 35 Data. Plate A-3. LOG OF BORING 57 43 43H3 **Dames & Moore**

	S	AMPLI	VG		MW-9 DATE DRILLED: 5/14/90 15/4 U 26 7 9		
N FEET	OVM READING (ppm)	TYPE OF SAMPLER	S SCE	ø	DATE DRILLED: 5/14/90 IS 14 U 26 J 9 ELEVATION: 20.45 Feet		
DEPTH IN FEET	OVM REA	TYPE OF	SAMPLING RESISTANCE	SAMPLES	S DESCRIPTION		
0	0	υ	39	CI	YELLOWISH RED CLAY with black and brownish		
5	0	U	41		Sandier with irregular yellowish red mottling		
10	0	U	50	The City of Ci	(moist)		
20	35	٦	34	CI Go	gravel, black chert and jasper clasts; strong hydrocarbon odor (wet) Becomes brown with some rounded white and gray chert and jasper clasts, trace of granges.		
25	4	U	39		Becomes brown with some rounded white and gray chert and jasper clasts, trace of orange-brown mottling		
	17	U	14	NOTES:	Decrease in gravel		
30 35	 Boring completed at a depth of 28.0 feet on 5/14/90. 4-inch PVC observation well installed to a depth of 25.5 feet; screened interval from 11.5 to 25.5 feet. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. Boring log indicates interpreted subsurface conditions only at the location and the time the boring was drilled. 						
					LOG OF BORING		
					Dames & Moore		

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

01 ZDZ WH/SI

EXPLORATORY BORING LOG

Project Name:

Negherbon Auto Center

Boring No. MW-1

Date Drilled: 6/26/92

Project Number: 3-30107-31

Logged By: D. DeMent

			3-30107	-51 Logged by: D. Der		
Depth (ft.)	Sample No.	Blows/Foot	Unified Soil Classification	SOIL DESCRIPTION	Water Level	OVM Reading (ppm)
				Concrete Pavement		
- 1 -				Pea gravel 0.5 - 3.0 feet: Fill		
- 2 - - 3 - - 4 - - 5 -				Compacted gravel 3.0 - 14.0 feet; Fill		
- 6 - - 7 - - 8 - - 8 -						•
10-				As above		
- 11 - 12						
13						
- 14-				Driller called bottom of excavation at 14.0 feet	-	
- 15 <i>-</i>	-		SC	CLAYEY SAND - yellowish brown (10YR 5/6), mottled with pale brown (10YR 6/3), 70-80% sand, very fine grain, low plasticity, trace silt, medium dense, damp		
- 16 - - 17	MW1-1 MW1-1A					24
- 18-	MW1-1B		CL	SANDY CLAY - yellowish brown (10YR 5/6), trace silt, 5-15% sand, very fine to fine grain, plasticity, stiff, damp		
- ¹⁹ [- 20	<u> </u>					
- - 21 - -	MW1-2				又	4

EXPLORATORY BORING LOG

Project Name:

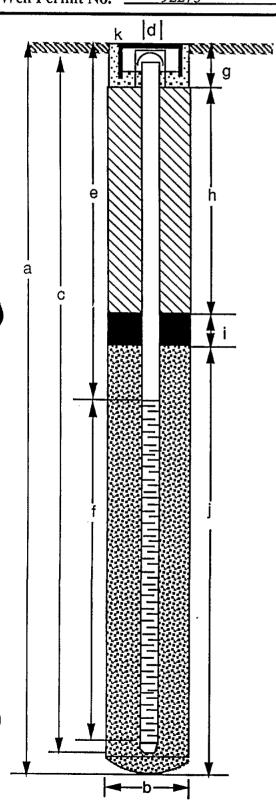
Negherbon Auto Center

Boring No. MW-1

Date Drilled: 6/26/92

Project Number: 3-30107-31

Logged By: D. DeMent


Project Number:			Logged by: D. Den			
Depth (ft.)	Sample No.	Blows/Foot	Unified Soil Classification	SOIL DESCRIPTION	Water Level	OVM Reading (ppm)
- 22 23 25 26 27 28 29 29			GM CL	SANDY GRAVEL - yellowish brown (10YR 5/6), 60-70% gravel, fine to medium grain, angular, predominantly chert, 20-30% sand, coarse to fine grain, well graded, 10-20% silt, disseminated, medium dense, saturated. SANDY CLAY - pale brown (10YR 6/3), trace silt, 10-20% sand, very fine to fine grain, trace black organic material, moderate plasticity, stiff, damp Bottom of boring 29.0 feet		
- 30						
- 39 - - 40 - - 41 - - 42 - 				-		

RESNA

MONITORING WELL DETAIL

342611

Project Number	3-30107-31	Boring/Well No	MW-1	
Project Name	Negherbon Auto	Top of Casing Elev.	NA	
County	Alameda	— Ground Surface Elev	NA	
Well Permit No.	92273	— Datum —	NA	

EXPLORATORY BORING

WELL CONSTRUCTION

c.	Casing length29	ft.
	Material Schedule 40 PVC	
d.	Diameter2	in.
e.	Depth to top perforations20	ft.
f.	Perforated length 9	ft.
	Perforated interval from20_ to29_	ft.
	Perforation type slot	
	Perforation size 0.020	in.
g.	Surface seal 2	ft.
	Seal material Concrete	
h.	Backfill 15.5	ft.
	Backfill material Cement	
i.	Seal 2	ft.
	Seal material Bentonite	
j.	Gravel pack 9.5	ft.
	Pack material 2/12 Sand	
k.	Watertight, traffic-rated concrete vault	
	box with padlock	

15/4/36 x 6

01-405A-D

DISTRIC NOTAVERSADO FET AND WATER CONTROL DISTRIC

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 34566

(4:5) 484-2600

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

	FOR APPLICANT TO COMPLETE	
(I)	LOCATION OF PROJECT 2225 Telegraph Avenue Oakland, California	PEF LOC
(2)	CLIENT	Ann
	Name Texaco USA Address 10 Universal City Plaza Phone: 818-505-	∧p p -2476
	City Los Angeles Zip 91608	-2470
/ * \	APPL ICANT	
(3)	Name Harding Lawson Associates	
	666 Howard Street, 3rd Floor	
	Address Phone 543-8422 Clty San Francisco Zip 94105	
	City San Francisco 219 94103	
(4)	DESCRIPTION OF PROJECT	$\mathbf{\psi}$
	Water Well Construction X Geotechnical	•
	Cathodic Protection Well Destruction	
(5)	PROPOSED WATER WELL USE	
	Domestic Industrial irrigation	
	Municipal Monitoring X Other	
161	PROPOSED CONSTRUCTION	
,	Orilling Method:	
	Mud Rotary Air Rotary Auger X	
	Cable Other	
	WELL PROJECTS	
	Orill Hole Diameter 8 in. Depth(s) 20 ft.	(B.)
	Casing Diameter 2 in. Number	9
	Surface Seal Depth 5-10 ft. of Wells 3	
	Oriller's License No. C61-407379	
	01 11161 3 C163134 1101	
	GEOTECHNICAL PROJECTS	
	Number	
	Diameter in. Maximum Depth ft.	c.
		
(7)	EST IMATED STARTING DATE June 14, 1988	
	ESTIMATED COMPLETION DATE June 14, 1988	0.
	•	
_	t hereby earne to comply with all requirements of	F

FOR OFFICE USE

PERMIT NUMBER 88233 ...

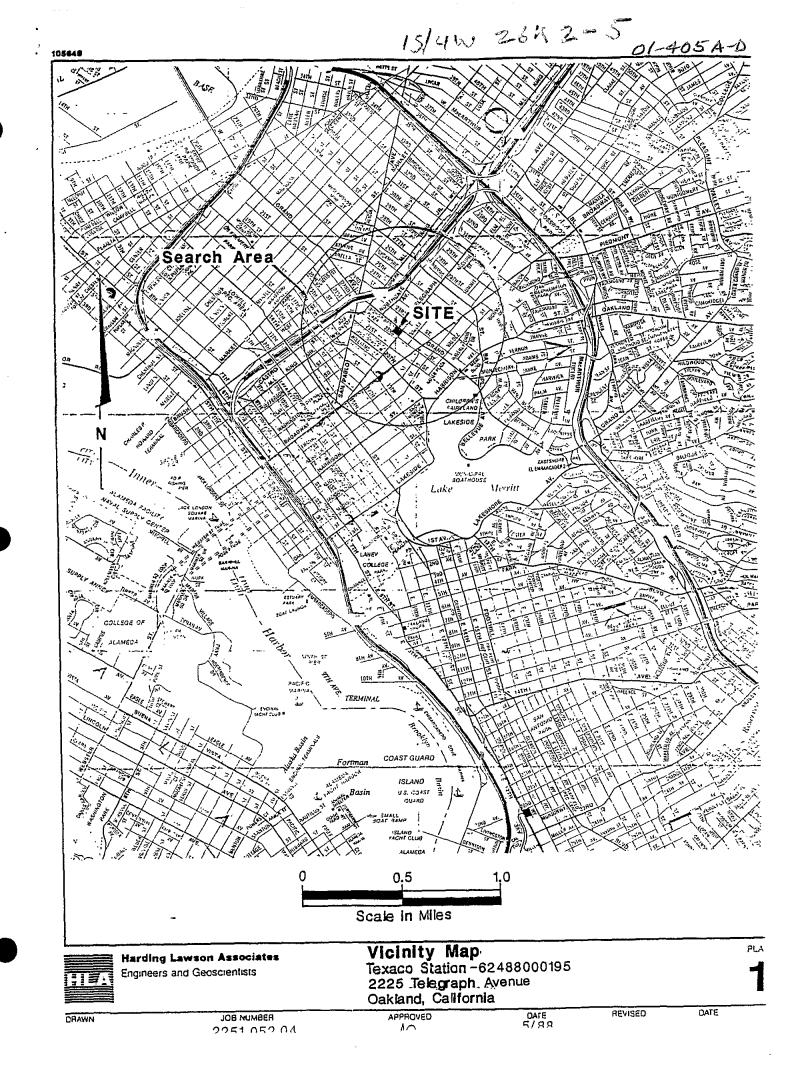
Approved Wyman Hong

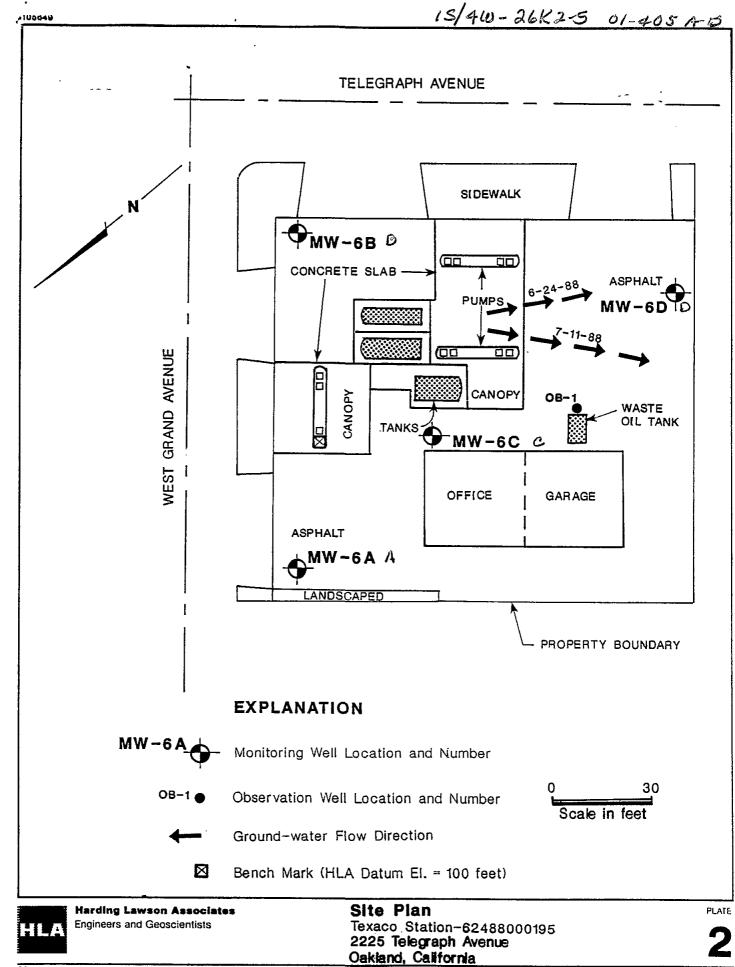
Oate2 Jun 88

∥Wyman Hong

PERMIT CONDITIONS

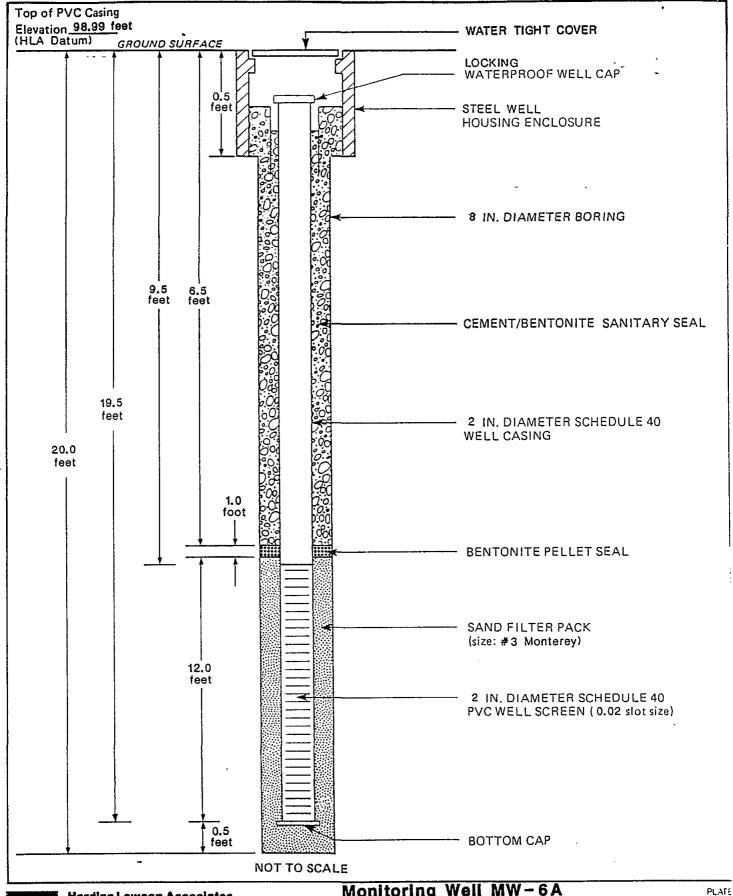
Circled Permit Requirements Apply


A.) GENERAL


- A permit application should be submitted so as arrive at the Zone 7 office five days prior proposed starting date.
- 2. Notify this office (484-2600) at least one prior to starting work on permitted work before placing well seals.
- 3. Submit to Zone 7 within 60 days after completed of permitted work the original Department Water Resources Water Well Drillers Record equivalent for well projects, or bore hole and location sketch for geotechnical projectmitted work is completed when the last surseal is placed or the last boring is completed.
- 4. Permit is void if project not begun withis days of approval date.
- (B.) WATER WELLS, INCLUDING PIEZCMETERS
 - Minimum surface seal thickness is two inches cament grout placed by tramie, or equivalent.
 - Minimum seal depth is 50 feet for municipal industrial wells or 20 feet for domestic, irr tion, and monitoring wells unless a lesser d is specially approved.
 - GEOTECHNICAL. Backfill bore hole with compacted tings or heavy bentonite and upper two feet with pacted material.
 - D. CATHODIC. Fill hole above anode zone with conplaced by tremie, or equivalent.
 - E. WELL DESTRUCTION. See attached.

APPLICANT'S
SIGNATURE

this permit and Alameda County Ordinance No. 73-68.


Date 6-3-88

DATE REVISED DATE

DRAWN JOB NUMBER APPROVED O AG 2251,052.04 5/88

HLA

DRAWN

Harding Lawson Associates Engineers, Geologists & Geophysicists Monitoring Well MW-6A Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

8

JOB NUMBER 2251,052.04

APPROVED 0 DATE 7/88 REVISED DATE

15/4W-26KZ 01-405A

	** 5			01-703
	** Blows/foot	PID * Reading (ppm)	Depth (ft) Sample	Equipment 8-inch Hollow Stem Auger
Laboratory Tests	Blov	PID Rea (ppi	Sa	Elevation 99.4 feet*** Date 6/15/88
		1	0	asphaltic concrete pavement aggregate baserock GRAY SILTY CLAY WITH SAND (CH) stiff, moist GRAY SILTY SAND TRACE CLAY (SM)
	21	1	5-	dense, moist
	14	<1	10-	BROWN SILTY CLAY (CL) stif, moist
	20/5"	<1	15-	BROWN SAND (SP) very dense, saturated
	11	<1	20	GRAYISH BROWN CLAYEY SAND (SC) medium dense, saturated BLUISH GRAY SILTY CLAY (CH) very stiff, moist
				bottom of boring 21.5 feet boring cleaned out to 20 feet
			25-	stabilized water level at 13.5 feet on 7/11/88
*PID = photo ioni HNU PI 101 ppm = parts per	million	ŕ	30-	
**S&H Sampler blo to SPT blow cou		converted		
***Reference Elev (arbitrary dat			35-	
- Harding Lawson A			40]	oring MW-6A

Harding Lawson Associates Engineers, Geologists & Geophysicists Log of Boring MW-6A

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California 3

DRAWN JOB NUMBER APPROVED DATE REVISED DATE
RS 2251,052.04 40 7/88

BOTTOM CAP 0.51 NOT TO SCALE

Harding Lawson Associates

3.0'

Grout

1.5'

0101

15.0'

9.5

24.51

25.0'

Engineers and Geoscientists

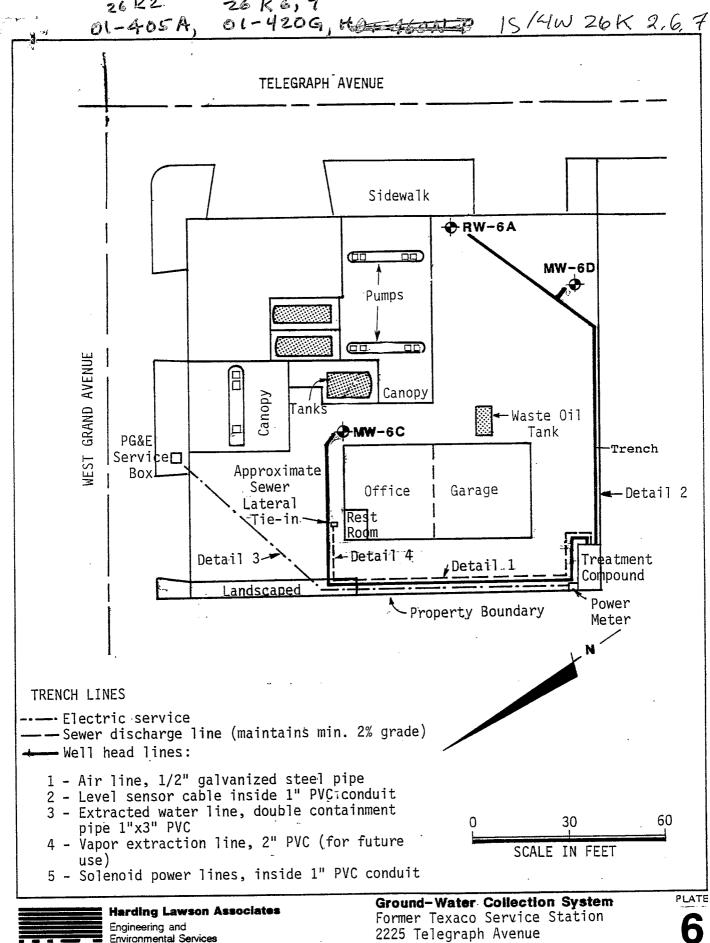
Recovery Well Completion Detail RW-2

Former Texaco Service Station

2225 Telegraph Avenue Oakland, California

DRAWN JOB NUMBER YC 2251,123.03

APPROVED

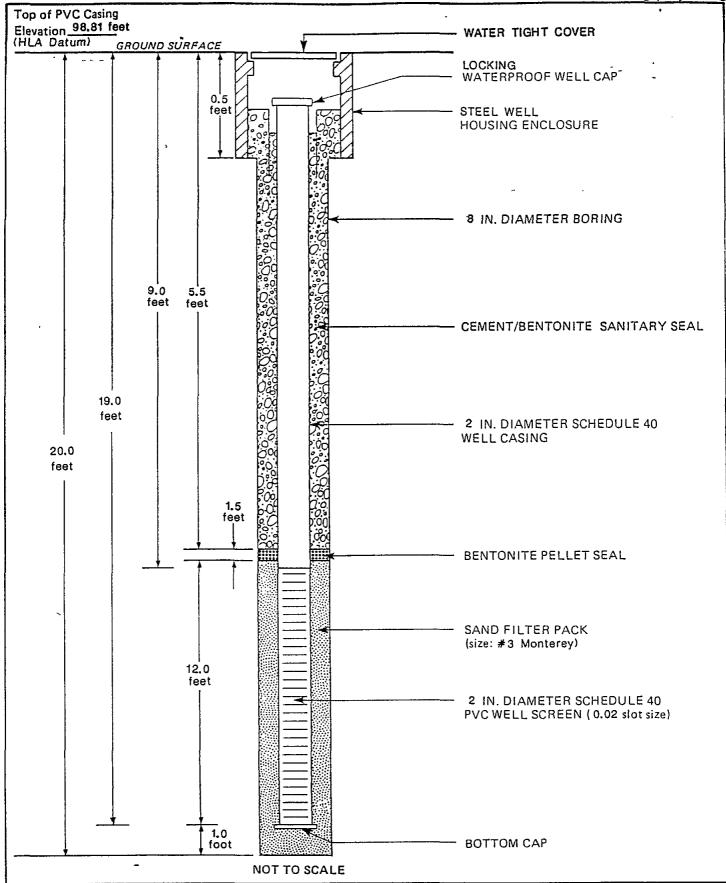

6/90

. REVISED

PLATE

12.52

01-405A -405A 15/4W 26K2 Texaco Refining & Marketine Blows/foot Flight Auger Equipment_ Elevation 99 feet** Date 05 Laboratory Tests asphaltic concrete pavement aggregate baserock YELLOW BROWN CLAY (CL) stiff, moist LIGHT BROWN CLAY TRACE SAND (CL) very stiff, moist 22 <1 GRAYISH BROWN CLAY TRACE SAND (CL) very stiff, moist 10 5 14 strong petroleum odors between 12.5 and 15.5 feet SAND (SP) dense, saturated 15 GRAYISH BROWN SILTY CLAY (CL) 70 WITH SAND very stiff, moist no petroleum odors 20 3 12 bottom of boring 20 feet stabilized water level at 25 13.5 feet on 7/11/88 30-*PID = photo ionization detector, HNU PI 101 **Reference Elevation 35-(arbitrary datum) 40-(Previously MW-6D) PLATE 35 15/4 W 26 K 2 Log of Boring RW-I **Harding Lawson Associates** Texaco Station - 62488000195 Engineers, Geologists & Geophysicists 2225 Telegraph Avenue Oakland, California REVISED JOB NUMBER APPROVEC RS 40 2251,080.03


