

GETTLER-RYAN INC.

TRANSMITTAL

April 17, 2000

5/10 /7/3 respondentsG-R#: 180012

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. Doug Lee

Gettler-Ryan Inc.

Dublin, California

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE:

Tosco (Unocal) SS #5484

18950 Lake Chabot Road

Castro Valley, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	April 14, 2000	Groundwater Monitoring and Sampling Report Annual 2000 - Event of March 7, 2000

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by April 29, 2000, this report will be distributed to the following:

Enclosure

Alameda County Health Care Services, 1131 Harbor Bay Parkway, Alameda, CA 94501 cc:

April 14, 2000 G-R Job #180012

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Annual 2000 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #5484

18950 Lake Chabot Road Castro Valley, California

Dear Mr. De Witt:

This report documents the annual groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On March 7, 2000, field personnel monitored five wells (MW-2 and MW-4 through MW-7) and sampled three wells (MW-4, MW-5 and MW-7) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 6676

Sincerely,

Deanna L. Harding Project Coordinator

Barbara Sieminski

Project Geologist, R.G. No. 6676

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

5484.qml

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J **Dublin, CA 94568**

(925) 551-7555

Tosco (Unocal) Service Station No. 5484 18950 Lake Chabot Road Castro Valley, California

DATE

REVISED DATE

JOB NUMBER 180012

REVIEWED BY

March 7, 2000

Gettier - Ryan Inc.

6747 Sierro Ct., Suite J **Dublin, CA 94568**

(925) 551-7555

Tosco (Unocal) Service Station No. 5484 18950 Lake Chabot Road Castro Valley, California

JOB NUMBER 180012

REVIEWED BY

DATE

March 7, 2000

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(D)	TPH(G)	В	Т	E	X	МТВЕ
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
	05/00/01				ND	ND	ND	ND	ND	
MW-2	05/23/91				ND ND	ND	ND ND	ND	ND	
	09/20/91		7-			0.66	ND ND	0.64	1.2	
	12/19/91			••	140					
	03/20/92				120	ND	ND	ND	ND	
	06/18/92	u=			140 ¹	ND	ND	ND	ND	
	09/10/92				61 ¹	ND	ND	ND	ND	110
	12/10/92				1001	ND	ND	ND	ND	170
229.47	03/10/93	4.69	224.78		1101	ND	ND	ND	ND	350
	06/09/93	5.85	223.62		120 ¹	ND	ND	ND	ND	300
228.88	09/09/93	6.59	222.29		210^{1}	ND	ND	ND	ND	
	12/09/93	6.94	221.94		96 ¹	ND	ND	ND	ND	
	03/03/94	4.91	223.97		240^{1}	ND	ND	ND	ND	
	06/03/94	5.71	223.17		190¹	ND	ND	ND	ND	
	09/02/94	7.05	221.83		720	ND	ND	ND	4.6	
	12/01/94	6.98	221.90		200	0.70	ND	0.58	ND	
	03/01/95	4.60	224.28		ND	ND	ND	ND	ND	
	06/01/95	4.65	224.23		420^{1}	ND	ND	ND	ND	
	09/05/95	5.66	223.22		ND	ND	0.80	ND	0.74	5
	12/05/95	6.32	222.56		ND	ND	ND	ND	ND	390
	04/11/96	4.22	224.66	NOT SAMPLED ⁶						
	03/13/97	6.58	222.30							
	03/02/98	5.18	223.70							
	03/25/99	4.84	224.04							
	03/07/00	4.92	223.96	_			_			

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(D)	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-4	05/23/91			Marie	ND	ND	ND	ND	ND	
	09/20/91			SAMPLED SEM	I-ANNUALLY					
	12/19/91			•	ND	ND	ND	ND	ND	
	03/20/92									
	06/18/92				ND	0.41	0.84	ND	0.55	
	09/10/92									
	12/10/92				ND	ND	ND	ND	ND	
228.08	03/10/93	7.24	220.84		ND	ND	ND	ND	ND	
	06/09/93	8.79	219.29		ND	ND	ND	ND	ND	
227.77	09/09/93	9.91	217.86		ND	ND	ND	ND	ND	
	12/09/93	INACCESSIBLE								
	03/03/94	6.98	220.79		ND	ND	ND	ND	ND	
	06/03/94	8.26	219.51		ND	ND	ND	ND	ND	
	09/02/94	10.08	217.69	27	ND	ND	ND	ND	ND	
	12/01/94	10.01	217.76		ND	ND	ND	ND	ND	
	03/01/95	7.29	220.48		ND	ND	1.1	ND	0.75	
	06/01/95	7.65	220.12		ND	ND	0.78	ND	1.7	
	09/05/95	9.27	218.50		ND	ND	0.70	ND	0.71	
	12/05/95	9.92	217.85		ND	ND	ND	ND	ND	0.68
	04/11/96	7.55	220.22		ND	ND	ND	ND	ND	ND
	03/13/97	9.84	217.93		ND	ND	ND	ND	ND	ND
	03/02/98	8.84	218.93		ND	ND	ND	ND	ND	ND
	03/25/99	7.46	220.31		ND	ND	ND	ND	ND	7.6
	03/07/00	7.58	220.19		ND	ND	1.41	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(D)	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-5	05/23/91				ND	ND	ND	ND	ND	
	09/20/91			450	ND	ND	ND	ND	ND	
	10/10/91			ND						
	12/19/91				ND	ND	ND	ND	ND	
	03/20/92			170	ND	ND	ND	ND	ND	
	06/18/92			ND	ND	ND	ND	ND	ND	
	09/10/92			110^{2}	ND	ND	ND	ND	ND	
	12/10/92			83 ³	ND	ND	ND	ND	ND	
225.42	03/10/93	7.67	217.75	69^{2}	ND	ND	ND	ND	ND	
	06/09/93	8.57	216.85	64	ND	ND	ND	ND	ND	
225.11	09/09/93	9.12	215.99	58 ³	ND	ND	ND	ND	ND	
	12/09/93	9,97	215.14	87 ³	ND	ND	ND	ND	ND	
	03/03/94	7 .87	217.24	ND	ND	ND	ND	0.71	1.7	ND
	06/03/94	9.01	216.10	80 ³	ND	ND	ND	ND	ND	
	09/02/94	9.23	215.88	130^{2}	ND	ND	ND	ND	ND	
	12/01/94	9.18	215.93	79 ²	ND	ND	ND	ND	ND	
	03/01/95	7.98	217.13	ND	ND	ND	ND	ND	ND	
	06/01/95	8.21	216.90	57 ²	ND	ND	ND	ND	ND	
	09/05/95	9.57	215.54	210^{2}	ND	ND	0.95	ND	0.87	5
	12/05/95	9.60	215.51	170^{2}	ND	ND	ND	ND	ND	27
	04/11/96	7.48	217.63		ND	ND	ND	ND	ND	56
	03/13/97	9.56	215.55		ND	ND	ND	ND	ND	ND
	03/02/98	8.96	216.15		ND	ND	ND	ND	ND	ND
	03/25/99	7.53	217.58		ND	ND	ND	ND	ND	3.9
	03/07/00	7.49	217.62		ND	ND	1.13	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(D)	TPH(G)	В	Т	Ē.	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-6	05/23/91		**		ND	ND	ND	ND	ND	
1	09/20/91			SAMPLED SEMI-A	ANNUALLY					
	12/19/91				ND	ND	ND	ND	ND	
	06/18/92				ND	ND	ND	ND	ND	
	12/10/92				ND	ND	ND	ND	ND	
239.38	03/10/93	5.32	234.06							
	06/09/93	5.94	233.44		ND	ND	ND	ND	ND	
239.04	09/09/93	6.82	232.22							∞ ₩
	12/09/93	7.43	231.61		150	ND	ND	ND	1.7	
	03/03/94	6.45	232.59							
	06/03/94	5.81	233.23		ND	ND	ND	ND	ND	
	09/02/94	6.98	232.06							
	12/01/94	6.92	232.12	ww.	ND	ND	ND	ND	ND	
	03/01/95	5.17	233.87	in the						
	06/01/95	4.76	234.28		ND	ND	0.70	ND	1.7	
	09/05/95	5.69	233.35							
	12/05/95	6.75	232.29		ND	ND	ND	ND	ND	1.4
	04/11/96	4.28	234.76	NOT SAMPLED ⁶						
	03/13/97	7.05	231.99							
	03/02/98	5.14	233.90							
	03/25/99	5.05	233.99							
	03/07/00	5.15	233.89							

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(D)	TPH(G)	B	Т	E	X	MTHE
TOC*		(ft.)	(msl)	(ppb)	(P/A)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-7	05/23/91			540	3,000	160	1.2	25	120	
- 元教	09/20/91			580	1,400	160	0.75	89	130	
•	12/19/91			770	3,900	240	2.4	280	270	
	03/20/92			3,200	11,000	980	ND	990	1,600	
	06/18/92			990 ²	5,500	340	4.2	380	410	
	09/10/92			290^{2}	2,100	160	1.9	140	150	
	12/10/92			200^{3}	1,200	28	ND	37	13	
231.66	03/10/93	7.69	223.97	$1,100^{2}$	4,400	310	ND	300	330	
	06/09/93	8.59	223.07	830 ³	4,600	430	ND	510	430	
231.39	09/09/93	10.11	221.28	550 ³	$2,600^{4}$	160	19	250	120	
	12/09/93	10.65	220.74	250^{2}	980	54	4.6	71	5.6	
	03/03/94	8.17	223.22	$1,400^2$	9,300	290	ND	590	400	1.7
	06/03/94	8.73	222.66	$2,000^{2}$	9,400	380	5.0	820	240	
	09/02/94	11.00	220.39	490^{2}	3,800	77	NĐ	180	42	
	12/01/94	10.95	220.44	260^{2}	3,100	80	ND	25 0	190	
	03/01/95	8.03	223.36	$1,900^3$	3,300	200	3.9	300	350	
	06/01/95	7.92	223.47	$1,600^2$	3,900	170	ND	400	430	
	09/05/95	8.61	222.78	ND	710	32	ND	85	33	5
	12/05/95	9.69	221.70	110^{2}	400	23	ND	34	16	1,600
	12/08/95	9.59	221.80							
	04/11/96	7.31	224.08		1,500	52	ND	160	130	1,500
	03/13/97	9.48	221.91		460	13	ND	31	4.0	430
	03/02/98	7.93	223.46		1,800	63	ND^7	240	60	790
	03/25/99	7.25	224.14		380	6.4	ND^7	10	4.9	1,200
	03/07/00	7.12	224.27		199 ⁸	3.51	ND	3,30	0.697	1,250
Trip Blank										
TB-LB	03/02/98				ND	ND	ND	ND	ND	ND
	03/25/99				ND	ND	ND	ND	ND	ND
	03/07/00			-	ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station 5484 18950 Lake Chabot Road Castro Valley, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to March 2, 1998, were provided by MPDS Services, Inc.

