

98 DEC 15 PM 4: 11

ARCADIS Geraghty & Miller, Inc. 1050 Marina Way South Richmond California 94804 Tel 510 233 3200

Mr. Barney Chan Division of Hazardous Materials Department of Environmental Health Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Room 250 Alameda, CA 94502

WESTERN REGION

Fax 510 233 3204

Subject:

Results of Quarterly Groundwater Monitoring - May 1998 Former Penske Truck Leasing Company Facility 725 Julie Ann Way Oakland, California

Richmond, California, December 11, 1998

Dear Mr. Chan:

Contact:

Extension:

The above referenced report is being forwarded to you at the request of Penske Truck Leasing Co. The report details the results of quarterly groundwater monitoring and sampling for May 1998 at the Former Penske Truck Leasing Facility at 725 Julie Ann Way, Oakland.

Paul V. Hehn

(510) 233-3200

This report also includes the results of additional sampling, analysis, and field activities related to biodegradation parameter testing requested in your May 20, 1998 letter. The results of this additional testing shows that based on the bacteria enumeration, both the total heterotropic and hydrocarbons utilizing bacteria are present in the groundwater beneath the site. However, the biodegradation parameter testing has shown that the dissolved oxygen, nutrients and alternative electron acceptors are depleted in the downgradient direction from the former USTs excavation. Overall, it appears that if adequate nutrients, or dissolved oxygen, or alternative electron acceptors were added to the groundwater, the biodegradation in the groundwater would be enhanced.

Penske is currently reviewing several options for possible biodegradation Do not essee of seni Enraad um & enhancement in the groundwater. When the appropriate technology is selected, your office will be notified, and a biodegradation enhancement technique will be proposed in a future correspondence.

Project No. RC000321.0002/aclt1298.doc

If you have any questions, please do not hesitate to call

Sincerely,

ARCADIS Geraghty & Miller, Inc.

Paul Hehn, R.G.

Project Geologist/Project Manager

Copies:

Mr. Richard G. Saut Penske Truck Leasing Co.

Files - Project No. RC000019.0010

Our ref.; Project No. RC000019.0010

Via Fax 510-233-3204

December 7, 1998

Mr. Paul Hehn Arcadis, Inc. 1050 Marina Way South Richmond, CA 94804

Re:

Quarterly Groundwater Monitoring Report Former Penske Truck Leasing Facility

725 Julie Ann Way Oakland, CA

Dear Paul.

I have reviewed and approve the above referenced report. Please forward the appropriate number of copies to the required regulatory agencies. Please provide one copy for my file with a copy of your report transmittal letters to the agencies. If you have questions or need assistance, please call my office at 610-775-6010.

Sincerely.

Richard G. Saut

Environmental Project Manager

Paut

RGS/csk L1120798.rgs

Quarterly Groundwater Monitoring and Sampling

May 1998

Former Penske Truck Leasing Facility 725 Julie Ann Way Oakland, California

1050 Marina Way South Richmond, CA 94804 (510) 233-3200

QUARTERLY REPORT

Prepared November 20, 1998

Mr. Richard G. Saut Environmental Project Manager Penske Truck Leasing Company, L.P. Route 10, Green Hills P.O. Box 7635 Reading, Pennsylvania 19603-7635 ARCADIS Geraghty & Miller, Inc. 1050 Marina Way South Richmond California 94804 Tel 510 233 3200 Fax 510 233 3204

WESTERN REGION

Subject:

Results of Quarterly Groundwater Monitoring, May 1998, Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Dear Mr. Saut:

This report presents the results of the quarterly groundwater monitoring and sampling activities performed on May 27 and 29, 1998, at the former Penske Truck Leasing Co. (Penske) facility referenced above (Figure 1). The scope of work for this project was presented to Penske in an ARCADIS Geraghty & Miller letter dated January 25, 1996. The scope of work for groundwater monitoring and sampling consists of collecting depth-to-water measurements, total-well-depth measurements, and water samples for laboratory analysis from selected wells. The scope of work also includes preparation of quarterly groundwater sampling and monitoring reports based on the data and groundwater samples collected during each quarterly event. This quarterly groundwater sampling and monitoring program is related to the containment zone (CZ) concept remedial approach approved by the Alameda County Health Care Services Agency (ACHCSA) and the California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) in its letter to Penske dated March 25, 1994.

The current report also details the results of additional groundwater sampling and analysis for biodegradation parameters. The biodegradation parameters were tested at the request of the ACHCSA. In a letter to Penske dated December 9. 1997, the ACHCSA requested that monitoring wells be sampled and analyzed for dissolved oxygen (DO), oxidation-reduction potential (redox), nitrate, sulfate and ferrous iron. The ACHCSA also requested that several of the wells located downgradient from the former underground storage tanks (USTs) be analyzed for bacterial enumeration for total petroleum hydrocarbon-degraders and total heterotrophs. The results of this additional sampling are detailed in this report, and also presented in the attached tables and figures.

Richmond, 20 November 1998

Contact: Paul V. Hehn

Extension: 510 233 3200

Field Procedures

The subject quarterly groundwater monitoring was performed on May 27 and 29, 1998. Monitoring was completed and groundwater samples were collected from Monitoring Wells MW-1 through MW-5, MW-7, and MW-8 in accordance with the CZ remedial approach monitoring and sampling plan referenced above. The monitoring-well locations are shown in Figure 2.

Prior to sampling, depth-to-water measurements were obtained from all on-site wells. Additionally, the wells were checked for the presence of liquid-phase hydrocarbons. Each well sampled was purged of at least four casing volumes of water using a 1-inch diaphragm pump. Prior to sampling each well, all equipment that entered the well was washed in a solution of nonphosphate detergent and water and then triple rinsed in deionized water. Purged water was monitored for pH, temperature, and specific conductance. A summary of the field data is presented in Table 1. Following purging, groundwater samples were collected using a new disposable polyethylene bailer for each well. The purged water was initially stored in 55-gallon drum and eventually removed by a Penske-contracted vacuum truck for proper disposal.

Groundwater samples were put into the appropriate USEPA-approved containers, placed on ice, and transported to American Environmental Network (AEN), in Pleasant Hill, California, under appropriate chain-of-custody documentation. The water samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline (USEPA Method 8015, modified); TPH as diesel (USEPA Method 8015, modified); benzene, toluene, ethylbenzene, and total xylenes (BTEX) (USEPA Method 8020); methyl tertiary butyl ether (MTBE) (USEPA Method 8020); and total dissolved solids (TDS) (USEPA Method 160.1). As requested by the ACHCSA, the water samples were also analyzed for nitrate as nitrogen (USEPA Method 300), sulfate (USEPA Method 300), ferrous iron (ASTM Phenanthroline Method – modified 3500/FE D). The ferrous iron analysis was performed by Environmental Technical Services (ETS) of Petaluma, California under subcontract to AEN. The water samples from Wells MW-7 and MW-8 were also analyzed for bacterial enumeration for total petroleum hydrocarbon-degraders and total heterotrophs by an environmental biotechnology laboratory subcontracted by AEN.

Results

Shallow Groundwater Flow

A summary of the depth-to-water data is presented in Table 1. Depth to water ranged from 5.17 feet (Monitoring Well MW-7) to 6.42 feet (Monitoring Well MW-1) below the ground surface. A contour map based on the groundwater elevation data collected May 29, 1998, is presented in Figure 2. The historic shallow groundwater flow is toward the west; however, there are local variations in flow directions at the facility, as indicated by the groundwater contours from the data collected during May 1998.

The difference in the elevation of the groundwater surface between Wells MW-2 and MW-1 is 1.32 feet, producing a hydraulic gradient (slope of the groundwater surface) of approximately 0.0143 in a southwesterly direction. The groundwater gradient and groundwater contours for the current quarter are consistent with those presented during previous quarters.

Field Parameters

As in all previous quarterly sampling events at this facility, the specific conductance measurements for the groundwater purged during the sampling continue to be high (Table 1) due to the brackish nature of the groundwater beneath this site. Liquid-phase hydrocarbons were measured in Wells MW-1 (0.01 foot), MW-4 (0.01 foot), and MW-7 (0.56 foot) during this monitoring event.

Groundwater Analytical Results

A summary of the groundwater analytical results is presented in Table 2. Copies of the certified laboratory reports and chain-of-custody documentation are included in Attachment 1. TPH as gasoline was detected in the groundwater samples from Monitoring Wells MW-1 (13,000 micrograms per liter [µg/L]), MW-4 (3,900 µg/L), and MW-7 (140 µg/L). TPH as diesel was detected in the groundwater samples collected from Monitoring Wells MW-1 (280,000 µg/L), MW-2 (1,300 µg/L), MW-4 (11,000 µg/L), MW-7 (1,600 µg/L), and MW-8 (70 µg/L). Benzene was detected in the groundwater samples collected from Monitoring Wells MW-1 (110 µg/L), MW-4 (1.4 µg/L), and MW-7 (2.3 µg/L). All other BTEX constituent results are presented in Table 2. MTBE was not detected in any of the groundwater samples.

Discussion and Compliance with Containment Zone Approach

Benzene was detected in the shallow groundwater sample collected from designated CZ-concept Guard Well MW-7 (2.3 μ g/L) but at concentrations below the compliance concentration of 71 μ g/L. Based on the results of the benzene concentration detected in Well MW-7 (80 μ g/L) during the February 1998 groundwater sampling event, Compliance Well MW-8 was sampled during this quarterly event. No benzene concentrations were detected in the groundwater sample collected from Compliance Well MW-8 during the current quarterly event.

During this quarterly groundwater sampling event significant decreases in the concentration of TPH as gasoline were detected in the groundwater samples from Well MW-1 (from 380,000 μg/L to 13,000 μg/L) and MW-7 (from 45,000 μg/L to 140 μg/L). The concentration of TPH as gasoline increased in Well MW-4 (from 580 μg/L to 3,900 μg/L). The concentrations of TPH as diesel decreased in the groundwater samples from Well MW-1 (from 1,200,000 μg/L to 280,000 μg/L), Well MW-7 (from 290,000 μg/L to 1,600 μg/L), and Well MW-8 (from 150 μg/L to 70 μg/L). The concentrations of TPH as diesel increased in the groundwater samples from Well MW-2 (from 340 μg/L to 1,300 μg/L), Well MW-4 (from 9,300 μg/L to 11,000 μg/L), and Well MW-5 (from ND to 770 μg/L). The concentrations of benzene decrease in the groundwater samples collected from Well MW-4 (from 2.7 μg/L to 1.4 μg/L) and Well MW-7 (from 80 μg/L to 2.3 μg/L). The concentrations of benzene increase only in the groundwater samples collected from Well MW-1 (from 50 μg/L to 110 μg/L).

Concentrations of petroleum hydrocarbons continue to be detected in Wells MW-1, MW-4 and MW-7, all of which are located immediately downgradient from the former UST excavation. The concentrations that continue to be detected from these wells indicate that additional mass of petroleum hydrocarbons remains in the groundwater and probably within the soil downgradient from the former UST excavation. However, recent decreases in the concentrations of petroleum hydrocarbons detected in the groundwater samples collected from the three wells may indicate that there is increased biodegradation activity taking place. These reductions may also be as a result of the addition of the ORCTM socks in Observation Wells OW-1 and OW-2 which are both located upgradient from these wells

At the request of Penske, additional groundwater purging will be continued during future quarterly events. The additional purging will help remove additional mass of petroleum hydrocarbons from the groundwater downgradient from the former tank excavation to aid in the remediation of the groundwater at this former facility.

Results of Regulatory Requested Additional Groundwater Sampling

Penske received a letter dated May 20, 1998 from Mr. Barney Chan at the ACHCSA. In this letter Mr. Chan requested that biodegradation parameters be analyzed in all wells to establish baseline concentrations for assessing biodegradation activity at this site. He also requested that dissolved oxygen (DO) and redox measurements be collected during each quarterly sampling event also to monitor natural biodegradation indicators. The results of these requests are detailed in this report. The results of the additional sampling and analysis are presented in Table 3 and on Figure 4.

Biodegradation parameters, and DO and redox measurements were not collected from Observation Wells OW-1 and OW-2 since ORCTM socks in these wells prevent measurements or samples from being collected. The DO and redox measurements will be collected during the next replacement event of the ORCTM socks.

The results of the biodegradation testing have shown that the conditions for active biodegradation of petroleum hydrocarbons are present at the site. However, the testing has also shown that dissolved oxygen, nutrients and alternative electron acceptors are depleted in the groundwater downgradient from the former USTs excavation (Figure 4).

The biodegradation parameter testing has shown that the DO and redox measurements, the bacteria enumeration of the total heterotropic and hydrocarbon utilizing bacteria, and concentrations of nitrate, sulfate and ferrous iron are generally higher in upgradient wells MW-2 and MW-3 than in Wells MW-1, 4, 7 and 8 downgradient from the former USTs excavation. The exceptions are higher total heterotropic and hydrocarbon utilizing bacteria counts, and nitrate and sulfate concentrations in the area of downgradient Wells MW-1 and MW-7. Based on the depth-to-water measurements and groundwater contour maps from recent quarterly groundwater monitoring reports, it appears that these wells are affected by the tidal actions from the tidal channel adjacent to the site. The tidal interaction between the tidal channel and the groundwater may replenish nutrients and alternative electron acceptors in the groundwater near these wells, and thus promote more bacterial activity.

Based on the bacteria enumeration, both the total heterotropic and hydrocarbons utilizing bacteria are present in the groundwater beneath the site. However, the biodegradation parameter testing has shown that the dissolved oxygen, nutrients and alternative electron acceptors are depleted in the downgradient direction from the former USTs excavation. Overall, it appears that if adequate nutrients, or dissolved oxygen, or alternative electron acceptors were added to the groundwater, the biodegradation in the groundwater would be enhanced. The enhancements of the

biodegradation parameters would provide an increase in the biodegradation of the petroleum hydrocarbons in the groundwater beneath the site.

Revisions to Future Sampling Events

As specified by the ACHCSA in their letter to Penske dated December 9, 1997, the following modifications to the quarterly groundwater sampling were requested and approved by the ACHCSA:

- It will no longer be necessary to sample and analyze groundwater samples from Monitoring Wells MW-3 and MW-6. However, these wells will continue to be measured for depth-to-water in order to construct a meaningful groundwater contour map for the site.
- 2) It will no longer be necessary to analyze the groundwater samples for total dissolved solids.
- 3) The ACHCSA recommended that future groundwater monitoring events should include measurements of dissolved oxygen and oxygen-reduction potential for all monitoring wells. ARCADIS Geraghty & Miller recommends, and Penske would prefer, that these measurements be collected twice a year during the spring quarterly sampling event (higher average groundwater levels) and during the fall quarterly sampling event (lower average groundwater levels) rather than measured during each quarterly event. This recommended frequency would collect sufficient information to monitor biodegradation activity while still being cost effective for Penske.

ARCADIS Geraghty & Miller appreciates the opportunity to be of service to Penske. If you have any questions regarding this report, please do not hesitate to call us.

Sincerely,

ARCADIS Geraghty & Miller, Inc.

Paul V. Hehn, R.G.

Project Geologist/Project Manager

Donald C. Trueblood Regional Manager

Attachments: References

Table 1 Summary of Field Sampling, Depth-to-Water, and

Casing Elevation Data

Table 2 Summary of Groundwater Analytical Results-

Monthly and Quarterly Sampling

Table 3 Biodegradation Parameters Results

Figure 1 Site Location Map

Figure 2 Shallow Groundwater Contours - May 1998

Figure 3 Benzene Concentrations - May 1998

Figure 4 Biodegradation Parameter Results - May 1998

Attachment 1 Copies of Certified Laboratory Reports and Chain-

of-Custody Documentation

No. 6571

References

- Alameda County Health Care Services Agency. May 20, 1998. Letter to Penske Truck Leasing Co. on Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, CA 94621.
- ———. December 6, 1996. Letter to Penske Truck Leasing Co. on Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, CA 94621.
- Geraghty & Miller, Inc. November 15, 1990. Results of Initial Soil and Ground-Water Assessment Activities, Former Penske Truck Leasing Co. Facility, 725 Julie Ann Way, Oakland, California.
- February 7, 1991. Scope of Work and Project Budget Estimate for Ground-Water Monitoring Activities for the Period February 1991 through February 1992, Former Penske Truck Leasing Co. Facility, 725 Julie Ann Way, Oakland, California.
- January 25, 1995. Work Plan and Budget Cost Estimate for Groundwater Sampling Coordination, Quarterly Report Preparation, and Purge Water Disposal Assistance, Former Penske Truck Leasing Co. Facility, 725 Julie Ann Way, Oakland, California.
- January 25, 1996. Work Plan and Budget Cost Estimate for Groundwater Sampling Coordination, Quarterly Report Preparation, and Purge Water Disposal Assistance, Former Penske Truck Leasing Co. Facility, 725 Julie Ann Way, Oakland, California.