Harding Lawson Associates

Engineering and Environmental Services

Engineering and Environmental Services

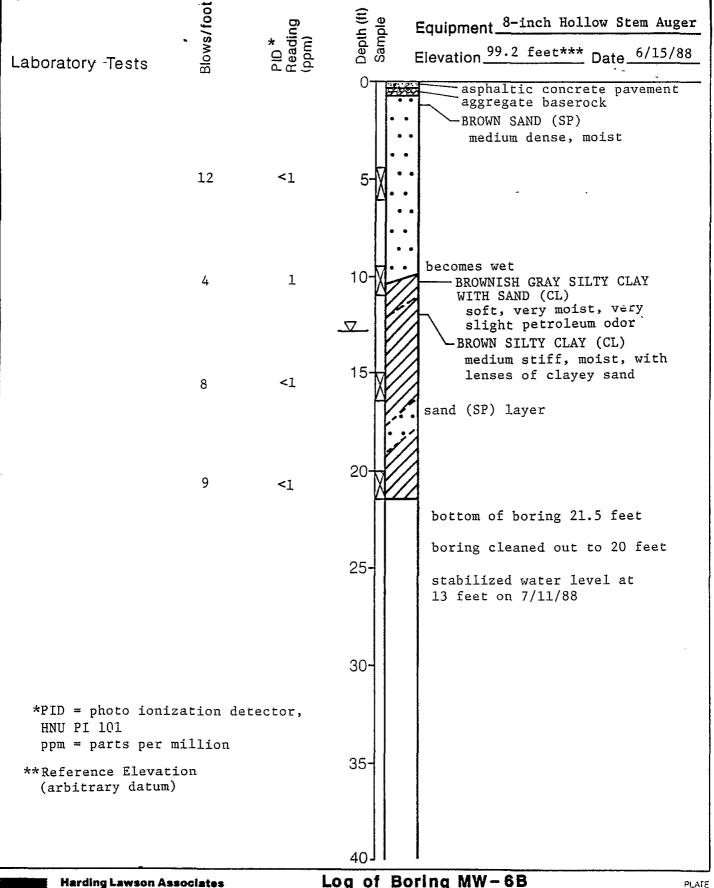
DRAWN JOB NUMBER APPROVED DATE REVISED DATE 3/90

TC 2251,123.03

Harding Lawson Associates Engineers, Geologists & Geophysicists

JOB NUMBER

2251,052.04

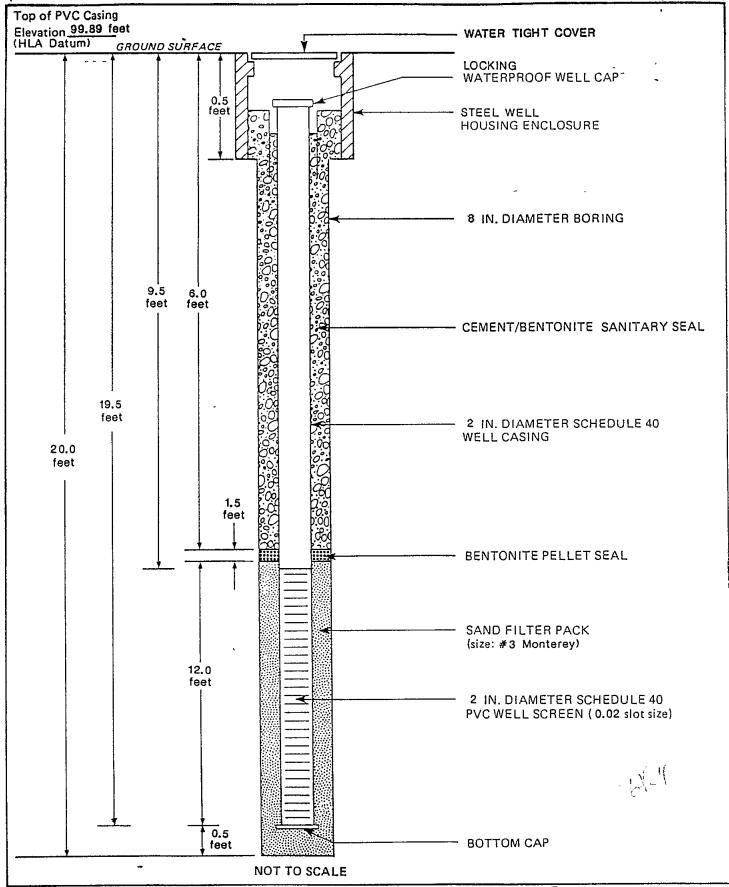

Monitoring Well MW-6B Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

APPROVED REVISED DATE 7/88

PLATE

15/4W-26K301-405B


Harding Lawson Associates Engineers, Geologists

& Geophysicists

Log of Boring MW-6B

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

DRAWN JOB NUMBER APPROVED D REVISED DATE R\$ 2251,052.04 7/88

Harding Lawson Associates Engineers, Geologists & Geophysicists

Monitoring Well MW-6C Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

REVISED

R38MUN BOL 2251,052.04 APPROVED

7/88

DATE

15/4W-26K4 01-405C

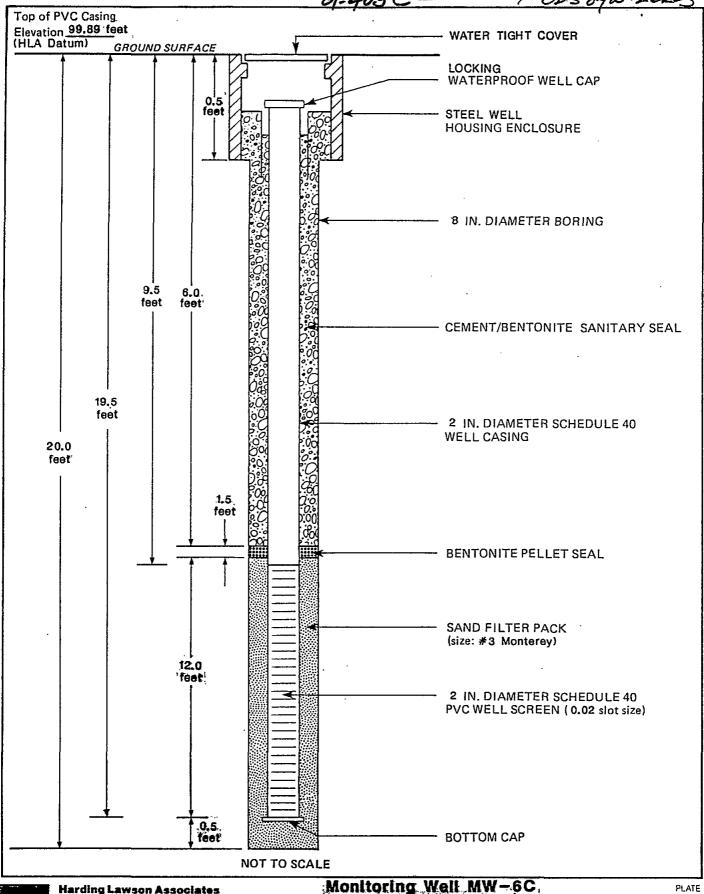
£,1			13/411-81024 01-4034
Laboratory Tests	, Blows/foot	PID * Reading (ppm)	Equipment 8-inch Hollow Stem Auger Elevation 100.2 feet*** Date 6/15/88
		2 <1	asphaltic concrete pavement aggregate baserock GRAYISH BROWN SILTY CLAY WITH SAND (CL)
	35	1	very moist, with slight petroleum odor stained gray between 2 and 2-1/2 feet, with petroleum odor
	28	25	becomes brown GRAY MOTTLED BROWN SANDY CLAY (CL) very stiff, moist, very slight petroleum odor BROWN SILTY CLAY TRACE SAND (CL)
	48	60	very stiff, moist, very slight petroleum odor GRAY CLAYEY SAND (SC) dense, GRAY SILTY SAND (SM) dense, moist
	30	10	GRAYISH BROWN SILTY CLAY (CL) hard, moist bottom of boring 21.5 feet boring cleaned out to 20 feet
			stabilized water level at 14.5 feet on 7/11/88
			30-
*PID = photo ioni HNU PI 101 ppm = parts per	million	icector,	
**Reference Elevat (arbitrary datum			35-
-			40
Harding Lawson As	sociates		Log of Boring MW-6C PLATE

DRAWN RS

Engineers, Geologists & Geophysicists

Texaco Station - 62488000195 2225 Telegraph Avenue

Oakland, California DATE 7/88


JOB NUMBER 2251,052.04

APPROVED

REVISED

DATE

01-5082 (DESTI) ols 042 2665 04

Harding Lawson Associates Engineers, Geologists

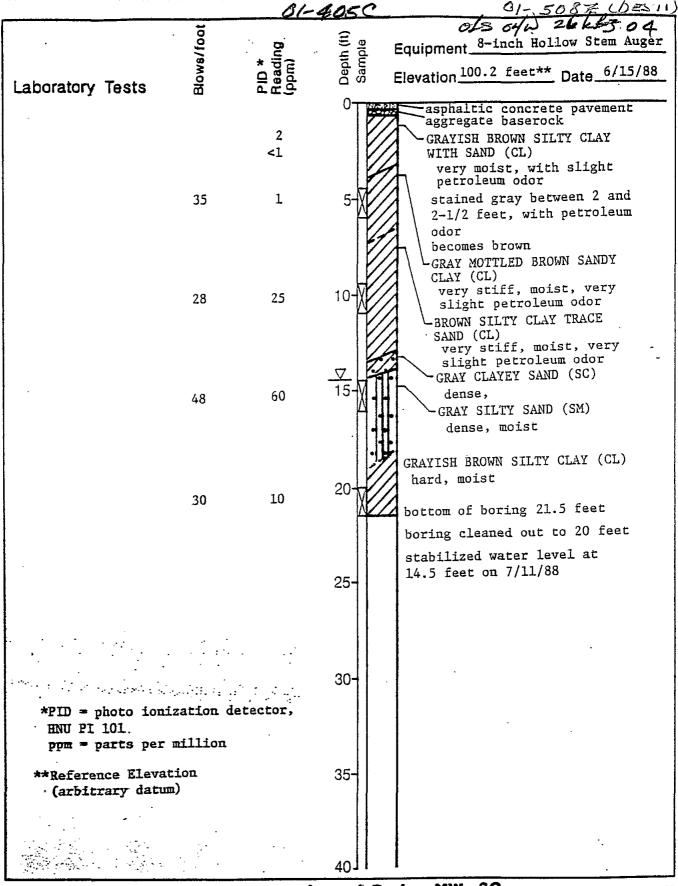
& Geophysicists

Monitoring Well MW-6C, Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, Callfornia

DATE

2/89

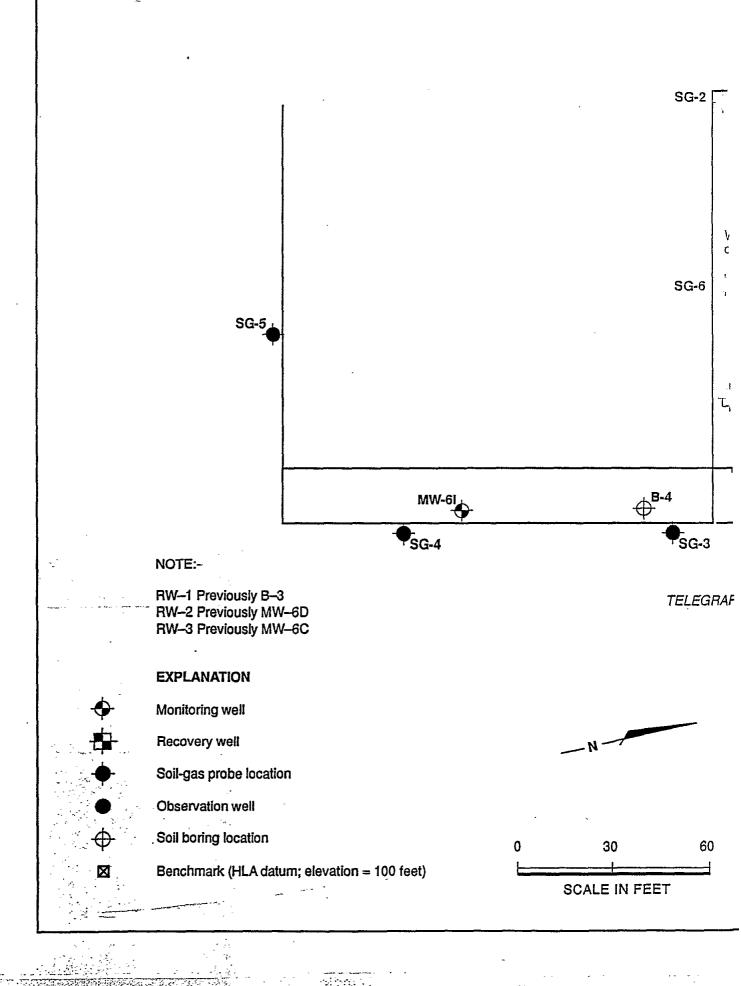

REVISED

DRAWN

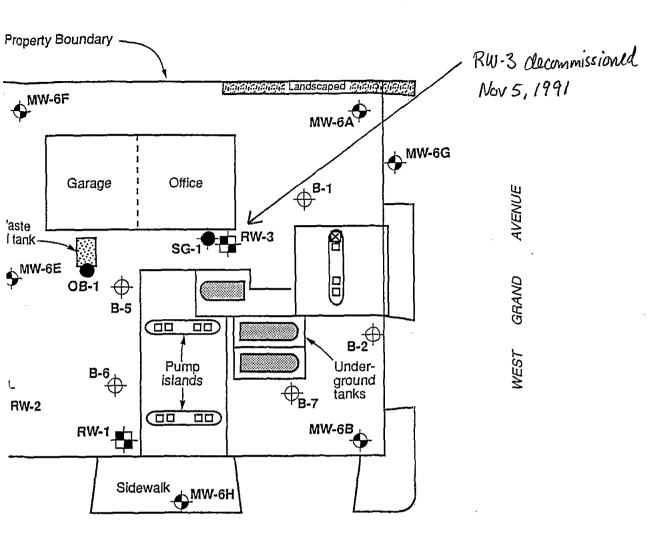
JOB NUMBER 2251,080.03 APPROVED

DATE

4.



Harding Lawson AssociatesEngineers, Geologists


Log of Boring MW-6C Texaco Station - 62488000195 2225 Telegraph Avenue PLATE

& Geophysicists. 2225 Telegraph Avenu Oakland, California

DRAWN JOBNUMBER APPROVED DATE REVISED DATE STATE 2251,080.03 2/89

015 04W26K04 (originale) 01-508Z-DEST.

AVENUE

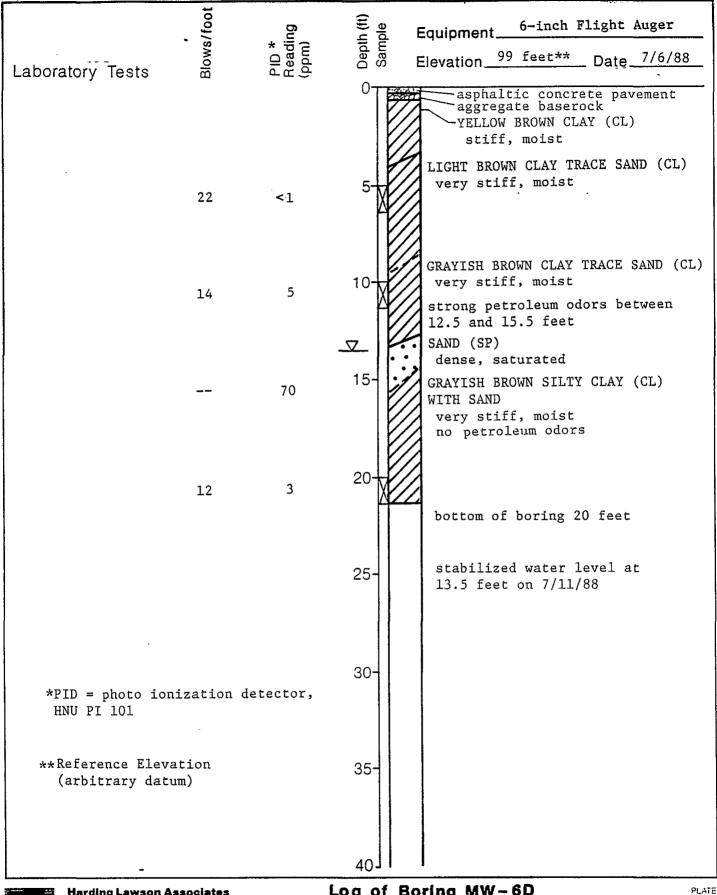
Harding Lawson Associates

Engineering and Environmental Services

DRAWN JOB NUMBER **RHC** 2251,146.03 Site Plan

Former Texaco Service Station 2225 Telegraph Avenue

Oakland, California


APPROVED US

DATE 1/91

REVISED DATE 02/22/91

PLATE

15/410-26K5 01-405D

Harding Lawson Associates


Engineers, Geologists & Geophysicists

Log of Boring MW-6D

Texaco Station - 62488000195 2225 Telegraph Avenue

Oakland, California

REVISED DATE DRAWN JOB NUMBER APPROVED RS 2251,052.04 40 7/88

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Monitoring Well MW-6D Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

JOB NUMBER APPROVED REVISED DATE 40 2251,052.04 7/88

01-508Z

ofs 04W 26Kl3

Harding Lawson Associates

RECEIVED

JAN 2 1 1992

ZONE7, ACFC&WCD

January 16, 1992

2251.208.03

Alameda County Flood Control and Water Conservation District, Zone 7 5997 Parkside Drive Pleasanton, California 94588

Attention: Mr. Craig A. Mayfield

Gentlemen:

Well Destruction Report Permit No. 91623 2225 Telegraph Avenue Oakland, California

Pursuant to the conditions of Well Destruction Permit No. 91623, Harding Lawson Associates (HLA) submits this report on the decommissioning of recovery well RW-3 (formerly MW-6C).

This well is number 1S/4W 26K80 in the Alameda Water Conservation District, Zone 7 files. HLA, acting on behalf of Texaco Environmental Service (TES), decommissioned the well on November 5, 1991.

Attached are a site plan showing the former location of the well, the boring log, and the original well construction details. The well was completed to a depth of 20 feet; the boring was sampled at the bottom, resulting in a total depth of 21.5 feet.

On November 5, 1991, RW-3 was destroyed by HLA personnel and J-Con Drilling (License No. C57 563305) in the following manner:

- Using 11-inch diameter augers, the well was overdrilled to a total depth of 26 feet.
- All of the PVC casing and slotted PVC screen were removed from the well.
- The augers were pulled from the hole, and the hole remained open.

Harding Lawson Associates

January 16, 1992 2251.208.03 Mr. Craig A. Mayfield Alameda County Flood Control and Page 2

- Cement grout was placed in the hole from a depth of 26 feet to the ground surface, by tremie pipe method.
 Approximately six bags of cement were used.
- Piping associated with the groundwater recovery system had been previously disconnected from the well and removed.

We trust that this report satisfies the requirements of Permit No. 91623. If you have questions, or need additional information, please contact the undersigned.

Yours very truly,

HARDING LAWSON ASSOCIATES

Jeanna S. Hudson Senior Geologist

JSH/pkp 032855P/R52

Attachments: Site Plan

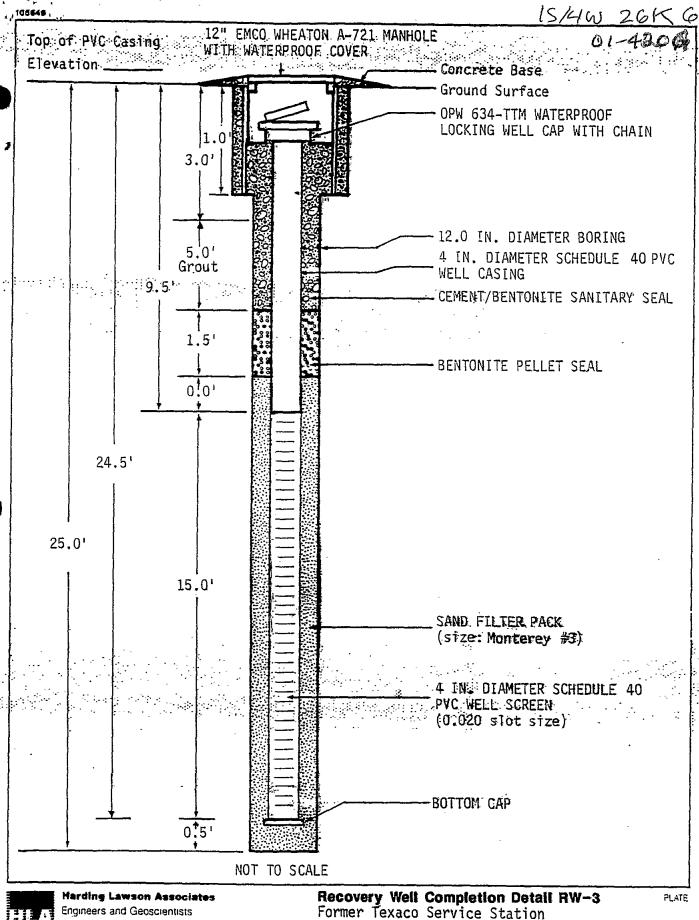
Well Completion Details

Boring Log

Laboratory Tests	Blows/foot	PID * Reading (ppm)	Elevation 100.2 feet** Date
	35	2 <1 1	asphaltic concrete pavement aggregate baserock GRAYISH BROWN SILTY CLAY WITH SAND (CL) very moist, with slight petroleum odor stained gray between 2 and 2-1/2 feet, with petroleum
	28	25	odor becomes brown GRAY MOTTLED BROWN SANDY CLAY (CL) very stiff, moist, very slight petroleum odor BROWN SILTY CLAY TRACE SAND (CL) very stiff, moist, very
	48	60	Slight petroleum odor GRAY CLAYEY SAND (SC) dense, GRAY SILTY SAND (SM) dense, moist
	30	10	GRAYISH BROWN SILTY CLAY (CL) hard, moist bottom of boring 21.5 feet boring cleaned out to 20 feet
			stabilized water level at 14.5 feet on 7/11/88
			30-
*PID = photo ioni HNU PI 101 ppm = parts per		letector,	
**Reference Elevat (arbitrary datum			35-
	,,		Log of Boring RW-3 (Previously MW-6C) PLA

HI=A

Harding Lawson Associates

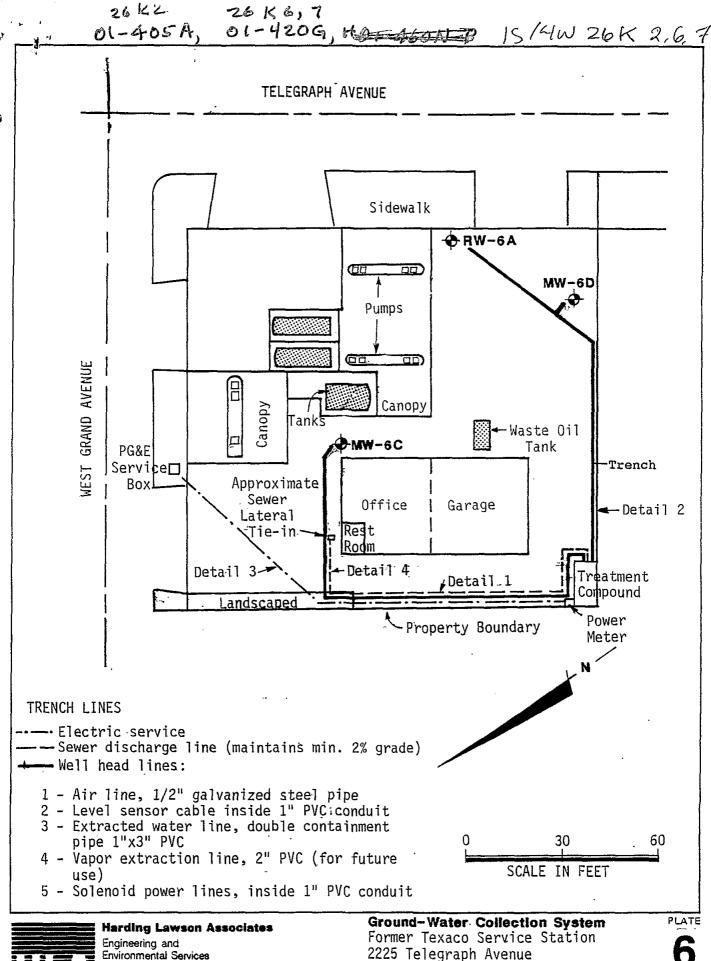

Engineers, Geologists & Geophysicists

Log of Boring RW-3 (Previously MW-6C) PLATE
Texaco Station - 62488000195

2225 Telegraph Avenue
Oakland, California

15/4W 2646.