TOC = Top of Casing

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

msl = Relative to mean sea level

MTBE = Methyl tertiary butyl ether

TPH(D) = Total Petroleum Hydrocarbons as Diesel TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations are relative to Mean Sea Level (msl), per the Alameda County Benchmark (Elevation = 219.68 feet msl). Prior to September 9, 1993, DTW measurements were taken from the top of well covers.
- Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- Laboratory report indicates that the hydrocarbons detected did not appear to be diesel.
- Laboratory report indicates that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- ⁴ Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- 5 Laboratory has potentially identified the presence of MTBE at reportable levels in the groundwater sample collected from this well.
- 6 Sampling discontinued per Alameda County Health Care Services letter dated April 1, 1996.
- Detection limit raised. Refer to analytical reports.
- 8 Laboratory report indicates weathered gasoline C6-C12.

Table 2 Groundwater Analytical Results

Well ID	Date	TOG	Bis (2-ethylhexyl) phthalate	2-Methyl- naphthalene	Naphthalene	1,2- Dichloroethane	Chloroform	Bromedich- loromethane
88 000 000	XX.: XX.: 131.000.000.000	(ppm)	(ppb)	(ppb)	(ррь)	(ppb)	(ppb)	(ррб)
MW-4	04/11/96		ND	ND	ND	ND		
11111-4	03/13/97		ND	ND	ND	ND		
	03/02/98 ⁶					ND		
	03/25/99		ND	ND	ND	ND		
,	03/23/99		ND ⁷	ND ⁷	ND ⁷	ND ⁷	87.1	ND ⁷
	03/0//00		110	TVD	TID.	TVD	07.1	
MW-5	03/10/93		ND	ND	ND	ND		
	06/09/93					ND		
	09/09/93					ND		
	12/09/93					ND		
	03/03/94					ND		
	06/03/94					ND		
	09/02/94					ND		
	12/01/94					ND		
	03/01/95					ND		
	06/01/95					ND		
	09/05/95					ND		
	12/05/95					ND		
	04/11/96		ND	ND	ND	ND		
	03/13/97		740	ND	ND	ND		
	03/02/98 ⁶					ND		
	03/25/99		ND	ND	ND	ND		
	03/07/00		ND^7	ND^7	ND ⁷	ND^7	69.7	7.16
MW-7	05/23/91	ND				3.4	· 	
TAT AA-1	09/20/91	ND			<u></u>	ND		
	12/19/91	ND				3.1		
	03/20/92	ND ND	 			ND		
	05/20/92	ND	- -			ND ND		
	09/10/92		- -			2.3		
	12/10/92					2.0		
	03/10/93	-	13	19	83	1.3		
	06/09/93 ²		13	19	83	1.3		
	09/09/93 ³		ND	11	48	1.5		
	12/09/93		ND	, ND	15	1.5		
	03/03/94		ND ND	34	130	1.7	••	
	05/03/94		ND ND	18	61	1.4		
	09/02/94		ND ND	ND	ND	1.1		
	12/01/94		ND ND	ND ND	2.5	1.0		
	03/01/95		ND	40	120	1.6		
	05/01/95		ND ND	13	83	1.4		
						1.4		
	09/05/95		ND	ND	7.0	1.8		

Table 2 Groundwater Analytical Results

Tosco (Unocal) Service Station #5484 18950 Lake Chabot Road Castro Valley, California

Well ID	Date	TOG (ppm)	Bis (2-ethylhexyl) phthalate (ppb)	2-Methyl- naphthalene <i>(ppb)</i>	Naphthalene <i>(ppb)</i>	1,2- Dichloroethane (ppb)	Chloroform (ppb)	Bromodich- loromethane <i>(ppb)</i>
MW-7	12/05/955					ND		
(cont)	12/08/95		ND	ND	14			
` ´	04/11/96		ND	7.6	42	0.75		
	03/13/97		120	ND	9.0	ND		
	03/02/98 ⁶					0.92		
	03/25/99		ND	ND	ND	ND		
	03/07/00		ND^7	ND^7	ND^7	ND^7	ND^7	ND^7

EXPLANATIONS:

Groundwater analytical results prior to March 2, 1998, were provided by MPDS Services, Inc.

TOG = Total Oil and Grease

ppb = Parts per billion

ppm = Parts per million

ND = Not Detected

-- = Not Analyzed

- Nine "tentatively identified compounds" were detected by the EPA Method 8270 open scan at concentrations ranging from 10 ppb to 59 ppb. Refer to laboratory analysis sheets for the specific compounds and concentrations.
- Ten "tentatively identified compounds" were detected by the EPA Method 8270 open scan at concentrations ranging from 14 ppb to 150 ppb. Refer to laboratory analysis sheets for the specified compounds and concentrations.
- Seven "tentatively identified compounds" were detected by the EPA Method 8270 open scan at concentrations ranging 11 ppb to 88 ppb. Refer to laboratory analysis sheets for the specific compounds and concentrations.
- Phenol was detected at a concentration of 2.1 ppb.
- ⁵ Tetrachloroethene was detected at a concentration of 56 ppb.
- ⁶ EPA Method 8270 requested on chain of custody; laboratory inadvertently omitted testing.
- Detection limit raised. Refer to analytical reports.

Note: All EPA Method 8010 and 8270 compounds were ND, except as listed above.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexidip interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

Client/ Facility <u># 54</u>	24		Job#	: 18	0012		
189	950 Lake Ch.	abot Ro	. Date	3-	7-00		_
Address: <u>'o</u>	1 1/ 1/-	<u> </u>		pler:	Toe		
city: <u>Cas</u>	tro Valley		Sami	pier:			
Well ID	mw-2	Well C	Condition:	0.K			
44611.10	<u> </u>				B-	n.J	
Well Diameter	~ in.		carbon ness: <i>0</i>	/ (feet) (p	nount Ba		(Gallons)
Total Depth	19.15 tc			1.17	3" = 0.38		= 0.66
Depth to Water	4.92 tt.	Facto	or (VF)	೯ = 1.50		12" = 5.80	
	×	VF =	X 3 {case	: volume) = Es	timated Pur	ge Volume:	(<u>lsp)</u>
Purge Equipment:	Disposable Bailer Bailer Stack Socion Grundfos Other:		Sampling Equipmen	Bailer Press Grab	sable Bai ure Bailer Sample	r	
Starting Time: Sampling Time: Purging Flow R		v	Veather Conditi Vater Color: Sediment Descri	Clea	/	Odor:	
• -	ter?		f yes; Time: _		_ Volum	e:	[sp]
Time	Volume pH (gal.)	Condu µanho	ostan Y	eF -F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
		_	<u> </u>	 -		-/ -	
			<u> </u>	 -		/	
			<u> </u>	 -			\overline{Z}
 -		- /					<u></u>
	/	LABORA	TORY INFORM	IATION /			
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE		TORY	ANALY	SES
mw/	340 A	Y	HCL:	SEQUOIA		TPH(G)/btex/m	tbe
	2 v y A	(1	11	11		8010	
	1 Amber	11	/	11		8270	
COLARACNITC.	20 20 10	•					
COMMEN12:	m. only						

Address: 18950 Lake Chalot Rd. Date: 3-7-00 City: Castco Valley Sampler: 50C Well ID Ww-4 Well Condition: C.k. Well Diameter 4 in. Hydrocarbon Thickness: 6 teent (product/water): C (Gallons) Total Depth 27.25 ft. Volume 2 = 0.17 3 = 0.38 4 = 0.66 Depth to Water 7.57 ft. Factor (VF) 6 = 1.50 12 = 5.80 Purge Disposable Bailer Sampling Equipment: Bailer Stack Bailer Stack Saction— Grundfos Other: Disposable Bailer Grab Sample Other: Weather Conditions: Cloudy Starting Time: 7.33 A.m. Weather Conditions: Cloudy Purging Flow Rate: 3 gom. Sediment Description: Medice (gallons) Did well de-water? If yes; Time: Volume: (gallons)	Client/	0 d		Job#	· 1	80012		
City: Cast Valley Sampler: TOC Well ID WWW-4 Well Condition: C. K- Well Diameter A in, Hydrocarbon Thickness: A teeth (productivater): C (Galogne) Total Depth 27.25 ft. Depth to Water 7.57 ft. 19.67 x vf 8.66 = 12.47 x 3 (case volume) = Estimated Purge Volume: 3 9 (cast) Purge Disposable Bailer Sampling Equipment: Bailer Stack Softion- Grundfas Grab Sample Other: Other: Other: Starting Time: 7:33 A Water Color: Clea Odor: 40.48 Sampling Time: 7:33 A Water Color: Clea Odor: 40.48 Time Volume pH Conductivity (W) Temperature (mg/L) (m/V) (ppm) 7:12 12 7 8.1 8.56 69.1 7:12 39 7 37 919 69.1 SAMPLE ID 17- CONTAINER REFRIC. PRESERV. TYPE / LABORATORY ANALYSES MW-4 3 YO A Y HCL SEQUOIA TPHIGIDIRENTIALE LABORATORY INFORMATION ANALYSES MW-4 3 YO A Y HCL SEQUOIA TPHIGIDIRENTIALE 1 Anales () - () - () 82 90 1 Analyses	•	•	1 1		•			
Well ID								
Well Diameter	City: <u>Cas</u>	tro Valley		Sam	pler:	JOE		
Well Diameter		r						
Thickness:	Well ID	mw-4	Wel	Il Condition:	0.K			
Total Depth	Well Diameter	4 in.					-	(Gallons)
Depth to Water	Total Depth	27.25 ft.	<u> </u>					
Purge Disposable Bailer Sampling Equipment: Bailer Stack Bailer Fressure Bailer Pressure Bailer Grundfos Other: Ot	Depth to Water	7.58 to						
Equipment: Bailer Stack Bailer Stack Bailer Stack Bailer Pressure Bailer Grundfos Grab Sample Other:	Purge		vf <u>0.66</u>		volume) = 8	stimated Pur	ge Volume:	3 9 (021.)
Sdetion- Grundfos Other: Starting Time: 7:20 Weather Conditions: Sampling Time: 7:20 Weather Conditions: Clear Odor: Pressure Bailer Grab Sample Other: Starting Time: 7:20 Weather Conditions: Clear Odor: Puging Flow Rate: 3 som. Sediment Description: Aeric If yes; Time: Volume: If yes; Time: If yes yes; Yes ye	-			Equipment			ler	
Starting Time:							-	
Starting Time: Sampling Time: 7:32 A.m Water Color: Clear Odor:								
Sampling Time: 7:33 A.m Water Color: Clear Odor: 40.4 P		Other:			Othe	r:		
Purging Flow Rate: 3 gom. Sediment Description: Me N @	Starting Time:		رير	Weather Condition	ons:	loudy		
Did well de-water?	Sampling Time:	7:3	0 A.m	Water Color:	Clea	/	Odoruo	1. P
Time Volume pH Conductivity W Temperature D.O. ORP Alkalinity 7:12 12 7.81 8.56 69.7 (mg/L) (mV) (ppm) 7:15 25 7.41 9.14 69.1 7:17- 30 7.37 9.19 64.0 SAMPLE ID (1)- CONTAINER REFRIG. PRESERV. TYPE ! LABORATORY ANALYSES MW-4 340 A Y HCL SEQUOIA TPHIGI/bitex/mtbe 2 vo A (1)	Purging Flow Ra	te:3	gom.	Sediment Descri	ption:	1616		
7:12 12 7.80 8.56 69.2 7:15 25 7.41 9.14 69.1 7:18- 34 7.37 9.19 64.0 LABORATORY INFORMATION SAMPLE ID (#)- CONTAINER REFRIG. PRESERV. TYPE ! LABORATORY ANALYSES MW-4 3vo 4 Y HCL SEQUOIA TPH(G)/btex/mtbe 7 v. A (' '' '' 8010 1 Amse('' - '' 82.70	Did weil de-wate	er?	·	If yes; Time: _		_ Volum	e:	lsol
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE ! LABORATORY ANALYSES MW - 4 3 V O A Y H CL · SEQUOIA TPHIGI/btex/mtbe 2 V J A / / / / / / 8010 1 A m/se/ // - // 8270		(gal.) 12 7.80 25 7.41	_ <u>'</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ductivity (W) Temp hos/cm V 56 69.	erature F 1			Alkalinity (ppm)
SAMPLE 10 17 - CONTAINER REFRIG. PRESERV. TYPE ! LABORATORY ANALYSES MW-4 3VOA Y HCL SEQUOIA TPHIGI/btex/mtbe 2 VOA 11 1/ 8010 1 Amsel 1/ - 1/ 8270					 .			
SAMPLE 10 171 - CONTAINER REFRIG. PRESERV. TYPE ! LABORATORY ANALYSES MW-4 3V0 A Y HCL SEQUOIA TPH(G)/btex/mtbe 2 V0 A (1 // 1/ 8010 1 Ambel 1/ - // 8270		•	-		 -			
MW-4 3V0A Y HCL SEQUOIA TPHIGI/btex/mtbe 2 V0 A 11 11 11 8010 1 Amsel 11 - 11 8270					•	7007	antat 3	ecc.
2 vo A 11 11 11 8010 1 Amber 11 - 11 82.70		, <u></u>			1	TONT		
1 Amber 11 - 11 8270	MW-4	<u> </u>		· · · · · · · · · · · · · · · · · · ·	 			
		· · · · · · · · · · · · · · · · · · ·			1	 		
COMMENTS:					1		a_ <u></u> .:	
COMMENTS:	<u> </u>	<u> </u>		. 	 .			
	COMMENTS:					· · · · · -		

