

ALCO HAZMAT 94 FEB 14 PM 3: 32

February 10, 1994

Alameda County Health Care Services 80 Swan Way, Room 200 Oakland, CA 94621

RE:

Unocal Service Station #5484 18950 Lake Chabot Road Castro Valley, California

Per the request of the Project Manager, Ms. Tina R. Berry of Unocal Corporation, enclosed please find our report (MPDS-UN5484-01) dated January 10, 1994, for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2321.

Sincerely,

MPDS Services, Inc.

Deanna L. Harding

Technical Assistant

/dlh

Enclosure

cc: Ms. Tina R. Berry

MPDS
SERVICES, INCORPORATED

MPDS-UN5484-01 January 20, 1994

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Quarterly Data Report

Unocal Service Station #5484

18950 Lake Chabot Road Castro Valley, California

Dear Ms. Berry:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated on Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on December 9, 1993. Prior to sampling, the wells were each purged of between 6.5 and 51 gallons of water. Samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflonlined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Tables 2 and 3. The concentrations of TPH as gasoline and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN5484-01 January 20, 1994 Page 2

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services, and to Mr. Lester Feldman of the Regional Water Quality Control Board, San Francisco Bay Region.

If you have any questions regarding this report, please do not hesitate to call at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Joel G. Greger, C.E.G.

Senior Engineering Geologist

License No. EG 1633 Exp. Date 6/30/94

/dlh

Attachments: Tables 1, 2 & 3

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Thomas Berkins, Kaprealian Engineering, Inc.

TABLE 1
SUMMARY OF MONITORING DATA

Well #	Ground Water Elevation (feet)	Depth to Water (feet)◆	Product Thickness (feet)	<u>Sheen</u>	Water Purged (gallons)	Total Well Depth (feet)∳			
	(Moni	tored and Sa	ampled on D	ecember 9	, 1993)				
MW-2	221.94	6.94	0	No	8.5	19.20			
MW - 4	WELL WAS I	VACCESSIBLE							
MW - 5	215.14	9.97	0	No	36	23.85			
MW - 6	231.61	7.43	0	No	51	27.00			
MW-7	220.74	10.65	0	No	6.5	19.56			
	(Monitored and Sampled on September 9, 1993)								
MW2	222.29	6.59	0	No	9				
MW4	217.86	9.91	0	No	29				
MW5	215.99	9.12	0	No	26				
MW6*	232.22	6.82	0		0				
MW7	221.29	10.11	0	No	7				
	(Mc	nitored and	Sampled on	June 9,	1993)				
	222 62	5.85	0	No	10				
MW2	223.62	8.79	0	No	32				
MW4	219.29	8.57	Ö	No	29				
MW5	216.85 233.44	5.94	Ö	No	41				
MW6	223.07	8.59	Ô	No	8				
MW7			J						
	(Mor	nitored and	Sampled on	March 10,	, 1993)				
MW2	224.78	4.69	0	No	11				
MW4	220.84	7.24	0	No	31				
MW5	217.75	7.67	0	No	26				
MW6*	234.06	5.32	0		0				
MW7	223.97	7.69	0	No	9				

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA

Well #	Well Cover Elevation _(feet)**	Well Casing Elevation (feet)***
MW2	229.47	228.88
MW4	228.08	227.77
MW5	225.42	225.11
MW6	239.38	239.04
MW7	231.66	231.39

- The depth to water level and total well depth measurements were taken from the top of the well casing. Prior to September 9, 1993, the water level and total well depth measurements were taken from the top of the well covers.
- * Monitored only.
- ** The elevations of the top of the well covers have surveyed relative to Mean Sea Level (MSL), per the Alameda County Benchmark (elevation = 219.68 MSL).
- *** Relative to MSL.
- -- Sheen determination was not performed.

Note: Monitoring data prior to December 9, 1993, were provided by Kaprealian Engineering, Inc.

