WE RENT TABLE LINENS, APRONS, TOWELS, MATS, AND WASHABLE GARMENTS FOR ALL BUSINESSES AND PROFESSIONS

ESTABLISHED OVER 80 YEARS . PROMPT ECONOMICAL SERVICE

RECEIVED

2:12 pm, May 16, 2007

Alameda County
Environmental Health

May 9, 2007

Mr. Barney Chan Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

SUBSURFACE INVESTIGATION AND WELL INSTALLATION REPORT (BORINGS B18 THROUGH B27, B29 THROUGH B48, AND WELLS E1, E2,

E3, E6, E7, I1 AND I2) CERTIFICATION

Fuel Leak Case RO0000337 California Linen Rental Company

989 41st Street Oakland, CA

Dear Mr. Chan:

You will find enclosed one copy of the following document prepared by RGA Environmental, Inc.

• Subsurface Investigation and Well Installation Report (Borings B18 Through B27, B29 Through B48, and Wells E1, E2, E3, E6, E7, I1 and I2) dated April 24, 2007 (document 0304.R5).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned report for the subject site is true and correct to the best of my knowledge.

Please direct all future correspondence to:

California Linen Supply Co., Inc. c/o Donald J. Miller, President 2104 Magnolia Way Walnut Creek, CA 94595

California Linen Rental Co., Inc.	989 41ST STREET + OAKLAN	ID, CALIFORNIA 94608 • PHONE: (510) 663-6300 • FAX: (510) 601-8005
May 9:2007table linens, aprons, towels, mats, and washable garments por all businesses	established ov	ER 80 YEARS • PROMPT ECONOMICAL SERVICE
AND PROFESSIONS		
		
Should you have any questions, pleas	e do not hesitate to call	me at (925) 938-2491.
Cordially, California Linen Supply Co.		
	eller	
Donald J. Miller	ener !	
President		
cc: LeRoy Criffin, Oakland Fire	Department, Office of I	Emergency Services, 250 Frank Ogawa
Plaza, Suite 3341, Oakland, C	A 94612	
0304.L47	}	
	1	

Page 2 of 2

April 24, 2007 Report 0304.R5 RGA Job # CLR14700

California Linen Rental Company c/o Mr. Don Miller 2104 Magnolia Way Walnut Creek, CA 94595

SUBJECT: SUBSURFACE INVESTIGATION AND WELL INSTALLATION REPORT

(BORINGS B18 THROUGH B27, B29 THROUGH B48, AND WELLS E1, E2,

E3, E6, E7, I1 AND I2)
Fuel Leak Case RO0000337
California Linen Rental Company

989 41st Street Oakland, CA

Dear Mr. Miller:

RGA Environmental, Inc. (RGA) is pleased to present this report documenting the drilling and sampling of exploratory boreholes designated as B18 through B27 and B29 through B32, the installation of extraction wells E1, E2, E3, E6, E7, and the installation of air sparging wells I1 and I2. This work was performed in accordance with a request from the Alameda County Department of Environmental Health (ACDEH) dated April 26, 2006, RGA's Subsurface Investigation Work Plan (B18 Through B32) dated June 26, 2006 (document 0304.W3), and RGA's work plan addendum dated July 12, 2006 (document 0304.W3A). The work plan and addendum were approved in a letter from the ACDEH dated July 13, 2006.

Following review of Sanborn Maps associated with a Phase I Environmental Site Assessment Report dated June 21, 2006 prepared by RGA for the subject site, and the detection of dieselrange and oil-range compounds in groundwater samples in the eastern portion of the area of subsurface investigation identified in the June 26, 2006 work plan, a geophysical survey was performed on the eastern portion of the site (to the east of the area of subsurface investigation identified in the June 26, 2006 work plan) in an effort to identify Underground Storage Tanks (USTs) or potential sources for the diesel-range and oil-range compounds. Based on the results of the geophysical survey, two geophysical anomalies were investigated (Anomaly A and Anomaly B) with a backhoe. In addition, boreholes B33 through B39 were drilled in the eastern portion of the property to investigate the eastern extent of the diesel-range and oil-range compounds detected in groundwater, and a heating oil UST was identified beneath the sidewalk adjacent to 41st Street on the north side of the property. Based on the historic use of the property as a nursery, a general contractor's corporation yard and a laundry as identified in the Phase I Environmental Site Assessment Report, boreholes B40 through B48 were hand augered and soil samples were collected at shallow depths throughout the property to evaluate the presence of metals, oil, and Volatile Organic Compounds (VOCs) associated with the historic use of the property.

A Site Location Map (Figure 1) and a GEOMAP showing the borehole, well and geophysical anomaly locations (Figure 8) are attached with this report.

All work was performed under the direct supervision of an appropriately registered professional. This investigation was performed in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991.

Documentation of the following activities is provided in separate reports.

- Remedial activities related to soil vapor extraction and air sparging at the site,
- Removal of an UST from beneath the sidewalk adjacent to 41st Street during December 2006,
- Installation of three groundwater monitoring wells to evaluate the concentration of oilrange compounds in groundwater at the site,
- Installation of vapor extraction wells adjacent to Linden Street that were proposed and approved in the June 2006 work plan but which was not installed with the other wells because of limited access issues.

BACKGROUND

The site is currently used as a linen cleaning facility. Review of available documents for the site show that on February 6 through 8, 1989 three Underground Storage Tanks (USTs) were removed from the site by Miller Environmental Company (MEC). The tanks consisted of one 10,000 gallon tank containing gasoline, one 550 gallon tank containing gasoline, and one 2,500 gallon capacity tank containing #5 fuel oil. Each tank was in a separate pit. Petroleum hydrocarbons were detected in each of the pits at the time of tank removal. Figure 2 shows the tank locations at the site. A UST Unauthorized Release Site Report was completed by Mr. Gil Wistar of the ACDEH dated February 9, 1989. In a letter dated February 23, 1989 the ACDEH requested a preliminary assessment of the site. In a letter dated July 7, 1989 the ACDEH approved a revised work plan for subsurface investigation at the site that included installation of three groundwater monitoring wells.

Three monitoring wells, designated as MW1, MW2, and MW3 were installed at the site by MEC on September 25, 1989. One well was installed adjacent to each of the tank pits. Soil samples were collected for laboratory analysis from the boreholes for the monitoring wells at depths of 4 and 8 feet below the ground surface. The samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G), Total Petroleum Hydrocarbons as Diesel (TPH-D), Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and for benzene, toluene, ethylbenzene, and xylenes (BTEX). All target analytes were detected in the soil sample from the borehole for MW1 at a depth of 4 feet below the ground surface. None of the analytes were detected in the other soil samples from the monitoring well boreholes, except for 190 mg/kg oil in the sample from MW2 collected at a depth of 4 feet.

On October 2, 1989, the three monitoring wells at the subject site were sampled by MEC personnel, and the water samples were analyzed for the same compounds as the borehole soil samples. All analytes except oil were detected in the groundwater sample from MW1. None of the analytes were detected in the groundwater samples from the other two monitoring wells. Groundwater was encountered in the wells at depths ranging from 7.00 to 9.25 feet, and the groundwater flow direction at the site was calculated to be to the north-northwest. Documentation of the installation of the three monitoring wells, and soil and groundwater sample results from the well installation and subsequent well sampling is presented in MEC's Preliminary Subsurface Investigation Report dated November 3, 1989. Due to earthquake-related issues, the Regional Water Quality Control Board (RWQCB) was unavailable to comment on the report.

Following five quarterly monitoring and sampling events for the three wells, MEC recommended that well MW3 be destroyed. MEC concluded that petroleum hydrocarbons had not been detected in wells MW2 and MW3, and had only been detected in well MW1. MEC identified the petroleum hydrocarbons in well MW1 as gasoline, and stated that MW1 is downgradient of a former gasoline tank. MEC also stated that the groundwater flow direction was consistently to the north-northwest at the site, and that the three wells were located downgradient from each of the tank pits. MEC stated that well MW2 is downgradient of well MW1 and would effectively detect any migration of petroleum hydrocarbons from the vicinity of well MW1. Documentation

of the quarterly monitoring and sampling results and associated recommendations is presented in a letter report from MEC dated March 7, 1991.

In a letter dated April 15, 1991 the ACDEH approved destruction of well MW3, and required continuation of the quarterly monitoring and sampling of wells MW1 and MW2. On July 19, 1991, well MW3 was destroyed by overdrilling. Quarterly reports documenting monitoring and sampling of the two wells were subsequently prepared by MEC.

In a November 6, 1992 letter report, MEC presented the results for quarterly monitoring and sampling through October 17, 1992. The results show that no petroleum hydrocarbons were detected in well MW2 with the exception of 0.05 mg/L TPH-D on August 15, 1991 and 1.1 μ g/L toluene and 3.3 μ g/L xylenes on March 18, 1992. In well MW1, TPH and BTEX concentrations appear relatively unchanged with the exception of the March 18 and October 17, 1992 sampling events, which showed increases in benzene and toluene concentrations.

Sample results for samples collected on June 10, 1993 by the Grow Group as part of a cooperative monitoring event for investigation of nearby sites showed no detectable concentrations of EPA Method 8240 compounds in well MW2, and BTEX concentrations in MW1 consistent with concentrations encountered in well MW1 prior to the March 18 and October 17, 1992 sampling events. Review of 1998 correspondence suggests that additional cooperative sampling of the wells was performed, however the sample results were not available for review.

In a letter dated January 2, 2003, the ACDEH requested a work plan for investigation of contamination at the subject site. Following receipt of the ACDEH work plan request letter, the two existing wells,

designated as MW1 and MW2 were monitored and sampled on April 2, 2003 by RGA personnel. No sheen or free product was detected in either of the wells. Ether oxygenates and lead scavengers were not detected in either of the wells. TPH-G and BTEX were detected in well MW1, and no analytes were detected in well MW2 with the exception of 0.74 ug/L xylenes. The measured depths to water and the sample results were consistent with historic results obtained for the wells. The relative absence of petroleum hydrocarbons in well MW2 suggests that petroleum hydrocarbons had not migrated beyond well MW2 as of April 2, 2003. Monitoring and sampling of wells MW1 and MW2 are reported in RGA's Groundwater Monitoring and Sampling Report (document 0304.R1) dated May 1, 2003. Historic water quality data for the wells is summarized in Table 1 of this report.

RGA submitted an On- and Off-Site Utilities Investigation and Off-Site Groundwater Investigation Work Plan (0304.W1) dated May 1, 2003, which the ACDEH commented upon in a letter dated May 9, 2003. In response, RGA submitted a Work Plan Addendum (document 0304.L3) dated June 9, 2003. The ACDEH approved the work plan and work plan addendum in a letter dated June 19, 2003.

From July 20 through 23, 2004 groundwater grab samples were collected from boreholes B1 through B3 and soil gas samples were collected from boreholes SG1 through SG3. In addition, RGA evaluated the locations of buried utilities in the vicinity of the subject site. No soil samples were collected. The results are presented in RGA's Subsurface Investigation (B1 to B3, SG1 to SG3) and Preferential Pathway Evaluation Report dated February 22, 2005 (document 0304.R2). The groundwater grab sample results from boreholes B1 through B3 are summarized in Table 3 of this report.

Following review of the subsurface investigation report, the ACDEH requested that a work plan for further investigation be submitted. RGA subsequently submitted Subsurface Investigation Work Plan (B4 to B9) dated May 25, 2005 (document 0304.W2). The work plan included documentation and results for monitoring of wells MW1 and MW2 and sampling of well MW1 on May 17, 2005. The work plan was approved in a letter from the ACDEH dated July 18, 2005. The July 18, 2005 ACDEH letter requested that the proposed borehole locations be adjusted in consideration of the narrow plumes encountered at neighboring sites. Samples were collected from adjusted locations for boreholes B4 through B6 on September 13 and 14, 2005.

During the drilling of boreholes B4 through B6 at the adjusted locations strong solvent odors were encountered in borehole B6. Laboratory results for the groundwater sample collected from borehole B6 identified the presence of Stoddard solvent in the sample. In an effort to identify potential sources for the Stoddard solvent, RGA submitted a Subsurface Investigation Work Plan Addendum dated October 5, 2005 (document 0304.W2A) for the drilling of boreholes B7 through B12. The locations of boreholes B7 through B9 in the Work Plan Addendum superseded the respective borehole locations in the May 25, 2005 Work Plan. Samples were collected from boreholes B7 through B12 on October 10 through 12, 2005. Documentation of the drilling of borings B4 through B12 is presented in RGA's report titled Subsurface Investigation (B4 through B12), dated November 22, 2005 (document 0304.R3). Soil and groundwater sample results associated with the investigation are summarized in Tables 2 and 3, respectively.

RGA proposed boreholes B13 through B16 in the report titled Subsurface Investigation (B4 through B12), dated November 22, 2005 (document 0304.R3). The proposed boring locations, methods, sampling frequency and sample analysis were conditionally approved by the ACDEH in a December 5, 2005 letter with the provision that one additional boring (B17) be located approximately 30 feet south of well MW1. This boring was to be drilled and sampled using the same methods and procedures as the other proposed boreholes.

On January 11 and 12, 2006 RGA personnel oversaw the drilling and collection of samples from boreholes B13 through B17. Documentation of the drilling of borings B13 through B17 is presented in RGA's Subsurface Investigation Report (B13 through B17), dated March 24, 2006 (document 0304.R4). Soil and groundwater sample results associated with the investigation are summarized in Tables 2 and 3, respectively.

Following review of the March 2006 report, the ACDEH requested additional investigation in a letter dated April 26, 2006. RGA submitted Subsurface Investigation Work Plan (B18 through B32) dated June 26, 2006 (document 0304.W3), and the work plan was approved in a letter from the ACDEH dated July 13, 2006.

Please note that the location of borehole B15 shown in documents prior to 2007 was not accurate. The location shown in documents prior to 2007 was the proposed location, not the actual location where the borehole was drilled. The location of B15 shown in this report shows the location where the borehole was drilled.

Two subsurface investigations related to petroleum distillates (paint thinner) are presently ongoing in the immediate vicinity of the site, with groundwater monitoring wells located approximately 250 feet to the west and slightly north of the subject site. The investigations are for the Kozel property (located to the north of 41st Street) and the Dunne Paints property (located to the south of 41st Street). In addition, a third subsurface investigation related to petroleum hydrocarbons is located at the Fidelity Roof facility approximately 250 feet to the south of the subject site.

PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT REVIEW

Review of a Phase I Environmental Site Assessment Report dated June 21, 2006 prepared by RGA showed that the historic use of the site has included the following.

- Nurseries from at least 1903 to about 1920.
- Commercial laundry from 1920 to 1953 on the western portion of the property and a general contractor's corporation yard on the easterly portion of the property.
- The laundry facility burned to the ground in 1953 and by 1955 was rebuilt with most of the present structures.

Although Sanborn Maps were discussed in the Phase I report, copies of the Sanborn Maps were not attached with the Phase I report. Copies of the Sanborn Maps associated with the Phase I report are attached with this subsurface investigation report. Review of the 1051 and 1952 Sanborn maps shows one feature on each of the eastern and western portions of the property identified as an oil shack or oil

house. The locations of these features are shown in Figure 6. A copy of the Phase I report was submitted to the ACDEH under separate cover.

FIELD ACTIVITIES

Prior to drilling, all required permits were obtained from the City of Oakland and the Alameda County Public Works Agency. In addition, the drilling locations were marked with white paint, Underground Service Alert (USA) was notified for underground utility location, and plans were prepared for traffic control, pedestrian control, and health and safety.

Boreholes B18 Through B27 and B29 Through B32

From August 8 through August 11, 2006 RGA personnel oversaw the drilling and collection of samples from boreholes B18 through B27 and B29 through B32. The boreholes were continuously cored by Vironex, Inc. of San Leandro, California (Vironex) using Geoprobe direct-push technology. The boreholes were continuously cored to total depths ranging from 21.0 to 35.0 feet below the ground surface. In addition, depth-discrete groundwater samples were collected at drilling locations B24 and B32 using a Hydropunch which was pushed through the bottom of each borehole following shallow groundwater grab sample collection and the Hydropunch screen was exposed for the intervals extending from 51.0 to 55.0, and 52.0 to 56.0 feet below the ground surface, respectively. The locations of the boreholes are shown on the attached GEOMAP, Figure 8.

Although the work plan identified collection of depth-discrete groundwater grab samples at three locations using a Hydropunch, the Hydropunch sample was not collected at the third location because of time constraints associated with the time necessary for groundwater to enter the continuously boreholes for groundwater sample collection.

On Figures 2, 5 and 6 in RGA's previous Subsurface Investigation Report (B13 Through B17) dated March 24, 2006 (document 0304.R4), and in RGA's Subsurface Investigation Work Plan (B18 Through B32) dated June 26, 2006 (document 0304.W3), the location of borehole B15 was incorrect. The location shown on the figures was the proposed location instead of the actual location. The drill rig could not access the proposed location due to the presence of large tanks and equipment. The actual location is approximately 20 feet to the northwest of the proposed location. Because borehole B15's actual location was approximately 20 feet to the northwest of the location shown in the March 24, 2006 report figures, it was determined that proposed borehole locations B28 and B30 would be combined into one borehole location.

All of the boreholes were continuously cored using a 5-foot long, 2-inch outside diameter Geoprobe Macrocore barrel sampler lined with cellulose acetate tubes, except for boreholes B21, B29 and B30 which were cored by the same method, but using a 3-foot long barrel sampler. The rationale for the depths at which soil samples were retained for laboratory analysis was to collect soil samples from above, within, and below petroleum-impacted soil zones to define the vertical extent and degree of impact. When no evidence of petroleum or solvents was present in a borehole, soil samples were

retained for laboratory analysis at depths of approximately 10.0, 15.0 and 20.0 feet below the ground surface. Additional soil samples were collected where evidence of petroleum hydrocarbon contamination was detected. In addition, soil samples were collected from boreholes B20 and B29 at depths of 7.0 and 6.5 feet below ground surface, respectively. Soil samples were retained for laboratory analysis by cutting a 6-inch long section of the cellulose acetate tube corresponding to the desired sample collection depth and covering the ends of the tube sequentially with aluminum foil and plastic endcaps. The section of tube was then labeled and placed in a cooler with ice pending delivery to a State-accredited hazardous waste testing laboratory.

Soil from all of the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All soil from boreholes B18 through B27 and B29 through B32 was evaluated with a Photoionization Detector (PID). No odors were detected in any of the boreholes with the exception of boreholes B20 and B24. In borehole B20 (located in 41st Street), slight petroleum hydrocarbon odors were detected between the depths of approximately 6.0 and 8.0 feet below the ground surface. In borehole B24 (located near the center of the yard at the site and approximately half way between the two former gasoline USTs in the yard), moderate petroleum hydrocarbon odors were detected between the depths of 9.0 and 15.0 feet below the ground surface. Organic vapors were not detected with the PID, except in boreholes B20 and B24. In borehole B20, PID values ranging from 1 to 16 parts per million (ppm) were recorded between the depths of approximately 6.0 and 12.0 feet below the ground surface. In borehole B24, PID values ranging from 6 to 20 ppm were recorded between the depths of approximately 6.0 and 16.0 feet below the ground surface. Copies of the boring logs are attached with this report.

A soil electro conductivity (EC) probe was advanced at drilling locations B24, B26 and B32 by Vironex personnel to a total depth of approximately 60 feet. The soil conductivity boreholes were located immediately adjacent to the continuously cored boreholes that had been drilled for groundwater grab sample collection purposes. Soil conductivity was continuously measured and recorded for evaluation of subsurface stratigraphy to identify shallow and deep water-bearing zones for the site. The borehole locations are near the center of the gasoline plume (B24), at the upgradient end of the plume (B26), and at the downgradient end of the plume (B32), respectively. The EC probe manufacturer has suggested the following correlation between soil type and soil conductivity.

Coarse Sand = 75 ms/m (Milli-Siemens per meter)

Silty Sand = 76-150 ms/m (Milli-Siemens per meter)

Silty Clay = 151-200 ms/m (Milli-Siemens per meter)

Clay = 201 and greater ms/m (Milli-Siemens per meter)

In addition, the soil conductivity logs are correlated with the soil from the continuously cored boreholes. Copies of the soil conductivity logs are attached with this report. Please note that the electro conductivity scale on the EC logs is different for each log.

Groundwater was initially encountered in boreholes B18 through B32 at depths ranging from 11.0 to 30.0 feet below the ground surface. Groundwater was subsequently measured in boreholes B18 through B32 at depths ranging from 8.7 to 23.5 feet below the ground surface. Initial and subsequent water levels measured in the boreholes were recorded on the boring logs.

Groundwater samples were collected from all of the boreholes in the following manner. One groundwater grab sample was collected from each borehole for laboratory analysis by placing new, temporary 1-inch diameter slotted PVC pipe into each borehole and using polyethylene tubing and a stainless steel foot valve to remove groundwater from the PVC pipe. No sheen or separate phase layers of petroleum hydrocarbons were observed on any of the water from any of the boreholes. All water samples were transferred to one-liter amber bottles and 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative, which were sealed with Teflon-lined screw caps. The VOAs were overturned and tapped to ensure that air bubbles were not present. The samples were labeled and placed in a cooler with ice pending delivery to a State-accredited hazardous waste testing laboratory. Chain of custody procedures were observed for all sample handling.

On August 14, 2006, after borehole B24 had been continuously cored to a depth of 25.0 feet, a Hydropunch was driven through the bottom of the open borehole, and the screen was exposed for the interval of 51.0 to 55.0 feet below the ground surface. Similarly, on August 14, 2006, after borehole B32 had been continuously cored to a depth of 30.0 feet, a Hydropunch was driven through the bottom of the open borehole, and the screen was exposed for the interval of 52.0 to 56.0 feet below the ground surface. A groundwater sample was collected from each Hydropunch using polyethylene tubing and a stainless steel foot valve. Once the Hydropunch tip had been set at the desired depth but prior to exposing the Hydropunch screen the interior of the Hydropunch rods were verified to be dry to ensure that water had not entered the Hydropunch through the rod joints prior to sample collection.

All drilling and sampling equipment was either previously unused clean material, or was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Soil generated during drilling was stored in a drum at the site pending characterization and disposal.

Well Installation (E1, E2, E3, E6, E7, I1, I2)

From September 5 through September 8, 2006, RGA personnel oversaw the drilling of boreholes E1, E2, E3, E6, E7, I1 and I2. The boreholes were drilled by Gregg Drilling, Inc., of Benicia, California using a Marl M5T hollow stem auger drill rig. Boreholes E1, E2 and E3 were drilled to total vertical depths of 25.0 feet below the ground surface. Boreholes E6, E7, I1 and I2 were drilled to total vertical depths of 31.5, 30.5, 26.5, and 28.0 feet below the ground surface, respectively. Borehole I2 was drilled at a 30 degree angle as measured from vertical and in a southerly direction so that the borehole was drilled beneath the adjacent loading dock. The locations of the boreholes are shown on the attached GEOMAP, Figure 8.

Soil samples were collected from the boreholes at 5-foot intervals using a California-modified split spoon sampler lined with brass tubes driven by a 140 pound hammer falling 30 inches. The soil in the brass tubes and the soil cuttings were logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All soil from boreholes E1, E2, E3, E6, E7, I1 and I2 was evaluated with a Photoionization Detector (PID). No odors were detected in any of the boreholes with the exception of boreholes E6 and I2. In borehole E6, strong petroleum hydrocarbon odors were detected from the surface below the asphalt to a depth of approximately 10.0 feet below the ground surface. In borehole I2, strong petroleum hydrocarbon odors were detected between the depths of 1.5 and 15.0 feet below the ground surface, and slight petroleum hydrocarbon odors were detected between the depths of 15.0 and 20.0 feet below the ground surface. Organic vapors were detected with the PID in all of the boreholes except borehole E7. In borehole E1, a PID value of 15 ppm was recorded at a depth of approximately 10.0 feet below the ground surface. In borehole E2, a PID value of 5.8 ppm was recorded at a depth of approximately 10.0 feet below the ground surface. In borehole E3, PID values ranging from 0.4 to 1.4 ppm were recorded between the depths of approximately 4.0 and 6.0 feet below the ground surface. In borehole E6, a PID value of 278 ppm was recorded at a depth of approximately 8.0 feet below the ground surface. In borehole I1, PID values ranging from 7 to 13 ppm were recorded between the depths of approximately 8.0 and 12.0 feet below the ground surface. In borehole I2, PID values ranging from 1.4 to 2.4 ppm were recorded between the depths of approximately 3.0 and 16.0 feet below the ground surface. Groundwater was initially encountered in all of the boreholes at depths ranging from 10.0 to 17.0 feet below the ground surface. Copies of the boring logs are attached with this report.

Soil samples were retained from all of the boreholes for laboratory analysis at a depth of 10 feet below the ground surface. In addition, soil samples were retained for laboratory analysis from borehole E3 at a depth of 5 feet, E7 at a depth of 15 feet, and I2 at depths of 5 and 15 feet below the ground surface. The depth of sample collection in borehole I2 is measured from the ground surface along the length of the borehole, and is not the vertical depth of sample collection.

The rationale for the depths at which soil samples were retained for laboratory analysis was to collect soil samples from above, within, and below petroleum-impacted soil zones to define the vertical extent and degree of impact. Soil samples were collected and retained for laboratory analysis in the following manner. The middle tube of the three brass tubes in the California-

modified split spoon sampler was retained by sequentially covering each end of the tube with a Teflon sheet and a plastic end cap. The tube was then labeled and placed in a cooler with ice pending delivery to a State-accredited hazardous waste testing laboratory. Chain of custody procedures were observed for all sample handling.

Extraction wells E1, E2, E3, E6 and E7 were constructed using 4-inch diameter Schedule 40 PVC pipe to a depth of 25 feet, with the exception of E6, which was constructed to a depth of 20 feet. The lowermost portion of each well was constructed using 0.020-inch factory slotted PVC pipe, with 15 feet of slotted interval in E1, E3 and E6, and 20 feet of slotted interval in E2 and E7. A PVC cap was placed on the bottom of each well. The filter pack consisted of#2/12 sack sand which was placed in the borehole annular space to a height of one foot above the top of the screened interval. Bentonite pellets were placed in the annular space to a height of either 1 or 2 feet above the top of the filter pack

and hydrated, followed by placement of a neat cement grout sanitary seal to within one foot of the ground surface. The top of each well was covered with a traffic-rated well vault. Although borehole E6 was drilled to a total depth of 30 feet, the lowermost 6 feet of the borehole filled with sand slough and a 4-foot bentonite seal was placed in the bottom of the borehole above the slough prior to well construction. Similarly, borehole E7 was drilled to a total depth of 30.5 feet. However, the lowermost 5.5 feet of the borehole was filled with a bentonite seal prior to construction of the well.

Injection wells I2 and I3 were constructed using 2-inch diameter Schedule 40 PVC pipe to total depths of 22.5 and 27 feet, respectively. The lowermost portion of each well was constructed using a 5-foot long section of 0.020-inch factory slotted PVC pipe. A PVC cap was placed on the bottom of each well. The filter pack consisted of#2/12 sack sand which was placed in the borehole annular space to a height of one foot above the top of the screened interval. Bentonite pellets were placed in the annular space to a height of 2 feet above the top of the filter pack and hydrated, followed by placement of a neat cement grout sanitary seal to within one foot of the ground surface. The top of each well was covered with a traffic-rated well vault. Although borehole I1 was drilled to a total depth of 25 feet, the lowermost 2.5 feet of the borehole was filled with 2.5-foot thick bentonite seal prior to well construction. Similarly, borehole I2 was drilled to a total depth of 28 feet. However, the lowermost one foot of the borehole was filled with a bentonite seal prior to construction of the well. Injection well I2 was constructed at a 30 degree angle as measured from vertical. All measurements for borehole I2 and the associated well are measured along the length of the borehole.

All drilling and sampling equipment was either previously unused clean material, or was cleaned with a steam cleaner prior to use in each borehole. Following completion of sample collection activities, wells were constructed in each borehole as described above. Soil generated during drilling was stored in drums at the site pending characterization and disposal.

The wells were developed on September 22, 23 and 26, 2006 by surging and overpumping until the water purged from the wells was relatively clear. Water discharged from the wells was either disposed of through the existing onsite mobile groundwater treatment system used by CalClean associated with remedial efforts at the site, or was disposed of by Environmental Field Services

of Patterson, California. Documentation of water disposal associated with well development is provided under separate cover.

The wells were not surveyed pending completion of remedial efforts associated with the wells by CalClean. Following completion of remedial efforts at the site, the top of each well will be surveyed in accordance with GeoTracker requirements.

Well Sampling (E1, E2, E3, E6, E7, I1, MW1, MW2)

On October 31, 2006 well E7 was purged and sampled and on November 1, 2006 wells I1 and MW2 were purged and sampled. Prior to sampling, the wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The measured depth to water in wells E7, I1 and MW2 was 9.49, 20.33 and 8.80 feet, respectively. The presence of free product or sheen was evaluated using a transparent bailer. No

free product was observed for any of the wells and no petroleum hydrocarbon odor was observed for the purge water for any of the wells. However, a slight sheen was noted in the purge water from well MW2.

Prior to sampling, the wells were purged of a minimum of three casing volumes of water. During purging operations, the field parameters of electrical conductivity, temperature and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged, a water sample was collected using a clean Teflon bailer.

On November 1, 2006 water samples were also collected from wells E1, E2, E3, E6 and MW1. Purging was not necessary prior to sample collection for these wells because of active pumping from the wells at the time of sample collection associated with site remedial efforts by CalClean. The measured depth to water in these wells prior to sample collection was 24.15, 24.55, 24.35, 17.10 and 22.12 feet, respectively. The measured depth to water for all of these wells was nearly coincident with the bottom of each of the wells, and it was necessary to allow the wells to partially recharge to obtain a sample. Pumping by CalClean began on October 13, 2006 in wells E2, E3 and E3, on October 17, 2006 in well E1, and on October 19, 2006 in well MW1. Depth to water and the presence of free product and sheen were not measured in well I2 because the well was installed in a slant boring resulting in difficulties associated with the accuracy of measurements and getting field equipment in the well. The well was also not sampled for similar reasons.

Once adequate water level recovery had occurred for sample collection, a water sample was collected from each well using a clean Teflon bailer. No sheen or odor were observed for the samples collected from wells E1 and E6. No documentation for the presence of odor or sheen was recorded for the sample from well E3. In well E2 a slight sheen and slight petroleum hydrocarbon odor were reported for the sample, and in well MW1 a slight sheen and a moderate to strong petroleum hydrocarbon odor were reported for the sample.

The water samples from all of the wells were transferred to 40-milliliter glass VOA vials and 1-liter amber glass bottles, as appropriate, which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials and bottles were labeled and then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-Certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report (see Groundwater Monitoring/Well Purging Data Sheets). Water purged from the wells during purging operations was transferred to the mobile onsite groundwater treatment system operated by CalClean for disposal.

Geophysical Survey and Anomaly Investigation

Following evaluation of the groundwater sample results from the soil borings that were drilled in August 2006, RGA personnel visually investigated the parking lot and east warehouse building for the

eastern portion of the subject for evidence of USTs on September 19, 2006. In the north end of the east warehouse, a metal plate was discovered that was recessed into the concrete slab. Beneath the metal plate, a debris-filled cavity was discovered which also contained a vertical pipe. Advanced Geological Services (AGS) subsequently performed a geophysical survey of the parking lot and east warehouse areas on September 26 and October 9, 2006. The survey methods and results are presented in a *Geophysical Survey - UST Search* report prepared by AGS dated October 17, 2006. A copy of the report is attached with this subsurface investigation report.

Two significant anomalies designated as Anomaly A and Anomaly B were identified in the east warehouse area. The location of Anomaly A corresponded to the metal plate identified on September 19, 2006, and Anomaly B did not correspond to any identifiable surface features. The locations of the anomalies are shown on Figure 6. On October 18, 2006, personnel from IMX, Inc. of Oakland, California (IMX) removed the warehouse concrete slab and excavated using a backhoe at each of the two anomaly locations. Excavation of the Anomaly A location revealed the presence of a brick slab beneath the concrete floor. Buried in the soil beneath the brick slab was debris consisting of numerous metal straps, buckets, shovel heads, burlap fabric, porcelain, and bottles with the majority of the debris consisting of broken sheet glass (i.e. window panes). A strong odor of decomposing organic matter was associated with the fill material. The debris extended vertically downward approximately 5 feet, and encompassed a circular-shaped area measuring approximately 5 feet in diameter. At the perimeter of the debris vertical planks of wood were observed. The wooden planks are interpreted to be the walls of a historic septic tank, and the contents of the tank appeared to be debris associated with former nursery operations. The soil was evaluated with a PID and no measurable concentrations of organic vapors were detected.

Excavation of the Anomaly B location revealed a brick slab beneath the concrete floor. No debris was encountered to a depth of approximately five feet below the concrete slab except for a pipe measuring approximately one foot in length. No odors or evidence of contamination were

detected. The soil was evaluated with the PID, but no measurable organic vapors were detected.

A soil sample designated as Anomaly A Fill was collected from the stockpiled fill material that originated from the Anomaly A excavation. An additional sample, designated as Anomaly A-5.5 was collected from the bottom of the excavation at the depth of 5.0 feet below the ground surface (approximately 6 inches into the native silty clay beneath the fill material), using the backhoe bucket. At the Anomaly B location, sample Anomaly B-0.5 was collected at a depth of 0.5 feet below the concrete slab. Soil samples were collected and retained for laboratory analysis by driving a 6-inch long, 2-inch diameter stainless steel or brass tube into the soil. The ends of each tube were sequentially covered with aluminum foil and plastic endcaps. Each tube was then labeled and placed in a cooler with ice pending delivery to a State-accredited hazardous waste testing laboratory. Chain of custody procedures were observed for all sample handling.