Client/ Facility <u># 54</u>	0 d		loh#	: 180	212-	
•	1	1 1		· ·		
	150 Lake Cl					
City: <u>Cas</u> t	tro Valley		Sam	oler:	16	
		·		<u> </u>		
Well ID		We	Il Condition:	0.K		
Well Diameter	4 in	-	lrocarbon ckness: 6		unt Bailed	 (Gallons)
Total Depth	23.80 ft		skume 2°=0	.17 3**	= 0 .38 4	F = 0.66
Depth to Water	7.49 ti	F2	ctor (VF)	6 = 1.50	12" = 5.80	
Purge	X		= <u>10.76</u> x 3 (case Sampling	volume) = Estima	ted Purge Volume: _	33 (asl.)
Equipment:	Bailer		Equipment	: Disposab Bailer	le Bailer	-
	Stack			Pressure	Bailer	
	Grundfos			Grab Sar		
	Other:			Other:		
					/	
Starting Time:			Weather Condition	ons: Clau	dy	
Sampling Time:	<u> </u>	0 A.m	Water Color:	Clear	/ Odor <u>. vi «</u>) u Ł
Purging Flow Rat	te:3	gom.	Sediment Descrip	otion: <u>Nevi</u>	<u>e</u>	
Did well de-wate	r?		If yes; Time: _	V	olume:	(qzl.)
	olume pH (g21.) 7.57	μαπ	ductivity (W) Temp hos/em (-1	Erature D.	O. ORP g(L) (mV)	Alkalinity (ppm)
7:57	22 7.57	<u> </u>	1.02 70.	2	 	
<u> </u>	33 7.4	7 16	70.	7		
						
	<u> </u>		<u> </u>			
			ATORY INFORMA			
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE /			
MW-5	340 A	Y	HCL:	SEQUOIA	TPH(G)/btex/s	
	2 V D A	((11	8010	
	1 Amser	1/			8270	
	<u> </u>	L	· · · · · · · · · · · · · · · · · · ·	1		
COMMENTS: _	 			 		
				 		<u></u>

Client/ Facility <u># 54</u>	04	•	Job#:	18	0012		
19 a	50 Lake Cha	Lat Rd.	Date:	3-	7-00		
		501 1-0	=	er:			
City: <u>Cast</u>	co Valley		Sampi	er			
Well ID	mw-6	Well Condit	tion:	0 · K			
Weil 1D						~	
Well Diameter	- Lin	Hydrocarbo Thickness:	4		nount Ba	45	(Gallons)
Total Depth	26.42 tc	Volume	2" = 0.1	7	3" = 0.38	_	= 0.66
Depth to Water	5.15 tr.	Factor (VF)		e = 1.50		127 = 5.80	
	x v	/F =	X 3 (case v	rolume) = Es	timated Pu	rge Volume:	(dal.)
Purge Equipment:	Disposable Bailer Bailer Stack Soction Grundfos Other:		Sampling Equipment:	Bailer Press Grab	sable Ba ure Baile Sample	r	
Starting Time: Sampling Time:		Water	er Conditio	Clea	<u>- </u>	Odor	· · · · · · · · · · · · · · · · · · ·
Purging Flow Ra	te:s		ent Descrip				
Did well de-wate	er?	If yes;	; Time: _	<u> </u>	_ Volun	ne:	<u> lspl</u>
Time	Volume pH (gal.)	Conductivity µmhos/cm	Tempe Y -F		D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
				 /-			
		-		7			
		LABORATOR	Y INFORM!	TION	/	/ =	
SAMPLE ID	(#) - CONTAINER		ERV. TYPE		TORY	ANALY	
Mw-	340 A	Υ	HCU.	SEQUOIA	_/_	TPH(GI/btex/m	tbe
	2 va A/	- (1	<i>"</i>	11		8010	
	1 Amser	11		11		8270	
				·		<u> </u>	
COMMENTS:	M. only						
COMMENTO							
		<u>-</u> , . ———					

acility # 54	24		Job#	. 1	80012	_	
	so Lake Ch	1-1-01			3-7-00		
						<u></u>	
City: <u>Cast</u>	co Valley		Sam	oler:	JOC		
Well ID	_mw-7	Well Con	dition:	0 · K			
Well Diameter	· in,	Hydrocar Thicknes			Amount B	-	- (Gallons)
Fotal Depth	19.55 tc.	Volume				4	
Depth to Water	7.12 1	Factor (V			50	12" = 5.80	
Purge Equipment:	Disposable Bailer Bailer Stack Socion Grundfos Other:		X 3 (case Sampling Equipment	Bail Pre Gra	Estimated Pu posable Ba ler ssure Baile ab Sample ner:	er	<u>(6.5 (ast.)</u>
Starting Time: Sampling Time:	<u> </u>		ther Condition			Odor: fa	11 t
Purging Flow Ra	te:					ne:	
Purging Flow Rai Did well de-wate Time		Conductive supposed 5.16	ity / W Temp	erature F	D.O. (mg/L)		.isp)
Purging Flow Rate Did well de-wate Time \$2.27 \$129 \$132-	te:	Conductive punhos/cr 5:16 5:19 5:23	es; Time: _ ity / W Temp n Y	eranure F 3. 0	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Purging Flow Rain Did well de-water Time Single Single Single Sample ID	te:	Conductive purpose of the second seco	es; Time: _ ity /W Temp 7. 7. 7. 7. 7. RY INFORMA ESERV. TYPE /	eranure F 3. 0	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Purging Flow Rate Did well de-wate Time 2'27 2'27 2'29 8'32-	(#) - CONTAINER	Conductive purhos/cr 5.16 5.19 5.2-3 LABORATO REFRIG. PRI	es; Time: _ ity / W Temp n Y	ATION LABOR	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
Purging Flow Rate Did well de-wate Time 8'27 8'27 8'32- SAMPLE ID	te:	Conductive purpose of the second seco	es; Time: _ ity /W Temp n Y	eranire F 1.7 ATION LABOR	D.O. (mg/L)	ORP (mV) ANAL TPH(G)/btex/r	Alkalinity (ppm)

3/37-4-Hotelm

																C	<u> 1aii</u>	<u>1-0</u>	f-(Cust	ody-Recor
TOSO Tosos Marketing 2000 Crow Caryon San Rarron, Carlo	Company	Cone	uitant Pr uitont Na iddress <u>f</u>	oject Nui ime <u>Ge</u> 6747 S ontact (N	nber/ ttler ierra ome)_D	484 800 La 80012 -Ryan In Court, eanna L. 0-551-75	c. (d Sulta Hard	G-R Ind	L.)uhl11	cA	9456	- 1 1 18 1	Laborator Laborator Samples Collection Signoture	y Name y Relea Collecte	(Phone) Sec Number of the Sec) juoia per ome) b -7-	Ana Toe		a1		
Sumple Number	Lab Sample Number	Number of Containers	Matrix S = Soil A = Air W = Water C = Charcoal	Type G = Grab C = Composite D = Discrete	Ifm.	Sample Preservation	load (Yes or No)	TPH G±+ BTEX ₩/MTBE (B015) (B020)	TPH Diesel (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Aromatics (8020)		Extractable Organics (8270)	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)	-					DO NOT BILL TB-LB ANALYSIS Remarks
TB-LB		Vo A	w	Ç.	_	HCC	Υ	1										<u> </u>		ļ. <u> </u>	
mw-4		SVUA 1Amb	/	/	7:30	/		/		ļ	~		<u> </u>	<u> </u>						<u> </u>	
mw-5		"		/	8:10			<i>'</i>			<i>✓</i>			1	ļ	 	<u> </u>	ļ	<u> </u>	ļ	
- MW-7		1,		/	8:42	/	<u> </u>			<u> </u>	/		-	\ <u>\</u>		<u> </u>		 			
					<u> </u>		, ,			-								 		 	
		ļ	ļ 		ļ		<u> </u>		ļ	<u> </u>	ļ		 	-	 			 -		 	
			ļ		ļ		ļ	_		 	<u> </u>		_	-				-		-	<u> </u>
			<u> </u>	<u> </u>			ļ. <u></u>	_		ļ <u>.</u>		<u> </u>			 			 	<u> </u>	 	
				ļ	ļ	<u> </u>	ļ		_	 	ļ			-	 	ļ.—-	<u> </u>	-	 	. 	
			ļ <u>. </u>			<u> </u>		_			 	ļ	-	 	 	<u> </u>		 	 	 	
				<u> </u>	<u> </u>		ļ	-			-		-	-	 	-	<u> </u>		 	 	
		ļ	ļ	 	ļ			 		<u> </u>	-	<u> </u>		 			 	-	-	 	
\				ļ	<u> </u>		 		-	 	ļ		 	 	-	-		 	ļ <u>.</u>		
Aquiahod By	(Signature)		1 -	anization -R Inc		Date/Time 1:3	, m F	Received B	· /-	 (jure) ()	<u>]</u>		Organiza'	l tion	3)/Time 7 (Cit			Turn Ar	24	me (Circle Choloe)
\	(Signature)			anization anization		Date/Time		Received B		·	y (Sign		Organiza	tion		e/Time	·			6 10	Daye Daye ontracted

March 28, 2000

RECEIVED

MAP 3 0 2000

GETTLER-RYAN INC.