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer		Casing
		Water (a)	Elevation	Elevation	of Well (a)	Purge Volume (b)	Volume		Temp.	SC	Diameter
Well	Date	(feet)	(feet)	(feet)	(feet)	(gallons)	(gallons)	pН	(°F)	(µ\$/cm)	(inches)
MW-1	2-Oct-90	9.76	5.42	-4.34	37.28	58.56	47	6.71	87.5	5,280	4
	28-Feb-91	8.54		-3.12	33.58	65.00	70	6.30	66.0	9,700	
	25-Mar-91	7.35		-1.93	33,50	71.00	75	6.50	64.0	7,200	
	1-May-91	7.91		-2.49	33.70	67.00	51	6.20	65.0	3,500	
	5-Aug-91	8.63		-3.21	NM	51.00	68	NM	63.6	7,690	
	23-Oct-91	9.00		-3.58	33.77	67.00	67	9.40	64.2	7,470	
	6-Jan-92	8.52		-3.10	33.87	65.00	69	9.40	63.2	6,640	
	20-Jul-92	7.94		-2.52	33.95	65.02	66	7.20	65.7	6,410	
	23-Oct-92	8.62		-3.20	33.57	64.80	60	7.50	69.8	1,930	
	4-Feb-93	6.55	5.43 (c)	-1.12	33.84	70.96	71	8.02	65.0	9,520	
	8-Apr-93	6.37		-0.94	33.80	71.32	65	6.60	66.7	>2,000	
	6-Aug-93	7.39		-1.96	33.88	68.67	69	7.22	68.1	5,890	
	28-Oct-93	7.85		-2.42	33,80	67.48	68	7.00	68.3	5,910	
	1-Feb-94	7.25		-1.82	33.99	69.52	70	7.63	63.2	7,610	
	12-Sep-94	6.75		-1.32	33.95	70.72	70	6.90	75.8	7,950	
	23-Nov-94	6.13		-0.70	33.93	72.28	73	6.10	66.2	>2,000	
	21-Feb-95	6.00		-0.57	34.00	55.44	56	7.36	70	890	
	23-May-95	6.04		-0.61	34.00	54.52	56	7.11	66.2	5,920	
	16-Aug-95	6.03		-0.60	34.00	55.94	56	7.27	69.3	5,510	
	21-Nov-95	6.90		-1.47	34.00	52.85	54	7.19	67.8	5,720	
	13-Feb-96	5.18		0.25	33.87	74.59	>75	7	71.2	6,070	
	13-May-96	6.10		-0.67	NM	72.20 (f)	>73	6.5	76.4	14,370	
	28-Aug-96	6.17		-0.74	33.85	71.96	>72	7	85.5	4,820	
	21-Nov-96	6.09		-0.66	33.92	72.43	>73	6.5	77.8	7,890	
	20-Feb-97	5.41		0.02	33.94	74.17	>75	6.0	66.3	1,900	
	28-May-97	5.98		-0.55	NM	72.69 (f)	>73	8.0	77	9,000	
	19-Sep-97	6.45		-1.02	33.80	71.12	>72	7.4	71.3	5,500	
	17-Nov-97	6.14		-0.71	34.03	72.51	>73	7.12	75	6,690	
	27-Feb-98	4.83		0.60	33.97	75.76	>76	6.80	65	6,680	
	27-May-98	6.42		-0.99	34.00	71.60	72	6.79	62.42	7,990	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

	Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measure	ments	Casing
	Water (a)	Elevation	Elevation	of Well (a)	Purge Volume (b)	Volume		Temp.	SC	Diamete
Well Date	e (feet)	(feet)	(feet)	(feet)	(gallons)	(gallons)	рН	(°F)	(µS/cm)	(inches)
MW-2 2-Oct-9	10.38	6.21	-4.17	32.97	48.07	47	6.92	86.4	5,460	4
28-Feb-9	9.19		-2.98	29.39	53.00	55	6.60	64.0	9,000	
25-Mar-9	1 7.95		-1.74	29.39	57.00	70	6.60	63.0	6,400	
1-May-9	8.58		-2.37	29.60	55.00	50	6.20	64.0	3,000	
5-Aug-9	9.33		-3.12	NM	40.00	54	NM	65.1	5,680	
23-Oct-9	1 9.57		-3.36	29.35	52.00	53	7.60	65.4	7,970	
6-Jan-9	2 9.08		-2.87	29.50	53.00	53	9.18	62.8	6,990	
20-Jul-9	2 8.60		-2.39	29.45	54.21	55	6.50	65.2	6,690	
23-Oct-9	2 9.33		-3.12	29.18	51.60	55	7.20	69.8	1,900	
4-Feb-9	3 7.17	6.20 (c)	-0.97	29.37	57.72	55	8.25	64.0	10,310	
8-Apr-9	6.95		-0.75	29.32	58.16	60	6.90	66.7	>2,000	
6-Aug-9	8.05		-1.85	29.33	55.33	66.5	7.26	66.4	6,250	
28-Oct-9	8.50		-2.30	29.43	54.40	55	7.08	71.2	6,780	
1-Feb-9	4 7.87		-1.67	29.54	56.32	57	8.35	62.4	8,250	
12-Sep-9	4 7.42		-1.22	29.45	57.24	66	(e)	69.9	8,130	
22-Nov-9			-0.55	29.50	59.15	60	6.8	67.6	>2,000	
21-Feb-9	5 6.20		0.00	30.00	47.12	48	6.97	64	1,050	
23-May-9	5 6.10		0.10	30.00	46.60	48	7.18	70.3	7,710	
16-Aug-9	5 6.69		-0.49	30.00	46.62	46	7.42	65	6,790	
21-Nov-9			-1.42	30.00	43.64	45	7.30	67.6	7,250	
13-Feb-9			0.39	29.47	61.51	>62	7	71.8	2,890	
13-May-9	6 6.40		-0.20	NM	59.98 (f)	>60	5.5	74.4	860	
28-Aug-9			-0.91	29.42	58.00	>58	6	83.5	590	
21-Nov-9			-0.21	29.43	59.85	>60	6.5	76.3	4,160	
20-Feb-9			-0.06	29.54	60,52	>61	6.5	65.2	1,940	
28-May-9			-0.45	NM	59.51 (f)	>60	7.0	73.6	5,540	
19-Sep-9			-0.70	29.47	58.68	>59	6.9	69.7	12,630	
17-Nov-9			-0.55	29.56	59.31	>60	8.08	75.7	710	
27-Feb-9			0.89	29.45	62.76	>63	6.50	67.3	530	
27-May-9			0.33	29.47	61.36	62	6.95	63.5	5,870	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	nents	Casing
		Water (a)	Elevation	Elevation	of Well (a)	Purge Volume (b)	Volume		Temp.	SC	Diamete
Well	Date	(feet)	(feet)	(feet)	(feet)	(gallons)	(gallons)	pН	(°F)	(µS/cm)	(inches)
MW-3	2-Oct-90	10.38	6.10	-4.28	37.08	56.82	54	6.89	88.4	639	4
	28-Feb-91	9.45		-3.35	31.61	58.00	60	6.10	66.0	1,020	
	25-Mar-91	7.98		-1.88	31.60	70.00	75	6.40	65.0	8,200	
	1-May-91	8.58		-2.48	33.70	65.00	50	6.40	67.0	4,100	
	5-Aug-91	9.26		-3.16	NM	50.00	67	NM	64.1	6,190	
	23-Oct-91	9.60		-3.50	33,48	66.00	66	7.30	67.3	8,430	
	6-Jan-92	9.08		-2.98	33.66	64.00	64	9.98	61.7	7,010	
	20-Jul-92	8.59		-2.49	33.76	65.44	66	6.80	66.0	7,540	
	23-Oct-92	9.30		-3.20	33.47	63.40	65	7.50	71.6	1,800	
	4-Feb-93	7.19	6.10 (c)	-1.09	33.65	68.79	65	8.29	64.0	10,290	
	8-Apr-93	6.98		-0.88	33.55	69.08	72	6.90	68.2	>2,000	
	6-Aug-93	8.01		-1.91	33.55	66,40	56 (d)	7.43	67.3	6,490	
	28-Oct-93	8.45		-2.35	33.60	65.40	66	7.02	72.0	6,590	
	1-Feb-94	8.03		-1.93	33.74	66.84	67	8.32	63.3	8,400	
	12-Sep-94	7.39		-1.29	33.70	68.40	70	7.73	68.7	8,030	
	22-Nov-94	6.76		-0.66	33.75	70.17	70	6.60	65.8	>2,000	
	21-Feb-95	6.36		-0.26	33.50	53.74	54	6.99	85.4	880	
	23-May-95	6.48		-0.38	33.50	52.69	54	7.25	68.7	6,060	
	16-Aug-95	6.63		-0.53	33.50	53.74	54	7.53	66.1	5,390	
	21-Nov-95	7.51		-1.41	33.50	50.68	52	7.34	67.4	5,730	
	13-Feb-96	5.91		0.19	33.69	72.24	>73	7	71.5	6,790	
	13-May-96	6.36		-0.26	NM	71.06 (f)	>72	6.5	76.7	14,360	
	28-Aug-96	7.15		-1.05	33.52	68.56	>69	8	79.2	2.930	
	21-Nov-96	6.64		-0.54	33.54	69.94	>70	6.5	77.0	7,500	
	20-Feb-97	6.36		-0.26	33.67	71.00	>72	6.5	68.7	4,180	
	28-May-97	6.62		-0.52	NM	70.33 (f)	>71	7.0	74.1	6,580	
	19-Sep-97	6.83		-0.73	33.55	69.48	>70	7.0	70.8	8,570	
	17-Nov-97	6.77		-0.67	33.59	69.73	>70	7.08	75.0	6,580	
	27-Feb-98	5.38		0.72	33.60	73.37	>74	7.0	65.9	7,530	
	27-May-98	6.05		0.05	33.63	71.72	72	8.28	64.8	6,880	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measure	ments	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (gallons)	рН	Temp. (°F)	SC (µS/cm)	Diamete (inches)
MW-4	4-Feb-93	6.68	5.18 (c)	-1.50	32.70	64.38	60 (d)	NM	63.5	14,100	4
	8-Apr-93	6.21		-1.03	33.04	69.76	70	6.80	69.1	>2,000	
	6-Aug-93	7.20		-2.02	32.92	66.87	60 (d)	7.44	68.9	13,900	
	28-Oct-93	7.64		-2.46	32.98	65.88	66	6.79	72.1	11,940	
	1-Feb-94	7.26		-2.08	33.31	67.72	68	8.65	63.6	18,110	
	12-Sep-94	6.55		-1.37	33.41	69.84	60 (d)	6.03	77.5	16,710	
	23-Nov-94	6.08		-0.90	33.35	70.90	55 (d)	5.60	66.7	>2,000	
	21-Feb-95	5.36		-0.18	33.50	55.71	48 (d)	6.83	80.2	880	
	23-May-95	5.05		0.13	33.50	55,48	59	6.71	66.5	12,090	
	16-Aug-95	5.63		-0.45	33.50	55.74	33 (d)	7.34	69.8	8,670	
	21-Nov-95	6.63		-1.45	33.50	52.39	34 (d)	7.03	68.2	10,380	
	13-Feb-96	5.14		0.04	33.25	73.08	>74	7	75.3	6,090	
	13-May-96	5.75		-0.57	NM	71.50 (f)	>72	7	76.1	>20,000	
	28-Aug-96	6.04		-0.86	33.20	70.61	>71	7.4	83.9	2,600	
	21-Nov-96	7.90		-2.72	33.17	65.70	>66	6.5	75.9	8,940	
	20-Feb-97	5.29		-0.11	33.28	72.77	>73	6.5	66.1	2,110	
	28-May-97	5.66		-0.48	NM	71.81 (f)	>72	7.0	74	6,480	
	19-Sep-97	6.00		-0.82	33.31	71.00	>71	7.4	71	4,330	
	17-Nov-97	6.06		-0.88	33.35	70.95	>71	6.81	70	11,020	
	27-Feb-98	4.66		0.52	33.22	74.25	>75	7.30	65.9	15,720	
	27-May-98	5.98		-0.80	33.00	70.40	35 (d)	6.89	62.4	10,980	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	ments	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (gallons)	рН	Temp. (°F)	SC (µS/cm)	Diamete (inches)
											· · · · · · · · · · · · · · · · · · ·
MW-5	4-Feb-93	8.94	4.71 (c)	-4.23	31.40	61.65	40 (d)	8.43	63.2	16,870	4
	8-Apr-93	5.43		-0.72	31.36	67.42	68	7.20	68.0	>2,000	
	6-Aug-93	6.19		-1.48	31.30	65.29	68	7.47	63.6	5,180	
	28-Oct-93	6.86		-2.15	31.43	62.72	48 (d)	7.12	70.6	4,980	
	1-Feb-94	6.48		-1.77	31.43	64.84	49 (d)	(e)	63.1	6,120	
	12-Sep-94	5.89		-1.18	31.43	66.40	39 (d)	(e)	69.4	5,020	
	22-Nov-94	5.66		-0.95	31.44	67.02	58 (d)	6.80	68.4	>2,000	
	21-Feb-95	4.90		-0.19	31.00	51.68	45 (d)	7.30	82.5	880	
	23-May-95	4.86		-0.15	31.00	50.97	52	7.03	66.5	4,320	
	16-Aug-95	4.97		-0.26	31.00	52.06	36 (d)	7.48	67.5	3,900	
	21-Nov-95	5.82		-1.11	31.00	49.10	32 (d)	7.26	67.0	4,110	
	13-Feb-96	4.86		-0.15	31.41	69.03	>69	7	68.3	5,950	
	13-May-96	5.06		-0.35	NM	68.51 (f)	>69	6.5	71.9	9,830	
	28-Aug-96	5.29		-0.58	31.34	67.73	>68	7.9	79.6	2,590	
	21-Nov-96	5.44		-0.73	31.33	67.31	>67	6.5	76.0	7,260	
	20-Feb-97	4.68		0.03	31.46	69.62	>70	6.5	60.7	1,990	
	28-May-97	5.21		-0.50	NM	68.25 (f)	>69	7.8	70.7	11,500	
	19-Sep-97	5.43		-0.72	31.46	67.68	>68	7.1	67.9	3,920	
	17-Nov-97	5.28		-0.57	31.44	68.02	>69	7.0	73.0	5,180	
	27-Feb-98	4.10		0.61	31.49	71.21	>72	6.8	62.5	1,650	
	27-May-98	5.40		-0.69	32.00	70.40	70	6.89	64.2	4,830	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	nents	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (gallons)	pН	Temp. (°F)	SC (µS/cm)	Diamete (inches)
MW-6	12-Sep-94	6.56	5.37	-1.19	24.85	47.55	41 (d)	(e)	71.2	12,970	4
	22-Nov-94	6.04		-0.67	24.88	48.98	50	6.70	66.4	>2,000	
	21-Feb-95	NS		NS	NS	NS	NS	NS	NS	NS	
	23-May-95	5.32		0.05	24.70	NS	NS	NS	NS	NS	
	16-Aug-95	5.97		-0.60	24.70	NS	NS	NS	NS	NS	
	21-Nov-95	6.78		-1.41	24.70	NS	NS	NS	NS	NS	
	13-Feb-96	5.14		0.23	24.71	NS	NS	NS	NS	NS	
	13-May-96	5.64		-0.27	NM	NS	NS	NS	NS	NS	
	28-Aug-96.	6.15		-0.78	24.67	NS	NS	NS	NS	NS	
	21-Nov-96	5.71		-0.34	24.65	NS	NS	NS	NS	NS	
	20-Feb-97	5.38		-0.01	24.79	NS	NS	NS	NS	NS	
	28-May-97	5.93		-0.56	NM	NS	NS	NS	NS	NS	
	19-Sep-97	6.15		-0.78	24.76	NS	NS	NS	NS	NS	
	17-Nov-97	6.06		-0.69	27.71	NS	NS	NS	NS	NS	
	27-Feb-98	4.74		0.63	24.64	NS	NS	NS	NS	NS	
	27-May-98	5.40		-0.03	29. 0	NS	NS	NS	NS	NS	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	ments	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (gallons)	рН	Temp. (°F)	SC (µ\$/cm)	Diameter (inches)
MW-7	12-Sep-94	6.16	5.38	-0.78	28.51	58.08	60	6.65	73.5	7,920	4
	23-Nov-94	5.61		-0.23	28.46	59.40	60	6.00	64.6	>2,000	
	21-Feb-95	5,25		0.13	28.30	45.64	46	7.46	69.5	910	
	23-May-95	5.10		0.28	28.30	45.24	46	7.21	65.0	5,740	
	16-Aug-95	5.42		-0.04	28.30	45.76	46	7.36	66.8	5,560	
	21-Nov-95	6.28		-0.90	28.30	42.99	44	7.29	65.9	5,650	
	13-Feb-96	4.64		0.74	28.39	61.75	>62	7	70.1	7,050	
	13-May-96	5.36		0.02	NM	59.88 (f)	>60	6.5	76.6	15,030	
	28-Aug-96	6.20		-0.82	28.30	57.46	>58	7.4	76.4	3,980	
	21-Nov-96	6.12		-0.74	28.30	57.66	>58	6.5	75.2	8,400	
	20-Feb-97	5.70		-0.32	28.46	59.17	>60	6.5	63.9	4,410	
	28-May-97	5.46		-0.08	NM	59.80 (f)	>60	7.5	71.3	9,790	
	19-Sep-97	5.91		-0.53	28.49	58.72	>59	7.3	71.4	4,910	
	17-Nov-97	5.59		-0.21	23.39	46.28	>47	6.97	71.0	6,410	
	27-Feb-98	4.68		0.70	23.40	74.63	>75	6.80	64.0	7,070	
	27-May-98	5.17		0.21	30.00	66.00	65	6.89	63.0	4,980	