Boreholes B33 Through B39

On October 18 and 19, 2006, RGA personnel observed the drilling of boreholes B33 through B39 to evaluate the eastern extent of diesel-range and oil-range petroleum hydrocarbons detected in groundwater samples collected from boreholes in August 2006. The boreholes were continuously

cored to a total depth of 25.0 feet below the ground surface by Vironex using Geoprobe direct-push technology and a macrocore barrel sampler lined with cellulose acetate tubes. The locations of the boreholes are shown on the site GEOMAP, Figure 8.

The soil was evaluated and logged using procedures described above. No odors were detected in any of the boreholes with the exception of borehole B36, where moderate petroleum hydrocarbon odors were detected from a depth of 5.0 and 8.0 feet below the ground surface, and slight petroleum hydrocarbon odors were detected between the depths of approximately 8.0 and 17.0 feet below the ground surface. Organic vapors were not detected with the PID in any of the boreholes except for borehole B36, where PID values ranging from 2 to 27 ppm were recorded between the depths of approximately 8.0 and 27.0 feet bgs. Copies of the boring logs are attached with this report.

Soil samples were retained for laboratory analysis from boreholes B33 through B39 at depths of 0.5 and 3.5 feet below the ground surface. The rationale for the depths at which soil samples were retained for laboratory analysis was to evaluate surface and near-surface conditions for contaminants associated with historic land use (nursery and equipment storage and maintenance yard). An additional soil sample was collected from borehole B36 at a depth of 7.5 feet based on the presence of odors. Soil samples were retained for laboratory analysis using methods described above. Chain of custody procedures were observed for all sample handling.

Groundwater was initially encountered in boreholes B33 through B39 at approximately 23.0 feet below the ground surface. Groundwater was subsequently measured in the boreholes at depths ranging from 9.5 to 13.8 feet below the ground surface. Initial and subsequent water levels measured in the boreholes were recorded on the boring logs. Groundwater samples were collected from the boreholes using the procedures described above. Chain of custody procedures were observed for all sample handling.

All drilling and sampling equipment was either previously unused clean material, or was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Soil generated during drilling was stored in a drum at the site pending characterization and disposal.

Boreholes B40 Through B48

On October 26 and 27, 2006, RGA personnel hand augered boreholes B40 through B48 with a 3.5-inch outside diameter stainless steel hand auger. All of the boreholes were hand augered to total depths of 3.0 feet below the ground surface, except for borehole B43, which was hand augered to a depth of 1.3 feet below the ground surface. No water was encountered in any of the boreholes. The locations of the boreholes are shown on Figure 7 and the attached GEOMAP Figure 8.

The materials encountered in the boreholes was evaluated and logged using procedures described above. Soil from boreholes B40 through B48 was not evaluated with a PID.

No odors were detected in any of the boreholes with the exception of boreholes B41 and B42. In borehole B41, very strong petroleum hydrocarbon odors were detected between the depths of 0.6 and 2.0 feet below the ground surface, and moderate petroleum hydrocarbon odors were detected between the depths of 2.5 and 3.0 feet below the ground surface. In borehole B42, a moderate petroleum hydrocarbon was detected in the soil to a depth of at least 3.0 feet. Copies of the boring logs are attached with this report.

The rationale for the depths at which soil samples were retained for laboratory analysis was to evaluate surface and near-surface conditions for contaminants associated with historic land use (nursery, laundry, and general contractor equipment storage and maintenance yard). The objective was to collect one soil sample from directly beneath the concrete slab for metals analysis and one sample at a depth of approximately 3.0 feet for VOC analysis.

Soil samples were collected from directly beneath the concrete slab at a depth of 0.5 feet below the ground surface from all of the boreholes except for borehole B46. In borehole B46 a second concrete slab was encountered beneath the first concrete slab, resulting in collection of a soil sample from this borehole at a depth of 1.5 feet instead. In addition, a second shallow sample was collected from borehole B40 at a depth of 1.5 feet (the chain of custody and the laboratory report incorrectly identify the sample as being collected at a depth of 1.25 feet) to evaluate the presence of metals directly beneath a brick fill layer which was encountered in the borehole between the depths of 1.0 and 1.5 feet.

Soil samples were also collected at a depth of 3.0 feet below the ground surface from all of the boreholes except for borehole B43, which only extended to a depth of 1.3 feet below the ground surface because of drilling refusal. One additional soil sample was collected from borehole B41 at a depth of 2.5 feet to evaluate the presence of oil directly beneath a fill layer of brick that was encountered in the borehole between the depths of 2.0 and 2.5 feet. Very strong petroleum hydrocarbon odors were detected in the borehole in fill material located directly above the fill layer of brick.

Soil samples were collected from each borehole using a stainless steel sampler lined with a 2-inch diameter 6-inch long brass tube driven by a slide hammer. Following sample collection, the tube was removed from the sampler and the ends of the tube were sequentially covered with aluminum foil and plastic endcaps. The tubes were then labeled and placed in a cooler with ice pending delivery to a State-accredited hazardous waste testing laboratory. Chain of custody procedures were observed for all sample handling.

All drilling and sampling equipment was either previously unused clean material, or was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Soil generated during drilling was stored in a drum at the site pending characterization and disposal.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is at the interface of underlying materials consisting of Late Pleistocene alluvium (Qpa) and Medium-Grained Alluvium (Qham). Late Pleistocene alluvium is described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. Medium-Grained Alluvium is described as unconsolidated, moderately sorted, permeable fine sand, silt, and clayey silt with a few thin beds of coarse sand.

The surface cover materials encountered in all the boreholes consisted of concrete, except for boreholes B18, B19, B22, B23, B24, B31, E6 and I2, where the surface cover was asphalt. The subsurface materials in all of the boreholes consisted primarily of silt and clay. Coarse-grained materials were encountered in the boreholes as described below.

- Borehole B21: Silty sand from 12.0 to 13.5 and 15.0 to 17.0 ft. below the ground surface (bgs).
- Borehole B22: Sand from 5.0 to 11.0 feet bgs and gravelly sand from 11.0 to 13.0 feet bgs.
- Borehole B23: Silty sand from 26.0 to 28.0 feet bgs.
- Borehole B24: Silty sand from 8.0 to 11.0 feet bgs and sand from 15.0 to 20.0 feet bgs.
- Borehole B25: Silty sand from 0 to 8.0, 15.0 to 17.0 and 20.0 to 22.5 feet bgs.
- Borehole B29: Silty sand from 0.5 to 3.5 feet bgs, and sandy gravel from 6.5 to 7.0 feet bgs.
- Borehole B30: Silty sand from 23.5 to 24.5 feet bgs.
- Borehole B33: Sand from 22.0 to 23.0 feet bgs.
- Borehole B35: Sand from 24.0 to 24.5 feet bgs.
- Borehole B36: Sand with silt and gravel from 19.5 to 23.0 feet bgs, and sand from 23.0 to 23.5 feet bgs.
- Borehole B37: Sand with clay and gravel from 20.0 to 24.0 feet bgs, with silty sand from 22.0 to 22.5 feet bgs.
- Borehole B38: Sand with silt and gravel from 19.0 to 25.0 feet bgs.
- Borehole B39: Sand with silt and gravel from 18.5 to 22.0 feet bgs.
- Borehole E3: Clayey sand from 0.75 to 3.5 feet bgs, and sand from 3.5 to 5.5 feet bgs.
- Borehole E7: Silty clayey sand with fine to coarse grained sand from 23.5 to 30.5 feet bgs.
- Borehole II: Sand fill from 1.0 to 1.5 feet bgs, silty sand from 10.0 to 11.5 and 20.0 to 21.5 feet bgs.
- Borehole I2: silty sand from 0 to 1.5 feet bgs, and clayey sand from 8.5 to 12.5 feet bgs.

Geologic cross sections and a discussion of the geologic cross sections were presented in RGA's March 2006 Subsurface Investigation Report (document 0304.R4). Comparison of the actual location of borehole B15 when projected onto geologic cross section C-C' shows that the borehole is approximately 12 feet closer to B14 on the geologic cross section and that the interpretation of the subsurface materials is unchanged.

Review of the EC logs shows that in upgradient borehole B26 the subsurface materials consisted predominantly of sand and silt between the ground surface and a depth of 9 feet, clay and silty clay between the depths of 9 and 26 feet, and sand and silty sand between the depths of 36 and 60 feet. Comparison of the visual boring log with the EC log shows that a reasonable correlation exists, although the visual log identified the interval from 7 to 17 feet below grade as consisting of medium stiff sandy silt and the EC log suggests that silty clay and clay are predominantly present in this interval.

Review of the EC log for borehole B24 (located near the center of the gasoline plume) shows that the subsurface materials consisted predominantly of sand and silty sand to a depth of 16 feet, silty clay and clay between the depths of 16 and 32 feet, and silty sand and sand between the depths of 32 and 58 feet. Silty clay was identified as present between the depths of 58 feet and the total depth explored of 60 feet. Comparison of the visual log with the EC log shows that there was no recovery for the visual log to a depth of 8 feet, which is consistent with coarse grained subsurface conditions and suggests a good correlation for this interval. Similarly, the visual log and the EC log show good correlation of silty sand as predominantly present between the depths of 8 and 15 feet. However, the visual log showed sand to be present between the depths of 15 and 20 feet, with no recovery below a depth of 20 feet while the corresponding EC log suggests the presence of silty clay and clay for this interval, indicating a poor correlation of the two logs for this interval.

Review of the EC log for borehole B32 (located at the downgradient portion of the gasoline plume) shows the subsurface materials to consist predominantly of silty sand with lesser amounts of silty clay between the ground surface and a depth of 28 feet, sand between the depths of 28 and 33 feet, silty sand between the depths of 33 and 45 feet, and sand and silty sand between the depths of 45 and 60 feet with silty clay between the depths of 53 and 55 feet. Comparison of the visual log shows good comparison for the entire 35 foot length of the visual log with the exception of the interval from 12 to 22 feet, where the EC log shows silty sand and silty clay and the visual log showed clay to be present.

Comparison of the EC logs shows that clay and silty clay were encountered in boreholes B24 and B26 at depths of less than 32 feet. Silty sand and sand were identified in all of the boreholes between the depths of 32 and approximately 53 feet. In all of the boreholes a silty clay interval measuring approximately two feet thick was encountered beginning at depths ranging from approximately 53 to 58 feet. Based on the highly variable nature of the deposits in the site vicinity it is very unlikely that this silty clay interval is continuous. However, the presence of this interval in all of the boreholes suggests that the bottom of the first water bearing zone may be at a depth of approximately 53 to 58 feet in the vicinity of the site. When comparing the EC logs, please note that the electro conductivity scale is different for each of the different logs.

Groundwater was initially encountered in boreholes B18 through B32 at depths ranging from 11.0 to 30.0 feet below the ground surface. Groundwater was subsequently measured in boreholes B18 through B32 at depths ranging from 8.7 to 23.5 feet below the ground surface.

April 24, 2007 Report 0304.R5

Groundwater was initially encountered in boreholes B33 through B39 at approximately 23.0 feet below the ground surface. Groundwater was subsequently measured in the boreholes at depths ranging from 9.5 to 13.8 feet below the ground surface.

Review of the measured depths to water in the wells at the site prior to sample collection on October 31 and November 1, 2006 shows that the measured depth to water in well I1 was near the bottom of the well, even though pumping was not occurring at well I1. This suggests that the pumping of groundwater at nearby locations E1, E2, E3, E6 and MW1 resulted in dewatering of sediments in the vicinity of well I2. Similarly, the absence of lowered water levels in wells E7 and MW2 suggests that these two wells are located outside of the more permeable zone identified in the geologic cross sections discussed above. The more permeable zone identified in the geologic cross sections discussed above is also interpreted to be approximately coincident with the elevated concentrations of TPH-G and benzene shown on the isoconcentration contour maps with this report.

Review of an August 11, 2004 Quarterly Groundwater Monitoring Report prepared by Aqua Science Engineers, Inc. for the Kozel property located at 1001 42nd Street in Oakland (located across Linden Street and immediately to the northwest of the subject site) shows that the June

2004 groundwater flow direction was calculated to be to the southwest, based on water level data from 10 groundwater monitoring wells located at and near the Kozel property.

This reported southwesterly groundwater flow direction is shown on Figures 2 through 5.

The surface elevation at the site is between 40 and 60 feet above Mean Sea Level. Review of Figure 1 shows that the topography in the site vicinity gently slopes to the southwest, and that San Francisco Bay is located approximately one mile west of the site. Based on the surface topography, the regional groundwater flow direction is assumed to be southwesterly, which is consistent with the groundwater flow direction obtained from the groundwater monitoring wells associated with the Kozel property.

LABORATORY RESULTS

All of the soil and groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California. McCampbell is a State-accredited hazardous waste testing laboratory.

Borehole Soil Samples – Boreholes B18 Through B32

All of the soil samples submitted to the laboratory from boreholes B18 through B32 were analyzed as follows.

- Total Petroleum Hydrocarbons as Gasoline (TPH-G), Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 5030B in conjunction with modified EPA Method 8015C.
- Benzene, toluene, ethylbenzene and xylenes (BTEX), and for methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

Soil sample results from boreholes B18 through B32 are summarized in Table 4, and soil sample results from the boreholes for the wells are summarized in Table 5. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the soil sample results in Table 4 shows the following.

- MTBE was not detected in any of the samples,
- BTEX compounds were not detected in any of the samples with the exception of borehole B24 at depths of 10 and 15 feet, and xylenes were detected in borehole B31 at a depth of 15 feet and in borehole B32 at a depth of 20 feet at concentrations of 0.015 and 0.0050 mg/kg, respectively. All detected BTEX compounds were at concentrations below their respective Environmental Screening Level (ESL) values.
- TPH-G, TPH-D, and TPH-MO were not detected at concentrations exceeding their respective ESL values in any of the samples with the exception of borehole B20 at depths of 7.0 and 20.0 feet, where TPH-D was detected at concentrations of 130 and 330 mg/kg, respectively. Review of the laboratory report shows that the TPH-D results are described as consisting of unmodified or weakly modified diesel and with oil-range compounds being significant.

Borehole Soil Samples – Boreholes E1, E2, E3, E6, E7, I1, I2

Based on field observations, 11 of the soil samples collected from the boreholes for the wells (boreholes E1, E2, E3, E6, E7, I1 and I2) were analyzed as follows.

- Total Petroleum Hydrocarbons as Gasoline (TPH-G), Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 5030B in conjunction with modified EPA Method 8015C.
- Benzene, toluene, ethylbenzene and xylenes (BTEX), and for methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

The soil sample results from the boreholes for the wells are summarized in Table 5. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report. Review of the soil sample results in Table 5 shows the following.

- MTBE was not detected in any of the samples,
- BTEX compounds were not detected in any of the samples with the exception of borehole E2, E3, I1 and I2 at a depth of 10.0 feet and in borehole I2 at a depth of 5.0 feet. All detected BTEX compounds were at concentrations below their respective ESL values with the exception of benzene in the sample from borehole I2 at a depth of 5.0 feet and all of the BTEX compounds in the sample from borehole I2 at a depth of 10.0 feet.
- TPH-G, TPH-D, and TPH-MO were not detected at concentrations exceeding their respective ESL values in any of the samples with the exception of borehole I2 at a depth of 10.0 feet, where TPH-G and TPH-D was detected at concentrations of 1,900 and 4600 mg/kg, respectively. Review of the laboratory report shows that the TPH-G results are

described as consisting of unmodified or weakly modified gasoline, and that the TPH-D results are described as consisting of gasoline range compounds and diesel range compounds with no recognizable pattern.

Geophysical Anomaly Soil Samples

Soil samples Anomaly A-5.5, Anomaly B-0.5 and Anomaly A Fill were analyzed for polynuclear aromatic hydrocarbons (PAHs/PNAs) by EPA Method 3550C in conjunction with EPA Method 8270C, and for CAM 17 Metals by EPA Method 6020A in conjunction with EPA Method 3050B. Samples Anomaly A-5.5 and Anomaly B-0.5 were also analyzed for TPH-G, TPH-D and TPH-MO by EPA Method 5030B in conjunction with modified EPA Method 8015C. Soil sample results from the geophysical anomaly investigation are summarized in Table 6. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the soil sample results in Table 6 shows the following.

- TPH-G was not detected in any of the samples.
- TPH-D and TPH-MO were not detected at concentrations exceeding their respective ESL values.
- A total of 11 different PAH/PNA compounds were detected in sample Anomaly A Fill, only phenanthrene was detected in sample Anomaly A-5.5, and no PAHs/PNAs were detected in sample Anomaly B-0.5.
- Metals concentrations exceeding their respective ESL values was limited to lead in all of the samples and arsenic, chromium, cobalt, and copper in sample Anomaly B-0.5.

<u>Borehole Soil Samples – Boreholes B33 Through B39</u>

All soil samples from boreholes B33 through B39 were analyzed for VOCs by EPA Method 5030B in conjunction with EPA Method 8260B. All of the soil samples collected at a depth of 0.5 feet were analyzed for CAM 17 metals, and the soil sample collected from borehole B36 at a depth of 7.5 feet was analyzed for TPH-G, TPH-D and TPH-MO using EPA Method 5030B in conjunction with modified EPA Method 8015C. Soil sample results from boreholes B33 through B39 are summarized in Table 7. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the soil sample results in Table 7 shows the following.

- VOCs were not detected in any of the samples.
- Metals concentrations exceeding their respective ESL values were limited to arsenic in samples from all of the boreholes except for B35 and B38.
- TPH-G, TPH-D, and TPH-MO were all detected in the sample from borehole B36 at a depth of 7.5 feet. However, only TPH-D was detected at a concentration exceeding the respective ESL value. Review of the laboratory report shows that the TPH-D results are

described as consisting of both unmodified or weakly modified diesel and aged diesel. The TPH-G results are described as consisting of strongly aged gasoline or diesel range compounds and also as having no recognizable pattern.

<u>Borehole Soil Samples – Boreholes B40 Through B48</u>

Soil samples from boreholes B40 through B48 were analyzed as follows.

- All samples collected at a depth of 0.5 feet (except for borehole B46) were analyzed for CAM 17 metals by EPA Method 6020A in conjunction with EPA Method 3050B. In addition, one soil sample collected from borehole B40 at a depth of 1.25 feet was also analyzed for CAM 17 metals.
- All of the soil samples were analyzed for BTEX and MTBE using EPA Method 8021B except for samples B40-1.25 and B46-1.5.
- All of the soil samples were analyzed for VOCs by EPA Method 8260B with the exception of samples B40-1.25, B41-0.5, B41-2.5, B42-0.5, and B46-1.5.
- All samples collected from boreholes B41 and B42 were analyzed for TPH-G, TPH-D and TPH-MO using EPA Method 5030B in conjunction with modified EPA Method 8015C.
- Analysis for polynuclear aromatic hydrocarbons (PAHs/PNAs) by EPA Method 3550C in conjunction with EPA Method 8270C was performed for samples B40-1,25, B41-2.5, and B46-1.5.

Soil sample results from boreholes B40 through B48 are summarized in Table 8. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the soil sample results in Table 8 shows the following.

- Metals concentrations exceeding their respective ESL values were limited to arsenic in samples from all of the boreholes except for B41 and B42, cobalt in six of the samples, lead in four of the samples, chromium in one of the samples, and the metals cadmium, thallium and zinc in one of the samples (B46). The arsenic concentration in the sample from borehole B46 was approximately 20 times greater than any of the other arsenic concentrations.
- BTEX and MTBE and benzene were not detected in any of the samples, and the remaining BTEX compounds were only detected in samples from boreholes B41 and B42. All detected concentrations were below their respective ESL values.
- VOCs were not detected in any of the samples with the exception of samples from boreholes B41 and B42 at a depth of 3.0 feet. None of the detected VOCs exceeded their respective ESL values with the exception of naphthalene in borehole B41 at a depth of 3.0 feet.
- TPH-G, TPH-D, and TPH-MO were all detected in all of the samples from boreholes B41 and B42 at concentrations exceeding their respective ESL values. Review of the laboratory

report shows that the TPH-D results are described as consisting of both kerosene/kerosene range/jet fuel and also as oil range compounds. The TPH-G results are described as consisting of strongly aged gasoline or diesel range compounds and also as having no recognizable pattern.

• PAHs/PNAs were detected in all of the samples for which this analysis was performed with soil sample collected at a depth of 1.25 feet in borehole B41 having the only PAH/PNA concentrations exceeding their respective ESL values.

Borehole Groundwater Samples – Boreholes B18 Through B32

All of the groundwater samples from boreholes B18 through B27 and B29 through B32 were analyzed as follows.

- TPH-G, TPH-D and TPH-MO using EPA Method 5030B in conjunction with modified EPA Method 8015C.
- BTEX and MTBE using EPA Method 8021B.

The groundwater sample results from boreholes B18 through B27 and B29 through B32 are summarized in Table 9. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the water sample results in Table 9 shows the following.

- MTBE was not detected in any of the samples.
- TPH-G was not detected, except in sample B24-25.0 at a concentration of 6,600 μg/L. TPH-D was detected in 11 of the 16 samples at concentrations ranging from 110 to 12,000 μg/L. TPH-MO was detected in 11 of the 16 samples at concentrations ranging from 310 to 27,000 μg/L. All of these detected concentrations exceeded their respective ESL values. Review of the laboratory reports shows that all of the TPH-D results are identified as consisting of oil-range compounds, and that all but two of the TPH-D results are also identified as consisting of diesel-range compounds with no recognizable pattern.
- Benzene was detected only in borehole B24 at depths of 25.0 and 55.0 feet at concentrations of 1,000 and 1.2 μ g/L, respectively. These two detected concentrations exceed the benzene ESL value.

Well Water Samples – E1, E2, E3, E6, E7, I1, MW1, MW2

Groundwater samples were not collected from boreholes E1, E2, E3, E6, E7, I1 or I2. However, following construction and development, all of the wells with the exception of slant injection well I2 were sampled with existing groundwater monitoring wells MW1 and MW2 and all of the samples were analyzed as follows.

- TPH-G, TPH-D and TPH-MO using EPA Method 5030B in conjunction with modified EPA Method 8015C.
- BTEX and MTBE using EPA Method 8021B.

The groundwater sample results from the wells are summarized in Table 10. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the water sample results in Table 10 shows the following.

- MTBE was not detected in any of the samples.
- TPH-G, TPH-D, TPH-MO, and BTEX were not detected in wells E1, E7, I1 or MW2.
- Benzene was only detected in wells E2 and E6 at concentrations of 0.52 and 4.9 ug/L, respectively.
- TPH-G was detected in wells was not detected, except in sample B24-25.0 at a concentration of 6,600 µg/L. TPH-D was detected in 11 of the 16 samples at concentrations ranging from 110 to 12,000 µg/L. TPH-MO was detected in 11 of the 16 samples at concentrations ranging from 310 to 27,000 µg/L. All of these detected concentrations exceeded their respective ESL values. Review of the laboratory reports shows that all of the TPH-D results are identified as consisting of oil-range compounds, and that all but two of the TPH-D results are also identified as consisting of diesel-range compounds with no recognizable pattern.
- Benzene was detected only in borehole B24 at depths of 25.0 and 55.0 feet at concentrations of 1,000 and 1.2 μg/L, respectively. These two detected concentrations exceeded their respective ESL values.

Borehole Water Samples – Boreholes B33 Through B39

Groundwater samples from boreholes B33 through B39 were analyzed as follows.

- TPH-G, TPH-D and TPH-MO using EPA Method 5030B in conjunction with modified EPA Method 8015C
- VOCs by EPA Method 5030B in conjunction with EPA Method 8260B.

The groundwater sample results are summarized in Table 11. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the water sample results in Table 11 shows the following.

- TPH-G was not detected, TPH-D was detected in boreholes B36, B37 and B39 at concentrations of 120, 110 and 89 μ g/L, respectively, and that TPH-MO was detected at concentrations of 480, 880 and 350 μ g/L, respectively. All but one of these detected concentrations exceeded their respective ESL values. Review of the laboratory reports shows that all of the TPH-D results are identified as consisting of oil-range compounds, and that two of the TPH-D results are also identified as consisting of diesel-range compounds with no recognizable pattern.
- VOCs were not detected in any of the samples.

DISCUSSION AND RECOMMENDATIONS

MTBE was not detected in any of the soil or groundwater samples during this investigation. Comparison of RGA's June 26, 2006 Work Plan objectives and rationale for soil boring locations with the sample results from the boreholes and wells shows the following.

• Boreholes B18 Through B21

- o Review of Tables 4 and 9 shows that TPH-G, MTBE and BTEX were not detected in any of the soil or groundwater samples from these boreholes with the exception of borehole B20, where a heating oil UST was discovered next to the borehole. Based on these sample results, the extent of TPH-G and BTEX upgradient of the site and in the vicinity of borehole B13 were defined (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively).
- o The fine-grained materials encountered in boreholes B19 and B20 suggest that these boreholes are located outside of the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations. The absence of TPH-G and BTEX in soil and water samples from these boreholes further supports this interpretation. The sandy silt encountered in boreholes B18 and B21 suggest that these boreholes are located within the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations. However, the absence of TPH-G and BTEX in soil and water samples from these boreholes does not support this interpretation (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively). The absence of TPH-G and BTEX in these borehole samples suggests that these boreholes are located in materials that are peripheral to more permeable coarse-grained materials where the TPH-G and BTEX are encountered.

Boreholes B22 Through B24

Review of Table 4 shows that the general absence of petroleum hydrocarbons in soil samples from these boreholes indicates that petroleum hydrocarbons are not a concern in the vicinity of the investigated former UST pit. None of the detected petroleum hydrocarbon concentrations in the soil samples exceeded their respective ESL values for these boreholes.

Review of Table 9 shows that TPH-G and BTEX were not detected in any of the samples from these boreholes with the exception of B24 at a depth of 25.0 feet, where TPH-G, benzene, ethylbenzene and xylenes were detected at concentrations exceeding their respective ESL values. The TPH-G and BTEX results for these boreholes show that that although petroleum hydrocarbons detected in borehole B24 extend at least one half the distance from the suspected source area (the former UST located beneath the loading dock) to the former UST located near well MW2, the absence of TPH-G and BTEX in groundwater samples from boreholes B22 and B23 shows that the petroleum hydrocarbons do not extend as far from the source area as these two boreholes. Although the sand and sandy silt in all of these boreholes appears to be located within the permeable zone associated with elevated TPH-G and BTEX concentrations, the absence of TPH-G and BTEX in soil and water samples from boreholes B22 and B23 does not support this interpretation (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively). absence of TPH-G and BTEX in these borehole samples suggests that these boreholes are located in materials that are peripheral to more permeable coarse-grained materials where the TPH-G and BTEX are encountered.

• Boreholes B25 Through B27

- o Review of Table 4 shows that the general absence of petroleum hydrocarbons in soil samples from these boreholes indicates that petroleum hydrocarbons are not a concern in the vicinity of the investigated former UST pit. None of the detected petroleum hydrocarbon concentrations in the soil samples exceeded their respective ESL values for these boreholes.
- o Review of Table 9 shows that TPH-G and BTEX were not detected in any of the samples from these boreholes. Although the sand and sandy silt in all of these boreholes appears to be located within the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations, the absence of TPH-G and BTEX in soil and water samples from boreholes B22 and B23 does not support this interpretation (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively). The absence of TPH-G and BTEX in these borehole samples suggests that these boreholes are located in materials that are peripheral to more permeable coarse-grained materials where the TPH-G and BTEX are encountered.

• Boreholes B28 Through B30

On Figures 2, 5 and 6 in RGA's previous Subsurface Investigation Report (B13 Through B17) dated March 24, 2006 (document 0304.R4), the location of borehole B15 was incorrect. The location shown on the figures was the proposed location instead of the actual location. The drill rig could not access the proposed location due to the presence of large tanks and equipment. The actual location is approximately 20 feet to the northwest of the proposed location. Because borehole B15's actual location was approximately 20 feet to the northwest of the location shown in the March 24, 2006 report figures, proposed borehole locations B28 and B30 were combined into one borehole location designated as B30.

- o Review of Table 4 shows that TPH-G and BTEX were not detected in any of the soil samples from boreholes B29 and B30.
- o Review of Table 9 shows that TPH-G and BTEX were not detected in any of the groundwater samples from these boreholes. Although the sand and sandy silt in both of these boreholes appears to be located within the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations, the absence of TPH-G and BTEX in soil and water samples from the boreholes does not support this interpretation (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively). The absence of TPH-G and BTEX in these borehole samples suggests that these boreholes are located in materials that are peripheral to more permeable coarse-grained materials where the TPH-G and BTEX are encountered.
- O Review of Table 4 shows that TPH-D and TPH-MO were not detected at concentrations exceeding their respective ESL values in any of the soil samples from borings B29 and B30, suggesting that surface sources for TPH-D and TPH-MO were not encountered at these drilling locations.
- o Review of Table 9 shows that elevated concentrations of TPH-D and TPH-MO were detected in the groundwater grab samples from these boreholes. As discussed above, a heating oil UST was discovered adjacent to borehole B20. Review of TPH-D and TPH-MO isoconcentration contours in groundwater in Figures 3 and 4, respectively, (see also Tables 9, 10 and 11) shows that the source of the TPH-D and TPH-MO range compounds appears to be the UST adjacent to borehole B20.

Boreholes B31 and B32

- o Review of Table 4 shows that the general absence of petroleum hydrocarbons in soil samples from these boreholes indicates that petroleum hydrocarbons are not a concern at these locations. None of the detected petroleum hydrocarbon concentrations in the soil samples exceeded their respective ESL values for these boreholes.
- o Review of Table 9 shows that TPH-G and BTEX were not detected in any of the groundwater samples from these boreholes, with the exception of 2.9 ug/L toluene and 1.6 ug/L xylenes in borehole B30. The fine-grained materials encountered in borehole B31 suggest that this borehole is located outside of the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations. Although the sandy silt in borehole B32 appears to be located within the permeable zone associated with elevated TPH-G and BTEX groundwater concentrations, the absence of TPH-G and BTEX in soil and water samples from borehole B32 in conjunction with elevated concentrations of TPH-D and TPH-MO suggests that the downgradient end of the TPH-G and BTEX plume is defined by borehole B32 (see TPH-G and benzene isoconcentration contours in groundwater in Figures 2 and 5, respectively).

Based on the groundwater sample results discussed above, the horizontal extent of TPH-G and BTEX has been defined in groundwater at the subject site and is limited to the western portion of the property (see Figure 2).

Review of the EC logs suggests that the first water bearing zone may extend to a depth of approximately 55 feet. Evaluation of the vertical extent of petroleum hydrocarbons was limited to samples collected at drilling locations B24 and B32. The results show that no detectable concentrations of TPH-G or BTEX were detected at a depth of approximately 55 feet at either of these locations with the exception of 1.2 ug/L benzene at drilling location B 24. However, based on the comparatively higher concentration of benzene at a depth of 25 feet at drilling location B24, the attenuation of benzene at a depth of 55 feet and the absence of other gasoline constituents shows that the vertical extent of TPH-G and BTEX has been defined, including in the immediate vicinity of the source area (location B24).

Review of Table 5 shows that the only location where petroleum hydrocarbons were encountered at concentrations exceeding their respective ESL values in the boreholes for the wells was in borehole I2 at the depths of 5.0 and 10.0 feet. Review of Table 6 shows that approximately two weeks after the beginning of soil vapor extraction and groundwater pumping for remediation of TPH-G and BTEX at the site, TPH-G concentrations exceeding 100 ug/L were detected in groundwater samples from wells E2, E3, E6 and MW1. The distribution of elevated TPH-G concentrations in these wells and the absence of petroleum hydrocarbons in the other wells is consistent with the information historically obtained from the groundwater grab samples in borings B1 through B32 (see TPH-G and benzene isoconcentration contours in groundwater in Figure 2 and Figure 5, respectively).

The sample results summarized in Table 6 show that none of the detected organic analytes associated with the geophysical anomaly investigation exceeded their relative ESL values, that lead was detected at elevated concentrations in all of the samples associated with the geophysical anomaly investigation. RGA recommends that further evaluation of metals concentrations in the vicinity of Anomaly B should be performed at the time of property development. In addition, the sample results indicate that Waste Extraction Test (WET) analysis will be required for some metals to determine appropriate disposal classification for excavated soil.

The sample results summarized in Table 7 show that no VOCs were detected in any of the soil samples from the boreholes B33 through B39 at a depth of 3.5 feet, indicating that no evidence of subsurface impact from the historic use of solvents on the eastern portion of the property was detected. Analysis of the soil in borehole B36 at a depth of 7.5 feet that exhibited petroleum hydrocarbon odors shows that 140 mg/kg TPH-D was detected which the laboratory identified as diesel-range compounds. Review of Figures 6 and 8 shows that petroleum hydrocarbons were not detected in the soil borings located in the vicinity of the oil shacks identified on the Phase I report Sanborn Maps.