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

RE: Tosco/L003076

Dear Deanna Harding:

Enclosed are the results of analyses for sample(s) received by the laboratory on March 7, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wayne Stevenson Project Manager

CA ELAP Certificate Number I-2360

Project: Tosco Project Number: TOSCO#5484 Project Manager:

Deanna Harding

Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

ANALYTICAL REPORT FOR L003076

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
TB-LB	L003076-01	Water	3/7/00
MW-4	L003076-02	Water	3/7/00
MW-5	L003076-03	Water	3/7/00
MW-7	L003076-04	Water	3/7/00 .

Gettler-Ryan/Geostrategies Project: Tosco Sampled: 3/7/00 6747 Sierra Court, Suite D Project Number: TOSCO#5484 Received: 3/7/00 Dublin, CA 94568 Project Manager: Deanna Harding Reported: 3/28/00

Sample Description: Laboratory Sample Number: TB-LB L003076-01

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Segue	ia Analytical	- San Carlos				
Total Purgeable Hydrocarbons (C6-C1	2), BTEX an	d MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0030085	3/18/00	3/18/00		50.0	ND	ug/l	
Benzene	IP .	71	II.		0.500	ND	If	
Toluene	ır	TŤ	IF		0.500	ND	It	
Ethylbenzene	It	n	u		0.500	ND	it.	
Xylenes (total)	ıt	11	rr .		0.500	ND	11	
Methyl tert-butyl ether	n	#	n		5.00	ND	IF	
Surrogate: a,a,a-Trifluorotoluene	"	n	"	70.0-130		109	%	

Gettler-Ryan/Geostrategies Project: Tosco Sampled: 3/7/00
6747 Sierra Court, Suite D Project Number: TOSCO#5484 Received: 3/7/00
Dublin, CA 94568 Project Manager: Deanna Harding Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-4 L003076-02

	Batch	Date	Date	Specific Method/			_	
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes
				l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1					50.0	NID	/J	
Purgeable Hydrocarbons as Gasoline	0030085	3/18/00	3/18/00		50.0	ND	ug/l "	
Benzene	re	11	#1		0.500	ND	"	
Toluene	**	11	11		0.500	1.11		
Ethylbenzene	11	19	II	•	0.500	ND		
Xylenes (total)	**	н			0.500	ND	"	
Methyl tert-butyl ether	н	"			5.00	ND		
Surrogate: a,a,a-Trifluorotoluene	п	n	#	70.0-130		94.4	%	
Volatile Organic Compounds by EPA	Method 8010	В						
Freon 113	0030056	3/15/00	3/16/00		3.33	ND	ug/l	
Bromodichloromethane	IP	ii.	17		1.67	ND	н	
Bromoform	17	If			1.67	ND	71	
Bromomethane		It	н		3.33	ND	и	
Carbon tetrachloride	n	**			1.67	ND	н	
Chlorobenzene	11	•	n		1.67	ND	II	
Chloroethane	17	71	п		3.33	ND	n .	
	n	H	п		3.33	ND	II .	
2-Chloroethylvinyl ether	e	t f	п		1.67	87.1		
Chloroform	11	*1	u.		3.33	ND	**	
Chloromethane);)i	11			1.67	ND	11	
Dibromochloromethane	" It	" II				ND	11	
1,3-Dichlorobenzene	17	"	11		1.67		51	
1,4-Dichlorobenzene			H		1.67	ND	*1	
1,2-Dichlorobenzene	"	It			1.67	ND	11	
1,1-Dichloroethane	**	**	11		1.67	ND	"	
1,2-Dichloroethane	r#	11	"		1.67	ND		
1,1-Dichloroethene	Ħ	11	"		1.67	ND	It	
cis-1,2-Dichloroethene	11	17	и		1.67	ND	II.	
rans-1,2-Dichloroethene	II .	**	lf.		1.67	ND	H	
1,2-Dichloropropane	it.	11	u		1.67	ND	**	
cis-1,3-Dichloropropene	It.	П	н		1.67	ND	11	
trans-1,3-Dichloropropene	**	ш	"		1.67	ND	10	
Methylene chloride	**	11	T#		16.7	ND	19	
1,1,2,2-Tetrachloroethane	10	**	н		1.67	ND	*1	
Tetrachloroethene	71	†f	11		1.67	ND	11	
1,1,1-Trichloroethane	11	19	п		1.67	ND	II	
1,1,2-Trichloroethane	11	H	н		1.67	ND	It	
Trichloroethene	II	H	I !		1.67	ND	II.	
Trichloroethene Trichlorofluoromethane	IF.	11	H		1.67	ND	**	
	11	п	**		1.67	ND	**	
Vinyl chloride Surrogate: 1-Chloro-2-fluorobenzene		"		70.0-130	1.07	124	%	

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding Sampled: 3/7/00

Received: 3/7/00 Reported: 3/28/00

Sample Description: **Laboratory Sample Number:** MW-4 L003076-02

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
								-
Semivolatile Organic Compounds by								
Acenaphthene	0030327	3/14/00	3/21/00		13.3	ND	ug/l	
Acenaphthylene	17	н	11		13.3	ND	IP	
Anthracene	TF	11	н		13.3	ND	IF	
Benzidine	19	"			66.5	ND	IF	
Benzoic acid	**	11	10		66.5	ND	11	
Benzo (a) anthracene	11	*1	π		13.3	ND	П	
Benzo (b+k) fluoranthene (total)	11	n	77		13.3	ND	11	
Benzo (g,h,i) perylene	11	**	24		13.3	ND	п	
Benzo (a) pyrene	11	**	**		13.3	ND	п	
Benzyl alcohol	n	11	14		26.6	ND	н	
Bis(2-chloroethoxy)methane	11	11	11		13.3	ND	н	
Bis(2-chloroethyl)ether	11	#1	11		13.3	ND	11	
Bis(2-chloroisopropyl)ether	11	11	17		13.3	ND	н	
Bis(2-ethylhexyl)phthalate	16	п	TÊ		13.3	ND	п	
4-Bromophenyl phenyl ether	10	11	19		13.3	ND	ji	
Butyl benzyl phthalate	17	п	10		13.3	ND	н	
4-Chloroaniline	11	п	18		26.6	ND	п	
4-Chloro-3-methylphenol	11	n	11		26.6	ND	П	
2-Chloronaphthalene	17	н	77		13.3	ND	н	
2-Chlorophenol	11	n	24		13.3	ND	п	
4-Chlorophenyl phenyl ether	11	n	11		13.3	ND	IJ	
Chrysene	79	п	18		13.3	ND	п	
Dibenz (a,h) anthracene	10	н	"		13.3	ND	11	
Dibenzofuran	н	п	18		13.3	ND	п	
Di-n-butyl phthalate	н	п	it		13.3	ND	п	
1,2-Dichlorobenzene	н	II .	11		13.3	ND	11	
1,3-Dichlorobenzene	н	п	74		13.3	ND	n	
1,4-Dichlorobenzene	n	и	10		13.3	ND	n	
3,3'-Dichlorobenzidine	18	н	97		26.6	ND	11	
2,4-Dichlorophenol	18	я	11		13.3	ND	†1	
Diethyl phthalate	11	11	**		13.3	ND	*1	
2,4-Dimethylphenol	11	11	tT .		13.3	ND	**	
Dimethyl phthalate	11	11	**		13.3	ND	н	
4,6-Dinitro-2-methylphenol	11	n	n		66.5	ND	*1	
2,4-Dinitrophenol	**	11	t t		66.5	ND	**	
2,4-Dinitrotoluene	**	11	H		13.3	ND	**	
2,6-Dinitrotoluene	11	11	н		13.3	ND	н	
Di-n-octyl phthalate	tt	n	H		13.3	ND	**	
1,2-Diphenylhydrazine	**	11	n		26.6	ND	**	
Fluoranthene	**	11	*		13.3	ND	н	
Fluorene	11	11			13.3	ND	#	
					1010	1,12		

Sequoia Analytical - San Carlos

Project: Project Number:

Project Manager:

Tosco TOSCO#5484 Deanna Harding

Sampled: 3/7/00 Received: 3/7/00

Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-4 L003076-02

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
Semivolatile Organic Compounds by	EDA Mathad	2770€ (aan#	nuad)					
Hexachlorobenzene	0030327	3/14/00	3/21/00		13.3	ND	ug/l	
Hexachlorobutadiene	"	11	11		13.3	ND	II	
Hexachlorocyclopentadiene	H	п	Ш		13.3	ND	H*	
Hexachloroethane	н	II.	II		13.3	ND	H	
Indeno (1,2,3-cd) pyrene	н	It	ш		13.3	ND	11	
Isophorone	***	ır	ır ·		13.3	ND	н	
2-Methylnaphthalene	**	If	if		13.3	ND	19	
2-Methylphenol	**	ti .	If		13.3	ND	f#	
4-Methylphenol	11	**	U.		13.3	ND	Ħ	
Naphthalene	11	**			13.3	ND	**	
2-Nitroaniline	II.	n	11		66.5	ND	**	
3-Nitroaniline	n	**	ft.		66.5	ND	**	
4-Nitroaniline	**	17	**		66.5	ND	**	
Nitrobenzene	**	"	ti		13.3	ND	10	
2-Nitrophenol	п	rt	и		13.3	ND	19	
4-Nitrophenol	п	n	11		66.5	ND	п	
N-Nitrosodimethylamine	II	H	19		26.6	ND	n	
N-Nitrosodiphenylamine	п	н	19		13.3	ND	n	
N-Nitrosodi-n-propylamine	It.	11	19		13.3	ND	*1	
Pentachlorophenol	It	*1	"		66.5	ND	11	
Phenanthrene	"	11	*1		13.3	ND	II .	
Phenol	**	li	11		13.3	ND	п	
Pyrene	Ħ	п	n .		13.3	ND	п	
Pyridine	**	Jt.	п		13.3	ND	R	
1,2,4-Trichlorobenzene	11	ır	п		13.3	ND	u	
2,4,5-Trichlorophenol	n	tr.	ır		13.3	ND	н	
2.4,6-Trichlorophenol	n	m	R		13.3	ND	**	
Surrogate: 2-Fluorophenol		<i>n</i>		21.0-100		50.5	%	
Surrogate: Phenol-d6	п	,,	"	10.0-94.0		72.0	,,	
Surrogate: Nitrobenzene-d5	n	n	"	35.0-114		84.2	"	
Surrogate: 2-Fluorobiphenyl	"	n	"	43.0-116		87.2	,,	
Surrogate: 2,4,6-Tribromophenol	"	"	n,	10.0-123		52.0	,,	
Surrogate: Terphenyl-d14	"	"	"	34.0-141		100	"	
Surroguie. Terpnenyi-urt				J 1.0 1 11		100		