TABLE 2
SUMMARY OF LABORATORY ANALYSES
WATER

		TPH as	TPH as			Ethyl-		
<u>Date</u>	Well #	<u>Diesel</u>	<u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	MTBE
SCHOOL NOW, CONTROL OF MARKS	A.C		0.0000000000000000000000000000000000000					
10/00/00	1070		96*	ND	ND	ND	ND	
12/09/93	MW2	WELL WAS			ND	ND	11D	
	MW4		ND	ND	ND	ND	ND	
	MW5	87**		ND	ND	ND	1.7	
	MW6		150	54	4.6	71	5.6	
	MW7	250♦	980	54	4.0	, _	3.0	
9/09/93	MW2	- -	210*	ND	ND	ND	ND	
3,03,33	MW4		ND	ND	ND	ND	ND	
	MW5	58**	ND	ND	ND	ND	ND	
	MW6		ON A SEMI-	ANNUAL B	ASIS			
	MW7	550**	2,600♦♦	160	19	250	120	
			•					
6/09/93	MW2		120*	ND	ND	ND	ND	300
0,00,00	MW4		ND	ND	ND	ND	ND	
	MW5	64	ND	ND	ND	ND	ND	
	MW6		ND	ND	\mathbf{N} D	ND	ND	
	MW7	830**	4,600	430	ND	510	430	
			•					
3/10/93	MW2		110*	ND	ND	ND	ND	350
3, = 0, -0	MW4		ND	ND	ND	ND	ND	
	MW5	69♦	ND	ND	ND	ND	ND	
	MW6		ON A SEMI-	ANNUAL B	ASIS			
	MW7	1,100+	4,400	310	ND	300	330	
		•						
12/10/92	MW2		100*	ND	ND	ND	ND	170
, ,	MW4		ND	ND	ND	ND	\mathbf{N} D	
	MW5	83**	ND	ND	ND	ND	ND	
	MW6	- -	ND	ND	ND	ND	ND	
	MW7	200**	1,200	28	ND	37	13	
						3770	NID	110
9/10/92	MW2		61*	ND	ND	ND	ND	110
	MW4	SAMPLED	ON A SEMI-			NTD	NIT'S	
	MW5	110♦	ND	ND	ND	ND	ND	
	MW6	SAMPLED	ON A SEMI-			140	750	
	MW7	290♦	2,100	160	1.9	140	150	

TABLE 2 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

		TPH as	TPH as			Ethyl-		3 000 000 14 1000
Date	Well #	Diesel	<u>Gasoline</u>	Benzene	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	MTBE
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		. (1986) - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1]\$00;00;00;00;50;000;60;60;000;000;000;000	SSI, JULISES AS SESTER SESTER	uden un en		eracocaec potencial (no. , n un harnor)	
6/18/92	MW2		140*	ND	ND	ND	ND	
	MW4		ND	0.41	0.84	ND	0.55	
	MW5	ND	ND	ND	ND	ND	ND	
	MW6		ND	ND	ND	ND	ND	
	MW7	990♦	5,500	340	4.2	380	410	-
3/20/92	MW2		120	ND	ND	ND	ND	
•, ==, ==	MW4	SAMPLED	ON A SEMI-	ANNUAL B.	ASIS			
	MW5	170	ND	ND	ND	ND	ND	
	MW6	SAMPLED	ON A SEMI-	ANNUAL B	ASIS			
	MW7	3,200	11,000	980	ND	990	1,600	
/ /	1570		7.40	0.66	ND	0.64	1.2	- -
12/19/91	MW2		140	ND	ND	ND	ND	
	MW4		ND	ND	ND	ND	ND	
	MW5		ND		ND	ND	ND	
	MW6		ND	ND	2.4	280	270	- -
	MW7	770	3,900	240	2.4	200	270	
10/10/91	MW5	ND			- -			
0/00/01	MATO		ND	ND	ND	ND	ND	- -
9/20/91	MW2	CAMPLED	ON A SEMI-			ND	112	
	MW4	SAMPLED	ND	a daonna CN	ND	ND	ND	
	MW5	450	ON A SEMI-			ND	IID	
	MW6	SAMPLED		160	0.75	89	130	
	MW7	580	1,400	700	0.75	0.0	130	
5/23/91	MW2		ND	ND	ND	ND	ND	
-,,	MW4		ND	ND	ND	ND	\mathbf{N} D	
	MW5		ND	ND	ND	ND	ND	- -
	MW6		ND	ND	ND	ND	ND	
	MW7	540	3,000	160	1.2	25	120	- <i>-</i>