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility,
725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	nents	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (gallons)	pН	Temp. (°F)	SC (µS/cm)	Diameter (inches)
MW-8	12-Sep-94	6.46	5.44	-1.02	25.15	48.56	55	(e)	(e)	11,400	4
	23-Nov-94	6.01		-0.57	25.66	78.60	75	5.60	61.5	>2,000	
	21-Feb-95	NS		NS	NS	NS	NS	NS	NS	NS	
	23-May-95	5.53		-0.09	25.40	NS	NS	NS	NS	NS	
	16-Aug-95	5.68		-0.24	25.40	NS	NS	NS	NS	NS	
	21-Nov-95	6.37		-0.93	25.40	NS	NS	NS	NS	NS	
	13-Feb-96	5.36		0.08	25.54	NS	NS	NS	NS	NS	
	13-May-96	5.62		-0.18	NM	NS	NS	NS	NS	NS	
	28-Aug-96	6.17		-0.73	25.52	NS	NS	NS	NS	NS	
	· 21-Nov-96	5.74		-0.30	25.45	51.24	>52	6.5	73.6	9,300	
	20-Feb-97	5.10		0.34	25.54	53.14	>54	6.5	61.5	4,950	
	28-May-97	5.68		-0.24	NM	51.63 (f)	>54	7.5	71.2	14,930	
	19-Sep-97	5.95		-0.51	25.41	50.60	>51	7.0	67.8	7,860	
	17-Nov-97	5.91		-0.47	25.59	51.17	>52	7.49	70.2	8,320	
	27-Feb-98	4.50		0.94	25.58	54.80	>55	7.00	63.8	6,310	
	27-May-98	6.10		-0.66	31.00	65.00	65. 0	7.19	63.9	6,460	

Notes appear on the following page.

Table 1: Summary of Field Sampling, Depth-to-Water, and Casing Elevation Data Former Penske Truck Leasing Facility,
725 Julie Ann Way, Oakland, California.

		Depth to	Top of Casing	Top of Water	Measured Depth	Calculated	Actual Purge	Field	Measurer	ments	Casing
Well	Date	Water (a) (feet)	Elevation (feet)	Elevation (feet)	of Well (a) (feet)	Purge Volume (b) (gallons)	Volume (galions)	• рН	Temp. (°F)	SC (µS/cm)	Diameter (inches)
(a)	Measured from	top of PVC	casing.								
(b)	Based on four ca	asing volume	es.								
(c)	All well elevation	ons resurvey	ed to site benchm	ark on February	10, 1993.						
(d)	Well went dry d	uring purgin	ng.	-	-						
(e)	No reading - ins	trument mal	lfunction.								
(f)	Purge volume e	stimated usin	ng well depth-to-b	oottom measurem	nents from previous	quarter.					
SC	Specific Conduc	tance									
(µS/cm)	Microsiemens p	er centimete	er e								
NM	Not measured										
NS	Well not sample	d or monitor	rad during this ou	ortorly aront							

All elevations are measured relative to a site benchmark (elevation 6.62°) based on the City of Oakland datum which is 3 feet higher than mean sea level.

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (μg/L)	TPH Diesel (a) (µg/L)	Benzene (b) (µg/L)	Toluene (b) (µg/L)	Ethylbenzene (b) (µg/L)	Xylenes (b) (μg/L)	MTBE (b) (µg/L)	Total Dissolved Solids (c) (mg/L)
MW-1	2-Oct-90	170	2,900	20	18	1.9	5.7		
	28-Feb-91	260	550	43	1	7	1		
	25-Mar-91	73	160	10	ND(<0.3)	0.5	ND(<0.3)		
	1-May-91	ND(<50)	(d)	2.2	ND(<0.3)	ND(<0.3)	ND(<0.3)		* *
	5-Aug-91	310	330	22	5.5	9.5	23		
	23-Oct-91	440	1,800	23	21	6.2	35		
	6-Jan-92	430	1,600	56	8.4	18	22		
	20-Jul-92	ND(<50)	25,000	0.4	0.8	1	2.1		
	23-Oct-92	280	6,500	9.3	13	8.2	15		
	4-Feb-93	68 (f)	320	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	8-Apr-93	180	7,800	0.5	2.1	0.8	13		
	6-Aug-93	740	17,000	75	100	25	130		3,500
	28-Oct-93	140	7,600	4.7	1.9	3.2	5.4		3,500
	1-Feb-94	430	10,000	8.2	1.1	3.5	4.8		3,800
	12-Sep-94	230	22,000	0.7	1.7	2.0	3.7		4,000
	23-Nov-94	ND(<50)	1,700	ND(<0.5)	ND(<0.5)	ND(<0.5)	0.6		3,600
	21-Feb-95	ND(<50)	4,200	ND(<0.5)	ND(<0.5)	0.8	0.6		4,200
	23-May-95	ND(<50)	300	ND(<0.5)	ND(<0.5)	2.1	2.0		3,800
	16-Aug-95	ND(<50)	740	ND(<0.5)	ND(<0.5)	1.4	1.4		3,800
	21-Nov-95	ND(<50)	410	ND(<0.5)	ND(<0.5)	0.7	0.8		4,100
	13-Feb-96	ND(<50)	400	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,600
	13-May-96	310 (k)	12,000	13	14	2.4	11		3,500
	28-Aug-96	11,000 (k)	56,000	110	ND(<50)	ND(<50)	ND(<50)		3,300
	21-Nov-96	65 (k)	1,500	3.3	0.51	0.59	0.84		3,400
	20-Feb-97	2,900 (k)	200,000	260	61	42	96		1,400
	28-May-97	2,100	28,000 (o)	230	42	55	110		3,100
	19-Sep-97	110,000	2,700,000	230	140	250	700	ND (<500)	3,200
	17-Nov-97	40,000 (r)	950,000 (r)	240 (r)	190 (r)	270 (r)	880 (r)	ND (<300) (r)	3,400
	27-Feb-98	380,000	1,200,000	50	50	200	800	ND (<500)	3,600
	29-May-98	13,000	280,000	110	13	66	390	ND (<50)	

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (µg/L)	TPH Diesel (a) (μg/L)	Benzene (b)	Toluene (b) (μg/L)	Ethylbenzene (b) (µg/L)	Xylenes (b) (µg/L)	MTBE (b) (µg/L)	Total Dissolved Solids (c) (mg/L)
MW-2	2-Oct-90	ND(<50)	80	0.4	ND(<0.3)	ND(<0.3)	0.5		
	28-Feb-91	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	25-Mar-91	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	1-May-91	ND(<50)	(d)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	5-Aug-91	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	23-Oct-91	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	6-Jan-92	11,000	1200 (e)	ND(<0.3)	83	82	940		
	20-Jul-92	73	120	1.7	3.3	1.1	9.6		
	23-Oct-92	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	0.5		
	4-Feb-93	ND(<50)	330 (e)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	8-Apr-93	150	74 (h)	1	2.1	1	13		
	6-Aug-93	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		990
	28-Oct-93	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		1,500
	1-Feb-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	•	2,000
	12-Sep-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,100
	22-Nov-94	ND(<50)	51 (h)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,400
	21-Feb-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		5,700
	23-May-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		5,100
	16-Aug-95	ND(<50)	190	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		5,400
	21-Nov-95	ND(<50)	180	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		5,800
	13-Feb-96	ND(<50)	1,500	ND(<0.5)	ND(<0.5)	ND(<0.5)	8.7		1,100
	13-May-96	ND(<50)	25,000 (1)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		150
	28-Aug-96	ND(<50)	680	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		410
	21-Nov-96	ND(<50)	1,800 (n)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		720
	20-Feb-97	ND(<50)	1,000 (n)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		1,400
	28-May-97	ND(<50)	3,700 (n) (o)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		830
	19-Sep-97	ND(<50)	4,100	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	1,200
	17-Nov-97	ND(<50)	1,300	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	340
	27-Feb-98	ND(<50)	340	ND(<0.5)	0.9	ND(<0.5)	ND(<2)	ND(<5)	210
	27-May-98	ND(<50)	1,300	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	· '

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (µg/L)	TPH Diesel (a) (µg/L)	Benzene (b) (µg/L)	Toluene (b) (μg/L)	Ethylbenzene (b) (µg/L)	Xylenes (b) (μg/L)	MTBE (b) (μg/L)	Total Dissolved Solids (c) (mg/L)
MW-3	2-Oct-90	ND(<50)	90	28	3.1	0.6	1.5		
	28-Feb-91	ND(<50)	ND(<50)	6	ND(<0.3)	ND(<0.3)	ND(<0.3)	*	
	25-Mar-91	ND(<50)	ND(<50)	0.6	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	1-May-91	ND(<50)	(d)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	5-Aug-91	ND(<50)	ND(<50)	1.7	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	23-Oct-91	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	6-Jan-92	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	20-Jul-92	66	ND(<50)	1.1	2.2	0.7	6.4		
	23-Oct-92	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	4-Feb-93	270	ND(<100)(g)	9.8	4.6	4.5	8.7		
	8-Apr-93	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		
	6-Aug-93	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		3,400
	28-Oct-93	ND(<50)	ND(<50)	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		2,700
	1-Feb-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,400
	12-Sep-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,500
	22-Nov-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,400
	21-Feb-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		4,200
	23-May-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		4,100
	16-Aug-95	ND(<50)	240	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		4,100
	21-Nov-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		4,200
	13-Feb-96	ND(<50)	72	16	ND(<0.5)	ND(<0.5)	0.73		3,400
	13-May-96	ND(<50)	250 (m)	1.7	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,700
	28-Aug-96	ND(<50)	1,200	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,200
	21-Nov-96	ND(<50)	ND(<50)	0.82	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,500
	20-Feb-97	ND(<50)	140 (n)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		2,900
	28-May-97	ND(<50)	240 (n) (o)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		1,900
	19-Sep-97	ND(<50)	ND(<50)	0.7	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	3,300
	17-Nov-97	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	3,400
	27-Feb-98	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	3,800
	27-May-98	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (μg/L)	TPH Diesel (a) (μg/L)	Benzene (b)	Toluene (b) (µg/L)	Ethylbenzene (b) (µg/L)	Xylenes (b) (μg/L)	MTBE (b) (µg/L)	Total Dissolved Solids (c) (mg/L)
MW-4	4-Feb-93	58 (f)	450	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	8-Apr-93	74	220	19	0.4	ND(<0.3)	ND(<0.9)		
	6-Aug-93	95	ND(<50)	68	0.9	1.1	ND(<0.9)		5,800
	28-Oct-93	160	600	46	0.7	1.6	1.2		5,200
	1-Feb-94	320	160	290	0.6	6.7	3.2		6,200
	12-Sep-94	390	95	120	3.9	14	14		6,000
	23-Nov-94	100	1,800	9.9	0.7	1.6	3.8		5,600
	21-Feb-95	91	680	23	ND(<0.5)	1.0	ND(<0.5)		7,100
	23-May-95	ND(<50)	270	5.3	ND(<0.5)	ND(<0.5)	ND(<0.5)		8,300
	16-Aug-95	ND(<50)	610	4.1	ND(<0.5)	ND(<0.5)	ND(<0.5)		7,100
	21-Nov-95	ND(<50)	280	1.0	ND(<0.5)	ND(<0.5)	ND(<0.5)		9,800
	13-Feb-96	980 (i)	7,500	570	ND(<0.5)	9.2	13		3,600
	13-May-96	150 (k)	1,200	45	ND(<1.0)	ND(<1.0)	1.5		7,900
	28-Aug-96	70,000 (k)	1,300,000	340	ND(<200)	ND(<200)	ND(<200)		1,800
	21-Nov-96	52,000 (i)	40,000	130	ND(<100)	ND(<100)	ND(<100)		5,400
	20-Feb-97	64,000 (i)	470,000	ND(<100)	ND(<100)	ND(<100)	ND(<100)		1,500
	28-May-97	11,000 (i)	1,000,000 (o)	ND(<100)	ND(<100)	ND(<100)	ND(<100)		1,700
	19-Sep-97	37,000	2,600,000	260	ND(<30)	ND(<30)	ND(<100)	ND(<300)	2,700
	17-Nov-97	4,400 (r)	57,000 (r)	25 (r)	ND(<5) (r)	ND(<5) (r)	ND(<20) (r)	ND(<50) (r)	7,900
	27-Feb-98	580	9,300	2.7	0.8	0.8	3	ND(<50)	9,700
	29-May-98	3,900	11,000	1.4	0.6	ND(<0.5)	ND(<2)	ND(<5)	' - -