		Uakiand, Cai.	LIULIIIA		
DRAWN	JOB NUMBER	APPROVED	DATE	REVISED	DATE
RS	2251.080.03	4 0	7.7		•
	2402,00000				

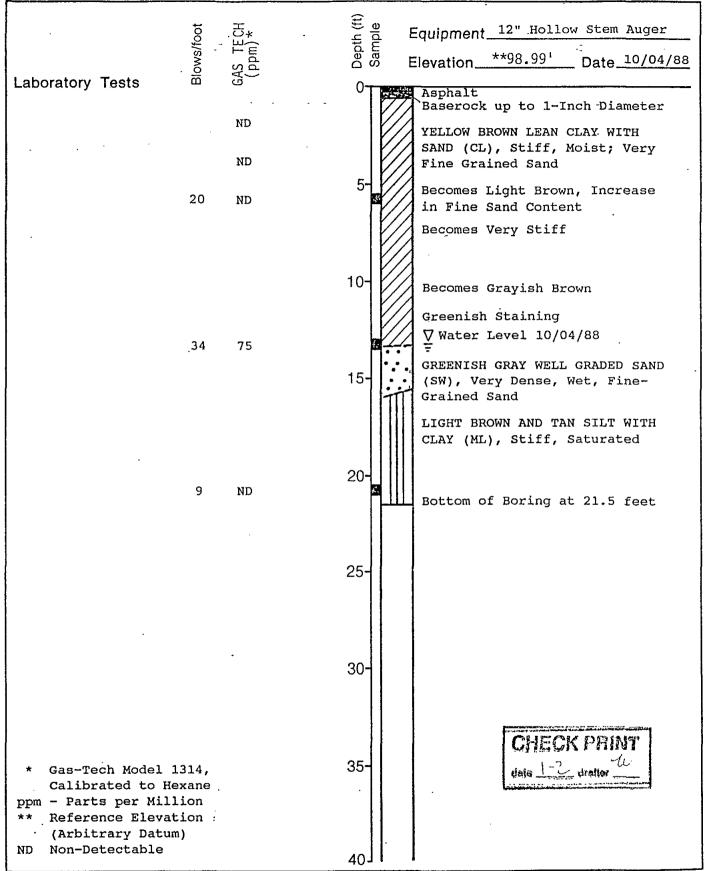


2225 Telegraph Avenue Oakland, California

DRAWN JOB NUMBER YC 2251,123.03

REVISED

6/90



DRAWN JOB NUMBER 2251,123.03 IC

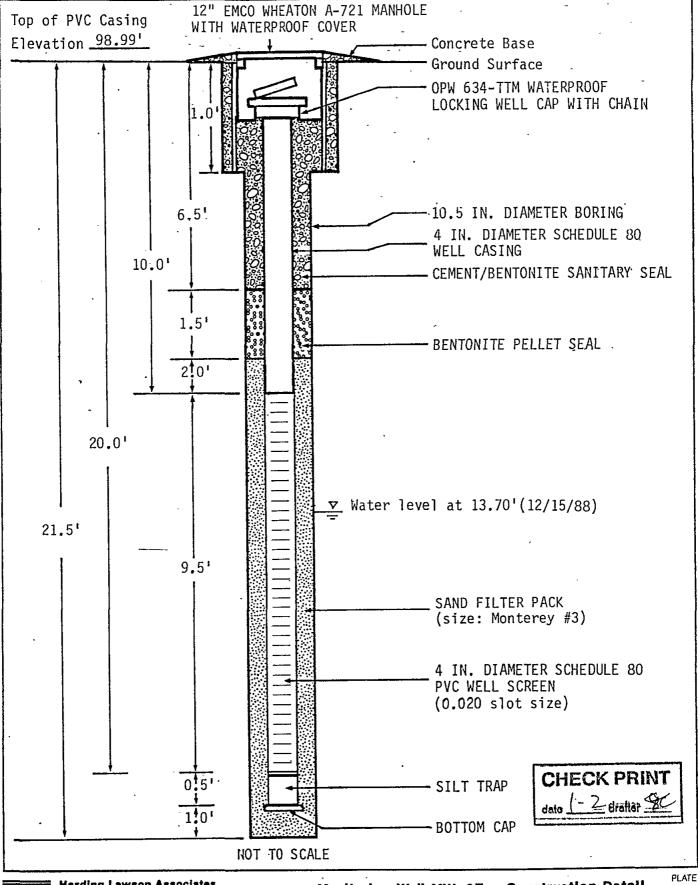
2225 Telegraph Avenue

Oakland, California APPROVED

DATE 3/90 REVISED DATE

DRAWN

ΥC


Harding Lawson Associates

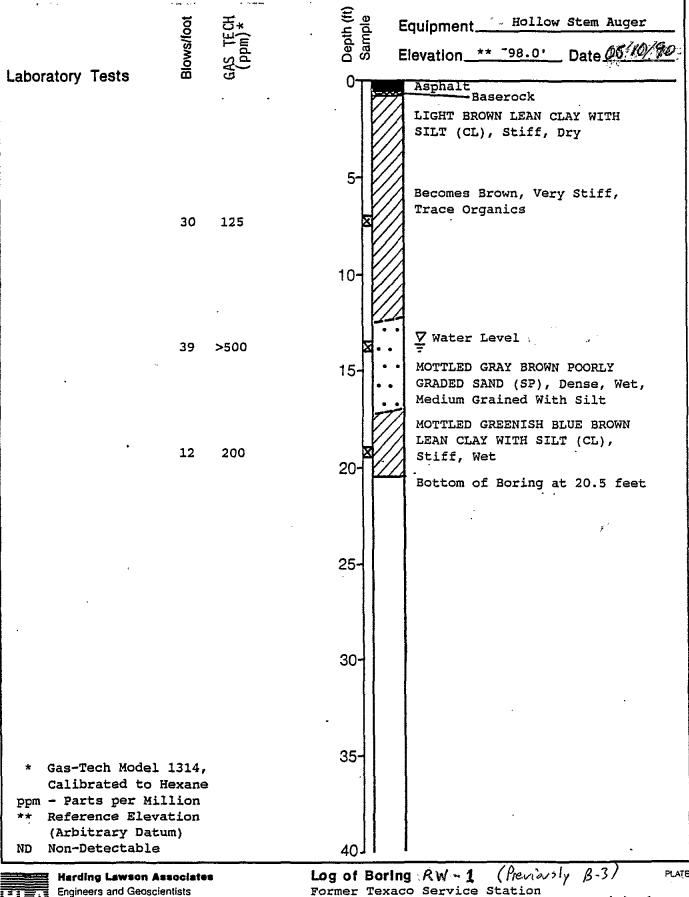
Engineers and Geoscientists

Log of Boring MW-6E 2225 Telegraph Ayenue Oakland, California

PLATE

REVISED APPROVED DATE JOB NUMBER 2251,080.03 12/88

Harding Lawson Associates

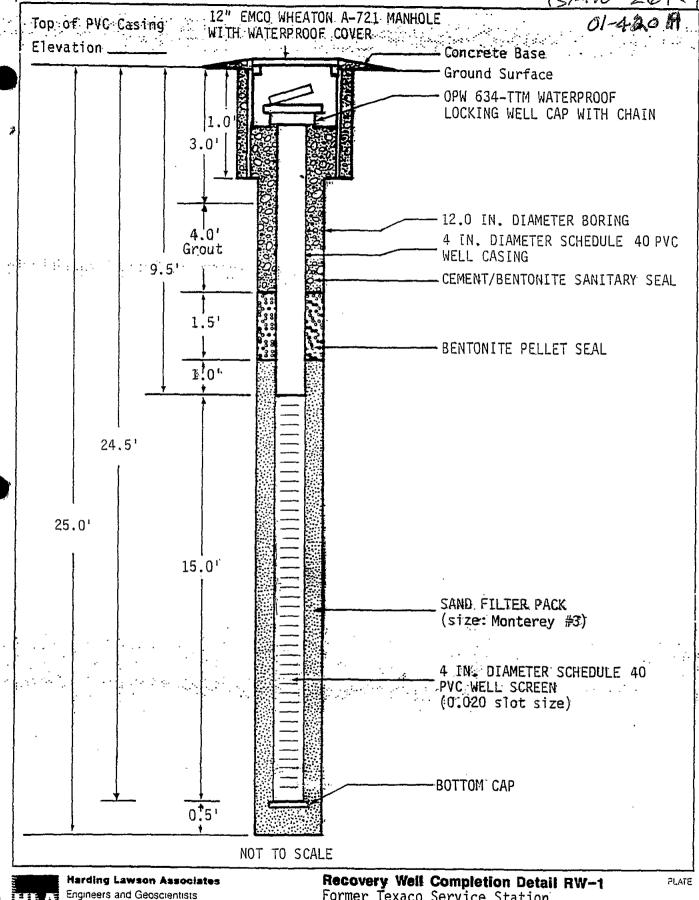

Engineers and Geoscientists

Monitoring Well MW-6E - Construction Detail

2225 Telegraph Avenue Oakland, Čalifornia

153

APPROVED DATE DRAWN DATE REVISED JOB NUMBER 2251,080.03 12/88 YC



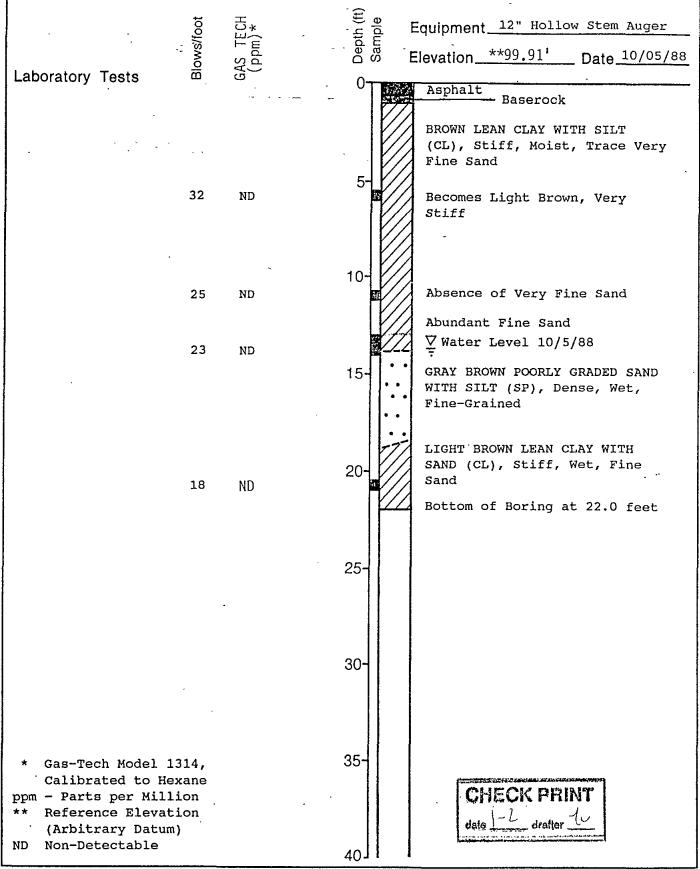
Former Texaco Service Station 2225 Telegraph Avenue

Oakland, California

15/4N 26 H7

DRAWN JOB NUMBER APPROVED DATE REVISED DATE
YC 2251,080.03

a 105649 🧈


Former Texaco Service Station 2225 Telegraph Avenue

6/90

Oakland, California.

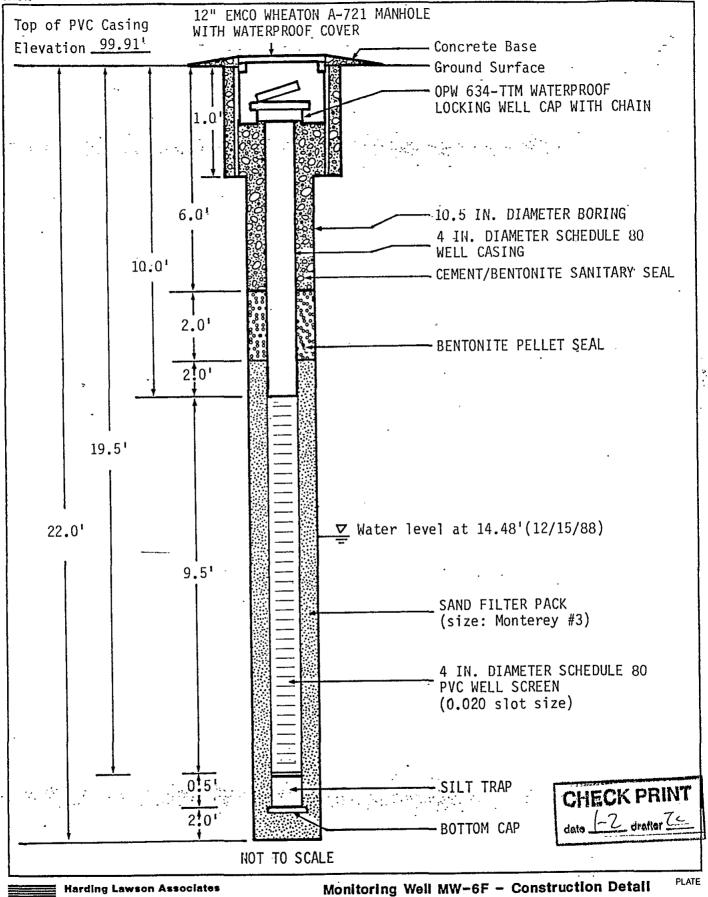
NWARG JOB NUMBER 2251,123.03 YC

REVISED

DRAWN

YC

Harding Lawson Associates


Engineers and Geoscientists

Log of Boring MW-6F 2225 Telegraph Avenue Oakland California

Oakland, California

JOB NUMBER APPROVED DATE REVISED DATE 2251,080.03 12/88

PLATE

Engineers and Geoscientists

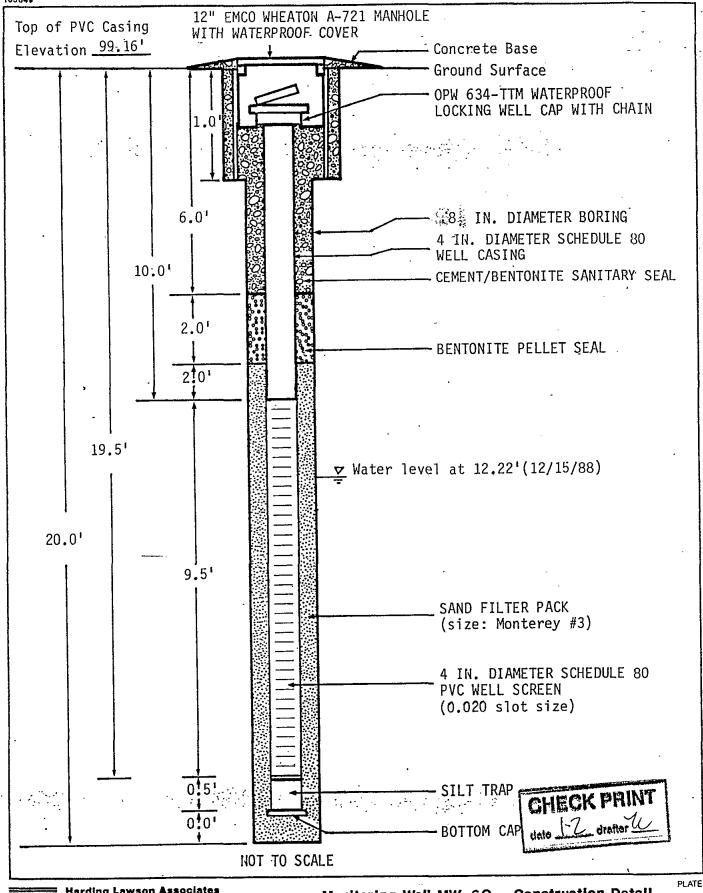
2225 Telegraph Avenue Oakland, California

DRAWN	JOB NUMBER	APPROVED	DATE	REVISED	DATE
YC	2251,080.03		12/88		

15/4W-26K8

	01		42	Ô	I
--	----	--	----	---	---

<u> </u>	01-420	- 13/4W-26R8
Laboratory Tests	Blows/foot	Equipment 8" Hollow Stem Auger Elevation **99.16' Date 11/16/88 Concrete Baserock
	ND 5	MOTTLED BROWN-BLUE LEAN CLAY WITH SILT AND SAND (CL), Stiff, Dry, Medium Grained 5-
	12 1	Becomes Very Stiff
	38 ND	GRAY BROWN POORLY SORTED SAND WITH SILT (SP), Dense, Wet, Medium Grained Sand
		20 Bottom of Boring at 20.0 feet
		25-
		30-
* Photovac TIP I Electron Volt I ** Reference Elev (Arbitrary Dat	amp ration :um)	35- CHECK PRINT Valo 2 drafter 40-



Harding Lawson Associates

Engineers and Geoscientists

Log of Boring MW-6G 2225 Telegraph Ayenue Oakland, California PLATE

DRAWN	JOB NUMBER	APPROVED	DATE	REVISED	DATE
YC	2251,080.03		12/88		

Harding Lawson Associates

Engineers and Geoscientists

Monitoring Well MW-6G - Construction Detail

12/88

2225 Telegraph Avenue

Oakland, California APPROVED JOB NUMBER

REVISED

DATE

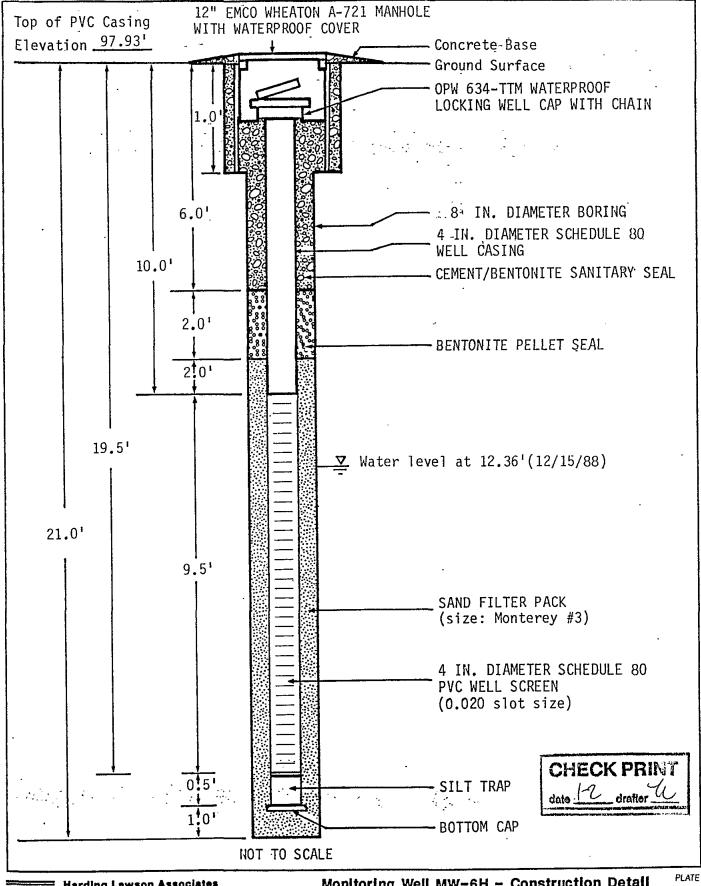
DRAWN YC 2251,080.03

Equipment 8" Hollow Stem Auger Blows/foot Elevation **97.93 Date 11/16/88 Laboratory Tests Concrete Baserock MOTTLED BROWN-BLUE LEAN CLAY WITH SILT (CL), Stiff, Dry Becomes Moist 5 13 13 10-GREENISH POORLY GRADED SAND WITH CLAY (SP), Dense, Wet, Medium-Grained 6 350 ∇ Water Level 11/16/88 15-BROWN FAT CLAY WITH SILT (CL), Stiff, Wet 20-Bottom of Boring at 21.0 feet 25-30-CHECK PRINT 35-Photovac TIP I with 10.6 Electron Volt Lamp Reference Elevation (Arbitrary Datum)

Harding Lawson Associates

Engineers and Geoscientists

ppm - Parts per Million


Log of Boring MW-6H 2225 Telegraph Ayenue

2225 Telegraph Avenue Oakland, California

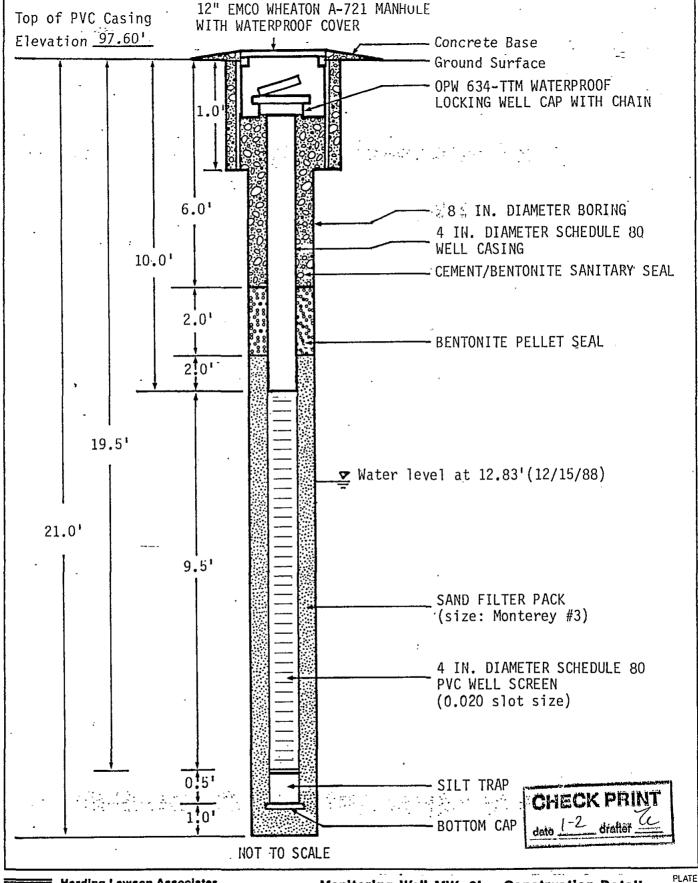
DRAWN JOB NUMBER APPROVED DATE REVISED DATE
YC 2251,080.03 12/88

40

PLATE

Harding Lawson Associates

Engineers and Geoscientists

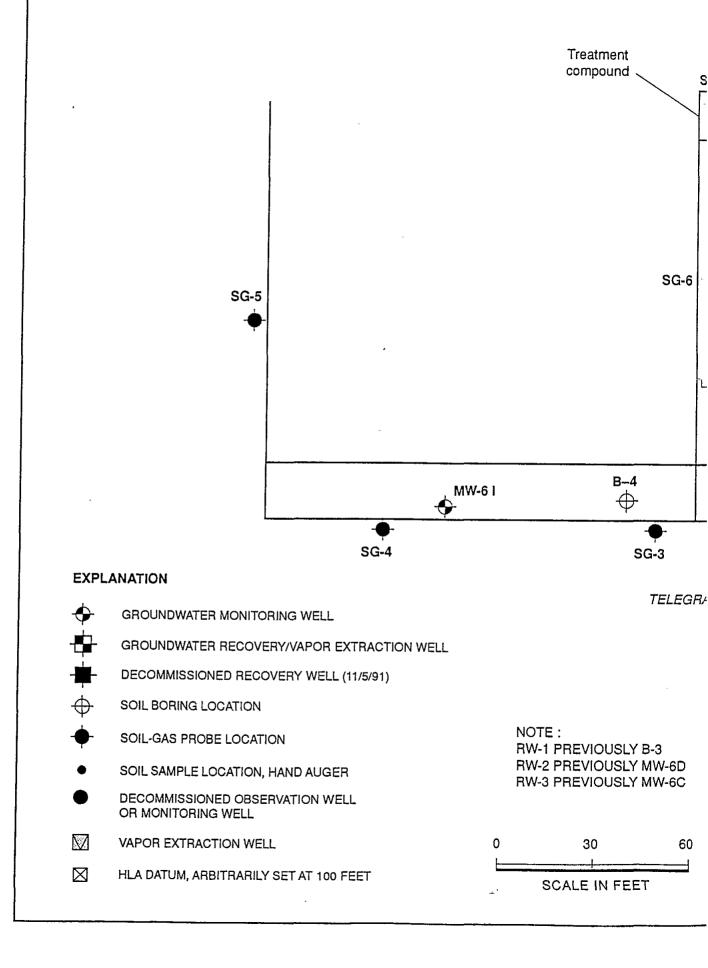

Monitoring Well MW-6H - Construction Detail

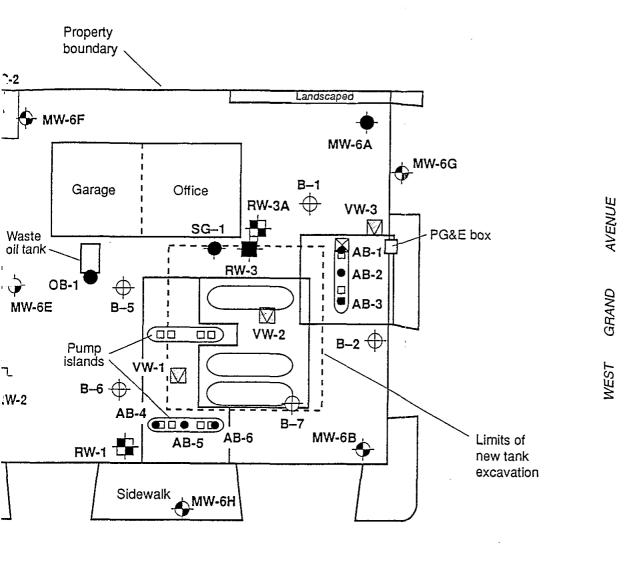
2225 Telegraph Avenue Oakland, California