Review of the metals analysis results in Tables 7 and 8 for samples collected at a depth of approximately 0.5 feet at locations across the site shows that arsenic, cobalt and lead were the only metals detected multiple times at concentrations exceeding their respective ESL values, and that only one sample (B47-0.5) exhibited a metal concentration exceeding twice the respective ESL value. RGA

recommends that further evaluation of metals concentrations in the vicinity of borehole B47 should be performed at the time of property development. In addition, the sample results indicate that WET analysis will be required for some metals to determine appropriate disposal classification for excavated soil.

Table 8 shows that petroleum odors reported in boreholes B41 and B42 were identified as kerosene and oil-range compounds. VOCs detected in soil samples from these boreholes were identified as petroleum distillates, and three of the detected PNAs from these boreholes exceeded their respective ESL values. Although PNAs were detected in the sol sample from borehole B46, none if the PNA concentrations exceeded their respective ESL values. Review of Figure 6 shows that the Phase I report Sanborn Maps identified the building where boreholes B41 and B42 were located as historically used as an auto truck shed. It appears that the detected petroleum hydrocarbons may be associated with historic use of the building for vehicle maintenance or repair. The horizontal and vertical extent of the petroleum-impacted soil at boreholes B41 and B42 is presently unknown.

CalClean began soil vapor extraction and groundwater pumping on October 12, 2006 to evaluate the effectiveness of soil vapor extraction and groundwater pumping in reducing elevated subsurface TPH-G and BTEX concentrations. Documentation of the remedial efforts is provided in a separate report. RGA recommends that the results of groundwater pumping, vapor extraction and air sparging remedial efforts be evaluated and that remediation be performed to reduce TPH-G and gasoline-related compound concentrations to below their respective ESL values.

RGA removed the heating oil UST discovered adjacent to borehole B20 under the direction of the Oakland Fire Department. Documentation of the UST removal is provided in a separate report.

As is noted in Figures 3 and 4, the reported concentrations of TPH in grab-groundwater samples collected at B-13, B-15, B-21, B-29 and B-37 exceed the expected effective solubility of weathered fuel oil or motor oil sources, and therefore may not represent concentrations of dissolved petroleum hydrocarbons at those locations. To further evaluate TPH-D and TPH-MO compound concentrations in groundwater at the subject site, RGA installed groundwater monitoring wells MW4, MW5 and MW6 at locations shown on Figure 8. Documentation of the well installation is provided in a separate report.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of California Linen Rental Company. The content and conclusions provided by RGA in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site

owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. RGA is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 547-7771.

PAUL H. KING No. 5901

Sincerely,

RGA Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires: 12/31/07

Karin Schroeter Project Manager

Attachments:

- Table 1- Summary of Historic Groundwater Monitoring Well Sample Results (MW1 Through MW3)
- Table 2 Summary of Historic Borehole Soil Sample Results (B4 Through B17)
- Table 3 Summary of Historic Borehole Groundwater Sample Results (B1 Through B17)
- Table 4 Summary of Borehole Soil Sample Results Boreholes B18 Through B32
- Table 5 Summary of Borehole Soil Sample Results Boreholes E1, E2, E3, E6, E7, I1, I2
- Table 6 Summary of Soil Sample Results Geophysical Anomaly Investigation
- Table 7 Summary of Borehole Soil Sample Results Boreholes B33 Through B39
- Table 8 Summary of Borehole Soil Sample Results Boreholes B40 Through B48
- Table 9 Summary of Borehole Groundwater Sample Results Boreholes B18 Through B32
- Table 10 Summary of Borehole Groundwater Sample Results Wells E1, E2, E3, E6, E7, I1, I2, MW1, MW2
- Table 11 Summary of Borehole Groundwater Sample Results Boreholes B33 Through B39
- Figure 1- Site Location Map
- Figure 2- Site Vicinity Map Showing TPH-G in Groundwater
- Figure 3 Site Vicinity Map Showing TPH-D in Groundwater
- Figure 4 Site Vicinity Map Showing TPH-MO in Groundwater
- Figure 5 Site Vicinity Map Showing Benzene in Groundwater
- Figure 6 Site Vicinity Map Showing Phase I Report Sanborn Map Features
- Figure 7 Site Vicinity Map Showing Hand Augered Borehole Locations
- Figure 8 GEOMAP
- RGA Phase I Environmental Site Assessment Report Sanborn Maps
- Advanced Geological Services, Inc. Report *Geophysical Survey UST Search* dated October 17, 2006

Boring Logs (B18 Through B27, B29 Through B48, E1, E2, E3, E6, E7, I1, I2)

Soil Electro Conductivity (EC) Logs (B24, B26, B32)

Well Construction Diagrams (E1, E2, E3, E6, E7, I1, I2)

Groundwater Monitoring/Well Purging Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

PHK/efo 0304.R5

TABLE 1 SUMMARY OF HISTORIC GROUNDWATER MONITORING WELL SAMPLE RESULTS MW1 THROUGH MW3

Well No.	Date	TPH-G	TPH-D	Benzene	Toluene	Ethyl- benzene	Xylenes	Fuel Oxygenates and Lead Scavengers
MW1	05/17/05	13,000	NA	2,400	230	490	240	NA, except MTBE = ND<120
	04/02/03	24,000	NA	4,000	1,600	2,300	1,400	ND<50, except TBA = ND<500
	03/18/92	77,000	14,000	17,000	18,000	2,300	1,300	NA
	11/21/91	47,000	9,800	6,000	7,200	2,200	1,000	NA
	08/15/91	59,000	3,500	3,800	5,500	1,100	4,800	NA
	06/05/91	23,000	560	2,000	1,200	640	2,500	NA
	01/28/91	99,000	1,700	4,400	7,400	1,800	8,600	NA
	10/23/90	50,000	1,100	3,300	4,000	4,200	4,700	NA
	07/25/90	34,000	ND	2,000	670	120	1,500	NA
	02/20/90	73,000	2,200	7,500	5,900	680	5,300	NA
	10/02/89	70,000	610	2,800	2,400	2,300	4,800	NA
ESL		100	100	1.0	40	30	20	5.0

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

Results are in micrograms per liter (μ g/L).

TABLE 1 (Contd.) SUMMARY OF HISTORIC GROUNDWATER MONITORING WELL SAMPLE RESULTS MW1 THROUGH MW3

Well		TDU C	TDUD		T. 1	Ethyl-	V 1	Fuel Oxygenates and Lead
No. MW2	Date 04/02/03	TPH-G ND<50	TPH-D NA	Benzene ND<0.5	Toluene ND<0.5	benzene ND<0.5	Xylenes 0.74	Scavengers ND<0.5,
101 00 2	04/02/03	ND<30	INA	ND<0.3	ND<0.5	110<0.3	0.74	except TBA = ND<5
	03/18/92	ND	ND	ND	1.1	ND	3.3	NA
	11/21/91	ND	ND	ND	ND	ND	ND	NA
	08/15/91	ND	ND	ND	ND	ND	ND	NA
	06/05/91	ND	ND	ND	ND	ND	ND	NA
	01/28/91	ND	ND	ND	ND	ND	ND	NA
	10/23/90	ND	ND	ND	ND	ND	ND	NA
	07/25/90	ND	ND	ND	ND	ND	ND	NA
	02/20/90	ND	ND	ND	ND	ND	ND	NA
	10/02/89	ND	ND	ND	ND	ND	ND	NA
MW3	02/20/90	ND	ND	ND	ND	ND	ND	NA
	10/02/89	ND	ND	ND	ND	ND	ND	NA
ESL		100	100	1.0	40	30	20	5.0

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

NA = Not Analyzed.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

Well MW3 was destroyed on July 19, 1991.

Results are in micrograms per liter (μ g/L).

TABLE 2 SUMMARY OF

HISTORIC BOREHOLE SOIL SAMPLE RESULTS – B4 THROUGH B17

(Samples B4-B6 Collected September 13 and 14, 2005)

Sample	TPH-G/			Ethylbenzen		MTBE and Other
No.	TPH-SS	Benzene	Toluene	e	Xylenes	VOCs
B4-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B4-7.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B4-10.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B4-21.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B5-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B5-7.5	590 ,a,b/	ND<0.20	0.20	0.66	4.0	ND<2.0/NA
	NA					
B5-11.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B5-19.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
ESL	100	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

ND = Not Detected.

NA = Not Analyzed.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

a = Laboratory analytical report note: strongly aged gasoline or diesel range compounds are significant.

b = Laboratory analytical report note: no recognizable pattern.

Results are in milligrams per kilogram (mg/kg).

TABLE 2 (Contd.) SUMMARY OF

HISTORIC BOREHOLE SOIL SAMPLE RESULTS – B4 THROUGH B17

(Samples B4-B6 Collected September 13 and 14, 2005)

Sample	TPH-G/			Ethylbenzen		
No.	TPH-SS	Benzene	Toluene	e	Xylenes	MTBE/Other VOCs
B6-5	ND<1.0/ NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
B6-7	240 ,b,c/ NA	ND<0.20	ND<0.20	1.7	9.2	ND<2.0/NA
B6-10	ND<1.0/ ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
B6-12.5	4.9/ 5.1	ND<0.005	0.020	0.040	0.23	ND<0.05/ND<0.005, except n Butyl benzene = 0.0097, Ethylbenzene = 0.021, 1,2,4-Trimethylbenzene = 0.085, Naphthalene = 0.0085, n-Propyl benzene = 0.018, 1,3,5-Trimethylbenzene = 0.026, xylenes = 0.093
B6-13.5	ND<1.0/ ND<1.0	ND<0.005	ND<0.005	ND<0.005	0.019	ND<0.05/NA
B6-17.0	15/ 12	0.0085	ND<0.005	0.17	0.84	ND<0.05/ND<0.005, except n Butyl benzene = 0.045, Ethylbenzene = 0.081, Isopropylbenzene = 0.021, 1,2,4-Trimethylbenzene = 0.41, sec-Butyl benzene = 0.011, 4-Isopropyl toluene = 0.013, Naphthalene = 0.042, n-Propyl benzene = 0.078, 1,3,5-Trimethylbenzene = 0.11, xylenes = 0.38
B6-19.0	ND<1.0/ ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/ND<0.005
ESL	100	0.044	2.9	3.3	2.3	

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard Solvent.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

b = Laboratory analytical report note: no recognizable pattern.

c = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?). Results are in milligrams per kilogram (mg/kg).

TABLE 2 (Contd.) SUMMARY OF

HISTORIC BOREHOLE SOIL SAMPLE RESULTS – B4 THROUGH B17 (Samples B7-B12 Collected October 10, 11 and 12, 2005)

No. TPH-SS Benzene Toluene e Xylenes Other VOCs	Sample	TPH-G/			Ethylbenzen		MTBE/
NA B7-7.0 36,a,b/ NA ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25/NA	_	TPH-SS	Benzene	Toluene	=	Xylenes	Other VOCs
B7-7.0 36,a,b/NA ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25/NA B7-17.0 ND<1.0/NA	B7-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA							
B7-17.0 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B7-19.0 ND<1.0/ NA	B7-7.0		ND<0.25	ND<0.25	ND<0.25	0.049	ND<0.25/NA
NA B7-19.0 ND<1.0/ ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA							
B7-19.0 ND<1.0/ ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA	B7-17.0		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA							
B8-5.0 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B8-7.5 230,a/ NA ND<5.0	B7-19.0		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA		NA					
NA	D0 5 0	ND 10/	NID 0.005	NID 0.005	ND 0.007	NID 0.005	NID O OF ALA
B8-7.5 230,a/ NA ND<5.0 ND<0.50 ND<0.50 0.81 ND<0.50/NA B8-10.0 ND<1.0/ NA	B8-5.0		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA	D0 7.5	1	NID (5.0	NID (0.50	NID 40 50	0.01	NID 40 50/NIA
B8-10.0 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B8-12.5 ND<1.0/ NA	B8-7.5	, ,	ND<5.0	ND<0.50	ND<0.50	0.81	ND<0.50/NA
NA NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B8-19.5 ND<1.0/ NA	B8 10 0		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
B8-12.5 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B8-19.5 ND<1.0/ NA	D6-10.0		ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.03/NA
NA	B8-12 5	1	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
B8-19.5 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B9-5.0 ND<1.0/ NA	D0 12.3		112 (0.005	112 (0.005	112 (0.002	112 (0.003	112 (0.03/11/11
NA	B8-19.5		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA							
NA							
B9-10.0 ND<1.0/ NA ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA B9-19.5 ND<1.0/ NA	B9-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA		NA					
B9-19.5 ND<1.0/ ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005/NA	B9-10.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
NA		NA					
	B9-19.5		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
land land land land land land							
ESL 100 0.044 2.9 3.3 2.3 0.023	ESL	100	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard Solvent.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

a = Laboratory analytical report note: strongly aged gasoline or diesel range compounds are significant.

b = Laboratory analytical report note: no recognizable pattern.

Results are in milligrams per kilogram (mg/kg).

TABLE 2 (Contd.) SUMMARY OF

HISTORIC BOREHOLE SOIL SAMPLE RESULTS – B4 THROUGH B17

(Samples B7-B12 Collected October 10, 11 and 12, 2005)

Sample	TPH-G/			Ethylbenzen		MTBE/
No.	TPH-SS	Benzene	Toluene	e	Xylenes	Other VOCs
B10-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B10-10.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B10-19.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B11-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B11-19.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B12-5.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B12-10.0	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
B12-19.5	ND<1.0/	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05/NA
	NA					
ESL	100	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard Solvent.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

TABLE 2 (Contd.) SUMMARY OF

HISTORIC BOREHOLE SOIL SAMPLE RESULTS – B4 THROUGH B17

(Samples B13-B17 Collected January 11 and 12, 2006)

				Ethylbenzen		
Sample No.	TPH-G	Benzene	Toluene	e	Xylenes	MTBE
B13-5.0	1.5,b	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B13-8.5	62,c,b	0.021	0.064	ND<0.017	0.15	ND<0.17
B14-5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B14-10.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B15-5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B15-10.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B16-5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B16-10.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B17-5.0	5.1,b	ND<0.005	0.022	ND<0.005	0.021	ND<0.05
B17-8.5	1.2,b	ND<0.005	0.0076	ND<0.005	ND<0.005	ND<0.05
B17-17.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
ESL	100	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

b = Laboratory analytical report note: no recognizable pattern.

c = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

TABLE 3 SUMMARY OF

HISTORIC BOREHOLE GROUNDWATER SAMPLE RESULTS – B1 THROUGH B17 (Samples B1-B3 Collected July 21, 2004)

Sample No.	TPH-G	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes
B1	ND<50	81	ND<0.5	ND<0.5	ND<0.5	ND<0.5
B2	ND<50	ND<50	ND<0.5	0.56	ND<0.5	0.6
В3	500 ,c	180 ,d	ND<0.5	0.55	18	44
ESL	100	100	1.0	40	30	20

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

c = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

d = Laboratory analytical report note: gasoline range compounds are significant. Results are in micrograms per liter ($\mu g/L$).

TABLE 3 (Contd.) SUMMARY OF

HISTORIC BOREHOLE GROUNDWATER SAMPLE RESULTS – B1 THROUGH B17

(Samples B4-B6 Collected September 13 and 14, 2005) (Samples B7-B12 Collected October 10, 11 and 12, 2005)

	TPH-G/			Ethyl-		
Sample No.	TPH-SS	Benzene	Toluene	benzene	Xylenes	MTBE/ Other VOCs
B4-28.0, Water	120 /NA	ND<0.5	1.6	ND<0.5	0.79	ND<5.0/NA
B5-28.0, Water	120/NA	1.0	1.0	1.1	5.0	ND<5.0/NA
B6-24.0, Water	1,900/ 1,400	23	0.95	62	240	ND<5.0, except benzene = 26, n Butyl benzene = 20, Ethylbenzene = 82, Isopropylbenzene = 17, 1,2,4-Trimethylbenzene = 200, sec-Butyl benzene = 0.011, Naphthalene = 24, n-Propyl benzene = 50, 1,3,5-Trimethylbenzene = 65, xylenes = 320
B7-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
B8-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
B9-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
B10-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
B11-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
B12-32.0, Water	ND<50/ NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0/NA
ESL	100	1.0	40	30	20	

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard Solvent.

VOCs = Volatile Organic Compounds

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

Results are in micrograms per Liter (μ g/L).

TABLE 3 (Contd.) SUMMARY OF

HISTORIC BOREHOLE GROUNDWATER SAMPLE RESULTS – B1 THROUGH B17 (Samples B13-B17 Collected January 11 and 12, 2006)

Sample						Ethyl-		
No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	benzene	Xylenes	MTBE
B13-9.0	16,000 ,e	3,900 ,d,f,e	2,700	21	4.6	250	27	ND<25
B14-18.0	ND<50	NA	NA	ND<0.5	1.7	ND<0.5	1.2	ND<5.0
B15-9.0	ND<50	4,100 ,f	35,000	ND<0.5	1.8	ND<0.5	0.52	ND<5.0
B15-19.0	160 ,c,e	170,000 ,f,e	1,300,000	ND<0.5	9.0	0.55	3.6	ND<5.0
B16-18.0	ND<50,e	NA	NA	ND<0.5	3.4	ND<0.5	1.6	ND<5.0
B17-18.0	220 ,d,e	NA	NA	2.5	12	7.4	3.3	ND<5.0
ESL	100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

NA = Not Analyzed.

c = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

d = Laboratory analytical report note: gasoline range compounds are significant.

e = Laboratory analytical report note: lighter than water immiscible sheen/product is present.

 $f{=}\;Laboratory\;analytical\;report\;note{:}\;\;oil\;range\;compounds\;are\;significant.$

Results are in micrograms per Liter (µg/L).

TABLE 4 SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B18 THROUGH B32

(Samples B18-B32 Collected on August 8 Through 11, 2006)

Sample								
No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B18-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B18-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B18-19.5	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B19-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B19-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B19-20.0	ND<1.0	1.4,f	26	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B20-7.0	14,a	130,g,f	56	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B20-10.0	3.2,a	31,g	15	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B20-15.0	ND<1.0	2.1,g	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B20-20.0	41,a,f,b	330,g,f	130	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B21-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B21-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B21-22.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B22-10.0	ND<1.0	2.8,f,h	6.9	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B22-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B22-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
ESL	100	100	500	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

f = oil range compounds are significant.

g = unmodified or weakly modified diesel is significant.

h = diesel range compounds are significant; no recognizable pattern.

TABLE 4 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B18 THROUGH B32

(Samples B18-B32 Collected on August 8 Through 11, 2006)

Sample								
No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B23-10.0	ND<1.0	3.5,f	47	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B23-15.0	2.2,a,b	1.2,d	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B23-20.0	ND<1.0	1.9,f,h	12	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B24-10.0	14,c,a	2.4,d,h	ND<5.0	0.0055	0.019	0.013	0.051	ND<0.05
B24-15.0	2.3,i	4.0,f,d	19	0.021	0.0081	0.049	0.015	ND<0.05
B24-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B25-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B25-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B25-22.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B26-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B26-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B26-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B27-10.0	ND<1.0	8.2,f,h	24	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B27-15.0	ND<1.0	7.8.f,h	13	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B27-22.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
ESL	100	100	500	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL. Values in **bold** exceed the ESL.

ND = Not Detected.

a = strongly aged diesel or gasoline range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?).

d = gasoline range compounds are significant.

f = oil range compounds are significant.

h = diesel range compounds are significant; no recognizable pattern.

i = unmodified or weakly modified gasoline is significant.

TABLE 4 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B18 THROUGH B32

(Samples B18-B32Collected on August 8 Through 11, 2006)

Sample								
No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B29-6.5	ND<1.0	9.3,f,h	53	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B29-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B29-15.0	ND<1.0	1.5,f,h	8.3	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B29-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B30-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B30-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B30-20.0	ND<1.0	2.1,f	13	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B31-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B31-15.0	ND<1.0	1.7,f,h	6.4	ND<0.005	ND<0.005	ND<0.005	0.015	ND<0.05
B31-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B32-10.0	ND<1.0	8.1,f,h	25	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B32-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
B32-20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	0.0050	ND<0.05
ESL	100	100	500	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

f = oil range compounds are significant.

h = diesel range compounds are significant; no recognizable pattern.

TABLE 5 SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – E1, E2, E3, E6, E7, I1, I2

(Samples E1, E2, E3, E6, E7, I1, I2 Collected on September 5 Through 8, 2006)

Sample No.	TPH-G	TPH-D	ТРН-МО	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
E1-10.5	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
E2-10.0	2.4,c	ND<1.0	ND<5.0	ND<0.005	0.030	0.052	0.22	ND<0.05
E3-5.0	ND<1.0	1.1,h	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
E3-10.0	47,a,j	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	0.27	ND<0.05
E6-10.5	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
E7-10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
E7-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
I1-10.5	5.9,b	ND<1.0	ND<5.0	ND<0.005	ND<0.005	0.016	ND<0.005	ND<0.05
I2-5.0	6.9,i	6.6,d,h	ND<5.0	0.052	0.0052	ND<0.005	0.0057	ND<0.05
I2-10.0	1,900,i	460,d,h	7.4	4.3	25	33	180	ND<10
I2-15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
ESL	100	100	500	0.044	2.9	3.3	2.3	0.023

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?).

d = gasoline range compounds are significant.

h = diesel range compounds are significant; no recognizable pattern.

i = unmodified or weakly modified gasoline is significant.

j = Stoddard solvent/mineral spirit.

TABLE 6 SUMMARY OF

SOIL SAMPLE RESULTS – GEOPHYSICAL ANOMALY INVESTIGATION (Samples For Geophysical Anomalies Collected October 18, 2006)

		TPH-	TPH-	
Sample Name	TPH-G	D	MO	PNAs
Anomaly A-5.5	ND<1.0	7.1,f,k	12	ND<0.050, except
_				Phenanthrene=0.0055
Anomaly B-0.5	ND<1.0	68,f,h	170	ND<0.25
Anomaly A Fill	NA	NA	NA	ND, except
				Benzo(a)anthracene=0.024
				Benzo(a)pyrene=0.021
				Benzo(b)fluoranthene=0.014
				Benzo(g,h,i)perylene=0.015
				Benzo(k)fluoranthene=0.017
				Chrysene=0.026
				Fluoranthene=0.034
				Indeno(1,2,3-cd)pyrene=0.012
				Naphthalene=0.0066
				Phenanthrene=0.018
				Pyrene=0.031
ESL	100	100	500	Variable

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

NA = Not Analyzed.

ND = Not Detected.

f = oil range compounds are significant.

k =one to a few isolated peaks present.

h = diesel range compounds are significant; no recognizable pattern.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

TABLE 6 (Contd.) SUMMARY OF

SOIL SAMPLE RESULTS - GEOPHYSICAL ANOMALY INVESTIGATION

(Samples For Geophysical Anomalies Collected on October 18, 2006)

Sample ID	Sb	As	Ba	Be	Cd	Cr	Co	Cu	Pb	Hg	Mo	Ni	Se	Ag	Tl	V	Zn
Anomaly A-5.5	0.94	4.3	110	ND<0.5	0.84	21	4.6	48	260	0.98	2.0	24	ND<0.5	0.51	ND<0.5	22	300
Anomaly B-0.5	5.2	6.7	180	ND<0.5	1.4	60	12	1100	380	0.40	1.1	67	ND<0.5	ND<0.5	ND<0.5	36	450
Anomaly A Fill	0.91	4.9	150	ND<0.5	0.36	29	7.9	27	560	0.23	0.69	32	ND<0.5	ND<0.5	ND<0.5	32	140
ESL	6.1	5.5	750	4.0	1.7	58	10	230	150	3.7	40	150	10	20	1.0	110	600

Notes:

Sb = Antimony Cd = Cadmium Pb = Lead Se = Selenium Zn = Zinc

ESL = Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected. NA = Not Analyzed

TABLE 7 SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B33 THROUGH B39

(Samples B33-B39 Collected on October 18 and 19, 2006)

Sample No.	TPH-G	TPH-D	ТРН-МО	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	PAHs/ PNAs
B33-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B33-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B34-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B34-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B35-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B35-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B36-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B36-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B36-7.5	43a,b	140g ,m	84	NA	NA	NA	NA	NA	ND	NA
ESL	100	100	500						Variable	

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

VOCs = Volatile Organic Compounds

PAHs/PNAs = Polynuclear Aromatic Hydrocarbons.

ND = Not Detected.

NA = Not Analyzed.

a = strongly aged gasoline or diesel range compounds are significant.

 $b = no \ recognizable \ pattern.$

g = unmodified or weakly modified diesel is significant.

m = aged diesel? is significant.

ESL = February 2005 Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

TABLE 7 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B33 THROUGH B39

(Samples B33-B39 Collected on October 18 and 19, 2006)

Sample No.	TPH-G	TPH-D	ТРН-МО	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	PAHs/ PNAs
B37-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B37-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B38-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B38-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B39-0.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
B39-3.5	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

VOCs = Volatile Organic Compounds

PAHs/ PNAs = Polynuclear Aromatic Hydrocarbons.

ND = Not Detected.

NA = Not Analyzed.

TABLE 7 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B33 THROUGH B39

(Samples B33-B39 Collected on October 18 and 19, 2006)

Sample ID	Sb	As	Ba	Be	Cd	Cr	Co	Cu	Pb	Hg	Mo	Ni	Se	Ag	Tl	V	Zn
B33-0.5	2.6	9.8	110	ND<0.5	0.49	28	7.6	100	53	1.7	1.2	28	ND<0.5	ND<0.5	ND<0.5	43	210
B33-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B34-0.5	0.72	7.4	160	0.70	ND<0.25	49	5.0	22	7.8	0.058	1.9	42	ND<0.5	ND<0.5	ND<0.5	57	45
B34-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B35-0.5	ND<0.5	5.1	160	0.55	ND<0.25	43	9.9	22	6.5	ND<0.05	0.90	42	ND<0.5	ND<0.5	ND<0.5	46	42
B35-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B36-0.5	0.70	5.5	160	ND<0.5	0.29	33	8.6	23	34	0.12	1.4	39	ND<0.5	ND<0.5	ND<0.5	35	64
B36-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B36-7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B37-0.5	0.68	6.4	100	ND<0.5	0.41	54	9.2	24	59	0.12	0.70	70	0.59	ND<0.5	ND<0.5	44	130
B37-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B38-0.5	0.75	4.1	150	0.64	0.26	51	8.3	26	7.5	0.062	0.50	53	ND<0.5	ND<0.5	ND<0.5	50	60
B38-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B39-0.5	0.68	9.0	160	0.61	ND<0.25	50	10	25	8.1	ND<0.05	1.9	47	ND<0.5	ND<0.5	ND<0.5	52	47
B39-3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ESL	6.1	5.5	750	4.0	1.7	58	10	230	150	3.7	40	150	10	20	1.0	110	600

Notes:

Sb = Antimony Cd = Cadmium Pb = Lead Se = Selenium Zn = Zinc

 $\begin{array}{lll} As = Arsenic & Cr = Chromium & Hg = Mercury & Ag = Silver \\ Ba = Barium & Co = Cobalt & Mo = Molybdenum & Tl = Thallium \\ Be = Beryllium & Cu = Copper & Ni = Nickel & V = Vanadium \end{array}$

ESL = Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** equal or exceed the ESL.

ND = Not Detected.

NA = Not Analyzed

TABLE 8 SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B40 THROUGH B48

(Samples B40-B48 Collected on October 26, 27 and 30, 2006)

Sample No.	TPH-G	TPH-D	ТРН-МО	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	VOCs	PAHs/ PNAs
B40-1.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND<0.010
B40-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND	NA
B41-0.5	630 ,a,b	1,400 ,n,f	1,300	ND<0.50	ND<0.50	0.90	0.68	ND<0.50	NA	NA
B41-2.5	750 ,a,b	910 ,n,f	850	ND<0.50	ND<0.50	1.3	1.3	ND<0.50	NA	ND<0.025, except 1-Methylnapthalene=1.4, 2-Methylnapthalene=2.3, Naphthalene= 2.5
ESL	100	100	500	1.0	40	30	20	5.0		1-Methylnapthalene=0.25, 2-Methylnapthalene=0.25, Naphthalene= 0.46

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

VOCs = Volatile Organic Compounds

PAHs/PNAs = Polynuclear Aromatic Hydrocarbons.

ND = Not Detected.

NA = Not Analyzed.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

n = kerosene / kerosene range / jet fuel.

f = oil range compounds are significant

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

TABLE 8 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B40 THROUGH B48

(Samples B40-B48 Collected on October 26, 27 and 30, 2006)

Sample			TPH-			Ethyl-				PAHs/
Name	TPH-G	TPH-D	MO	Benzene	Toluene	benzene	Xylenes	MTBE	VOCs	PNAs
B41-3.0	1,100 ,a,b	1,900 ,n,f	1,700	ND<0.50	ND<0.50	1.8	1.6	ND<0.50	ND<0.10, except n-Butyl Benzene= 0.29, Isopropylbenzene= 0.47, 1,2,4-Trimethylbenzene= 0.20, sec-Butyl benzene= 0.39, Naphthalene= 2.2, n-Propyl Benzene= 0.64, Xylenes= 0.10	NA
B42-0.5	640 ,a,b	2,700 ,n,f	2,500	ND<0.17	ND<0.17	0.88	2.6	ND<0.17	NA	NA
B42-3.0	450 ,a,b	840 ,n,f	630	ND<0.10	ND<0.10	0.52	1.4	ND<0.10	ND<0.020, except n-Butyl benzene= 0.18, Isopropylbenzene= 0.16, sec-Butyl benzene= 0.19, Naphthalene= 0.44, n-Propyl benzene= 0.18	NA
ESL	100	100	500	1.0	40	30	20	5.0	Naphthalene= 0.46	

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $TPH\text{-}MO = Total\ Petroleum\ Hydrocarbons\ as\ Motor\ Oil.$

 $MTBE = Methyl \ Tertiary \ Butyl \ Ether$

VOCs = Volatile Organic Compounds

PAHs/PNAs = Polynuclear Aromatic Hydrocarbons.

ND = Not Detected. NA = Not Analyzed.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern

 $n = kerosene/\ kerosene\ range/\ jet\ fuel.$

f = oil.range compounds are significant

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

TABLE 8 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B40 THROUGH B48

(Samples B40-B48 Collected on October 26, 27 and 30, 2006)

Sample						Ethyl-				
Name	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	benzene	Xylenes	MTBE	VOCs	PAHs/ PNAs
B44-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA
B45-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA
B46-1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND<0.005, except Benzo(a)anthracene= 0.0052, Benzo(a)pyrene= 0.0070, Chrysene= 0.0066, Fluoranthene= 0.0087, Pyrene= 0.0097
B46-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA
B47-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA
B48-3.0	NA	NA	NA	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA
ESL	100	100	100	1.0	40	30	20	5.0	Variable	Variable

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

VOCs = Volatile Organic Compounds

PAHs/ PNAs = Polynuclear Aromatic Hydrocarbons.

ND = Not Detected.

NA = Not Analyzed.

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

TABLE 8 (Contd.) SUMMARY OF

BOREHOLE SOIL SAMPLE RESULTS – B40 THROUGH B48

(Samples B40-B48 Collected on October 26, 27 and 30, 2006)

Sample ID	Sb	As	Ba	Be	Cd	Cr	Co	Cu	Pb	Hg	Mo	Ni	Se	Ag	Tl	V	Zn
B40-0.5	2.1	6.8	300	0.54	0.72	52	67	93	190	0.64	0.65	58	ND<0.5	16	ND<0.5	43	180
B40-1.25	0.75	6.3	160	ND<0.5	0.33	38	33	26	150	0.18	2.0	53	ND<0.5	ND<0.5	ND<0.5	40	90
B41-0.5	0.64	4.9	190	ND<0.5	0.34	40	8.5	25	120	0.11	1.1	47	0.57	ND<0.5	ND<0.5	42	84
B42-0.5	ND<0.5	4.3	210	0.60	ND<0.25	50	9.0	25	7.3	ND<0.05	1.0	42	ND<0.5	ND<0.5	ND<0.5	52	55
B43-0.5	0.67	5.5	130	ND<0.5	ND<0.5	50	20	32	44	0.30	0.54	52	ND<0.5	ND<0.5	ND<0.5	53	100
B44-0.5	1.2	7.2	580	0.56	0.39	56	15	68	92	0.36	1.3	54	ND<0.5	ND<0.5	ND<0.5	65	150
B45-0.5	ND<0.5	7.5	150	ND<0.5	0.38	58	13	25	280	0.16	ND<0.5	68	ND<0.5	ND<0.5	ND<0.5	56	220
B46-1.5	0.52	8.6	220	0.52	ND<0.25	40	12	23	15	0.070	ND<0.5	56	ND<0.5	ND<0.5	ND<0.5	33	55
B47-0.5	5.4	130	360	ND<0.5	1.9	21	7.8	54	160	0.94	3.1	20	ND<0.5	1.2	6.6	33	770
B48-0.5	0.70	6.2	150	0.53	0.43	50	9.6	25	26	0.13	1.2	55	1.0	ND<0.5	ND<0.5	49	79
ESL	6.1	5.5	750	4.0	1.7	58	10	230	150	3.7	40	150	10	20	1.0	110	600

Notes:

Sb = Antimony Cd = Cadmium Pb = Lead Se = Selenium Zn = Zinc

 $\begin{array}{lll} As = Arsenic & Cr = Chromium & Hg = Mercury & Ag = Silver \\ Ba = Barium & Co = Cobalt & Mo = Molybdenum & Tl = Thallium \\ Be = Beryllium & Cu = Copper & Ni = Nickel & V = Vanadium \end{array}$

ESL = Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** equal or exceed the ESL.

ND = Not Detected.

