#### RECEIVED

4:06 pm, Mar 21, 2011 Alameda County Environmental Health



ENVIRONMENTAL ENGINEERING, INC. 6620 Owens Drive, Suite A • Pleasanton, CA 94588 TEL (925)734-6400 • FAX (925)734-6401 WWW.Somaenv.com

March 11, 2011

Mr. Paresh C. Khatri Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Fuel Leak Case #RO0000346 Site Address: 3519 Castro Valley Boulevard, Castro Valley, CA

Dear Mr. Khatri:

SOMA's "Feasibility Study/Corrective Action Plan and Proposed Pilot Testing" report for the subject property has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. If you have any questions or comments, please call me at (925) 734-6400.

Sincerely

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

No. CO42928 Exp. 3-31-12 Crvil OF CALIFOR

Enclosure

cc: Mr. Azim Shakoori w/enclosure Mr. Matt Herrick w/Broadbent & Associates, Inc. w/enclosure

# Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

3519 Castro Valley Boulevard Castro Valley, California

March 11, 2011

Project 2762

**Prepared for** 

Mr. Mirazim Shakoori 3519 Castro Valley Boulevard Castro Valley, California



# PERJURY STATEMENT

Site Location: 3519 Castro Valley Boulevard, Castro Valley, CA

"I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge".

Mirazim Shakoori 4313 Mansfield Drive Danville, California 94506 Responsible Party

# CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf Mr. Mirazim Shakoori, for property located at 3519 Castro Valley Boulevard, Castro Valley, California. This report was prepared in response to January 13, 2011 correspondence from Alameda County Environmental Health Services, Environmental Protection Division.

Mansour Sepehr, PhD, PE Principal Hydrogeologist



Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

# TABLE OF CONTENTS

| CERTIFICATION                                                           | i     |
|-------------------------------------------------------------------------|-------|
| TABLE OF CONTENTS                                                       | ii    |
| LIST OF FIGURES                                                         | . iii |
| LIST OF TABLES                                                          | V     |
| LIST OF APPENDICES                                                      | V     |
| 1. INTRODUCTION                                                         |       |
| 1.1 Overview                                                            |       |
| 1.2 Site Location and Description                                       |       |
| 2. UPDATED SITE CONCEPTUAL MODEL                                        |       |
| 2.1 Regional Geology and Hydrogeology                                   |       |
| 2.2 Site Geology and Hydrogeology                                       |       |
| 2.3 Beneficial Uses of Groundwater                                      |       |
| 2.4 Identification of Chemicals of Potential Concern                    |       |
| 2.5 Nearby Release Sites                                                |       |
| 2.6 Remedial Goals and Risk Evaluation                                  |       |
| 2.7 Extent of Soil and Groundwater Contamination                        |       |
| 2.7 Extent of Soli and Groundwater Contamination                        |       |
|                                                                         |       |
| 2.7.2 Lateral and Vertical Extent of Contamination in Groundwater       |       |
| 2.8 Plume Behavior and Stability                                        |       |
| 2.9 Contaminant Mass Evaluation                                         |       |
| 2.9.1 Mass Within Saturated Thickness of Shallow and Semi-Confin        | ed    |
| WBZs 18                                                                 |       |
| 2.9.2 Mass in Soil above the Shallow WBZ                                |       |
| 2.10 Overview of COCs Distribution                                      |       |
| 2.11 Identification of Exposure Pathways and Potential Receptors        |       |
| 3. FEASIBILITY STUDY AND CORRECTIVE ACTION PLAN                         |       |
| 3.1 Remediation Target Zones                                            |       |
| 3.2 Evaluation of No Action Alternative and Natural Attenuation         | 26    |
| 3.3 Evident Data Gaps for Selecting a Corrective Action for the Site    |       |
| 3.4 Evaluation of Appropriate Remedial Alternatives                     | 27    |
| 3.5 Evaluated Technologies                                              | 28    |
| 3.5.1 Soil Excavation and Off-Site Disposal                             | 29    |
| 3.5.2 Soil Vapor Extraction                                             |       |
| 3.5.3 Multi-Phase Extraction                                            | 30    |
| 3.5.4 Groundwater Extraction and Treatment                              | 31    |
| 3.5.5 Air Sparging                                                      |       |
| 3.5.6 Enhanced Aerobic Bioremediation and Chemical Oxidation            | 33    |
| 4. PROPOSED PILOT TESTING                                               |       |
| 4.1 Test Preparation, Notifications, and Health Safety Plan Preparation |       |
| 4.2 Proposed Installation of Observation Wells for MPE Pilot Testing    |       |
| 4.2.1 Development and Survey                                            |       |
| 4.2.2 Laboratory Analyses                                               |       |
| 4.2.3 Waste Collection, Storage and Disposal                            |       |
| 4.3 MPE Pilot Testing                                                   |       |
|                                                                         | 51    |

| 4.3.1   | Pilot Test Objectives                                  | 37 |
|---------|--------------------------------------------------------|----|
| 4.3.2   | Pilot Test Duration                                    |    |
| 4.3.3   | Pilot Test Configuration                               | 39 |
| 4.3.4   | Pertinent Test Equipment                               |    |
| 4.3.5   | Pilot Test Monitoring Methods                          | 41 |
| 4.3.6   | Proposed Baseline, Test, and Post-Test Data Collection | 42 |
| 4.3.7   | Pilot Testing Start-up and Operation                   | 42 |
| 4.3.8   | Laboratory Sample Analysis                             | 44 |
| 4.3.9   | Effluent Treatment Provisions                          |    |
| 4.3.10  | Projected Schedule                                     | 45 |
| 4.4 Ai  | r Sparging Pilot Testing                               |    |
|         | AS Pilot Testing Summary                               |    |
| 4.4.2   | AS Test Location and Equipment                         | 46 |
| 4.5 In  | jection Pilot Test                                     | 47 |
| 4.6 R   | eport Preparation                                      | 48 |
| 5. CONC | LUSIONS AND RECOMMENDATIONS                            | 50 |
| 6. REFE | RENCES                                                 | 52 |
|         |                                                        |    |

# LIST OF FIGURES

- Figure 1: Site Vicinity Map
- Figure 2: Site map showing locations of existing monitoring wells, decommissioned wells, offsite temporary well boreholes, monitoring wells installed by SOMA, and monitoring wells located at neighboring service station.
- Figure 3: Updated SCM Flow Chart
- Figure 4: Site Map Showing the Locations of Geological Cross-Sections
- Figure 5: Geologic Cross-Section A-A'
- Figure 6: Geologic Cross-Section B-B'
- Figure 7: Geologic Cross-Section B-A'
- Figure 8: Groundwater Elevation Map Shallow WBZ
- Figure 9: Groundwater Elevation Map Semi-Confined WBZ
- Figure 10: Zoning Map
- Figure 11: Contour Map Showing TPH-g Concentrations in Soil from 4 to 12 Feet bgs
- Figure 11a: TPH-g Concentrations in Soil vs. Depth
- Figure 12: Contour Map Showing TPH-g Concentrations in Soil from 15 to 17 Feet bgs

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

| Figure 13:  | Map of TPH-g, Benzene, and TBA Concentrations in Shallow WBZ Wells, February 14, 2011                |
|-------------|------------------------------------------------------------------------------------------------------|
| Figure 14:  | Map of MtBE Concentrations in Shallow WBZ Wells, February 14, 2011                                   |
| Figure 15:  | Contour Map of TPH-g Concentrations in Semi-Confined WBZ Wells, February 14, 2011                    |
| Figure 16:  | Map of Benzene, MtBE and TBA Concentrations in Semi-Confined WBZ Wells, February 14, 2011            |
| Figure 17:  | MtBE Concentrations vs. Distance from Former USTs                                                    |
| Figure 18:  | MtBE Concentrations vs. Distance along Southern Edge of<br>Property                                  |
| Figure 19:  | TBA Concentrations vs. Distance from Former USTs                                                     |
| Figure 20:  | TPH-g Concentrations vs. Distance along Southern Edge of<br>Property                                 |
| Figure 21:  | TBA Concentrations vs. Distance along Southern Edge of Property                                      |
| Figure 22:  | Contaminant and Groundwater Elevation Trends in Well ESE-1 (ESE-1R)                                  |
| Figure 23:  | Contaminant and Groundwater Elevation Trends in Well ESE-2 (ESE-2R)                                  |
| Figure 24:  | Contaminant and Groundwater Elevation Trends in Well ESE-5 (ESE-5R)                                  |
| Figure 25:  | Contaminant and Groundwater Elevation Trends in Well SOMA-1                                          |
| Figure 26:  | Contaminant and Groundwater Elevation Trends in Well SOMA-5                                          |
| Figure 27:  | Contaminant and Groundwater Elevation Trends in Well SOMA-7                                          |
| Figure 28:  | Sensitive Receptor Survey Map Based on the Data Obtained from the Alameda County Public Works Agency |
| Figure 28A: | Sensitive Receptor Survey Map Based on the Data Obtained from the Department of Water Resources      |
| Figure 29:  | Map Showing Locations of Underground Utilities                                                       |
| Figure 30:  | Map Showing Locations of Other Relevant Sensitive Receptors                                          |
| Figure 31:  | Map Showing Locations of Proposed Observation and Injection Points                                   |
| Figure 32:  | Typical MPE Pilot Testing Layout                                                                     |
| Figure 33:  | Typical Air Sparging Pilot Test Schematic                                                            |

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

# LIST OF TABLES

- Table 1: Historical Soil Analytical Data
- Table 2:
   Historical Grab Groundwater Analytical Data
- Table 3:Historical Groundwater Elevations and Analytical Data: TPH-g,<br/>BTEX, MtBE
- Table 4:Historical Groundwater Analytical Data Gasoline Oxygenates and<br/>Lead Scavengers
- Table 5:Degradation Rates Evaluation (First-Order Attenuation Rate<br/>Constants)
- Table 6:
   Contaminant Mass Evaluation
- Table 7:
   Remedial Approaches Pre-Screening

# LIST OF APPENDICES

- Appendix A: Site History and Previous Activities
- Appendix B: Boring Logs
- Appendix C: Concentration Trends
- Appendix D: Mass Calculation Supporting Documentation
- Appendix E: Pilot Testing Related Documentation and General Field Procedures

# 1. INTRODUCTION

#### 1.1 Overview

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Mr. Mirazim Shakoori, for property located at 3519 Castro Valley Boulevard, Castro Valley, California. The report was prepared in compliance with Alameda County Environmental Health Services (ACEHS) Environmental Protection Division correspondence dated January 13, 2011.

New and reconstructed site wells have been sampled at least twice and concentrations of contaminants in the Shallow water-bearing zone (WBZ) have shown no significant changes. Specifically, benzene in the Shallow WBZ has been detected as high as 2,400 µg/L in a groundwater sample from SOMA-5 during the Fourth Quarter 2010 groundwater monitoring (GWM) event. Therefore, SOMA recommended preparation of a corrective action plan. ACEHS concurred with the proposed scope of work and requested preparation of Feasibility Study/Corrective Action Plan (FS/CAP) prepared in accordance with Title 23, California Code of Regulations, Section 2725.

According to above regulations and ACEHS correspondence, the FS/CAP must include:

- 1. Concise background of soil and groundwater investigations performed in connection with this case and an assessment of the residual impacts of the chemicals of concern (COCs) for the site and surrounding area where the unauthorized release has migrated or may migrate.
- 2. Detailed description of site lithology, including soil permeability, contamination cleanup levels and cleanup goals (in accordance with the San Francisco Regional Water Quality Control Board Basin Plan and appropriate ESL guidance for all COCs and for the appropriate groundwater designation) including the timeframe to achieve those cleanup goals, in accordance with 23 CCR Sections 2725, 2726, and 2727.
- 3. At least three viable alternatives for remedying or mitigating actual or potential adverse effects of the unauthorized release(s) in addition to the "no action" and "monitored natural attenuation" remedial alternatives. Each alternative shall be evaluated for cost effectiveness and the most cost-effective corrective action should be proposed.

#### **1.2 Site Location and Description**

The site is located on the corner of Redwood Road and Castro Valley Boulevard (Figure 1). Prior to 1989, the site was a Mobil gasoline service station. In 1989, British Petroleum (BP) purchased and operated the station until ownership was transferred to Mr. Mirazim Shakoori in 1993. The station was operated under the

Chevron brand until recently, and now operates as a Shell gasoline service station. Site features, including former and current USTs and former dispenser island, are shown in Figure 2. A concise background of soil and groundwater investigations performed in connection with this case and an assessment of the residual impacts of the chemicals of concern (COCs) for the site and the surrounding area are summarized in Appendix A.

# 2. UPDATED SITE CONCEPTUAL MODEL

The following summarizes historical site findings and interprets all data obtained to date to increase understanding of stability, extent, and impact of the contamination on public health and the environment. A site conceptual model (SCM) has been updated utilizing the most current site assessment and groundwater monitoring data. Figure 3 presents an updated flow chart for the SCM.

The objectives of this SCM are to:

- 1. Provide background for soil and groundwater investigations and evaluate the nature, and lateral and vertical extent of contamination, and its residual impacts
- 2. Provide a detailed description of site lithology, extent of soil and groundwater contamination, potential sensitive receptors, cleanup levels and cleanup goals
- 3. Identify potential human and environmental receptors that may be impacted by contamination associated with the site
- 4. Draw reasonable conclusions regarding the source, pathways, and receptor.
- 5. Evaluate risk to human health, safety, and the environment

# 2.1 Regional Geology and Hydrogeology

The site is located in the Coast Range Geomorphic Province, on the eastern side of San Francisco Bay, approximately 1 mile west of the Hayward Fault. The U.S. Geologic Survey (USGS) mapped the site as weakly consolidated, slightly weathered, poorly sorted, irregular interbedded clay, silt, sand, and gravel. In addition, in developed urban areas such as the Bay Area, earthwork construction often involves emplacement of artificial fill derived from nearby cuts or quarries; quite often, artificial fill is emplaced over native earth materials to provide level building pads and base rock for roadways.

Per ACEHS correspondence in 1994, the site is located in the Castro Valley Basin, an isolated structural basin surrounded on the west, north, and east by folded and faulted uplands comprised of Cretaceous sandstone, shale, and conglomerates of marine origin. The valley is bounded on the west by active traces of the Hayward fault. Sediments collected in the valley are mostly of fluvial origin and relatively thin (<100 feet thick). Based on overall structure and topography of the basin in which Castro Valley is located, heterogeneity of sediments (sands, silts, and clays), depth at which groundwater is first encountered and where it stabilizes, and past evidence at this and nearby sites, it is reasonable to conclude that groundwater may be present under confined or semi-confined conditions in the vicinity of the site.

#### 2.2 Site Geology and Hydrogeology

The site is underlaid with interbedded silty clay, sandy silt/silty sand, clayey sand, and clayey silt. Locations of geologic cross-sections are shown in Figure 4. As shown in cross sections A-A', B-B', and B-A' (Figures 5, 6, and 7), an unconsolidated sequence of permeable and relatively impermeable sediments underlies the site. Borehole logs for TWB-1 through TWB-5 and SOMA-4 demonstrate that these unconsolidated sequences continue off-site to the south, with no obvious changes in lithology. Groundwater monitoring wells have been installed at the site to monitor the encountered Shallow and the Semi-Confined WBZs.

The following wells are screened within the Shallow WBZ: SOMA-2, SOMA-3, SOMA-5, SOMA-7 and SOMA-8. Table below summarizes the well construction details.

| Well ID | Total Depth<br>(feet) | Screen<br>Interval (feet<br>bgs) |
|---------|-----------------------|----------------------------------|
| SOMA-2  | 15                    | 10 to 15                         |
| SOMA-3  | 15                    | 10 to 15                         |
| SOMA-5  | 15                    | 5 to 15                          |
| SOMA-7  | 15                    | 5 to 15                          |
| SOMA-8  | 15                    | 5 to 15                          |

The following wells are screened within the Semi-Confined WBZ: ESE-1R, ESE-2R, ESE-5R, MW-6R, MW-7R, SOMA-1, and SOMA-2. The table below summarizes the well construction details.

| Well ID | Previous TD<br>(feet) | Previous<br>Screen<br>Interval (feet<br>bgs) | Total<br>Depth<br>(feet) | Screen<br>Interval<br>(feet<br>bgs) |
|---------|-----------------------|----------------------------------------------|--------------------------|-------------------------------------|
| ESE-1R  | 30                    | 10 to 30                                     | 25                       | 18 to 25                            |
| ESE-2R  | 30                    | 10 to 30                                     | 28                       | 22 to 28                            |
| ESE-5R  | 24                    | 9 to 24                                      | 24                       | 18 to 24                            |

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

| MW-6R  | 30 | 18 to 30 | 28 | 22 to 28 |
|--------|----|----------|----|----------|
| MW-7R  | 30 | 18 to 30 | 30 | 24 to 30 |
| SOMA-1 | NA | NA       | 30 | 22 to 30 |
| SOMA-4 | NA | NA       | 23 | 16 to 23 |

Depth to the first-encountered groundwater at the site has been recorded at approximately 12 feet below ground surface (bgs) in the Shallow WBZ (when encountered) and between 18 and 31 feet bgs in the Semi-Confined WBZ, with groundwater later stabilizing to between 8.39 and 10.6 feet bgs (Shallow WBZ) and to between 6.5 and 11.50 feet bgs (Semi-Confined WBZ, except in DP-4 and DP-6, which stabilized only to 28 feet bgs and 19.79 feet bgs, respectively). During monitoring events, depth to groundwater in the Shallow WBZ ranged between 7.63 and 12.02, and between 2.36 and 12.02 feet bgs in the Semi-Confined WBZ. Sometimes the Shallow WBZ was not encountered during drilling, suggesting an element of discontinuity for that zone. For example, borings SB-6 (SOMA-6) and SB-9 (SOMA-9) were left open for 7 days but no water accumulated in these boreholes, suggesting that the Shallow WBZ is discontinuous in their vicinity.

The Shallow WBZ is composed of silty sand, sand, and clayey sand. Figure 4 shows the location of geologic cross-sections, and Figures 5 through 7 illustrate geologic cross-sections A-A', B-B' and B-A'. Semi-Confined WBZ is composed of silty sand, sand, and clayey sand. As seen in B-5 and ESE-4, this Semi-Confined WBZ narrows under the center of the site to an approximate 2-foot thickness. If viewed south from ESE-5, along TWB-5 and SOMA-4, the WBZ thickens to 10-15 feet, possibly due to fossilized stream channels (which can occur in fluvial depositional environments). Preferential flow (stream) channels have also been observed south (downgradient) of the Xtra Oil station across Redwood Road. The Semi-Confined WBZ appears to be continuous and extends off-site to the southeast. Below the Semi-Confined WBZ is a fairly homogenous silty clay unit that extends to 30 feet bgs, the greatest depths explored on-site during historical investigations. During historical soil and groundwater investigations, groundwater was observed in all explored areas of the Semi-Confined WBZ.

During the First Quarter 2011 groundwater monitoring event, groundwater was observed to flow south to southeasterly in the Shallow WBZ at an approximate gradient of 0.01833 feet/feet. Groundwater in the Semi-Confined WBZ was observed to flow southwesterly across the site at an approximate gradient of 0.01102 feet/feet. The Rose diagrams in Figure 2 demonstrate historical groundwater flow directions at the site and vicinity. Figures 8 and 9 show the most recent groundwater elevation contours in the Shallow and Semi-Confined WBZs.

#### 2.3 Beneficial Uses of Groundwater

The Water Quality Control Plan ("Basin Plan") for the San Francisco Bay Region adopted by California Regional Water Quality Control Board (CRWQCB), San Francisco Bay Region (Regional Board) declares that all surface and ground waters of the state are suitable, or potentially suitable, for municipal or domestic water supply and should be so designated by the Regional Boards unless total dissolved solids (TDS) exceed 3,000 mg/L (5,000  $\mu$ S/cm, electrical conductivity, EC) and the well is not capable of sustaining a yield of 200 gallons per day.

During the Fourth Quarter 2010 GWM Event, TDS values were not recorded, but EC measurements event ranged from 626  $\mu$ S/cm to 1,521  $\mu$ S/cm. During the First Quarter 2011 GWM Event, TDS values were not recorded, but EC measurements ranged from 650  $\mu$ S/cm to 1,640  $\mu$ S/cm, which was consistent with historical observations.

Furthermore, according to California's Groundwater Bulletin 118, the principal water-bearing formation of the Castro Valley Groundwater Basin (East Bay Plain) is alluvium of Pleistocene age, which unconformably overlies consolidated nonwater-bearing rock of Jurassic age and underlies a thin surficial deposit of alluvium of Holocene age. The Pleistocene alluvium is a heterogeneous mixture of unconsolidated clay, silt, sand, and gravel with a maximum thickness of 80 feet. Per Bulletin 118, groundwater is unconfined and yields are limited, usually sufficient only for lawn irrigation. Per USGS (W-RIR 02-4259, 2003), this alluvium is part of the Newark aguifer that is present in the East Bay Flatlands to a depth of 30 to 130 feet bgs. Water in the aquifer is generally confined except near recharge areas along the mountain front. The uplands north, east, and west of the valley likely represent areas of groundwater recharge from rain infiltration to aquifers present in the valley. The major drainage through the valley is San Lorenzo Creek located approximately 0.75 mile east of the site. Note, however, that the municipal and domestic water supply beneficial use is not currently being utilized in the area of the site.

Based on observed current EC values and other supporting documentation, at this time it can be concluded that groundwater at the site is a current or potential source of drinking water. In general, the Basin Plan states that drinking water resources shall not contain concentrations of constituents that exceed the Maximum Contaminant Levels (MCLs).

#### 2.4 Identification of Chemicals of Potential Concern

The goal of the SCM is to identify COCs and their presence in soil, soil vapor and groundwater, to determine whether COCs have been fully delineated in soil and groundwater.

Identified site-specific COCs include total petroleum hydrocarbons as gasoline (TPH-g); benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX); methyl tertiary-butyl ether (MtBE); and tertiary-butyl alcohol (TBA). COCs have been detected in soil and groundwater beneath the site, including recently at concentrations that exceed California Regional Water Quality Control Board (CRWQCB) Environmental Screening Levels (ESLs) established for groundwater that is a current or potential source of drinking water (May 2008 Revision). Tables 1 through 4 summarize the detected soil and groundwater concentrations compared to respective ESLs. There has been no historical or current observation of free product in groundwater wells at the site.

#### 2.5 Nearby Release Sites

Xtra Oil is an active gasoline station located at 3495 Castro Valley Boulevard, directly west of the site (Figure 2). A similar lithology is observed at this site, consisting primarily of silty and clay with coarser sediments observed below 18 to 19 feet bgs. Four 12,000-gallon USTs are currently at the site; these were installed in 1992 after removal of the former USTs. During the 1992 UST removal, surrounding soil was excavated from the tank pit and disposed of off-site. In 1990, MW-1 through MW-3 were installed at the Xtra Oil Station. TPH-g was detected in soil at 25 to 1,400 mg/kg. TPH as diesel (TPH-d) was detected at 120 mg/kg. Also during this time, three boreholes were advanced at the site; TPH-g was destroyed in 1996 during the widening of Redwood Road. In 1997, MW-4 was installed. In 2007, a groundwater extraction system was installed in EW-1. In late 2007, MW-5 through MW-12 were installed on-site and off-site downgradient of the USTs. Groundwater monitoring events have been ongoing since 1990.

During the Semi-Annual 2010 GWM event (March through August) at this site, approximately 0.76 feet of free product was encountered in MW4 (adjacent to Redwood Road, approximately 120 feet west of the subject site boundary). A reported groundwater flow direction at Xtra Oil station has fluctuated from easterly toward the subject site to the south-southwesterly (rose diagram of groundwater flow direction is shown in Figure 2). During the latest GWM event dated October 2010, groundwater flow was southeasterly at a 0.007 ft/ft gradient.

The maximum detected TPH-g, TPH-d, and benzene concentrations were 58,000  $\mu$ g/L, 13,000  $\mu$ g/L, and 27,000  $\mu$ g/L, respectively. Groundwater monitoring well OB-1 installed in the middle of Redwood Road lacked sufficient groundwater for sampling, and MW-8 installed within the eastern sidewalk west of groundwater monitoring well SOMA-4 exhibited TPH-d and TPH-g at 1,000  $\mu$ g/L and 4,400  $\mu$ g/L, respectively. Figure 2 shows locations of groundwater monitoring wells.

A Unocal station (20405 Redwood Road) is situated 0.2 miles north of the subject site on Redwood Road (Figure 1). Groundwater monitoring was

conducted at this site from 1999 to 2009. Per the March 9, 2009 SCM report prepared for this site, depth to groundwater generally ranged between 8 and 15 feet bgs, with groundwater flowing southerly at a gradient between 0.001 and 0.012 ft/ft. Maximum TPH-g, TPH-d, and MtBE were detected at 320  $\mu$ g/L, 3,600  $\mu$ g/L, and 630  $\mu$ g/L, respectively.

A former Merritt Tire Sales property (3430 Castro Valley Blvd) is situated approximately 500 feet west of the site (Figure 1). This site reported a 1.79 feet of free product in 2007. Groundwater flow direction is southeasterly at a gradient of 0.014 ft/ft.

Due to the relatively long distance to Unocal and Merritt sites, no significant impact from their contamination is expected on-site (although it should be noted that the subject site is located directly downgradient from Unocal station). At this time, upgradient wells SOMA-8 and MW-6R have shown no significant groundwater impact. Due to the closer proximity of 3495 Castro Valley Boulevard, this LUST site has a higher likelihood of contributing to the contamination at the subject site.

#### 2.6 Remedial Goals and Risk Evaluation

As part of the remedial goal screening analysis, several available cleanup standards for petroleum-contaminated sites were reviewed. These standards included Preliminary Remediation Goals (PRGs) EPA Region 9, California Human Health Screening Levels (CHHSLs), and ESLs.

According to the General Plan, the site is zoned "general commercial," and located in an area consisting primarily of commercial with residential, mixed use and public areas located downgradient from the site. All properties in the immediate vicinity and downgradient of the site are commercial. At this time, there are no plans to rezone the site or vicinity for residential land use. Figure 10 illustrates the zoning subdivision of the site and its general vicinity.

ESLs have been selected as the cleanup standard because these values are more conservative and would be more health protective. According to the RWQCB, the presence of a chemical in groundwater at concentrations below the corresponding ESL can be assumed not to pose a significant, long-term threat to human health and the environment. ESL screening levels are Tier 1 levels (conservative target risk and hazard levels) that take into consideration additive risk due to presence of multiple chemicals with similar target health effects. For carcinogens, the human health risk screening levels represented by ESLs are based on a target cancer risk of  $10^{-6}$  for both residential and commercial exposure scenarios; this represents the lower end of the acceptable range of  $10^{-4}$  and  $10^{-6}$  recommended by the USEPA. Furthermore, as stated by CRWQCB, active remediation is generally warranted at sites where estimated cancer risk exceeds  $10^{-6}$ .

Based on beneficial uses of groundwater and site zoning, the proposed remedial goals for the site are based on Tier 1 ESLs established by CRWQCB (Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater – May 2008), for groundwater that is a current or potential source of drinking water for the shallow soil of commercial/industrial land use. Since no deed restrictions are planned at this time, residential land use ESL values were also evaluated and both residential and commercial values are listed in Tables 1 through 4.

Representative site-specific COC concentrations were compared to ESLs. Soil and groundwater samples collected at this site have historically demonstrated concentrations moderately above listed ESLs (Tables 1 through 4).

| сос               | Groundwater<br>As current or<br>potential source<br>of drinking water<br>(µg/L) | Soil<br><3.0 m<br>(mg/kg) | Soil<br>>3.0 m<br>(mg/kg) | Soil Vapor<br>Intrusion<br>(μg/m³) | Groundwater<br>for Vapor<br>Intrusion (in<br>to Buildings)<br>(µg/L) |
|-------------------|---------------------------------------------------------------------------------|---------------------------|---------------------------|------------------------------------|----------------------------------------------------------------------|
| TPH-g             | 100                                                                             | 83                        | 83                        | 1,000                              | 1,000                                                                |
| Benzene           | 1                                                                               | 0.044                     | 0.044                     | 84                                 | 540                                                                  |
| Toluene           | 40                                                                              | 2.9                       | 2.9                       | 63,000                             | 380,000                                                              |
| Ethyl-<br>Benzene | 30                                                                              | 2.3                       | 3.2                       | 980                                | 170,000                                                              |
| Total<br>Xylenes  | 20                                                                              | 2.3                       | 2.3                       | 21,000                             | 160,000                                                              |
| MtBE              | 5                                                                               | 0.023                     | 0.025                     | 9,400                              | 24,000                                                               |
| TBA               | 12                                                                              | 0.075                     | 0.075                     | NL                                 | NL                                                                   |

Note: NL = not listed; California Regional Water Quality Control Board, Interim Final November 2007, revised May 2008, Environmental Screening Limits, Tables A, C, E, F1-a.

To evaluate potential health risks associated with on-site and off-site occupants, hypothetical residents, and future construction workers, SOMA compared representative chemical concentrations at the site to established ESLs. The ESLs were used to establish initial cleanup goals, prioritize areas of concern, estimate the potential health risks, and determine whether further evaluation is warranted. The presence of a chemical at concentration exceeding an ESL does not indicate that adverse impact to the human health or environment will occur. SOMA evaluated potential exposure routes for the on- and off-site areas (Figure 3). Although the site is capped with concrete and no soil is exposed at the surface, at this time, as a conservative measure, site analytical data was compared to ESLs for residential, commercial, and trench workers exposure scenario and to ESLs for groundwater as a current or potential source of drinking water. As shown in Tables 1 through 4, existing TPH-g in soil north of the former USTs, and TPH-g, benzene, MtBE, and TBA in groundwater along the southern

portion of the site and off-site to the south, exceed corresponding ESLs intended to address human health, groundwater protection, and nuisance concerns for construction/trench worker exposure scenario.

In accordance with the RWQCB Interim Guidance, dated January 5, 1996, the site was evaluated to determine whether it qualifies as a "low-risk soil" or "low-risk groundwater" case. Low-risk cases are those that satisfy all of the following:

- 1. The leak has been stopped and ongoing sources, including free product, have been removed or remediated.
- 2. The site has been adequately characterized.
- 3. The dissolved hydrocarbon plume is not migrating.
- 4. No water wells, deeper drinking water aquifers, surface water, or sensitive receptors are likely to be impacted.
- 5. The site presents no significant human health risk. Risk for all constituents of concern must be evaluated using residential exposure criteria with a 10<sup>-6</sup> carcinogenic risk level and a chronic hazard quotient of one (1).
- 6. The site presents no significant risk to the environment.

Due to the elevated COCs in soil and groundwater (above ESL levels) and presence of potential receptors that could be exposed to contaminated groundwater or vapors, at this time the site does not meet the criteria for "low risk", and therefore a feasibility study should be implemented.

#### 2.7 Extent of Soil and Groundwater Contamination

For purposes of evaluating risk, the source is defined as the environmental medium/media containing elevated contaminant concentrations associated with the release.

- The origin of the release was attributed to the leaking UST, dispenser, and product piping.
- In 1988, holes were observed in an old 380-gallon waste oil tank (located to the east of the site building) during its replacement. In 1988, this waste oil tank was replaced with a double-walled, 2,000-gallon UST. Confirmation soil sampling beneath the waste oil tank (8.5 feet bgs) revealed benzene and toluene at 0.0068 mg/kg and 0.0095 mg/kg, respectively. Composite sample of excavated soil revealed total oil and grease detection of 100 mg/kg.
- In May 2000, an apparently leaking shear valve was discovered in the southern dispenser island piping.
- In 2003 three single-walled USTs (installed in 1984), with capacities of 6,000, 8,000, and 10,000 gallons were removed from an area southeast of

the existing canopy. The three former USTs included a 10,000-gallon tank for regular unleaded gasoline, an 8,000-gallon tank for super unleaded, and a 6,000-gallon tank for plus unleaded. Also in 2003, a 2,000-gallon UST used for waste oil (located east of the site building) was removed and dispenser islands were upgraded.

- The two double-walled replacement USTs, with capacities of 12,000 and 20,000 gallons, were installed in 2003 at a new location northwest of the existing canopy. In addition to the removal and replacement of the USTs, dispensers and product lines were removed and replaced.
- During the UST removal and replacement, approximately 1,520 tons of impacted soil and gravel were transported to an off-site facility (Forward Landfill) for disposal. During excavation groundwater as well as free product was observed entering the UST pit where the former USTs were installed. The free product was skimmed and stored in six 55-gallon drums. The collected product was disposed of off-site under appropriate waste manifests.
- Confirmation soils sampling during UST removal and replacement activities revealed minor residual TPH-g contamination in the southwestern excavation wall and MtBE above ESL in most of the sidewall samples. The highest TPH-g detection during this time was in sample PL1 (near pumps 5 and 6) detected at 530 mg/kg.
- Excavated areas of former USTs were backfilled with drain rock up to 7 feet bgs, followed by 2 feet of native soil backfill and another 2.5 feet of imported sandy fill and aggregate base to below concrete. The waste oil UST pit was partially backfilled with clean stockpiled gravel that was removed from the UST excavation, and backfilled to grade with imported materials. Site history is included as Appendix A.
- Confirmation soil and groundwater sampling conducted during UST decommissioning is summarized in Tables 1 and 2. Sampling locations are shown in Figure 2.

Information needed to define the source was gathered during historical site assessments; the following sections include an evaluation of the lateral and vertical extent of the following:

- COCs in unsaturated zone soil
- COCs in saturated zone soil and the smear zone
- COCs in groundwater (Shallow and Semi-Confined WBZs)

No free product is currently present in site groundwater monitoring wells. Results of this evaluation are documented below.

### 2.7.1 Lateral and Vertical Extent of Soil Contamination

This section evaluates contamination extent in soil beneath the site.

Based on recent investigations by Delta Environmental (September 2008) and SOMA (August 2009 and 2010), residual soil impact (TPH-g) exists between 9 and 10 feet bgs in the vicinity of SOMA-7 (980 mg/kg). Historical sampling of SB-2 boring advanced along the western property boundary exhibited TPH-g at 230 mg/kg between 7.5 and 8 feet bgs. Residual contamination was also observed along the eastern portion of the site, in the vicinity of the former USTs. During the recent investigations, TPH-g ranged from 26 mg/kg at DP-5 (20 feet bgs) to 720 mg/kg in B-3 (12 feet bgs). TPH-g levels were 380 mg/kg at SOMA-5 (11 feet bgs) and 13 mg/kg at SB-6 (SOMA-6 location) at 11.5 feet bgs. Boring locations are shown in Figure 2. Soil analytical data, which includes concentrations for all COCs, are presented in Table 1.

Minor isolated pockets of residual contamination were also observed between 15 and 17 feet bgs, but only TPH-g, in B-1 (120 mg/kg), was slightly above the ESL of 83 mg/kg for shallow or deep soils where groundwater is a current or potential drinking water source. Figure 11 illustrates TPH-g concentration in soil between 4 and 12 feet bgs. Figure 11A shows a concentration vs. depth graph, which illustrates the TPH-g distribution with depth. As could be seen from this graph, in general, soil contamination (concentrations exceeding ESL) extends from a several feet below ground surface to approximately 12 feet bgs. Figure 12 illustrates TPH-g between 15 and 17 feet bgs.

As time passes after a contaminant release, accumulations of light non-aqueous phase liquid (LNAPL) at or near the water table are susceptible to smearing within a vertical interval from seasonal fluctuations in water-table elevations, forming a smear zone. The smear zone is defined as an area where free product occurred in the soil and was then smeared across the soil when the water table fluctuated between historical high and low water table elevations. Historically, groundwater in Shallow WBZ wells has fluctuated between 7.33 and 12.02 feet bgs, creating a smear zone where residual soil contamination is located.

#### 2.7.2 Lateral and Vertical Extent of Contamination in Groundwater

Based on existing analytical data derived from the recent GWM event (February 2011) and the current well installation and replacement (August 2010) as well as numerous historical investigations, the Shallow WBZ appears to be the most impacted along the southern portion of the site. Observed concentrations in Shallow WBZ are elevated near former waste oil UST and UST pit, and the former pump island located in the western portion of the site.

During the most resent GWM event, the highest TPH-g and benzene were detected in SOMA-5 at 4,900  $\mu$ g/L and 1,600  $\mu$ g/L, respectively. The second

highest concentrations of above COCs were detected in SOMA-7 at 1,900  $\mu$ g/L and 380  $\mu$ g/L, respectively. MtBE concentrations were highest at SOMA-5 (94  $\mu$ g/L), with concentrations above ESL (5  $\mu$ g/L) also observed in SOMA-7 (5.2  $\mu$ g/L) and SOMA-3 (32  $\mu$ g/L).

The petroleum hydrocarbon (PHC) plume in the Semi-Confined WBZ appears to be also situated along the southern portion of the site, near the former waste oil tank and downgradient of the former USTs. TPH-g and benzene were observed above ESL in ESE-1R at 1,400  $\mu$ g/L, and 96  $\mu$ g/L, respectively. TPH-g was detected in well ESE-5R at 140  $\mu$ g/L.

Historically, ESE-2R and SOMA-4 exhibited elevated concentrations for many COCs, during the latest GWM event; only minor MtBE detections were documented. MtBE was detected in wells ESE-1R, ESE-2R, MW-7R, SOMA-1, and SOMA-4 at 22  $\mu$ g/L, 12  $\mu$ g/L, 5.3  $\mu$ g/L, 5.3  $\mu$ g/L, and 1.5  $\mu$ g/L, respectively.

TPH-d (August 2010, Table 2) was also highest at ESE-1R (1,600  $\mu$ g/L), with TPH-d also observed in ESE-2R (250  $\mu$ g/L), ESE-5R (190  $\mu$ g/L), and MW-7R (200  $\mu$ g/L). TPH-d contamination appears to be limited to the vicinity of the site. However, since TPH-d is not part of the standard monitoring event analysis, its concentrations trends were not evaluated at this time.

TPH-g and benzene dropped significantly in ESE-5R after reconstruction and fluctuated in ESE-1R, while concentrations are still elevated in SOMA-5 and SOMA-7, suggesting that the majority of contamination along the southern portion of the site is in the Shallow WBZ. Groundwater analytical data is presented in Tables 2, 3 and 4.

# 2.8 Plume Behavior and Stability

Dissolved plume mass changes over time can be an indicator of the type of plume existing at the site. If the source area is finite in size, or if the source material generating the dissolved plume is highly weathered, the flux of contaminants out of the source area and into the dissolved plume will decrease to zero over time (Hyman, Dupont, 2001). This decrease will cause the total mass of contaminant in the dissolved plume to decrease over time. To estimate the degradation rate of contaminants within the plume resulting from this finite source, the changes over time of total contaminant dissolved plume mass were analyzed.

To evaluate the movement of the contaminant plume, COC concentrations versus distance were plotted. Figure 17 shows MtBE concentrations within the plume decrease with distance from the former USTs. This graph also illustrates that SOMA-2 might not be directly downgradient from the source area and is likely located closer toward the outer edge of the plume, since MtBE concentrations are typically higher in the most downgradient well SOMA-3 as

compared to SOMA-2. MtBE concentrations in SOMA-3 fluctuate, with an increase during the latest monitoring indicating that the MtBE plume is slowly advancing beyond SOMA-3.

TBA is seen to increase near the former UST pit, with a sharp drop in TBA in ESE-2 and an increase at MW-7 (MW-7R) (Figure 19). Figures 18, 20, and 21 show MtBE, TPH-g and TBA concentrations with distance along the southern property boundary. The TPH-g plume is stable and decreasing beneath ESE-5. The TPH-g plume is relatively stable and confined to site areas, the MtBE plume is stable and possibly advancing slowly beyond SOMA-3, and the TBA plume has advanced to well MW-7 (MW-7R), southeast of the site.

To assess stability of the contaminant plume. SOMA evaluated historical contamination trends for on-site and off-site wells. Historical concentration vs. time graphs (which include data from 1992 to 2000, Appendix C). As can be seen from these graphs, after the 2003 UST removals, COC concentrations dropped in ESE-2, MW-7, and SOMA-1. MtBE is observed to migrate off-site, passing SOMA-2 from October 2004 through September 2007 and concentrations increased in SOMA-3 from early 2006, until dropping below ESLs during recent monitoring events. TPH-g was elevated in SOMA-4 until August 2006, when levels dropped below ESL and have remained constant at approximately 10 µg/L. Removal of the former USTs did not appear to have impacted concentrations at well ESE-5, where TPH-g concentrations have fluctuated with spikes in early 2005 and 2006, when concentrations jumped from 2,500 and 3,500 µg/L to nearly 5,000 µg/L. TPH-g levels have decreased with some minor fluctuations. The UST removal appears to have affected MtBE concentrations in ESE-1. Since 2003, MtBE in ESE-1 has decreased. Benzene and TPH-g concentrations have fluctuated, but remained around 100-200 µg/L for benzene and around 1,000 µg/L for TPH-g. This suggests that the plume affecting these wells did not result from the documented 2000 piping release, but continued elevated concentrations suggest that the plume affecting these wells is moving across the lower portion of the site, in an easterly direction.

Concentration vs. time and groundwater elevation vs. time illustrating trends that include data from 2000 to present time for wells ESE-1 (ESE-1R), ESE-2 (ESE-2R), ESE-5(ESE-5R), SOMA-1, SOMA-5, and SOMA-7 are shown on Figures 22 through 27, respectively. As seen from these figures, almost all COC concentrations have been steadily decreasing over time.

SOMA evaluated contaminant degradation rates in order to analyze the time course of contaminant mass changes in groundwater. The first-order attenuation rate constant calculations were conducted. This evaluation was conducted to determine whether water quality goals could be achieved within a reasonable time frame without active remediation. During this evaluation, SOMA utilized ESL values as more conservative cleanup goals protective of human health and the environment and concentrations vs. time rate constants (k point) were used for estimating how quickly remediation goals could be met at the site without any active remediation.

Natural attenuation processes include a variety of physical, chemical, and/or biological processes that act without human intervention to reduce the mass or concentration of contaminants in soil and ground water. These in situ processes include biodegradation, dispersion, dilution, sorption, volatilization; radioactive decay; and chemical or biological stabilization, transformation, or destruction of contaminants. The overall impact of natural attenuation processes at a given site can be assessed by evaluating the rate at which contaminant concentrations are decreasing either spatially or temporally.

The first order attenuation rate constant, utilizing concentration vs. time attenuation constant, was utilized during this evaluation, where a rate constant, in units of inverse time (e.g., per day), is derived as the slope of the natural logarithm concentration vs. time curve, measured at a selected groundwater monitoring locations (EPA, 2002). Natural logarithm of COC in Shallow and Semi-Confined WBZ wells were plotted vs. time (Appendix C); in order to achieve a time line relationship. During this process, sampling dates were converted to years, with the initial sampling date assumed to have the initial concentration at t equals 0. Historical concentration graphs illustrating concentration trends from the year 1992 to the year 2000 are attached in Appendix C.

It should be noted that attenuation rate calculations could be affected by uncertainty from a number of sources, such as the design of the monitoring network, seasonal variations, uncertainty in sampling methods, limited number of data, and the heterogeneity in most groundwater plumes.

It should be noted that many of the site wells have been recently reconstructed to avoid the cross screening of the two WBZ, however since not enough data has been generated since the reconstruction, the old and the new data were utilized in this evaluation. It is anticipated that since previously the Semi-confined WBZ wells were screened through the more impacted shallow as well as the less impacted deeper zone, combining the two (old and new) data sets would likely yield a more conservative prediction of degradation, since currently the Semi-Confined wells are only screened through the less impacted WBZ.

The first-order degradation rate equation is described as follows:

$$C = C_o e^{-k_1 t}$$
 [1]

Where:

C Contaminant concentration at time (t), in units of mass per volume

Co Initial contaminant concentration at t equals 0 in units of mass per volume

 $-k_1$  First-order degradation rate, 1/time; a plot of contaminant vs. time produces a non-linear relationship that could be linearized by plotting the natural log of contaminant concentration vs. time. The slope of this linearized relationship is equal to  $(-k_1)$ 

Furthermore, the time (t) to reach the remediation goal at each monitoring well was calculated utilizing the following equation:

$$t = \frac{-Ln\left[\frac{C_{goal}}{C_{start}}\right]}{-k_1}$$
[2]

Where:

t Time to reach remedial goal

C goal Clean-up concentration for a given contaminant

The line equations were generated for wells ESE-1 (ESE-1R), ESE-2 (ESE-2R), ESE-5(ESE-5R), SOMA-1, SOMA-5, and SOMA-7 (Degradation graphs are included in Appendix C). Based on generated line equations the length of time to reach remediation goals were estimated, the estimates are included in Table 5. The table below summarizes these estimates.

| COC             | ESE-1<br>(ESE-1R)           | ESE-2<br>(ESE-2R) | ESE-5<br>(ESE-5R) | SOMA-1          | SOMA-5 | SOMA-7                      |
|-----------------|-----------------------------|-------------------|-------------------|-----------------|--------|-----------------------------|
|                 |                             | Degradation E     | Estimates (Ye     | ars from toda   | у)     |                             |
| TPH-g           | 15.67                       | NA                | 74.61             | below C<br>goal | 7.24   | 4.25                        |
| TPH-g<br>(Alt.) | -                           | -                 | -4.96             | -               | -      | -                           |
| Benzene         | NA<br>(increasing<br>trend) | below C<br>goal   | below C<br>goal   | below C<br>goal | 88.20  | NA<br>(increasing<br>trend) |
| MtBE            | 1.94                        | 3.99              | 7.86              | 0.08            | 8.80   | -0.04                       |
| ТВА             | 18.22                       | below C<br>goal   | below C<br>goal   | 10.47           | 37.18  | 1.60                        |

NA - Not applicable

Negative year values, indicate that concentration goal has already been reached or is about to be reached

It should be noted that rate calculations can be affected by uncertainty from a number of sources, factors such as seasonal variations and the heterogeneity in most ground-water plumes, or uncertainties related to the gathered data (due to the fact that the pre-well-reconstruction and post-well-reconstruction data were evaluated together).

As can be seen from above table, the time required to reach cleanup goals for the Shallow WBZ varied based on type of COC and ranged from approximately -0.04 (at or below clean-up goal) to 88.2 years. For the Semi-Confined WBZ the longest times to reach clean-up goals were calculated for well ESE-1 for TPH-g and TBA. The impact of utilizing both data sets (pre and post-well reconstruction) is most evident in ESE-5 (ESE-5R) where during the most recent GWM event TPH-g was detected at 140 µg/L at concentrations approaching ESL. However, the estimated time for concentrations to decrease to below ESL was 74.61 years. This occurred because relatively steady pre-well-reconstruction concentrations were observed, generating a gentle sloping concentration trend. However, once cross-screening of the Shallow and Semi-Confined WBZ was eliminated, the concentration decreased significantly. In order to evaluate what the degradation rate might actually be, the C start concentration of 140 ug/L (instead of the one suggested by the concentration trend) was utilized, reducing the years to reach the below ESL concentrations from 82.61 to -4.96, suggesting that concentrations are at or around clean-up goal. Therefore, it is recommended that above degradation estimates be reevaluated when more post-well-reconstruction data becomes available.

Since no slug or pumping tests have been conducted at the site, hydraulic conductivities were estimated based on sediment type and other descriptive features. Both Shallow and Semi-Confined WBZs are comprised of silty sands (SM) and sandy silts (ML) and some sands (SP). With sands being more predominant in the Semi-Confined WBZ. Therefore, hydraulic conductivities can be estimated between  $10^{-5}$  and  $10^{-2}$  (cm/s), between 0.0282 ft/day and 28.2 ft/day, respectively.

The behavior of the plume margin is of concern when defining dissolved contaminant plume behavior. In order to evaluate contaminant transport, and time required for the on-site dissolved contaminant plume to reach the nearest sensitive receptor, SOMA first evaluated site specific seepage velocity utilizing Darcy's law.

$$V = -K\Delta h \quad [3]$$

Where:

V - Darcy's velocity

-K- Conductivity (estimated)  $\Delta h$  -Hydraulic gradient (0.01833 ft/ft-based on the latest groundwater-monitoring event (in Shallow WBZ)

 $\Delta h$  -Hydraulic gradient (0.01102 ft/ft-based on the latest groundwater-monitoring event (in Semi-Confined WBZ)

Based on Darcy's velocity, a seepage or average linear velocity, representing the average rate at which the water moves between two wells as calculated utilizing the following equation:

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

$$Vx = \frac{v}{n}$$
 [4]

Where:

Vx - Seepage velocity -n- effective porosity (estimated at 0.32 based on composition of the water bearing units).

Utilizing equation [3], Darcy's velocities were calculated between 0.00052 feet/day and 0.517 feet/day for the Shallow WBZ and between 0.00031 feet/day and 0.3108 feet/day, respectively, for the Semi-Confined WBZ.

Utilizing equation [4], seepage velocities were calculated between 0.0016 feet/day and 1.615 feet/day, respectively, for the Shallow WBZ and between 0.00097 feet/day and 0.971 feet/day, respectively for the Semi-Confined WBZ.

Utilizing the very liberal assumed retardation coefficient of 10 for TPH-g which would allow evaluation of the worst case scenario for TPH-g migration, the contaminant velocity was calculated (by dividing the seepage velocity (Vx) by the aforementioned retardation coefficient). A more conservative retardation of 58 was utilized for TPH-g during mass calculation. The range of TPH-g contaminant velocities was estimated between 1.62E-0.4 feet/day (0.059 feet/year) and 1.62E-01 feet/day (58.96 feet/year) for the Shallow WBZ and between 9.71E-0.5 feet/day (0.035 feet/year) and 9.71E-02 feet/day (35.45 feet/year) for the Semi-Confined WBZ.

It is also known that less retarded contaminants, such as MtBE (retardation coefficient of 1) will move faster with the same velocity as groundwater. Based on available data, and as seen in the concentration vs. distance trend documented in Figure 17, the margin of the MtBE plume has already advanced beyond the property boundary.

#### 2.9 Contaminant Mass Evaluation

Information about the amount of contaminant mass in the target remedial area is useful when considering remediation options and evaluating cleanup progress. In order to evaluate the cost-effective remedial alternatives, SOMA estimated the contaminant mass in adsorbed and dissolved phases below and above the water table. Soil screening data, recent quarterly groundwater monitoring data and other site assessment information was used to assess the mass. During this mass calculation, since no free product was observed at the site wells, it was assumed that no free product is present in the subsurface at this time. The simplified mass estimation method described below was used solely for the purposes of determining the effectiveness of remedial alternatives. The process of mass calculation relies on inference and extrapolation of data and judgment in estimating data elements where there is great variability and a high margin of error. Since this mass calculation utilized a combination of old (starting from 1995) and new (2010) soil analytical data, it is anticipated that the estimated mass may underestimate or overestimate the actual site conditions.

BTEX compounds have relative high toxicity and are the hydrocarbon constituents with the highest effective solubility. MtBE also has very high effective solubility and relatively low biodegradation potential and therefore has the longest plumes. MtBE has lower toxicity than benzene, but due to its low taste and odor threshold has a low ESL as well. While the rest of the hydrocarbons make up the majority of contaminant mass in the subsurface, they account for lesser risk posed to human health or groundwater quality due to their lower toxicity and/or lower mobility in the environment. Since TPH-g as a constituent makes up the majority of mass, SOMA evaluated its mass in soil and groundwater beneath the site. Benzene and MtBE were also evaluated as secondary contributors.

Given site contaminant characteristics, the transport mechanisms for on-site contamination can be hypothesized. When petroleum is released into the environment, it is typically released as LNAPL. Following a petroleum release, LNAPL moves vertically downward through the unsaturated zone in response to gravity and capillary forces until it encounters a water table. The rate of migration is determined primarily by the stratification and permeability of the native soil materials. Some horizontal spreading will occur within the vadose zone during vertical migration. Accumulations of LNAPL at or near the water table are susceptible to smearing within a vertical interval from fluctuations in water-table elevations due to seasonal change forming a smear zone.

# 2.9.1 Mass Within Saturated Thickness of Shallow and Semi-Confined WBZs

The following describes calculations performed to estimate the contaminant mass located in adsorbed and dissolved phases within the Shallow and Semi-Confined WBZs. Historical and current sampling results were utilized; this estimate evaluated the total mass of TPH-g as the main contributor to the contaminant mass, as well as benzene and MtBE as the secondary contributors.

The methodology used to calculate the total mass of COCs present within the study area is described below. Chemicals in groundwater are in either dissolved or adsorbed phase. To calculate the total mass of chemicals (dissolved and adsorbed phase), detected concentrations of each chemical at different sampling wells were utilized.

Calculations were conducted using the following steps:

- A grid of 10 x 10 feet was overlaid at the top of the TPH-g, benzene, and MtBE plumes within Shallow and Semi-Confined WBZs.
- Using the linear interpolation routine (kriging interpolation technique) and utilizing concentration of each chemical at each sampling location, the COC concentrations were interpolated at the center of each grid cell, referenced above. Therefore, the most recent COC concentrations at each well were utilized.
- Based on lithologic logs, it was established that the saturated thickness of the water bearing formation could be conservatively estimated. For purpose of this mass estimate, an assumption was made that the saturated thickness across the study area is uniform and is averaged at 5 feet for the Shallow and at 6.5 feet for the Semi-Confined WBZs. Using an estimated porosity of the saturated thickness of 0.32 and approximated saturated thickness of 5 feet, the volume of the water at each grid cell of the Shallow WBZ was estimated at 160 ft<sup>3</sup> and for Semi-Confined at 208 ft<sup>3</sup>. During this calculation, an assumption was made that the entire porous space between soil particles is filled with groundwater.
- Total mass of TPH-g, benzene, and MtBE at any given cell was calculated by multiplying its estimated concentration of a given chemical by volume of water and its retardation coefficient. The retardation coefficients for each COC were calculated: calculation details are reflected in Table 6. Multiplying by a retardation coefficient takes into account the adsorbed mass, as well as the dissolved mass of any given chemical within the saturated profile of the WBZ. The data used in the computation of the total mass in the study area that needs remediation are included in Appendix D.

Assessment results indicated that within the Shallow WBZ approximately **57** pounds of TPH-g, **2.19** pounds of benzene, and **0.032** pounds of MtBE exist in dissolved and adsorbed phases within the saturated sediments that must be addressed in order to achieve remedial cleanup goals proposed for the site. Assessment results also indicated that within Semi-Confined WBZ, approximately **8.87** pounds of TPH-g, **0.018** pounds of benzene, and **0.012** pounds of MtBE exist in dissolved and adsorbed phases within the saturated sediments. Table 6 summarizes mass calculation details.

# 2.9.2 Mass in Soil above the Shallow WBZ

Following is a discussion of methodologies and assumptions used in estimating the mass in soil. The area of impact from 4 feet bgs to approximately 12 feet bgs was evaluated. An approach similar to that discussed in the section above was utilized. Based on geologic logs, average thickness of the impacted zone was delineated utilizing the historical soil analytical data (Table 1). Figure 11A illustrates TPH-g distribution with depth.

In order to avoid underestimating the contaminant mass present, maximum concentrations at each sampling location were utilized. Using the above approach, a linear interpolation routine (kriging interpolation technique) and the maximum COC concentrations of TPH-g at each sampling location, contaminant mass was calculated at the center of each grid cell within the study area. Figure 11 illustrates the lateral and vertical extent of TPH-g in soil; the data utilized in preparation of above map was also utilized during the current mass calculation. SOMA utilized an ESL of 83 mg/kg as a boundary condition; any concentrations outside this boundary were excluded from this evaluation.

All grid cells within each study area were uniform, and were 10 feet in length, 10 feet in width and an average of 5 feet in thickness. Even though the study interval was between 4 and 12 feet bgs, the 5-foot COC impacted thickness was selected as an average thickness, since the contamination tended to vary with depth and did not continuously encompass the entire 4 to 12-foot sampling interval (in the past the observed seasonal groundwater fluctuation within Shallow WBZ was approximately 5 feet). Depth to first-encountered groundwater at the site has historically been at 12 feet bgs in the Shallow WBZ. Due to low COC concentrations (slightly above ESL) at greater depths (between the two WBZs) their mass was not evaluated at this time. The volume of impacted soils at each cell within the evaluated interval was calculated by multiplying the area of each cell by its thickness.

The impacted shallow soils consist primarily of sandy silts, clayey silts and sandy clays. Therefore, the estimated density and porosity for above geologic units was utilized. Mass of impacted soil at each study cell was calculated by multiplying the soil volume by estimated bulk density of 82.4 lb/ft<sup>3</sup>. Calculated soil volume at each cell was multiplied by the cell-specific interpolated concentration, and a conversion factor to arrive at total hydrocarbon mass in pounds. Table 6 summarizes the mass estimates for TPH-g; Appendix D contains supporting documentation reflecting calculations for each cell at the study area. Assessment results indicated that approximately **468** lb of TPH-g are adsorbed to soils within the studied sampling interval beneath the site.

Table 6 also summarizes the contaminant mass distribution in shallow soils and Shallow and Semi-Confined WBZs at the site. It should be noted that due to approximations used in these calculations a minor overlap of contaminant mass within shallow soils and the Shallow WBZ could exist. As can be seen from this table, approximately **468.45** pounds of TPH-g are adsorbed to shallow soils, and the contaminant mass total for the major COC within the Shallow and Semi-Confined WBZs was **68.23** pounds (for an estimated total of **536.68** lbs). It should be noted that the process of mass calculation relies on inference and extrapolation of data and judgment in estimating data elements where there is great variability and a high margin of error; therefore, this mass estimate should be updated in the future if new data become available.

#### 2.10 Overview of COCs Distribution

Based on the results from historical as well as the most recent well installation report (September 27, 2010) and groundwater monitoring activities at the site, the following was determined:

- Based on analytical data from historical site investigations and ongoing GWM events, the Shallow and Semi-Confined WBZs both appear to be impacted with TPH-g and TPH-d along the western and southern portions of the site, with the highest concentrations observed in Shallow WBZ wells SOMA-5 (TPH-g at 14,000 µg/L) and SOMA-7 (TPH-d at 2,100 µg/L). MtBE concentrations were elevated in all wells except upgradient wells (MW-6R and SOMA-8) with the highest concentrations observed in Shallow WBZ well SOMA-5 (150 µg/L).
- TPH-g and benzene concentrations dropped significantly in ESE-5R after reconstruction, while concentrations are elevated in SOMA-7, suggesting that the majority of contamination along the western portion of the site is in the Shallow WBZ.
- 3. MtBE concentrations appear to be highest at SOMA-5 and follow the flow of groundwater within the Shallow WBZ. Within the Semi-Confined WBZ, MtBE contamination is centered in MW-1R and along the southern portion of the property and off-site areas.
- 4. Based on the response of groundwater within ESE-1R, ESE-2R, MW-6R, and MW-7R, groundwater in these wells appear to be under pressure, suggesting the WBZ is semi-confined.
- 5. Soil contamination has been delineated vertically and horizontally, with contamination predominantly limited to 12 feet bgs along the southern portion of the site.
- 6. Groundwater contamination has been laterally and vertically delineated within the Shallow and Semi-Confined WBZs. Contamination in both WBZs is centered on the southern portion of the site with only some MtBE contamination extending off-site. The lateral extent of contamination is delineated by limited to non-detectable COC concentrations in downgradient SOMA-3 for the Shallow WBZ and downgradient SOMA-4 for the Semi-Confined WBZ.

#### 2.11 Identification of Exposure Pathways and Potential Receptors

The site is located in an area of mixed commercial and residential properties. Currently, the on-site, single-story building houses station office and a food minimart. Commercial bank building abuts the site on the east and commercial buildings of various uses abut the station on the south. Residential properties are mainly located beyond upgradient to the site to the north, northwest and east. The only downgradient residential area in the site vicinity is located approximately 400 feet to the southwest of the site (Figure 2). Based on historical rose diagram of groundwater flow direction, also shown in Figure 2, the groundwater flow direction at the site has fluctuated between southerly and easterly, with the predominant trend to the southeast.

During the First Quarter 2011 GWM event, groundwater in the Perched WBZ was observed to flow south to southeasterly in Shallow WBZ at an approximate gradient of 0.01833 feet/feet. Groundwater in the Semi-Confined WBZ flows southwesterly across the site at an approximate gradient of 0.01102 feet/feet

SOMA evaluated Geotracker records and nearby sites, and evaluated these along with historical sensitive receptor survey conducted in August 2006. Review of records from the Department of Water Resources District identified 14 properties as having well(s) on their premises. Of these, five were reported to have irrigation wells. The remaining nine properties (locations) were reported to have monitoring or decommissioned wells. All five irrigation wells were located to the northeast (upgradient of the site) and are not expected to be impacted by contaminant plumes migrating off-site. Based on records obtained from the Alameda County Public Works Agency, 11 properties were identified as having well(s) on their premises. Of the 11 properties, two were reported to have irrigation wells; the remaining nine were reported to have decommissioned well(s), monitoring wells, or soil borings on their premises. From the two identified irrigation wells, one (No 11) is located upgradient, and the other (No 4) is located approximately 2,000 feet downgradient from the site. Utilizing the most liberal contaminant velocity of 58.96 feet per year (utilizing 10 as retardation coefficient) for TPH-g plume in Shallow WBZ, it would take approximately 33 vears for the hypothetical TPH-g plume with constant plume concentrations to reach the nearby receptor. However, it should be noted that due to low retardation coefficients, less time will be required for MtBE, benzene, and TBA plumes to migrate to the downgradient areas. Although the off-site wells have shown detectable levels of MtBE and TBA in both WBZs in the past, the concentrations remain relatively low and decrease notably with distance from the source area. Therefore, it can be concluded that at this time the downgradient irrigation well (No 4), is not likely to be impacted by the contaminant plume in the immediate future; however, due to relatively fast migration of less retarded plumes, exposure to impacted groundwater is still considered to be a viable exposure pathway; although likely not a complete pathway, due to large distances and relatively small concentrations involved. No new wells were identified during the review of Geotracker records. Figure 28 (Figure 28A) illustrates locations of these sensitive receptors.

To evaluate whether existing utility lines, including water, sewer, and storm drain lines, are acting as preferential flow paths, utility maps of the site vicinity were obtained from the Castro Valley Sanitary District and Alameda County Public Works Department. As Figure 29 shows, no sewer main, storm or water lines pass through the site. A sewer, storm, water and high-pressure gas main pass the site along Redwood Road and Castro Valley Boulevard at depths from 2 to 7.2 feet bgs. Private lines that connect the site to the main sewer, storm, and main water lines run at approximately 4 feet bgs. Since depth to groundwater in Shallow WBZ wells has fluctuated in the past between 7.33 and 12.02 feet bgs, it is likely that during periods of elevated groundwater table, the private or public utility lines along Redwood road could be temporarily submerged and act preferential flow pathways facilitating a more rapid plume migration to downgradient areas.

Public records also indicated presence of seven potential sensitive receptors (facilities) within a ½-mile radius of the site. These receptors consisted of educational facilities such as learning centers and schools. Figure 30 illustrates locations and lists names of these sensitive receptors. As illustrated in this figure, most are located up- or crossgradient from the site. One learning center (Kumon Math And Reading Center) is located at 20894 Redwood Road, Castro Valley approximately 150 to 200 feet south (downgradient) from the site. This is an after-school math and reading enrichment program and is classified as part of elementary education.

Based on data from obtained from the sensitive receptor survey, as well as low to non detectable concentrations in the most downgradient site wells there is no immediate threat from exposure to site groundwater contaminants for individuals living or working in the vicinity of this site.

Based on information obtained from the Castro Valley General Plan, Castro Valley Creek, a tributary to the San Lorenzo Creek, is located approximately 200 feet to the east-southeast. Figure 30 shows the location of the creek in relation to the site. The section of the creek adjacent to the site and running from Castro Valley Boulevard north to Pine Street was identified by the Alameda County Public Works Department as an improved channel with "Oak Riparian Woodland/ Wildlife Corridor." The creek's base flow channel is unlined and is approximately 15 to 20 feet wide. No special-status species were reported to use the Castro Valley Creek or its vicinity as their habitat. Although Castro Valley Creek is a potentially sensitive environment, because no special-status species were reported to inhabit this creek and the creek's relative non-proximity to the site, the likelihood of significant impact from site groundwater contaminants is minimal.

Based on the above, exposed population/receptors of on- and off-site contaminants were determined to be:

- 1. Current and future on-site workers
- 2. Current and future off-site commercial workers and residents

The COCs detected in groundwater within the Shallow WBZ can volatilize and travel by diffusion toward the land surface and possibly enter into the on-site as well as the nearby commercial buildings and residential properties. At these exposure points, they may cause adverse health effects to workers in

commercial buildings and residents living nearby. The current and future on-site workers, downgradient adjacent commercial buildings, and down gradient residential properties have been identified as potential receptors.

For off-site receptors, the only source of chemicals is impacted groundwater. For current and future on-site workers, both contaminated soil and groundwater are sources of chemicals. It appears that the only exposure pathway in off-site areas is inhalation of volatile emissions from the groundwater and incidental ingestion of groundwater.

To evaluate potential health risks associated with on- and off-site occupants, hypothetical residents, and future construction workers, SOMA compared representative chemical concentrations at the site to established ESLs. In order to identify potential for vapor intrusion, current soil data was reviewed with respect to ESLs and groundwater monitoring data was reviewed with respect to the ESL values listed in Table F-1a of the California Regional Water Quality Control Board (RWQCB) Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (May 2008). TPH-g and benzene concentrations near the site building (especially SOMA-5) were detected at maximum concentrations of 4,900 and 1,600  $\mu$ g/L, above the recommended maximums for vapor intrusion into buildings, 1,000 and 540  $\mu$ g/L, respectively. Since soils above the Shallow WBZ consist primarily of fine grain materials, in order to establish whether vapor intrusion is a complete exposure pathway, it may be advisable to conduct a soil gas study adjacent to the southern property boundary to the west and east of the station building.

The ESLs were used to establish initial cleanup goals, prioritize areas of concern, estimate the potential health risks, and determine whether further evaluation is warranted. The presence of a chemical at concentration exceeding an ESL does not indicate that adverse impact to human health or environment will occur. SOMA evaluated the potential exposure routes for the on- and off-site areas (Figure 3). Although the site is capped with concrete and no soil is exposed at the surface, at this time, as a conservative measure, site analytical data was compared to ESLs for residential, commercial, and trench workers exposure scenario and to ESLs for groundwater as a current or potential source of drinking water. As shown in Tables 1 through 4, many COC concentrations in groundwater and soil, especially along the southern portion of the site, exceed corresponding ESLs intended to address human health, groundwater protection, and nuisance concerns. Figure 3 shows the comprehensive SCM flowchart based on the *ASTM E-1689-55 Standard Guide for Developing SCM for Contaminated Sites*.

# 3. FEASIBILITY STUDY AND CORRECTIVE ACTION PLAN

Because the California Water Resources Control Board (CWRCB) recognizes that corrective actions would likely yield some level of residual contamination, it developed the following assumptions to be utilized during the corrective action planning process:

- Cleanup of all contaminated soil and dissolved product in groundwater is not always necessary to protect public health and the environment. However, it is desirable to clean up soils and groundwater to the maximum extent practical to reduce any future risk.
- All free product floating on groundwater should be removed, unless neither threat to beneficial uses of water nor danger to residents/workers from fire or explosion exists. (No free product has been observed in any site wells).

#### 3.1 Remediation Target Zones

Based on results of previous assessments and quarterly groundwater monitoring/ sampling events conducted at the site, the following remediation target zones were evaluated:

- 1. Shallow soils above 12 feet bgs in the vicinity of pump islands and to the west and east of the station building
- 2. Saturated thickness of the Shallow WBZ in the southern portion of the site in dissolved and adsorbed (smear zone) phases. This zone is impacted with PHCs above acceptable levels for protecting human health and the environment and thus warrants active remedial action.
- 3. Saturated thickness of the Semi-Confined WBZ in the southern portion of the site (mainly in well ESE-1R) in dissolved and adsorbed phases. This zone is impacted with PHCs above acceptable levels for protecting human health and the environment and thus warrants active remedial action. since Semi-Confined WBZ However. wells were just recently reconstructed and are no longer cross-screening the impacted shallow and deeper zones, at this time it is recommended to continue groundwater monitoring for several guarters to determine whether concentrations will continue to decline and natural attenuation is occurring. During the November 2010 GWM, TPH-g was detected in well ESE-1R at 100 µg/L and benzene at 5.8 µg/L, whereas the February 2011 event revealed an increase to 1,400  $\mu$ g/L and 96  $\mu$ g/L, respectively. Based on the foregoing, groundwater in the Semi-Confined WBZ is not targeted for active remediation at this time

#### 3.2 Evaluation of No Action Alternative and Natural Attenuation

Due to the elevated COCs at the site, the no-action alternative was not recommended at this time. Natural attenuation relies on natural mass reduction processes to achieve site-specific remediation objectives within a reasonable time frame that is comparable to other more active remedial methods. Aquifers within soil of higher permeability (e.g., sands and gravel) are favorable to biodegradation; however, they also allow faster horizontal and vertical migration of the contaminant plume. Soils with lower permeability (e.g., clays and silts) increase the rate of biodegradation; however, migration is also retarded. Monitoring contaminant concentrations over a time period generates the primary evidence for the occurrence of natural attenuation. If natural attenuation is occurring, the plume will shrink and migrate more slowly than expected. The many factors involved during natural attenuation include aerobic and anaerobic biodegradation. dispersion. volatilization. and adsorption. Of these. biodegradation is the only component that results in a significant reduction of petroleum mass. PHCs and their constituents are generally biodegradable as long as indigenous microorganisms have an adequate supply of nutrients and electron acceptors, and biological activity is not inhibited by substances toxic to the organisms. Aerobic biodegradation tends to occur at the fringe of the dissolved plume and consumes oxygen, which, if not replaced, can limit the effectiveness of further aerobic biodegradation. Anaerobic biodegradation is predominant at the core of the plume and occurs much more slowly than aerobic biodegradation. To date, no attenuation parameters have been collected at the site for evaluation of the process of natural attenuation. Groundwater flow rates are an important factor in the calculation of movement toward an identified receptor. Flow rates will also influence the re-oxygenation process. Systems with low oxygen content can hinder aerobic biodegradation. It is widely accepted that oxygen levels greater than or equal to 2 mg/L in groundwater (2% in soil) are conducive to aerobic biodegradation. Other indications of well-aerated groundwater are shown by the presence of chemicals in their oxidized state (Fe3+, Mn4+, NO3-, and SO4<sub>2-</sub>). Extreme temperatures prohibit microbial growth. The optimum temperature range is from 5 C to 45 C. Optimum pH should be 6 to 8.

The primary evidence of occurring natural attenuation exists, as illustrated by the declining COC concentration trends, however, long time spans for degradation to occur to below ESL are anticipated. For example (as shown in Section 2.8) it was estimated that TPH-g degradation to below ESL would require between 4.25 and 15.67, and even possibly 74.61 years (although the highest estimate is likely erroneous, as discussed above). The least favorable predictions concern the degradation of benzene. Benzene exhibited an increasing trend in SOMA-7 and ESE-1, and it was calculated that it would require approximately 89 years in order for benzene to reach the remediation goals for groundwater that is a current or potential source of drinking water. This indicated that attenuation alone may not be adequate to address the existing site contamination. Furthermore, in order to fully evaluate the progress of natural attenuation, the following data (not

previously assessed at the site) should be gathered during the next four GWM events: DO, ORP,  $Fe^{+2}$ ,  $NO_{3-}$ , and  $SO_4^{-2}$ .

Also, natural attenuation should be considered only at low-risk groundwater sites contaminated by leaking petroleum fuel USTs, as defined by CRWQCB's January 5, 1996 interim guidance (discussed in an earlier section), and when a feasibility study supports the economics of a long-term commitment. Since at this time the site could not be qualified as a low-risk groundwater site, natural attenuation would not be appropriate for addressing all remedial target zones identified above.

# 3.3 Evident Data Gaps for Selecting a Corrective Action for the Site

The following summarizes apparent obstacles for preparation of a complete and comprehensive CAP:

- No data results obtained from any treatability or pilot study(ies) exist at this time. These data are the basis for the remedial design and typically demonstrate the effectiveness of the proposed remediation system(s). Data analysis, which evaluates and compares the suitable corrective actions, utilizes these data.
- Since no pilot studies were completed, it is extremely difficult to estimate the amount of time required to achieve proposed cleanup goals for each proposed remedial alternative.
- Since no pilot studies were done, it is also difficult to provide a site-specific cost comparison of the various methods. Cost analyses would include all aspects of the proposed corrective action (e.g., planning, construction, operation, maintenance, reporting, verification monitoring, disposal, and decommissioning).

Therefore, as part of this report, SOMA conducted screening evaluation for several remedial approaches and proposed further pilot testing.

# 3.4 Evaluation of Appropriate Remedial Alternatives

Applicable remediation technologies for a CAP are identified and evaluated in the following sections. As mentioned earlier, a no-action alternative was rejected due to the nature and extent of the contamination present in relation to potential sensitive receptors. Table 7 summarizes feasibility of screened remedial approaches. As could be seen from above table, several approaches could be utilized at the site.

The following technologies were evaluated:

#### A. In Situ Technologies

In situ technologies involve reduction of affected media toxicity, mobility or volume without removal of the media from the subsurface. Advantages of in situ technologies can include reduction in waste or treatment residuals requiring disposal, reduction of treated media volume, and reduced potential for worker and public short-term exposures. Disadvantages of in situ technologies typically include reduced effectiveness due to soil heterogeneity, difficulty with verification of remediation progress assessment, and possible contribution to migration of dissolved petroleum hydrocarbons.

# B. Ex Situ Technologies

Ex situ technologies involve reduction of affected media toxicity, mobility or volume after removal of the media from the subsurface. Advantages of ex situ technologies can include effectiveness in plume migration control, availability of remedial equipment, and increased success using well-understood and proven technologies. Disadvantages of ex situ technologies typically include greater volumes of affected media requiring treatment, disposal of waste or treatment residuals, and greater potential for short-term exposure of site workers and the public. Ex situ, technologies applicable to the site include excavation, SVE, and MPE including two-phase and dual-phase extraction methods. Extracted groundwater could be treated by adsorption onto activated carbon. After treatment, groundwater is usually discharged to the local sewer system or to surface water drainage under a National Pollution Discharge Elimination System (NPDES) permit.

#### C. Containment Technologies

Containment technologies are used to prevent migration of petroleum hydrocarbons from the site and protect groundwater beneficial uses. Implementation of a mechanical barrier system will be impractical in a developed an urban commercial setting.

# D. Institutional Controls

Institutional controls (ICs) are used to prevent exposure of persons to affected media during corrective actions. ICs do not reduce toxicity, mobility or volume of affected media. Appropriate ICs for implementation at the site include groundwater use restrictions. Institutional controls, such as deed restrictions and safety procedures for construction workers, might be placed on the site to restrict land development to commercial use and minimize exposure. At this time, ICs are not considered feasible as a remediation option for the site.

# 3.5 Evaluated Technologies

The following appeared to be suitable for site remediation and were evaluated in more detail:

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

- 1. Soil excavation and off-site disposal
- 2. Soil vapor extraction
- 3. Multi-phase extraction
- 4. Groundwater extraction and treatment
- 5. Air sparging
- 6. Enhanced aerobic bioremediation and chemical oxidation

#### 3.5.1 Soil Excavation and Off-Site Disposal

Soil excavation and off-site disposal is a well-proven and readily implementable technology, and a very common method of removing hazardous materials from a site. Contaminated material is removed and transported to permitted off-site treatment and/or disposal facilities. Excavation and off-site disposal is applicable to the complete range of contaminant groups with no particular target group.

Limitations of excavation:

- Physical dangers involved in working with heavy excavation equipment.
- Prohibitively high costs if the excavated volume is large or if the source materials removed are subject to land disposal restrictions that lead to high ex situ treatment costs.

Advantages of excavation:

- Source materials that can contaminate the groundwater system are removed quickly.
- Contaminant migration out of the source area stops as soon as excavation is completed.
- Excavation can compare favorably in cost and timeframe to in situ treatments where source areas are small and easily defined.
- Its perceived simplicity may make it more acceptable to responsible parties and stakeholders than innovative technologies.

Based on available data, it was determined that soil contamination extends to approximately 12 feet bgs; therefore, excavation beyond 12 feet bgs should not be necessary. Although excavation would not need to extend beyond 12 feet bgs, it was deemed to be a less desirable remedial option at this time, due to the fragmented nature of soil contamination. This fragmentation would likely require at least two excavation sites located in the immediate vicinity of the site building, resulting in unnecessary negative long-term impact on the site business and relatively high excavation costs per ton of addressed soil, in addition to the inadequacy of this alternative in remediating impacted groundwater beneath the site. However, it should be noted that excavation is an effective remedial approach for addressing shallow soil contamination at the site. Due to the fragmented nature of soil contamination and logistical issues associated with its implementation, SOMA recommends conducting pilot testing for other remedial approaches first and re-evaluating the cost of excavation as compared to other remedial options, before making a final determination.

# 3.5.2 Soil Vapor Extraction

Soil vapor extraction (SVE) is a remedial alternative typically used to remove PHCs impacting unsaturated soils. Advantages include ease of implementation with commonly available equipment, and potential for increase of bioremediation rates under some conditions. Disadvantages include limited recovery rate by diffusion, limited effectiveness in heterogeneous soils, and some safety and operational concerns related to presence of high concentration vapors, and upwelling of the Shallow WBZ. Due to the fine-grained nature of the shallow soil, SVE might be less effective than some other remedial options in addressing soil contamination at the site, and ineffective in remediating groundwater contamination at the site.

#### 3.5.3 Multi-Phase Extraction

Multi-phase extraction (MPE) combines soil and groundwater treatment for remediating contamination. This alternative consists of extracting vapor and liquids from a common well, rather than from wells specifically designed to allow extraction of vapor and/or groundwater only. Vapor and liquid are removed from each well using a high vacuum pump (such as a liquid ring pump), with liquids decanted into a separate holding tank (knockout pot), and the resulting separate phases (liquid and vapor) treated using granular activated carbon (GAC), internal combustion engine (ICE), CatOx, air stripper, or other method, followed by discharge of the treated effluent to ambient air, and/or to the sanitary sewer or storm drain. Different configurations, such as dual- or two-phase extraction, can be achieved based on unique site-specific requirements.

MPE can accelerate removal of soil and dissolved groundwater contamination and remediate capillary fringe and smear zone soils with minimal disturbance to the site. MPE is most effectively implemented in areas, such as the site, with saturated soils exhibiting moderate to low hydraulic conductivity (silty sands, silts, and clayey silts). By lowering the groundwater table at the point of vapor extraction, MPE enables venting of soil vapors through previously saturated and semi-saturated (capillary fringe) soils. High vacuums typically associated with dual phase extraction (DPE) systems enhance both soil vapor and groundwater recovery rates.

The following disadvantages are associated with MPE:

• costs to implement are high at sites with high-permeability soil

- may generate large quantities of groundwater that require treatment
- requires specialized equipment with sophisticated control capacity
- requires control and monitoring during operation

Due to fragmentation of the smear zone, fine-grained nature of the WBZ and the high cost of continued MPE operation, this method may not be the most cost effective if utilized over a long period. However, due to the limited mass and nature of soil impact, and the ability of this technology to remediate saturated and unsaturated soils, it will be more effective than SVE in remediating the shallow soil and groundwater contamination at the site. Since MPE has the potential to be effective at the site, further pilot testing is necessary to determine cost effectiveness of this remedial option.

# 3.5.4 Groundwater Extraction and Treatment

A groundwater pump-and-treat system (GWETS) alone will not be effective in remediating the shallow soil contamination at the site; however, it will aid in containment of the plume and remediation of the dissolved contaminant mass. Therefore, since GWET will not address all target areas, it was evaluated only for effectiveness in remediating groundwater impact of the Shallow WBZ.

The basic components of a GWETS include groundwater extraction, aboveground treatment, disposal of treated water, groundwater monitoring in the subsurface, and process monitoring in the treatment system. A short-term goal of the GWET would include plume containment, and a long-term goal would include groundwater cleanup. Extraction from groundwater extraction wells by a downhole electrical pump is more cost effective than installation of a groundwater extraction system. The GWETS has the capability to create a capture zone, preventing contaminant plume migration and reducing dissolved-phase COC concentrations in the source area, and thus expediting remediation and restoring groundwater quality in the WBZ. At this time pilot testing for other remedial technologies is proposed, however this option will be reevaluated as part of CAP.

# 3.5.5 Air Sparging

Air sparging (AS) is an in situ remedial technology that reduces concentrations of volatile constituents in petroleum products that are adsorbed to soils and dissolved in groundwater. This technology, involves the injection of contaminant-free air into the subsurface saturated zone, enabling a phase transfer of hydrocarbons from a dissolved state to a vapor phase. The air is then vented through the unsaturated zone. Air sparging is most often used together with soil vapor extraction (SVE), but it can also be used with other remedial technologies such as MPE. AS has been found effective in reducing concentrations of volatile organic compounds (VOCs) found in petroleum products at UST sites. AS is

generally more applicable to lighter gasoline constituents, because they readily transfer from dissolved to gaseous phase.

When AS is combined with vapor extraction, the system creates a negative pressure in the unsaturated zone through a series of extraction wells that would be installed in the downgradient area (near the site building) to control the vapor plume migration. When utilized in this manner, air bubbles containing chemicals in the form of soil gas are removed from the subsurface. As such, this can remove chemicals from saturated and unsaturated media. One of the limitations of AS is the fact that system performance often times may be difficult to measure or interpret. As injected air rises through the formation, it may volatilize and remove adsorbed VOCs in soils within the saturated zone, as well as strip dissolved contaminants from groundwater. AS also oxygenates groundwater and soils, enhancing potential for biodegradation at sites with contaminants that degrade aerobically.

Air injected into aguifer materials has been shown to typically migrate in channels. If air bubbles form and move, the bubbles would likely induce advective water flow, resulting in substantial contact between the air and aguifer materials. However, an average grain size of 2.0 millimeters or larger is necessary for bubble flow to occur. If bubbles do not form, air will flow in channels and primarily have contact with the contaminated soil and groundwater within these channels. Generally, a more desirable air channel distribution is achieved in uniform, coarse-grained soils. Sparging in fine-grained or highly stratified soils may require very high pressures that approach or exceed soil fracturing. Presence of coarser-grained soils in the areas of greater contamination, the type of contamination that will readily volatilize, and lack of visible free product and impermeable layers, indicates that this technology may be successful at the site. Based on subsurface conditions (fine-grained sediments in the shallow subsurface) and contaminant concentrations, it was determined that AS alone may not reduce the contaminant mass to below acceptable levels warranting site closure. Based on field studies conducted by others (Calclean, www.calclean.com), it is established that in general, AS tends to significantly improve MPE effectiveness.

The introduction of air through several sparge wells stimulates in situ aerobic biodegradation of dissolved-phase petroleum hydrocarbons by increasing subsurface oxygen concentrations and enhances COC volatilization. Based on nature of soil contamination, this approach alone will not be effective in addressing all impacted site areas. However, it may also be utilized as an enhancement to either SVE of MPE. At this time, pilot testing is necessary to determine if utilizing air sparging combined with MPE will be a cost effective and feasible approach for enhancing the remediation at the site. An initial pilot testing of AS effectiveness will allow to quickly gauge whether AS is likely to be effective, moderately effective, or ineffective.

#### 3.5.6 Enhanced Aerobic Bioremediation and Chemical Oxidation

This alternative includes introduction of an oxidizing compound or oxygen releasing compound (ORC), or both (for example ORC or RegenOx) into the subsurface via injection wells or borings. Enhanced aerobic bioremediation technologies are used to accelerate naturally occurring in-situ bioremediation of PHCs, and some fuel oxygenates such as MtBE, by indigenous microorganisms in the subsurface. Petroleum contaminant decomposition and in situ destruction may be accomplished using chemical oxidation technologies. In contrast to other remedial technologies, contaminant reduction during chemical oxidation can be seen in short time frames (e.g., weeks or months).

The introduced compounds are selected to facilitate degradation of the dissolved-phase hydrocarbons without requiring extraction or removal of effluent, vapor, or water from the subsurface. This alternative may require the installation of injection wells and/or wells to facilitate introduction of selected compounds and monitoring of the subsurface to assess treatment results. Due to the shallow nature of the source area, chemical injection shallower than 5 feet bgs may cause foaming and resurfacing through cracks in the ground of injected substances. Although it does not appear that this approach will be most desirable for addressing the near surface soil contamination (for which excavation will be the most effective alternative), injection may be effective in addressing groundwater contamination and deeper source areas.

Therefore, SOMA proposes evaluating whether injection of ORC and RegenOx will be effective at the site. RegenOx is a two-part chemical oxidant capable of treating a broad range of soil and groundwater contaminants without negative effects on aquifer/soil geochemistry or significant adverse impact on subsurface utilities (part A is an oxidant, part B an activator). ORC is a food-grade calcium oxy-hydroxide powder, which when hydrated will allow a controlled release of molecular oxygen for up to 12 months. RegenOx and ORC were selected for this site for their high effectiveness and low environmental impact. RegenOx is designed as an aggressive and fast acting (several weeks to 1 month) highcontaminant-concentration reducing technology (by means of oxidation); ORC is designed to stimulate aerobic biodegradation for extended periods up to 12 months after a single injection event, and to maximize contaminant remediation. During PHC treatment, in addition to oxidation of PHCs, RegenOx also produces a fair amount of oxygen as a result of oxidation, providing for advantageous and seamless transition from in situ oxidation to enhanced aerobic bioremediation. Product information sheets are included in Appendix E. Since injection has the potential to be effective at the site, further pilot testing is necessary to determine cost effectiveness of this remedial option.

# 4. PROPOSED PILOT TESTING

Based on the above feasibility study, SOMA recommends conducting two pilot testing events in order to determine whether MPE, MPE enhanced with AS, or chemical oxidation will be feasible alternatives for the site.

Results of the proposed pilot testing will be utilized in evaluating feasible remedial alternatives, and preparation of the CAP.

During the pilot testing, SOMA proposes to perform the following:

- Task 1: Test Preparation, Notifications, and Health and Safety Plan Preparation
- Task 2:Installation of Observation Wells
- Task 3:MPE and Air Sparging Pilot Testing
- Task 3: Injection Pilot Testing
- Task 4: Report Preparation

#### 4.1 Test Preparation, Notifications, and Health Safety Plan Preparation

SOMA will prepare a site-specific Health and Safety Plan (HASP). The HASP will be prepared according to the Occupational Safety and Health Administration (OSHA), "Hazardous Waste Operation and Emergency Response" guidelines (29 CFR 1910.120) and the California Occupational Safety and Health Administration (Cal/OSHA) "Hazardous Waste Operation and Emergency Response" guidelines (CCR Title 8, section 5192). The HASP is designed to address safety provisions during field activities and protect the field crew from physical and chemical hazards resulting from drilling and sampling. The HASP establishes personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures, and emergency action plans. The HASP will be reviewed and signed by field staff and contractors prior to beginning field operations.

In accordance with conditions of the various-locations Bay Area Air Quality Management District (BAAQMD) air discharge permit for the mobile treatment system unit (MTS) to be used for pilot testing. SOMA will prepare a permit modification because pilot testing may exceed 5 days/120 hours. Upon approval of the permit modification, SOMA will inform BAAQMD of the location, date and duration of the test and the vapor treatment to be utilized, and notify ACEHS a minimum of 72 hours in advance of pilot testing. Provisions will be made for on-site pretreatment of extracted groundwater utilizing granulated activated carbon (GAC) vessels and discharge, under the appropriate discharge permit, to the on-site wastewater inlet. A temporary wastewater discharge permit from the City of Castro Valley will be obtained prior to initiating pilot testing.

SOMA will obtain all appropriate drilling permits for installation of proposed observation wells, to be utilized during the proposed pilot testing, and make all appropriate notifications to the ACEHS and Underground Service Alert (USA) prior to drilling. USA will be notified to verify that the drilling areas are clear of underground utilities. Following USA clearance, SOMA will retain a private utility locator to survey proposed drilling areas and locate any additional subsurface conduits.

#### 4.2 Proposed Installation of Observation Wells for MPE Pilot Testing

SOMA proposes utilizing the two most impacted southerly wells, SOMA-5 and SOMA-7 (2-inch wells screened from 5 to 15 feet bgs). Since observation wells are necessary when determining effectiveness of MPE pilot testing, and existing on-site wells are inadequate to provide complete coverage, SOMA proposes installation of two additional Shallow WBZ observation wells, which could also be used in future monitoring events. SOMA proposes installing the two observation wells utilizing hollow stem auger (HSA) drilling methods. General field procedures are summarized in Appendix E.

SOMA proposes installing two 2-inch shallow observation wells, OB-1 and OB-2, installed approximately 8 to 15 feet from the designated extraction wells. Well locations are illustrated in Figure 31. As can be seen from this figure, another area of elevated COC concentrations in soil exists north of the former USTs at B-3 sampling location. If MPE pilot testing proves effective, additional extraction wells may to be installed in order to provide a more complete radius of influence. Note that well SOMA-5 is situated between the two former UST excavations, backfilled with drain rock up to 7 feet bgs (creating potential preferential pathways in the vicinity). Since the proposed OB wells will be utilized during AS, both wells are positioned up-gradient from their respective extraction wells.

During installation of observation wells, the drilling crew will core the concrete surface, drill (utilizing HSA), and continuously sample well borings for lithologic logging purposes and chemical content. In addition, cored soil will be checked for attributes characteristic of smear zone, hydrocarbon odors, and visual staining, and screened using a photoionization detector (PID). PID readings will be noted on boring logs. SOMA proposes collecting soil samples if varied lithologies or highly impacted areas are encountered during drilling. Upon soil sampling, both ends of each sampling tube will be secured using Teflon tape and tubes will be immediately placed in a chilled ice chest. Soil samples will be delivered to a California state-certified laboratory under appropriate chain-of-custody protocol for analysis.

Since the Shallow WBZ was not laterally continuous at SB-6 and SB-9 locations, SOMA proposes allowing the water to stabilize at each advanced observation well, before proceeding with its construction. Screening intervals at SOMA-5 and SOMA-7 wells will be utilized as a guideline when determining appropriate screening for the proposed observation wells. All observation wells will be installed with 2-inch-diameter PVC casings with 0.02-inch-wide by 1.5-inch-long factory-slotted perforations (or other appropriate perforation); the upper portion of each well will consist of blank PVC. A 2/12 sand pack filter will be emplaced around the screens and surged to consolidate the filter packs and eliminate voids. The filter packs will be emplaced to a height of at least 1- foot above the top of the screens. The filter pack will be sealed with at least a 2-foot-thick hydrated bentonite plug followed by an annular grout seal of neat cement. A PVC cap will be fitted to the bottom casing, without adhesives or tape, to protect the extraction well from accidental damage or tampering; traffic rated utility box with internal steel protective covers and locking caps will be placed over the extraction wellhead, and will be set in concrete and resting flush with existing grade. During the proposed pilot testing, provisions will be made to equip the wellheads with appropriate compression fittings.

#### 4.2.1 Development and Survey

SOMA will develop proposed observation wells a minimum of 72 hours following installation. Proper development will facilitate more effective pilot testing. The observation wells will be developed by bailing out sediment-rich groundwater followed by pumping and surging. This process will continue until purged groundwater clarifies substantially and groundwater quality parameters have stabilized. Groundwater stabilization parameters will be maintained during the development process and records of this data will be included as an appendix to SOMA's well installation report.

SOMA proposes surveying all newly installed observation wells, as they may be utilized in future monitoring events, by a licensed surveyor to comply with GeoTracker requirements. The survey report will be included as an appendix to SOMA's well installation report. Latitude and longitude coordinates will be surveyed to Zone III NAD 83 datum, and the elevation coordinate to NAVD 88 datum from GPS observations. Survey data will be uploaded to the GeoTracker database

# 4.2.2 Laboratory Analyses

Soil samples collected during observation point installation will be analyzed for the following:

- TPH-g
- BTEX, MtBE
- VOCs and fuel oxygenates, additives and lead scavengers including TBA, ETBE, DIPE, TAME, 1,2-DCA, EDB, and ethanol.

Above analysis will be conducted using USEPA Method 8260B (full list), except for TPH-g which will utilize Method 8015.

#### 4.2.3 Waste Collection, Storage and Disposal

Soil cuttings and wastewater generated during installation activities will be temporarily stored on-site in a secure area in DOT-rated 55-gallon steel drums pending characterization, profiling, and transport to an approved disposalrecycling facility. Each drum will be labeled with site address, contents, date of accumulation, and contact phone number.

#### 4.3 MPE Pilot Testing

SOMA proposes conducting MPE combined and air sparging pilot testing within the Shallow WBZ where the highest contaminant concentrations have been observed, utilizing SOMA-5 and SOMA-7 as extraction wells and OB-1 an OB-2 as observation (sparging) wells, and vice-versa. If during OB well installation a more contaminated or more permeable areas than those observed in wells SOMA-5 and SOMA-7 are encountered, the OB wells may be also used as primary extraction wells. Other on-site wells will also be used as observation wells to evaluate MPE influence in their vicinity.

#### 4.3.1 Pilot Test Objectives

The overall objective of proposed pilot testing is to determine whether selected technologies are sufficiently effective and capable of achieving the removal of contaminant mass in the most efficient, cost effective and timely manner.

The first site-specific objective of MPE pilot testing is to lower the groundwater table to increase the volume of semi-saturated soil through which airflow and volatilization of constituents occur. The second objective is to remove soil vapor and groundwater from the impacted zone for treatment. The third objective is to achieve sufficient contaminant mass removal and evaluate effectiveness of the proposed technology and assess site conditions with regard to the possibility of full-scale implementation.

Pilot test results will be utilized to determine the following:

- Zone of Influence (ZOI) Evaluation: provide indications of vadose and saturated zone response to the application of vacuum. Effective ZOI can be discerned through monitoring a variety of data, including vacuum in soil gas monitoring wells and hydraulic heads in monitoring wells. ZOI will be determined by utilizing monitoring point vacuum gauges, wellhead and monitoring point vacuum from wellhead vacuum gauges and groundwater fluctuations utilizing data loggers or water level meters.
- Mass Removal: determine whether tested technologies can accomplish removal of contaminant mass at satisfactory rates. Mass removal rates will be evaluated to determine whether, if applied over a longer time, the

technology has potential to significantly reduce mass. It should be noted, however, that it can be difficult to accurately determine long-term mass removal trends based on short-term pilot testing since rates of mass removal will likely decline over time. Thus, the rate observed during pilot testing should not be expected to continue over a long period. Prior to recommending the appropriate technology, contaminant mass will be re-evaluated to allow more thorough evaluation of effectiveness of proposed remedial technologies.

- Subsurface Soil Properties/Parameters Evaluation: provide further information about the nature and variability of site-specific subsurface parameters, such as air permeability, field-identified hydraulic conductivity of the formation, and airflow rate, to be used in calculating mass removal rates and contaminant distribution.
- Groundwater pump rates: evaluate volume of extracted groundwater during the event.
- Discharge Concentrations/Design Parameters: establish initial levels of contaminants in extracted gas and liquid. These data will be used for treatment system design and discharge permitting.
- Cost: evaluate cost of full-scale system implementation and operation, as well as assessment of duration of soil and groundwater remediation.