JOB NUMBER APPROVED DAFE REVISED DATE DRAWN 2251,080.03 12/88 YC

	·	01 4001	1477000001010
Laboratory Tests	Hand ND ND	7 F	Equipment 8" Hollow Stem Auger Elevation **97.60 Date 11/17/88 Concrete Baserock BROWN LEAN CLAY WITH SILT AND
	ND	5-	SAND (CL), Hard, Coarse Sand Absence of Sand Becomes Sandy
	19 ND	10-	Becomes Mottled Brown Becomes Medium Stiff
	29 ND	15-	BROWNISH-GREEN WELL SORTED SAND (SW), Very Dense, Moist, Medium Grained V Water Level 11/17/88
		20-	Becomes Silty, Saturated Becomes Clayey Bottom of Boring at 21.0 feet
		25-	
		30-	
* Photovac TIP I v Electron Volt La *** Reference Elev	with 10.6	35-	CHECK PRINT
** Reference Elev (Arbitrary Datu ppm - Parts per Mi	um)	40	

		Harding Lawson Associates Log of Boring MW-61	PLAIE
ء آرو مرايع			The second secon
i.		Oakland, California	
•	DRAWN	JOB NUMBER APPROVED DATE REVISED DATE	E ·
 	<u> Y</u> C	2251,080.03	


Harding Lawson Associates
Engineers and Geoscientists


Monitoring Well MW-61 - Construction Detail 2225 Telegraph Avenue.

Oakland, California

DRAWN JOB NUMBER APPROVED DATE REVISED DATE
YC 2251,080.03 12/88

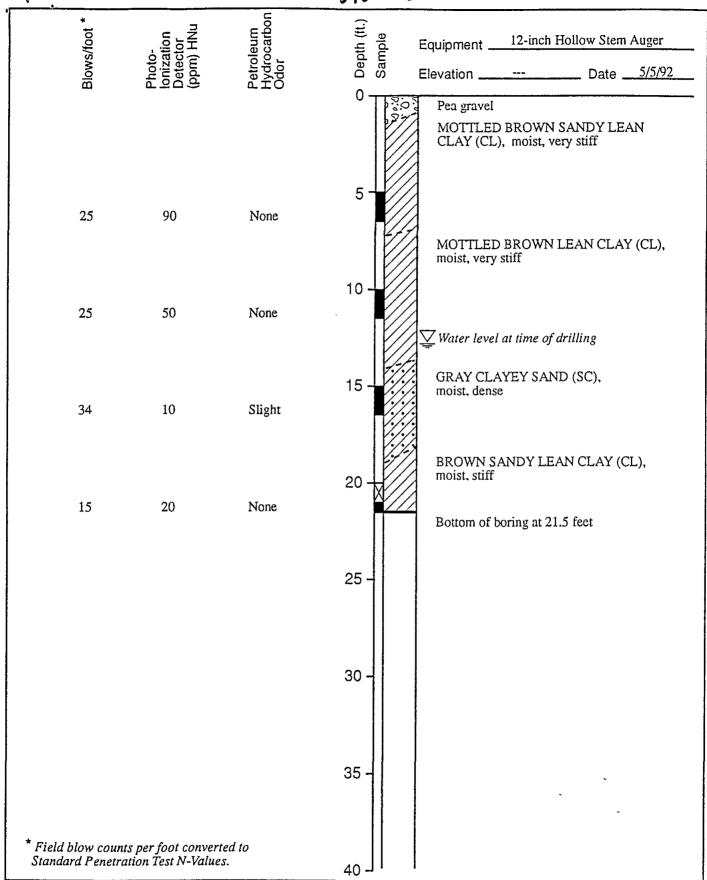
STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

PH**AVENUE**

Nearna Harding Lawson Associates

Engineering and Environmental Services 687-9660

DRAWN JOB NUMBER S. Patel 2251,162.03 Site Plan Exxon Service Station 2225 Telegraph Avenue


APPROVED

Oakland, California

PLATE

DATE 05/19/92

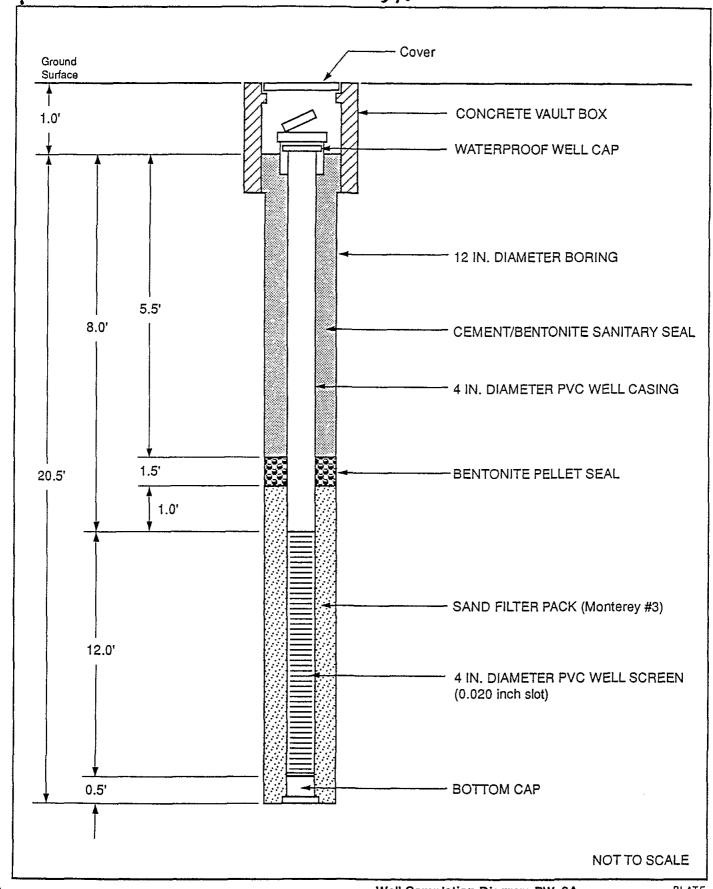
REVISED DATE

Harding Lawson Associates

JOB NUMBER

2251,162.03

Engineering and Environmental Services


DRAWN

RHC

Log of Boring RW-3A Exxon Service Station 2225 Telegraph Avenue Oakland, California

APPROVED DATE REVISED DATE 5/20/92

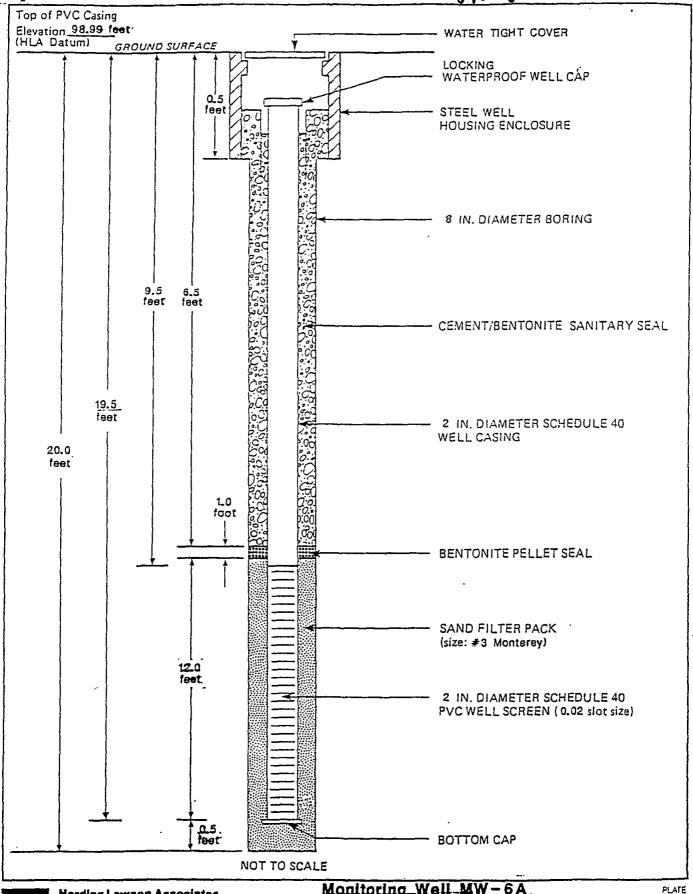
PLATE

Harding Lawson Associates Engineering and Environmental Services Well Completion Diagram RW-3A Exxon Service Station 2225 Telegraph Avenue PLATE

rvice Station graph Avenue California

Oakland, California

S. Patel


JOB NUMBER 2251,162.03

05/11/92

REVISED DATE

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

CRAWN

Harding Lawson Associates Engineers, Geologists & Geophysicists

IOP NUMBER

2251,080.03

Monitoring Well MW - 6A, Completion Detail

Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California

APPROVED DATE 40 2/89 CATE

REVISED

FORM GW3

01-843

Well Mr. 1 - At 22nd and Grove Streets.

100 ft. of 15" ourface essing.
16 ft. Gol Startor
13 St. of perforator (900)
Figled in Ground
Your Cond
Ine Clay
Yollow Clay 7-40
707707 Comont
You Jon Clay
You Jon Sand Clay 6-172
Cond & Convolence and a 4-176
(MOVOI and and and and and and and and and and
VOLTOT CINTERSON 4-192
Const & Grand 4-198
Yollow Clay 107 ml Gin
Toole measured up by E. S. Biosell
inter table
Inter table purpling 1200 cale. per
nour - Go st.

McCULLEY, FRICK & GILMAN, INC.

CONSULTING HYDROLOGISTS AND GEOLOGISTS

December 9, 1988 (Project No. 88-2051) Kind

5 THIRD STREET, SUITE 916 SAN FRANCISCO, CA 94103 (415) 495-7110 FAX (415) 495-7107

Mr. Bob Eagan R.S. Eagan & Company 150-k Mason Circle Concord, California 94520

Subject:

Lithologic Logs and Construction Details for Monitoring Wells at U.S. Postal Service Facilities

Northern California

Dear Bob:

McCulley, Frick & Gilman, Inc. (MFG) is pleased to enclose the lithologic logs and well construction details for the monitoring wells at eight U. S. Postal Service facilities in northern California. The observation of the well construction and furnishing of these materials are considered to be our initial assignment discussed in our proposal to you, dated September 30, 1988. The eight facilities are:

Richmond, 2501 Rydin Road
Richmond, 2100 Chanslor Avenue
San Rafael, 40 Bellam Boulevard
Hayward, 24438 Santa Clara Street
Concord, 2121 Meridian Park Boulevard
Modesto, 715 Kearney Avenue
Oakland, 577 West Grand Avenue
Menlo Park, 3875 Bohannon Drive

The drilling of borings and installation of monitoring wells was performed during the period of October 4 through 13, 1988. This work was observed by Ms. Diane De Lillio, Staff Geologist of MFG. The geologic logging and specification for well installation performed by Ms. De Lillio was supervised by Mr. Jeffrey A. Gilman, Senior Hydrogeologist of MFG and a Certified Engineering Geologist in California. The drilling was performed by Kvilhaug Well Drilling, who was hired directly by you.

The lithologic logs and well construction details are furnished on the standard MFG field forms, as agreed in our September 30, 1988 proposal. A table that summarizes the well construction details for the 13 saturated zone monitoring wells (prefix of "MW-") and nine (9) vadose zone monitoring wells (prefix of "V-") is also enclosed. We have also provided a list of abbreviations used on the lithologic logs and the symbols used for the well construction details.

Lic # 482390

Mr. Bob Eagan R.S. Eagan & Company December 9, 1988 Page 2

All wells were constructed with two-inch diameter, flush threaded, schedule 40 polyvinyl chloride (PVC) casing supplied by Diversified Well Products, Inc. The top of each well was fi⁺⁺ed with a two-inch PVC slip cap. The bottom of all wells except V-9, V-10, MW-20 amd MW-21 was fitted with a two-inch PVC slip cap that was secured to the well casing using stainless steel screws. The bottom of wells V-9, V-10, MW-20 amd MW-21 was fitted with a two-inch PVC threaded end plug.

We appreciate the opportunity to provide consulting services to you. Please call the undersigned at (415) 495-7110 if you have any questions.

Sincerely yours,

Jeffrey A. Gilman, C.E.G.

Vice President and Senior Hydrogeologist

Enclosures

eaganrpt.doc

15/4W-26 LZ

McCULLEY, FRICK & GILMAN, INC.

CONSULTING HYDROLOGISTS AND GEOLOGISTS 5 THIRD STREET, SUITE 916 SAN FRANCISCO, CA 94103 (415) 495-7110 FAX (415) 495-7107

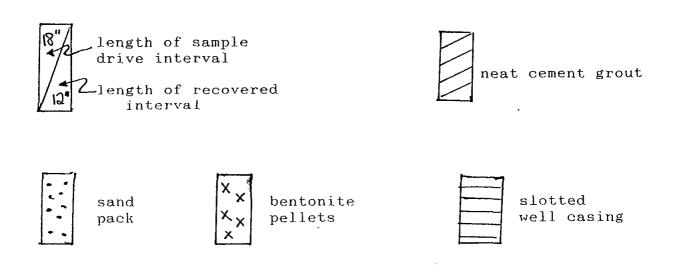
SUMMARY OF WELL CONSTRUCTION DETAILS

U.S. Postal Service Sites Northern California

Site	Well No. 1	Total Depth (feet bgl)	Screened Interval (feet bgl)
Richmond (Rydin Rd.)	MW-1 * MW-2	25 13	8 - 25 8 - 13
Richmond (Chanslor Ave.)	MW-3	16.5	9.5 - 16.5
San Rafael	V-5 V-6 * V-7 V-8 V-9 V-10	12.5 boring only 10 10 10	7.5 - 12.5 boring only 6 - 10 6 - 10 3.5 - 9.5 4.0 - 9.5
Hayward	MW-11 V-12 V-13 MW-14 MW-15	46.5 14 14 46 46	32.5 - 46.5 $9 - 14$ $9 - 14$ $30 - 46$ $30 - 46$
Concord	MW-16 *	15.5	7.5 - 15.5
Modesto	V-17 V-18 MW-19 MW-20 MW-21	13 13.5 62 63 64.5	6.5 - 13.0 $7.0 - 13.5$ $47 - 62$ $42.5 - 62.5$ $44 - 64$
Oakland	MW-22	26.5	11.5 - 26.5
Menlo Park	MW-23 MW-24	24 24.5	7.5 - 24.0 $8.0 - 24.5$

[&]quot;MW-" prefix indicates monitoring well completed in saturated zone. "V" prefix indicates vadose zone well completed in fill material.

^{*} Strong petroleum product odor or free product observed during drilling.


LIST OF ABBREVIATIONS USED IN LITHOLOGIC LOGS U.S. POSTAL SERVICE MONITORING WELLS Northern California

color		<u> </u>	size		logy
dk lt	dark light	sm fn	small fine	cly slty	clayey silty
gry brn	gray brown	md	medium	calc stng	calcite staining
yel ol	yellow olive				

miscellaneous

grained grn sat saturated as above aa trace tr very V moderately mod sli slightly bgl below ground level cement cmt

EXPLANATION OF SYMBOLS USED ON WELL CONSTRUCTION DETAILS U.S. POSTAL SERVICE MONITORING WELLS Northern California

15/46-2662

PROJECT NAME US Postal Service NO. 88-2051 McCulley, Frick & Gilman, Inc. BORING LOCATION to Outland, CA DATE STARTED DATE FINISHED 10-12-88 / 11-12-89 DRILLING AGENCY COMPLETION DEPTH DRILLING EQUIPMENT DRILLING METHOD NO, OF SAMPLES DIST. / UNDIST. WATER ELEV. Chun Puc // FT. LOGGED BY CHECKED BY: B. FFT. D. Delillio FROM JCEG#1375 FROM D TO 1.5 GRAPHIC LOG SAMPLES Water Content Personater Date REMARKS DESCRIPTION (Drill Rate, Fluid loss, Odor, etc.) Asphalt at surjace, uncitation. Ky concrete slab \mathfrak{A} 5 - Sand , clay: of brn(2.54 4/4), sity, CL mod plastic, dans to wet, I marsha the nodules, 8 Preside to stry clay 18 no orn, domi SM 25 2: $II \rightarrow$ 50 5 m: Sample 22-1-2 collected + preserved for labourarysis

14-

(12.51-13.01)

McGulley, Frick & Gilman, Inc.

PROJECT NAME US Postal Service No. 88-2051

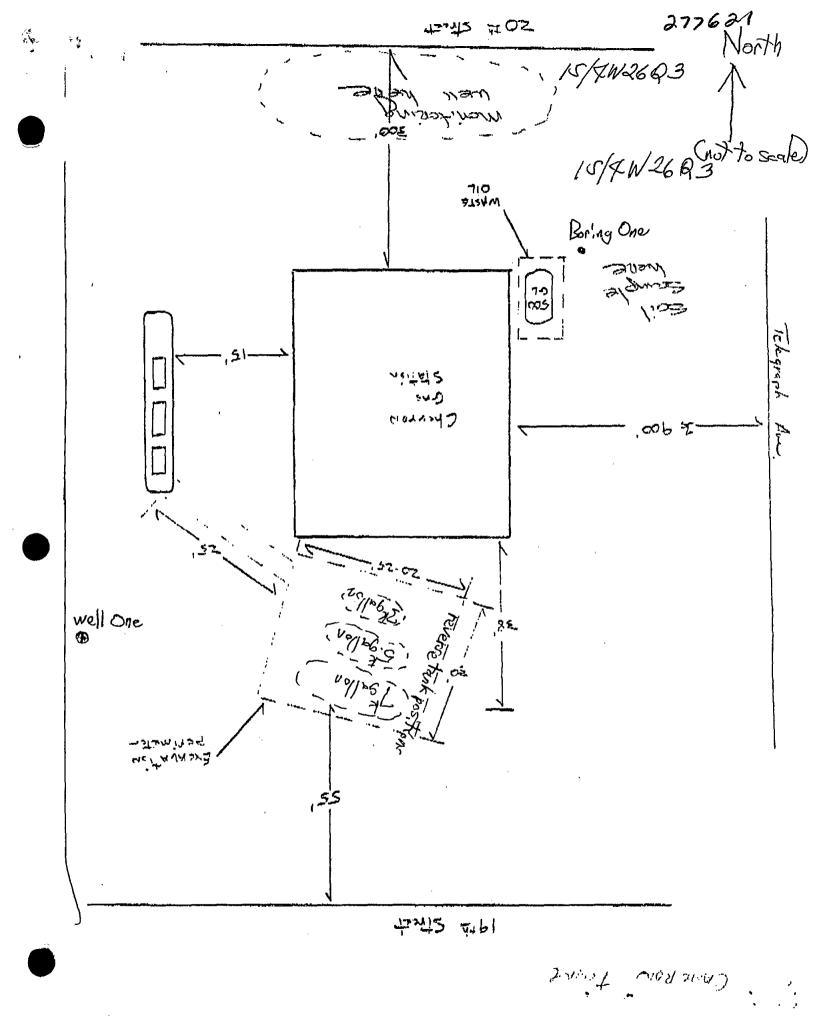
r		GRAPHIC LOG E		E	SAMPLES					
	DEPTH (FEET)	DESCRIPTION	Lithology	Piezometer Installation	Water	Pezomete Data	Type No	Penetra Penetra Resist	(Blows/ 6 in.)	REMARKS (Drill Rate, Fluid loss, Odor, etc.)
	दं दे	stu sand: It olbrn (2,57,5/6), fn-md grn, wet-sout.	sm			1.4.4.4.4.4	7.1	38	- 1	,
	17						1			
	18					-				
- 1	ر 20 - ا	Upperlo": sty sand: It of born (2.57 5/4), fn-md grn, sat, Lawer 6" rand: It of born (2.57) 5/4), fn-md grn, sat,	sm SP			-	p."/	3		, m <u>.</u>
	ر المارية المارية			•					*	
	24	Hanny''' Siture and incur her	sm				# + + + + + + + + +			
	2	Uppery": SIty sand : gry brn (2.57 5/2), cly, fright, sat, Lower B": slive clay: grow brn (2.57 5/2) mottled, mod plastic, some iron staining,	SW CT		Slough	-	189	1 1	7	
	27	moist. Grades into s/ty sand w/ tr sand.		X			+ + + + + + + + + + + + + + + + + + +			
	29			X			/2"/	3	5	
	301	Stycley: gry(2,57 NS/), v. Stiff, moch highly plastic, moist, trand.	CL				110	S	J	
	32	Bottom of Boring at 30 Ft.				-	 			

FIELD LOG OF BORING NO. MW-22

SHEET & of -

01-845 15/4W-26L2 577 West Grand Avenue U.S. Postal Services COMMERCIAL Carrier Annex 22ND STREET FHSTORM DRAIN PARKING LOT TELEGRAPH AVENUE PUMP COMMERCIAL 10,000 GALLO GASOLINE TANK PARKING RESIDENCES RESIDENCE 21ST STREET RESIDENTIAL/COMMERCIAL VICINITY AND FACILITY STORAGE MAP SCALE: 1'' = 40'

RESIDENTIAL/


COMMERCIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

MHK 83 JRS 12:45 DUWES 3 WOOKE SE

1.9

		277621
GRAVEL PACK - SIZE -	Stainless	P.V.C
11 . 20	SCREEN SIZE	SCREEN \$12F
HOLE PLUE - 4	SIZE -	S12E - 2"
TYPE OF SAND NO.3/12 OR SIZE	SLO+-	SLO+- 010
TYPE II	RISER-	RISER-Z"
TYPE OF Gement & Rentonite 105		
10LCLAY GROUT -		15/4W2603
Rentonite PELLETS SIZE - 14	SACRETE LB	1 777 20 72
,		•