NA = Not Analyzed

TABLE 9 SUMMARY OF

BOREHOLE GROUNDWATER SAMPLE RESULTS – B18 THROUGH B32 (Samples B18-B32 Collected August 8, 9, 10, 11 And 14, 2006)

Sample No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
B18-25.0	ND<50	180 ,f,h	710	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B19-32.0	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B20-25.0	ND<50	3,000 ,g,f	2,300	ND<0.5	0.65	ND<0.5	1.6	ND<5.0
B21-24.0	ND<50	4,600 ,f,h	27,000	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B22-21.0	ND<50	280 ,f,h	1,300	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B23-30.0	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B24-25.0	6,600 ,i	12,000 ,d,f	14,000	1,000	14	260	41	ND<50
B24-55.0 Water	ND<50	ND<50	ND<250	1.2	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B25-25.0	ND<50	140 ,f,h	390	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B26-25.0	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B27-25.0	ND<50	2,700 ,f,h	12,000	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
B29-21.0	ND<50	2,700 ,f,h	6,700	ND<0.5	1.1	ND<0.5	0.94	ND<5.0
ESL	100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = unmodified or weakly modified diesel is significant.

h = diesel range compounds are significant; no recognizable pattern.

i = unmodified or weakly modified gasoline is significant.

k =one to a few isolated peaks present.

Results are in micrograms per Liter (μ g/L).

TABLE 10 SUMMARY OF

WELL SAMPLE RESULTS – E1, E2, E3, E6, E7, I1, MW1, MW2

(Samples E1, E2, E3, E6, E7, I1, MW1, MW2 Collected on October 31 and November 1, 2006)

Sample								
No.	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
E1-W	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E2-W	1900,a	1100,d,f,h	1500	0.52	6.9	17	150	ND<5.0
E3-W	2600,a	640,d,f	260	ND<1.7	ND<1.7	44	350	ND<17
E6-W	310,i	260,f,d	470	4.9	ND<0.5	ND<0.5	6.4	ND<5.0
E7-W	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
I1-W	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
I2	No	Sample						
MW1-W	8500,a	5800,d,f	2600	ND<5.0	30	69	1000	ND<50
MW2-W	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
ESL	100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ESL = February 2005 Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

ND = Not Detected.

a = strongly aged gasoline or diesel range pounds are significant.

d = gasoline range compounds are significant.

f = oil range compounds are significant.

i = unmodified or weakly modified gasoline is significant.

Results are in micrograms per Liter (ug/L).

TABLE 11 SUMMARY OF

BOREHOLE GROUNDWATER SAMPLE RESULTS – B33 THROUGH B39 (Samples B33-B39 Collected October 18 and 19, 2006)

Sample No.	TPH-G	TPH-D	ТРН-МО	VOCs
B33-25W	ND<50	ND<50	ND<250	ND
B34-25W	ND<50	ND<50	ND<250	ND
B35-25W	ND<50	ND<50	ND<250	ND
B36-25W	ND<50	120 ,f,h	480	ND
B37-25W	ND<50	110 ,f,h	880	ND
B38-25W	ND<50	ND<50	ND<250	ND
B39-25W	ND<50	89,f,d	350	ND
ESL	100	100	100	Variable

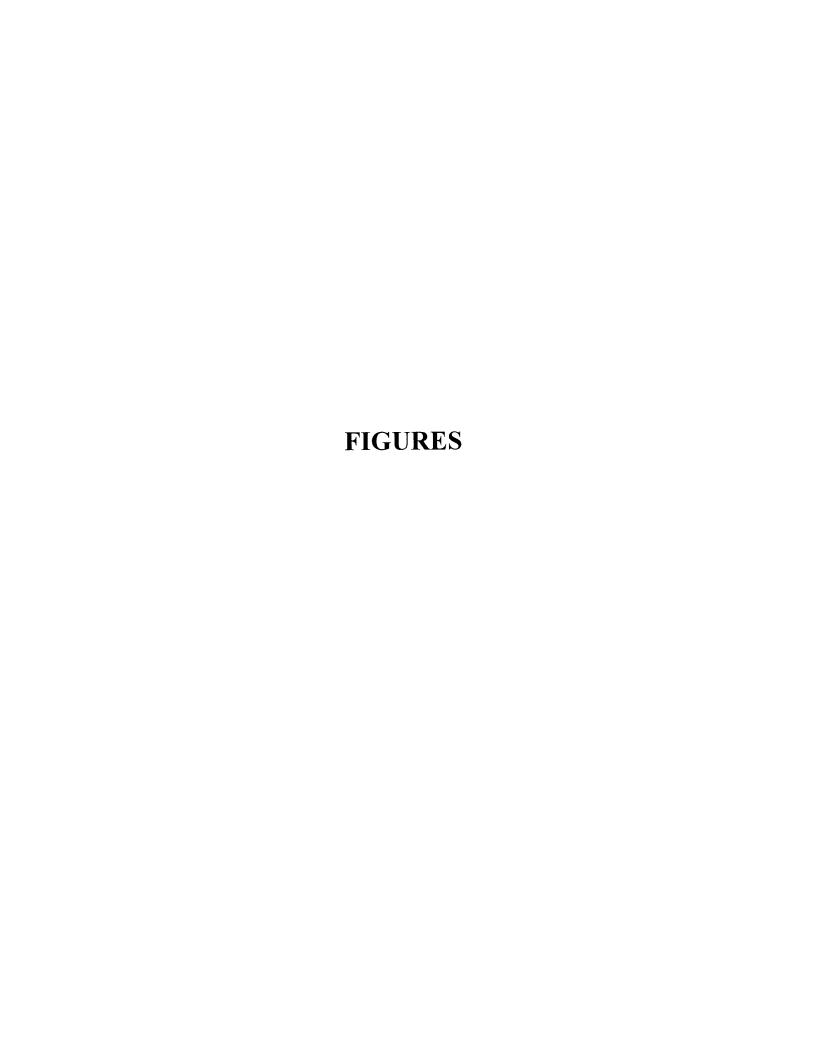
Notes:

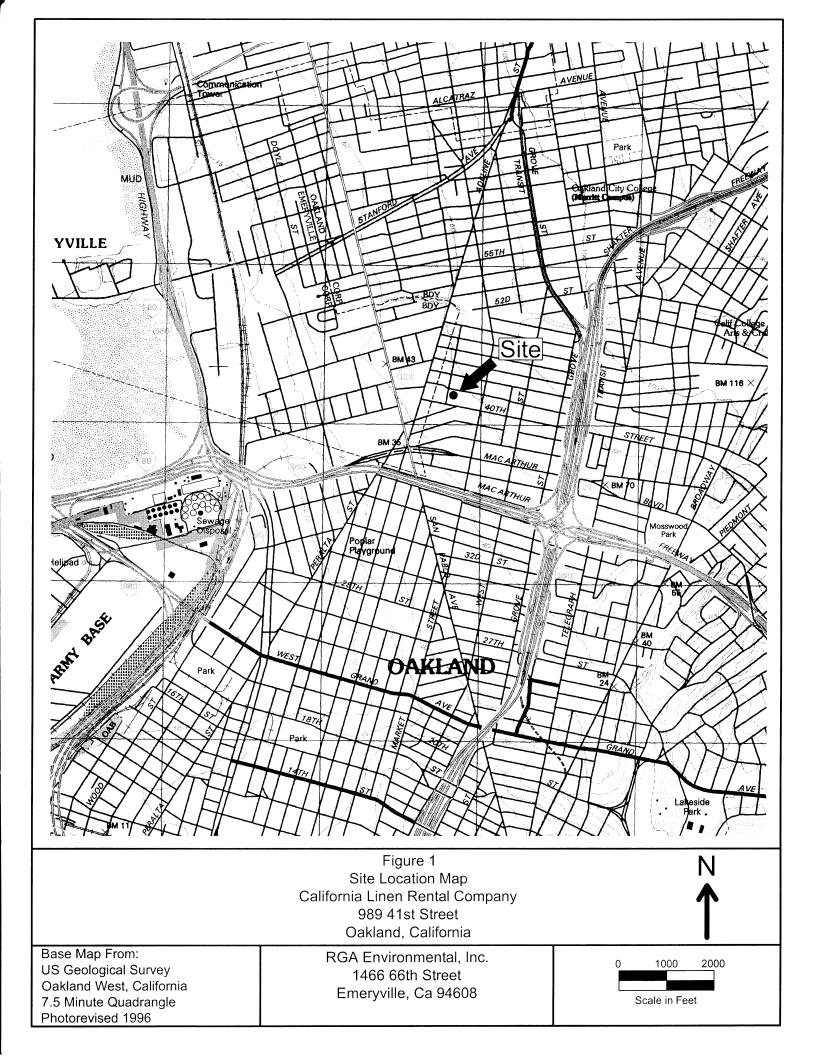
TPH-G = Total Petroleum Hydrocarbons as Gasoline.

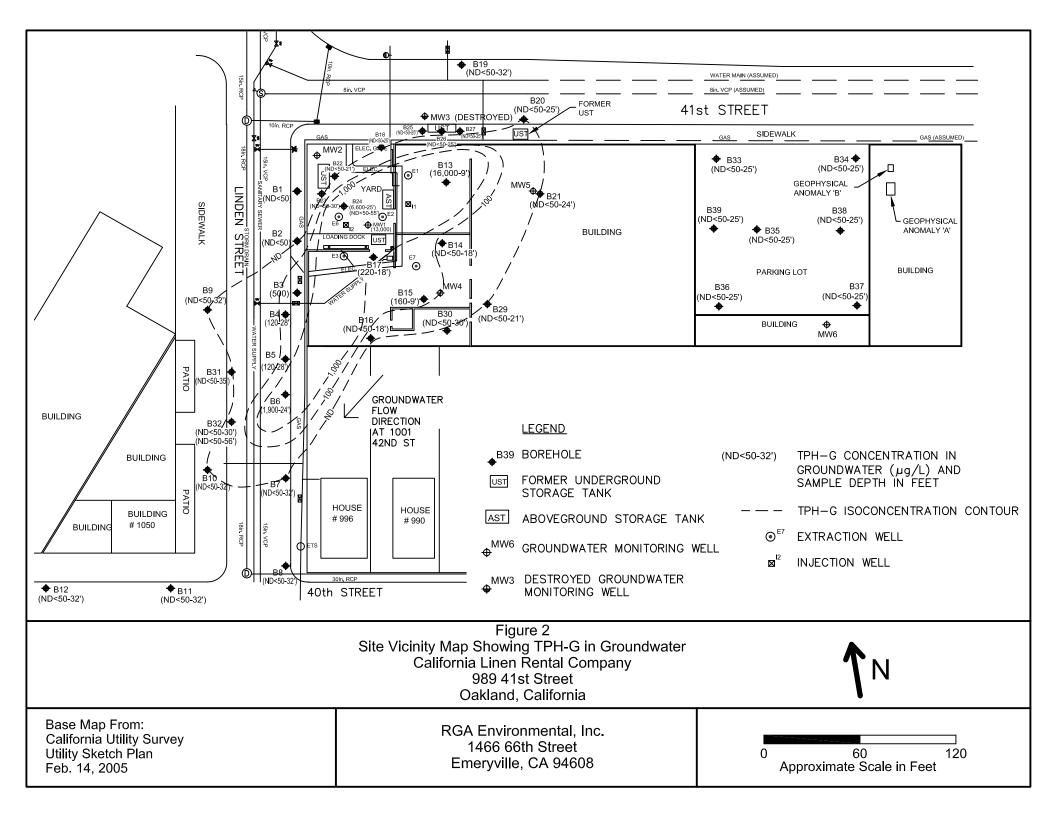
TPH-D = Total Petroleum Hydrocarbons as Diesel.

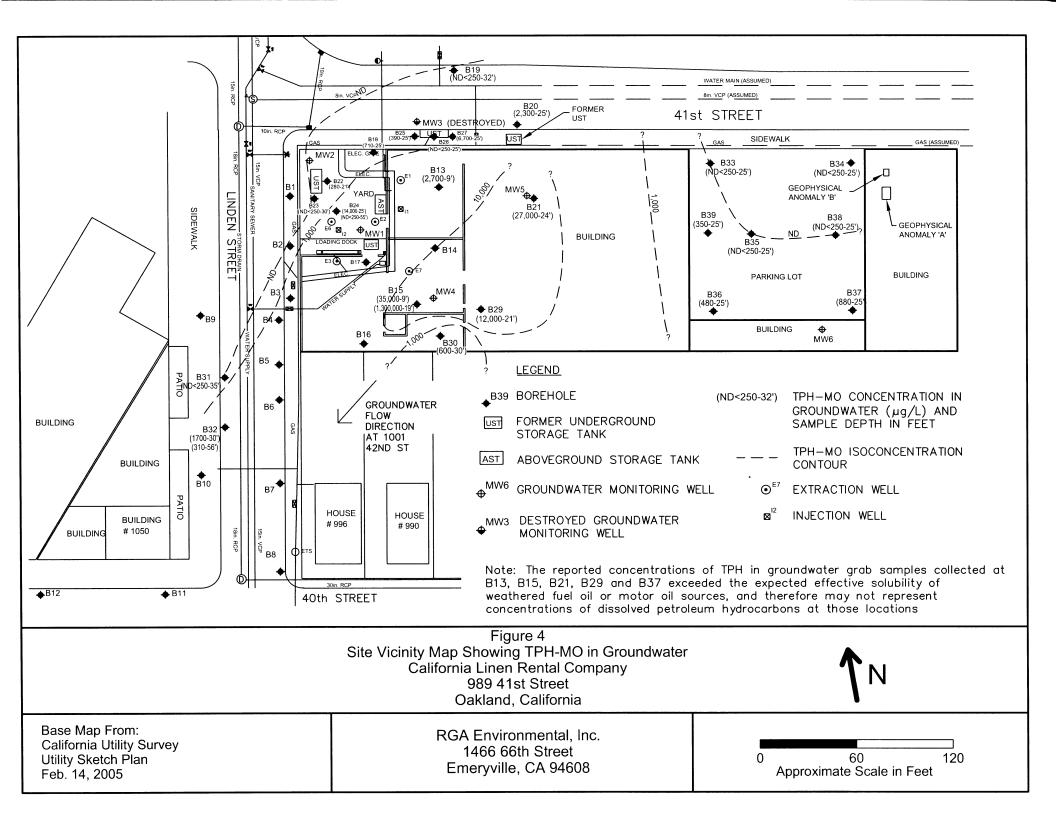
TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

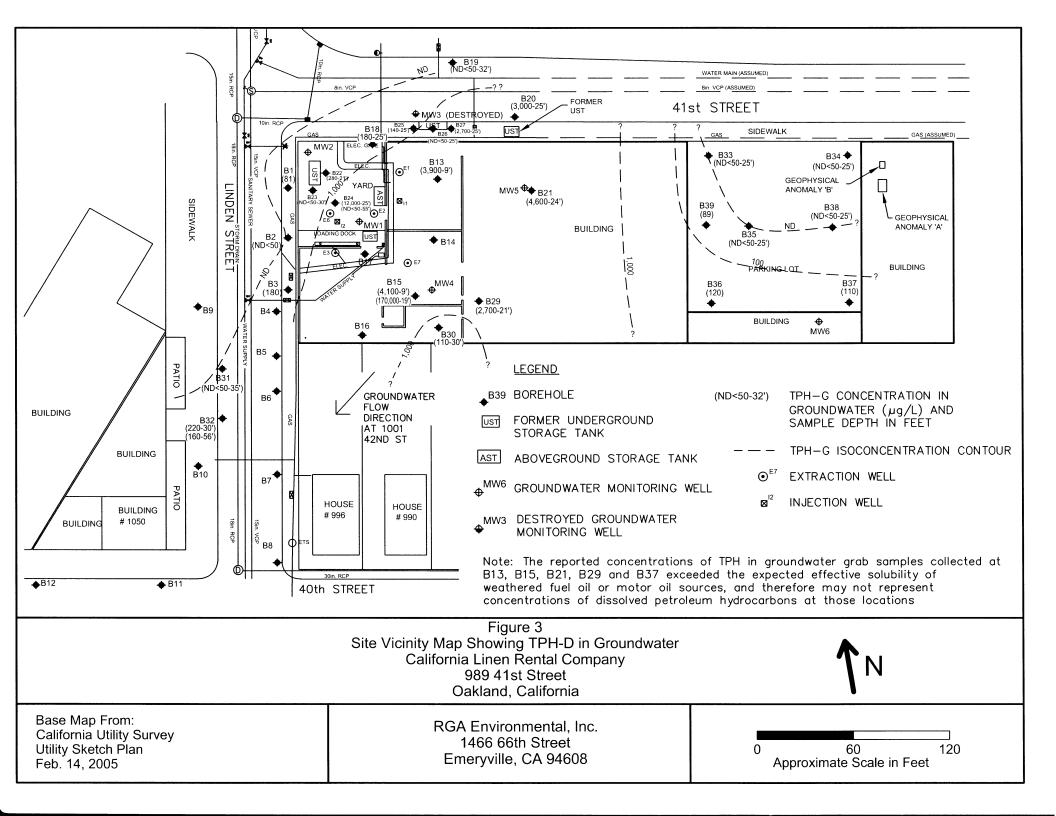
ND = Not Detected.

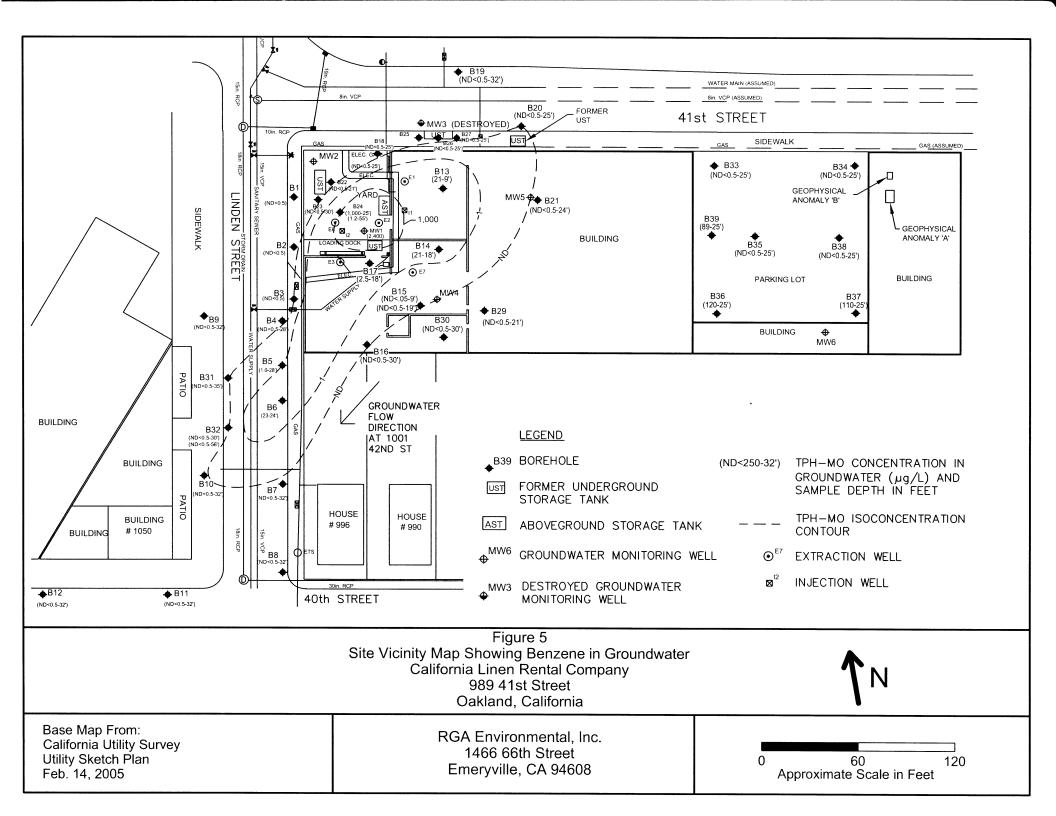

d = gasoline range compounds are significant.

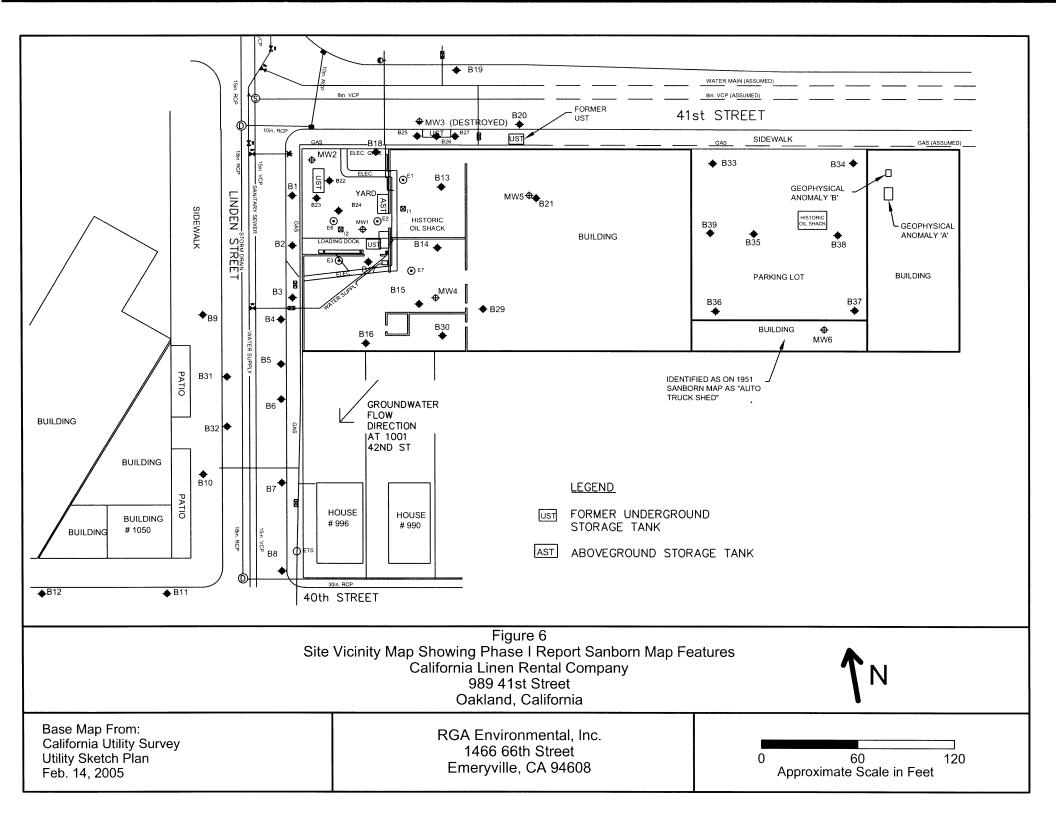

f = oil range compounds are significant.

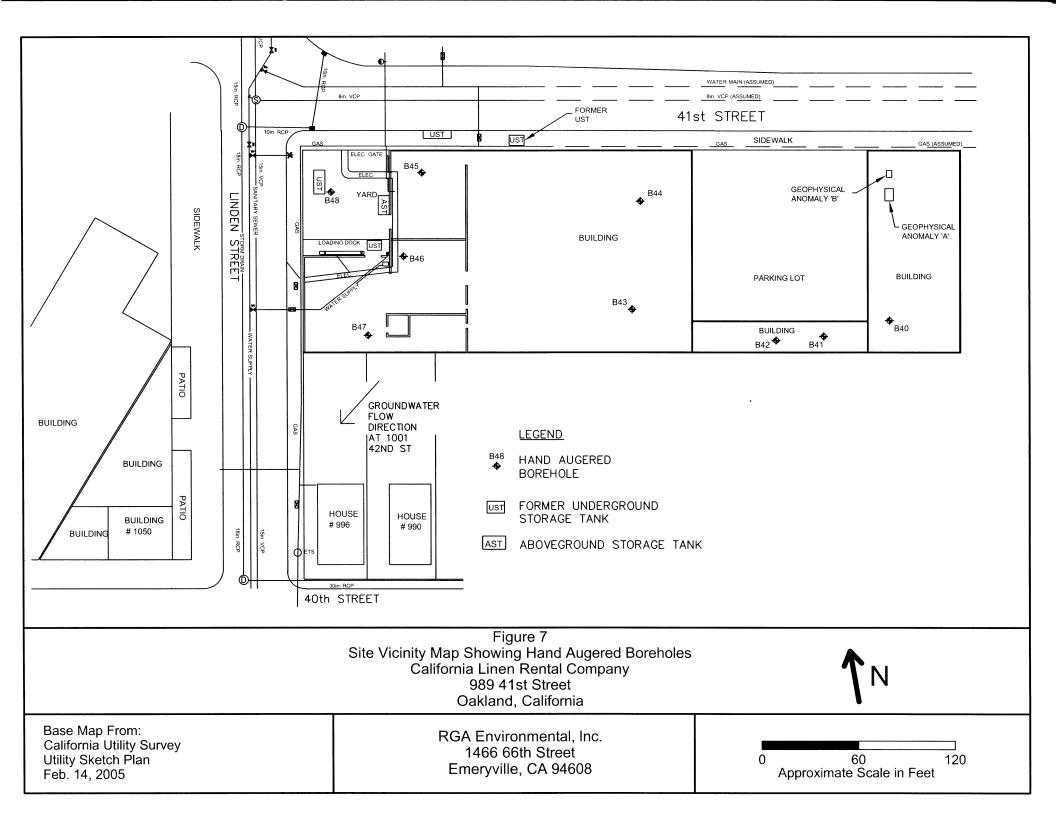

h = diesel range compounds are significant; no recognizable pattern.

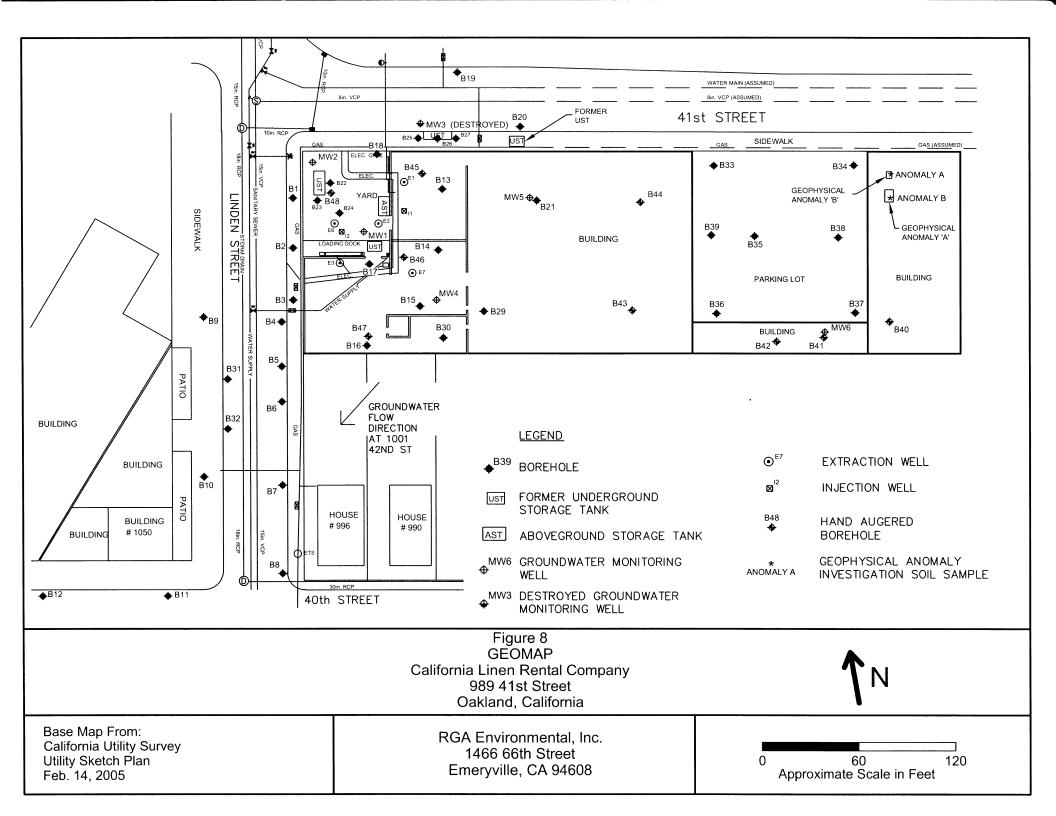

ESL = February 2005 Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in **bold** exceed the ESL.

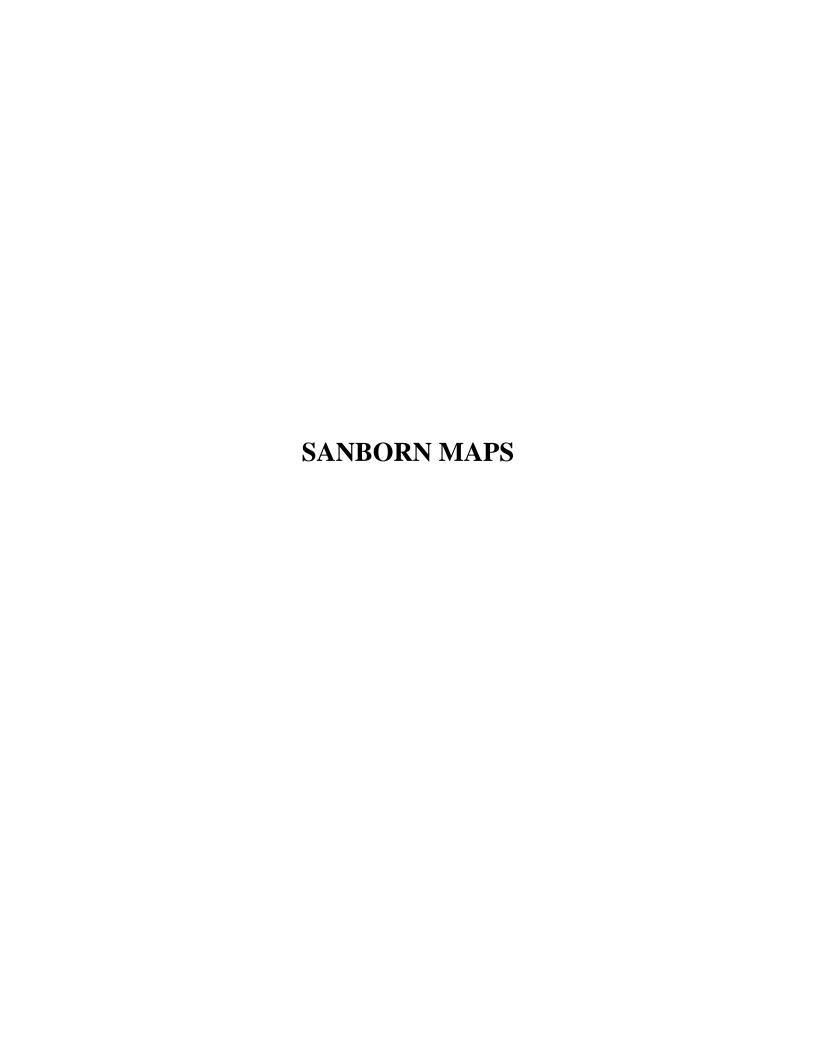

Results are in micrograms per Liter (µg/L).