#### 4.3.2 Pilot Test Duration

To accomplish the above scope of work, SOMA proposes conducting a 5-day MPE pilot test. However, MPE pilot testing should continue long enough to achieve stable conditions and a steady-state dewatering of the water-bearing unit, and to obtain necessary data to evaluate its effectiveness. The typical period to approach steady-state dewatering varies, however, based on field observations. Five-day tests typically provide information necessary to determine effectiveness. However, an extended pilot test can be conducted as well (with prior ACEHS approval), if during the 5 days the system has not reached equilibrium or not enough data has been obtained to judge MPE effectiveness. In addition, a longer test will allow evaluation of long-term changes in soil vapor concentrations to be used in evaluating how concentrations will vary over time. Therefore, longer testing can aid in more accurate estimation of the time required for full remediation. Toward the end of the proposed 5-day test period, SOMA will evaluate all available data and determine whether sufficient data has been collected. If, based on this preliminary data review, extended testing is necessary, SOMA will contact ACEHS before the end of the 5 days to discuss the possibility of an extended pilot test (possibly 10 days).

### 4.3.3 Pilot Test Configuration

Duration of extraction from each well will be evenly distributed over the testing period, or if concentrations in one well reach steady state, then extraction will be switched to a different well to allow concentrations in that well to rebound. SOMA will utilize individual wells or all wells simultaneously, to evaluate individual and combined efficiencies. Figure 32 shows a typical layout and process flow diagram for a mobile MPE system. During implementation of MPE pilot testing, SOMA will follow guidelines and procedures documented in US Army Corps of Engineers Manual "Multi-Phase Extraction." (US ACEM, 1999). All pertinent pilot testing information including but not limited to operation guidelines and field data sheet templates are attached as Appendix E. The layout of the pilot test is illustrated in Figure 32.

During proposed pilot testing, SOMA will evaluate the two primary MPE system configurations for effectiveness at the site: dual-phase extraction (DPE) and two-phase extraction (TPE). General configuration diagrams are included in Appendix E. DPE utilizes separate mechanical systems for pumping groundwater and extracting soil vapor from the smear zone. TPE utilizes a single vacuum pump to extract both groundwater and soil vapor through small-diameter drop tube (stinger) piping inserted in the well. The most cost-effective MPE configuration for each specific situation is determined by aquifer permeability and the corresponding yield of air and water. The water production rate needed to dewater the smear zone, and the induced vacuum generated for soil vapor extraction, will determine which system is appropriate.

If the water production rate is high (>2 gpm/well), DPE will be utilized. If the water production rate is low (<2 gpm/well), then TPE configuration will be utilized. If the induced vacuum is high (8 to 10 inches of mercury), then TPE is appropriate. If the induced vacuum is low (4 to 6 inches of mercury), DPE is more appropriate.

#### 4.3.4 Pertinent Test Equipment

Most pilot systems are installed for temporary operation only. Compact equipment and treatment units that can be easily connected are very beneficial, especially when operating within a high traffic area with limited access and available space (e.g., gasoline station, loading dock). In some cases, however, pilot testing may represent the first phase of a staged implementation at the site. In this case, it may be desirable to oversize the equipment and equipment shelters in anticipation of future phases of the project. Therefore, SOMA proposes utilizing a self-contained mobile treatment system (MTS) during the pilot test. The layout of the pilot test is illustrated in Figure 32.

Employment of compact equipment and an MTS unit is effective because it can be easily conducted in high traffic areas with limited access and available space. Below are details.

- The MTS is equipped with electrical generator, air compressor, liquid ring vacuum pump rated at 25-horsepower and 428 standard cubic feet per minute, electrical submersible pumps, air/water separator vessel, discharge hoses and traffic-rated hose ramps, drop tubes (stingers), and a thermal oxidizer for vapor treatment. The oxidizer operates under a valid various locations BAAQMD permit.
- 2. The MTS has adequate flow/vacuum range for site-specific soil type and the system is equipped with vacuum pressure relief dilution valves and temperature gauges.
- 3. MTS is self sufficient with capability to generate its own power utilizing diesel powered generator
- 4. A flow measurement device will allow for measurement of total flow; a sampling port to sample influent and effluent also be available. Samples will be collected throughout the pilot test to provide sufficient data to evaluate system efficiency.
- 5. All piping materials utilized during pilot testing will be appropriate for site contamination; aboveground lines connecting the individual extraction wells and the treatment system unit will be protected by rubberized traffic-rated ramps to allow for uninterrupted station operation.
- 6. The oxidizer for treatment of extracted vapor operates under valid variouslocations BAAQMD permit.
- 7. Extracted soil vapor concentrations will be measured with an appropriately calibrated FID or PID.

As discussed above, two possible MPE system configurations, DPE and TPE, can be utilized. During the pilot test, influent flow rates will be regulated to achieve maximum system efficiency. Furthermore, care will be taken to seal the tops of all wells from the atmosphere to prevent short-circuiting of airflow. This will be achieved by installing a valve at the top of each monitoring/observation point, which will normally be closed but can be opened to take measurements or make necessary pilot test adjustments.

The downhole stinger utilized during pilot testing will consist of flush-threaded Schedule 40 PVC well casing (stinger) connected by flexible hose to the MTS, and slowly extended deeper into the extraction well as groundwater is removed from the well casing/screen by vacuum. Stinger depth will vary based on the pilot testing response parameters but likely will be slowly lowered until it reaches a steady state dewatering at 1 foot from the bottom of the extraction well. Due to the low water recharge rates observed during well installation, a possible complete extraction well dewatering could be seen.

Vacuum generated by the pilot test will be measured at the observation point using a magnehellic vacuum gauge (Dwyer) attached to a barb fitting connected to the air-tight valve. The gauge will have minimum range of 0.1 inches of water to 1.0 inches of water. Should vacuums greater than the minimum range be detected during the pilot test, a gauge with higher range will be substituted.

Depth to water changes in observation wells will be recorded throughout the test utilizing appropriate data loggers or water level probes. As necessary, all equipment utilized in pilot testing will be calibrated according to manufacturer's specifications.

### 4.3.5 Pilot Test Monitoring Methods

The following summarizes test monitoring methods to be utilized during pilot testing:

- 1. Above-ground vacuum and fluid flow. Measurements for above-ground vacuum are typically taken in two places: at the well head and at the inlet to the above-ground pilot system equipment (e.g., immediately upstream of the gas/liquid separator). The vacuum difference between the extraction equipment and the well head will provide an indication of the pressure drop over the conveyance piping. Vacuum measurements taken at the wellhead also give an indication of the vacuum being applied to the vadose zone.
- 2. Above-ground gas flow rate during TPE. Measurement of the extracted gas flow rate is performed using appropriate measuring devices. Measurement of gas velocity is typically performed using a Pitot tube, hotwire anemometer, venturi meter, or other appropriate device positioned downstream of the point where liquid is removed from the extracted gas stream.
- 3. Above-ground liquid flow rate during TPE. Measurement of extracted liquid flow is performed by measuring the volume of liquid that is discharged from the gas-liquid separator over a given time interval (e.g., recording the flow rate of water pumped from the separator).
- 4. Above-ground fluid flow during DPE. During DPE, measurements should be taken from individual wells and from the combined gas and liquid streams emanating from multiple wells, if multiple wells are used.
- 5. Contaminant mass removal. Contaminant mass removal is calculated by multiplying the flow rate of gas or liquid extracted from the subsurface by the corresponding contaminant concentration in the gas or liquid stream.
- 6. Vacuum influence within the unsaturated zone. This can be monitored from observation wells using differential pressure gauges, which measure the difference between the pressure applied to the gauge and atmospheric pressure (i.e., they read "gauge" pressure).
- 7. Response of the water table to MPE. This is an important indication of the influence of MPE on the saturated zone. Drawdown is monitored by

placement of data loggers or water level meters in observation wells screened across the water Table. Drawdown is the hydrostatic head measured at such transducers prior to MPE, less that measured during MPE.

8. Measurements of drawdown. Coupled with measurements of liquid flow, applied vacuum, and elevation head at the pump inlet, this can be used with an appropriate analytical solution to estimate the transmissivity of that portion of the formation that is intersected by the well screen.

#### 4.3.6 Proposed Baseline, Test, and Post-Test Data Collection

All wells utilized in pilot testing will be sampled prior to initiating testing and at least one week after pilot testing. To minimize costs, pilot testing ideally will be coordinated with the scheduled groundwater monitoring event for either the preor post-test sampling. Further post-test sampling will be conducted by evaluating contaminant concentrations in short-term and longer-term effects on site contamination.

Groundwater elevations will be measured at observation wells as well as existing groundwater monitoring wells using an electrical water level meter graduated in tenths of inches. Before start of pilot testing, water-level meters will be calibrated against each other in the field by measuring known water levels in existing monitoring wells.

Before pilot testing begins, all appropriate gauges will also be calibrated in the field, in accordance with manufacturer recommendations. Each observation well will be vacuum tested through an airtight valve attached to the airtight well cap observing any evidence of air leakage around the cement/bentonite grout seal of the well. Foam, such as shaving foam, will be used to detect such leaks; the foam collapses if air leakage under vacuum is occurring. If leakage is evident, the well will be repaired and, if not feasible, it will not be used as a vacuum monitoring/extraction well.

# 4.3.7 Pilot Testing Start-up and Operation

During initial startup, SOMA will check for blockages, piping leaks, equipment functioning, and safety of the overall test setup and operation. Over the first two hours of the test, and when a new well or combination of wells is utilized, data from observation wells will be collected more frequently (every 10, 30, 60, 90, and 120 minutes). Thereafter, groundwater and vacuum measurements will be recorded daily, at a minimum of every 4 hours during daytime operating hours.

Prior to insertion of the stinger, the total depth of each well, utilized at any given time, and depth to groundwater will be measured. The stinger utilized will consist of flush-threaded Schedule 40 PVC well casing or flexible hose connected to the MTS, and slowly extended deeper into the extraction well as groundwater is

removed from the well casing/screen by vacuum, until the bottom of the stinger is at approximately 1 foot from the bottom of the well.

The MTS system will operate continuously throughout the pilot test; however no overnight data collection is proposed at this time. Following initial startup, MTS operational data will be measured at approximately the same frequency as observation wells and include:

- 1. Oxidizer temperature and pump/air temperature as displayed on the MTS control panel.
- 2. Pump/air temperature as displayed on the MTS control panel.
- 3. Total flow will be measured within the treatment system using a pilot tube after the vacuum pump outlet before the oxidizer.
- 4. Dilution flow will be read directly at the gas flow gauge at the air dilution flow control valve before the liquid ring pump. Flow will be reported in scfm units.
- 5. Total liquids removed will be read by the flow meter after the transfer pump attached to the bottom of the knockout pot.
- 6. Vacuum generated by the pilot test will be measured at the observation wells as well as existing groundwater monitoring wells. Induced vacuum will be measured using a magnehellic vacuum gauge (Dwyer), attached to a barbed fitting attached to an airtight well cap with expanding gasket fitted to the inside of the well casing. The gauge will have a minimum range of 0.1 inches of water to 5-10 inches of water. Should vacuums greater than the maximum range be detected during the pilot test, a gauge with higher range will be substituted.
- 7. Vapor samples and concentration readings will be taken on the discharge side of the liquid ring pump. Vapor samples will be collected in Tedlar bags and submitted to a California state-certified environmental laboratory for analyses. Samples will be collected at achievement of steady-state drawdown, in the beginning and at the end of the test. A sample will also be obtained from the oxidizer stack within 24 hours of the start of pilot test to demonstrate compliance with BAAQMD various-locations permit conditions.
- 8. Water table elevation changes will be measured utilizing appropriate water level instrumentation.
- 9. Extracted soil vapor concentrations will be measured with an appropriately calibrated flame ionization detector (FID) or PID calibrated to hexane.

Appendix E includes MTS Operational Data Sheets and MTS Monitoring Point Data Sheets for recording data.

The above data will be collected to determine the following:

- Gas phase mass removal and groundwater extraction rate increase at higher applied vacuum is favorable
- Water table elevation changes indication of zone of pumping influence. Steeper cone of depression may increase gravity gradient for LNAPL flow to well
- Groundwater mass removal increase may indicate that pumping is occurring from source area

Sections above detail procedures and measurements to be taken before, during and after pilot testing. Operational and monitoring data will be collected periodically during testing.

Appropriate groundwater samples will be collected from the effluent line to demonstrate compliance with the temporary waste discharge permit, which will be utilized for groundwater disposal.

Appendix E includes MTS Operational Data Sheets and MTS Monitoring Point Data Sheets for recording data. MTS operational data will include oxidizer temperature, pump/air temperature, total flow, dilution flow, well flow, and total liquids removed by vacuum.

# 4.3.8 Laboratory Sample Analysis

Collected groundwater samples will be analyzed for the following:

- TPH-g (EPA Method 8260)
- VOCs (EPA Method 8260, full list including 1,2-DCA)

Collected vapor samples will be used to evaluate contaminant mass removal rates. Vapor samples collected during the pilot test will be analyzed for the following:

• TPH-g and BTEX using USEPA Test Methods TO-3 and TO-15 (full list).

#### 4.3.9 Effluent Treatment Provisions

In order to minimize costs associated with groundwater disposal, SOMA proposes utilizing on-site treatment of extracted groundwater utilizing a GAC, and subsequent discharge of treated groundwater to a public sewer system under appropriate temporary discharge permits. Groundwater extracted during the pilot test will be stored on-site (Baker Tank), treated, and discharged to the local sanitary sewer at the on-site sewer drop cleanout.

Extracted vapor will be treated using an on-board thermal/catalytic oxidizer and discharged to the atmosphere under appropriate various-locations BAAQMD permit.

#### 4.3.10 Projected Schedule

The workplan will be implemented upon receipt of written authorization from ACEHS, and cost preapproval from the CWRCB Underground Storage Tank Cleanup Fund program. We anticipate that the proposed work, including observation wells installation, can be completed in six weeks following receipt of the required permits and approvals.

# 4.4 Air Sparging Pilot Testing

#### 4.4.1 AS Pilot Testing Summary

Field pilot studies are necessary to adequately design and evaluate any AS system. For cost saving purposes, the proposed observation wells (proposed in sections above) will be used during AS and MPE pilot testing. In addition, because sparging can induce migration of constituents, pilot tests without vapor extraction are generally not conducted. MPE will be utilized concurrently with AS to determine whether MPE effectively controls the vapor plume and whether AS improves the efficiency of MPE. Improvement in MPE efficiencies will be determined by evaluating the difference in influent vapor concentrations and mass removal rates during MPE testing alone and during MPE enhanced by AS. At this time, no dedicated sparge wells screened specifically for AS (targeting lower areas) are proposed.

Prior to preparations for the AS pilot testing, as part of the groundwater monitoring event that precedes the pilot test, SOMA proposes analyzing the groundwater for dissolved iron. Special consideration must be given if iron concentration is greater than 10 mg/L, but less than 20 mg/L, because periodic maintenance will be required for the permanently installed air sparging treatment system to remain operable. Sites with iron concentrations exceeding 20 mg/L will not be suitable for AS. If dissolved iron concentrations are below 10 mg/L, AS will be considered a suitable remedial technology and SOMA will proceed with proposed pilot testing.

Once the MPE portion of testing is complete, SOMA will utilize AS in combination with MPE. During this phase of pilot testing, MPE will be implemented in the same way as described in above sections.

It is anticipated that equal time will be allocated to each stage of the test (MPE and AS), though adjustments based on observed field conditions may be made. The duration of each phase will be determined in the field based on the observed field parameters. The AS portion of the test will be conducted with the sparging

point operating at variable sparge pressures (e.g., 5 pounds psig, 10 psig, etc.) and different depths (feet below dissolved phase plume). The vapor equilibrium will be obtained prior to changing the sparge rate or depth. When no change in vapor emission rates from baseline occurs, the AS system may not be controlling the sparge vapor plume, possibly due to soil heterogeneity. The duration of each test will depend on the time it takes for the measured parameters to reach equilibrium. Frequency of data collection will be largely based on site-specific factors. Field screening will be conducted for hydrocarbons with an FID or a PID. Gas samples will be collected for field screening in appropriate Tedlar bags.

Cycling or pulsing of the air flow during operation of an AS system promotes mixing of water in the treatment zone, effectively increasing contact between air and contaminated aquifer materials and reducing the effects of diffusion limitations and contaminant concentration gradients that form during continuous operation (EPA, 1997). Accordingly, SOMA proposes utilizing continuous as well as pulsing air injection during pilot testing to determine whether such operation will increase operation efficiency.

If AS is implemented at the site, provisions will be made for MPE system air removal rates to be at least five times greater than sparge system air injection rates; this will help to eliminate possible explosive hazards from developing during system operation.

# 4.4.2 AS Test Location and Equipment

The air injection system consists primarily of an injection well, injection blower or pump, and ancillary equipment to include a pressure relief valve, inlet filter, and flow control valve to meter injection rates. The AS equipment will consist of a 7.5-horsepower (or other appropriate size) trailer-mounted rotary vane compressor, equipped with pressure gauge, flow meter, and manifold for up to three AS wells, a typical pilot test schematic is shown on Figure 33.

Temporary aboveground plumbing and electrical connections will be utilized during pilot testing; care will be taken to ensure that the blower power supplies are adequate to prevent thermal overload, and that the air supply piping is compatible with the blower outlet temperatures. The surface mechanical system will be tested prior to injecting subsurface air to verify that the components work as designed. Injection pipes or tubing may be connected to the riser using threaded connections, fittings, or no-hub connectors; care will be taken to prevent air leakage at joints. It is advantageous to finish the well-head completion with a tee, with air injection from the side and a threaded plug on the top to allow ready access to the well for sampling or gauging. A check valve may be necessary for pulsed injection to prevent backflow up the well following shutdown.

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

DO concentrations (pre and post test) within the saturated zone could be used to estimate the extent of potential contaminant removal through biodegradation and an approximation of ZOI. Groundwater elevation changes will be monitored via water elevation probes in water table monitoring wells. Monitoring will be initiated immediately prior to commencing injection (to establish baseline conditions), and as continuously as practicable for each parameter during initial transient conditions. AS data sheets, which will be utilized for data collection during pilot testing, are attached in Appendix E.

Pilot testing equipment will be set up to allow control of the flow rate and pressure within each extraction/sparge location. During pilot testing SOMA will monitor vapor extraction rates, water extraction rates, air injection rates, vacuum/air pressure, and vacuum influence in nearby wells. Depth to groundwater will be measured before, during and after testing.

#### 4.5 Injection Pilot Test

SOMA proposes evaluating effectiveness of subsurface injection utilizing DP (Geoprobe) drilling technology. General field procedures are summarized in Appendix E. Prior to implementing any injection, SOMA proposes preliminary aquifer volume testing in the form of injection of a non-reactive (tap water) material. SOMA proposed injecting a volume of water that is approximately 25 percent greater than the anticipated volume of compound, to determine if subsurface hydrogeology will be conducive to injection of aforementioned contaminants.

This pilot testing will occur after the proposed MPE, pending permitting process and availability of necessary equipment. Results of this pilot testing will be utilized to determine the effectiveness of this approach and to design an effective injection grid based on observed subsurface conditions and contaminant concentrations in the treatment area. Based on known site geology and contaminant distribution, preliminary injection estimates were evaluated. The anticipated injection volumes are provided in Appendix E.

For the aquifer volume testing, SOMA will utilize the proposed IPT-1 and IPT-2 borings, shown in Figure 31. The estimated volume of water to be injected is 105 gallons through each injection point. This testing will help verify aquifer capacity to accept the designed volume of chemical compounds discussed above, and help establish pumping/injection rates to be used during the injection process. Aquifer testing results will be utilized to evaluate and adjust the proposed treatment injection volumes. Due to the limited nature of COC contamination in the Semi-Confined WBZ, this zone is not the target remedial zone. However, if the elevated COCs in well ESE-1R will not continue to decline in future quarters (post well-reconstruction), an active remedial action may be needed in the future. Therefore, for cost saving purposes, SOMA proposes that injection pilot testing be conducted on both WBZs, since it can be done through a single DPT

borehole, allowing for testing of deeper zone at a fraction of the cost. Therefore, SOMA proposes advancing each test boring to 25 (30) feet bgs and injecting tap water into both WBZs.

The aquifer test borings will be advanced using DP technology rig (Geoprobe 8040). DPT is an efficient method of advancing soil borings while preventing cross-contamination. It involves hydraulically hammering a set of steel rods into the subsurface with an injection rod attached. Appendix E describes the standard operating procedure for injecting substance into a boring using a Geoprobe pump with capabilities of up to 2,000 PSI. The injection point will be advanced to total depth and the water will be injected from the bottom of each boring throughout the entire anticipated treatment interval up to 3 feet bgs. Observations of more permeable areas and their respective injection rates will be documented on field notes and will be made part of final report. Once injection is complete, test borings will decommissioned according to Cal/EPA guidelines with a neat-cement grout mixture and completed at the surface with rapid-set cement grout and jet-black dye at the top to match existing grade.

The water injection rates as well as the final quantity of injected water will be evaluated to determine whether the test was very effective, moderately effective, or ineffective. If pilot testing shows this approach to be very effective, it will be evaluated against other pilot testing remedial options to determine the most costeffective remedial alternative. If it shows to be moderately effective, further evaluation may be conducted to determine whether different configurations or methodology may yield better results. For example, a more closely spaced injection grid may be evaluated for cost effectiveness. If this approached is not effective during aquifer testing, it will not be evaluated further.

Soil and wastewater generated during boring activities will be temporarily stored on-site in separate labeled DOT-rated 55-gallon steel drums pending characterization, profiling, and transportation to an approved disposal/recycling facility under appropriate waste manifests.

#### 4.6 Report Preparation

Upon completion of all field activities, SOMA will prepare a report documenting: observation wells, installation activities, pilot testing implementation and data evaluation, and conclusions and recommendations.

Data collected during the pilot tests will be analyzed and used to determine the following:

- Air/water flow rate necessary to achieve steady-state dewatering in each of the extraction wells
- Mass removal rate from each extraction well, cumulative if multiple wells are used, and mass removal trends and calculations

- Site specific configuration evaluation DPE vs. TPE
- Concentration and mass removal trends
- ZOI
- Subsurface properties
- Potential groundwater extraction rates
- Discharge concentrations/ design parameters
- Contaminant mass removal rates calculation and system effectiveness

The section reporting MPE pilot testing activities will also include the following:

- A description of the MPE pilot test, procedures and field equipment utilized, duration of test, and parameters measured, with and without AS implementation.
- Results of monitored field parameters and chemical analyses of samples collected during the pilot test (a diagram identifying test equipment and where measurements were made, identification of the casing to stinger vacuum ratio and its impact on the use of MPE; calculations for mass removal rate (lb/day). SOMA will also present an evaluation of measured drawdown versus dewatering; ZOI; graphs of vacuum and depth to groundwater versus distance from extraction wells; evaluation of groundwater production rates. If mass removal rates are considered satisfactory, and cumulative recoveries are sustained, MPE may be deemed a feasible remedial alternative. Furthermore, groundwater monitoring and MPE results will be utilized to calculate site-specific conductivity parameters, evaluate pumping rates, hydraulic gradients, and groundwater and contaminant velocities.
- A discussion and summary of test findings regarding the feasibility of utilizing MPE technology to effectively remediate the smear zone at the site, including vacuum pressure drops, subsurface air and groundwater flow rates, response of the vadose and saturated zone to the pilot test. Effectiveness and cost evaluation of MPE if determined feasible for future site implementation (if initial mass removal rates are greater than 15 pounds/day/well, and cumulative recoveries are sustained, there is demonstrated potential for significant post-remediation concentration reduction, and MPE is likely to be feasible.) This section will also include a discussion concerning AS effectiveness and its impact on MPE efficiency.

The section reporting water injection pilot testing activities will include results and methodology utilized during advancement of injection borings and evaluation of water injection effectiveness. It will evaluate the subsurface conditions with respect to water injection rates per each WBZ and the quantity of injected groundwater. If the proposed water quantity is successfully injected in to the subsurface in the timely manner, the chemical injection is likely to be feasible.

These estimates will be used to estimate the quantity of chemicals that the formation will be able to receive and aid in determining cost effectiveness of this remedial approach as compared to others. The report will also provide SOMA's conclusions and recommendations.

# 5. CONCLUSIONS AND RECOMMENDATIONS

- 1. Based on analytical data from historical site investigations and ongoing monitoring events, the Shallow and Semi-Confined WBZs both appear to be impacted with COCs along the western and southern portions of the site, with the highest concentrations observed in Shallow WBZ wells SOMA-5 and SOMA-7.
- TPH-g and benzene concentrations dropped significantly in ESE-5R after reconstruction, suggesting that the majority of contamination along the western portion of the site is in the Shallow WBZ. MtBE concentrations also appear to be highest at SOMA-5, although MtBE is the only COC, which has been detected during the latest monitoring event in the off-site areas in both Shallow and Semi-Confined WBZs.
- 3. Soil contamination has been delineated vertically and horizontally, with contamination predominantly limited to 12 feet bgs along the southern portion of the site.
- 4. Groundwater contamination has been laterally and vertically delineated within the Shallow and Semi-Confined WBZs. Contamination in both WBZs is centered on the southern portion of the site with some MtBE contamination extending off-site. The lateral extent of contamination is delineated by limited to non-detectable COC concentrations in downgradient SOMA-3 for the Shallow WBZ and downgradient SOMA-4 for the Semi-Confined WBZ. The majority of contaminant mass is located in the shallow soils and in Shallow WBZ in the vicinity of site building, former USTs, and piping.
- 5. TPH-g and benzene concentrations near the site building (SOMA-5) were detected at 4,900 µg/L and 1,600 µg/L, above recommended maximums for vapor intrusion into buildings (1,000 µg/L and 540 µg/L, respectively). Although soils above the Shallow WBZ consist primarily of fine grain materials which retard vapor migration, in order to definitively establish whether vapor intrusion is a complete exposure pathway for the site and adjacent downgradient properties, it may be advisable to conduct a soil gas study adjacent to the southern property boundary west and east of the station building.
- 6. Decreasing concentration trends were observed in most site wells with exception of benzene in ESE-1R and SOMA-7. Since Semi-Confined WBZ wells were just recently reconstructed and are no longer cross-screening the impacted shallow and deeper zones, at this time it is recommended to continue groundwater monitoring for several consecutive quarters to

determine whether concentrations will continue to decline. In addition to standard monitoring, SOMA recommends evaluating pertinent natural attenuation indicators for this WBZ (e.g., DO, ORP, Fe<sup>+2</sup>, NO<sub>3</sub>., and SO<sub>4</sub><sup>-2</sup>). Therefore, in order to evaluate the decrease in COC concentrations (especially in Semi-Confined WBZ wells), SOMA recommends conducting the next several monitoring events on a quarterly basis.

7. Since at this time the site could not be characterized as a low risk case, SOMA proposes implementing field pilot testing for MPE, AS, and injection, to aid in preparation of the CAP. SOMA will install proposed observation wells, implement field-testing, and prepare a report summarizing results, findings, and recommendations. This report will also include a discussion regarding feasibility and cost effectiveness of utilizing the evaluated technologies and review of other remedial options in order to select the most feasible and costeffective remedial alternative for addressing site contamination.

# 6. REFERENCES

California Environmental Protection Agency. Guidance Manual for Monitoring Well Design and Construction for Hydrologic Characterization. July 1995.

California State Water Resources Control Board. Leaking Underground Fuel Tank Guidance Manual Version 2.0 – October 4, 2010.

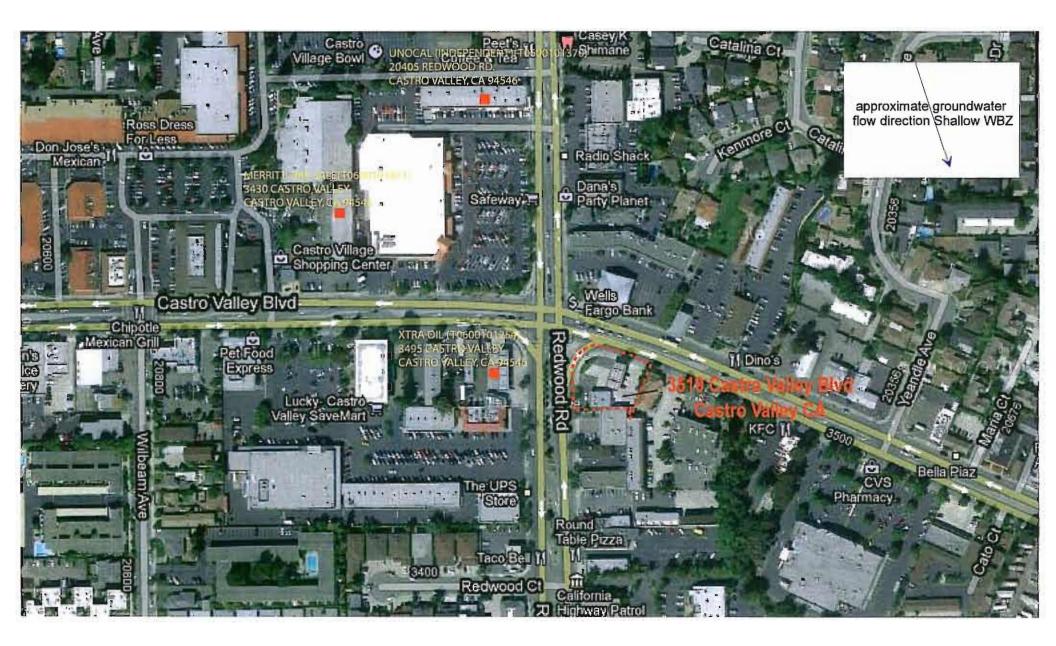
US EPA. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A Guide for Corrective Action Plan Reviewers. EPA 510-R-04-002. May 2004.

US Army Corps of Engineers. Engineering and Design. Multi Phase Extraction. EM 1110-1-4010. 1 June 1999.

California Regional Water Quality Control Board San Francisco Bay Region. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. Interim Final - November 2007 (Revised May 2008)

# CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf Mr. Mirazim Shakoori, for property located at 3519 Castro Valley Boulevard, Castro Valley, California. This report was prepared in response to January 13, 2011 correspondence from Alameda County Environmental Health Services, Environmental Protection Division.


Mansour Sepenr, PhD, PE Principal Hydrogeologist

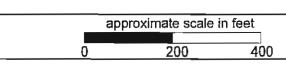
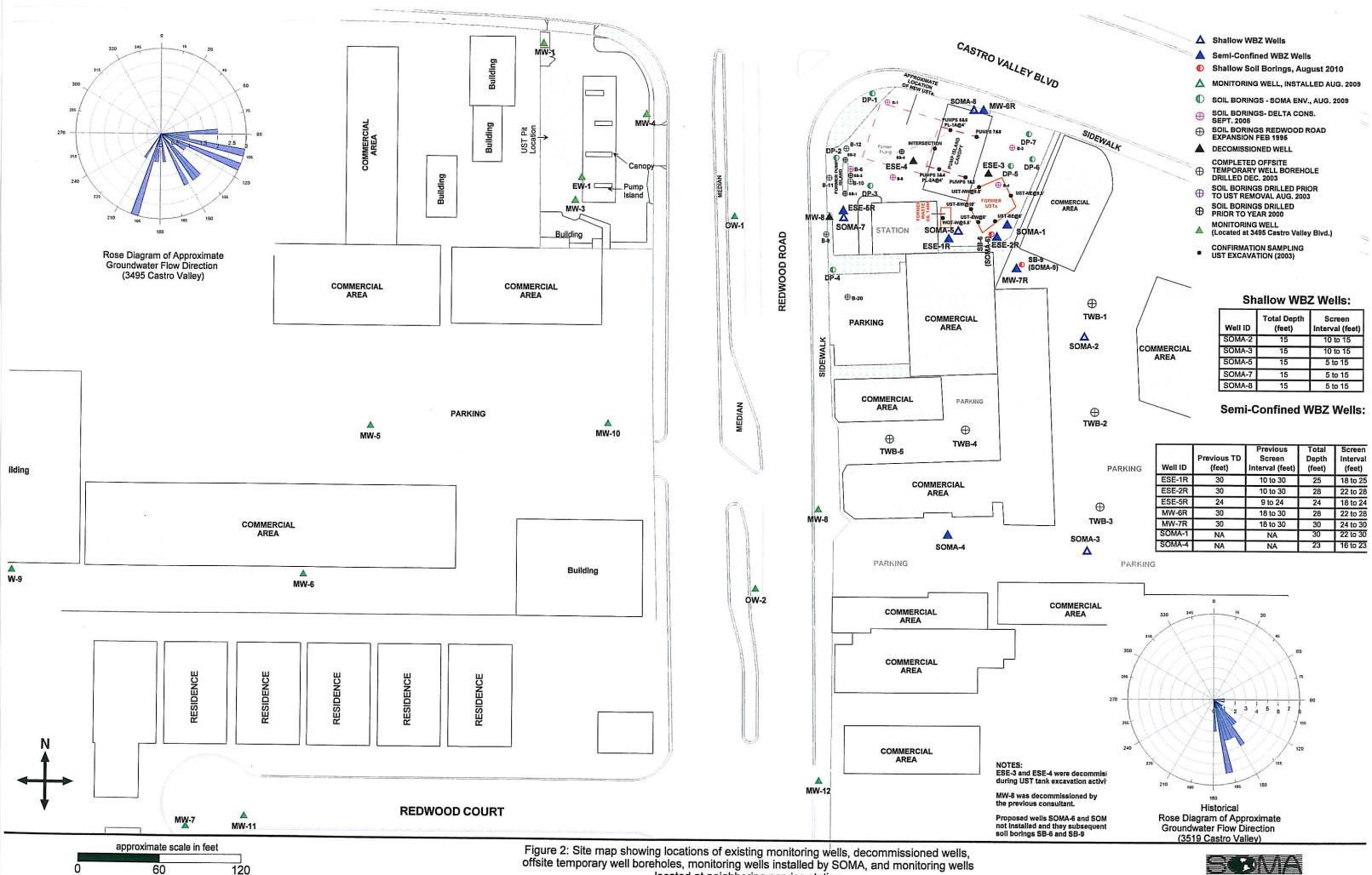


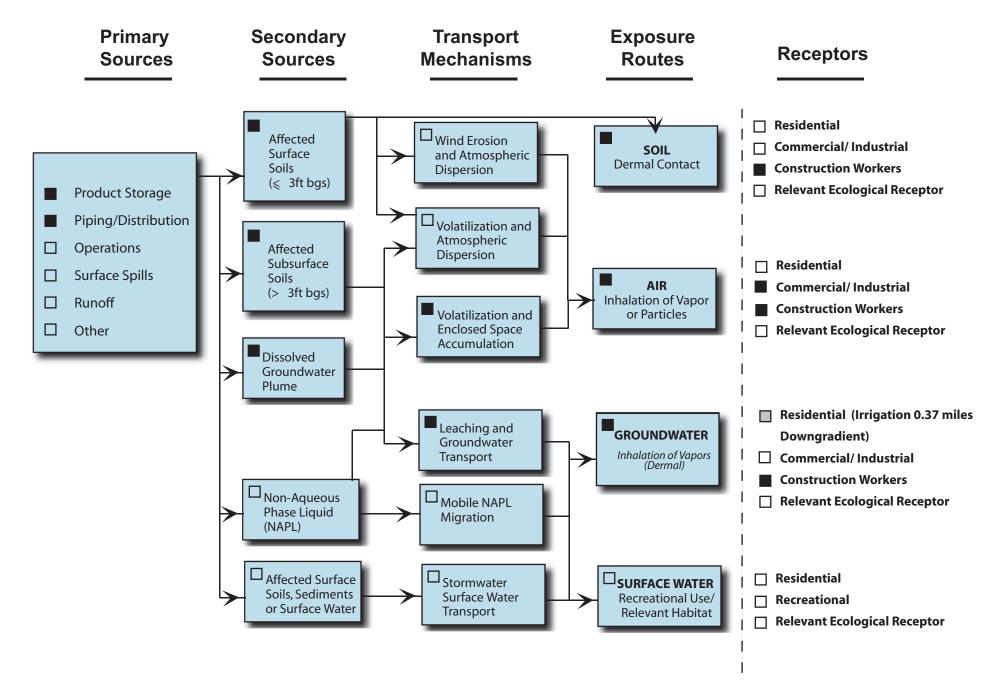
Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

# **FIGURES**

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing



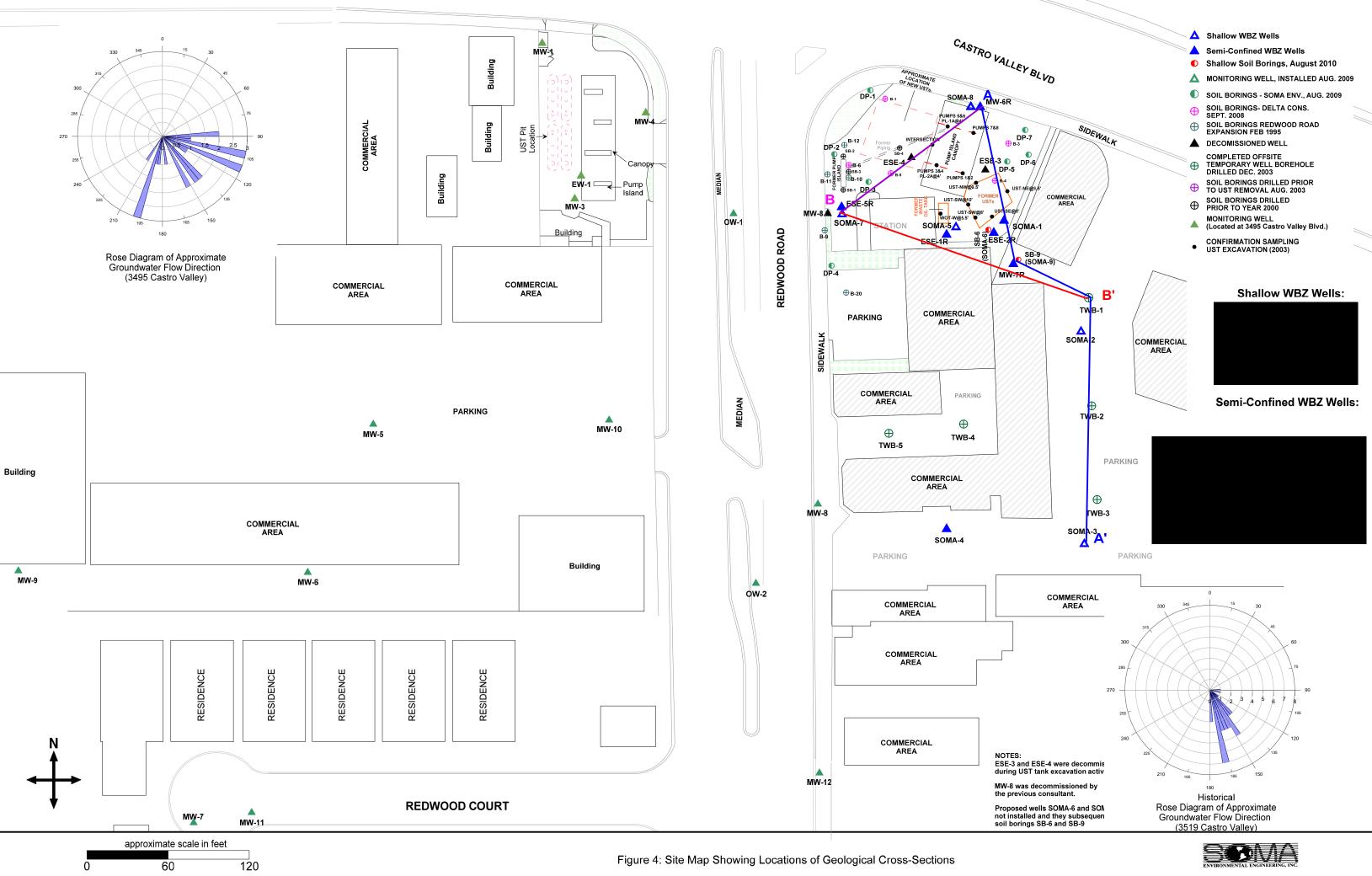





Figure 1: Site vicinity map.





located at neighboring service station.


# 3519 Castro Valley Blvd., Castro Valley, CA



Source: ASTM E-1689-95 Standard Guide for Developing Conceptual Site Models for Contaminated Sites

Figure 3: Updated SCM Flow Chart





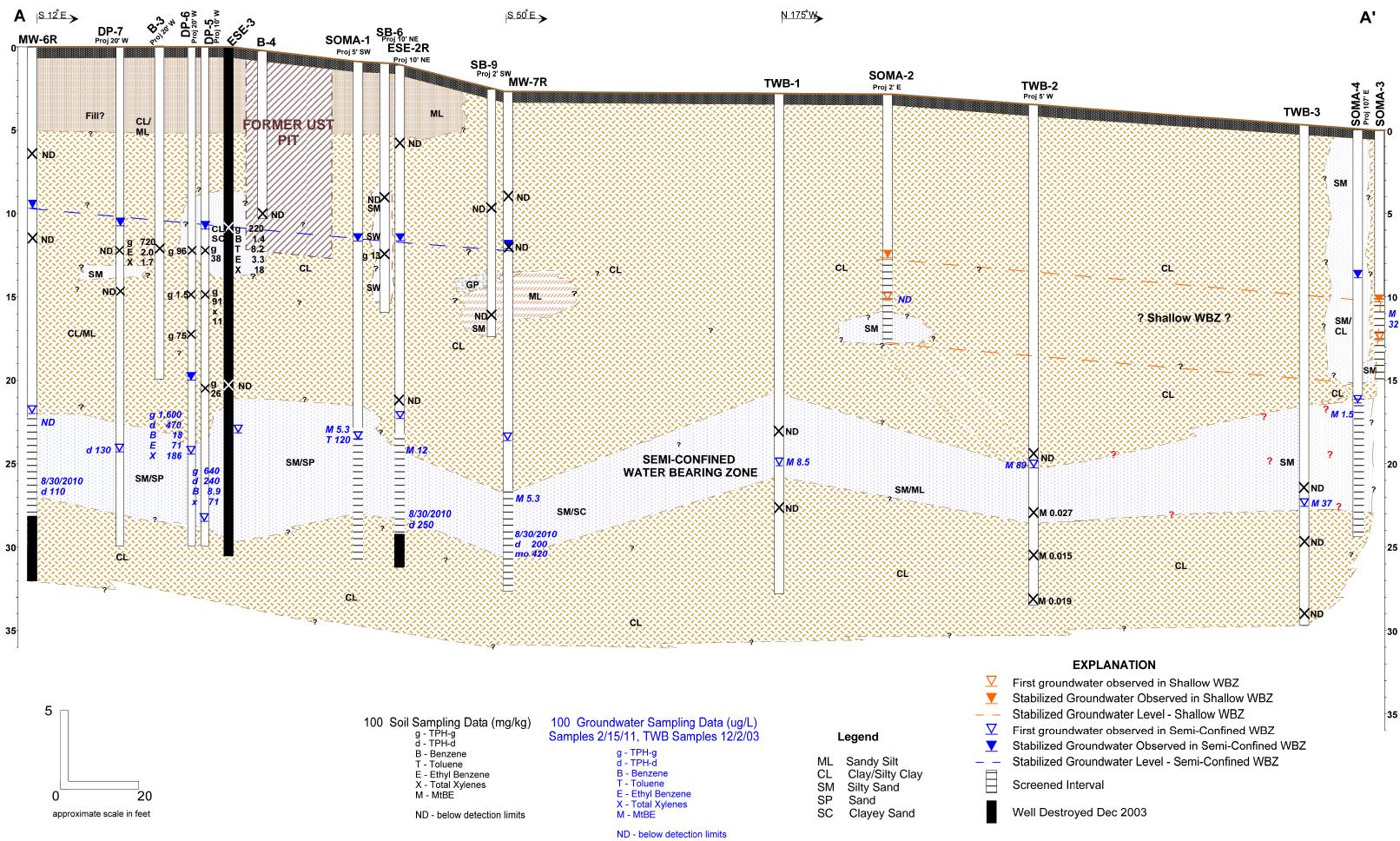



Figure 5: Geologic Cross-Section A-A'



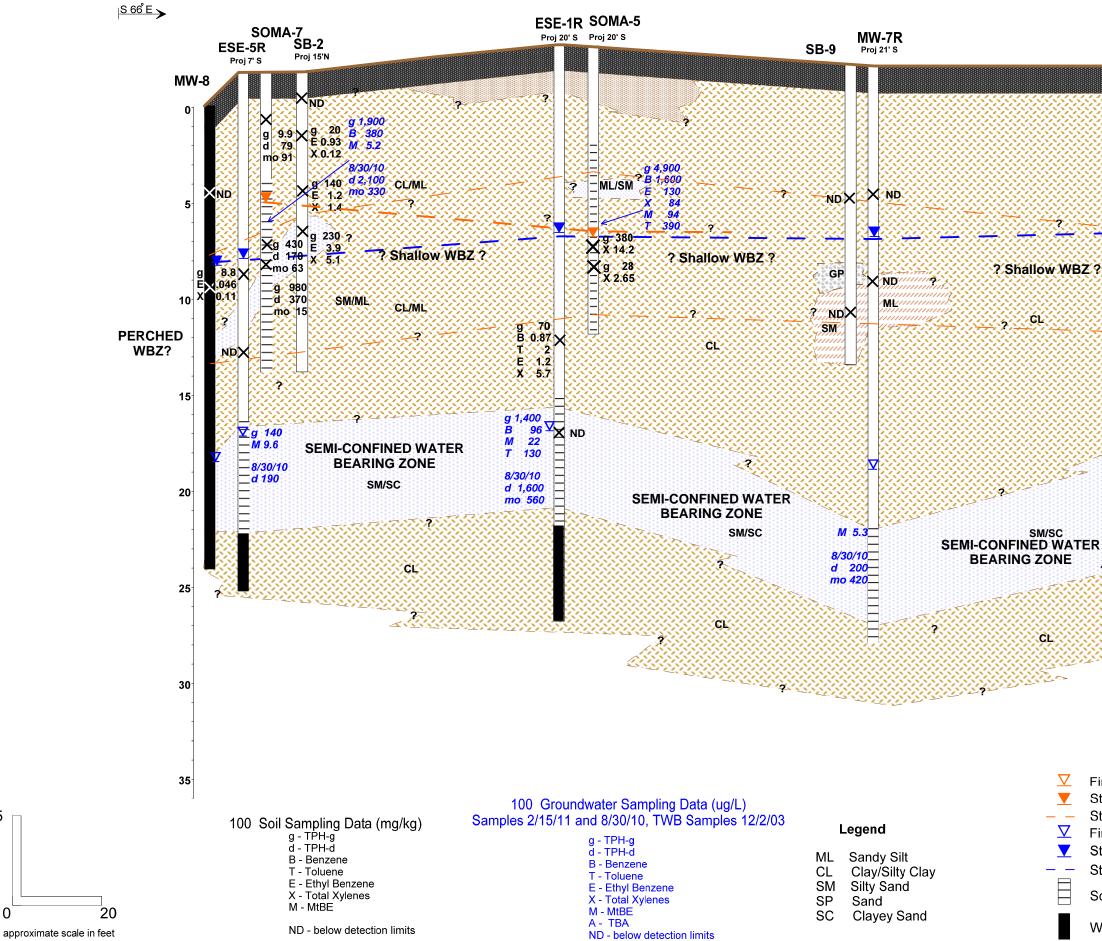
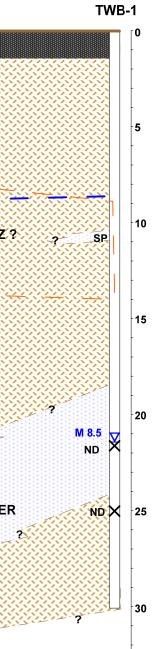




Figure 6: Geologic Cross-Section B-B'

5

0



#### **EXPLANATION**

First groundwater observed in Shallow WBZ Stabilized Groundwater Observed in Shallow WBZ Stabilized Groundwater Level - Shallow WBZ First groundwater observed in Semi-Confined WBZ Stabilized Groundwater Observed in Semi-Confined WBZ

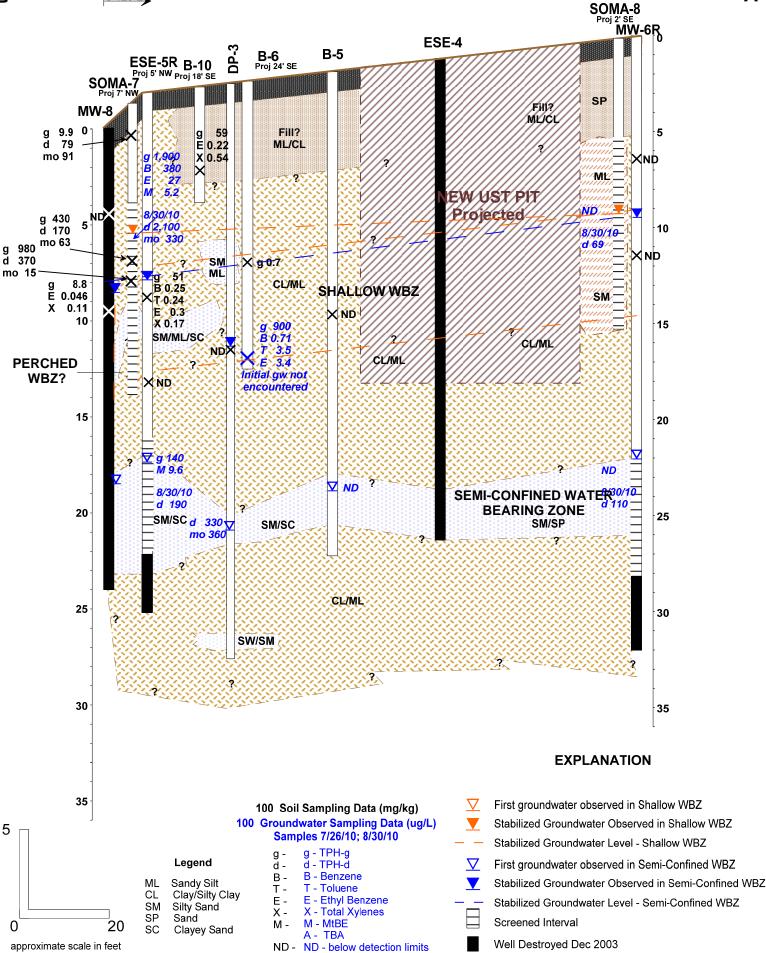
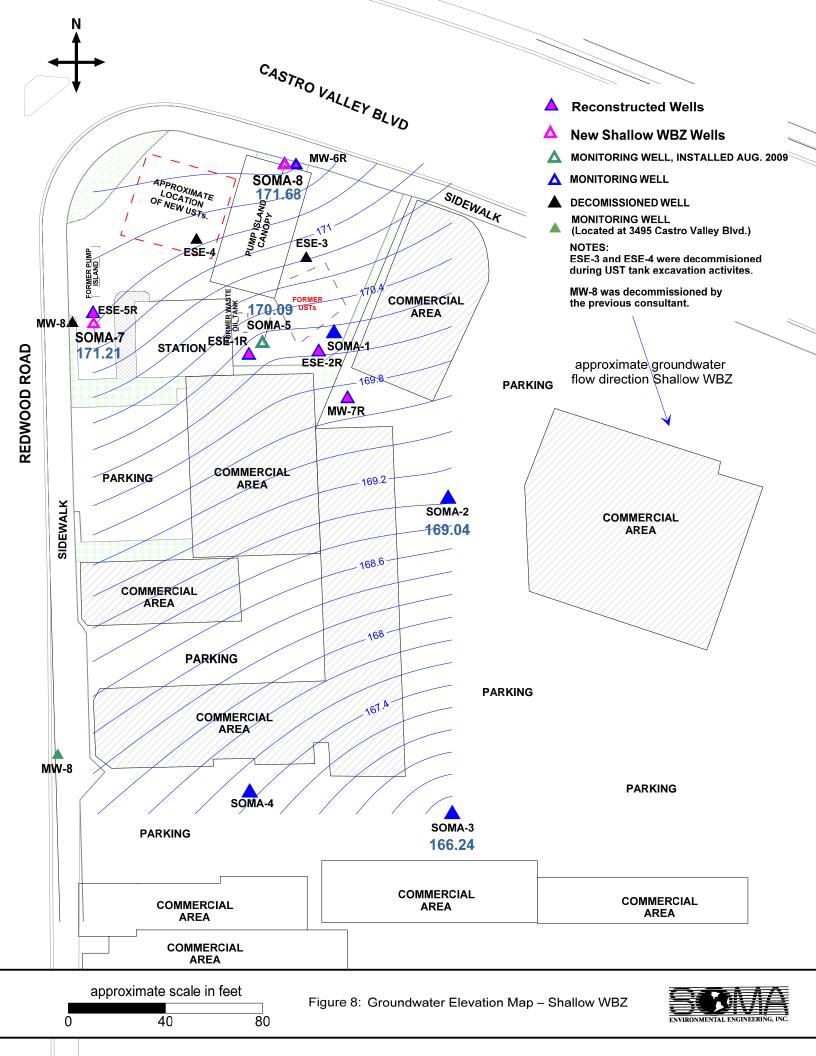
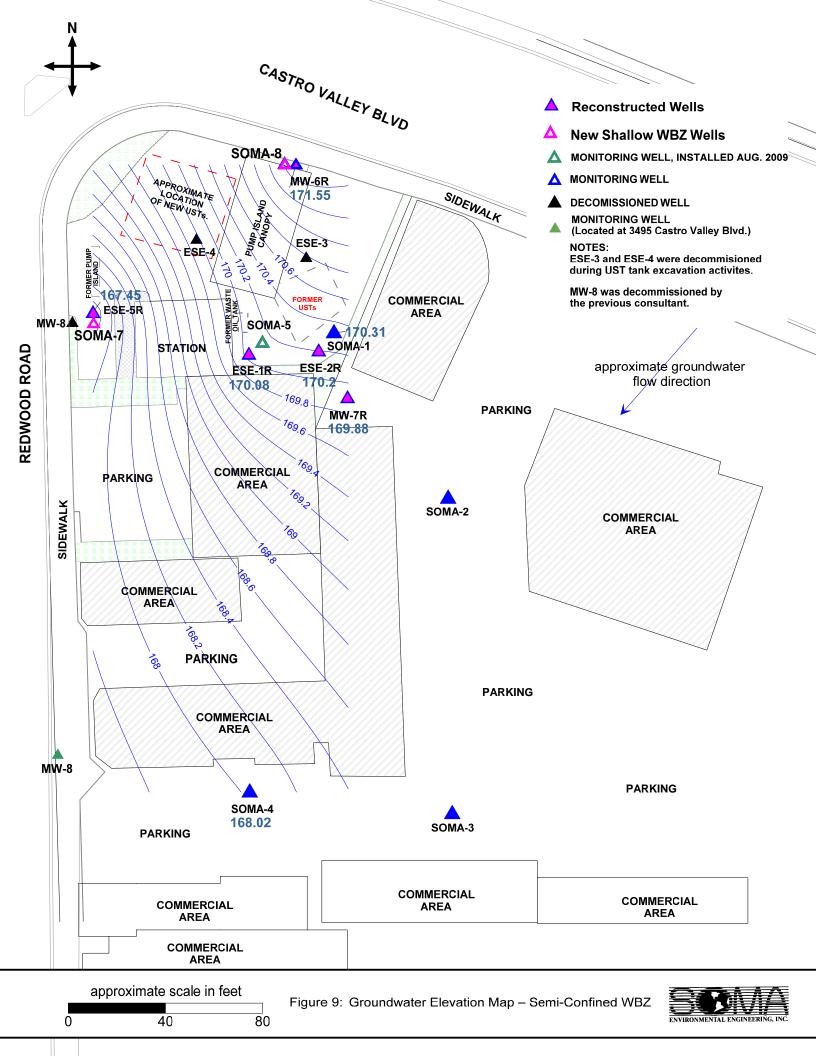
Stabilized Groundwater Level - Semi-Confined WBZ

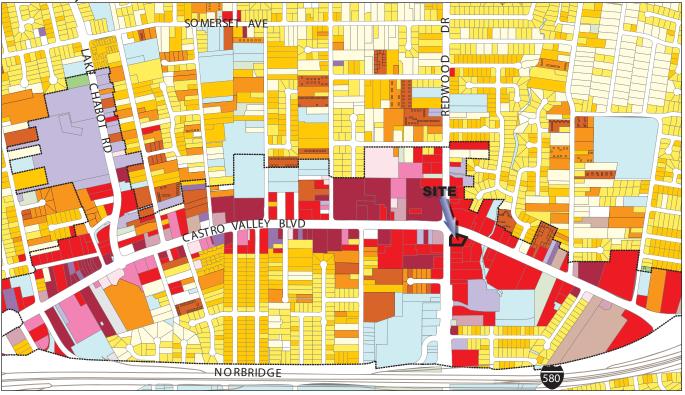
Screened Interval

Well Destroyed Dec 2003, Bentonite Plug



В



Figure 7: Geologic Cross-Section B-A'







#### Castro Valley Central District



Residential 0-4 du/ac Large Lot Single Family

Residential 5-8 du/ac Single Family

Residential 9-17 du/ac Town Houses & Low Density Apartments

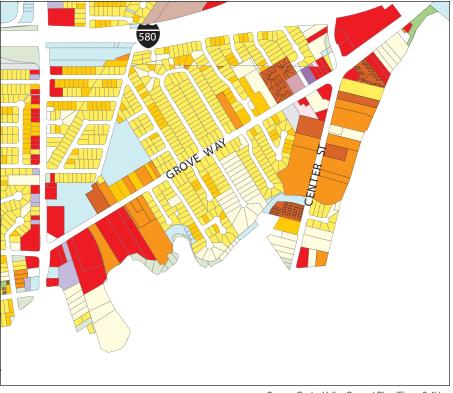
Residential 18-30 du/ac Medium Density Apartments

Residential over 30 du/ac High Density Apartments

Mobile Home Parks

General Commercial Personal Services, Financial & Real Estate, etc Retail Commercial Restaurants & Entertainment Automotive Service, Sales & Parts Mixed Use Office Medical Dental

Light Industrial & Storage


Public/Institutional

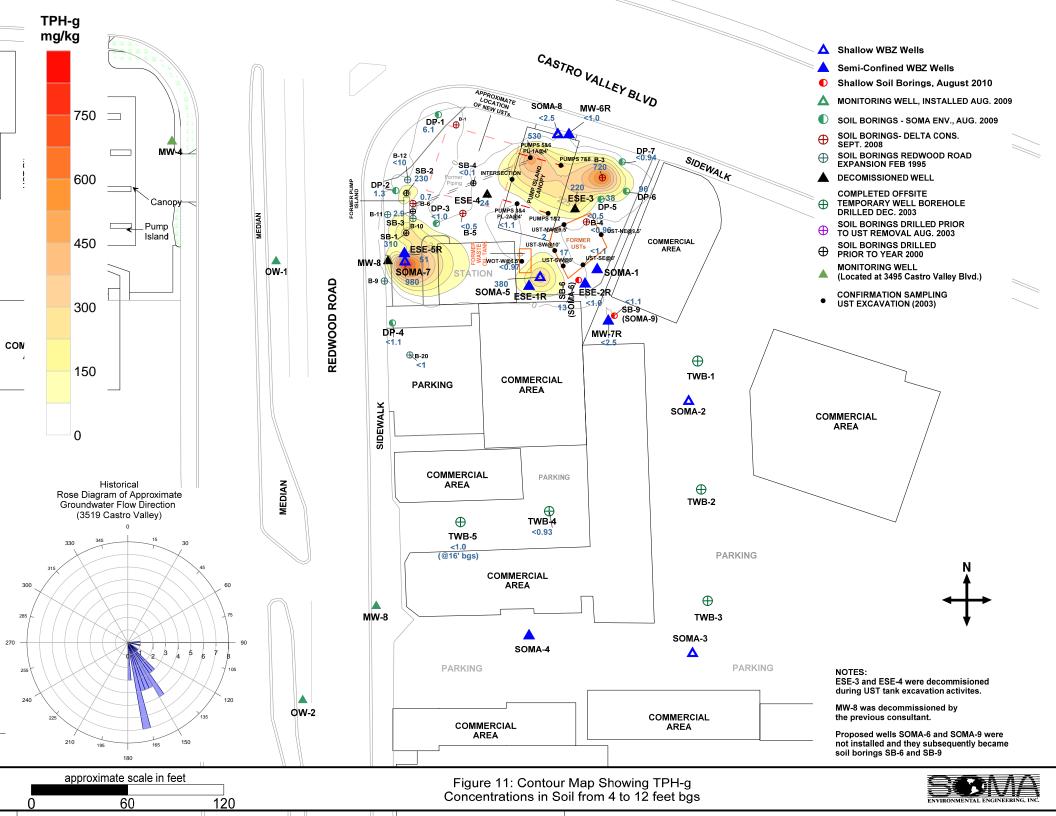
Park/Open Space

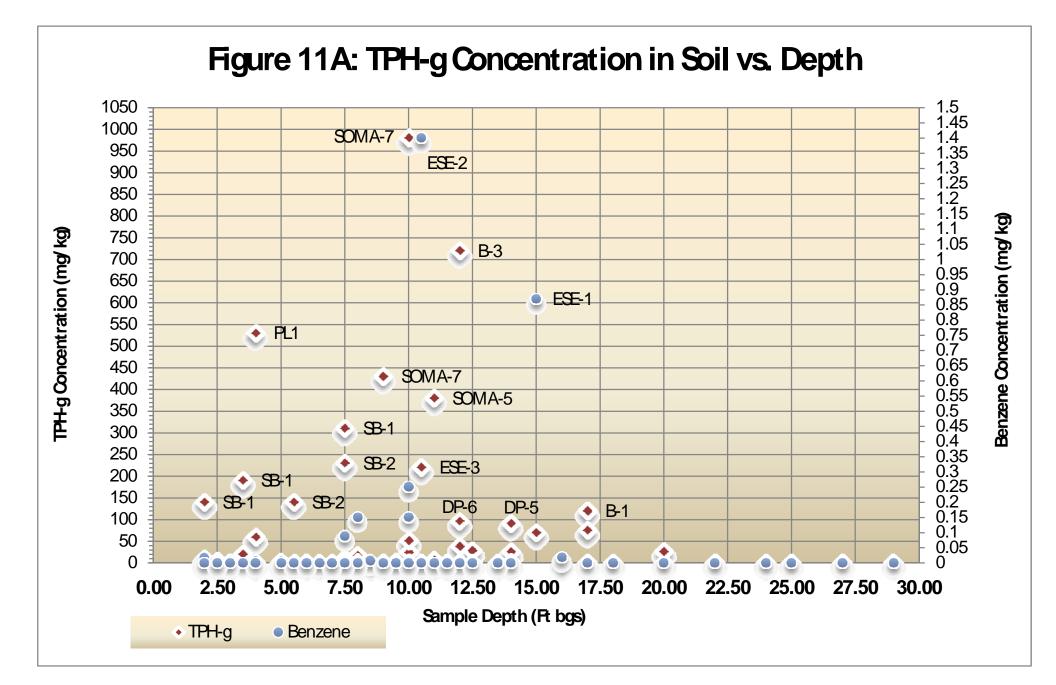
Other/Unclassified

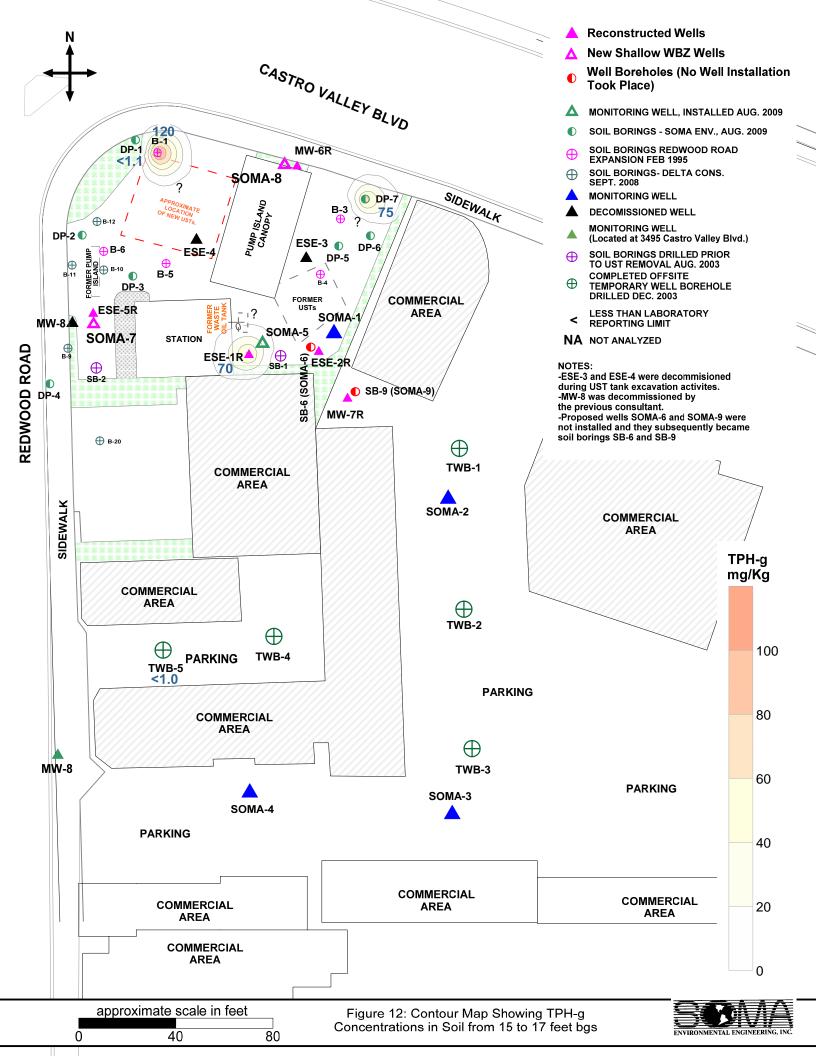
----- CastroValley General Plan Area

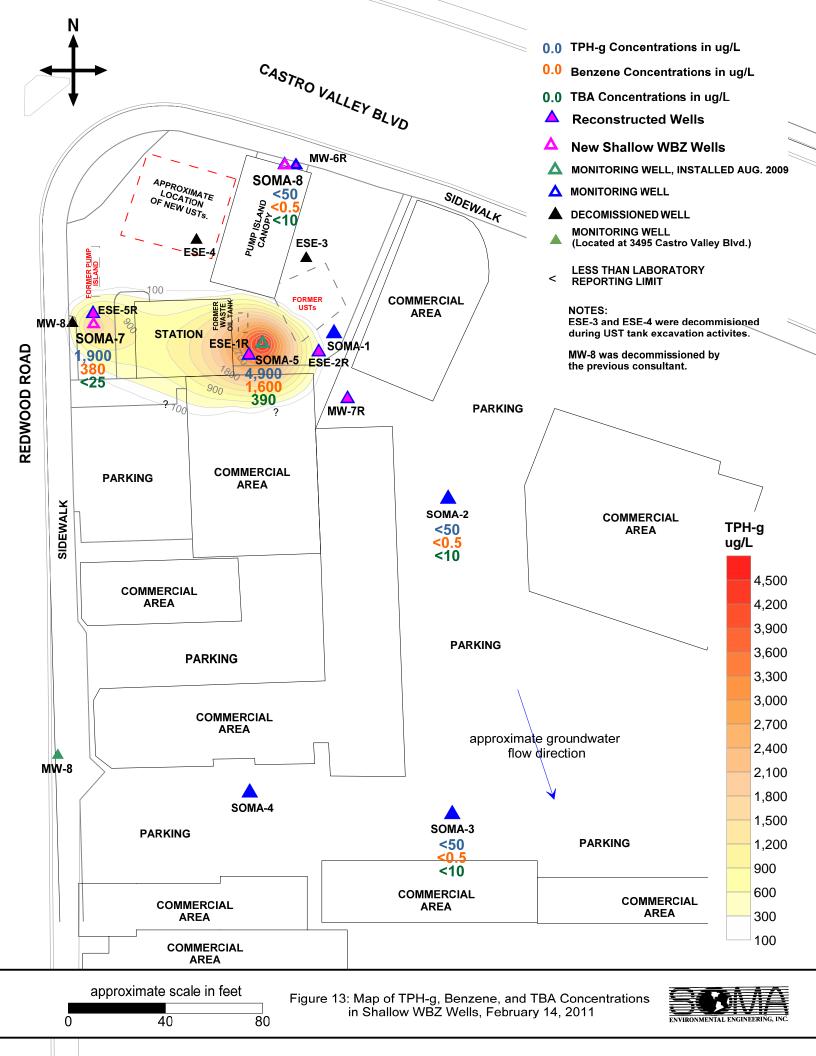
Grove Way/Center St/Redwood Dr/South of 580

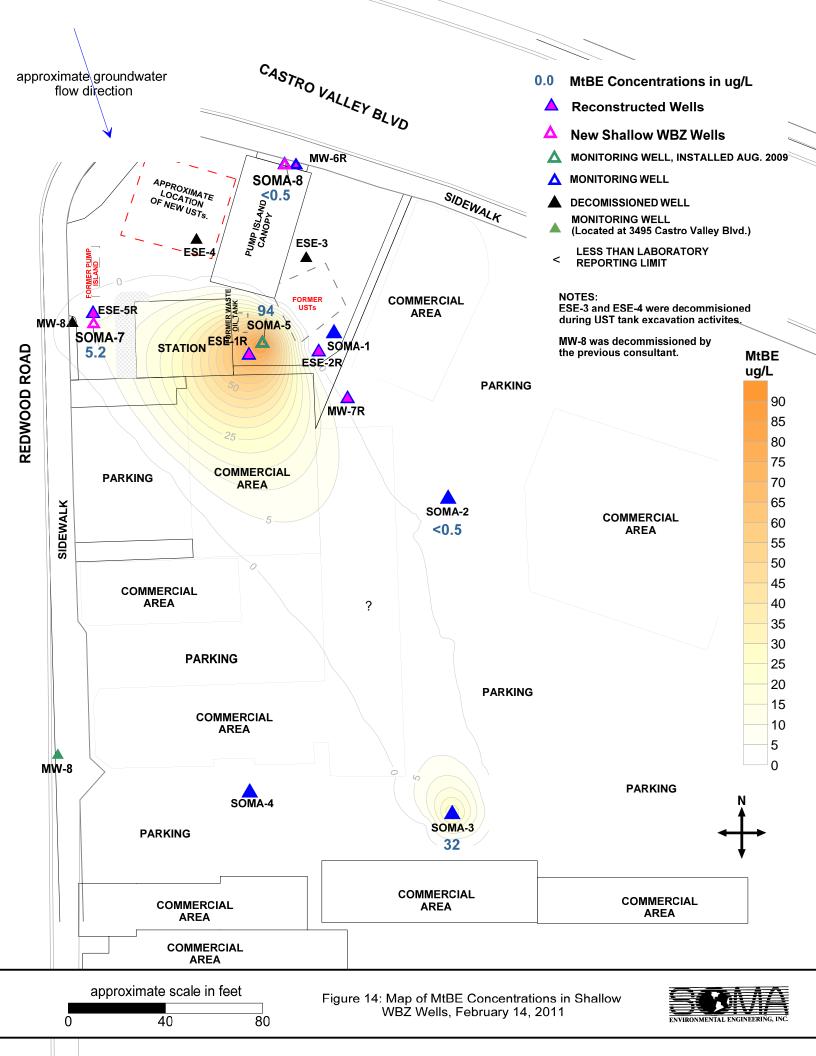


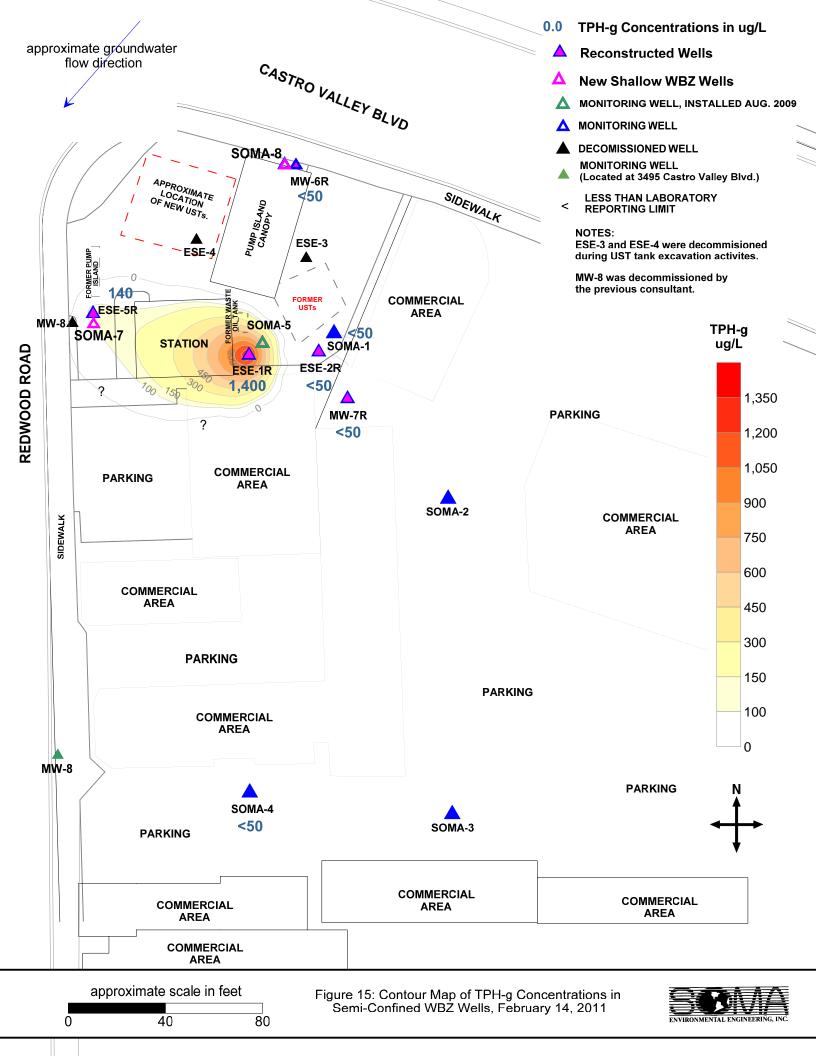

Source: Castro Valley General Plan (Figure 2-4b) Alameda County Community Development Agency, 2004; and Dyett & Bhatia fieldwork.

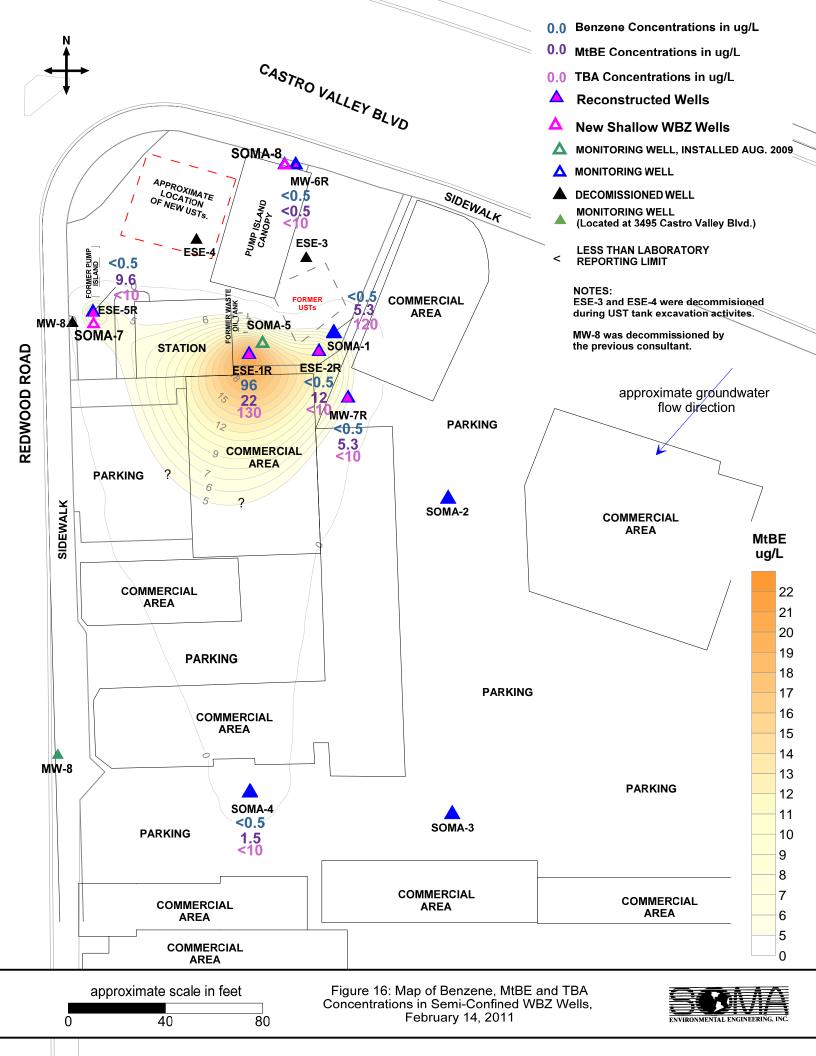

0 500 1000 2000 FEET

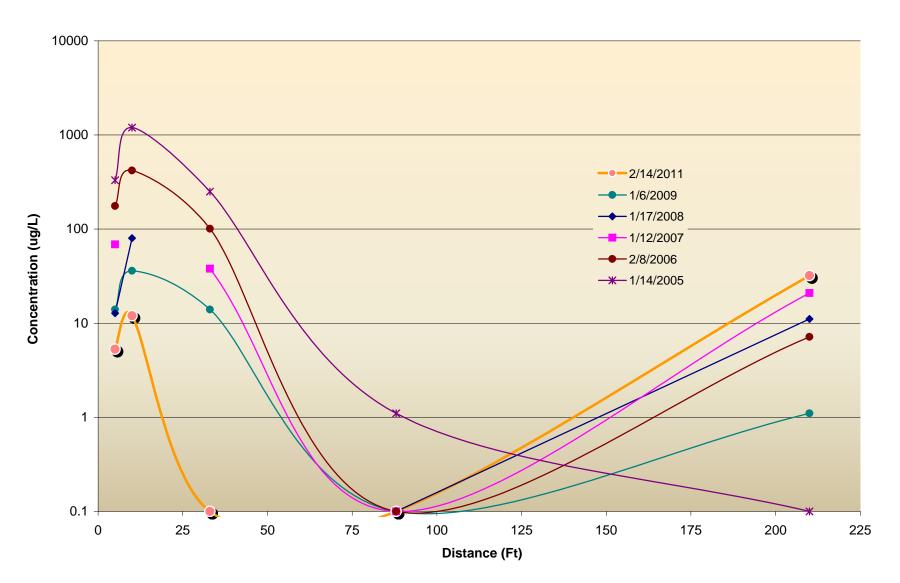

Vacant


Figure 10: Zoning Map

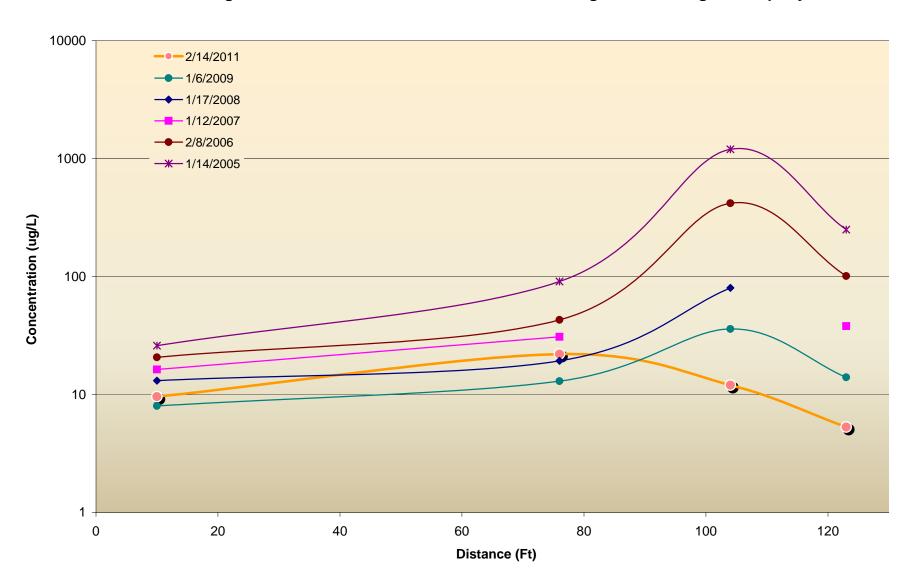











### Figure 17: MtBE Concentrations vs. Distance from Former USTs



### Figure 18: MtBE Concentrations vs. Distance along Southern Edge of Property

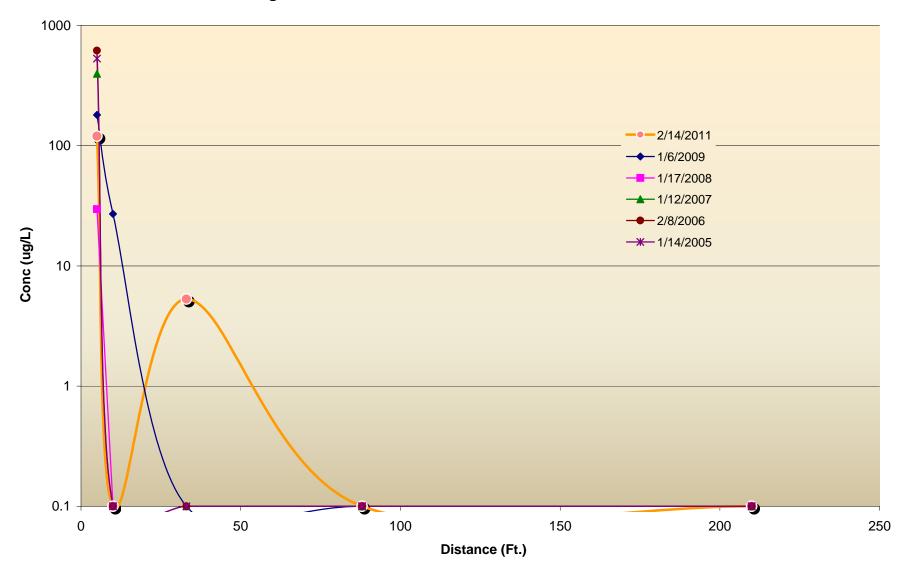
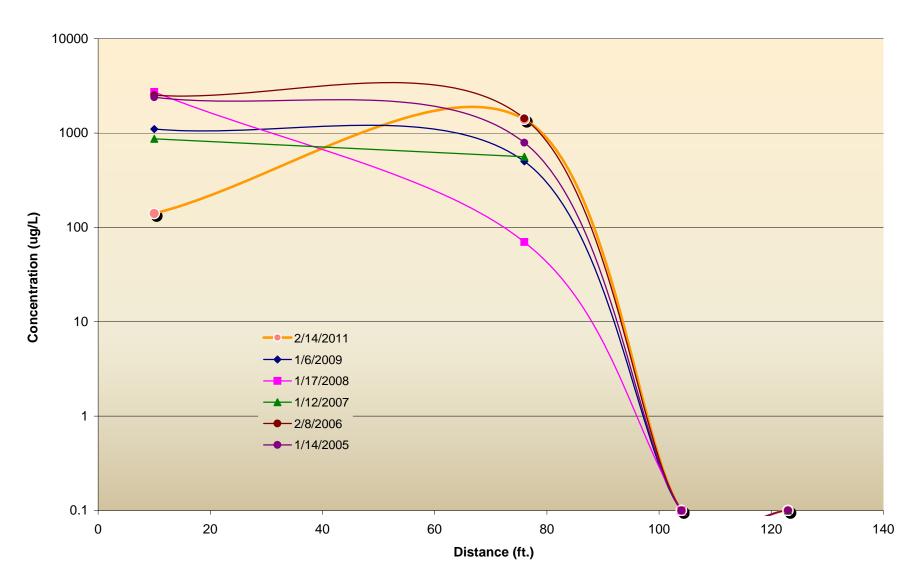
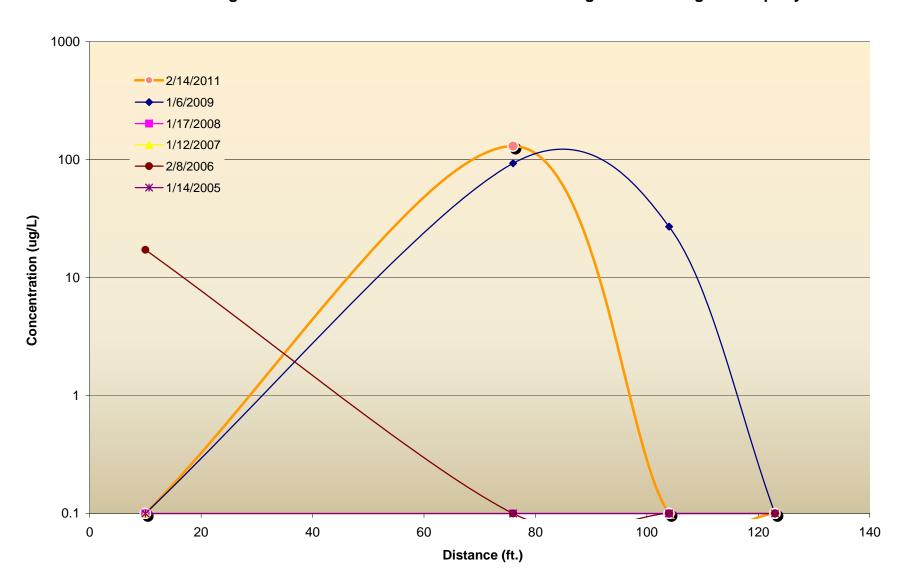





Figure 19: TBA Concentrations vs. Distance from Former USTs



#### Figure 20: TPH-g Concentrations vs. Distance along Southern Edge of Property



### Figure 21: TBA Concentrations vs. Distance along Southern Edge of Property

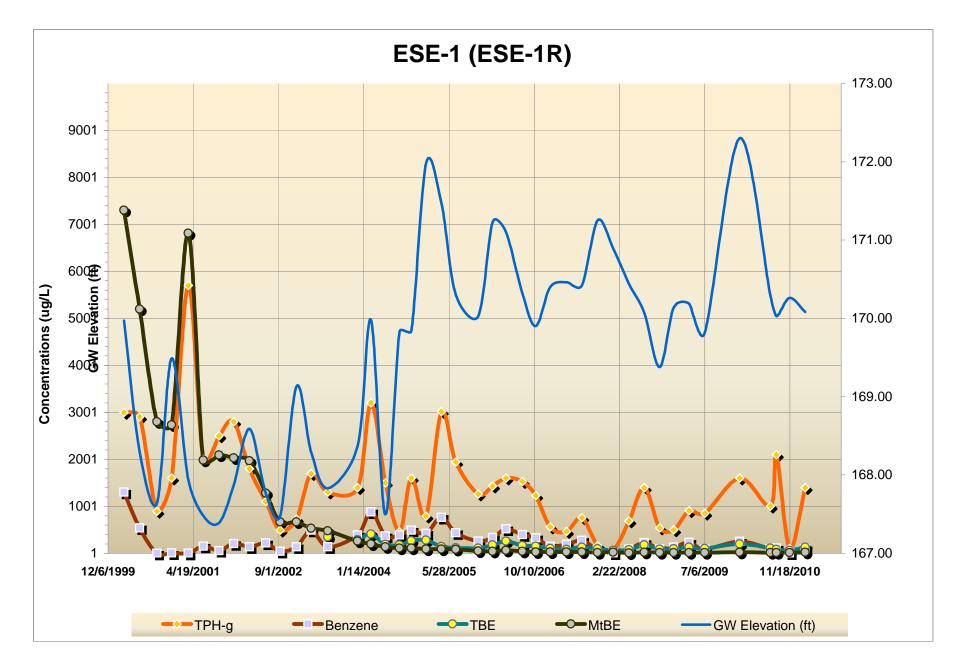



Figure 22: Contaminant and Groundwater Elevation Trends in Well ESE-1 (ESE-1R)

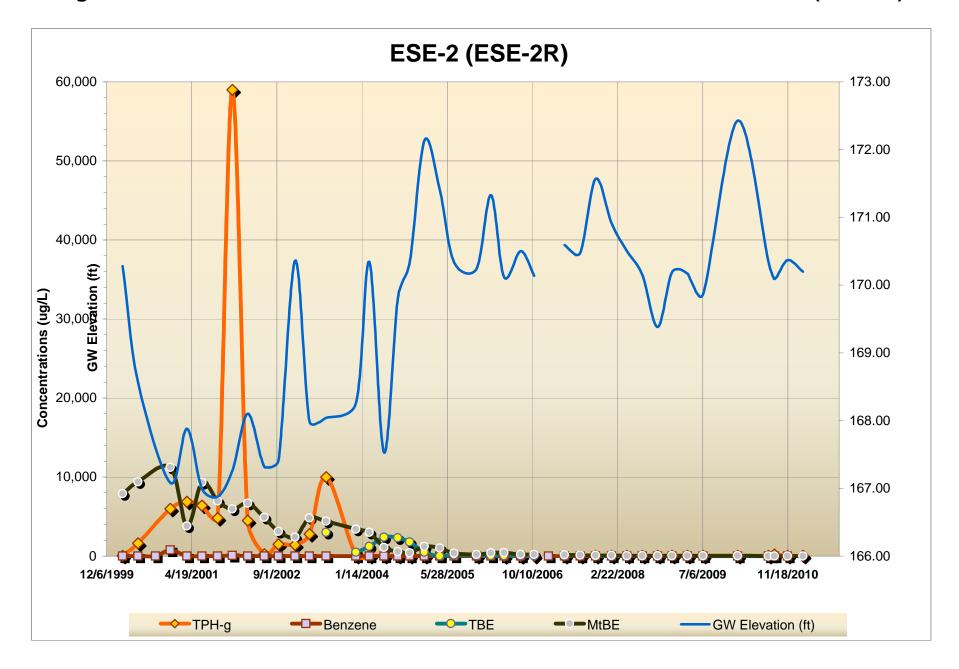



Figure 23: Contaminant and Groundwater Elevation Trends in Well ESE-2 (ESE-2R)

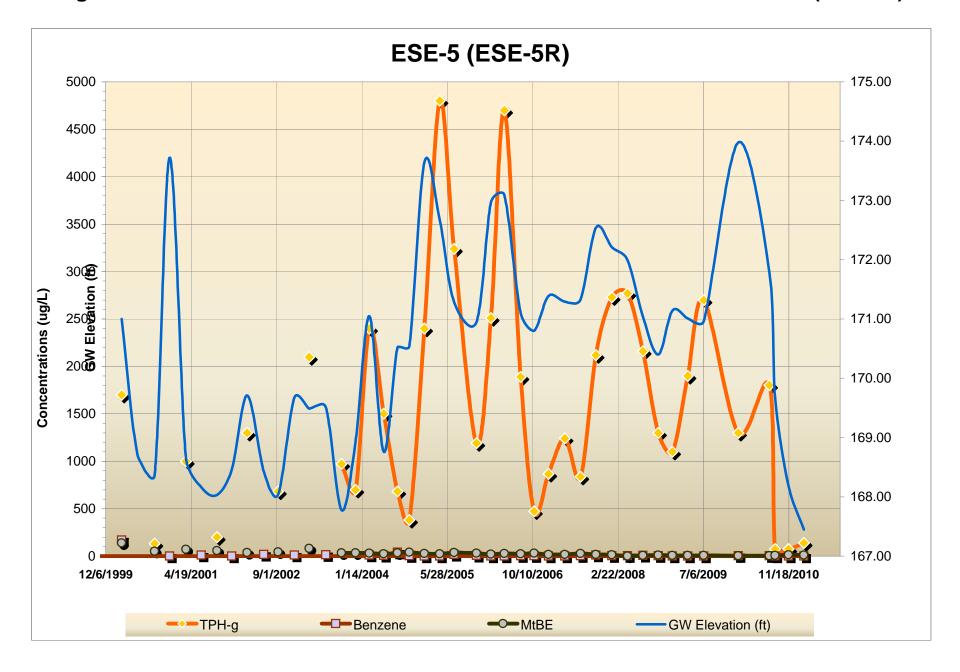



Figure 24: Contaminant and Groundwater Elevation Trends in Well ESE-5 (ESE-5R)

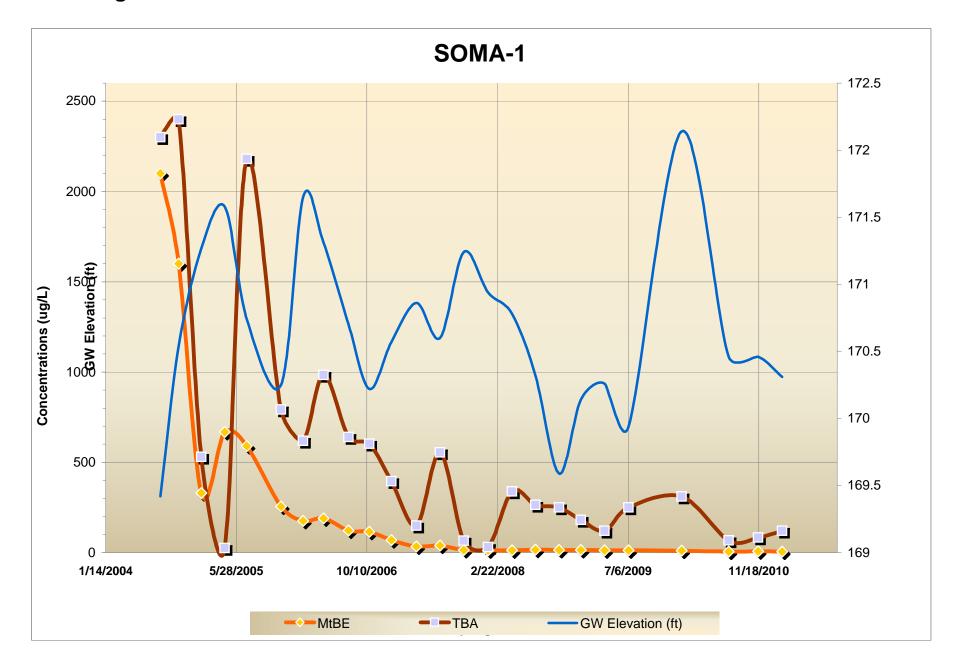



Figure 25: Contaminant and Groundwater Elevation Trends in Well SOMA-1

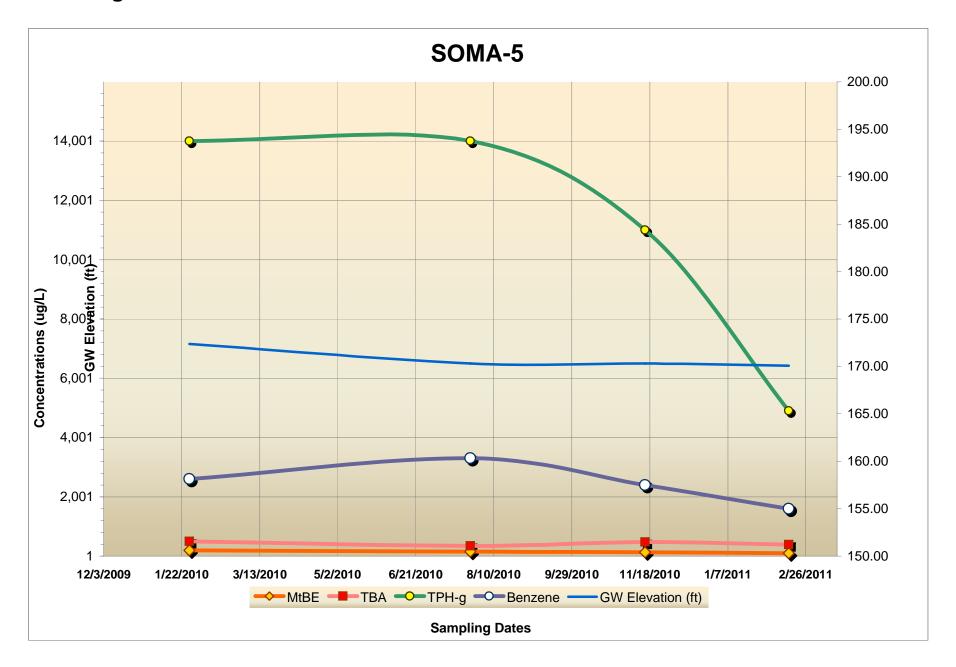



Figure 26: Contaminant and Groundwater Elevation Trends in Well SOMA-5

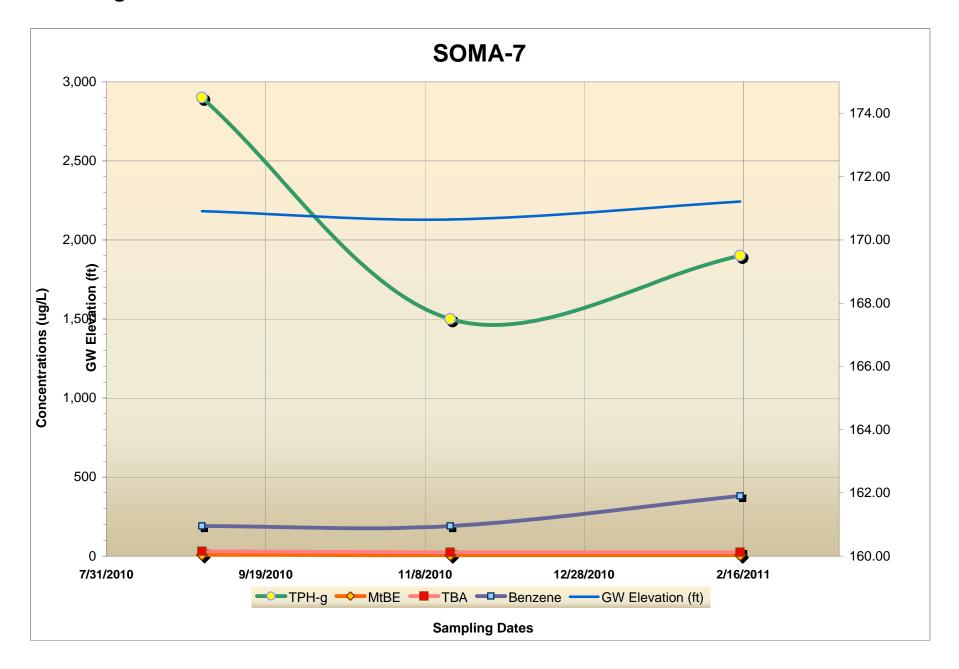
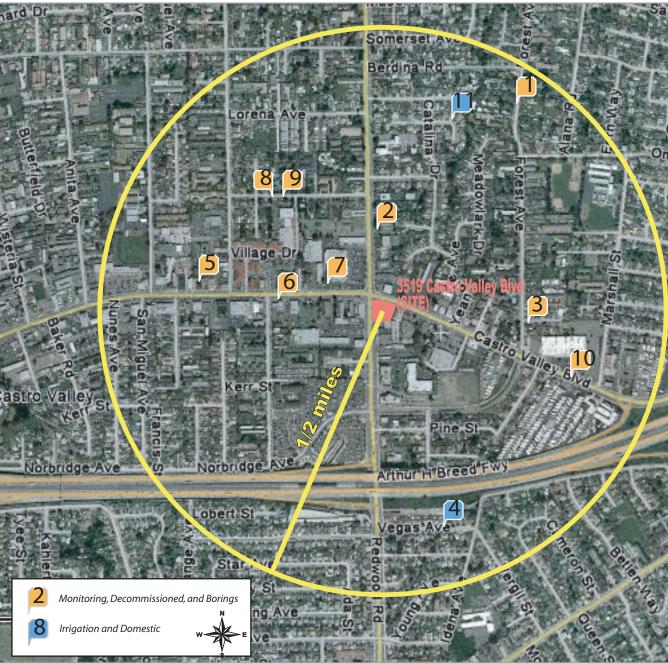




Figure 27: Contaminant and Groundwater Elevation Trends in Well SOMA-7



| Map<br>ID | Well<br>Count | Address                 | <u>Owner</u>              | <u>Drilldate</u> | ŢD | <u>Diam</u> | <u>Use</u> |
|-----------|---------------|-------------------------|---------------------------|------------------|----|-------------|------------|
| 1         | 1             | 19945 FOREST            | MR. WEHE                  | 3/78             | 51 | 8           | DES        |
| 2         | 2             | 20450 REDWOOD RD        | EXXON OIL                 | 8/77             | 50 | 0           | Unknown    |
| 3         | 3             | 20680 FOREST AV         | G.G. PAUL KASMER          | Oct-73           | 20 | 0           | DES        |
| 4         | 4             | 2633 VEGAS AV           | ANNA WEEDEN               | 4/77             | 24 | 4           | Irrigation |
|           | 5             | 3234 Castro Valley Blvd | Mitzi Stockel             | Apr-90           | 8  | 2           | BOR        |
|           | 6             | 3234 Castro Valley Blvd | Mitzi Stockel             | Apr-90           | 16 | 2           | Monitoring |
| 5         | 7             | 3234 Castro Valley Blvd | Mitzi Stockel             | Apr-90           | 16 | 2           | Monitoring |
|           | 8             | 3234 Castro Valley Blvd | Mitzi Stockel             | Apr-90           | 16 | 2           | Monitoring |
|           | 9             | 3234 Castro Valley Blvd | Mitzi Stockel             | May-90           | 23 | 2           | Monitoring |
|           | 10            | 3234 Castro Valley Blvd | Mitzi Stockel             | May-90           | 20 | 2           | Monitoring |
|           | 11            | 3369 Castro Valley Blvd | Chevron USA               | Oct-93           | 20 | 2           | Monitoring |
| 6         | 12            | 3369 Castro Valley Blvd | Chevron USA               | Oct-93           | 20 | 2           | Monitoring |
| ľ         | 13            | 3369 Castro Valley Blvd | Chevron USA               | Oct-93           | 20 | 2           | Monitoring |
|           | 14            | 3369 Castro Valley Blvd | Chevron USA               | Oct-93           | 20 | 2           | Monitoring |
|           | 15            | 3430 Castro Valley Blvd | Goodyear                  | Dec-96           | 16 | 2           | Monitoring |
| 7         | 16            | 3430 Castro Valley Blvd | Goodyear Tire & Rubber Co | 9/94             | 20 | 2           | Monitoring |
| '         | 17            | 3430 Castro Valley Blvd | Goodyear Tire & Rubber Co | 9/94             | 20 | 2           | Monitoring |
|           | 18            | 3430 Castro Valley Blvd | Goodyear Tire & Rubber Co | 9/94             | 20 | 2           | Monitoring |
| 8         | 19            | 3533 JAMISON WAY        | R. NAHAS CO.              | ?                | 25 | 5           | DES        |
| 0         | 20            | 3533 JAMISON WAY        | R. NAHAS CO.              | ?                | 20 | 5           | DES        |
| 9         | 21            | 3559 JAMISON WAY        | R. NAHAS CO.              | Dec-75           | 56 | 0           | DES        |
|           | 22            | 3889 Castro Valley Blvd | VIP Service (MW1)         | Nov-93           | 20 | 2           | Monitoring |
| 10        | 23            | 3889 Castro Valley Blvd | VIP Service (MW2)         | Nov-93           | 20 | 2           | Monitoring |
|           | 24            | 3889 Castro Valley Blvd | VIP Service (MW3)         | Nov-93           | 20 | 2           | Monitoring |
| 11        | 25            | 4057 STEVENS ST         | R. FORQUEN                | ?                | 70 | 8           | Irrigation |

Aerial Source: Imagery (c) 2006 Aerials Express (Yahoo Inc.)

approximate scale

ENVIRONMENTAL ENGINEERING, IN

0 0.25 mile

0.5 mile

Figure 28: Sensitive Receptor Survey Map Based on the Data Obtained from the Alameda County Public Works Agency



| <u>Map ID</u> |       | <u>Address</u>                         | <u>Use</u>  |
|---------------|-------|----------------------------------------|-------------|
|               |       |                                        |             |
| 1             | 2973  | Castro Valley BLVD, Castro Valley      | Unknown     |
| 2             | 3098  | Castro Valley BLVD, Castro Valley      | Monitoring  |
| 3             | 3495  | Castro Valley blvd, Castro Valley      | Monitoring  |
| 4             | 3940  | Castro Valley blvd, Castro Valley      | Monitoring  |
| 5             | 21000 | Wilbeam Ave, Castro Valley             | Monitoring  |
| 6             | 19861 | Forest Ave, Castro Valley              | Irrigation  |
| 7             | 19910 | Forest Ave, Castro Valley              | Irrigation  |
| 8             | 20115 | Forest Ave, Castro Valley              | Irrigation  |
| 9             | 20551 | Forest Ave, Castro Valley              | Unknown     |
| 10            | 20287 | MARSHALL ST, Castro Valley             | Irrigation  |
| 11            |       | Redwood Rd and Watson St               | Destruction |
| 12            | 20629 | Redwood Rd, Castro Valley              | Monitoring  |
| 13            | 20405 | Redwood Road, Castro Valley            | Monitoring  |
| 14            | 20283 | Yeandle Ave, Castro Valley,            | Irrigation  |
|               |       | Wells Outside the 1/2 Mile Radius      |             |
| 15            | 22447 | Charlene Way, Castro Valley            | Irrigation  |
| 16            | 1792  | Crescent Avenue, Castro Valley         | Monitoring  |
| 17            | 2146  | Grove Way, Castro Valley               | Extraction  |
| 18            | 2416  | Grove Way, Castro Valley               | Domestic    |
| 19            | 22315 | Redwood Rd, Castro Valley              | Monitoring  |
| 20            |       | GROVE WAY AT REDWOOD RD, Castro Valley | Monitoring  |
| 21            | 4589  | JAMES AVE, Castro Valley               | Irrigation  |
| 22            | 18878 | Redwood Rd, Castro Valley              | Test well   |

Aerial Source: Imagery (c) 2006 Aerials Express (Yahoo Inc.)