Sentonite.	VELLETS	SIZE - 19	SACKETE	<u> 48 </u>	
		•			•
		El wel	mut cons	Fruction	•
GROUND	LEUEL			GROUN	
•					DESCRIPTION
					SAND XXXXX
					Bentonite = Pellets =
					PELLETS =
					Cement ! GRout !
					HOLE PLUS
					HOLE PLUGH
		9'			GROUT L
				Ψ	Pack
		12'	Remon	WHE S FIAL	***
		×		W. FL STAND	SACRETE
		K	4		600 000 000 000 000 000 000 000 000 000
	i		1×4	-	900
		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	[xx]		
		1 1	X		
		**************************************	κκ [×] κ		
			F'		
			KY		
		F			•
			X		
		X	LX		
			XX		
	•		XX XX XX XX XX XX		
		1 4	K X		
		25'	TX.		
		I E	TYM T		

88076

FIELD MEMORANDUM

AD

KC15 - 277621

15/4W26QX 3 FY1

	ACTION	INFO	<u> </u>	义 5 千//
To: Ji	m Curtic	P. Blamer	File: 26	06-016-038 PNS
		P Netf		
			X-Rof:	
			·	
			Date: Ma	rch 4,1988 :
From:	Citoghe		Reply Requ	stred By:
Subject:	Menitering Well In	fermation Sheet For	Carter Hawley	Hale Coakland (A)
Referenc				PVC Cap
		•	· 	steel protective
	trald was 1		· · · · · · · · · · · · · · · · · · ·	e casing
	Well No.		Grout	*
	Installation date	•	Surface	
	Total depth of bor	ing_2(1_		
	Diameter of boreho	 ,		PVC pipe
- 4	Depth to top of sa	turated zone $\sqrt{\chi'}$	đ	
	Construction mater			Cement/bentonite grout
	15 ft. of 2"	dia., Sch. <u>40</u> PVC p	ipe	Control of the state of the sta
	10 ft. of PVC	screen, <u>, 0/0</u> slot si	ize	
	4 bags of san	d (2/12 Mosterey)	f	Bentonite seal
	bags of ben	tonite		-M M
	2 bags of cem	ent		PVC screen
	other	•	h	
			ı	Monteray Sand
	Well development:			PVC bottom plug
	method of develo	pment boil		
	approx. number o	f hours developed	1001	NOT TO SCALE
	approx. number o	f gals. removed duri	ing	·
	development 5			ROUTING
		gpm after O 1		: SKWER! EMPORIUM CAPWEL
	quality of water	after development	slightly turbid	ADDRES : 1911 TELESPAPH AVE
	comments		-	OAKLAND
	Wall dimensions			•
	Well dimensions:		ب اساس	
	4 <u>U</u> D <u> </u>	10" d 10 en 3" f	2 g 3 h 10	

DRILLER! MOUNTAIN STATES

Vot To Scale
LOCATION OF BEARING wellone 12606-016-038 Carter Hawley Hale Ock 1911 CA DRILLING METHOD: EME 55 Vrill King 8 Inch atside diameter hollow stem auger Well | Cherron Station NETH 140 pound hommer on a 30 inch drop Split-space environmental sampler DRILLING START FINISH 19th Street 1220 SURFACE CONDITIONS: Surfaced with about 5 inches of asphaltic concrete DATE 3.4.88 Brown sitty v.f. - M. Sand w/ tr, clay sl. moist, no ode Oppm Gradually becoming finer Оррт Oppm Park brasity clay of tr. v.f.-f. sand, sl. moist-muist, no oder to Lit bry silty clay w/ some v.f.-m. sand, sl. moit, no 61pp 20p $_{\mu}$ Zppn as above to 13/80/ 72ppm 7ppm 136 Lat orange-brn vf.-m, sand w/ tr silt, moist, no odor Csample not collected to sampler interference) or Compron Logue DATE 3.4.88 95 above 20 pp Oppn Approximate ground water depth as above at saturated

LOCATION OF BORING DKOK-OK-OS Carter Hawley Hake DRILLING METHOD: CME 55 8" OP HSA JOB NUMBER See page one well one MULTIN PEPEREN 2 0 = 2 SAMPLING METHOD:
140 16 hammer /30 drop
5-s sampler DRILLING START FINISH 1412 DATE OVA SURFACE CONDITIONS: BLOWS/FT. SAMPLER SOFL GRAPH SAMPLER DATE TIME DEPTH N FEET CUTTINGS AUGER Oppn Oppor 5636 Birk bon day w/ some sitt, saturatelyo afor as a love Oppm 20 Oppn Foring "well one" completed to a depth of 26 feet at 1412 on March 4, 1988. No saving, Ground water encountered at approximately 18 feet. CHECKED BY.

15/44 260,4 Broadway Existing Bank of **A**merica **Building** 21st Street Monitoring Well Location (approximate) \oplus Existing Parking Lot Goldsmith & Lathrop Franklin scale (approximate) Project No. 8810171A Nov. 1988 21st and Broadway SITE MAP Figure 1 **Woodward-Clyde Consultants**

15/46-2694

FIGURE 2

<u> Woodward-Clyde Consultants</u> NO. 8810171A **ELEVATION AND DATUM** Monitoring Well No. 1 BORING LOCATION NΑ DRILLER DATE STARTED DRILLING AGENCY Ensco J.R. Richards October 26, 1988 COMPLETION Modified California Type 31.5 SAMPLER DRILLING EQUIPMENT Diedrich D-25 (Skid Rig) DEPTH NO. OF SAMPLES Drag UNDIST. DRILL BIT NA DRILLING METHOD 8" Hollow Stem Augers NA COMPL. 20.6 24 HRS. WATER FRST SIZE AND TYPE OF CASING 29.6 2" PVC LEVEL NA TYPE OF PERFORATION LOGGED BY: CHECKED BY: 0.020" Slots FROM 14 TO 29 Ft. #2/12 Monterey Sand SIZE AND TYPE OF PACK J. Mc Milan FROM TO 30 D. Baden 115 Ft. Ft. FROM 8.5 TO 11.5 NO. 1 Bentonite Pellets TYPE OF SEAL FROM 8.5 TO 0.5 Ft. Neat Cement NO. 2 SAMPLES REMARKS GRAPHIC LOG Piezometer Data (Drill Rate, Fluid Loss, Odor, Sample Rumber DESCRIPTION etc.) Plexometer Lithology Installation 3" Asphalt Concrete 3" Aggregate Base Rock FILL- CLAY (CL) No odor -some silt -little gravel to 1.5" Brown -low to moderate plasticity -damp -pieces of brick in the fill 5 5 FILL- SAND & GRAVEL (SW-GW)
-little to some silt 1 8 No odar -fine to medium sand -medium gravel -Tan to White Driller reports conditions non-plastic eased up. damp to dry -loose -wood debris and white chalk like waters in the fill 10 10 FILL- SAND (SP) 2 No odor -Tan to Brown -non-plastic -moist to wet -mottled light and dark in local areas upper half of THE 10' sample is slightly slity and the lower 1 half is relatively clean sand CLAY (OH) Bay Mud 15 15 -Black 3 No odor -highly plastic -rootlets and organic debris throughout the sample ATD SILTY CLAY (CL)
-some fine sand 20 No recovery on the first -little organic matter as above -Yellow Orange to Gray drive, redrove to obtain 4 the sample. -low plasticity -wet -medium firm No recovery on the first 25 -some organics drive, redrove to obtain 5 the sample. No odor Driller reports very hard conditions at 27.5'. Driller reports very soft conditions at 29.5'. 30 SAND & GRAVEL (SW-GW) 6 16 -fine to coarse sand -fine to medium gravel -Gray -non-plastic betarutaa--medium densa -sand is generally rounded while the gravel is generally angular and composed primarily of chert 35 Bottom of boring at 31.5' (Augered to 30')

FIELD LOG OF BORING NO MW-1

C57-464324

357 - 15/4 6 - 26N 32722 260

anner Bros. 1. 1.3. 327 - 21st.
Boring Test Holes. Job . 1680. Boring Test Holes.

70G UF T 37 HUA 11.

Black soil ---- J feet 3 tol6 16 " 21 Hard brown sandy clay -----21 " 29 Hard red cement clay -----29 " **F f** Soft dirty water gravel -----33 " 38 Hard yellow sand clay -------36 " 43

10 ft. of water in hole.

LOG OF TIST MODIL 28.

Black soil			3 feet
Brown sandy clay	3	tol	0 "
flard dry gray sand	10	11]	5 "
Hard yellow sand clay	15	11 2	7 "
Soft yellow clay, some rock mixed with clay	27		<u>)</u> 11
Soft Jellow Sand	34		S 11
Hard yellow sand; clay	42.	" <u>4</u> ;	3 18

6 ft. of water in hole.

Job #649. Great Western Power Co.

LOG OF WELL

Sahd Blue Clay Coment Gravel Sandy Clay Gravel Sandy Clay Coment Gravel Yellow Clay Coment Gravel Yellow Clay Sandy Clay Gravel Yellow Clay Gravel Yellow Clay Sandy Clay Gravel Sandy Clay Gravel Sandy Clay Blue Clay Shale Sandy Clay Blue Clay Blue Clay Blue Clay Blue Clay Blue Clay	16 32 35 45 45 99 10 11 12 13 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		35 435 49 59 75 90 118 123 152 156 159 177 189 223 233	feet n n n n n n n n n n n n n
Clay · Blue sandy clay	233 250 265	11	250 265 266	17 17
Blue clay	266	11	289	स
Blue clay with limestone	289	Ħ	325	11
Brown clau	325	ŧŧ	327	11
Yellow clay	327	11	340	11
Red cement	340	t!	347	11
Blue clay	347	**	350	11
Yellow clay with limestone	350	17	374	11
Sandy clay	374	1 ?	378	17
Yellow clay	378	17	388	17
Blue Clay	388	if.	420	11 /
Sand and gravel	420	11	428	n 🗸
Red cement gravel	428	11	436	11
Yellow clay	436	11 "	442	11
Cement gravel	442	17	447	11
Yellow clay	447	#	450	71
Cement gravel	450	il	456	11
Yellow clay	456	IŦ.	458	11

01-859

Deepening Well put down under Job #649 and # 714. Job #733.

Log	of	Wa	11	_
	$\sim -$	11 0		•

From 2851

Blue clay with Limestone	285		325	
Blue clay	325	11	327	17
Yellow clay	32 7	13	340	11
Red cement	340	17	347	17
Blue clay	347	17	350	17
Yellow clay with limestone	350	11	374	17
Sandy clay	374	17	378	11
Yellow clay	378	17	388	17
Blue clay	388	17	420	11
Sand and Gravel	420	13	428	17
Red cement	428	13	436	17
		17		11
Yellow clay	436		442	
Red cement	442	17	447	11
Yellow clay	447	1\$	450	11
Red cement	450	Ħ	456	11
Yellow clay	456	11	470	17
Blue clay	470	11	480	11
Red cement	480	11	485	
Yellow clay	485	11	498	11
Red cement	498	17		11 11
Yellow clay	500	11	510	11
		11		11
Red cement	510	11	528	11
Yellow clay	528		545	
Red cement	545	11	556	37

Job # 715. Oakland Lodge #171, B.P.O.E.

LOG OF WELL.

		-		
Brown Clay		-	2	feet
Sandy clay	2	to		
Blue clay, streaked	13	19	18	
Heavy Gravel	18	11	22	1\$
Herdpan	22	11	26	स
Lime clay	26		37	
Heavy red sand & light gravel			41	12
Hardpan	41	17	43	
Clay, hard & dry	43	**	45	
Hardpan	45	17	48	1#
Sand & clay	48	17	49	Ħ
Heavy gravel(some water)	49	17	50	17
Clay	50	. 19	56	ŧ\$
Sand & clay	56		71	17 .
Sand & Gravel (Not much water)	71	-11	75	11
Clay	75	1T	85	
Water gravel	85	E)	87	17
Hard dry brown clay	87	13	95	17
Hard clay	95	13		11
Dry sand	103	17		
Sand, some water	106	17	109	rt
Clay & sand	109		118	
Black sand & gravel	118		119	17
Clay, yellow	119			17
Gravel, heavy	121	11	124	
Dry gray clay	124		*** *** C*	
Sandy clay	126		132	
Cement gravel	132		136	
Blue shale & clay	136		142	
Cement gravel	142		145	17
Heavy sand	145	11		
•	2.4			

Casing landed in Blue clay at 153'

Water test 100' --- 6.78 Water tests 50' --- 8.62

THE WESTERN LABORATORIES

2404 BROADWAY
OAKLAND, CALIFORNIA

LABORATORIES
BACTERIOLOGICAL
BIOLOGICAL
PATHOLOGICAL
CHEMICAL
PHYSIOLOGICAL

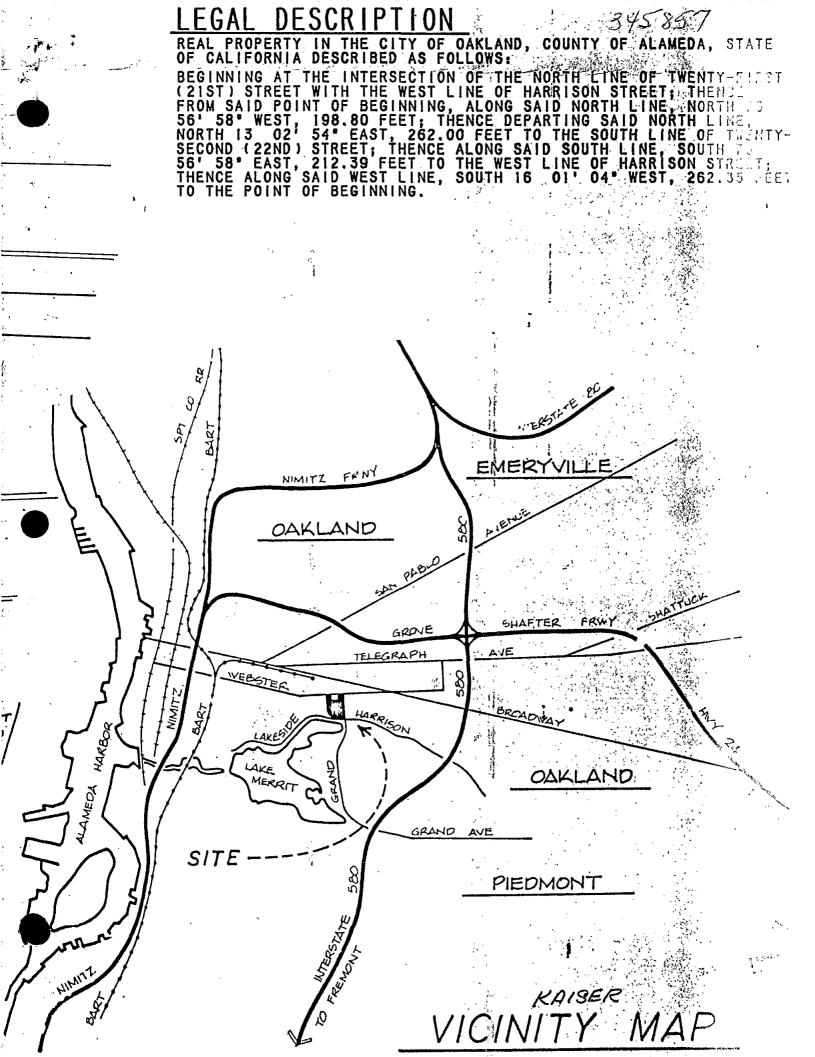
Feb. 10th, 1926

J. M. Ough, 1201 E. 12th St., Oakland, Calif.

Dear Sir;

The following is the report on the Industrial Chemical Analysis of Water submitted by you from the Elk's Club.

P.P.M.	Grs. per U.S.Gal.
Total Solids	272,40 199,29 11,68 2,35 1,68 36,09 73,60 2,58 95,85
ANALYSIS FOR HARDNESS	
Total Solids	272,40 82. 99 189,41
INCRUSTANTS	·
Total Hardness	82,99 77,80 5,19


Conclusions; This water is unfit for either domestic or industrial purposes, being apparently contaminated by a leak from the bay.

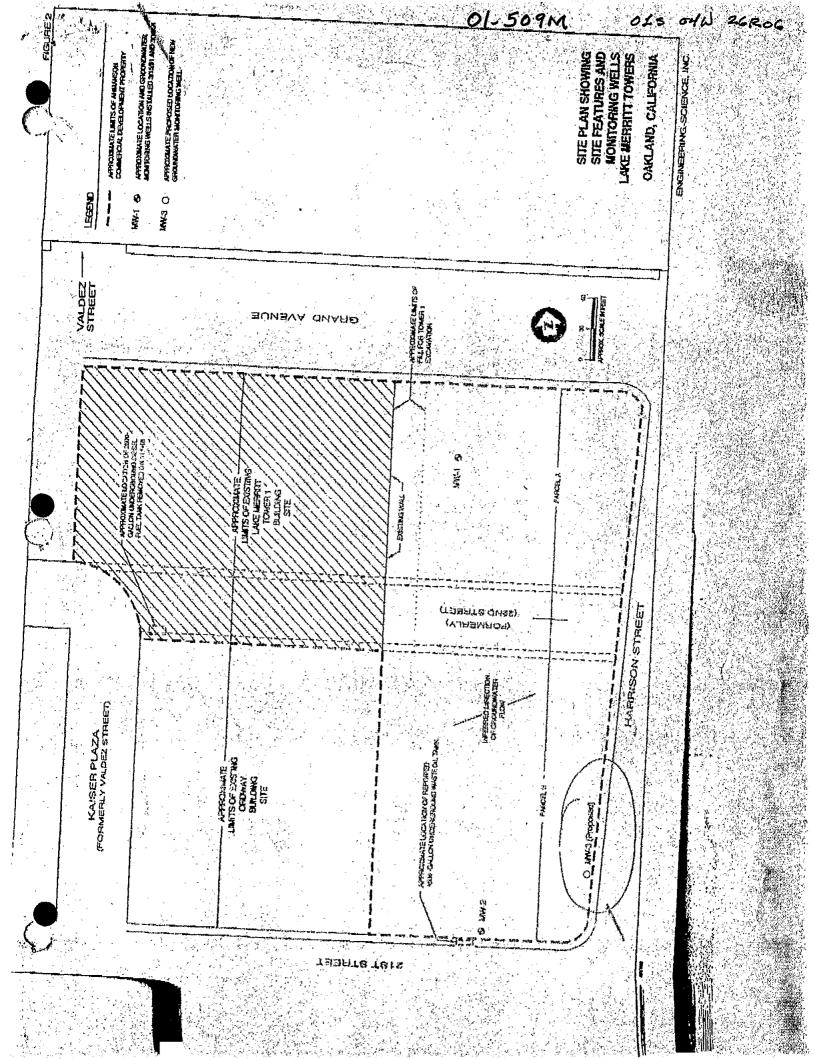
THE WESTERN LABORATORIES,

GERTRUDE MOORE SEC'TY.

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

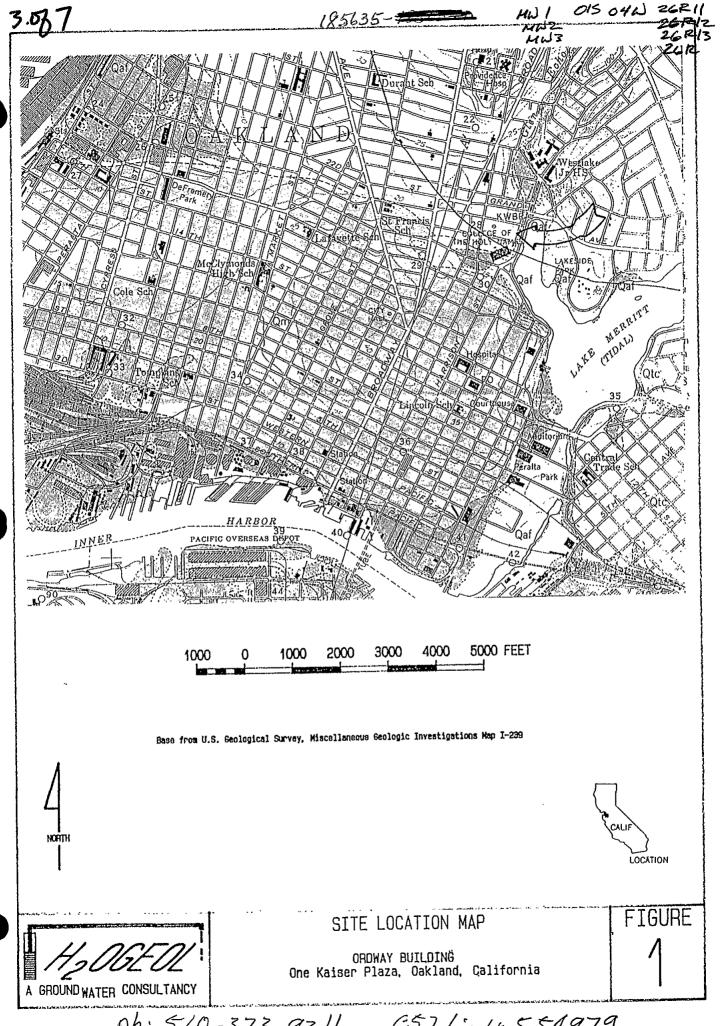
STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)


LOCATION;	OARLAND,	ibon streets, California	DRILLE	R: Aqua science engineers
COMPLETIO	N DATE: 10	March 1901		NG METHOD: ROTARY
GFOLOGIST:	M.F	RIEDMAN		
				NAMETER: 4-INCHES
		BLOW		
WELL CONST	RUCTION	COUNT	LITHOLOG	JY DESCRIPTION
FLUSH MOUNT SUBISTY BOX		0.7		ASPHALT and asphalt fill
LOCKING OAP				BROWN TO BLACK SANDY GLAV THE
BENTONITE SEAL			**************************************	Officaver and some roots, slightly damp.
(2.0-3,5 fant)			A COMMAND OF THE PARTY OF THE P	LIGHT BROWN FINE SANDY CLAY, slight
	****		WWW.	GONCRETE and Wood pieces
GROUT.		SURF		OLIVE GREEN CLAY (OL), damp, medium in LIGHT BROWN CLAY (CL), toft, damp to n
atinotnad Re		6		A WILL GROWN CLAY (CII) medium sin 2.
(1,0-2,0 foot)				MAN ORUWN CLAY (CL.), soft, moist to v
CIO DLANK				molet.
PVQ OASIAN (0.6-1.8 (est)		7 7 7		BLACK SILTY OLAY (CL), stift with pieces of
	The same of the sa	i i	14/4/14/1	gravel and brick, wet.
" III PLOTTED	TO POST OF THE PARTY OF THE PAR	2		BLACK VERY FINE-GRAINED SAND (SM)
VC CASING			2222222	Land wat solder hat
LOT 817E = 0 020°		- 4		BLACK GRAVELLY CLAYEY SILT (SM), gri
				BLACK CLAY (OL)
				BLACK GRAVELLY CLAYEY SILT (SM), RO
				appears to have mice pleas, wet to very moist
MONTEREY SAND		10		BLACK CLAY (CL), roots or reads in show of
ILTER PACK			MAMAMAS.	rampiar.
1.5-16.0 fact)				BLUE GRAY CLAY (CL), yely soft, buttery
			to the distributed and the Late 18	GRAY TO BLACK CLAYEY SAND (8C), book
				sorted, wet, water in speen,
		6 15		BLUE-GREEN CLAY (GL.) molet.
		20		
		21		aght brown fine or ained olayey sa
		10	WWWW.	30), medium dense, well sorted, damp to slight
		15 18-		
	Principal Control		WAAA	
	to have a manifest and a second		I.	IGHT BROWN GRAVELLY SAND (SW), med
			d	some to dames, slightly thamp to dry,
	January Company		观察学术	IGHT GRAY SILTY CLAY (CL), Will, damp.
EXPLANATION				Survived, Will, damp.
Water Level d	uring drilling		EID Photolo	orbadical real
Contact (appr	Almafa)		Location	nization Detector Reading

ES ENGINEERING - SCIENCE MW-3 CLIENT; AHMANSON COMMERCIAL DEVELOPMENT TEST HOLE NUMBER: 21ST/HARRISON STREETS, OAKLAND, CALIFORNIA LOCATION: DRILLER: AQUA SCIENCE ENGINEERS COMPLETION DATE: 19 March 1992 ROTARY DRILLING METHOD: _ GEOLOGIST: M. FRIEDMAN HOLE DIAMETER: 4-INCHES BLOW WELL CONSTRUCTION COUNT LITHOLOGY DESCRIPTION LIGHT BROWN GRAVELLY BAND (SW), with LIGHT BROWN SILTY CLAY (CL), stiff to very. stiff, slightly damp. LIGHT GRAY OLAY (CL) with buttery texture, damp. SURFACE PVC CAP BOTTOM OF BOREHOLE T.D. Approximately 25 Feet 36 EXPLANATION Water Level during drilling

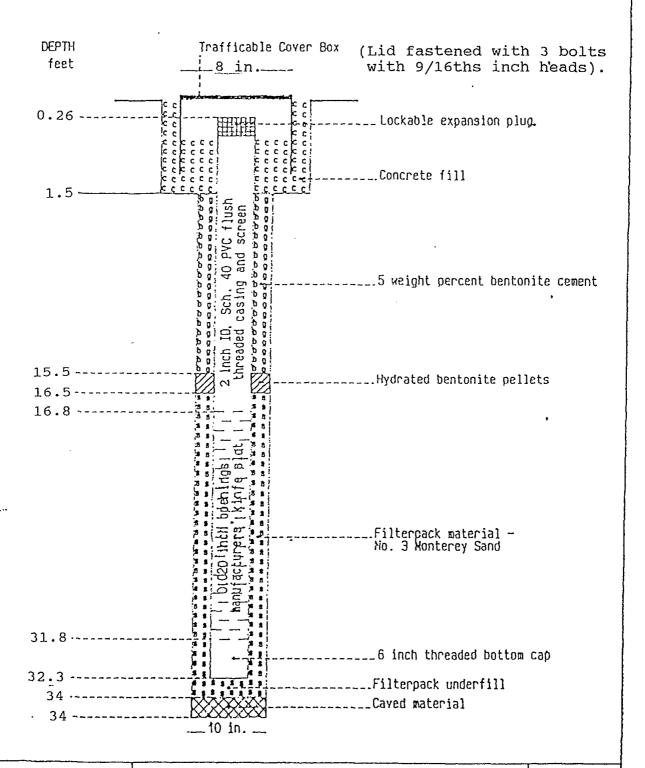
Photolonisation Detector Reading

Location of sample


Contact (approximate)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

A GROUND WATER CONSULTANCY


THE ORDWAY BUILDING One Kaiser Plaza, Oakland, California

ph: 510-373 9211, C57 Lict 554979

Project No. <u>DES-2</u>
Top of Casing Elev. <u>22.48</u> FMSL
Ground Surface Elev. <u>22.7</u> FMSL
Depth Datum <u>Ground Surface</u>

Alameda County, California ZONE 7 Permit No. 92116 Completion Date 03/27/92.