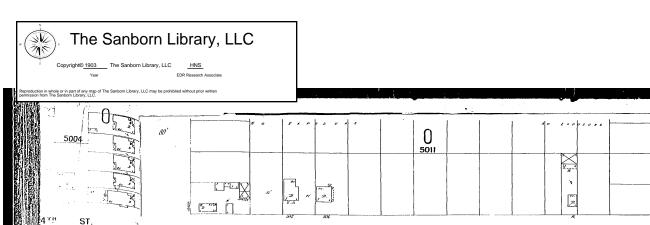


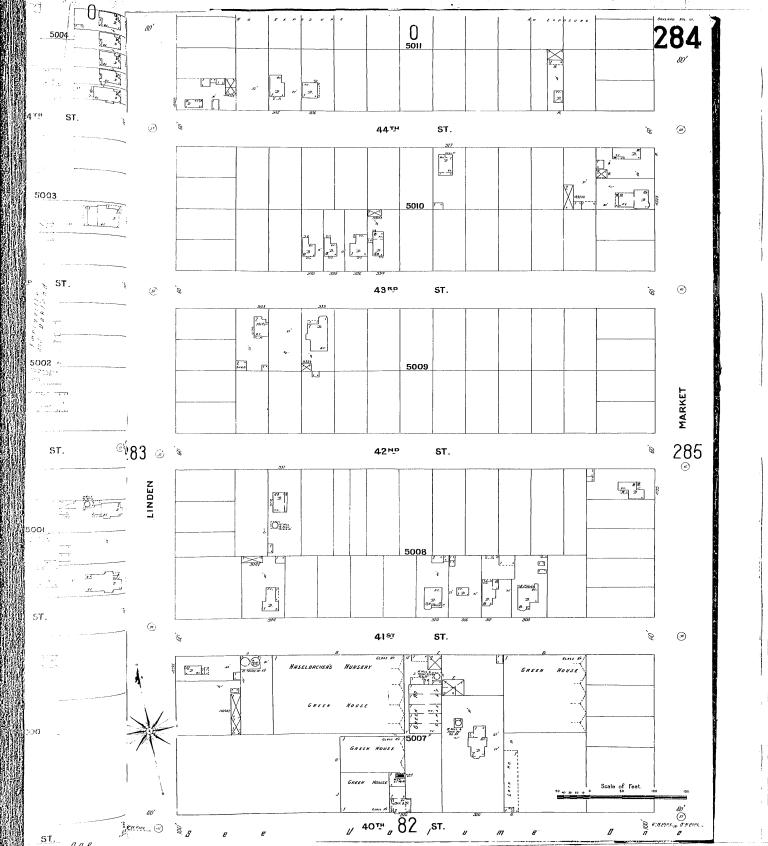


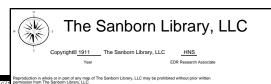


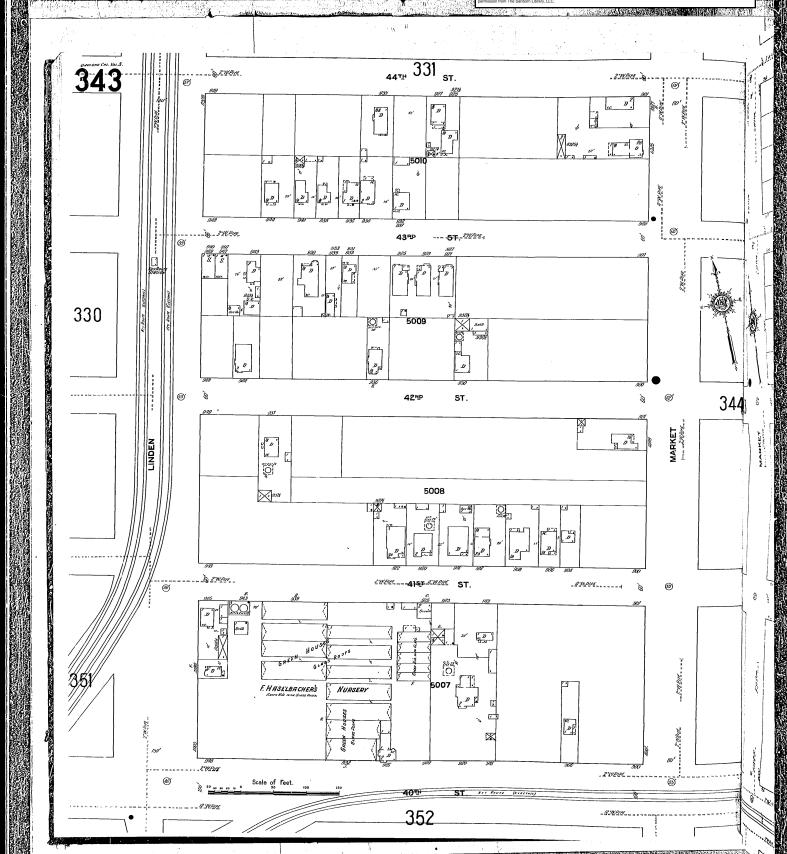












ADVANCED GEOLOGICAL SERVICES GEOPHYSICAL SURVEY

October 17, 2006

Ref. No.: 06-155/156-1CA

Mr. Dave Gibbs RGA Environmental, Inc. 1466 66th St. Emeryville, CA 94608

Subject: Geophysical Survey - UST search

California Linen 989 41st Street Oakland, California

Gentlemen:

This letter presents the findings of a geophysical investigation performed by Advanced Geological Services, Inc. (AGS) at the subject location. The survey was conducted for RGA Environmental, Inc. (RGS) on September 26 and October 9, 2006 by AGS senior geophysicist Dan Jones. Mr. Dave Gibbs of RGA provided owner liaison duties and some background information about the site.

1.0 PURPOSE

The subject site is the location of California Linen company on the southern side of 41st Street in Oakland, California. It was reported that one or more underground storage tanks (UST) may have been previously present on the property. It is unknown if any USTs were ever removed from the premises. The purpose of the geophysical survey, therefore, was to acquire subsurface information to aid in determining if any USTs may still be present within two areas of concern designated by RGA.

2.0 SURVEY AREA DESCRIPTION

The two areas of concern were designated as 1) the central parking lot for California Linen, and 2) the warehouse building on the east side of the parking lot. A map of these areas is included as the Geophysical Survey Map, Figure 1. The parking lot measured approximately 105 by 110 feet and the inside of the warehouse measured 57 by 125 feet. The ground surface within the parking lot was composed of heavily reinforced concrete. There were no remaining surface indications of USTs in the parking lot area, such as vent lines, fill ports, or metal plates. Various cars and delivery trucks were present in the parking lot at the time of the survey and had to be shuffled from one area to

another to complete the survey. Other than the cars, the parking lot was primarily free of above ground debris with the exception of the extreme northeast corner. There were several traffic loops saw-cut into the reinforced concrete and two gate control boxes, for activation of the automatic fence gates.

Within the warehouse, the ground surface was composed of reinforced concrete to the south and asphalt to the north. The portion labeled on Figure 1 as asphalt actually may have been non-reinforced concrete, as it was too dark/stained to distinguish the difference. Within the non-reinforced area, there was a metal access plate on the ground surface centered near 18E/91N, covering a dirt-filled hole in the asphalt. The history of this access plate was unknown. The area within the warehouse that was accessible for geophysical coverage was limited, due to large metal storage racks and both metallic and non-metallic stored objects/debris primarily along the perimeter walls of the building, with additional items toward the southern end.

3.0 METHODOLOGY

We investigated for the presence of USTs using Ground Penetrating Radar (GPR) as the primary method. The Radio Frequency Locating (RFL) and Hand-Held Metal Detection (MD) methods were also attempted, with limited success, due to the metal reinforcing in the concrete. Detailed descriptions of these geophysical methods including the associated instrumentation and limitations can be found in Appendix A.

4.0 DATA ACQUISITION, SURVEY COVERAGE, AND ANALYSIS

Prior to data acquisition, we established a horizontal control survey grid over the site using a fiberglass measuring tape. The survey grid was based on a rectangular coordinate system. Grid points were marked on the ground surface with spray paint in a 5-by-5 feet or 5-by-10 feet pattern, depending on access. This grid was utilized to orient our GPR traverses. The survey grid, with Easting/Westing and Northing/Southing coordinate axes, is shown on Figure 1, where the southeast corner of the parking lot was established as 0E/0N as indicated.

Within the limits of the investigation area, we attempted the use of the RFL and MD instrumentation to systematically scan all open portions for the presence of buried metallic objects or potentially associated underground utilities. Detected metal objects or utilities are indicated by an audible instrument response and the surface traces or outlines of these features were subsequently marked out on the ground surface with paint. Following the data acquisition stage, the field markings were recorded on a scaled field map. The results of the RFL and MD scanning were limited by the presence of the reinforced concrete, which will be further addressed in the *Data Quality* section (6.0) of this report.

We used the GPR method as the primary geophysical survey tool to assure complete coverage of the accessible survey areas. The resultant GPR traverse locations are shown with thin, solid magenta lines on Figure 1. We used a five feet traverse spacing throughout the parking lot and the warehouse. We also performed additional GPR traverses across suspect anomalies determined from the initial five-foot grid of traverses. We examined the resulting GPR records for reflection patterns typical of USTs, utilities, or other subsurface features.

5.0 SURVEY RESULTS

The results of the investigation are included on the Geophysical Survey Map, Figure 1. Overall, we identified two subsurface features/anomalies with some characteristics consistent with a UST. These anomalies are labeled **A** and **B** on Figure 1. They both are located within the warehouse and will be discussed in detail below. Throughout the UST search areas, we identified three general types of feature: 1) subsurface utilities, 2) Type I GPR Anomalies representing localized, small objects/debris or utility segments intersecting the traverses (blue double-headed arrows), and 3) Type II GPR Anomalies (green, diagonally shaded rectangles) representing possibly larger objects (than Type I). A discussion of these findings follows below.

We detected five possible <u>u</u>tility segments of an <u>u</u>nknown type or nature. These utility segments are shown with dashed black lines labeled "UU" and include three within the parking lot and two within the warehouse. These utilities were either detected with the RFL method or by identifying the alignment of utility-type GPR reflections on multiple adjacent traverses. In the case of the RFL-detected utilities, there is a possibility that they may actually represent the response from well-grounded reinforcing bars in the concrete, as it was difficult to distinguish the difference.

Forty-one (41) Type I GPR anomalies are shown on Figure 1, where they were observed on the intersecting GPR traverses. We interpret these anomalies to represent small, localized objects or debris beneath the concrete slab. The limited lateral dimensions of the GPR response from these objects suggests these features are most likely insignificant with respect to possible USTs. We have documented their locations on Figure 1 to provide an indication of subsurface material variability and to recommend avoiding them during proposed drilling operations.

Eleven (11) Type II GPR anomalies are shown on Figure 1, including 9 in the parking lot and 2 in the warehouse. These anomalies have maximum dimensions ranging from 3 to 8 feet. Based on the lateral dimensions and GPR reflection characteristics, we interpret the anomalies labeled **A** and **B** to represent the most suspect anomalies with respect to being possible USTs. Anomaly A was the largest feature detected, measuring 6-by-8 feet, and the MD method was used to confirm the anomaly was metallic in nature. The GPR reflections from this anomaly were very shallow, possibly immediately beneath the asphalt/concrete surface. There is a possibility, therefore, that there is reinforced concrete at this location. Anomaly B exhibited a curved reflection character, common

with USTs, but it is located beneath an immobile metal storage rack. Therefore, the existence of metal at this location could not be verified. An alternative interpretation is that the curved reflection could be an effect of overhead interference from the storage rack. The remaining unlabeled Type II GPR anomalies in the parking lot represent unknown objects, but are relatively smaller than A and B. Due to their size, they are interpreted to be less significant. Additional information regarding the historic location of former USTs could be used to identify which Type II anomalies in the parking lot may be more suspect.

As the GPR data was inconclusive in determining the exact type of objects that Anomalies A and B may represent (such as whether or not they are specifically USTs) intrusive methods, such as potholing or boring, could be implemented to define the nature of these objects.

6.0 DATA QUALITY AND CAVEATS

Overall, the GPR data quality at the site ranged from poor to fair. The steel reinforcing in the concrete slabs at the site caused significant spurious reflections that limited our ability to interpret the GPR data with respect to identifying possible USTs. The highest quality GPR data was acquired in the northern portion of the warehouse where there was an absence of reinforced concrete. Additionally, the lowest quality GPR data was observed within the warehouse south of grid line 40 North where there appears to be a transition to an increased amount of reinforcing or smaller re-bar spacing.

The use of the MD method was precluded within the entire parking lot area due to the re-bar in the concrete slab. The only location where it was available for use was within the northern portion of the warehouse. In this area, the storage racks and above-ground metal debris limited its use to areas at least five feet away from these objects.

The steel re-bar in the concrete slab also limited the effectiveness of the RFL utility locating technique. The re-bar appeared to be electrically grounded and therefore re-radiated 60-Hz signal, typically used to identify utilities. Therefore, not all utilities may have been detectable and marked out on site.

7.0 LIMITATIONS

In general, there are limitations unique to each geophysical method employed for this investigation. For example, objects may be buried deeper than the detection capabilities of the geophysical method. There may be a lack of contrast in physical properties between native soils and buried objects. Above or below ground cultural features, such as utilities, fences, reinforced concrete and debris may cause interference that limits or masks the detection of a nearby subsurface object.

Additional discussion of the limitations with regard to each of the geophysical methods employed for this investigation is included in Appendix A.

8.0 CLOSING

All geophysical data and field notes collected as a part of this investigation will be archived at the AGS office. The data collection and interpretation methods used in this investigation are consistent with standard practices applied to similar geophysical investigations. The correlation of geophysical responses with probable subsurface features is based on the past results of similar surveys although it is possible that some variation could exist at this site. Due to the nature of geophysical data, no guarantees can be made or implied regarding the targets identified or the presence or absence of additional objects or targets.

It was a pleasure working with you on this project and we look forward to being able to provide you with geophysical services in the future.

Respectfully,

Dan P. Jones Senior Geophysicist

Dan P. Jan

Enclosure: Figure 1 - Geophysical Survey Map Appendix A - GEOPHYSICAL METHODS ED GEOP

DANIEL P JONES No. GP 1042

Appendix A GEOPHYSICAL METHODS

Hand-Held Metal Detection (MD)

Methodology

This method uses the principle of electromagnetic induction to detect shallowly buried metal objects such as USTs, metal utility conduits, rebar in concrete, manhole covers, and various metallic debris. This is done by carrying a hand-held radio transmitter-receiver unit above the ground and continuously scanning the surface. A primary coil broadcasts a radio signal from a transmitter. This primary radio signal induces secondary electrical currents in metal objects. These secondary currents in turn produce a magnetic field which is detected by the receiver.

Instrumentation

The MD instrument that we typically use for shallow subsurface investigations is a Fisher TW-6 pipe and cable locator. This instrument is expressly designed to detect metallic pipes, cables, USTs, manhole covers, and other large, shallowly buried metallic objects. The instrument operates by generating both a meter reading (unitless) and an audible response when near a metal object. The peak instrument response usually occurs when the unit is directly over the object.

Data Analysis

The TW-6 does not provide a recordable data output that can be used for later computer processing. Results are generally limited to marking the interpreted outlines of detected objects in the field and mapping their locations.

Limitations

In general, the response of the MD instrument is roughly proportional to the horizontal surface area of near surface buried objects (typically in the upper three or four feet). This relationship can be used to advantage in discriminating between metal debris, reinforced concrete pads, and pipelines. However, in the presence of above ground metal objects such as fences, walls, parked cars, and metal debris, this is no longer valid. In some instances, the presence of such objects can make it very difficult to determine whether the instrument responses are associated with below ground targets or above ground cultural features. When multiple sources are present it may not be possible to identify individual targets. Also, relatively large objects that have a limited horizontal cross-section such as well casing and fence posts are sometimes difficult to detect.

Radio Frequency Locating (RFL)

Methodology

The RFL method is used to detect the radio frequency electromagnetic field resulting from an electric current flowing on a line. These fields can arise from currents already on the line (passive, or ambient) or currents applied to a line with a transmitter (active). The most common passive signals are generated by live electric lines and re-radiated radio signals. Active signals can be introduced by connecting the transmitter to the line at accessible locations or by induction.

Instrumentation

The RFL instruments that we typically use to locate and confirm positions of underground utilities: include a RadioDetection RD-400 and a Fisher TW-6 "M-Scope." These instruments operate by generating both a meter reading (unitless) and an audible response when carried over a utility or metal pipe. The peak instrument response usually occurs when the unit is directly over the object.

Data Analysis

Neither RFL instrument provides recordable data output that can be used for later computer processing. Results are generally limited to marking the interpreted position of detected utilities at several points along the facility and mapping the subsequent alignment.

Limitations

The detection of underground utilities is determined by the composition and construction of the line in question. Utilities detectable with standard line location techniques include any continuously connected metal pipes, cables/wires or utilities with tracer wires. Unless carrying passive currents, these utilities must be exposed at the surface or in accessible utility vaults. These generally include water, electric, natural gas, telephone, and other conduits related to facility operations. Utilities that are not detectable using standard electromagnetic line location techniques include those made of non-electrically conductive materials such as PVC, fiberglass, vitrified clay, and pipes with insulated connections.

Ground Penetrating Radar (GPR)

Methodology

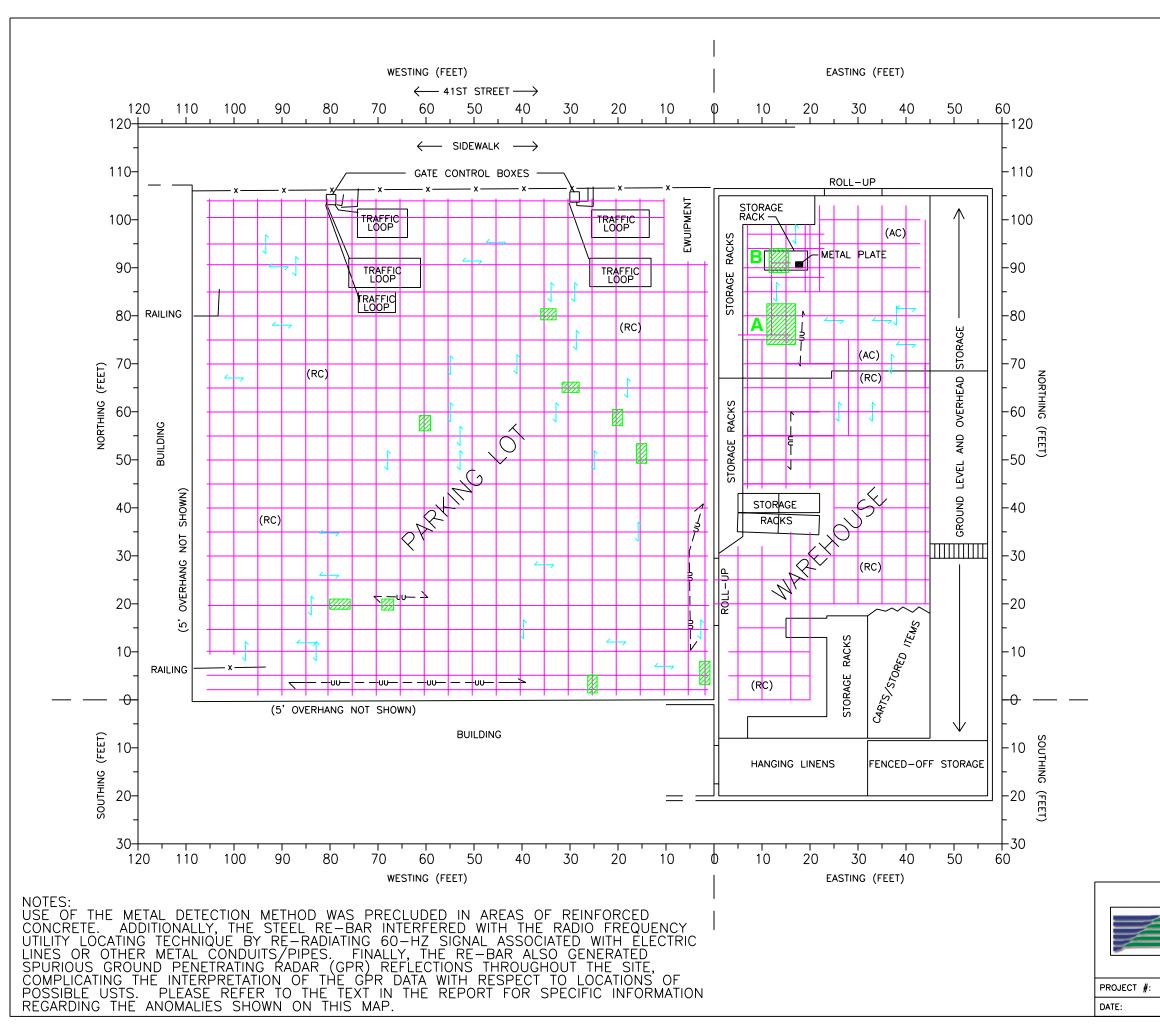
Ground penetrating radar is a method that provides a continuous, high resolution graphical cross-section of the shallow subsurface. The method entails repeatedly radiating an electromagnetic pulse into the ground from an antenna as it is moved along a traverse. Reflected signals are received by an antenna (often the same one used to generate the signal) and sent to a control unit for processing. The control unit then converts the varying amplitude of reflected radar signals as a function of time into a cross-sectional image showing signal amplitude as a function of depth.

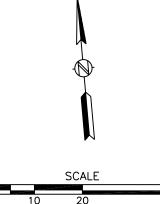
GPR is particularly sensitive to variations of two electrical properties. One property is conductivity (the ability of a material to conduct a charge when a field is applied) and the other is permittivity (the ability of a material to hold a charge when a field is applied). These two properties determine how far a signal can propagate. They also determine the strength of reflected signals that can be generated at material boundaries. Most soil and earthen-like materials such as concrete are electrically resistive and have a relatively low permittivity. As a result, they are relatively transparent to electromagnetic energy. This means that only a portion of the radar signal incident upon them is reflected back to the surface. On the other hand, when the signal encounters an object composed of a material that has the opposite electrical properties, especially one with a high permittivity (such as metal) much of the incident energy is reflected.

Instrumentation

We typically perform GPR surveys using a Geophysical Survey Systems, Inc. SIR-2 Subsurface Interface Radar System equipped with a 400 megahertz (MHz) transducer. This unit is comprised of a combined control/data recording console that is connected by a telemetry cable to the antenna. This system is often chosen for investigating environmental sites since it usually provides both the resolution and depth penetration needed for characterizing the upper three to four feet of the subsurface.

Data Analysis


The interpretation of GPR data involves examining the graphical records for reflections from buried objects or materials changes. GPR records display changes in reflected signal strength and arrival time with changes in horizontal position. Strong signals appear dark and weak reflections appear light. Reflections that arrive earlier in time are placed in the upper portions of the record and reflections that arrive later are placed lower, towards the bottom of the records. Horizontal position is across the top of the record.


In areas with relatively uniform conditions, with no buried objects producing reflections, the records typically appear as a series of alternating dark and light horizontal bands. In areas where there are subsurface objects producing reflections, the horizontal banding is disrupted. Discrete objects typically produce reflections having the appearance of inverted "U"s, forming what are known as "hyperbolic reflections". Metallic objects often produce markedly strong reflections, in many cases forming multiple reflections appearing as a series of inverted U's cascading down the record. Non-metallic objects can produce similar reflections, but the multiples are typically much weaker.

An object's burial depth may also be estimated from GPR profiles. As mentioned above, GPR measures signal amplitude as a function of time. However, the translation of the radar signal's travel time (technically known as time-depth) to an actual distance (true depth) is not always a simple one. Strictly speaking, in order to translate from time-depth to true depth the signal velocity within each time interval must be known. Since this is not routinely determined in the field, estimated velocities are often used for determining the approximate depth to a reflector. The empirical values for GPR signal propagation velocities within commonly encountered soils are obtained from published tables.

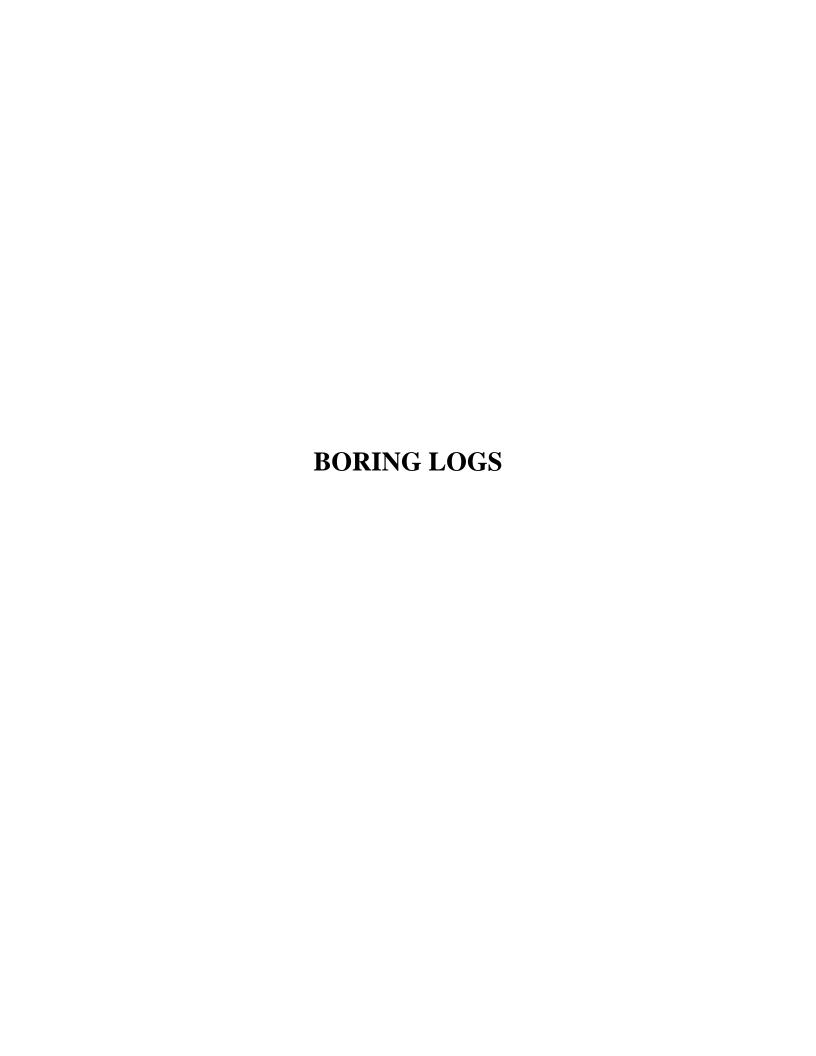
Limitations

The ability to detect subsurface targets is dependent on specific site conditions. These conditions include depth of burial, the size or diameter of the target, the condition of the specific target in question, the type of backfill material associated with the target, and the surface conditions over the target. Typically, the depth of detection will be reduced as the clay and/or moisture content in the subsurface increases. As a result, depths of detection (using a 400 Mhz antenna) typically range from as deep as six feet to as little as a few inches.

(1 inch = 20 feet)

	LEGEND
	GROUND PENETRATING RADAR (GPR) TRAVERSE
— —vv— —	UNKNOWN-TYPE UTILITY LINE
<u>~</u>	GPR ANOMALY (TYPE 1) - REPRESENTING SMALL, LOCALIZED OBJECTS/DEBRIS, OR UTILITY SEGMENTS. THESE FEATURES ARE MOST LIKELY TOO SMALL TO REPRESENT SUSPICIOUS OR UST-RELATED OBJECTS.
A	GPR ANOMALY (TYPE 2) - REPRESENTING POSSIBLE BURIED OBJECT, SLIGHTLY LARGER REFLECTION THAN TYPE 1 GPR ANOMALY. BASED ON AGS'S REVIEW, ANOMALIES A AND B REPRESENT MOST SUSPECT FEATURES.
(AC)	ASPHALT GROUND SURFACE
(RC)	REINFORCED CONCRETE
x	FENCE

GEOPHYSICAL SURVEY MAP CALIFORNIA LINEN 989 41ST STREET


FIGURE

LOCATION: OAKLAND, CALIFORNIA

CLIENT: RGA ENVIRONMENTAL, INC.

PROJECT #: 06-155/156-1CA ADVANCED GEOLOGICAL SERVICES, INC.

DATE: SEPT/OCT 2006 DRAWN BY: D. JONES APPROVED BY: D. JONES

PAGE 1 OF

во	RING N	IO.:	B18 PROJECT NO.: 0304 PROJECT	NAME	E: Ca	alifornia Linen, Oakland	, CA			
ВО	RING L	OCA	TION: Loading Dock Ouside Gate ELEVATIO	N AND	D DATUI	M: None				
DR	ILLING	AGE	NCY: Vironex, Inc. DRILLER: Bryan/Tim				DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	JIPMENT: Track Rig 6610 DT					8/10/	06	8/10/06
-			DEPTH: 25.0 FEET BEDROCK DEPTH: No			ed		LOGGE		CHECKED BY: DM GIBBS
FIF		TER	DEPTH: 11.0 FEET NO. OF SAMPLES: 3 S	Soil, 1 \	Water					P.G. 7804
	DEPTH(FT.)		DESCRIPTION	CITIONO	COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0 to 4.0 ft Brown sandy silt (ML) with orange mottling; moist, medium stiff. No Petroleum Hydrocarbon (PHC) odor.		ML	No Well Constructed		0	cored 2-incl Ma	nole continuously using a 5-ft. long n O.D. Geoprobe crocore Barrel
	5		4.0 ft to 10.0 ft Sandy gravelly silt (ML) with					0	coll interv	npler. Samples lected in 5-foot als. The sampler ed with 4.8-ft long 1
			orange mottling; saturated. No PHC odor.		ML	•		0	3/4 iı a	n. O.D. cellulose cetate tubes.
	10		10.0 ft to 12.0 ft Sandy gravelly silt (ML); saturated. No PHC odor.	X	ML	<u></u>		0		ter encountered at ft during drilling, 8/10/06.
								0	25 1-in. dia	ole terminated at .0 ft., 8/10/06. ameter slotted PVC placed in borehole.
	15		12.0 ft to 20.0 ft Brown and grey sandy silt (ML) with orange mottling; stiff, moist. No PHC odor.	X	ML			0	Water in PV0 app	measured at 9.0 ft C casing, 8/10/06, rox. 5 min. after
								0	boreho grab sa	ng drilling rods from ble. Groundwater mple taken at 25.0 g a polypropelene
	20			X				0	bailer. detect Borel	No odor or sheen ed on the sample. nole grouted with
			20.0 ft to 25.0 ft No Recovery					0		ement and a 4 in. e seal of concrete 8/10/06.
	25							0		
E										
	30									

 \perp

BOF	RING N	10.:	B19 PROJECT NO.: 0304	PROJE	ECT NA	AME: Ca	ulifornia Linen, Oakland,	CA			
BOF	RING LO	OCA	TION: 41st St. North Side	ELEVA	TION .	AND DATU	M: None				
DRII	LLING	AGE	NCY: Vironex	DRILLER: Bryan/	Tim			DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DRII	LLING	EQU	IPMENT: Track Rig 6610 DT						8/10/	/06	8/10/06
			DEPTH: 32.0 FEET	BEDROCK DEPTH:			ed		LOGGE		CHECKED BY:
FIRS		IER	DEPTH: 25.4 FEET	NO. OF SAMPLES:	3 So	il, 1 Water					P.G. 7804
	DEPTH(FT.)		DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		0 to 6.0 ft Dark brown clay (C stiff, slightly moist. No Pe Hydrocarbon (PHC) o	troleum		CL	No Well Constructed		0	cored 2-incl Ma Sar coll	nole continuously using a 5-ft. long n O.D. Geoprobe crocore Barrel npler. Samples lected in 5-foot als. The sampler
			6.0 ft to 8.0 ft. Gray clay (CL) mottling; medium stiff. No P			CL			0	was line 3/4 ii	ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10		8.0 ft to 13.0 ft Brown clay orange mottling; soft moist. No		 X 	CL			0	25.4 ft (ater encountered at during drilling, 3:40 .m., 8/10/06.
									0	32	ole terminated at .0 ft., 8/10/06. ameter slotted PVC
	15				_ X _		<u></u>		0	casing Water r in PVC	placed in borehole. neasured at 14.6 ft casing, 4:00 p.m., 06, approx. 5 min.
			13.0 ft to 26.0 ft Brown and c						0	after rer fr Ground	moving drilling rods om borehole. water grab sample at 32.0 ft, using a
	20		slightly moist. No PHC		 X 	CL			0	polypro odor or	opelene bailer. No sheen detected on the sample.
									0	neat c	ement and a 4 in. e seal of concrete
	25						$\sum_{\underline{\underline{-}}}$		0		8/10/06.
		\exists	26.0 ft to 27.5 ft Brown sandy clay (C No PHC odor.	CL); soft, wet.		CL	-		J		
	30		27.5 ft to 32.0 ft Brown sand with orange and black mott stiff, slightly moist. No PH	ling; very		CL			0		
			(continued on page	3)				<u> </u>			

(continued on page 2)

PAGE 2 OF 2

ВС	RING N	0.:	B19		PROJECT NO.: 0304	PROJ	IECT N	AME: Ca	lifornia Linen, Oakland	, CA			
ВС	RING LO	OCA	TION: 41st St. N	North S	Side	ELEV	ATION	AND DATUI	M: None				
DF	RILLING	AGE	NCY: Vironex			DRILLER: Bryan	/Tim			DAT		STARTED:	DATE & TIME FINISHED:
DF	RILLING	EQU	IIPMENT: Traci	k Rig 6	6610 DT						8/10/	/06	8/10/06
	MPLETI				FEET	BEDROCK DEPTH:	None	Encountere	ed	_	LOGGE EF		CHECKED BY: DM GIBBS
FII		TER	DEPTH: 25.4	4	FEET	NO. OF SAMPLES:	3 So	il, 1 Water			EF		P.G. 7804
	DEPTH(FT.)				DESCRIPTION			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
				(cc	ontinued from page	e 1)	_	CL			0		
	35 40 45 50										U		
	60						_						

_

ВО	RING N	0.:	B20	PROJECT NO.: 0304	PROJ	ECT NA	ME:	California Linen, Oaklar	nd, CA			
ВО	RING LO	OCA	TION: 41st St. South S	Side	ELEV	ATION A	AND DATU	M: None				
DRI	ILLING A	AGE	NCY: Vironex, Inc.		DRILLER: Bryan	Tim			DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DRI	ILLING I	EQU	JIPMENT: Track Rig	6610 DT						8/10/	06	8/10/06
			DEPTH: 25.0	FEET	BEDROCK DEPTH:			ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: 19.5	FEET	NO. OF SAMPLES:	4 Soil	, 1 Water					P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			and w	ark brown clay (CL) hite mottling; mediu eum Hydrocarbon (I	m stiff.		CL	No Well Constructed		0	cored	nole continuously using a 5-ft. long n O.D. Geoprobe
	5		3.0 ft to 7.0	ft Brown clay (CL); No PHC odor.	medium stiff.	-	CL			0	Ma Sar col	crocore Barrel npler. Samples lected in 5-foot
						_ 				16	was line	als. The sampler ed with 4.8-ft long 1 n. O.D. cellulose
				.0 ft. Green/gray cla ling; medium stiff, s		A	CL			0	а	cetate tubes.
E	10		Ph	HC odors at 6 to 8 fe	eet.	X				14		ft during drilling, 8/10/06.
						_				1		ole terminated at 5.0 ft., 8/10/06.
	15					-				0	casing	ameter slotted PVC placed in borehole. measured at 17.0 ft
			11.0 ft to	25.0 ft Brown clay	(CL) with	X - -		_		0	app	C casing, 8/10/06, rox. 5 min. after ng drilling rods from
			orange mo	ottling; medium stiff, 0 ft to 24.0 ft). No P	moist (wet	_	CL	_		0	boreh grab sa	ole. Groundwater imple taken at 25.0 g a polypropelene
	20					X				0	bailer. detect	No odor or sheen ed on the sample.
						_				0	neat c	nole grouted with ement and a 4 in. e seal of concrete
	25					=				0		8/10/06.
E	20											
						=						
	30											