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00

Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-5 L003076-03

	Batch	Date	Date	Specific Method/	Reporting			~
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		•		Ť				
		<u>Sequa</u>	ia Analytical	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1		d MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0030085	3/18/00	3/18/00		50.0	ND	ug/l	
Benzene	H	н	11		0.500	ND	"	
Toluene	IF.	H	11		0.500	1.13	**	
Ethylbenzene	IF.	н .	**		0.500	ND	**	
Xylenes (total)	u.	н	**		0.500	ND	**	
Methyl tert-butyl ether	u e	4	17		5.00	ND	**	
Surrogate: a,a,a-Trifluorotoluene	rr .	"	"	70.0-130		92.9	%	
Volatile Organic Compounds by EPA	Method 8010	<u>B</u>						
Freon 113	0030076	3/16/00	3/16/00		4.00	ND	ug/l	
Bromodichloromethane	It .	14	11		2.00	7.16	,,	
Bromoform	O.	11	11		2.00	ND	n	
Bromomethane	u.	H	**		4.00	ND	•	
Carbon tetrachloride	0	r	**		2.00	ND	*1	
Chlorobenzene	tr	**	**		2.00	ND	**	
Chloroethane	tt.	Ħ	**		4.00	ND	**	
2-Chloroethylvinyl ether		**	**		4.00	ND	n	
Chloroform		"	**		2.00	69.7	#	
Chloromethane	te	•	**		4.00	ND	**	
Dibromochloromethane	ts	н	**		2.00	ND	"	
1,3-Dichlorobenzene	17	н	11		2.00	ND	11	
1,4-Dichlorobenzene	r•	н	**		2.00	ND	"	
1,2-Dichlorobenzene	10	**	**		2.00	ND	**	
1,1-Dichloroethane	н	H	**		2.00	ND	11	
1,2-Dichloroethane	н	**	11		2.00	ND	"	
1,1-Dichloroethene	**	Ħ	11		2.00	ND	n	
cis-1,2-Dichloroethene	**	n	**		2.00	ND	11	
trans-1,2-Dichloroethene	н	н	**		2.00	ND	11	
1,2-Dichloropropane	"	*1	**		2.00	ND	11	
cis-1,3-Dichloropropene	*1	•	"		2.00	ND	11	
trans-1,3-Dichloropropene	rs .	н	**		2.00	ND	*1	
Methylene chloride	н	H	**		20.0	ND	11	
1,1,2,2-Tetrachloroethane	н	H	**		2.00	ND	11	
Tetrachloroethene	H	н	tt		2.00	ND	**	
1,1,1-Trichloroethane	Ħ	n	ŧī		2.00	ND	11	
1,1,2-Trichloroethane	H	H	rt		2.00	ND	n	
Trichloroethene		н	H		2.00	ND	**	
Trichlorofluoromethane	•	н	Ħ		2.00	ND	**	
Vinyl chloride	H	н	H		2.00	ND	н	
Surrogate: 1-Chloro-2-fluorobenzene	"	#	"	70.0-130		110	%	

Sequoia Analytical - San Carlos

Gettler-Ryan/Geostrategies Project: Tosco
6747 Sierra Court, Suite D Project Number: TOSCO#5484
Dublin, CA 94568 Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-5 L003076-03

	Batch	Date	Date	Specific Method/	Reporting		• • • •	** .
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
Semivolatile Organic Compounds b	y EPA Method	8270C						
Acenaphthene	0030327	3/14/00	3/21/00		13.8	ND	ug/l	
Acenaphthylene	11	If	11		13.8	ND	n	
Anthracene	H	16	If		13.8	ND	11	
Benzidine	11	n	IF		69.0	ND	17	
Benzoic acid	п .	H	10		69.0	ND	If	
Benzo (a) anthracene	11	**	н		13.8	ND	IF	
Benzo (b+k) fluoranthene (total)	II .	TI.	FT		13.8	ND	н	
Benzo (g,h,i) perylene	II.	n	17		13.8	ND	H	
Benzo (a) pyrene	tt	"	**		13.8	ND	et	
Benzyl alcohol	**	en .	**		27.6	ND	**	
Bis(2-chloroethoxy)methane	11	П	*1		13.8	ND	71	
Bis(2-chloroethyl)ether	n	ш	11		13.8	ND	rı	
Bis(2-chloroisopropyl)ether	n	11	п		13.8	ND	ŧI	
Bis(2-ethylhexyl)phthalate	11	11	п		13.8	ND	11	
4-Bromophenyl phenyl ether	н	. н	t t		13.8	ND	11	
Butyl benzyl phthalate	11	11	19		13.8	ND	It	
4-Chloroaniline	I t	19	**		27.6	ND	10	
4-Chloro-3-methylphenol	#	*1	"		27.6	ND	11	
	ęı .	91	н		13.8	ND	**	
2-Chloronaphthalene	11	п	**		13.8	ND	tt	•
2-Chlorophenol	n	П	1)		13.8	ND	**	
4-Chlorophenyl phenyl ether	*1	19	и		13.8	ND		
Chrysene	n	11	lt.		13.8	ND	n	
Dibenz (a,h) anthracene	It	11	н		13.8	ND	11	
Dibenzofuran	.,		**		13.8	ND	II.	
Di-n-butyl phthalate	•	*1	19		13.8	ND	0	
1,2-Dichlorobenzene	"	11	п		13.8	ND	11	
1,3-Dichlorobenzene		"	,,		13.8	ND	PT	
1,4-Dichlorobenzene	**	ir	11		27.6	ND	77	
3,3'-Dichlorobenzidine	11				13.8	ND ND	10	
2,4-Dichlorophenol	" II	,,	"		13.8	ND	**	
Diethyl phthalate	" "	"	" "		13.8	ND	17	
2,4-Dimethylphenol	II*	,,	**		13.8	ND ND	11	
Dimethyl phthalate		**	"			ND ND	II.	
4,6-Dinitro-2-methylphenol	н	**	"		69.0		n.	
2,4-Dinitrophenol		"	"		69.0	ND ND		
2,4-Dinitrotoluene	**	"	*1 11		13.8	ND ND	**	
2,6-Dinitrotoluene	11				13.8		 11	
Di-n-octyl phthalate	п	**	II		13.8	ND	**	
1,2-Diphenylhydrazine	II .	Ħ	II.		27.6	ND	" H	
Fluoranthene	1+	**	n		13.8	ND		
Fluorene	H	**	**		13.8	ND	*11	

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding Sampled: 3/7/00 Received: 3/7/00

Received: 3/7/00 Reported: 3/28/00

Sample Description:

Laboratory Sample Number:

MW-5 L003076-03

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
Semivolatile Organic Compounds by	EPA Method	8270C (conti	nued)					
Hexachlorobenzene	0030327	3/14/00	3/21/00		13.8	ND	ug/l	
Hexachlorobutadiene	11	Ħ	in		13.8	ND	II .	
Hexachlorocyclopentadiene	*1	11	11		13.8	ND	IF	
Hexachloroethane	**	11	"		13.8	ND	11	
Indeno (1,2,3-cd) pyrene	n	Ħ	н		13.8	ND	н	
Isophorone	18	n	11		13.8	ND	н	
2-Methylnaphthalene	Ħ	it .	TI .		13.8	ND	н	
2-Methylphenol	11		9		13.8	ND	r?	4
4-Methylphenol	н	If	**		13.8	ND	1f	
Naphthalene	н	II	"		13.8	ND	н	
2-Nitroaniline	11	II	T7		69.0	ND	,,	
3-Nitroaniline	11	11	17		69.0	ND	"	
4-Nitroaniline	It	11	10		69.0	ND	Ħ	
Nitrobenzene	п	11	U .		13.8	ND	It	
2-Nitrophenol	II	n	IF		13.8	ND	IF	
4-Nitrophenol	п	**	II		69.0	ND	П	
N-Nitrosodimethylamine	п	н	II		27.6	ND	н	
N-Nitrosodiphenylamine	11	H	II		13.8	ND	н	
N-Nitrosodi-n-propylamine	11	11	11		13.8	ND	"	
Pentachlorophenol	**	**	11		69.0	ND	**	
Phenanthrene	ч	Ħ	n		13.8	ND	11	
Phenol	ri	н	n		13.8	ND	**	
Pyrene	11	rı .	**		13.8	ND	n	
Pyridine	11	10	17		13.8	ND	11	
1,2,4-Trichlorobenzene	**	lt.	u .		13.8	ND	Ħ	
2,4,5-Trichlorophenol	**	It	11		13.8	ND	#	
2,4,6-Trichlorophenol	#	it	17		13.8	ND	H	
Surrogate: 2-Fluorophenol	"	n .	<u>"</u>	21.0-100	***************************************	60.5	%	
Surrogate: Phenol-d6	"	tt .	"	10.0-94.0		68.5	rr	
Surrogate: Nitrobenzene-d5	"	11	"	35.0-114		71.4	#	
Surrogate: 2-Fluorobiphenyl	"	n	"	43.0-116		72.1	#	
Surrogate: 2,4,6-Tribromophenol	n	n	rr .	10.0-123		91.0	t#	
Surrogate: Terphenyl-d14	"	n	n	34.0-141		99.2	п	

Gettler-Ryan/Geostrategies Project: Tosco Sampled: 3/7/00
6747 Sierra Court, Suite D Project Number: TOSCO#5484 Received: 3/7/00
Dublin, CA 94568 Project Manager: Deanna Harding Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-7 L003076-04

	Batch	Date	Date	Specific Method/	Reporting	- 1	TT 4.	**
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes
		Ć		. C Cl				
Total Purgeable Hydrocarbons (C6-C1	2\ RTFV on			- San Carlos				
Purgeable Hydrocarbons as Gasoline	0030085	3/18/00	3/18/00		50.0	199	ug/l	1
Benzene	0020002	11	#		0.500	3.51	# B -	-
Toluene	It.	It	**		0.500	ND	11	
Ethylbenzene	I)	ш	**		0.500	3.30	It	
Xylenes (total)	ıı	ir .	**		0.500	0.697	It	
Methyl tert-butyl ether	n	IF	11		50.0	1250	D	
Surrogate: a,a,a-Trifluorotoluene	n	"	n .	70.0-130		102	%	
Volatile Organic Compounds by EPA!	Method 8010	<u>B</u>						
Freon 113	0030076	3/16/00	3/16/00		5.00	ND	ug/l	
Bromodichloromethane	18	**	Ц		2.50	ND	**	
Bromoform	н	**	It		2.50	ND	**	
Bromomethane	н	10	U		5.00	ND	"	
Carbon tetrachloride	fi fi	11	н		2.50	ND	11	
Chlorobenzene	11	17	ri		2.50	ND	"	
Chloroethane	n	н	**		5.00	ND	19	
2-Chloroethylvinyl ether	II	Ħ	**		5.00	ND	H	
Chloroform	ц	п	n		2.50	ND	n	
Chloromethane	It	II .	19		5.00	ND	n	
Dibromochloromethane	19	10	n		2.50	ND	11	
1,3-Dichlorobenzene	17	IF.	11		2.50	ND	п	
1,4-Dichlorobenzene	**	**	11		2.50	ND	П	
1,2-Dichlorobenzene	10	**	п		2.50	ND	II.	
1,1-Dichloroethane	r i	**	п		2.50	ND	It	
1,2-Dichloroethane	**	11	R		2.50	ND	IF	
1,1-Dichloroethene	**	rr			2.50	ND	ti.	
•	11	ri	10		2.50	ND		
cis-1,2-Dichloroethene	ш	**	**		2.50	ND	н	
trans-1,2-Dichloroethene	lt.	11	**		2.50	ND	**	
1,2-Dichloropropane		"	**		2.50	ND	11	
cis-1,3-Dichloropropene		if	10		2.50	ND ND	11	
trans-1,3-Dichloropropene	"	ir	"				r+	
Methylene chloride	"	H			25.0	ND	н	
1,1,2,2-Tetrachloroethane					2.50	ND	.,	
Tetrachloroethene	"		"		2.50	ND	11	
1,1,1-Trichloroethane		**	H 		2.50	ND	11	
1,1,2-Trichloroethane	#	**)I		2.50	ND		
Trichloroethene	**	1)	It		2.50	ND	11	
Trichlorofluoromethane	*1	**	"		2.50	ND		
Vinyl chloride	11	11	н	70.0-130	2,50	ND 116	%	