TABLE 2 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

- * Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- ♦♦ Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: Laboratory analyses data prior to December 9, 1993, were provided by Kaprealian Engineering, Inc.

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

<u>Date</u>	<u>Well #</u>	TOG (mg/L)	bis(2-eth- ylhexyl) phthalate	2-methyl- <u>napthalene</u>	<u>naphthalene</u>	1,2-Dichlo- roethane
						ND
12/09/93	MW5 MW7		ND	ND	15	1.5
9/09/93	MW5 MW7♦	 	 ND	 11	 48	ND 1.5
6/09/93	MW5 MW7◆◆	 	13	 19	 83	ND 1.3
3/10/93	MW5 MW7◆◆◆		ND 16	ND 11	ND 54	ND 1.7
12/10/92	MW7					2.0
9/10/92	MW7			- -		2.3
6/18/92	MW7	ND	··· =		- -	ND
3/20/92	MW7	ND				ND
12/19/91	MW7	ND		- -		3.1
9/20/91	MW7	ND				ND
5/23/91	MW7	ND	- -			3.4

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

- ullet Seven "tentatively identified compounds" were detected by the EPA method 8270 open scan at concentrations ranging 11 $\mu g/L$ to 88 $\mu g/L$. Refer to laboratory analysis sheets for the specific compounds and concentrations.
- Ten "tentatively identified compounds" were detected by the EPA method 8270 open scan at concentrations ranging from 14 μ g/L to 150 μ g/L. Refer to laboratory analysis sheets for the specified compounds and concentrations.
- ♦♦♦ Nine "tentatively identified compounds" were detected by the EPA method 8270 open scan at concentrations ranging from 10 μ g/L to 59 μ g/L. Refer to laboratory analysis sheets for the specific compounds and concentrations.

ND = Non-detectable.

-- Indicates analysis was not performed.

mg/l = Milligrams per liter.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

- Note: All EPA methods 8010 and 8270 compounds were non-detectable, except for the compounds listed.
 - Laboratory analyses data prior to December 9, 1993, were provided by Kaprealian Engineering, Inc.

Base modified from 7.5 minute U.S.G.S. Hayward Quadrangle (photorevised 1980)

O 2000 4000
Approx. scale feet

MPDS
SERVICES, INCORPORATED

UNOCAL SERVICE STATION #5484 18950 LAKE CHABOT ROAD CASTRO VALLEY, CALIFORNIA LOCATION MAP

MPDS
SERVICES, INCORPORATED

UNOCAL SERVICE STATION #5484 18950 LAKE CHABOT ROAD CASTRO VALLEY, CA

2

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian Client Project ID:

Unocal #5484, 18950 Lake Chabot Rd.,

Sample Matrix: Water

ater Cas

oot Rd., Sampled: Castro Valley Received: Dec 9, 1993 Dec 10, 1993

Analysis Method: EPA 5030/8015/8020 First Sample #: 312-0871 Reported:

Dec 28, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample 1.D. 312-0871 MW-2	Sample I.D. 312-0872 MW-5	Sample I.D. 312-0873 MW-6	Sample I.D. 312-0874 MW-7	Sample I.D. Method Blank	
Purgeable Hydrocarbons	50	96	N.D.	150	980		
Benzene	0.5	N.D.	N.D.	N.D.	54		
Toluene	0.5	N.D.	N.D.	N.D.	4.6		
Ethyl Benzene	0.5	N.D.	N.D.	N.D.	71		
Total Xylenes	0.5	N.D.	N.D.	1.7	5.6		
Chromatogram Pat	tern:	Discrete Peak		Gasoline	Gasoline		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0
Date Analyzed:	12/21/93	12/21/93	12/21/93	12/21/93	12/21/93
Instrument Identification:	ML #2				
Surrogate Recovery, %: (QC Limits = 70-130%)	100	95	100	90	96

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager Please Note:

* Discrete Peak refers to an unidentified peak in the MTBE range.

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Attention: Avo Avedissian

Client Project ID:

First Sample #:

Unocal #5484, 18950 Lake Chabot Rd.,

Sample Matrix: Water

Analysis Method:

EPA 3510/3520/8015

Sampled: Received: Castro Valley

Dec 9, 1993 Dec 10, 1993

Reported:

Dec 28, 1993

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

312-0872

Analyte	Reporting Limit μg/L	Sample I.D. 312-0872 MW-5*	Sample I.D. 312-0874 MW-7**	Sample I.D. Method Blank	
Extractable Hydrocarbons	50	87	250		
Chromatogram Pa	ttern:	Diesel and Discrete Peaks	Non-Diesel Mixture (<c14)< td=""><td></td><td></td></c14)<>		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0
Date Extracted:	12/15/93	12/15/93	12/15/93
Date Analyzed:	12/17/93	12/17/93	12/16/93
Instrument Identification:	НР-ЗВ	HP-3A	HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

5. Kemp Project Manager Please Note:

- * Discrete Peaks refers to unidentified peaks in the EPA 8270 range.
- ** Non-Diesel Mixture < C14 is probably Gasoline.

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedissian

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

Unocal #5484, 18950 Lake Chabot Rd., Water, MW-5 Castro Valley EPA 5030/8010

Sampled: Received: Analyzed: Dec 28, 1993

Dec 9, 1993 Dec 10, 1993 Dec 22, 1993

312-0872 Reported:

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit μg/L		Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50	***************************************	N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50		N.D.
Chloroethane	1.0		N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	0.50	***************************************	N.D.
Chloromethane	1.0	***************************************	N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50	***************************************	N.D.
1,4-Dichlorobenzene	0.50	***************************************	N.D.
1,2-Dichlorobenzene	0.50	***************************************	N.D.
1,1-Dichloroethane	0.50	***************************************	N.D.
1,2-Dichloroethane	0.50	•••••	N.D.
1,1-Dichloroethene	0.50	*	N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50	•••••	N.D.
cis-1,3-Dichloropropene	0.50	***************************************	N.D.
trans-1,3-Dichloropropene	0.50	***************************************	N.D.
Methylene chloride	5.0	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.50	***************************************	N.D.
Tetrachloroethene	0.50		N.D.
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50	***************************************	N.D.
Trichloroethene	0.50	***************************************	N.D.
Trichlorofluoromethane	0.50		N.D.
Vinyl chloride	1.0		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

MPDS Services 2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian Client Project ID: Sample Descript:

Lab Number:

Unocal #5484, 18950 Lake Chabot Rd., Water, MW-7

Analysis Method: EPA 5030/8010 312-0874

Castro Valley

Sampled: Dec 9, 1993 Received: Dec 10, 1993

Analyzed: Dec 22, 1993 Reported: Dec 28, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results μg/L
Bromodichloromethane	0.50	***************************************	N.D.
Bromoform	0.50	***************************************	N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50	***************************************	N.D.
Chlorobenzene	0.50	*,	N.D.
Chloroethane	1.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0		N.D.
Chloroform	0.50		N.D.
Chloromethane	1.0	•••••	N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50	***********	N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50		N.D.
1,1-Dichloroethane	0.50	***************************************	N.D.
1,2-Dichloroethane	0.50	******************************	and the control of th
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50	,	N.D.
cis-1,3-Dichloropropene	0.50	191111111111111111111111111111111111111	N.D.
trans-1,3-Dichloropropene	0.50	******************************	N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50	***************************************	N.D.
Tetrachloroethene	0.50	,	N.D.
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50		N.D.
Trichloroethene	0.50		N.D.
Trichlorofluoromethane	0.50		N.D.
Vinyl chloride	1.0	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedissian

Client Project ID:

Lab Number:

Unocal #5484, 18950 Lake Chabot Rd.,

Sample Descript: Water, MW-7 Analysis Method: EPA 8270 312-0874

Castro Valley

Dec 9, 1993 Sampled: Dec 10, 1993 Received:

Extracted: Dec 15, 1993 Analyzed: Dec 23, 1993 Reported: Dec 28, 1993

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/L		Sample Results µg/L
Acenaphthene	2.0	41145141141141414141414141	N.D.
Acenaphthylene	2.0	*******	N.D.
Aniline	2.0		N.D.
Anthracene	2.0	*******************************	N.D.
Benzidine	50		N.D.
Benzoic Acid	10		N.D.
Benzo(a)anthracene	2.0		N.D.
Benzo(b)fluoranthene	2.0	**********	N.D.
Benzo(k)fluoranthene	2.0		N.D.
Benzo(g,h,i)perylene	2.0		N.D.
Benzo(a)pyrene	2.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzyl alcohol	2.0	4#34***********************************	N.D.
Bis(2-chloroethoxy)methane	2.0	***************************************	N.D.
Bis(2-chloroethyl)ether	2.0		N.D.
Bis(2-chloroisopropyl)ether	2.0	4**************************************	N.D.
Bis(2-ethylhexyl)phthalate	10		N.D.
4-Bromophenyl phenyl ether	2.0	1454454451484485148118514844877777	N.D.
Butyl benzyl phthalate	2.0	144444144144144	N.D.
4-Chloroaniline	2.0		N.D.
2-Chloronaphthalene	2.0		N.D.
4-Chloro-3-methylphenol	2.0	,	N.D.
2-Chlorophenol	2.0		N.D.
4-Chlorophenyl phenyl ether	2.0		N.D.
Chrysene	2.0		N.D.
Dibenz(a,h)anthracene	2.0		N.D.
Dibenzofuran	2.0		N.D.
Di-N-butyl phthalate	10		N.D.
1,3-Dichlorobenzene	2.0		N.D.
1,4-Dichlorobenzene	2.0		N.D.
1,2-Dichlorobenzene	2.0		N.D.
3,3-Dichlorobenzidine	10		N.D.
2,4-Dichlorophenol	2.0		N.D.
Diethyl phthalate	2.0		N.D.
2,4-Dimethylphenol	2.0		N.D.
Dimethyl phthalate	2.0		N.D.
4,6-Dinitro-2-methylphenol	10		N.D.
2,4-Dinitrophenol	10		N.D.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedissian

Client Project ID: Sample Descript: Analysis Method: Lab Number:

Unocal #5484, 18950 Lake Chabot Rd., Water, MW-7

EPA 8270 312-0874

Castro Valley

Sampled: Dec 9, 1993 Received: Dec 10, 1993 Extracted: Dec 15, 1993

Analyzed: Dec 23, 1993 Reported: Dec 28, 1993

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/L		Sample Results μg/L
2,4-Dinitrotoluene	2.0	***************************************	N.D.
2,6-Dinitrotoluene	2.0		N.D.
Di-N-octyl phthalate	2.0		N.D.
Fluoranthene	2.0	***************************************	N.D.
Fluorene	2.0	***************************************	N.D.
Hexachlorobenzene	2.0	********	N.D.
Hexachlorobutadiene.	2.0	***************************************	N.D.
Hexachlorocyclopentadiene	2.0		N.D.
Hexachloroethane	2.0		N.D.
Indeno(1,2,3-cd)pyrene	2.0	**************************	N.D.
Isophorone	2.0	******************************	N.D.
2-Methylnaphthalene	2.0		N.D.
2-Methylphenol	2.0		N.D.
4-Methylphenol	2.0		N.D.
Naphthalene	2.0	******************	. 15
2-Nitroaniline	10		N.D.
3-Nitroaniline	10		N.D.
4-Nitroaniline	10	,	N.D.
Nitrobenzene	2.0	,_,,_,	N.D.
2-Nitrophenol	2.0	***************************************	N.D.
4-Nitrophenol	10		N.D.
N-Nitrosodiphenylamine	2.0		N.D.
N-Nitroso-di-N-propylamine	2.0	,	N.D.
Pentachlorophenol	10	,.,,.,,,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Phenanthrene	2.0		N.D.
Phenol	2.0		N.D.
Pyrene	2.0	***************************************	N.D.
1,2,4-Trichlorobenzene	2.0	***************************************	N.D.
2,4,5-Trichlorophenol	10	***************************************	N.D.
2,4,6-Trichlorophenol	2.0	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Afan B. Kemp Project Manager

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian Client Project ID:

Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

Matrix: Liq

QC Sample Group: 3120871-74

Reported:

Dec 28, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Taluene	Ethyl	Xylenes	Diesel	
			Benzene			
Mathead	EDA coro	EDA 0000	EDA 0000	EDA 0000	EPA 8015	·
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020		
Analyst:	J. Dinsay	J. Dinsay	J. Dinsay	J. Dinsay	K, Wimer	
MS/MSD						
Batch#:	3120982	3120982	3120982	3120982	BLK121593	
Date Prepared:	12/21/93	12/21/93	12/21/93	12/21/93	12/15/93	
Date Analyzed:	12/21/93	12/21/93	12/21/93	12/21/93	12/16/93	
Instrument I.D.#:	ML #2	ML #2	ML #2	ML #2	HP-3B	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	$60\mu\mathrm{g/L}$	300 μg/L	
Matrix Spike						
% Recovery:	107	114	130	130	95	
Matrix Spike Duplicate % Recovery:	116	124	146	140	89	
Relative % Difference:	8.1	8.4	12 12	7.4	6.5	
LCS Batch#:	LCS122193	LCS122193	LCS122193	LCS122193	BLK121593	
Date Prepared:	12/21/93	12/21/93	12/21/93	12/21/93	12/15/93	
Date Analyzed:	12/21/93	12/21/93	12/21/93	12/21/93	12/16/93	·
Instrument I.D.#:	ML #2	ML #2	ML #2	ML #2	HP-3B	
LCS % Recovery:	103	112	130	125	95	

72-130

SEQUOIA ANALYTICAL

% Recovery Control Limits:

Alan B. Kemp Project Manager Please Note:

71-133

72-128

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

71-120

28-122

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Attention: Avo Avedissian

Client Project ID:

Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

Matrix:

QC Sample Group: 3120872 & 74

Reported:

Dec 28, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro-	Trichloro-	Chloro-	· · · · · · · · · · · · · · · · · · ·
	ethene	ethene	benzene	
Method:	EPA 8010	EPA 8010	EPA 8010	
Analyst:	K. Nill	K. Nill	K. Nill	
MS/MSD				
Batch#:	3120907	3120907	3120907	
Date Prepared:	12/22/93	12/22/93	12/22/93	
Date Analyzed:	12/22/93	12/22/93	12/22/93	
Instrument I.D.#:	HP-7	HP-7	HP-7	
Conc. Spiked:	10 μg/L	10 μg/L	10 µg/L	
Matrix Spike				
% Recovery:	147	100	97	
Matrix Spike				
Duplicate %				
Recovery:	140	103	93	
Relative %				
Difference:	4.9	3.0	4.2	