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

								s emperation	Total Dissolved
Well	Date	TPH Gasoline (a)	TPH Diesel (a)	Benzene (b)	Toluene (b)	Ethylbenzene (b)	Xylenes (b)	MTBE (b)	Solids (c)
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(не/L)	(µg/L)	(mg/L)
MW-5	4-Feb-93	ND(<50)	240	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.3)		
	8-Арг-93	ND(<50)	480	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		
	6-Aug-93	ND(<50)	120	0.8	ND(<0.3)	ND(<0.3)	ND(<0.9)		2,800
	28-Oct-93	ND(<50)	370	ND(<0.3)	ND(<0.3)	ND(<0.3)	ND(<0.9)		2,400
	1-Feb-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,500
	12-Sep-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,600
	22-Nov-94	ND(<50)	160	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,600
	21-Feb-95	ND(<50)	170	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,800
	23-May-95	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		4,100
	16-Aug-95	ND(<50)	590	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,800
	21-Nov-95	ND(<50)	500	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,800
	13-Feb-96	ND(<50)	830	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,000
	13-May-96	ND(<50)	870	0.59	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,700
	28-Aug-96	ND(<50)	1,000	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,000
	21-Nov-96	ND(<50)	610	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		2,700
	20-Feb-97	ND(<50)	1,100 (n)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		1,300
	28-May-97	60 (i)	560 (p) (o)	ND(<0.50)	ND(<0.50)	ND(<0.50)	ND(<0.50)		2,500
	19-Sep-97	70	1,000	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	2,400
	17-Nov-97	70	1,100	0.6	0.7	0.5	ND(<2)	5	2,800
	27-Feb-98	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	5	330
	29-May-98	ND(<50)	770	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (µg/L)	TPH Diesel (a) (μg/L)	Benzene (b) (µg/L)	Toluene (b) (μg/L)	Ethylbenzene (b) (µg/L)	Xylenes (b) (µg/L)	MTBE (b) (μg/L)	Total Dissolved Solids (c) (mg/L)
MW-6	12-Sep-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		560
	22-Nov-94	ND(<50)	ND(<50)	ND(<0.5)	ND(<0.5)	ND(<0.5)	1.5		1,800
	21-Feb-95	NS	NS	NS	NS	NS	NS		NS
	23-May-95	NS	NS	NS	NS	NS	NS		NS
	16-Aug-95	NS	NS	NS	NS	NS	NS		NS
	21-Nov-95	NS	NS	NS	NS	NS	NS		NS
	13-Feb-96	NS	NS	NS	NS	NS	NS		NS
	13-May-96	NS	NS	NS	NS	NS	NS		NS
	28-Aug-96	NS	NS	NS	NS	NS	NS		NS
	21-Nov-96	NS	NS	NS	NS	NS	NS		NS
	20-Feb-97	NS	NS	NS	NS	NS	NS		NS
	28-May-97	NS	NS	NS	NS	NS	NS		NS
	19-Sep-97	NS	NS	NS	NS	NS	NS	NS	NS
	17-Nov-97	NS	NS	NS	NS	NS	NS	NS	NS
	27-Feb-98	NS	NS	NS	NS	NS	NS	NS	NS
	29-May-98	NS	NS	NS	NS	NS	NS	· NS	NS
MW-7	12-Sep-94	160	620	2.7	1.3	ND(<0.5)	2.1		1,100
	23-Nov-94	ND(<50)	150	2.4	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,600
	21-Feb-95	93	1,400	0.6	0.8	0.8	3.3		4,000
	23-May-95	ND(<50)	360	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,400
	16-Aug-95	53	1,100	0.5	ND(<0.5)	ND(<0.5)	0.5		4,000
	21-Nov-95	87	9,100	1.4	ND(<0.5)	1.0	1.5		4,200
	13-Feb-96	1,800,000 (j)	5,000,000	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)		3,900
	13-May-96	ND(<50,000)	2,300,000	ND(<500)	ND(<500)	ND(<500)	500 (i)		3,500
	28-Aug-96	59,000 (k)	640,000	ND(<200)	ND(<200)	ND(<200)	600		3,100
	21-Nov-96	3,800 (k)	780,000	130	93	33	64		3,400
	20-Feb-97	15,000 (i)	1,500,000	81	51	ND(<50)	ND(<50)		3,300
	28-May-97	390,000 (i)	440,000 (o)	ND(<1000)	ND(<1000)	ND(<1000)	ND(<1000)		3,500
	19-Sep-97	3,600	910,000	110	64	37	ND(<100)	ND(<300)	3,200
	17-Nov-97	15,000 (r)	18,000,000 (r)	110 (r)	41 (r)	12 (r)	110 (r)	ND(<50) (r)	3,300
	27-Feb-98	45,000	290,000	80	60	ND(<50)	ND(<200)	ND(<500)	3,300
	29-May-98	140	1,600	2.3	0.9	0.9	3	ND(<5)	3,300

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling
Former Penske Truck Leasing Facility,
725 Julie Ann Way, Oakland, California.

Well	Date	TPH Gasoline (a) (μg/L)	TPH Diesel (a) (μg/L)	Benzene (b) (µg/L)	Toluene (b) (µg/L)	Ethylbenzene (b)	Xylenes (b) (μg/L)	MTBE (b) (µg/L)	Total Dissolve Solids (c) (mg/L)
MW-8	12-Sep-94	170	850	2.7	0.5	ND(<0.5)	2		5,500
	23-Nov-94	ND(<50)	570	1.5	ND(<0.5)	ND(<0.5)	ND(<0.5)		6,300
	21-Feb-95	NS	NS	NS	NS	NS	NS		NS
	23-May-95	NS	NS	NS	NS	NS	NS		NS
	16-Aug-95	NS	NS	NS	NS	NS	NS		NS
	21-Nov-95	NS	NS	NS	NS	NS	NS		NS
	13-Feb-96	NS	NS	NS	NS	NS	NS		NS
	13-May-96	NS	NS	NS	NS	NS	NS		NS
	28-Aug-96	NS	NS	NS	NS	NS	NS		NS
	21-Nov-96	400 (k)	2,200	4.6	37	4.6	68		5,100
	20-Feb-97	340 (k)	2,500	2.1	53	7.1	94		3,800
	28-May-97	480 (k)	200 (q) (o)	2.5	12	ND(<2.5)	76		4,100
	19-Sep-97	1,000	7,000	0.8	5.0	0.5	130	ND(<5)	5,000
	17-Nov-97	250	520	1.4	2.1	0.7	3	ND(<5)	4,600
	27-Feb-98	ND(<50)	150	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	3,500
	29-May-98	ND(<50)	70	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	3,500
TB-LB	29-May-98	ND(<50)	NA	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<2)	ND(<5)	NA

Notes appear on the following page.

T . LD: 1 1

ARCADIS GERAGHTY&MILLER

Table 2: Summary of Groundwater Analytical Results - Monthly and Quarterly Sampling Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

	·							iotai Dissolvea
Well Date	TPH Gasoline (a)	TPH Diesel (a)	Benzene (b)	Toluene (b)	Ethylbenzene (b)	Xylenes (b)	MTBE (b)	Solids (c)
	(μ g /L)	(µg/L)	(µg/L)	(µg/L)	(μ g /L)	(µg/L)	(µg/L)	(mg/L)

- (a) Analyzed by USEPA Method 8015, modified.
- (b) Analyzed by USEPA Method 8020.
- (c) Analyzed by USEPA Method 160.1.
- (d) No results sample for TPH as diesel not collected.
- (e) Diesel range concentration reported. A nonstandard diesel pattern was observed in the chromatogram.
- (f) Does not match typical gasoline pattern. Pattern of peaks observed in the chromatograms is indicative of hydrocarbons heavier than gasoline.
- (g) Detection limit increased due to insufficient sample amount.
- (h) Diesel range concentration reported. The chromatogram shows only a single peak in the diesel range.
- (i) Laboratory reports that chromatogram indicates unidentified hydrocarbons >C8.
- (j) Laboratory reports that chromatogram indicates unidentified hydrocarbons >C9.
- (k) Laboratory reports that chromatogram indicates gasoline and unidentified hydrocarbons >C8.
- Laboratory reports that chromatogram indicates diesel and unidentified hydrocarbons >C16.
- (m) Laboratory reports that chromatogram indicates diesel and discrete peaks.
- (n) Laboratory reports that chromatogram indicates diesel and unidentified hydrocarbons >C20.
- (o) Laboratory reports that the laboratory control sample failed for this batch, as well as when it was initially analyzed on 6/3/97.
 All results should be considered as estimated values. No additional sample was available for re-extraction.
- (p) Laboratory reports that chromatogram indicates diesel and unidentified hydrocarbons >C24.
- (q) Laboratory reports that chromatogram indicates diesel and unidentified hydrocarbons <C15.
- (r) Laboratory reports reporting limits for diesel and gas/BTEX elevated due to high levels of target compound. Samples run at dilution.
- (s) Laboratory reports analysis was performed outside of hold time due to improper preservation. Results are estimated.
- () Reported detection limit
- Not analyzed
- ND Not detected
- μg/L Micrograms per liter
- mg/L Milligrams per liter
- NS Well not sampled or monitored during this quarterly event.

Analysis prior to May 28, 1997 by Sequoia Analytical, Walnut Creek, California.

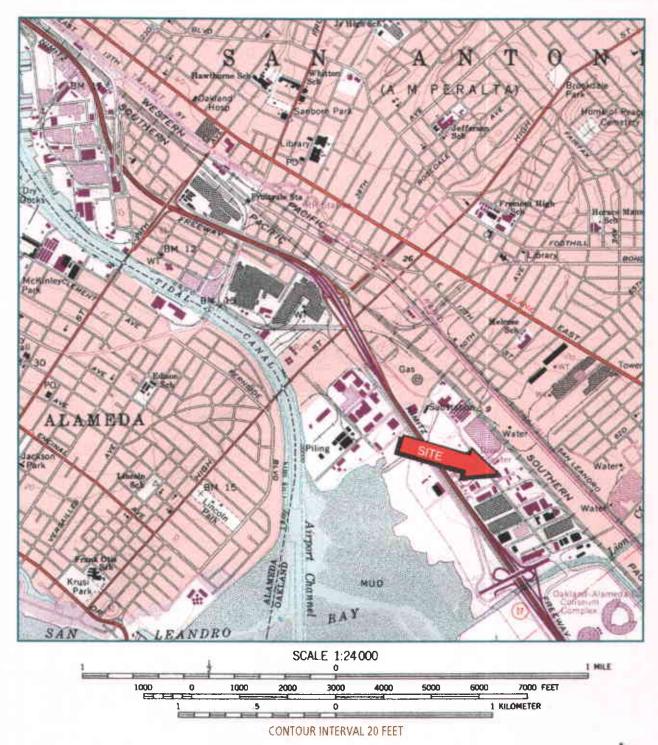
Analysis after May 28, 1997 by American Environmental Netwark (AEN), Pleasant Hill, California.

fe+3 fe+2

Table3: Biodegradation Parameters

Former Penske Truck Leasing Facility, 725 Julie Ann Way, Oakland, California.

Well	Date	Nitrate (mg/L)	Sulfate (mg/L)	fe# Ferrous Iron (mg/L)	Dissolved Oxygen (ppm)	Redox (mv)	Total Heterotrophic Bacteria (cfu/ml)	Hydrocarbon Utilizing Bacteria (cfu/ml)
MW-1	29-May-98	ND(<1)	35	0.08	0.45	NA	300,000	3,100
MW-2	27-May-98	ND(<1)	18	1.59	6.63	125	440,000	18,000
MW-3	27-May-98	3.6	270	0.03	6.23	250	100,000	4,300
MW-4	29-May-98	1	540	0.01	0.49	125	23,000	1,600
MW-5	29-May-98	ND(<0.1)	7.6	0.07	0.67	-212	3,100	340
MW-6	29-May-98	NS	NS	NS	4.20	-240	NS	NS
MW-7) 29-May-98	4.0	320	0.05	(0.76)	187	35,000	4,000
MW-8	29-May-98	3.2	ND(<0.5)	0.01	0.78	-240	250	120


 $mg/L \quad milligrams \ per \ liter$

ppm parts per million

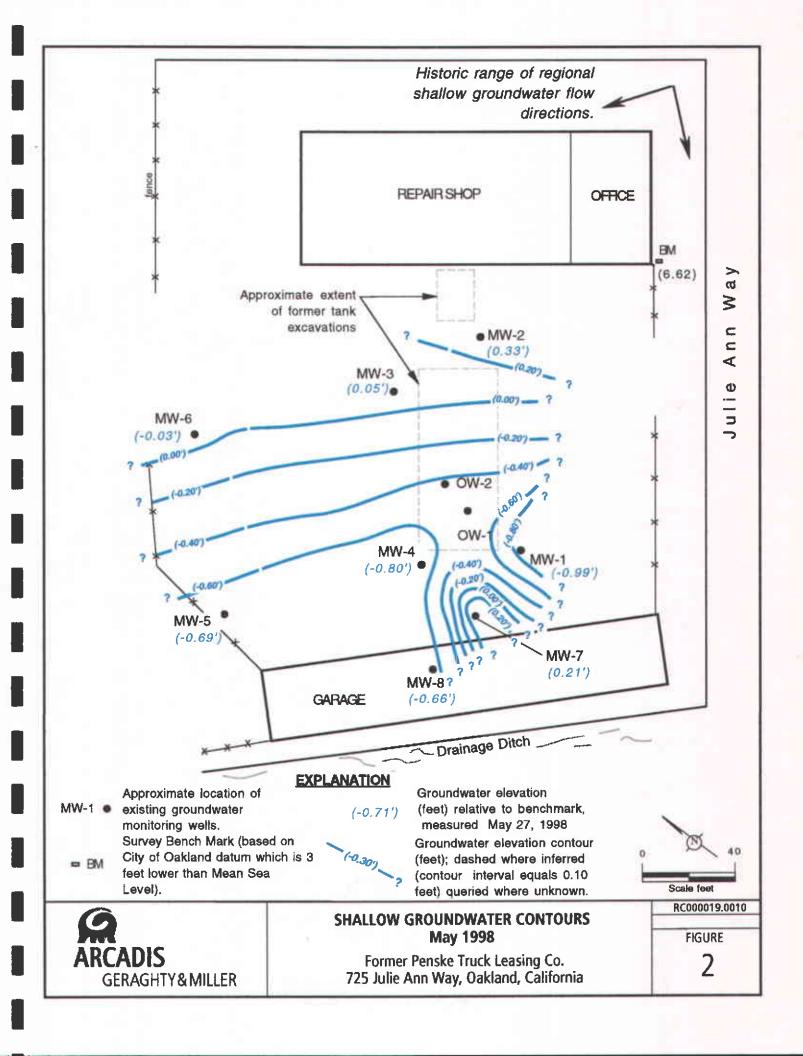
cfu/ml colony forming units per milliliter

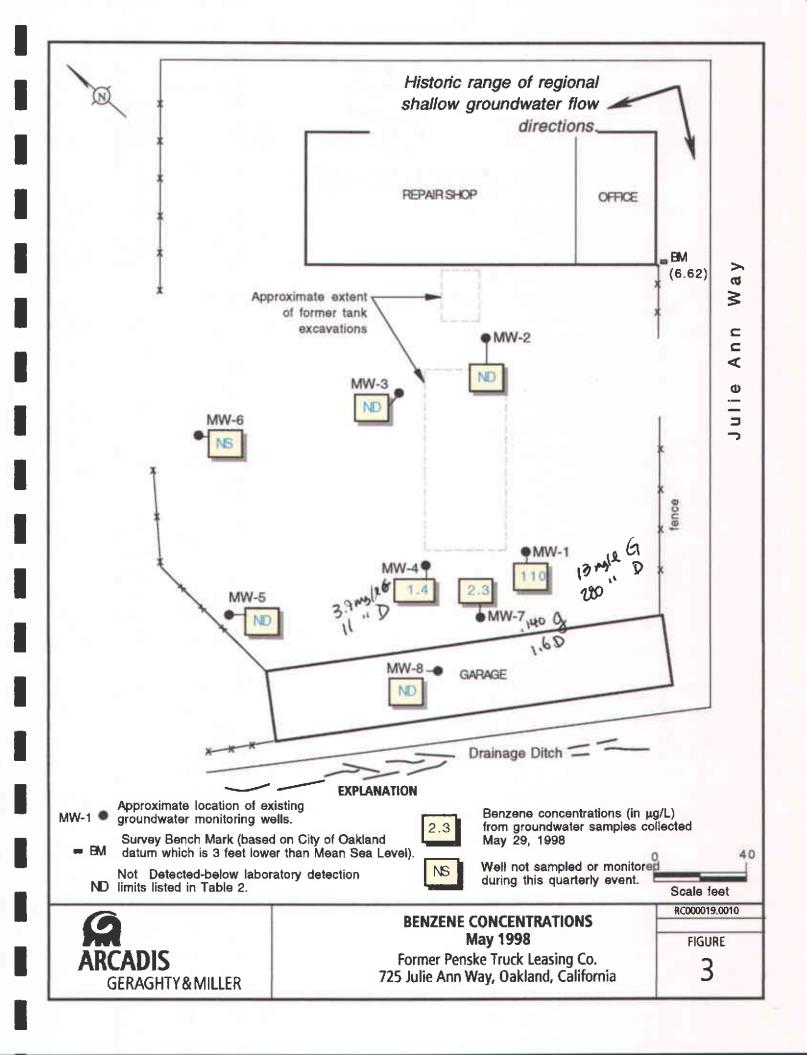
NS Data not available since groundwater samples were not collected from this well.