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00

Reported: 3/28/00

Sample Description: Laboratory Sample Number: MW-7 L003076-04

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
				-				
Semivolatile Organic Compounds by								
Acenaphthene	0030327	3/14/00	3/21/00		11.8	ND	ug/l	
Acenaphthylene	Ħ	**	н		11.8	ND	ti .	
Anthracene	н	19	#		11.8	ND	11	
Benzidine	н .	**	**		58.8	ND	11	
Benzoic acid	н	. "	TF.		58.8	ND	11.	
Benzo (a) anthracene	н	н	Ħ		11.8	ND	"	
Benzo (b+k) fluoranthene (total)	н	**	11		11.8	ND	"	
Benzo (g,h,i) perylene	"	#	**		11.8	ND	11	
Benzo (a) pyrene	Ħ	19	#		11.8	ND	11	
Benzyl alcohol	91	n	н		23.5	ND	11	
Bis(2-chloroethoxy)methane	11	11	**		11.8	ND	n	
Bis(2-chloroethyl)ether	н	rt	**		11.8	ND	11	
Bis(2-chloroisopropyl)ether	11	17	Ħ		11.8	ND	п	
Bis(2-ethylhexyl)phthalate	н	n	Ħ		11.8	ND	п	
4-Bromophenyl phenyl ether	II .	**	. 41		11.8	ND	ıı .	
Butyl benzyl phthalate	ii .	"	71		11.8	ND	ii .	
4-Chloroaniline	II	n	Ħ		23.5	ND	п	
4-Chloro-3-methylphenol	ц	#	11		23.5	ND	II	
2-Chloronaphthalene	п	**	11		11.8	ND	II	
2-Chlorophenol	D	11	11		11.8	ND	п	
4-Chlorophenyl phenyl ether	II.	71	11		11.8	ND	и	
Chrysene	n	#	п		11.8	ND	IF	
Dibenz (a,h) anthracene	"	11	н		11.8	ND	и	
Dibenzofuran	u	п	ш		11.8	ND	ц	
Di-n-butyl phthalate	11	п	IF.		11.8	ND	IP.	
1,2-Dichlorobenzene	U	п	IF		11.8	ND	IF	
1,3-Dichlorobenzene	н	п	It		11.8	ND	R	
1,4-Dichlorobenzene	н	п	lf.		11.8	ND	ir .	
3,3'-Dichlorobenzidine	11	н	It		23.5	ND	U	
2,4-Dichlorophenol	н	п	IP		11.8	ND	R	
Diethyl phthalate	H	п	IF		11.8	ND	IF	
2,4-Dimethylphenol	*	п	IF		11.8	ND	lf .	
Dimethyl phthalate	n	п	D		11.8	ND	D	
4,6-Dinitro-2-methylphenol	**	IF	Ir.		58.8	ND	"	
2,4-Dinitrophenol	11	It	10		58.8	ND	It	
2,4-Dinitrotoluene	11	It	n		11.8	ND	U	
2,6-Dinitrotoluene	19	II.	н		11.8	ND	H	
Di-n-octyl phthalate	18	H	н		11.8	ND	•	
1,2-Diphenylhydrazine	U		н		23.5	ND	H	
Fluoranthene	н		R		11.8	ND		
Fluorene	Ħ	н	n		11.8	ND		

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding

Sampled: 3/7/00 Received:

3/7/00 3/28/00 Reported:

Sample Description: Laboratory Sample Number: **MW-7** L003076-04

	Batch	Date	Date	Specific Method/				
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		000000	n					
Semivolatile Organic Compounds by					11.8	ND	ug/l	
Hexachlorobenzene	0030327	3/14/00	3/21/00			ND	n B/I	
Hexachlorobutadiene		" H	"		11.8		TP .	
Hexachlorocyclopentadiene	**				11.8	ND	n	
Hexachloroethane	#	#1	17		11.8	ND	it.	
Indeno (1,2,3-cd) pyrene	11	II	77		11.8	ND		
Isophorone	11	II	19		11.8	ND	17	
2-Methylnaphthalene	If	ır	rt		11.8	ND		
2-Methylphenol	11	10	H		11.8	ND	71	
4-Methylphenol		14	**		11.8	ND		
Naphthalene	19	**	11		11.8	ND	н	
2-Nitroaniline	**	н	ш		58.8	ND	Ħ	
3-Nitroaniline	**	11	п		58.8	ND	11	
4-Nitroaniline	11	E T	п		58.8	ND	11	
Nitrobenzene	11	17	If		11.8	ND	п	
2-Nitrophenol	н	**	te.		11.8	ND	It	
4-Nitrophenol	*1	n	**		58.8	ND	If	
N-Nitrosodimethylamine	и	и	11		23.5	ND	10	
N-Nitrosodiphenylamine	н	П	11		11.8	ND	19	
N-Nitrosodi-n-propylamine	IF	H.	19		11.8	ND	Ħ	
Pentachlorophenol	10		**		58.8	ND	**	
Phenanthrene	**		71		11.8	ND	57	
Phenol	**	*11	н		11.8	ND	H	
Pyrene	17	11	н		11.8	ND	11	
Pyridine	н	H	IF.		11.8	ND	11	
1,2,4-Trichlorobenzene	11	11	19		11.8	ND	н	
2,4,5-Trichlorophenol	н	ш	ts.		11.8	ND	н	
2,4,6-Trichlorophenol	и	н	**		11.8	ND	D	
Surrogate: 2-Fluorophenol			· · //	21.0-100		46.3	%	
Surrogate: Phenol-d6	"	"	n	10.0-94.0		60.8	"	
Surrogate: Fnenoi-ao Surrogate: Nitrobenzene-d5	n	"	п	35.0-114		63.1	"	
Surrogate: Nurobenzene-us Surrogate: 2-Fluorobiphenyl	#	"	n	43.0-116		72.1	н	
	"	,,	,,	10.0-123		91.5	"	
Surrogate: 2,4,6-Tribromophenol	п	n	rr .	34.0-141		97.5	,,	
Surrogate: Terphenyl-d14	•			34.0-147		71.5		

Project: Tosco

Project Manager: Deanna Harding

Project Number: TOSCO#5484

Sampled: 3/7/00

Received: 3/7/00

Reported: 3/28/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Batch: 0030085	Date Prepar		<u>)0</u>		Extrac	tion Method: EP.	[P/T]		
Blank	0030085-BI	<u>.K1</u>							
Purgeable Hydrocarbons as Gasoline	3/18/00			ND	ug/l	50.0			
Benzene	H			ND	н	0.500			
Toluene	11			ND	11	0.500			
Ethylbenzene	н .			ND	II.	0.500			
Xylenes (total)	. H			ND	II.	0.500			
Methyl tert-butyl ether	10			ND	II	5.00			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		11.2	77	70.0-130	112		
Blank	0030085-BI	.K2							
Purgeable Hydrocarbons as Gasoline	3/19/00			ND	ug/l	50.0			
Benzene	II			ND	n T	0.500			
Toluene	ır			NĐ	н	0.500			
Ethylbenzene	ц			NĐ	11	0.500			
Xylenes (total)	II			ND	11	0.500			
Methyl tert-butyl ether	н			ND	11	5.00			
Surrogate: a,a,a-Trifluorotoluene	ff	10.0		9.36	h	70.0-130	93.6		7 T TASK TAKEN
LCS	0030085-BS	1							
Benzene	3/18/00	10.0		11.3	ug/l	70.0-130	113		
Toluene	11	10.0		10.7	н .	70.0-130	107		
Ethylbenzene	11	10.0		10.8	н	70.0-130	108		
Xylenes (total)	11	30.0		33.0	н	70.0-130	110		
Surrogate: a,a,a-Trifluorotoluene	п	10.0		11.6	Ħ	70.0-130	116		
LCS	0030085-BS	2							
Purgeable Hydrocarbons as Gasoline	3/18/00	250		227	ug/l	70.0-130	90.8		
Surrogate: a,a,a-Trifluorotoluene	"	10.0		12.1	"	70.0-130	121		
<u>LCS</u>	anzane pe	2							
Benzene	0030085-BS 3/19/00	<u>২</u> 10.0		10.2	/1	70.0.120	103		
Toluene	3/19/00	10.0		10.3 9.54	ug/l "	70.0-130	95.4		
Ethylbenzene	1f					70.0-130			
-	**	10.0		9.57	" It	70.0-130	95.7		
Xylenes (total)		30.0		29.2	· · · · · · · · · · · · · · · · · · ·	70.0-130	97.3		
Surrogate: a,a,a-Trifluorotoluene	. .	10.0		10.9		70.0-130	109		
LCS	0030085-BS	_							
Purgeable Hydrocarbons as Gasoline	3/19/00	250		223	ug/l	70.0-130	89.2		
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.8	17	70.0-130	108		

Sequoia Analytical - San Carlos

Gettler-Ryan/Geostrategies	Project: Tosco	Sampled: 3/7/00
6747 Sierra Court, Suite D	Project Number: TOSCO#5484	
Dublin, CA 94568	Project Manager: Deanna Harding	Reported: 3/28/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - San Carlos

Analyte	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits		RPD Limit	RPD %	Notes*
	0030085-M	e1 I	003075-02	 						
Matrix Spike				238	na/l	60.0-140	95.2			
Purgeable Hydrocarbons as Gasoline	3/18/00	250	ND	238	ug/l					
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.76	tf.	70.0-130	97.6			
Matrix Spike Dup	0030085-M	SD1 L	003075-02							
Purgeable Hydrocarbons as Gasoline	3/18/00	250	ND	201	ug/l	60.0-140	80.4	25.0	16.9	
Surrogate: a,a,a-Trifluorotoluene	**	10.0		9.10	"	70.0-130	91.0			