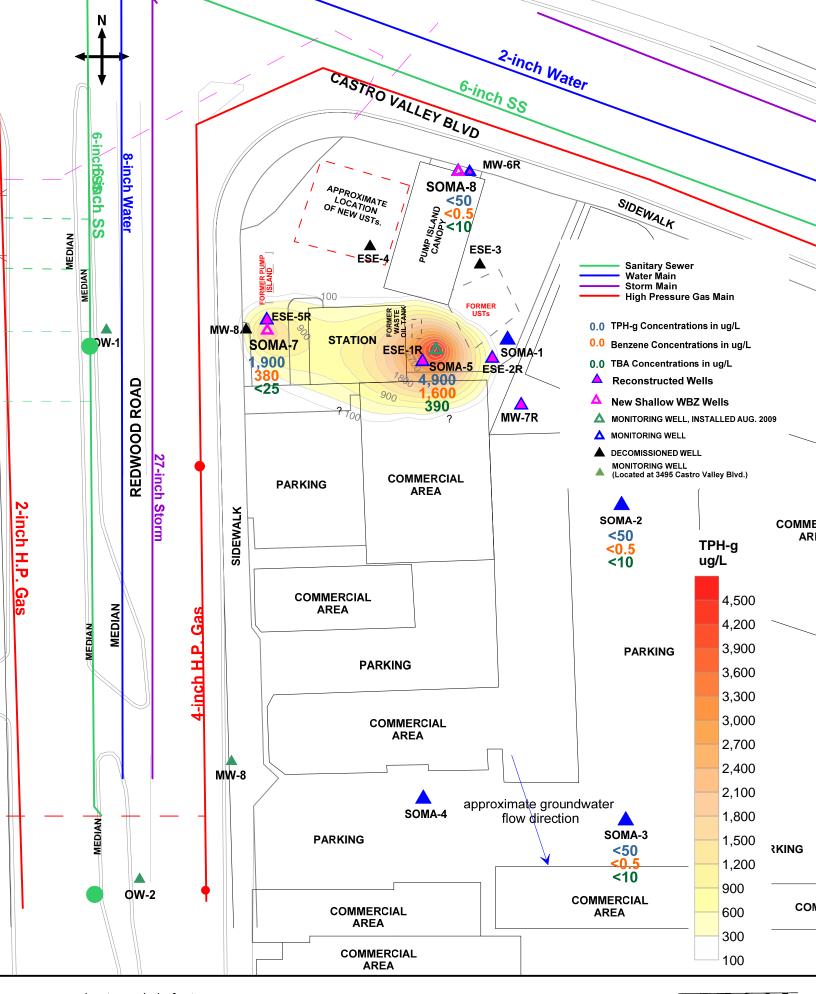

approximate scale

Figure 28A: Sensitive Receptor Survey Map Based on the Data Obtained from the Department of Water Resources

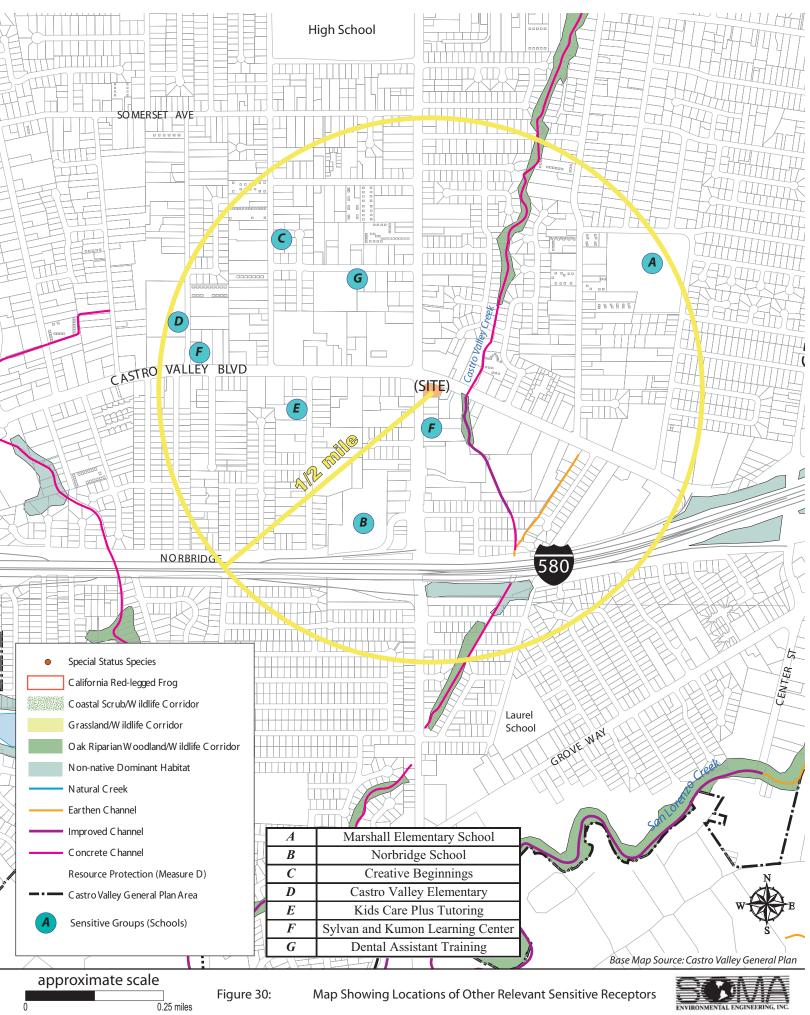


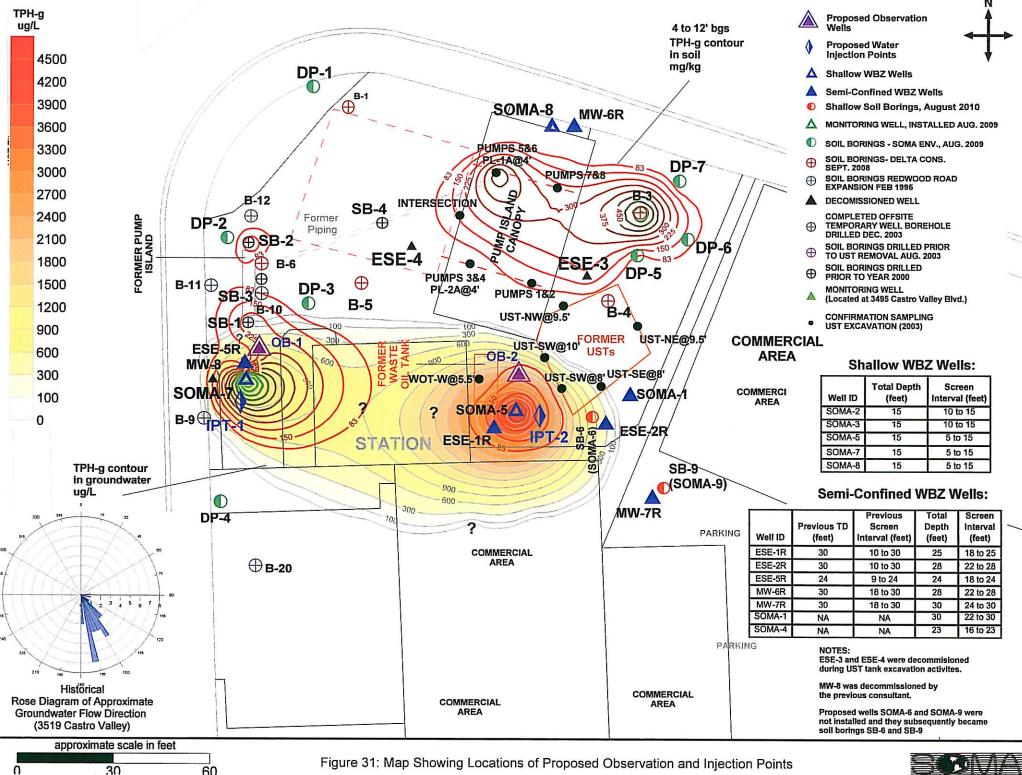
0

0.5 mile

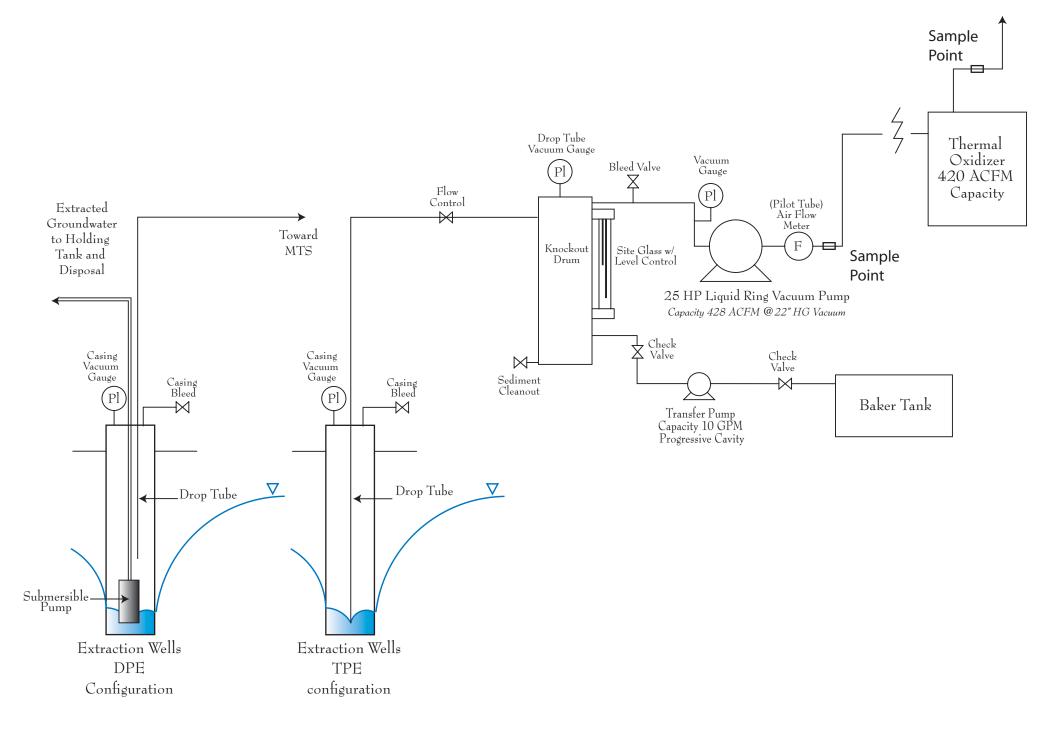


approximate scale in feet

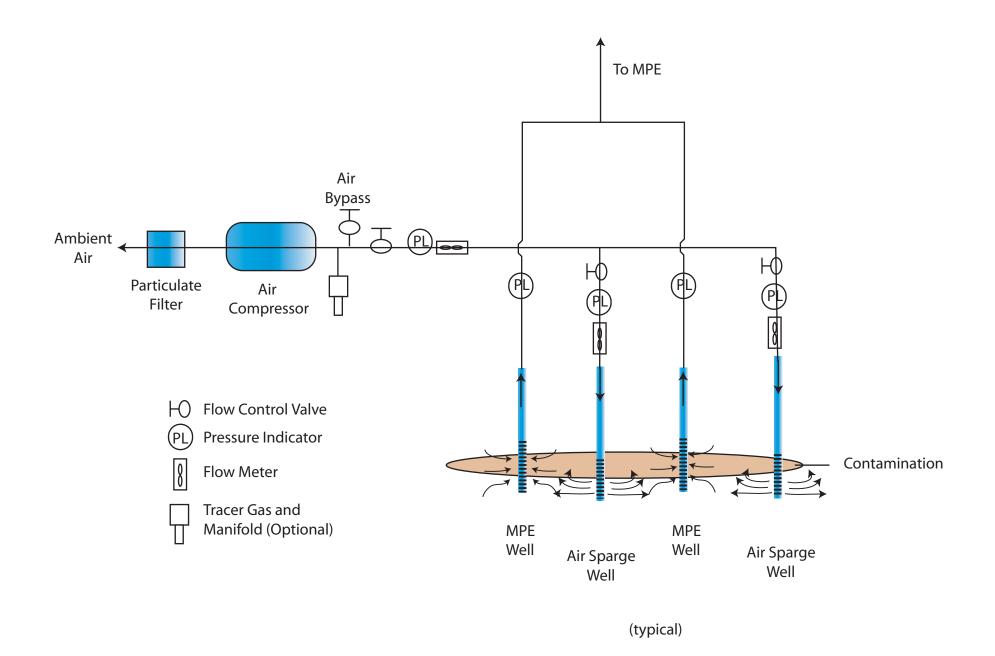

40


0

80


Figure 29: Map Showing Locations of Underground Utilities


















## TABLES

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

| Table 1                                 |
|-----------------------------------------|
| Historical Soil Analytical Data         |
| 3519 Castro Valley Blvd., Castro Valley |

| Sample ID | Consultant | Sample<br>Depth<br>(feet) | Sample Date | TPH-g<br>(mg/kg) | TPH-d<br>(mg/kg) | TPH-mo<br>(mg/kg) | TOG<br>(mg/kg) | Benzene<br>(mg/kg) | Toluene<br>(mg/kg) | Ethyl<br>Benzene<br>(mg/kg) | Total<br>Xylenes<br>(mg/kg) | MtBE<br>(mg/kg) | Napthalene<br>(mg/kg) | Lead<br>(mg/kg) |
|-----------|------------|---------------------------|-------------|------------------|------------------|-------------------|----------------|--------------------|--------------------|-----------------------------|-----------------------------|-----------------|-----------------------|-----------------|
| WO1       | Kaprealian | 8.5                       | 9/20/1988   | <1.0             | NA               | NA                | <1.0           | 0.0068             | 0.0095             | <0.005                      | <0.005                      | NA              | NA                    | NA              |
| Comp A    | Kaprealian | Composite                 | 9/20/1988   | <1.0             | NA               | NA                | 100            | NA                 | NA                 | NA                          | NA                          | NA              | NA                    | NA              |
| Comp B    | Kaprealian | Composite                 | 10/4/1988   | <1.0             | <10              | NA                | <50            | NA                 | NA                 | NA                          | NA                          | NA              | NA                    | NA              |
| ESE-1     | Alisto     | 15                        | 9/29/1992   | 70               | <5.0             | NA                | <50            | 0.87               | 2                  | 1.2                         | 5.7                         | NA              | NA                    | NA              |
| ESE-1     | Alisto     | 20                        | 9/29/1992   | <1.0             | <5.0             | NA                | <50            | < 0.005            | < 0.005            | < 0.005                     | <0.005                      | NA              | NA                    | NA              |
| ESE-2     | Alisto     | 10.5                      | 9/28/1992   | <1.0             | <5.0             | NA                | NA             | < 0.005            | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| ESE-2     | Alisto     | 20                        | 9/28/1992   | <1.0             | NA               | NA                | NA             | < 0.005            | < 0.005            | < 0.005                     | <0.005                      | NA              | NA                    | NA              |
| ESE-3     | Alisto     | 10.5                      | 9/29/1992   | 220              | NA               | NA                | NA             | 1.4                | 8.2                | 3.3                         | 18                          | NA              | NA                    | NA              |
| ESE-3     | Alisto     | 20                        | 9/29/1992   | <1.0             | NA               | NA                | NA             | < 0.005            | < 0.005            | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| ESE-4     | Alisto     | 6.5                       | 9/28/1992   | <1.0             | NA               | NA                | NA             | < 0.005            | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| ESE-4     | Alisto     | 10                        | 9/28/1992   | 24               | NA               | NA                | NA             | 0.15               | 0.17               | 0.23                        | 0.82                        | NA              | NA                    | NA              |
| ESE-5     | Alisto     | 10                        | 9/28/1992   | 51               | NA               | NA                | NA             | 0.25               | 0.24               | 0.3                         | 0.17                        | NA              | NA                    | NA              |
| ESE-5     | Alisto     | 14                        | 9/28/1992   | <1.0             | NA               | NA                | NA             | < 0.005            | < 0.005            | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| B-9       | ACC Env    | 2                         | 12/5/1994   | 9.9              | NA               | NA                | NA             | 0.016              | < 0.005            | 0.067                       | 0.23                        | NA              | NA                    | NA              |
| B-9       | ACC Env    | 4                         | 12/5/1994   | 1                | NA               | NA                | NA             | 0.0058             | <0.005             | 0.0065                      | 0.009                       | NA              | NA                    | NA              |
| B-10      | ACC Env    | 4                         | 12/6/1994   | 59               | NA               | NA                | NA             | <50                | <0.005             | 0.22                        | 0.54                        | NA              | NA                    | NA              |
| B-11      | ACC Env    | 2                         | 12/6/1994   | <10              | NA               | NA                | NA             | <50                | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| B-12      | ACC Env    | 4                         | 12/6/1994   | <10              | NA               | NA                | NA             | <50                | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| B-12      | ACC Env    | 6                         | 12/6/1994   | <10              | NA               | NA                | NA             | <50                | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| B-20      | ACC Env    | 3                         | 12/8/1994   | <1.0             | NA               | NA                | NA             | < 0.005            | <0.005             | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| B-20      | ACC Env    | 5                         | 12/8/1994   | <1.0             | NA               | NA                | NA             | < 0.005            | < 0.005            | < 0.005                     | < 0.005                     | NA              | NA                    | NA              |
| MW-6      | Alisto     | 6 to 6.5                  | 7/18/1995   | <2.5             | NA               | NA                | NA             | <0.025             | <0.025             | <0.025                      | < 0.05                      | NA              | NA                    | NA              |
| MW-6      | Alisto     | 11 to 11.5                | 7/18/1995   | <2.5             | NA               | NA                | NA             | <0.025             | <0.025             | <0.025                      | < 0.05                      | NA              | NA                    | NA              |
| MW-7      | Alisto     | 6 to 6.5                  | 7/18/1995   | <2.5             | NA               | NA                | NA             | <0.025             | <0.025             | <0.025                      | < 0.05                      | NA              | NA                    | NA              |
| MW-7      | Alisto     | 11 to 11.5                | 7/18/1995   | <2.5             | NA               | NA                | NA             | <0.025             | <0.025             | <0.025                      | < 0.05                      | NA              | NA                    | NA              |
| MW-8      | Alisto     | 3.5 to 4                  | 7/19/1995   | <2.5             | NA               | NA                | NA             | <0.025             | <0.025             | <0.025                      | < 0.050                     | NA              | NA                    | NA              |
| MW-8      | Alisto     | 7.5 to 8                  | 7/19/1995   | 8.8              | NA               | NA                | NA             | <0.025             | <0.025             | 0.046 <sup>E</sup>          | 0.11 <sup>E</sup>           | NA              | NA                    | NA              |
| SB-1      | Alisto     | 1.5 to 2                  | 7/19/1995   | 140              | NA               | NA                | NA             | <0.1               | <0.1               | 1.4                         | 4.1                         | NA              | NA                    | NA              |
| SB-1      | Alisto     | 3.5 to 4                  | 7/19/1995   | 190              | NA               | NA                | NA             | <0.25              | 0.33               | 4.5                         | 18                          | NA              | NA                    | NA              |
| SB-1      | Alisto     | 7 to 7.5                  | 7/19/1995   | 310              | NA               | NA                | NA             | 0.088              | 0.088 <sup>E</sup> | 0.41                        | 2                           | NA              | NA                    | NA              |
| SB-2      | Alisto     | 1.5 to 2                  | 7/19/1995   | <2.5             | NA               | NA                | NA             | < 0.025            | <0.025             | < 0.025                     | < 0.05                      | NA              | NA                    | NA              |
| SB-2      | Alisto     | 3.5 to 4                  | 7/19/1995   | 20               | NA               | NA                | NA             | < 0.025            | <0.025             | 0.93 <sup>E</sup>           | 0.12 <sup>E</sup>           | NA              | NA                    | NA              |
| SB-2      | Alisto     | 5.5 to 6                  | 7/19/1995   | 140              | NA               | NA                | NA             | <0.25              | <0.25              | 1.2                         | 1.4                         | NA              | NA                    | NA              |
| SB-2      | Alisto     | 7.5 to 8                  | 7/19/1995   | 230              | NA               | NA                | NA             | <0.25              | <0.25              | 3.9                         | 5.1                         | NA              | NA                    | NA              |
| SB-3      | Alisto     | 3 to 3.5                  | 3/8/1996    | 0.17             | NA               | NA                | NA             | 0.004              | 0.011              | < 0.002                     | < 0.002                     | 0.002           | NA                    | NA              |
| SB-3      | Alisto     | 5 to 5.5                  | 3/8/1996    | 2.9              | NA               | NA                | NA             | 0.005              | 0.012              | < 0.002                     | < 0.002                     | 0.003           | NA                    | NA              |
| SB-3      | Alisto     | 8 to 8.5                  | 3/8/1996    | 1.2              | NA               | NA                | NA             | 0.15               | 0.28               | < 0.020                     | <0.020                      | 0.059           | NA                    | NA              |
| SB-4      | Alisto     | 2.5 to 3                  | 3/8/1996    | 0.16             | NA               | NA                | NA             | < 0.001            | 0.003              | < 0.002                     | < 0.002                     | < 0.001         | NA                    | NA              |
| SB-4      | Alisto     | 5 to 5.5                  | 3/8/1996    | <0.1             | NA               | NA                | NA             | < 0.001            | 0.003              | < 0.002                     | < 0.002                     | < 0.001         | NA                    | NA              |

|                  |            |                           |             |                   | 3519 Cas           | stro Valle        | y Blvd., C     | astro Valle        | еу                  |                             |                             |                 |                       |                 |
|------------------|------------|---------------------------|-------------|-------------------|--------------------|-------------------|----------------|--------------------|---------------------|-----------------------------|-----------------------------|-----------------|-----------------------|-----------------|
| Sample ID        | Consultant | Sample<br>Depth<br>(feet) | Sample Date | TPH-g<br>(mg/kg)  | TPH-d<br>(mg/kg)   | TPH-mo<br>(mg/kg) | TOG<br>(mg/kg) | Benzene<br>(mg/kg) | Toluene<br>(mg/kg)  | Ethyl<br>Benzene<br>(mg/kg) | Total<br>Xylenes<br>(mg/kg) | MtBE<br>(mg/kg) | Napthalene<br>(mg/kg) | Lead<br>(mg/kg) |
| UST-NE           | SOMA       | 9.5                       | 9/4/2003    | <0.96             | <1.0               | NA                | NA             | <0.0048            | <0.0048             | <0.0048                     | <0.0048                     | 0.059           | NA                    | NA              |
| UST-NW           | SOMA       | 9.5                       | 9/4/2003    | 2 <sup>H</sup>    | <1.0               | NA                | NA             | <0.0047            | <0.0047             | 0.007                       | <0.0047                     | 0.069           | NA                    | NA              |
| UST-SE           | SOMA       | 8                         | 9/4/2003    | <1.1              | <1.0               | NA                | NA             | <0.0053            | < 0.0053            | < 0.0053                    | <0.0053                     | <0.021          | NA                    | NA              |
| UST-SW           | SOMA       | 8                         | 9/4/2003    | 17 <sup>H</sup>   | 36 <sup>LY</sup>   | NA                | NA             | <0.0049            | 0.044 <sup>C</sup>  | 0.28                        | 0.112                       | 0.071           | NA                    | NA              |
| UST-SW           | SOMA       | 10                        | 9/4/2003    | <1.0              | <1.0               | NA                | NA             | <0.0052            | < 0.0052            | < 0.0052                    | <0.0052                     | 0.075           | NA                    | NA              |
| WOT-W            | SOMA       | 5.5                       | 9/4/2003    | <0.97             | <0.99              | NA                | NA             | <0.0049            | < 0.0049            | < 0.0049                    | <0.0049                     | <0.019          | NA                    | 6.3             |
| Pumps 1&2        | SOMA       | 2.5                       | 9/11/2003   | 4.5 <sup>HY</sup> | NA                 | NA                | NA             | <0.0055            | 0.0055 <sup>C</sup> | 0.016                       | 0.0197 <sup>C</sup>         | <0.022          | NA                    | 9.1             |
| Pumps 3&4        | SOMA       | 3                         | 9/11/2003   | <1.1              | NA                 | NA                | NA             | <0.0054            | < 0.0054            | < 0.0054                    | <0.0054                     | <0.022          | NA                    | 6.9             |
| Pumps 5&6        | SOMA       | 3                         | 9/11/2003   | <1.1              | NA                 | NA                | NA             | <0.0054            | < 0.0054            | <0.0054                     | <0.0054                     | <0.022          | NA                    | 7.6             |
| Pumps 7&8        | SOMA       | 3                         | 9/11/2003   | <1.1              | NA                 | NA                | NA             | <0.0053            | < 0.0053            | < 0.0053                    | <0.0053                     | <0.021          | NA                    | 18              |
| Intersection     | SOMA       | 3                         | 9/11/2003   | <1.1              | NA                 | NA                | NA             | <0.0055            | <0.0055             | <0.0055                     | <0.0055                     | <0.022          | NA                    | 7.7             |
| PL1 <sup>1</sup> | SOMA       | 4                         | 9/13/2003   | 530 <sup>HY</sup> | NA                 | NA                | NA             | <0.011             | <0.011              | 0.34 <sup>C</sup>           | 0.524 <sup>C</sup>          | <0.043          | NA                    | NA              |
| PL2 <sup>2</sup> | SOMA       | 4                         | 9/13/2003   | <1.1              | NA                 | NA                | NA             | <0.0055            | < 0.0055            | <0.0055                     | <0.0055                     | <0.022          | NA                    | NA              |
| SB1- Comp        | SOMA       | Composite                 | 8/20/2003   | <1.0              | NA                 | NA                | NA             | 0.02 <sup>C</sup>  | <0.0052             | 0.0098                      | 0.013                       | 0.23            | NA                    | 7.2             |
| SB2 - Comp       | SOMA       | Composite                 | 8/20/2003   | 390               | NA                 | NA                | NA             | <0.13              | <0.13               | 2.8                         | 9.8                         | <0.5            | NA                    | 8.2             |
| Comp 1           | SOMA       | Composite                 | 9/3/2003    | 8.8               | NA                 | NA                | NA             | <0.0054            | < 0.0054            | 0.032                       | 0.049                       | <0.018          | NA                    | 10              |
| Comp 2           | SOMA       | Composite                 | 9/4/2003    | <0.99             | NA                 | NA                | NA             | <0.0048            | <0.0048             | <0.0048                     | <0.0048                     | <0.0048         | NA                    | 4.6             |
| Comp 2R          | SOMA       | Composite                 | 9/5/2003    | 21 <sup>H</sup>   | 4.8 <sup>HLY</sup> | NA                | NA             | <0.01              | 0.024 <sup>C</sup>  | 0.054 <sup>C</sup>          | 0.01 <sup>C</sup>           | <0.041          | NA                    | 5.3             |
| Comp ESE-3WA     | SOMA       | Composite                 | 10/3/2008   | <1.1              | NA                 | NA                | NA             | <0.0055            | < 0.0055            | <0.0055                     | 0.008                       | <0.022          | NA                    | 4               |
| TWB-1            | SOMA       | 22                        | 12/2/2003   | <1.0              | NA                 | NA                | NA             | < 0.0044           | < 0.0044            | < 0.0044                    | < 0.0044                    | <0.0044         | NA                    | NA              |
| TWB-1            | SOMA       | 25                        | 12/2/2003   | <0.94             | NA                 | NA                | NA             | <0.0047            | <0.0047             | <0.0047                     | <0.0047                     | <0.0047         | NA                    | NA              |
| TWB-2            | SOMA       | 22                        | 12/2/2003   | <1.1              | NA                 | NA                | NA             | <0.0047            | <0.0047             | <0.0047                     | <0.0047                     | <0.0047         | NA                    | NA              |
| TWB-2            | SOMA       | 24                        | 12/2/2003   | <1.0              | NA                 | NA                | NA             | <0.0048            | <0.0048             | <0.0048                     | <0.0048                     | 0.027           | NA                    | NA              |
| TWB-2            | SOMA       | 27                        | 12/2/2003   | <1.1              | NA                 | NA                | NA             | < 0.0043           | < 0.0043            | < 0.0043                    | <0.0043                     | 0.015           | NA                    | NA              |
| TWB-2            | SOMA       | 29                        | 12/2/2003   | <1.0              | NA                 | NA                | NA             | <0.0047            | <0.0047             | <0.0047                     | <0.0047                     | 0.019           | NA                    | NA              |
| TWB-3            | SOMA       | 22                        | 12/2/2003   | <0.95             | NA                 | NA                | NA             | <0.0049            | <0.0049             | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| TWB-3            | SOMA       | 25                        | 12/2/2003   | <0.95             | NA                 | NA                | NA             | <0.0048            | <0.0048             | <0.0048                     | <0.0048                     | <0.0048         | NA                    | NA              |
| TWB-3            | SOMA       | 29                        | 12/2/2003   | <1.0              | NA                 | NA                | NA             | <0.0047            | <0.0047             | <0.0047                     | <0.0047                     | <0.0047         | NA                    | NA              |
| TWB-4            | SOMA       | 10                        | 12/2/2003   | <0.93             | NA                 | NA                | NA             | <0.0045            | <0.0045             | <0.0045                     | <0.0045                     | <0.0045         | NA                    | NA              |
| TWB-4            | SOMA       | 27                        | 12/2/2003   | <1.1              | NA                 | NA                | NA             | <0.0047            | <0.0047             | <0.0047                     | <0.0047                     | <0.0047         | NA                    | NA              |
| TWB-4            | SOMA       | 29                        | 12/2/2003   | <0.98             | NA                 | NA                | NA             | <0.0048            | <0.0048             | <0.0048                     | <0.0048                     | <0.0048         | NA                    | NA              |
| TWB-5            | SOMA       | 16                        | 12/2/2003   | <1.0              | NA                 | NA                | NA             | 0.018              | < 0.0045            | 0.041                       | 0.187                       | <0.0045         | NA                    | NA              |
| TWB-5            | SOMA       | 18                        | 12/2/2003   | <0.93             | NA                 | NA                | NA             | < 0.0045           | < 0.0045            | < 0.0045                    | <0.0045                     | < 0.0045        | NA                    | NA              |
| TWB-5            | SOMA       | 29                        | 12/2/2003   | <0.97             | NA                 | NA                | NA             | < 0.0045           | <0.0045             | 0.0051                      | 0.018                       | <0.0045         | NA                    | NA              |

| Table 1                                 |
|-----------------------------------------|
| Historical Soil Analytical Data         |
| 3519 Castro Valley Blvd., Castro Valley |

|           |            |                           |             |                  | 0010 000         |                   | у Divu., О     | astro valle        | c y                |                             |                             |                 |                       |                 |
|-----------|------------|---------------------------|-------------|------------------|------------------|-------------------|----------------|--------------------|--------------------|-----------------------------|-----------------------------|-----------------|-----------------------|-----------------|
| Sample ID | Consultant | Sample<br>Depth<br>(feet) | Sample Date | TPH-g<br>(mg/kg) | TPH-d<br>(mg/kg) | TPH-mo<br>(mg/kg) | TOG<br>(mg/kg) | Benzene<br>(mg/kg) | Toluene<br>(mg/kg) | Ethyl<br>Benzene<br>(mg/kg) | Total<br>Xylenes<br>(mg/kg) | MtBE<br>(mg/kg) | Napthalene<br>(mg/kg) | Lead<br>(mg/kg) |
| B-1       | Delta      | 17                        | 8/28/2008   | 120              | NA               | NA                | NA             | <0.12              | <0.12              | <0.12                       | <0.24                       | <0.12           | NA                    | NA              |
| B-3       | Delta      | 12                        | 8/28/2008   | 720              | NA               | NA                | NA             | <0.5               | <0.5               | 2                           | 1.7                         | <0.5            | NA                    | NA              |
| B-4       | Delta      | 10                        | 8/28/2008   | <0.5             | NA               | NA                | NA             | <0.005             | <0.005             | <0.005                      | <0.01                       | <0.005          | NA                    | NA              |
| B-5       | Delta      | 12                        | 8/28/2008   | <0.5             | NA               | NA                | NA             | <0.005             | < 0.005            | < 0.005                     | <0.01                       | <0.005          | NA                    | NA              |
| B-6       | Delta      | 9 to 10                   | 8/28/2008   | 0.7              | NA               | NA                | NA             | <0.005             | <0.005             | <0.005                      | <0.01                       | <0.005          | NA                    | NA              |
| DP-1      | SOMA       | 11                        | 8/18/2009   | 6.1 Y            | 48 Y             | <5.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| DP-1      | SOMA       | 14                        | 8/18/2009   | 25 Y             | 35 Y             | <5.0              | NA             | <0.0048            | <0.0048            | <0.0048                     | <0.0048                     | <0.0048         | NA                    | NA              |
| DP-1      | SOMA       | 17                        | 8/18/2009   | <1.1             | 1.9 Y            | <5.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| DP-2      | SOMA       | 8                         | 8/17/2009   | 1.4 Y            | 4.3 Y            | <5.0              | NA             | <0.0049            | < 0.0049           | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| DP-2      | SOMA       | 12                        | 8/17/2009   | 1.3 Y            | 1.6 Y            | <5.0              | NA             | <0.0047            | < 0.0047           | <0.0047                     | <0.0047                     | <0.0047         | NA                    | NA              |
| DP-3      | SOMA       | 12                        | 8/17/2009   | <1.0             | <0.99            | <5.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| DP-4      | SOMA       | 6                         | 8/17/2009   | <1.1             | <1.0             | <5.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | NA                    | NA              |
| DP-4      | SOMA       | 14                        | 8/17/2009   | <0.93            | <1.0             | <5.0              | NA             | <0.005             | < 0.005            | < 0.005                     | <0.005                      | <0.005          | NA                    | NA              |
| DP-5      | SOMA       | 12                        | 8/18/2009   | 38               | 16 Y             | <5.0              | NA             | <0.047 a           | <0.047 a           | 0.11 a                      | 1.87 a                      | <0.047 a        | NA                    | NA              |
| DP-5      | SOMA       | 14                        | 8/18/2009   | 91               | 51 Y             | 22                | NA             | <0.25 b            | <0.25 b            | 2.4 b                       | 11 b                        | <0.25 b         | NA                    | NA              |
| DP-5      | SOMA       | 20                        | 8/18/2009   | 26               | 8.1 Y            | <5.0              | NA             | <0.017 c           | <0.017 c           | <0.017 c                    | 0.051 c                     | <0.017 c        | NA                    | NA              |
| DP-6      | SOMA       | 12                        | 8/18/2009   | 96               | 2.6 Y            | <5.0              | NA             | <0.025 f           | <0.025 f           | 0.54 f                      | 0.2 f                       | <0.025 f        | NA                    | NA              |
| DP-6      | SOMA       | 14                        | 8/18/2009   | 1.5              | 3.9 Y            | <5.0              | NA             | <0.0048            | <0.0048            | <0.0048                     | <0.0048                     | <0.0048         | NA                    | NA              |
| DP-6      | SOMA       | 17                        | 8/18/2009   | 75               | 9.9              | <5.0              | NA             | <0.04 d            | <0.04 d            | 0.22 d                      | 0.84 d                      | <0.04 d         | NA                    | NA              |
| DP-7      | SOMA       | 12                        | 8/18/2009   | <0.97            | <1.0             | <5.0              | NA             | <0.0048            | <0.0048            | <0.0048                     | <0.0048                     | <0.0048         | NA                    | NA              |
| DP-7      | SOMA       | 14                        | 8/18/2009   | <0.94            | < 0.99           | <5.0              | NA             | < 0.0049           | < 0.0049           | < 0.0049                    | <0.0049                     | < 0.0049        | NA                    | NA              |
| SOMA-5    | SOMA       | 11                        | 8/18/2009   | 380              | 31 Y             | <5.0              | NA             | <0.25 b            | <0.25 b            | 2.0 b                       | 14.2 b                      | <0.25 b         | NA                    | NA              |
| SOMA-5    | SOMA       | 12.5                      | 8/18/2009   | 28               | 2.6 Y            | <5.0              | NA             | <0.05 e            | <0.05 e            | 0.4 e                       | 2.65 e                      | <0.05 e         | NA                    | NA              |

Table 1Historical Soil Analytical Data3519 Castro Valley Blvd., Castro Valley

| Table 1                                 |
|-----------------------------------------|
| Historical Soil Analytical Data         |
| 3519 Castro Valley Blvd., Castro Valley |

| Sample ID     | Consultant                     | Sample<br>Depth<br>(feet) | Sample Date | TPH-g<br>(mg/kg) | TPH-d<br>(mg/kg) | TPH-mo<br>(mg/kg) | TOG<br>(mg/kg) | Benzene<br>(mg/kg) | Toluene<br>(mg/kg) | Ethyl<br>Benzene<br>(mg/kg) | Total<br>Xylenes<br>(mg/kg) | MtBE<br>(mg/kg) | Napthalene<br>(mg/kg) | Lead<br>(mg/kg) |
|---------------|--------------------------------|---------------------------|-------------|------------------|------------------|-------------------|----------------|--------------------|--------------------|-----------------------------|-----------------------------|-----------------|-----------------------|-----------------|
| SB-6 (SOMA-6) | SOMA                           | 9                         | 8/9/2010    | <1.1             | <0.99            | <5.0              | NA             | <0.0048            | <0.0048            | <0.0048                     | <0.0048                     | <0.0048         | <0.0048               | NA              |
| SB-6 (SOMA-6) | SOMA                           | 11.5                      | 8/9/2010    | 13 Y             | 5.3 Y            | 16.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | <0.0049               | NA              |
| SOMA-7        | SOMA                           | 2.5                       | 8/9/2010    | 9.9 Y            | 79               | 91.0              | NA             | <0.0049            | <0.0049            | <0.0049                     | <0.0049                     | <0.0049         | <0.0049               | NA              |
| SOMA-7        | SOMA                           | 9                         | 8/9/2010    | 430 Y            | 170              | 63.0              | NA             | <0.25              | <0.25              | <0.25                       | <0.25                       | <0.25           | 3.7                   | NA              |
| SOMA-7        | SOMA                           | 10                        | 8/9/2010    | 980 Y            | 370 Y            | 15.0              | NA             | <2.5               | <2.5               | 9                           | <2.5                        | <2.5            | 13                    | NA              |
| SOMA-8        | SOMA                           | 7.5                       | 8/9/2010    | <1.0             | <1.0             | <5.0              | NA             | <0.0047            | <0.0047            | <0.0047                     | <0.0047                     | <0.0047         | <0.0047               | NA              |
| SOMA-8        | SOMA                           | 12.5                      | 8/9/2010    | <1.0             | <0.99            | <5.0              | NA             | <0.0047            | <0.0047            | <0.0047                     | <0.0047                     | <0.0047         | <0.0047               | NA              |
| SB-9 (SOMA-9) | SOMA                           | 7                         | 8/9/2010    | <1.0             | <1.0             | <5.0              | NA             | <0.0048            | <0.0048            | <0.0048                     | <0.0048                     | <0.0048         | <0.0048               | NA              |
| SB-9 (SOMA-9) | SOMA                           | 13.5                      | 8/9/2010    | <1.1             | <1.0             | <5.0              | NA             | <0.0047            | <0.0047            | <0.0047                     | <0.0047                     | <0.0047         | <0.0047               | NA              |
| ESL -         | ESL - Shallow Soil, Commercial |                           |             |                  |                  | 2500              | 2500           | 0.044              | 2.9                | 3.3                         | 2.3                         | 0.023           | 1.3                   | 750             |
| ESL           | ESL - Deep Soils, Commercial   |                           |             |                  |                  | 5000              | 5000           | 0.044              | 2.9                | 3.3                         | 2.3                         | 0.023           | 3.4                   | 750             |

Notes:

< - not detected above laboratory reporting limits

NA - not analyzed

C - Presence confirmed but RPD between columns exceeds 40%

E - Analyte Amount Exceeds the Calibration Range

H - Heavier hydrocarbons contributed to the quantitation

L - Lighter Hydrocarbons contriuted to quantitiation

Y - Sample exhibits chromatographic pattern that does not resemble standard

1 - located adjacent to pumps 5&6

2 - located adjacent to pumps 3&4

Petroleum Hydrocarbons analyzed by EPA 8015, 8021, and 8260

TOG - Total Oil and Gas

ESL - Environmental Screening Level, California Regional Water Control Board, Interim Final November 2007, revised May 2008

- a Dilution factor 9.434
- b Dilution factor 50
- c Dilution factor 3.311
- d Dilution Factor 8.065
- e Dilution Factor 10
- f Dilution Factor 4.950

# Table 2Historical Grab Groundwater Analytical Data3519 Castro Valley Blvd., Castro Valley

| Sample ID         | Consultant | Sample<br>Date | TPH-g<br>(μg/L) | TPH-d<br>(μg/L) | TPH-mo<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>Benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L) | TBA<br>(μg/L) |
|-------------------|------------|----------------|-----------------|-----------------|------------------|-------------------|-------------------|----------------------------|----------------------------|----------------|---------------|
| ESE-1             | Alisto     | 7/28/1995      | 190             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <1.0                       | NA             | NA            |
| ESE-2             | Alisto     | 7/28/1995      | 2,000           | NA              | NA               | <2.5              | <2.5              | <2.5                       | <5.0                       | NA             | NA            |
| ESE-3             | Alisto     | 7/28/1995      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <1.0                       | NA             | NA            |
| ESE-4             | Alisto     | 7/28/1995      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <1.0                       | NA             | NA            |
| ESE-5             | Alisto     | 7/28/1995      | 520             | NA              | NA               | 15                | <0.5              | 1.7                        | 1.3                        | NA             | NA            |
| ESE-5 QC1         | Alisto     | 7/28/1995      | 460             | NA              | NA               | 7.2               | <0.5              | 1.9                        | 1.5                        | NA             | NA            |
| MW-6              | Alisto     | 7/28/1995      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <1.0                       | NA             | NA            |
| MW-7              | Alisto     | 7/28/1995      | <50             | NA              | NA               | 0.54 <sup>E</sup> | 0.54              | <0.5                       | <1.0                       | NA             | NA            |
| MW-8              | Alisto     | 7/28/1995      | 1,100           | NA              | NA               | <2.5              | <2.5              | <2.5                       | <5.0                       | NA             | NA            |
| S-10              | Alisto     | 7/28/1995      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <1.0                       | NA             | NA            |
| Ex. UST Pit       | SOMA       | 9/4/2003       | 1,300           | NA              | NA               | 110               | 220               | 18                         | 171                        | 14,000         | NA            |
| ESE-3 WA          | SOMA       | 10/3/2003      | 110             | NA              | NA               | <5.0              | <5.0              | 0.59                       | 1.2                        | 3.3            | NA            |
| TWB-1             | SOMA       | 12/2/2003      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | 0.8                        | 8.5            | NA            |
| TWB-2             | SOMA       | 12/2/2003      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <0.5                       | 89             | NA            |
| TWB-3             | SOMA       | 12/2/2003      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | <0.5                       | 37             | NA            |
| TWB-4             | SOMA       | 12/2/2003      | <50             | NA              | NA               | <0.5              | <0.5              | <0.5                       | 2.3                        | <0.5           | NA            |
| TWB-5             | SOMA       | 12/2/2003      | 32,000          | NA              | NA               | 500               | 13                | 540                        | 1,150                      | 9.5            | NA            |
| B-4               | Delta      | 8/28/2008      | <50             | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | <1.0           | <10           |
| B-5               | Delta      | 8/28/2008      | <50             | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | <1.0           | <10           |
| B-6               | Delta      | 8/28/2008      | 900             | NA              | NA               | 0.71              | 3.5               | 3.4                        | <2.0                       | <1.0           | <10           |
| MW-1 <sup>1</sup> | Delta      | 10/28/2008     | <50             | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | 15             | 38            |
| MW-2 <sup>1</sup> | Delta      | 10/28/2008     | 74              | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | 51             | <10           |
| MW-3 <sup>1</sup> | Delta      | 10/28/2008     | <50             | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | 19             | <10           |
| MW-4 <sup>1</sup> | Delta      | 10/28/2008     | <50             | NA              | NA               | <0.5              | <1.0              | <1.0                       | <2.0                       | <1.0           | <10           |
| DP-1              | SOMA       | 8/18/2009      | 210 Y           | 140 Y           | <300             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5           | <10           |
| DP-2              | SOMA       | 8/17/2009      | 130             | 340 Y           | 410              | <0.5              | <0.5              | 3.7                        | <0.5                       | <0.5           | <10           |
| DP-3              | SOMA       | 8/17/2009      | <50             | 330 Y           | 360              | <0.5              | <0.5              | <0.5                       | <0.5                       | 1.9            | <10           |

## Table 2Historical Grab Groundwater Analytical Data3519 Castro Valley Blvd., Castro Valley

| Sample ID | Consultant               | Sample<br>Date | TPH-g<br>(μg/L) | TPH-d<br>(μg/L) | TPH-mo<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>Benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L) | TBA<br>(μg/L) |
|-----------|--------------------------|----------------|-----------------|-----------------|------------------|-------------------|-------------------|----------------------------|----------------------------|----------------|---------------|
| DP-4      | SOMA                     | 8/17/2009      | <50             | 980 Y           | 570              | <0.5              | <0.5              | <0.5                       | <0.5                       | 0.76           | <10           |
| DP-5      | SOMA                     | 8/18/2009      | 640             | 240 Y           | <300             | 8.9               | 1.6               | 18                         | 71                         | 4.8            | <10           |
| DP-6      | SOMA                     | 8/18/2009      | 1,600           | 470 Y           | <300             | 18                | <0.5              | 71                         | 186                        | <0.5           | <10           |
| DP-7      | SOMA                     | 8/18/2009      | <50             | 130 Y           | <300             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5           | <10           |
| SOMA-5    | SOMA                     | 9/21/2009      | 16,000          | NA              | NA               | 1,300             | <10               | 420                        | 2,360                      | 120            | 510           |
| ESE-1R    | SOMA                     | 8/30/2010      | 2,100           | 1,600 Y         | 560              | 110               | 5.2               | 19                         | 151                        | 15             | 83            |
| ESE-2R    | SOMA                     | 8/30/2010      | 200             | 250 Y           | <300             | 0.93              | <0.50             | 1.3                        | 13.5                       | 16             | <10           |
| ESE-5R    | SOMA                     | 8/30/2010      | 75              | 190 Y           | <300             | <0.5              | <0.5              | <0.5                       | <0.5                       | 7.3            | <10           |
| MW-6R     | SOMA                     | 8/30/2010      | <50             | 110 Y           | <300             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5           | <10           |
| MW-7R     | SOMA                     | 8/30/2010      | <50             | 200 Y           | 420              | <0.5              | <0.5              | <0.5                       | <0.5                       | 24             | <10           |
| SOMA-7    | SOMA                     | 8/30/2010      | 2,900           | 2,100 Y         | 330              | 190               | 3.7               | 74                         | 19.8                       | 8.4            | <33           |
| SOMA-8    | SOMA                     | 8/30/2010      | <50             | 69 Y            | <300             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5           | <10           |
|           | ESL - Drinking Water     |                |                 | 100             | 100              | 1                 | 40                | 30                         | 20                         | 5              | 12            |
| ESL - N   | ESL - Non-Drinking Water |                |                 | 210             | 210              | 46                | 130               | 43                         | 100                        | 1,800          | 18,000        |

Notes:

1: Wells designated by Delta, Correct designation for monitoring wells is: MW-1 is ESE-1, MW-2 is ESE-2, MW-3 is SOMA-1, MW-4 is MW-6

ESL - Environmental Screening Level, California Regional Water Control Board, Interim Final November 2007, revised May 2008

| Table 3                                             |
|-----------------------------------------------------|
| Historical Groundwater Elevations & Analytical Data |
| TPH-g, BTEX, MtBE                                   |
| 3519 Castro Valley Blvd, Castro Valley, CA          |

| Monitoring<br>Well      | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |  |  |
|-------------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|--|--|
| Semi-Confined WBZ Wells |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |  |  |
| ESE-1                   | 10/5/1992  | 177.69                                            | 11.22                             | 166.47                             | 2100            | 370               | 150               | 17                         | 110                        | NA                      |  |  |
|                         | 10/5/1992  | 177.69                                            | NM                                | NM                                 | 2300            | 370               | 160               | 16                         | 110                        | NA                      |  |  |
|                         | 4/1/1993   | 177.69                                            | 8.79                              | 168.90                             | 5900            | 1500              | 410               | 110                        | 390                        | NA                      |  |  |
|                         | 6/29/1993  | 177.69                                            | 10.34                             | 167.35                             | 7600            | 2900              | 390               | 130                        | 460                        | NA                      |  |  |
|                         | 9/23/1993  | 177.69                                            | 10.91                             | 166.78                             | 2000            | 490               | 40                | 20                         | 56                         | 600                     |  |  |
|                         | 9/23/1993  | 177.69                                            | NM                                | NM                                 | 1500            | 420               | 39                | 19                         | 56                         | 550                     |  |  |
|                         | 12/10/1993 | 177.69                                            | 9.93                              | 167.76                             | 1800            | 480               | 42                | 19                         | 66                         | 921                     |  |  |
|                         | 12/10/1993 | 177.69                                            | NM                                | NM                                 | 1500            | 380               | 38                | 17                         | 55                         | 770                     |  |  |
|                         | 2/17/1994  | 177.69                                            | 9.64                              | 168.05                             | 1900            | 380               | 48                | 24                         | 80                         | 585                     |  |  |
|                         | 2/17/1994  | 177.69                                            | NM                                | NM                                 | 2200            | 430               | 42                | 19                         | 65                         | 491                     |  |  |
|                         | 8/8/1994   | 177.69                                            | 11.72                             | 165.97                             | 2100            | 450               | 46                | 16                         | 50                         | 760                     |  |  |
|                         | 10/12/1994 | 177.69                                            | 10.48                             | 167.21                             | 760             | 240               | 16                | 51                         | 39                         | 230                     |  |  |
|                         | 1/19/1995  | 177.69                                            | 7.77                              | 169.92                             | 840             | 600               | 120               | 22                         | 58                         | NA                      |  |  |
|                         | 5/2/1995   | 177.69                                            | 8.69                              | 169.00                             | 2000            | 640               | 67                | 24                         | 98                         | NA                      |  |  |
|                         | 7/28/1995  | 177.69                                            | 10.12                             | 167.57                             | 190             | <0.50             | <0.50             | <0.50                      | <1.0                       | NA                      |  |  |
|                         | 11/17/1995 | 177.69                                            | 10.57                             | 167.12                             | 200             | 3.4               | <1.0              | 1                          | <2.0                       | 600                     |  |  |
|                         | 2/7/1996   | 177.69                                            | 7.41                              | 170.28                             | 750             | 370               | 23                | 21                         | 64                         | 680                     |  |  |
|                         | 4/23/1996  | 177.69                                            | 9.12                              | 168.57                             | 310             | 100               | <1.0              | <1.0                       | <1.0                       | 1500                    |  |  |
|                         | 7/9/1996   | 177.69                                            | 10.12                             | 167.57                             | 730             | 230               | 74                | 13                         | 63                         | 750                     |  |  |
|                         | 10/10/1996 | 177.69                                            | 10.80                             | 166.89                             | 420             | 26                | 1.6               | 7.3                        | 12                         | 430                     |  |  |
|                         | 1/20/1997  | 177.69                                            | 10.52                             | 167.17                             | 660             | 290               | 4.2               | 13                         | 36                         | 450                     |  |  |
|                         | 4/25/1997  | 177.69                                            | 9.77                              | 167.92                             | 410             | <0.5              | <1.0              | <1.0                       | <1.0                       | 580                     |  |  |
|                         | 7/18/1997  | 177.69                                            | 10.55                             | 167.14                             | 420             | <0.5              | <1.0              | <1.0                       | <1.0                       | 370                     |  |  |
|                         | 10/27/1997 | 177.69                                            | 10.36                             | 167.33                             | 300             | 56                | <1.0              | 6.5                        | <1.0                       | 220                     |  |  |

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-1 cont.        | 1/22/1998  | 177.69                                            | 7.52                              | 170.17                             | 4200            | 440               | 9                 | 15                         | 17.7                       | 1300                    |
|                    | 4/23/1998  | 177.69                                            | 8.80                              | 168.89                             | 15000           | 3400              | 190               | 910                        | 900                        | 4900                    |
|                    | 4/23/1998  | 177.69                                            | NM                                | NM                                 | 15000           | 2800              | 140               | 730                        | 730                        | 4400                    |
|                    | 7/29/1998  | 177.69                                            | 9.73                              | 167.96                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 177.69                                            | NM                                | NM                                 | 15000           | <2.5              | <5.0              | <5.0                       | <5.0                       | 15000                   |
|                    | 12/17/1998 | 177.69                                            | 9.51                              | 168.18                             | 2400            | 73                | 1                 | 2.8                        | 4.6                        | 2000                    |
|                    | 3/19/1999  | 177.69                                            | 8.65                              | 169.04                             | 4700            | 58                | <1.0              | <1.0                       | <1.0                       | 4700                    |
|                    | 6/23/1999  | 177.69                                            | 10.51                             | 167.18                             | 600             | 170               | <1.0              | 7.2                        | 5                          | 3900                    |
|                    | 9/27/1999  | 177.69                                            | 10.32                             | 167.37                             | 920             | 200               | <25               | <25                        | <25                        | 4900                    |
|                    | 12/9/1999  | 177.69                                            | 10.24                             | 167.45                             | 460             | 130               | 1.2               | 5.2                        | 1.5                        | 5100                    |
|                    | 3/9/2000   | 177.69                                            | 7.72                              | 169.97                             | 3000            | 1300              | 120               | 80                         | 140                        | 7300                    |
|                    | 6/8/2000   | 177.69                                            | 9.40                              | 168.29                             | 2900            | 540               | 9.7               | 20                         | 17                         | 5200                    |
|                    | 9/18/2000  | 177.69                                            | 10.05                             | 167.64                             | 890             | 3.4               | <0.5              | 1.4                        | <0.5                       | 2800                    |
|                    | 12/14/2000 | 177.69                                            | 8.20                              | 169.49                             | 1600            | 11.1              | <0.5              | <0.5                       | <0.5                       | 2730                    |
|                    | 3/21/2001  | 177.69                                            | 9.75                              | 167.94                             | 5700            | 2.28              | <0.5              | 0.51                       | <1.5                       | 6810                    |
|                    | 6/18/2001  | 177.69                                            | 10.21                             | 167.48                             | 2000            | 152               | 0.669             | 3.62                       | 2.34                       | 1980                    |
|                    | 9/18/2001  | 177.69                                            | 10.30                             | 167.39                             | 2500            | 57.1              | <5.0              | 6.25                       | <15                        | 2090                    |
|                    | 12/13/2001 | 177.69                                            | 9.82                              | 167.87                             | 2800            | 208               | 6.05              | 8.54                       | 9.66                       | 2030                    |
|                    | 3/14/2002  | 177.69                                            | 9.10                              | 168.59                             | 1800            | 140               | 6.31              | 4.5                        | 9.41                       | 1970                    |
|                    | 6/19/2002  | 177.69                                            | 9.92                              | 167.77                             | 1100            | 220               | 2.02              | 4.23                       | 3.8                        | 1280                    |
|                    | 9/10/2002  | 177.69                                            | 10.21                             | 167.48                             | 490             | 39                | 2.9               | <2.0                       | 4.9                        | 670                     |
|                    | 12/16/2002 | 177.69                                            | 8.56                              | 169.13                             | 730             | 140               | 6                 | 3.2                        | 9.1                        | 670                     |
|                    | 3/11/2003  | 177.69                                            | 9.40                              | 168.29                             | 1700            | 490               | 21                | 22                         | 41                         | 530                     |
|                    | 6/17/2003  | 177.69                                            | 9.86                              | 167.83                             | 1300            | 140               | <10               | <10                        | <10                        | 480                     |
|                    | 12/9/2003  | 177.69                                            | 9.32                              | 168.37                             | 1400            | 390               | 12                | 14                         | 26.1                       | 260                     |
|                    | 2/26/2004  | 177.69                                            | 7.71                              | 169.98                             | 3200            | 880               | 50                | 44                         | 89                         | 200                     |
|                    | 5/21/2004  | 177.69                                            | 10.19                             | 167.50                             | 1500            | 370               | 10                | 14                         | 25.2                       | 140                     |
|                    | 8/10/2004  | 180.24                                            | 10.41                             | 169.83                             | 460             | 390               | 7                 | 8.1                        | 15.4                       | 110                     |
|                    | 10/19/2004 | 180.24                                            | 10.40                             | 169.84                             | 1600            | 490               | 13                | 12                         | 25.3                       | 110                     |

# Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L)  | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|------------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-1 cont.        | 1/14/2005  | 180.24                                            | 8.26                              | 171.98                             | 790 Z            | 420               | 26                | 19                         | 52                         | 91                      |
|                    | 4/14/2005  | 180.24                                            | 8.77                              | 171.47                             | 3020             | 766               | 25.6              | 21.3                       | 25.26                      | 88.2                    |
|                    | 7/7/2005   | 180.24                                            | 9.94                              | 170.30                             | 1940             | 440               | 15.5              | 15.7                       | 21                         | 80.6                    |
|                    | 11/15/2005 | 180.24                                            | 10.21                             | 170.03                             | 1260             | 259               | 6.2               | 8.2                        | 10.81                      | 45.8                    |
|                    | 2/8/2006   | 180.24                                            | 9.01                              | 171.23                             | 1430             | 332               | 13.6              | 18.1                       | 25.03                      | 43                      |
|                    | 4/27/2006  | 180.24                                            | 9.14                              | 171.10                             | 1,600            | 519               | 23.2              | 32.4                       | 40.20                      | 63.4                    |
|                    | 8/1/2006   | 180.24                                            | 9.92                              | 170.32                             | 1,530            | 395               | 11.8              | 25.4                       | 28.01                      | 40                      |
|                    | 10/19/2006 | 180.24                                            | 10.34                             | 169.90                             | 1,230            | 327               | 10.2              | 21.6                       | 21.19                      | 29.6                    |
|                    | 1/12/2007  | 180.24                                            | 9.84                              | 170.40                             | 561              | 153               | 7.18              | 14.4                       | 14.95                      | 30.9                    |
|                    | 4/17/2007  | 180.24                                            | 9.78                              | 170.46                             | 467              | 192               | 7.59              | 13.8                       | 16.42                      | 30.4                    |
|                    | 7/17/2007  | 180.24                                            | 9.82                              | 170.42                             | 755              | 271               | 8.6               | 17.8                       | 22.06                      | 26.7                    |
|                    | 10/16/2007 | 180.24                                            | 8.99                              | 171.25                             | 164              | 80.2              | <2.0              | 5.24                       | 2.47                       | 16.6                    |
|                    | 1/17/2008  | 180.24                                            | 9.35                              | 170.89                             | 70               | 10.8              | <2.0              | <0.5                       | <2.0                       | 19.3                    |
|                    | 4/17/2008  | 180.24                                            | 9.80                              | 170.44                             | 687              | 89.7              | <2.0              | 4.01                       | 5.30                       | 8.79                    |
|                    | 7/16/2008  | 180.24                                            | 10.17                             | 170.07                             | 1,400            | 223               | 3.88              | 12.6                       | 17.88                      | 18.1                    |
|                    | 10/14/2008 | 180.24                                            | 10.86                             | 169.38                             | 540              | 95                | 2.7               | 7.7                        | 18                         | 15                      |
|                    | 1/6/2009   | 180.24                                            | 10.10                             | 170.14                             | 500 <sup>Y</sup> | 130               | 3                 | 8.8                        | 17.1                       | 13                      |
|                    | 4/6/2009   | 180.24                                            | 10.05                             | 170.19                             | 910 <sup>Y</sup> | 230               | 2.4               | 11                         | 12.1                       | 17                      |
|                    | 7/7/2009   | 180.24                                            | 10.42                             | 169.82                             | 850 <sup>Y</sup> | 89                | 1.9               | 7.8                        | 15.1                       | 15                      |
|                    | 1/27/2010  | 180.24                                            | 7.94                              | 172.30                             | 1,600            | 250               | 8.8               | 30                         | 69                         | 23                      |
|                    | 7/26/2010  | 180.24                                            | 9.95                              | 170.29                             | 1,000            | 96                | 1.2               | 4.2                        | 6                          | 17                      |
| ESE-1R             | 8/30/2010  | 180.20                                            | 10.17                             | 170.03                             | 2,100            | 110               | 5.2               | 19                         | 151                        | 15                      |
|                    | 11/16/2010 | 180.20                                            | 9.94                              | 170.26                             | 100              | 5.8               | <0.5              | 1                          | <0.5                       | 16                      |
|                    | 2/15/2011  | 180.20                                            | 10.12                             | 170.08                             | 1,400            | 96                | 1.7               | 14                         | 7.9                        | 22                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
|                    | 40/5/4000  | 470.00                                            | 44.00                             | 400.55                             | 000             | 5.4               | 40                |                            | 45                         |                         |
| ESE-2              | 10/5/1992  | 178.23                                            | 11.68                             | 166.55                             | 300             | 5.4               | 16                | 3.9                        | 45                         | NA                      |
|                    | 4/1/1993   | 178.23                                            | 9.17                              | 169.06                             | 240             | 27                | <0.5              | 17                         | 2.6                        | 123                     |
|                    | 6/29/1993  | 178.23                                            | 10.88<br>NM                       | 167.35                             | 1,700           | 260               | 24                | 110                        | 23                         | NA                      |
|                    | 6/29/1993  | 178.23                                            |                                   | NM                                 | 1,300           | 240               | 17                | 110                        | 25                         | NA                      |
|                    | 9/23/1993  | 178.23                                            | 11.56                             | 166.67                             | 240             | 3.1               | 0.5               | 0.6                        | 2.5                        | 643                     |
|                    | 12/10/1993 | 178.23                                            | 10.48                             | 167.75                             | 250             | 2.4               | 2.4               | 1.5                        | 11                         | 940                     |
|                    | 2/17/1994  | 178.23                                            | 10.06                             | 168.17                             | 900             | < 0.5             | <0.5              | <0.5                       | <0.5                       | 930                     |
|                    | 8/8/1994   | 178.23                                            | 11.11                             | 167.12                             | 750             | <0.5              | <0.5              | <0.5                       | < 0.5                      | 1400                    |
|                    | 10/12/1994 | 178.23                                            | 11.31                             | 166.92                             | 1,700           | <0.5              | <0.5              | <0.5                       | <0.5                       | 3000                    |
|                    | 1/19/1995  | 178.23                                            | 8.25                              | 169.98                             | 300             | 2                 | 0.9               | 0.7                        | 1                          | NA                      |
|                    | 5/2/1995   | 178.23                                            | 9.21                              | 169.02                             | 1,200           | 4                 | <2.5              | <2.5                       | <5                         | NA                      |
|                    | 7/28/1995  | 178.23                                            | 10.64                             | 167.59                             | 2,000           | <2.5              | <2.5              | <2.5                       | <5                         | NA                      |
|                    | 11/17/1995 | 178.23                                            | 11.13                             | 167.10                             | 3,600           | <25               | <25               | <25                        | <50                        | 12000                   |
|                    | 11/17/1995 | 178.23                                            | NM                                | NM                                 | 3,400           | <25               | <25               | <25                        | <50                        | 12000                   |
|                    | 2/7/1996   | 178.23                                            | 7.94                              | 170.29                             | 450             | <0.5              | <1                | <1                         | <1                         | 2300                    |
|                    | 4/23/1996  | 178.23                                            | 9.73                              | 168.50                             | 260             | 0.9               | <1                | <1                         | <1                         | 8600                    |
|                    | 7/9/1996   | 178.23                                            | 10.70                             | 167.53                             | 780             | <2.5              | <5                | <5                         | <5                         | 13393                   |
|                    | 10/10/1996 | 178.23                                            | 11.39                             | 166.84                             | 2,900           | <0.5              | <1                | <1                         | <1                         | 12000                   |
|                    | 1/20/1997  | 178.23                                            | 9.04                              | 169.19                             | <250            | <2.5              | <5                | <5                         | <5                         | 13000                   |
|                    | 4/25/1997  | 178.23                                            | 10.31                             | 167.92                             | 2,700           | <0.5              | <1                | <1                         | <1                         | 15000                   |
|                    | 7/18/1997  | 178.23                                            | 11.02                             | 167.21                             | 11,000          | <5                | <10               | <10                        | <10                        | 11000                   |
|                    | 10/27/1997 |                                                   | 10.93                             | 167.30                             | 6,100           | <2.5              | <5.0              | <5.0                       | <5.0                       | 7100                    |
|                    | 10/27/1997 | 178.23                                            | NM                                | NM                                 | 6,600           | <2.5              | <5.0              | <5.0                       | <5.0                       | 7400                    |
|                    | 1/22/1998  | 178.23                                            | 7.93                              | 170.30                             | 13,000          | <0.5              | <1                | <1                         | <1                         | 10000                   |
|                    | 1/22/1998  | 178.23                                            | NM                                | NM                                 | 13,000          | <0.5              | <1                | <1                         | <1                         | 10000                   |
|                    | 4/23/1998  | 178.23                                            | 9.34                              | 168.89                             | 19,000          | <5                | <10               | <10                        | <10                        | 36000                   |
|                    | 7/29/1998  | 178.23                                            | 10.29                             | 167.94                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 178.23                                            | NM                                | NM                                 | 19,000          | <5                | <10               | <10                        | <10                        | 36000                   |
|                    | 12/17/1998 | 178.23                                            | 10.20                             | 168.03                             | 12,000          | <5                | <5                | <5                         | <5                         | 13000                   |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-2 cont         | 3/19/1999  | 178.23                                            | 9.02                              | 169.21                             | 18,000          | 160               | <1                | <1                         | <1                         | 18000                   |
|                    | 6/23/1999  | 178.23                                            | 9.99                              | 168.24                             | 280             | <1                | <1                | <1                         | <1                         | 16000                   |
|                    | 9/27/1999  | 178.23                                            | 10.69                             | 167.54                             | <500            | <25               | <25               | <25                        | <25                        | 12000                   |
|                    | 12/9/1999  | 178.23                                            | 11.26                             | 166.97                             | <50             | <0.3              | <0.3              | <0.3                       | <0.6                       | 12000                   |
|                    | 3/9/2000   | 178.23                                            | 7.95                              | 170.28                             | <50             | 1.6               | <0.5              | <0.5                       | <0.5                       | 7900                    |
|                    | 6/8/2000   | 178.23                                            | 9.66                              | 168.57                             | 1,600           | <0.5              | 0.73              | <0.5                       | 2.2                        | 9400                    |
|                    | 12/14/2000 | 178.23                                            | 11.15                             | 167.08                             | 6,000           | 0.75              | <0.5              | <0.5                       | <0.5                       | 11200                   |
|                    | 3/21/2001  | 178.23                                            | 10.35                             | 167.88                             | 6,900           | 786               | 45.7              | 37.7                       | 71.5                       | 3790                    |
|                    | 6/18/2001  | 178.23                                            | 11.24                             | 166.99                             | 6,400           | <2.5              | <2.5              | <2.5                       | <7.5                       | 9320                    |
|                    | 9/18/2001  | 178.23                                            | 11.35                             | 166.88                             | 4,800           | <12.5             | <12.5             | <12.5                      | <37.5                      | 6960                    |
|                    | 12/13/2001 | 178.23                                            | 10.97                             | 167.26                             | 59,000          | 0.592             | <0.5              | <0.5                       | <1                         | 5940                    |
|                    | 3/14/2002  | 178.23                                            | 10.13                             | 168.10                             | 4,500           | 76                | <0.5              | <0.5                       | <1                         | 6660                    |
|                    | 6/19/2002  | 178.23                                            | 10.91                             | 167.32                             | 250             | <12.5             | <12.5             | <12.5                      | <25                        | 4900                    |
|                    | 9/10/2002  | 178.23                                            | 10.82                             | 167.41                             | 1,500           | <5                | <5                | <5                         | 6.3                        | 3100                    |
|                    | 12/16/2002 | 178.23                                            | 7.87                              | 170.36                             | 1,400           | <5                | <5                | <5                         | <5                         | 2400                    |
|                    | 3/11/2003  | 178.23                                            | 10.24                             | 167.99                             | 2,800           | <10               | <10               | <10                        | <10                        | 4800                    |
|                    | 6/17/2003  | 178.23                                            | 10.19                             | 168.04                             | 10,000          | <100              | <100              | <100                       | <100                       | 4400                    |
|                    | 12/9/2003  | 178.23                                            | 9.97                              | 168.26                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 3400                    |
|                    | 2/26/2004  | 178.23                                            | 7.89                              | 170.34                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 3000                    |
|                    | 5/21/2004  | 178.23                                            | 10.70                             | 167.53                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 1100                    |
|                    | 8/10/2004  | 180.79                                            | 10.99                             | 169.80                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 550                     |
|                    | 10/19/2004 | 180.79                                            | 10.46                             | 170.33                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 410                     |
|                    | 1/14/2005  | 180.79                                            | 8.66                              | 172.13                             | <50             | <8.3              | <8.3              | <8.3                       | <8.3                       | 1200                    |
|                    | 4/14/2005  | 180.79                                            | 9.38                              | 171.41                             | <860            | <2.15             | <2.15             | <2.15                      | <4.30                      | 1020                    |
|                    | 7/7/2005   | 180.79                                            | 10.46                             | 170.33                             | <860            | <2.15             | <8.60             | <2.15                      | <4.30                      | 378                     |
|                    | 11/15/2005 | 180.79                                            | 10.55                             | 170.24                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 210                     |
|                    | 2/8/2006   | 180.79                                            | 9.46                              | 171.33                             | <215            | <2.15             | <8.6              | <2.15                      | <4.3                       | 419                     |
|                    | 4/27/2006  | 180.79                                            | 10.67                             | 170.12                             | <100            | 1.71              | <4.0              | <1.0                       | <2.0                       | 432                     |
|                    | 8/1/2006   | 180.79                                            | 10.29                             | 170.50                             | <100            | 2.83              | <4.0              | <1.0                       | <2.0                       | 222                     |
|                    | 10/19/2006 | 180.79                                            | 10.65                             | 170.14                             | <50             | 0.8               | <2.0              | <0.5                       | <1.0                       | 221                     |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-2 cont         | 1/12/2007  | 180.79                                            | NM                                | NM                                 | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 4/17/2007  | 180.79                                            | 10.20                             | 170.59                             | <50             | 3.17              | <2.0              | 4.49                       | <2.0                       | 158                     |
|                    | 7/17/2007  | 180.79                                            | 10.31                             | 170.48                             | <50             | 1.65              | <2.0              | <0.5                       | <2.0                       | 105                     |
|                    | 10/16/2007 | 180.79                                            | 9.22                              | 171.57                             | <50             | 5.67              | <2.0              | <0.5                       | <2.0                       | 73.9                    |
|                    | 1/17/2008  | 180.79                                            | 9.88                              | 170.91                             | <50.0           | <0.50             | <2.0              | <0.50                      | <2.0                       | 80.2                    |
|                    | 4/17/2008  | 180.79                                            | 10.29                             | 170.50                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 45                      |
|                    | 7/16/2008  | 180.79                                            | 10.64                             | 170.15                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 54                      |
|                    | 10/14/2008 | 180.79                                            | 11.41                             | 169.38                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 41                      |
|                    | 1/6/2009   | 180.79                                            | 10.60                             | 170.19                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 36                      |
|                    | 4/6/2009   | 180.79                                            | 10.62                             | 170.17                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 30                      |
|                    | 7/7/2009   | 180.79                                            | 10.92                             | 169.87                             | <50             | 2.4               | <0.5              | <0.5                       | <0.5                       | 32                      |
|                    | 1/27/2010  | 180.79                                            | 8.36                              | 172.43                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 26                      |
|                    | 7/26/2010  | 180.79                                            | 10.44                             | 170.35                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 13                      |
| ESE-2R             | 8/30/2010  | 180.7                                             | 10.61                             | 170.09                             | 200             | 0.93              | <0.5              | 1.3                        | 13.5                       | 16                      |
|                    | 11/16/2010 | 180.7                                             | 10.33                             | 170.37                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 18                      |
|                    | 2/14/2011  | 180.70                                            | 10.50                             | 170.20                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 12                      |
|                    | •          |                                                   |                                   |                                    | -               | •                 | -                 | 1                          | 1                          | 1                       |
| ESE-3              | 10/5/1992  | 178.20                                            | 10.58                             | 167.62                             | 430             | 57                | 31                | 3.6                        | 34                         | NA                      |
|                    | 4/1/1993   | 178.20                                            | 8.14                              | 170.06                             | 2400            | 460               | 220               | 74                         | 210                        | NA                      |
|                    | 6/29/1993  | 178.20                                            | 9.72                              | 168.48                             | 280             | 56                | 14                | 15                         | 13                         | NA                      |
|                    | 9/23/1993  | 178.20                                            | 10.46                             | 167.74                             | 72              | 13                | 3.5               | 1.7                        | 4.1                        | NA                      |
|                    | 12/10/1993 | 178.20                                            | 9.30                              | 168.90                             | 270             | 71                | 32                | 6.1                        | 33                         | NA                      |
|                    | 2/17/1994  | 178.20                                            | 8.97                              | 169.23                             | 520             | 140               | 10                | 20                         | 33                         | 5.74                    |
|                    | 8/8/1994   | 178.20                                            | 10.02                             | 168.18                             | <50             | 8.8               | 1.6               | 1.6                        | 2.3                        | <5.0                    |
|                    | 10/12/1994 | 178.20                                            | 10.32                             | 167.88                             | 470             | 190               | 6.4               | 15                         | 18                         | <5.0                    |
|                    | 1/19/1995  | 178.20                                            | 7.40                              | 170.80                             | 330             | 260               | 27                | 21                         | 20                         | NA                      |
|                    | 5/2/1995   | 178.20                                            | 8.26                              | 169.94                             | 530             | 180               | 30                | 23                         | 44                         | NA                      |
|                    | 7/28/1995  | 178.20                                            | 9.54                              | 168.66                             | <50             | <0.50             | <0.50             | <0.50                      | <1                         | NA                      |
|                    | 11/17/1995 | 178.20                                            | 10.04                             | 168.16                             | <50             | 1.7               | < 0.50            | < 0.50                     | <1                         | <5.0                    |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-3 cont.        | 2/7/1996   | 178.20                                            | 7.08                              | 171.12                             | <50             | 8.6               | <1                | <1                         | <1                         | <10                     |
|                    | 4/1/2396   | 178.20                                            | 8.79                              | 169.41                             | <50             | 7.6               | <1                | <1                         | <1                         | 65                      |
|                    | 7/9/1996   | 178.20                                            | 10.09                             | 168.11                             | <50             | 12                | 2.6               | 2                          | 3.9                        | 26                      |
|                    | 10/10/1996 | 178.20                                            | 10.48                             | 167.72                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 10/11/1996 | 178.20                                            | NM                                | NM                                 | 260             | 140               | <1                | <1                         | 2.6                        | <10                     |
|                    | 1/20/1997  | 178.20                                            | 8.65                              | 169.55                             | <50             | 1.5               | 1.7               | <1                         | <1                         | 14                      |
|                    | 4/25/1997  | 178.20                                            | 10.02                             | 168.18                             | <50             | <0.5              | <1                | <1                         | <1                         | 14                      |
|                    | 7/18/1997  | 178.20                                            | 10.66                             | 167.54                             | 10000           | 1400              | 1400              | 300                        | 1280                       | <250                    |
|                    | 10/27/1997 | 178.20                                            | 9.83                              | 168.37                             | <250            | <2.5              | <5.0              | <5.0                       | 36                         | <50                     |
|                    | 1/22/1998  | 178.20                                            | 7.06                              | 171.14                             | 130             | <0.5              | <1.0              | <1.0                       | <1.0                       | 120                     |
|                    | 4/23/1998  | 178.20                                            | 8.44                              | 169.76                             | 4800            | 560               | <10               | 15                         | <10                        | 4000                    |
|                    | 7/29/1998  | 178.20                                            | 9.27                              | 168.93                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 178.20                                            | NM                                | NM                                 | 1800            | 6.2               | <5.0              | <5.0                       | <5.0                       | 1700                    |
|                    | 12/17/1998 | 178.20                                            | 9.15                              | 169.05                             | 600             | 54                | <1.0              | 2.1                        | 4.9                        | 340/480                 |
|                    | 3/19/1999  | 178.20                                            | 8.14                              | 170.06                             | 2000            | 260               | 4.4               | 13                         | 28                         | 870                     |
|                    | 6/23/1999  | 178.20                                            | 9.44                              | 168.76                             | 290             | 91                | <1.0              | 8.3                        | 16                         | 240                     |
|                    | 9/27/1999  | 178.20                                            | 9.69                              | 168.51                             | 130             | 35                | <1.0              | 2.7                        | 3.8                        | 100                     |
|                    | 12/9/1999  | 178.20                                            | 10.99                             | 167.21                             | 380             | 84                | 1.7               | 8.7                        | 6.3                        | 160                     |
|                    | 3/9/2000   | 178.20                                            | 7.12                              | 171.08                             | 950             | 190               | 4.6               | 39                         | 62                         | 350                     |
|                    | 6/8/2000   | 178.20                                            | 10.92                             | 167.28                             | 300             | 37                | <0.5              | 2.3                        | 1.3                        | 400                     |
|                    | 9/18/2000  | 178.20                                            | 11.12                             | 167.08                             | 920             | 140               | 1.3               | 15                         | 4.8                        | 170                     |
|                    | 12/14/2000 | 178.20                                            | 9.70                              | 168.50                             | 320             | 64                | <0.5              | 6.24                       | 1.76                       | 201                     |
|                    | 3/21/2001  | 178.20                                            | 10.07                             | 168.13                             | 680             | 80.5              | 0.546             | 21.1                       | 18.2                       | 398                     |
|                    | 6/18/2001  | 178.20                                            | 11.42                             | 166.78                             | 380             | 47                | <0.5              | 3.11                       | <1.5                       | 242                     |
|                    | 9/18/2001  | 178.20                                            | 11.55                             | 166.65                             | 340             | 54.8              | <0.5              | 4.36                       | <1.5                       | 79.7                    |
|                    | 12/13/2001 | 178.20                                            | 10.12                             | 168.08                             | 270             | 31.4              | <0.5              | 1.31                       | 2.24                       | 129                     |
|                    | 3/14/2002  | 178.20                                            | 9.84                              | 168.36                             | 670             | 89.8              | 0.769             | 23.4                       | 30.4                       | 413                     |
|                    | 6/19/2002  | 178.20                                            | 10.57                             | 167.63                             | 130             | 18.6              | <0.5              | <0.5                       | <1                         | 166                     |
|                    | 9/10/2002  | 178.20                                            | 9.90                              | 168.30                             | 88              | 12                | <0.5              | <0.5                       | <0.5                       | 93                      |
|                    | 12/16/2002 | 178.20                                            | 9.23                              | 168.97                             | 290             | 55                | 17                | 3.7                        | 14                         | 78                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(µg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-3 cont.        | 3/11/2003  | 178.20                                            | 9.05                              | 169.15                             | 100             | 3.4               | <0.5              | 0.54                       | <0.50                      | 140                     |
|                    | 6/17/2003  | 178.20                                            | 9.30                              | 168.90                             | 520             | 17                | <5                | 5.3                        | <5                         | 130                     |
|                    |            |                                                   | 10.00                             |                                    |                 |                   |                   |                            |                            |                         |
| ESE-4              | 10/5/1992  | 177.73                                            | 10.33                             | 167.40                             | 98              | 7.2               | 1.3               | 1.1                        | 6.1                        | NA                      |
|                    | 4/1/1993   | 177.73                                            | 7.88                              | 169.85                             | 550             | 93                | 20                | 23                         | 33                         | NA                      |
|                    | 6/29/1993  | 177.66                                            | 8.33                              | 169.33                             | 150             | 23                | 0.6               | 5.4                        | 0.5                        | 54                      |
|                    | 9/23/1993  | 177.66                                            | 10.05                             | 167.61                             | 110             | 14                | 1.7               | 3.2                        | 4.6                        | NA                      |
|                    | 12/10/1993 | 177.66                                            | 8.95                              | 168.71                             | 110             | 21                | 7.2               | 4.2                        | 10                         | 28.75                   |
|                    | 2/17/1994  | 177.66                                            | 8.65                              | 169.01                             | 210             | 26                | 1.2               | 4.7                        | 11                         | 113                     |
|                    | 8/8/1994   | 177.66                                            | 9.76                              | 167.90                             | 76              | 9.6               | <0.5              | 2                          | <0.5                       | 62                      |
|                    | 10/12/1994 | 177.66                                            | 9.62                              | 168.04                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 44                      |
|                    | 1/19/1995  | 177.66                                            | 6.97                              | 170.69                             | 140             | 56                | 14                | 24                         | 23                         | NA                      |
|                    | 5/2/1995   | 177.66                                            | 7.85                              | 169.81                             | 130             | 21                | 2.8               | 8.6                        | 8.2                        | NA                      |
|                    | 7/28/1995  | 177.66                                            | 9.20                              | 168.46                             | <50             | <0.5              | <0.5              | <0.5                       | <1                         | NA                      |
|                    | 11/17/1995 | 177.66                                            | 9.68                              | 167.98                             | <50             | <0.5              | 0.6               | <0.5                       | <1                         | 18                      |
|                    | 2/7/1996   | 177.66                                            | 6.59                              | 171.07                             | 100             | 2.6               | <1                | 1.6                        | 4.1                        | 42                      |
|                    | 4/23/1996  | 177.66                                            | 8.30                              | 169.36                             | 160             | 37                | 15                | 16                         | 31                         | 43                      |
|                    | 7/9/1996   | 177.66                                            | 9.21                              | 168.45                             | 60              | 17                | 1.5               | 6.8                        | 11.6                       | 27                      |
|                    | 10/10/1996 | 177.66                                            | 9.97                              | 167.69                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 10/11/1996 | 177.66                                            | NM                                | NM                                 | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | 18                      |
|                    | 1/20/1997  | 177.66                                            | 7.68                              | 169.98                             | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | 130                     |
|                    | 4/25/1997  | 177.66                                            | 9.15                              | 168.51                             | <250            | <2.5              | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 7/18/1997  | 177.66                                            | 9.71                              | 167.95                             | <50             | 15                | <10               | <10                        | <10                        | <100                    |
|                    | 10/27/1997 | 177.66                                            | 9.38                              | 168.28                             | <250            | <2.5              | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 1/22/1998  | 177.66                                            | 6.59                              | 171.07                             | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 4/23/1998  | 177.66                                            | 7.90                              | 169.76                             | <250            | <2.5              | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 7/29/1998  | 177.66                                            | 8.96                              | 168.70                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 177.66                                            | NM                                | NM                                 | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 12/17/1998 | 177.66                                            | 8.32                              | 169.34                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-4 cont.        | 3/19/1999  | 177.66                                            | 7.71                              | 169.95                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/23/1999  | 177.66                                            | 8.78                              | 168.88                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/27/1999  | 177.66                                            | 9.27                              | 168.39                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/9/1999  | 177.66                                            | 9.21                              | 168.45                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/9/2000   | 177.66                                            | 6.82                              | 170.84                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/8/2000   | 177.66                                            | 8.72                              | 168.94                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2000  | 177.66                                            | 8.72                              | 168.94                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/14/2000 | 177.66                                            | 8.61                              | 169.05                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/21/2001  | 177.66                                            | 8.61                              | 169.05                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/18/2001  | 177.66                                            | 9.24                              | 168.42                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2001  | 177.66                                            | 9.35                              | 168.31                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/13/2001 | 177.66                                            | 8.53                              | 169.13                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/14/2002  | 177.66                                            | 8.44                              | 169.22                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/19/2002  | 177.66                                            | 10.97                             | 166.69                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/10/2002  | 177.66                                            | 9.27                              | 168.39                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/16/2002 | 177.66                                            | 6.90                              | 170.76                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/11/2003  | 177.66                                            | 8.83                              | 168.83                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/17/2003  | 177.66                                            | 8.84                              | 168.82                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | -          |                                                   |                                   |                                    | -               | -                 |                   |                            | -                          |                         |
| ESE-5              | 10/5/1992  | 176.08                                            | 9.22                              | 166.86                             | 1300            | 200               | 3.8               | 1.2                        | 18                         | NA                      |
|                    | 4/1/1993   | 176.08                                            | 7.02                              | 169.06                             | 13000           | 2200              | 26                | 730                        | 1000                       | NA                      |
|                    | 4/1/1993   | 176.08                                            | NM                                | NM                                 | 13000           | 2500              | 25                | 740                        | 1100                       | NA                      |
|                    | 6/29/1993  | 176.08                                            | 10.21                             | 165.87                             | 7600            | 1500              | 9.3               | 170                        | 100                        | NA                      |
|                    | 9/23/1993  | 176.08                                            | 10.64                             | 165.44                             | 560             | 19                | 1.2               | 0.9                        | 1.8                        | NA                      |
|                    | 12/10/1993 | 176.08                                            | 9.42                              | 166.66                             | 1700            | 300               | 3                 | 76                         | 110                        | 14.07                   |
|                    | 2/7/1994   | 176.08                                            | 9.35                              | 166.73                             | 3500            | 640               | 7.8               | 90                         | 130                        | 45.13                   |
|                    | 8/8/1994   | 176.08                                            | 8.76                              | 167.32                             | 2600            | 210               | 4.6               | 9.4                        | 4.4                        | 33                      |
|                    | 8/8/1994   | 176.08                                            | NM                                | NM                                 | 2500            | 230               | 4.6               | 13                         | 4.8                        | 32                      |
|                    | 10/12/1994 | 176.08                                            | 8.95                              | 167.13                             | 5600            | 560               | 9.5               | 75                         | 21                         | 79.2                    |
|                    | 10/12/1994 | 176.08                                            | NM                                | NM                                 | 6000            | 550               | 10                | 78                         | 22                         | 77                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-5 cont         | 1/19/1995  | 176.08                                            | 5.40                              | 170.68                             | 1900            | 620               | <5                | 95                         | 15                         | NA                      |
|                    | 1/19/1995  | 176.08                                            | NM                                | NM                                 | 1600            | 620               | <5                | 93                         | 17                         | NA                      |
|                    | 5/2/1995   | 176.08                                            | 6.48                              | 169.60                             | 5700            | 1100              | <10               | 180                        | 58                         | NA                      |
|                    | 5/2/1995   | 176.08                                            | NM                                | NM                                 | 5300            | 1100              | <10               | 180                        | 58                         | NA                      |
|                    | 7/28/1995  | 176.08                                            | 7.97                              | 168.11                             | 520             | 15                | <0.50             | 1.7                        | 1.3                        | NA                      |
|                    | 7/28/1995  | 176.08                                            | NM                                | NM                                 | 460             | 7.2               | <0.50             | 1.9                        | 1.5                        | NA                      |
|                    | 11/17/1995 | 176.08                                            | 8.39                              | 167.69                             | 850             | 39                | 1.8               | 7.6                        | 2.7                        | 24                      |
|                    | 2/7/1996   | 176.08                                            | 4.71                              | 171.37                             | 4100            | 670               | 6                 | 190                        | 140                        | <50                     |
|                    | 4/23/1996  | 176.08                                            | 7.35                              | 168.73                             | 3000            | 570               | <5                | 79                         | 100                        | 84                      |
|                    | 7/9/1996   | 176.08                                            | 9.40                              | 166.68                             | 620             | 150               | 1.7               | 9.3                        | 6.4                        | 25                      |
|                    | 10/10/1996 | 176.08                                            | 9.04                              | 167.04                             | 1100            | 29                | <5                | <5                         | <5                         | <50                     |
|                    | 10/10/1996 | 176.08                                            | NM                                | NM                                 | 1100            | 31                | <5                | <5                         | <5                         | <50                     |
|                    | 1/20/1997  | 176.08                                            | 5.82                              | 170.26                             | 2100            | 980               | <25               | 280                        | 80                         | <250                    |
|                    | 1/20/1997  | 176.08                                            | NM                                | NM                                 | 2700            | 910               | 8.8               | 280                        | 84                         | 180                     |
|                    | 4/25/1997  | 176.08                                            | 7.24                              | 168.84                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 4/28/1997  | 176.08                                            | NM                                | NM                                 | <250            | 7.9               | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 7/18/1997  | 176.08                                            | 7.86                              | 168.22                             | 1200            | <5                | <10               | <10                        | <10                        | <100                    |
|                    | 7/18/1997  | 176.08                                            | NM                                | NM                                 | 630             | 31                | <5.0              | <5.0                       | <5.0                       | 130                     |
|                    | 10/27/1997 | 176.08                                            | 7.91                              | 168.17                             | <250            | 5.4               | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 1/22/1998  | 176.08                                            | 4.64                              | 171.44                             | 170             | 7.7               | <1.0              | <1.0                       | <1.0                       | 130                     |
|                    | 4/23/1998  | 176.08                                            | 6.31                              | 169.77                             | 720             | 79                | <5.0              | 9                          | <5.0                       | 180                     |
|                    | 7/29/1998  | 176.08                                            | 7.43                              | 168.65                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 176.08                                            | NM                                | NM                                 | 840             | 9.8               | <1.0              | 4                          | <1.0                       | 710                     |
|                    | 12/17/1998 | 176.08                                            | 7.05                              | 169.03                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/19/1999  | 176.08                                            | 5.00                              | 171.08                             | <250            | <5.0              | <5.0              | <5.0                       | <5.0                       | <5.0                    |
|                    | 6/23/1999  | 176.08                                            | 7.77                              | 168.31                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/27/1999  | 176.08                                            | 8.11                              | 167.97                             | 450             | 10                | <5.0              | 6.3                        | <5.0                       | 220                     |
|                    | 12/9/1999  | 176.08                                            | 7.66                              | 168.42                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date                   | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-5 cont.        | 3/9/2000               | 176.08                                            | 5.08                              | 171.00                             | 1700            | 170               | 2.5               | 45                         | 6.4                        | 140                     |
|                    | 6/8/2000               | 176.08                                            | 7.36                              | 168.72                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2000              | 176.08                                            | 7.71                              | 168.37                             | 130             | 0.65              | <0.50             | 0.71                       | <0.50                      | 51                      |
|                    | 12/14/2000             | 176.08                                            | 2.36                              | 173.72                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/21/2001              | 176.08                                            | 7.42                              | 168.66                             | 1000            | 10.3              | <2.5              | 11                         | <7.5                       | 70.8                    |
|                    | 6/18/2001              | 176.08                                            | 7.92                              | 168.16                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2001              | 176.26                                            | 8.23                              | 168.03                             | 200             | 0.868             | <0.50             | 0.55                       | <1.5                       | 57.5                    |
|                    | 12/13/2001             | 176.26                                            | 7.80                              | 168.46                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/14/2002              | 176.26                                            | 6.55                              | 169.71                             | 1300            | 17.1              | 1.35              | 15.4                       | 1.42                       | 37.4                    |
|                    | 6/19/2002              | 176.26                                            | 7.83                              | 168.43                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/10/2002              | 176.26                                            | 8.22                              | 168.04                             | 680             | 9.9               | <5.0              | <5.0                       | <5.0                       | 44                      |
|                    | 12/16/2002             | 176.26                                            | 6.58                              | 169.68                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/11/2003              | 176.26                                            | 6.77                              | 169.49                             | 2100            | 14                | <2.5              | 15                         | 3                          | 80                      |
|                    | 6/17/2003              | 176.26                                            | 6.75                              | 169.51                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/17/2003              | 176.26                                            | 8.48                              | 167.78                             | 970             | 10 C              | <0.5              | <0.5                       | 5.3                        | 34                      |
|                    | 12/9/2003              | 176.26                                            | 7.32                              | 168.94                             | 700             | 6.5               | <0.5              | 3.1                        | 2.7 C                      | 34                      |
|                    | 2/26/2004              | 176.26                                            | 5.21                              | 171.05                             | 2400 H          | 41                | 2.8 C             | 18                         | 2.4 C                      | 29                      |
|                    | 5/21/2004              | 176.26                                            | 7.50                              | 168.76                             | 1500            | 2.6 C             | <0.5              | 2.1 C                      | 2.1 C                      | 25                      |
|                    | 8/10/2004              | 178.80                                            | 8.28                              | 170.52                             | 680             | <0.5              | <0.5              | <0.5                       | <0.5                       | 33                      |
|                    | 10/19/2004             | 178.80                                            | 8.26                              | 170.54                             | 380             | <0.5              | <0.5              | <0.5                       | 1.4                        | 39                      |
|                    | 1/14/2005              | 178.80                                            | 5.16                              | 173.64                             | 2400            | 18                | 1.4               | 22                         | 2.1                        | 26                      |
|                    | 4/14/2005              | 178.80                                            | 6.13                              | 172.67                             | 4800            | 7.75              | 1.26              | 14.3                       | <1.0                       | 23.1                    |
|                    | 7/7/2005               | 178.80                                            | 7.52                              | 171.28                             | 3240            | 0.78              | <2.0              | 1.18                       | <1.0                       | 36.6                    |
|                    | 11/15/2005             | 178.80                                            | 7.85                              | 170.95                             | 1190            | 0.51              | <2.0              | < 0.5                      | <1.0                       | 30                      |
|                    | 2/8/2006               | 178.80                                            | 5.83                              | 172.97                             | 2510            | 1.91              | <2.0              | 2.82                       | <1.0                       | 20.7                    |
|                    | 4/27/2006              | 178.80                                            | 5.71                              | 173.09                             | 4,700           | 2.76              | <2.0              | 4.77                       | <1.0                       | 28.3                    |
|                    | 8/1/2006<br>10/19/2006 | 178.80<br>178.80                                  | 7.71<br>8.00                      | 171.09                             | 1,890           | 0.7               | <2.0              | 0.75<br>3.39               | <1.0                       | 24.7<br>29              |
|                    | 1/12/2006              | 178.80                                            | 7.41                              | 170.80<br>171.39                   | 474<br>868      | <0.5<br>2.18      | <2.0<br><2.0      | 2.66                       | <1.0<br><2.0               | 29<br>16.3              |
|                    | 4/17/2007              | 178.80                                            | 7.51                              | 171.39                             | 000<br>1,240    | 2.16              | <2.0<br><2.0      | 2.66                       | <2.0<br>2.37               | 16.3                    |
|                    | 4/17/2007              | 178.80                                            | 7.51                              | 171.29                             | 836             | 3.1               | <2.0<br><2.0      | 4.91                       | 2.37                       | 25.8                    |
|                    | 10/16/2007             | 178.80                                            | 6.26                              | 172.54                             | 2,120           | 2.5               | <2.0              | 6.19                       | 2.61                       | 17.5                    |

# Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L)    | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|--------------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| ESE-5 cont.        | 1/17/2008  | 178.80                                            | 6.59                              | 172.21                             | 2,730              | 5.74              | <2.0              | 14.3                       | <2.0                       | 13.1                    |
|                    | 4/17/2008  | 178.80                                            | 6.81                              | 171.99                             | 2,770              | 4.7               | <2.0              | 15.9                       | <2.0                       | <0.5                    |
|                    | 7/16/2008  | 178.80                                            | 7.76                              | 171.04                             | 2,160              | 0.9               | <2.0              | 1.1                        | <2.0                       | 6.28                    |
|                    | 10/14/2008 | 178.80                                            | 8.40                              | 170.40                             | 1,300              | <0.5              | <0.5              | 0.6                        | <0.5                       | 9.9                     |
|                    | 1/6/2009   | 178.80                                            | 7.66                              | 171.14                             | 1,100 <sup>Y</sup> | 0.61              | <0.5              | 1.6                        | <0.5                       | 8                       |
|                    | 4/6/2009   | 178.80                                            | 7.79                              | 171.01                             | 1,900 <sup>Y</sup> | 4.6               | <0.5              | 9.3                        | 0.59                       | 5.3                     |
|                    | 7/7/2009   | 178.80                                            | 7.84                              | 170.96                             | 2,700 <sup>Y</sup> | 3.0               | <0.5              | 2.3                        | <0.5                       | 6.6                     |
|                    | 1/27/2010  | 178.80                                            | 4.82                              | 173.98                             | 1,300 <sup>Y</sup> | 0.76              | <0.5              | 1.0                        | <0.5                       | 3.5                     |
|                    | 7/26/2010  | 178.80                                            | 7.01                              | 171.79                             | 1,800              | 0.75              | <0.5              | 1.8                        | <0.5                       | 2                       |
| ESE-5R             | 8/30/2010  | 178.64                                            | 8.97                              | 169.67                             | 75                 | < 0.5             | < 0.5             | < 0.5                      | < 0.5                      | 7.3                     |
|                    | 11/16/2010 | 178.64                                            | 10.46                             | 168.18                             | 74                 | <0.5              | <0.5              | <0.5                       | <0.5                       | 12                      |
|                    | 2/15/2011  | 178.64                                            | 11.19                             | 167.45                             | 140                | <0.5              | <0.5              | <0.5                       | <0.5                       | 9.6                     |
|                    |            | <u> </u>                                          |                                   |                                    |                    |                   |                   |                            | 1010                       |                         |
| MW-6               | 7/28/1995  | 179.24                                            | 10.00                             | 169.24                             | <50                | <0.50             | <0.50             | <0.50                      | <1.0                       | NA                      |
|                    | 11/17/1995 | 179.24                                            | 10.44                             | 168.80                             | <50                | < 0.50            | < 0.50            | < 0.50                     | <1.0                       | <5.0                    |
|                    | 2/7/1996   | 179.24                                            | 7.68                              | 171.56                             | <50                | < 0.5             | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 4/23/1996  | 179.24                                            | 9.33                              | 169.91                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 7/9/1996   | 179.24                                            | 10.10                             | 169.14                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 10/10/1996 | 179.24                                            | 11.00                             | 168.24                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 1/20/1997  | 179.24                                            | 8.70                              | 170.54                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 4/25/1997  | 179.24                                            | 10.16                             | 169.08                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 7/18/1997  | 179.24                                            | 10.66                             | 168.58                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 10/27/1997 | 179.24                                            | 10.25                             | 168.99                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 1/22/1998  | 179.24                                            | 7.76                              | 171.48                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 4/23/1998  | 179.24                                            | 9.10                              | 170.14                             | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 7/29/1998  | 179.24                                            | 10.40                             | 168.84                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 179.24                                            | NM                                | NM                                 | <50                | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 12/17/1998 | 179.24                                            | 9.40                              | 169.84                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/19/1999  | 179.24                                            | 9.10                              | 170.14                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/23/1999  | 179.24                                            | 9.79                              | 169.45                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/27/1999  | 179.24                                            | 10.10                             | 169.14                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |
| MW-6 cont.         | 12/9/1999  | 179.24                                            | 9.97                              | 169.27                             | NA                 | NA                | NA                | NA                         | NA                         | NA                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date                 | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|----------------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
|                    | 3/9/2000             | 179.24                                            | 8.56                              | 170.68                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 5/9/2000<br>6/8/2000 | 179.24                                            | 9.11                              | 170.08                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2000            | 179.24                                            | 9.11                              | 169.47                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    |                      |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
|                    | 12/14/2000           | 179.24                                            | 9.17                              | 170.07                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/21/2001            | 179.24                                            | 9.82                              | 169.42                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/18/2001            | 179.24                                            | 10.19                             | 169.05                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2001            | 179.24                                            | 10.25                             | 168.99                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/13/2001           | 179.24                                            | 9.75                              | 169.49                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/14/2002            | 179.24                                            | 9.53                              | 169.71                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/19/2002            | 179.24                                            | 9.87                              | 169.37                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/10/2002            | 179.24                                            | 9.49                              | 169.75                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 12/16/2002           | 179.24                                            | 8.39                              | 170.85                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/11/2003            | 179.24                                            | 9.40                              | 169.84                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 6/17/2003            | 179.24                                            | 9.71                              | 169.53                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/17/2003            | 179.24                                            | 10.21                             | 169.03                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <2.0                    |
|                    | 12/9/2003            | 179.24                                            | 9.66                              | 169.58                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 2/26/2004            | 179.24                                            | 7.83                              | 171.41                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 5/21/2004            | 179.24                                            | 9.75                              | 169.49                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 8/10/2004            | 181.80                                            | 10.28                             | 171.52                             | <50             | < 0.5             | <0.5              | < 0.5                      | <0.5                       | <0.5                    |
|                    | 10/19/2004           | 181.80                                            | 9.91                              | 171.89                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/14/2005            | 181.80                                            | 8.40                              | 173.40                             | <50             | 0.6               | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 4/14/2005            | 181.80                                            | 9.04                              | 172.76                             | <200            | <0.5              | <0.5              | <0.5                       | <1.0                       | <0.5                    |
|                    | 7/7/2005             | 181.80                                            | 9.94                              | 171.86                             | <200            | <0.5              | <2.00             | <0.5                       | <1.00                      | <0.5                    |
|                    | 11/15/2005           | 181.80                                            | 9.98                              | 171.82                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 2/8/2006             | 181.80                                            | 9.91                              | 171.89                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 4/27/2006            | 181.80                                            | 9.54                              | 172.26                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 8/1/2006             | 181.80                                            | 9.61                              | 172.19                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 0.51                    |
|                    | 10/19/2006           | 181.80                                            | 10.23                             | 171.57                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 0.63                    |
|                    | 1/12/2007            | 181.80                                            | 10.13                             | 171.67                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 4/17/2007            | 181.80                                            | 10.22                             | 171.58                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 7/17/2007            | 181.80                                            | 9.76                              | 172.04                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 10/16/2007           | 181.80                                            | 9.82                              | 171.98                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |

# Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| MW-6 cont.         | 1/17/2008  | 181.80                                            | 9.43                              | 172.37                             | <50             | <0.50             | <2.0              | <0.50                      | <2.0                       | <0.5                    |
|                    | 4/17/2008  | 181.80                                            | 9.54                              | 172.26                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 7/16/2008  | 181.80                                            | 9.80                              | 172.00                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 10/14/2008 | 181.80                                            | 10.48                             | 171.32                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/6/2009   | 181.80                                            | 10.01                             | 171.79                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 4/6/2009   | 181.80                                            | 10.15                             | 171.65                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 7/7/2009   | 181.80                                            | 10.28                             | 171.52                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/27/2010  | 181.80                                            | 8.28                              | 173.52                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 7/26/2010  | 181.80                                            | 9.64                              | 172.16                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
| MW-6R              | 8/30/2010  | 181.34                                            | 9.55                              | 171.79                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 11/15/2010 | 181.34                                            | 9.32                              | 172.02                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 2/14/2011  | 181.34                                            | 9.79                              | 171.55                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| MW-7               | 7/28/1995  | 176.55                                            | 9.25                              | 167.30                             | <50             | 0.54              | 0.54              | <0.50                      | <1.0                       | NA                      |
|                    | 11/17/1995 | 176.55                                            | 9.73                              | 166.82                             | 1100            | <10               | <10               | <10                        | <20                        | 4000                    |
|                    | 2/7/1996   | 176.55                                            | 6.48                              | 170.07                             | 610             | <0.50             | <1.0              | <1.0                       | <1.0                       | 2500                    |
|                    | 2/7/1996   | 176.55                                            | NM                                | NM                                 | 280             | <0.50             | <1.0              | <1.0                       | <1.0                       | 2600                    |
|                    | 4/23/1996  | 176.55                                            | 8.37                              | 168.18                             | 110             | <0.50             | <1.0              | <1.0                       | <1.0                       | 3500                    |
|                    | 4/23/1996  | 176.55                                            | NM                                | NM                                 | 230             | <0.50             | <1.0              | <1.0                       | <1.0                       | 3500                    |
|                    | 7/9/1996   | 176.55                                            | 9.24                              | 167.31                             | 230             | <0.50             | <1.0              | <1.0                       | <1.0                       | 4296                    |
|                    | 7/9/1996   | 176.55                                            | NM                                | NM                                 | 220             | <0.50             | <1.0              | <1.0                       | <1.0                       | 4400                    |
|                    | 10/10/1996 | 176.55                                            | 10.05                             | 166.50                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 10/11/1996 | 176.55                                            | NM                                | NM                                 | 1600            | <0.50             | <1.0              | <1.0                       | <1.0                       | 3000                    |
|                    | 1/20/1997  | 176.55                                            | 7.51                              | 169.04                             | <50             | 0.63              | <1.0              | <1.0                       | <1.0                       | 2600                    |
|                    | 4/25/1997  | 176.55                                            | 8.79                              | 167.76                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 4/28/1997  | 176.55                                            | NM                                | NM                                 | 1500            | <0.50             | <1.0              | <1.0                       | <1.0                       | 3600                    |
|                    | 4/28/1997  | 176.55                                            | NM                                | NM                                 | 7700            | 3500              | <25               | 74                         | 37                         | <250                    |
|                    | 7/18/1997  | 176.55                                            | 9.50                              | 167.05                             | 1400            | < 0.50            | <1.0              | <1.0                       | <1.0                       | 2600                    |
|                    | 10/27/1997 | 176.55                                            | 9.19                              | 167.36                             | 420             | <0.50             | <1.0              | <1.0                       | <1.0                       | 560                     |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| MW-7 cont.         | 1/22/1998  | 176.55                                            | 6.45                              | 170.10                             | 3100            | <0.50             | <1.0              | <1.0                       | 1.4                        | 2300                    |
|                    | 4/23/1998  | 176.55                                            | 8.02                              | 168.53                             | 3800            | <0.50             | <1.0              | <1.0                       | <1.0                       | 3800                    |
|                    | 7/29/1998  | 176.55                                            | 8.88                              | 167.67                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 7/30/1998  | 176.55                                            | NM                                | NM                                 | 500             | <2.5              | <5.0              | <5.0                       | <5.0                       | <50                     |
|                    | 7/30/1998  | 176.55                                            | NM                                | NM                                 | 4700            | <12               | <25               | <25                        | <25                        | 4700                    |
|                    | 12/17/1998 | 176.55                                            | 8.62                              | 167.93                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/19/1999  | 176.55                                            | 7.52                              | 169.03                             | 3800            | <1.0              | <1.0              | <1.0                       | <1.0                       | 3800                    |
|                    | 6/23/1999  | 176.55                                            | 9.63                              | 166.92                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/27/1999  | 176.55                                            | 9.39                              | 167.16                             | 140             | <10               | <10               | <10                        | <10                        | 3800                    |
|                    | 12/9/1999  | 176.55                                            | 9.94                              | 166.61                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/9/2000   | 176.55                                            | 6.72                              | 169.83                             | <50             | <0.50             | <0.50             | <0.50                      | <0.50                      | 1400                    |
|                    | 6/8/2000   | 176.55                                            | 7.38                              | 169.17                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2000  | 176.55                                            | 9.18                              | 167.37                             | 190             | <0.50             | <0.50             | <0.50                      | <0.50                      | 580                     |
|                    | 12/14/2000 | 176.55                                            | 8.13                              | 168.42                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/21/2001  | 176.55                                            | 8.98                              | 167.57                             | 1300            | <0.50             | <0.50             | <0.50                      | <1.5                       | 1460                    |
|                    | 6/18/2001  | 176.55                                            | 9.68                              | 166.87                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/18/2001  | 176.55                                            | 9.80                              | 166.75                             | <0.50           | <0.50             | <0.50             | <0.50                      | <1.5                       | 94.9                    |
|                    | 12/13/2001 | 176.55                                            | 9.26                              | 167.29                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/14/2002  | 176.55                                            | 8.69                              | 167.86                             | 800             | <0.50             | <0.50             | <0.50                      | <1.0                       | 952                     |
|                    | 6/19/2002  | 176.55                                            | 9.06                              | 167.49                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/10/2002  | 176.55                                            | 9.23                              | 167.32                             | 260             | <2.0              | <2.0              | <2.0                       | <2.0                       | 580                     |
|                    | 12/16/2002 | 176.55                                            | 7.77                              | 168.78                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 3/11/2003  | 176.55                                            | 8.30                              | 168.25                             | 620             | <2.5              | <2.5              | <2.5                       | <2.5                       | 1100                    |
|                    | 6/17/2003  | 176.55                                            | 9.51                              | 167.04                             | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 9/17/2003  | 176.55                                            | 9.52                              | 167.03                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 460                     |
|                    | 12/9/2003  | 176.55                                            | 8.99                              | 167.56                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 420                     |
|                    | 2/26/2004  | 176.55                                            | 6.55                              | 170.00                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 330                     |
|                    | 5/21/2004  | 176.55                                            | 8.90                              | 167.65                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 630                     |
|                    | 8/10/2004  | 179.11                                            | 9.58                              | 169.53                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 750                     |
|                    | 10/19/2004 | 179.11                                            | 9.20                              | 169.91                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 550                     |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| MW-7 cont.         | 1/14/2005  | 179.11                                            | 7.25                              | 171.86                             | <50             | <2.0              | <2.0              | <2.0                       | <2.0                       | 250                     |
|                    | 4/14/2005  | 179.11                                            | 7.94                              | 171.17                             | <200            | <0.5              | <0.5              | <0.5                       | <1.0                       | 285                     |
|                    | 7/7/2005   | 179.11                                            | 9.08                              | 170.03                             | <400            | <1.0              | <4.0              | <1.0                       | <2.0                       | 452                     |
|                    | 11/15/2005 | 179.11                                            | 9.14                              | 169.97                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 110                     |
|                    | 2/8/2006   | 179.11                                            | 7.93                              | 171.18                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 101                     |
|                    | 4/27/2006  | 179.11                                            | 8.40                              | 170.71                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 131                     |
|                    | 8/1/2006   | 179.11                                            | 8.89                              | 170.22                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 68.6                    |
|                    | 10/19/2006 | 179.11                                            | 9.44                              | 169.67                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 65.5                    |
|                    | 1/12/2007  | 179.11                                            | 8.91                              | 170.20                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 38                      |
|                    | 4/17/2007  | 179.11                                            | 8.58                              | 170.53                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 24.7                    |
|                    | 7/17/2007  | 179.11                                            | 9.04                              | 170.07                             | <50             | 2.07              | <2.0              | <0.5                       | <2.0                       | 29.3                    |
|                    | 10/6/2007  | 179.11                                            | 7.88                              | 171.23                             | <50             | 0.88              | <2.0              | <0.5                       | <2.0                       | 5.26                    |
|                    | 1/17/2008  | 179.11                                            | NM                                | NM                                 | NA              | NA                | NA                | NA                         | NA                         | NA                      |
|                    | 4/17/2008  | 179.11                                            | 8.85                              | 170.26                             | <50             | 1.87              | <2.0              | <0.5                       | <2.0                       | 21.6                    |
|                    | 7/16/2008  | 179.11                                            | 9.34                              | 169.77                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 11.4                    |
|                    | 10/14/2008 | 179.11                                            | 10.06                             | 169.05                             | <50             | 0.78              | <0.5              | <0.5                       | <0.5                       | 12                      |
|                    | 1/6/2009   | 179.11                                            | 9.12                              | 169.99                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 14                      |
|                    | 4/6/2009   | 179.11                                            | 9.28                              | 169.83                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 13                      |
|                    | 7/7/2009   | 179.11                                            | 9.59                              | 169.52                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 15                      |
|                    | 1/27/2010  | 179.11                                            | 6.98                              | 172.13                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 6.3                     |
|                    | 7/26/2010  | 179.11                                            | 9.11                              | 170.00                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 6                       |
| /IW-7R             | 8/30/2010  | 179.14                                            | 9.39                              | 169.75                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 24                      |
|                    | 11/16/2010 | 179.14                                            | 9.10                              | 170.04                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 4.9                     |
|                    | 2/14/2011  | 179.14                                            | 9.26                              | 169.88                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.3                     |
|                    | T          |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| /W-8               | 7/28/1995  | 176.34                                            | 7.80                              | 168.54                             | 1,100           | <2.5              | <2.5              | <2.5                       | <5.0                       | NA                      |
|                    | 11/17/1995 | 176.34                                            | 8.29                              | 168.05                             | 8,300           | 75                | 5.3               | 670                        | 240                        | 140                     |
|                    | 2/7/1996   | 176.34                                            | 4.99                              | 171.35                             | 2,300           | 33                | <10               | 190                        | 216                        | <100                    |
|                    | 4/23/1996  | 176.34                                            | 6.09                              | 170.25                             | 2,000           | 390               | <10               | 150                        | 26                         | <250                    |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

|                    |            |                                                   |                                   | PH-g, BTEX,<br>o Valley Blvd, C    |                 | lley, CA          |                   |                            |                            |                         |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|                    | -          |                                                   |                                   |                                    |                 | -                 |                   |                            |                            |                         |
| QC-2               | 4/1/1993   | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 6/29/1993  | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 9/23/1993  | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 12/10/1993 | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <5.0                    |
|                    | 2/17/1994  | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 8/8/1994   | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 10/12/1994 | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | NA                      |
|                    | 1/19/1995  | NM                                                | NM                                | NM                                 | <50             | <0.5              | <0.5              | <0.5                       | <1.0                       | NA                      |
|                    | 5/2/1995   | NM                                                | NM                                | NM                                 | <50             | <0.50             | <0.50             | <0.50                      | <1.0                       | NA                      |
|                    | 7/28/1995  | NM                                                | NM                                | NM                                 | <50             | <0.50             | <0.50             | <0.50                      | <1.0                       | NA                      |
|                    | 11/17/1995 | NM                                                | NM                                | NM                                 | <50             | <0.50             | <0.50             | <0.50                      | <1.0                       | <5.0                    |
|                    | 2/7/1996   | NM                                                | NM                                | NM                                 | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 4/23/1996  | NM                                                | NM                                | NM                                 | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    | 7/9/1996   | NM                                                | NM                                | NM                                 | <50             | <0.5              | <1.0              | <1.0                       | <1.0                       | <10                     |
|                    |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| SOMA-1             | 8/10/2004  | 180.95                                            | 11.53                             | 169.42                             | 84              | <0.5              | <0.5              | 1.5 C                      | 2.2                        | 2100                    |
|                    | 10/19/2004 | 180.95                                            | 10.41                             | 170.54                             | 56              | <0.5              | <0.5              | 1.3 C                      | 1.4 C                      | 1600                    |
|                    | 1/14/2005  | 180.95                                            | 9.68                              | 171.27                             | 58              | <3.1              | <3.1              | <3.1                       | <3.1                       | 330                     |
|                    | 4/14/2005  | 180.95                                            | 9.37                              | 171.58                             | <2200           | <5.5              | <5.5              | <5.5                       | <11                        | 668                     |
|                    | 7/7/2005   | 180.95                                            | 10.21                             | 170.74                             | <860            | <2.15             | <8.6              | <2.15                      | <4.3                       | 591                     |
|                    | 11/15/2005 | 180.95                                            | 10.70                             | 170.25                             | <50             | <0.5              | <2.0              | 1.1                        | <1.0                       | 256                     |
|                    | 2/8/2006   | 180.95                                            | 9.30                              | 171.65                             | 127             | 1.56              | <2.0              | 3.23                       | 3.12                       | 176                     |
|                    | 4/27/2006  | 180.95                                            | 9.64                              | 171.31                             | 81.6            | 1.14              | <2.0              | 2.8                        | <1.0                       | 189                     |
|                    | 8/1/2006   | 180.95                                            | 10.25                             | 170.70                             | <50             | 1.07              | <2.0              | 1.46                       | <1.0                       | 122                     |
|                    | 10/19/2006 | 180.95                                            | 10.73                             | 170.22                             | <50             | 0.68              | <2.0              | 4.17                       | <1.0                       | 116                     |
|                    | 1/12/2007  | 180.95                                            | 10.38                             | 170.57                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 68.7                    |
|                    | 4/17/2007  | 180.95                                            | 10.09                             | 170.86                             | <50             | 5.76              | <2.0              | 4.33                       | 2.59                       | 33.4                    |
|                    | 7/17/2007  | 180.95                                            | 10.35                             | 170.60                             | <50             | 14.8              | <2.0              | 4.63                       | 3.32                       | 39.4                    |
|                    | 10/16/2007 | 180.95                                            | 9.71                              | 171.24                             | <50             | 5.7               | <2.0              | <0.5                       | <2.0                       | 14.2                    |

Table 3 Historical Groundwater Elevations & Analytical Data TPH-a. BTEX. MtBE

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(µg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| SOMA-1 cont.       | 1/17/2008  | 180.95                                            | 10.01                             | 170.94                             | <50             | 1.02              | <2.0              | <0.5                       | <2.0                       | 12.8                    |
|                    | 4/17/2008  | 180.95                                            | 10.17                             | 170.78                             | <50             | 3.13              | <2.0              | <0.5                       | <2.0                       | 12.8                    |
|                    | 7/16/2008  | 180.95                                            | 10.63                             | 170.32                             | <50             | 10.6              | <2.0              | <0.5                       | <2.0                       | 15.8                    |
|                    | 10/14/2008 | 180.95                                            | 11.36                             | 169.59                             | <50             | 1.1               | <0.5              | <0.5                       | <0.5                       | 15                      |
|                    | 1/6/2009   | 180.95                                            | 10.81                             | 170.14                             | <50             | 0.6               | <0.5              | <0.5                       | <0.5                       | 14                      |
|                    | 4/6/2009   | 180.95                                            | 10.69                             | 170.26                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 12                      |
|                    | 7/7/2009   | 180.95                                            | 11.01                             | 169.94                             | <50             | 0.57              | <0.5              | 1.2                        | 0.91                       | 12                      |
|                    | 1/27/2010  | 180.95                                            | 8.81                              | 172.14                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 9.9                     |
|                    | 7/26/2010  | 180.95                                            | 10.49                             | 170.46                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.9                     |
|                    | 11/16/2010 | 180.95                                            | 10.49                             | 170.46                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 7.0                     |
|                    | 2/15/2011  | 180.95                                            | 10.64                             | 170.31                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.3                     |
|                    |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| SOMA-4             | 8/10/2004  | 176.94                                            | 9.44                              | 167.50                             | 140             | 0.98              | <0.5              | 7.8                        | <0.5                       | 11                      |
|                    | 10/19/2004 | 176.94                                            | 9.91                              | 167.03                             | 150             | <0.5              | <0.5              | 10                         | <0.5                       | 8.8                     |
|                    | 1/14/2005  | 176.94                                            | 8.36                              | 168.58                             | 500             | 3.7               | <0.5              | 53                         | <0.5                       | 7.6                     |
|                    | 4/14/2005  | 176.94                                            | 7.89                              | 169.05                             | <200            | 0.74              | <0.5              | 3.21                       | <1.0                       | 5.65                    |
|                    | 7/7/2005   | 176.94                                            | 11.62                             | 165.32                             | <200            | <0.5              | <2.0              | 0.56                       | <1.0                       | 7.09                    |
|                    | 11/15/2005 | 176.94                                            | 9.33                              | 167.61                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 8.6                     |
|                    | 2/8/2006   | 176.94                                            | 9.18                              | 167.76                             | 55.8            | <0.5              | <2.0              | 0.85                       | <1.0                       | 10.4                    |
|                    | 4/27/2006  | 176.94                                            | 8.75                              | 168.19                             | 172             | 1.35              | <2.0              | 8.83                       | <1.0                       | 11.7                    |
|                    | 8/1/2006   | 176.94                                            | 9.52                              | 167.42                             | <50             | 0.52              | <2.0              | 1.53                       | <1.0                       | 14.1                    |
|                    | 10/19/2006 | 176.94                                            | 9.51                              | 167.43                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 19.2                    |
|                    | 1/12/2007  | 176.94                                            | 8.98                              | 167.96                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 20.4                    |
|                    | 4/17/2007  | 176.94                                            | 8.96                              | 167.98                             | <50             | <0.5              | <2.0              | 4.33                       | <2.0                       | 15.8                    |
|                    | 7/17/2007  | 176.94                                            | 9.31                              | 167.63                             | <50             | <0.5              | <2.0              | 4.47                       | <2.0                       | 13.3                    |
|                    | 10/16/2007 | 176.94                                            | 8.96                              | 167.98                             | <50             | <0.5              | <2.0              | 4.5                        | <2.0                       | 8.57                    |
|                    | 1/17/2008  | 176.94                                            | 8.84                              | 168.10                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 8.87                    |
|                    | 4/17/2008  | 176.94                                            | 9.44                              | 167.50                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 1.22                    |
|                    | 7/16/2008  | 176.94                                            | 9.52                              | 167.42                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 8.58                    |
|                    | 10/14/2008 | 176.94                                            | 9.98                              | 166.96                             | <50             | <0.5              | <0.5              | < 0.5                      | <0.5                       | 9.7                     |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
| SOMA-4 cont        | 1/6/2009   | 176.94                                            | 9.29                              | 167.65                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 10                      |
|                    | 4/6/2009   | 176.94                                            | 9.31                              | 167.63                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.3                     |
|                    | 7/7/2009   | 176.94                                            | 9.54                              | 167.40                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 7                       |
|                    | 1/27/2010  | 176.94                                            | 7.35                              | 169.59                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.1                     |
|                    | 7/26/2010  | 176.94                                            | 9.13                              | 167.81                             | 220             | <0.5              | <0.5              | <0.5                       | <0.5                       | 2.3                     |
|                    | 11/15/2010 | 176.94                                            | 8.85                              | 168.09                             | 75              | <0.5              | <0.5              | <0.5                       | <0.5                       | 2.5                     |
|                    | 2/14/2011  | 176.94                                            | 8.92                              | 168.02                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 1.5                     |
|                    |            |                                                   |                                   | Shallow WBZ W                      | Vells           |                   |                   |                            |                            |                         |
| SOMA-2             | 8/10/2004  | 178.99                                            | 10.69                             | 168.30                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 0.8                     |
|                    | 10/19/2004 | 178.99                                            | 10.75                             | 168.24                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 2.4                     |
|                    | 1/14/2005  | 178.99                                            | 9.45                              | 169.54                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 1.1                     |
|                    | 4/14/2005  | 178.99                                            | 10.46                             | 168.53                             | <200            | <0.5              | <0.5              | <0.5                       | <1.0                       | <0.5                    |
|                    | 7/7/2005   | 178.99                                            | 11.81                             | 167.18                             | <200            | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 11/15/2005 | 178.99                                            | 12.02                             | 166.97                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 1.61                    |
|                    | 2/8/2006   | 178.99                                            | 11.88                             | 167.11                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 4/27/2006  | 178.99                                            | 10.95                             | 168.04                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 8/1/2006   | 178.99                                            | 11.85                             | 167.14                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 1.11                    |
|                    | 10/19/2006 | 178.99                                            | 10.62                             | 168.37                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 1.36                    |
|                    | 1/12/2007  | 178.99                                            | 10.26                             | 168.73                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 4/17/2007  | 178.99                                            | 11.88                             | 167.11                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 0.87                    |
|                    | 7/17/2007  | 178.99                                            | 10.84                             | 168.15                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 10/16/2007 | 178.99                                            | 9.69                              | 169.30                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 1/17/2008  | 178.99                                            | 9.62                              | 169.37                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 4/17/2008  | 178.99                                            | 10.06                             | 168.93                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 7/16/2008  | 178.99                                            | 10.63                             | 168.36                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    | 10/14/2008 | 178.99                                            | 11.26                             | 167.73                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/6/2009   | 178.99                                            | 10.22                             | 168.77                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 4/6/2009   | 178.99                                            | 10.38                             | 168.61                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 7/7/2009   | 178.99                                            | 10.40                             | 168.59                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/27/2010  | 178.99                                            | 8.19                              | 170.80                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 7/26/2010  | 178.99                                            | 10.24                             | 168.75                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 11/15/2010 | 178.99                                            | 10.04                             | 168.95                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 2/14/2011  | 178.99                                            | 9.95                              | 169.04                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
|                    | 0/40/0004  | 470.04                                            | 0.07                              | 400.04                             | 50              | 0.5               | 0.5               | 0.5                        | 0.5                        | 0.5                     |
| SOMA-3             | 8/10/2004  | 176.81                                            | 9.97                              | 166.84                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 10/19/2004 | 176.81                                            | 9.59                              | 167.22                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 1/14/2005  | 176.81                                            | 8.23                              | 168.58                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 4/14/2005  | 176.81                                            | 8.64                              | 168.17                             | <200            | <0.5              | <0.5              | <0.5                       | <1.0                       | <0.5                    |
|                    | 7/7/2005   | 176.81                                            | 9.60                              | 167.21                             | <200            | <0.5              | <2.0              | <0.5                       | <1.0                       | <0.5                    |
|                    | 11/15/2005 | 176.81                                            | 10.01                             | 166.80                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 5.1                     |
|                    | 2/8/2006   | 176.81                                            | 8.80                              | 168.01                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 7.16                    |
|                    | 4/27/2006  | 176.81                                            | 9.00                              | 167.81                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 14.2                    |
|                    | 8/1/2006   | 176.81                                            | 9.91                              | 166.90                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 7.29                    |
|                    | 10/19/2006 | 176.81                                            | 10.21                             | 166.60                             | <50             | <0.5              | <2.0              | <0.5                       | <1.0                       | 41.4                    |
|                    | 1/12/2007  | 176.81                                            | 9.73                              | 167.08                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 20.9                    |
|                    | 4/17/2007  | 176.81                                            | 9.81                              | 167.00                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 32.1                    |
|                    | 7/17/2007  | 176.81                                            | 10.06                             | 166.75                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 23.6                    |
|                    | 10/16/2007 | 176.81                                            | 9.54                              | 167.27                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 22.3                    |
|                    | 1/17/2008  | 176.81                                            | 9.06                              | 167.75                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 11.1                    |
|                    | 4/17/2008  | 176.81                                            | 9.57                              | 167.24                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 23.7                    |
|                    | 7/16/2008  | 176.81                                            | 10.25                             | 166.56                             | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | 10.6                    |
|                    | 10/14/2008 | 176.81                                            | 10.76                             | 166.05                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 19                      |
|                    | 1/6/2009   | 176.81                                            | 9.53                              | 167.28                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 1.1                     |
|                    | 4/6/2009   | 176.81                                            | 9.65                              | 167.16                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 5.7                     |
|                    | 7/7/2009   | 176.81                                            | 10.19                             | 166.62                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 6                       |
|                    | 1/27/2010  | 176.81                                            | 7.80                              | 169.01                             | <50             | < 0.5             | <0.5              | <0.5                       | <0.5                       | 56                      |
|                    | 7/26/2010  | 176.81                                            | 9.67                              | 167.14                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 9.8                     |
|                    | 11/15/2010 | 176.81                                            | 9.35                              | 167.46                             | <50             | < 0.5             | <0.5              | < 0.5                      | < 0.5                      | 30                      |
|                    | 2/14/2011  | 176.81                                            | 10.57                             | 166.24                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | 32                      |
|                    | -          | -                                                 |                                   |                                    | -               | -                 |                   |                            |                            |                         |
| SOMA-5             | 1/27/2010  | 180.31                                            | 7.94                              | 172.37                             | 14,000          | 2,600             | 1.5               | 800                        | 914                        | 190                     |
|                    | 7/26/2010  | 180.31                                            | 9.99                              | 170.32                             | 14,000          | 3,300             | <20               | 1,100                      | 1,340                      | 150                     |
|                    | 11/15/2010 | 180.31                                            | 10.01                             | 170.30                             | 11,000          | 2,400             | 3.3               | 920                        | 733                        | 130                     |
|                    | 2/15/2011  | 180.31                                            | 10.22                             | 170.09                             | 4.900           | 1,600             | <13               | 430                        | 84                         | 94                      |

Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

## Table 3Historical Groundwater Elevations & Analytical DataTPH-g, BTEX, MtBE3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring<br>Well | Date       | Top of casing<br>elevation <sup>1</sup><br>(feet) | Depth to<br>Groundwater<br>(feet) | Groundwater<br>Elevation<br>(feet) | TPH-g<br>(μg/L) | Benzene<br>(μg/L) | Toluene<br>(μg/L) | Ethyl<br>benzene<br>(μg/L) | Total<br>Xylenes<br>(μg/L) | MtBE<br>(μg/L)<br>8260B |
|--------------------|------------|---------------------------------------------------|-----------------------------------|------------------------------------|-----------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|
|                    |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| SOMA-7             | 8/30/2010  | 178.54                                            | 7.63                              | 170.91                             | 2,900           | 190               | 3.7               | 74                         | 19.80                      | 8.4                     |
|                    | 11/16/2010 | 178.54                                            | 7.89                              | 170.65                             | 1,500           | 190               | 2.1               | 41                         | 8.30                       | 5.7                     |
|                    | 2/15/2011  | 178.54                                            | 7.33                              | 171.21                             | 1,900           | 380               | 4                 | 27                         | 5.50                       | 5.2                     |
|                    |            |                                                   |                                   |                                    |                 |                   |                   |                            |                            |                         |
| SOMA-8             | 8/30/2010  | 181.57                                            | 9.89                              | 171.68                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 11/15/2010 | 181.57                                            | 9.37                              | 172.20                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    | 2/14/2011  | 181.57                                            | 9.89                              | 171.68                             | <50             | <0.5              | <0.5              | <0.5                       | <0.5                       | <0.5                    |
|                    |            |                                                   |                                   | Equipment Bla                      | nks             |                   |                   |                            |                            |                         |
| EB-PMP             | 1/17/2008  | NA                                                | NA                                | NA                                 | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
| EB-PRB             | 1/17/2008  | NA                                                | NA                                | NA                                 | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
| EB-PMP2            | 1/17/2008  | NA                                                | NA                                | NA                                 | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
| EB-PRB2            | 1/17/2008  | NA                                                | NA                                | NA                                 | <50             | <0.5              | <2.0              | <0.5                       | <2.0                       | <0.5                    |
|                    |            | ESL - Drinking V                                  | Vater                             |                                    | 100             | 1                 | 40                | 30                         | 20                         | 5                       |
|                    | E          | SL - Non-Drinking                                 | g Water                           |                                    | 210             | 46                | 130               | 43                         | 100                        | 1,800                   |

Notes:

< : Not detected above laboratory reporting limit.

1 Top of Casing Elevations were resurveyed by Kier & Wright Engineers Surveyors of Pleasanton, CA on June 21, 2004.

C: Presence confirmed, but RPD between columns exceeds 40%.

H: Heavier hydrocarbons contributed to the quantitation.

NA: Not Applicable/Not Analyzed. Due to construction activities in the Third Quarter 2003, which consisted of the replacement of the USTs and dispensers, wells ESE-1 & ESE-2 were inaccessible. Well ESE-2 also inaccessible during the First Quarter 2007. Well MW-7 had a car parked over it and was inaccessible during the First Quarter 2008 monitoring event

NM: Not Measured

Well ESE-2 was covered over with dirt during the First Quarter 2007 monitoring event.

Well MW-7 had a car parked over it and was inaccessible during the First Quarter 2008 monitoring event.

Equipment Blanks (EB-PRB & EB-PMP) were done to make sure decon efforts were adequate.

Z: Sample exhibits unknown single peak or peaks.

The Third Quarter 2003 was the first time that SOMA analyzed groundwater samples at the site.

The Third Quarter 2004 was the first time that SOMA analyzed groundwater samples at wells SOMA-1 to SOMA-4.

August 2010, reconstruct ESE-1R, ESE-2R, ESE-5R, MW-6R, MW-7R; install SOMA-7, SOMA-8. 8/30/10 investigation sampling

ESLs - ESL- Environmental Screening Levels (California Regional Water Quality Control Board, Interim Final, November 2007, Revised May 2008

| Monitoring | Date       | TBA             | DIPE      | ETBE            | TAME            | ETHANOL | 1,2-DCA        | EDB           |
|------------|------------|-----------------|-----------|-----------------|-----------------|---------|----------------|---------------|
| Well       | Date       | (μ <b>g/L</b> ) | (μg/L)    | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | (μg/L)  | (μ <b>g/L)</b> | <b>(μg/L)</b> |
|            |            | Se              | mi-Confin | ed WBZ \        | Wells           |         |                |               |
| ESE-1      | 6/17/2003  | <400            | <10       | <10             | 18              | NA      | NA             | NA            |
|            | 9/17/2003  | NA              | NA        | NA              | NA              | NA      | NA             | NA            |
|            | 12/9/2003  | 290             | <1.0      | <1.0            | 9.5             | <2,000  | <1.0           | <1.0          |
|            | 2/26/2004  | 410             | <0.5      | <0.5            | 9.7             | <1000   | <0.5           | <0.5          |
|            | 5/21/2004  | 190             | <0.5      | <0.5            | <0.5            | <1000   | <0.5           | <0.5          |
|            | 8/10/2004  | 180             | <0.5      | <0.5            | <0.5            | <1000   | <0.5           | <0.5          |
|            | 10/19/2004 | 270             | <0.7      | <0.7            | 4.4             | <1400   | 9.9            | <0.7          |
|            | 1/14/2005  | 280             | <1.3      | <1.3            | <1.3            | <2,500  | <1.3           | <1.3          |
|            | 4/14/2005  | 144             | <2.15     | <2.15           | <8.6            | <4300   | <2.15          | <2.15         |
|            | 7/7/2005   | 119             | <2.15     | <2.15           | <8.6            | <4300   | <2.15          | <2.15         |
|            | 11/15/2005 | 107             | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 2/8/2006   | 181             | <2.15     | <2.15           | <8.6            | <4300   | <2.15          | <2.15         |
|            | 4/27/2006  | 261             | <2.15     | <2.15           | <8.6            | <4300   | <2.15          | <2.15         |
|            | 8/1/2006   | 165             | <1.0      | <1.0            | <4.0            | <2000   | <1.0           | <1.0          |
|            | 10/19/2006 | 154             | <1.0      | <1.0            | <4.0            | <2000   | <1.0           | <1.0          |
|            | 1/12/2007  | 103             | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 4/17/2007  | 80.5            | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 7/17/2007  | 128             | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 10/16/2007 | 98.7            | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 1/17/2008  | 61.5            | <0.5      | <0.5            | 2.52            | <1000   | <0.5           | <0.5          |
|            | 4/17/2008  | 76.4            | <0.5      | <0.5            | <2.0            | <1000   | 59.2           | <0.5          |
|            | 7/16/2008  | 179             | <0.5      | <0.5            | <2.0            | <1000   | <0.5           | <0.5          |
|            | 10/14/2008 | 87              | <0.5      | <0.5            | 2.6             | <1000   | <0.5           | <0.5          |
|            | 1/6/2009   | 93              | <1.0      | <1.0            | <1.0            | <2000   | <1.0           | <1.0          |
|            | 4/6/2009   | 130             | <1.0      | <1.0            | <1.0            | <2000   | <1.0           | <1.0          |
|            | 7/7/2009   | 100             | <0.5      | < 0.5           | < 0.5           | <1,000  | < 0.5          | <0.5          |
|            | 1/27/2010  | 200             | < 0.5     | < 0.5           | < 0.5           | <1,000  | < 0.5          | <0.5          |
| 505 45     | 7/26/2010  | 110             | < 0.5     | < 0.5           | < 0.5           | <1,000  | < 0.5          | < 0.5         |
| ESE-1R     | 8/30/2010  | 83              | <0.71     | <0.71           | 3.4             | <1,400  | <0.71          | <0.71         |
|            | 11/16/2010 | 64              | <0.5      | <0.5            | 0.94            | <1,000  | <0.5           | <0.5          |
|            | 2/15/2011  | 130             | <0.5      | <0.5            | <0.5            | NA      | <0.5           | <0.5          |
|            |            |                 |           |                 |                 |         |                |               |

| Weil         (µg/L)         (µg/L) <th>Monitoring</th> <th>Dete</th> <th>TBA</th> <th>DIPE</th> <th>ETBE</th> <th>TAME</th> <th>ETHANOL</th> <th>1,2-DCA</th> <th>EDB</th> | Monitoring | Dete       | TBA    | DIPE   | ETBE   | TAME            | ETHANOL | 1,2-DCA        | EDB                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------|--------|--------|-----------------|---------|----------------|------------------------|
| 9/17/2003         NA                                                                                                                                                                                                                                                                                                    | Well       | Date       | (μg/L) | (μg/L) | (μg/L) | (μ <b>g/L</b> ) | (μg/L)  | (μ <b>g/L)</b> | (μ <mark>g/L)</mark>   |
| 12/9/2003         500         <13         <13         77         <25,000         <13         <           2/26/2004         1200         <0.5         <0.5         92         <1,000         <0.5         <           5/21/2004         2400         <10         <10         25         <20,000         <10            8/10/2004         2300         <2.5         <2.5         12         <5,000         <2.5         <           10/19/2004         1800         <3.6         <3.6         8.6         <7100         <3.6         <           1/14/2005         470         <8.3         <8.3         28         <17,000         <8.3         <           4/14/2005         <10.8         <2.15         <2.15         17.9         <4,300         <2.15         <           7/7/2005         109         <2.15         <2.15         11         <4,300         <2.15         <           11/15/2006         64.7         <0.5         <0.5         3.43         <1,000         <0.5         <           4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           1/12/2007         NA <td< th=""><th>ESE-2</th><th>6/17/2003</th><th>&lt;4000</th><th>&lt;100</th><th>&lt;100</th><th>&lt;100</th><th>NA</th><th>NA</th><th>NA</th></td<>                                                                                                                                                          | ESE-2      | 6/17/2003  | <4000  | <100   | <100   | <100            | NA      | NA             | NA                     |
| 2/26/2004         1200         <0.5         <0.5         92         <1,000         <0.5         <           5/21/2004         2400         <10         <10         25         <20,000         <10         <           8/10/2004         2300         <2.5         <2.5         <12         <5,000         <2.5         <           10/19/2004         1800         <3.6         <3.6         8.6         <7100         <8.3         <           11/14/2005         470         <8.3         <8.3         28         <17,000         <8.3         <           11/15/2005         109         <2.15         <2.15         17.9         <4,300         <2.15         <           2/8/2006         46.7         <0.5         <0.5         3.43         <1,000         <0.5         <           4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           8/1/2006         20.6         <1.0         <1.0         4.67         <2,000         <1.0            10/19/2007         60.8         <0.5         <0.5         3.85         <1,000         <0.5         <           10/16/2007         46                                                                                                                                                                                                                                                                                                        |            | 9/17/2003  | NA     | NA     | NA     | NA              | NA      | NA             | NA                     |
| 5/21/2004         2400         <10         <10         25         <20,000         <10         <           8/10/2004         2300         <2.5         <2.5         12         <5,000         <2.5         <           10/19/2004         1800         <3.6         <3.6         8.6         <7100         <3.6         <           11/14/2005         470         <8.3         <8.3         28         <17,000         <8.3         <           4/14/2005         410.8         <2.15         <2.15         17.9         <4,300         <2.15         <           7/7/2005         109         <2.15         <2.15         17.9         <4,300         <2.15         <           11/15/2005         64.7         <0.5         <0.5         3.43         <1,000         <0.5         <           2/8/2006         46.4         <2.15         <2.15         11         <4,300         <2.15         <            4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           10/19/2006         28.9         <0.5         <0.5         3.85         <1,000         <0.5         <           10/16/2007                                                                                                                                                                                                                                                                                                   |            | 12/9/2003  | 500    | <13    | <13    | 77              | <25,000 | <13            | <13                    |
| 8/10/2004         2300         <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 2/26/2004  | 1200   | <0.5   | <0.5   | 92              | <1,000  | <0.5           | <0.5                   |
| 10/19/2004         1800         <3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 5/21/2004  | 2400   | <10    | <10    | 25              | <20,000 | <10            | <10                    |
| 1/14/2005         470         <8.3         <8.3         28         <17,000         <8.3         <           4/14/2005         <10.8         <2.15         <2.15         17.9         <4,300         <2.15         <           7/7/2005         109         <2.15         <2.15         9.7         <4,300         <2.15         <           11/15/2005         64.7         <0.5         <0.5         3.43         <1,000         <0.5         <           2/8/2006         46.4         <2.15         <2.15         11         <4,300         <2.15         <           4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           8/1/2006         20.6         <1.0         <1.0         4.67         <2,000         <1.0         <           1/12/2007         NA         NA         NA         NA         NA         NA         NA         NA           4/17/2007         60.8         <0.5         <0.5         2.95         <1,000         <0.5         <           1/17/2007         62.3         <0.5         <0.5         2.21         <1,000         <0.5         <           1/17/2008         <                                                                                                                                                                                                                                                                                          |            | 8/10/2004  | 2300   | <2.5   | <2.5   | 12              | <5,000  | <2.5           | <2.5                   |
| 4/14/2005         <10.8         <2.15         <2.15         17.9         <4,300         <2.15         <           7/7/2005         109         <2.15         <2.15         9.7         <4,300         <2.15         <           11/15/2005         64.7         <0.5         <0.5         3.43         <1,000         <0.5         <           2/8/2006         46.4         <2.15         <2.15         11         <4,300         <2.15         <           4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           8/1/2006         20.6         <1.0         <1.0         4.67         <2,000         <1.0         <           11/12/2007         NA         NA         NA         NA         NA         NA         NA         NA           4/17/2007         60.8         <0.5         <0.5         3.85         <1,000         <0.5         <           10/16/2007         46         <0.5         <0.5         2.21         <1,000         <0.5         <           10/16/2008         18.8         <0.5         <0.5         3.38         <1,000         <0.5         <           10/14/2008                                                                                                                                                                                                                                                                                                |            | 10/19/2004 | 1800   | <3.6   | <3.6   | 8.6             | <7100   | <3.6           | <3.6                   |
| 7/7/2005         109         <2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1/14/2005  | 470    | <8.3   | <8.3   | 28              | <17,000 | <8.3           | <8.3                   |
| 11/15/2005         64.7         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 4/14/2005  | <10.8  | <2.15  | <2.15  | 17.9            | <4,300  | <2.15          | <2.15                  |
| 2/8/2006         46.4         <2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 7/7/2005   | 109    | <2.15  | <2.15  | 9.7             | <4,300  | <2.15          | <2.15                  |
| 4/27/2006         47.7         <1.0         <1.0         8.29         <2,000         <1.0         <           8/1/2006         20.6         <1.0         <1.0         4.67         <2,000         <1.0         <           10/19/2006         28.9         <0.5         <0.5         4.55         <1,000         <0.5         <           1/12/2007         NA         NA         NA         NA         NA         NA         NA         NA           4/17/2007         60.8         <0.5         <0.5         3.85         <1,000         <0.5         <           7/17/2007         62.3         <0.5         <0.5         2.95         <1,000         <0.5         <           10/16/2007         46         <0.5         <0.5         2.21         <1,000         <0.5         <           1/17/2008         18.8         <0.5         <0.5         3.38         <1,000         <0.5         <           1/17/2008         18.8         <0.5         <0.5         <2.0         <1,000         <0.5         <           1/17/2008         18.8         <0.5         <0.5         <0.5         <1,000         <0.5         <           1/6/2009         <                                                                                                                                                                                                                                                                                              |            | 11/15/2005 | 64.7   | <0.5   | <0.5   | 3.43            | <1,000  | <0.5           | <0.5                   |
| 8/1/2006         20.6         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 2/8/2006   | 46.4   | <2.15  | <2.15  | 11              | <4,300  | <2.15          | <2.15                  |
| 10/19/2006         28.9         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 4/27/2006  | 47.7   | <1.0   | <1.0   | 8.29            | <2,000  | <1.0           | <1.0                   |
| 1/12/2007         NA                                                                                                                                                                                                                                                                                                    |            | 8/1/2006   | 20.6   | <1.0   | <1.0   | 4.67            | <2,000  | <1.0           | <1.0                   |
| 4/17/2007         60.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 10/19/2006 | 28.9   | <0.5   | <0.5   | 4.55            | <1,000  | <0.5           | <0.5                   |
| 7/17/2007         62.3         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 1/12/2007  | NA     | NA     | NA     | NA              | NA      | NA             | NA                     |
| 10/16/2007         46         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 4/17/2007  | 60.8   | <0.5   | <0.5   | 3.85            | <1,000  | <0.5           | <0.5                   |
| 1/17/2008         18.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 7/17/2007  | 62.3   | <0.5   | <0.5   | 2.95            | <1,000  | <0.5           | <0.5                   |
| 4/17/2008         18.8         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |        |        | <0.5   |                 |         | <0.5           | <0.5                   |
| 7/16/2008         9.95         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            |        |        |        |                 |         |                | <0.5                   |
| 10/14/2008         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |            |        |        |        |                 |         |                | <0.5                   |
| 1/6/2009         27         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |            |        |        |        |                 |         |                | <0.5                   |
| 4/6/2009         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |        |        |        |                 |         |                | <0.5                   |
| 7/7/2009         18         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |            |        |        |        |                 |         |                | <0.5                   |
| 1/27/2010         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |        |        |        |                 |         |                | < 0.5                  |
| 7/26/2010         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |        |        |        |                 |         |                | < 0.5                  |
| ESE-2R 8/30/2010 <10 <0.5 <0.5 <0.5 <1,000 <0.5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |            |        |        |        |                 |         |                | < 0.5                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 |         |                | < 0.5                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOC-2R     |            |        |        |        |                 | -       |                | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 |         |                | <0.5<br><b>&lt;0.5</b> |
| 2/14/2011 <10 <0.5 <0.5 <0.5 NA <0.5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 2/14/2011  | <10    | <0.5   | <0.5   | <0.5            | NA      | <0.5           | <0.5                   |
| ESE-3 6/17/2003 <200 <5.0 <5.0 <5.0 NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESE-3      | 6/17/2003  | <200   | <5.0   | <5.0   | <5.0            | NA      | NA             | NA                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 0,1172000  | 1200   | 1010   | 1010   | .0.0            |         |                |                        |
| ESE-5 9/17/2003 <10 <0.5 <0.5 <0.5 <1000 <0.5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESE-5      | 9/17/2003  | <10    | <0.5   | <0.5   | <0.5            | <1000   | <0.5           | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 |         |                | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 |         |                | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 | -       |                | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 | -       |                | <0.5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |        |        |        |                 |         |                | <0.5                   |

| Monitoring  | Dete       | TBA             | DIPE   | ETBE            | TAME            | ETHANOL | 1,2-DCA        | EDB                  |
|-------------|------------|-----------------|--------|-----------------|-----------------|---------|----------------|----------------------|
| Well        | Date       | (μ <b>g/L</b> ) | (μg/L) | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | (µg/L)  | (μ <b>g/L)</b> | (μ <mark>g/L)</mark> |
| ESE-5 cont. | 1/14/2005  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 4/14/2005  | 17              | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 7/7/2005   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 11/15/2005 | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 2/8/2006   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 4/27/2006  | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 8/1/2006   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 10/19/2006 | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 1/12/2007  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 4/17/2007  | 8.7             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 7/17/2007  | 15.4            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 10/16/2007 | 11.5            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 1/17/2008  | 17.2            | <0.5   | <0.5            | <2.0            | <1,000  | < 0.5          | <0.5                 |
|             | 4/17/2008  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | 5.44           | <0.5                 |
|             | 7/16/2008  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 10/14/2008 | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 1/6/2009   | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 4/6/2009   | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 7/7/2009   | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 1/27/2010  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 7/26/2010  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
| ESE-5R      | 8/30/2010  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 11/16/2010 | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 2/15/2011  | <10             | <0.5   | <0.5            | <0.5            | NA      | <0.5           | <0.5                 |
|             |            |                 |        |                 |                 |         |                |                      |
| MW-6        | 9/17/2003  | <10             | <0.5   | <0.5            | <0.5            | <1000   | <0.5           | <0.5                 |
|             | 12/9/2003  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 2/26/2004  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 5/21/2004  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 8/10/2004  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 10/19/2004 | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 1/14/2005  | <10             | <0.5   | <0.5            | <0.5            | <1,000  | <0.5           | <0.5                 |
|             | 4/14/2005  | <2.5            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 7/7/2005   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 11/15/2005 | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 2/8/2006   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 4/27/2006  | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 8/1/2006   | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 10/19/2006 | <10             | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 1/12/2007  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 4/17/2007  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 7/17/2007  | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |
|             | 10/16/2007 | <2.0            | <0.5   | <0.5            | <2.0            | <1,000  | <0.5           | <0.5                 |

| Monitoring  | Dete       | TBA                  | DIPE   | ETBE                 | TAME                 | ETHANOL | 1,2-DCA              | EDB           |
|-------------|------------|----------------------|--------|----------------------|----------------------|---------|----------------------|---------------|
| Well        | Date       | (μ <mark>g/L)</mark> | (μg/L) | (μ <mark>g/L)</mark> | (μ <mark>g/L)</mark> | (μg/L)  | (μ <mark>g/L)</mark> | <b>(μg/L)</b> |
| MW-6 contd. | 1/17/2008  | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 4/17/2008  | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 7/16/2008  | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 10/14/2008 | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 1/6/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 4/6/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 7/7/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 1/27/2010  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 7/26/2010  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
| MW-6R       | 8/30/2010  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 11/15/2010 | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 2/14/2011  | <10                  | <0.5   | <0.5                 | <0.5                 | NA      | <0.5                 | <0.5          |
|             |            |                      |        |                      |                      |         |                      |               |
| MW-7        | 9/17/2003  | <10                  | <0.5   | <0.5                 | 9.8                  | <1,000  | <0.5                 | <0.5          |
|             | 12/9/2003  | <25                  | <1.3   | <1.3                 | 8.1                  | <2,500  | <1.3                 | <1.3          |
|             | 2/26/2004  | <10                  | <0.5   | <0.5                 | 9.9                  | <1,000  | <0.5                 | <0.5          |
|             | 5/21/2004  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 8/10/2004  | <25                  | <1.3   | <1.3                 | 19                   | <2,500  | <1.3                 | <1.3          |
|             | 10/19/2004 | <100                 | <5.0   | <5.0                 | 11                   | <10,000 | <5.0                 | <5.0          |
|             | 1/14/2005  | <40                  | <2.0   | <2.0                 | 5.1                  | <4,000  | <2.0                 | <2.0          |
|             | 4/14/2005  | 2.62                 | <0.5   | <0.5                 | 4.57                 | <1,000  | <0.5                 | <0.5          |
|             | 7/7/2005   | 55.6                 | <1.0   | <1.0                 | 10.2                 | <2,000  | <1.0                 | <1.0          |
|             | 11/15/2005 | 10.6                 | <0.5   | <0.5                 | 2.07                 | <1,000  | <0.5                 | <0.5          |
|             | 2/8/2006   | <10                  | <0.5   | <0.5                 | 2.19                 | <1,000  | <0.5                 | <0.5          |
|             | 4/27/2006  | <10                  | <0.5   | <0.5                 | 2.63                 | <1,000  | <0.5                 | <0.5          |
|             | 8/1/2006   | <10                  | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 10/19/2006 | <10                  | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 1/12/2007  | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 4/17/2007  | 11.6                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 7/17/2007  | 13.3                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 10/16/2007 | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 1/17/2008  | NA                   | NA     | NA                   | NA                   | NA      | NA                   | NA            |
|             | 4/17/2008  | 8.63                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 7/16/2008  | <2.0                 | <0.5   | <0.5                 | <2.0                 | <1,000  | <0.5                 | <0.5          |
|             | 10/14/2008 | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 1/6/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 4/6/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 7/7/2009   | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 1/27/2010  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |
|             | 7/26/2010  | <10                  | <0.5   | <0.5                 | <0.5                 | <1,000  | <0.5                 | <0.5          |

| Monitoring | Date       | TBA            | DIPE   | ETBE   | TAME           | ETHANOL              | 1,2-DCA        | EDB            |
|------------|------------|----------------|--------|--------|----------------|----------------------|----------------|----------------|
| Well       | Dale       | (μ <b>g/L)</b> | (μg/L) | (μg/L) | (μ <b>g/L)</b> | (μ <mark>g/L)</mark> | (μ <b>g/L)</b> | (μ <b>g/L)</b> |
| MW-7R      | 8/30/2010  | <10            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 11/16/2010 | <10            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 2/14/2011  | <10            | <0.5   | <0.5   | <0.5           | NA                   | <0.5           | <0.5           |
|            |            |                |        |        |                |                      |                |                |
| SOMA-1     | 8/10/2004  | 2300           | <6.3   | <6.3   | 53             | <13,000              | <6.3           | <6.3           |
|            | 10/19/2004 | 2400           | <13    | <13    | 36             | <25,000              | <13            | <13            |
|            | 1/14/2005  | 530            | <3.1   | <3.1   | 7.1            | <6,300               | <3.1           | <3.1           |
|            | 4/14/2005  | <27.5          | <5.5   | <5.5   | <22            | <11,000              | <5.5           | <5.5           |
|            | 7/7/2005   | 2180           | <2.15  | <2.15  | 12.9           | <4,300               | <2.15          | <2.15          |
|            | 11/15/2005 | 792            | <0.5   | <0.5   | 5.01           | <1,000               | <0.5           | <0.5           |
|            | 2/8/2006   | 618            | <0.5   | <0.5   | 3.67           | <1,000               | <0.5           | <0.5           |
|            | 4/27/2006  | 983            | <0.5   | <0.5   | 3.48           | <1,000               | <0.5           | <0.5           |
|            | 8/1/2006   | 639            | <0.5   | <0.5   | 2.27           | <1,000               | <0.5           | <0.5           |
|            | 10/19/2006 | 603            | <0.5   | <0.5   | 2.25           | <1,000               | <0.5           | <0.5           |
|            | 1/12/2007  | 396            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 4/17/2007  | 148            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 7/17/2007  | 555            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 10/16/2007 | 65             | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 1/17/2008  | 29.6           | <0.5   | <0.5   | 2.06           | <1,000               | <0.5           | <0.5           |
|            | 4/17/2008  | 339            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 7/16/2008  | 264            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 10/14/2008 | 250            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 1/6/2009   | 180            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 4/6/2009   | 120            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 7/7/2009   | 250            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 1/27/2010  | 310            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 7/26/2010  | 68             | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 11/16/2010 | 84             | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 2/15/2011  | 120            | <0.5   | <0.5   | <0.5           | NA                   | <0.5           | <0.5           |
|            |            |                |        |        |                |                      |                |                |
| SOMA-4     | 8/10/2004  | <10            | <0.5   | <0.5   | <0.5           | <1000                | <0.5           | <0.5           |
|            | 10/19/2004 | <10            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 1/14/2005  | <10            | <0.5   | <0.5   | <0.5           | <1,000               | <0.5           | <0.5           |
|            | 4/14/2005  | <2.5           | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 7/7/2005   | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 11/15/2005 | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 2/8/2006   | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 4/27/2006  | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 8/1/2006   | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |
|            | 10/19/2006 | <10            | <0.5   | <0.5   | <2.0           | <1,000               | <0.5           | <0.5           |

| Monitoring   | Date       | TBA             | DIPE            | ETBE            | TAME           | ETHANOL         | 1,2-DCA       | EDB                  |
|--------------|------------|-----------------|-----------------|-----------------|----------------|-----------------|---------------|----------------------|
| Well         | Date       | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | (μ <b>g/L)</b> | (μ <b>g/L</b> ) | <b>(μg/L)</b> | (μ <mark>g/L)</mark> |
| SOMA-4 contd | 1/12/2007  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 4/17/2007  | 3.98            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 7/17/2007  | 6.31            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 10/16/2007 | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 1/17/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 4/17/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 7/16/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 10/14/2008 | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 1/6/2009   | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 4/6/2009   | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 7/7/2009   | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 1/27/2010  | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 7/26/2010  | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 11/15/2010 | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 2/14/2011  | <10             | <0.5            | <0.5            | <0.5           | NA              | <0.5          | <0.5                 |
|              |            |                 | Shallow         | WBZ Wel         | ls             |                 |               |                      |
| SOMA-2       | 8/10/2004  | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 10/19/2004 | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 1/14/2005  | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |
|              | 4/14/2005  | <2.5            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 7/7/2005   | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 11/15/2005 | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 2/8/2006   | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 4/27/2006  | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 8/1/2006   | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 10/19/2006 | <10             | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 1/12/2007  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 4/17/2007  | 14.6            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 7/17/2007  | 2.58            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 10/16/2007 | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 1/17/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 4/17/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 7/16/2008  | <2.0            | <0.5            | <0.5            | <2.0           | <1,000          | <0.5          | <0.5                 |
|              | 10/14/2008 | <10             | <0.5            | <0.5            | <0.5           | <1,000          | <0.5          | <0.5                 |

| Monitoring   | Data                    | TBA            | DIPE         | ETBE            | TAME         | ETHANOL              | 1,2-DCA       | EDB                  |
|--------------|-------------------------|----------------|--------------|-----------------|--------------|----------------------|---------------|----------------------|
| Well         | Date                    | (μ <b>g/L)</b> | (μg/L)       | (μ <b>g/L</b> ) | (µg/L)       | (μ <mark>g/L)</mark> | <b>(μg/L)</b> | (μ <mark>g/L)</mark> |
| SOMA-2 cont. | 1/6/2009                | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 4/6/2009                | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 7/7/2009                | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 1/27/2010               | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 7/26/2010               | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 11/15/2010              | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 2/14/2011               | <10            | <0.5         | <0.5            | <0.5         | NA                   | <0.5          | <0.5                 |
|              |                         |                |              |                 |              |                      |               |                      |
| SOMA-3       | 8/10/2004               | <10            | <0.5         | <0.5            | <0.5         | <1000                | <0.5          | <0.5                 |
|              | 10/19/2004              | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 1/14/2005               | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 4/14/2005               | <2.5           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 7/7/2005                | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 11/15/2005              | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 2/8/2006                | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 4/27/2006               | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 8/1/2006                | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 10/19/2006              | <10            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 1/12/2007               | <2.0           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 4/17/2007               | 6.72           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 7/17/2007               | 7.6            | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 10/16/2007              | 9.96           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 1/17/2008               | <2.0           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 4/17/2008               | 6.05           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 7/16/2008               | <2.0           | <0.5         | <0.5            | <2.0         | <1,000               | <0.5          | <0.5                 |
|              | 10/14/2008              | <10            | <0.5         | < 0.5           | <0.5         | <1,000               | < 0.5         | <0.5                 |
|              | 1/6/2009                | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 4/6/2009                | <10            | <0.5         | < 0.5           | < 0.5        | <1,000               | < 0.5         | <0.5                 |
|              | 7/7/2009                | <10            | < 0.5        | < 0.5           | < 0.5        | <1,000               | < 0.5         | < 0.5                |
|              | 1/27/2010               | <10            | <0.5         | <0.5            | 0.8          | <1,000               | <0.5          | < 0.5                |
|              | 7/26/2010               | <10            | <0.5         | <0.5            | <0.5         | <1,000               | <0.5          | <0.5                 |
|              | 11/15/2010              | <10            | < 0.5        | < 0.5           | < 0.5        | <1,000               | < 0.5         | < 0.5                |
|              | 2/14/2011               | <10            | <0.5         | <0.5            | <0.5         | NA                   | <0.5          | <0.5                 |
| SOMA 5       | 1/07/0040               | 500            | -10          | -10             | -10          | -25.000              | -10           | .10                  |
| SOMA-5       | 1/27/2010<br>7/26/2010  | 500<br><400    | <13<br><20   | <13             | <13          | <25,000<br><40,000   | <13           | <13                  |
|              | 7/26/2010<br>11/15/2010 | <400<br>480    | <20<br><2.0  | <20<br><2.0     | <20<br><2.0  | <40,000<br><4,000    | <20<br><2.0   | <20<br><2.0          |
|              | 2/15/2010               | <b>390</b>     | <2.0<br><13  | <2.0<br><13     | <2.0<br><13  | <4,000<br>NA         | <2.0<br><13   | <2.0<br><13          |
|              | 2/13/2011               | 550            |              |                 |              |                      |               | 10                   |
| SOMA-7       | 8/30/2010               | <33            | <1.7         | <1.7            | <1.7         | <3,300               | <1.7          | <1.7                 |
|              | 11/16/2010              | <33<br><25     | <1.7         | <1.7<br><1.3    | <1.7         | <3,300<br><2,500     | <1.7<br><1.3  | <1.7<br><1.3         |
|              | 2/15/2011               | < <u>2</u> 5   | <1.3<br><1.3 | <1.3<br><1.3    | <1.3<br><1.3 | NA                   | <1.3          | <1.3<br><1.3         |
|              | 2,10,2011               | 120            | 110          | 1.5             |              |                      | 110           | 110                  |

#### Historical Groundwater Analytical Data Gasoline Oxygenates & Lead Scavengers 3519 Castro Valley Blvd, Castro Valley, CA

| Monitoring   | Date             | TBA             | DIPE            | ETBE           | TAME                 | ETHANOL | 1,2-DCA        | EDB           |  |  |
|--------------|------------------|-----------------|-----------------|----------------|----------------------|---------|----------------|---------------|--|--|
| Well         | Date             | (μ <b>g/L</b> ) | (μ <b>g/L</b> ) | (μ <b>g/L)</b> | (μ <mark>g/L)</mark> | (μg/L)  | (μ <b>g/L)</b> | <b>(μg/L)</b> |  |  |
| SOMA-8       | 8/30/2010        | <10             | <0.5            | <0.5           | <0.5                 | <1,000  | <0.5           | <0.5          |  |  |
|              | 11/15/2010       | <10             | <0.5            | <0.5           | <0.5                 | <1,000  | <0.5           | <0.5          |  |  |
|              | 2/14/2011        | <10             | <0.5            | <0.5           | <0.5                 | NA      | <0.5           | <0.5          |  |  |
|              | Equipment Blanks |                 |                 |                |                      |         |                |               |  |  |
| EB-PMP       | 1/17/2008        | <2.0            | <0.5            | <0.5           | <2.0                 | <1000   | <0.5           | <0.5          |  |  |
| EB-PRB       | 1/17/2008        | <2.0            | <0.5            | <0.5           | <2.0                 | <1000   | <0.5           | <0.5          |  |  |
| EB-PMP2      | 1/17/2008        | <2.0            | <0.5            | <0.5           | <2.0                 | <1000   | <0.5           | <0.5          |  |  |
| EB-PRB2      | 1/17/2008        | <2.0            | <0.5            | <0.5           | <2.0                 | <1000   | <0.5           | <0.5          |  |  |
|              |                  |                 |                 |                |                      |         |                |               |  |  |
| ESL - Drink  | king Water       | 12              | NL              | NL             | NL                   | NL      | 0.5            | 0.05          |  |  |
| ESL - Non-Dr | inking Water     | 18,000          | NL              | NL             | NL                   | NL      | 200            | 150           |  |  |

Notes:

< : Not detected above laboratory reporting limit.

NA: Not Analyzed. Due to construction activities in the Third Quarter 2003, which

consisted of the replacement of the USTs and dispensers, wells ESE-1 & ESE-2 were inaccessible.

Well ESE-2 was inaccessible duirng the First Quarter 2007, dirt was covered over well

Well MW-7 had a car parked over it and was inaccessible during the First Quarter 2008 monitoring event.

Lead Scavengers:

The Third Quarter 2003 was the first time that SOMA analyzed groundwater samples at the Site.

The Third Quarter 2004 was the first time that SOMA analyzed groundwater samples

at wells SOMA-1 to SOMA-4.

Gasoline Oxygenates: TBA: tertiary butyl alcohol DIPE: isopropyl ether

ETBE: ethyl tertiary butyl ether TAME: methyl tertiary amyl ether

Ethanol

August 2010, reconstruct ESE-1R, ESE-2R, ESE-5R, MW-6R, MW-7R; install SOMA-7, SOMA-8. 8/30/10 investigation sampling

1,2-DCA: 1,2-Dichloroethane

EDB: 1,2-Dibromoethane

ESLs - ESL- Environmental Screening Levels (California Regional Water Quality Control Board, Interim Final, November 2007, Revised May 2008

### Table 5 Degradation Rates Evaluation (First-Order Attenuation Rate Constants) 3519 Castro Valley Blvd, Castro Valley, CA

| сос               | LN (C goal) | Equation                       | ESE-1 (ESE-<br>1R) (Years<br>from 1992) | Years from<br>Today | Equation                       | ESE-2 (ESE-<br>2R) (Years<br>from 1992) | Years from<br>Today | Equation                              | ESE-5 (ESE-<br>5R) (Years<br>from 1992) | Years from<br>Today |
|-------------------|-------------|--------------------------------|-----------------------------------------|---------------------|--------------------------------|-----------------------------------------|---------------------|---------------------------------------|-----------------------------------------|---------------------|
| TPH-g             | 4.6         | y = 8.8988e <sup>-0.019x</sup> | 34.67                                   | 15.67               | below C goal                   | NA                                      | NA                  | <i>y</i> = 7.3539e <sup>-0.005x</sup> | 93.61                                   | 74.61               |
| TPH-g (Alternate) | 4.6         | -                              | -                                       | -                   | -                              | -                                       | -                   | y = 7.3539e <sup>-0.005x</sup>        | 14.04                                   | -4.96               |
| Benzene           | 0           | y = 3.885e <sup>0.014x</sup>   | NA (increa                              | sing trend)         | below C goal                   | NA                                      | NA                  | below C goal                          | NA                                      | NA                  |
| MtBE              | 1.6         | y = 22.039e <sup>-0.125x</sup> | 20.94                                   | 1.94                | y = 27.855e <sup>-0.124x</sup> | 22.99                                   | 3.99                | y = 11.233e <sup>-0.103x</sup>        | 18.86                                   | 7.86                |
| ТВА               | 2.48        | y = 7.5912e <sup>-0.03x</sup>  | 37.22                                   | 18.22               | below C goal                   | NA                                      | NA                  | below C goal                          | NA                                      | NA                  |
|                   |             |                                |                                         |                     |                                |                                         |                     |                                       |                                         |                     |
| сос               | LN (C goal) | Equation                       | SOMA-1<br>(Years from<br>2004)          | Years from<br>Today | Equation                       | SOMA-5<br>(Years from<br>2010)          | Years from<br>Today | Equation                              | SOMA-7<br>(Years from<br>2010)          | Years from<br>Today |
| TPH-g             | 4.6         | below C goal                   | NA                                      | NA                  | y = 9.7535e <sup>-0.097x</sup> | 7.74                                    | 7.24                | y = 7.7997e <sup>-0.111x</sup>        | 4.75                                    | 4.25                |
| Benzene           | 0           | below C goal                   | NA                                      | NA                  | y = 8.038e <sup>-0.05x</sup>   | 88.70                                   | 88.20               | 0.274x<br>y = 5.140e                  | NA (increa                              | sing trend)         |
| MtBE              | 1.6         | y = 7.1958e <sup>-0.231x</sup> | 6.48                                    | 0.08                | y = 5.2936e <sup>-0.128x</sup> | 9.30                                    | 8.80                | $v = 2.0657e^{-0.542x}$               | 0.46                                    | -0.04               |
| ТВА               | 2.48        | $y = 6.6098e^{-0.058x}$        | 16.87                                   | 10.47               | $y = 6.1379e^{-0.024x}$        | 37.68                                   | 37.18               | $y = 3.357e^{-0.143x}$                | 2.10                                    | 1.60                |

The first-order degradation rate equation is described as follows:

 $C = C_o e^{-k_1 t}$ [1]

Where:

C Contaminant concentration at time (t), in units of mass per volume

Co Initial contaminant concentration at t equals 0 in units of mass per volume

-k1 First-order degradation rate, 1/time; a plot of contaminant vs. time produces a non-linear relationship that could be linearized by plotting the natural log of contaminant concentration vs. time. The slope of this linearized relationship is equal to (-k1)

"\_"

Negative years value, indicates that COC goal has already been reached or is about to be reached

### Table 6Contaminant Mass Evaluation3519 Castro Valley Blvd, Castro Valley, CA

| Chemical of<br>Concern (COC) | Bulk Density <sup>a</sup><br>(g/cm3) | Porosity (n) | Organic Carbon<br>Partition<br>Coefficient (K oc)<br>[cm3/g] | Fraction of<br>Organic Carbon<br>(foc) g/g* | Distribution<br>Coefficient (Kd)<br>[cm3/g] | Retardation<br>Coefficient (Rd) | Total Mass <sup>c</sup> (Ib) |
|------------------------------|--------------------------------------|--------------|--------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|------------------------------|
|                              |                                      |              | Shallov                                                      | w WBZ                                       |                                             |                                 |                              |
| TPH-g                        | 1.64                                 | 0.32         | 5000                                                         | 0.002                                       | 10                                          | 52.25                           | 57.10                        |
| Benzene                      | 1.64                                 | 0.32         | 59                                                           | 0.002                                       | 0.118                                       | 1.60475                         | 2.19                         |
| MtBE                         | 1.64                                 | 0.32         | 6                                                            | 0.002                                       | 0.012                                       | 1.0615                          | 0.032                        |
|                              |                                      |              |                                                              |                                             |                                             | TOTAL (lb):                     | 59.32                        |
|                              |                                      |              | Semi-Conf                                                    | fined WBZ                                   |                                             |                                 |                              |
| TPH-g                        | 1.64                                 | 0.32         | 5000                                                         | 0.002                                       | 10                                          | 52.25                           | 8.87                         |
| Benzene                      | 1.64                                 | 0.32         | 59                                                           | 0.002                                       | 0.118                                       | 1.60475                         | 0.018                        |
| MtBE                         | 1.64                                 | 0.32         | 6                                                            | 0.002                                       | 0.012                                       | 1.0615                          | 0.012                        |
|                              |                                      |              |                                                              |                                             |                                             | TOTAL (lb):                     | 8.91                         |
|                              |                                      |              | Shallo                                                       | w Soil                                      |                                             |                                 |                              |
| TPH-g                        | 1.32                                 | -            | -                                                            | -                                           | -                                           | -                               | 468.45                       |
|                              |                                      |              |                                                              |                                             |                                             | TOTAL (lb):                     | 468.45                       |
|                              |                                      |              |                                                              |                                             |                                             | Grand Total                     | 536.68                       |

Note:

<sup>a</sup> Bulk Density= silty clay loam and sandy loam (pb)

<sup>c</sup> For details refer to report attachment

COC- Contaminant Of Concern

NA- Not Applicable

\* U.S EPA Soil Screening Guidance: User's Guide. EPA/540/R-96/0188, April 1996

Organic carbon partition coefficients (K oc) were obtained from "August 2007 Update to Environmental Screening Levels ("ESLs") Technical Document, (VLOOKUP table) The EPA's Soil Screening Guidance recommends 0.2% (0.002 g/g) as the default concentration of organic carbon for subsurface soils.

Equations used (Mass within WBZ):

Mass in WBZ=Porosity\*Concentration\*Volume\*Rd

 $Rd=1+(Kd^{*}\rho b/n)$ 

Kd=Koc\*foc

## Table 7Remedial Approaches Pre-Screening3519 Castro Valley Blvd, Castro Valley, CA

|                                          | Develo<br>pment<br>Status | O&M | Capital | System<br>Reliabil<br>ity | Relativ<br>e Costs | Time       | Availab<br>ility | vocs | Fuels | тотаг |  |  |
|------------------------------------------|---------------------------|-----|---------|---------------------------|--------------------|------------|------------------|------|-------|-------|--|--|
| Shallow Soil Contamination 0-12 feet bgs |                           |     |         |                           |                    |            |                  |      |       |       |  |  |
| Excavation                               | 4                         | 4   | 3       | 4                         | 1                  | 4          | 4                | 3    | 3     | 30    |  |  |
| MPE                                      | 4                         | 2   | 3       | 3                         | 3                  | 3          | 4                | 4    | 4     | 30    |  |  |
| GWET                                     | NA                        | NA  | NA      | NA                        | NA                 | NA         | NA               | NA   | NA    | NA    |  |  |
| Chemical<br>Oxidation                    | 4                         | 2   | 3       | 3                         | 3                  | 4          | 4                | 3    | 2     | 28    |  |  |
| ORC Injection                            | 4                         | 2   | 3       | 2                         | 3                  | 3          | 4                | 4    | 4     | 29    |  |  |
|                                          |                           |     | Groundv | vater Conta               | mination S         | Shallow WE | BZ               |      |       |       |  |  |
| Excavation                               | NA                        | NA  | NA      | NA                        | NA                 | NA         | NA               | NA   | NA    | NA    |  |  |
| MPE                                      | 4                         | 2   | 3       | 3                         | 3                  | 3          | 4                | 4    | 4     | 30    |  |  |
| Air Sparging as<br>MPE Enhancer          | 4                         | 2   | 3       | 3                         | 3                  | 3          | 4                | 4    | 4     | 30    |  |  |
| GWET                                     | 4                         | 1   | 1       | 4                         | 1                  | 1          | 4                | 3    | 3     | 22    |  |  |
| Chemical<br>Oxidation                    | 4                         | 4   | 3       | 3                         | 3                  | 4          | 4                | 3    | 2     | 30    |  |  |
| ORC Injection                            | 4                         | 2   | 3       | 2                         | 4                  | 3          | 4                | 4    | 4     | 30    |  |  |
| MNA                                      | 4                         | 3   | 4       | 3                         | 4                  | 1          | 4                | 4    | 4     | 31    |  |  |

#### Rating Codes for Effectiveness Evaluation:

- 1 Below average, level of effectiveness highly dependent upon specific contaminant and its application
- 2 Average
- *3 Above average to average*
- 4 Above average

Above screening is preliminary, each technology will be evaluated further upon completion of pilot testing

### **APPENDIX A** Site History and Previous Site Activities

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

#### Violation History

A Notice of Violation (NOV) was issued in June 1991 due to non-compliance issues at the station; a second NOV was issued in October 1991. An Unauthorized Release was detected during the 1992 Preliminary Site Assessment. A second Unauthorized Release was reported in May 2000, due to a leaking shear valve on piping in the former UST pit. The site underwent remodeling in December 2003, when the former UST pit was excavated and four USTs were removed. Soils were over excavated to 12 feet bgs; the shallow soil (top 5 feet) was reused to backfill the new UST pit, after confirmation sampling determined that no chemicals of potential concern (COCs) were present. The remaining soil and purge water were transported off-site for disposal. The upgraded gasoline USTs, with capacities of 12,000 gallons and 20,000 gallons, as well as new piping and distribution lines, were installed during remodeling. A former dispenser island (and possible source of on-site contamination) was located along the western side of the site and was removed sometime prior to the 1995 Phase II Site Investigation (BP).

#### **Previous Activities**

<u>1984</u>: Three single-walled fiberglass underground storage tanks (USTs) with capacities of 6,000 gallons, 8,000 gallons, and 10,000 gallons, were installed in the southeastern portion of the site. A former dispenser island reportedly existed on the west side of the site; however, there was no available information about the dispenser removal date.

<u>1988</u>: A 1,000-gallon, double-walled, fiberglass waste oil tank (WOT) was installed to replace the previous 380-gallon WOT. In September, Kaprealian Engineering, Inc. removed the original 380-gallon WOT and observed holes in this UST. As a result, confirmation soil samples were collected from the bottom of the excavation. The following analytical soil results were observed: benzene and toluene were detected at 6.8  $\mu$ g/kg and 9.5  $\mu$ g/kg, respectively; total petroleum hydrocarbons (TPH) and total oil and grease (TOG) constituents were not detected.

<u>September and October 1992</u>: Environmental Science & Engineering, Inc. (ESE) drilled five soil boreholes and converted them into monitoring wells (ESE-1 through ESE-5). Soil and groundwater samples were collected during well installation. In the soil samples, the maximum level of soil contamination was detected in monitoring well borehole ESE-5 at 220,000  $\mu$ g/kg TPH as gasoline (TPH-g); 1,400  $\mu$ g/kg benzene; 8,200  $\mu$ g/kg toluene; 3,300  $\mu$ g/kg ethylbenzene; and 18,000  $\mu$ g/kg xylenes. In the groundwater samples collected from ESE-1, maximum concentrations were TPH-g at 2,300  $\mu$ g/L; benzene at 370  $\mu$ g/L; toluene at 160  $\mu$ g/L; ethylbenzene at 17  $\mu$ g/L; and xylenes at 110  $\mu$ g/L.

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

<u>July 1995</u>: Three additional monitoring wells were installed: two on-site wells, MW-6 and MW-8, and one off-site well, MW-7.

<u>July 1995</u>: Sampling around former pump island (SB-1 and SB-2) revealed detections of TPH-g and BTEX. Soil analytical data is summarized in Table 1.

<u>April 1996</u>: Well MW-8, located on the western margin of the site, was decommissioned to accommodate the road-widening project along Redwood Boulevard.

<u>August 20, 2003</u>: Prior to UST removal, SOMA oversaw drilling of two boreholes by Vironex. The boreholes were drilled in order to characterize the soil for landfill acceptance criteria.

<u>September 2003</u>: Three single-walled, fiberglass USTs, with capacities of 6,000 gallons, 8,000 gallons, and 10,000 gallons, were removed and replaced with two new double-walled, fiberglass USTs with capacities of 12,000 gallons and 20,000 gallons. In addition, the dispensers, product lines, and vent lines were removed and replaced. Soil below 5 feet bgs was disposed of off-site. Shallow soil was used as backfill material for the former UST pit after confirmation.

<u>Third Quarter 2003</u>: Two monitoring wells, ESE-3 and ESE-4, were decommissioned due to construction activities.

<u>Fourth Quarter 2003</u>: In December, SOMA oversaw drilling of off-site temporary well boreholes TWB-1 through TWB-5 to determine the horizontal extent of off-site petroleum hydrocarbon contamination.

<u>June 2004</u>: On June 10, SOMA installed on- and off-site monitoring wells: SOMA-1 in the southeastern section of the site, and SOMA-2 to SOMA-4 south and southeast of the site. Kier and Wright Engineers Surveyors, of Pleasanton, California, surveyed all site wells on June 21.

<u>August 2006:</u> SOMA conducted a sensitive receptor survey and it was concluded that no irrigation or domestic wells, and no sensitive groups or environments, evaluated during this sensitive receptor survey and located within ½-mile radius have the potential to be impacted by the site's contaminants at this time

<u>Third Quarter 1993 to Present</u>: On-going quarterly groundwater monitoring events have been conducted at the site.

<u>September 2008:</u> Shell Oil conducted a Phase II investigation. Elevated TPH-g concentrations 900  $\mu$ g/L in groundwater and 720 mg/kg in soil were observed in the borings. Based on these elevated readings, Shell Oil filed a UST

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

Unauthorized Release Report with Alameda County Environmental Health on September 24, 2008.

<u>February 2009:</u> Per ACEHD correspondence dated January 8, 2009, SOMA prepared a Site Conceptual Model and workplan to address data gaps at the site. SOMA proposed advancing soil borings to further define the lateral and horizontal extent of COC impact to vadose zone and the WBZ (up to 31 feet bgs). Per the ACEHD correspondence dated March 27, 2009, SOMA submitted a workplan addendum which was approved by the ACEHD on July 10, 2009 which reduced the number of DP borings from 9 to 7 and proposed the advancement of a shallow groundwater monitoring well within the vadose zone (screened across the potentiometric surface) to determine the appropriateness of the screening interval for existing wells at the site.

<u>August 2009:</u> SOMA conducted a soil and groundwater investigation at the site, advancing seven soil borings and installed shallow groundwater monitoring well SOMA-5 to determine if groundwater at the site is confined or semi-confined. TPH-g was elevated in groundwater samples from DP-1 and DP-2 (210  $\mu$ g/L and 130  $\mu$ g/L, respectively) along the northwestern portion of the site and in DP-5 and DP-6 (640  $\mu$ g/L and 1,600  $\mu$ g/L, respectively) along the eastern portion of the station (north of the former USTs). TPH-d was elevated in all groundwater samples, with concentrations between 130  $\mu$ g/L and 980  $\mu$ g/L (DP-7 and DP-4, respectively). TPH-mo was observed only along the western portion of the site, in DP-2 through DP-4, with concentrations ranging from 360  $\mu$ g/L to 570  $\mu$ g/L. Based on elevated TPH concentrations along the northwestern portion of the site it appears that plume commingling might be occurring. It was determined that wells of ESE-1, ESE-2, ESE-5, MW-6 and MW-7 appear to be screened excessively long and are causing cross-contamination.