A GROUND WATER CONSULTANCY

WELL CONSTRUCTION SCHEMATIC
MONITORING WELL MW-1
THE ORDWAY BUILDING
ONE KAISER PLAZA
OAKLAND, CALIFORNIA

) 1

							185635 13/40-26				
H_{z}	200	\mathcal{E}	OL			BORE	HOLE LITHOLOGIC LOG				
Pro	oj. Di	ES-:	3		. В	OREHOL	E No. <u>B-1</u> , Sheet 3 of <u>3</u> Monitoring Well MW-1				
SAMPLING BLOW COUNTS	PID/FID HN. OWA READING	DEPTH feet	SOIL SAFPLE NAMERA	TIFE	GRAPHIC SOIL SYMBOL	ESCS SOTIL STITEOL					
		30									
		31									
		32				ML	Gravelly very sandy silt.				
		33				,					
		34			<u> </u>		Total depth drilled 34 feet.				
		35									
		36									
		37					•				
		38					•				
		39									
		40									
		42									
		43									
		44									
		45									

H_{λ}	200	FE	OL	BOREHOLE LITHOLOGIC LOG						
Pro	oj. Di	Es-:	3		. вс	DREHOL:	E No. B-1 , Sheet 2 of 3 Monitoring Well MW-1 .			
SAPPLING BLOW COUNTS	PID-FID HN. OVA READING	DEPTH foot	SOIL SAFPLE NUMBER	TIME	GRAPHIC SOIL SYMBOL	LISCS SOIL SMED.				
9 12 13		14 15 16 17 18	1-3	10:25		CL ML ML	Light yellowish brown silty clay. Yellowish brown clayey silt, mottled reddish brown. No noticeable odor. Gravelly clayey silt			
8 9 10		 20 21 22 23 24 25 26 27 28 	1-4	10:56		ML	Yellowish brown very sandy silt, mottled reddish brown. No noticeable odor. First encountered water at 22 feet.			
		29				ML	Gravelly silt.			

A GROUNDWATER CONSULTANCY

BOREHOLE LITHOLOGIC LOG

BOREHOLE No. B-1 , Sheet 1 of 3 Monitoring Well MW-1

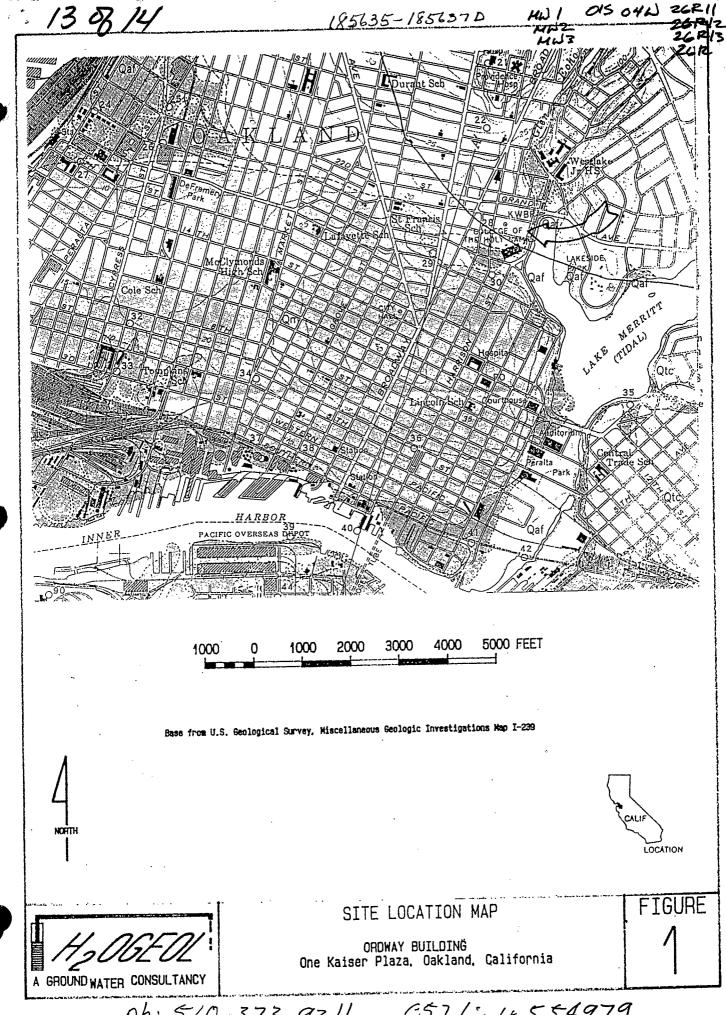
Date: 03/23/92 Project No. DES-3

Client: Decon Environmental Services | Drill Model: Housier

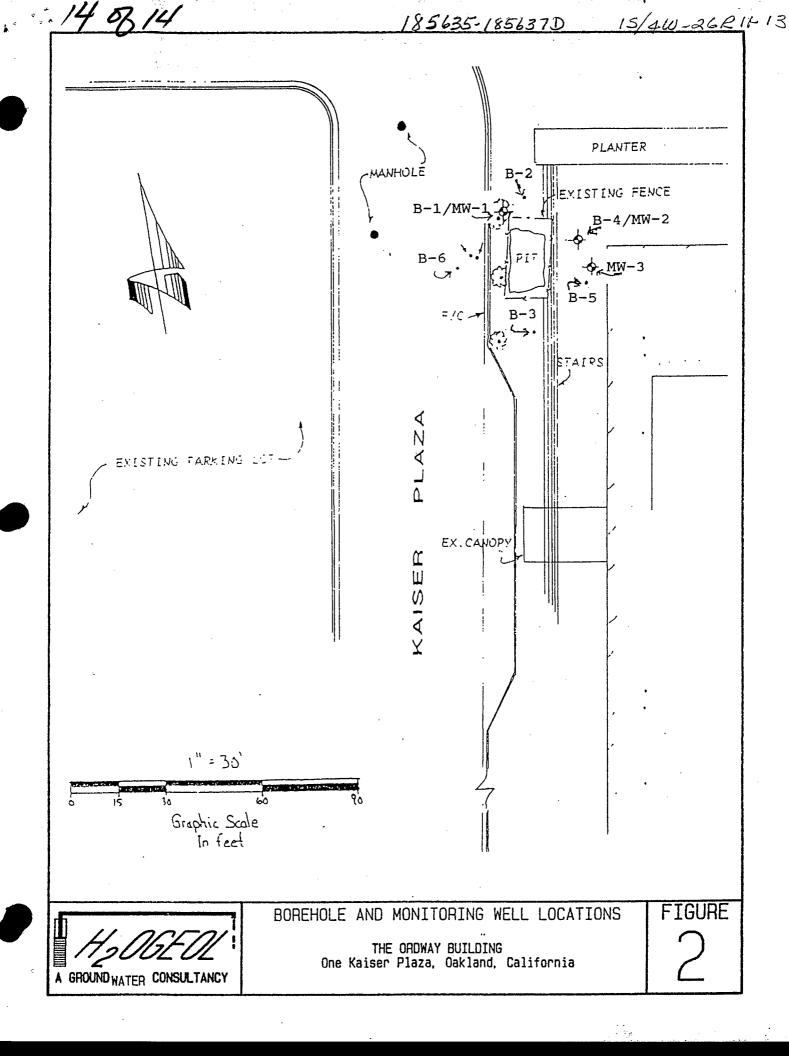
Location: The Ordway Building

Location: One Kaiser Plaza

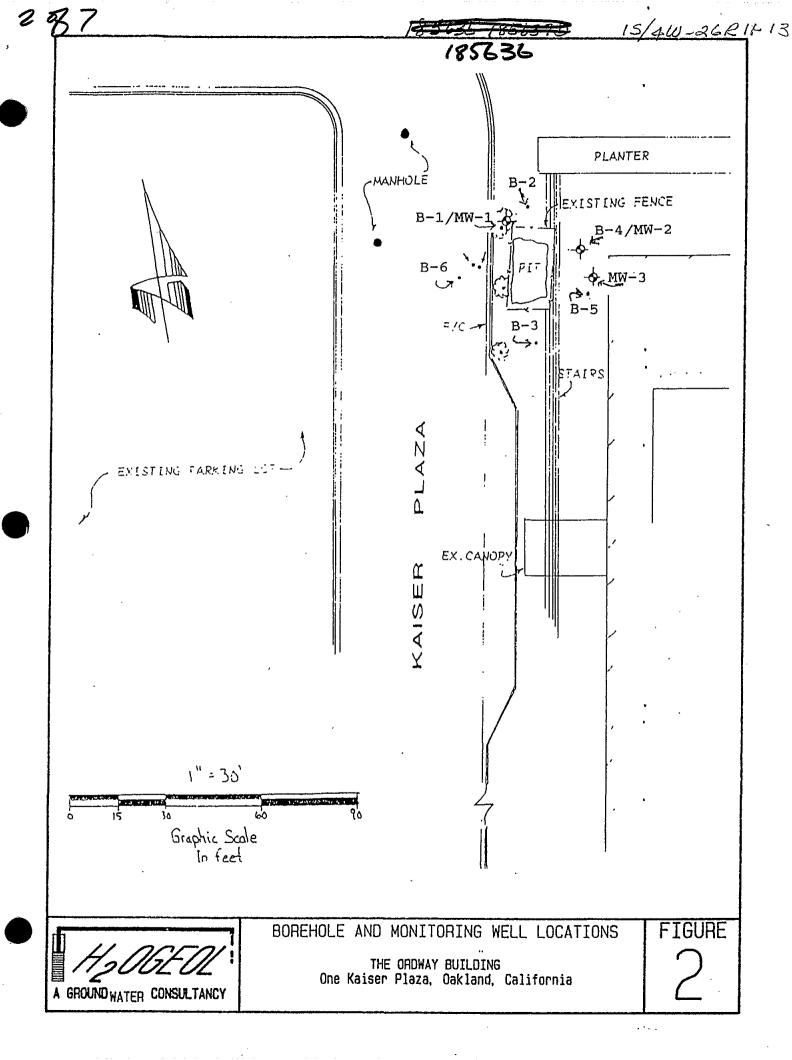
Oakland, California

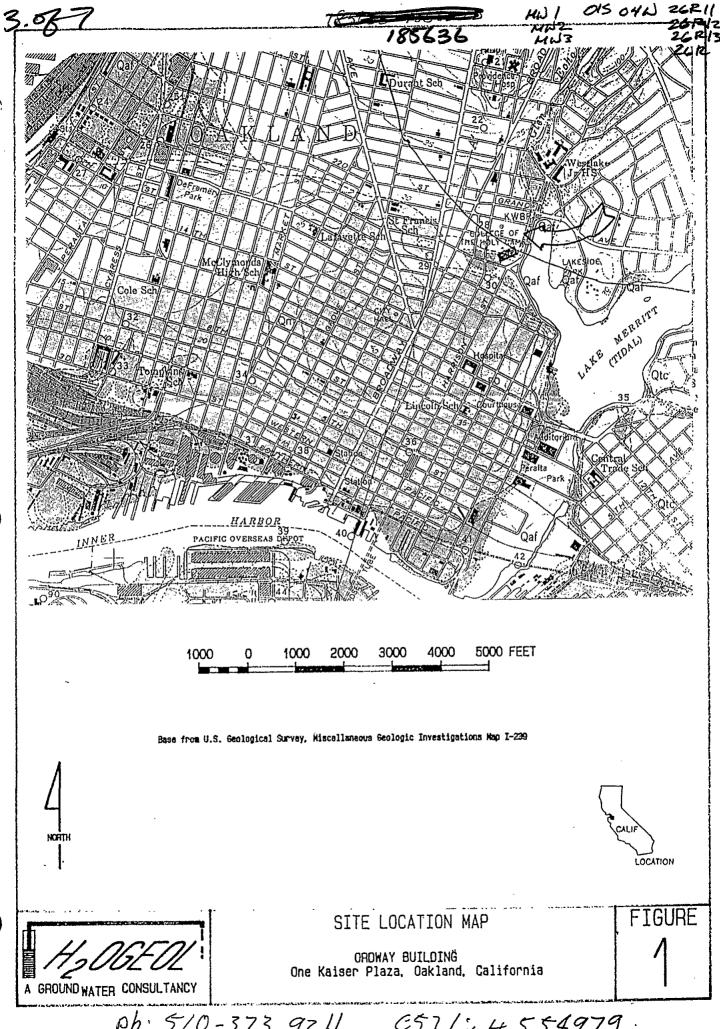

Drilling CO. West HazHat Drilling, Inc.

Drilling Method: Hollow Stem Auger


Driller: Rod Reidhead

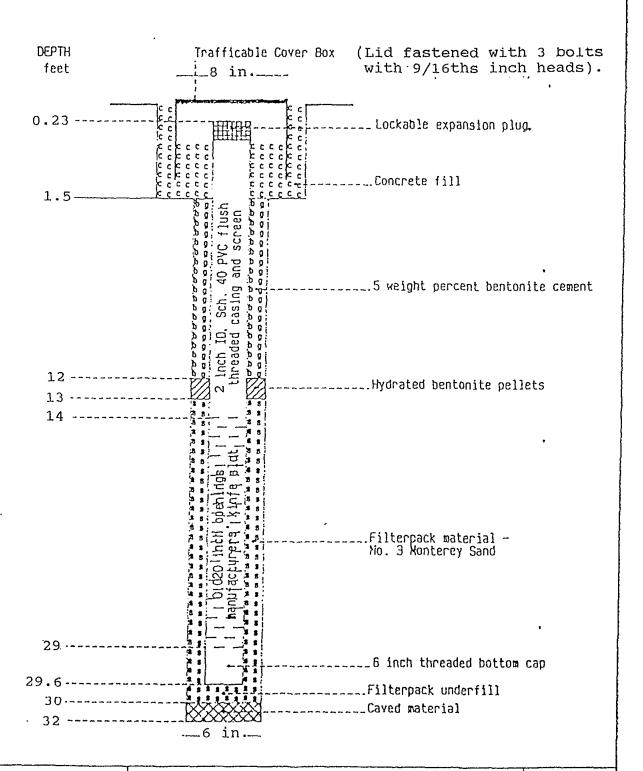
Ground Surface Elevation: FMSL


Log	Logged by: Gary D. Lowe, R.G., C.E.G. Datum: Ground Surface								
SWELING BLOH COLNTS	PID-FID HN. OVA READING	DEPTH feet	SOIL SAFPLE NABER	TIME	GRAPHIC SOIL SYMBOL	USCS SOIL STIBOL	WATER LEVEL 18.43 Ft. TIME 09:07 DATE 03/29/92 Field Soil Description		
		1 2				ML	Dark brown clayey silt. Planter box top soil.		
		3							
5 15		5	1-1	09:54		CL	Light yellowish brown silty clay. Stiff. No noticeable odor.		
		7					,		
7		9							
12 50		11	1-2	10:09		SM	Olive silty very fine to fine sand. No noticeable odor.		
		12							
					1//				



ph: 5/0-373 9211, C57 Lic# 554979

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)



ph: 510-373 9211, C57 Lict 554979.

Project No. DES-2 Top of Casing Elev. 19.77 FMSL Ground Surface Elev. 20.0 FMSL Depth Datum Ground Surface

Alameda County, California ZONE 7 Permit No. 92116 Completion Date 03/27/92

A GROUND WATER CONSULTANCY

WELL CONSTRUCTION SCHEMATIC MONITORING WELL MW-2 THE ORDWAY BUILDING ONE KAISER PLAZA OAKLAND, CALIFORNIA

<u> </u>	<u>/</u>						185636 15/4W-26R				
$ H_{\lambda} $	200	FE	OL		BOREHOLE LITHOLOGIC LOG						
Pro	oj. DJ			BOREHOLE No. B-4 , Sheet 3 of 3 Monitoring Well MW-2							
SAMPLING BLOW COUNTS	PID/FID HN. OVA READING	00-TH	SWPLE	Ä	GRAPHIC SOIL SYMBOL	SOIL SOIL STRBOL					
		30									
		31									
		32					Total depth drilled 32 feet.				
		33									
	t.	34 35					•				
		36		····	} 						
		37									
		38									
<u></u>		39									
		40									
		41					•				
	•	43									
		44		·		t I					
		45					•				

H_{λ}	206	\vec{E}	OL		BOREHOLE LITHOLOGIC LOG					
Pro	oj. DI	≅S−:	3		BOREHOLE No. <u>B-4</u> , Sheet 2 of <u>3</u> Monitoring Well MW-2					
SAPPLING BLOW COUNTS	FID-FID HN. OVA READING	DEPTH feet	SOIL SAFRE NABER	TIME	GRAPHIC SOIL SYMBOL	LESCS SOIL STREOL	·			
		14								
10 12		15 16	4-3	09:12			Reddish brown gravelly silt. Fill No noticeable odor.			
		17					Very gravelly silt.			
		18 19					Very gravelly silt.			
12		20	4.4	09:45		ML	First encountered water at 20 feet.			
16	ı	21	4-4	09:45			Reddish brown gravelly sandy silt. Fill. No noticeable odor.			
		23					•			
		24 25			505050					
		26			2000 000 000 000 000 000 000 000 000 00	GW	Gravel. Well Graded. Fill.			
		27			808080		Reddish brown gravelly silt. Fill.			
		29				*****	,			

A GROUNDWATER CONSULTANCY

BOREHOLE LITHOLOGIC LOG

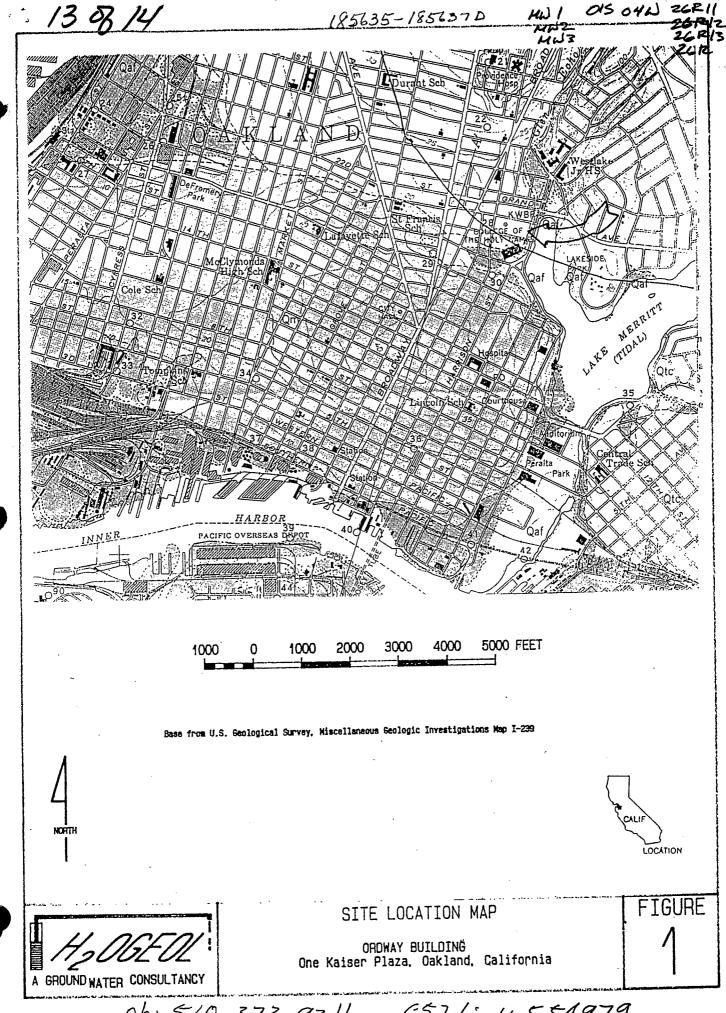
BOREHOLE No. B-4 , Sheet 1 of 3Monitoring Well MW-2