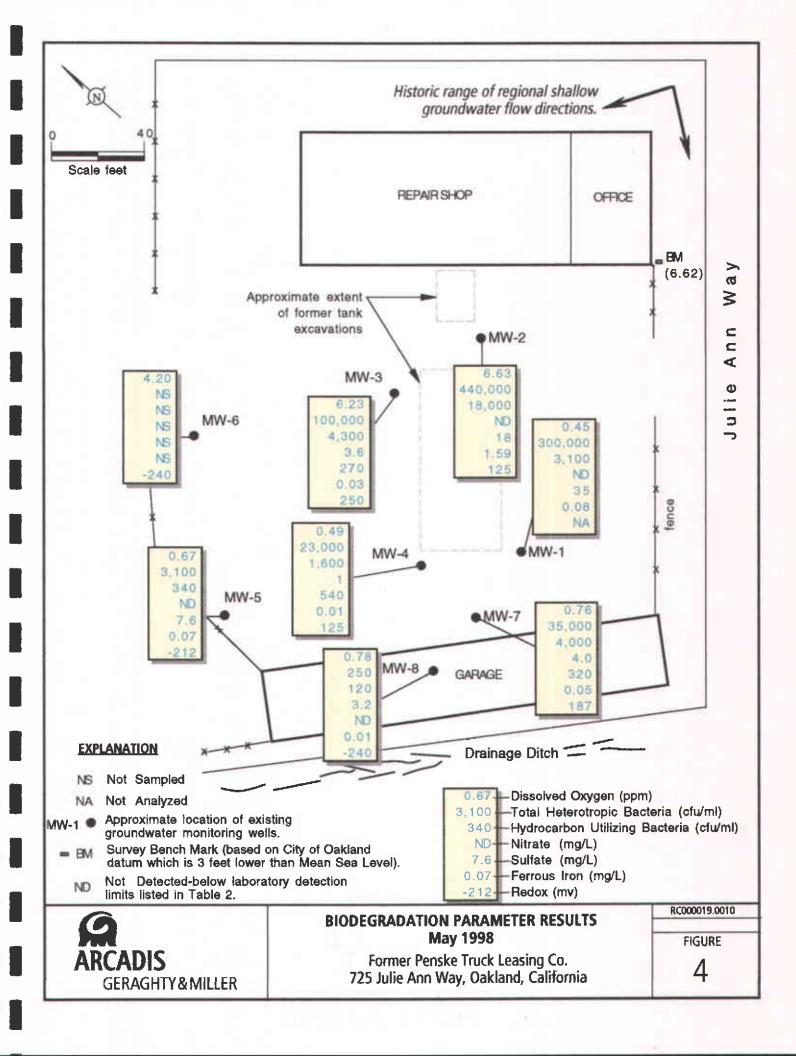
NA No data available.

QUADRANGLE LOCATION

Reference: U.S.G.S. 7-minute Quadrangle, Oakland East, California, revised, Photorevised 1980.




SITE LOCATION MAP


Former Penske Truck Leasing Co. Facility 725 Julie Ann Way Oakland, California RC000019,0000

FIGURE

1

ATTACHMENT 1

COPIES OF CERTIFIED LABORATORY REPORTS

AND CHAIN-OF-CUSTODY DOCUMENTATION

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

ARCADIS GERAGHTY & MILLER INC 1050 MARINA WAY SOUTH RICHMOND, CA 94804

ATTN: PAUL HEHN

CLIENT PROJ. ID: RC000019.001 CLIENT PROJ. NAME: PENSKE/OAKLAND REPORT DATE: 06/18/98

DATE(S) SAMPLED: 05/29/98

DATE RECEIVED: 06/02/98

AEN WORK ORDER: 9806028

PROJECT SUMMARY:

On June 2, 1998, this laboratory received 3 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Portions for hydrocarbon degrading, heterotrophic bacteria and ferrous iron were subcontracted to DOHS certified laboratories; subcontract report(s) are included. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Reviewed by:

William Intoh

3440 Vincent Road • Pleasant Hill, CA 94523 • (510) 930-9090 • FAX (510) 930-0256

PAGE 2

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-7

AEN LAB NO: 9806028-01 AEN WORK ORDER: 9806028 CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	2.3 * 0.9 * 0.9 * 3 * 0.14 * ND	0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L ug/L	06/09/98 06/09/98 06/09/98 06/09/98 06/09/98
#Extraction for TPH	EPA 3510	-		Extrn Date	06/08/98
TPH as Diesel	GC-FID	1.6 *	0.05	mg/L	06/10/98
#Anion Sample Prep.		-		Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	4.0 *	0.1	mg/L	06/03/98
Sulfate	EPA 300	320 *	0.5	mg/L	06/05/98

ND = Not detected at or above the reporting limit * = Value at or above reporting limit

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-8

AEN LAB NO: 9806028-02 AEN WORK ORDER: 9806028

CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	G UNITS	DATE ANALYZED
BTEX & Gasoline HCs	EPA 8020				
Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND	0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L ug/L	06/09/98 06/09/98 06/09/98 06/09/98 06/09/98
#Extraction for TPH	EPA 3510	-		Extrn Date	06/08/98
TPH as Diesel	GC-FID	0.07 *	0.05	mg/L	06/10/98
#Anion Sample Prep.		-		Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	3.2 *	0.1	mg/L	06/03/98
Sulfate	EPA 300	ND	0.5	mg/L	06/03/98

ND = Not detected at or above the reporting limit

^{* =} Value at or above reporting limit

American Environmental Network

PAGE 4

GERAGHTY & MILLER, INC. .

SAMPLE ID: TB-LB

AEN LAB NO: 9806028-03 AEN WORK ORDER: 9806028 CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98 REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene	EPA 8020 71-43-2 108-88-3 100-41-4	ND ND ND	0.5 0.5	ug/L ug/L ug/L	06/09/98 06/09/98 06/09/98
Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	1330-20-7 5030/GCFID 1634-04-4	ND ND ND	0.05	ug/L mg/L ug/L	06/09/98 06/09/98 06/09/98

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9806028 CLIENT PROJECT ID: RC000019.001

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

 $\label{laboratory control Sample (LCS)/Method Spikes(s): Control samples of known composition. \ LCS and Method Spike data are used to validate batch analytical results.$

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analyses.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behaviour, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrument performance.

- D: Surrogates diluted out.
- I: Interference.
- !: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL REPORT

PAGE QR-2

ANALYSIS: Extractable TPH

MATRIX: Water

METHOD BLANK SAMPLES

SAMPLE TYPE: Bland INSTRUMENT: HP 50 UNITS: mg/L		ia blank		PREPARED:	BLKW-0608-1 06/08/98 06/08/98	Ĺ	INSTR BATCH DILUTI	ID: DSI	C\9806010 W060898-1	00000/110/
METHOD: ANALYTE Diesel		RESULT ND	REF Result	REPORTING LIMIT 0.05	SPIKE VALUE	RECOVERY (%)	REC LIM LOW	ITS (%) HIGH	RPD (%)	RPD LIMIT (%)
Motor Oil n-Pentacosane	(surr)	ND 97.7		0.2	100	97.7	60	130		

LABORATORY CONTROL SAMPLES

SAMPLE TYPE: Laboratory Conf INSTRUMENT: HP 5890 UNITS: mg/L	trol Spike			LCDW-0608- 06/08/98 06/08/98	1	BATCH ID:	GC_C\9806010 DSTW060898-1 1.000000	00000/112/110
METHOD: ANALYTE Diesel n-Pentacosane (surr)	RESULT 1.76 98.7	REF RESULT ND 97.7	REPORTING LIMIT 0.05	SPIKE VALUE 2.00 100	RECOVERY (%) 88.0 98.7	REC LIMITS (LOW HIG 60 130 60 130		RPD LIMIT (%)
SAMPLE TYPE: Laboratory Cont INSTRUMENT: HP 5890 UNITS: mg/L	trol Spike		LAB ID: PREPARED: ANALYZED:		1	BATCH ID:	GC C\9806010 DSCW060898-1 1.000000	00000/111/110
METHOD: ANALYTE Diesel n-Pentacosane (surr)	RESULT 1.80 100.2	REF RESULT ND 97.7	REPORTING LIMIT 0.05	SPIKE VALUE 2.00 100	RECOVERY (%) 90.0 100	REC LIMITS (LOW HIG 60 130 60 130		RPD LIMIT (%)

LABORATORY CONTROL DUPLICATES

INSTRUMENT: HP 5890 UNITS: mg/L	ontrol Sample Du	uplicate	LAB ID: PREPARED: ANALYZED:	LCRW-0608- 06/08/98 06/08/98	1		ID: DS	C\9806010 _W060898-1)00000	00000/113/111
METHOD: ANALYTE	RESULT	REF RESULT	REPORTING LIMIT	SPIKE VALUE	RECOVERY (%)	REC LIM LOW	ITS (%) HIGH	RPD (%) 2.25	RPD LIMIT (%) 20
Diesel Motor Oil n-Pentacosane (surr)	1.76 ND 98.7	1.80 ND 100.2	0.05 0.2	100	98.7	60	130	0	

SAMPLE SURROGATES

METHOD:								
ANALYTE RESULT n-Pentacosane (surr) 110.8	REF RESULT	REPORTING LIMIT	SPIKE VALUE 100	RECOVERY (状) 111	REC LIM LOW 60	ITS (%) HIGH 130	RPD (%)	RPD LIMIT (%)

American Environmental Network

WORK ORDER: 9806028

QUALITY CONTROL REPORT

PAGE QR-3

ANALYSIS: Extractable TPH

MATRIX: Water

SAMPLE SURROGATES

SAMPLE TYPE: Sample-Client INSTRUMENT: HP 5890 UNITS: mg/L

METHOD:

ANALYTE n-Pentacosane (surr)

RESULT

109.8

LAB ID: 9806028-02D PREPARED: 06/08/98 ANALYZED: 06/10/98

SPIKE VALUE

INSTR RUN: GC C\980601000000/148/ BATCH ID: DSCW060898-1 DILUTION: 1.000000

REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130

REPORTING

LIMIT

RESULT

100

RECOVERY (な) 110

QUALITY CONTROL REPORT

PAGE QR-4

ANALYSIS: Major Anions

MATRIX: Water

METHOD BLANK SAMPLES	
SAMPLE TYPE: Blank-Method/Media blank INSTRUMENT: Dionex ion chromatograph UNITS: mg/L METHOD:	LAB ID: IC_BLNK INSTR RUN: IC\98060300000001/ PREPARED: BATCH ID: IC060398 ANALYZED: 06/03/98 DILUTION: 1.000000
ANALYTE RESULT Nitrate, NO3-N ND Sulfate, SO4 ND	REF REPORTING SPIKE RECOVERY REC LIMITS (\$) RPD RESULT LIMIT VALUE (\$) LOW HIGH RPD (\$) LIMIT (\$) 0.1 0.5
SAMPLE TYPE: Blank-Method/Media blank INSTRUMENT: Dionex ion chromatograph UNITS: mg/L	LAB ID: IC_BLNK INSTR RUN: IC\980605000000/1/ PREPARED: BATCH ID: IC060598 ANALYZED: 06/05/98 DILUTION: 1.000000
METHOD: ANALYTE RESULT Chloride, Cl ND Nitrate, NO3-N ND Nitrite, NO2-N ND Sulfate, SO4 ND	REF -REPORTING SPIKE RECOVERY REC LIMITS (%) RPD RESULT LIMIT VALUE (%) LOW HIGH RPD (%) LIMIT (%) 0.5 0.1 0.1 0.5
LABORATORY CONTROL SAMPLES	
SAMPLE TYPE: Spike-Method/Media blank INSTRUMENT: Dionex ion chromatograph UNITS: mg/L METHOD:	LAB ID: IC_LCD INSTR RUN: IC\98060300000073/1 PREPARED: BATCH ID: IC060398 ANALYZED: 06/03/98 DILUTION: 1.000000
ANALYTE RESULT Nitrate, NO3-N 1.94 Sulfate, SO4 9.93	REF REPORTING SPIKE RECOVERY REC LIMITS (%) RPD RESULT LIMIT VALUE (%) LOW HIGH RPD (%) LIMIT (%) ND 0.1 2.00 97.0 80 120 ND 0.5 10.0 99.3 80 120

INSTRUMENT: Dionex ion chromatog UNITS: mg/L METHOD:	raph	PREPARED: ANALYZED:	06/03/98		BATCH ID: 1C060 DILUTION: 1.000	
ANALYTE RE	REF ESULT RESULT L.94 ND 9.93 ND	REPORTING LIMIT 0.1 0.5	SPIKE VALUE 2.00 10.0	RECOVERY (%) 97.0 99.3	REC LIMITS (*) LOW HIGH RI 80 120 80 120	RPD PD (%) LIMIT (%)
SAMPLE TYPE: Spike-Method/Media b		LAB ID:	IC_LCS		INSTR RUN: IC\98	
INSTRUMENT: Dionex ion chromatog UNITS: mg/L METHOD:	raph	PREPARED: ANALYZED:	06/03/98		BATCH ID: IC060 DILUTION: 1.000	0000
ANALYTE RENITATION NOTES	REF ESULT RESULT 1.94 ND 9.90 ND	REPORTING LIMIT 0.1 0.5	SPIKE VALUE 2.00 10.0	RECOVERY (ま) 97.0 99.0	REC LIMITS (%) LOW HIGH R 80 120 80 120	RPD (%) LIMIT (%)
SAMPLE TYPE: Spike-Method/Media b	Jank	LAB ID:	IC LCD		INSTR RUN: IC\98	30605000000/3/1
INSTRUMENT: Dionex ion chromatog UNITS: mg/L		PREPARED:		•	BATCH ID: ICO60 DILUTION: 1.000)598
METHOD:	RFF	REPORTING	SPIKE	RECOVERY	REC LIMITS (%)	RPD

TETHOD:		REF	REPORTING	SPIKE	RECOVERY	REC_LIM	ITS (X)	000 (k)	RPD
ANALYTE	RESULT	RESULT ND	LIMIT	VALUE 10.0	(%) 99.6	Ļ0W 80	HIGH 120	RPD (X)	Limi: (4)
Chloride, Cl Nitrate NO3-N	9.96 1.96	ND ND	0.5	2.00	98.0	80	120		
Nitrite, NO2-N	1.87	ND	0.1	2.00	93.5	80	120		
Sulfate, SO4	9.86	ND	0.5	10.0	98.6	80	120		

SAMPLE TYPE: Spike-Method/Me INSTRUMENT: Dionex ion chro UNITS: mg/L			LAB ID: PREPARED ANALYZED	IC_LCS : 06/05/98		INSTR RUN: BATCH ID: DILUTION:	IC\980605000 IC060598 1.000000	1000/2/1
METHOD:		REF	REPORTING	SPIKE	RECOVERY	REC LIMITS		RPD
ANALYTE Chloride Cl	RESULT 9.87	RESULT ND	LIMIT 0.5	VALUE 10.0	(北) 98.7	LOW HI(80 120		LIMIT (

	DE01# T	DECULE.	VELOKITMO	MALLIE	(%)	LOW	HIGH	RPD (%)	LIMIT (%)
ANALYTE	RESULT	RESULT	LIMIT	VALUE	(4)			KEU (4)	CILII (4)
Chloride, Cl	9.87	ND	0.5	10.0	98.7	80	120		
Nitrate, NO3-N	1.97	ND	0.1	2.00	98.5	80	120		
					93.5	80	120		
Nitrite, NO2-N	1.87	ND	0.1	2.00		00			
Sulfate, SO4	9.91	ND	0.5	- 10.0	99.1	80	120		