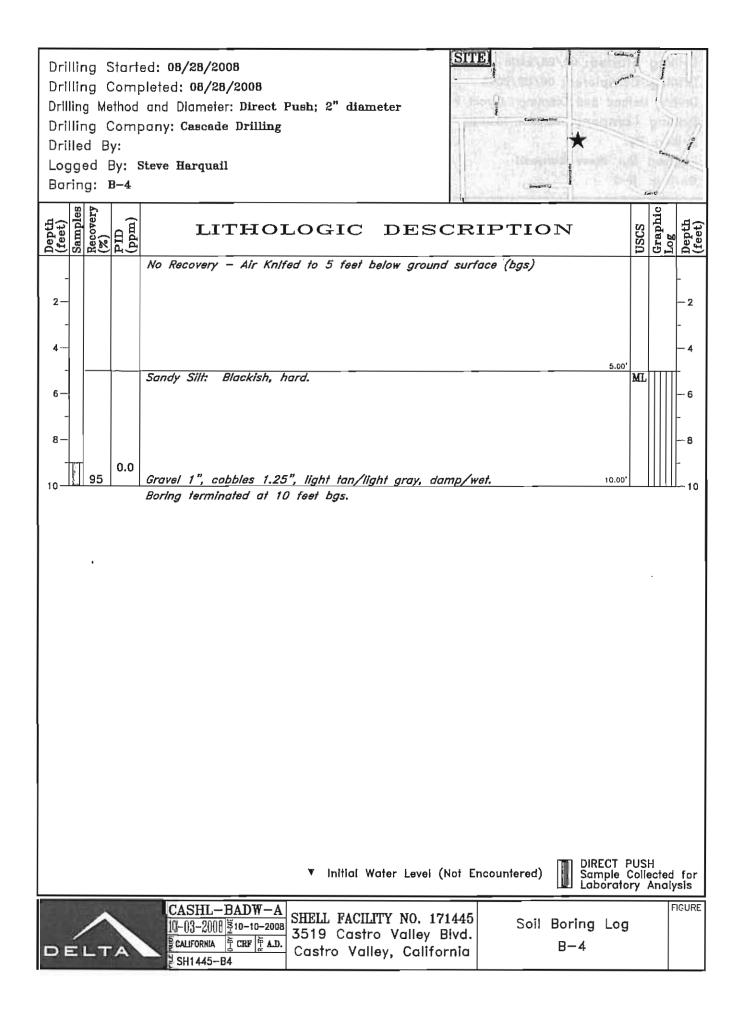
<u>March 2010:</u> SOMA submitted a workplan suggesting replacing (reconstructing) ESE-1, ESE-2, ESE-5, MW-6 and MW-7 with wells screened within the confined WBZ and installing four additional groundwater monitoring wells (SOMA-6 through SOMA-9) adjacent to the reconstructed wells (within 5 feet) and completed within the shallow zone.

<u>September 2010:</u> SOMA submitted a report documenting site well reconstruction and shallow well installation, per workplan submitted in March 2010. Due to their excessively long screening intervals, ESE-1, ESE-2, ESE-5, MW-6 and MW-7 were reconstructed with screening entirely within the Semi-Confined WBZ. To further characterize the Shallow WBZ, SOMA advanced four borings, converting two of those borings into shallow groundwater monitoring wells (SOMA-7 and SOMA-8).

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

### APPENDIX B Boring Logs

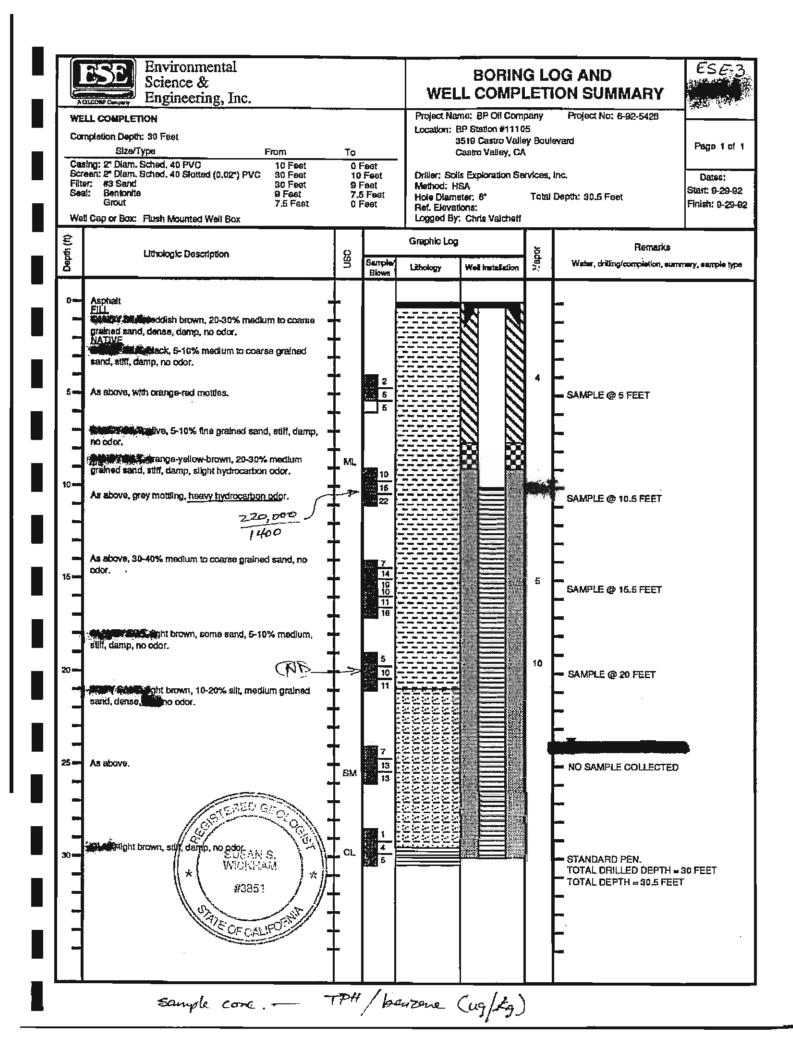
Feasibility Study/Corrective Action Plan and Proposed Pilot Testing


|             |            | ENGINEERING GROUP                     |               |                  | L                                           | 06         | OF BORING                                                                                               |
|-------------|------------|---------------------------------------|---------------|------------------|---------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|
|             |            |                                       | ALIST         | ΟP               | Roji                                        | ECT        | NO: 10-138-03 DATE DRILLED: 07/19/95                                                                    |
|             |            |                                       |               |                  |                                             |            | ompany                                                                                                  |
|             | SEE S      | ITE PLAN                              | L             |                  | Castro Valley Boulevard, Castro Valley, CA. |            |                                                                                                         |
|             |            |                                       |               |                  |                                             |            | ): Hollow-stem auger (8"); 2" split-spoon sampler                                                       |
|             |            |                                       | LOGGE         |                  |                                             |            | IY: Solis Exploration Srvs.       CASING ELEVATION: N/A         add       APPROVED BY: AI Sevilla       |
|             | 60         | · · · · · · · · · · · · · · · · · · · | 1 10000       |                  |                                             | -          |                                                                                                         |
| BLOWS/B IN. | PID VALUES | WELL DIAGRAM                          | DEPTH<br>feet | SAMPLES          | GRAPHIC LOG                                 | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                    |
|             |            | 1                                     |               | Π                | 77                                          |            | 6" Concrete                                                                                             |
| 8,10,10     | 1008       |                                       | -             | ,                |                                             | 1          | <b>AND AND AND AND AND AND AND AND AND AND </b>                                                         |
| 8,8,14      | 1888       |                                       | -             |                  |                                             |            | Same: brown, damp, very stif1; Fe oxide stain; minor tines.                                             |
| 12,18,18    | It3        |                                       | 5-            |                  |                                             | ML.        | classes AL Tesprawn mottled gray, damp, hard; Fe oxide staining; minor fines; < 1% subrounded gravel to |
|             |            | nent                                  | -             |                  |                                             |            | ו/4"-diamater.<br>Same: at 7 feet, root traces; calcium carbonate on                                    |
| 8,14,20     | 334.2      | Neat Cement                           | -             | ΙT.              |                                             |            | fractures.                                                                                              |
| 8,14,21     | 217        | eaN                                   | -             |                  |                                             | ML         | devenue OT Theod brown mothing gray, damo, hard: Eo ovido                                               |
|             |            |                                       | 10            | 17               |                                             |            | stain; some very fine-grained send; root traces present.                                                |
| 10,18,20    | 296        |                                       | -             | <b> </b>         |                                             |            | Same: at 11.5 feet.                                                                                     |
| 18,19,23    | 10.3       |                                       | -             |                  | Щ                                           |            |                                                                                                         |
| 10,10,20    | 10.0       |                                       | 15-           | 1                | $\mathbb{V}$                                |            | approximately 3%.                                                                                       |
| 15,19,21    | 8.4        |                                       | .   .         |                  |                                             | 1_         | Same: st 15.5 teet.                                                                                     |
|             |            |                                       | -             |                  |                                             |            | Sall boring terminated at 18 feat.                                                                      |
|             |            |                                       | •             |                  |                                             |            |                                                                                                         |
| •           |            |                                       | 20-           |                  |                                             |            |                                                                                                         |
|             |            |                                       | -             |                  |                                             |            |                                                                                                         |
|             |            |                                       | -             |                  |                                             |            |                                                                                                         |
|             |            |                                       | -             | 1                |                                             |            | ·                                                                                                       |
|             |            |                                       | 25-           | 1                |                                             |            |                                                                                                         |
|             |            |                                       |               |                  |                                             |            |                                                                                                         |
|             |            |                                       | -             | $\left  \right $ |                                             |            |                                                                                                         |
|             |            |                                       | -             | 1                |                                             |            |                                                                                                         |
|             |            |                                       | 30-           | 1                |                                             |            |                                                                                                         |
|             |            |                                       | -             |                  |                                             |            |                                                                                                         |
|             |            |                                       | -             | -                |                                             |            |                                                                                                         |
|             |            |                                       | -             | <b> </b>         | 1                                           |            |                                                                                                         |

-

|             |            | ENGINEERING GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                            | L  | 0     | G             | OF BORING                                                                                                |  |  |  |  |
|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|----|-------|---------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALIS              | STO F                                                      | RO | JEC   | ΤN            | 40: 10-138-03 DATE DRILLED: 07/19/95                                                                     |  |  |  |  |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLIE              | INT:                                                       | BF | ° Oll | CC            | ompany                                                                                                   |  |  |  |  |
|             | SEE S      | ITE PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | LOCATION: 3519 Castro Valley Boulevard, Castro Valley, CA. |    |       |               |                                                                                                          |  |  |  |  |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                            |    |       |               | Hollow-stem auger (8"); 2" split-spoon sampler                                                           |  |  |  |  |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOG               |                                                            |    |       |               | Y: Soils Exploration Srys.       CASING ELEVATION: N/A         add       APPROVED BY: AI Sevilla         |  |  |  |  |
| 'NI Q/SMOTE | PID VALUES | WELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HLASO             | 0                                                          | g  |       | SOIL CLASS    | GEOLÓGIC DESCRIPTION                                                                                     |  |  |  |  |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | -+                                                         |    |       |               | B" Concrete                                                                                              |  |  |  |  |
| 15,18,21    | э.з        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                            |    | 1     | 31            | plasticity.                                                                                              |  |  |  |  |
| 15,15,23    | 10.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                            |    | Ň     | 1L            | cincing and the brown, damp, hard; Fe oxide stain approximately 5%; minor lines; root traces present.    |  |  |  |  |
| 12,18,21    | 295.B      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                 |                                                            |    |       |               | Same: gray with white calcium volds and red/brown, damp, hard; Fe oxide stain; root traces; minor fines. |  |  |  |  |
| 18,14,20    | 222.1      | and the second se |                   | -                                                          |    | 1     | 1             | ne-grained sand; some clay.                                                                              |  |  |  |  |
| 13,15,1B    | Э.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                | -                                                          |    |       |               | contracts to and the gray, damp, hard; root traces to 4%; Fe oxide stain; some very fine-grained sand.   |  |  |  |  |
| 14,18,20    | ы          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | -                                                          |    |       |               | Same: at 11.5 feet,                                                                                      |  |  |  |  |
| 19,21,21    | 0.3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                |                                                            | V  | 7     | 21            | stiv CLAY Brown mottled gray, damp, hard; root traces to<br>1%; minor fines.                             |  |  |  |  |
| 14,18,20    | o          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   <sup>10</sup> | -                                                          | Ľ  | 4     | $\rightarrow$ | Same: at 15.5 feet.                                                                                      |  |  |  |  |
|             |            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>25          |                                                            |    |       |               | Sal baring terminated at 10 feet.                                                                        |  |  |  |  |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                | -                                                          |    |       |               |                                                                                                          |  |  |  |  |

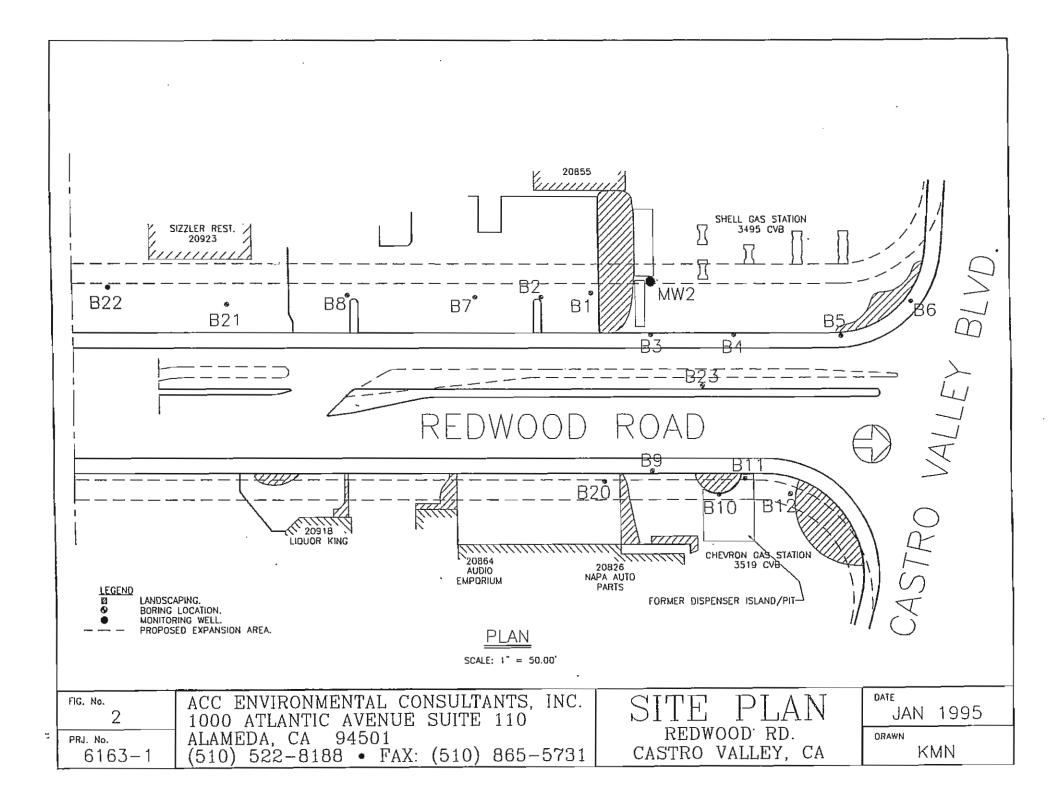
| Drilling Company: Case<br>Drilled By:<br>Logged By: Steve Harqu<br>Boring: <b>B-6</b> | 28/2008<br>Her: Direct Push; 2" diameter<br>ade Drilling | SITE                  | *                                                         | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------------|---------------------------------------|
| T                                                                                     | ITHOLOGIC DE                                             | SCRIPTIC              | Z<br>USCS<br>Graphic<br>Log                               | (feet)                                |
| 2-<br>4-                                                                              | y — Alr Knifed to 5 feet below gi                        | round surface (bgs)   | -2                                                        | 2                                     |
|                                                                                       | Dark brown/black, firm.<br>n, hard, damp, with 5% sand.  |                       | 5.00 <sup>°</sup> ML - 6<br>- 8                           |                                       |
| 12-                                                                                   | ∕light tan mix, hard.                                    |                       |                                                           |                                       |
| 14-<br>40 0.0 With 5-10<br>Boring Ten                                                 | K sand<br>ninated at 15 feet bgs.                        |                       | 15.00'                                                    | 4                                     |
|                                                                                       |                                                          |                       |                                                           |                                       |
|                                                                                       |                                                          |                       |                                                           |                                       |
|                                                                                       |                                                          |                       |                                                           |                                       |
|                                                                                       |                                                          |                       |                                                           |                                       |
|                                                                                       | ▼ Initial Water Le                                       | vel (Not Encountered) | DIRECT PUSH<br>Sample Collected fo<br>Laboratary Analysis | )r                                    |
|                                                                                       | – 🖆 – Castro Vallev, Ca                                  | ey Blvd.              | Boring Log<br>B-6                                         | ŘΕ                                    |


| (feet)<br>Sampl | Recov<br>(%) | PID<br>(ppm) | LITHOLOGIC DES                                |                 |     | uscs                                           | Graphic<br>Log | Depth<br>(feet) |
|-----------------|--------------|--------------|-----------------------------------------------|-----------------|-----|------------------------------------------------|----------------|-----------------|
| -<br>!          |              |              | No Recovery – Air Knifed to 5 feet below grou | ınd surface (Bg | rs) |                                                |                | -<br>2          |
|                 |              |              |                                               |                 |     | 5.00'                                          |                | -4              |
| ; [             |              |              | Clayey Silt: Dark brown, with 10% sand.       |                 |     | ML                                             |                | -6              |
| -               |              |              | Hard, dry.<br>Brown/tan/rust color mlx.       |                 |     |                                                |                | -               |
| ;-              |              |              |                                               |                 |     |                                                |                | -8              |
| ,               | 80           | 0.0          |                                               |                 |     |                                                |                | - 10            |
| -               |              |              | Dark brown, very hard.                        |                 |     |                                                |                | -               |
| ·               |              |              | Brown, dry.                                   |                 |     |                                                |                | - 12            |
| ┝┻┽╸            |              |              |                                               |                 |     |                                                |                |                 |
|                 | 80           | 0.0          | Prown your hard dry with 10% and              |                 |     |                                                |                | - 14            |
| ;_              |              |              | Brown, very hard, dry, with 10% sand.         |                 |     |                                                |                | -16             |
|                 |              |              |                                               |                 |     |                                                |                | -               |
| <u>-</u>        | •            |              |                                               |                 |     |                                                |                | - 18<br>-       |
| ,_              | 70           | 0.0          |                                               |                 |     |                                                |                | - 20            |
|                 |              |              | Silty Sand: Brown, damp.                      |                 |     | 21.00* SM                                      | ┝┼┆┼┆┥         | -               |
| ² ▼ -           | -            |              | Sand: Brown, homogenous, wet.                 |                 |     | 22.00 <sup>+</sup> SR<br>23.00 <sup>+</sup> SP |                | - 22            |
| -<br>-          |              |              | Silty Clay: Brown/light tan, soft, dry.       |                 |     | CL                                             | $\square$      | -24             |
|                 | 80           | 0.0          |                                               |                 |     | 25.00'                                         |                |                 |
|                 |              |              | Boring Terminated at 25 feet bgs.             |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              |                                               |                 |     |                                                |                |                 |
|                 |              |              | ▼ Initial Water Level                         |                 |     | ECT PUSi<br>iple Colle<br>oratory              | H .            |                 |



| 1               |         | -               |              | ed: 08/28/2008<br>bleted: 08/28/2008                                                                                                                                                                                                                                         | SIT       |             |        | 10                            | Í              |                 |
|-----------------|---------|-----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------|-------------------------------|----------------|-----------------|
|                 |         | -               |              | and Diameter: Direct Push; 2" diameter                                                                                                                                                                                                                                       | 1.4       | 1           |        |                               | 40             |                 |
| 1               |         | ng (<br>d B     |              | oany: Cascade Drilling                                                                                                                                                                                                                                                       |           | ulkyt stan  | +      |                               | -/             | 1               |
| 1               |         |                 |              | Steve Harquail                                                                                                                                                                                                                                                               | 313       |             |        |                               | -              | 12              |
| Bo              | rin     | g: 1            | 8-3          |                                                                                                                                                                                                                                                                              | 915       | - Automati  | . 1    |                               | ni ti          |                 |
| H D             | ples    | very            | (u           |                                                                                                                                                                                                                                                                              |           |             |        | 10                            | hic            | 4 G             |
| Depth<br>(feet) | Samples | Recovery<br>(%) | PID<br>(ppm) | LITHOLOGIC DES                                                                                                                                                                                                                                                               | SCR.      |             |        | USCS                          | Graphic<br>Lor | Depth<br>(feet) |
|                 |         |                 |              | No Recovery — Air Knifed to 5 feet below grou                                                                                                                                                                                                                                | ind surf  | ace (bgs)   |        |                               |                | -               |
| 2-              |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -2              |
| .               | -       |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -               |
| 4-              |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -4              |
| -               | -       |                 |              | Sandy Silt: Dark brown/black mix, hard.                                                                                                                                                                                                                                      |           |             |        | 5.00'<br>ML                   |                | $f_{-}$         |
| 6-              |         |                 |              | Clayey Silf: Brown, with 3% sand.                                                                                                                                                                                                                                            |           |             |        | 6.50'<br>ML                   |                | -6              |
| 8-              | -       |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -8              |
| .               | -       |                 |              | With 20% greenish color.                                                                                                                                                                                                                                                     |           |             |        |                               |                | ~               |
| 10-             | -       | 100             | 0.0          | Greenlsh-brown, hard, dry.                                                                                                                                                                                                                                                   |           |             |        |                               |                | - 10            |
|                 | -       |                 | 83.0         |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -               |
| 12-             |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -12             |
| 14              | -       |                 |              | Medium to low plasticity.                                                                                                                                                                                                                                                    |           |             |        |                               |                | - 14            |
|                 | _       | 100             | 6.3          | Sandy Silt: Tan/light tan/reddish, hard, dry.                                                                                                                                                                                                                                |           |             |        | 15.00'                        |                | -               |
| 16-             |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | - 16            |
| · · ·           | -       |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                | -               |
| 18~             |         |                 |              | Tan, homogenous, firm, dry.                                                                                                                                                                                                                                                  |           |             |        |                               |                | - 18            |
| 20-             |         | 85              | 0.0          |                                                                                                                                                                                                                                                                              |           |             |        | 20.00'                        |                | 20              |
|                 |         |                 |              | Boring terminated at 20 feet bgs.                                                                                                                                                                                                                                            |           |             |        |                               |                |                 |
|                 |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                |                 |
|                 |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                |                 |
|                 |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                |                 |
|                 |         |                 |              |                                                                                                                                                                                                                                                                              |           |             |        |                               |                |                 |
|                 |         |                 |              | ▼ Initial Water Level                                                                                                                                                                                                                                                        | l (Not Ei | ncountered) | Sam    | CT PUS<br>pla Coll<br>pratory | ected          | d for<br>iysis  |
|                 |         | ~               |              | CASHL-BADW-A<br>10-03-2008 10-10-2008 SHELL FACILITY NO. 1                                                                                                                                                                                                                   |           | Soll        | Boring | Lon                           |                | FIGURE          |
| D               | É       | ∟т              | A            | CALIFORNIA         Torns-2008         3519         Castro         Valley           CALIFORNIA         Torns-2008         CRF         Torns-2008         Castro         Valley           SH1445-B3         Castro         Valley         Castro         Valley         Castro |           | 501         | B-3    | 9                             |                |                 |

| Science & Engineering, Inc.  Project Num: BP OI Company Project No: 642-6428 Locate: BP Sation #11105 Service, Total, Speet Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                                                |                     |          |                                | <u> </u>         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|------------------------------------------------|---------------------|----------|--------------------------------|------------------|
| WELL COMPLETION     Project Name: 8P OB Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Engineering Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         | WEL                                            |                     |          |                                |                  |
| Concentration Lattice<br>Concentration Lattice<br>Concentration Lattice<br>Concentration Lattice<br>Concentration Lattice<br>Concentration Lattice<br>Service 20 Concentration Lattice<br>Serv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         | Dreiget bigg                                   |                     | 0000     | Project No. 6 00 E400          |                  |
| Completion Depth: 30 Feet     Price     To       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       Carty of price     0 Feet     0 Feet     0 Feet       VMI Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       MID Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       MID Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       MID Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       MID Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       MID Carp of Dec: Flant Monteel Well Box     0 Feet     0 Feet       Mid Markale Law, attl, damp, no odor.     0 Feet     0 Feet       A above, with orange motifies.     0 Feet     0 Feet       Markale Law, attl, damp, no odor.     0 Feet     0 Feet       Markale Law, attl, damp, no odor.     0 Feet     0 Feet       Markale Law, attl, damp, no odor.     0 Feet     0 Feet       Marking Carp of Well Carp of Feet     0 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WE           | LL COMPLETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |         |                                                |                     |          | 110/04/140. 0-82-0420          |                  |
| Start/pa     Find     Find     To       Start/pa     10 Find     0 Find     0 Find     0 Find     10 Find       Start/pa     2 Bins Boat 4.0 FVC     0 Find     0 Find     10 Find     10 Find       Start/pa     2 Bins Boat 4.0 FVC     0 Find     0 Find     10 Find     10 Find       Start/pa     0 Find     0 Find     0 Find     0 Find     10 Find       Will Care Obsic Flack 4.0 School (0, WC) FVC     0 Find     0 Find     0 Find     Dataset       Start/pa     7 Find     0 Find     0 Find     0 Find       Will Care Obsic Flack Mounde Will Box     0 Signed Will Care Value Matching     Wark difficience     Dataset       Mild Care Obsic Flack Mounde Will Box     0 Signed Will Care Value     0 Signed Will Care Value     Wark difficience       Mild Care Obsic Flack Mounde Will Box     0 Signed Will Care Value     0 Signed Will Care Value     Wark difficience       Aphair     10 Signed Will Care Value     0 Signed Will Care Value     0 Signed Will Care Value     Wark difficience       Aphair     10 Signed Will Care Value     0 Signed Will Care Value       Aphair     10 Signed Will Care Value     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Con          | npletion Depth: 30 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |                                                |                     |          | evard                          |                  |
| Careford:     Dian Editor. 43 Studie (0x2) PVC     36 Fait<br>30 Fait<br>37 Fait<br>38 Fait<br>38 Fait<br>37 Fait<br>38 Fait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Size/Type From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | То          |         |                                                |                     |          |                                | Page 1 of        |
| File:     e.is Band<br>box     ab Feet<br>p 2 5 Feet     g Feet<br>p 2 5 Feet     g Feet<br>p 2 5 Feet     b Feet<br>p 2 5 Feet     Total Depth: 30 Feet     Depth: 30 Feet<br>p 2 5 Feet     Depth: 50 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cas          | ing: 2" Diam. Sched. 40 PVC 10 Fest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |         |                                                | •                   |          |                                |                  |
| Sait: Beitheling<br>Bart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scre         | een: 2" Diem. Sched, 40 Siotted (0.02") PVC 30 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |         |                                                |                     | rvices,  | inc.                           | Dates:           |
| Option     7,6 Feet     0 Feet       Number Cape of Disc. Fluit Mounted Well Box       Under Cape of Disc. Fluit Mounted Well Box       Original Land       Aspeking       Other View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                                                |                     | Total    | Depth: 30 Feet                 | Start: 9-29-1    |
| Lifework     Lifew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Grout 7.5 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |         |                                                |                     | 1000     | oopan do raat                  | Finish: 9-29     |
| Lithologic Description     9     Sample Lithology     Wet Addinguospions, summary, sample /<br>Birm       Asylain<br>GRAVEL     Asylain<br>GRAVEL     GAM     F     Wate, diffiguospions, summary, sample /<br>GRAVEL       NATURE<br>SPACE (Marks, 10-20% coarse, very stift, damp, no odor,<br>Col.     Col.     GAM     F       Stample data, stift, damp, no odor,<br>Make / bylocation code.     Col.     GAM     F       A above, with coarge motifue.     A     F     SAMPLE @ 10.5 FEET       A above, with coarge motifue.     A     F     F       A above, with coarge motifue.     F     F       A above     F     F     SAMPLE @ 10.5 FEET       A above     F     F     F       F     F     F     F       F     F     F     F       F     F     F <td< td=""><td>Wel</td><td>Cap or Box: Flush Mounted Well Box</td><td></td><td></td><td>Logged By:</td><td>Chris Vaichell</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wel          | Cap or Box: Flush Mounted Well Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |         | Logged By:                                     | Chris Vaichell      |          |                                |                  |
| Lithologic Description     9     Sample Lithology     Wet Addinguospions, summary, sample /<br>Birm       Asylain<br>GRAVEL     Asylain<br>GRAVEL     GAM     F     Wate, diffiguospions, summary, sample /<br>GRAVEL       NATURE<br>SPACE (Marks, 10-20% coarse, very stift, damp, no odor,<br>Col.     Col.     GAM     F       Stample data, stift, damp, no odor,<br>Make / bylocation code.     Col.     GAM     F       A above, with coarge motifue.     A     F     SAMPLE @ 10.5 FEET       A above, with coarge motifue.     A     F     F       A above, with coarge motifue.     F     F       A above     F     F     SAMPLE @ 10.5 FEET       A above     F     F     F       F     F     F     F       F     F     F     F       F     F     F <td< td=""><td>ε</td><td></td><td></td><td></td><td>Graphic Log</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ε            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         | Graphic Log                                    |                     |          |                                |                  |
| Alphali<br>DRAVEL<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ě            | Littologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           |         | старніс сод                                    |                     | 5        | Remarks                        |                  |
| Alphali<br>DRAVEL<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATIVE<br>NATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dept<br>Dept | TITURA COROCHINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           | Sample/ | Lithology                                      | Well Installation   | at 1     | Water, drilling/completion, su | mmary, sample ly |
| BAL     GM     GM       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     Status       Status     Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Blows   |                                                |                     |          |                                |                  |
| BAL     GM     GM       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     NATURE       GRAVEL     Status       Status     Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |         |                                                |                     |          |                                |                  |
| GRAVEL         MATUE         MATUE         MATUE         MATUE         MATUE         MATUE         MATUE         Matue         GRAVEL         Matue         Matue<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ° <b>–</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T GM        |         |                                                | 1                   |          |                                |                  |
| GL     Image: Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |         | *****                                          |                     |          |                                |                  |
| CL     2       CL <td>_</td> <td>NATIVE</td> <td><u> </u></td> <td></td> <td><b>.+</b>[+<u>]</u>+<u>]</u>+<u>]</u>+]</td> <td><math>\infty</math> <math>\infty</math></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            | NATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>    |         | <b>.+</b> [+ <u>]</u> + <u>]</u> + <u>]</u> +] | $\infty$ $\infty$   |          |                                |                  |
| Part, Black, 10-20% coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, no odor.     Image provides coarse, very stift, damp, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1          | Chief an Fablack, stiff, damp, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T           |         | *****                                          | $\infty$ $\infty$   |          | Γ                              |                  |
| Part, Black, 10-20% coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, with brange motiles.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, damp, no odor.       As above, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, no odor.     Image provides coarse, very stift, damp, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, damp, no odor.     Image provides coarse, very stift, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.       Image provides coarse, very stift, no odor.     Image provides coarse, very stift, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           |         |                                                |                     |          | -                              |                  |
| Image: State of the servery statil, damp, no occr.       Image: State of the servery statil, damp, no occr.       Image: State of the servery statil, damp, no occr.         As above, with orange motifes.       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery statil, damp, newly tydicoarbon occr.         As above, with orange motifes.       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery statil, damp, newly tydicoarbon occr.         As above, no odor.       To / p.000       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery statil, damp, newly tydicoarbon occr.       Image: State of the servery state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                                                | $\otimes$ $\otimes$ |          |                                |                  |
| Shart_status, 10-20% coarse, very stift, dump, in octor.       2       7       9         As above, with orange motiles.       NA       11       1       SAMPLE @ 10.5 FEET         As above, with orange motiles.       NA       11       1       SAMPLE @ 10.5 FEET         As above, with orange motiles.       NA       11       1       SAMPLE @ 10.5 FEET         As above, no cdor.       7       9       9       SAMPLE @ 10.5 FEET         As above, no cdor.       7       9       9       SAMPLE @ 10.5 FEET         As above, no cdor.       7       9       9       9       SAMPLE @ 10.5 FEET         As above, no cdor.       7       9       9       9       9       9       9         As above, no cdor.       7       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                                                |                     | 7        |                                |                  |
| As above, with orange motiles.         As above, no cdor.         Total depression address         As above, with orange motiles.         As above, no cdor.         Total depression address         As above, with orange motiles.         As above, no cdor.         Total depression address         As above, for core         Total depression         As above, for core         Total depression         Total depression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °T           | Charles 10-20% coarse you still damp to odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ť           | 2 2     |                                                |                     |          | SAMPLE @ 5 FEET                |                  |
| A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, no odor.<br>A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Building to Constant and the set and the set of the set | ┿           | 2 7     |                                                | $N \ N$             |          |                                |                  |
| A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, no odor.<br>A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           | . 9     |                                                | $\otimes$ $\otimes$ |          |                                |                  |
| A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, with orange motiles.<br>A solve, no odor.<br>A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Γ            | Contraction and the gray, 10-20% coarse, very stiff, damp,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Т           |         |                                                |                     |          | -                              |                  |
| As above, with orange motifes.<br>As above, with orange motifes.<br>As above, with orange motifes.<br>As above, no edor.<br>As above,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            | heavy hydrocarbon odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +           |         |                                                | 189 185             |          |                                |                  |
| As above, with orange motifies.<br>Mention grained eard, still, damp, heavy hydrocarbon<br>Docs<br>As above, no odor.<br>To <u>70, prop</u><br><b>3</b><br><b>4</b><br><b>4</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           |         |                                                | 66 D2               |          |                                |                  |
| As above, with orange motifies.<br>Mention grained eard, still, damp, heavy hydrocarbon<br>Docs<br>As above, no odor.<br>To <u>70, prop</u><br><b>3</b><br><b>4</b><br><b>4</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т           |         |                                                |                     |          |                                |                  |
| Male     Image: State and the state of the model and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-1          | St share with exercise method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +           | 100 A   |                                                |                     |          | -                              |                  |
| Maximum constraining with blue-gray motiles, 5-10% modium gained send, stif, damp, heavy hydrocarbon color.     Max     Image with blue-gray motiles, 5-10% modium color.       As above, no odor.     70,000     Image with blue-gray motiles, 5-10% modium color.     Image with blue-gray motiles, 5-10% modium color.       As above, no odor.     70,000     Image with blue-gray motiles, 5-10% modium color.     Image with blue-gray motiles, 5-10% modium color.       As above     70,000     Image with blue-gray motiles, 5-10% modium color.     Image with blue-gray motiles, 50-40% modium color.       As above     Image with blue-gray motiles, 50-40% modium color.     Image with blue-gray with orange motiles, 30-40% modium color.       Max     Image with blue-gray with orange motiles, 30-40% modium color.     Image with blue-gray with orange motiles, 30-40% modium color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with blue-gray with orange motiles, 30-40% modium color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with blue-gray with orange motiles, 30-40% modium color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with blue-gray with orange motiles, 30-40% modium color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with color.       Image with blue-gray with orange motiles, 30-40% modium color.     Image with color.       Image with colo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            | As above, with brange mottles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4           |         |                                                |                     |          | SAMPLE @ 10.5 FEET             |                  |
| As above, no odor.<br>As above, no odor.<br>As above, no odor.<br>As above, no odor.<br>To <u>P</u> O <u>P</u> O <sup>O</sup><br>S 30 <sup>O</sup> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 11      |                                                | 128 - 128           |          |                                |                  |
| As above, no odor.     To pro       As above, no odor.     To pro       Statisfying select-brown, 10-20% coarse sand, 70-80%       medium meand, dense, moist, no odor.       Statisfying select-brown, 10-20% coarse sand, 70-80%       medium sand, dense, moist, no odor.       Statisfying select-brown, 10-20% coarse sand, 70-80%       Statisfying select-brown, 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٦            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>┿</b> ⋈∟ |         |                                                |                     |          | -                              |                  |
| As above, no odor.     To pro       As above, no odor.     To pro       Statisfying select-brown, 10-20% coarse sand, 70-80%       medium meand, dense, moist, no odor.       Statisfying select-brown, 10-20% coarse sand, 70-80%       medium sand, dense, moist, no odor.       Statisfying select-brown, 10-20% coarse sand, 70-80%       Statisfying select-brown, 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            | Grand and Strange with blue-orey moties, 5-10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +           |         |                                                |                     |          |                                |                  |
| As above, no odor.<br>As above, no odor.<br>70, pro<br>330<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | medium grained sand, stiff, damp, heavy hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1 1     |                                                |                     |          |                                |                  |
| As above, no odor.<br>To pyo<br>To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т           | 1 - 1   |                                                |                     | 8.1      | -                              |                  |
| 70,000     370     7     7       8     7,000     10,20% coarse sand, 70-80%     10,20% coarse sand, 70-80%       As above     5     5       9     SAMPLE @ 20 FEET       10     10,20% coarse sand, 70-80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╋           | 3.13    |                                                |                     | and the  | - SAMPLE @ 15 FEET             |                  |
| 330     3       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | As above, no odor. 70, 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |                                                |                     | -        |                                |                  |
| SAMPLE @ 20 FEET       Imodium sand, dense, molat, no odor.       As above       Imodium sand, dense, molat, no odor.       As above       Imodium sand, dense, molat, no odor.       Imodium sand, stiff, no odor.       Imodium sand, stiff, no odor.       Imodium sand, stiff, molat, no odor. <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>38 - 38</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |         |                                                | 38 - 38             |          |                                |                  |
| As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>The dense and, stift, molet, no odor.<br>The dense as a dense, molet, no odor.<br>The dense as a dense and stift, molet, no odor.<br>The dense as a dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>+</b>    |         |                                                |                     |          | -                              |                  |
| As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>The dense and, stift, molet, no odor.<br>The dense as a dense, molet, no odor.<br>The dense as a dense and stift, molet, no odor.<br>The dense as a dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4           |         |                                                | 第 第                 |          |                                |                  |
| As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>The dense and, stift, molet, no odor.<br>The dense as a dense, molet, no odor.<br>The dense as a dense and stift, molet, no odor.<br>The dense as a dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         | 202283                                         | - (1)               |          |                                |                  |
| As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>As above as a dense, molet, no odor.<br>The dense and, stift, molet, no odor.<br>The dense as a dense, molet, no odor.<br>The dense as a dense and stift, molet, no odor.<br>The dense as a dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŧ.          | 22 2    |                                                | SH == 198           |          |                                |                  |
| modum sand, dense, molat, no odor.<br>As above<br>SM<br>SM<br>SM<br>SM<br>SM<br>SM<br>SM<br>SM<br>SM<br>SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :            | States and how 10-20% marse sand 70-80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +           | 4       | 22223                                          |                     |          | - SAMPLE @ 20 FEET             |                  |
| As above<br>The shore with brange motiles, 30-40% medium<br>grained sand, stift, moter, no odor.<br>The shore with prange motiles, 30-40% medium<br>GL 23<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | medium sand, dense, moist, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 6       | <u> </u>                                       |                     | 6        |                                |                  |
| Total DEPTH = 30 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           | 2       |                                                |                     |          |                                |                  |
| grained sand, stiff, moist, no odor.<br>Thistogray, damp, stiff, no odor.<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            | As above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - SM        | 3 3     | 2222222                                        |                     |          | -                              |                  |
| grained sand, stiff, moist, no odor.<br>Thistogray, damp, stiff, no odor.<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           | 2 5     | SERVER S                                       |                     |          |                                |                  |
| grained sand, stiff, moist, no odor.<br>Thistogray, damp, stiff, no odor.<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т           |         |                                                |                     |          |                                |                  |
| grained sand, stiff, moist, no odor.<br>Thistogray, damp, stiff, no odor.<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            | The second secon | +           |         | 222222                                         | · 微                 |          | <b>F</b>                       |                  |
| CL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5            | grained sand, stiff, moist, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4           |         |                                                |                     |          | L                              |                  |
| CL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Distriptivey, damp, stiff. no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2       |                                                |                     |          | Г                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>†</b>    | 3       |                                                |                     |          | F                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | the state of the s |             | 222 4   |                                                |                     |          | L                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | CERCICICAL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |         |                                                |                     |          |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Comment of the second sec                                                                                                                                                                                                                                             | T           |         |                                                |                     |          | r                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╺╅╸         |         |                                                | 1                   |          |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |         |                                                |                     |          |                                | <b>~</b>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т           |         |                                                |                     | 1        | = 10 IAL DEPTH = 30 FEE        | :1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | The survey of the second secon | +           |         |                                                |                     |          | <b>F</b>                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |         |                                                |                     |          | L                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ľ           |         |                                                |                     | I I      | Γ                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 102 / m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +           |         |                                                | 1                   | l I      | F                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _            | STE CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +           |         |                                                | 1                   | 1        | L-                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           |         |                                                |                     | 1        |                                |                  |
| sample con c TPH/benzene (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1 ** *** · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Т           |         |                                                |                     | 1        |                                |                  |
| sample conc TPH/benzene (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |                                                |                     |          |                                |                  |
| sample con c TPH/benzene (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | /       |                                                | L                   | <b>i</b> | <u> </u>                       |                  |
| 1 Duname (uy/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | sample conc TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2#/         | lan-    | · · · ·                                        | $a/1-\lambda$       |          |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /           | ounz    | me co                                          | 7/ (5)              |          |                                |                  |


|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               |                  |                   |                                                           |         |                                | ESE-2                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-------------------|-----------------------------------------------------------|---------|--------------------------------|-----------------------------------|
|                     | Environmental<br>Science &<br>Engineering, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | WEL               |                                                           |         | OG AND<br>ION SUMMARY          | A CONTRACT OF A                   |
| WE                  | LL COMPLETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                  | · ·               | me: BP Oil Com                                            |         | Project No: 6-82-5428          | ┞                                 |
| I                   | npletion Depth: 30 Feet<br>Size/Type From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To              |                  |                   | BP Station #1110<br>3519 Castro Valk<br>Castro Valley, C# | ay Boul | levard                         | Page 1of 1                        |
| 8cr                 | king: 2* Diam, Sched, 40 PVC 10 Feet<br>een: 2* Diam, Sched, 40 Slotted (0.02*) PVC 30 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10              | Feet             |                   | is Exploration Ge                                         | rvices, | inc.                           | Dates:                            |
| Sec                 | er: #3 Sand 30 Feet<br>d: Bentonite 9 Feet<br>Grout 7.5 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5             | Fest<br>Fest     | Method: H         | eter; 8'                                                  | Total   | Depth: 31 Feet                 | Start: 9-28-92<br>Finish: 9-29-92 |
| We                  | I Cap or Box Flush Mounted Well Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 661              | Ref. Eleval       | ions:<br>: Chris Valcheff                                 |         |                                | I SHOLL STOP                      |
| Ê                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | Graphic Log       | ļ                                                         |         | Remarks                        |                                   |
| Depth (ft)          | Lilihologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UBC             | Sample/<br>Biows | Lithology         | Well Installation                                         | Vepor   | Water, driting/completion, sum | mary, saxola lype                 |
|                     | Asphait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GP              |                  |                   |                                                           |         | -                              |                                   |
| 1                   | GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                   |                                                           |         | -                              |                                   |
| ן ן                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē               |                  | * * * * * *       |                                                           |         |                                | [                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | • • • • • • • • • |                                                           | 20      |                                |                                   |
| 5-                  | NATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CL              | 3                |                   | $\otimes$                                                 |         | SAMPLE @ 4.5 FEET              |                                   |
| -                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | 6                | -                 |                                                           |         | <b> -</b>                      |                                   |
| -                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ╞               |                  |                   | $\otimes$                                                 |         | -                              |                                   |
| -                   | edor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b> </b>        |                  |                   |                                                           |         | ┝                              |                                   |
|                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t _             | 5                |                   |                                                           | 25      | -                              |                                   |
| 10=+                | As above, heavy hydrocarbon odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 9 7<br>9 9       |                   |                                                           |         | SAMPLE @ 10.5 FEET             |                                   |
|                     | The above, there inverses bott out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E <sub>ml</sub> |                  |                   |                                                           |         | E                              |                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                   |                                                           |         |                                |                                   |
| -                   | And in surface who links and a start of the surface |                 |                  |                   |                                                           |         | L                              |                                   |
| 15 -                | town of the start  |                 | 13               |                   |                                                           | 15      | SAMPLE @ 14.5 FEET             |                                   |
| -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b> </b>        | 16               |                   |                                                           |         | F                              |                                   |
|                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ╞               |                  |                   |                                                           |         | F                              |                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t               |                  |                   |                                                           |         | -                              |                                   |
| 20                  | sand, stiff, damp, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 6                |                   |                                                           |         |                                |                                   |
|                     | (NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -~>             | 14               |                   |                                                           |         | - SAMPLE @ 20 FEET             |                                   |
| _                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L               |                  |                   |                                                           | 10      |                                |                                   |
| -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╞╴│             |                  |                   |                                                           |         | F                              |                                   |
| -                   | coarse grained sand, dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ╞│              | 315 9            | 22222             |                                                           |         | ┝                              |                                   |
| 25-                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM              | 15               | 228228            |                                                           |         | ┝                              |                                   |
|                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b> </b>        | 13               |                   |                                                           |         | <b>-</b> .                     |                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                   |                                                           |         | <b>F</b>                       |                                   |
| $\lfloor 1 \rfloor$ | Carry and Trey, still, the pool of the state | [м∟             | 3                |                   |                                                           |         |                                |                                   |
| -<br>30             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 5                |                   |                                                           |         |                                |                                   |
| -                   | 1 × 1000 1211 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╞╴│             | 6                |                   |                                                           |         | TOTAL DRILLED DEPTH -          | 30 FEET                           |
| -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╞│              |                  |                   |                                                           |         | TOTAL DEPTH = 31 FEET          |                                   |
| -                   | - Kissi -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ╞│              |                  |                   |                                                           |         | <b>-</b>                       |                                   |
| -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╞│              |                  |                   |                                                           |         | F                              |                                   |
|                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | †               |                  |                   |                                                           |         | F                              |                                   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                   |                                                           |         | <u> </u>                       |                                   |



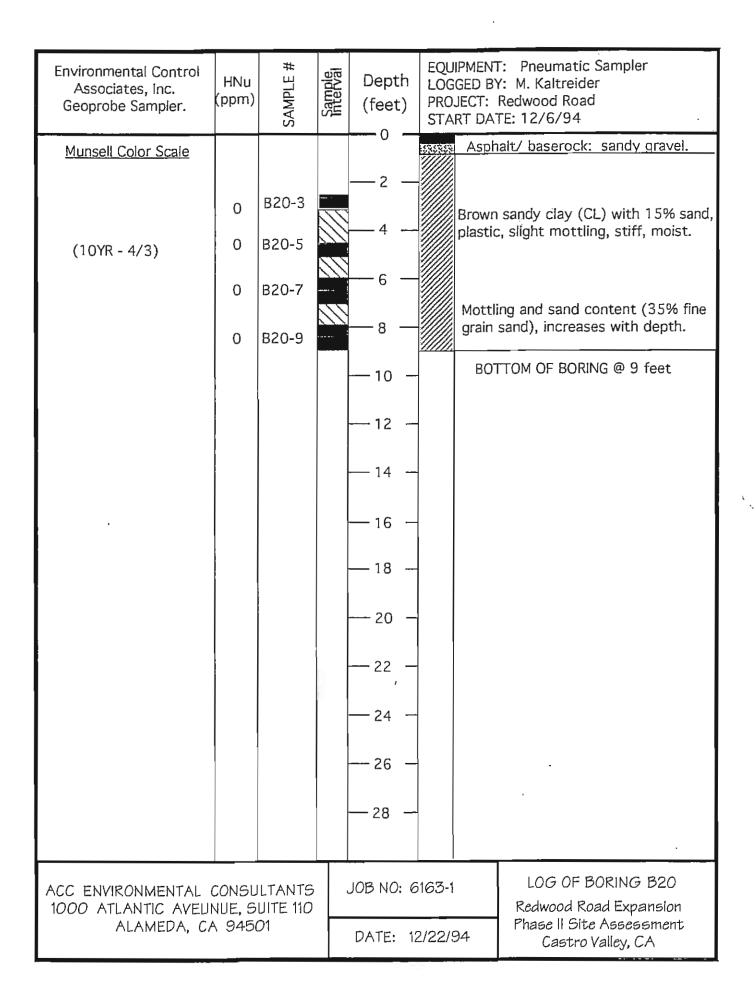
# ESE-4

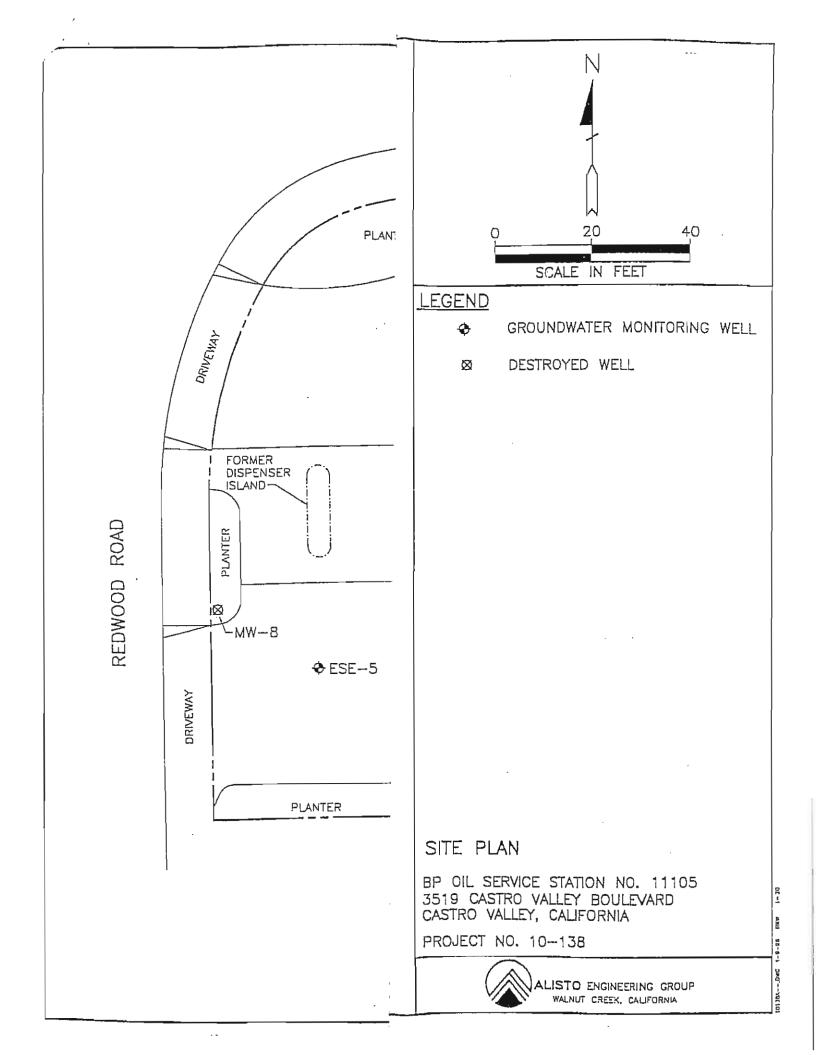
| Com;<br>Casir<br>Scree<br>Filter:<br>Seal: | 1. COMPLETION         pletion Depth: 25 Feet         Size/Type         From         ng: 2* Diam. Sched. 40 PVC         7 Feet         en: 2* Diam. Sched. 40 Stotted (0.02*) PVC         25 Feet         : #3 Sand         25 Feet         Grout       4 Feet         Cap or Box: Flush Mounted Well Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>6<br>4 | Fool<br>Fool<br>Fool<br>Fool<br>Fool | Location: E<br>3<br>0<br>Driller: Soit<br>Method: H<br>Hole Diame<br>Ref. Elevat | ter; 8"           | 5<br>ay Bouk<br>rvices,<br>Total |                                                                                                                                                                           | Page 1 of<br>Dates:<br>Start: 9-28-9.<br>Finish: 9-28- |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|----------------------------------------------------------------------------------|-------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Depth (11)                                 | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsı         | Sample/<br>Blows                     | Graphic Log<br>Lithology                                                         | Well Installation | Vapor                            | Romarks<br>Water, chiling/completion, sum                                                                                                                                 | nary, sample ty                                        |
|                                            | Asphait<br>EIL-GRAVEL<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE<br>MATIVE |             |                                      |                                                                                  |                   | 0                                | SAMPLE @ 5-8.5 FEET<br>SAMPLE @ 10-11.5 FEET<br>SAMPLE @ 15-16.5 FEET<br>SAMPLE @ 20-21.6 FEET<br>SAMPLE @ 21.5-23 FEET<br>SAMPLE @ 23-24.5 FEET<br>TOTAL DEPTH = 25 FEET |                                                        |

|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                    |                                      |                                                                               |             |                                                                                                                | ESE-S                                       |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|               | Environmental<br>Science &<br>Engineering, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                    |                                      |                                                                               | ET          | OG AND<br>ION SUMMARY                                                                                          |                                             |
| Co            | ELL COMPLETION<br>mpletion Depth; 24 Feet<br>Size/Type From<br>sing: 2* Diam. Sched. 40 PVC 9 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Feet                                                                                                                                                                                               | Location:                            | ene: BP Oil Com<br>BP Station #1110<br>S519 Castro Valle<br>Castro Valley, CA | 5<br>Hy Bou |                                                                                                                | Page 1 of 1                                 |
| Fill<br>Se    | reen: 2" Diam. Sched. 40 Sicited (0.02") PVC 24 Feet<br>ar: #3 Sand 24 Feet<br>al: Bentonite 0 Feet<br>Grout 5.5 Feet<br>M Cap or Box: Flush Mounted Well Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8<br>5. | Feet<br>Feet<br>5 Faet<br>Feet                                                                                                                                                                     | Nethod: H<br>Hole Diam<br>Ref. Eleva | eter: 8"                                                                      |             | Inc.<br>Depth: 27 Fest                                                                                         | Dates:<br>Start: 9-26-92<br>Finish: 9-28-82 |
| (li) those of | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsc     | Sampie/<br>Blows                                                                                                                                                                                   | Graphic Log<br>Lithology             | Well installation                                                             | žapor       | Remarks<br>Water, drilling/completion, sum                                                                     | nary, sample type                           |
|               | Asphalt<br>ATTY<br>and still, damp, sight hydrocarbon odor.<br>The state of the still, damp, sight hydrocarbon odor.<br>The state of the still, damp, sight hydrocarbon odor.<br>State of the state of the still, damp, sight hydrocarbon odor.<br>ST, BOC<br>State of the state of the still, damp, sight hydrocarbon odor.<br>ST, BOC<br>State of the state of the stat |         | Blows<br>3<br>4<br>5<br>8<br>11<br>7<br>12<br>8<br>8<br>11<br>7<br>12<br>8<br>9<br>4<br>5<br>8<br>11<br>12<br>12<br>8<br>12<br>12<br>8<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                                      |                                                                               | 40          | BAMPLE @ 5 FEET<br>SAMPLE @ 10 FEET<br>STANDARD PEN.<br>TOTAL DRILLED DEPTH -<br>TOTAL DRILLED DEPTH - 27 FEET | 24 FEET                                     |
| L             | Sample conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7       | P#_                                                                                                                                                                                                | /benze                               | ne (ug/                                                                       | /kg         | )                                                                                                              |                                             |



| Environmental Control<br>Associates, Inc.<br>Geoprobe Sampler. | HNu<br>(ppm)                                                      | SAMPLE # | Sample | Depth<br>(feet)                | LOGG<br>PROJE | PMENT: Pneumatic Sampler<br>ED BY: M. Kaltreider<br>ECT: Redwood Road<br>T DATE: 12/5/94                                                                |
|----------------------------------------------------------------|-------------------------------------------------------------------|----------|--------|--------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Munsell_Color Scale</u>                                     | 100                                                               | B9-2     |        | 2                              | E C           | Concrete/Baserock: sandy gravel<br>Brown mottled olive grey sandy clay<br>CL), with15% fine grain sand                                                  |
| (Gley 5G - 4/1)                                                | 15                                                                | (B9-4)   |        | 4                              | P<br>C<br>C   | interperted as fill material)<br>plastic, stiff, moist, hydrocarbon odor.<br>Dark olive grey mottled olive brown,<br>clay (CL) with 5% fine grain sand, |
|                                                                | 50                                                                | В9-6     |        | - 6                            |               | light mottling, stiff, plastic, moist.<br>Dark olive grey mottled brown, sandy                                                                          |
| (7.5YR - 4/4)                                                  | 5                                                                 | 89-8     |        | 8                              | c n           | clay (CL), with 15% fine grain sand,<br>nedium stiff, plastic, moist.<br>Brown sandy clay (CL) with 30%                                                 |
| (2.5Y - 4/3)                                                   | 5                                                                 | B9-10    |        |                                |               | fine grain sand, med. stiff, plastic, moist.                                                                                                            |
|                                                                |                                                                   |          |        |                                |               | BOTTOM OF BORING @ 10 feet                                                                                                                              |
|                                                                |                                                                   |          |        | 14                             |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        |                                |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | 18                             |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | 20                             |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | — 22 <sub>,</sub> <del>–</del> |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | <u> </u>                       |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | 26                             |               |                                                                                                                                                         |
|                                                                |                                                                   |          |        | 28                             |               |                                                                                                                                                         |
|                                                                | ACC ENVIRONMENTAL CONSULTANTS<br>1000 ATLANTIC AVEUNUE, SUITE 110 |          |        |                                | 5163-1        | LOG OF BORING=B9<br>Redwood Road Expansion                                                                                                              |
| ALAMEDA, CA                                                    | -                                                                 |          |        | DATE: 1                        | 2/22/94       | 4 Phase II Site Assessment<br>Castro Valley, CA                                                                                                         |


4'


| Munsell Color Scale       10       B10-2       Concrete/Baserock: sandy g         (Gley 5G - 4/1)       10       B10-2       Black sandy clay (CL), with 30 grain sand, very plastic, stiff,         50       B10-4       Black silty to sandy clay (CL)         6       6       Fill material, no sample collect | Environmental Control<br>Associates, Inc.<br>Geoprobe Sampler. | HNu<br>(ppm) | SAMPLE # | Sample,<br>Interval | Depth<br>(feet) | LOGGI<br>PROJE   | IPMENT: Pneumatic Sampler<br>GED BY: M. Kaltreider<br>JECT: Redwood Road<br>RT DATE: 12/6/94                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|----------|---------------------|-----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                   |                                                                |              | B10-2    |                     |                 | B<br>B<br>B<br>B | Concrete/Baserock: sandy gravel.<br>Black sandy clay (CL), with 30% fine<br>grain sand, very plastic, stiff, moist.<br>Black silty to sandy clay (CL) with<br>10% sand, plastic, med. stiff, moist.<br>Poor recovery, sand, interperted as<br>fill material, no sample collected.<br>BOTTOM OF BORING @ 6 feet |
| 1000 ATLANTIC AVEUNUE, SUITE 110 Redwood Road Expan                                                                                                                                                                                                                                                               | 1000 ATLANTIC AVEU                                             | NUE, SUI     | ITE 110  |                     |                 |                  | Redwood Road Expansion<br>Phase II SIte Assessment                                                                                                                                                                                                                                                             |

| Environmental Control<br>Associates, Inc.<br>Geoprobe Sampler. | HNu<br>(ppm) | SAMPLE # | Sample | Depth<br>(feet)  | LOGGED B<br>PROJECT:              | T: Pneumatic Sampler<br>Y: M. Kaltreider<br>Redwood Road<br>TE: 12/6/94                                                                                                                                   |
|----------------------------------------------------------------|--------------|----------|--------|------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Munsell Color Scale</u><br>(10YR - 2/2)                     | 0            | B11-2)   |        | 0<br>2<br>4      | Very 0<br>10% f<br>and ro<br>Poor | alt/Baserock: sandy gravel.<br>dark brown silty clay (CL) with<br>fine grain sand, slight mottling<br>bots, plastic, med. stiff, moist.<br>recovery, no sample collected.<br>greenish grey mottled brown, |
| (Gley 5GY - 4/1)                                               | 0            | B11-6    |        | — 6 <del>—</del> | sandy<br>sand,                    | clay (CL) with 30% fine grain<br>stiff, plastic, moist.                                                                                                                                                   |
|                                                                | 200          | B11-8    |        | - 8 -            | to ap                             | as above, sand content increases<br>proximately 40% with depth,<br>carbon odor.*                                                                                                                          |
| (2.5Y - 4/3)                                                   | 300          | B11-10   |        | — 10 —           | fine g                            | n clayey sand (SC) with 50%<br>rain sand, med. dense, moist.                                                                                                                                              |
|                                                                |              |          |        | 12               | BO                                | TTOM OF BORING @ 10 feet                                                                                                                                                                                  |
|                                                                |              |          |        | 14               |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | 16               |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | — 18 —           |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | <u> </u>         |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | 22 <sub>,</sub>  |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | 24               |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | 26               |                                   |                                                                                                                                                                                                           |
|                                                                |              |          |        | 28               |                                   |                                                                                                                                                                                                           |
| ACC ENVIRONMENTAL<br>1000 ATLANTIC AVEU                        |              |          |        | JOB NO: 6        | 163-1                             | LOG OF BORING B11<br>Redwood Road Expansion                                                                                                                                                               |
| ALAMEDA, CA                                                    | -            |          |        | DATE: 12         | 2/22/94                           | Phase II Site Assessment<br>Castro Valley, CA                                                                                                                                                             |

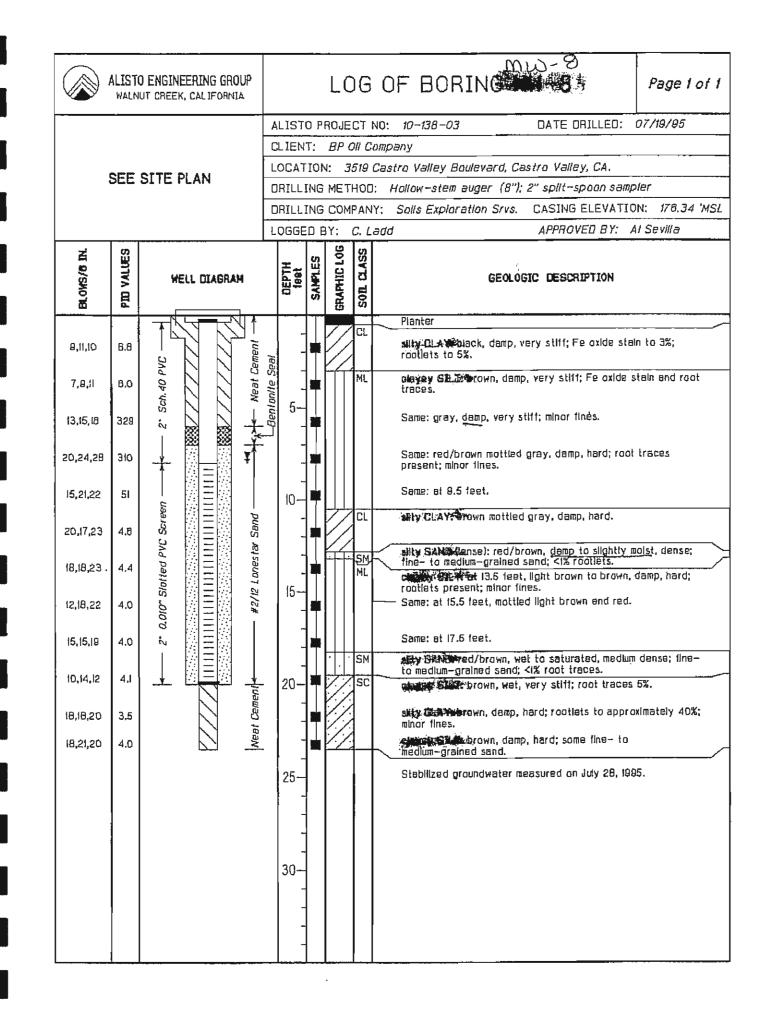
÷

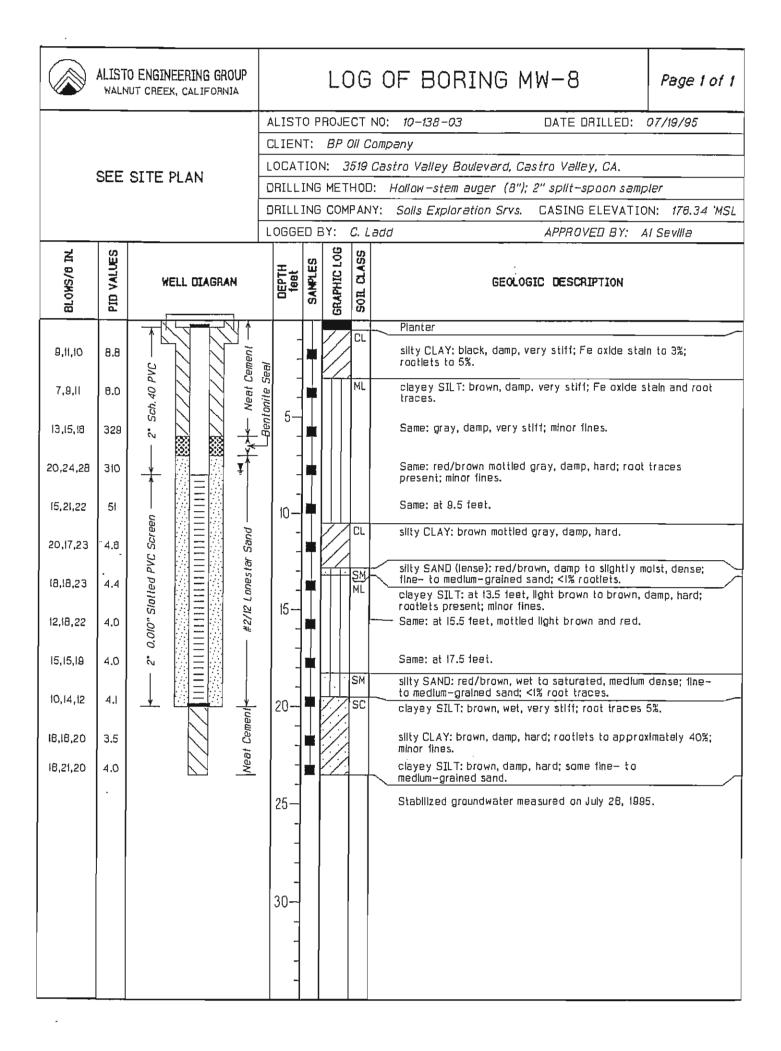
| Environmental Control<br>Associates, Inc.<br>Geoprobe Sampler. | HNu<br>(ppm) | SAMPLE # | Sample<br>Interval | Depth<br>(feet) | LOGGED E<br>PROJECT: | IT: Pneumatic Sampler<br>3Y: M. Kaltreider<br>Redwood Road<br>ATE: 12/6/94                                            |
|----------------------------------------------------------------|--------------|----------|--------------------|-----------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Munsell Color Scale                                            |              |          |                    | 0 -             | 7777777              | nalt/Baserock: sandy gravel.<br>recovery, no sample collected.                                                        |
| (10YR - 2/2)                                                   | 0 [          | B12-4)   |                    | 2               | Brow<br>15%<br>plast | n sandy clay (CL) with<br>fine grain sand, slight mottling,<br>tic, soft, very moist.<br>greenish grey mottled brown, |
| (Gley 5GY - 4/1)                                               | 0            | В12-6    |                    | 6               | sand                 | y clay (CL) with 40% fine grain<br>, stiff, plastic, moist.                                                           |
| (2.5Y - 4/3)                                                   | 200          | B12-8    |                    | 8               |                      | n clayey sand (SC) with 50%<br>grain sand, med. dense, moist.                                                         |
|                                                                |              |          |                    |                 | BC                   | OTTOM OF BORING @ 8 feet                                                                                              |
|                                                                |              |          |                    |                 |                      | · · · · · · · · · · · · · · · · · · ·                                                                                 |
|                                                                |              |          |                    | 14              |                      |                                                                                                                       |
|                                                                |              |          |                    |                 |                      |                                                                                                                       |
|                                                                |              |          |                    | 18              |                      |                                                                                                                       |
|                                                                |              |          |                    | <u> </u>        |                      |                                                                                                                       |
|                                                                |              |          |                    | — 22 , —        |                      |                                                                                                                       |
|                                                                |              |          |                    | 24              |                      |                                                                                                                       |
|                                                                |              |          |                    | 26              |                      |                                                                                                                       |
|                                                                |              |          |                    | 28              |                      |                                                                                                                       |
| ACC ENVIRONMENTAL (<br>1000 ATLANTIC AVEU                      |              |          |                    | JOB NO: 6       | 163-1                | LOG OF BORING B12<br>Redwood Road Expansion                                                                           |
| ALAMEDA, CA                                                    |              |          |                    | DATE: 12        | 2/22/94              | Phase II Site Assessment<br>Castro Valley, CA                                                                         |





|                    | _        |                                                 | GE                      | OLO           | GIC                | LEGEND                                                                                               |
|--------------------|----------|-------------------------------------------------|-------------------------|---------------|--------------------|------------------------------------------------------------------------------------------------------|
|                    |          |                                                 | NES<br>NES              | GW            | Well—gr<br>na fine | aded gravels, gravel-sand mixtures, little or<br>s                                                   |
|                    |          | AVELS                                           | NO FINES                | GP            | Poorly-            | -graded gravels, gravel—sand mixtures                                                                |
| ्र                 | of       | ore than 1/2<br>coarse fraction<br>No. 4 Sieve  | APPRECIABLE<br>NO FINES | GМ            | Silty gr           | avels, gravel—sand—silt mixtures                                                                     |
| D SOILS            |          |                                                 | APPRE                   | GC            | Clayey             | gravels, gravel—sand—clay mixtures                                                                   |
| RAINE              |          |                                                 | LITTLE OR<br>NO FINES   | SW            | Well—gr            | aded sands, gravelly sands, little or no fines                                                       |
| COARSE-GRAINED     | 54       | NDS                                             |                         | SP            | Poorly-            | -graded sands, gravelly sands, little or no fines                                                    |
| COAR               | me<br>of | ore than 1/2<br>coarse fraction<br>No. 4 Sieve  | APPRECIABLE<br>NO FINES | SM            | Silty so           | ands, sand—siit mixtures                                                                             |
|                    |          |                                                 | APPRI                   | SC            | Clayey             | sands, sand—cloy mixtures                                                                            |
| رم<br>ا            |          |                                                 |                         | ML            |                    | ic silts and very fine sands, rock flour, silty or fine sands or clayey silts with slight plasticity |
| lios (             |          | SILTS AND CLA<br>Liquid limit <                 |                         | CL            |                    | ic clays of low to medium plasticity, gravelly<br>sandy clays, silty cloys, lean clays               |
| MINEC              |          |                                                 |                         |               | Organia            | silts and organic silty clays of low plasticity                                                      |
| FINE-GRAINED SOILS |          | SILTS AND CLA                                   |                         | мн            |                    | ic silts, micaceous or diatamoceous fine sandy<br>soils, elastic silts                               |
|                    |          | Liquid limit >                                  |                         | СН            | Inorgar            | ic clays of high plasticity, fat clays                                                               |
|                    |          |                                                 |                         | он            | Organic<br>silts   | ; clays of medium to high plasticity, organic                                                        |
| +                  | HIGH     | ILY ORGANIC SOI                                 | LS                      | Pt            | Peat a             | nd other highly orga <b>nic</b> soils                                                                |
| SYMB               | 0L       | LEGEND:                                         |                         | р <del></del> |                    |                                                                                                      |
|                    |          | Cement                                          |                         |               |                    | ·<br>·                                                                                               |
|                    |          | Sand                                            |                         |               | ſ                  | LEGEND TO BORING LOGS                                                                                |
|                    |          | Bentonite<br>Deisse lateraal of                 |                         |               |                    |                                                                                                      |
|                    |          | Driven Interval of<br>Soil Sample               |                         |               |                    | BP OIL SERVICE STATION NO. 11105<br>3519 CASTRO VALLEY BOULEVARD                                     |
|                    |          | Sample preserved foi<br>analysis                | r passible              |               |                    | CASTRO VALLEY, CALIFORNIA<br>PROJECT NO. 10-138                                                      |
| X                  | - 1      | No sample recovered                             |                         |               |                    |                                                                                                      |
| ¥<br>⊽             |          | Stabilized water level<br>Groundwater level end |                         | during        | drilling           | ALISTO ENGINEERING GROUP                                                                             |
| ₹                  | (        | Groundwater level en                            | countered               | onund         | aniiing            |                                                                                                      |


|             | 117211      | JT CREEK, CALIFORNIA         |                     |               |         |                                       |           | OF BORING                                                                                                           |
|-------------|-------------|------------------------------|---------------------|---------------|---------|---------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------|
|             |             |                              | AI                  | LIST          | O PI    | 101                                   | ECTI      | NO: 10-138-03 DATE DRILLED: 07/18/95                                                                                |
|             |             |                              |                     |               |         |                                       |           | ompany                                                                                                              |
| 4           | SEE         | SITE PLAN                    |                     |               |         |                                       |           | Castro Valley Boulevard, Castro Valley, CA.                                                                         |
| •           |             |                              |                     |               |         |                                       |           | : Hollow-stem auger (8"); 2" split-spoon sampler                                                                    |
|             |             |                              |                     | RILLI         | ING     | CON                                   | IPAN      | Y: Soils Exploration Srvs. CASING ELEVATION: 179.24 MS                                                              |
|             |             |                              | L                   | ĴGGE          | D B     |                                       | C. L.     | add APPROVED BY: Al Sevilla                                                                                         |
| 'NI Q/SHOTE | SENTVA CILI | WELL DIAGRAM                 |                     | DEPTH<br>feat | SAMPLES | <b>GRAPHIC LOG</b>                    | SOL CLASS | GEOLOGIC DESCRIPTION                                                                                                |
|             |             |                              |                     | -             |         | · <b> </b> ·                          | SM        | Planter                                                                                                             |
|             |             |                              |                     | -             |         | · · ·                                 |           | sandy Gil T: brown, dry. Observed from cultings.                                                                    |
| 12,18,18    | 1.4         | 40 PVE                       |                     | 5<br>-<br>-   |         |                                       | ML        | <b>clayey SILT</b> brown, damp, very stiff; dinor lines; Fe oxide storm to approximately 3%.                        |
| 20,43,24    | 1.7         | 2* Sch.40 PVC                |                     | -<br><br>     |         |                                       |           | Same: medium brown mottled with Fe oxida stain to 25%,<br>damp, hard; root traces to aproximately 15%; minor fines. |
| 10,19,22    | 1.1         |                              | 1 T - Bentonite Sea | -<br>15<br>-  |         |                                       |           | Same: at 15 feet.                                                                                                   |
| 12,15,17    | 1.0         | Sareen                       | I                   | 20—           |         |                                       | CL        | At 22 feet, observed water on suger.                                                                                |
| 10,8,7      | 0           | 2" 0.010" Statted PVD Screen |                     | -<br>25—      |         | · · · · · · · · · · · · · · · · · · · |           | tine- to medium-grained sand.                                                                                       |
|             |             |                              |                     | -             |         |                                       | ML        | Mayey SILT: brown, wet; ninor fines.                                                                                |
| 11,10,13    | 0           |                              | _                   | -30<br>-      |         |                                       |           | <b>sity-CLAY:</b> brown, moist, very stiff; minor lines.                                                            |
|             |             |                              |                     | -             |         |                                       |           | Stabilized groundwater measured on July 28, 1885,                                                                   |


I

ł

|             | MUAW       | UT CREEK, CALIFORNIA      | ļ              |              |         |             |           | OF BORING                                                                                                                       |
|-------------|------------|---------------------------|----------------|--------------|---------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|
|             |            |                           |                |              |         |             |           | NO: 10-138-03 DATE DRILLED: 07/18/95                                                                                            |
|             |            |                           |                |              |         |             |           |                                                                                                                                 |
|             | SEE        | SITE PLAN                 |                |              |         | -           |           | Castro Valley Boulevard, Castro Valley, CA.                                                                                     |
|             |            |                           |                | _            | _       |             |           | : Hollow-stem auger (8"); 2" split-spoon sampler<br>Y: Soils Exploration Srvs. CASING ELEVATION: 178.55 M                       |
|             |            |                           |                | _            |         |             | C. Li     | · · · · · · · · · · · · · · · · · · ·                                                                                           |
| BLOWS/B IN. | PID VALUES | WELL DIAGRAN              |                |              | SAMPLES | BRAPHIC LOG | SOL CLASS | GEOLOGIC DESCRIPTION                                                                                                            |
|             |            |                           |                | _            |         | _1_1_       | ML        | 10" Concrete                                                                                                                    |
| 15, (8, 14  | 10.0       | .40 PVC                   |                | 5            | Ŧ       |             |           | approximately 5%.                                                                                                               |
| 14,23,17    | 10.0       | 2' Sch. 40 PVC            |                | -0-          | Ŧ       |             | CL        | effity-CLAY: brown/gray, damp, hard; Fe oxide stain to<br>approximately IOX; rootlets to IOX; very fine-grained minor<br>fines. |
|             |            |                           | Bentonite Seal |              |         |             | ML        | gravel to 1/4"-dlameter.                                                                                                        |
| 15,20,24    | 9.7        |                           |                | -<br>5-<br>- |         |             | CL        | shiy CLAY: prown, damp, hard; Fe oxide stain; occasional subrounded gravel to 1/4"-dlameter; minor fines.                       |
| 17,17,19    | 91         | 0.010" Statted PVC Screen | 20             | -            | Ŧ       |             | CL        | CLAY: brown/gray, wet, hard; rootlets to 5%; Fe oxide stain<br>to approximately 3%; minor lines.                                |
| 11,11,15    | 0          | 010" Statted PVC Scr.<br> | 2              | 5-           | Ŧ       |             | SM        | silty SANDe brown, wet, medium dense; fine-grained sand.                                                                        |
|             |            | - 2° 0.010                |                | -            |         |             | SC        | clayey SANS: brown/gray, wet to saturated, medium dense;<br>fine- to medium-grained sand; minor fines.                          |
| 8,10,13     | 0          |                           | 30             | ר<br>0<br>ר  |         |             | CL        | sity.CLAX; brown/gray, moist, very stift; some very<br>line-grained sand.                                                       |
|             |            |                           |                | -            |         |             |           | Stabilized groundwater measured on July 28, 1995.                                                                               |

-





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A


DEPTH TO GW: First Encountered: 22 Ft. Stable GW: 10.05 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm                             | DEPTH | GRAPHIC<br>LOG | SOIL CLASS                          | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPLIT SPOON | CORE SAMPLED | <b>GW LEVEL</b> | BLOWCOUNTS | WELL<br>DIAGRAM |
|-------------------------------------|-------|----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------|------------|-----------------|
| 5.7 19.7 27.2 41.7 110.3 0.0 0.0 10 |       |                | CL-ML<br>CL<br>ML<br>CL-ML<br>CL-ML | Hand Auger to 5 ft.<br>SILTY CLAY: Dark brown, very high dry strength, no dilatancy, low<br>toughness, moist, no HCl reaction, soft, medium plastic, no Petroleum<br>Hydrocarbon (PHC) odor.<br>SANDY LEAN CLAY: Brown, very high dry strength, no dilatancy, medium<br>toughness, moist, no HCl reaction, firm, low plastic, no PHC odor.<br>SANDY LEAN CLAY: Brown with gray-green mottling, high dry strength, no dilatancy,<br>medium toughness, moist, no HCl reaction, hard, medium plastic, PHC odor,<br>about 40% fine- to medium-grained sand.<br>SANDY LEAN CLAY: Brown, very high dry strength, no dilatancy, medium<br>toughness, moist, no HCl reaction, firm, low plastic, slight PHC odor, which<br>becomes stronger @ 13 ft, about 40% fine- to medium-grained sand.<br>SILTY CLAY: Brown, very high dry strength, no dilatancy, medium tough,<br>moist, no HCl reaction, hard, low plasticity, slight PHC odor.<br>At 15.5, PHC odor becomes stronger and color becomes gray-green.<br>Slight PHC odor<br>SANDY LEAN CLAY: Brown, high dry strength, low dilatancy, low toughness, moist, no<br>HCl reaction, firm, low plasticity, no PHC odor, about 40% fine- to medium-grained sand.<br>SANDY LEAN CLAY: Brown, high dry strength, low dilatancy, low toughness, moist, no<br>HCl reaction, firm, low plasticity, no PHC odor, about 40% fine- to medium-grained sand.<br>SANDY LEAN CLAY: Brown, high dry strength, low dilatancy, low toughness, moist, no<br>HCl reaction, firm, low plasticity, no PHC odor, about 40% fine- to medium-grained sand. |             |              |                 | BLC        |                 |
| 3.5                                 | - 25- |                | SM                                  | wet, no HCl reaction, firm, medium plastic, no PHC odor.<br>SILTY SAND: Light brown, low dry strength, low toughness, moist to wet, no HCl<br>reaction, firm, nonplastic, no PHC odor, about 70% fine- to medium-grained sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                 |            |                 |
|                                     | 20    | COMMEN         |                                     | @ 30 ft., Visual-Manual method ASTM 2488-09a<br>th to stable groundwater: 10.05 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                 |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

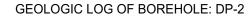
DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

## DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A


DEPTH TO GW: First Encountered: 22 Ft. Stable GW: 10.05 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH    | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                           | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0     |          |                | SM             | SILTY SAND: Light brown, low dry strength, low toughness, moist to wet, no HCI reaction, firm, nonplastic, no PHC odor, about 70% fine- to medium-grained sand.                                | 0           |              |          |            |                 |
| 0       |          |                | SC             | CLAYEY SAND: Light brown, very high dry strength, medium dilatancy,<br>low toughness, wet, no HCI reaction, very soft, low plasticity, no PHC odor,<br>about 70% fine- to medium-grained sand. |             |              |          |            |                 |
|         | 30–      |                |                | Becomes moist and firm at 29 ft.                                                                                                                                                               |             |              |          |            |                 |
|         |          | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         |          | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | 35—      | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         |          | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | 40-      | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | -        | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | -<br>45— | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | 40-      | -              |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | -        |                |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         | 50-      |                |                |                                                                                                                                                                                                |             |              |          |            |                 |
|         |          | COMMEN         | NTS: TD<br>Dep | @ 30 ft., Visual-Manual method ASTM 2488-09a<br>oth to stable groundwater: 10.05 ft.                                                                                                           |             |              |          |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 25 Ft. Stable Groundwater: 6.50 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm                    | DEPTH                                                                                       | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                 | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|----------------------------|---------------------------------------------------------------------------------------------|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0 11.4 37.2 32.2 4.7 0.0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                | CL-ML      | Hand auger to 5 ft.<br>SILTY CLAY: Black, high dry strength, no dilatancy, low toughness, moist,<br>no HCl reaction, soft, medium plasticity, slight Petroleum Hydrocarbon (PHC) odor.<br>Becomes gray-green and firm at 7 ft.<br>SILTY CLAY: Light brown, high dry strength, no dilatancy, medium tough,<br>moist, no HCl reaction, PHC odor, hard, low plasticity. |             | XX           |          |            |                 |
| 0.0                        | 15—<br>-<br>-                                                                               |                |            | SANDY LEAN CLAY: Brown, high dry strength, no dilatancy, medium tough, moist,<br>no HCl reaction, hard, medium plastic, no PHC odor, about 30% fine- to coarse-<br>grained sand.                                                                                                                                                                                     |             |              |          |            |                 |
| 0.0 3.0                    | -<br>20—                                                                                    |                | CL-ML      | SILTY CLAY: Light brown, high dry strength, no dilatancy, medium tough, moist,<br>no HCl reaction, no PHC odor, hard, low plasticity.                                                                                                                                                                                                                                |             |              |          |            |                 |
| 0.0                        | -<br>-<br>25—                                                                               | COMMEN         |            | @ 30 Ft., Visual-Manual Method ASTM 2488-09a<br>th to Stable Groundwater: 6.50 Ft.                                                                                                                                                                                                                                                                                   |             |              | V        |            |                 |

ENVIR

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

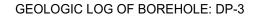
DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

DP-2


CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 25 Ft. Stable Groundwater: 6.50 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH              | GRAPHIC<br>LOG | SOIL CLASS    | GEOLOGIC DESCRIPTION                                                                                                                                                 | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|--------------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0     | -<br>-<br>-<br>30— |                | SC            | CLAYEY SAND: Brown, high dry strength, slow dilatancy, medium tough, wet, no HCl reaction, soft, medium plastic, no PHC odor, about 60% fine-to medium-grained sand. |             |              |          |            |                 |
|         | -<br>-<br>-<br>35— |                |               |                                                                                                                                                                      |             |              |          |            |                 |
|         | -<br>-<br>40—<br>- |                |               |                                                                                                                                                                      |             |              |          |            |                 |
|         | -<br>45—<br>-<br>- |                |               |                                                                                                                                                                      |             |              |          |            |                 |
|         | 50—                | СОММЕ          | NTS: TD<br>De | @ 30 Ft., Visual-Manual Method ASTM 2488-09a<br>pth to Stable Groundwater: 6.50 Ft.                                                                                  |             |              |          |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 22 Ft. Stable Groundwater: 11.50 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PIU ppm | DEPTH    | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                           | SPLIT SPOON |   | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|----------|----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|----------|------------|-----------------|
|         | -        | -              |            | Hand auger to 5 ft.                                                                                                                                                                            |             |   |          |            |                 |
|         | -        | -              |            |                                                                                                                                                                                                |             |   |          |            |                 |
|         | 5—       | 33533          | CL-ML      | SILTY CLAY: Black, very high dry strength, very slow dilatancy, medium toughness moist, no HCl reaction, soft, no Petroleum Hydrocarbon (PHC) odor.                                            |             |   |          |            |                 |
|         |          |                | CL-ML      | SILTY CLAY: Greenish-gray with some orange mottling, very high dry strength, slow dilatancy, medium toughness, moist, no HCl reaction, firm, no PHC odor.                                      |             |   |          |            |                 |
|         | -        |                | SC         | CLAYEY SAND: Greenish-brown, high dry strength, medium tough, very moist,<br>no HCl reaction, soft, weak cementation, medium plastic, no PHC odor.                                             |             |   |          |            |                 |
|         | 10—      |                | CL         | SANDY LEAN CLAY: Light brown, very high dry strength, low dilatancy, medium toughness, moist, no HCl reaction, very hard, medium plastic, no PHC odor, about 25% fine- to medium-grained sand. |             |   | V        |            |                 |
|         | -        |                | CL-ML      | SILTY CLAY: Dark greenish-gray, very high dry strength, soft, slow dilatancy, medium toughness, moist, no HCl reaction, firm, medium plasticity, no PHC odor. Becomes light brown @ 13 ft.     |             | × |          |            |                 |
|         | -<br>15— |                | CL         | LEAN CLAY: Brown, very high dry strength, no dilatancy, medium tough, moist, no HCl reaction, very hard, medium plastic, no PHC odor.                                                          |             |   |          |            |                 |
|         | -        |                | CL-ML      | SILTY CLAY with Sand: Light brown, very high dry strength, slow dilatancy, medium toughness, moist, no HCI reaction, hard, low plasticity, ~15% fine- to coarse-grained sar                    | nd.         |   |          |            |                 |
|         | -        |                | GL         | LEAN CLAY: Brown, high dry strength, no dilatancy, medium toughness, moist, no HCl reaction, very hard, medium plasticity, no PHC odor.                                                        |             |   |          |            |                 |
|         | -        |                |            |                                                                                                                                                                                                |             |   |          |            |                 |
|         | 20-      |                | CL-ML      | SILTY CLAY: Orange-brown, high dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, firm, medium plastic, no PHC odor.                                                   |             |   |          |            |                 |
|         | -        |                | SC         | CLAYEY SAND: Gray-green, high dry strength, slow dilatancy, low toughness, moist, no HCl reaction, firm, low plasticity, no PHC odor, ~60% fine- to coarse-grained sand.                       |             |   | ▼        |            |                 |
|         | -        | -              | 311-50     | WELL GRADED SAND with clay: Green-brown, wet, fine- to coarse-grained sand,<br>~ 10% fines, no PHC odor, weak cementation.                                                                     |             |   |          |            |                 |
|         | -        |                | CL         | LEAN CLAY: Light-brown, high dry strength, slow dilatancy, medium tough, moist,<br>no HCl reaction, very hard, medium plastic, no PHC odor.                                                    |             |   |          |            |                 |
| I       | 25—      |                |            | No Recovery                                                                                                                                                                                    |             |   |          |            | L               |

ENVI

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 22 Ft. Stable Groundwater: 11.50 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH                  | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                        | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|------------------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0     | -<br>-<br>-<br>30<br>- |                |                | No Recovery<br>WELL-GRADED SAND with clay: Greenish-brown, wet, fine- to coarse-grained sand,<br>~ 10% fines, weak cementation, no PHC odor.<br>LEAN CLAY: Light-brown, high dry strength, slow dilatancy, medium tough, moist,<br>no HCl reaction, very hard, medium plastic, no PHC odor. |             |              |          |            |                 |
|         | -<br>35—<br>-<br>-     | -              |                |                                                                                                                                                                                                                                                                                             |             |              |          |            |                 |
|         | -<br>40<br>-<br>-<br>- | -              |                |                                                                                                                                                                                                                                                                                             |             |              |          |            |                 |
|         | 45—<br>-<br>-<br>-     | -              |                |                                                                                                                                                                                                                                                                                             |             |              |          |            |                 |
|         | 50-                    | COMME          | NTS: TD<br>Dep | @ 30 Ft., Visual-Manual Method ASTM 2488-09a<br>oth to stable groundwater: 11.50 ft                                                                                                                                                                                                         |             |              |          |            |                 |

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

CASING ELEVATION: N/A


DEPTH TO GW: First Encountered: 31 ft. Stable Groundwater: 28 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH              | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                         | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|--------------------|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.7     | 5                  |                | CL         | Hand Auger to 5 Ft.<br>SANDY LEAN CLAY: Olive brown w/ some orange mottling, very high dry strength,<br>no dilatancy, high toughness, moist, no HCI reaction, firm, high plasticity,<br>~30% fine-to coarse-grained sands, course grains angular to sub-rounded, no<br>Petroleum Hydrocarbon (PHC) odor.                                                                                                                                     |             | ×            |          |            |                 |
| 0.3 4.5 | -<br>-<br>10<br>-  |                |            | WELL-GRADED SAND with gravel: Brown, fine- to coarse-grained sand, about 25% rounded to sub-angular gravel up to 1 in., dry, weak cementation, no PHC odor, SANDY LEAN CLAY with gravel: Orange-brown, high dry strength, no dilatancy, medium toughness, moist, CaCO3 nodules - strong HCI reaction, hard, moderate cementation, medium plastic, no PHC odor, ~ 30% fine- to coarse-grained sand, about 15% subrounded gravel up to 1/2 in. |             |              |          |            |                 |
| 6.3     | -<br>-<br>15—<br>- |                |            | CLAYEY SAND: Brown, medium dry strength, no dilatancy, medium toughness, dry, no<br>HCI reaction, soft, weak cementation, medium plastic, ~65% fine- to coarse- sand, no F<br>SANDY LEAN CLAY: Orange-brown, high dry strength, no dilatancy, medium toughnes<br>moist, no HCI reaction, hard, medium plasticity, ~ 45% fine-to coarse- sand,<br>no PHC odor.                                                                                | ΗС          | ×            |          |            |                 |
| 5.7     | -<br>-<br>20—<br>- |                | CL-ML      | SILTY CLAY: Brown with orange mottling, high dry strength, no dilatancy,<br>low toughness, moist, no HCl reaction, firm, medium plastic, no PHC odor.                                                                                                                                                                                                                                                                                        |             |              |          |            |                 |
| 2.2     | -<br>-<br>25—      | СОММЕ          | NTS: TD    | SILTY CLAY: Brown, high dry strength, low dilatancy, low toughness, moist - 6 in.<br>very moist at 26 ft, no HCl reaction, firm, medium plastic, no PHC odor.<br>@ 32 ft., Visual-Manual Method ASTM 2488-09a<br>pth to stable groundwater: 28.00 ft                                                                                                                                                                                         |             |              |          |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/17/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 31 ft. Stable Groundwater: 28 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm     | DEPTH | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|-------------|-------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 2.4 3.5 6.2 | 30-   |                | CL<br>CL-ML    | <ul> <li>SILTY CLAY: Brown, high dry strength, low dilatancy, low toughness, moist - 6 in. very moist at 26 ft, no HCl reaction, firm, medium plastic, no PHC odor.</li> <li>SANDY LEAN CLAY: Orange-brown, high dry strength, no dilatancy, medium toughness, moist, no HCl reaction, hard, medium plasticity, ~ 45% fine- to coarse-grained sand, no PHC odor.</li> <li>SILTY CLAY: Orange-brown, high dry strength, no dilatancy, medium toughness, no HCl reaction, moist to very moist, firm, no PHC odor.</li> <li>CLAYEY SAND: Brown, high dry strength, low dilatancy, low toughness, wet, no HCl reaction, soft, medium plastic, no PHC odor, about 70% fine- to coarse-grained sand.</li> </ul> |             |              | <b>▼</b> |            |                 |
|             | 35—   | -              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|             | 40-   | -              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|             | 45    | -              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|             | 50-   |                | NTS: TD<br>Dep | @ 32 ft., Visual-Manual Method ASTM 2488-09a<br>th to stable groundwater: 28.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |          |            |                 |

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

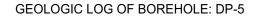
DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A


DEPTH TO GW: First Encountered: 28 ft. Stable Groundwater: 10.29 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm   | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                            | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|-----------|---------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
|           | -             | -              |                | Hand auger to 5 ft.                                                                                                                                                                                                                                                                             |             |              |          |            |                 |
| 0.0       | 5—            |                | CL             | SANDY LEAN CLAY: Dark brown, high dry strength, no dilatancy, low toughness, moist, no HCI reaction, soft, medium plasticity, no Petroleum Hydrocarbon (PHC) odor,                                                                                                                              |             |              |          |            |                 |
| 0.0       | -             |                | CL<br>CL-ML    | about 40% fine- to medium-grained sand.<br>SANDY LEAN CLAY: Orange-brown, high dry strength, slow dilatancy, medium tough,<br>moist, no HCI reaction, firm, nonplastic, about 35% fine- to medium-grained sand.<br>SILTY CLAY: Dark brown, high dry strength, slow dilatancy, medium toughness, |             |              |          |            |                 |
|           | -<br>10—      |                | CL             | no HCl reaction, firm, low plasticity, no PHC odor.<br>SANDY LEAN CLAY: Brown, high dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, hard, low plasticity, PHC odor, about 25% fine- to medium-<br>grained sand.                                                      |             |              |          |            |                 |
| 98.1 11.3 |               |                | CL-ML          | SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness, moist,<br>no HCl reaction, firm, low plasticity, PHC odor.                                                                                                                                                              |             | ×            |          |            |                 |
| 1 36.4    | -<br>15—<br>- |                | CL-ML<br>CL-ML | SILTY CLAY: Brown, high dry strength, no dilatancy, medium toughness, moist,<br>no HCl reaction, hard, medium plasticity, slight PHC odor.<br>SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness, moist,                                                                    | •           |              |          |            |                 |
| 21.2 19.1 | -             |                | CL             | no HCl reaction, firm, low plasticity, PHC odor.<br>SANDY LEAN CLAY: Brown, high dry strength, slow dilatancy, medium toughness,                                                                                                                                                                |             |              |          |            |                 |
| 58.4 21   | -<br>20—      |                | CL-ML          | moist, no HCl reaction, hard, low plasticity, PHC odor, about 25% fine- to coarse-<br>grained sand.<br>SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness, moist,<br>no HCl reaction, firm, low plasticity, PHC odor.                                                       |             | ×            |          |            |                 |
|           | -             |                | CL-ML          | SILTY CLAY: Light brown, high dry strength, slow dilatancy, medium toughness,                                                                                                                                                                                                                   | •           |              |          |            |                 |
| 11.7      | -<br>25—      |                | SM             | moist, no HCl reaction, hard, low plasticity, no PHC odor.<br>SITLY SAND: Light brown, low dry strength, slow dilatancy, medium toughness, moist,<br>no HCl reaction, soft, nonplastic, no PHC odor, about 65% fine- to medium-grained sand                                                     | Ι.          |              |          |            |                 |
|           |               | COMME          |                | @ 30 ft., Visual-Manual Method, ASTM 2488-09a<br>oth to stable groundwater: 10.29 ft                                                                                                                                                                                                            |             |              |          |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

**DRILLING METHOD: Direct Push** 

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

## DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 28 ft. Stable Groundwater: 10.29 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                              | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0       | -             |                | SM         | SILTY SAND: Light brown, low dry strength, slow dilatancy, medium toughness, moist, no HCI reaction, soft, nonplastic, no PHC odor, about 65% fine- to medium-grained sand.       |             |              | ▼        |            |                 |
| 0.0     | 30-           |                | SC         | CLAYEY SAND: Dark brown, medium dry strength, slow dilatancy, low toughness, wet, no HCI reaction, soft, low plasticity, no PHC odor, about 65% fine- to medium-<br>grained sand. |             |              |          |            |                 |
|         |               | -              |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 35—           | -              |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 40-           | -              |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         | -             | -              |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 45—<br>-<br>- | -              |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         | -<br>-<br>50— |                |            |                                                                                                                                                                                   |             |              |          |            |                 |
|         |               | COMME          | De         | 0 @ 30 ft., Visual-Manual Method, ASTM 2488-09a<br>opth to stable groundwater: 10.29 ft                                                                                           |             |              |          |            |                 |

INVIRONMENTAL ENGINEERING, INC.