Project No. DES-3

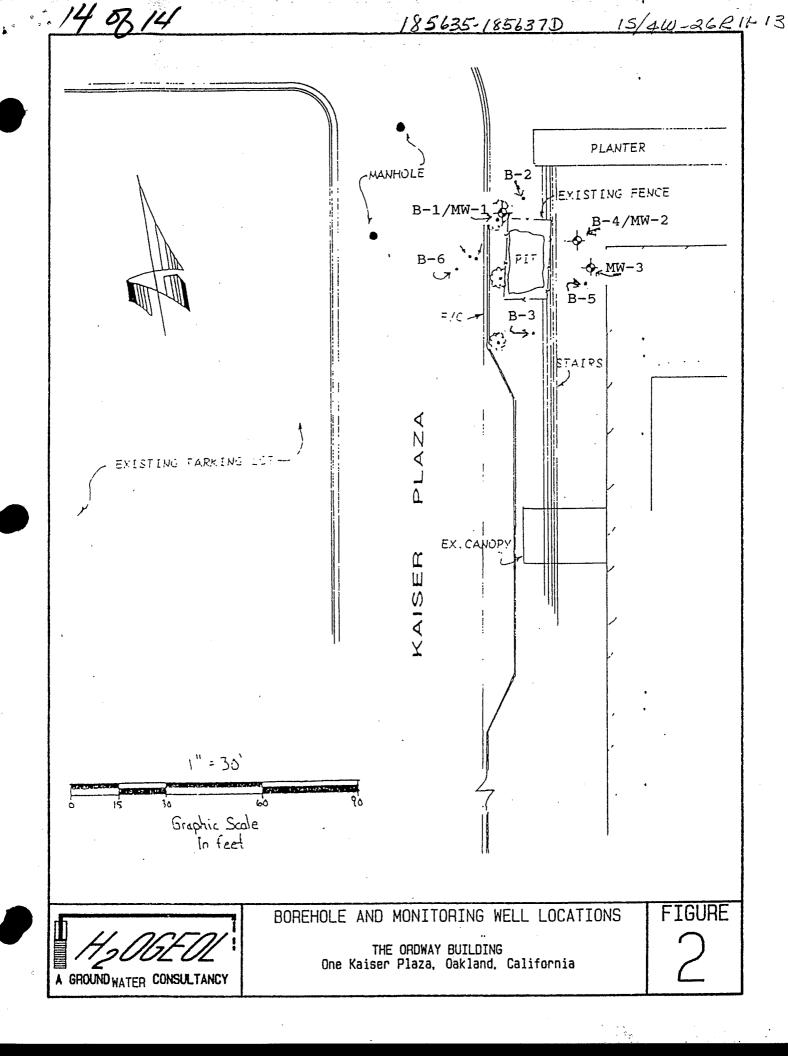
Client: Decon Environmental Services | Drill Model: Houster

Location: The Ordway Building Location: One Kaiser Plaza

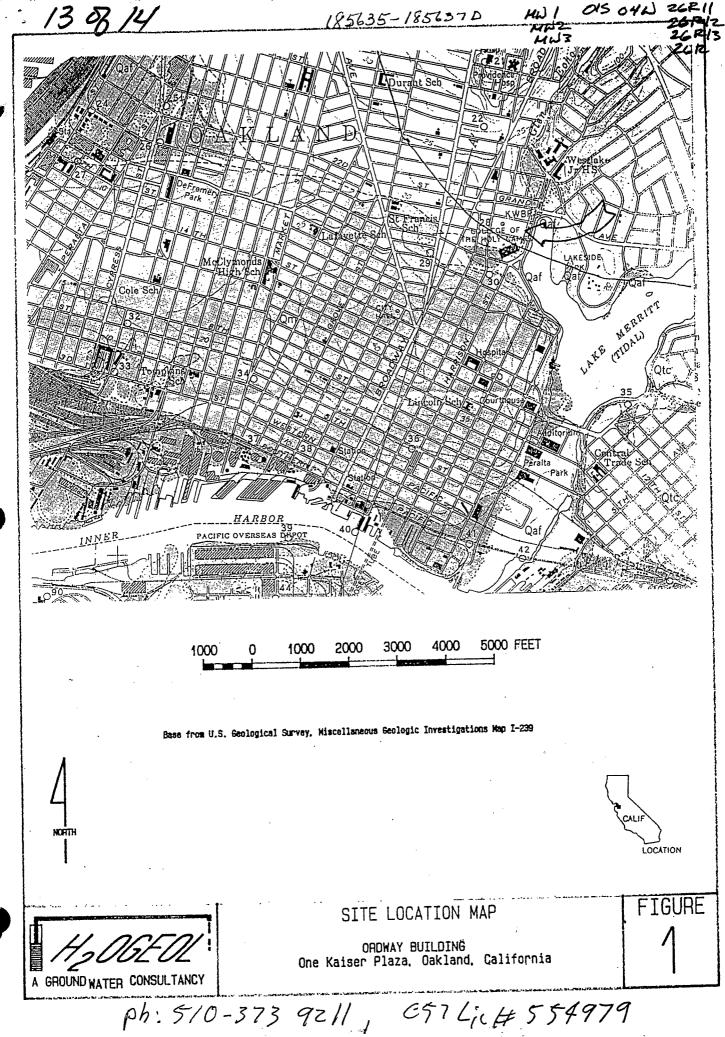
Oakland, California

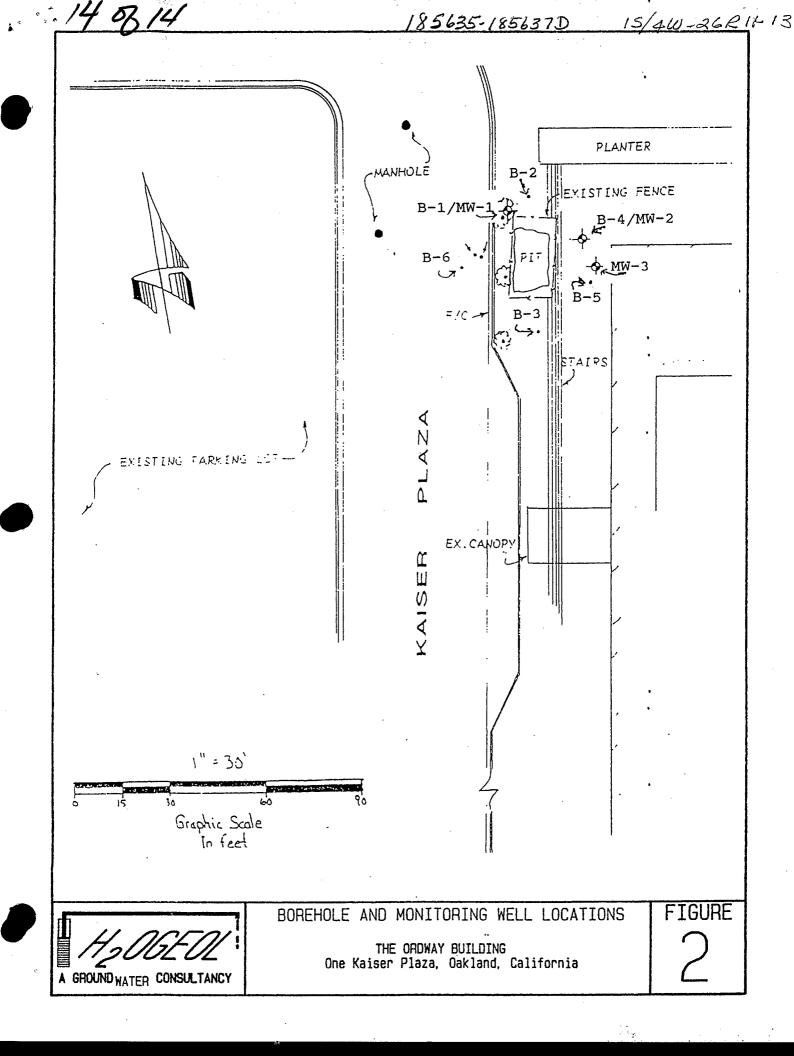

Date: 03/24/92 | Drilling Co. West HazHat Drilling, Inc.

Drilling Method: Hollow Stem Auger


Driller: Rod Reidhead

Ground Surface Elevation:


Log	gged	by:	Gary 1	D. Low	e, R.G.	.,C.E.	G. Datum: Grnd Surf Diameter 6-in.
SUNDO MOTE	PID/FID HN.OVA HEADING	DEPTH foot	SOIL SAFPLE NABER	7.7Æ	GRAPHIC SOIL SYPBOL	USCS SOIL SYMBOL	WATER LEVEL 16.48 Ft. TIME 09:30 DATE 03/29/92 Field Soil Description
		1					Concrete, etc. 12-inches.
							Reddish brown gravelly clay. Fill.
		2				CL	
		3					
		4					
14		- - 5					Light yellowish brown sandy clayey
7 8				08:34		ML	silt. Fill (Sample all caved fill).
		6					No noticeable odor.
		7	-				
		8					
		9					
7		10		lt			Yellowish brown to reddish brown
22 24	i i		4-2	08:50			mottled gravelly clayey silt. Fill No noticeable odor.
		11				ML	
		12					Very gravelly silt.
		13					
							Less gravel.



ph: 510-373 9211, C57 Lict 554979

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

A GROUNDWATER CONSULTANCY

BOREHOLE LITHOLOGIC

BOREHOLE No. MW-3 , Sheet 1 of 2 Monitoring Well MW-3

Project No. DES-3 Date: 03/27/92

Client: Decon Environmental Services | Drill Model: Housier

Location: The Ordway Building

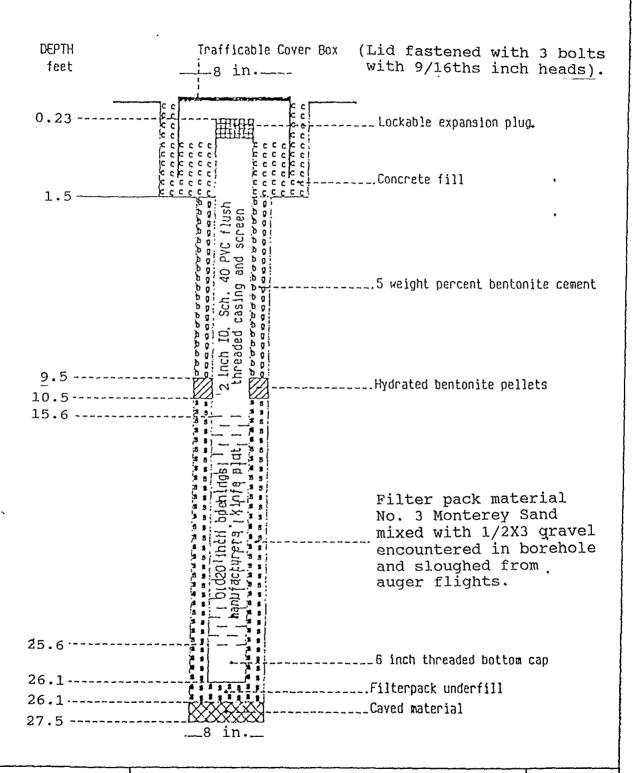
Location: One Kaiser Plaza

Oakland, California

Drilling Co. West HazMat Drilling, Inc.

Drilling Method: Hollow Stem Auger

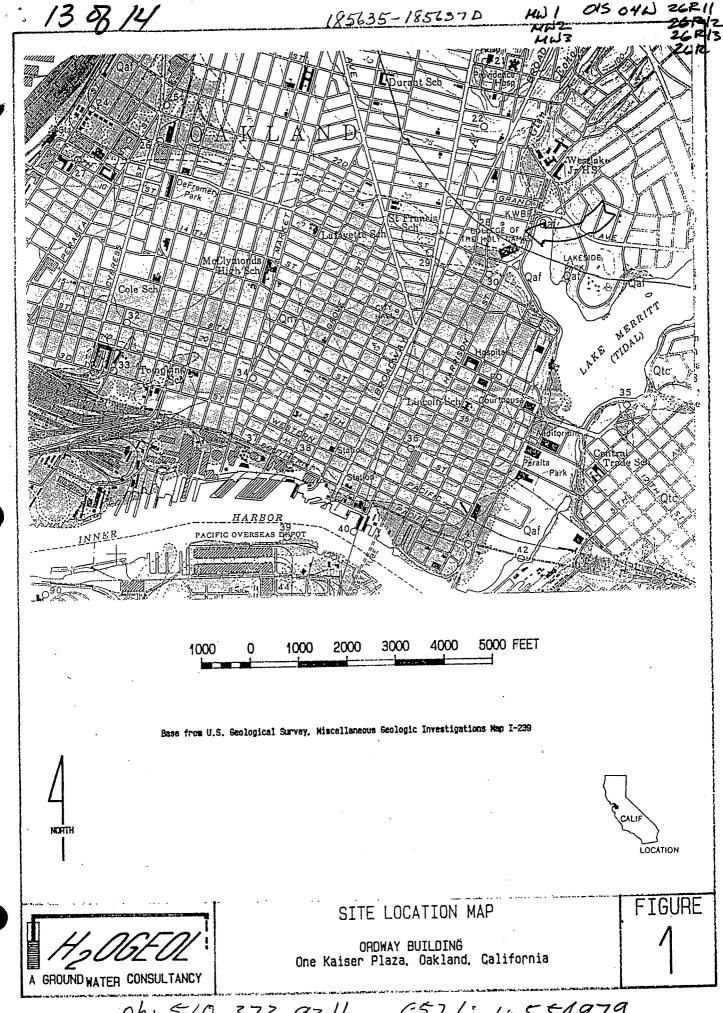
Driller: Rod Reidhead

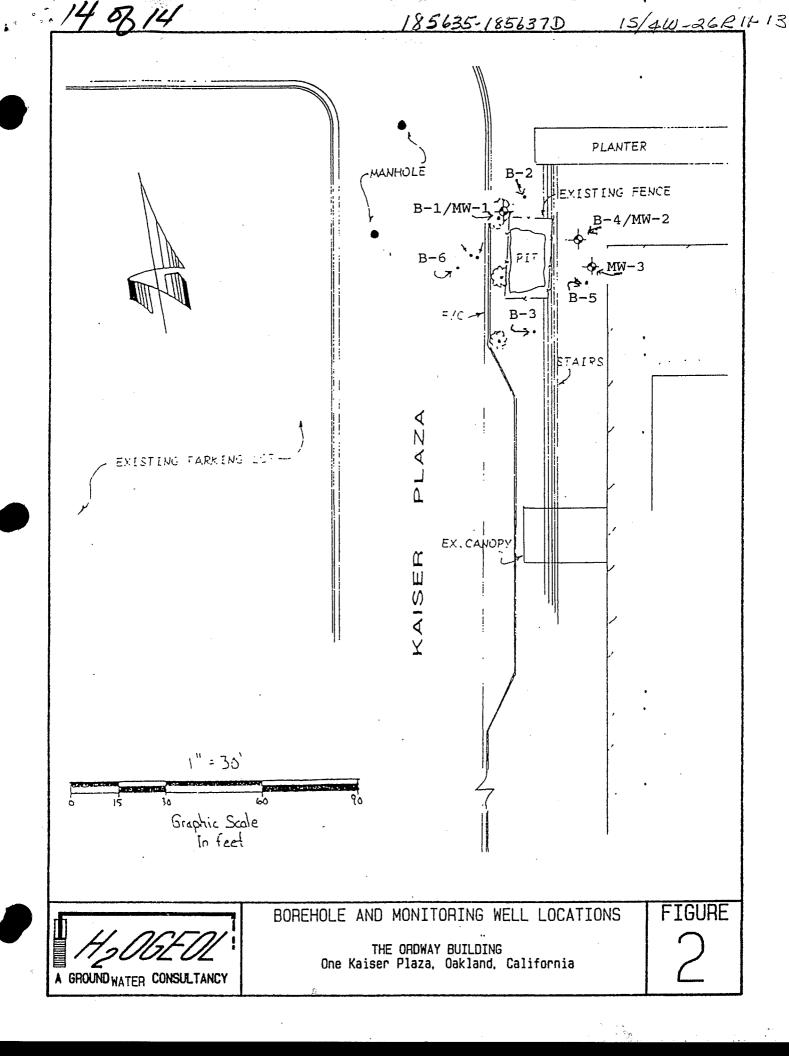

Lo	gged :	by:	Gary 1	D. Low	e, R.G	.,C.E.	G. Datum: Grnd Surf Diameter 8-in.
BLOW COLNTS	PID/FID HN. OVA READING	DEPTH Test	SOTE SAPPE NABES	TIPE	GRAPHIC SOIL SYNBOL	USCS SOIL SYMBOL	WATER LEVEL 16.48 Ft. TIME 09:17 DATE 03/29/92 Field Soil Description
		1					Concrete, etc. 12-inches.
		2					Reddish brown gravelly clay. Fill.
						CL	•
		3					
		4					Light yellowish brown sandy clayey
		5					silt. Fill.
						ML	
		6					
		7					
		8					
	, <u>-</u>	9					
-		10					Yellowish brown gravelly clayey
				!			silt. Fill.
		11				ML	
		12					
		13					
		13					,

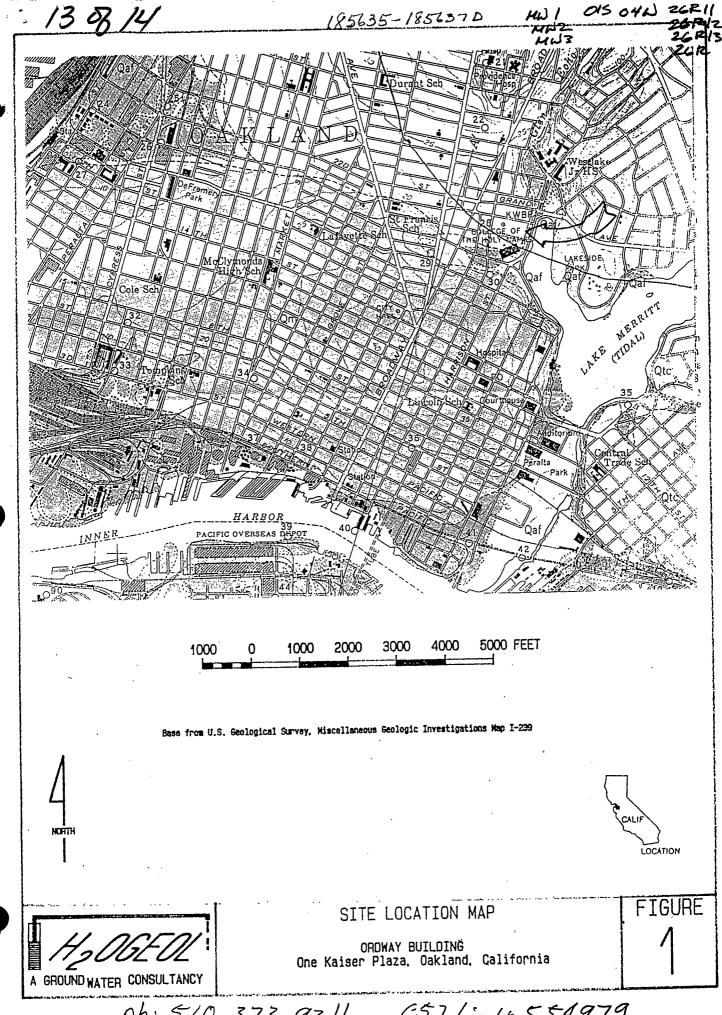
3 %/4 H ₂ 0GE0L					185637 15/4W-26R							
H_{λ}	200	$\mathcal{F}E$	OL		BOREHOLE LITHOLOGIC LOG							
Pr	oj. D	ES-	3		BOREHOLE No. MW-3 , Sheet 2 of 2							
SAPPLING BLOW COUNTS	PID/FID HN. OVA READING	DEPTH fort	SOIL SAPPE NABER	TIME	GRAPHIC SOIL SYMBOL	USCS SOIL SYMBOL						
		14		·	-							
		15			505050 - 505050 - 505050		,					
		16			202020 0202020 202020 202020							
		17			10000000000000000000000000000000000000		First encountered water at 17 feet.					
		18			- 303030 - 303030 - 303030 - 303030		Gravel. Well graded. Fill					
		19		,	\$505000 \$505000 \$505000 \$505000 \$505000 \$505000 \$505000 \$505000 \$505000 \$50500 \$50500 \$50500 \$50500 \$50500 \$50500 \$50500 \$50500 \$505000 \$505000 \$505000 \$505000 \$505000 \$50500 \$50500 \$50500 \$50500 \$50500 \$50500 \$50500 \$505000 \$505000 \$505000 \$505000 \$505000 \$505							
		20			202020 202020 202020 202020	,						
		22			\$ 10 10 10 10 10 10 10 10 10 10 10 10 10							
		23			1 202020 202020	GW						
		24			20000000000000000000000000000000000000							
		25			70,000,000							
		26			2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
	,	27			525.050 - 505050 - 505050		Auger refusal at 27.5 feet. Total depth drilled 27.5 feet.					
		28					depen drifted 27.5 feet.					

15/4W-26R13

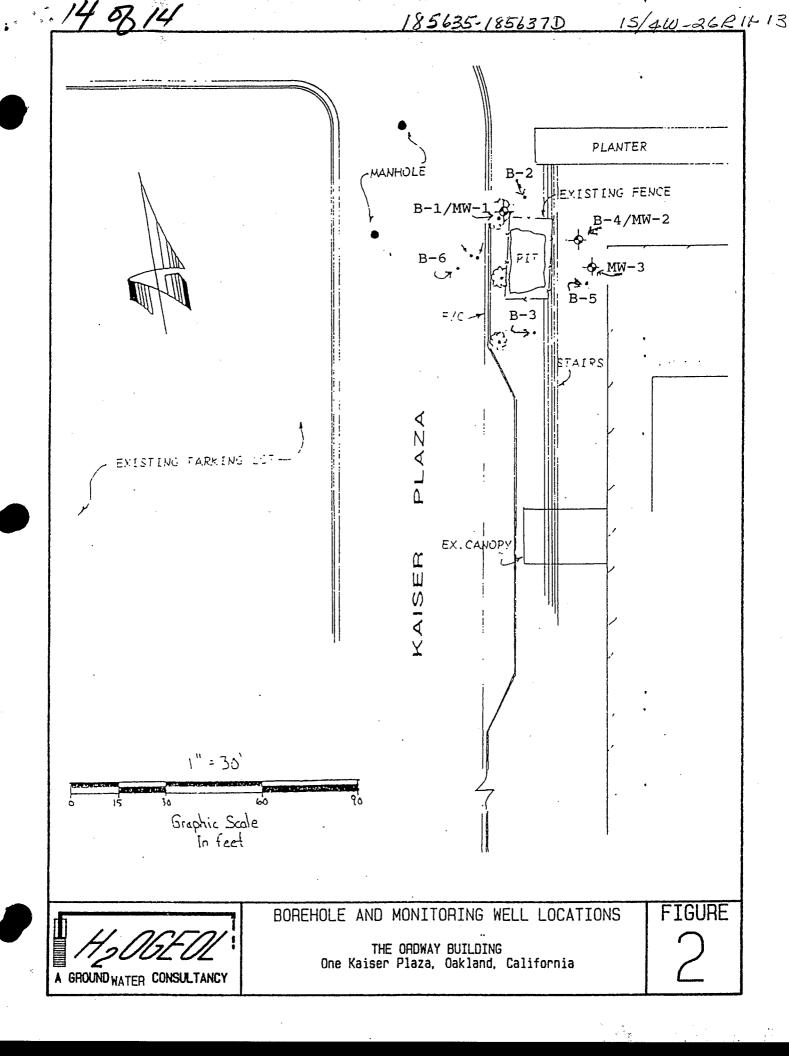
Project No. <u>DES-2</u>
Top of Casing Elev. <u>19.86</u> FMSL
Ground Surface Elev. <u>20.1</u> FMSL
Depth Datum Ground Surface