ВО	RING N	IO.:	B21 PROJECT NO.: 0304 PROJECT N	AME:	California Linen, Oakland	d, CA			
ВО	RING LO	OCA	ATION: Plant Work Floor ELEVATION	AND DATU	JM: None				
DR	ILLING .	AGE	ENCY: Vironex, Inc. DRILLER: Bryan/Emers	on		DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DR	LLING	EQL	JIPMENT: Badger				8/8/ 16:0		8/8/06 17:00
			DEPTH: 24.0 FEET BEDROCK DEPTH: Non R DEPTH: 15.0 FEET NO. OF SAMPLES: 3 So		red		LOGGE EF		CHECKED BY: DM GIBBS P.G. 7804
-			NO. OF SAMIFLES. 3 SU		_				1 .d. 7004
	DEPTH(FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0 to 3.0 ft No recovery.		No Well Constructed		0	cored	nole continuously using a 3-ft. long n O.D. Geoprobe
E	5		3.0 ft to 5.0 ft Dark brown silt (ML); slightly moist, stiff, orange mottling. No Petroleum Hydrocarbon (PHC) odors.	ML			0	Ma Sar	crocore Barrel npler. Samples
E	Ü		5.0 ft to 6.0 ft Gray silt (ML) with white and orange mottling; very stiff, slightly moist. No PHC odor.	ML	-		0	interv was line	lected in 3-foot als. The sampler ed with 2.8-ft long 1
E			C O ft to 10 O ft Limbt brown conducit (ML)				0	1	n. O.D. cellulose cetate tubes.
E	10		6.0 ft to 12.0 ft Light brown sandy silt (ML) with orange and white mottling. No PHC odor.	ML			0	15.0 ft d	ater encountered at during drilling, 4:30 p.m., 8/8/06.
			12.0 ft to 13.0 ft Light brown silty sand (SM); loose, saturated. No PHC odor.	SM SM	_		0	24	ole terminated at 4.0 ft., 8/8/06.
E	15		13.0 ft to 13.5 ft Light brown silty sand (SM) with orange and brown mottling; moist. No PHC odor.	CL			0	casing	meter slotted PVC placed in borehole. measured at 9.7 ft
			13.5 ft to 15.0 ft Light brown clay (CL) with orange and brown mottling; very stiff, moist. 15.0 ft to 17.0 ft Brown silty sand (SM); loose, saturated.	SM	_		0	in PVC 8/8/0	casing, 5:30 p.m. 6, approx. 5 min. moving drilling rods
			No PHC odor. 17.0 ft to 17.5 ft Sandy silt (ML); saturated, loose. No PHC odor.	ML	-		0	fr Ground	om borehole. water grab sample at 24.0 ft, using a
	20		17.5 ft to 22.0 ft No recovery.				0	polypro odor or	opelene bailer. No sheen detected on the sample.
			22.0 ft to 24.0 ft Light brown sandy silt (ML); wet, soft. No PHC odor.	ML	_		0	Borel neat c	nole grouted with ement and a 4 in. e seal of concrete
E	25	111					0		8/8/06.
E									
	30	=	_						

ВС	RING N	10.:	B22	PROJECT NO.: 0304	PROJE	ECT NA	ME: C	California Linen, Oakland	d, CA			
ВС	RING L	OCA	TION: Loading Dock Are	a	ELEVA	TION A	AND DATU	M: None				
DR	ILLING	AGE	NCY: Vironex, Inc.		DRILLER: Bryan/B	Emerso	n		DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQL	JIPMENT: TrackRig 661	0 DT						8/8/0 16:0		8/8/06 17:00
				FEET	BEDROCK DEPTH:			ed		LOGGE		CHECKED BY:
FIF		TER	DEPTH: 11.0	FEET	NO. OF SAMPLES:	3 Soil,	1 Water					P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0 to 2.	0 ft Asphalt and gr	avel.			No Well Constructed		0		nole continuously using a 5-ft. long
	5			andy gravelly silt (Nater. No Petroleum (PHC) odors.		S — — —	ML			0	2-incl Ma Sar	n O.D. Geoprobe acrocore Barrel mpler. Samples
	J									0	interv was line	lected in 5-foot als. The sampler ed with 4.8-ft long 1 n. O.D. cellulose
	10			t Gray sand (SW) g; loose. No PHC			SW	<u>_</u>		0	First wa	cetate tubes.
F	10	\exists			. (2)40	X				0		ft during drilling, 43 p.m., 8/8/06.
				range-brown gravell n mottling; loose, mo			SW			0		nole terminated at , 1:30 p.m., 8/8/06.
	15					_ _ X				0	casing Water	ameter slotted PVC placed in borehole. measured at 8.7 ft
				ft Gray-brown clay , moist. No PHC o			CL			0	app removir	C casing, 8/8/06, rox. 5 min. after ag drilling rods from
			3011	, moist. No i i io o	uoi.					0	grab sa	ole. Groundwater Imple taken at 24.0 g a polypropelene
	20					X		<u>–</u>		0	detect	No odor or sheen ed on the sample. nole grouted with
											neat c	ement and a 4 in. e seal of concrete 8/8/06.
	25											
E												
E	30	\exists				\exists						

ВС	RING N	Ю.:	B23 PROJECT NO.: 0304 PROJECT	NA	ME: C	california Linen, Oakland	d, CA			
ВС	RING L	OCA	TION: Loading Dock Area ELEVATIO	N A	ND DATU	M: None				
DF	RILLING	AGE	NCY: Vironex, Inc. DRILLER: Bryan/Eme	rsor	n		DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DF	RILLING	EQU	IIPMENT: TrackRig 6610 DT					8/8/0	06	8/8/06
			DEPTH: 30.0 FEET BEDROCK DEPTH: No. DEPTH: 28.0 FEET No. OF SAMPLES: 3 S			ed		LOGGE EF		CHECKED BY: DM GIBBS P.G. 7804
Ľ"		ILN	DEPTH: 28.0 FEET NO. OF SAMPLES: 3 S	oon,		_				F.G. 7004
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		Off to 7.0 ft Dark brown silt (ML) with orange mottling; medium stiff, slightly moist. No Petroleum Hydrocarbon (PHC) odors.		ML	No Well Constructed		0 0	cored 2-incl Ma Sar coll interv	nole continuously using a 5-ft. long n O.D. Geoprobe crocore Barrel npler. Samples lected in 5-foot als. The sampler
	10		7.0 to 9.5 ft Gray clay (CL) with orange and black mottling; stiff, slightly moist. No PHC odor.		CL			0	3/4 ii a First wa	ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10		9.5 ft to 13.0 ft Greenish-gray sandy clay (CL); stiff, slightly moist. Slight PHC odor.	X	CL			0	12:1 Boreh	ft during drilling, 13 p.m., 8/8/06. ole terminated at 0.0 ft., 8/8/06.
	15		13.0 ft to 16.0 ft Gray-brown clay (CL); stiff, slightly moist. No PHC odor.	X	CL			0	1-in. dia casing Water r	ameter slotted PVC placed in borehole. neasured at 25.0 ft C casing, 8/8/06,
E			16.0 ft to 17.0 ft Sandy gravelly clay (CL) with	=	CL			0	appı	rox. 5 min. after
			orange and black mottling. No PHC odor.	_				0	boreh grab sa	ng drilling rods from ole. Groundwater Imple taken at 30.0
	20		17.0 ft to 22.0 ft Brown sandy silt (ML); medium stiff, slightly moist. No PHC odor.	X	ML			0	bailer.	g a polypropelene No odor or sheen ed on the sample.
			22.0 ft to 24.0 ft Brown and gray sandy silt (ML); soft, wet. No PHC odor.		ML			0	neat c	nole grouted with ement and a 4 in. e seal of concrete 8/8/06.
	25		24.0 ft to 26.0 ft Brown sandy silt (ML); stiff, slightly moist. No PHC odor.		ML	<u>_</u>		0		<i>5</i> / <i>5</i> / <i>5</i> / <i>5</i>
			26.0 ft to 28.0 ft Brown silty sand (SM); soft, wet. No PHC odor.		SM	abla		0		
	20		28.0 ft to 30.0 ft Brown sandy gravelly clay (CL); stiff. No PHC odor.		CL	-		0		
	30			\exists				0		

 \perp

BORI	ing no).: В	324	PROJECT NO.: 0304	PROJ	ECT NA	AME: C	California Linen, Oakland	d, CA			
BORI	ING LO	CATIO	ON: Loading Dock Are	ea	ELEV	ATION A	AND DATU	M: None				
			CY: Vironex, Inc. MENT: Track Rig 6	6610 DT	DRILLER: Bryan	Emerso	on		DAT	E & TIME 8/9/0 3:00 p		DATE & TIME FINISHED: 8/9/06 4:00 p.m.
СОМ	IPLETIC	ON DE	EPTH: 25.0	FEET	BEDROCK DEPTH:	None	Encounter	ed		LOGGE	D BY:	CHECKED BY:
FIRS	T WAT	ER DE	EPTH: 11.0	FEET	NO. OF SAMPLES:	3 Soil	, 1 Water			EF	0	P.G. 7804
	DEPTH(FT.)			DESCRIPTIO	N		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		0 fi	t to 8.0 ft No Rec	overy			No Well Constructed		0	cored 2-incl Ma Sar	nole continuously using a 5-ft. long n O.D. Geoprobe crocore Barrel npler. Samples lected in 5-foot
			8.0 to 9.0 ft Gray	<i>r-</i> black silty sand (S	SM); medium dense		SM	_		0	interv was line 3/4 ii	als. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	8.0 to 9.0 ft Gray-black silty sand (SM); medium dense No Petroleum Hydrocarbon (PHC) odor. 9.0 ft to 11.0 ft Gray-black silty sand (SM); medium						SM	<u>▼</u>		0		tter encountered at ft during drilling,
			11.0 ft to 15	nse. Moderate PHC 6.0 ft Brown silt (N tiff, moist. Modera	/IL) with orange		ML	<u> </u>		17 16	2! 1-in. dia	8/9/06. cole terminated at 5.0 ft., 8/9/06. ameter slotted PVC placed in borehole.
	15	-		ft Gray-black san o saturated. Mod		X 	SP			6 20	in PV appi removir boreh grab sa	measured at 9.0 ft C casing, 8/9/06, rox. 5 min. after ag drilling rods from ole. Groundwater mple taken at 25.0 d 55.0 ft, using a
	20		20.0) ft to 25.0 ft No r	ecovery	X				0	polypro odor or Borel	opelene bailer. No sheen detected on the sample. nole grouted with ement and a 4 in.
	25									0	surfac	e seal of concrete 8/9/06.
<u> </u>	30	_				_						

 \perp

ВО	RING N	10.:	B25 PRO	JECT NO.: 0304	PROJE	ECT NA	ME: C	alifornia Linen, Oakland	d, CA			
ВО	RING LO	OCA	TION: 41st St. Sidewalk		ELEVA	TION /	AND DATU	M: None				
DR	ILLING .	AGE	NCY: Vironex, Inc.		DRILLER: Bryan/	Jeff			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IIPMENT: Track Rig 6610 DT	Г						8/9/0	06	8/9/06
			DEPTH: 25.0 FEET		BEDROCK DEPTH:		Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIH		IER	DEPTH: 15.0 FEET	I	NO. OF SAMPLES:	3 Soi	l					P.G. 7804
	DEPTH(FT.)		DI	ESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0 ft to 8.0 ft Brown s	silty sand (SM):	· loose slightly	 - - - -		No Well Constructed		0	cored 2-incl	nole continuously using a 5-ft. long n O.D. Geoprobe
	5		moist. No Petroleu			_ _ _	SM			0	Samp was line	crocore Barrel bler. The sampler ed with 4.8-ft long 1
						_				0		n. O.D. cellulose cetate tubes.
E			8.0 ft to 9.0 ft Gray gr	ravelly sandy silt	(ML); wet, soft.	_	ML			0		iter encountered at ft during drilling,
	10					_ X				0		8/9/06. ole terminated at
E			9.0 ft to 15.0 ft Bro orange and bla			_	ML			0	1-in. dia	5.0 ft., 8/9/06. ameter slotted PVC placed in borehole.
	15					_ _ _		\sum		0	taken	water grab sample at 25.0 ft, using a opelene bailer. No
			15.0 to 17.0 ft Br saturat	rown silty sand ted. No PHC od		X 	SM	-		0	odor or	sheen detected on the sample.
			17.0 ft to 20.0 ft E saturat	Brown sandy sil ted. No PHC od		_	ML			0	neat c	ement and a 4 in. e seal of concrete 8/9/06.
	20		20.0 ft to 22.5 Br saturat	rown silty sand ted. No PHC od			SM			0		
	25		22.5 ft to 25.0 ft Bro	own sandy clay noist. No PHC (f,	CL			0		
						\exists						
F	30					_						

ВС	RING N	0.:	B26	PROJECT NO.: 0304	PROJ	ECT NA	AME: C	California Linen, Oakland	d, CA			
ВС	RING LO	OCA	TION: 41st St. Sidewalk	(ELEV	ATION A	AND DATUI	M: None				
DF	ILLING /	AGE	NCY: Vironex, Inc.		DRILLER: Bryan/	Jeff			DAT		STARTED:	DATE & TIME FINISHED:
DF	ILLING E	EQU	IIPMENT: Track Rig 6	610 DT						8/9/0	Jb	8/9/06
CC	MPLETI	ION	DEPTH: 25.0	FEET	BEDROCK DEPTH:	None	Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIF	RST WAT	TER	DEPTH: 22.0	FEET	NO. OF SAMPLES:	3 Soil	, 1 Water			EF	0	P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		orange mott	Dark brown sandy : ling; moist, soft. N drocarbon (PHC) o	o Petroleum		ML	No Well Constructed		0 0	cored 2-incl Ma Sar coll interv	nole continuously using a 5-ft. long n O.D. Geoprobe crocore Barrel npler. Samples lected in 5-foot als. The sampler ed with 4.8-ft long 1
	10			7.0 ft Gray sandy si ling; slightly moist, No PHC odor.		X	ML	<u></u>		0 0 0 0	First was 22.0 ft of 18 Boreh 25 1-in. dia casing Water r in PVC 8/9/0	n. O.D. cellulose cetate tubes. Inter encountered at during drilling, 2:00 p.m., 8/9/06. Inter encountered at during drilling, 2:00 p.m., 8/9/06. Inter encountered at 15.0 ft., 8/9/06. Inter encountered at 15.0 ft., 8/9/06. Inter encountered at 11.8 ft casing, 3:10 p.m., 6, approx. 5 min.
	20			2.5 ft Brown-gray cl mottling; medium s No PHC odor.		 	CL	$\overline{\underline{\searrow}}$		0 0	fr Ground taken polypro odor or Borel	moving drilling rods om borehole. water grab sample at 25.0 ft, using a opelene bailer. No sheen detected on the sample. nole grouted with
	25			ft Brown clay (CL) v ling; soft, moist. No		d	CL			0		ement and a 4 in. e seal of concrete 8/9/06.
E	30	\exists										

ВО	RING N	Ю.:	B27 PROJECT NO.: 0304	PROJEC	T NAME	E: C	alifornia Linen, Oakland	d, CA			
ВО	RING LO	OCA	TION: 41st St. Sidewalk	ELEVATI	ON ANI	D DATU	M: None				
DR	ILLING	AGE	NCY: Vironex, Inc. DI	RILLER: Bryan/Jef	f			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Track Rig 6610 DT						8/9/0	06	8/9/06
				EDROCK DEPTH: N			ed		LOGGE		CHECKED BY: DM GIBBS P.G. 7804
H			DEITH. 10.0 TEET 140	J. OI SAWIFLES. 3			7				1.0.7004
	DEPTH(FT.)		DESCRIPTION		O O	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.04s 7.0 # No Decours				No Well Constructed		0	cored	nole continuously using a 5-ft. long n O.D. Geoprobe
	5		0.0 to 7.0 ft No Recover	y					0	Samp was line	crocore Barrel bler. The sampler ed with 4.8-ft long 1 n. O.D. cellulose
					=				0	а	cetate tubes.
	10				<u> </u>		<u>_</u>		0		ft during drilling, 8/9/06.
			7.0 ft to 15.0 ft Brown sandy silt (Nand gray mottling; medium dense, since No Petroleum Hydrocarbon (PH	lightly moist.		ML	∇		0	2! 1-in. dia	nole terminated at 5.0 ft., 8/9/06. Ameter slotted PVC
	15						<u>~</u>		0	Water in PV	placed in borehole. measured at 9.0 ft C casing, 8/9/06, rox. 5 min. after
			15.0 ft to 17.0 ft Brown sandy silt (saturated. No PHC odo		X -	ML			0	remo	ving drilling rods Groundwater grab e taken at 25.0 ft,
			17.0 ft to 19.0 ft Clay (CL) with orar mottling; stiff, slightly moist. No F	nge and gray PHC odor.		CL			0	using bailer.	a polypropelene No odor or sheen ed on the sample.
_	20		19.0 ft to 25.0 ft Brown sandy grave	illy clay (CL):		01			0	Borel neat c	nole grouted with ement and a 4 in. e seal of concrete
			stiff, slightly moist. No PHC		X	CL			0		8/9/06.
	25								0		
	30										

BOF	RING NO	O.: B29		PROJECT NO.: 0304	PROJ	ECT NA	ME: C	California Linen, Oakland	d, CA			
BOF	RING LO	OCATION	: Plant Work Floor	r	ELEV	ATION A	AND DATU	M: None				
DRI	LLING A	AGENCY:	: Vironex, Inc.		DRILLER: Bryan/	Jeff			DAT		STARTED:	DATE & TIME FINISHED:
DRI	LLING E	EQUIPME	ENT: Badger							8/8/0 12:3		8/8/06 13:45
		ON DEPT		FEET	BEDROCK DEPTH:		Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		ER DEP	TH: 12.5	FEET	NO. OF SAMPLES:	4 Soil,	1 Water					P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			.5 ft to 3.5 ft E	0.5 ft Sand and Gra Brown silty sand (S ttling; medium stiff, tum Hyrdocarbon (SM	No Well Constructed		0	cored 2-incl	nole continuously using a 5-ft. long n O.D. Geoprobe acrocore Barrel	
	5			o 6.5 ft Dark brown dium stiff, slightly i No PHC odor.	-	ML	V		0	Samp was line 3/4 ii	oler. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.	
		T	7.0 ft to 8.0 stiff, sl	oft Sandy gravel (Curated. No PHC of ft Dark brown silt lightly moist, black	dor. (ML); medium mottling.	X	ML ML ML	=		0	First wa	ater encountered at ft during drilling, 8/8/06.
	10	7 /	9.0 ft to 10	oht brown silt (ML); ven 0.0 ft Brown silt (M ght brown sandy silt oist, orange and bla	L); soft, wet. (ML); medium sti	/ 🖺	ML	\sum_{-}		0	2 [.] 1-in. dia	nole terminated at 1.0 ft., 8/8/06. Ameter slotted PVC
F		+	12.5 ft to 13.5	ft Light brown sandy cl	lay (CL); soft, wet.		CL			0	Water	placed in borehole. measured at 6.5 ft
	15			.0 ft Light brown sa dium stiff, slightly r		X	ML			0	app	C casing, 8/8/06, rox. 5 min. after ng drilling rods from
			16.0 ft to 20	0.0 ft Sandy clay (C	CL); soft, wet.		CL			0	neat c	borehole. nole grouted with mement and a 4 in. e seal of concrete 8/8/06.
E	20		20.0 f	t to 21.0 ft Clay (C	L); stiff.	X	CL			0		
	25											
	30					_						

во	RING N	IO.:	B30	PROJECT NO.: 0304	PROJI	ECT NA	AME: C	California Linen, Oaklan	d, CA			
во	RING L	OCAT	TION: Plant Storage A	Area	ELEVA	ATION .	AND DATU	M: None				
DR	ILLING	AGEI	NCY: Vironex, Inc.		DRILLER: Bryan/	Emerso	on		DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQUI	IPMENT: Badger							8/8/ 10:0		8/8/06 12:00
			DEPTH: 30.0	FEET	BEDROCK DEPTH:	None	Encounter	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: 27.0	FEET	NO. OF SAMPLES:	3 Soil	, 1 Water	Г			· · · · · ·	P.G. 7804
	DEPTH(FT.)			DESCRIPTION	ı		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0	ft to 3.0 ft No Rec	overy			No Well Constructed			cored	nole continuously using a 5-ft. long n O.D. Geoprobe
E	5		me	to 7.0 ft Dark brow edium stiff, slightly	moist.	_	ML			0	Ma Sar	ncrocore Barrel mpler. Samples lected in 5-foot
				oleum Hydrocarbor		_				0	interv was line	rals. The sampler ed with 2.8-ft long 1 n. O.D. cellulose
				oft Dark brown silt ghtly moist. No PH	=	ML			0	а	cetate tubes.	
E	10	=	coarse sar	4.0 ft Brown sandy	n 1/2" diameter	X	ML	<u>_</u>		0		ater encountered at ft during drilling, 8/8/06.
				o 13.5 ft, and orang medium stiff, sligh PHC odor.			IVIL			0	30	nole terminated at 0.0 ft., 8/8/06. Ameter slotted PVC
E	15	#				 				0	casing	placed in borehole. neasured at 10.0 ft
		_		0 ft Light brown sili htly moist. No PHO			ML			0	app	C casing, 8/8/06, rox. 5 min. after ag drilling rods from
			18.0 ft to 21.0	ft Light brown silt	(ML) with orange					0	grab sa	ole. Groundwater imple taken at 30.0 g a polypropelene
	20			nottling; soft, moist.		X	ML			0	bailer. detect	No odor or sheen ed on the sample.
			21.0 ft to 23.5 ft Brown clay (0 No PHC od		; very soft, mois	t	CL			0	neat c	nole grouted with ement and a 4 in. e seal of concrete 8/8/06.
	05	+		ft Brown silty sand e mottling; dense.		<u> </u>	SM			0		0/0/00.
	- 25 - 			oft Light brown cla wet. No PHC odd	y (CL); very soft	, =	CL			0		
	- - - -		26.5 ft to 30.	.0 ft Brown clay (Cl PHC odor.	L); very stiff. No	=	CL			0		
F	30	=				_				0		

 \vdash

ВС	RING N	10.:	B31 PROJECT NO.: 0304	PROJ	ECT NA	AME: C	alifornia Linen, Oakland	d, CA			
ВС	RING L	OCA	TION: Linden Street West Side	ELEV	ATION A	AND DATUI	M: None				
			NCY: Vironex, Inc.		DAT	E & TIME 8/11/	STARTED: 06	DATE & TIME FINISHED: 8/11/06			
			·								0.150/55 5/
	MPLET			BEDROCK DEPTH:			ed		LOGGE		CHECKED BY: DM GIBBS
FI		IER	DEPTH: 20.0 FEET	NO. OF SAMPLES:	3 Soil,						P.G. 7804
	DEPTH(FT.)		DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	_		0.0 ft to 0.5 ft Gravel F 0.5 ft to 5.0 ft Sandy clay (CL) with stiff, slightly moist. No Petroleum odor.	n gravel; very		FILL CL	No Well Constructed		0	cored 2-inc Ma Sar	nole continuously using a 5-ft. long h O.D. Geoprobe icrocore Barrel mpler. Samples
	5								0	interv was lind 3/4 i	lected in 5-foot rals. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10		5.0 ft to 17.0 ft Brown-gray sandy orange and black mottling; very		_ X _	CL			0	20.0	ater encountered at ft during drilling, 8/11/06.
_ _ _ _	15		moist. No PHC odor.		 - X		<u></u>		0	35 1-in. dia casing Water r in PV	nole terminated at 5.0 ft., 8/11/06. ameter slotted PVC placed in borehole. measured at 14.6 ft C casing, 8/11/06, rox. 5 min. after
	20		17.0 ft to 22.0 ft Brown silty sand with orange mottling; stiff, sligl No PHC odor.			CL	$\underline{\underline{\nabla}}$		0	removir boreh grab sa ft, usin bailer.	ng drilling rods from ole. Groundwater umple taken at 35.0 g a polypropelene No odor or sheen ed on the sample.
			22.0 ft to 25.0 ft Brown clay (CL slightly moist. No PHC o			CL			0	Borel neat c	nole grouted with bement and a 4 in. e seal of concrete 8/11/06.
	25		25.0 ft to 27.0 ft Brown silty clay moist. No PHC odor.		_	CL			0		
			27.0 ft to 30.0 ft Brown silty cla slightly moist. No PHC			CL			0		
-	30	7	(continued on page	2)					0		

 \perp

PAGE 2 OF 2

ВО	BORING NO.: B31 PROJECT NO.: 0304 PROJECT NAME: California Linen, Oakland, CA BORING LOCATION: Linden Street West Side ELEVATION AND DATUM: None										
ВО	RING LO	OCA	TION: Linden Street West Side ELEVATION	AND DATU	M: None						
			NCY: Vironex, Inc. DRILLER: Bryan/Jeff			DAT	E & TIME 8/11	STARTED:	DATE & TIME FINISHED: 8/11/06		
			IPMENT: Track Rig 6610 DT								
			DEPTH: 35.0 FEET BEDROCK DEPTH: None DEPTH: 20.0 FEET NO, OF SAMPLES: 3 Soi		ed	-	LOGGE		CHECKED BY: DM GIBBS P.G. 7804		
FIR		IEN	DEPTH: 20.0 FEET NO. OF SAMPLES: 3 Soi		_				F.G. 7804		
	DEPTH(FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS		
	30	\exists	(continued from page 1)								
	35		30.0 ft to 35.0 ft Brown silty clay (CL); soft, moist. No PHC odor.	CL			0				
			======================================								
<u>-</u> - - - - -	40		- - - - - - - - -								
	45		- - - - - - - - - -								
- - - - - -	50		- - - - - - - -								
	55										

_

ВС	RING N	Ю.:	B32 PROJECT NO.: 0304 PRO	JECT N	AME: (California Linen, Oaklan	d, CA			
ВС	RING L	OCA	TION: Linden St. West Side ELEV	'ATION	AND DATU	M: None				
			NCY: Vironex, Inc. DRILLER: Bryan	ı/Jeff			DAT	E & TIME 8/11/	STARTED: /06	DATE & TIME FINISHED: 8/11/06
			DEPTH: 35.0 FEET BEDROCK DEPTH:	None	e Encounter	ed		LOGGE	D BY:	CHECKED BY:
FIF	RST WA	TER	DEPTH: 30.0 FEET NO. OF SAMPLES:	3 So	il, 1 Water			EF	0	DM GIBBS P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		0.0 ft to 5.0 ft Gravel sandy silt (ML) with orange black and white mottling; stiff, slightly moist. No Petroleum Hydrocarbon (PHC) odor.		ML	No Well Constructed		0	cored 2-inc Ma Sar	nole continuously using a 5-ft. long n O.D. Geoprobe icrocore Barrel mpler. Samples
			5.0 ft to 12.0 ft Brown sandy silt (ML) with grave up to 1/2" diameter and orange and black mottling. No PHC odor.	=	ML			0	interv was lind 3/4 il a First wa	lected in 5-foot rals. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10			<u>X</u> 				0		ft during drilling, 8/11/06.
				=				0	35 1-in. dia casing	ole terminated at 0.0 ft., 8/11/06. ameter slotted PVC placed in borehole.
	15		12.0 ft to 22.0 ft Brown and gray clay (CL) with orange mottling; slightly moist.	X -	CL			0	sampl and polypr	oundwater grab es taken at 30.0 ft 56.0 ft, using a opelene bailer. No
			No PHC odor.	=	OL.			0		sheen detected on the sample. nole grouted with
	20			X				0	neat c	ement and a 4 in. e seal of concrete 8/11/06.
			22.0 ft to 24.0 ft Brown sandy silt (ML); soft, moist. No PHC odor.	=	ML			0		
	25		24.0 ft to 26.0 ft Brown sandy silt (ML) with orang mottling; very stiff, slightly moist. No PHC odor.		ML			0		
			26.0 ft to 35.0 ft Brown sandy silt (ML); soft, moist. No PHC odor.		ML			0		
	30		(continued on page 2)	_				0		

PAGE 2 OF

во	3ORING NO.: B32 PROJECT NO.: 0304 PROJECT NAME: California Linen, Oakland, CA 3ORING LOCATION: Linden St. West Side ELEVATION AND DATUM: None											
во	RING LO	OCA	TION: Linden St. West Side ELEVATION	AND DATU	M: None							
-			NCY: Vironex, Inc. DRILLER: Bryan/Jeff			DAT	E & TIME 8/11	STARTED: /06	DATE & TIME FINISHED: 8/11/06			
			JIPMENT: Track Rig 6610 DT						OUTOUTE DV			
-			DEPTH: 35.0 FEET BEDROCK DEPTH: None DEPTH: 30.0 FEET NO. OF SAMPLES: 3 Soc		ed	-	LOGGE EF		CHECKED BY: DM GIBBS P.G. 7804			
			100.00.00.00.00		z							
	DEPTH(FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS			
E	30	\exists	(continued from page 1)		7 0 2							
			26.0 ft to 35.0 ft Brown sandy silt (ML); soft, — moist. No PHC odor.	ML			0					
E	0.5	\exists					0					
E	35	\exists	_									
F		\exists	Ξ									
E												
F			Ξ									
E	40	\exists										
F		\exists										
F			Ξ									
E		\exists										
F	45	\exists	_ _									
E		\exists										
E		\exists	=									
F			=									
	50	\exists										
F		\exists	=									
E		\exists										
F		\exists	=									
	55	\exists										
E		\exists										
F		\exists	=									
E												
Ē		\exists	_									

_

во	RING N	IO.:	B33	PROJECT NO.: 0304	PROJ	ECT NA	ME: C	California Linen, Oakland	d, CA			
во	RING L	OCAT	TION: NW Corner E P	arking Lot	ELEV	ATION A	AND DATU	M: None				
DR	LLING	AGE	NCY: Vironex, Inc.			DAT		STARTED:	DATE & TIME FINISHED:			
DR	LLING	EQUI	PMENT: Geoprobe	6610 DT						10/18 10:3		10/18/06 12:00
СО	MPLET	ION E	DEPTH: 25.0	FEET	BEDROCK DEPTH:	None	Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: 23.0	FEET	NO. OF SAMPLES:	2 Soil,	1 Water			EF	J	P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.5 ft to 3.0 mottling; st	0.0 to 0.5 ft Concre of t Black clay (CL) iff, slightly moist. Nordocarbon (PHC) o	with orange o Petroleum	X 	CL	No Well Constructed		0	cored	nole continuously using a 5-ft. long n O.D. Geoprobe
	5		3.0 ft to 7	with orange g.	X	CL			0	Ma Samp was line	crocore Barrel bler. The sampler ed with 4.8-ft long 1 n. O.D. cellulose	
									0	First wa	cetate tubes. Iter encountered at ft during drilling,	
<u>-</u>	10	=	7.0 ft to 17	.0 ft Brown sandy c	lay (CH) with	=		<u>_</u>		0	Boreh	10/18/06.
_				tling; stiff, slightly modor.			СН			0	1-in. dia casing	0 ft., 10/18/06. ameter slotted PVC placed in borehole.
<u> </u>	15	=				-				0	in PV 10/18/	measured at 9.5 ft C casing, 12:00, 06, approx. 5 min. moving drilling rods
F		=								O	fr	om borehole.
				.0 ft Brown sandy o		=	CL			0	taken polypro	water grab sample at 25.0 ft, using a opelene bailer. No sheen detected on
<u>-</u>	20			2.0 ft Brown sandy m dense, wet. No P		=	CL			0	Borel	the sample. nole grouted with ement and a 4 in.
E		7		.0 ft Brown sand (S		\exists	SP	∇		0		e seal of concrete 10/18/06.
	25		23.0 ft to 25	ttling; wet. No PHC 5.0 ft Gray clay (CL ttling; wet. No PHC) with orange		CL	<u></u>		0		
E	30	=				_						