PROJECT: 2762

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: DP

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A DEPTH TO GW: First Encountered: 24 Ft. Stable Groundwater: 19.79 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH             | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                         | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|-------------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0     | -<br>-<br>-<br>5— | -              |            | Hand auger to 5 ft.                                                                                                                                                                                                                                                                                                                                                                                          |             |              |          |            |                 |
| 0       |                   |                | CL         | SANDY LEAN CLAY: Dark brown, high dry strength, no dilatancy, medium toughness,<br>moist, no HCI reaction, firm, medium plasticity, no Petroleum Hydrocarbon (PHC) odor,<br>about 40% fine- to medium-grained sand.<br>SANDY LEAN CLAY: Orange-brown, high dry strength, slow dilatancy, med tough, moist                                                                                                    | t,          |              |          |            |                 |
| 0.0     | -<br>-<br>10—     |                |            | no HCl reaction, firm, nonplastic, no PHC odor, about 30% fine- to medium-grained sand<br>SILTY CLAY: Dark brown, high dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, firm, low plasticity, no PHC odor.<br>SANDY LEAN CLAY: Brown, high dry strength, low dilatancy, medium toughness,<br>moist, no HCl reaction, hard, low plasticity, about 30% fine- to medium-grained sand. |             |              |          |            |                 |
| 2.1     | -                 |                | CL-ML      | Slight PHC odor @ 11.5 ft.<br>SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness,                                                                                                                                                                                                                                                                                                        |             | X            |          |            |                 |
| 213.3   | -                 |                |            | moist, no HCl reaction, firm, low plasticity, slight PHC odor.<br>SILTY CLAY: Brown, high dry strength, no dilatancy, medium toughness,                                                                                                                                                                                                                                                                      |             | X            |          |            |                 |
| 9 19.6  | 15—<br>-          |                | CL-ML      | moist, no HCl reaction, hard, medium plasticity, slight PHC odor.                                                                                                                                                                                                                                                                                                                                            |             |              |          |            |                 |
| 14.9    | -                 |                | CL         | moist, no HCl reaction, firm, low plasticity, slight PHC odor.<br>SANDY LEAN CLAY: Brown, high dry strength, low dilatancy, medium toughness,<br>moist, no HCl reaction, hard, low plasticity, about 30% fine- to medium-grained sand.                                                                                                                                                                       |             | ×            |          |            |                 |
| 0.0     | 20—               |                |            | SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness, moist, no HCl reaction, firm, low plasticity, slight PHC odor.                                                                                                                                                                                                                                                                       |             |              |          |            |                 |
| 0.0     | _                 |                | CL-ML      | SILTY CLAY: Light brown, high dry strength, slow dilatancy, medium toughness, moist, no HCI reaction, hard, low plasticity, no PHC odor.                                                                                                                                                                                                                                                                     |             |              | ▼        |            |                 |
|         | -<br>25—          |                | SM         | SILTY SAND: Light brown, low dry strength, no dilatancy, low toughness, wet, no HCI reaction, soft, nonplastic, no PHC odor, about 55% fine- to medium-grained sand.                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         |                   | COMMEN         |            | @ 30 Ft., Visual-Manual Method, ASTM 2488-09a<br>oth to stable groundwater: 19.79 ft                                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

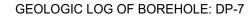
**DRILLING METHOD: Direct Push** 

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A


DEPTH TO GW: First Encountered: 24 Ft. Stable Groundwater: 19.79 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                              | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0     | -             |                | SM             | SILTY SAND: Light brown, low dry strength, no dilatancy, low toughness, wet, no<br>HCl reaction, soft, nonplastic, no PHC odor, about 55% fine- to medium-grained sand.           |             |              |          |            |                 |
| 0       | 30–           |                | SC             | CLAYEY SAND: Dark brown, medium dry strength, slow dilatancy, low toughness, wet, no HCl reaction, soft, low plasticity, no PHC odor, about 60% fine- to medium-<br>grained sand. |             |              |          |            |                 |
|         | -             | -              |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 35—           | -              |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 40-           | -              |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         | -             | -              |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         | 45—<br>-<br>- | -              |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         | -<br>-<br>50— |                |                |                                                                                                                                                                                   |             |              |          |            |                 |
|         |               | COMME          | NTS: TD<br>Dep | @ 30 Ft., Visual-Manual Method, ASTM 2488-09a<br>oth to stable groundwater: 19.79 ft                                                                                              |             |              |          |            |                 |





SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

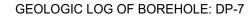
DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009


CASING ELEVATION: N/A DEPTH TO GW: First Encountered: 24 Ft. Stable Groundwater: 10.32 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH                                                                                   | GRAPHIC<br>LOG | SOIL CLASS  | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                     | SPLIT SPOON |                       | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |  |
|---------|-----------------------------------------------------------------------------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|----------|------------|-----------------|--|
|         | -                                                                                       | _              |             | Hand auger to 5 ft.                                                                                                                                                                                                                                      |             |                       |          |            |                 |  |
|         | -                                                                                       |                |             |                                                                                                                                                                                                                                                          |             |                       |          |            |                 |  |
|         | -                                                                                       |                |             |                                                                                                                                                                                                                                                          |             |                       |          |            |                 |  |
| 0.0     | 5—                                                                                      |                | CL          | SANDY LEAN CLAY: Dark brown, high dry strength, no dilatancy, medium toughness, moist, no HCl reaction, very soft, low plasticity, no Petroleum Hydrocarbon (PHC) odor, about 35% fine- to medium-grained sand.                                          |             |                       |          |            |                 |  |
| 0       | -                                                                                       |                |             | (only recovered 6 in. of soil in sampling tube)                                                                                                                                                                                                          |             |                       |          |            |                 |  |
| 0.0     | -                                                                                       |                | CL          | As above.                                                                                                                                                                                                                                                |             |                       |          |            |                 |  |
|         | -<br>10—                                                                                |                | ML          | SANDY SILT: Reddish-brown, low dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, firm, nonplastic, no PHC odor, about 30% fine- to medium-<br>grained sand.                                                                     |             |                       |          |            |                 |  |
| 0.0     | _                                                                                       | 88888          |             |                                                                                                                                                                                                                                                          |             | $\mathbf{\mathbf{v}}$ |          |            |                 |  |
|         |                                                                                         | 2220           | CL-ML       | SILTY CLAY: Dark brown, high dry strength, no dilatancy, low toughness, moist, no HCl reaction, very soft, medium plastic, no PHC odor.                                                                                                                  |             | $\cap$                |          |            |                 |  |
| 3.6     | -                                                                                       |                | SM<br>CL-ML | SILTY SAND: Reddish-brown, low dry strength, low dilatancy, low toughness, moist, no HCl reaction, hard, nonplastic, no PHC odor, about 65% fine- to coarse-grained sand. SILTY CLAY: Dark brown, high dry strength, no dilatancy, low toughness, moist, |             | ×                     |          |            |                 |  |
|         | 15—                                                                                     |                | CL          | no HCI reaction, very soft, medium plastic, no PHC odor.<br>SANDY LEAN CLAY: Brown, high dry strength, no dilatancy, medium toughness, moist,<br>HCI reaction, hard, low plasticity, no PHC odor, about 40% fine- to coarse-grained sand.                | no          |                       |          |            |                 |  |
| 0.0     | -                                                                                       |                | CL-ML       | SILTY CLAY: Dark brown, high dry strength, no dilatancy, low toughness,<br>moist, no HCl reaction, very soft, medium plastic, no PHC odor.                                                                                                               |             |                       |          |            |                 |  |
| 0.0     | -                                                                                       |                | CL          | SANDY LEAN CLAY: Brown, high dry strength, no dilatancy, medium toughness,<br>moist, no HCl reaction, hard, low plasticity, no PHC odor, about 40% fine- to coarse-<br>grained sand.                                                                     |             |                       |          |            |                 |  |
|         |                                                                                         |                |             |                                                                                                                                                                                                                                                          |             |                       |          |            |                 |  |
| 0.0     | 20—                                                                                     |                | CL-ML       | SILTY CLAY: Light brown, high dry strength, low dilatancy, medium toughness, moist, no HCI reaction, hard, low plasticity, no PHC odor.                                                                                                                  |             |                       |          |            |                 |  |
| 0.0     | -                                                                                       |                |             |                                                                                                                                                                                                                                                          |             |                       |          |            |                 |  |
|         | -                                                                                       |                | ML          | SANDY SILT: Light brown, low dry strength, low dilatancy, low toughness,<br>moist, no HCl reaction, firm, nonplastic, no PHC odor, about 25% fine- to<br>coarse-grained sand.                                                                            |             |                       | ▼        |            |                 |  |
|         | -<br>25                                                                                 |                | SM          | SILTY SAND: Light brown, low dry strength, slow dilatancy, low toughness, wet, no HCl reaction, soft, nonplastic, no PHC odor, about 60% fine- to medium-grained sand.                                                                                   |             |                       | -        |            |                 |  |
|         | 25 HCI reaction, soft, nonplastic, no PHC odor, about 60% fine- to medium-grained sand. |                |             |                                                                                                                                                                                                                                                          |             |                       |          |            |                 |  |





ENVI

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: Direct Push

BORING DIAMETER: 2 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION: N/A

DEPTH TO GW: First Encountered: 24 Ft. Stable Groundwater: 10.32 Ft.

T.O.C. TO SCREEN: N/A

SCREEN LENGTH: N/A

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                    | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
|         | -             |                | SM             | SILTY SAND: Light brown, low dry strength, slow dilatancy, low toughness, wet, no HCI reaction, soft, nonplastic, no PHC odor, about 60% fine- to medium-grained sand.<br>Dry from 27.5 ft to 28 ft.                                    |             |              |          |            |                 |
| 0.0     | -<br>30—      |                | SC             | CLAYEY SAND: Dark brown, medium dry strength, slow dilatancy, low toughness,<br>wet, no HCl reaction, soft, low plasticity, no PHC odor, about 65% fine- to medium-<br>grained sand.<br>(only recovered 6 in. of soil in sampling tube) |             |              |          |            |                 |
|         | -             | -              |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | 35—           |                |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>-<br>40— | -              |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -             | -              |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>45—<br>- | -              |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -             | -              |                |                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | 50—           | COMME          | NTS: TD<br>Dej | @ 30 Ft., Visual-Manual Method, ASTM 2488-09a<br>pth to stable groundwater: 10.32 ft                                                                                                                                                    |             |              |          |            |                 |

| _ |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |   | and the second se |
|   | _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### GEOLOGIC LOG OF BOREHOLE: SOMA-5

PROJECT: 2762

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: DP

BORING DIAMETER: 8 in.

LOGGED BY: E. Hightower

DATE DRILLED: 8/18/2009

CASING ELEVATION:

DEPTH TO GW: Not Encountered

Stable GW: 10.48 Ft.

T.O.C. TO SCREEN: 5 Ft.

SCREEN LENGTH: 10 Ft.

| DEPTH                      | GRAPHIC<br>LOG | SOIL CLASS        | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPLIT SPOON |      | <b>GW LEVEL</b> | BLOWCOUNTS | WELL<br>DIAGRAM                       |
|----------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-----------------|------------|---------------------------------------|
|                            |                | CL<br>ML<br>CL-ML | Hand auger to 5 ft.<br>SANDY LEAN CLAY: Dark brown, high dry strength, no dilatancy, medium toughness,<br>moist, no HCl reaction, soft, low plasticity, no Petroleum Hydrocarbon (PHC) odor.<br>SANDY SILT: Brown, low dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, hard, nonplastic, no PHC odor.<br>SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness,<br>moist, no HCl reaction, hard, low plasticity, no PHC odor.<br>Becomes greenish-brown with PHC odor at 10.5 ft. | SPLIT       | CORE | ▼               |            | Schedule 40 PVC Screen Benfontie Seal |
| 20—<br><br><br><br><br>25— | -              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |      |                 |            |                                       |

| ENVIRONM             | TENTAL ENGI         | AA<br>NEERING, INC. | GEOLOGIC LOG OF BOREHOLE TWB-                                                                                                                                                                                    | 5                   |         |  | F           | Page 1 of 2                        |
|----------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--|-------------|------------------------------------|
|                      | ng Loca<br>e Site N |                     | Site Location: 5516 Castro Valley Blvd<br>Castro Valley CACasing BDrilling Method: DPTDepth to<br>GroundDriller: VironexGround                                                                                   |                     |         |  | ior<br>: 17 |                                    |
| PID ppm<br>DEPTH     | GRAPHIC<br>LOG      | SOIL CLASS.         | GEOLOGIC DESCRIPTION                                                                                                                                                                                             |                     | SAMPLED |  | GW LEVEL    | WELL<br>DIAGRAM                    |
|                      |                     | CL                  | 4" concrete over 6" base rock.<br>Hand augured cutting.                                                                                                                                                          |                     |         |  |             |                                    |
| 0 5                  |                     | CL                  | CLAYEY SILT/SILTY CLAY: grayish brown; medium stiff; damp; slightl<br>low estimated permeability (LEK). No petroleum hydrocarbon (PHC) od                                                                        | ly plastic;<br>lor. |         |  |             | NO TEMPORARY WELL CASING INSTALLED |
| 191 <b>10</b>        |                     | <br>                | As above w/ strong PHC odor.<br>As above becoming reddish brown; stiff to very stiff. Strong PHC odor.<br>As above becoming grayish brown; soft to medium stiff; moist. Slight PH                                |                     |         |  |             | NO TEMPORARY W                     |
| • 15 —<br>–<br>–     |                     | CL                  | SILTY CLAY w/ some Fine Sand: reddish brown; soft to medium stiff; r<br>to wet; <20% fine sand. LEK. Slight PHC odor.<br>2-4" stringer of fine sand and gravelly, silty clay lense; well sorted and p<br>graded. |                     |         |  |             |                                    |
| 0 20-<br>-<br>-<br>- | -                   |                     | As above becoming medium stiff to very stiff.<br>As above becoming soft; saturated. MEK-HEK.                                                                                                                     |                     |         |  |             |                                    |
| 0 <sub>25</sub> –    |                     |                     |                                                                                                                                                                                                                  |                     |         |  |             |                                    |

| ENVIRONMENTAL ENGINEERING, IN                     | GEOLOGIC LOG OF BOREHOLE TWB-5                                                                                            | Page 2 of 2                                |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Boring Location:<br>See Site Map.                 | Site Location: 5519 Castro Valley Blvd<br>Castro Valley CA                                                                |                                            |  |  |  |
| PID ppm<br>DEPTH<br>GRAPHIC<br>LOG<br>SOIL CLASS. |                                                                                                                           | SAMPLED<br>GW LEVEL<br>GW LEVEL<br>DIAGRAM |  |  |  |
|                                                   | SILTY CLAYw/ some Fine Sand: reddish brown; soft to medium stiff; wet to saturated; <30% fine sand. MEK-HEK. No PHC odor. |                                            |  |  |  |
|                                                   | First encountered groundwater: 17 ft bgs.<br>Hand augered to 5 ft bgs to clear utilities.                                 |                                            |  |  |  |

| Γ        | ENVIRONN         | AIENTAL ENGI        | AAA<br>NEERING, INC. | GEOLOGIC LOG OF BOREHOLE TWB-4                                                                                                                           | ŀ                            |                  |                                                                            | F        | Page 1 of 2                        |  |  |
|----------|------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|----------------------------------------------------------------------------|----------|------------------------------------|--|--|
|          |                  | ng Loca<br>e Site N |                      | Site Location: 5516 Castro Valley Blvd<br>Castro Valley CACaDrilling Method: DPTDDriller: VironexG                                                       | asing E<br>epth to<br>roundw | lev<br>1:<br>/at | ed: Dec. 2, 2003<br>evation: NA<br>1st<br>ater: 25-28 ft<br>I By: M Sepehr |          |                                    |  |  |
| PID ppm  | DEPTH            | GRAPHIC<br>LOG      | SOIL CLASS.          | GEOLOGIC DESCRIPTION                                                                                                                                     |                              |                  | _                                                                          | GW LEVEL | WELL<br>DIAGRAM                    |  |  |
|          | -                |                     | CL                   | 4" concrete over 6" base rock.<br>Hand augured cutting.                                                                                                  |                              |                  |                                                                            |          |                                    |  |  |
| 0        | 5                |                     | CL                   | CLAYEY SILT/SILTY CLAY w/ some Sand: brown; medium stiff; damp; plastic. Low to medium estimated permeability (LEK-MEK). No petroleur carbon (PHC) odor. | slightly<br>n hydro-         |                  |                                                                            |          | NO TEMPORARY WELL CASING INSTALLED |  |  |
| 80<br>60 |                  |                     |                      | As above becoming brown to grayish brown; medium stiff to very stiff. LE<br>Moderate PHC odor.                                                           | <u> </u> .                   |                  |                                                                            |          | NO TEMPORARY WI                    |  |  |
|          | 15 —<br>_        | -                   | CL                   | SILTY CLAY: brown; stiff; damp; plastic. LEK. No PHC odor.                                                                                               |                              |                  |                                                                            |          |                                    |  |  |
| 4        | -                | -                   |                      | 6" stringer of fine sand and gravelly, silty clay lense at 18'.                                                                                          |                              |                  |                                                                            |          |                                    |  |  |
| 0<br>3   | 20               | -                   |                      | 6" stringer of sand and gravelly, silty clay lense at 21'.                                                                                               |                              |                  |                                                                            |          |                                    |  |  |
| 0        | -  <br>-<br>25 - | -                   |                      | As above becoming soft to medium stiff; increasing moisture with depth                                                                                   | h.                           |                  |                                                                            |          |                                    |  |  |
|          |                  |                     |                      |                                                                                                                                                          |                              |                  |                                                                            |          |                                    |  |  |

| ENVIRONMENTAL ENGINEERING,                      | GEOLOGIC LOG OF BOREHOLE TW                                                                                                                      | /B-4 Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boring Location:<br>See Site Map.               | Project: 2552<br>Site Location: 5519 Castro Valley Blvd<br>Castro Valley CA<br>Drilling Method: DPT<br>Driller: Vironex<br>Logged By: E Jennings | Date Drilled: Dec. 2, 2003<br>Casing Elevation: NA<br>Depth to 1st<br>Groundwater: 25-28 ft<br>Approved By: M Sepehr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEPTH<br>DEPTH<br>GRAPHIC<br>LOG<br>SOIL CLASS. | GEOLOGIC DESCRIPTION                                                                                                                             | oole SAMPLED Content Source Content |
| CL                                              | SILTY CLAY: brown; soft; moist; plastic. LEK-MEK. No PHC odor.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                                        | ENVIRONM                                                             | JENTAL ENGIN   | VEERING, INC. | GEOLOGIC LOG OF BOREHOLE SOMA-1                                                                                                                                                                               |                         |                        | F        | PAG                                            | E 1 OF 2          |                               |
|----------------------------------------|----------------------------------------------------------------------|----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|----------|------------------------------------------------|-------------------|-------------------------------|
| BORING LOCATION PROJECT: 2762 DATE DRI |                                                                      |                |               |                                                                                                                                                                                                               |                         |                        |          | ine '                                          | 10, 2004          |                               |
|                                        | SITE LOCATION: 3519 Castro Valley Blvd<br>Castro Valley, CA CASING E |                |               |                                                                                                                                                                                                               |                         |                        |          | DN:                                            |                   |                               |
|                                        | SEE SITE MAP DRILLING METHOD: Hollow Stem Auger. DEPTH               |                |               |                                                                                                                                                                                                               |                         |                        |          |                                                | 2'                |                               |
|                                        | DRILLER: Gregg Drilling & Testing APPROV                             |                |               |                                                                                                                                                                                                               |                         |                        |          |                                                | pehr              |                               |
|                                        |                                                                      |                |               |                                                                                                                                                                                                               | . <u> </u>              |                        |          |                                                |                   |                               |
| PID ppm                                |                                                                      | GRAPHIC<br>LOG | SOIL CLASS.   | GEOLOGIC DESCRIPTION                                                                                                                                                                                          |                         | split spoon<br>SAMPLED | GW LEVEL | BLOWCOUNTS                                     | WELI<br>DIAGR     |                               |
|                                        |                                                                      |                |               | 4" concrete over 4-6" base rock                                                                                                                                                                               |                         | 5                      |          |                                                |                   |                               |
|                                        |                                                                      |                | CL            | SILTY CLAY: dark brown, very soft, moist to very moist, high plasticity<br>to high estimated permeability (MEK-HEK). No petroleum hydrocarbor<br>odor.                                                        | ; Medium<br>n (PHC)     | HAND AUGERED TO        |          | 379                                            | PVC Cashg         | Cement/Bentonite Grout        |
|                                        |                                                                      |                | CL/ML         | SILTY CLAY/ CLAYEY SILT: gray mottled orange brown, med. stiff to<br>slight plasticity; Low estimated permeability (LEK). No PHC odor.<br>As above. Becomes gray and slight bluish gray. Moderate to strong P |                         |                        |          | 7<br>11<br>13<br>13<br>13<br>20                | 2" Schedule 40 PV | Ceme                          |
|                                        | 20                                                                   |                |               | SANDY SILT/SILTY SAND with some Clay: gray brown and slight orar<br>med. dense and med. stiff, moist; 40-60% fine to med. sand; LEK-MEP<br>odor.                                                              | nge brown,<br>K. No PHC |                        | $\nabla$ | 6<br>11<br>16<br>8<br>10<br>10<br>5<br>6<br>10 | 2/12 Sand Pack    | 0.01 Slotted Screen Bentonite |

| ENVIRONMENTAL ENGINEERING, INC |                                                                                                                          |                |             | GEOLOGIC LOG OF BOREHOLE SOMA-1                                                                                        |            |                      |     | F        | PAG        | E 2 OF 2        |                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-----|----------|------------|-----------------|----------------|
|                                |                                                                                                                          |                |             | PROJECT: 2762                                                                                                          | DATE DRI   | LLE                  | ED: | : Ju     | ne '       | 10, 2004        |                |
|                                | BORING LOCATION         FROSECT: 2762         DATE DRI           SITE LOCATION: 3519 Castro Valley Blvd         CASING E |                |             |                                                                                                                        |            |                      |     | TIC      | )N:        |                 |                |
|                                | SE                                                                                                                       | E SITE N       | MAP         | DRILLING METHOD: Hollow Stem Auger.                                                                                    | DEPTH T    | 01                   | ST  | G١       | N: 2       | 2'              |                |
|                                |                                                                                                                          |                |             | DRILLER: Gregg Drilling & Testing                                                                                      | APPROVI    | ΞD                   | ΒY  | : M      | Se         | pehr            |                |
|                                |                                                                                                                          |                |             | LOGGED BY: E Jennings                                                                                                  |            |                      |     |          |            |                 |                |
| PID ppm                        | DEPTH                                                                                                                    | GRAPHIC<br>LOG | SOIL CLASS. | GEOLOGIC DESCRIPTION                                                                                                   |            | split spoon SAMPI FD |     | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |                |
|                                | _                                                                                                                        | -              | SP/SM       | SAND and SILTY SAND: gray brown and light orange brown, med. de saturated; 40-70% fine to med. sand; HEK. No PHC odor. | nse,       |                      |     |          |            | 2/12 Sand Pack  | creen          |
|                                | -                                                                                                                        |                | ML/CL       | CLAYEY SILT/ SILTY CLAY: dark brown, wet to saturated; HEK. No Pl                                                      | HC odor.   |                      |     |          |            | 2/12 Sand Pack  | Slotted Screen |
|                                | _                                                                                                                        |                |             | SILTY CLAY: gray brown slightly mottled orange brown, med stiff, moi moist; LEK-MEK. No PHC odor.                      | st to very |                      |     |          |            | 2/12 S          | 0.01 Slo       |
|                                | 30—                                                                                                                      |                |             | TOTAL DEPTH 30'                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             | Groundwater first encountered at 22' and stabilized at 11.56'                                                          |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | 35—                                                                                                                      | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | 40-                                                                                                                      | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | 50—                                                                                                                      | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | -                                                                                                                        | -              |             |                                                                                                                        |            |                      |     |          |            |                 |                |
|                                | 55-                                                                                                                      |                |             |                                                                                                                        |            |                      |     |          |            |                 | _              |
|                                |                                                                                                                          |                |             |                                                                                                                        |            |                      |     |          |            |                 |                |

|         | ENVIRONM | IENTAL ENGIN   | VEERING, INC. | GEOLOGIC LOG OF BOREHOLE SOMA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                     | F        | PAG                        | E 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | BORIN    |                |               | PROJECT: 2762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE DR                                                        | ILLED               | : Ju     | ine                        | 10, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Dortin   | 10 200,        |               | SITE LOCATION: 3519 Castro Valley Blvd<br>Castro Valley, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CASING E                                                       | ELEVA               | TIC      | DN:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | SEI      | E SITE N       | /IAP          | DRILLING METHOD: Hollow Stem Auger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTH T                                                        | 0 1ST               | ۲G       | W: A                       | Approx 12'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |          |                |               | DRILLER: Gregg Drilling & Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | APPROV                                                         | ED BY               | /: N     | l Se                       | pehr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |          |                |               | LOGGED BY: E Jennings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                     |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PID ppm | DEPTH    | GRAPHIC<br>LOG | SOIL CLASS.   | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | split spoon SAMPLED | GW LEVEL | BLOWCOUNTS                 | WELL<br>DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          |                | CL            | 4" concrete over 4-6" base rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | 05'                 |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          |                | CL            | SILTY CLAY with some FINE SAND: dark brown and gray brown sligh<br>orange brown, soft and med. stiff, moist, med. to high plasticity; <30%<br>Low to medium estimated permeability (LEK-MEK). No petroleum hydr<br>(PHC) odor.<br>As above. Light gray and light gray brown and reddish orange brown v<br>FINE SILTY SAND: reddish brown and light gray brown, med. dense,<br>40-60% fine sand; MEK to high estimated permeability (HEK). No PHC<br>TOTAL DEPTH 15'<br>Groundwater first encountered at 12' and stabilized at 10.6 | fine sand;<br>ocarbon<br>vith depth.<br>very moist;<br>c odor. | HAND AUGERED TO     |          | 2 7 8<br>10 13 26<br>7 6 7 | 2 /12 Sand Pack 2 /12 Sand Pack 2 /12 Sand Pack 2 /12 Sand Pack 0 /12 Sold Screen 0 /1 Sold |
|         | _<br>25— |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                     |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         | ENVIRONM           | <b>State</b><br>Mental engin | NEERING, INC. | GEOLOGIC LOG OF BOREHOLE SOMA-3                                                                                                                                                   |                             |                     | F        | PAG         | E 1 OI           | - 1                      |                         |
|---------|--------------------|------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------|-------------|------------------|--------------------------|-------------------------|
|         | BORIN              |                              | ATION         | PROJECT: 2762                                                                                                                                                                     | DATE DRI                    | LLE                 | D: Ju    | une         | 10, 20           | )4                       |                         |
|         |                    |                              |               | SITE LOCATION: 3519 Castro Valley Blvd<br>Castro Valley, CA                                                                                                                       | CASING E                    | BELEVATION:         |          |             |                  |                          |                         |
|         | SE                 | E SITE N                     | MAP           | DRILLING METHOD: Hollow Stem Auger.                                                                                                                                               | DEPTH T                     | C 1S                | ΤG       | W: /        | Approx           | 12'                      |                         |
|         |                    |                              |               | DRILLER: Gregg Drilling & Testing                                                                                                                                                 | APPROVE                     | ED B                | Y: N     | 1 Se        | pehr             |                          |                         |
|         |                    |                              |               | LOGGED BY: E Jennings                                                                                                                                                             |                             |                     | _        |             |                  |                          |                         |
| PID ppm | DEPTH              | GRAPHIC<br>LOG               | SOIL CLASS.   | GEOLOGIC DESCRIPTION                                                                                                                                                              |                             | split spoon SAMPLED | GW LEVEL | BLOWCOUNTS  |                  | VELL<br>AGRAM            |                         |
|         |                    |                              | CL            | 4" concrete over 4-6" base rock                                                                                                                                                   |                             | 10 5 -              |          |             |                  |                          |                         |
|         | -<br>-<br>-        |                              |               |                                                                                                                                                                                   |                             | HAND AUGERED TO     |          |             |                  | " Schedule 40 PVC Casing | Cement/Bentonite Grout  |
|         | 5—<br>-<br>-       |                              |               | SILTY CLAY with some FINE SAND: gray brown mottled orange brown<br>dense, moist slightly plastic; <30% fine sand; Low estimated permeabil<br>No petroleum hydrocarbon (PHC) odor. | n, med. stiff<br>ity (LEK). |                     |          | 778         |                  | ~<br>~                   | Bentonite Cemen         |
|         | -<br>10—<br>-<br>- |                              |               | As above. Reddish brown and moist with depth.                                                                                                                                     |                             |                     |          | 8<br>9      | 2 1/2" Sand Pack |                          | 0.01 Slotted Screen Ber |
|         | -                  | -                            | SM            | FINE SILTY SAND: reddish brown slightly mottled gray, med. dense, v<br>to wet; 40-60% wery fine to fine sand; High estimated permeability (Hi<br>No PHC odor.                     | very moist<br>EK).          |                     |          | 5<br>5<br>6 |                  |                          |                         |
|         | 15—                |                              |               | TOTAL DEPTH 15'                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | _                  |                              |               | Groundwater first encountered at 12' and stabilized at 9.9                                                                                                                        | 0'                          |                     |          |             |                  |                          |                         |
|         | _                  |                              |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | _                  | -                            |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | 20—                | -                            |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | _                  | -                            |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | -                  | 1                            |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | _                  | 1                            |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         | -<br>25—           |                              |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |
|         |                    |                              |               |                                                                                                                                                                                   |                             |                     |          |             |                  |                          |                         |

|         | ENVIRONM          | IENTAL ENGI    | <b>HA</b><br>NEERING, IN | GEOLOGIC LOG OF BOREHOLE SOMA-4                                                                                                                                                           |                          |                     | F        | PAGE                       | 1 OF 1                 |                        |
|---------|-------------------|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------|----------------------------|------------------------|------------------------|
|         |                   |                | ΔΤΙΟΝΙ                   | PROJECT: 2762 D                                                                                                                                                                           | ATE DRI                  | LLED                | : Ju     | ine 1                      | 0, 2004                |                        |
|         |                   | 10 200,        |                          | SITE LOCATION: 3519 Castro Valley Blvd<br>Castro Valley, CA                                                                                                                               | ASING E                  | LEVA                | TIC      | DN:                        |                        |                        |
|         | SEI               | E SITE I       | MAP                      | DRILLING METHOD: Hollow Stem Auger.                                                                                                                                                       | DEPTH T                  | O 1ST               | ٦G١      | N: A                       | pprox 16'-17           | 7'                     |
|         |                   |                |                          | DRILLER: Gregg Drilling & Testing                                                                                                                                                         | PPROVE                   | ED BY               | ′: M     | l Sep                      | ehr                    |                        |
|         |                   |                |                          | LOGGED BY: E Jennings                                                                                                                                                                     |                          |                     |          |                            |                        |                        |
| PID ppm | DEPTH             | GRAPHIC<br>LOG | SOIL CLASS.              | GEOLOGIC DESCRIPTION                                                                                                                                                                      |                          | split spoon SAMPLED | GW LEVEL | BLOWCOUNTS                 | WELL<br>DIAGRAM        | I                      |
|         |                   |                |                          | 4" concrete over 4-6" base rock                                                                                                                                                           |                          | 2                   |          |                            |                        | <br>88                 |
|         | -<br>-<br>-<br>5- |                |                          |                                                                                                                                                                                           |                          | HAND AUGERED TO     |          |                            |                        |                        |
|         |                   | -              | SM                       | FINE SILTY SAND with some CLAY: gray to grayish brown mottled oran<br>med. dense, damp to moist; 40-60% fine sand; Low to med. estimated p<br>(LEK). No petroleum hydrocarbon (PHC) odor. | ge brown,<br>ermeability |                     |          | 26<br>50<br>11<br>14<br>23 | Schedule 40 PVC Casing | Cement/Bentonite Grout |
|         |                   |                | SM/CL                    | SILTY SAND/ SILTY CLAY: reddish brown, dense and med. stiff, damp;<br>Slight PHC odor.                                                                                                    | LEK                      |                     |          |                            | 2.                     |                        |
|         | 15—               |                | CL                       | SILTY CLAY: brown, med. stiff to stiff, damp to moist, slightly plastic; LE No PHC odor.                                                                                                  | K                        |                     |          | 9<br>9                     |                        |                        |
|         | _                 | -              | SM                       | SILTY SAND with some CLAY: gray and slight yellow brown, med. dens<br>moist to wet; <60% fine sand; MEK to high estimated permeability (HEK<br>PHC odor.                                  |                          |                     |          | 9                          |                        |                        |
|         | -<br>20—<br>-     |                | SM/ML                    | SILTY SAND/ SANDY SILT: gray brown slightly mottled orange, med. d to saturated; 40-60% fine sand; MEK-HEK. No PHC odor.                                                                  | ense, wet                |                     |          | 7<br>11<br>6<br>8<br>8     | 2 1/2" Sand Pack       | 0.01 Slotted Screen    |
|         | _                 |                | CL                       | SILTY CLAY with some SAND: gray brown slightly mottled orange browr moist; LEK-MEK. No PHC odor.                                                                                          | n, med. stiff            | ;                   |          |                            |                        |                        |
|         | 25—               |                |                          | TOTAL DEPTH 24.5'                                                                                                                                                                         |                          |                     |          |                            | Bentonite Plug         | 3                      |
|         |                   |                |                          | Groundwater first encountered at 16-17' and stabilized at 9.32'                                                                                                                           |                          |                     |          |                            |                        |                        |

PAGE 1 OF 1

#### PROJECT: 2762

SITE LOCATION: 3519 Castro Valley Blvd. Castro Valley

DRILLER: Gregg Drilling & Testing

DRILLING METHOD: DP

BORING DIAMETER: 8 in.

LOGGED BY: E. Hightower

#### DATE DRILLED: 8/18/2009

CASING ELEVATION:

DEPTH TO GW: Not Encountered Stable GW: 10.48 Ft.

T.O.C. TO SCREEN: 5 Ft.

#### SCREEN LENGTH: 10 Ft.

| PID ppm | DEPTH                                 | GRAPHIC<br>LOG | SOIL CLASS        | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM                       |
|---------|---------------------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|---------------------------------------|
|         | -<br>-<br>5<br>-<br>10<br>-<br>-<br>- |                | CL<br>ML<br>CL-ML | Hand auger to 5 ft.<br>SANDY LEAN CLAY: Dark brown, high dry strength, no dilatancy, medium toughness,<br>moist, no HCI reaction, soft, low plasticity, no Petroleum Hydrocarbon (PHC) odor.<br>SANDY SILT: Brown, low dry strength, slow dilatancy, medium toughness,<br>moist, no HCI reaction, hard, nonplastic, no PHC odor.<br>SILTY CLAY: Brown, high dry strength, slow dilatancy, medium toughness,<br>moist, no HCI reaction, hard, low plasticity, no PHC odor.<br>Becomes greenish-brown with PHC odor at 10.5 ft. |             | ××           | V        |            | Schedule 40 PVC Screen Bentonite Seal |
|         | 15—<br>-<br>-<br>20—<br>-<br>-<br>25— | COMMEN         | NTS: TD           | @ 15 Ft., Visual-Manual Method, ASTM 2488-09a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |          |            |                                       |

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: Hollow Stem Auger

BORING DIAMETER: 8-inch

LOGGED BY: Erica Fisker

#### DATE DRILLED: August 9, 2010

CASING ELEVATION: NA

First Encountered GW: Not encountered Stablized GW: DRY

T.O.C. TO SCREEN: NA

#### SCREEN LENGTH: NA

| PID ppm | DEPTH                | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                              | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|----------------------|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.0 0.0 | -                    |                | AC<br>CL   | 10-inch Concrete Core<br>Hand Auger top 5 feet, Fill top 1 foot<br>SANDY LEAN CLAY: Dark brown, firm, dry to damp, medium plastic, medium dilatancy,<br>medium to high toughness, medium dry strength, ~40% fine to coarse-grained sand,<br>no Petroleum Hydrocarbon (PHC) odor<br>Becomes light brown, low dry strength, and very soft at 3 feet |             |              |          |            |                 |
| 0.9     | 5—<br>-<br>-         |                | CL         | LEAN CLAY: Dark brown, damp, high plasticity, medium toughness, medium dry strength, slow dilatancy, soft to firm, ~10% fine-grained sand, no PHC odor                                                                                                                                                                                            |             |              |          |            |                 |
| 0.6 0.4 | -<br>-<br>10—        |                | SM         | SILTY SAND: Medium brown with black and rust mottling, ~68 % fine to medium<br>grained sand, firm, ~32% silt: low plastic, low dry strength, slow dilatancy<br>As above: becomes light brown with light grey mottling and fine- to coarse-grained sand                                                                                            | ×           |              |          |            |                 |
| 0 3.0   | -                    | -              | SW         | WELL GRADED SAND w/silt: blue grey with light brown and CaCO3 mottling, dry,<br>very soft, ~90 % fine- to coarse-grained sand, ~10% silt: low plastic, no dilatancy,<br>no dry strength, low toughness, PHC staining, strong PHC odor                                                                                                             | ×           |              |          |            |                 |
| 320     | -                    |                | SW         | WELL GRADED SAND: light brown with grey mottling, loose, fine- to coarse-<br>grained sand, ~10% silt, CaCO3 mottling, dry to damp, strong PHC odor<br>SANDY CLAY: Reddish-brown with grey mottling, hard to very hard, medium                                                                                                                     |             |              |          |            |                 |
| 4.5     | 15—<br>-<br>-<br>20— | -              |            | toughness, medium plastic, low dilatancy, ~30% fine- to coarse-grained sand                                                                                                                                                                                                                                                                       |             |              |          |            |                 |
|         | -<br>-<br>-<br>25—   | -              |            |                                                                                                                                                                                                                                                                                                                                                   |             |              |          |            |                 |

| GEOLOGIC LOG OF BOREHOLE: SOM | A-7 |
|-------------------------------|-----|
|-------------------------------|-----|

NVIRONMENTAL ENGINEERING, INC

PROJECT: 2762

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: Hollow Stem Auger

BORING DIAMETER: 8-inch

LOGGED BY: Erica Fisker

DATE DRILLED: August 9, 2010

CASING ELEVATION: 178.54 Ft.

First Encountered GW: Not encountered Stablized GW: 8.3 Feet

T.O.C. TO SCREEN: 5 Feet

#### SCREEN LENGTH: 10 Feet

| PID nnm                   | DEPTH | GRAPHIC<br>LOG | SOIL CLASS     | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM                                                                                                    |
|---------------------------|-------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|--------------------------------------------------------------------------------------------------------------------|
| 20.5.630 138.7 236.5 87.5 |       |                | CL<br>SM<br>CL | 2-inch Asphalt<br>Hand Auger top 5 feet<br>SANDY LEAN CLAY: Brown, gravelly fill with silt and sand to 1.4 feet bgs,<br>Dark grey-black w/blue-green staining, soft, damp, fine- to coarse-grained sand, low to<br>medium plastic, slow dilatancy, medium toughness, strong Petroleum Hydrocarbon<br>(PHC) odor<br>Some brown mottling starts at 4 feet bgs<br>SANDY LEAN CLAY: Blue-grey with black mottling and PHC staining, asphalt<br>scattered througout core, fine- to coarse-grained sand, 5% gravel up to 1.5<br>inch, low to medium plastic, medium toughness, slow dilatancy, damp.<br>Moist at 9 feet, brown mottling at 10 feet<br>SILTY SAND: Light grey, damp, very fine- to fine-grained sand, brown mottling, loose,<br>~17% silt, low plastic, slow dilatancy, low toughness, low dry strength, PHC odor<br>SANDY LEAN CLAY: Brown with grey mottling, fine- to coarse-grained sand (~20%),<br>hard, dry to damp, slow dilatancy, medium toughness, medium plastic, no PHC odor<br>below 12.5 feet. |             |              |          |            | 0.02 Slotted Screen     Cement Grout       #3 Montery Sand     2 Schedule 40 PVC CasingScreen       Enild alluoueg |
|                           |       |                | DTW c          | pen with trench plate secured with 55-gallon drum, set well 8/10/2010.<br>on 8/10/10: 8.39 feet bgs, sheen, PHC odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |          |            |                                                                                                                    |

| GEOLOGIC LOG OF BOREHOLE: SC | MA-8 |
|------------------------------|------|
|------------------------------|------|

PAGE 1 OF 1

PROJECT: 2762

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: Hollow Stem Auger

BORING DIAMETER: 8-inch

LOGGED BY: Erica Fisker

DATE DRILLED: August 9, 2010

CASING ELEVATION: 181.57 Ft.

First Encountered GW: Not encountered Stablized GW: 9.86 Feet

T.O.C. TO SCREEN: 5 Feet

#### SCREEN LENGTH: 10 Feet

| PID ppm | DEPTH        | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                 | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM       |
|---------|--------------|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------------|
| 1.5     | -            | -              | SP         | Hand Auger top 5 feet<br>POORLY GRADED SAND w/GRAVEL: Reddish-brown, dry to damp, loose, medium-<br>to very coarse-grained sand, fine-grained rounded to sub-rounded gravel (~10%),<br>no Petroleum Hydrocarbon (PHC) odor                                           |             |              |          |            | ement Grout           |
| 5       | -            |                | ML         | SANDY SILT: Dark brown, soft, damp, medium to high plastic, slow dilatancy, low toughness, low dry strength, fine- to coarse-grained sand decreasing with depth, no PHC odor                                                                                         |             |              |          |            | 2" Schedule 40 Pr     |
| 1.1 1.2 | 5—<br>-<br>- |                | ML         | SANDY SILT: Dark brown, dry to damp, soft to firm, low to medium plastic,<br>medium dry strength, medium toughness, slow dilatancy, fine- to medium-<br>grained sand, no PHC odor.<br>Color change to light brown mottling at 7 ft.                                  | ×           |              |          |            | 2 Slotted Screen      |
| 1.2     | -<br>10—     |                |            | dry at 9 feet, CaCO3 nodules with rust mottling                                                                                                                                                                                                                      |             |              |          |            | 0.02<br>Montery, Sand |
| 1.4 1.  | -            | -              | SM         | SILTY SAND: Reddish-brown, dry, loose, very fine- to fine-grained sand, ~25% silt:<br>low plastic, low toughness, slow dilatancy, low dry strength, no PHC odor<br>Black speckling and mottling begins at 11 feet<br>Sand becomes fine- to coarse-grained at 14 feet | ×           |              |          |            |                       |
|         | 15—<br>-     |                |            |                                                                                                                                                                                                                                                                      |             |              |          |            |                       |
|         | -            | -              |            |                                                                                                                                                                                                                                                                      |             |              |          |            |                       |
|         | 20—<br>-     | -              |            |                                                                                                                                                                                                                                                                      |             |              |          |            |                       |
|         | -            | -              |            |                                                                                                                                                                                                                                                                      |             |              |          |            |                       |
|         | 25—          |                |            |                                                                                                                                                                                                                                                                      |             |              |          |            |                       |
|         | С            | OMMENT         |            | pen with trench plate secured with 55-gallon drum, set well 8/10/2010.<br>on 8/10/10: 9.86 feet bgs, sheen, PHC odor                                                                                                                                                 |             |              |          |            |                       |

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: Hollow Stem Auger

BORING DIAMETER: 8-inch

LOGGED BY: Erica Fisker

## DATE DRILLED: August 9, 2010

CASING ELEVATION: NA

First Encountered GW: Not encountered Stablized GW: DRY

T.O.C. TO SCREEN: NA

SCREEN LENGTH: NA

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS  | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                    | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
| 0.1 0.5 | -             |                | AC<br>CL-ML | 4-inch Asphalt, 6-inch Concrete<br>Hand Auger top 5 feet<br>SILTY CLAY: Dark brown, damp to moist, firm to very firm, medium plastic, medium<br>toughness, slow dilatancy, Fe oxide staining/mottling, no Petroleum Hydrocarbon<br>(PHC) odor. Large chunks of concrete at 2.5 feet bgs |             |              |          |            |                 |
| 0.0     | 5—<br>-<br>-  |                | CL-ML       | SILTY CLAY: Dark brown with black and rust mottling, damp, soft to firm, highly plastic,<br>medium toughness, slow dilatancy, medium dry strength, ~10% very fine to fine-grained<br>sand, some CaCO3 nodules, no PHC odor                                                              | ×           | *            |          |            |                 |
| 0.5     | -<br>10—      |                | 0.0         | Increasing CaCO3 with depth, Sand becomes fine- to coarse-grained, increase to ~10%                                                                                                                                                                                                     |             |              |          |            |                 |
| 0.0     | -             |                | GP<br>SM    | POORLY GRADED GRAVEL w/sand and silt: grey to light brown, damp, loose.<br>SILTY SAND: Reddish-brown, damp, loose, black specks, no toughness, no plastic,<br>slow dilatancy, no dry strength, ~30% fines with increasing silt with depth, no PHC odor                                  | ×           | *            |          |            |                 |
|         | 15—           | -              |             |                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>-<br>20— | -              |             |                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -             | -              |             |                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>25—      |                |             |                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | С             | OMMENT         |             | pen with trench plate secured with asphalt and drum, checked daily for water<br>), borehole dry. abandoned borehole by tremie grouting and finishing to grade v                                                                                                                         | vith        | n as         | pha      | lt         |                 |

| ENVIRONMENTAL ENGINEERING, INC.       | GEOLOGIC LOG OF BC                                                                                                                                                                                                                                                                   | DREHOLE: ESE-1R                                      |                                |          | PA         | GE 1 OF 2                                                       |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|----------|------------|-----------------------------------------------------------------|
| PROJECT: 2762                         | 0, 20 <sup>.</sup>                                                                                                                                                                                                                                                                   | 10                                                   |                                |          |            |                                                                 |
| SITE LOCATION: 35                     | i19 Castro Valley Blvd., Castro Valley                                                                                                                                                                                                                                               | CASING ELEVATION: 18                                 | 0.20 F                         | t.       |            |                                                                 |
| DRILLER: RSI Drillin                  | g                                                                                                                                                                                                                                                                                    | First Encountered GW: 9.9<br>Stablized GW: 10.17 Ft. | 95 Ft.                         |          |            |                                                                 |
| DRILLING METHOD                       | ): HSA                                                                                                                                                                                                                                                                               | T.O.C. TO SCREEN: 18 F                               | t.                             |          |            |                                                                 |
| BORING DIAMETER                       | R: 10-inch                                                                                                                                                                                                                                                                           | SCREEN LENGTH: 7 Ft.                                 |                                |          |            |                                                                 |
| LOGGED BY: E. Fisk                    | ker                                                                                                                                                                                                                                                                                  | APPROVED BY: M. Sepe                                 | hr                             |          |            |                                                                 |
| DEPTH<br>GRAPHIC<br>LOG<br>SOIL CLASS | GEOLOGIC DESCR                                                                                                                                                                                                                                                                       | RIPTION                                              | SPLIT SPOON<br>SAMPLED<br>CORE | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM                                                 |
| 1<br>E<br>B<br>F<br>S                 | 8-inch concrete core<br>Existing well over drilled with 8-inch auger and all ca<br>Backfill 5 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 25 Ft. TD and c<br>Sheen and odor observed in water within hole<br>See Boring Log for ESE-1 (9/29/92) for geologic dis | asing installed                                      |                                |          |            | 0.02 Slotted Screen<br>#3 Montery Sand<br>#3 Montery Sand<br>#1 |

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 10-inch

LOGGED BY: E. Fisker

## DATE DRILLED: August 10, 2010

CASING ELEVATION: 180.70 Ft.

First Encountered GW: 9.95 Ft. Stablized GW: 10.17 Ft.

T.O.C. TO SCREEN: 18 Ft.

## SCREEN LENGTH: 7 Ft.

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                      | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
|         | -             | -              |            | 18-inch concrete core<br>Existing well over drilled with 8-inch auger and all casing and annular seal removed<br>Backfill 5 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 25 Ft. TD and casing installed<br>Sheen and odor observed in water within hole<br>See Boring Log for ESE-1 (9/29/92) for geologic discription |             |              |          |            | Bentonite Plug  |
|         |               | -              |            |                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|         | -<br>35—<br>- | -              |            |                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|         | -<br>-<br>40— | -              |            |                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|         | -<br>-<br>45— | -              |            |                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|         | -             | -              |            |                                                                                                                                                                                                                                                                                                                                           |             |              |          |            |                 |
|         | 50—<br>C      | OMMENT         | S:         | I                                                                                                                                                                                                                                                                                                                                         |             | 1            | I        |            |                 |

|                          | TMENTAL ENGIN | <b>AA</b><br>EERING, INC. | GEOLOGIC LOG OF BOF                                                                                                                                                                                | REHOLE: ESE-2R                                        |                                |          | PA         | GE 1 OF 2       |  |  |  |
|--------------------------|---------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|----------|------------|-----------------|--|--|--|
| PF                       | ROJECT:       | 2762                      |                                                                                                                                                                                                    | DATE DRILLED: August 11, 2010                         |                                |          |            |                 |  |  |  |
| SI                       | TE LOCA       | TION: 3                   | 519 Castro Valley Blvd., Castro Valley                                                                                                                                                             | CASING ELEVATION: 180                                 | .70 F                          | t.       |            |                 |  |  |  |
| DF                       | RILLER: I     | RSI Drillir               | ng                                                                                                                                                                                                 | First Encountered GW: 10.4<br>Stablized GW: 10.61 Ft. | 44 Ft                          | •        |            |                 |  |  |  |
| DF                       | RILLING       | METHO                     | D: HSA                                                                                                                                                                                             | T.O.C. TO SCREEN: 22 Ft.                              |                                |          |            |                 |  |  |  |
| BC                       | DRING D       | IAMETE                    | R: 10-inch                                                                                                                                                                                         | SCREEN LENGTH: 6 Ft.                                  |                                |          |            |                 |  |  |  |
| LC                       | )GGED E       | BY: E. Fis                | sker                                                                                                                                                                                               | APPROVED BY: M. Seper                                 |                                |          |            |                 |  |  |  |
| HI DEPTH<br>GEOLOGIC DES |               |                           |                                                                                                                                                                                                    | PTION                                                 | SPLIT SPOON<br>SAMPLED<br>CORE | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |  |  |  |
| -                        |               |                           | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger a<br>seal removed<br>Backfill 2 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 28 Ft. TD and cas |                                                       |                                |          |            |                 |  |  |  |

| PID ppm | DEPTH | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                    | SPLIT SPOON | CORE SAMPLEI | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM                        |
|---------|-------|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|----------------------------------------|
|         |       |                |            | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger and all casing and annular<br>seal removed<br>Backfill 2 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 28 Ft. TD and casing installed<br>See Boring Log for ESE-2 (9/28/92) for geologic discription |             |              |          |            | 0.02 Stoted Screen<br>#30 Montery Sant |
|         | C     | OMMENT         | 5:         |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                                        |

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 10-inch

LOGGED BY: E. Fisker

## DATE DRILLED: August 11, 2010

CASING ELEVATION: 180.70 Ft.

First Encountered GW: 10.44 Ft. Stablized GW: 10.61 Ft.

T.O.C. TO SCREEN: 22 Ft.

## SCREEN LENGTH: 6 Ft.

| PID ppm | DEPTH         | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                    | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|---------------|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
|         | -             |                |            | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger and all casing and annular<br>seal removed<br>Backfill 2 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 28 Ft. TD and casing installed<br>See Boring Log for ESE-2 (9/28/92) for geologic discription |             |              |          |            |                 |
|         | -<br>30—      | -              |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            | Bentonite Plug  |
|         | -             |                |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | 35—<br>-<br>- |                |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>-<br>40— |                |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -             |                |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | 45—<br>-<br>- |                |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | -<br>-<br>50— | -              |            |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |
|         | С             | OMMENT         | S:         |                                                                                                                                                                                                                                                                                                         |             |              |          |            |                 |

| ENV   | IRONMENTAL ENGIN | EERING, INC. | GEOLOGIC LOG OF BO                                                                                                                                                                                               | DREHOLE: ESE-5R                                                 |                             |          | PA         | GE 1 OF 1           |
|-------|------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------|------------|---------------------|
|       | PROJECT:         | 2762         |                                                                                                                                                                                                                  | DATE DRILLED: August 1                                          | 10, 20                      | 10       |            |                     |
|       | SITE LOCA        | TION: 3      | 519 Castro Valley Blvd., Castro Valley                                                                                                                                                                           | CASING ELEVATION: 17                                            | 8.64 F                      | t.       |            |                     |
|       | DRILLER: F       | RSI Drilli   | ng                                                                                                                                                                                                               | First Encountered GW: 7.0<br>Stablized GW: 8.97 Ft.             | 01 Ft.                      |          |            |                     |
|       | DRILLING         | METHO        | D: HSA                                                                                                                                                                                                           | T.O.C. TO SCREEN: 18 F                                          | -t.                         |          |            |                     |
|       | BORING D         | IAMETE       | R: 10-inch                                                                                                                                                                                                       | SCREEN LENGTH: 6 Ft.                                            |                             |          |            |                     |
|       | LOGGED E         | BY: E. Fi    | sker                                                                                                                                                                                                             | APPROVED BY: M. Sepe                                            | hr                          |          |            |                     |
| DEPTH | GRAPHIC<br>LOG   | SOIL CLASS   | GEOLOGIC DESCI                                                                                                                                                                                                   | RIPTION                                                         | SPLIT SPOON<br>CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM     |
|       |                  | CL           | 18-inch concrete core<br>Existing well over drilled with 8-inch auger and all c<br>Re-advanced with 10-inch auger to 24 Ft. TD and c                                                                             | asing and annular seal removed<br>asing installed               |                             |          |            |                     |
| 5     |                  |              | Hand auger top 5 Feet due to proximily of unknowr<br>SANDY LEAN CLAY: Brownish-grey, petro staining<br>slow dilatancy, medium plastic, firm, medium tough<br>See Boring Log for ESE-5 (9/29/92) for geologic dis | g, very fine- to fine-grained sand<br>. PHC odor to 3.5 Ft. bgs |                             |          |            | Cement Grout        |
| 20    | -                |              |                                                                                                                                                                                                                  |                                                                 |                             |          |            | 0.02 Slotted Screen |

| ENVIRO           | DIMENTAL ENGIN | <b>AAA</b><br>EERING, INC. | GEOLOGIC LOG OF BC                                                                                                                                                                                                                                     | REHOLE: MW-6R                                       |             |     |          | PA         | GE 1 OF 2       |  |
|------------------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|-----|----------|------------|-----------------|--|
| PI               | ROJECT:        | 2762                       |                                                                                                                                                                                                                                                        | DATE DRILLED: August 10, 2010                       |             |     |          |            |                 |  |
| SI               | ITE LOCA       | TION: 3                    | 519 Castro Valley Blvd., Castro Valley                                                                                                                                                                                                                 | CASING ELEVATION: 18                                | 1.34        | Ft. |          |            |                 |  |
| DI               | RILLER: I      | RSI Drillir                | ng                                                                                                                                                                                                                                                     | First Encountered GW: 9.6<br>Stablized GW: 9.55 Ft. | 64 F        | t.  |          |            |                 |  |
| D                | RILLING        | METHO                      | D: HSA                                                                                                                                                                                                                                                 | T.O.C. TO SCREEN: 22 F                              | t.          |     |          |            |                 |  |
| B                | ORING D        | IAMETE                     | R: 10-inch                                                                                                                                                                                                                                             | SCREEN LENGTH: 6 Ft.                                |             |     |          |            |                 |  |
| L                | OGGED E        | BY: E. Fis                 | sker                                                                                                                                                                                                                                                   | APPROVED BY: M. Sepe                                | hr          |     |          |            |                 |  |
| PID ppm<br>DEPTH | GRAPHIC<br>LOG | SOIL CLASS                 | GEOLOGIC DESCR                                                                                                                                                                                                                                         | IPTION                                              | SPLIT SPOON |     | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |  |
|                  |                |                            | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger<br>seal removed<br>Backfill 2 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 28 Ft. TD and ca<br>See Boring Log for MW-6 (7/18/95) for geologic disc | asing installed                                     |             |     |          |            | Cement Gout     |  |

Bentonite Plug

0.02 Slotted Screen

#3 Montery Sand

| -   | 1 |  |  |  |  |
|-----|---|--|--|--|--|
| 10— | 1 |  |  |  |  |
| _   |   |  |  |  |  |
|     |   |  |  |  |  |
|     |   |  |  |  |  |
| -   | - |  |  |  |  |
| -   | - |  |  |  |  |
| 15— |   |  |  |  |  |
|     |   |  |  |  |  |
| _   | 1 |  |  |  |  |
| -   | - |  |  |  |  |
| -   | - |  |  |  |  |
| _   |   |  |  |  |  |
| 20- |   |  |  |  |  |
| 20- |   |  |  |  |  |
| -   |   |  |  |  |  |
| -   |   |  |  |  |  |
| _   |   |  |  |  |  |
|     |   |  |  |  |  |
| _   | ] |  |  |  |  |
| 25— |   |  |  |  |  |

COMMENTS:

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 10-inch

LOGGED BY: E. Fisker

## DATE DRILLED: August 10, 2010

CASING ELEVATION: 181.34 Ft.

First Encountered GW: 9.64 Ft. Stablized GW: 9.55 Ft. T.O.C. TO SCREEN: 22 Ft.

SCREEN LENGTH: 6 Ft.

| PID ppm | DEPTH    | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                   | SPLIT SPOON | CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|---------|----------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|-----------------|
|         |          |                |            | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger and all casing and annular<br>seal removed<br>Backfill 2 feet of hydrated bentonite<br>Re-advanced with 10-inch auger to 28 Ft. TD and casing installed<br>See Boring Log for MW-6 (7/18/95) for geologic discription |             |              |          |            | Benonite Plug   |
|         | 50<br>C( | OMMENT         | S:         |                                                                                                                                                                                                                                                                                                        |             |              |          |            |                 |

| ENVIRONMENTAL ENGINEERING, INC.                | GEOLOGIC LOG OF BO                                                                                                                                                                                         | OREHOLE: MW-7R                                    |                             |          | PA         | GE 1 OF 2       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|----------|------------|-----------------|
| PROJECT: 2762                                  |                                                                                                                                                                                                            | DATE DRILLED: Augus                               | t 11, 20 <sup>.</sup>       | 10       |            |                 |
| SITE LOCATION: 3                               | 519 Castro Valley Blvd., Castro Valley                                                                                                                                                                     | CASING ELEVATION:                                 | 79.14 F                     | t.       |            |                 |
| DRILLER: RSI Drilli                            | ng                                                                                                                                                                                                         | First Encountered GW: 9<br>Stablized GW: 9.39 Ft. | 9.11 Ft.                    |          |            |                 |
| DRILLING METHO                                 | D: HSA                                                                                                                                                                                                     | T.O.C. TO SCREEN: 24                              | Ft.                         |          |            |                 |
| BORING DIAMETE                                 | R: 10-inch                                                                                                                                                                                                 | SCREEN LENGTH: 6 F                                | t.                          |          |            |                 |
| LOGGED BY: E. Fi                               | sker                                                                                                                                                                                                       | APPROVED BY: M. Se                                | behr                        |          |            |                 |
| DEPTH<br>DEPTH<br>GRAPHIC<br>LOG<br>SOIL CLASS | GEOLOGIC DESC                                                                                                                                                                                              | RIPTION                                           | SPLIT SPOON<br>CORE SAMPLED | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM |
|                                                | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auge<br>seal removed<br>Re-advanced with 10-inch auger to 30 Ft. TD and o<br>See Boring Log for MW-7 (7/18/95) for geologic dis | casing installed                                  |                             |          |            | #3 Montery Sand |

SITE LOCATION: 3519 Castro Valley Blvd., Castro Valley

DRILLER: RSI Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 10-inch

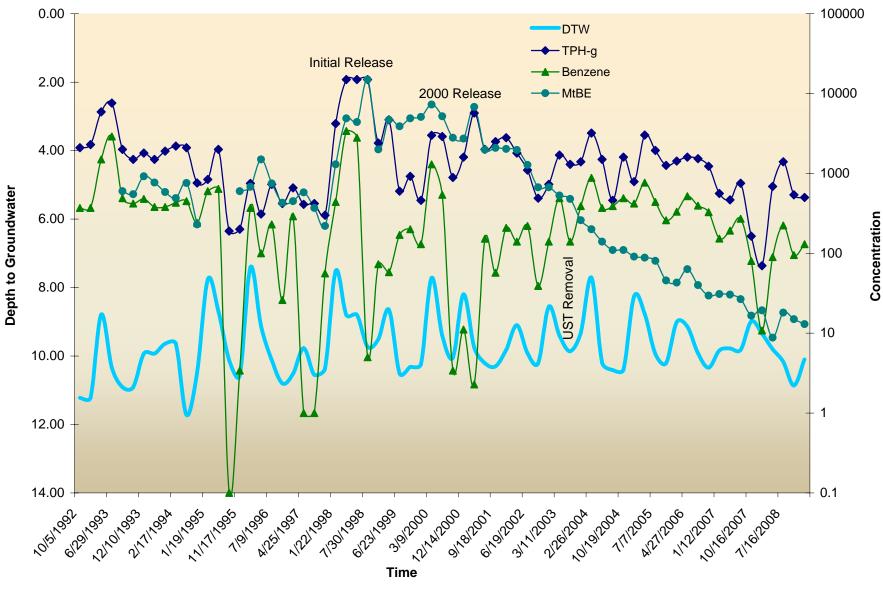
LOGGED BY: E. Fisker

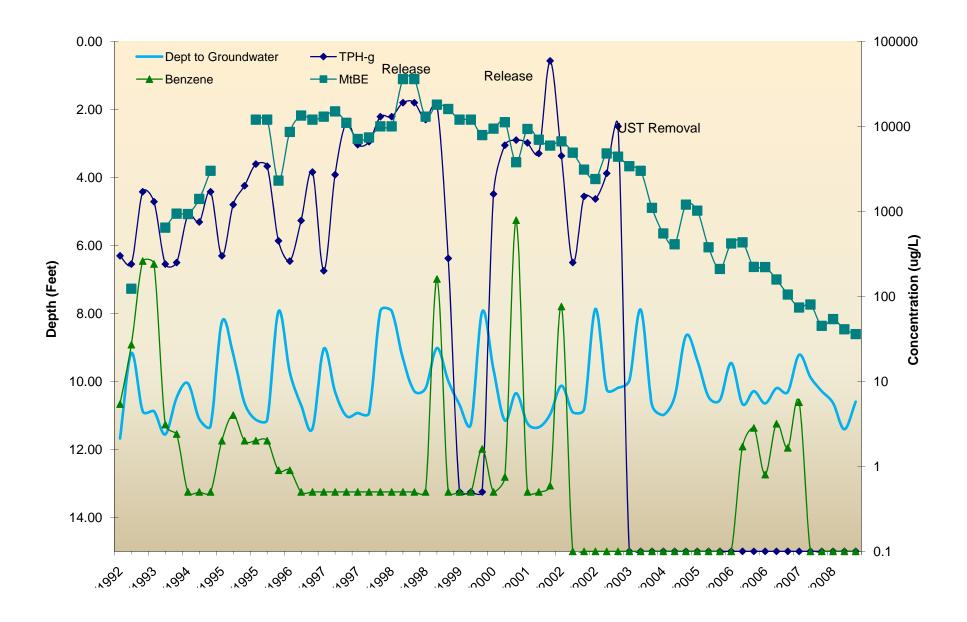
## DATE DRILLED: August 11, 2010

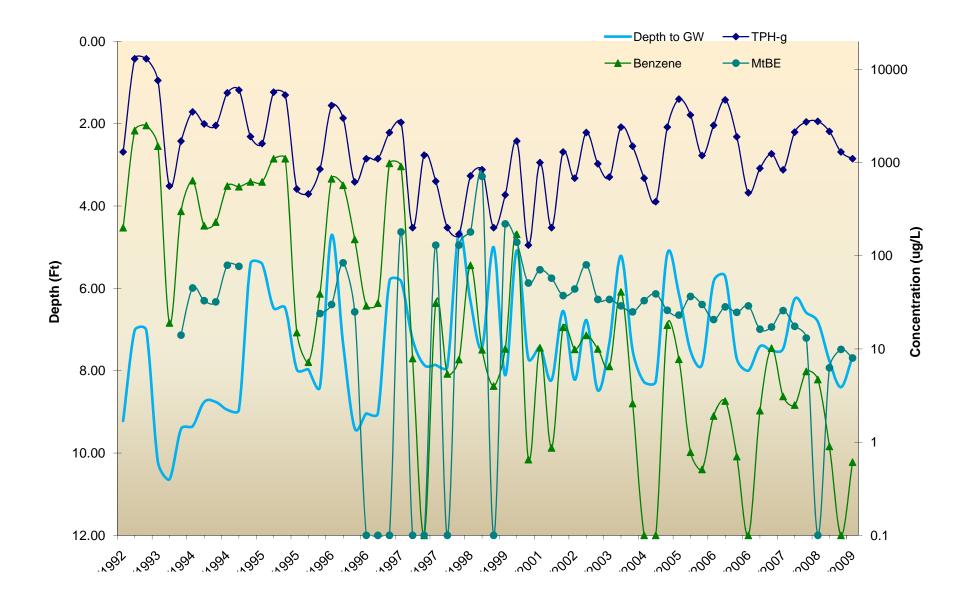
CASING ELEVATION: 179.14 Ft.

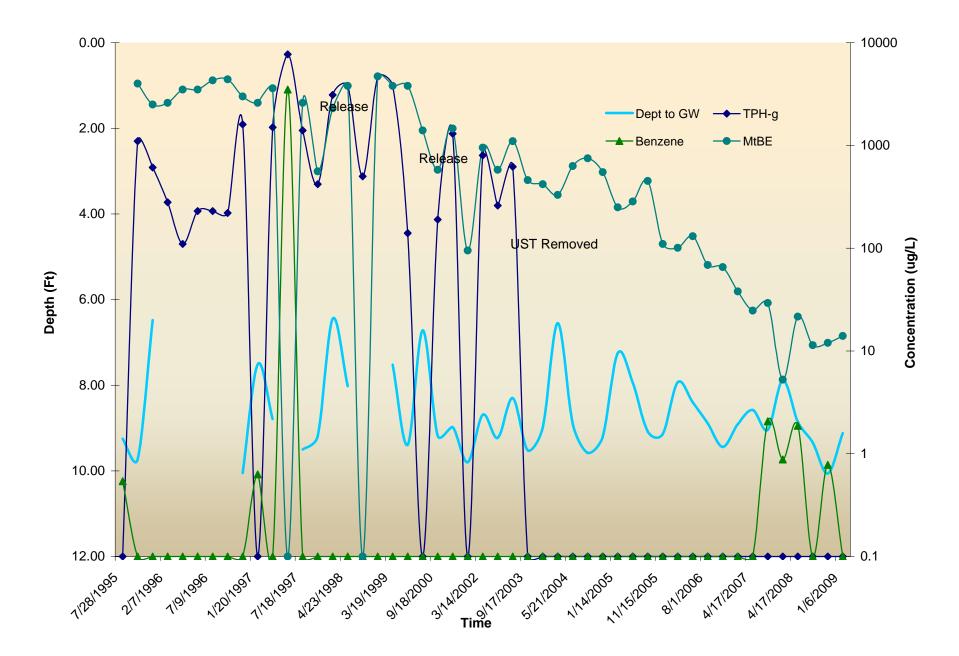
First Encountered GW: 9.11 Ft. Stablized GW: 9.39 Ft. T.O.C. TO SCREEN: 24 Ft.

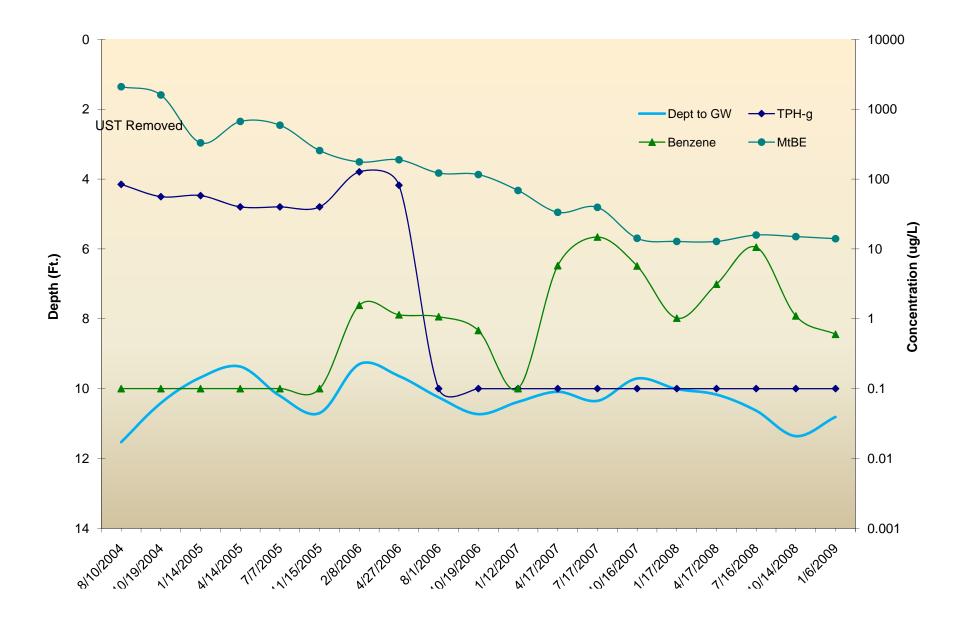
SCREEN LENGTH: 6 Ft.

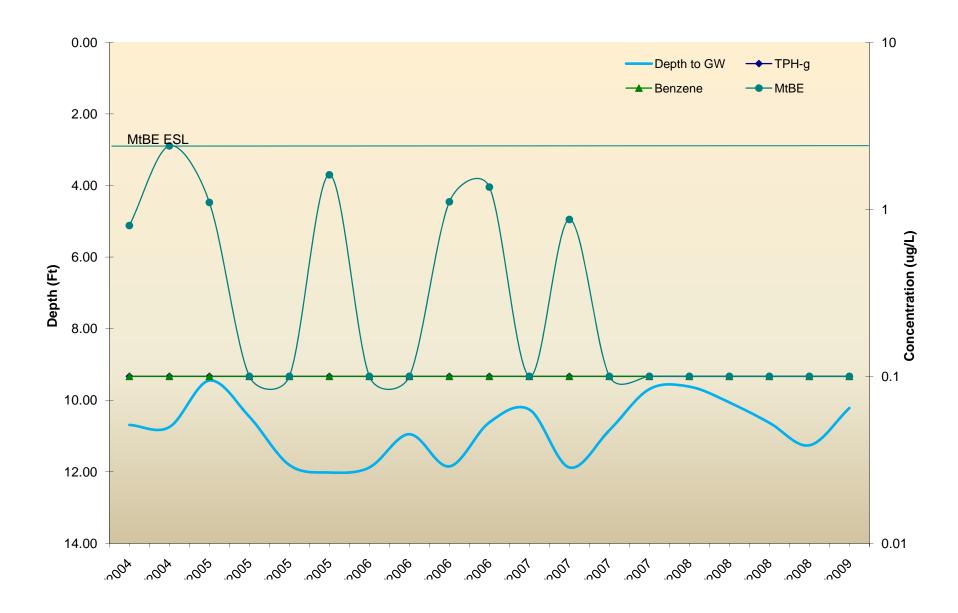

| שלק טוא | DEPTH                                                                                         | GRAPHIC<br>LOG | SOIL CLASS | GEOLOGIC DESCRIPTION                                                                                                                                                                                                                                          | SPLIT SPOON | CORE SAMPLEU | GW LEVEL | BLOWCOUNTS | WELL<br>DIAGRAM     |
|---------|-----------------------------------------------------------------------------------------------|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|---------------------|
|         | -<br>-<br>-<br>30-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |            | 18-inch concrete core<br>Existing well: over drilled to 30 Ft. with 8-inch auger and all casing and annular<br>seal removed<br>Re-advanced with 10-inch auger to 30 Ft. TD and casing installed<br>See Boring Log for MW-7 (7/18/95) for geologic discription |             |              |          | 1          | 0.02 Slotted Screen |
|         | 40                                                                                            |                |            |                                                                                                                                                                                                                                                               |             |              |          |            |                     |
|         | 50<br>C0                                                                                      | OMMENT         | S:         |                                                                                                                                                                                                                                                               |             |              |          |            |                     |