Alameda County, California ZONE 7 Permit No. 92116 Completion Date 03/27/92


A GROUND WATER CONSULTANCY


WELL CONSTRUCTION SCHEMATIC
MONITORING WELL MW-3
THE ORDWAY BUILDING
ONE KAISER PLAZA
OAKLAND, CALIFORNIA

03



ph: 5/0-373 9211, C57 Lict 554979

ph: 5/0-373 9211, C57 Lic# 554979

A GROUND WATER CONSULTANCY

BOREHOLE LITHOLOGIC LOG

BOREHOLE No. B-2 , Sheet 1 of 2

Project No. DES-3 Date: 03/23/92

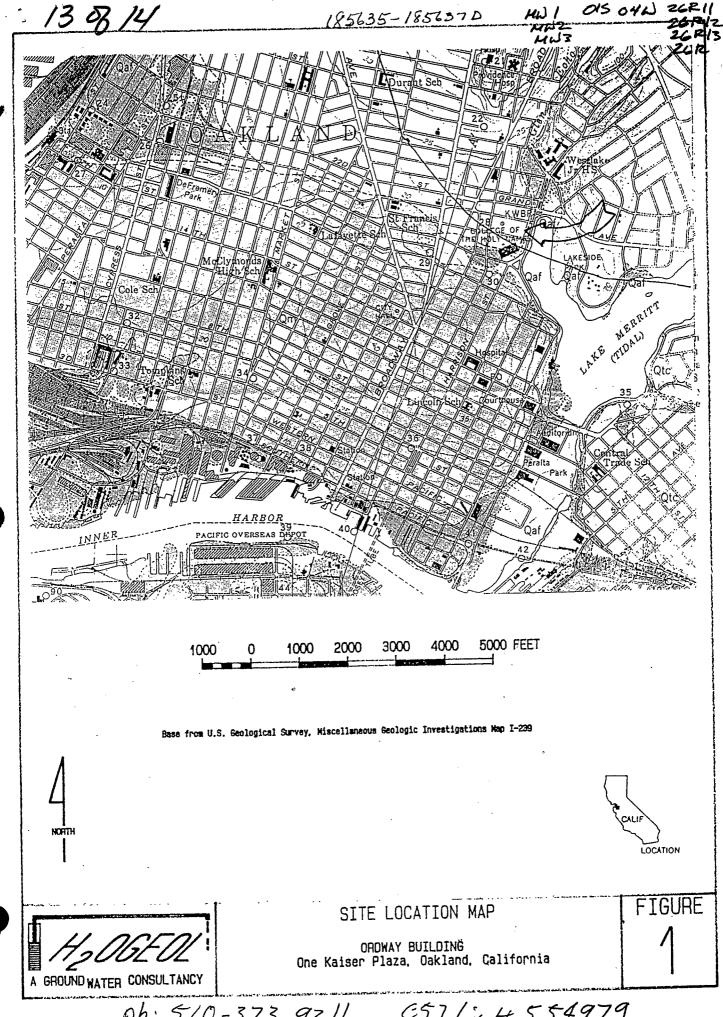
Client: Decon Environmental Services Drill Model: Housier

Location: The Ordway Building

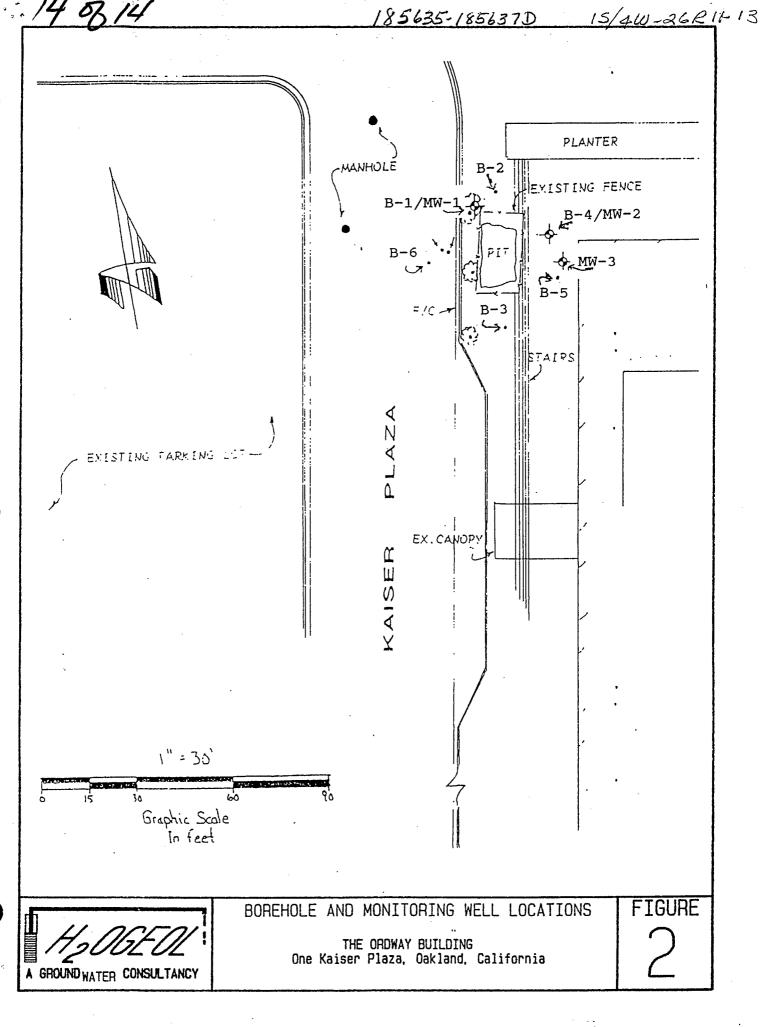
Location: One Kaiser Plaza

Oakland, California

Logged by: Gary D. Lowe, R.G., C.E.G. Datum: Grnd Surf Diameter 6-in.


Drilling Co. West HazHat Drilling, Inc.

Drilling Method: Hollow Stem Auger


Driller: Rod Reidhead

LOG	ggea .	Dy .	Gary	D. FOM	e, R.G	., C.E.	G. Datum: Grid Suri Diameter 6-in.
SAFFLING BLOU COUNTS	PID/FID HN. OVA READING	DEPTH feet	SOIL SAFFLE NLYBER	TIPE	GRAPHIC BOIL SYNBOL	USCS BOIL SYTBOL	TIME DATE Field Soil Description
		1			1///		Concrete, etc. 10-inches.
		2					
		3				CL	Reddish brown gravelly silty clay.
		4					Dark brown gravelly silty clay. Fill
5		5				CL	
6 16		6	2-1	14:34			Light yellowish brown sandy clayey
	<u></u>	7				ML	silt. No noticeable odor.
		8					
		9					
4		10				SM	
9 18		11	2-2	15:01			Dark yellowish brown silty very fine to fine sand. No noticeable odor.
		12				sc	Gravelly fine sand.
		13					

H_{z}	200	E	OL		BOREHOLE LITHOLOGIC LOG							
	- oj. Dl				BOREHOLE No. B-2 , Sheet 2 of 2							
SAMPLING BLOU COUNTS	PID/FID HN. OVA READING	DEPTH feet	SAFIE SAFIE NIMBER	TIPE	GRAPHIC SOIL SYMBOL	USCS SOIL SYMBOL						
		14										
4		15				ML						
6 10		16	2-3	15:18			Dark yelowish brown clayey silt with reddish brown mottles around root					
							hairs. No noticeable odor.					
		17					Yellowish brown silty clay.					
		18				CL						
11		19	,	·								
9		20	2-4	15:43			Yellowish brown silty clay with					
						•	reddish brown mottles. No noticeable odor.					
		22		, , , , , , , , , , , , , , , , , , ,			Total depth drilled 19.5 feet. Sample driven to 21 feet. Borehole grouted					
		23					03/23/92.					
		24										
		25										
		26										
		27										
		28										
		29										

ph: 510-373 9211, C57 Lic# 554979

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

A GROUNDWATER CONSULTANCY

BOREHOLE LITHOLOGIC LOG

BOREHOLE No. B-3 , Sheet 1 of 2

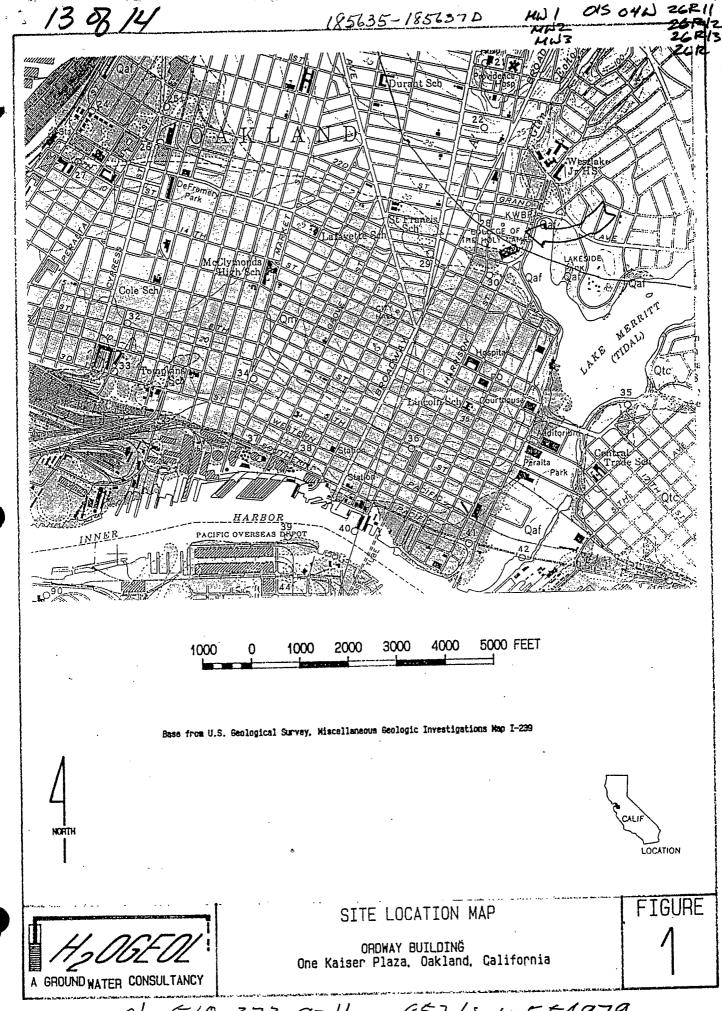
Project No. DES-3 Date: 03/23/92 Drilling Co. West HazHat Drilling, Inc.

Client: Decon Environmental Services Drill Model: Housier

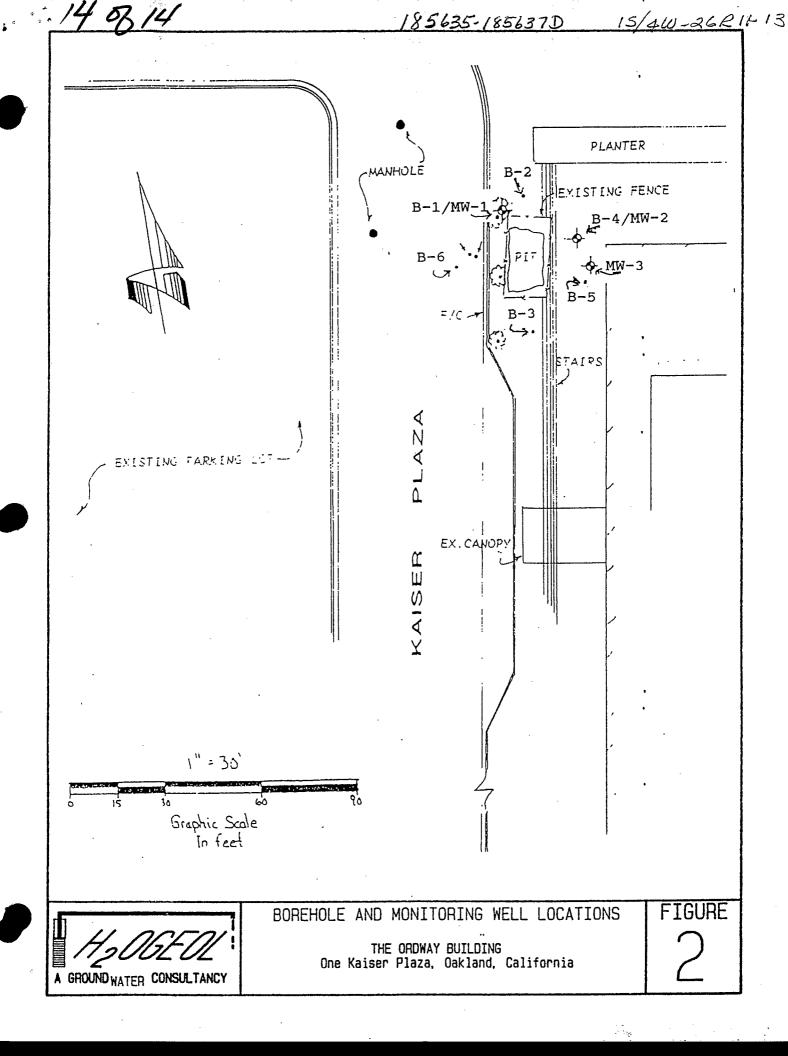
Location: The Ordway Building

Location: One Kaiser Plaza

Oakland, California Gary D. Lowe, R.G., C.


Drilling Method: Hollow Stem Auger

Driller: Rod Reidhead


	gged	by:	Gary 1	D. Low	e, R.G	.,C.E.	G. Datum: Grnd Surf Diameter 6-in.
BLOH COLNTB	PID-FID HNL. OVA READING	DEPTH feet	SOIL SAFPLE NIMBER	TINE	GRAPHIC BOIL SYFBOL	SOIL SOIL STIBOL	WATER LEVEL TIME DATE Field Soil Description
		1					Concrete, etc. 12-inches.
		2					
		3				CL	Reddish brown gravelly silty clay. Fill
		4					Dark brown gravelly clayey silt.Fil
4		- 5					
5 5		6		16:46		ML	(Sampler filled with cuttings, no
		7					sample retrieved.No noticeable odor
							:
		8					
4		9				МŢГ	·
5		10					Yellowish brown clayey silt.
7		11	3-2	17:06		:	No noticeable odor.
		12					
<u> </u>		13					Yellowish brown silty clay.

29

8.814 H₂0GEOL 185637B 15/4ω-26R BOREHOLE LITHOLOGIC LOG BOREHOLE No. B-3 , Sheet 2 of 2 Proj. DES-3 38 E 14 CL10 15 Yelowish brown silty clay. Stiff 10 3-3 17:20 No noticeable odor. 15 16 17 Yellowish brown silty very fine to SM fine sand. 18 19 ML9 20 12 3-4 17:43 Yellowish brown clayey silt. 20 21 No noticeable odor. Total depth drilled 19.5 feet. 22 Sample driven to 21 feet. Borehole grouted 03/23/92. 23 24 25 26 27 28

ph: 5/0-373 9211, C57 Lict 554979

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

A GROUNDWATER CONSULTANCY

BOREHOLE LITHOLOGIC LOG

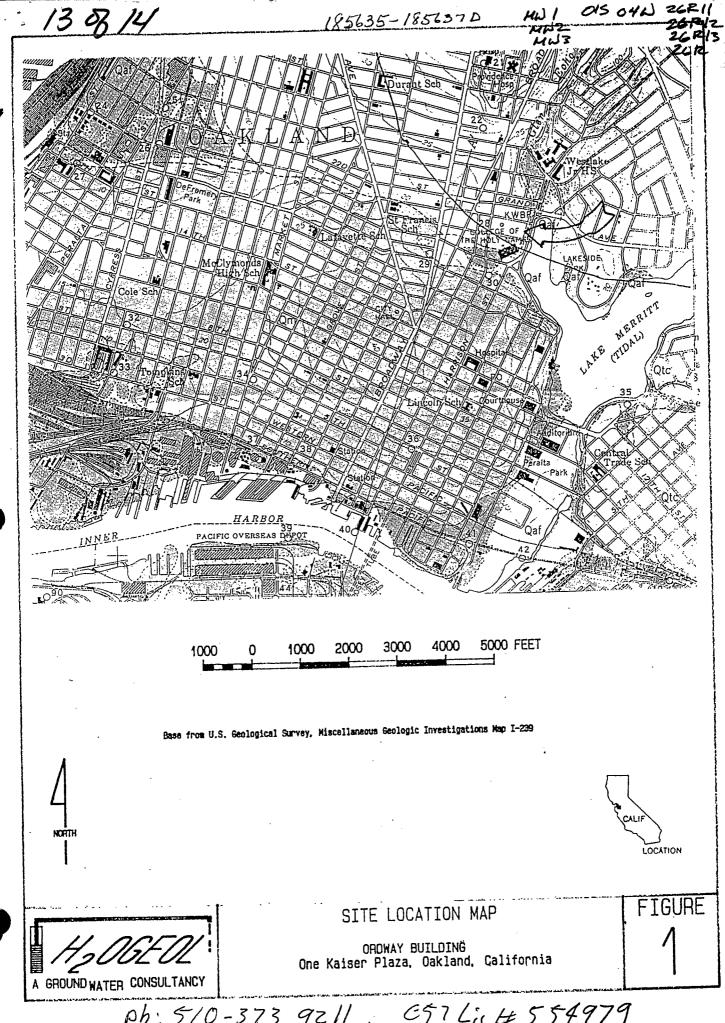
BOREHOLE No. B-5 , Sheet 1 of 2

Project No. DES-3 Date: 03/25/92 | Drilling Co. West HazHat Drilling, Inc.

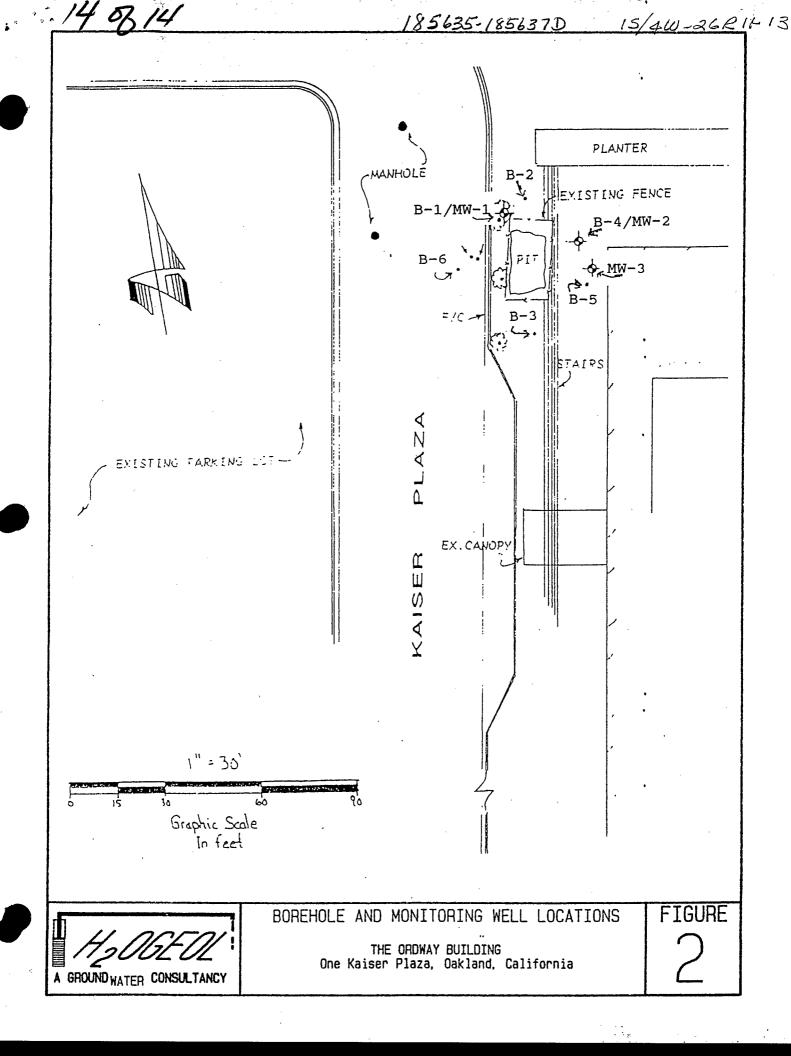
Client: Decon Environmental Services Drill Model: Housier

Location: The Ordway Building Location: One Kaiser Plaza

Oakland, California


Logged by: Gary D. Lowe, R.G., C.E.G. Datum: Grnd Surf Diameter 6-in.

Drilling Method: Hollow Stem Auger


Driller: Rod Reidhead

SAFFLING BLOW COLNTS	PID_FID HN. OVA READING	DEPTH	SOIL SAFFE N.FRER	TIFE	GRAPHIC BOIL SYPBOL	USCS SOIL STIBOL	WATER LEVEL TIME DATE Field Soil Description
	•	1					Concrete, etc. 12-inches.
							Reddish brown gravelly silt. Fill.
		3				ML	
		4			- q		Yellowish brown fine sand. Well
2		5					graded. Fill.
2 2		6	5-1	07:59	2.59	sw	Yellowish brown fine sand. Fill. No noticeable odor.
		7					
		8			. 0 . 0		(6-inch sampling auger passed, but reaming with 8-inch auger exposed
		9					edge of 10-inch pipe at 7.5 feet).
10	•	10				SC/ SM	
14 16		11	5-2	08:13			Yellowish brown clayey/silty sand. Fill. No noticeable odor.
		12			//		
		13				SC	Dark yellowish brown clayey sand.
		1.5			1//	50	

H_{z}	200	E	OL		BOREHOLE LITHOLOGIC LOG							
	oj. Dl				BOREHOLE No. B-5 , Sheet 2 of 2							
SAPLING BLOW COLNTR	PID_FID HNOVA READING	DEPTH feat	SAFTE SAFTE NUMBER	TIME	GRAPHIC	olf fad.	LSCS SOIL STTECL					
		14										
11 11 20		15	5-3	08:27		///	ML	Reddish brown gravelly silt. Fill No noticeable odor.				
		16			1373	5553		Gravel. Well graded. Fill				
		17 18			6 6 5 0 0 5		GW 	Reddish brown gravelly silt. Fill				
		19										
- 6 - 7		20						First encountered water at 20 feet.				
12		21	5-4	08:50				Reddish brown gravelly sandy silt. Fill. No noticeable odor.				
		22					ML					
		24					MT					
		25										
		26										
		27						Auger refusal at 27 feet. Total depth drilled 27 feet. Borehole				
	•	28						grouted 03/27/92.				
		29			<u> </u>							

ph: 510-373 9211, C57 Lict 554979

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

BOREHOLE LITHOLOGIC LOG

BOREHOLE No. B-6 , Sheet 1 of 2

Project No. DES-3 Date: 03/27/92 Client: Decon Environmental Services Drill Model: Housier

Location: The Ordway Building

Location: One Kaiser Plaza

Oakland, California

Logged by: Gary D. Lowe, R.G., C.E.G. | Datum: Grnd Surf Diameter 6-in.

Drilling Co. West Hazhat Drilling, Inc.

Drilling Method: Hollow Stem Auger


Driller: Rod Reidhead

TIO.	ggeu .	- Y	Jary .	D. LOW	e, 10.G	• , С	g. Datum. Grmu Suri Drameter 6-in.
SAPPING BLOU COLNTB	PID/FID HN. OVA READING	DEPTH feet	SOIL SAPPE NABER	TIME	GRAPHIC BOIL SYNEOL	SOSTI SOSTI SWEET	WATER LEVEL TIME DATE Field Soil Description
							Asphalt, 4-inches. Gravel base.
		1					Yellowish brown clayey silt.
	-	. 2					
		3					
		4				ML	
		5					
							(Hand augered past five foot sample)
		6					
		7				SM	Light yellowish brown silty sand.
		8	-	· · · · · · · · · · · · · · · · · · ·			Dark reddish brown gravelly silt.
	. <u> </u>	9				ML	Sull loudin Slow glavelly Sile.
24		10					
15 25		11	6-2	10:20		SM	Light yellowish brown silty sand No noticeable odor.
		12			1///	sc	Light yellowish brown clayey sand.
		13					
		13					Light yellowish brown clay.

BOREHOLE LITHOLOGIC LOG

BOREHOLE No. B-6 , Sheet 2 of 2

L	oj. D	ES-	3		201121022					
SAPPLING BLOJ COLNTB	PID/FID HW.OVA READING	DEPTH feet	SOIL SAPPLE NABER	TIVE	GRAPHIC SOIL SYMBOL	708.US 7108 8087	·			
		14								
8		15				CL				
11 11		16	6-3	10:42			Yellowish brown silty clay. No noticeable odor.			
		17								
		18			7777	ML	Yellowish brown clayey silt.			
		19				CL	·			
11		20								
16 16		21	6-4	11:01			Yellowish brown silty clay.			
		22					No noticeable odor.			
		23			,		Total depth drilled 19.5 feet. Sample driven to 21 feet. Borehole grouted			
		24					03/27/92.			
		25			: : : :					
		26								
		27								
		28								
		29								

ph: 510-373 9211, C57 Lict 554979