LCS Batch#:	LCS122293	LCS122293	LC\$122293	
Date Prepared:	12/22/93	12/22/93	12/22/93	
Date Analyzed:	12/22/93	12/22/93	12/22/93	
Instrument I.D.#:	HP-7	HP-7	HP-7	
LCS %				
Recovery:	114	86	90	
% Recovery				
Control Limits:	28-167	35-146	38-150	

SEQUOIA ANALYTICAL

Alan B Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID: Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

Matrix: Liqu

Attention: Avo Avedissian QC Sample Group: 312-0874 Reported: Dec 28, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	5 1 1	A C2-1	61.(1)	BLAP D	404T'	4.00-1	
ANALTIC	Phenol	2-Chlorophenol	1,4-Dichloro-		1,2,4-Trichloro-		
			benzene	N-propylamine	benzene	Methylphenol	
Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Analyst:	S. Le	S. Le	S. Le	S. Le	S. Le	S. Le	
MS/MSD							
Batch#:	BLK121593	BLK121593	BLK121593	BLK121593	BLK121593	BLK121593	
Date Prepared:	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	
Date Analyzed:	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	
Instrument I.D.#:	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	
Conc. Spiked:	200 μg/L	200 μg/L	100 μg/L	100 μg/L	100 μg/L	200 μg/L	
- Committee of the comm	p.g, -			.55 /5/ -	. + + - 3/ -	,,	
Matrix Spike							
% Recovery:	76	82	82	80	78	67	
Market - Outline							
Matrix Spike							
Duplicate %							
Recovery:	72	77	76	74	76	63	
Relative %							
Difference:	5.4	6.3	7.6	7.8	2.6	6.2	

LOC Batab #s	100					. ==	
LCS Batch#:	LCS121593	LCS121593	LCS121593	LCS121593	LCS121593	LCS121593	
Date Prepared:	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	
Date Analyzed:	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	
Instrument Í.D.#:	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	
1.00 %							
LCS %							
Recovery:	76	82	82	80	78	67	
% Recovery							· · · · · · · · · · · · · · · · · · ·
Control Limits:	12-89	27-123	36-97	41-116	39-98	23-97	

SEQUOIA ANALYTICAL

Alan Batemp Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian Client Project ID:

Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

ıtrix: Ligi

QC Sample Group: 312-0874

Reported:

Dec 28, 1993

QUALITY CONTROL DATA REPORT

						<u> </u>
ANALYTE	Acenaphthene	4-Nitrophenol	2,4-Dinitro-	Pentachloro-	Pyrene	
			toluene	phenol		
Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Analyst:	S. Le	S. Le	S. Le	S. Le	S. Le	
MS/MSD						
Batch#:	BLK121593	BLK121593	BLK121593	BLK121593	BLK121593	
<i>D</i> 4.011,// .	001121000	DER 12 1090	DER 121090	DEN 12 1090	DCI(121030	
Date Prepared:	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	
Date Analyzed:	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	
Instrument I.D.#:	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	
Conc. Spiked:	100 μg/L	200 μg/L	100 μg/L	200 μg/L	100 μg/L	
Matrix Spike						
% Recovery:	80	69	62	53	88	
70 11000 Vol y .	00	05	QZ	4 5	60	
Matrix Spike						
Duplicate %						
Recovery:	78	64	58	47	78	
Relative %						
Difference:	2.5	7.5	6.7	12	12	
**************************************	****					
LCS Batch#:	LCS121593	LCS121593	LCS121593	LCS121593	LCS121593	
,, -		200 12 1000	200.2.000		_50.2.000	
Date Prepared:	12/15/93	12/15/93	12/15/93	12/15/93	12/15/93	
Date Analyzed:	12/16/93	12/16/93	12/16/93	12/16/93	12/16/93	
Instrument I.D.#:	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	GC/MS 1	
LCS %						
Recovery:	80	69	62	53	88	
% Recovery			· · · · · · · · · · · · · · · · · · ·			-
Control Limits:	46-118	10-80	24-96	9-103	26-127	

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Client Project ID: Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian

QC Sample Group: 3120872 & 874

Reported: Dec 28, 1993

QUALITY CONTROL DATA REPORT

SURROGATE

Method: Analyst: EPA 8015

EPA 8015 K. Wimer EPA 8015

Reporting Units:

K. Wimer μg/L

μg/L.