Project: Tosco

Project Manager: Deanna Harding

Project Number: TOSCO#5484

Sampled: 3/7/00

Received: 3/7/00 Reported: 3/28/00

Volatile Organic Compounds by EPA Method 8010B/Quality Control Sequola Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0030056	Date Prepar	red: 2/14/0	n		Evens -+	ion Mathada PD	L EGOOD	(ID/Ti		
Blank	0030056-BI		<u>'U</u>		<u> LXTRACI</u>	tion Method: EPA	4 3030B	11/11		
Freon 113	3/14/00	<u> </u>		ND	ug/l	1.00				
Bromodichloromethane	3/1 4 /00			ND	ug/i	0.500				
Bromoform	R			ND ND	11	0.500				
Bromomethane	II.			ND ND	**	1.00				
Carbon tetrachloride	п			ND ND	ıt.	0.500				
Chlorobenzene	11			ND ND	II .	0.500				
Chloroethane	*1			ND ND	II .	1.00				
2-Chloroethylvinyl ether	11			ND ND	11	1.00				
Chloroform	n			ND ND	н	0.500				
Chloromethane	77			ND ND	11	1.00				
Dibromochloromethane	**			ND	*1	0.500				
1,3-Dichlorobenzene	**			ND	"	0.500				
1.4-Dichlorobenzene	78			ND	ri	0.500				
1,2-Dichlorobenzene	*T			ND	11	0.500 0.500				
1,1-Dichloroethane	**			ND	**	0.500				
1,2-Dichloroethane	*			ND	fT	0.500				
1,1-Dichloroethene	tt			ND	H	0.500				
cis-1,2-Dichloroethene	ur			ND	n	0.500				
trans-1,2-Dichloroethene	u .			ND	10	0.500				
1,2-Dichloropropane	lt .			ND	Ir	0.500				
cis-1,3-Dichloropropene	п			ND	11	0.500				
trans-1,3-Dichloropropene	II			ND	u	0.500				
Methylene chloride	11			ND	П	5.00				
1,1,2,2-Tetrachloroethane	11			ND	11	0.500				
Tetrachloroethene	11			ND	*1	0.500				
1,1,1-Trichloroethane	*1			NÐ	**	0.500				
1,1,2-Trichloroethane	H			ND	rı	0.500				
Trichloroethene	н			ND	18	0.500				
Trichlorofluoromethane	TI			ND	**	0.500				
Vinyl chloride	"			ND	17	0.500				
Surrogate: 1-Chloro-2-fluorobenzene	"	10.0	*	9.58	"	70.0-130	95.8			
Blank	0030056-BL	. <u>K3</u>								
Freon 113	3/15/00	_		ND	ug/l	1.00				
Bromodichloromethane	n			ND	- -	0.500				
Bromoform	It			ND	11	0.500				
Bromomethane	и	-		ND	*1	1.00				
Carbon tetrachloride	п			ND	**	0.500				
Chlorobenzene	11			ND		0.500				
Chloroethane	#1			ND	71	1.00				

Sequoia Analytical - San Carlos

Project: Project Number: TOSCO#5484

Tosco Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

Volatile Organic Compounds by EPA Method 8010B/Quality Control Sequoia Analytical - San Carlos

Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes
0030056-BL	.К3								
-			ND	ug/l	1.00				
II.			ND	u T	0.500				
rr			ND	"	1.00				
**			ND	"	0.500				
**			ND	17	0.500				
н			ND	79	0.500				
*1			ND	11	0.500				
11			ND	Ħ	0.500				
IF			ND	п	0.500				
tr.			ND	If	0.500				
r•				17	0.500				
**				19	0.500				
10				tt	0.500				
H				It	0.500				
11				**	0.500				
Ц				11					
P				п	0.500				
**				If	0.500				
**				rt					
Ħ				Ħ					
				**					
п				п					
ır				11					
"	10.0		12.2	п	70.0-130	122			
					an n 130	70.3			
"	10.0		9.74	"	70.0-130	97.4			
0030056-B	S3								
	10.0		10.9	ug/l					
*1			10.8	н	65.0-135	108			
п				11	70.0-130	104			
n .	10.0		12.0	<i>n</i>	70.0-130	120			
0030056-M	IS1 I	.003014-05							
			7.94	սջ/ի	60.0-140	79.4			
				"					
ır	10.0	ND	7.59	17	60.0-140				
	Analyzed 0030056-BI 3/15/00 " " " " " " " " " " " " " " " " " "	Analyzed Level 0030056-BLK3 3/15/00 " " " " " " " " " " " " " " " " " "	Analyzed Level Result 0030056-BLK3 3/15/00 " " " " " " " " " " " " " " " " " "	O030056-BLK3 Result Result 3/15/00 ND " 10.0 " 10.0 "	Analyzed Level Result Result Units	Name	No	No	No. No.

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

Volatile Organic Compounds by EPA Method 8010B/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike (continued)	0030056-M	<u>S1 L</u>	003014-05							
Surrogate: 1-Chloro-2-fluorobenzene	3/14/00	10.0		9.02	ug/l	70.0-130	90.2			-,
Matrix Spike Dup	0030056-M	SD1 L	003014-05							
Chlorobenzene	3/15/00	10.0	ND	7.83	ug/l	60.0-140	78.3	25.0	1.40	
1,1-Dichloroethene	m .	10.0	ND	8.18	n	60.0-140	81.8	25.0	0.983	
Trichloroethene	II	10.0	ND	8.19	н	60.0-140	81.9	25.0	7.60	
Surrogate: 1-Chloro-2-fluorobenzene	л	10.0		8.54	#	70.0-130	85.4			

Surrogale: 1-Chioro-2-fluorovenzene	70.0	8.34	"	70.0-130 85.4	
Batch: 0030076	Date Prepared: 3/16/00		Extraction	on Method: EPA 5030B [P/T]	
<u>Blank</u>	0030076-BLK1				
Freon 113	3/16/00	ND	ug/l	1.00	
Bromodichloromethane	**	ND	11	0.500	
Bromoform	t t	ND	н	0.500	
Bromomethane	H	ND	н	1.00	
Carbon tetrachloride	ŧτ	ND	H	0.500	
Chlorobenzene	#	ND	H	0.500	
Chloroethane	H	ND	11	1.00	
2-Chloroethylvinyl ether	It	ND	17	1.00	
Chloroform	it .	ND	H	0.500	
Chloromethane	II .	ND	**	1.00	
Dibromochloromethane	If	NÐ	11	0.500	
1,3-Dichlorobenzene	It	ND	ir	0.500	
1,4-Dichlorobenzene	п	ND	Ir	0.500	
1,2-Dichlorobenzene	п	ND	Ц	0.500	
1,1-Dichloroethane	11	ND	11	0.500	
1,2-Dichloroethane	ii	ND	11	0.500	
1,1-Dichloroethene	Ħ	ND	11	0.500	
cis-1,2-Dichloroethene	n	ND	*1	0.500	
trans-1,2-Dichloroethene	H	ND	и	0.500	
1,2-Dichloropropane	н	ND	11	0.500	
cis-1,3-Dichloropropene	11	ND	11	0.500	
trans-1,3-Dichloropropene	**	ND	17	0.500	
Methylene chloride	ęs	ND	Ħ	5.00	
1,1,2,2-Tetrachloroethane	ŧŦ	ND	H	0.500	
Tetrachloroethene	n	ND	H	0.500	
1,1,1-Trichloroethane	tf	ND	н	0.500	
1,1,2-Trichloroethane	D	ND	н	0.500	
Trichloroethene	It .	ND	и	0.500	
Trichlorofluoromethane	If	ND	11	0.500	
Vinyl chloride	11	ND	11	0.500	
Surrogate: 1-Chloro-2-fluorobenzene	" 10.0	10.5	n .	70.0-130 105	

Sequoia Analytical - San Carlos

6747 Sierra Court, Suite D Project Number: TOSCO#5484 Received: 3/7/00	Gettler-Ryan/Geostrategies	Project:	Tosco	Sampled:	3/7/00
D	· ·	Project Number:	TOSCO#5484	Received:	3/7/00
	Dublin, CA 94568			Reported:	3/28/00

Volatile Organic Compounds by EPA Method 8010B/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Blank	0030076-BI	LK2								
Freon 113	3/17/00			ND	ug/l	1.00				
Bromodichloromethane	Ħ			ND .	11	0.500				
Bromoform	IF			ND	II	0.500				
Bromomethane	It			ND	11	1.00				
Carbon tetrachloride	н			ND	P	0.500				
Chlorobenzene	n .			ND	н	0.500				
Chloroethane	**			ND	**	1.00				
2-Chloroethylvinyl ether	16			ND	19	1.00				
Chloroform	Ħ			ND	н	0.500				
Chloromethane	11			ND	**	1.00				
Dibromochloromethane	п			ND	II .	0.500				
1,3-Dichlorobenzene	II			ND	ц	0.500				
1,4-Dichlorobenzene	u.			ND	in .	0.500				
1,2-Dichlorobenzene	n			ND	17	0.500				
1,1-Dichloroethane	11			ND	**	0.500				
1,2-Dichloroethane	Ħ			ND	It	0.500				
1,1-Dichloroethene	н			ND	n	0.500				
cis-1,2-Dichloroethene	11			ND	Ħ	0.500				
trans-1,2-Dichloroethene	п			ND	11	0.500				
1,2-Dichloropropane	tr			ND	п	0.500				
cis-1,3-Dichloropropene	н			ND	R	0.500				
trans-1,3-Dichloropropene	**			ND	19	0.500				
Methylene chloride	11			ND	**	5.00				
1,1,2,2-Tetrachloroethane	n			ND	11	0.500				
Tetrachloroethene	11			ND	**	0.500				
1,1,1-Trichloroethane	11			ND	**	0.500				
1,1,2-Trichloroethane	lt.			ND	п	0.500				
Trichloroethene	11			ND	н	0.500				
Trichlorofluoromethane	н			ND	н	0.500				
Vinyl chloride	17			ND	u,	0.500				
Surrogate: I-Chloro-2-fluorobenzene	v	10.0		10.9	"	70.0-130	109			
I CS	0030076-В	S 1								
LCS Chlorobenzene	3/16/00	10.0		10.4	ug/l	70.0-130	104			
1,1-Dichloroethene	3/10/00	10.0		11.8	11	65.0-135	118			
-	**	10.0		11.0	Iŧ	70.0-130	111			
Trichloroethene Surrogate: 1-Chloro-2-fluorobenzene	<i>II</i>	10.0		10.7	<i>"</i>	70.0-130	107			
1.09	0030076-B	:S2								
LCS Chlorobenzana	3/17/00	10.0		9.89	ug/l	70.0-130	98.9			
Chlorobenzene 1,1-Dichloroethene	3/1 //OU	10.0		9.47	н Ед. г	65.0-135	94.7			