American Environmental Network

WORK ORDER: 9806028

QUALITY CONTROL REPORT

PAGE QR-5

ANALYSIS: Major Anions

MATRIX: Water

LABORATORY CONTROL DUPLICATES

UNITS: mg/L	pike Sample Duplicate on chromatograph	LAB ID: PREPARED: ANALYZED:	IC_LCR 06/03/98		INSTR RUN: IC\980603 BATCH ID: IC060398 DILUTION: 1.000000	000000/4/2
METHOD: ANALYTE Nitrate, NO3-N Sulfate, SO4	RESULT RESU 1.94 1.9 9.93 9.9	T LIMIT 4 0.1	SPIKE VALUE	RECOVERY (な)	REC LIMITS (%) LOW HIGH RPD (0 0.303	RPD \$) LIMIT (\$) 15 15
,						
UNITS: mg/L	pike Sample Duplicate on chromatograph	LAB ID: PREPARED: ANALYZED:	IC_LCR 06/05/98		INSTR RUN: IC\980605 BATCH ID: IC060598 DILUTION: 1.000000	000000/4/2
METHOD: ANALYTE Chloride, Cl Nitrate, NO3-N Nitrite, NO2-N Sulfate, SO4	RESULT RESU 9.96 9.8 1.96 1.9 1.87 1.8 9.86 9.9	T LIMIT 7 0.5 7 0.1 7 0.1	SPIKE VALUE	RECOVERY (な)	REC LIMITS (%) LOW HIGH RPD (0.908 0.509 0	RPD X) LIMIT (X) 15 15 15 15

PAGE QR-6

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9806028

INSTRUMENT: F MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
06/09/98 06/09/98 06/09/98	MW-7 MW-8 TB-LB	01 02 03	92 92 92
QC Limits:			70-130

DATE ANALYZED:

06/09/98 9806027-03

SAMPLE SPIKED: INSTRUMENT: F

Matrix Spike Recovery Summary

				QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene Ethylbenzene Total Xylenes	200 200 200 200 600	95 99 105 105	11 13 15 15	70-130 70-130 70-130 70-130	20 20 20 20

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Hydrocarbon-Degrading and Heterotrophic Bacteria Enumeration Results

CLIENT SAMPLE NUMBER	SAMPLE DATE	HYDROCARBON DEGRADERS (CFU/ML)	TOTAL HETEROTROPHS (CFU/ML)
MW-7	5/29/98	4.0×10^3	3.5 x 10 ⁴
MW-8	5/29/98	1.2×10^2	2.5×10^2

Bacterial enumerations were performed by Dr. Sean P. Bushart. CytoCulture is available on a consulting basis to assist in the interpretation of these data and their application to field remediation protocols.

Sean P. Bushart, Ph.D. Laboratory Services Randall von Wedel, Ph.D. Principal, Director of Research

jandael von weds

June 12, 1998

Client: American Environmental Network

Contact: Bill Svoboda 3440 Vincent Rd.

Pleasant Hill, CA 94523 Client PO #: 9806028 Telephone: (510) 930-9090

Fax: (510) 930-0256

Project ID #: RC000019.0010

SAMPLES: Two water samples were received on 6/3/98. The samples were assayed the next day and then stored at 4°C for any follow-up work.

Hydrocarbon-Degrading and Total Heterotrophic Bacteria Enumeration Assays

ANALYSIS REQUEST:

Bacterial enumeration for total petroleum hydrocarbon-degraders (broad range

petroleum hydrocarbons: diesel) and total heterotrophs.

CARBON SOURCE:

Petroleum hydrocarbons were added as the sole carbon and energy sources for the growth of hydrocarbon-degrading aerobic bacteria on agar plates. Diesel was blended into the agar to provide aliphatic and aromatic hydrocarbons in the growth matrix.

Heterotrophic bacteria plates were prepared with Difco Total Plate Count Agar providing a wide range of amino acid and carbohydrate carbon sources.

PROTOCOLS:

Hydrocarbon Degraders: Sterile agar plates (100 x 15 mm) were prepared with minimal salts medium at pH 6.8 with 1.5% noble agar, without any other carbon sources or nutrients added. Plates were inoculated with 1.0 ml of sample or a log dilution of each water sample. Triplicate plates were inoculated with sample log dilutions of 10°, 10°, and 10°. The hydrocarbon plates were poured on 6/4/98 and counted after 7 days on 6/11/98. The plate count data are reported as colony forming units (cfu) per milliliter (ml) of sample. Each bacteria population value represents a statistical average of the plate count data obtained with inoculations for two of the three log dilutions tested.

Heterotrophs: Sterile agar plates (100 x 15 mm) were prepared with minimal salts medium and 2.35% plate count agar at pH 6.8 without any other carbon sources or nutrients added. Plates were inoculated with 1.0 ml of water sample, or a log dilution of the sample, in triplicate at sample dilutions of 10⁻¹, 10⁻², and 10⁻³. The heterotroph plates were poured on 6/4/98 and counted after 4 days on 6/8/98. The plate count data are reported as colony forming units (cfu) per milliliter (ml) for each water sample. Each enumeration value represents a statistical average of two of the three log dilutions inoculated in plates.

Reporting	înformajj <u>o</u> p:	4				ZIN	· _ a			A	$oldsymbol{L}$	λ/						. ,	250 BN 1
1. Client: Addres		A	<i>merican l</i> 3440 Vince	nt Road,		II, CA 9		rĸ		<i>7</i> 1.	Ľ).	L ¥		REC	ŲΕ	ST F	FOR		(்)்
Contac Alt, Co	ot: BILL SVOBODA			FAX (51	0) 930-025	5			Lab	Job Dest	inati	on:		СУ	TC	· C	UL	TURE	
Address Re	enort To:		end Invoice To:							e Sar Con	-	s Ship	pea:_ -						
2.		3.		`					Dat	e Re	sults	-						RD	
· —	井	``		<u> </u>				-		e Rep ent Ph		•	ed: _						
								_		ent FA			_						
								_		_				IAI Š	CIC				
Send Repo	ort To: 1 or 2 (Circle one)								1	-	7	7	/AN	IALÝ 7	7	7	7		
Client P.O.	No.: 9806028 Clie	ent Project I.D. N	o.: _RC00	0001	9.001	0						/ ,	/ /	/	/	/			
Sample Te	am Member (s)				•				12	/~ ,	/ ,	/ /				<i>'</i> /	/ /	/ /	
1			Date/			No.	Туре	7 /		3				/		/	/		•
Lab Number	Client Sample Identification	Air Volume	Time Collected	Sample Type*	Pres.	of Cont.	of	1/4	/2	5/	/	/ /	/ /	/	/ ,		/	Comme	nts / Hazards
	Mw-7		5/29/98	7	COLP	2	VOA	\searrow	\propto				-f	-(\neg	\neg (INCLUDE P	O.# AND
	MW-B		1	1	J	Ī	V	X	X					1.				1	I.D. # ON
																		1	ND INVOICE
				<u> </u>			ļ		<u> </u>				_	\perp					
<u> </u>				<u> </u>		ļ	<u> </u>	 	 				_	\dashv	-			FAX RES	ULTS.
<u> </u>					20-0	55.		n n .	_		 			_			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
		1, 12	TAL It			W/2/17	1/6 2	3//0			\ <u>^</u>						 		
		2. H	DROCA	EROI	1177	100	WG	B	AC.	7.2-	e,	4	- 1	2//	_,	<u></u>	7	ARGET	
<u> </u>		. ,				ļ	<u> </u>	-	<u> </u>				_	\perp					
		-	ļ			-		+		-	<u> </u>	\vdash	+	\dashv					
					· · · · · · · · · · · · · · · · · · ·	 -	 	+	┢		1		,	+		0	<u> </u>		
Relinquish	ned by:		DATE		TIME		Receive		11	$\frac{1}{\sqrt{2}}$	/	1	7	1		/-	<u> </u>	DATE	TIME
(Signature	Ronald C. ser	rsero	6/3/96	3	11:0	0_	(Signat			2/1	سدوح	<u>/</u> Z,	No 1	14	<u>(X</u>	<u></u>		6/3/9s	1100
Relinquish (Signature		dulla	GATE,	f -	1230	9	Receive (Signat			X	rect	M						693198	13.30
Relinquish (Signature			DATE		TIME		Receive (Signat	ed by: ure)		-								DATE	TIME
Method of		···· <u>-</u> -:	-				Lab Co		nts										
L	, ,	*Sample type (Specify): 1) 37r	mm () 8 tr	m MCFF 2) 25mm	0.8 um l	MCFF	= 31	25mn	104	บตา ตก	lvcarh	. filte	er				

*Sample type (Specify): 1) 37mm 0.8 µm MCEF 2) 25mm 0.8 µm MCEF 3) 25mm 0.4 µm polycarb. filter
4) PVC filter, diam. _____ pore size _____ 5) Charcoal tube 6) Silica gel tube 7) Water 8) Soil 9) Bulk Sample

$\overline{E} \overline{T} \overline{S}$

1343 Redwood Way Petaluma, CA 94954 **Environmental** Technical Services

Soil, Water & Air Testing & Monitoring Analytical Labs Technical Support

(707) 795-9605/FAX 795-9384

Serving people and the environment so that both benefit

WATER ANALYSIS REPORT

To: Bill Svoboda

American Environmental Network

3440 Vincent Road

Pleasant Hill, CA 94523

Sample of: monitor well water

Lab #s: 98-06-0051 thru 06-0057

Received: June 4, 1998

Tech(s): C. Lawrence

Date: June 11, 1998

Lab Supervisor: D. Jacobson

Lab Director: G.S. Conrad, Ph.D. Sample ID(s): MW-1, MW-2, MW-3, MW-4

MW-5, MW-7 & MW-8

. Kar

Site Location: northern California; Project ID No.: RC000019.0010

RESULTS

SAMPLE ID		REDOX	FERROUS IRON
MW-I			0.08 mg/l
MW-2			1.59 mg/l
—			0.03 mg/1
MW-4	the second secon		0.01 mg/l
MW-5	1 12		0.07 mg/L
MW-7			0.05 mg/l
8-WM			0.01 mg/l

COMMENTS

All ferrous irons in this set were very low with only one exception which was very high and way out range as compared with the other samples. Thus, while most ferrous values suggest decent oxidation, and/ or bacterial activity in the groundwater, the one elevated ferrous value suggests at the very least a much higher amount of total iron and perhaps little of the usually more desirable types of bacterial activity.

NOTES:

These tests were done according to the Association for Testing Materials-(ASTM), and/or conform to standard and accepted protocols as described in Standard Methods for the Examination of Water and Wastewater, 18th ed., c 1992: Ferrous Iron (Fe ++) - Phenanthroline Method (mod. 3500-Fe D); Mn++ - PAN Method; Redox - ASTM D 1498.

Client: Addres Contac	:s:			nt Road, Phone (5)		I, CA 9		·k.	Lab Lab	A Job I	Numl	oer: on:	-				_	CHA!	Of L
<u> </u>			end Invoice To:							e San Cont		Ship	ped:_ _						
Address Ro	·				 .		·		Date	Res	ults						RD		
2	#1	3.	#1					- - -	Clie	nt Ph nt FA	one	No.:							
Client P.O.	rt To: ① or 2 (Circle one) No.: <u>9806028</u> Clie	nt Project I.D. N	o.: RCOOC	019	,0010	-			25.5	///	//	//	AN	JALYS	/ / /	//			
		A:-	Date/	Camania		No.	Туре	1 <i>/;;</i>	ŽÝ.					/ ,	Ι,	/ /			
Lab Number	Client Sample Identification	Air Volume	Time Collected	Sample Type*	Pres.	of Cont.	of of	Vű.	7	/. ,	/	/ /	/ /	/ /			Col	nments	s / Hazards
	MW-7		5129 <i>1</i> 98	7	COLD	1_	PLAST	X									INCLUD	E.P.O	# AND
	Mw-8		1	L.	₩.	1		X					\perp	\bot			PROJE	CTI) # ON_
														_	_	-	REPOR	TAN	DINVOICE
 :									_						-		FAX	3E5	ULTS.
			, , , , , , , , , , , , , , , , , , , ,														<u></u>		
			<u> </u>			ļ		<u> </u>		<u> </u>		<u> </u>	_	_ _		<u> </u>		.	
		ļ <u>.</u>		ļ		ļ <u>.</u>	<u> </u>		ļ			\vdash	\dashv		+	_	<u> </u>		·
	NOTE: OK	AY 70	ANALYZ	EP	95T	400	D '	722	22	E				-	+	_ -			<u>.</u>
				 	:			-					$\neg \dagger$		1				
	· · · · · · · · · · · · · · · · · · ·																		·
						<u> </u>			<u> </u>			-	_	_		_ -			
Relinquish	ed by:	<u> </u>	DATE	<u> </u>	TIME		Receive	d by:	<u></u>					L_	_]_		DATE		TIME
(Signature)	Ronald C. ge	maln	_6/3/9	<u> </u>	14:15 TIME		(Signate										DATE		TIME
Relinquish (Signature)	ed by:	•	DATE		I IIVIE		Receive (Signate				•		·						
Relinquish (Signature)			DATE		TIME		Receive (Signati							٠.٠			DATE		TIME
Method of		-	١ .				Lab Co	mmer	its		,								

*Sample type (Specify): 1) 37mm 0.8 µm MCEF 2) 25mm 0.8 µm MCEF 3) 25mm 0.4 µm polycarb. filter
4) PVC filter, diam. _____ pore size _____ 5) Charcoal tube 6) Silica gel tube 7) Water 8) Soil 9) Bulk Sample

ARCADIS GERAGHTY&MILLER Labora	atory Task Order No./F	980606 20, No. 980606		-CUSTODY REC	ORD Page	of
Project Number/NameRCDOO/						· · · · · · · · · · · · · · · · · · ·
Project Location PENSKe 10			ANALYSIS	/ METHOD / SIZE		
. 1 - 1	TRUTTUI			\maketa\nu_1/2\nu_2\nu_2\nu_2\nu_2\nu_2\nu_2\nu_2\nu_	/ /). <i>i</i>
Laboratory AEN			- 100 K	S 46 60 00 /	1 / 2 00	د محال
Project Manager PV H		/ W. / s	The second of th	B. D. B. L.	/ 2	
Sampler(s)/Affiliation	·		6 / 4 P / 2	O TO YOUR		
	Date/Time		. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	37043	/ Sec	
Sample ID/Location Matrix	Sampled Lab ID		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	12 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Remarks	Total
*MW-1 ~ K	15/4 700	XX	4 4	F ()		7598
HW-2- 84	10 me 5 mg 000	7 7	* *	之		1
MW-3, SI	5/1/50	7 4	4 4	4		
* 400-4 8	5/34 rao	7 7	4 之	2		
UW TO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1	7 7	4		
XMW-1	1180	4 4	// /	*	,	15
MW-8	W / 1300	1/2	4	7	•	15/
1B-1B	- 	4		7		- C
					-	
A PRODUCT PRES	102- (1)	10/20/1/	(160/120)			
a revouer rees	a) -047	pre the a	(BSOALLES)			
						2
Sample Matrix: $L = Liquid$ $S = S$	Solid; A = Air			1 1 1 1	Total No. of Bott Contain	les/
Received by:	Organiza Organiza				Time 15:40 Se	eal Intact?
Relinquished by: Reil Balin	Organiza					eal Intact?
Received by:	Organiza	ation: <u>Aev</u>	D _i	ate 6 1 2 198	, I	s No N/A
Special Instructions/Remarks:						,
						
Delivery Method: 🗆 In Perso	on 🗆 Commo	on Carrier		Lab Courier	□Other	

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

ARCADIS GERAGHTY & MILLER INC 1050 MARINA WAY SOUTH RICHMOND, CA 94804

ATTN: PAUL HEHN

CLIENT PROJ. ID: RC000019.001

CLIENT PROJ. NAME: PENSKE/OAKLAND

REPORT DATE: 06/18/98

DATE(S) SAMPLED: 05/27/98-05/29/98

DATE RECEIVED: 06/02/98

AEN WORK ORDER: 9806027

PROJECT SUMMARY:

On June 2, 1998, this laboratory received 5 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Portions for hydrocarbon degrading, heterotrophic bacteria and ferrous iron were subcontracted to DOHS certified laboratories; subcontract report(s) are included. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Reviewed by:

William Labora

3440 Vincent Road • Pleasant Hill. CA 94523 • (510) 930-9090 • FAX (510) 930-0256

Analytical Services for the Environment

PAGE 2

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-1

AEN LAB NO: 9806027-01 AEN WORK ORDER: 9806027

CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	EPORTING LIMIT UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes. Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	110 * 13 * 66 * 390 * 13 * ND	5 ug/L 5 ug/L 5 ug/L 20 ug/L 0.5 mg/L 50 ug/L	06/09/98 06/09/98 06/09/98 06/09/98 06/09/98 06/09/98
#Extraction for TPH	EPA 3510	-	Extrn Date	06/08/98
TPH as Diesel	GC-FID	280 *	2 mg/L	06/09/98
#Anion Sample Prep.		-	Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	ND	1 mg/L	06/03/98
Sulfate	EPA 300	35 *	5 mg/L	06/03/98

RLs for g/BTEX & DSL elevated due to high levels of target compounds. Samples run at dilution. RLs elevated for NO3 & SO4 due to matrix interference.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-2

AEN LAB NO: 9806027-02

AEN WORK ORDER: 9806027

CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/27/98 DATE RECEIVED: 06/02/98 REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND	0.05 n	ığ/L ıg/L ıg/L	06/10/98 06/10/98 06/10/98 06/10/98 06/10/98 06/10/98
#Extraction for TPH	EPA 3510	-	E	Extrn Date	06/08/98
TPH as Diesel	GC-FID	1.3 *	0.05 r	ng/L	06/08/98
#Anion Sample Prep.			f	Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	ND	1 r	ng/L	06/03/98
Sulfate	EPA 300	18 *	5 r	ng/L	06/03/98

Reporting limits elevated for nitrate-nitrogen and sulfate due to matrix interference.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-3

AEN LAB NO: 9806027-03 AEN WORK ORDER: 9806027

CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/27/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND ND	0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L ug/L	06/10/98 06/10/98 06/10/98 06/10/98 06/10/98 06/10/98
#Extraction for TPH	EPA 3510			Extrn Date	06/08/98
TPH as Diesel	GC-FID	ND	0.05	mg/L	06/09/98
#Anion Sample Prep.		-		Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	3.6 *	0.1	mg/L	06/03/98
Sulfate	EPA 300	270 *	0.5	mg/L	06/03/98

ND = Not detected at or above the reporting limit

^{* =} Value at or above reporting limit

PAGE 5

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-4

AEN LAB NO: 9806027-04

AEN WORK ORDER: 9806027 CLIENT PROJ. ID: RC000019.001 DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	G UNITS	DATE ANALYZED
		<u></u>			
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes. Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	FPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	1.4 * 0.6 * ND ND ND 3.9 *	0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L ug/L	06/10/98 06/10/98 06/10/98 06/10/98 06/10/98 06/10/98
#Extraction for TPH	EPA 3510	-		Extrn Date	06/08/98
TPH as Diesel	GC-FID	11 *	0.2	mg/L	06/09/98
#Anion Sample Prep.		•		Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	1 *	1	mg/L	06/03/98
Sulfate	EPA 300	540 *	5	mg/L	06/03/98

RLs for DSL elevated due to high levels of target compounds. Sample run at dilution. Reporting limits elevated for NO3 & SO4 due to matrix interference.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

GERAGHTY & MILLER, INC.

SAMPLE ID: MW-5

AEN LAB NO: 9806027-05 AEN WORK ORDER: 9806027

CLIENT PROJ. ID: RC000019.001

DATE SAMPLED: 05/29/98 DATE RECEIVED: 06/02/98

REPORT DATE: 06/18/98

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
	ED 1 0000		,	
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	FPA 8020 71-43-2 .108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND	0.5 ug/L 0.5 ug/L 0.5 ug/L 2 ug/L 0.05 mg/L 5 ug/L	06/10/98 06/10/98 06/10/98 06/10/98 06/10/98 06/10/98
#Extraction for TPH	EPA 3510	-	-xtrn Dat	e 06/08/98
TPH as Diesel	GC-FID	0.77.*	0.05 mg/L	06/09/98
#Anion Sample Prep.		-	Prep date	06/03/98
Nitrate as Nitrogen	EPA 300	ND	0.1 mg/L	06/03/98
Sulfate	EPA 300	7.6 *	0.5 mg/L	06/03/98

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9806027 CLIENT PROJECT ID: RC000019.001

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spikes(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analyses.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behaviour, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrument performance.

- D: Surrogates diluted out.
- I: Interference.
- !: Indicates result outside of established laboratory QC limits,.

QUALITY CONTROL REPORT

PAGE QR-2

ANALYSIS: Extractable TPH

MATRIX: Water

METHOD BLANK SAMPLES

SAMPLE TYPE: Blar INSTRUMENT: HP S UNITS: mg/l	5890	ia blank		LAB ID: PREPARED ANALYZED	BLKW-0608- : 06/08/98 : 06/08/98	1	INSTR BATCH DILUTI	ID: DSI	C\9806010 W060898·1 00000	00000/110/
METHOD: ANALYTE Diesel		RESULT ND	ref Result	REPORTING LIMIT 0.05	SPIKE VALUE	RECOVERY (%)	REC LIM LOW	ITS (%) HIGH	RPD (%)	RPD LIMIT (%)
Motor 011 n-Pentacosane	(surr)	ND 97.7 ·		0.2	100	97.7	60	130		

LABORATORY CONTROL SAMPLES

SAMPLE TYPE: Laboratory Control Spike	- LAB ID: LCDW-0608-1	INSTR RUN: GC C\980601000000/112/110
INSTRUMENT: HP 5890	PREPARED: 06/08/98	BATCH ID: DSEW060898-1
UNITS: mg/L	ANALYZED: 06/08/98	DILUTION: 1.000000
METHOD: ANALYTE RESULT Diesel 1.76 n-Pentacosane (surr) 98.7	REF REPORTING SPIKE RECOVERY RESULT LIMIT VALUE (%) ND 0.05 2.00 88.0 97.7 100 98.7	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130 60 130
SAMPLE TYPE: Laboratory Control Spike	LAB ID: LCSW-0608-1	INSTR RUN: GC C\980601000000/111/110
INSTRUMENT: HP 5890	PREPARED: 06/08/98	BATCH ID: DSTW060898-1
UNITS: mg/L	ANALYZED: 06/08/98	DILUTION: 1.000000
METHOD: ANALYTE RESULT Diesel 1.80 n-Pentacosane (surr) 100.2	REF REPORTING SPIKE RECOVERY RESULT LIMIT VALUE (な) ND 0.05 2.00 90.0 97.7 100 100	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130 60 130

LABORATORY CONTROL DUPLICATES

INSTRUMENT: HP 58 UNITS: mg/L		rol Sample D	Ouplicate	LAB ID: PREPARED: ANALYZED:	LCRW-0608- : 06/08/98 : 06/08/98	1	INSTR BATCH DILUTI	ID: DS	C\9806010 W060898-1 00000	00000/113/111
METHOD: ANALYTE Diesel		RESULT 1.76	REF RESULT 1.80	REPORTING LIMIT 0.05	SPIKE VALUE	RECOVERY (な)	REC LIM LOW	ITS (%) HIGH	RPD (%) 2.25	RPD LIMIT (%) 20
Motor Oil n-Pentacosane	(surr)	ND 98.7	ND 100.2	0.2	100	98.7	60	130	U	

SAMPLE SURROGATES

INSTRUMENT: HI UNITS: mg	ample-Client P 5890 g/L			LAB ID: PREPARED: ANALYZED:	9806027-010 06/08/98 06/09/98)	INSTR BATCH DILUTI	ID: DSI	C\9806010 W060898-1)00000	00000/135/
METHOD:			REF	REPORTING	SPIKE	RECOVERY	REC LIM	ITS (%)		RPD
ANALYTE n-Pentacosane	(surr)	RESULT D	RESULT	LIMIT	VALUE 100	(%) 0 !	LOW 60	HIGH 130	RPD (\$)	LIMIT (%)

QUALITY CONTROL REPORT

PAGE QR-3

ANALYSIS: Extractable TPH

MATRIX: Water

SAMPLE SURROGATES

SAMPLE TYPE: Sample-Client INSTRUMENT: HP 5890 UNITS: mg/L			LAB ID: PREPARED: ANALYZED:	9806027-02 06/08/98 06/08/98	D	INSTR RUN: GC C\980601000000/120/ BATCH ID: DSCW060898-1 DILUTION: 1.000000
METHOD: ANALYTE n-Pentacosane (surr)	RESULT 107.1	ref Result		SPIKE VALUE 100	107	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130
SAMPLE TYPE: Sample-Client INSTRUMENT: HP 5890 UNITS: mg/L				9806027-03 06/08/98 06/09/98	SD	INSTR RUN: GC C\980601000000/121/ BATCH ID: DSCW060898-1 DILUTION: 1.000000
METHOD: ANALYTE n-Pentacosane (surr)	RESULT 103.9	REF RESULT		SPIKE VALUE 100	(%)	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130
SAMPLE TYPE: Sample-Client INSTRUMENT: HP 5890 UNITS: mg/L			LAB ID: PREPARED:	9806027-04 06/08/98 06/09/98		INSTR RUN: GC C\980601000000/122/ BATCH ID: DSCW060898-1 DILUTION: 1.000000
METHOD: ANALYTE n-Pentacosane (surr)	RESULT 93.3	REF RESULT	REPORTING LIMIT	SPIKE VALUE 100	RECOVERY (X) 93.3	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130
SAMPLE TYPE: Sample-Client INSTRUMENT: HP 5890 UNITS: mg/L			LAB ID: PREPARED:	9806027-05 06/08/98 06/09/98	SD	INSTR RUN: GC C\980601000000/123/ BATCH ID: DSTW060898-1 DILUTION: 1.000000
METHOD: ANALYTE n-Pentacosane (surr)	RESULT 109.2	REF RESULT	REPORTING LIMIT *	SPIKE VALUE 100	RECOVERY (%) 109	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%) 60 130

QUALITY CONTROL REPORT

PAGE QR-4

ANALYSIS: Major Anions

MATRIX: Water

METHOD BLANK SAMPLES

ISTRUMENT:	Blank-Method/Medi Dionex ion chroma mg/L	a blank tograph		LAB ID: PREPARED: ANALYZED:	IC_BLNK 06/03/98		INSTR RUN: IC\9806030000000/1/ BATCH ID: IC060398 DILUTION: 1.000000
ALYTE trate, NO3- 1 fate, SO4	N	RESULT ND ND	ref Result	REPORTING LIMIT 0.1 0.5	SPIKE VALUE	(%)	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (
istrument:	Blank-Method/Medi Dionex ion chroma mg/L	a blank tograph					
MALYTE nloride, Cl trate, NO3- trite, NO2- nlfate, SO4	- N	RESULT ND ND ND ND		-REPORTING LIMIT 0.5 0.1 0.1 0.5			REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (
ABORATOR	y control sam	IPLES					
ISTRUMENT: IITS:	Spike Method/Medi Dionex ion chroma mg/L			LAB ID: PREPARED: ANALYZED:	001 001 00		DILUTION: 1.000000
THOD: WALYTE itrate, NO3 ilfate, SO4	-N	RESULT 1.94 9.93	REF RESULT ND ND	REPORTING LIMIT 0.1 0.5	SPIKE VALUE 2.00 10.0	RECOVERY (*) 97.0 99.3	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (80 120 80 120
AMPLE TYPE: NSTRUMENT: NITS:	Spike-Method/Medi Dionex ion chroma mg/L			LAB ID:			INSTR RUN: IC\980603000000/2/1 BATCH ID: IC060398 DILUTION: 1.000000
ETHOD: VALYTE itrate, NO3: 11 fate, SO4	-N	RESULT 1.94 9.90	REF RESULT ND ND	REPORTING LIMIT 0.1 0.5	SPIKE VALUE 2.00 10.0	RECOVERY (%) 97.0 99.0	REC LIMITS (*) RPD LOW HIGH RPD (*) LIMIT 80 120 80 120
NSTRUMENT: NITS:	Spike-Method/Medi Dionex ion chroma mg/L	a blank		LAB ID: PREPARED:			INSTR RUN: IC\9806050000000/3/1 BATCH ID: IC060598 DILUTION: 1.000000
ETHOD: NALYTE hloride, Cl itrate, NO3 itrite, NO2 ulfate, SO4	-N -N	RESULT 9.96 1.96 1.87 9.86	REF RESULT ND ND ND ND	REPORTING LIMIT 0.5 0.1 0.1 0.5	SPIKE VALUE 10.0 2.00 2.00 10.0	RECOVERY (%) 99.6 98.0 93.5 98.6	REC LIMITS (*) RPD LOW HIGH RPD (*) LIMIT 80 120 80 120 80 120 80 120 80 120
AMPLE TYPE: NSTRUMENT: NITS:	Spike-Method/Medi Dionex ion chroma mg/L	ia blank		LAB ID: PREPARED: ANALYZED:	IC_LCS 06/05/98		INSTR RUN: IC\9806050000000/2/1 BATCH ID: ICO60598 DILUTION: 1.000000
ETHOD: NALYTE hloride, Cl itrate, NO3 itrite, NO2 ulfate, SO4	-N -N	RESULT 9.87 1.97 1.87	REF RESULT ND ND ND ND	REPORTING LIMIT 0.5 0.1 0.1	SPIKE VALUE 10.0 2.00 . 2.00 . 10.0	RECOVERY (%) 98.7 98.5 93.5 99.1	REC LIMITS (*) RPD LOW HIGH RPD (*) LIMIT 80 120 80 120 80 120 80 120

QUALITY CONTROL REPORT

PAGE QR-5

ANALYSIS: Major Anions

MATRIX: Water

LABORATORY CONTROL DUPLICATES

SAMPLE TYPE: Method Spike S. INSTRUMENT: Dionex ion chro	e Sample Duplicate chromatograph		LAB ID: PREPARED: ANALYZED:				: IC\980603000000/4/2 IC060398 1.000000		
METHOD: ANALYTE Nitrate, NO3-N Sulfate, SO4	RESULT 1.94 9.93	REF RESULT 1.94 9.90	REPORTING LIMIT 0.1 0.5	SPIKE VALUE	RECOVERY (な)	REC LIMITS (%) LOW HIGH RPD (%) 0 0.303	RPD LIMIT (%) 15 15		
SAMPLE TYPE: Method Spike S. INSTRUMENT: Dionex ion chro UNITS: mg/L METHOD:	ample Duplicat omatograph	e	LAB ID: PREPARED: ANALYZED:	IC_LCR 06/05/98		INSTR RUN: IC\98060500 BATCH ID: IC060598 DILUTION: 1.000000	00000/4/2		
ANALYTE Chloride, Cl Nitrate, NO3·N Nitrite, NO2·N Sulfate, SO4	RESULT 9.96 1.96 1.87 9.86	REF RESULT 9.87 1.97 1.87 9.91	REPORTING LIMIT 0.5 0.1 0.1 0.5	SPIKE VALUE	RECOVERY (な)	REC LIMITS (%) LOW HIGH RPD (%) 0.908 0.509 0 0.506	RPD LIMIT (%) 15 15 15 15		

PAGE QR-6

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9806027

INSTRUMENT: MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
06/09/98 06/10/98 06/10/98 06/10/98 06/10/98	MW-1 MW-2 MW-3 MW-4 MW-5	01 02 03 04 05	91 91 91 89 91
QC Limits:			70-130

DATE ANALYZED: SAMPLE SPIKED:

06/09/98

9806027-03

INSTRUMENT: F

Matrix Spike Recovery Summary

				QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene Ethylbenzene Total Xylenes	200 200 200 600	95 99 105 105	11 13 15 15	70-130 70-130 70-130 70-130	20 20 20 20

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

•	ARCADIS GERAGHTY&MILLER	Laboratory Task C	order No./P.O. No	980602	Z C H	IAIN-OF	-custo	DY REC	ORD P	age	of
	Project Number/Name	000019.0017	<u> </u>			ANALYSIS	/ METHOD				t
	Project Location PENS	le CAKLAN	<u>)</u>	\ \tag{\chi}	7	/W	13 B	S. W. W.	7 - 7		
	Laboratory AEN					130 × /	o roy			2 coole	لابرز
	Project Manager	4		\ W\ \	J (1	20 4 B	B 19 15		/ :	2 30	· · · · · · · · · · · · · · · · · · ·
	Sampler(s)/Affiliation	MC.		3 / 1/1/2		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		TO TA		1942 	* .
					the state of the s	8/3°.	3784	3/			
	Sample ID/Location	Date/Time Matrix Sampled	Lab ID	A .	\\ \ta_{\alpha}	12, 3	1/2/4/3	Y	Rem	narkš 🛴 🛴	Total
1 - H	*MW-/	14/11/11	164 700 X	- X	7	+	+		L.	S	5
H -A.	MW.2	4 10 00	11000 Y	1 2 / 1	<i>*</i>	*	Χ.			*/ */	25
4-K	MW-3,	100 5	11530 Y	·	1 +	4	7	4.			150
1 A-H		1 500 / S	19 100 7	<u> </u>	+	~	<u> </u>		*		5
V-1		11	1030 7	1.1	+	7,	4		r.	**************************************	15-
d)r	* MW-1 3		, 11BO 7	+	1	× .	* -			•	
3	MW-8		1300 /	<u> </u>	1	7	7	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	5
9806028	The S	V	+ + +							.5	
386	90		'			-					
					<u> </u>						
					1			<u>-</u>	*** <u>***</u>		
	N PONDUAT	PPAKALYT-	- Nor pla	The	15501	(1/0)			Mary Mary Control of the Control of	<u> </u>	
	a recourt	1 Le Car	SALAR	N//EU	0.0501	09			57.4		
							· · · · · ·				
	Sample Matrix: L = Liqui	d _a S = Solid; A	= Air			<u>. </u>	l		Total	No. of Bottles/ Containers	365.7
	Relinquished by:	aine -	_ Organization:	AEN AEN	(Da	ate _ (/10	2,96	Time		Intact?
	Received by:	Billmore	_ Organization:_	AEN				2198	Time /5:-	Yes N	No N/A
	Relinquished by: Reil	Delone	Organization:	AEN		Da	ate <u>6</u> /	2198	Time		Intact?
X 2	Received by: Face	Cudorte	_ Organization:	New		Da	ate <u>6 /</u>	2/18	Time	2 Yes N	No N/A
	Special Instructions/Remarks:										
	Delivery Megnod:	In reison	Common Ca	rifer	SPECIFY	1 1 1 1 1 1 1 1 1 1	cen ce	uner 🕶	□ Cqre r_	SPECIFY	j

SPECIFY ---

AG 05-0597

June 12, 1998

Client: American Environmental Network

Contact: Bill Svoboda 3440 Vincent Rd.

Pleasant Hill, CA 94523 Client PO #: 9806027 **Telephone:** (510) 930-9090 **Fax:** (510) 930**-0256**

Project ID #: RC000019.0010

SAMPLES: Five water samples were received on 6/3/98. The samples were assayed the next day and then stored at 4°C for any follow-up work.

Hydrocarbon-Degrading and Total Heterotrophic Bacteria Enumeration Assays

ANALYSIS REQUEST:

Bacterial enumeration for total petroleum hydrocarbon-degraders (broad range petroleum hydrocarbons: diesel) and total heterotrophs.

CARBON SOURCE.

Petroleum hydrocarbons were added as the sole carbon and energy sources for the growth of hydrocarbon-degrading aerobic bacteria on agar plates. Diesel was blended into the agar to provide aliphatic and aromatic hydrocarbons in the growth matrix.

Heterotrophic bacteria plates were prepared with Difco Total Plate Count Agar providing a wide range of amino acid and carbohydrate carbon sources.

PROTOCOLS:

Hydrocarbon Degraders: Sterile agar plates (100 x 15 mm) were prepared with minimal salts medium at pH 6.8 with 1.5% noble agar, without any other carbon sources or nutrients added. Plates were inoculated with 1.0 ml of sample or a log dilution of each water sample. Triplicate plates were inoculated with sample log dilutions of 10°, 10°, and 10°. The hydrocarbon plates were poured on 6/4/98 and counted after 7 days on 6/11/98. The plate count data are reported as colony forming units (cfu) per milliliter (ml) of sample. Each bacteria population value represents a statistical average of the plate count data obtained with inoculations for two of the three log dilutions tested.

Heterotrophs: Sterile agar plates (100 x 15 mm) were prepared with minimal salts medium and 2.35% plate count agar at pH 6.8 without any other carbon sources or nutrients added. Plates were inoculated with 1.0 ml of water sample, or a log dilution of the sample, in triplicate at sample dilutions of 10⁻¹, 10⁻², and 10⁻³. The heterotroph plates were poured on 6/4/98 and counted after 4 days on 6/8/98. The plate count data are reported as colony forming units (cfu) per milliliter (ml) for each water sample. Each enumeration value represents a statistical average of

two of the three log dilutions inoculated in plates.

Hydrocarbon-Degrading and Heterotrophic Bacteria Enumeration Results

CLIENT SAMPLE NUMBER	SAMPLE DATE	HYDROCARBON DEGRADERS (CFU/ML)	TOTAL HETEROTROPHS (CFU/ML)
MW-1	5/29/98	3.1×10^3	3.0×10^5
MW-2	5/29/98	1.8×10^4	4.4 x 10 ⁵
MW-3	5/29/98	4.3 x 10 ³	1.0×10^5
MW-4	5/29/98	1.6 x 10 ³	2.3×10^4
MW-5	5/29/98	3.4×10^2	3.1×10^3

Bacterial enumerations were performed by Dr. Sean P. Bushart. CytoCulture is available on a consulting basis to assist in the interpretation of these data and their application to field remediation protocols.

Sean P. Bushart, Ph.D. Laboratory Services Randall von Wedel, Ph.D. Principal, Director of Research

Chandael von wedd

1. Client: Addres Contac	s: BILL SVOROD	A	3440 Vincent Road, Pleasant Hill, CA 94523 Phone (510) 930-9090 FAX (510) 930-0256						Lab Lab	Job N Destir		:	<u></u>	REQUEST FOR ANALYSIS / CHAIN OF CUSTODY CYTO CULTURE					
Address Re	enort To:		nd Invoice To:							e Sam Conta		прре	a:			•			
2.	·	3.	#1					_	Dat Dat Clie	e Resi e Repo	ilts Rec ort Req ne No.	uired	:			DARD			
Client P.O.	nt To: ① or 2 (Circle one) No.: 9806027 Clie am Member (s)	ent Project I.D. N	<u>RCOO</u>	0019	1,0018	>		<u>-</u>] - ,	in	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			ANAI	YSIS	<u> </u>				
Lab Number	Client Sample Identification	Air Volume	Date/ Time Collected	Sample Type*	Pres.	No. of Cont.	Type of Cont.			3	//			//	/,	Com	ments / H	azards	
	MW-1		5/z9/98	7	cord	2,	VOA	X	\mathbb{X}							INCLUDE	= P.O. +	+ AND	
	MW-2							\boxtimes	X			\perp				PROJEC	T 1-P.	#ON	
	MW-3			<u> </u>		$oxed{oxed}$	<u> </u>	X	\bowtie	ļļ.			 			REPORT	AND	NVOICE	
	MW-4			<u> </u>				$[\!\![\!\![\ \ \ \ \ \ \]\!\!]$	\bowtie	_		_						•	
	Mw-5		Ψ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V	<u>\</u>	<u> </u>	X	X			-	-			FAX_RI	ESULT	S	
			1. 107	AL H	ETER	07	R OFF	'C	B	4C7	ER	12	1						
· · · · · · · · · · · · · · · · · · ·			Z. #Y	ROC	4 <i>8.80</i> N	רעי	1612	1/\	G	BA	CE	R	141	-	D	IESELT	ARGE	7	
			-								7	7							
Relinquish (Signature	Ronald C ger	rsen,	DATE 6/3/98	3	TIME 11:00	2	Receive (Signati					Σ,		M	7	DATE 6/2/88 CPATE (1315 Y	7 / c	ME 2C	
Relinquish (Signature) Theshead E	Le mitte	DATE 3	198	TIME	/	Receive (Signati	ıre) Î		X	ext)						
Relinquish (Signature Method of			DATE		TIME		Receive (Signate Lab Cor	ne)						•		DATE	TIN	ИE .	
		*Sample type (PVC filter, diam		-			0.8 µm N	ACEF	= 3):						mple				

10) Other _ 11) Other_

E T S

1343 Redwood Way Petaluma, CA 94954 Environmental Technical Services Soil, Water & Air Testing & Monitoring Analytical Labs Technical Support

(707) 795-9605/FAX 795-9384

Serving people and the environment so that both benefit

WATER ANALYSIS REPORT

To: Bill Svoboda

Sample of:

American Environmental Network

monitor well water

3440 Vincent Road

Pleasant Hill, CA 94523

Date: June 11, 1998

Lab #s: 98-06-0051 thru 06-0057

Received: June 4, 1998

Tech(s): C. Lawrence

Lab Supervisor: D. Jacobson

Lab Director: G.S. Conrad, Ph.D. Sample ID(s): MW-1, MW-2, MW-3, MW-4

MW-5, MW-7 & MW-8

Site Location: northern California; Project ID No.: RC000019.0010

RESULTS

14	SAMPLE ID		REDOX	FERROUS IRON
	MW-1			0.08 mg/l
	MW-2			1.59 mg/l
				0.03 mg/l
	MW-4 MW-5			0.01 mg/l 0.07 mg/l
	MW-7		= m =	0.05 mg/l
	8-WM	.*		0.01 mg/l

COMMENTS

All ferrous irons in this set were very low with only one exception which was very high and way out range as compared with the other samples. Thus, while most ferrous values suggest decent oxidation, and/or bacterial activity in the groundwater, the one elevated ferrous value suggests at the very least a much higher amount of total iron and perhaps little of the usually more desirable types of bacterial activity.

NOTES:

These tests were done according to the Association for Testing Materials (ASTM), and/or conform to standard and accepted protocols as described in Standard Methods for the Examination of Water and Wastewater, 18th ed., c 1992: Ferrous Iron (Fe ++) - Phenanthroline Method (mod. 3500-Fe D); Mn++ - PAN Method; Redox - ASTM D 1498.

Reporting Information: 1. Client: AEN(CA) Address: Contact: BILL SVOBODA Alt. Contact:			American Environmental Network 3440 Vincent Road, Pleasant Hill, CA 94523 Phone (510) 930-9090 FAX (510) 930-0256						AEN Lab Job Number: Lab Destination: Date Samples Shipped					Page 1 of 1 REQUEST FOR ANALYSIS / CHAIN OF CUSTODY ETS - PETALUMA					
Address Re	eport To:	Sei	nd Invoice To:						Lab	Conta	ct:								
2.	#1	3.	#	1				 	Dat Clie		nt Re	quired	d:						
Client P.O.	rt To: 1 or 2 (Circle one) No.: <u>9806027</u> Clien am Member (s)	t Project I.D. No	Date/	OO I		No.	Туре	- 1 //	2000			T /	/ [^] /	/	7				
Number	Identification	Volume	Time Collected	Type*	Pres.	of Cont.	of Cont.	VE	7		/ /				/	//	Comn	nents / Haza	rds
	MW-I		5129198	7	COLD	<u>) </u>	PLAST	\boxtimes								li li	NCLLIDE	= P.O. #	AND
	MW-2							\geq							_	L le	ROJEC	TI.D.#	DN
	MW-3							\geq	1							L E	REPORT	AND INL	1010E
	MW-4							\geq			\perp								
	Mw-5		V	V	\	<i>\</i>	1	X			1					<u> </u>	FAX RE	SULTS.	
						ļ <u>-</u>		-	ļ	} -}	-	-	_	┨—	-	 		 *-	
													_	ļ					
	NOTE: OKAY	TO AN	ALYZE	PA	57 H	OLI	2.77	n	E					 -					
				-			 	\vdash	 		+		-	╫		1 -			
Relinquish (Signature	ed by: Ronald C. gin	nnen	DATE 6/3/9	153	TIME 14-15	 5	Receive (Signate	ed by: ure)	;	<u> </u>	_ , I			•	. 	1	DATE	TIME	
Relinquish (Signature	ed by:	the k	DATE		TIME		Receive (Signate							-			DATE	TIME	
Relinquish (Signature			DATE	,	TIME		Receive (Signate										DATE	TIME	
Method of	Shipment						Lab Co	mmer	nts								<i>:</i>	•	

*Sample type (Specify): 1) 37mm 0.8 µm MCEF 2) 25mm 0.8 µm MCEF 3) 25mm 0.4 µm polycarb. filter
4) PVC filter, diam. _____ pore size _____ 5) Charcoal tube 6) Silica gel tube 7) Water 8) Soil 9) Bulk Sample

Q	Laboratory Task C		980(02	97 8 au	A 134 OF	CHETC	\D\/ DE/		1	1
ARCADIS GERAGHTY&MILLER	1		100 6000	2 CH	AIN-OF	-CUSTC	DDA KFC	.OKD Pa	ge	_ of ***
Project Number/Name	1. 1	•	[ANALYSIS /	METHOD) / SIZE			
Project Location PENS	le IDAKLAN	0				3 2	5 12 D	7		
Laboratory AEN	· · · · · · · · · · · · · · · · · · ·				Sold A	S M	DO DO	/ /	n cn01	کرجا[
Project Manager	14	/	W. (2)	K G	A A SE	6 10 C	3 1	/ /	2 0001	
Sampler(s)/Affiliation	MC			, \2m	1.		XV XX	,		
				1 XX	S S S S S S S S S S S S S S S S S S S	37.23	3	- / · · · · · · · · · · · · · · · · · ·		
Sample ID/Location	Date/Time Matrix Sampled	Lab ID	<u> </u>	1/a,	\A. B	130.	Y	Rem	arks	Total
*MW-/	1 1 1	64 700 X	7	4	4	7				ستخد ا
HW 2 8	4 20 000	1 doo 7	7	4	人				. !	15
MW-3, 2	5	\$1000 X	*	4	4	4				
* UW-4 8	Mar 5	194 100 X	メ	4	L	بخر				300
HUN		1930 7	X	7	7	4			•	5
XMW-1		, 1160 7	1		یکر	\succ				5
MW-8	1,// W V	1300 7	/-	+	4	¥			 	5
1B-65	V	+					<u></u>			$\perp \angle$
		,,								
- · · · · · · · · · · · · · · · · · · ·										
							<u> </u>			
Maria Porta de la companya della companya della companya de la companya della com	0	1/1							· · · · · · · · · · · · · · · · · · ·	
A PRODUCT	PRECOT-	- SHYPIE	Thed	KSOA	(les)					
			· ·				ļ		·	_
	<u> </u>						<u> </u>			157
Sample Matrix: L = Liqui	S = Solid; A	= Air				1	1 /2	Total I	lo. of Bottles Container	s 20
Relinquished by:	sype_	_ Organization:_	ABOV M		Da	-	1/1	Time/5.5	40 Seal	I Intact?
	Diffmore	_ Organization:	A6N			te_cz_		Time		No N/A
Relinquished by: Received by:	talkore -	_ Organization: _ Organization:	APN New			te 6 /	2198	Time	Seal Yes	l Intact? No N/A
Special Instructions/Remarks:		_ Organization						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
										
					(
Deli very Memod: □ ∟	In reison [Common Car	Her	PECIFY		ccap Cd	uner	□Cuner_	SPECIF	-