K. Wimer μg/L

Date Analyzed: Sample #: Dec 17, 1993 312-0872 Dec 17, 1993

Dec 16, 1993

312-0874

Method Blank

Surrogate

% Recovery:

104

90

103

SEQUOIA ANALYTICAL

Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

3120871.MPD <11>

Client Project ID: Unocal #5484, 18950 Lake Chabot Rd., Castro Valley

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedissian

QC Sample Group: 3120872 & 874

Reported: Dec 28, 1993

QUALITY CONTROL DATA REPORT

SURROGATE

Method: Analyst:

EPA 8010

K.Nili μ g/L EPA 8010

K.Nill $\mu g/L$

K.Nill μg/L

Date Analyzed: Sample #:

Reporting Units:

Dec 22, 1993 312-0872

Dec 22, 1993 312-0874

Dec 22, 1993 Method Blank

EPA 8010

Surrogate #1

% Recovery:

64

66

50

Surrogate #2

% Recovery:

99

95

101

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

MPDS

Services, Inc.

CHAIN OF CUSTODY

	runn Around Time: Requial		AHALYSES REQUESTED						SITE NAME & ADDRESS					7,,	ER JOE		
					0/	70	OHO	ر ال ال	chabotRd.	ake Chabot R							HESSTH AC
	REHARKS	_			108	82	0/2/	HQ!	SAMPLING LOCATION	NO. Of CONT.	соне	GRAB	UATE!	soil	TIME	DATE	SAHPLE ID NO.
	3120871 F	-	ļ	ļ				J	m. wells	2		J	J			12/9/93	MW-2
1-13 1-13	0872	_	<u> </u>		✓		√	J	3	5		1	J			11	mw-5
N. E	0873	_		ļ		ļ	ļ 	1	"	2		1	J			11	MW-6
	0 0819	-	-	<u> </u>	√ 	√ ——	✓ ——	J	. "	6		1	1			"	NW-7
		_	-					-		<u> </u>		<u> </u>					
		_	-			-		-		-	<u> </u>		<u> </u>				
		_	_		-	-	ļ	-		-	-	-	-	-	ļ		
		_	_		_	_		_		-	-	_	-	<u> </u>		<u> </u>	
ice?	·	ed for a rigerate d for ar iate cor	n refr	remain	is: II sang nuples YES y samp	analys Have a Will s Did an	tor 1. 2. 3.		ved by (Signature) Wed by: (Signature) Ved by: (Signature) Linal Landle	Receli Recel	15	9 3/ Ime - /9 Ime 3:30	Date/I - 10- Date/I 2 / /3 Pate/I Date/I	12	ignature)	d by: (s	et Inquishe
n Si	the laboratory acception matysis been stored in duntil analyzed? matysis have head spaces at a iners and properly parts.	ed for a rigerate d for ar iate cor	n refr	remaid tes remaid	ing MU is: it! sam omples y sam samples	followanalys llave B	The for 1. 2. 3.		ved by (Signature) Wed by: (Signature) Ived by: (Signature)	Receil Receil	15	ime 9.3/ Ime 2.30	Date/I - 10 - Date/I / 3 Pate/I / 3	12	ignature)	d by: (S	el inquishe

2401 Stamwell Drive, Suite 400 Concord, California 9 1520 Tel: 510 602.5100 - Eux: 510 647 0302