BOF	RING N	0.:	B34 PROJECT NO.: 0304 PROJECT	NA	ME: C	California Linen, Oakland	d, CA			
BOF	RING LO	OCA	TION: NE Corner E Parking Lot ELEVATIO	N A	AND DATU	M: None				
DRI	LLING	AGE	NCY: Vironex, Inc. DRILLER: Josh/Justin	1			DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DRI	LLING	EQU	JIPMENT: Geoprobe 6610 DT					10/19	9/06	10/19/06
-				ne	Encountere	ed		LOGGE EF		CHECKED BY: DM GIBBS
FIRS		TER	DEPTH: 23.0 FEET NO. OF SAMPLES: 2.5	Soil,	1 Water				· · · · · · · · · · · · · · · · · · ·	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft Concrete 0.5 ft to 4.0 ft Dark gray sandy clay (CL) with orange mottling; stiff, slightly moist. No Petroleum Hyrdocarbon (PHC) odor.	X - - X	CL	No Well Constructed		0	cored 2-incl Ma	nole continuously using a 5-ft. long n O.D. Geoprobe acrocore Barrel
	5		4.0 ft to 9.5 ft Green sandy clay (CL) with orange mottling; stiff, slightly moist. No PHC odor.	<u>-</u>	CL			0	was line 3/4 ii a	oler. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10		9.5 ft to 14.0 ft Brown sandy clay (CL) with orange mottling; stiff, slightly moist. No PHC odor.	_ _ _ _	CL	<u>_</u>		0	23.0	ater encountered at ft during drilling, 10/19/06.
				_				0	25. 1-in. dia casing	0 ft., 10/19/06. ameter slotted PVC placed in borehole. measured at 9.8 ft
	15		14.0 ft to 15.0 ft Brown sandy clay (CL) with gravel and orange mottling; stiff. No PHC odor.		CL			0	in PV 10/19/	C casing, 14:30, 06, approx. 5 min. moving drilling rods
			15.0 ft to 18.0 ft Brown and gray sandy clay (CL); soft, moist. No PHC odor.		CL			0	fr Ground	om borehole. lwater grab sample at 25.0 ft, using a
			18.0 ft to 23.5 ft Brown clay (CL) with sand and					0	polypro odor or	opelene bailer. No sheen detected on the sample.
E	20		gravel; dense, wet. No PHC odor.		CL			0	Borel neat c	nole grouted with ement and a 4 in.
E			00.5 #4+ 05.0 # Orang along (OL)			$\overline{}$		0	Suriac	e seal of concrete 10/19/06.
	25		23.5 ft to 25.0 ft Gray clay (CL); soft, wet. No PHC odor.		CL					
E										
	30	\exists		=						

 \perp

PAGE 1 OF 1

во	RING N	10.:	B35 PROJECT NO.: 0304	PROJE	ECT NA	AME: C	California Linen, Oakland	d, CA						
ВО	BORING LOCATION: Center of East Parking Lot ELEVATION AND DATUM: None DRILLING AGENCY: Vironex, Inc. DRILLER: Josh/Justin DATE & TIME STARTED: DATE & TIME FINISHED: 10/18/06 10/18/06													
			·		DAT									
СО	MPLET	ION	DEPTH: 25.0 FEET	BEDROCK DEPTH:	None	Encountere	ed		LOGGE		CHECKED BY:			
FIR	ST WA	TER	DEPTH: 23.0 FEET	NO. OF SAMPLES:	2 Soil	, 1 Water			EF(0	P.G. 7804			
	DEPTH(FT.)		DESCRIPTIO			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS			
		\exists	0.0 to 0.5 ft Concr	rete	X		No Well							
			0.5 ft to 4.0 ft Black clay (CL mottling; medium stiff, sligh Petroleum Hyrdocarbon (I	tly moist. No		CL	Constructed		0	cored 2-incl	nole continuously using a 5-ft. long n O.D. Geoprobe			
E	5	$\frac{1}{2}$, ,	<u> </u>	_X _				0	Samp	crocore Barrel bler. The sampler ed with 4.8-ft long 1			
	Ü		4.0 ft to 8.0 ft Gray-green cla stiff, slightly moist. No			CL			0	3/4 in. O.D. cellulose acetate tubes.				
							<u> </u>		0	l	ter encountered at ft during drilling, 10/18/06.			
	10		8.0 ft to 17.0 ft Brown clay (Chorange mottling; stiff, moist.	•		СН	-		0	25. 1-in. dia	ole terminated at 0 ft., 10/18/06. Imported PVC placed in borehole.			
	15								0	Water in PV 10/18/	measured at 9.5 ft C casing, 15:30, 06, approx. 5 min. moving drilling rods			
E									0	fr Ground	om borehole. water grab sample			
					_					polypro	at 25.0 ft, using a opelene bailer. No sheen detected on			
	20		17.0 ft to 24.0 ft Brown clay (C gravel; medium stiff, moist.			CL			0	Borel	the sample. nole grouted with			
<u> </u>					_				0	l	ement and a 4 in. e seal of concrete 10/18/06.			
 - - - - - - -	25		24.0 ft to 24.5 ft Lens of brown 24.5 ft to 25.0 ft Brown clay (C gravel; medium stiff, moist.	L) with sand and		SP CL	<u>+</u>		0		. 5, 15, 55.			
	30													

PAGE 1 OF

BORIN	IG NO	O.:	B36	PROJECT NO.: 0304	PROJI	ECT NA	AME: C	alifornia Linen, Oakland	d, CA			
BORIN	IG LC	OCA ⁻	TION: SW Corner of Ea	ast Parking Lot	ELEVA	ATION A	and datui	M: None				
DRILLI	ING A	AGE	NCY: Vironex, Inc.		DRILLER: Josh/J	ustin			DAT		STARTED:	DATE & TIME FINISHED:
DRILLI	ING E	EQU	IPMENT: Geoprobe 6	610 DT						10/18 12:3		10/18/06 14:00
			DEPTH: 25.0	FEET	BEDROCK DEPTH:			ed		LOGGE		CHECKED BY: DM GIBBS
_		En	DEPTH: 23.0	FEET	NO. OF SAMPLES:	2 5011						P.G. 7804
DEPTH/FT)	. י די ריים			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
_ _ _ _ _			0.5 ft to 3.0 mottling; sti	0.0 to 0.5 ft Concret ft Black clay (CL) v ff, slightly moist. No docarbon (PHC) o	with orange o Petroleum		CL	No Well Constructed		0	cored	nole continuously using a 5-ft. long n O.D. Geoprobe
- - - 5	5			ft Gray clay with sa htly moist. No PHC	, , ,	X -	CL			0	Ma Samp	crocore Barrel bler. The sampler
	•			ft Gray-green clay t tly moist. Moderate			CL			8	3/4 iı	ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
- 1º	0			Brown sandy clay mottling; moist. Sliç	- '	H)	СН	<u>_</u>		2 0 0	Boreh 25. 1-in. dia casing Water r in PV 10/18/ after rei	ater encountered at ft during drilling, 10/18/06. sole terminated at 0 ft., 10/18/06. ameter slotted PVC placed in borehole. measured at 10.0 ft C casing, 14:00, 06, approx. 5 min. moving drilling rods om borehole.
_ _ _ _				to 19.5 ft Brown cla ft, wet. No PHC oc			CL			0	taken polypre	water grab sample at 25.0 ft, using a opelene bailer. No sheen detected on
_ 20 _ _ _ _	0		with silt a	23.0 ft Brown well g and gravel (SW-SM nse, wet. No PHC o	l); medium		SW-SM	∇		0	Borel neat c	the sample. nole grouted with ement and a 4 in. e seal of concrete 10/18/06.
 2: 	5		(SP); medi	3.5 ft Brown poorly ium dense, wet. No 5.0 ft Brown clay (C No PHC odor.	PHC odor.	7	SP CL	<u>~</u>		0		
_ _ _ 3(0					_						

ВО	RING N	10.:	B37	PROJECT NO.: 0304	PROJ	ECT NA	AME: C	California Linen, Oaklan	d, CA			
ВО	RING L	OCA	TION: SW Corner of Ea	ast Parking Lot	ELEV	ATION	AND DATU	M: None				
DR	ILLING	AGE	NCY: Vironex, Inc.		DRILLER: Josh/J	ustin			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IIPMENT: Geoprobe 6	6610 DT						10/19 12:3		10/19/06 14:00
			DEPTH: 25.0	FEET	BEDROCK DEPTH:			ed		LOGGE		CHECKED BY: DM GIBBS
FIF		IER	DEPTH: 23.0	FEET	NO. OF SAMPLES:	2 Soil	, 1 Water				· ·	P.G. 7804
	DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
F		\exists		0.0 to 0.5 ft Concret	te	X		No Well				
				Black clay with sand noist. No Petroleum (PHC) odor.			CL	Constructed		0	cored 2-inc	nole continuously using a 5-ft. long h O.D. Geoprobe acrocore Barrel
	5			(110) 64611		_				0	Samp	oler. The sampler ed with 4.8-ft long 1
			orange and	0.0 ft Gray sandy clawhite mottling; stiff	, slightly moist.		CL			0	3/4 i	n. O.D. cellulose cetate tubes.
		\exists		Moderate PHC ode	or.	_				0		ater encountered at ft during drilling,
	10					Ξ				0	Daniel	10/19/06.
			9.0 ft to 15.0 ft	Brown sandy clay No PHC odor.	(CL) with grave	el. — —	CL			0	25. 1-in. dia	nole terminated at .0 ft., 10/19/06. ameter slotted PVC placed in borehole.
	15					=				0	Water r in PV	measured at 13.8 ft /C casing, 11:00, 06, approx. 5 min.
			15.0 ft	to 20.0 ft Gray and	l orange	=				0	fr	moving drilling rods om borehole.
				lay (CL); medium s No PHC odor.			CL			0	taken polypr	lwater grab sample at 25.0 ft, using a opelene bailer. No
E	20	$\frac{1}{2}$				=				0		sheen detected on the sample. nole grouted with
 - - -			with clay a	24.0 ft Brown well g nd gravel (SW-SC) 22.0 to 22.5 ft; moi	with lens of	_	sw-sc			0	neat c	ement and a 4 in. e seal of concrete 10/19/06.
]	·	odor.			CI	==		0		
	25			t Gray and orange n stiff, moist. No Pl		.);	CL /					
E						=						
	30					_						

 \perp

PAGE 1 OF

ВО	RING N	Ю.:	B38 PROJECT NO.: 0304 PR	OJECT N	AME: C	alifornia Linen, Oakland	d, CA			
ВО	RING L	OCA	TION: East Edge of East Parking Lot ELf	EVATION	AND DATU	M: None				
			NCY: Vironex, Inc. DRILLER: Jos IPMENT: Geoprobe 6610 DT	sh/Justin			DAT	E & TIME 10/18 15:3		DATE & TIME FINISHED: 10/18/06 16:30
СО	MPLET	ION	DEPTH: 25.0 FEET BEDROCK DEPT	H: None	Encountere	ed		LOGGE	D BY:	CHECKED BY:
FIR	IST WA	TER	DEPTH: 23.0 FEET NO. OF SAMPLES	S: 2 Soi	, 1 Water			EF	0	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
E		\exists	0.0 to 0.5 ft Concrete	<u>X</u>		No Well				
			0.5 ft to 4.0 ft Black clay (CL); stiff, slightly moi No Petroleum Hyrdocarbon (PHC) odor.	st	CL	Constructed		0	cored 2-incl	nole continuously using a 5-ft. long n O.D. Geoprobe
E	5	$\frac{1}{2}$		X				0	Samp	crocore Barrel bler. The sampler ed with 4.8-ft long 1
			4.0 ft to 8.0 ft Green-gray sandy clay with gravel (CH); stiff, slightly moist. No PHC odd		СН			0	3/4 in. O.D. cellulose acetate tubes.	
						•		0	1	ter encountered at ft during drilling,
E	10			=		<u>*</u>		0	Boreh	10/18/06.
E			8.0 ft to 15.0 ft Gray sandy clay (CH) with orar mottling. No PHC odor.	nge _	СН			0	25. 1-in. dia	0 ft., 10/18/06. ameter slotted PVC placed in borehole.
	15			=				0	Water in PV	measured at 9.5 ft /C casing, 16:30, 06, approx. 5 min.
	15		15.0 ft to 17.0 ft Brown sandy clay (CL); medium stiff, moist. No PHC odor.		CL			0	after rei fr	moving drilling rods om borehole. Iwater grab sample
			17.0 ft to 19.0 ft Brown sandy clay (CL); soft, wet. No PHC odor.	_	CL			0	taken polypre	at 25.0 ft, using a opelene bailer. No sheen detected on
=	20			=				0	Borel	the sample. nole grouted with
			19.0 ft to 25.0 ft Well graded sand with silt and gravel (SW-SM); dense, wet. No PHC odor.	=	sw-sc	∇		0		ement and a 4 in. e seal of concrete 10/18/06.
	05		110 0001	=				0		
	25									
				=						
	30			=						

ВС	RING N	10.:	B39 PROJECT NO.: 0304 PROJECT NA	ME: C	California Linen, Oakland	d, CA			
ВС	RING L	.OCA	TION: West Edge of East Parking Lot ELEVATION.	AND DATU	M: None				
DR	ILLING	AGE	NCY: Vironex, Inc. DRILLER: Josh/Justin			DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	JIPMENT: Geoprobe 6610 DT				10/18 11:1		10/18/06 13:00
			DEPTH: 25.0 FEET BEDROCK DEPTH: None		ed		LOGGE		CHECKED BY: DM GIBBS
FIF		TER	DEPTH: 23.0 FEET NO. OF SAMPLES: 2 Soil	1 Water					P.G. 7804
	DEPTH(FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft Concrete 0.5 ft to 5.0 ft Black clay with sand (CL); stiff, slightly moist. No Petroleum Hyrdocarbon (PHC) odor.	CL	No Well Constructed		0	Boreh cored	e hand augered to 5.0 ft. ole continuously using a 5-ft. long o O.D. Geoprobe
	5		5.0 ft to 9.0 ft Gray clay with sand and gravel (CH); medium stiff, slightly moist. No PHC odor.	СН			0	Samp was line 3/4 ir	crocore Barrel ler. The sampler ed with 4.8-ft long 1 n. O.D. cellulose cetate tubes.
	10		9.0 ft to 14.0 ft Brown-gray clay with sand (CH) with orange mottling; medium stiff, slightly moist. No PHC odor.	СН	<u> </u>		0	23.0 Boreh 25.	ter encountered at ft during drilling, 10/18/06. ole terminated at 0 ft., 10/18/06.
	15		14.0 ft to 15.0 ft Brown-gray clay with sand and gravel (CH); dense, slightly moist. No PHC odor.	СН			0	casing p Water r	meter slotted PVC blaced in borehole. measured at 9.5 ft
			15.0 ft to 17.5 ft Brown clay (CL); soft, moist. No PHC odor.	CL			0	10/18/0 after ren	C casing, 16:30, 06, approx. 5 min. noving drilling rods
Ē		\exists	17.5 ft to 18.5 ft Brown sandy clay (CL); — medium dense, moist. No PHC odor.	CL			0		om borehole. water grab sample
	20		40.5 (4.4. 00.0 (4.5))	SW-SM			0	polypro odor or	at 25.0 ft, using a opelene bailer. No sheen detected on the sample.
E			22.0 ft to 23.5 ft Brown sandy clay — (CL); soft, wet. No PHC odor. —	CL			0	neat c	ole grouted with ement and a 4 in. e seal of concrete
E	25		23.5 ft to 25.0 ft Brown clay (CL); stiff, — slightly moist. No PHC odor.	CL			-	Surface	10/18/06.
E	30		_						

PAGE 1 OF

во	RING N	10.:	B40 PROJECT NO.: 0304 PROJECT	NA	ME: C	California Linen, Oakland	d, CA			
во	RING L	OCA	TION: Southeast Area of Property in Brick Warehouse ELEVATIC	N A	AND DATU	M: None				
DR	ILLING	AGE	NCY: RGA Environmental, Inc. DRILLER: Steve				DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Hand Auger					10/26 12:		10/26/06 15:30
			DEPTH: 3.0 FEET BEDROCK DEPTH: No		Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: None Encountered NO. OF SAMPLES: 3 S	Soil					·	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft Concrete Slab			No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1		0.5 ft to 1.0 ft Brown-black sandy clay (FILL); slightly moist. No Petroleum Hydrocarbon (PHC) odor.	¥ A	FILL					o groundwater ountered in the borehole.
			1.0 ft to 1.5 ft Brick (FILL).		FILL				l	ole terminated at 0 ft., 10/26/06.
	2		1.5 ft to 3.0 ft Brown-black sandy clay (CL); slightly moist. No PHC odor.	\ \ = = =	CL				neat c	nole grouted with ement and a 4 in. e seal of concrete 10/18/06.
	3			V						
	4									
	5									
	6			_						

_

PAGE 1 OF

во	RING N	0.:	B41 PROJECT NO.: 0304	PROJI	ECT NA	ME: C	alifornia Linen, Oakland	d, CA			
во	RING LO	OCA	TION: South-Southeast Area of Property Behind Door 3	ELEVA	ATION /	AND DATU	M: None				
			NCY: RGA Environmental, Inc. DR	RILLER: Steve				DAT	E & TIME 10/26 08:4		DATE & TIME FINISHED: 10/27/06 11:10
СО	MPLETI	ION	DEPTH: 3.0 FEET BE	DROCK DEPTH:	None	Encountere	ed		LOGGE	D BY:	CHECKED BY:
FIR	RST WA	TER	DEPTH: None Encountered NO). OF SAMPLES:	3 Soil				SJ	C	P.G. 7804
	DEPTH(FT.)		DESCRIPTION			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.6 ft Concrete Slak	b			No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1		0.6 ft to 2.0 ft Grey-black sandy c slightly moist. Very strong Pet Hydrocarbon (PHC) odo	troleum	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FILL				enc Boreh 3.0 Boreh neat c	o groundwater ountered in the borehole. sole terminated at 0 ft., 10/26/06. nole grouted with ement and a 4 in. e seal of concrete
	2		2.0 ft to 2.5 ft Brick (FILL	_).		FILL					10/18/06.
	3		2.5 ft to 3.0 ft Black sandy clay (C moist. Moderate PHC odd		$lack {1}{1}$	CL					
	4 5										

_

во	RING N	0.:	B42 PROJECT NO.: 0304	PROJ	ECT NA	ME: C	California Linen, Oakland	d, CA			
во	RING LO	OCA	TION: South-Southeast Area of Property Behind Do	oor 3 ELEV	ATION A	AND DATU	M: None				
DR	ILLING .	AGE	NCY: RGA Environmental, Inc.	DRILLER: Steve				DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Hand Auger						10/26 10:3		10/26/06 12:00
СО	MPLETI	ION	DEPTH: 3.0 FEET	BEDROCK DEPTH:	None	Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: None Encountered	NO. OF SAMPLES:	2 Soil				SJ	C	P.G. 7804
	DESCF DESCF					GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	0.0 to 0.6 ft Concrete			Slab			No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1		0.6 to 1.2 ft Fill		\ \ \	FILL					o groundwater ountered in the borehole.
	2		1.2 ft to 3.0 ft Grey-black san slightly moist. Moderate I Hydrocarbon (PHC)	Petroleum		СН				3.0 Borel neat c	ole terminated at 0 ft., 10/26/06. nole grouted with ement and a 4 in. e seal of concrete 10/18/06.
	3				— — — — — — — — — — — — — — — — — — —						
	4										
	5										
	6				=						

PAGE OF BORING NO.: B43 PROJECT NO.: 0304 PROJECT NAME: California Linen, Oakland, CA BORING LOCATION: Inside Laundry Sorting Area ELEVATION AND DATUM: DRILLING AGENCY: RGA Environmental, Inc. DRILLER: Steve DATE & TIME STARTED: DATE & TIME FINISHED: 10/27/06 10/27/06 DRILLING EQUIPMENT: COMPLETION DEPTH: FEET BEDROCK DEPTH: None Encountered LOGGED BY: CHECKED BY: DM GIBBS SJC FIRST WATER DEPTH: None Encountered P.G. 7804 NO. OF SAMPLES: 1 Soil WELL CONSTRUCTION LOG DEPTH(FT.) GRAPHIC COLUMN BLOW COUNT PER 6" PID **DESCRIPTION REMARKS** No Well Constructed 0.0 to 0.5 ft Concrete Slab Borehole hand augered to 1.3 ft. No groundwater 0.5 ft to 1.3 ft Brown sandy clay (FILL) with encountered in the brick dust and fill; slightly moist. No Petroleum FILL 1 borehole. Hydrocarbon (PHC) odor. Borehole terminated at 1.3 ft., 10/26/06. Borehole grouted with neat cement and a 4 in. surface seal of concrete 2 10/18/06. 3 5

во	RING N	IO.:	B44 PROJECT NO.: 0304 PROJECT N	AME:	California Linen, Oaklan	d, CA			
ВО	RING L	OCA	TION: Inside Laundry Sorting Area Main Entrance ELEVATION	AND DAT	UM: None				
DR	ILLING	AGE	NCY: RGA Environmental, Inc. DRILLER: Steve			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Hand Auger				10/27 12:0		10/27/06 13:00
СО	MPLET	ION	DEPTH: 3.0 FEET BEDROCK DEPTH: Non	Encounte	ered		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: None Encountered NO. OF SAMPLES: 2 So	l	1		SJ	C	P.G. 7804
	DEPTH(FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft Concrete Slab		No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1		0.5 ft to 1.8 ft Brown sandy clay (FILL); slightly moist. No Petroleum Hydrocarbon (PHC) odor.	FILL				Boreh 3.0 Boreh neat c	o groundwater countered in the borehole. nole terminated at 0 ft., 10/26/06. nole grouted with sement and a 4 in.
	2		1.8 ft to 3.0 ft Grey-black gravelly clay (FILL) with brick pieces and small stones; moist. No Petroleum Hydrocarbon (PHC) odor.	FILL				surfac	e seal of concrete 10/18/06.
	3								
- - - - - -	4	-	- - - - - -						
	5								
	6	_							

ВО	RING N	0.:	B45 PROJECT NO.: 0304 PROJECT N	AME:	California Linen, Oaklan	d, CA			
ВО	RING LO	OCA	TION: Northwest Corner of Property Inside Maintenance Shop ELEVATION	AND DAT	UM: None				
DR	ILLING	AGE	NCY: RGA Environmental, Inc. DRILLER: Steve			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Hand Auger				10/26 12:0		10/26/06 14:35
СО	MPLETI	ION	DEPTH: 3.0 FEET BEDROCK DEPTH: Non	Encount	ered		LOGGE		CHECKED BY: DM GIBBS
FIR	ST WA	TER	DEPTH: None Encountered NO. OF SAMPLES: 2 So				SJ	С	P.G. 7804
	DEPTH(FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
		O.0 to 0.5 ft Concrete Slab						Boreh	ole hand augered to 3.0 ft.
	1								o groundwater countered in the borehole.
	2		0.5 ft to 3.0 ft Brown sandy silt (ML); slightly moist. No Petroleum Hydrocarbon (PHC) odor.	ML				3.0 Borel neat c	nole terminated at 0 ft., 10/26/06. hole grouted with ement and a 4 in. se seal of concrete 10/18/06.
	3								
	4		- - - - -						
	5								
	6								

PAGE 1 OF 1

во	RING N	Ю.:	B46 PROJECT NO.: 0304 PROJECT N	AME:	California Linen, Oaklan	d, CA			
во	RING L	OCA	TION: Southwest Corner of Property Inside Maintenance Shop ELEVATION	AND DATU	JM: None				
			NCY: RGA Environmental, Inc. DRILLER: Steve			DAT	10/27		DATE & TIME FINISHED: 10/30/06
			DEPTH: 3.0 FEET BEDROCK DEPTH: None	Encounte	red		16:0 LOGGE		10:15 CHECKED BY:
FIR	IST WA	TER	DEPTH: None Encountered NO. OF SAMPLES: 2 Soil				SJ	С	DM GIBBS P.G. 7804
	DEPTH(FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.4 ft Concrete Slab		No Well Constructed			Boreh	ole hand augered
E			0.4 to 0.5 ft Fill 0.5 to 0.8 ft Concrete Slab	FILL				Ne	to 3.0 ft.
	1		0.8 ft to 1.2 ft Gray-black sandy silt (ML); moist. No Petroleum Hydrocarbon (PHC) odor.	ML					ountered in the borehole.
	2		1.2 ft to 2.0 ft Gray-black clay (CL); moist. No PHC odor.	CL				3.0 Borel neat c	ole terminated at 0 ft., 10/26/06. nole grouted with ement and a 4 in. e seal of concrete
	2		2.0 ft to 3.0 ft Gray-black clay w/ sand (CL); — moist. No PHC odor.	CL					10/18/06.
	3								
	4								
	5								
	6								

во	RING N	NO.:	B47 PROJECT NO.: 0304	PROJECT NA	ME: C	California Linen, Oaklan	d, CA			
во	RING L	_OCA	ATION: Southwest Corner of Building near B16	ELEVATION	AND DATU	M: None				
DR	ILLING	AGE	ENCY: RGA Environmental, Inc. DRILLER:	Steve			DAT		STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	JIPMENT: Hand Auger					10/30 10:2		10/30/06 10:40
СО	MPLET	TION	DEPTH: 3.0 FEET BEDROCK D	EPTH: None	Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIF		ATER	t DEPTH: None Encountered NO. OF SAM		.		SJ	C 	P.G. 7804	
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
		_	0.0 to 0.5 ft Concrete Slab			No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1									o groundwater countered in the borehole.
	2		0.5 ft to 3.0 ft Brown sandy silt (ML) with g dry. No Petroleum Hydrocarbon (PHC) o		ML				3. Borel neat c	nole terminated at 0 ft., 10/26/06. hole grouted with tement and a 4 in. the seal of concrete 10/18/06.
	3			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
	4			=======================================						
	5									
	6									

PAGE 1 OF

во	RING N	10.:	B48 PROJECT NO.: 0304 PROJ	ECT N/	ME: C	alifornia Linen, Oakland	d, CA			
во	RING L	OCA	TION: Northwest Corner of Property in Yard near MW-1 ELEV.	ATION .	AND DATU	M: None				
DR	ILLING	AGE	NCY: RGA Environmental, Inc. DRILLER: Steve				DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DR	ILLING	EQU	IPMENT: Hand Auger					10/30 10:2		10/30/06 10:40
			DEPTH: 3.0 FEET BEDROCK DEPTH:		Encountere	ed		LOGGE		CHECKED BY: DM GIBBS
FIR		TER	DEPTH: None Encountered NO. OF SAMPLES:	2 Soil					· · · · · · · · · · · · · · · · · · ·	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft Asphalt			No Well Constructed			Boreh	ole hand augered to 3.0 ft.
	1			¥ ≜					enc	o groundwater ountered in the borehole.
	2		0.5 ft to 3.0 ft Brown-black clay w/ sand (CL); slightly moist. No Petroleum Hydrocarbon (PHC) odor.		CL				3.0 Borel neat c	ole terminated at 0 ft., 10/26/06. nole grouted with ement and a 4 in. e seal of concrete
	2									10/18/06.
	3									
				₹ A						
	4									
				=						
	5									
	6									

 \vdash

ВО	RING N	10.:	E1 PROJECT NO.: 0304 PROJEC	T NA	ME: C	alifornia Linen, Oakland	d, CA			
ВО	RING L	OCA	TION: Inside Shop ELEVAT	ION A	ND DATU	M: None				
-			NCY: Gregg Drilling DRILLER: Vince/Nic	k			DAT	E & TIME 9/6/0	STARTED: 06	DATE & TIME FINISHED: 9/6/06
			DEPTH: 26.5 FEET BEDROCK DEPTH: 1	None	Encountere	ed		LOGGE	D BY:	CHECKED BY:
FIF	ST WA	TER	DEPTH: 13.0 FEET NO. OF SAMPLES: 4	Soil			<u> </u>	EF(0	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
E			0 to 4 in. Concrete Slab.4 in. to 1.0 ft Sand fill (SW). 1.0 ft to 1.5 ft Brick and concrete slab.	=				0		
E								0	Boreh	ole drilled using a
E	5							0		meter hollow stem auger.
								0		tter encountered at ft during drilling, 9/6/06.
			1.5 to 15.0 ft Gray sandy clay (CL); soft, moist. No Petroleum Hydrocarbon (PHC) odor.		CL			0		ole terminated at
	10	=		X				15	26	5.5 ft., 9/6/06.
						\sum		0		
E	15			=		=		0		
E	10		15.0 to 16.5 ft Gray sandy clay (CL) with coarse sand and orange mottling; soft, moist. No PHC odor.	X	CL			0		
								0		
E	20	\exists		=				0		
E			20.0 ft to 21.5 ft Brown sandy clay (CL); soft, moist. No PHC odor.	X	CL					
E								0		
E								0		reened 5 to 25 fbg.
E	25		25.0 ft to 26.5 ft Brown sandy clay (CL) with orange mottling; medium dense. No PHC odor.	X	CL			0	Ber Gr	and to 4 fbg. Itonite to 3 fbg. out to surface.
E				=					;	Sand: #2/12 4" PVC
	30	_								

PAGE 1 OF 1

во	RING N	Ю.:	E2 PROJECT NO.: 0	304 PROJ	ECT NA	AME: C	alifornia Linen, Oaklan	d, CA			
во	RING L	OCA ⁻	TION: Yard North of Former UST Location	ELEV	ATION A	AND DATUN	Л: None				
-			NCY: Gregg Drilling IPMENT: HSA M5T	DRILLER: Vince/	Nick			DAT	E & TIME 9/7/0 12:1		DATE & TIME FINISHED: 9/7/06 13:44
			DEPTH: 25.0 FEET	BEDROCK DEPTH:		Encountere	d		LOGGE		CHECKED BY: DM GIBBS
FIF		IER	DEPTH: 13.5 FEET	NO. OF SAMPLES:	4 Soil						P.G. 7804
	DEPTH(FT.)		DESCRIPT	ION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	5		Air-knifed to 8 fbg. N	o Recovery					0	8 fbg fo Boreh 10" dia First wa	tion air-knifed to or utility clearance. ole drilled using a meter hollow stem auger. ater encountered at ft during drilling, 9/7/06.
- - - - - - -	10		8.0 to 10.5 ft Gray clay (CL) to coarse sand; soft, moist, Strong Petroleum Hydroca 10.5 ft to 13.5 ft Red-brosand and some gray mott	medium plasticity. rbon (PHC) odor. wn clay (CL) with ling; moist to wet.	* _ X	CL	\		0 5.8 0	2! Water r in PV app	nole terminated at 5.0 ft., 9/7/06. measured at 14.6 ft C casing, 9/7/06, rox. 5 min. after oving auger from
- - -	15		13.5 ft to 15.0 ft Red-browith fine grained s	own clay (CL)		CL			0		borehole. reened 5 to 25 fbg. sand to 4 fbg.
	13		15.0 ft to 20.0 ft Red-br with fine grained sand;		X	CL			0	Ber Gr	ntonite to 3 fbg. out to surface. Sand: #2/12 4" PVC
	20		20.0 ft to 22.5 ft Red-brow medium to coarse grained		X 	CL			0		
 - - - - -	25		22.5 ft to 25.0 ft Red-brown c well graded fine to coar			CL			0		
 - - - - -	30										

PAGE 1 OF 1

во	RING N	10.:	E3 PROJECT NO.: 0304 PROJEC	T NA	ME: C	alifornia Linen, Oaklan	d, CA			
во	RING L	OCA	TION: Inside Building South of Loading Dock ELEVATI	ON A	AND DATUM	/i: None				
			NCY: Gregg Drilling DRILLER: Bryan/Tin	n			DAT	E & TIME 9/7/ 14:3		DATE & TIME FINISHED: 9/7/06 14:40
CC	MPLET	ION	DEPTH: 25.0 FEET BEDROCK DEPTH: N	lone	Encountere	d		LOGGE	D BY:	CHECKED BY:
FIF	RST WA	TER	DEPTH: 17.0 FEET NO. OF SAMPLES: 5	Soil				DM		P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
E		\exists	0.75' of concrete flooring	=				0.0		
			0.75 ft to 3.5 ft Black clayey sand (SC) with well graded fine to coarse sand; dry. No Petroleum Hydrocarbon (PHC) odor. Fill.		sc			1.4		ole drilled using a meter hollow stem auger.
F	_	=	3.5 ft to 5.5 ft Dark gray sand (SC) with well graded fine to coarse sand; dry. Mild PHC odor.		sc					ater encountered at
E	5	\exists		X				0.4	17.0	ft during drilling, 9/7/06.
- - - -								0.1	1	oole terminated at 5.0 ft., 9/7/06.
- - - - - - - - - - - - - - - - -	10		5.5 ft to 13.5 ft Gray-green clay (CL) with well graded fine to medium grained sand; dry. Mild PHC odor.	X	CL				Top Ben Gr	eened 10 to 25 fbg. of Sand: 9 fbg. stonite to: 7 fbg. out to surface. Sand: #2/12 4" PVC
<u>-</u>	15		13.5 ft to 17.0 ft Red-brown clay (CL) with well graded fine to medium grained sand and trace black clay; dry. No PHC odor.	_ X _	CL	∇		0		
E						=		0		
- - - - -	20		17.0 ft to 23.0 ft Red-brown clay (CL) with well graded fine to medium grained sand and trace black clay; wet. No PHC odor.	X	CL			0		
_ _ _	25		23.0 ft to 25.0 ft Red-brown clay (CL) with well graded fine to medium grained sand and trace black clay; dry. No PHC odor.		CL			0		
	30									