Sequoia Analytical - San Carlos

Project: Tosco

Project Number: TOSCO#5484 Project Manager: Deanna Harding Sampled: 3/7/00

Received: 3/7/00 Reported: 3/28/00

Volatile Organic Compounds by EPA Method 8010B/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	-
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
LCS (continued)	0030076-BS	<u>52</u>								
Trichloroethene	3/17/00	10.0		10.5	ug/l	70.0-130	105			
Surrogate: 1-Chloro-2-fluorobenzene	"	10.0		10.3	,,	70.0-130	103	-		
Matrix Spike	0030076-M	<u>S1</u> L0	003149-01							
Chlorobenzene	3/16/00	20.0	ND	21.2	ug/l	60.0-140	106			
1,1-Dichloroethene	#	20.0	ND	21.7	н	60.0-140	109			
Trichloroethene	rı	20.0	ND	22.5	H	60.0-140	113			
Surrogate: 1-Chloro-2-fluorobenzene	(1	10.0		11.8	rt	70.0-130	118			
Matrix Spike Dup	0030076-M	SD1 L	003149-01							
Chlorobenzene	3/16/00	20.0	ND	20.0	ug/l	60,0-140	100	25.0	5.83	
1,1-Dichloroethene	r,	20.0	ND	20.5	"	60.0-140	103	25.0	5.66	
Trichloroethene	11	20.0	ND	20.2	**	60.0-140	101	25.0	11.2	
Surrogate: 1-Chloro-2-fluorobenzene	"	10.0		12.2	н	70.0-130	122			

Project: Tosco

Project Manager: Deanna Harding

Project Number: TOSCO#5484

Sampled: 3/7/00 Received: 3/7/00

Reported: 3/28/00

Semivolatile Organic Compounds by EPA Method 8270C/Quality Control Sequoia Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes
			10		Erstens -	tion Method: EPA	4 352AD		
Batch: 0030327	Date Prepa		<u>)0</u>		Extrac	tion Method: Era			
Blank	0030327-BI	<u> </u>		NTD		10.0			
Acenaphthene	3/21/00			ND	ug/l	10.0			
Acenaphthylene	11			ND	 II				
Anthracene	HT			ND		10.0			
Benzidine	••			ND	 H	50.0 50.0			
Benzoic acid	**			ND					
Велzo (a) anthracene	11			ND	.,	10.0			
Benzo (b+k) fluoranthene (total)	Ħ			ND	"	10.0			
Benzo (g,h,i) perylene	Ħ			ND)†	10.0			
Benzo (a) pyrene	IF			ND	"	10.0			
Benzyl alcohol	II.			ND		20.0			
Bis(2-chloroethoxy)methane	18			ND	**	10.0			
Bis(2-chloroethyl)ether	rı			ND	н	10.0			
Bis(2-chloroisopropyl)ether	7.0			ND	II	10.0			
Bis(2-ethylhexyl)phthalate	T*			ND	11	10.0			
4-Bromophenyl phenyl ether	0			ND	If	10.0			
Butyl benzyl phthalate	П			ND	**	10.0			
4-Chloroaniline	It			ND	11	20.0			
4-Chloro-3-methylphenol	IF.			ND	17	20.0			
2-Chloronaphthalene	f#			ND	ч	10.0			
2-Chlorophenol	**			ND	11	10.0			
4-Chlorophenyl phenyl ether	11			ND	11	10.0			
Chrysene	ii .			ND	п	10.0			
Dibenz (a,h) anthracene	11			ND	lt.	10.0			
Dibenzofuran	II			ND	11	10.0			
Di-n-butyl phthalate	II .			ND	**	10.0			
1,2-Dichlorobenzene	n			ND	11	10.0			
1,3-Dichlorobenzene	**			ND	10	10.0			
1,4-Dichlorobenzene	11			ND	**	10.0			
3,3'-Dichlorobenzidine	n			ND	11	20.0			
2,4-Dichlorophenol	n			ND	II	10.0			
Diethyl phthalate	II			ND	Iř	10.0			
2,4-Dimethylphenol	lf .			ND	Ħ	10.0			
Dimethyl phthalate	U			ND	**	10.0			
4,6-Dinitro-2-methylphenol	11			ND	77	50.0			
2,4-Dinitrophenol	**			ND	*	50.0			
2,4-Dinitrotoluene	н			ND	11	10.0			
2,6-Dinitrotoluene				ND	11	10.0			
Di-n-octyl phthalate	11			ND	II .	10.0			
1,2-Diphenylhydrazine	O			ND	Ħ	20.0			
Fluoranthene	*			ND	**	10.0			
1 INCI CHILLIANS									

Sequoia Analytical - San Carlos

Project: Tosco
Project Number: TOSCO#5484
Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

Semivolatile Organic Compounds by EPA Method 8270C/Quality Control Sequoia Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit		Notes*
Blank (continued)	<u>0030327-BI</u>	<u>.K1</u>								
Fluorene	3/21/00			ND	ug/l	10.0				
Hexachlorobenzene	ii .			ND		10.0				
Hexachlorobutadiene	It		•	ND	H	10.0				
Hexachlorocyclopentadiene	11			ND	Ħ	10.0				
Hexachloroethane	11 .			ND	tt.	10.0				
Indeno (1,2,3-cd) pyrene	11			ND	If .	10.0				
Isophorone	н			ND	11	10.0				
2-Methylnaphthalene	Ħ			ND	*1	10.0				
2-Methylphenol	**			ND	Ħ	10.0				
4-Methylphenol	**			ND	н	10.0				
Naphthalene	**			ND	**	10.0				
2-Nitroaniline	"			ND	**	50.0				
3-Nitroaniline	11			ND	n	50.0				
4-Nitroaniline	If			ND	н	50.0				
Nitrobenzene	IF			ND	11	10.0				
2-Nitrophenol	11			ND	It	10.0				
4-Nitrophenol	*1			ND	п	50.0				
N-Nitrosodimethylamine	**			ND	11	20.0				
N-Nitrosodiphenylamine	**			ND	*1	10.0				
N-Nitrosodi-n-propylamine	**			ND	*	10.0				
Pentachlorophenol	11			ND	11	50.0				
Phenanthrene	tt			ND	**	10.0				
Phenol	tt			ND	PT	10.0				
Pyrene				ND	H	10.0				
Pyridine	lt .			ND	IF.	10.0				
1,2,4-Trichlorobenzene	II			ND	H	10.0				
2,4,5-Trichlorophenol	ti .			ND	II.	10.0				
2,4,6-Trichlorophenol	11			ND	п	10.0				
Surrogate: 2-Fluorophenol	n,	150		39.2	rt	21.0-100	26.1			
Surrogate: Phenol-d6	n	150		65.9	#	10.0-94.0	43.9			
Surrogate: Nitrobenzene-d5	"	100		74.2	"	35.0-114	74.2			
Surrogate: 2-Fluorobiphenyl	"	100		74.7	#	43.0-116	74.7			
Surrogate: 2,4,6-Tribromophenol	#	150		48.9	H	10.0-123	32.6			
Surrogate: Terphenyl-d14	"	100		100	#	34.0-141	100			
LCS	0030327-BS	_								
Acenaphthene	3/21/00	100		84.4	ug/l	57.7-120	84.4			
4-Chloro-3-methylphenol	IF	150		124	"	50.6-116	82.7			
2-Chlorophenol	11	150		108	If	28.0-111	72.0			
1,4-Dichlorobenzene	11	100		72.8	11	28.8-108	72.8			
2,4-Dinitrotoluene	11	100		100	**	60.2-114	100			

Sequoia Analytical - San Carlos

Project: T

Tosco

Project Number: TOSCO#5484

Project Manager: Deanna Harding

Sampled: 3/7/00

Received: 3/7/00 Reported: 3/28/00

Semivolatile Organic Compounds by EPA Method 8270C/Quality Control Sequoia Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
()				<u>.</u>						
LCS (continued)	0030327-BS	_			_		100			
4-Nitrophenol	3/21/00	150		153	ug/l	24.6-148	102			
N-Nitrosodi-n-propylamine	11	100		92.1	н	29.0-119	92.1			
Pentachlorophenol	D	150		141	11	39.9-131	94.0			
Phenol	19	150		109	If	21.8-117	72.7			
Pyrene	11	100		104	H	52.3-127	104			
1,2,4-Trichlorobenzene	**	100		72.5	H .	23.6-131	72.5			
Surrogate: 2-Fluorophenol	, , ,	150		101	"	21.0-100	67.3			,
Surrogate: Phenol-d6	rr	150		108	n	10.0-94.0	72.0			
Surrogate: Nitrobenzene-d5	"	100		76.4	#	35.0-114	76.4			
Surrogate: 2-Fluorobiphenyl	n	100		83.0	"	43.0-116	83.0			
Surrogate: 2,4,6-Tribromophenol	#	150		148	"	10.0-123	98.7			
Surrogate: Terphenyl-d14	n	100		101	#	34.0-141	101			
LCS Dup	003 <u>0327-B</u>	<u>SD1</u>								
Acenaphthene	3/21/00	100		68.7	ug/l	57.7-120		26.7	20.5	
4-Chloro-3-methylphenol	10	150		99.5	ır	50.6-116		30.3	22.0	
2-Chlorophenol	*1	150		92.1	**	28.0-111		38.8	15.9	
1,4-Dichlorobenzene	R	100		61.8	**	28.8-108		40.7	16.3	
2,4-Dinitrotoluene	*	100		94.0	*1	60.2-114		22.1	6.19	
4-Nitrophenol	11	150		148	Ц	24.6-148		43.7	3.29	
N-Nitrosodi-n-propylamine	n	100		75.2	If	29.0-119		43.9	20.2	
Pentachlorophenol	II	150		136	**	39.9-131		32.9	3.57	
Phenol	R	150		94.3	**	21.8-117	62.9	32.6	14.5	
Pyrene	и	100		100	#1	52.3-127	100	24.6	3.92	
1,2,4-Trichlorobenzene	11	100		60.6	п	23.6-131	60.6	48.0	17.9	
Surrogate: 2-Fluorophenol	11	150		81.7	"	21.0-100	54.5			
Surrogate: Phenol-d6	rr	150		87.4	"	10.0-94.0	<i>58.3</i>			
Surrogate: Nitrobenzene-d5	u	100	1	65.0	"	35.0-114	65.0			•
Surrogate: 2-Fluorobiphenyl	"	100		67.7	n	43.0-116	67.7			
Surrogate: 2,4,6-Tribromophenol	#	150		118	"	10.0-123	<i>78.7</i>			
Surrogate: 2,4,0-1 rioromophenoi Surrogate: Terphenyl-d14	n	100		97.4	"	34.0-141				

1551 industrial Kōagʻ -San Carlos, CA 94070-4111 (650) 232-9600 FAX (650) 232-9612

Gettler-Ryan/Geostrategies 6747 Sierra Court, Suite D Dublin, CA 94568

Note

#

ND

NR

dry

Project: Tosco Project Number: TOSCO#5484 Project Manager: Deanna Harding

Sampled: 3/7/00 Received: 3/7/00 Reported: 3/28/00

Notes and Definitions

1 Chromatogram Pattern: Weathered Gasoline C6-C12 DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit

Not Reported

Sample results reported on a dry weight basis

Recov. Recovery

RPD Relative Percent Difference