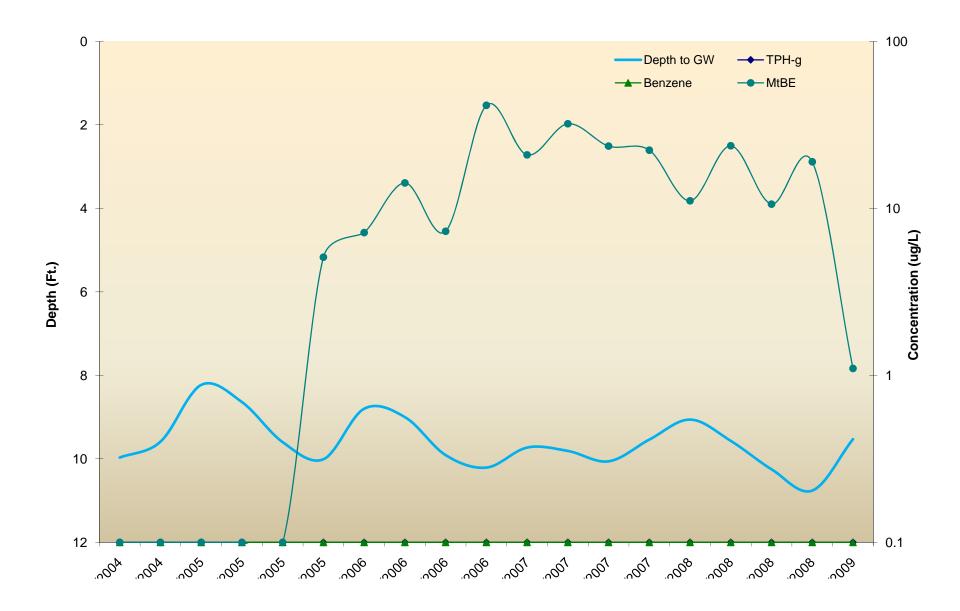

# **APPENDIX C** Concentration Trends


Feasibility Study/Corrective Action Plan and Proposed Pilot Testing


## Historical Concentration Trends (From 1992 to 2009)


Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

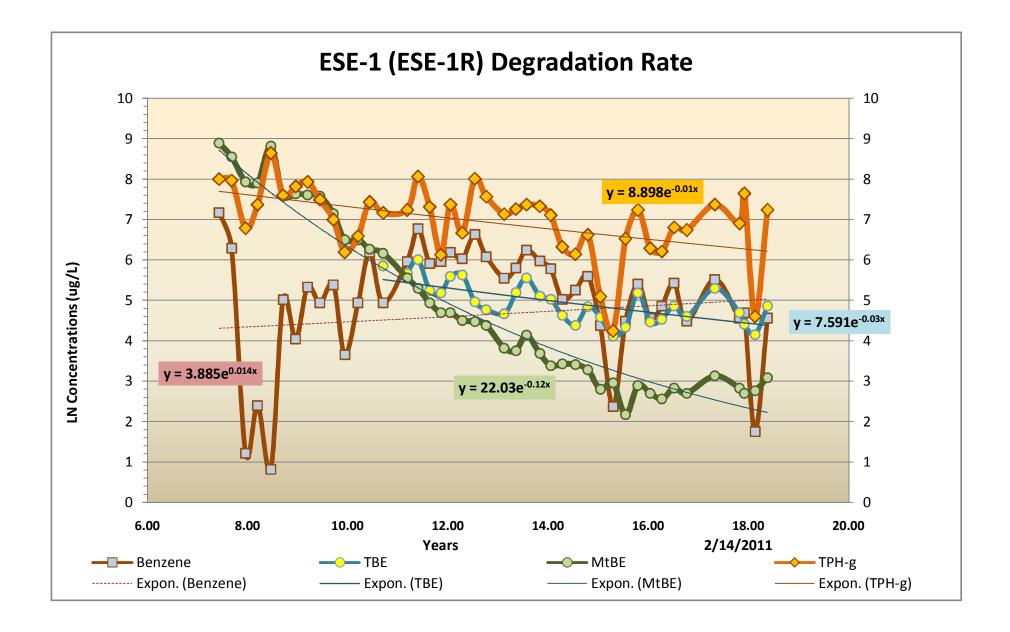


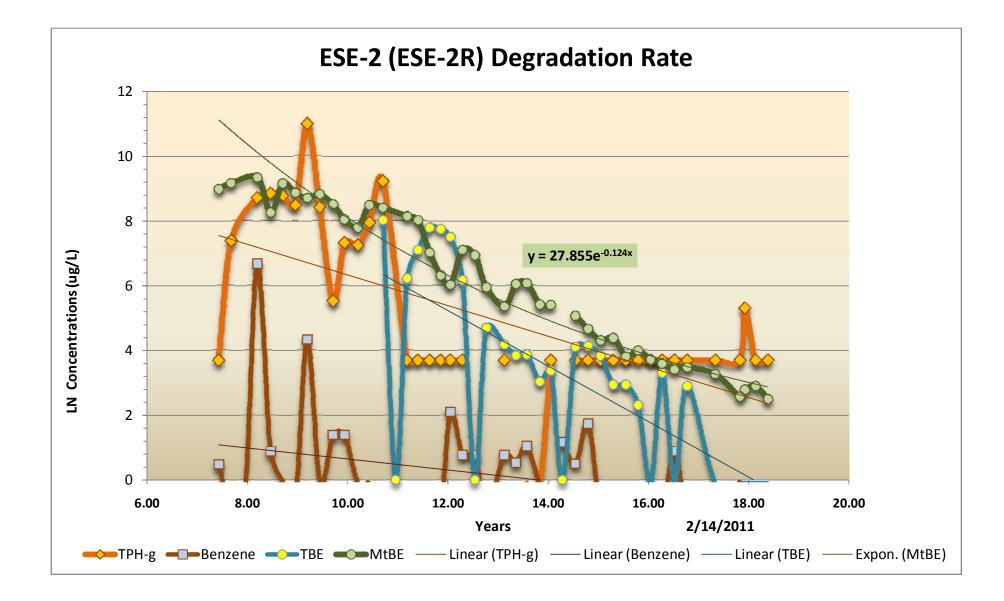



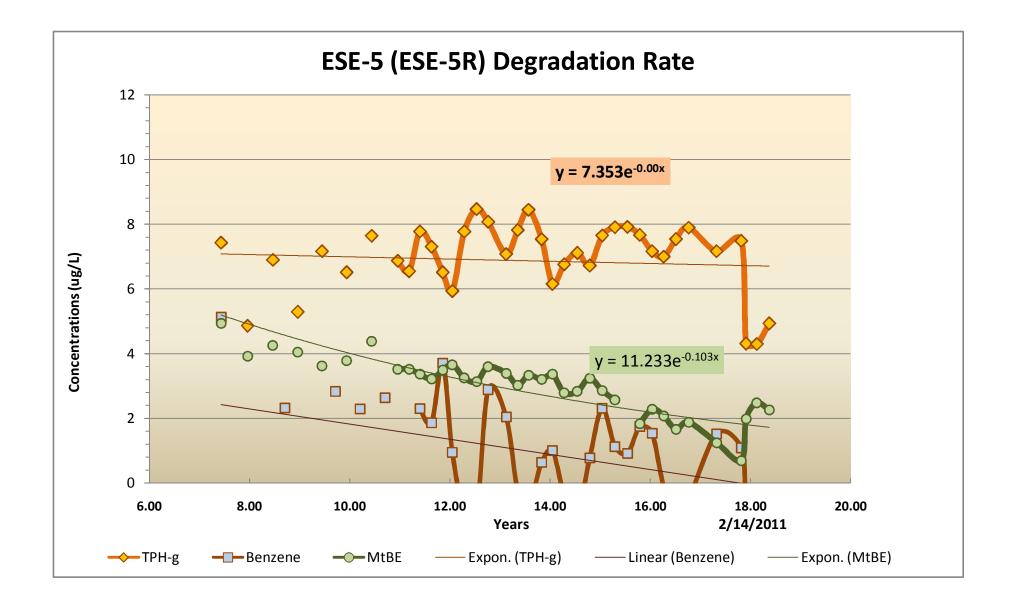


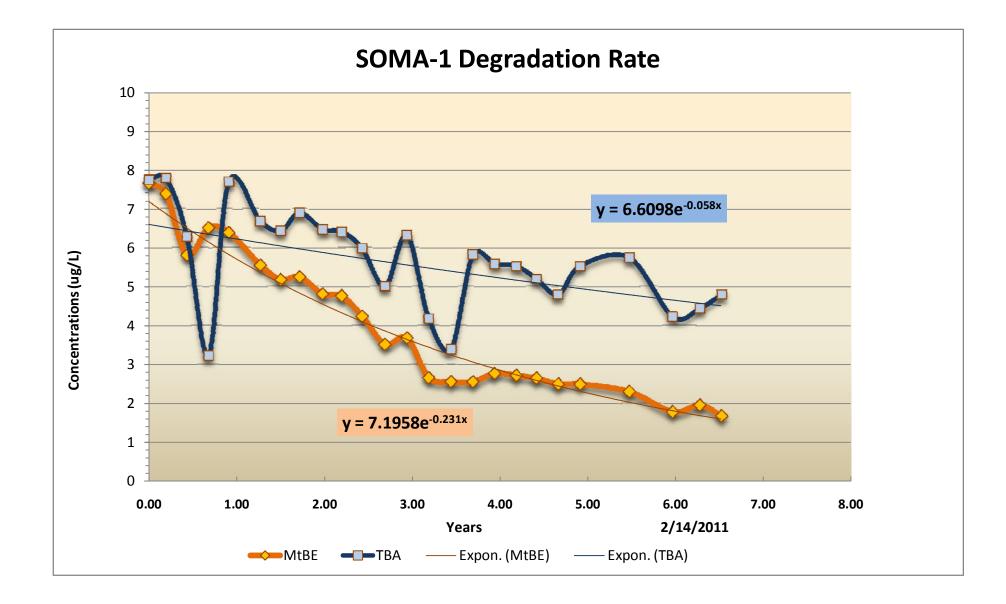


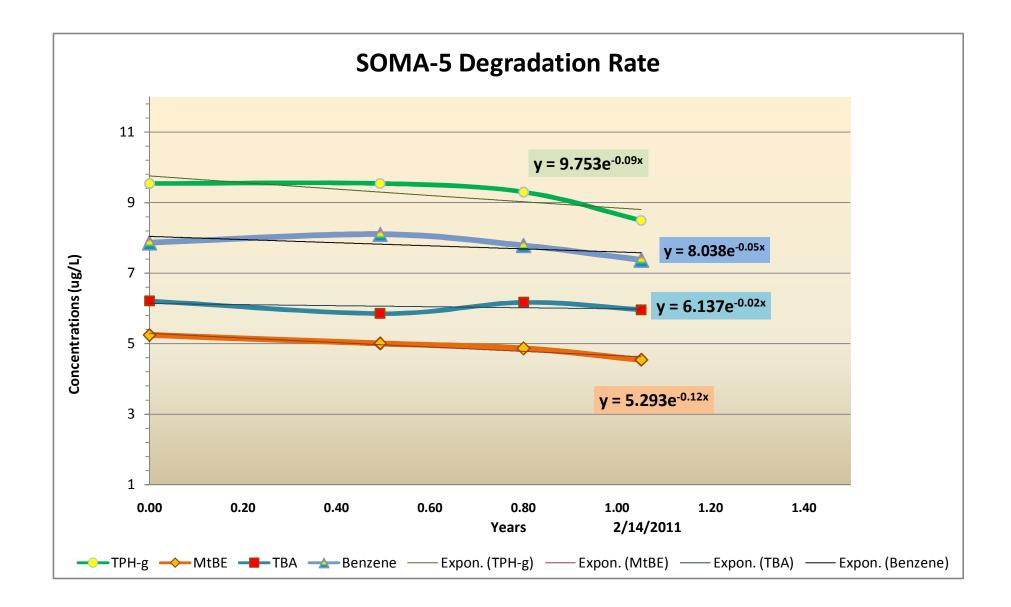


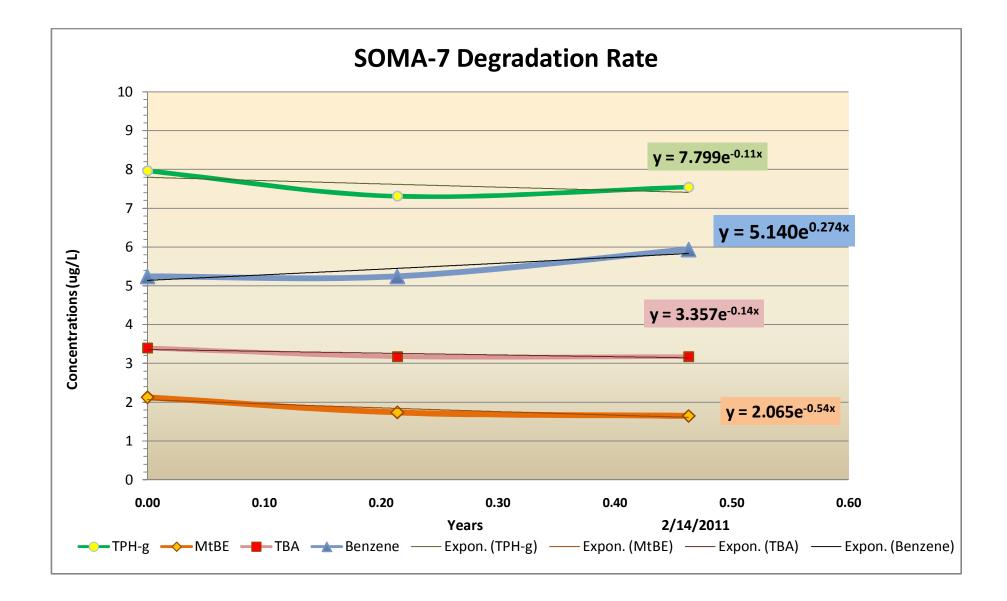





## Concentration vs. Time Trends (2000 to current)


Feasibility Study/Corrective Action Plan and Proposed Pilot Testing














# **APPENDIX D** Mass Calculation Supporting Documentation

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

| Cell<br>Mdress         Cell<br>(000)         Cell<br>(000)         Cell<br>(13)         Retardation<br>Cell(16)         Conversion<br>Factor         Cell Mass Total<br>(16)         Mass Total (16)           21364         319.33         118.0686029         160         52.25         6.24E-08         6.16E-02         57.10           2557         230.61         135.3448434         160         52.25         6.24E-08         9.16E-02         57.10           151.62         251.8         175.4594035         160         52.25         6.24E-08         9.16E-02         57.10           255.7         230.62         72.236677         100         52.25         6.24E-08         9.16E-02         57.10           255.7         230.81         175.4594031         160         52.25         6.24E-08         1.02E-01           203.34         252.1         224.214171         160         52.25         6.24E-08         1.02E-01           131.30         319.33         306.337154         160         52.25         6.24E-08         1.02E-01           133.30         319.33         310.401438         160         52.25         6.24E-08         1.03E-01           133.4         252.1         324E-08         1.05E-01         1.02E-01         1.02E-01<                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Mass of TPH-g within Shallow WBZ |             |     |             |          |          |                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|-------------|-----|-------------|----------|----------|-----------------|--|--|
| Address         Contentation<br>of TPH2<br>(K)         Confficient<br>(R)         Confficient<br>(R)         Confficient<br>Factor         Confficient<br>(R)         Confficient<br>Factor         Confficient<br>(R)         Con |        | Call                             | Cell        | ٢٩١ | Retardation |          |          |                 |  |  |
| (X)         (Y)         017H-9<br>(ug/L)         13         (Re)         Pactor         (10)         (17)           213.44         319.33         118,0680029         160         52.25         6.24E-08         6.7FE-02           285.12         205.6         135.5445843         160         52.25         6.24E-08         7.9BE-02           285.12         225.21         15.18497605         160         52.25         6.24E-08         9.5BE-02           285.72         280.67         18.29417749         160         52.25         6.24E-08         9.5BE-02           285.72         280.67         18.29417749         160         52.25         6.24E-08         1.0BE-01           233.3         213.8926844         160         52.25         6.24E-08         1.2EE-01           133.05         213.5442415         160         52.25         6.24E-08         1.60E-01           133.43         306.3371545         160         52.25         6.24E-08         1.60E-01           141.15         303.33         301.4041438         160         52.25         6.24E-08         1.63E-01           152.48         261.8         333.9911169         160         52.25         6.24E-08         1.63E-01 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mass Total (lb)</th>                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                  |             |     |             |          |          | Mass Total (lb) |  |  |
| 1         1         1         0         52.25         6.24E-08         6.16E-02         57.10           285.72         290.56         135.5445802         160         52.25         6.24E-08         7.93E-02           182.75         282.21         152.737634         160         52.25         6.24E-08         7.93E-02           151.66         261.8         175.4990.05         160         52.25         6.24E-08         9.05E-02           275.42         300.15         182.9417749         160         52.25         6.24E-08         1.16E-01           203.34         319.33         213.8992894         160         52.25         6.24E-08         1.16E-01           213.05         319.306         325.5552665         160         52.25         6.24E-08         1.16E-01           213.05         313.30431745         160         52.25         6.24E-08         1.60E-01           213.04         252.21         314.904148         160         52.25         6.24E-08         1.60E-01           213.43         311.4041481         160         52.25         6.24E-08         1.60E-01           214.45         30.97144         160         52.25         6.24E-08         1.67E-01 <tr< td=""><td></td><td></td><td>-</td><td></td><td></td><td>Factor</td><td>(lb)</td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  | -           |     |             | Factor   | (lb)     |                 |  |  |
| 285.72         290.56         133.8445843         160         52.25         6.24E-08         7.93E-02           265.12         252.21         152.767634         160         52.25         6.24E-08         7.93E-02           151.86         261.8         175.4594035         160         52.25         6.24E-08         9.16E-02           275.42         301.75         182.9417749         160         52.25         6.24E-08         1.0E-01           133.05         313.33         213.892949         160         52.25         6.24E-08         1.12E-01           141.56         271.83         225.85         6.24E-08         1.12E-01           133.05         313.30.331442415         160         52.25         6.24E-08         1.60E-01           203.34         252.21         33.08.471269         160         52.25         6.24E-08         1.60E-01           213.48         252.21         33.90.272141         160         52.25         6.24E-08         1.60E-01           214.8         261.8         33.9914169         160         52.25         6.24E-08         1.60E-01           214.8         261.8         33.994433         160         52.25         6.24E-08         2.09E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                  |             |     |             |          |          |                 |  |  |
| 285.1         222.2         15.2         15.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         8.6         9.6         2.2           151.8         261.8         175.4         160         52.2         6.2         8.6         9.65         2.2           275.42         201.7         203.6         22.4         161.7         160         52.25         6.2         6.2         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>57.10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  |             |     |             |          |          | 57.10           |  |  |
| 182 75       252.21       152 787634       160       52.25       6.24E-08       7.96E-02         275.42       300.15       182.9417749       160       52.25       6.24E-08       1.06E-01         233.4       319.33       213.892894       160       52.25       6.24E-08       1.12E-01         133.05       252.1       22.42145173       160       52.25       6.24E-08       1.12E-01         133.05       313.303.3142415       160       52.25       6.24E-08       1.06E-01         275.42       261.8       23.31492415       160       52.25       6.24E-08       1.60E-01         233.3       33.314.04143       160       52.25       6.24E-08       1.60E-01         151.6       313.307.041       160       52.25       6.24E-08       1.67E-01         182.15       261.8       33.991.1169       160       52.25       6.24E-08       1.33E-01         123.24       252.21       340.522.11       60.52.25       6.24E-08       1.33E-01         124.53       309.74       433.9072.21       160       52.25       6.24E-08       2.30E-01         134.5       309.74       433.9694943       160       52.25       6.24E-08       2.31E-01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 151.86       261.8       17.5.45300.3       160       52.25       6.24E-08       9.56E-02         285.72       280.97       203.6629743       160       52.25       6.24E-08       1.06E-01         203.34       319.33       213.8992894       160       52.25       6.24E-08       1.17E-01         141.65       27.138       225.8552665       160       52.25       6.24E-08       1.06E-01         130.30       322.1       303.3371545       160       52.25       6.24E-08       1.60E-01         130.33       303.3371545       160       52.25       6.24E-08       1.60E-01         151.86       319.33       314.041438       160       52.25       6.24E-08       1.63E-01         151.86       319.33       310.702041       160       52.25       6.24E-08       1.33E-01         121.5       261.8       333.9911169       160       52.25       6.24E-08       2.30E-01         142.45       309.47       439.9072221       160       52.25       6.24E-08       2.30E-01         122.7       319.33       40.3556337       160       52.25       6.24E-08       2.30E-01         122.45       319.33       473.7696145       160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |             |     |             |          |          |                 |  |  |
| 275.42       300.15       H82.9417749       160       52.25       6.24E-08       9.56E-02         203.33       319.33       213.8902294       160       52.25       6.24E-08       1.12E-01         193.05       525.21       224.2145173       160       52.25       6.24E-08       1.18E-01         275.42       261.8       233.1942415       160       52.25       6.24E-08       1.00E-01         203.34       252.21       308.9471268       160       52.25       6.24E-08       1.60E-01         213.48       252.21       30.9471268       160       52.25       6.24E-08       1.60E-01         214.83       311.4041438       160       52.25       6.24E-08       1.63E-01         213.44       33.9307241       160       52.25       6.24E-08       1.33E-01         213.42       252.21       349.9072321       160       52.25       6.24E-08       2.31E-01         213.44       252.21       349.9072321       160       52.25       6.24E-08       2.30E-01         214.45       252.41       443.33.9904943       160       52.25       6.24E-08       2.30E-01         214.45       252.1       440.2376649       160       52.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 285.72         280.97         203.6622743         160         52.25         6.24E-08         1.12E-01           193.05         252.21         224.2145173         160         52.25         6.24E-08         1.12E-01           193.05         252.21         224.2145173         160         52.25         6.24E-08         1.12E-01           193.05         319.33         306.3371545         160         52.25         6.24E-08         1.60E-01           193.04         252.21         306.3371545         160         52.25         6.24E-08         1.60E-01           151.86         319.33         311.4041438         160         52.25         6.24E-08         1.67E-01           162.15         261.8         333.9911169         160         52.25         6.24E-08         1.38E-01           171.64         23.97         433.3994144         160         52.25         6.24E-08         2.39E-01           182.75         319.33         400.7504722         160         52.25         6.24E-08         2.39E-01           141.56         2097         458.4081652         160         52.25         6.24E-08         2.39E-01           141.56         2017         433.39947123         160         52.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                  |             |     |             |          |          |                 |  |  |
| 203.3         319.33         213.899284         160         52.25         6.24E-08         1.17E-01           193.05         252.21         224.2145173         160         52.25         6.24E-08         1.17E-01           275.42         261.8         233.1942415         160         52.25         6.24E-08         1.60E-01           203.34         252.21         306.9471269         160         52.25         6.24E-08         1.60E-01           151.86         319.3072041         160         52.25         6.24E-08         1.63E-01           124.15         261.8         333.9911160         162.25         6.24E-08         1.74E-01           141.16         30.74         349.907221         160         52.25         6.24E-08         1.38E-01           123.64         252.21         400.277240         160         52.25         6.24E-08         2.39E-01           124.53         30.974         433.969493         160         52.25         6.24E-08         2.39E-01           124.54         319.3         403.35637         160         52.25         6.24E-08         2.39E-01           124.54         261.3         343.3694943         160         52.25         6.24E-08         2.58E-01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                  |             |     |             |          |          |                 |  |  |
| 193.05         252.21         224.2145173         160         52.25         6.24E-08         1.17E-01           141.56         271.38         225.852665         160         52.25         6.24E-08         1.60E-01           130.30         319.33         306.3371545         160         52.25         6.24E-08         1.60E-01           130.34         232.21         306.9371545         160         52.25         6.24E-08         1.63E-01           151.86         319.33         311.4041438         160         52.25         6.24E-08         1.63E-01           162.15         261.8         333.9911169         160         52.25         6.24E-08         1.83E-01           121.64         252.1         360.942164         160         52.25         6.24E-08         1.93E-01           122.45         261.8         446.116457         160         52.25         6.24E-08         2.30E-01           121.5         319.33         400.353637         160         52.25         6.24E-08         2.39E-01           121.5         319.33         480.356337         160         52.25         6.24E-08         2.51E-01           121.5         319.33         480.356337         160         52.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                  |             |     |             |          |          |                 |  |  |
| 141.56       271.38       225.8552665       160       52.25       6.24E-08       1.18E-01         275.42       261.8       233.1942415       160       52.25       6.24E-08       1.60E-01         203.34       252.21       306.9371269       160       52.25       6.24E-08       1.60E-01         261.83       252.21       319.3072041       160       52.25       6.24E-08       1.60E-01         141.56       309.74       349.9072321       160       52.25       6.24E-08       1.74E-01         141.56       309.74       349.9072321       160       52.25       6.24E-08       1.93E-01         213.64       252.21       430.994722       160       52.25       6.24E-08       2.30E-01         124.53       309.74       33.9694943       160       52.25       6.24E-08       2.33E-01         141.56       280.97       458.4061652       160       52.25       6.24E-08       2.33E-01         141.56       280.97       458.4061652       160       52.25       6.24E-08       2.54E-01         141.56       280.97       458.4061652       160       52.25       6.24E-08       2.54E-01         141.56       30.05       60.76569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
| 275.42         261.8         233.1942415         160         52.25         6.24E-08         1.22E-01           193.05         319.33         306.3371545         160         52.25         6.24E-08         1.60E-01           151.86         319.33         311.4041438         160         52.25         6.24E-08         1.63E-01           152.48         252.21         319.3072041         160         52.25         6.24E-08         1.63E-01           141.56         309.74         349.9072321         160         52.25         6.24E-08         1.38E-01           131.64         422.21         36.942164         160         52.25         6.24E-08         2.09E-01           142.45         309.74         433.99907321         160         52.25         6.24E-08         2.39E-01           122.75         319.33         40.07504722         160         52.25         6.24E-08         2.39E-01           124.45         309.74         433.999145         160         52.25         6.24E-08         2.47E-01           124.45         350.427935         160         52.25         6.24E-08         2.71E-01           124.45         256.6797123         160         52.25         6.24E-08         3.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                  |             |     |             |          |          |                 |  |  |
| 193.05         306.3371545         160         52.25         6.24E-08         1.60E-01           203.34         252.21         306.3471269         160         52.25         6.24E-08         1.63E-01           254.83         252.21         319.3072041         160         52.25         6.24E-08         1.63E-01           121.56         261.8         33.391169         160         52.25         6.24E-08         1.74E-01           141.56         309.74         349.9072321         160         52.25         6.24E-08         1.93E-01           213.64         252.11         406.7504722         160         52.25         6.24E-08         2.09E-01           244.53         309.74         433.9604943         160         52.25         6.24E-08         2.33E-01           172.45         261.8         446.1164557         160         52.25         6.24E-08         2.33E-01           172.45         261.8         446.1164557         160         52.25         6.24E-08         2.47E-01           172.45         261.8         446.1164557         160         52.25         6.24E-08         2.51E-01           174.45         305.3429735         160         52.25         6.24E-08         3.25E-01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 151.86       319.33       3114.0041438       160       52.25       6.24E-08       1.63E-01         254.83       252.21       313.9072041       160       52.25       6.24E-08       1.74E-01         141.56       303.9911169       160       52.25       6.24E-08       1.83E-01         121.64       252.11       383.949164       160       52.25       6.24E-08       2.09E-01         122.45       309.74       433.9694943       160       52.25       6.24E-08       2.30E-01         122.45       251.8       446.1164557       160       52.25       6.24E-08       2.30E-01         172.45       261.8       446.1164557       160       52.25       6.24E-08       2.30E-01         162.15       319.33       473.7696145       160       52.25       6.24E-08       2.54E-01         172.45       261.8       508.5429735       160       52.25       6.24E-08       2.54E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       3.25E-01         275.42       271.38       616.467845       160       52.25       6.24E-08       3.25E-01         275.42       271.38       616.467845       160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                  | 306.3371545 |     |             |          | 1.60E-01 |                 |  |  |
| 264.83         252.21         319.3072041         160         52.25         6.24E-08         1.74E-01           162.15         261.8         33.9911169         160         52.25         6.24E-08         1.83E-01           213.64         252.21         386.942164         160         52.25         6.24E-08         2.09E-01           244.53         309.74         433.9694943         160         52.25         6.24E-08         2.09E-01           244.53         309.74         433.9694943         160         52.25         6.24E-08         2.39E-01           213.64         461.164557         160         52.25         6.24E-08         2.39E-01           162.15         319.33         473.7696145         160         52.25         6.24E-08         2.47E-01           172.45         219.33         480.333637         160         52.25         6.24E-08         2.51E-01           244.53         252.21         485.7766549         160         52.25         6.24E-08         2.71E-01           181.65         271.38         806.429735         160         52.25         6.24E-08         3.25E-01           244.23         250.5         6.24E-08         3.25E-01         2.332E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203.34 | 252.21                           | 306.9471269 | 160 | 52.25       | 6.24E-08 | 1.60E-01 |                 |  |  |
| 162.15       261.8       333.9911169       160       52.25       6.24E-08       1.74E-01         141.56       309.74       349.9072321       160       52.25       6.24E-08       1.93E-01         182.75       319.33       400.7504722       160       52.25       6.24E-08       2.09E-01         244.53       309.74       433.694431       160       52.25       6.24E-08       2.30E-01         172.45       261.97       483.69443       160       52.25       6.24E-08       2.33E-01         172.45       261.93       440.1164557       160       52.25       6.24E-08       2.30E-01         162.15       319.33       403.356337       160       52.25       6.24E-08       2.47E-01         244.53       352.21       485.7766549       160       52.25       6.24E-08       2.54E-01         151.86       271.38       506.5429733       160       52.25       6.24E-08       3.27E-01         244.53       305.74       661.4697845       160       52.25       6.24E-08       3.14E-01         1275.42       271.38       506.56199       160       52.25       6.24E-08       3.25E-01         141.56       300.56       621.3921071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151.86 | 319.33                           | 311.4041438 | 160 | 52.25       | 6.24E-08 | 1.63E-01 |                 |  |  |
| 141.56       309.74       349.9073321       160       52.25       6.24E-08       1.83E-01         213.64       252.21       369.942164       160       52.25       6.24E-08       2.09E-01         244.53       309.74       433.9694943       160       52.25       6.24E-08       2.30E-01         223.94       252.21       440.2727408       160       52.25       6.24E-08       2.33E-01         141.56       260.97       458.4081652       160       52.25       6.24E-08       2.39E-01         124.53       319.33       430.3553637       160       52.25       6.24E-08       2.47E-01         172.45       213.33       485.7766494       160       52.25       6.24E-08       2.54E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       2.5E-01         234.23       252.21       520.050000       160       52.25       6.24E-08       3.14E-01         275.42       271.38       161.4697845       160       52.25       6.24E-08       3.22E-01         141.56       200.56       653.2008765       160       52.25       6.24E-08       3.25E-01         141.52       200.56       653.2008765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 254.83 | 252.21                           | 319.3072041 | 160 | 52.25       | 6.24E-08 | 1.67E-01 |                 |  |  |
| 213.64       252.21       368.942164       160       52.25       6.24E-08       2.09E-01         223.94       252.21       440.2272408       160       52.25       6.24E-08       2.30E-01         172.45       261.8       446.1164557       160       52.25       6.24E-08       2.33E-01         172.45       280.97       458.4081652       160       52.25       6.24E-08       2.33E-01         172.45       319.33       473.7696145       160       52.25       6.24E-08       2.47E-01         172.45       319.33       403.353637       160       52.25       6.24E-08       2.54E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       2.75E-01         141.56       200.15       500.7890761       160       52.25       6.24E-08       3.14E-01         175.42       271.38       504.697454       160       52.25       6.24E-08       3.25E-01         141.56       200.56       621.9321071       160       52.25       6.24E-08       3.25E-01         175.42       271.38       504.697845       160       52.25       6.24E-08       3.46E-01         234.3       309.74       62.985599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                  |             |     |             |          |          |                 |  |  |
| 182.75       319.33       400.7504722       160       52.25       6.24E-08       2.209E-01         224.53       309.74       433.9694943       160       52.25       6.24E-08       2.30E-01         172.45       261.8       446.1164557       160       52.25       6.24E-08       2.33E-01         141.56       209.7       458.4081652       160       52.25       6.24E-08       2.47E-01         172.45       319.33       430.355837       160       52.25       6.24E-08       2.47E-01         172.45       319.33       480.355837       160       52.25       6.24E-08       2.54E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       2.65E-01         234.23       252.21       520.650090       160       52.25       6.24E-08       3.14E-01         175.42       271.38       616.4697845       160       52.25       6.24E-08       3.22E-01         141.56       200.56       653.2008765       160       52.25       6.24E-08       3.22E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.60E-01         234.23       309.74       630.6766199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 244.53         309.74         433.9694943         160         52.25         6.24E-08         2.30E-01           272.45         251.8         446.1164557         160         52.25         6.24E-08         2.33E-01           141.56         280.97         458.4081652         160         52.25         6.24E-08         2.39E-01           162.15         319.33         473.7696145         160         52.25         6.24E-08         2.51E-01           244.53         252.21         485.7766549         160         52.25         6.24E-08         2.51E-01           244.53         252.21         520.050509         160         52.25         6.24E-08         2.51E-01           124.52         306.5429735         160         52.25         6.24E-08         2.71E-01           125.75         261.8         526.8797123         160         52.25         6.24E-08         3.22E-01           141.56         300.15         600.7890761         160         52.25         6.24E-08         3.22E-01           141.56         290.56         653.2008765         160         52.25         6.24E-08         3.5E-01           275.42         290.56         653.2008765         160         52.25         6.24E-08 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 223.94         252.21         440.2272408         160         52.25         6.24E-08         2.30E-01           172.45         261.8         446.1164557         160         52.25         6.24E-08         2.33E-01           141.56         280.97         458.4081652         160         52.25         6.24E-08         2.34F-01           172.45         319.33         473.7666145         160         52.25         6.24E-08         2.54E-01           172.45         319.33         480.3353637         160         52.25         6.24E-08         2.54E-01           151.86         271.38         508.5429735         160         52.25         6.24E-08         2.75E-01           141.56         300.15         600.7890761         160         52.25         6.24E-08         3.25E-01           141.56         300.15         601.9321071         160         52.25         6.24E-08         3.25E-01           193.05         261.8         622.98599         160         52.25         6.24E-08         3.58E-01           234.23         309.74         662.985599         160         52.25         6.24E-08         3.66E-01           234.23         309.74         700.7636327         160         52.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                  |             |     |             |          |          |                 |  |  |
| 172.45       261.8       446.1164557       160       52.25       6.24E-08       2.33E-01         141.56       280.97       458.4081652       160       52.25       6.24E-08       2.47E-01         172.45       319.33       473.7666145       160       52.25       6.24E-08       2.51E-01         244.53       252.21       485.7766549       160       52.25       6.24E-08       2.54E-01         244.33       252.21       520.0505009       160       52.25       6.24E-08       2.57E-01         182.75       261.8       526.8797123       160       52.25       6.24E-08       3.14E-01         275.42       271.38       616.4697845       160       52.25       6.24E-08       3.22E-01         141.56       200.56       621.9321071       160       52.25       6.24E-08       3.22E-01         141.56       200.56       623.2008765       160       52.25       6.24E-08       3.41E-01         275.42       290.56       663.2008765       160       52.25       6.24E-08       3.60E-01         233.4       309.74       662.985599       160       52.25       6.24E-08       3.60E-01         233.4       309.74       703.88431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
| 141.56       280.97       458.4081652       160       52.25       6.24E-08       2.39E-01         162.15       319.33       473.7696145       160       52.25       6.24E-08       2.51E-01         244.53       252.21       485.7766549       160       52.25       6.24E-08       2.51E-01         244.53       252.21       50.05009       160       52.25       6.24E-08       2.71E-01         182.42       252.21       50.05009       160       52.25       6.24E-08       2.75E-01         141.56       300.15       600.7890761       160       52.25       6.24E-08       3.25E-01         141.56       290.56       652.098765       160       52.25       6.24E-08       3.25E-01         141.56       290.56       652.098765       160       52.25       6.24E-08       3.41E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.66E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.66E-01         234.23       309.74       703.7636327       160       52.25       6.24E-08       3.81E-01         2334       309.74       735.785871 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                  |             |     |             |          |          |                 |  |  |
| 162.15       319.33       473.7696145       160       52.25       6.24E-08       2.47E-01         172.45       319.33       480.3355637       160       52.25       6.24E-08       2.51E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       2.65E-01         234.23       252.21       500.505009       160       52.25       6.24E-08       2.71E-01         182.75       261.8       526.697123       160       52.25       6.24E-08       3.14E-01         275.42       271.38       616.49974845       160       52.25       6.24E-08       3.22E-01         141.56       200.56       651.2030765       160       52.25       6.24E-08       3.22E-01         274.22       200.56       653.2008765       160       52.25       6.24E-08       3.46E-01         265.12       300.74       662.985599       160       52.25       6.24E-08       3.66E-01         265.12       300.74       680.7565199       160       52.25       6.24E-08       3.66E-01         263.12       201.7       700.7636327       160       52.25       6.24E-08       3.66E-01         263.12       261.8       729.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |             |     |             |          |          |                 |  |  |
| 172.45       319.33       480.3353637       160       52.25       6.24E-08       2.54E-01         151.86       271.85       058.2427135       160       52.25       6.24E-08       2.66E-01         234.23       252.21       520.0505009       160       52.25       6.24E-08       2.71E-01         182.75       261.8       526.8797123       160       52.25       6.24E-08       3.14E-01         175.42       271.38       616.4697845       160       52.25       6.24E-08       3.22E-01         141.56       290.56       621.9321071       160       52.25       6.24E-08       3.22E-01         141.50       290.56       652.03008765       160       52.25       6.24E-08       3.41E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.60E-01         213.64       309.74       690.1759536       160       52.25       6.24E-08       3.66E-01         213.64       309.74       700.7636327       160       52.25       6.24E-08       3.76E-01         213.64       309.74       735.785871       160       52.25       6.24E-08       3.81E-01         203.34       209.74       735.785871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                  |             |     |             |          |          |                 |  |  |
| 244.53       252.21       485.7766549       160       52.25       6.24E-08       2.54E-01         151.86       271.38       508.5429735       160       52.25       6.24E-08       2.65E-01         234.23       252.21       520.055009       160       52.25       6.24E-08       2.71E-01         182.75       261.8       526.8797123       160       52.25       6.24E-08       3.14E-01         275.42       271.38       616.4697845       160       52.25       6.24E-08       3.22E-01         141.56       290.56       621.9321071       160       52.25       6.24E-08       3.25E-01         275.42       290.56       653.208765       160       52.25       6.24E-08       3.46E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.66E-01         123.43       309.74       690.1758536       160       52.25       6.24E-08       3.66E-01         123.45       309.74       735.785871       160       52.25       6.24E-08       3.66E-01         123.45       309.74       735.785871       160       52.25       6.24E-08       3.84E-01         203.34       209.74       735.785871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
| 151.86       271.38       508.5429735       160       52.25       6.24E-08       2.71E-01         182.75       261.8       526.8797123       160       52.25       6.24E-08       2.71E-01         182.75       261.8       526.8797123       160       52.25       6.24E-08       3.14E-01         275.42       271.38       616.4697845       160       52.25       6.24E-08       3.25E-01         193.05       261.8       622.8380418       160       52.25       6.24E-08       3.25E-01         275.42       290.56       653.2008765       160       52.25       6.24E-08       3.41E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.66E-01         265.12       300.15       686.7565199       160       52.25       6.24E-08       3.66E-01         162.15       271.38       719.3106132       160       52.25       6.24E-08       3.66E-01         162.15       271.38       719.3106132       160       52.25       6.24E-08       3.81E-01         23.94       309.74       735.785871       160       52.25       6.24E-08       3.81E-01         193.05       309.74       735.785871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
| 234.23         252.21         520.0505009         160         52.25         6.24E-08         2.71E-01           182.75         261.8         526.8797123         160         52.25         6.24E-08         3.14E-01           275.42         271.38         616.4697845         160         52.25         6.24E-08         3.22E-01           141.56         290.56         621.9321071         160         52.25         6.24E-08         3.25E-01           275.42         290.56         653.2008765         160         52.25         6.24E-08         3.41E-01           234.23         309.74         662.985599         160         52.25         6.24E-08         3.46E-01           261.12         300.74         686.7665199         160         52.25         6.24E-08         3.66E-01           162.15         271.38         719.3106132         160         52.25         6.24E-08         3.76E-01           223.94         309.74         723.8138431         160         52.25         6.24E-08         3.81E-01           193.05         309.74         735.785871         160         52.25         6.24E-08         3.84E-01           203.34         208.7         775.85871         160         52.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 182.75       261.8       526.8797123       160       52.25       6.24E-08       2.75E-01         141.56       300.15       600.7890761       160       52.25       6.24E-08       3.22E-01         141.56       290.56       621.9321071       160       52.25       6.24E-08       3.25E-01         193.05       261.8       622.8380418       160       52.25       6.24E-08       3.25E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.46E-01         265.12       300.15       686.7565199       160       52.25       6.24E-08       3.66E-01         162.15       271.38       719.3106132       160       52.25       6.24E-08       3.75E-01         223.94       309.74       700.7636327       160       52.25       6.24E-08       3.78E-01         265.12       271.38       719.3106132       160       52.25       6.24E-08       3.84E-01         203.34       209.74       723.8138431       160       52.25       6.24E-08       3.84E-01         203.34       201.74       735.785871       160       52.25       6.24E-08       3.84E-01         193.05       309.74       735.785871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 275.42271.38616.469784516052.256.24E-083.22E-01141.56290.56621.932107116052.256.24E-083.25E-01193.05261.8622.838041816052.256.24E-083.41E-01234.23309.74662.98559916052.256.24E-083.46E-01265.12300.75686.756519916052.256.24E-083.66E-01203.34309.74690.175953616052.256.24E-083.66E-01162.15271.38719.310613216052.256.24E-083.75E-01223.94309.74723.813843116052.256.24E-083.75E-01265.12261.8729.94799716052.256.24E-083.8E-01203.34261.8729.94799716052.256.24E-083.8E-01203.34261.8762.711435316052.256.24E-083.8E-01203.34261.8762.711435316052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.51E-01172.45280.97864.41456216052.256.24E-084.51E-01182.75309.74849.795405716052.256.24E-085.48E-01193.05301.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 182.75 | 261.8                            | 526.8797123 | 160 |             | 6.24E-08 | 2.75E-01 |                 |  |  |
| 141.56       290.56       621.9321071       160       52.25       6.24E-08       3.25E-01         193.05       261.8       622.8380418       160       52.25       6.24E-08       3.25E-01         275.42       290.56       653.2008765       160       52.25       6.24E-08       3.46E-01         263.42       309.74       662.985599       160       52.25       6.24E-08       3.66E-01         203.34       309.74       700.7636327       160       52.25       6.24E-08       3.66E-01         162.15       271.38       719.3106132       160       52.25       6.24E-08       3.76E-01         223.94       309.74       723.8138431       160       52.25       6.24E-08       3.81E-01         203.34       261.8       729.9479997       160       52.25       6.24E-08       3.84E-01         203.34       261.8       729.9479997       160       52.25       6.24E-08       3.98E-01         151.86       309.74       735.785871       160       52.25       6.24E-08       4.20E-01         275.42       280.97       804.1721782       160       52.25       6.24E-08       4.32E-01         151.86       309.74       803.8318464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141.56 | 300.15                           | 600.7890761 | 160 | 52.25       | 6.24E-08 | 3.14E-01 |                 |  |  |
| 193.05       261.8       622.8380418       160       52.25       6.24E-08       3.41E-01         234.23       309.74       662.985599       160       52.25       6.24E-08       3.46E-01         265.12       300.15       686.7565199       160       52.25       6.24E-08       3.66E-01         203.34       309.74       690.1759536       160       52.25       6.24E-08       3.66E-01         213.64       309.74       700.7636327       160       52.25       6.24E-08       3.75E-01         223.94       309.74       723.8138431       160       52.25       6.24E-08       3.81E-01         203.34       201.74       723.8138431       160       52.25       6.24E-08       3.84E-01         203.34       261.8       762.7114353       160       52.25       6.24E-08       3.84E-01         203.34       261.8       762.7114353       160       52.25       6.24E-08       4.32E-01         275.42       280.97       804.172782       160       52.25       6.24E-08       4.32E-01         172.45       271.38       828.721778       160       52.25       6.24E-08       4.32E-01         182.75       309.74       849.7956057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 275.42 | 271.38                           | 616.4697845 | 160 | 52.25       | 6.24E-08 | 3.22E-01 |                 |  |  |
| 275.42290.56653.200876516052.256.24E-083.41E-01234.23309.74662.98559916052.256.24E-083.46E-01265.12300.15686.756519916052.256.24E-083.60E-01203.34309.74690.175953616052.256.24E-083.66E-01162.15271.38719.310613216052.256.24E-083.66E-01162.15271.38719.310613216052.256.24E-083.75E-01223.94309.74723.813843116052.256.24E-083.84E-01265.12261.8729.947999716052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-084.20E-01151.86309.74803.831846416052.256.24E-084.20E-01172.45271.38828.72177816052.256.24E-084.20E-01172.45271.38828.72177816052.256.24E-084.51E-01182.75309.74449.95405716052.256.24E-084.65E-0113.64261.8955.900513116052.256.24E-085.13E-01193.05307.151088.40702816052.256.24E-085.64E-01193.05309.741080.05939716052.256.24E-085.68E-01203.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 234.23309.74662.98559916052.256.24E-083.46E-01265.12300.15686.756519916052.256.24E-083.58E-01203.34309.74700.763632716052.256.24E-083.60E-01213.64309.74700.763632716052.256.24E-083.76E-01223.94309.74723.813843116052.256.24E-083.78E-01265.12261.8729.947999716052.256.24E-083.81E-01193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01175.42280.97804.172178216052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.51E-01182.75309.74849.9795405716052.256.24E-084.51E-01182.75309.741010.69009916052.256.24E-084.51E-01193.05271.38882.855858316052.256.24E-085.13E-01172.45309.741080.05939716052.256.24E-085.68E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  |             |     |             |          |          |                 |  |  |
| 265.12300.15686.756519916052.256.24E-083.58E-01203.34309.74690.175953616052.256.24E-083.60E-01213.64309.74700.763632716052.256.24E-083.76E-01223.94309.74723.813843116052.256.24E-083.78E-01265.12261.8729.947999716052.256.24E-083.81E-01193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.31E-01182.75309.74849.795405716052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.51E-01183.05271.38982.855858316052.256.24E-085.38E-01162.15309.741016.69009916052.256.24E-085.68E-01193.05271.38982.855858316052.256.24E-085.68E-01193.051088.40702816052.256.24E-085.68E-01162.15280.97 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  |             |     |             |          |          |                 |  |  |
| 203.34309.74690.175953616052.256.24E-083.60E-01213.64309.74700.763632716052.256.24E-083.75E-01223.94309.74723.813843116052.256.24E-083.78E-01265.12261.8729.947999716052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74809.974864.41456216052.256.24E-084.31E-01182.75271.38889.94202316052.256.24E-084.65E-0113.64261.8955.900513116052.256.24E-085.3E-01193.05271.38982.858858316052.256.24E-085.3E-01193.05300.74108.05939716052.256.24E-085.64E-01193.05300.751088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.68E-01203.34300.151133.08517616052.256.24E-085.88E-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 213.64309.74700.763632716052.256.24E-083.66E-01162.15271.38719.310613216052.256.24E-083.75E-01223.94309.74723.813843116052.256.24E-083.81E-01265.12261.8729.947999716052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.65E-01182.75271.38889.942023216052.256.24E-084.65E-01193.05271.38982.855858316052.256.24E-084.99E-01193.05300.151088.40702816052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.68E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.2363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-086.98E-01182.75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                  |             |     |             |          |          |                 |  |  |
| 162.15271.38719.310613216052.256.24E-083.75E-01223.94309.74723.813843116052.256.24E-083.78E-01265.12261.8729.947999716052.256.24E-083.81E-01193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.35E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.28E-01162.15309.741010.6909916052.256.24E-085.68E-01203.34300.151188.40702816052.256.24E-085.68E-01203.34300.151188.40702816052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-086.08E-01203.34271.381165.48221616052.256.24E-086.11E-01254.83<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |             |     |             |          |          |                 |  |  |
| 223.94309.74723.813843116052.256.24E-083.78E-01265.12261.8729.947999716052.256.24E-083.81E-01193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-085.13E-01193.05271.38982.855858316052.256.24E-085.28E-01193.05300.151088.40702816052.256.24E-085.64E-01193.05300.151127.2363516052.256.24E-085.88E-01203.34300.151127.2363516052.256.24E-085.88E-01203.34271.381165.48221616052.256.24E-086.08E-01203.34271.381165.48221616052.256.24E-086.11E-0123.34261.81183.07024916052.256.24E-086.18E-01151.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 265.12261.8729.947999716052.256.24E-083.81E-01193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01193.05271.38982.855858316052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.64E-01193.05300.151127.2363516052.256.24E-085.88E-01203.34300.151127.2363516052.256.24E-085.88E-01203.34271.381165.48221616052.256.24E-086.11E-0123.34271.381165.48221616052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 193.05309.74735.78587116052.256.24E-083.84E-01203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.44E-01151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.94203216052.256.24E-084.59E-01213.64261.8955.900513116052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01193.05271.38982.855858316052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.2363516052.256.24E-085.88E-01203.34271.381165.48221616052.256.24E-086.18E-01182.75280.971171.3860416052.256.24E-086.18E-01182.75280.971171.3860416052.256.24E-086.18E-01182.75300.151185.67523616052.256.24E-086.18E-01182.75 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                  |             |     |             |          |          |                 |  |  |
| 203.34261.8762.711435316052.256.24E-083.98E-01151.86309.74803.831846416052.256.24E-084.20E-01275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.44E-01151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.59E-01213.64261.8955.900513116052.256.24E-085.13E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.2363516052.256.24E-085.88E-01203.34271.381165.48221616052.256.24E-086.11E-01254.83261.81133.07024916052.256.24E-086.18E-01182.75300.151186.67523616052.256.24E-086.18E-01182.75300.151186.3544716052.256.24E-086.19E-01182.75300.151186.3544716052.256.24E-086.19E-01182.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                  |             |     |             |          |          |                 |  |  |
| 275.42280.97804.172178216052.256.24E-084.20E-01172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.44E-01151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.85585316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.2363516052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.3544716052.256.24E-086.19E-01182.75300.151186.3544716052.256.24E-086.19E-01182.75 <td< td=""><td>203.34</td><td>261.8</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203.34 | 261.8                            |             |     |             |          |          |                 |  |  |
| 172.45271.38828.721779816052.256.24E-084.33E-01182.75309.74849.795405716052.256.24E-084.44E-01151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23365316052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.11E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01182.75300.151186.3544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151.86 | 309.74                           | 803.8318464 | 160 | 52.25       |          | 4.20E-01 |                 |  |  |
| 182.75309.74849.795405716052.256.24E-084.44E-01151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  |             |     |             |          |          |                 |  |  |
| 151.86280.97864.414566216052.256.24E-084.51E-01182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                  |             |     |             |          |          |                 |  |  |
| 182.75271.38889.942023216052.256.24E-084.65E-01213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                  |             |     |             |          |          |                 |  |  |
| 213.64261.8955.900513116052.256.24E-084.99E-01193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81185.07523616052.256.24E-086.19E-01151.86290.561186.63544716052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                  |             |     |             |          |          |                 |  |  |
| 193.05271.38982.855858316052.256.24E-085.13E-01172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81185.07523616052.256.24E-086.18E-01151.86290.561186.3544716052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                  |             |     |             |          |          |                 |  |  |
| 172.45309.741010.69009916052.256.24E-085.28E-01162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.3860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                  |             |     |             |          |          |                 |  |  |
| 162.15309.741080.05939716052.256.24E-085.64E-01193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.3544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.19E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
| 193.05300.151088.40702816052.256.24E-085.68E-01203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                  |             |     |             |          |          |                 |  |  |
| 203.34300.151127.23363516052.256.24E-085.88E-01162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                  |             |     |             |          |          |                 |  |  |
| 162.15280.971133.08517616052.256.24E-085.91E-01203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                  |             |     |             |          |          |                 |  |  |
| 203.34271.381165.48221616052.256.24E-086.08E-01182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                  |             |     |             |          |          |                 |  |  |
| 182.75280.971171.38860416052.256.24E-086.11E-01254.83261.81183.07024916052.256.24E-086.18E-01151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                  |             |     |             |          |          |                 |  |  |
| 151.86290.561185.67523616052.256.24E-086.19E-01182.75300.151186.33544716052.256.24E-086.19E-01172.45280.971188.26236516052.256.24E-086.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                  | 1171.388604 |     |             |          |          |                 |  |  |
| 182.75         300.15         1186.335447         160         52.25         6.24E-08         6.19E-01           172.45         280.97         1188.262365         160         52.25         6.24E-08         6.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                  | 1183.070249 |     |             |          |          |                 |  |  |
| 172.45 280.97 1188.262365 160 52.25 6.24E-08 6.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151.86 | 290.56                           | 1185.675236 | 160 | 52.25       | 6.24E-08 | 6.19E-01 |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                  |             |     |             |          |          |                 |  |  |
| 223.94 261.8 1198.732975 160 52.25 6.24E-08 6.26E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                  |             |     |             |          |          |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 223.94 | 261.8                            | 1198.732975 | 160 | 52.25       | 6.24E-08 | 6.26E-01 |                 |  |  |

## Mass of TPH-g within Shallow WBZ

| Cell<br>Address<br>(X) | Cell<br>Address<br>(Y) | Cell<br>Concentration<br>of TPH-g<br>(ug/L) | Cell<br>Volume<br>ft3 | Retardation<br>Coefficient<br>(Rd) | Conversion<br>Factor | Cell Mass Total<br>(Ib) | Mass Total (lb) |  |  |  |
|------------------------|------------------------|---------------------------------------------|-----------------------|------------------------------------|----------------------|-------------------------|-----------------|--|--|--|
| 193.05                 | 280.97                 | 1218.310875                                 | 160                   | 52.25                              | 6.24E-08             | 6.36E-01                |                 |  |  |  |
| 151.86                 | 300.15                 | 1224.165103                                 | 160                   | 52.25                              | 6.24E-08             | 6.39E-01                |                 |  |  |  |
| 193.05                 | 290.56                 | 1262.341449                                 | 160                   | 52.25                              | 6.24E-08             | 6.59E-01                |                 |  |  |  |
| 182.75                 | 290.56                 | 1294.734676                                 | 160                   | 52.25                              | 6.24E-08             | 6.76E-01                |                 |  |  |  |
| 213.64                 | 300.15                 | 1311.195951                                 | 160                   | 52.25                              | 6.24E-08             | 6.84E-01                |                 |  |  |  |
| 265.12                 | 271.38                 | 1348.879785                                 | 160                   | 52.25                              | 6.24E-08             | 7.04E-01                |                 |  |  |  |
| 203.34                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 7.25E-01                |                 |  |  |  |
| 203.34                 | 280.97                 | 1400.236649                                 | 160                   | 52.25                              | 6.24E-08             | 7.31E-01                |                 |  |  |  |
| 172.45                 | 300.15                 | 1415.690787                                 | 160                   | 52.25                              | 6.24E-08             | 7.39E-01                |                 |  |  |  |
| 234.23                 | 261.8                  | 1417.409409                                 | 160                   | 52.25                              | 6.24E-08             | 7.40E-01                |                 |  |  |  |
| 244.53                 | 261.8                  | 1444.734198                                 | 160                   | 52.25                              | 6.24E-08             | 7.54E-01                |                 |  |  |  |
| 172.45                 | 290.56                 | 1446.356385                                 | 160                   | 52.25                              | 6.24E-08             | 7.55E-01                |                 |  |  |  |
| 213.64                 | 271.38                 | 1472.968459                                 | 160                   | 52.25                              | 6.24E-08             | 7.69E-01                |                 |  |  |  |
| 265.12                 | 290.56                 | 1552.531527                                 | 160                   | 52.25                              | 6.24E-08             | 8.10E-01                |                 |  |  |  |
| 162.15                 | 290.56                 | 1563.027571                                 | 160                   | 52.25                              | 6.24E-08             | 8.16E-01                |                 |  |  |  |
| 254.83                 | 300.15                 | 1598.064248                                 | 160                   | 52.25                              | 6.24E-08             | 8.34E-01                |                 |  |  |  |
| 223.94                 | 300.15                 | 1648.437937                                 | 160                   | 52.25                              | 6.24E-08             | 8.60E-01                |                 |  |  |  |
| 213.64                 | 290.56                 | 1716.113632                                 | 160                   | 52.25                              | 6.24E-08             | 8.96E-01                |                 |  |  |  |
| 162.15                 | 300.15                 | 1734.850074                                 | 160                   | 52.25                              | 6.24E-08             | 9.06E-01                |                 |  |  |  |
| 265.12                 | 280.97                 | 1737.196746                                 | 160                   | 52.25                              | 6.24E-08             | 9.07E-01                |                 |  |  |  |
| 213.64                 | 280.97                 | 1767.242008                                 | 160                   | 52.25                              | 6.24E-08             | 9.22E-01                |                 |  |  |  |
| 223.94                 | 271.38                 | 1909.668672                                 | 160                   | 52.25                              | 6.24E-08             | 9.97E-01                |                 |  |  |  |
| 234.23                 | 300.15                 | 2103.150254                                 | 160                   | 52.25                              | 6.24E-08             | 1.10E+00                |                 |  |  |  |
| 254.83                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.11E+00                |                 |  |  |  |
| 223.94                 | 290.56                 | 2298.566214                                 | 160                   | 52.25                              | 6.24E-08             | 1.20E+00                |                 |  |  |  |
| 244.53                 | 300.15                 | 2312.915758                                 | 160                   | 52.25                              | 6.24E-08             | 1.21E+00                |                 |  |  |  |
| 223.94                 | 280.97                 | 2362.948232                                 | 160                   | 52.25                              | 6.24E-08             | 1.23E+00                |                 |  |  |  |
| 234.23                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.24E+00                |                 |  |  |  |
| 244.53                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.34E+00                |                 |  |  |  |
| 254.83                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.55E+00                |                 |  |  |  |
| 254.83                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.57E+00                |                 |  |  |  |
| 234.23                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.66E+00                |                 |  |  |  |
| 234.23                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.68E+00                |                 |  |  |  |
| 244.53                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 1.97E+00                |                 |  |  |  |
| 244.53                 |                        |                                             | 160                   | 52.25                              | 6.24E-08             | 2.36E+00                |                 |  |  |  |
|                        |                        |                                             |                       |                                    |                      | 56.17                   | 1               |  |  |  |
|                        |                        |                                             |                       |                                    |                      |                         |                 |  |  |  |

Mass of TPH-g within Shallow WBZ

|                  | Mass of Benzene within Shallow WBZ |                            |            |              |                      |                      |                 |  |  |  |
|------------------|------------------------------------|----------------------------|------------|--------------|----------------------|----------------------|-----------------|--|--|--|
| Cell             | Cell                               | Cell                       | Cell       | Retardation  |                      |                      |                 |  |  |  |
|                  | Address                            | Concentration              | Volume     | Coefficient  | Conversion           | Cell Mass Total      | Mass Total (lb) |  |  |  |
| (X)              | (Y)                                | of Benzene                 | ft3        | (Rd)         | Factor               | (lb)                 |                 |  |  |  |
| 162.15           | 252.21                             | (ug/L)                     |            |              | 6.24E-08             | 1.89E-03             | 2.40            |  |  |  |
|                  |                                    | 118.0686029<br>133.5445843 | 160        | 1.60         |                      |                      | 2.19            |  |  |  |
| 141.56<br>172.45 | 319.33<br>328.92                   | 151.8497605                | 160<br>160 | 1.60<br>1.60 | 6.24E-08<br>6.24E-08 | 2.14E-03<br>2.43E-03 |                 |  |  |  |
| 254.83           | 309.74                             | 152.787634                 | 160        | 1.60         | 6.24E-08             | 2.45E-03             |                 |  |  |  |
| 172.45           | 252.21                             | 175.4594035                | 160        | 1.60         | 6.24E-08             | 2.81E-03             |                 |  |  |  |
| 285.72           |                                    | 182.9417749                | 160        | 1.60         | 6.24E-08             | 2.93E-03             |                 |  |  |  |
| 213.64           | 319.33                             | 203.6629743                | 160        | 1.60         | 6.24E-08             | 3.26E-03             |                 |  |  |  |
| 151.86           | 261.8                              | 213.8992894                | 160        | 1.60         | 6.24E-08             | 3.43E-03             |                 |  |  |  |
| 182.75           | 252.21                             | 224.2145173                | 160        | 1.60         | 6.24E-08             | 3.59E-03             |                 |  |  |  |
| 285.72           |                                    | 225.8552665                | 160        | 1.60         | 6.24E-08             | 3.62E-03             |                 |  |  |  |
| 141.56           |                                    | 233.1942415                | 160        | 1.60         | 6.24E-08             | 3.74E-03             |                 |  |  |  |
| 265.12           |                                    | 306.3371545                | 160        | 1.60         | 6.24E-08             | 4.91E-03             |                 |  |  |  |
| 203.34           | 319.33                             | 306.9471269                | 160        | 1.60         | 6.24E-08             | 4.92E-03             |                 |  |  |  |
| 275.42<br>193.05 | 300.15<br>252.21                   | 311.4041438<br>319.3072041 | 160<br>160 | 1.60<br>1.60 | 6.24E-08<br>6.24E-08 | 4.99E-03<br>5.12E-03 |                 |  |  |  |
| 151.86           | 319.33                             | 333.9911169                | 160        | 1.60         | 6.24E-08             | 5.35E-03             |                 |  |  |  |
| 285.72           | 280.97                             | 349.9072321                | 160        | 1.60         | 6.24E-08             | 5.61E-03             |                 |  |  |  |
| 141.56           | 309.74                             | 368.942164                 | 160        | 1.60         | 6.24E-08             | 5.91E-03             |                 |  |  |  |
| 162.15           | 261.8                              | 400.7504722                | 160        | 1.60         | 6.24E-08             | 6.42E-03             |                 |  |  |  |
| 275.42           | 261.8                              | 433.9694943                | 160        | 1.60         | 6.24E-08             | 6.96E-03             |                 |  |  |  |
| 193.05           | 319.33                             | 440.2272408                | 160        | 1.60         | 6.24E-08             | 7.06E-03             |                 |  |  |  |
| 203.34           | 252.21                             | 446.1164557                | 160        | 1.60         | 6.24E-08             | 7.15E-03             |                 |  |  |  |
| 182.75           |                                    | 458.4081652                | 160        | 1.60         | 6.24E-08             | 7.35E-03             |                 |  |  |  |
| 141.56           | 280.97                             | 473.7696145                | 160        | 1.60         | 6.24E-08             | 7.60E-03             |                 |  |  |  |
| 162.15           | 319.33                             | 480.3353637                | 160        | 1.60         | 6.24E-08             | 7.70E-03             |                 |  |  |  |
| 172.45           | 319.33                             | 485.7766549                | 160        | 1.60         | 6.24E-08             | 7.79E-03             |                 |  |  |  |
| 254.83<br>172.45 | 252.21<br>261.8                    | 508.5429735<br>520.0505009 | 160<br>160 | 1.60<br>1.60 | 6.24E-08<br>6.24E-08 | 8.15E-03<br>8.34E-03 |                 |  |  |  |
| 151.86           | 271.38                             | 526.8797123                | 160        | 1.60         | 6.24E-08             | 8.45E-03             |                 |  |  |  |
| 213.64           | 252.21                             | 600.7890761                | 160        | 1.60         | 6.24E-08             | 9.63E-03             |                 |  |  |  |
| 141.56           | 300.15                             | 616.4697845                | 160        | 1.60         | 6.24E-08             | 9.88E-03             |                 |  |  |  |
| 141.56           | 290.56                             | 621.9321071                | 160        | 1.60         | 6.24E-08             | 9.97E-03             |                 |  |  |  |
| 182.75           | 261.8                              | 622.8380418                | 160        | 1.60         | 6.24E-08             | 9.98E-03             |                 |  |  |  |
| 223.94           | 252.21                             | 653.2008765                | 160        | 1.60         | 6.24E-08             | 1.05E-02             |                 |  |  |  |
| 244.53           | 309.74                             | 662.985599                 | 160        | 1.60         | 6.24E-08             | 1.06E-02             |                 |  |  |  |
| 162.15           | 271.38                             | 686.7565199                | 160        | 1.60         | 6.24E-08             | 1.10E-02             |                 |  |  |  |
| 244.53           | 252.21                             | 690.1759536                | 160        | 1.60         | 6.24E-08             | 1.11E-02             |                 |  |  |  |
| 151.86           | 309.74                             | 700.7636327                | 160        | 1.60         | 6.24E-08             | 1.12E-02             |                 |  |  |  |
| 234.23           | 252.21                             | 719.3106132                | 160        | 1.60         | 6.24E-08             | 1.15E-02             |                 |  |  |  |
| 193.05<br>151.86 | 261.8<br>280.97                    | 723.8138431<br>729.9479997 | 160<br>160 | 1.60<br>1.60 | 6.24E-08<br>6.24E-08 | 1.16E-02<br>1.17E-02 |                 |  |  |  |
| 193.05           | 309.74                             | 735.785871                 | 160        | 1.60         | 6.24E-08             | 1.18E-02             |                 |  |  |  |
| 172.45           | 271.38                             | 762.7114353                | 160        | 1.60         | 6.24E-08             | 1.22E-02             |                 |  |  |  |
| 203.34           |                                    | 803.8318464                | 160        | 1.60         | 6.24E-08             | 1.29E-02             |                 |  |  |  |
| 182.75           |                                    | 804.1721782                | 160        | 1.60         | 6.24E-08             | 1.29E-02             |                 |  |  |  |
| 275.42           |                                    | 828.7217798                | 160        | 1.60         | 6.24E-08             | 1.33E-02             |                 |  |  |  |
| 213.64           |                                    | 849.7954057                | 160        | 1.60         | 6.24E-08             | 1.36E-02             |                 |  |  |  |
| 275.42           | 290.56                             | 864.4145662                | 160        | 1.60         | 6.24E-08             | 1.39E-02             |                 |  |  |  |
| 234.23           | 309.74                             | 889.9420232                | 160        | 1.60         | 6.24E-08             | 1.43E-02             |                 |  |  |  |
| 172.45           | 309.74                             | 955.9005131                | 160        | 1.60         | 6.24E-08             | 1.53E-02             |                 |  |  |  |
| 162.15           | 309.74                             | 982.8558583                | 160        | 1.60         | 6.24E-08             | 1.58E-02             |                 |  |  |  |
| 182.75           |                                    | 1010.690099                | 160        | 1.60         | 6.24E-08             | 1.62E-02             |                 |  |  |  |
| 265.12           | 300.15                             | 1080.059397                | 160<br>160 | 1.60         | 6.24E-08             | 1.73E-02             |                 |  |  |  |
| 203.34<br>223.94 | 261.8<br>309.74                    | 1088.407028<br>1127.233635 | 160<br>160 | 1.60<br>1.60 | 6.24E-08<br>6.24E-08 | 1.74E-02<br>1.81E-02 |                 |  |  |  |
| 265.12           |                                    | 1127.233635                | 160<br>160 | 1.60         | 6.24E-08             | 1.82E-02             |                 |  |  |  |
| 151.86           |                                    | 1165.482216                | 160        | 1.60         | 6.24E-08             | 1.87E-02             |                 |  |  |  |
| 162.15           |                                    | 1171.388604                | 160        | 1.60         | 6.24E-08             | 1.88E-02             |                 |  |  |  |
| 151.86           |                                    | 1183.070249                | 160        | 1.60         | 6.24E-08             | 1.90E-02             |                 |  |  |  |
| 275.42           |                                    | 1185.675236                | 160        | 1.60         | 6.24E-08             | 1.90E-02             |                 |  |  |  |
|                  |                                    | 1186.335447                | 160        | 1.60         | 6.24E-08             | 1.90E-02             |                 |  |  |  |
| 172.45           | 200.01                             |                            |            |              |                      |                      |                 |  |  |  |
| 172.45<br>193.05 |                                    | 1188.262365                | 160        | 1.60         | 6.24E-08             | 1.90E-02             |                 |  |  |  |

Mass of Benzene within Shallow WBZ

| Mass of Benzene within Shallow WBZ |                        |                                               |                       |                                    |                      |                         |                 |  |  |
|------------------------------------|------------------------|-----------------------------------------------|-----------------------|------------------------------------|----------------------|-------------------------|-----------------|--|--|
| Cell<br>Address<br>(X)             | Cell<br>Address<br>(Y) | Cell<br>Concentration<br>of Benzene<br>(ug/L) | Cell<br>Volume<br>ft3 | Retardation<br>Coefficient<br>(Rd) | Conversion<br>Factor | Cell Mass Total<br>(Ib) | Mass Total (lb) |  |  |
| 193.05                             | 300.15                 | 1218.310875                                   | 160                   | 1.60                               | 6.24E-08             | 1.95E-02                |                 |  |  |
| 182.75                             |                        | 1224.165103                                   | 160                   | 1.60                               | 6.24E-08             | 1.96E-02                |                 |  |  |
| 213.64                             |                        | 1262.341449                                   | 160                   | 1.60                               | 6.24E-08             | 2.02E-02                |                 |  |  |
| 172.45                             |                        | 1294.734676                                   | 160                   | 1.60                               | 6.24E-08             | 2.08E-02                |                 |  |  |
| 182.75                             |                        | 1311.195951                                   | 160                   | 1.60                               | 6.24E-08             | 2.10E-02                |                 |  |  |
| 172.45                             |                        | 1348.879785                                   | 160                   | 1.60                               | 6.24E-08             | 2.16E-02                |                 |  |  |
| 162.15                             |                        | 1389.913859                                   | 160                   | 1.60                               | 6.24E-08             | 2.23E-02                |                 |  |  |
| 203.34                             | 300.15                 | 1400.236649                                   | 160                   | 1.60                               | 6.24E-08             | 2.24E-02                |                 |  |  |
| 193.05                             |                        | 1415.690787                                   | 160                   | 1.60                               | 6.24E-08             | 2.27E-02                |                 |  |  |
| 193.05                             |                        | 1417.409409                                   | 160                   | 1.60                               | 6.24E-08             | 2.27E-02                |                 |  |  |
| 203.34                             |                        | 1444.734198                                   | 160                   | 1.60                               | 6.24E-08             | 2.32E-02                |                 |  |  |
| 162.15                             | 300.15                 | 1446.356385                                   | 160                   | 1.60                               | 6.24E-08             | 2.32E-02                |                 |  |  |
| 223.94                             | 261.8                  | 1472.968459                                   | 160                   | 1.60                               | 6.24E-08             | 2.36E-02                |                 |  |  |
| 254.83                             | 261.8                  | 1552.531527                                   | 160                   | 1.60                               | 6.24E-08             | 2.49E-02                |                 |  |  |
| 213.64                             |                        | 1563.027571                                   | 160                   | 1.60                               | 6.24E-08             | 2.51E-02                |                 |  |  |
| 203.34                             | 290.56                 | 1598.064248                                   | 160                   | 1.60                               | 6.24E-08             | 2.56E-02                |                 |  |  |
| 203.34                             | 280.97                 | 1648.437937                                   | 160                   | 1.60                               | 6.24E-08             | 2.64E-02                |                 |  |  |
| 265.12                             | 271.38                 | 1716.113632                                   | 160                   | 1.60                               | 6.24E-08             | 2.75E-02                |                 |  |  |
| 213.64                             | 271.38                 | 1734.850074                                   | 160                   | 1.60                               | 6.24E-08             | 2.78E-02                |                 |  |  |
| 234.23                             | 261.8                  | 1737.196746                                   | 160                   | 1.60                               | 6.24E-08             | 2.78E-02                |                 |  |  |
| 244.53                             | 261.8                  | 1767.242008                                   | 160                   | 1.60                               | 6.24E-08             | 2.83E-02                |                 |  |  |
| 265.12                             | 290.56                 | 1909.668672                                   | 160                   | 1.60                               | 6.24E-08             | 3.06E-02                |                 |  |  |
| 254.83                             | 300.15                 | 2103.150254                                   | 160                   | 1.60                               | 6.24E-08             | 3.37E-02                |                 |  |  |
| 223.94                             | 300.15                 | 2128.070997                                   | 160                   | 1.60                               | 6.24E-08             | 3.41E-02                |                 |  |  |
| 213.64                             | 290.56                 | 2298.566214                                   | 160                   | 1.60                               | 6.24E-08             | 3.68E-02                |                 |  |  |
| 213.64                             | 280.97                 | 2312.915758                                   | 160                   | 1.60                               | 6.24E-08             | 3.71E-02                |                 |  |  |
| 265.12                             | 280.97                 | 2362.948232                                   | 160                   | 1.60                               | 6.24E-08             | 3.79E-02                |                 |  |  |
| 223.94                             | 271.38                 | 2378.866278                                   | 160                   | 1.60                               | 6.24E-08             | 3.81E-02                |                 |  |  |
| 234.23                             | 300.15                 | 2558.845893                                   | 160                   | 1.60                               | 6.24E-08             | 4.10E-02                |                 |  |  |
| 254.83                             | 271.38                 | 2965.498889                                   | 160                   | 1.60                               | 6.24E-08             | 4.75E-02                |                 |  |  |
| 223.94                             | 290.56                 | 2998.29749                                    | 160                   | 1.60                               | 6.24E-08             | 4.81E-02                |                 |  |  |
| 223.94                             | 280.97                 | 3178.102004                                   | 160                   | 1.60                               | 6.24E-08             | 5.09E-02                |                 |  |  |
| 244.53                             | 300.15                 | 3223.562711                                   | 160                   | 1.60                               | 6.24E-08             | 5.17E-02                |                 |  |  |
| 234.23                             | 271.38                 | 3773.90052                                    | 160                   | 1.60                               | 6.24E-08             | 6.05E-02                |                 |  |  |
| 244.53                             | 271.38                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 254.83                             | 280.97                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 254.83                             | 290.56                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 234.23                             | 280.97                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 234.23                             | 290.56                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 244.53                             | 280.97                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
| 244.53                             | 290.56                 | 4524.522799                                   | 160                   | 1.60                               | 6.24E-08             | 7.25E-02                |                 |  |  |
|                                    |                        |                                               |                       |                                    |                      | 2 19                    |                 |  |  |

## Mass of Benzene within Shallow WBZ

2.19

|                  | Mass of MtBE within Shallow WBZ |                            |            |              |                      |                         |                 |  |  |  |
|------------------|---------------------------------|----------------------------|------------|--------------|----------------------|-------------------------|-----------------|--|--|--|
| Cell             | Cell                            | Cell                       | Cell       | Retardation  | Conversion           |                         |                 |  |  |  |
|                  | Address                         | Concentration              | Volume     | Coefficient  | Conversion<br>Factor | Cell Mass Total<br>(lb) | Mass Total (lb) |  |  |  |
| (X)              | (Y)                             | of MtBE (ug/L)             | ft3        | (Rd)         | I ACIOI              | (ID)                    |                 |  |  |  |
| 229.6            | 208.53                          | 5.260363075                | 208        | 1.06         | 6.24E-08             | 7.25E-05                | 0.032           |  |  |  |
| 279.07           | 218.56                          | 5.513288477                | 208        | 1.06         | 6.24E-08             | 7.60E-05                |                 |  |  |  |
| 269.17           |                                 | 5.939685529                | 208        | 1.06         | 6.24E-08             | 8.19E-05                |                 |  |  |  |
| 328.53           |                                 | 5.960830105                | 208        | 1.06         | 6.24E-08             | 8.22E-05                |                 |  |  |  |
| 170.23           |                                 | 6.06747068                 | 208        | 1.06         | 6.24E-08             | 8.36E-05                |                 |  |  |  |
| 170.23<br>180.13 |                                 | 6.195555331                | 208<br>208 | 1.06         | 6.24E-08<br>6.24E-08 | 8.54E-05                |                 |  |  |  |
| 269.17           |                                 | 6.204439698<br>6.260589912 | 208        | 1.06<br>1.06 | 6.24E-08             | 8.55E-05<br>8.63E-05    |                 |  |  |  |
| 279.07           |                                 | 6.437827884                | 208        | 1.06         | 6.24E-08             | 8.87E-05                |                 |  |  |  |
| 279.07           |                                 | 6.633686704                | 208        | 1.06         | 6.24E-08             | 9.14E-05                |                 |  |  |  |
| 219.7            | 218.56                          | 6.751191045                | 208        | 1.06         | 6.24E-08             | 9.31E-05                |                 |  |  |  |
| 239.49           | 208.53                          | 6.860626563                | 208        | 1.06         | 6.24E-08             | 9.46E-05                |                 |  |  |  |
| 338.43           |                                 | 6.906694098                | 208        | 1.06         | 6.24E-08             | 9.52E-05                |                 |  |  |  |
| 279.07           |                                 | 6.958138931                | 208        | 1.06         | 6.24E-08             | 9.59E-05                |                 |  |  |  |
| 170.23           |                                 | 7.020228982                | 208        | 1.06         | 6.24E-08             | 9.68E-05                |                 |  |  |  |
| 259.28           |                                 | 7.024272704                | 208        | 1.06         | 6.24E-08             | 9.68E-05                |                 |  |  |  |
| 190.02<br>249.38 |                                 | 7.101605495<br>7.410714185 | 208<br>208 | 1.06<br>1.06 | 6.24E-08<br>6.24E-08 | 9.79E-05<br>1.02E-04    |                 |  |  |  |
| 249.38           | 208.53                          | 7.711159429                | 208        | 1.06         | 6.24E-08             | 1.02E-04<br>1.06E-04    |                 |  |  |  |
| 190.02           |                                 | 7.794111216                | 208        | 1.06         | 6.24E-08             | 1.07E-04                |                 |  |  |  |
| 269.17           |                                 | 7.899673563                | 208        | 1.06         | 6.24E-08             | 1.09E-04                |                 |  |  |  |
| 199.92           |                                 | 8.414229217                | 208        | 1.06         | 6.24E-08             | 1.16E-04                |                 |  |  |  |
| 180.13           | 298.78                          | 8.622755913                | 208        | 1.06         | 6.24E-08             | 1.19E-04                |                 |  |  |  |
| 348.32           |                                 | 9.056560626                | 208        | 1.06         | 6.24E-08             | 1.25E-04                |                 |  |  |  |
| 180.13           |                                 | 9.127886266                | 208        | 1.06         | 6.24E-08             | 1.26E-04                |                 |  |  |  |
| 229.6            |                                 | 9.539278304                | 208        | 1.06         | 6.24E-08             | 1.32E-04                |                 |  |  |  |
| 328.53<br>199.92 |                                 | 9.735376352<br>9.780157222 | 208<br>208 | 1.06<br>1.06 | 6.24E-08<br>6.24E-08 | 1.34E-04<br>1.35E-04    |                 |  |  |  |
| 259.28           |                                 | 9.909760457                | 208        | 1.06         | 6.24E-08             | 1.37E-04                |                 |  |  |  |
| 269.17           |                                 | 10.05203046                | 208        | 1.06         | 6.24E-08             | 1.39E-04                |                 |  |  |  |
| 180.13           |                                 | 10.72529327                | 208        | 1.06         | 6.24E-08             | 1.48E-04                |                 |  |  |  |
| 180.13           |                                 | 10.81590798                | 208        | 1.06         | 6.24E-08             | 1.49E-04                |                 |  |  |  |
| 239.49           | 218.56                          | 11.01686305                | 208        | 1.06         | 6.24E-08             | 1.52E-04                |                 |  |  |  |
| 249.38           |                                 | 11.07806551                | 208        | 1.06         | 6.24E-08             | 1.53E-04                |                 |  |  |  |
| 328.53           |                                 | 11.38684301                | 208        | 1.06         | 6.24E-08             | 1.57E-04                |                 |  |  |  |
| 348.32           |                                 | 11.71205722                | 208        | 1.06         | 6.24E-08             | 1.61E-04                |                 |  |  |  |
| 259.28<br>219.7  |                                 | 12.02289117<br>12.14330662 | 208<br>208 | 1.06<br>1.06 | 6.24E-08<br>6.24E-08 | 1.66E-04<br>1.67E-04    |                 |  |  |  |
| 269.17           |                                 | 12.20346072                | 208        | 1.06         | 6.24E-08             | 1.68E-04                |                 |  |  |  |
| 190.02           |                                 | 12.32660806                | 208        | 1.06         | 6.24E-08             | 1.70E-04                |                 |  |  |  |
| 190.02           |                                 | 12.38881953                | 208        | 1.06         | 6.24E-08             | 1.71E-04                |                 |  |  |  |
| 269.17           | 268.7                           | 12.94102987                | 208        | 1.06         | 6.24E-08             | 1.78E-04                |                 |  |  |  |
| 209.81           | 308.81                          | 13.21525582                | 208        | 1.06         | 6.24E-08             | 1.82E-04                |                 |  |  |  |
| 259.28           |                                 | 13.38551586                |            | 1.06         | 6.24E-08             | 1.85E-04                |                 |  |  |  |
| 338.43           |                                 | 13.64711863                | 208        | 1.06         | 6.24E-08             | 1.88E-04                |                 |  |  |  |
| 209.81           |                                 | 13.96464317                | 208        | 1.06         | 6.24E-08             | 1.93E-04                |                 |  |  |  |
| 269.17           |                                 | 13.98933801<br>14.19931725 | 208<br>208 | 1.06         | 6.24E-08             | 1.93E-04                |                 |  |  |  |
| 199.92<br>269.17 |                                 | 14.19931725                | 208<br>208 | 1.06<br>1.06 | 6.24E-08<br>6.24E-08 | 1.96E-04<br>2.03E-04    |                 |  |  |  |
| 209.17           |                                 | 15.18612549                | 208        | 1.06         | 6.24E-08             | 2.09E-04                |                 |  |  |  |
| 348.32           |                                 | 15.5160034                 | 208        | 1.06         | 6.24E-08             | 2.14E-04                |                 |  |  |  |
| 190.02           |                                 | 15.66322722                | 208        | 1.06         | 6.24E-08             | 2.16E-04                |                 |  |  |  |
| 249.38           | 228.59                          | 15.71358353                | 208        | 1.06         | 6.24E-08             | 2.17E-04                |                 |  |  |  |
| 190.02           |                                 | 15.97586047                | 208        | 1.06         | 6.24E-08             | 2.20E-04                |                 |  |  |  |
| 239.49           |                                 | 16.41283095                | 208        | 1.06         | 6.24E-08             | 2.26E-04                |                 |  |  |  |
| 190.02           |                                 | 17.0609206                 | 208        | 1.06         | 6.24E-08             | 2.35E-04                |                 |  |  |  |
| 219.7            |                                 | 17.39989185                | 208        | 1.06         | 6.24E-08             | 2.40E-04                |                 |  |  |  |
| 239.49           |                                 | 17.41240781                | 208        | 1.06         | 6.24E-08             | 2.40E-04                |                 |  |  |  |
| 259.28<br>338.43 |                                 | 17.42114361<br>17.53466349 | 208<br>208 | 1.06<br>1.06 | 6.24E-08<br>6.24E-08 | 2.40E-04<br>2.42E-04    |                 |  |  |  |
| 199.92           |                                 | 17.57483539                | 208        | 1.06         | 6.24E-08             | 2.42E-04<br>2.42E-04    |                 |  |  |  |
| 219.7            |                                 | 18.94813919                | 208        | 1.06         | 6.24E-08             | 2.61E-04                |                 |  |  |  |
| 199.92           |                                 | 19.61020527                | 208        | 1.06         | 6.24E-08             | 2.70E-04                |                 |  |  |  |
|                  |                                 |                            |            |              |                      |                         |                 |  |  |  |

## Mass of MtBE within Shallow WBZ

| Cell<br>Address<br>(X) | Cell<br>Address<br>(Y) | Cell<br>Concentration<br>of MtBE (ug/L) | Cell<br>Volume<br>ft3 | Retardation<br>Coefficient<br>(Rd) | Conversion<br>Factor | Cell Mass Total<br>(lb) | Mass Total (lb) |  |  |  |
|------------------------|------------------------|-----------------------------------------|-----------------------|------------------------------------|----------------------|-------------------------|-----------------|--|--|--|
| 229.6                  | 308.81                 | 20.02011494                             | 208                   | 1.06                               | 6.24E-08             | 2.76E-04                |                 |  |  |  |
| 209.81                 | 248.64                 | 20.83749441                             | 208                   | 1.06                               | 6.24E-08             | 2.87E-04                |                 |  |  |  |
| 249.38                 | 238.61                 | 21.43928898                             | 208                   | 1.06                               | 6.24E-08             | 2.96E-04                |                 |  |  |  |
| 259.28                 | 248.64                 | 21.91913572                             | 208                   | 1.06                               | 6.24E-08             | 3.02E-04                |                 |  |  |  |
| 229.6                  | 238.61                 | 22.28975656                             | 208                   | 1.06                               | 6.24E-08             | 3.07E-04                |                 |  |  |  |
| 199.92                 | 288.75                 | 23.05427062                             | 208                   | 1.06                               | 6.24E-08             | 3.18E-04                |                 |  |  |  |
| 239.49                 | 238.61                 | 23.21120928                             | 208                   | 1.06                               | 6.24E-08             | 3.20E-04                |                 |  |  |  |
| 199.92                 | 268.7                  |                                         | 208                   | 1.06                               | 6.24E-08             | 3.25E-04                |                 |  |  |  |
| 209.81                 | 298.78                 | 24.45917695                             | 208                   | 1.06                               | 6.24E-08             | 3.37E-04                |                 |  |  |  |
| 338.43                 | 58.12                  | 24.46716503                             | 208                   | 1.06                               | 6.24E-08             | 3.37E-04                |                 |  |  |  |
| 199.92                 |                        | 25.04980972                             | 208                   | 1.06                               | 6.24E-08             | 3.45E-04                |                 |  |  |  |
| 259.28                 | 258.67                 | 26.64062687                             | 208                   | 1.06                               | 6.24E-08             | 3.67E-04                |                 |  |  |  |
| 219.7                  | 248.64                 | 26.81214854                             | 208                   | 1.06                               | 6.24E-08             | 3.70E-04                |                 |  |  |  |
| 209.81                 | 258.67                 | 27.51674458                             | 208                   | 1.06                               | 6.24E-08             | 3.79E-04                |                 |  |  |  |
| 249.38                 | 248.64                 | 28.43332504                             | 208                   | 1.06                               | 6.24E-08             | 3.92E-04                |                 |  |  |  |
| 259.28                 | 288.75                 | 29.11526384                             | 208                   | 1.06                               | 6.24E-08             | 4.01E-04                |                 |  |  |  |
| 229.6                  | 248.64                 | 30.85397773                             | 208                   | 1.06                               | 6.24E-08             | 4.25E-04                |                 |  |  |  |
| 259.28                 | 268.7                  | 30.95258912                             | 208                   | 1.06                               | 6.24E-08             | 4.27E-04                |                 |  |  |  |
| 239.49                 | 248.64                 | 31.63154374                             | 208                   | 1.06                               | 6.24E-08             | 4.36E-04                |                 |  |  |  |
| 209.81                 | 288.75                 | 32.32090311                             | 208                   | 1.06                               | 6.24E-08             | 4.46E-04                |                 |  |  |  |
| 209.81                 | 268.7                  | 32.80129622                             | 208                   | 1.06                               | 6.24E-08             | 4.52E-04                |                 |  |  |  |
| 259.28                 | 278.72                 | 33.00075901                             | 208                   | 1.06                               | 6.24E-08             | 4.55E-04                |                 |  |  |  |
| 219.7                  | 298.78                 | 33.19847022                             | 208                   | 1.06                               | 6.24E-08             | 4.58E-04                |                 |  |  |  |
| 209.81                 | 278.72                 | 34.9740039                              | 208                   | 1.06                               | 6.24E-08             | 4.82E-04                |                 |  |  |  |
| 219.7                  | 258.67                 | 35.11134132                             | 208                   | 1.06                               | 6.24E-08             | 4.84E-04                |                 |  |  |  |
| 249.38                 | 258.67                 | 37.03164533                             | 208                   | 1.06                               | 6.24E-08             | 5.10E-04                |                 |  |  |  |
| 229.6                  | 258.67                 | 40.74588653                             | 208                   | 1.06                               | 6.24E-08             | 5.62E-04                |                 |  |  |  |
| 249.38                 | 298.78                 | 40.88261865                             | 208                   | 1.06                               | 6.24E-08             | 5.64E-04                |                 |  |  |  |
| 239.49                 | 258.67                 | 42.030637                               | 208                   | 1.06                               | 6.24E-08             | 5.79E-04                |                 |  |  |  |
| 219.7                  | 268.7                  | 42.61729841                             | 208                   | 1.06                               | 6.24E-08             | 5.87E-04                |                 |  |  |  |
| 229.6                  | 298.78                 | 43.18767303                             | 208                   | 1.06                               | 6.24E-08             | 5.95E-04                |                 |  |  |  |
| 219.7                  | 288.75                 | 44.24956148                             | 208                   | 1.06                               | 6.24E-08             | 6.10E-04                |                 |  |  |  |
| 219.7                  |                        | 46.86095889                             | 208                   | 1.06                               | 6.24E-08             | 6.46E-04                |                 |  |  |  |
| 249.38                 | 268.7                  | 47.93122397                             | 208                   | 1.06                               | 6.24E-08             | 6.61E-04                |                 |  |  |  |
| 239.49                 | 298.78                 | 50.83050172                             | 208                   | 1.06                               | 6.24E-08             | 7.01E-04                |                 |  |  |  |
| 229.6                  | 268.7                  | 51.33219454                             | 208                   | 1.06                               | 6.24E-08             | 7.08E-04                |                 |  |  |  |
| 239.49                 | 268.7                  | 54.94229419                             | 208                   | 1.06                               | 6.24E-08             | 7.57E-04                |                 |  |  |  |
| 229.6                  | 288.75                 | 59.49387298                             | 208                   | 1.06                               | 6.24E-08             | 8.20E-04                |                 |  |  |  |
| 229.6                  | 278.72                 | 60.04895248                             | 208                   | 1.06                               | 6.24E-08             | 8.28E-04                |                 |  |  |  |
| 249.38                 | 278.72                 | 62.39098535                             | 208                   | 1.06                               | 6.24E-08             | 8.60E-04                |                 |  |  |  |
| 239.49                 | 278.72                 | 70.42170837                             | 208                   | 1.06                               | 6.24E-08             | 9.71E-04                |                 |  |  |  |
| 249.38                 | 288.75                 | 75.07601555                             | 208                   | 1.06                               | 6.24E-08             | 1.03E-03                |                 |  |  |  |
| 239.49                 | 288.75                 | 79.13492708                             | 208                   | 1.06                               | 6.24E-08             | 1.09E-03                |                 |  |  |  |
| 200.40                 | 200.70                 | 10.10402100                             | 200                   | 1.00                               | 0.272-00             | 0.03                    |                 |  |  |  |
|                        |                        |                                         |                       |                                    |                      | 0.03                    |                 |  |  |  |

Mass of MtBE within Shallow WBZ

|        |                        | 111222 01                                   | 1511-0                | y within s                         |                      |          |                 |
|--------|------------------------|---------------------------------------------|-----------------------|------------------------------------|----------------------|----------|-----------------|
| (X)    | Cell<br>Address<br>(Y) | Cell<br>Concentration<br>of TPH-g<br>(ug/L) | Cell<br>Volume<br>ft3 | Retardation<br>Coefficient<br>(Rd) | Conversion<br>Factor | (lb)     | Mass Total (lb) |
| 173.71 | 282.92                 | 107.4823578                                 | 208                   | 52.25                              | 6.24E-08             | 7.29E-02 | 8.87            |
| 194.27 | 263.73                 | 115.2096816                                 | 208                   | 52.25                              | 6.24E-08             | 7.82E-02 |                 |
| 173.71 | 302.11                 | 119.008759                                  | 208                   | 52.25                              | 6.24E-08             | 8.08E-02 |                 |
| 183.99 | 273.33                 | 123.2431626                                 | 208                   | 52.25                              | 6.24E-08             | 8.36E-02 |                 |
| 183.99 | 302.11                 | 124.5591283                                 | 208                   | 52.25                              | 6.24E-08             | 8.45E-02 |                 |
| 173.71 | 292.52                 | 126.6695585                                 | 208                   | 52.25                              | 6.24E-08             | 8.60E-02 |                 |
| 163.43 | 302.11                 | 130.2213319                                 | 208                   | 52.25                              | 6.24E-08             | 8.84E-02 |                 |
| 245.66 | 263.73                 | 142.5290735                                 | 208                   | 52.25                              | 6.24E-08             | 9.67E-02 |                 |
| 194.27 | 302.11                 | 151.0631418                                 | 208                   | 52.25                              | 6.24E-08             | 1.03E-01 |                 |
| 183.99 | 282.92                 | 157.8457298                                 | 208                   | 52.25                              | 6.24E-08             | 1.07E-01 |                 |
| 183.99 | 292.52                 | 159.0245527                                 | 208                   | 52.25                              | 6.24E-08             | 1.08E-01 |                 |
| 204.55 | 263.73                 | 177.7130998                                 | 208                   | 52.25                              | 6.24E-08             | 1.21E-01 |                 |
| 194.27 | 273.33                 | 194.9175074                                 | 208                   | 52.25                              | 6.24E-08             | 1.32E-01 |                 |
| 204.55 | 302.11                 | 199.613921                                  | 208                   | 52.25                              | 6.24E-08             | 1.35E-01 |                 |
| 194.27 | 292.52                 | 216.6075539                                 | 208                   | 52.25                              | 6.24E-08             | 1.47E-01 |                 |
| 194.27 | 282.92                 | 233.4979082                                 | 208                   | 52.25                              | 6.24E-08             | 1.58E-01 |                 |
| 235.38 | 302.11                 | 245.6575895                                 | 208                   | 52.25                              | 6.24E-08             | 1.67E-01 |                 |
| 214.83 | 263.73                 | 251.8780095                                 | 208                   | 52.25                              | 6.24E-08             | 1.71E-01 |                 |
| 214.83 | 302.11                 | 260.8825714                                 | 208                   | 52.25                              | 6.24E-08             | 1.77E-01 |                 |
| 204.55 | 273.33                 | 300.1609093                                 | 208                   | 52.25                              | 6.24E-08             | 2.04E-01 |                 |
| 225.1  | 302.11                 | 302.594546                                  | 208                   | 52.25                              | 6.24E-08             | 2.05E-01 |                 |
| 204.55 | 292.52                 | 312.3838993                                 | 208                   | 52.25                              | 6.24E-08             | 2.12E-01 |                 |
| 235.38 | 263.73                 | 322.78697                                   | 208                   | 52.25                              | 6.24E-08             | 2.19E-01 |                 |
| 225.1  | 263.73                 | 327.4259943                                 | 208                   | 52.25                              | 6.24E-08             | 2.22E-01 |                 |
| 204.55 | 282.92                 | 353.189351                                  | 208                   | 52.25                              | 6.24E-08             | 2.40E-01 |                 |
| 245.66 | 292.52                 | 412.3536408                                 | 208                   | 52.25                              | 6.24E-08             | 2.80E-01 |                 |
| 214.83 | 273.33                 | 453.5622731                                 | 208                   | 52.25                              | 6.24E-08             | 3.08E-01 |                 |
| 245.66 | 273.33                 | 455.0427282                                 | 208                   | 52.25                              | 6.24E-08             | 3.09E-01 |                 |
| 214.83 | 292.52                 | 456.6000456                                 | 208                   | 52.25                              | 6.24E-08             | 3.10E-01 |                 |
| 214.83 |                        | 539.9813347                                 | 208                   | 52.25                              | 6.24E-08             | 3.66E-01 |                 |
| 225.1  | 292.52                 | 645.6424896                                 | 208                   | 52.25                              | 6.24E-08             | 4.38E-01 |                 |
| 225.1  | 273.33                 | 654.552179                                  | 208                   | 52.25                              | 6.24E-08             | 4.44E-01 |                 |
| 245.66 | 282.92                 | 697.4094633                                 | 208                   | 52.25                              | 6.24E-08             | 4.73E-01 |                 |
| 235.38 | 292.52                 | 763.4030965                                 | 208                   | 52.25                              | 6.24E-08             | 5.18E-01 |                 |
| 235.38 | 273.33                 | 778.314373                                  | 208                   | 52.25                              | 6.24E-08             | 5.28E-01 |                 |
| 225.1  | 282.92                 | 824.1445822                                 | 208                   | 52.25                              | 6.24E-08             | 5.59E-01 |                 |
| 235.38 | 282.92                 | 1242.05534                                  | 208                   | 52.25                              | 6.24E-08             | 8.43E-01 |                 |
|        |                        |                                             |                       |                                    |                      | 7.99     | -               |
|        |                        |                                             |                       |                                    |                      |          |                 |

## Mass of TPH-g within Semi-Confined WBZ

|         |        | mass of t     |        |             |            |                 |                 |
|---------|--------|---------------|--------|-------------|------------|-----------------|-----------------|
| Cell    | Cell   | Cell          | Cell   | Retardation |            |                 |                 |
| Address |        | Concentration | Volume | Coefficient | Conversion | Cell Mass Total | Mass Total (lb) |
| (X)     | (Y)    | of Benzene    | ft3    | (Rd)        | Factor     | (lb)            |                 |
|         |        | (ug/L)        |        | (IXU)       |            |                 |                 |
| 158     | 287.21 | 1.007688015   | 208    | 1.60        | 6.24E-08   | 2.10E-05        | 0.018           |
| 168     | 307.44 | 1.140388772   | 208    | 1.60        | 6.24E-08   | 2.38E-05        |                 |
| 238     | 307.44 | 1.551447176   | 208    | 1.60        | 6.24E-08   | 3.23E-05        |                 |
| 188     | 256.85 | 1.829410908   | 208    | 1.60        | 6.24E-08   | 3.81E-05        |                 |
| 168     | 297.32 | 2.19477046    | 208    | 1.60        | 6.24E-08   | 4.57E-05        |                 |
| 168     | 277.09 | 2.438453641   | 208    | 1.60        | 6.24E-08   | 5.08E-05        |                 |
| 178     | 307.44 | 2.748653944   | 208    | 1.60        | 6.24E-08   | 5.73E-05        |                 |
| 168     | 287.21 | 2.85643535    | 208    | 1.60        | 6.24E-08   | 5.95E-05        |                 |
| 178     | 266.97 | 3.175715851   | 208    | 1.60        | 6.24E-08   | 6.62E-05        |                 |
| 198     | 256.85 | 3.902540031   | 208    | 1.60        | 6.24E-08   | 8.13E-05        |                 |
| 188     | 307.44 | 4.449985182   | 208    | 1.60        | 6.24E-08   | 9.27E-05        |                 |
| 238     | 256.85 | 4.494439502   | 208    | 1.60        | 6.24E-08   | 9.37E-05        |                 |
| 178     | 297.32 | 4.734048724   | 208    | 1.60        | 6.24E-08   | 9.87E-05        |                 |
| 178     | 277.09 | 5.295756945   | 208    | 1.60        | 6.24E-08   | 1.10E-04        |                 |
| 208     | 256.85 | 5.591423881   | 208    | 1.60        | 6.24E-08   | 1.17E-04        |                 |
| 178     | 287.21 | 5.817744437   | 208    | 1.60        | 6.24E-08   | 1.21E-04        |                 |
| 198     | 307.44 | 6.407780785   | 208    | 1.60        | 6.24E-08   | 1.34E-04        |                 |
| 188     | 266.97 | 6.414836395   | 208    | 1.60        | 6.24E-08   | 1.34E-04        |                 |
| 218     | 256.85 | 6.534320712   | 208    | 1.60        | 6.24E-08   | 1.36E-04        |                 |
| 228     | 256.85 | 7.573479079   | 208    | 1.60        | 6.24E-08   | 1.58E-04        |                 |
| 228     | 307.44 | 7.597385607   | 208    | 1.60        | 6.24E-08   | 1.58E-04        |                 |
| 248     | 297.32 | 7.925879212   | 208    | 1.60        | 6.24E-08   | 1.65E-04        |                 |
| 188     | 297.32 | 8.145750243   | 208    | 1.60        | 6.24E-08   | 1.70E-04        |                 |
| 208     | 307.44 | 8.554259757   | 208    | 1.60        | 6.24E-08   | 1.78E-04        |                 |
| 188     | 277.09 | 9.610510591   | 208    | 1.60        | 6.24E-08   | 2.00E-04        |                 |
| 218     | 307.44 | 9.662969033   | 208    | 1.60        | 6.24E-08   | 2.01E-04        |                 |
| 188     | 287.21 | 10.21475838   | 208    | 1.60        | 6.24E-08   | 2.13E-04        |                 |
| 198     | 266.97 | 10.93877954   | 208    | 1.60        | 6.24E-08   | 2.28E-04        |                 |
| 248     | 266.97 | 11.44442388   | 208    | 1.60        | 6.24E-08   | 2.39E-04        |                 |
| 198     | 297.32 | 12.83257165   | 208    | 1.60        | 6.24E-08   | 2.67E-04        |                 |
| 198     | 277.09 | 15.98313763   | 208    | 1.60        | 6.24E-08   | 3.33E-04        |                 |
| 198     | 287.21 | 16.67630115   | 208    | 1.60        | 6.24E-08   | 3.48E-04        |                 |
| 208     | 266.97 | 16.95954911   | 208    | 1.60        | 6.24E-08   | 3.53E-04        |                 |
| 208     | 297.32 | 19.18866477   | 208    | 1.60        | 6.24E-08   | 4.00E-04        |                 |
| 218     | 266.97 | 24.53486597   | 208    | 1.60        | 6.24E-08   | 5.11E-04        |                 |
| 208     | 277.09 | 25.34796727   | 208    | 1.60        | 6.24E-08   | 5.28E-04        |                 |
| 208     | 287.21 | 26.19471022   | 208    | 1.60        | 6.24E-08   | 5.46E-04        |                 |
| 218     | 297.32 | 27.03901263   | 208    | 1.60        | 6.24E-08   | 5.64E-04        |                 |
| 238     | 266.97 | 29.30620152   | 208    | 1.60        | 6.24E-08   | 6.11E-04        |                 |
| 248     | 277.09 | 29.5191924    | 208    | 1.60        | 6.24E-08   | 6.15E-04        |                 |
| 238     | 297.32 | 29.86676271   | 208    | 1.60        | 6.24E-08   | 6.22E-04        |                 |
| 248     | 287.21 | 30.58380637   | 208    | 1.60        | 6.24E-08   | 6.37E-04        |                 |
| 228     | 266.97 | 31.70797777   | 208    | 1.60        | 6.24E-08   | 6.61E-04        |                 |
| 228     | 297.32 | 33.91720558   | 208    | 1.60        | 6.24E-08   | 7.07E-04        |                 |
| 218     | 277.09 | 38.93504105   | 208    | 1.60        | 6.24E-08   | 8.11E-04        |                 |
| 218     | 287.21 | 40.11441433   | 208    | 1.60        | 6.24E-08   | 8.36E-04        |                 |
| 228     | 277.09 | 57.00345804   | 208    | 1.60        | 6.24E-08   | 1.19E-03        |                 |
| 228     | 287.21 | 59.71156523   | 208    | 1.60        | 6.24E-08   | 1.24E-03        |                 |
|         | 277.09 | 66.50558149   | 208    | 1.60        | 6.24E-08   | 1.39E-03        |                 |
| 238     |        |               |        |             |            |                 |                 |
| 238     | 287.21 | 75.79979807   | 208    | 1.60        | 6.24E-08   | 1.58E-03        |                 |

## Mass of Benzene within Semi-Confined WBZ

| Cell<br>ddressCellCellCellRetardation<br>ConcentrationConversion<br>(X)Cell Mass Total<br>(Ib)(X)(Y)of MtBE (ug/L)ft3(Rd)FactorCell Mass Total<br>(Ib)                                                              |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| address Address Concentration Volume Coefficient Factor (Ib)                                                                                                                                                        |                 |
| (X) (Y) of MtBE (ug/L) ft3 (Rd) (3000 (10)                                                                                                                                                                          | Mass Total (lb) |
|                                                                                                                                                                                                                     |                 |
| 236.39 209.24 5.041461347 208 1.06 6.24E-08 6.95E-05                                                                                                                                                                | 0.012           |
| 256.1 219.18 5.048943584 208 1.06 6.24E-08 6.96E-05                                                                                                                                                                 |                 |
| 196.96 298.72 5.066641088 208 1.06 6.24E-08 6.98E-05                                                                                                                                                                |                 |
| 167.4 288.78 5.084054225 208 1.06 6.24E-08 7.01E-05                                                                                                                                                                 |                 |
| 177.25 268.89 5.084622164 208 1.06 6.24E-08 7.01E-05                                                                                                                                                                |                 |
| 265.95 229.12 5.110141107 208 1.06 6.24E-08 7.04E-05                                                                                                                                                                |                 |
| 226.53         209.24         5.157405139         208         1.06         6.24E-08         7.11E-05           157.54         308.67         5.22982916         208         1.06         6.24E-08         7.21E-05  |                 |
| 157.54         308.67         5.22982916         208         1.06         6.24E-08         7.21E-05           167.4         308.67         5.320984881         208         1.06         6.24E-08         7.34E-05   |                 |
| 177.25 298.72 5.474717072 208 1.06 6.24E-08 7.55E-05                                                                                                                                                                |                 |
| 206.82 219.18 5.494008412 208 1.06 6.24E-08 7.57E-05                                                                                                                                                                |                 |
| 196.96 229.12 5.524490655 208 1.06 6.24E-08 7.62E-05                                                                                                                                                                |                 |
| 157.54 298.72 5.548368015 208 1.06 6.24E-08 7.65E-05                                                                                                                                                                |                 |
| 177.25 278.84 5.55706257 208 1.06 6.24E-08 7.66E-05                                                                                                                                                                 |                 |
| 285.66 258.95 5.571267091 208 1.06 6.24E-08 7.68E-05                                                                                                                                                                |                 |
| 285.66 288.78 5.723888853 208 1.06 6.24E-08 7.89E-05                                                                                                                                                                |                 |
| 206.82 298.72 5.78534922 208 1.06 6.24E-08 7.98E-05                                                                                                                                                                 |                 |
| 187.11 249.01 5.830203723 208 1.06 6.24E-08 8.04E-05                                                                                                                                                                |                 |
| 177.25 288.78 5.865799626 208 1.06 6.24E-08 8.09E-05                                                                                                                                                                |                 |
| 246.24         219.18         6.082791789         208         1.06         6.24E-08         8.39E-05           246.24         298.72         6.171971077         208         1.06         6.24E-08         8.51E-05 |                 |
| 246.24         298.72         6.171971077         208         1.06         6.24E-08         8.51E-05           216.68         219.18         6.281320398         208         1.06         6.24E-08         8.66E-05 |                 |
| 187.11 288.78 6.409330107 208 1.06 6.24E-08 8.84E-05                                                                                                                                                                |                 |
| 187.11 258.95 6.569066577 208 1.06 6.24E-08 9.06E-05                                                                                                                                                                |                 |
| 275.81 249.01 6.59747162 208 1.06 6.24E-08 9.09E-05                                                                                                                                                                 |                 |
| 236.39 219.18 6.631923222 208 1.06 6.24E-08 9.14E-05                                                                                                                                                                |                 |
| 226.53 219.18 6.685110532 208 1.06 6.24E-08 9.22E-05                                                                                                                                                                |                 |
| 196.96 239.06 6.694059793 208 1.06 6.24E-08 9.23E-05                                                                                                                                                                |                 |
| 285.66 268.89 6.76931134 208 1.06 6.24E-08 9.33E-05                                                                                                                                                                 |                 |
| 256.1 229.12 6.812522698 208 1.06 6.24E-08 9.39E-05                                                                                                                                                                 |                 |
| 167.4 298.72 6.814252015 208 1.06 6.24E-08 9.39E-05                                                                                                                                                                 |                 |
| 206.82 229.12 6.852353534 208 1.06 6.24E-08 9.45E-05                                                                                                                                                                |                 |
| 216.68 298.72 6.857146465 208 1.06 6.24E-08 9.45E-05                                                                                                                                                                |                 |
| 265.95         239.06         7.011631083         208         1.06         6.24E-08         9.67E-05           187.11         268.89         7.01787351         208         1.06         6.24E-08         9.67E-05  |                 |
| 187.11 278.84 7.027772602 208 1.06 6.24E-08 9.69E-05                                                                                                                                                                |                 |
| 285.66 278.84 7.065586914 208 1.06 6.24E-08 9.74E-05                                                                                                                                                                |                 |
| 196.96 288.78 7.360738441 208 1.06 6.24E-08 1.01E-04                                                                                                                                                                |                 |
| 196.96 249.01 7.800504503 208 1.06 6.24E-08 1.08E-04                                                                                                                                                                |                 |
| 216.68 229.12 7.874534944 208 1.06 6.24E-08 1.09E-04                                                                                                                                                                |                 |
| 226.53 298.72 7.934892553 208 1.06 6.24E-08 1.09E-04                                                                                                                                                                |                 |
| 246.24 229.12 7.97173987 208 1.06 6.24E-08 1.10E-04                                                                                                                                                                 |                 |
| 236.39 298.72 8.098021406 208 1.06 6.24E-08 1.12E-04                                                                                                                                                                |                 |
| 206.82 239.06 8.29640786 208 1.06 6.24E-08 1.14E-04                                                                                                                                                                 |                 |
| 226.53 229.12 8.469221275 208 1.06 6.24E-08 1.17E-04                                                                                                                                                                |                 |
| 236.39 229.12 8.524171173 208 1.06 6.24E-08 1.18E-04                                                                                                                                                                |                 |
| 275.81 258.95 8.579672559 208 1.06 6.24E-08 1.18E-04                                                                                                                                                                |                 |
| 196.96         258.95         8.666708293         208         1.06         6.24E-08         1.19E-04           196.96         278.84         8.687324382         208         1.06         6.24E-08         1.20E-04 |                 |
| 206.82 288.78 8.895659214 208 1.06 6.24E-08 1.20E-04 206.82 288.78 8.895659214 208 1.06 6.24E-08 1.23E-04                                                                                                           |                 |
| 256.1 239.06 8.914745448 208 1.06 6.24E-06 1.23E-04                                                                                                                                                                 |                 |
| 196.96 268.89 9.052827019 208 1.06 6.24E-08 1.25E-04                                                                                                                                                                |                 |
| 275.81 288.78 9.11055527 208 1.06 6.24E-08 1.26E-04                                                                                                                                                                 |                 |
| 265.95 249.01 9.170343342 208 1.06 6.24E-08 1.26E-04                                                                                                                                                                |                 |
| 216.68 239.06 9.61458264 208 1.06 6.24E-08 1.33E-04                                                                                                                                                                 |                 |
| 206.82 249.01 9.695992096 208 1.06 6.24E-08 1.34E-04                                                                                                                                                                |                 |
| 265.95 288.78 9.850350883 208 1.06 6.24E-08 1.36E-04                                                                                                                                                                |                 |
|                                                                                                                                                                                                                     |                 |
| 275.81 268.89 10.14420136 208 1.06 6.24E-08 1.40E-04                                                                                                                                                                |                 |
| 275.81         268.89         10.14420136         208         1.06         6.24E-08         1.40E-04           246.24         239.06         10.17997598         208         1.06         6.24E-08         1.40E-04 |                 |
| 275.81268.8910.144201362081.066.24E-081.40E-04246.24239.0610.179975982081.066.24E-081.40E-04226.53239.0610.476940392081.066.24E-081.44E-04                                                                          |                 |
| 275.81268.8910.144201362081.066.24E-081.40E-04246.24239.0610.179975982081.066.24E-081.40E-04226.53239.0610.476940392081.066.24E-081.44E-04236.39239.0610.703179392081.066.24E-081.48E-04                            |                 |
| 275.81268.8910.144201362081.066.24E-081.40E-04246.24239.0610.179975982081.066.24E-081.40E-04226.53239.0610.476940392081.066.24E-081.44E-04                                                                          |                 |

## Mass of MtBE within Semi-Confined WBZ

|                        |                        | 111111111                               |     | . within 0                         |                      |                         |                 |
|------------------------|------------------------|-----------------------------------------|-----|------------------------------------|----------------------|-------------------------|-----------------|
| Cell<br>Address<br>(X) | Cell<br>Address<br>(Y) | Cell<br>Concentration<br>of MtBE (ug/L) |     | Retardation<br>Coefficient<br>(Rd) | Conversion<br>Factor | Cell Mass Total<br>(lb) | Mass Total (lb) |
| 256.1                  | 288.78                 | 11.00087242                             | 208 | 1.06                               | 6.24E-08             | 1.52E-04                |                 |
| 275.81                 | 278.84                 | 11.04462443                             | 208 | 1.06                               | 6.24E-08             | 1.52E-04                |                 |
| 216.68                 | 288.78                 | 11.09425855                             | 208 | 1.06                               | 6.24E-08             | 1.53E-04                |                 |
| 256.1                  | 249.01                 | 11.2525285                              | 208 | 1.06                               | 6.24E-08             | 1.55E-04                |                 |
| 265.95                 | 258.95                 | 11.28372939                             | 208 | 1.06                               | 6.24E-08             | 1.56E-04                |                 |
| 206.82                 | 268.89                 | 11.34960361                             | 208 | 1.06                               | 6.24E-08             | 1.56E-04                |                 |
| 216.68                 | 249.01                 | 11.38663408                             | 208 | 1.06                               | 6.24E-08             | 1.57E-04                |                 |
| 226.53                 | 249.01                 | 12.63140983                             | 208 | 1.06                               | 6.24E-08             | 1.74E-04                |                 |
| 246.24                 | 249.01                 | 12.64055616                             | 208 | 1.06                               | 6.24E-08             | 1.74E-04                |                 |
| 265.95                 | 268.89                 | 12.85499566                             | 208 | 1.06                               | 6.24E-08             | 1.77E-04                |                 |
| 216.68                 | 258.95                 | 12.97096706                             | 208 | 1.06                               | 6.24E-08             | 1.79E-04                |                 |
| 265.95                 | 278.84                 | 13.05689818                             | 208 | 1.06                               | 6.24E-08             | 1.80E-04                |                 |
| 236.39                 | 249.01                 | 13.11832438                             | 208 | 1.06                               | 6.24E-08             | 1.81E-04                |                 |
| 256.1                  | 258.95                 | 13.55972066                             | 208 | 1.06                               | 6.24E-08             | 1.87E-04                |                 |
| 216.68                 | 278.84                 | 13.57164865                             | 208 | 1.06                               | 6.24E-08             | 1.87E-04                |                 |
| 216.68                 | 268.89                 | 13.94685169                             | 208 | 1.06                               | 6.24E-08             | 1.92E-04                |                 |
| 226.53                 | 288.78                 | 13.99699048                             | 208 | 1.06                               | 6.24E-08             | 1.93E-04                |                 |
| 246.24                 | 288.78                 | 14.41321                                | 208 | 1.06                               | 6.24E-08             | 1.99E-04                |                 |
| 226.53                 | 258.95                 | 14.78098478                             | 208 | 1.06                               | 6.24E-08             | 2.04E-04                |                 |
| 256.1                  | 278.84                 | 15.0268542                              | 208 | 1.06                               | 6.24E-08             | 2.07E-04                |                 |
| 246.24                 | 258.95                 | 15.19495515                             | 208 | 1.06                               | 6.24E-08             | 2.09E-04                |                 |
| 256.1                  | 268.89                 | 15.25259298                             | 208 | 1.06                               | 6.24E-08             | 2.10E-04                |                 |
| 236.39                 | 258.95                 | 15.67777456                             | 208 | 1.06                               | 6.24E-08             | 2.16E-04                |                 |
| 226.53                 | 268.89                 | 16.59313709                             | 208 | 1.06                               | 6.24E-08             | 2.29E-04                |                 |
| 236.39                 | 288.78                 | 16.80948829                             | 208 | 1.06                               | 6.24E-08             | 2.32E-04                |                 |
| 226.53                 | 278.84                 | 17.07818163                             | 208 | 1.06                               | 6.24E-08             | 2.35E-04                |                 |
| 246.24                 | 268.89                 | 17.50248081                             | 208 | 1.06                               | 6.24E-08             | 2.41E-04                |                 |
| 236.39                 | 268.89                 | 18.25465535                             | 208 | 1.06                               | 6.24E-08             | 2.52E-04                |                 |
| 246.24                 | 278.84                 | 18.50904932                             | 208 | 1.06                               | 6.24E-08             | 2.55E-04                |                 |
| 236.39                 | 278.84                 | 20.64951226                             | 208 | 1.06                               | 6.24E-08             | 2.85E-04                |                 |
|                        |                        |                                         |     |                                    |                      | 0.01                    |                 |
|                        |                        |                                         |     |                                    |                      |                         |                 |

## Mass of MtBE within Semi-Confined WBZ

# **APPENDIX E**

# Pilot Testing Related Documentation and General Field Procedures

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

# **GENERAL FIELD PROCEDURES**

#### Hydraulic Push (GEOPROBE) Drilling

#### Utility Locating

Prior to drilling, boring locations are marked with white paint or other discernible marking and cleared for underground utilities through Underground Service Alert (USA). In addition, the first five feet of each borehole are air-knifed, or carefully advanced with a hand auger if shallow soil samples are necessary, to help evaluate the borehole location for underground structures or utilities.

#### Borehole Advancement

Pre-cleaned push rods (typically one to two inches in diameter) are advanced using a hydraulic push type rig for the purpose of collecting samples and evaluating subsurface conditions. The drill rod serves as a soil sampler, and an acetate liner is inserted into the annulus of the drill rod prior to advancement. Once the sample is collected, the rods and sampler are retracted and the sample tubes are removed from the sampler head. The sampler head is then cleaned, filled with clean sample tubes, inserted into the borehole and advanced to the next sampling point where the sample collection process is repeated.

#### Soil Sample Collection

The undisturbed soil samples intended for laboratory analysis are cut away from the acetate sample liner using a hacksaw, or equivalent tool, in sections approximately 6 inches in length. The 6-inch samples are lined at each end with Teflon® sheets and capped with plastic caps. Labels documenting job number, borehole identification, collection date, and depth are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain-of-custody to a laboratory certified by the State of California to perform the specified tests. The remaining collected soil that has not been selected for laboratory analysis is logged using the United Soil Classification System (USCS) under the direction of a State Registered Professional Geologist, and is field screened for organic vapors using a photo-ionization detector (PID), or an equivalent tool. Soil cuttings generated are stored in Department of Transportation (DOT) approved 55-gallon steel drums, or an equivalent storage container.

#### Groundwater Sample Collection

Once the desired groundwater sampling depth has been reached, a Hydropunch tip is affixed to the head of the sampling rods. The Hydropunch tip is advanced between approximately 6 inches to one foot within the desired groundwater sampling zone (effort is made to emplace the Hydropunch screen across the center and lower portion of the water table), and retracted to expose the Hydropunch screen.

Grab groundwater samples are collected by lowering a pre-cleaned, single-sample polypropylene, disposable bailer down the annulus of the sampler rod. The groundwater sample is discharged from the bailer to the sample container through a bottom emptying flow control valve to minimize volatilization.

Feasibility Study/Corrective Action Plan and Proposed Pilot Testing

Because the sampling section of the non-discrete groundwater sampler is not protected or sealed, this sampler should only be used where cross contamination from overlying materials is not a concern. Discrete groundwater samplers are driven to the sample interval, and then o-rings, a protective tube/sheath, and an expendable point provide a watertight seal.

Collected water samples are discharged directly into laboratory-provided, pre-cleaned vials or containers and sealed with Teflon-lined septum, screw-on lids. Labels documenting sample number, well identification, collection date, and type of preservative (if applicable, e.g., HCI for TPPH, BTEX, and fuel oxygenates) are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain-of-custody to a laboratory certified by the State of California to perform the specified tests.

#### **Borehole Completion**

Upon completion of drilling and sampling, the rods are retracted. Neat cement grout, mixed at a ratio of 6 gallons of water per 94 pounds of Portland cement, is introduced, *via* a tremmie pipe, and pumped to displace standing water in the borehole. Displaced groundwater is collected at the surface into DOT approved 55-gallon steel drums, or an equivalent storage container. In areas where the borehole penetrates asphalt or concrete, the borehole is capped with an equivalent thickness of asphalt or concrete patch to match finished grade.

#### **Organic Vapor Procedures**

Soil samples are collected for analysis in the field for ionizable organic compounds using a PID with a 10.2 eV lamp. The test procedure *involves* measuring approximately 30 grams from an undisturbed soil sample, placing this subsample in a Ziploc--type bag or in a clean glass jar, and sealing the jar with aluminum foil secured under a ring-type threaded lid. The container is warmed for approximately 20 minutes (in the sun); then the headspace within the container is tested for total organic *vapor*, measured in parts per million as benzene (ppm; volume/volume). The instrument is calibrated prior to drilling. The results of the field-testing are noted on the boring logs. PID readings are useful for indicating relative levels of contamination, but cannot be used to evaluate petroleum hydrocarbon levels with the confidence of laboratory analyses.

#### **Equipment Decontamination**

Equipment that could potentially contact subsurface media and compromise the integrity of the samples is carefully decontaminated prior to drilling and sampling. Drill augers and other large pieces of equipment are decontaminated using high-pressure hot water spray. Samplers, groundwater pumps, liners and other equipment are decontaminated in an Alconox scrub solution and double rinsed in clean tap water rinse followed by a final distilled water rinse.

The rinsate and other wastewater are contained in 55-gallon DOT-approved drums, labeled (to identify the contents, generation date and project) and stored on-site pending waste profiling and disposal.

## Soil Cuttings and Rinsate/Purge Water

Soil cuttings and rinsate/purge water generated during drilling and sampling are stored onsite in DOT-approved 55-gallon steel drums pending characterization. A label is affixed to the drums indicating the contents of the drum, suspected contaminants, date of generation, and the boring number from which the waste is generated. The drums are removed from the site by a licensed waste disposal contractor under manifest to an appropriate facility for treatment/recycling.

#### Utility Locating

Prior to drilling, boring locations are marked with white paint or other discernible marking, and cleared for underground utilities through Underground Service Alert (USA). In addition, the first five feet of each borehole are air-knifed, or carefully advanced with a hand auger if shallow soil samples are necessary, to help evaluate the presence of underground structures or utilities.

#### Borehole Advancement

Pre-cleaned hollow stem augers (typically 8 to 10 inches in diameter) are advanced using a drill rig for the purpose of collecting samples and evaluating subsurface conditions. Upon completion of drilling and sampling, if no well is to be constructed, the augers are retracted, and the borehole is filled with neat cement grout, mixed at a ratio of 6 gallons of water per 94 pounds of Portland cement, through a tremmie pipe to displace standing water in the borehole. In areas where the borehole penetrates asphalt or concrete, the borehole is capped with an equivalent thickness of asphalt or concrete patch to match finish grade.

During the drilling process, a physical description of the encountered soil characteristics (i.e. moisture content, consistency or density, odor, color, and plasticity), drilling difficulty, and soil type as a function of depth are described on boring logs. The soil cuttings are classified in accordance with the uses.

#### Split-Spoon Sampling

The precleaned split spoon sampler lined with three 6-inch long brass or stainless steel tubes is driven 18 inches into the underlying soils at the desired sample depth interval. The sampler is driven by repeatedly dropping a 140-pound hammer a free fall distance of 30 inches. The number of blows (blow count) to advance the sampler for each six-inch drive length is recorded on the field logs. Once the sampler is driven the 18-inch drive length or the sampler has met refusal (typically 50 blows per six inches), the sampler is retrieved.

Of the three sample tubes, the bottom sample is generally selected for laboratory analysis. The sample is carefully packaged for chemical analysis by capping each end of the sample with a Teflon sheet followed by a tight-fitting plastic cap, and sealing the cap with nonvolatile organic compound (VOC), self-adhering silicon tape. A label is affixed to the sample indicating the sample identification number, borehole number, sampling depth, sample collection date and time, and job number. The sample is then annotated on a chain-of custody form and placed in an ice-filled cooler for transport to the laboratory.

The remaining soil samples are used for soil classification and field evaluation of headspace volatile organic vapors, where applicable, using a photo ionization or flame ionization detector calibrated to a calibration gas (typically isobutylene or hexane). VOC vapor concentrations are recorded on the boring logs.

## Grab Groundwater Sample Collection

Grab groundwater samples are collected by lowering a pre-cleaned, single-sample polypropylene, disposable bailer down the borehole or temporary casing. The groundwater sample is discharged from the bailer to the sample container through a bottom emptying flow control valve to minimize volatilization.

Collected water samples are discharged directly into laboratory provided, pre-cleaned, vials or

containers and sealed with Teflon-lined septum, screw-on lids. Labels documenting sample number, well identification, collection date and time, type of sample and type of preservative (if applicable, i.e. HCI for TPPH, BTEX, and fuel oxygenates) are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain-of-custody to a laboratory certified by the State of California to perform the specified tests.

#### Groundwater Monitoring Well Installation and Development

Groundwater monitoring wells are constructed by inserting or tremmieing well materials through the annulus of the hollow stem auger. The groundwater monitoring wells are constructed with a screen interval determined from the encountered soil stratigraphy, to maintain a proper seal at the surface (minimum three feet), to allow flow from permeable zones into the well, and to avoid penetrating aquicludes. Groundwater wells are installed in accordance with the conditions of the well construction permit issued by the regulatory agency exercising jurisdiction over the project site.

The well screen generally consists of schedule 40 polyvinyl chloride (PVC) casing with 0.01 to 0.02-inch factory slots. As a rule, 0.01-inch slots are used in fine-grained silts and clays, and 0.02-inch slots are used in coarse-grained materials. The screen is then filter packed with #2/12 or #3 sand, or equivalent, for the 0.01 and 0.02 inch slots, respectively.

Once the borehole has been drilled to the desired depth, the well screen and blank well casing are inserted through the annulus of the hollow stem augers. The well screen is sand packed by tremmieing the appropriate filter sand through the annulus between the casing and augers while slowly retracting the augers. During this operation, the depth of the sand pack in the auger is continuously sounded to make sure that the sand remains in the auger annulus during auger retraction to avoid short-circuiting the well. The sand pack is tremmied to approximately two feet above the screen, at which time pre-development surging is performed to consolidate the sand pack. Additional sand is added as necessary so that the sand pack, a one to two foot thick bentonite seal is tremmied over the sand and hydrated in place. The remainder of the borehole is backfilled with Portland neat cement grout (or the equivalent), mixed at ratio of 6 gallons of water per 94 pounds of neat cement. The wellhead is then capped with a locking cap and secured with a lock to protect the well from surface water intrusion and vandalism.

The wellhead is further protected from damage with traffic a rated well box in paved areas or locking steel riser in undeveloped areas. The protective boxes or risers are set in concrete. The details of well construction are recorded on well construction logs.

Following well construction, the wells are developed in accordance with agency protocols by intermittently surging and bailing the wells. Development is determined to be sufficient once pH, conductivity, and temperature stabilize to within s 0.1, s 3%, and s 10%, respectively.

## **Groundwater Monitoring Well Sampling**

#### Depth to Groundwater/SPH Thickness Measurements

Prior to the beginning of purging and sampling the wells, the depth to groundwater and thickness of SPH, if present, within each well casing are measured to the nearest 0.01 foot using either an electronic water level indicator or an electronic oil-water interface probe. This is done in within as narrow a period as possible, and before the first well is purged. Measurements are taken from a point of known elevation on the top of each well casing as determined in accordance with surveys by licensed land surveyors.

Groundwater Monitoring Well Purging

Groundwater wells are purged using low-flow protocol at a flow rate of less the 1 liter per minute using a bladder pump. The purge intake is placed opposite the portion of the saturated zone expected to contain the greatest hydrocarbon impact, and the depth of the purge intake is recorded during and after purging. The water level in each well is monitored, and care is taken that the well is not dewatered. The conductivity, temperature, and pH of the delivered effluent are monitored and recorded using a flow-through cell during purge operations. Purge operations are determined to be sufficient once three successive measurements of pH, conductivity, and temperature of the purged water at 3 to 5 minute intervals following the evacuation of on system or line volume vary by s 0.1, s 3%, and s 10%, respectively. System or line volumes, actual purge volumes, and the purging equipment used are recorded on the field data sheets.

#### Groundwater Sample Acquisition, Handling, and Analysis

Following purging operations, groundwater samples are collected from each of the wells, using a low-flow bladder pump. The groundwater sample is discharged from the pump tubing to the sample container before the water passes through the flow-through cell. The sampling equipment is recorded on the field data sheets.

Collected water samples are discharged directly into laboratory provided, pre-cleaned, and chemically preserved sample containers for the analyses requested. Preservatives are used in the samples if appropriate for the analyses, i.e., hydrochloric acid (HCI) for TPPH, BTEX, and fuel oxygenates by EPA Method 8260B.

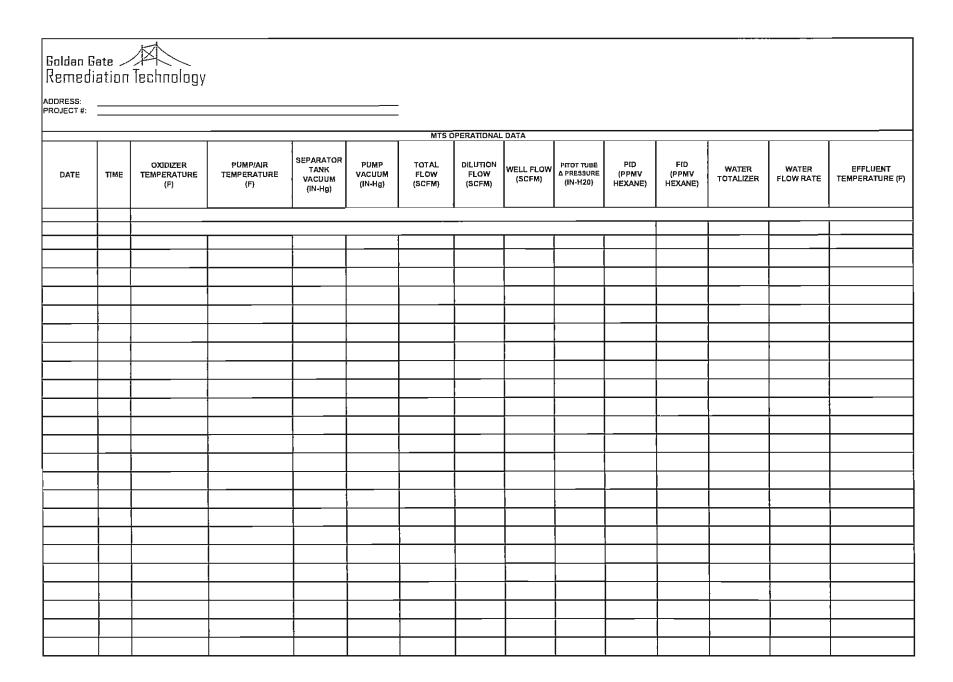
Labels documenting sample number, well identification, collection date and time, type of sample and type of preservative (if applicable) are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain of custody to a certified laboratory. The type of preservative used is documented on the chain of custody form.

To help assure the quality of the collected samples and to evaluate the potential for cross contamination during transport to the laboratory, a distilled-water trip blank accompanies the samples in the cooler. The trip blank is analyzed for the presence of volatile organic compounds of concern. For petroleum hydrocarbons, the trip blank is typically analyzed for TPPH, BTEX, and fuel oxygenates by EPA Method 8260.

## Organic Vapor Procedures

Soil samples are collected for analysis in the field for ionizable organic compounds using a PID with a 10.2 eV lamp. The test procedure involves measuring approximately 30 grams from an undisturbed soil sample, placing this subsample **in** a Ziploc<sup>™</sup>-type bag or in a clean glass jar, and sealing the jar with aluminum foil secured under a ring-type threaded lid. The container is warmed for approximately 20 minutes (in the sun); then the head-space within the container is tested for total organic vapor, measured in parts per million as benzene (ppm; volume/volume). The instrument is calibrated prior to drilling. The results of the field-testing are noted on the boring logs. PID readings are useful for indicating relative levels of contamination, but cannot be used to evaluate petroleum hydrocarbon levels with the confidence of laboratory analyses.

## **Equipment Decontamination**


Equipment that could potentially contact subsurface media and compromise the integrity of the samples is carefully decontaminated prior to drilling and sampling. Drill augers and other large pieces of equipment are decontaminated using high-pressure hot water spray. Samplers, groundwater pumps, liners and other equipment are decontaminated in an Alconox scrub solution and double rinsed in clean tap water rinse followed by a final distilled water

rinse.

The rinsate and other wastewater are contained in 55-gallon DOT-approved drums, labeled (to identify the contents, generation date and project) and stored on-site pending waste profiling and disposal.

## Soil Cuttings and Rinsate/Purge Water

Soil cuttings and rinsate/purge water generated during drilling and sampling are stored on-site in DOT-approved 55-gallon steel drums pending characterization. A label is affixed to the drums indicating the contents of the drum, suspected contaminants, date of generation, and the boring number from which the waste is generated. A licensed waste disposal contractor removes the drums from the site to an appropriate facility for treatment/recycling.



| Golden Ga<br>Remedia<br>site address:<br>project #: | te /<br>tion | Techno               |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|-----------------------------------------------------|--------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|---------------------------------|
|                                                     |              |                      |                                  |                      | MTS MONITO                       | BING POINT           |                                  |                      |                                  |                      |                                 |
| DATE                                                | тіме         |                      | WELL ID                          | ,                    | WELL (D                          |                      | IELL ID                          | ,                    | WELL ID                          | WELL ID              |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              | VACCUM<br>(IN WATER) | GW ELEVATION<br>(FEET BELOW TOC) | VACCUM<br>(IN WATER) | GW ELEVATION<br>(FEET BELOW TOC |
|                                                     |              | <br>                 |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
| 1                                                   | -            |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      |                                  |                      |                                  |                      |                                 |
|                                                     |              |                      |                                  |                      |                                  |                      | j                                |                      |                                  |                      |                                 |

#### **TYPICAL MPF** Monitoring And Control Equipment **Monitoring Equipment** Location In System Example Of Equipment Flow meter O At each wellhead Pitot tube Manifold to blower. O In-line rotameter O Blower discharge • Orifice plate Venturi or flow tuba. Vacuum gauge At each well head or Manometer manifold branch Magnehelic gauge O Vacuum gauge Before and after filters upstream of blower Before and after vapor Ireatment Vapor temperature sensor Manifold to blower O Bi-metal dial-type Blower discharge (prior thermometer to vapor treatment) Sampling port At each well head or Hose barb. manifold branch Septa fitting Manifold to blower • Blower discharge Vapor sample collection ○ At each well head or Tedlar bags equipment (used through a manifold branch Sorbent tubes sampling port) Manifold to blower Sorbent canisters O Polypropylene tubing Blower discharge for direct GC injection **Control Equipment** Flow control valves At each well head or O Ball valve manifold branch O Gate/globe valve Dilution or bleed valve Butterfly valve at manifold to blower

# TYPICAL Air Sparge

# Monitoring And Control Equipment

| Monitoring Equipment                      | Location In System                                                                                                                                                                                  | Example Of Equipment                                                                                                                                       |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow meter                                | <ul> <li>At each injection and<br/>vapor extraction well<br/>head</li> <li>Manifold to blower</li> <li>Stack discharge</li> </ul>                                                                   | <ul> <li>Pitot tube</li> <li>In-line rotameter</li> <li>Orifice plate</li> <li>Venturi or flow tube</li> </ul>                                             |
| Pressure gauge                            | <ul> <li>At each injection and<br/>vapor extraction well<br/>head or manifold branch</li> <li>Before blower (before<br/>and after filters)</li> <li>Before and after vapor<br/>treatment</li> </ul> | <ul> <li>Manometer</li> <li>Magnehelic gauge</li> <li>Vacuum gauge</li> </ul>                                                                              |
| Vapor or air sparge<br>temperature sensor | <ul> <li>Manifold to blower</li> <li>Blower or compressor<br/>discharge (prior to vapor<br/>treatment)</li> </ul>                                                                                   | <ul> <li>O Bi-metal dial-type<br/>thermometer</li> <li>O Thermocouple</li> </ul>                                                                           |
| Sampling port                             | <ul> <li>At each vapor extraction<br/>well head or manifold<br/>branch</li> <li>Manifold to blower</li> <li>Blower discharge</li> </ul>                                                             | <ul> <li>Hose barb</li> <li>Septa fitting</li> </ul>                                                                                                       |
| Control Equipment                         |                                                                                                                                                                                                     |                                                                                                                                                            |
| Flow control valves/<br>regulators        | <ul> <li>At each vapor extraction<br/>well head or manifold<br/>branch</li> <li>Dilution or bleed valve at<br/>manifold to blower</li> <li>At header to each sparge<br/>point</li> </ul>            | <ul> <li>Ball valve</li> <li>Gate valve</li> <li>Dilution/ambient air bleed valve</li> <li>Gate valve</li> <li>Dilution/ambient air bleed valve</li> </ul> |

Source: How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A Guide for Corrective Action Plan Reviewers, EPA May 2004



March 8, 2011

Proposal No. BRG39121

Elena Manzo Soma Environmental 6620 Owens Drive Pleasanton, CA 94588

## Subject: Application of ORC Advanced (Advanced Formula Oxygen Release Compound) to Accelerate the Natural Attenuation of Contaminants of Concern (COCs) at the 3519 Castro Valley site

Dear Ms. Manzo:

Thank you for your interest in Regenesis and our Advanced formula Oxygen Release Compound (ORC  $Advanced^{TM}$ ) product. We have reviewed the information that you provided for the above-referenced site. In the following sections of this proposal, we will discuss the use of ORC *Advanced*, design and cost information, delivery of ORC *Advanced* to the subsurface, a recommended groundwater monitoring program, and the performance goals for this particular project. In addition, this proposal should be considered preliminary because some assumptions were made regarding the current biogeochemical conditions of the aquifer and the extent of the contaminant plume requiring treatment. We look forward to working with you on developing a site-specific strategy that will help meet your objectives for the site.

# Use of Advanced formula Oxygen Release Compound (ORC $Advanced^{TM}$ ) to Accelerate Bioremediation

Advanced formula Oxygen Release Compound (ORC *Advanced*) is a patented formulation of phosphateintercalated calcium oxyhydroxide that is a timed-released source of oxygen. ORC *Advanced* releases oxygen in the dissolved-phase when it is hydrated. Numerous studies have shown that the lack of oxygen can limit the ability of naturally occurring microorganisms (aerobes) to degrade certain compounds. ORC *Advanced* provides terminal electron acceptors to support the oxidative biodegradation of many types of aerobically degradable compounds including but not limited to: petroleum-based hydrocarbons (e.g. Toluene) and chlorinated hydrocarbons (e.g. Vinyl Chloride). ORC *Advanced* is manufactured as a fine powder that can be installed in the subsurface in the following ways: (1) mixed with water to form a slurry that can be injected into both the saturated and unsaturated zones, and (2) added as a soil amendment to the backfill material used in excavation applications. The use of oxygen sources such as ORC *Advanced* is recognized as a sensible strategy for engineering accelerated bioattenuation at project sites contaminated with aerobically degradable compounds.

## Preliminary Design and Cost Information for Full Scale Remediation

Based on the provided data and earlier conversations with you, Regenesis understands that the full-scale treatment at the subject site will consist of a grid-based design approach. This treatment strategy should

Brittain Griffiths ~ TELEPHONE: 916.409.9331

reduce the levels of COCs in the target zone and downgradient. The design specifications for this treatment approach are found in a subsequent table.

## Data and Assumptions used to design this ORC Advanced<sup>TM</sup> project

The following data was used to determine the quantity of ORC-A needed for this site-specific project:

## Area 1 – SOMA 5 Shallow

- Estimated area requiring treatment: 40 ft x 30 ft
- Representative contaminant concentration: 4.9 mg/L TPHg, 1.6 mg/L benzene, .18 mg/L, ethylbenzene, .13 mg/L, .39 mg/L toluene, and xylene .084 mg/L
- Contaminated saturated zone thickness requiring treatment: 5 feet (10 to 15 feet bgs)
- Soil Type: clay
- Seepage Velocity: unknown

## Area 2 – SOMA 7 Shallow

- Estimated area requiring treatment: 20 ft x 30 ft
- Representative contaminant concentration: 1.9 mg/L TPHg, 1.2 mg/L TPHd, .33 mg/L mo, and .38 mg/L benzene
- Contaminated saturated zone thickness requiring treatment: 5 feet (10 to 15 feet bgs)
- Soil Type: clay
- Seepage Velocity: unknown

## Area 3 – ES1R Deep

- Estimated area requiring treatment: 40 ft x 30 ft
- Representative contaminant concentration: 1.4 mg/L TPHg, 1.6 mg/L TPHd, .096 mg/L benzene, .56 mg/L mo, .13 mg/L toluene
- Contaminated saturated zone thickness requiring treatment: 12 feet (18 to 30 feet bgs)
- Soil Type: silty sand
- Seepage Velocity: unknown

This project may need to be adjusted as detailed design and regulatory oversight issues are finalized.

| ORC Treatment – Groundwater – Area 1            |                                                                                                     |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Design Feature                                  | Specification                                                                                       |  |  |  |  |  |
| Saturated thickness requiring treatment         | 5 feet                                                                                              |  |  |  |  |  |
| Treatment area                                  | 40 feet x 30 feet                                                                                   |  |  |  |  |  |
| Delivery point spacing and configuration        | 35 points spaced 6 feet on center within rows and 6 feet on center btw rows. Offset rows by 3 feet. |  |  |  |  |  |
| ORC dose rate in lbs/vertical foot of injection | 6.9 lbs/ft (approx. 35 lbs/pt)                                                                      |  |  |  |  |  |
| ORC material requirement                        | 28 pts. X 5 feet x 6. lbs/ft = 1,200 lbs (rounded to 30 lbs increment)                              |  |  |  |  |  |

| ORC Treatment – Groundwater – Area 2            |                                                                                                     |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Design Feature                                  | Specification                                                                                       |  |  |  |  |  |
| Saturated thickness requiring treatment         | 5 feet                                                                                              |  |  |  |  |  |
| Treatment area                                  | 20 feet x 30 feet                                                                                   |  |  |  |  |  |
| Delivery point spacing and configuration        | 20 points spaced 6 feet on center within rows and 6 feet on center btw rows. Offset rows by 3 feet. |  |  |  |  |  |
| ORC dose rate in lbs/vertical foot of injection | 5.5 lb/ft (approx 28 lbs/pt)                                                                        |  |  |  |  |  |
| ORC material requirement                        | 20 pts x 5 feet x 5.5 lbs/ft = 550 lbs                                                              |  |  |  |  |  |

| ORC Treatment – Groundwater – Area 3            |                                                                                                     |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Design Feature                                  | Specification                                                                                       |  |  |  |  |  |
| Saturated thickness requiring treatment         | 12 feet                                                                                             |  |  |  |  |  |
| Treatment area                                  | 40 feet x 30 feet                                                                                   |  |  |  |  |  |
| Delivery point spacing and configuration        | 20 points spaced 8 feet on center within rows and 8 feet on center btw rows. Offset rows by 4 feet. |  |  |  |  |  |
| ORC dose rate in lbs/vertical foot of injection | 4.7 lb/ft (approx 52 lbs/pt)                                                                        |  |  |  |  |  |
| ORC material requirement                        | 20 pts x 11 feet x 4.7 lbs/ft = 1,125 lbs                                                           |  |  |  |  |  |

## ORC Advanced<sup>TM</sup> Product Requirement & Cost

The total amount of ORC-A required for this site is 2,875 lbs. At a unit cost of \$8.50/lb the total cost is \$24,437.50 plus shipping and sales tax. *The price quoted in this proposal is locked for 30 days*.

## Total ORC Advanced<sup>TM</sup> Project Cost

The total cost of an ORC *Advanced*-accelerated bioremediation project can be estimated using the following items:

- ORC Advanced<sup>TM</sup> material, shipping fees, and sales tax
- Fieldwork costs associated with the installation of ORC *Advanced* (Customers are responsible for selecting the drilling subcontractor that will be used for the project.)
- Groundwater monitoring well construction (if additional monitoring wells are needed to properly monitor the performance of the project)
- All fieldwork and laboratory analysis associated with periodic groundwater monitoring events
- Consultant oversight and report generation

The costs presented in this proposal are for ORC *Advanced* material costs for a one-time application only. The need to re-apply ORC *Advanced* depends on your plume management strategy, site-specific biodegradation performance, and the ultimate remediation goals for the site as well as other technical or regulatory considerations. For grid-based treatments, one- to two- re-applications may be necessary over the duration of the project. Each re-application would most likely be done over a smaller area and the dose amount would be less than the initial application assuming that there is not an on-going source present. For barrier-based designs, re-applications will be necessary every year as long as there is a need to prevent contaminant migration. As can be seen, project costs are directly related to the period of time needed to achieve the site-specific goals.

## **Performance Goals for RegenOx Projects**

The primary goals for a chemical oxidation project are to (1) rapidly reduce the mass of contaminants in the subsurface and (2) to stabilize and/or reduce the size of the contaminant plume. Please note that after the injection of any chemical oxidant to a contaminated aquifer, dissolved-phase contamination will be reduced initially, but will then rebound somewhat in most cases, as the sorbed contaminants become redissolved. It is therefore critically important to accurately estimate the mass of soil-bound contaminant within the subsurface and to anticipate and allow for this predictable rebound in dissolved-phase contaminants after the initial injection. It is for this reason that Regenesis strongly recommends the use of a series of three RegenOx injections performed 1 to 2 weeks apart.

## **Preliminary Aquifer Volume Testing**

Prior to application of the RegenOx material, it is critical that a clear water injection be performed at the site. The injection a non-reactive (clear water) material at a volume that is approximately 25% greater than the anticipated application volume of RegenOx will provide good evidence of the aquifers capacity to accept the designed volume of RegenOx. Please note, the preliminary aquifer volume test should be conducted outside of the desired on-site treatment area(s) in order to avoid overloading the subsurface with clear-water before applying RegenOx on-site.

## **ORC** Advanced<sup>TM</sup> Delivery to Contaminated Zone Using Direct-Push Equipment

This product is normally installed using direct-push drilling equipment. This delivery method calls for drive rods to be pushed to the bottom of the contaminated saturated zone, and then an ORC *Advanced*/water slurry (ORC *Advanced* slurry) is injected as the rods are withdrawn. Regenesis recommends using drive rods with an inner diameter of at least 5/8 of an inch to inject the ORC *Advanced* 

slurry. The use of smaller diameter drive rods increases the amount of pressure needed to properly deliver the material and can jeopardize the effectiveness of the installation. Using the proper drilling and related equipment reduces the time required to install this product.

As a rule, the ORC *Advanced* slurry used for direct-push installations has a solids content of 20% to 40% by weight. Typically, ORC *Advanced* slurries used during installation activities have a solids content of 30%, but this value may need to be adjusted in the field so that the required mass of ORC *Advanced* can be injected at each location. For example, less permeable soil types (e.g. clays) may require a higher ORC *Advanced* solids content since less slurry volume can be injected per location. The volume of water per injection location can be calculated from the following equation:

Volume of water (gal/injection pt) =  $\frac{\text{ORC Advanced lbs/hole}}{(8.34 \, \text{lbs/gal water})(\% \, \text{ORC Advanced solids})} [1 - (\% \, \text{ORC Advanced solids})]$ 

One of the most critical aspects of a successful installation is having a pump that can properly install the material in the subsurface. Most direct-push contractors are equipped with grout pumps capable of installing ORC *Advanced* into the subsurface. Typically, the pumps used for these types of product applications should have a pumping rate of at least three gallons per minute and a pressure rating of at least 500 pounds per square inch (psi). Failing to specify and use the appropriate equipment for this type of product installation may increase field time and result in improper application of the material. If you have any questions about purchasing, renting, or specifying a pump for a project, please contact the Technical Service Group staff at Regenesis.

## **Recommended Groundwater Monitoring Program for ORC** *Advanced*<sup>TM</sup> **Projects**

Monitoring of selected wells should be conducted to validate the enhancement of aerobic natural attenuation processes. The monitoring well network would ideally include wells from the following locations:

| Inside treatment area        | Provides information on geochemical conditions and contaminants needed for thorough evaluation of ORC <i>Advanced</i> design |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Upgradient of treatment area | Provides a measure of contaminant mass and background aquifer redox conditions entering the treatment area                   |  |  |  |  |

An initial or "pre-design" round of sampling should be performed to identify current groundwater conditions. These natural attenuation and geochemical parameters will be used accurately design a groundwater remediation plan using ORC *Advanced*. The monitoring protocol should call for standard low flow groundwater-sampling techniques and include the measurement of the following field/chemical parameters:

- all contaminants of concern
- field redox parameters: ORP, pH, dissolved oxygen
- nitrate, total and dissolved iron, sulfate, methane and chemical oxygen demand at selected wells within and outside treatment area

If practical, analyze some soil samples from the proposed treatment areas just below the water table for the contaminants of concern. This is useful in estimating the amount of hydrocarbon contamination that can continue to partition from the soil to the dissolved phase.

#### **Performance Expectations**

#### Site Characterization

This design/proposal is based upon site characteristics and professional opinions provided by your company. It is your responsibility to ensure that the site characteristics provided to Regenesis and subsequently used in this design are representative of actual site characteristics. Actual site characteristics e.g. identification of the appropriate vertical treatment zone, that vary from those provided for this design may directly affect the overall performance of the project.

#### Subsurface Product Delivery

Product delivery during application is of the highest importance in ensuring project success. Attention must be given to both horizontal and vertical placement of the product. The professional judgment of your associates should be used to identify the appropriate treatment zone (vertical and lateral). The identified treatment zone should consider the distribution of the targeted contaminant as well as variations in subsurface permeability that might preferentially channel the product during application. Finally, it is the responsibility your company to ensure that the field delivery methods used by the applier actually deliver the product into the identified treatment zone.

## Project Responsibility

Regenesis trusts that the present proposal is sufficiently complete. Given the nature and extent of project factors beyond the control of Regenesis, it must be understood that the responsibility for successful project implementation remains with your company. However, as always, Regenesis would be pleased to assist with any technical support and product application advice we may be able to offer.

#### Regenesis Support

Regenesis is committed to supporting its customers with the highest level of service available in the remediation product industry. If you have any questions or require additional assistance with this design/proposal please contact us. If you are interested in a more comprehensive site data review and analysis or on-site application support services, Regenesis Technical Services staff is available to assist you on a fee basis. Please contact Jack Peabody at 925.944.5566 (jpeabody@regnesis.com) or me at 916.409.9331 (bgriffiths@regenesis.com).

Sincerely,

Anttan Siffether ye.

Brittain Griffiths Applications Engineer

| ORC Advanced D                                                                                                  | -                                 |                                | ications Usin                                | g Slurry Inje                                         | ction           | Sept 200           | 5   |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|----------------------------------------------|-------------------------------------------------------|-----------------|--------------------|-----|
| COMPOUND RELEASE Regenesis Technical Sup                                                                        | port: USA (949) 366-              | -8000                          |                                              | www.regenesis.c                                       | <u>:om</u>      |                    |     |
| Site Name: 3519 Castro Valley Area 1                                                                            |                                   |                                |                                              |                                                       |                 |                    |     |
| Location: Proposal No. BRG39121<br>Consultant:                                                                  |                                   |                                |                                              |                                                       |                 |                    |     |
|                                                                                                                 |                                   |                                |                                              |                                                       |                 |                    | _   |
| Estimated Plume Requiring Treatment Width of plume (intersecting gw flow direction)                             |                                   | 40                             | 7#                                           |                                                       |                 |                    |     |
| Length of plume (parallel to gw flow direction)                                                                 |                                   | 30                             | ft                                           | 1,200                                                 | ft <sup>2</sup> |                    |     |
| Depth to contaminated zone                                                                                      |                                   | 10                             | ft                                           | <u> </u>                                              | -               |                    |     |
| Thickness of contaminated saturated zone<br>Nominal aquifer soil (gravel, sand, silty sand, silt, clay)         |                                   | 5<br>clay                      | ft                                           |                                                       |                 |                    |     |
| Fotal porosity                                                                                                  |                                   | 0.45                           | Effective porosity:                          | 0.1                                                   | ]               |                    |     |
| Hydraulic conductivity                                                                                          |                                   | 0.001                          | ft/day                                       | 3.5E-07                                               | cm/sec          |                    |     |
| Hydraulic gradient<br>Seepage velocity                                                                          |                                   | 0.005                          | ft/ft<br>ft/yr                               | 0.000                                                 | ft/day          |                    |     |
| Treatment Zone Pore Volume                                                                                      |                                   | 2,700                          | ft <sup>3</sup>                              | 20,199                                                | gallons         |                    |     |
| Disashuad Dhasa Outuren Damanda                                                                                 |                                   | Cantania ant Cana              | Contonia ont More                            |                                                       |                 |                    | _   |
| Dissolved Phase Oxygen Demand:<br>ndividual species that represent oxygen demand:                               |                                   | Contaminant Conc.<br>(mg/L)    | (lb)                                         | Stoichiometry (wt/wt)<br>O <sub>2</sub> /contaminant  | (lb)            |                    |     |
| Benzene                                                                                                         |                                   | 1.60                           | 0.3                                          | 3.1                                                   | 5               |                    |     |
| Foluene                                                                                                         |                                   | 0.39                           | 0.1                                          | 3.1                                                   | 1               |                    |     |
| Ethylbenzene<br>Kylenes                                                                                         |                                   | 0.13                           | 0.0                                          | 3.2<br>3.2                                            | 0               |                    |     |
| МТВЕ                                                                                                            |                                   | 0.09                           | 0.0                                          | 2.7                                                   | 0               |                    |     |
| vis-1,2-DCE                                                                                                     |                                   | 0.00                           | 0.0                                          | 0.7<br>1.3                                            | 0               |                    |     |
| /inyl Chloride<br>IPHg                                                                                          |                                   | 4.90                           | 0.0                                          | 3.2                                                   | 16              |                    |     |
| Ло                                                                                                              |                                   | 0.00                           | 0.0                                          | 3.2                                                   | 0               |                    |     |
| Reduced metals: Fe <sup>+2</sup> and Mn <sup>+2</sup>                                                           |                                   | 10.00                          | 1.7                                          | 0.1                                                   | 1               |                    |     |
| TPH-g                                                                                                           | <b>_</b>                          | <- pull-down menu              |                                              |                                                       |                 |                    |     |
| Measures of total oxygen demand<br>Total Petroleum Hydrocarbons (see pull-down for Koc)                         |                                   | 0.00                           | 0.0                                          | 3.1                                                   | 0               |                    |     |
| Biological Oxygen Demand (BOD)                                                                                  |                                   | 0.00                           | 0.0                                          | 1.0                                                   | 0               |                    |     |
| Chemical Oxygen Demand (COD)                                                                                    |                                   | 0.00                           | 0.0                                          | 1.0                                                   | 0               |                    |     |
| Parameters for Sorbed Phase Oxygen Demand:                                                                      |                                   |                                |                                              |                                                       |                 |                    | -   |
| Soil bulk density                                                                                               |                                   | 1.76                           | g/cm <sup>3</sup> =                          | 110                                                   | lb/cf           |                    |     |
| Fraction of organic carbon (foc)                                                                                |                                   | 0.01                           | range: 0.0001 to 0.07                        | 1                                                     |                 |                    |     |
| Estimated using sorbed phase = foc*Koc*Cgw)                                                                     | Koc                               | Contaminant Conc.              | Contaminant Mass                             | Stoichiometry (wt/wt)                                 | ) ORC-Adv Dose  |                    |     |
| Adjust Koc as necessary to provide realistic estimates)                                                         | (L/kg)                            | (mg/kg)                        | (lb)                                         | O <sub>2</sub> /contaminant                           | (lb)            |                    |     |
| Senzene                                                                                                         | 123                               | 1.97                           | 1.3<br>0.7                                   | 3.1                                                   | 24              |                    |     |
| Foluene<br>Ethylbenzene                                                                                         | 267<br>327                        | 1.04<br>0.43                   | 0.7                                          | 3.1<br>3.2                                            | 13<br>5         |                    |     |
| Kylenes                                                                                                         | 298                               | 0.25                           | 0.2                                          | 3.2                                                   | 3               |                    |     |
| MTBE                                                                                                            | 12                                | 0.01                           | 0.0                                          | 2.7                                                   | 0               |                    |     |
| cis-1,2-DCE<br>Vinyl Chloride                                                                                   | 80<br>2.5                         | 0.00                           | 0.0                                          | 0.7                                                   | 0               |                    |     |
| TPHg                                                                                                            | 373.0                             | 18.28                          | 12.0                                         | 3.2                                                   | 227             |                    |     |
|                                                                                                                 | 503.0                             | 0.00                           | 0.0                                          | 3.2                                                   | 0               |                    |     |
| <u>Measures of total oxygen demand</u><br>Total Petroleum Hydrocarbons                                          | 373                               | 0.00                           | 0.0                                          | 3.1                                                   | 0               |                    |     |
|                                                                                                                 |                                   |                                |                                              |                                                       |                 |                    | _   |
| Summary of Estimated ORC-Adv Requirements                                                                       | Dissolved Phase<br>ORC-Adv Demand | Sorbed Phase<br>ORC-Adv Demand | Additional Demand<br>Factor                  | Total<br>ORC-Adv Demand                               | ORC-Adv Cost    |                    |     |
|                                                                                                                 | (lbs)                             | (lbs)                          | (1 to 10x)                                   | (lbs)                                                 |                 |                    |     |
| Total BTEX, MTBE, etc.                                                                                          |                                   | 272                            | 4.0                                          | 1,184                                                 | ,               | <-                 |     |
| Total Petroleum Hydrocarbons                                                                                    | 0                                 | 0                              | 2.0<br>2.0                                   | 0                                                     | \$0<br>\$0      |                    |     |
| Chemical Oxygen Demand (COD)                                                                                    | 0                                 | 0                              | 1.5                                          | 0                                                     | \$0             |                    |     |
| Required ORC-Adv quantity (in 25 lb increments)                                                                 |                                   |                                |                                              | 1,200                                                 | pounds ORC-Adv  | ,                  |     |
|                                                                                                                 |                                   |                                |                                              | 1,200                                                 |                 |                    |     |
| Delivery Design for ORC-Adv Slurry                                                                              |                                   | 7                              | Champe Missing Maler                         | na fan Iniaationa                                     |                 |                    |     |
| Spacing within rows (ft)<br># points per row                                                                    | <u>6.0</u><br>7                   | feet<br>points/row             | Slurry Mixing Volun<br>Pounds per location   | ne for injections                                     | ſ               | 34                 | ро  |
| Spacing between rows (ft)                                                                                       | 6.0                               | ft                             | Buckets per location                         |                                                       |                 | 1.4                | bu  |
| ♯ of rows<br>Advective travel time bet. rows (days)                                                             | 5<br>120000                       | rows<br>days                   | Design solids conten<br>Volume of water requ | t (20-40% by wt. for in                               | njections)      | <u>30%</u><br>10   | ga  |
| Number of points in grid                                                                                        | 35                                | points                         | Total water for mixing                       |                                                       | ŀ               | 336                | ga  |
| DRC-Adv application rate                                                                                        | 6.9                               | lbs/foot                       |                                              | ckfilling: min hole dia.                              |                 | 4.3                | inc |
| otal ORC-Adv required                                                                                           | 1,200                             | lbs of ORC-Adv                 |                                              | njection in sand: ok up<br>njection in silt: ok up to |                 | (ok)<br>(ok)       | _   |
| Project Summary                                                                                                 |                                   |                                |                                              | njection in clay: ok up                               |                 | (ok)               | -   |
| Number of ORC-Adv delivery points (adjust as necessary                                                          |                                   | 35                             | 5                                            |                                                       |                 |                    | _   |
| DRC-Adv application rate in lbs/ft (adjust as necessary for<br>DRC-Adv bulk material for slurry injection (lbs) | site)                             | 6.9<br>1,200                   |                                              |                                                       |                 |                    |     |
| lumber of 25 lb ORC-Adv buckets                                                                                 |                                   | 48.0                           |                                              |                                                       |                 |                    |     |
| DRC-Adv bulk material cost (\$/lb)                                                                              |                                   | \$ -                           | List Price has been a                        | adjusted                                              |                 |                    |     |
| Cost for bulk ORC-Adv material<br>Shipping and Tax Estimates in US Dollars                                      |                                   | \$-                            |                                              |                                                       |                 |                    |     |
| Sales Tax rate                                                                                                  | e: 0.00%                          | \$ -                           |                                              |                                                       |                 |                    |     |
| Total Material Cost                                                                                             |                                   | \$-<br>\$-                     |                                              |                                                       |                 |                    |     |
| Shipping (call for amount)<br>Total Regenesis Material Cost                                                     |                                   | <u> </u>                       | 1                                            |                                                       |                 |                    |     |
|                                                                                                                 |                                   | •                              | -                                            |                                                       |                 |                    |     |
| ORC-Adv Slurry Injection Cost Estimate (responsibility                                                          |                                   | <mark>act work)</mark><br>15   |                                              | Other Project Cost                                    | Estimates       | \$-                |     |
| Footage for each point = uncontaminated interval + ORC-,<br>Total length for direct push for project (ft)       | -uv injection interval (π)        | 525                            |                                              | Design<br>Permitting and repor                        | ting            | \$ -<br>\$ -       |     |
| Estimated daily installation rate (ft per day: 300 for push, 1                                                  |                                   | 300                            |                                              | Construction manag                                    | ement           | \$-                |     |
| Estimated points per day (10 to 30 is typical for direct push                                                   | 1)                                | 20.0                           |                                              | Groundwater monito                                    | ring and rpts   | \$ -<br>¢          |     |
| Required number of days<br>Mob/demob cost for injection subcontractor                                           |                                   | \$-                            |                                              | Other<br>Other                                        |                 | \$ -<br>\$ -       |     |
| Daily rate for injection subcontractor (\$1-2K for push, \$3-4                                                  | K for drill rig)                  | \$ -                           |                                              | Other                                                 |                 | \$-                |     |
| Total injection subcontractor cost for application  Fotal Install Cost (not including consultant, lab, etc.)    |                                   | <u> </u>                       | -                                            | Other<br>Total Project Cost                           |                 | <u>\$</u> -<br>\$- | 4   |
| i orai morali oosi (not including consultant, lab, etc.)                                                        |                                   | φ -                            | 1                                            | Total Project Cost                                    |                 | φ -                |     |

| CITC ADVANCED                                                       | DRC Advanced D                                    | -                                 |                                | ications Usin                                  |                                                       |                      | Sept 2005           |
|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------------------|-------------------------------------------------------|----------------------|---------------------|
| OXYGEN RELEASE                                                      | egenesis Technical Su                             | pport: USA (949) 366-             | -8000                          |                                                | www.regenesis.c                                       | <u>om</u>            |                     |
|                                                                     | 519 Castro Valley Area 2                          |                                   |                                |                                                |                                                       |                      |                     |
| Location: P<br>Consultant:                                          | roposal No. BRG39121                              |                                   |                                |                                                |                                                       |                      |                     |
|                                                                     |                                                   |                                   |                                |                                                |                                                       |                      |                     |
| Estimated Plume Requiring<br>Width of plume (intersecting           |                                                   |                                   | 20                             | ft                                             |                                                       |                      |                     |
| ength of plume (parallel to                                         |                                                   |                                   | 30                             | ft                                             | 600                                                   | ft <sup>2</sup>      |                     |
| Depth to contaminated zone                                          |                                                   |                                   | 10                             | ft                                             |                                                       |                      |                     |
| Thickness of contaminated s<br>Nominal aquifer soil (gravel,        |                                                   |                                   | 5<br>clay                      | ft                                             |                                                       |                      |                     |
| Fotal porosity                                                      | Sand, Sity Sand, Sit, Gay)                        |                                   | 0.45                           | Effective porosity:                            | 0.1                                                   | 1                    |                     |
| Hydraulic conductivity                                              |                                                   |                                   | 0.001                          | ft/day                                         | 3.5E-07                                               | cm/sec               |                     |
| Hydraulic gradient                                                  |                                                   |                                   | 0.005                          | ft/ft                                          | 0.000                                                 | 64/-1                |                     |
| Seepage velocity<br>Freatment Zone Pore Volum                       | e                                                 |                                   | 0.0                            | ft/yr<br>ft <sup>3</sup>                       | 0.000 10,099                                          | ft/day<br>gallons    |                     |
|                                                                     | •                                                 |                                   | 1,000                          | _n                                             | 10,000                                                | gallorio             |                     |
| Dissolved Phase Oxygen I<br>ndividual species that repres           |                                                   |                                   | Contaminant Conc.<br>(mg/L)    | Contaminant Mass<br>(lb)                       | Stoichiometry (wt/wt)<br>O <sub>2</sub> /contaminant  | ORC-Adv Dose<br>(lb) |                     |
| Benzene                                                             | sent oxygen demand.                               |                                   | 0.38                           | 0.0                                            | 3.1                                                   | (15)                 |                     |
| oluene                                                              |                                                   |                                   | 0.00                           | 0.0                                            | 3.1                                                   | 0                    |                     |
| Ethylbenzene                                                        |                                                   |                                   | 0.00                           | 0.0                                            | 3.2                                                   | 0                    |                     |
| Kylenes<br>MTBE                                                     |                                                   |                                   | 0.08                           | 0.0                                            | 3.2<br>2.7                                            | 0                    |                     |
| is-1,2-DCE                                                          |                                                   |                                   | 0.00                           | 0.0                                            | 0.7                                                   | 0                    |                     |
| rPHd                                                                |                                                   |                                   | 2.10                           | 0.2                                            | 3.2                                                   | 3                    |                     |
| ЪНд<br>Ло                                                           |                                                   |                                   | 1.90<br>0.33                   | 0.2                                            | 3.2<br>3.2                                            | 3                    |                     |
| wo<br>Reduced metals: Fe <sup>+2</sup> and M                        | n <sup>+2</sup>                                   |                                   | 10.00                          | 0.0                                            | 0.1                                                   | 0                    |                     |
| TPH-g                                                               |                                                   |                                   | <- pull-down menu              |                                                |                                                       |                      |                     |
| Aeasures of total oxygen de                                         | mand                                              |                                   |                                |                                                |                                                       |                      |                     |
| Total Petroleum Hydrocarbo                                          | ns (see pull-down for Koc)                        |                                   | 0.00                           | 0.0                                            | 3.1                                                   | 0                    |                     |
| Biological Oxygen Demand (                                          |                                                   |                                   | 0.00                           | 0.0                                            | 1.0                                                   | 0                    |                     |
| Chemical Oxygen Demand (                                            |                                                   |                                   | 0.00                           | 0.0                                            | 1.0                                                   | 0                    |                     |
| Parameters for Sorbed Pha                                           | ase Oxygen Demand:                                |                                   | 1.70                           | ٦. 3                                           | 440                                                   | lu /                 |                     |
| Soil bulk density<br>Fraction of organic carbon (f                  | oc)                                               |                                   | 1.76<br>0.01                   | g/cm <sup>3</sup> =<br>range: 0.0001 to 0.01   | 110                                                   | lb/cf                |                     |
|                                                                     |                                                   |                                   |                                |                                                |                                                       |                      |                     |
| (Estimated using sorbed pha<br>(Adjust Koc as necessary to          |                                                   | Koc<br>(L/kg)                     | Contaminant Conc.              |                                                | Stoichiometry (wt/wt)<br>O <sub>2</sub> /contaminant  |                      |                     |
| Benzene                                                             | provide realistic estimates)                      | (L/Kg)<br>123                     | (mg/kg)<br>0.47                | (lb)<br>0.2                                    | 3.1                                                   | (lb)<br>3            |                     |
| Toluene                                                             |                                                   | 267                               | 0.00                           | 0.0                                            | 3.1                                                   | 0                    |                     |
| Ethylbenzene                                                        |                                                   | 327                               | 0.00                           | 0.0                                            | 3.2                                                   | 0                    |                     |
| Kylenes                                                             |                                                   | 298                               | 0.25                           | 0.1                                            | 3.2                                                   | 2                    |                     |
| MTBE<br>cis-1,2-DCE                                                 |                                                   | <u>12</u><br>80                   | 0.00                           | 0.0                                            | 2.7<br>0.7                                            | 0                    |                     |
| TPHd                                                                |                                                   | 503.0                             | 10.56                          | 3.5                                            | 3.2                                                   | 66                   |                     |
| TPHg                                                                |                                                   | 373.0                             | 7.09                           | 2.3                                            | 3.2                                                   | 44                   |                     |
| Mo                                                                  |                                                   | 503.0                             | 1.66                           | 0.5                                            | 3.2                                                   | 10                   |                     |
| <u>Measures of total oxygen de</u><br>Total Petroleum Hydrocarbo    |                                                   | 373                               | 0.00                           | 0.0                                            | 3.1                                                   | 0                    |                     |
|                                                                     |                                                   |                                   | ·                              |                                                | •                                                     |                      |                     |
| Summary of Estimated OR                                             | C-Adv Requirements                                | Dissolved Phase<br>ORC-Adv Demand | Sorbed Phase<br>ORC-Adv Demand | Additional Demand<br>Factor                    | Total<br>ORC-Adv Demand                               | ORC-Adv Cost         |                     |
|                                                                     |                                                   | (lbs)                             | (lbs)                          | (1 to 10x)                                     | (lbs)                                                 |                      |                     |
| Total BTEX, MTBE, etc.                                              |                                                   | 8                                 | 125                            | 4.0                                            | 531                                                   | \$4,923 <            | ÷                   |
| Total Petroleum Hydrocarbo<br>Biological Oxygen Demand (            | ns L<br>BOD)                                      | 0                                 | 0                              | 2.0<br>2.0                                     | 0                                                     | \$0<br>\$0           |                     |
| Chemical Oxygen Demand (                                            |                                                   | 0                                 | 0                              | 1.5                                            | 0                                                     | \$0                  |                     |
| Required ORC-Adv quantit                                            | v (in 25 lb increments)                           | >                                 |                                |                                                | 550                                                   | pounds ORC-Adv       |                     |
|                                                                     |                                                   |                                   |                                |                                                |                                                       | J                    |                     |
| Delivery Design for ORC-A<br>Spacing within rows (ft)               | dv Slurry                                         | 6.0                               | feet                           | Slurry Mixing Volun                            | e for Injections                                      |                      |                     |
| # points per row                                                    |                                                   | 4                                 | points/row                     | Pounds per location                            | le for injections                                     | Г                    | 28 p                |
| Spacing between rows (ft)                                           |                                                   | 6.0                               | ft                             | Buckets per location                           |                                                       |                      | 1.1 b               |
| # of rows                                                           | (1                                                | 5                                 | rows                           |                                                | t (20-40% by wt. for in                               | jections)            | 30%                 |
| Advective travel time bet. row<br>Number of points in grid          | ws (days)                                         | 120000<br>20                      | days<br>points                 | Volume of water requ<br>Total water for mixing |                                                       | F                    | <u>8</u> g<br>154 g |
| DRC-Adv application rate                                            |                                                   | 5.5                               | lbs/foot                       |                                                | ckfilling: min hole dia.                              | for 67% slurry       | 3.9 ir              |
| otal ORC-Adv required                                               |                                                   | 550                               | lbs of ORC-Adv                 |                                                | njection in sand: ok up                               |                      | (ok)                |
|                                                                     |                                                   |                                   |                                |                                                | njection in silt: ok up to<br>njection in clay: ok up |                      | (ok)                |
| Project Summary<br>Number of ORC-Adv deliver                        | y points (adjust as necessary                     | y for site)                       | 20                             |                                                | goodon in clay. Ok úp                                 |                      | (ok)                |
| ORC-Adv application rate in                                         | lbs/ft (adjust as necessary fo                    |                                   | 5.5                            | 5                                              |                                                       |                      |                     |
| DRC-Adv bulk material for sl                                        |                                                   |                                   | 550                            |                                                |                                                       |                      |                     |
| lumber of 25 lb ORC-Adv b<br>DRC-Adv bulk material cost             |                                                   |                                   | \$ -                           | )<br>List Price has been a                     | diusted                                               |                      |                     |
| Cost for bulk ORC-Adv mate                                          | rial                                              |                                   | \$-                            |                                                |                                                       |                      |                     |
| Shipping and Tax Estimate<br>Sales Tax                              |                                                   | e: 0.00%                          | \$-                            |                                                |                                                       |                      |                     |
| otal Material Cost                                                  | Tat                                               |                                   | \$-<br>\$-                     |                                                |                                                       |                      |                     |
| Shipping (call for amount)                                          |                                                   |                                   | \$-                            | 4                                              |                                                       |                      |                     |
| Total Regenesis Material C                                          | Jost                                              |                                   | \$-                            | T                                              |                                                       |                      |                     |
|                                                                     | Cost Estimate (responsibili                       |                                   |                                | 1                                              | Other Project Cost                                    |                      |                     |
|                                                                     | contaminated interval + ORC                       | -Adv injection interval (ft)      | 15                             |                                                | Design                                                |                      | \$ -                |
| Fotal length for direct push for<br>Estimated daily installation ra | or project (ft)<br>ate (ft per day: 300 for push, | 150 for drilling)                 | 300<br>300                     |                                                | Permitting and repor<br>Construction manage           |                      | \$-<br>\$-          |
|                                                                     | to 30 is typical for direct pus                   |                                   | 20.0                           |                                                | Groundwater monito                                    |                      | \$-<br>\$-          |
| Required number of days                                             |                                                   |                                   | 1                              | 4                                              | Other                                                 |                      | \$ -                |
| Mob/demob cost for injection<br>Daily rate for injection subco      | subcontractor<br>ntractor (\$1-2K for push, \$3-  | 4K for drill rig)                 | \$-<br>\$-                     |                                                | Other<br>Other                                        |                      | \$-<br>\$-          |
| otal injection subcontractor                                        | cost for application                              |                                   | \$ -                           |                                                | Other                                                 |                      | \$ -                |
| Fotal Install Cost (not inclue                                      |                                                   |                                   | \$-                            |                                                | Total Project Cost                                    |                      | \$-                 |

| ORC Advanced D                                                                                                       | -                     |                       | ications Usin                                            | g Slurry Inje                                         | ction           | Sept 2005    |
|----------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------------------------------------|-------------------------------------------------------|-----------------|--------------|
| COMPOUND Regenesis Technical Sup                                                                                     | port: USA (949) 366-  | -8000                 |                                                          | www.regenesis.c                                       | <u>com</u>      |              |
| Site Name: 3519 Castro Valley Area 3                                                                                 |                       |                       |                                                          |                                                       |                 |              |
| Location: Proposal No. BRG39121<br>Consultant:                                                                       |                       |                       |                                                          |                                                       |                 |              |
|                                                                                                                      |                       |                       |                                                          |                                                       |                 |              |
| Estimated Plume Requiring Treatment                                                                                  |                       | 40                    | 74                                                       |                                                       |                 |              |
| Vidth of plume (intersecting gw flow direction)<br>ength of plume (parallel to gw flow direction)                    |                       | <u>40</u><br>30       | π<br>ft                                                  | 1,200                                                 | ft <sup>2</sup> |              |
| Depth to contaminated zone                                                                                           |                       | 18                    | ft                                                       | 1,200                                                 | _ir             |              |
| hickness of contaminated saturated zone                                                                              |                       | 12                    | ft                                                       |                                                       |                 |              |
| lominal aquifer soil (gravel, sand, silty sand, silt, clay)                                                          |                       | silt                  |                                                          |                                                       | -               |              |
| otal porosity<br>lydraulic conductivity                                                                              |                       | 0.4                   | Effective porosity:<br>ft/day                            | 0.15<br>3.5E-04                                       | cm/sec          |              |
| Hydraulic gradient                                                                                                   |                       | 0.005                 | ft/ft                                                    | 0.5L-04                                               | cill/sec        |              |
| Seepage velocity                                                                                                     |                       | 12.2                  | ft/yr                                                    | 0.033                                                 | ft/day          |              |
| Freatment Zone Pore Volume                                                                                           |                       | 5,760                 | ft <sup>3</sup>                                          | 43,091                                                | gallons         |              |
| Dissolved Phase Oxygen Demand:                                                                                       |                       | Contaminant Conc.     | Contaminant Mass                                         | Stoichiometry (wt/wt)                                 |                 |              |
| ndividual species that represent oxygen demand:                                                                      |                       | (mg/L)                | (lb)                                                     | O <sub>2</sub> /contaminant                           | (lb)            |              |
| Benzene                                                                                                              |                       | 0.10                  | 0.0                                                      | 3.1                                                   | 1               |              |
| oluene                                                                                                               |                       | 0.13                  | 0.0                                                      | 3.1                                                   | 1               |              |
| thylbenzene<br>(ylenes                                                                                               |                       | 0.00 0.08             | 0.0                                                      | 3.2<br>3.2                                            | 0               |              |
| ATBE                                                                                                                 |                       | 0.02                  | 0.0                                                      | 2.7                                                   | 0               |              |
| iis-1,2-DCE                                                                                                          |                       | 0.00                  | 0.0                                                      | 0.7                                                   | 0               |              |
| 'HPd                                                                                                                 |                       | 1.60                  | 0.6                                                      | 3.2                                                   | 11              |              |
| 'PHg<br>Ao                                                                                                           |                       | 1.40<br>0.56          | 0.5                                                      | 3.2<br>3.2                                            | 9<br>4          |              |
| Reduced metals: Fe <sup>+2</sup> and Mn <sup>+2</sup>                                                                |                       | 10.00                 | 3.6                                                      | 0.1                                                   | 2               |              |
| TPH-g                                                                                                                | <b>-</b>              | <- pull-down menu     |                                                          |                                                       |                 |              |
| leasures of total oxygen demand                                                                                      |                       |                       |                                                          |                                                       |                 |              |
| Total Petroleum Hydrocarbons (see pull-down for Koc)                                                                 |                       | 0.00                  | 0.0                                                      | 3.1                                                   | 0               |              |
| Biological Oxygen Demand (BOD)                                                                                       |                       | 0.00                  | 0.0                                                      | 1.0                                                   | 0               |              |
| Chemical Oxygen Demand (COD)                                                                                         |                       | 0.00                  | 0.0                                                      | 1.0                                                   | 0               |              |
| Parameters for Sorbed Phase Oxygen Demand:                                                                           |                       |                       |                                                          |                                                       |                 |              |
| Soil bulk density                                                                                                    |                       | 1.76<br>0.005         | g/cm <sup>3</sup> =<br>range: 0.0001 to 0.0 <sup>2</sup> | 110                                                   | lb/cf           |              |
| Fraction of organic carbon (foc)                                                                                     |                       | 0.005                 | Tange. 0.0001 to 0.0                                     | I                                                     |                 |              |
| Estimated using sorbed phase = foc*Koc*Cgw)                                                                          | Koc                   | Contaminant Conc.     | Contaminant Mass                                         | Stoichiometry (wt/wt)                                 | ) ORC-Adv Dose  |              |
| Adjust Koc as necessary to provide realistic estimates)                                                              | (L/kg)                | (mg/kg)               | (lb)                                                     | O <sub>2</sub> /contaminant                           | (lb)            |              |
| Benzene<br>Toluene                                                                                                   | 123<br>267            | 0.06                  | 0.1                                                      | 3.1<br>3.1                                            | 2<br>5          |              |
| Ethylbenzene                                                                                                         | 327                   | 0.00                  | 0.0                                                      | 3.2                                                   | 0               |              |
| Kylenes                                                                                                              | 298                   | 0.13                  | 0.2                                                      | 3.2                                                   | 4               |              |
| ИТВЕ                                                                                                                 | 12                    | 0.00                  | 0.0                                                      | 2.7                                                   | 0               |              |
| cis-1,2-DCE                                                                                                          | 80                    | 0.00                  | 0.0                                                      | 0.7                                                   | 0               |              |
| [HPd<br>[PHg                                                                                                         | 503.0<br>373.0        | 4.02 2.61             | 6.4<br>4.1                                               | 3.2<br>3.2                                            | 120<br>78       |              |
| Mo                                                                                                                   | 503.0                 | 1.41                  | 2.2                                                      | 3.2                                                   | 42              |              |
| Measures of total oxygen demand                                                                                      |                       |                       |                                                          |                                                       |                 |              |
| Total Petroleum Hydrocarbons                                                                                         | 373                   | 0.00                  | 0.0                                                      | 3.1                                                   | 0               |              |
| Summary of Estimated ORC-Adv Requirements                                                                            | Dissolved Phase       | Sorbed Phase          | Additional Demand                                        | Total                                                 |                 |              |
|                                                                                                                      | ORC-Adv Demand        | ORC-Adv Demand        | Factor                                                   | ORC-Adv Demand                                        | ORC-Adv Cost    |              |
| Total BTEX, MTBE, etc.                                                                                               | (lbs)<br>28           | (lbs)<br>251          | (1 to 10x)<br>4.0                                        | (lbs)<br>1,117                                        | \$9,844         | <-           |
|                                                                                                                      |                       | 0                     | 2.0                                                      | 0                                                     | \$0             |              |
| Total Petroleum Hydrocarbons Diological Oxygen Demand (BOD)                                                          |                       | 0                     | 2.0                                                      | 0                                                     | \$0             |              |
| Chemical Oxygen Demand (COD)                                                                                         | 0                     | 0                     | 1.5                                                      | 0                                                     | \$0             |              |
| Required ORC-Adv quantity (in 25 lb increments)                                                                      | >                     |                       |                                                          | 1,125                                                 | pounds ORC-Adv  |              |
| Delivery Design for OBC Adv Slurry                                                                                   |                       |                       |                                                          |                                                       |                 |              |
| Delivery Design for ORC-Adv Slurry Spacing within rows (ft)                                                          | 8.0                   | feet                  | Slurry Mixing Volun                                      | ne for Injections                                     |                 |              |
| points per row                                                                                                       | 5                     | points/row            | Pounds per location                                      | •                                                     |                 | 56 p         |
| Spacing between rows (ft)                                                                                            | 8.0                   | ft                    | Buckets per location                                     |                                                       |                 | 2.3 b        |
| t of rows<br>∖dvective travel time bet. rows (days)                                                                  | 4 240                 | rows<br>days          | Volume of water requ                                     | t (20-40% by wt. for in                               | njections)      | 30%<br>16 g  |
| Number of points in grid                                                                                             | 240                   | points                | Total water for mixing                                   |                                                       | ł               | 315 g        |
| DRC-Adv application rate                                                                                             | 4.7                   | lbs/foot              |                                                          | ckfilling: min hole dia.                              |                 | 3.6 ir       |
| otal ORC-Adv required                                                                                                | 1,125                 | lbs of ORC-Adv        |                                                          | njection in sand: ok up                               |                 | (ok)         |
| roject Summary                                                                                                       |                       |                       |                                                          | njection in silt: ok up to<br>njection in clay: ok up |                 | (ok)<br>(ok) |
| Iumber of ORC-Adv delivery points (adjust as necessary                                                               | for site)             | 20                    |                                                          | ljeotion in oldy. Ok up                               |                 | (01)         |
| DRC-Adv application rate in lbs/ft (adjust as necessary for                                                          |                       | 4.7                   |                                                          |                                                       |                 |              |
| DRC-Adv bulk material for slurry injection (lbs)                                                                     |                       | 1,125                 |                                                          |                                                       |                 |              |
| lumber of 25 lb ORC-Adv buckets<br>)RC-Adv bulk material cost (\$/lb)                                                |                       | 45.0<br>\$-           | )<br>List Price has been a                               | diusted                                               |                 |              |
| Cost for bulk ORC-Adv material                                                                                       |                       | \$ -                  |                                                          |                                                       |                 |              |
| Shipping and Tax Estimates in US Dollars                                                                             | 0.000/                | •                     |                                                          |                                                       |                 |              |
| Sales Tax rate<br>Fotal Material Cost                                                                                | : 0.00%               | \$-<br>\$-            |                                                          |                                                       |                 |              |
| Shipping (call for amount)                                                                                           |                       | φ -<br>\$ -           |                                                          |                                                       |                 |              |
| Total Regenesis Material Cost                                                                                        |                       | \$-                   | 1                                                        |                                                       |                 |              |
| PC-Adv Slurry Injection Cost Estimate (source - 1: 11)                                                               | of customer to contra | ct work)              | т                                                        | Other Project Cast                                    | Estimatos       |              |
| DRC-Adv Slurry Injection Cost Estimate (responsibility<br>Footage for each point = uncontaminated interval + ORC-/   |                       | <u>ct work)</u><br>30 |                                                          | Other Project Cost<br>Design                          | Estimates       | \$-          |
| otal length for direct push for project (ft)                                                                         | ,                     | 600                   |                                                          | Permitting and report                                 |                 | \$ -         |
| Estimated daily installation rate (ft per day: 300 for push, 1                                                       |                       | 300                   |                                                          | Construction manag                                    |                 | \$ -<br>¢    |
| Estimated points per day (10 to 30 is typical for direct push<br>Required number of days                             | )                     | 10.0                  |                                                          | Groundwater monito<br>Other                           | and this        | \$ -<br>\$ - |
| Mob/demob cost for injection subcontractor                                                                           |                       | \$ -                  |                                                          | Other                                                 |                 | \$ -         |
| Daily rate for injection subcontractor (\$1-2K for push, \$3-4                                                       | K for drill rig)      | \$ -                  |                                                          | Other                                                 |                 | \$ -         |
| otal injection subcontractor cost for application<br><b>Total Install Cost</b> (not including consultant, lab, etc.) |                       | <u> </u>              |                                                          | Other<br>Total Project Cost                           |                 | \$-<br>\$-   |
|                                                                                                                      |                       |                       |                                                          |                                                       |                 |              |



## RegenOx Summary Page

Regenesis Technical Support: USA (949) 366-8000

Site Name: SOMA 5 Location: Proposal no. BRG39121 Consultant:

| Au | g ź | 20 | 0 | 6 |
|----|-----|----|---|---|
|    |     |    |   |   |

#### Design Summary - INITIAL APPLICATION ONLY

| Width of plume (intersecting gw flow direction) | 40   | ft       |
|-------------------------------------------------|------|----------|
| Length of plume (parallel to gw flow direction) | 30   | ft       |
| Thickness of contaminated zone                  | 5    | ft       |
| Soil type                                       | clay | Total vo |

**Application Design Input Parameters** 

| Number of RegenOx injection points (initial app)                | 12   | pts                      |
|-----------------------------------------------------------------|------|--------------------------|
| <pre>egenOx dose rate (oxidant + activator) (initial app)</pre> | 10.5 | lbs/ft Part A = 7 lbs    |
| otal amount of water required for initial application           | 931  | gallons Part B = 3.5 lbs |
| of RegenOx solution applied per foot of injection (initial app) | 16.6 | gallons/ft               |

4

Estimated number of RegenOx applications required (enter 1 through 6)

olume

# Summary of Estimated RegenOx Totals

| Application<br>number | Part A<br>RegenOx Oxidant<br>(Ibs) | Part B<br>RegenOx Activator<br>(Ibs) | Total RegenOx<br>Material<br>Requirement (Ibs) | Cumulative Amount<br>of Oxidant (Part A)<br>Applied (Ibs) | Cumulative<br>Amount of<br>Activator (Part B)<br>Applied (Ibs) | Cumulative<br>RegenOx Cost | Total RegenOx<br>Material Cost Per<br>Application | Cost per cubic<br>yard of soil<br>treated (\$/cubic<br>yard) |
|-----------------------|------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------|
| First                 | 420                                | 210                                  | 630                                            | 420                                                       | 210                                                            | \$0                        | \$0.00                                            | \$6.95                                                       |
| Second                | 420                                | 210                                  | 630                                            | 840                                                       | 420                                                            | \$1,544                    | \$1,543.50                                        | \$6.95                                                       |
| Third                 | 420                                | 210                                  | 630                                            | 1,260                                                     | 630                                                            | \$3,087                    | \$1,543.50                                        | \$6.95                                                       |
| Fourth                | 420                                | 0                                    | 420                                            | 1,680                                                     | 630                                                            | \$4,116                    | \$1,029.00                                        | \$4.63                                                       |
| Fifth                 | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| Sixth                 | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| TOTALS                | 1,680                              | 630                                  | 2,310                                          |                                                           | Volume discount if pu                                          | urchased all together      | \$0.00                                            | \$0.00                                                       |

5%

Water Per PointSoultion Per Point77.5 gallons83 gallons

(not including shipping or applicable taxes)



## **RegenOx Summary Page**

Regenesis Technical Support: USA (949) 366-8000

Site Name: SOMA 7 Location: Proposal no. BRG39121 Consultant:

Aug 2006

2

| Application Design Input Parameters |                          |      | Design Summary - INITIAL APPLICATION ONLY                                    |      |                          |  |  |
|-------------------------------------|--------------------------|------|------------------------------------------------------------------------------|------|--------------------------|--|--|
| Width of plume (intersed            | cting gw flow direction) | 20   | ft Number of RegenOx injection points (initial app)                          | 6    | pts                      |  |  |
| Length of plume (paralle            | el to gw flow direction) | 30   | ft egenOx dose rate (oxidant + activator) (initial app)                      | 10.5 | lbs/ft Part A = 7 lbs    |  |  |
| Thickness of contamination          | ted zone                 | 5    | ft otal amount of water required for initial application                     | 464  | gallons Part B = 3.5 lbs |  |  |
| Soil type                           |                          | clay | Total volume of RegenOx solution applied per foot of injection (initial app) | 16.6 | gallons/ft               |  |  |
|                                     |                          |      |                                                                              |      |                          |  |  |

Estimated number of RegenOx applications required (enter 1 through 6)

# **Summary of Estimated RegenOx Totals**

| Application<br>number | Part A<br>RegenOx Oxidant<br>(Ibs) | Part B<br>RegenOx Activator<br>(Ibs) | Total RegenOx<br>Material<br>Requirement (Ibs) | Cumulative Amount<br>of Oxidant (Part A)<br>Applied (Ibs) | Cumulative<br>Amount of<br>Activator (Part B)<br>Applied (Ibs) | Cumulative<br>RegenOx Cost | Total RegenOx<br>Material Cost Per<br>Application | Cost per cubic<br>yard of soil<br>treated (\$/cubic<br>yard) |
|-----------------------|------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------|
| First                 | 210                                | 120                                  | 330                                            | 210                                                       | 120                                                            | \$0                        | \$0.00                                            | \$7.28                                                       |
| Second                | 210                                | 120                                  | 330                                            | 420                                                       | 240                                                            | \$809                      | \$808.50                                          | \$7.28                                                       |
| Third                 | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| Fourth                | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| Fifth                 | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| Sixth                 | 0                                  | 0                                    | 0                                              | 0                                                         | 0                                                              | \$0                        | \$0.00                                            | \$0.00                                                       |
| TOTALS                | 420                                | 240                                  | 660                                            | Volume discount if purchased all together                 |                                                                |                            | \$0.00                                            | \$0.00                                                       |
| 5%                    |                                    |                                      |                                                |                                                           | (not including shipping                                        | or applicable taxes)       |                                                   |                                                              |

Water Per Point Soultion Per Point 77.5 gallons 83 gallons



## SAFETY:

Pure ORC is shipped to you as a fine powder rated at -325 mesh (passes through a 44 micron screen). It is considered to be a mild oxidizer and as such should be handled with care while in the field. Field personnel should take precautions while applying the pure ORC. Typically, the operator should work upwind of the product as well as use appropriate safety equipment. These would include eye and respiratory protection, and gloves as deemed appropriate by exposure duration and field conditions.

Personnel operating the field equipment utilized during the installation process should have appropriate training, supervision and experience.

## GENERAL GUIDELINES:

ORC may be installed in the contaminated saturated zone in the ground utilizing hand augered holes, Geoprobe<sup>®</sup> type hydraulic punch equipment, or hollow stem augers. This set of instructions is specific for Geoprobe equipment. Alternate instructions may be obtained from the Regenesis Technical Support Department.

For optimum results the ORC slurry installation should span the entire vertical contaminated saturated thickness, including the capillary fringe and "smear zone".

Two general installation approaches are available. The first is to backfill only the probe hole with slurry. This is a simple approach, in that it is easy, straightforward, and the location of the ORC slurry is precisely known after installation. However, this method requires significantly more probe holes than the alternative, and may take more time for the completion of the remediation process. A separate set of instructions for this method utilizing Geoprobe equipment is available from Regenesis.

The second method is to inject the slurry through the probe holes into the contaminated saturated zone. This method requires fewer probe holes, is less disruptive to the site, and aids the spread of oxygen by spreading the ORC source material. However, it may be difficult to know the exact, final disposition of the ORC installed with this method. This is the method described in these instructions.

Note: It is important that the installation method and specific ORC slurry point location be established prior to field installation. It is also important that the ORC slurry volume and solids content for each drive point be predetermined. The Regenesis Technical Service Department is available to discuss these issues, and Helpful Hints at the end of these instructions offers relevant information. Regenesis also has available Technical Bulletins covering source treatments with ORC.

## SPECIFIC INSTALLATION PROCEDURES

- 1. Identify the location of all underground structures, including utilities, tanks, distribution piping, sewers, drains, and landscape irrigation systems.
- 2. Identify surface and aerial impediments.
- 3. Adjust planned installation locations for all impediments and obstacles.
- 4. Pre-mark the installation grid point locations, noting any that have special depth requirements.
- Set up the Geoprobe unit over each specific point, following manufacturer recommended procedures. Care should be taken to assure approximate vertical probe holes.
- 6. Penetrate surface pavement, if necessary, following standard Geoprobe procedures.
- 7. Drive the 1 1/2" (one-and-one-half inch) pre-probe (part #AT-148B) with the expendable tip (part #AT142B) to the desired maximum depth. Standard 1" (one inch) drive rods (part AT104B) should be used, after the pre-probe. (Hint: Pre-counted drive rods should be positioned prior to the installation driving procedure to assure the desired depth is reached.)
- 8. Disconnect the drive rods from the expendable tip, following standard Geoprobe procedures.
- Mix the appropriate quantity of ORC slurry for the current drive point. (See separate "Directions for ORC<sup>®</sup> Slurry Mixing" and Helpful Hints). <u>Note: Do not</u> <u>mix more slurry than will be used within a 30 minute period.</u>
- 10. Set up and operate an appropriate slurry pump according to manufacturer's directions. Based on our experience, a Geoprobe model GS-1000 pump is recommended. Connect the pump to the probe grout pull cap (GS-1054) via a 1 inch diameter delivery hose. The hose is then attached to the 1° drive rod with its quick connector fitting. Upon confirmation of all connections add the ORC slurry to the pump hopper/tank.
- 11. Withdraw the pre-probe and drive stem 4' (four feet). (Also note Helpful Hints Operations at end of instructions.)
- 12. Optional pretreatment step. (See Helpful Hints Operations at end of instructions). Pump one to two gallons of tap water into the aquifer to enhance dispersion pathways from the probe hole.
- 13. Pump the predetermined quantity of ORC slurry for the depth interval being injected. Observe pump pressure levels for indications of slurry dispersion or refusal into the aquifer. (Increasing pressure indicates reduced acceptance of material by the aquifer).
- 14. Remove one 4' section of the 1" drive rod. The drive rod will contain slurry. This slurry should be returned to the ORC bucket for reuse.
- 15. Repeat steps 11, 13, and 14 until treatment of the entire affected thickness has been achieved. It is generally recommended that the procedure extend to the top of the capillary fringe/smear zone.
- 16. Install an appropriate seal, such as bentonite, above the ORC slurry through the entire vadose zone. This helps assure that the slurry stays in place and prevents contaminant migration from the surface. Depending on soil conditions and local regulations, a bentonite seal can be pumped through the slurry pump or added via chips or pellets after probe removal.
- 17. Remove and decontaminate the drive rods and pre-probe.

- 18. Finish the probe hole at surface as appropriate (concrete or asphalt cap, if necessary).
- 19. Move to the next probe point, repeating steps 5 through 18.

## HELPFUL HINTS:

- A. Physical characteristics
- A1. <u>Slurry</u>

The ORC slurry is made using the dry ORC powder (rated at -325 mesh). It makes a smooth slurry, with a consistency that depends on the amount of water used.

A thick, but pumpable, slurry that approaches a paste can be made by using 65-67% solids. This material would normally be used for back-filling a bore or probe hole. It is especially useful where maximum density is desired such as where ground water is present in the hole or there are heaving sands.

Thinner slurries can be made by using more water. Typical solids for the thinner slurries content will range from 35% to 62%. Such slurries are useful for injecting through a probe or bore hole into the saturated aquifer.

As a rule, it is best to mix the first batch of slurry at the maximum solids content one would expect to use. It can then be thinned by adding additional water in small increments. By monitoring this process, the appropriate quantities of water for subsequent batches can be determined.

The slurry should be mixed at about the time it is expected to be used. It is best to not hold it for more than 30 minutes. Thinner slurries, especially, can experience a separation upon standing. All ORC slurries have a tendency to form cements when left standing. If a slurry begins to thicken too much, it should be mixed again and additional water added if necessary.

Care should be taken with slurry that may be left standing in a grout pump or hose. Problems can generally be avoided by periodically re-circulating the slurry through the pump and hose back into the pump's mixing or holding tank.

## A2. Equipment

Most geotechnical grout pumping equipment has a holding tank with a capacity sufficient for injection.

When applying measured volumes of ORC slurry to probe holes, it is sometimes useful to know the volumes and content of the delivery system lines. The following information may be useful in this regard.

Geoprobe pump: At the end of a pump stroke virtually no deliverable slurry remains in the pump.

| 5/8" O.D. connecting hose (10 feet long):   | 0.2 gallons (26 fluid ounces). |  |  |
|---------------------------------------------|--------------------------------|--|--|
| Four foot (4') length of 1° drive rod:      | .04 gallons (5 fluid ounces).  |  |  |
| Three foot (3') length of 1 1/2" pre-probe: | .03 gallons (4 fluid ounces).  |  |  |

## Cleaning and maintenance:

Pumping equipment and drive rods can be lightly cleaned by circulating clear water through them. Further cleaning and decontamination (if necessary due to subsurface conditions) should be performed according to the equipment supplier's standard procedures and local regulatory requirements.

## B. Operating characteristics

B1. Operations - General

Judgment will be needed in the field when injecting ORC slurries. In general, it is relatively easy to inject ORC slurrles into sandy soils, and this can usually be accomplished at very moderate pressures. Silts and clays require more pressure, and may accept less slurry.

Careful observation of pressure during slurry pumping is the best indication of the effectiveness of the slurry injection. To test the soil's ability to accept the slurry and to "precondition" the injection point for the slurry, it is sometimes useful to inject a small volume of plain water prior to the slurry. Normally, one-half (0.5) gallons to two (2) gallons would be appropriate.

During injection, increasing pressure and decreasing flow rate are signs of refusal by the soil matrix to accept the slurry. The site geologist should determine whether to increase pressure, and possibly fracture ("frac") the soil matrix to achieve ORC slurry installation in a tight site that has refused the slurry at lower pressures.

## B2. Fill Volumes

Probe hole back-filling

## Probe hole capacities:

| Per 10' (Ten Foot) Length |                                    |                        |                      |  |  |  |  |  |
|---------------------------|------------------------------------|------------------------|----------------------|--|--|--|--|--|
|                           | Theoretical                        | Operating Volume       |                      |  |  |  |  |  |
| (Gallons/F                | luid Ounces/Cubic Inches)          | (Gallons/Fluid Ounces) |                      |  |  |  |  |  |
|                           | Sand, Silts & Clay                 | Sand                   | Silts & Clay         |  |  |  |  |  |
| 1" Diameter               | .41 gal/52 fl. oz./94.2 cu. in.    | .61 gal/78 fl. oz.     | .51 gal/65 fl. oz.   |  |  |  |  |  |
| 1 1/2" Diameter           | .92 gal/117 fl. oz./212.0 cu. in.  | 1.38 gal/176 fl. oz.   | 1.15 gal/146 fl. oz. |  |  |  |  |  |
| 2" Diameter               | 1.63 gal/209 fl. oz./376.8 cu. in. | 2.44 gal/313 fl. oz.   | 2.04 gal/261 fl. oz. |  |  |  |  |  |
| 2 1/4" Diameter           | 2.06 gal/264 fl. oz./476.9 cu. in  | 3.09 gal/396 fl. oz.   | 2.57 gal/330 fl. oz. |  |  |  |  |  |

Note that the operating volumes include a 50% excess above the theoretical volume in sands and 25% in clays and silts. This is important to successful treatment. The additional material allows for a small degree of infiltration of the slurry into the surrounding soil and fractures, as well as hole diameter variability. It is important to assure that the entire contaminated saturated zone is treated (including the capillary fringe), since this is often the area of highest pollution concentration. Failure to treat this area due to improper installation can undermine an otherwise successful remediation effort.



February 26, 2007

# RegenOx and ORC Advanced Simultaneous Application

RegenOx<sup>TM</sup> is a two part chemical oxidant capable of treating a broad range of soil and groundwater contaminants. RegenOx was designed as an easily handled and applied high-contaminant-concentration mass reduction technology. RegenOx is an aggressive fast acting oxidative technology that can be coupled with a less aggressive slow release technology like Oxygen Release Compound Advanced (ORC *Advanced*) without negative effects on either products contaminant destructive ability or the aquifer/soil geochemistry.

ORC Advanced<sup>TM</sup> is a state-of-the-art innovative product designed to stimulate aerobic bioremediation through controlled release of oxygen within the subsurface. It offers unparalleled, maximum oxygen release for periods up to 12 months on a single injection and is specifically designed to minimize oxygen waste while maximizing contaminant remediation.

#### Preliminary Aquifer Volume Testing

Prior to application of the RegenOx + ORC *Advanced* material, it is critical that a clear water injection be performed at the site. The injection a non-reactive (clear water) material at a volume that is approximately 25% greater than the anticipated application volume of RegenOx will provide good evidence of the aquifers espacity to accept the designed volume of RegenOx + ORC-*Advanced*.

#### **RegenOx Solution Mixing Calculation**

RegenOx s a two part product, the RegenOx Part A is an oxidant and the Part B is an activator. Depending on the relative aquifer capacity (effective pore volume) of the target zone soil matrix a RegenOx solution should be applied as a solution ranging from 3-5% by weight. The volume of water required to make a 3-5% RegenOx solution can be calculated using the formula provided below (a detailed discussion on RegenOx Mixing Instructions is attached).

Volume of water (gallons/vertical foot of injection):

 $\frac{\text{RegenOx Oxidizer lbs/foot}}{(8.34 \text{ lbs/gal water})(\% \text{ RegenOx}_Oxidizer \text{ solids})} [1 - (\% \text{ RegenOx}_Oxidizer \text{ solids})]$ 

Quick Reference Solution Estimates

- Approximate 3% oxidant solution: 10 lbs of Part A oxidant mixed with 39 gallons of water.
- Approximate 4% oxidant solution: 10 lbs of Part A oxidant mixed with 29 gallons of water.
- Approximate 5% oxidant solution: 10 lbs of Part A oxidant mixed with 23 gallons of water.

1011 CALLE SOMBRA ~ SAN CLEMENTE, CA 92673 ~ TELEPHONE: 949-366-8000 ~ FAX: 949-366-8090

tech@regenesis.com ~ www.regenesis.com

#### ORC Advanced Solutions Mixing Calculation

ORC *Advanced* can be mixed in to a slurry solution ranging from 15-35% by weight with water. This slurry is well documented in the literature. For a detailed discussion of these techniques please see the ORC/ORC *Advanced* mixing instructions available on the Regenesis website (www.regenesis.com).

NOTE: for this coupled technology application we strongly recommend that ORC-A be applied as an amendment to the site specific design volume of RegenOx material. This will ensure that the more reactive RegenOx material is applied in a stable and format that will facilitate optimal oxidative contaminant destruction.

#### RegenOx + ORC-A Solution Mixing & Application

A solution ranging from 3-5% RegenOx solution can be easily mixed directly together with the recommended quantity of ORC *Advanced* and injected simultaneously as described below:

- 1. Prepare the site specific designed RegenOx Part A solution (3-5% solution).
- 2. Open the 5-gallon bucket and remove the pre-measured bag of ORC *Advanced* (each bag contains 25 lbs of ORC *Advanced*).
- 2. Measure and pour the ORC Advanced powder into the previously prepared RegenOx solution.
- 3. Use an appropriate mixing device to thoroughly mix the ORC Advanced into the RegenOx solution. A hand-held drill with a "jiffy mixer" or a stucco mixer on it may be used in conjunction with a small paddle to scrape the bottom and sides of the container. Standard environmental slurry mixers may also be used, following the equipment instructions for operation.
- 4. Transfer the contents of the mixing tank to the pump hopper using a gravity drain or a sump pump.
- 5. For some types of pumps (e.g. piston pumps), it may be desirable to perform a volume check prior to injecting RegenOx/ORC Advanced. Determining the volume displaced pcr pump stroke can be accomplished in two easy steps.
  - a) Determine the number of pump strokes needed to deliver 3 gallons of RegenOx/ORC Advanced (use a graduated bucket for this)
  - b) Divide the resulting 3 gallons by the results from the first step to determine the number of gallons of RegenOx/ORC Advanced delivered by each pump stroke.
- 6. Connect the delivery hose to the pump outlet and the delivery sub-assembly. Circulate RegenOx/ORC Advanced through the hose and the delivery sub-assembly to displace air in the hose.
- Connect the sub-assembly to the drive rod. After confirming that all of the connections are secure, pump the RegenOx/ORC Advanced through the delivery system to displace the water/fluid in the rods.

1011 CALLE SOMBRA • SAN CLEMENTE, CA 92673 • TEL: 949.366.8000 • FAX: 949.366.8090

tech@regenesis.com • www.rcgcncsis.com

- Slowly withdraw the drive rods. Commonly RegenOx/ORC Advanced injection progress at 1-foot intervals. However, continuous injection while slowly withdrawing single lengths of drive rod (3 or 4 feet) is an acceptable option. The pre-determined volume of RegenOx/ORC Advanced should be pumped into the aquifer across the desired treatment interval.
- Remove one section of the drive rod. The drive rod may contain some residual RegenOx/ORC Advanced solution. Place the RegenOx/ORC Advanced-filled rod in a clean, empty bucket and allow the RegenOx/ORC Advanced to drain. Eventually, the RegenOx/ORC Advanced should be returned to the pump hopper for reuse.
- 10. Observe any indications of aquifer refusal. This is typically indicated by a bigh-pitched squeal in the pump's hydraulic system or (in the case of shallow applications) RegenOx/ORC Advanced "surfacing" around the injection rods or previously installed injection points. At times backpressure caused by gassing will impede pump movement. This can be corrected by bleeding the pressure off using a pressure relief/bypass valve (placed inline between the pump discharge and the delivery sub-assembly) and then resume pumping. If aquifer acceptance appears to be low, allow enough time for the aquifer to equilibrate prior to removing the drive rod.
- 11. Repeat steps 1 through 11 until treatment of the entire contaminated vertical zone has been achieved. It is recommended that the procedure extend to the top of the capillary fringe/smear zone, or to the top of the targeted treatment interval.
- 12. Install an appropriate seal, such as bentonite, above the RegenOx/ORC Advanced material through the entire vadose zone. Prior to emplacing the borehole seal, we recommend plucing clean sand in the hole to the top of the RegenOx/ORC Advanced treatment zone (especially important in holes that stay open). Bentonite chips or granular bentonite should be placed immediately above the treatment zone, followed by a cement/bentonite grout to roughly 0.5 feet below ground surface. Quick-set concrete should then be used as a surface seal.
- 13. Remove and clean the drive rods as necessary.
- 14. Finish the borehole at the surface as appropriate (concrete or asphalt cap, if necessary). We recommend a quick set concrete to provide a good surface seal with minimal set up time.
- 15. A proper borehole and surface seal assures that the RegenOx/ORC Advanced remains properly placed and prevents contaminant migration from the surface. Each borehole should be sealed immediately following RegenOx/ORC Advanced application to minimize RegenOx/ORC Advanced surfacing during the injection process. If RegenOx/ORC Advanced continues to "surface" up the direct push borehole, an appropriately sized (oversized) disposable drive tip or wood plug/stake can be used to plug the hole until the aquifer equilibrates and the RegenOx/ORC Advanced stops surfacing. If wells are used for RegenOx/ORC Advanced injection the injection wells and all nearby groundwater monitoring wells should be tightly capped to reduce potential for surfacing through nearby wells.
- 16. Periodically compare the pre- and post-injection volumes of RegenOx/ORC Advanced in the pump hopper using pre-marked volume levels. Volume level indicators are not on all pump hoppers. In

1011 CALLE SOMBRA • SAN CLEMENTE, CA 92673 • TEL: 949.366.8000 • FAX: 949.366.8090

tech@regenesis.com • www.regenesis.com

this case, volume level markings can be temporarily added using known amounts of water and a carpenter's grease pencil (Kiel crayon). We suggest marking the water levels in 3-gallon increments.

17. Move to the next probe point, repeating steps 1 through 17. We recommend that the next RegenOx/ORC Advanced injection point be as far a distance as possible within the treatment zone from the previous RegenOx/ORC Advanced injection point. This will further minimize RegenOx/ORC Advanced surfacing and short eircuiting up an adjacent borehole. When possible, due to the high volumes of liquid being injected, working from the outside of the injection area towards the center will limit expansion of the plume.

#### Pump Information

Regenesis has evaluated a number of pumps that are capable of delivering RegenOx/ORC Advanced to the subsurface at a sufficient pressure and volumetric rate. Although a number of pumps may be capable of delivering the RegenOx/ORC Advanced to the subsurface at adequate pressures and volume, each pump has a set of practical issues that make it difficult to manage in a field setting. In general, Regenesis strongly recommends using a pump with a minimum pressure rating of 200 pounds per square inch (psi) in sandy formations or 800 psi in silt, clay or weathered bedrock formations, and a minimum delivery rate of 5 gallons per minute (gpm). A lower gpin rated pump can be used; however, they are not recommended due to the amount of time required to inject the volume of liquids typically associated with a RegenOx/ORC Advanced injection.

#### Pump Cleaning

For best results, use a hot water pressure washer (150 - 170 °F or 66 - 77 °C) to clean equipment and rods periodically throughout the day. Internal pump mechanisms and hoses can be easily cleaned by circulating hot water and a biodegradable cleaner such as Simple Green through the pump and delivery hose. Further cleaning and decontamination (if necessary due to subsurface conditions) should be performed according to the equipment supplier's standard procedures and local regulatory requirements.

#### Personal Protective Equipment

Personnel working with or in areas of potential contact with RegenOx/ORC Advanced should be required at a minimum to be fitted with modified Level D personal protective equipment:

- Eye protection Wear well sealed goggles or a face shield (face shield recommended for full face protection)
- Head Hard hat when required
- Respiratory Use dust respirator approved by NIOSH/MSA
- Hands Wear neoprene gloves
- Feet Wear steel toe shoes with chemical resistant soles or neoprene boots
- Clothing Wear long sleeve shirts and long pant legs. Consider using a Tyvek® body suit, Carhartt® coverall or splash gear

1011 CALLE SOMBRA • SAN CLEMENTE, CA 92673 • TEL: 949.366.8000 • FAX: 949.366.8090

tech@regenesis.com • www.regenesis.com