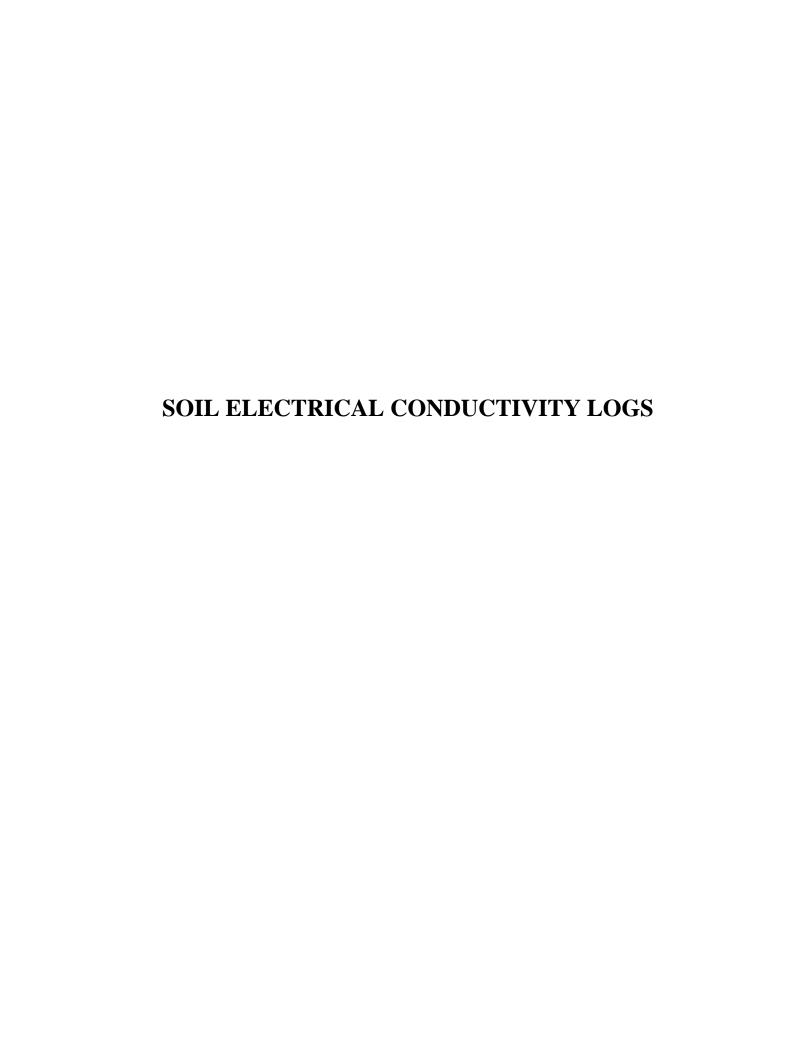
BORING N	:: E6 PROJECT NO.: 0304 PROJECT	CT NAME:	California Linen, Oaklar	nd, CA			
BORING LO	CATION: Loading Dock Area ELEVA	TION AND D	ATUM: None				
DRILLING AGENCY: Gregg Drilling DRILLER: Vinces DRILLING EQUIPMENT: HSA M5T				DAT	DATE & TIME STARTED: DATE & TIME FII 9/5/06 9/5/06		
COMPLET	ON DEPTH: 31.5 FEET BEDROCK DEPTH:	None Encou	untered		LOGGE		CHECKED BY:
FIRST WA	ER DEPTH: 10.0 FEET NO. OF SAMPLES:	5 Soil			EFO) 	P.G. 7804
DEPTH(FT.)	DESCRIPTION	GRAPHIC	COLUMN WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
5 10	Black silty clay (CL); soft, moist. No Petroleum Hydrocarbon (PHC) odor. Gray sandy clay (CL); soft, moist. Strong PHC odor. 10.0 to 11.5 ft Brown sandy clay (CL); medium stiff, moist. Moderate PHC odor.	X CI	L — — — —		0 0 0 278 0	First wa 10.0 Boreh 3' Water in PVC 9/5/0	ole drilled using a meter hollow stem auger. Inter encountered at ft during drilling, 9/5/06. Inter encountered at 1.5 ft., 9/5/06. Inter encountered at 4.5 ft., 9/5/06. Inter encountered at 7.9 ft casing, 4:15 p.m., 6, approx. 5 min. Interview of the stem of the s
15 15 	15.0 to 16.5 ft Gray sandy clay (CL) with coarse sand and orange mottling; soft, moist. No PHC odor.	X CI	L		0 0	Well screened 5 to 25 fbg Sand to 4 fbg. Bentonite to 3 fbg. Grout to surface. Sand: #2/12	
20	20.0 ft to 21.5 ft Brown sandy clay (CL); soft, moist. No PHC odor.	X CI	L		0		4" PVC
_ _ _ _ _ _ _ 25					0		
	25.0 ft to 26.5 ft Brown sandy clay (CL) with orange mottling; medium stiff, slightly moist. No PHC odor.	X CI	L		0		
30	(continued on page 2)				0		

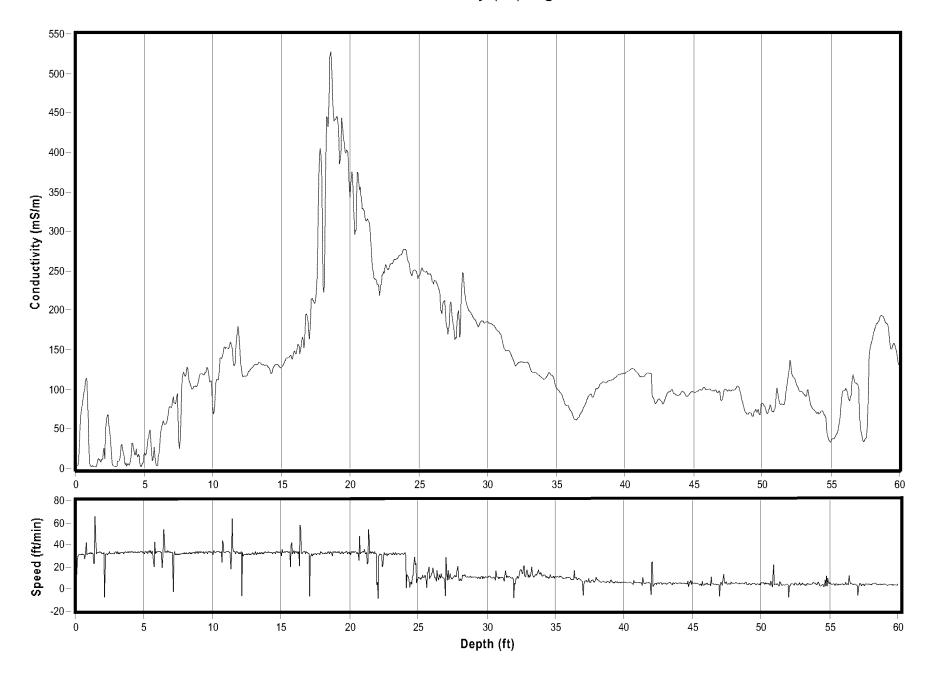
 \perp

PAGE 2 OF

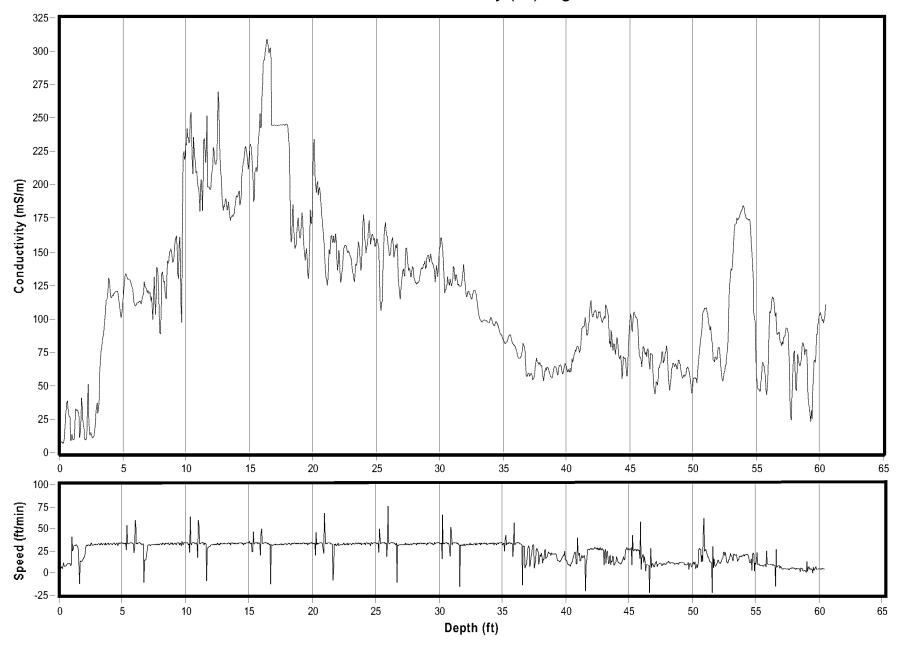
ВС	RING N	10.:	E6 PROJECT NO.: 0304	PROJECT	NAME: C	alifornia Linen, Oaklan	d, CA		
ВС	RING L	.OCA	TION: Loading Dock Area	ELEVATIO	ON AND DATU	M: None			
DRILLING AGENCY: Gregg Drilling DRILLER: Vince/Nick					DAT	E & TIME S 9/5/06	DATE & TIME FINISHED: 9/5/06		
			IPMENT: HSA M5T						
			DEPTH: 31.5 FEET	BEDROCK DEPTH: No		ed		LOGGED EFO	CHECKED BY: DM GIBBS
FIF		TER	DEPTH: 10.0 FEET	NO. OF SAMPLES: 5 S	Soil		ļ ,	1	P.G. 7804
	DEPTH(FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID	REMARKS
E			30.0 ft to 31.5 ft Brown sandy clay mottling; medium stiff, slightly mois	(CL) with orange st. No PHC odor.	CL				
	5								
E									
	10	-			 				
					_ _ _ _				
	15								
	20				- - - -				
_ _ _ _	25								
	30	_							

_

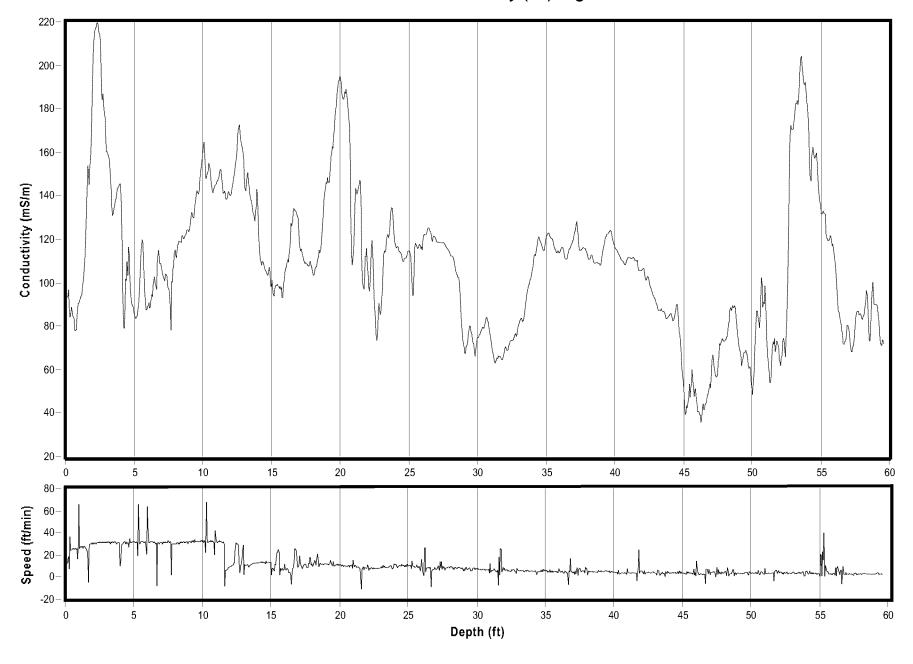

PAGE 1 OF 1

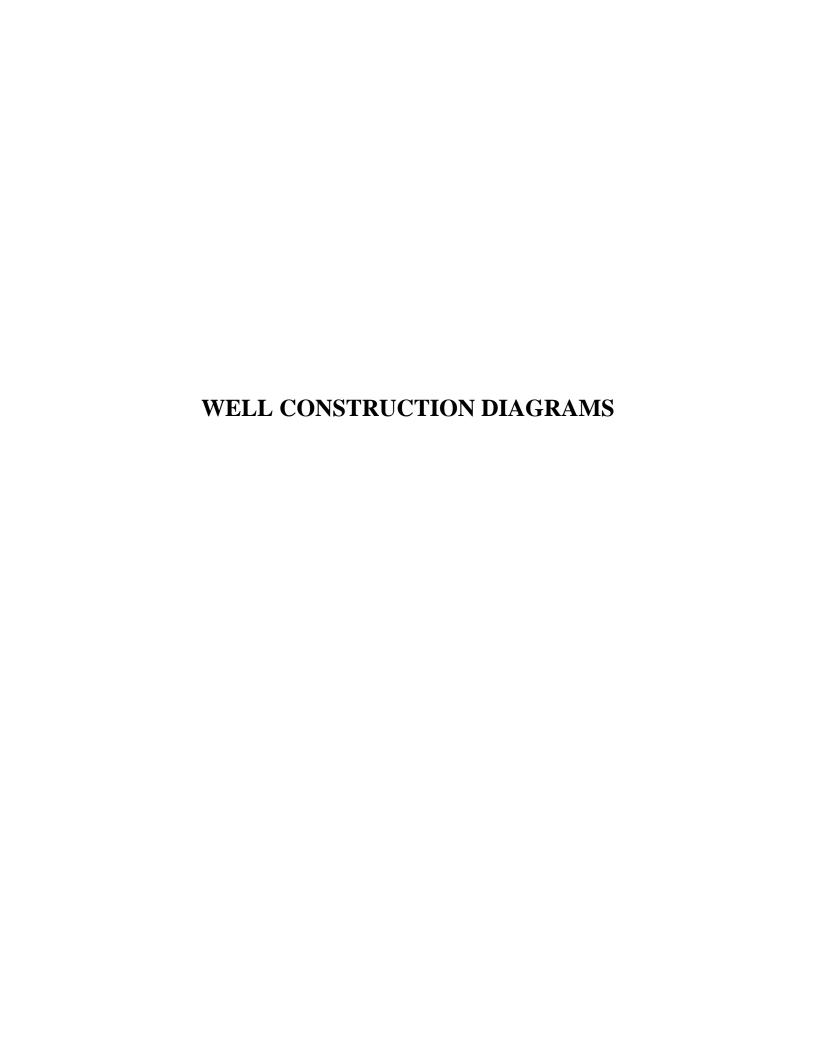

BORING N	10.:	E7 PROJECT NO.: 0304 PROJEC	T NA	ME: C	alifornia Linen, Oakland	l, CA					
BORING LO	OCA	TION: Inside Building Southeast of Loading Dock ELEVAT	ION A	ND DATU	M: None						
DRILLING AGENCY: Gregg Drilling DRILLER: Vince/Nick DRILLING EQUIPMENT: HSA M5T						DATE & TIME STARTED: DATE & TIME FINISHED: 9/7/06 9/7/06 08:15 11:15					
COMPLET	ION	DEPTH: 30.5 FEET BEDROCK DEPTH: I	None	Encountere	ed		LOGGE		CHECKED BY:		
FIRST WA	TER	DEPTH: 15.5 FEET NO. OF SAMPLES: 5	Soil				DM	G	DM GIBBS P.G. 7804		
DEPTH(FT.)		DESCRIPTION		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS		
-		Concrete flooring to 0.5 fbg. Fine grained sand w/ silt (fill) to 1.0 fbg. Brick fragments, charcoal wood to 1.5 fbg. 1.5 ft to 7.0 ft Deep Brown clay (CL) with fine to		FILL					ole drilled using a meter hollow stem auger.		
_ _ 5 _		medium grained sand; moist. No Petroleum Hydrocarbon (PHC) odor.	=	CL				First water encountered at 15.5 ft during drilling, 9/7/06.			
_ _ _ _ _ 10		7.0 ft to 10.0 ft Deep-brown clay (CL) with coarse grained sand and some black mottling; moist. No PHC odor		CL				30 Well sc	Borehole terminated at 30.5 ft., 9/7/06. Well screened 5 to 25 fbg. Filter Pack to : 4 fbg.		
- - - -		10.0 ft to 12.5 ft Red-brown clay (CL) with coarse grained sand and some black mottling; plastic, moist. No PHC odor	X	CL			0.0	Ben Gr	itonite to: 2 fbg. out to surface. Sand: #2/12		
_ _ _ _ 15		12.5 ft to 15.5 ft Red-brown clay (CL) with trace coarse sand and trace tan-gray mottling in clay; medium plasticity. No PHC odor.	X	CL	∇		0.0		4" PVC		
- - - -		15.5 ft to 23.5 ft Well graded silty clayey sand			÷						
20	(SW-SM) with fine to coarse grained sand;		X -	SW-SM			0.0				
25 25 		23.5 ft to 30.5 ft Brown sandy clay (CL) with fine to coarse grained sand and trace gravel; tight, dry to moist. No PHC odor.	X	CL			0.0				
= 30			X								

BORING	NO.:	I1	PROJECT NO.: 0304	PROJ	ECT NA	ME: C	alifornia Linen, Oaklan	d, CA			
BORING	LOCA	TION: Inside Shop		ELEV	ATION A	AND DATU	M: None				
-	DRILLING AGENCY: Gregg Drilling DRILLER: Vince/Nick DRILLING EQUIPMENT: HSA M5T				DATE & TIME STARTED: DATE & TIME FINISHED: 9/6/06 9/6/06						
COMPLE	TION	DEPTH: 26.5	FEET	BEDROCK DEPTH:	None	Encountere	ed		LOGGE		CHECKED BY:
FIRST W	ATER	DEPTH: 13.0	FEET	NO. OF SAMPLES:	4 Soil				EF:	0	P.G. 7804
DEPTH(FT.)			DESCRIPTION			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			crete Slab. 4 in. to o 1.5 ft Brick and c			SW			0		ole drilled using a
E										10" dia	meter hollow stem auger.
_ _ 5									0		tter encountered at ft during drilling,
									0		9/6/06. ole terminated at
E									7	26	6.5 ft., 9/6/06.
10		gravel; med	Gray/Brown silty s lium dense, wet. N	o Petroleum	X	SM			0	Well screened 5 to 25 fbg Sand to 4 fbg. Bentonite to 3 fbg.	
		Нус	drocarbon (PHC) o	dor.	/		\sum		13	Gr	out to surface. Sand: #2/12
_ _ _ _ 15					=		=		0		4" PVC
		15.0 to 16.5 ft B	rown clay (CL); med No PHC odor.	dium stiff, moist.	X	CL			0		
E									0		
20			5 ft Brown silty sand (X	SM			0		
		de	ense, wet. No PHC od	lor.		CIVI			0		
_ _ _									0		
- 25			6.5 ft Brown sandy cla ing; medium dense. N		X	CL			0		
<u>-</u>									0		
30									0		


ВО	RING N).: I2	PROJECT NO.: (9304 PROJE	CT NA	ME: Ca	alifornia Linen, Oaklan	d, CA			
ВОІ	RING LO	CATION: Slant E	oring Beneath Loading Dock	ELEVA	TION A	AND DATUM	1: None				
-	DRILLING AGENCY: Gregg Drilling DRILLER: Vince/Nick DRILLING EQUIPMENT: HSA M5T						DATE & TIME STARTED: DATE & TIME FINISHED: 9/7/06 9/7/06 08:30 12:25				
COI	MPLETI	ON DEPTH: 28	.0 FEET	BEDROCK DEPTH:	None	Encountere	d		LOGGE		CHECKED BY:
FIR	ST WAT	ER DEPTH: 15	.0 FEET	NO. OF SAMPLES:	6 Soil				DM	G	P.G. 7804
	DEPTH(FT.)		DESCRIPT	ΓΙΟΝ		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
		0 to 1.5 f	t Deep brown silty	sand (SM) (Fill); dry	_	SM			0.0	from inte	completed 14.5 feet ended location on a
	5	1.5 ft to 7	7.5 ft Gray-green s , dry. Strong Petro (PHC) odd	andy clay (CL); low leum Hydrocarbon or.		CL			2.4	Boreh	om vertical slant. ole drilled using a meter hollow stem auger.
	J	7.5 ft to 8.5 ft Gray-green and red-brown clay (CL)	X				7.8		tter encountered at ft during drilling, 9/7/06.		
	10		with well graded fine to medium grained sand. Strong PHC odor.	CL			12.2		ole terminated at 3.0 ft., 9/7/06.		
	- 10 - - -			sw-sc			4.0	Well screened 22 to 27 fbg. Sand to : 21 fbg. Bentonite to: 19 fbg.			
	15			sandy clay (CL) with ughout; moist. Strong vr.		CL	\searrow		4.8	Grout to surface. Sand: #2/12 2" PVC	
		15.0 ft to 2	20.0 ft Red-brown s Slight PHC	sandy clay (CL); wet. odor.	A	CL	-		1.4		
	20				_ _ X				0.0		
		20.0 ft to 2	4.5 ft Red-brown s to wet. No PH	andy clay (CL); mois C odor.	t -	CL					
	25	24.5 ft to :	27.0 ft Red-brown on PHC of	sandy clay (CL); wet. dor.	X	CL			0.0		
E		27.0 ft to 28	.0 ft Red-brown clay	(CL); dry. No PHC odor.	X	CL			0.0		
E	30	_									

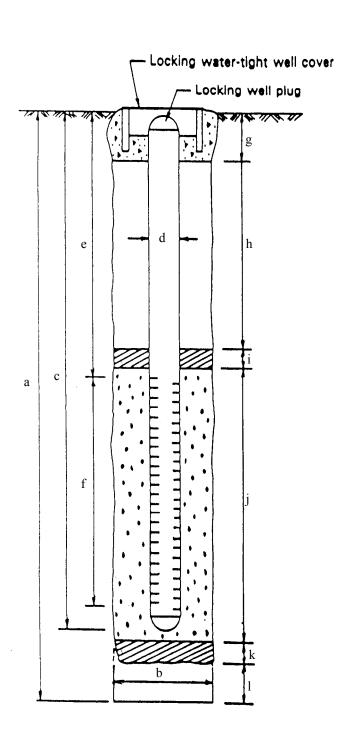
 \perp





Electrical Conductivity (EC) Log B26

Electrical Conductivity (EC) Log B32



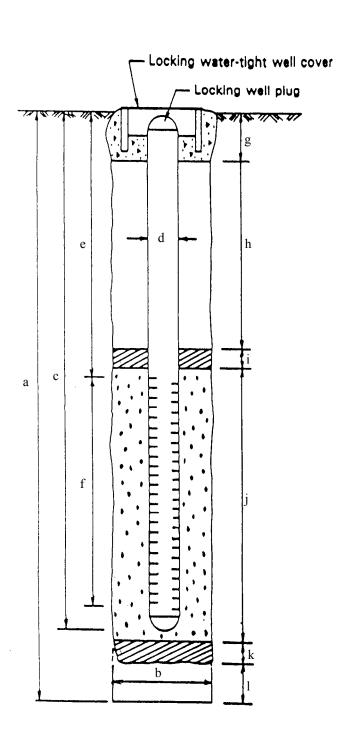
1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NO. <u>E</u>	<u>.1 </u>
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. <u>Unknown</u>	
COUNTY	Alameda	GROUND SURFACE ELEVATION_	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

a.	Total depth	25	_ft.
b.	Diameter	10	_in.
	Drilling method Hollow Stem A	uger	
	WELL CONSTRUCTION		
C.	Casing length	25	ft.
d.	Material Schedule 40 PVC		
d.	Diameter	4	in.
e.	Depth to top of perforations	10	ft.
f.	Perforated length	15	ft.
	Perforated interval from 10 to	25	5 ft.
	Perforation typefactory slot		
	Perforation size 0.020 in.		
g.	Surface sanitary seal	1	ft.
	Seal material Type I-II Cer	nent	
h.	Sanitary seal	7	ft.
	Seal material Type I-II Ce	ment	
i.	Filter pack seal	2	ft.
	Seal material Bentonite		
j.	Filter pack length	15	<u>ft</u> .
	Filter pack interval from 10 to	25	ft.
	Pack material #2/12 sand		
k.	Bottom seal		ft.
	Seal mateial None		


I. Sluff in bottom of borehole

0 ft.

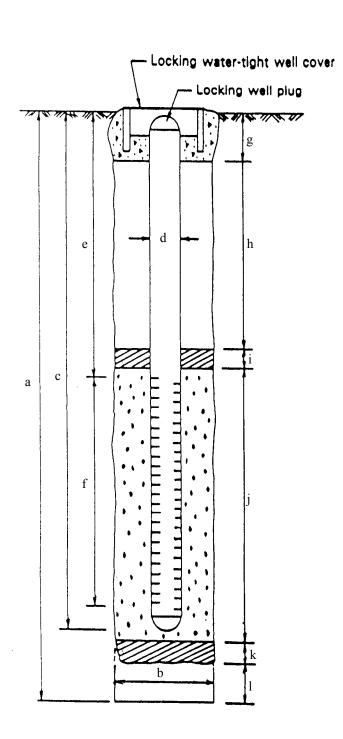
1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NO. <u>E</u>	.2
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. Unknown	
COUNTY	Alameda	GROUND SURFACE ELEVATION_	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

a.	Total depth	25	_ft.
b.	Diameter	10	in.
	Drilling method Hollow Stem Au	ıger	
	WELL CONSTRUCTION		
C.	Casing length	25	ft.
d.	Material Schedule 40 PVC		
d.	Diameter	4	in.
e.	Depth to top of perforations	5	ft.
f.	Perforated length	20	ft.
	Perforated interval from <u>5</u> to	25	ft
	Perforation type <u>factory slot</u>		
	Perforation size 0.020 in.		
g.	Surface sanitary seal	1	ft.
	Seal materialType I-II Cen	nent	
h.	Sanitary seal	2	ft.
	Seal material Type I-II Cer	nent	
i.	Filter pack seal	1_	ft.
	Seal material Bentonite		
j.	Filter pack length	21	ft.
	Filter pack interval from 4 to	25	ft.
	Pack material #2/12 sand		
k.			ft.
	Seal mateial None		


I. Sluff in bottom of borehole

0 ft.

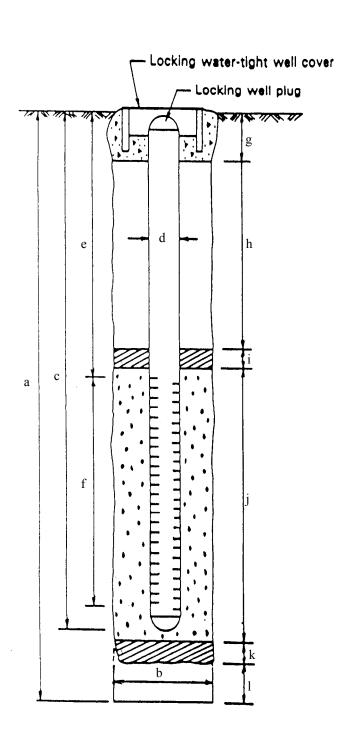
1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NO. E	3
PROJECT NAME California	ornia Linen	TOP OF CASING ELEV. Unknown	
COUNTY	Alameda	GROUND SURFACE ELEVATION_	Unknown
WELL DEDMIT NO	W2006 0760	DATUM	None

EXPLORATORY BORING

	EXPLORATORT BURING		
a.	Total depth	25	ft.
b.	Diameter	10	in.
	Drilling method Hollow Stem Au	iger	
	WELL CONSTRUCTION		
C.	Casing length	15	ft.
d.	Material Schedule 40 PVC		
d.	Diameter	4	in.
e.	Depth to top of perforations	10	ft.
f.	Perforated length	15	ft.
	Perforated interval from to	25	ft
	Perforation type <u>factory slot</u>		
	Perforation size 0.020 in.		
g.	Surface sanitary seal	1	ft.
	Seal material Type I-II Cem	nent	
h.	Sanitary seal	6	ft.
	Seal material Type I-II Cen	nent	
i.	Filter pack seal	1	ft.
	Seal material Bentonite		
j.	Filter pack length	16	ft.
	Filter pack interval from 9 to	25	ft.
	Pack material #2/12 sand		
k.	Bottom seal	0	ft.
	Seal mateial None		


I. Sluff in bottom of borehole

0 ft.

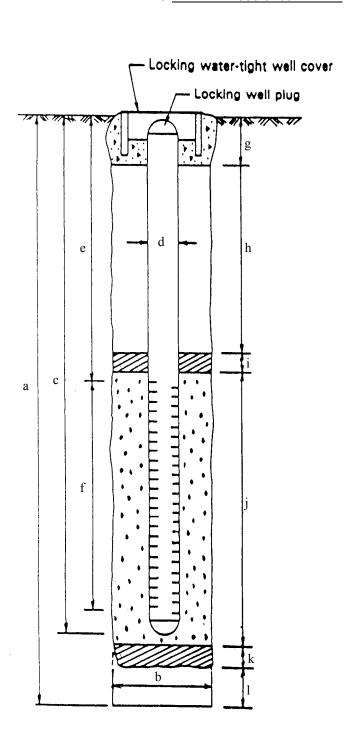
1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NOE	6
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. Unknown	ı
COUNTY	Alameda	GROUND SURFACE ELEVATION	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

	EXPLORATORY BORING		
a.	Total depth	30	ft.
b.	Diameter	10	in.
	Drilling method Hollow Stem Au	iger	
	WELL CONSTRUCTION		
C.	Casing length	15	ft.
d.	Material Schedule 40 PVC		
d.	Diameter	4	in.
e.	Depth to top of perforations	5	ft.
f.	Perforated length	15	ft.
	Perforated interval from <u>5</u> to _	20	ft.
	Perforation type <u>factory slot</u>		
	Perforation size 0.020 in.		
g.	Surface sanitary seal	1	ft.
	Seal material Type II-V Cement		
h.	Sanitary seal	2	ft.
	Seal material Type II-V Cement		
i.	Filter pack seal	1	ft.
	Seal material Bentonite		
j.	Filter pack length	15	ft.
	Filter pack interval from <u>5</u> to	20	ft.
	Pack material #2/12 sand		
k.	Bottom seal	4	ft.
	Seal mateial Bentonite		


I. Sluff in bottom of borehole

<u>0 ft.</u>

1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

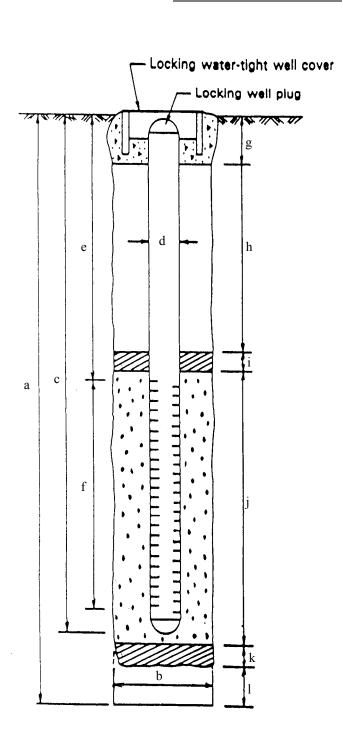
PROJECT NUMBER	0304	BORING/WELL NOE	:7
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. Unknown	
COUNTY	Alameda	GROUND SURFACE ELEVATION_	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

a.	Total depth	<u>30.5</u> ft.								
b.	Diameter	<u>10_</u> in.								
	Drilling method	Hollow Stem Auger								
WELL CONSTRUCTION										
C.	Casing length	25_ft.								

C.	Casing length	<u>25 ft.</u>
d.	Material Schedule 40 PVC	
d.	Diameter	4 in.
e.	Depth to top of perforations	5 ft.
f.	Perforated length	20_ft.
	Perforated interval from <u>5</u> to _	25 ft.
	Perforation typefactory slot	
	Perforation size 0.020 in.	
g.	Surface sanitary seal	<u>1 ft.</u>
	Seal material Type I-II Cement	
h.	Sanitary seal	<u>1 ft.</u>
	Seal materialType I-II Cement	
i.	Filter pack seal	2 ft.
	Seal material Bentonite	
j.	Filter pack length	<u>21 ft</u> .
	Filter pack interval from 4 to	25_ft.
	Pack material #2/12 sand	
k.	Bottom seal	5.5 ft.

Seal material Bentonite


0 ft.

I. Sluff in bottom of borehole

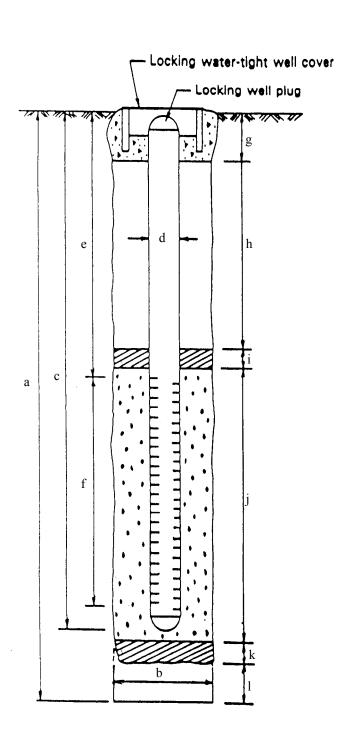
1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NO. 11	
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. Unknown	
COUNTY	Alameda	GROUND SURFACE ELEVATION_	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

	EXPLORATORY BORING		
a.	Total depth	<u>25</u> f	t.
b.	Diameter	<u>8</u> i	n.
	Drilling method Hollow Stem Au	ıger	
	WELL CONSTRUCTION		
C.	Casing length	5 f	<u>t.</u>
d.	Material Schedule 40 PVC		
d.	Diameter	2 i	<u>n.</u>
e.	Depth to top of perforations	17.5	ft.
f.	Perforated length	5 f	<u>t.</u>
	Perforated interval from 17.5 to	22.5	ft.
	Perforation type <u>factory slot</u>		
	Perforation size 0.020 in.		
g.	Surface sanitary seal	1	ft.
	Seal material Type I-II Cement		
h.	Sanitary seal	13	ft.
	Seal material Type I-II Cement		
i.	Filter pack seal	2	ft.
	Seal material Bentonite		
j.	Filter pack length	5	<u>ft</u> .
	Filter pack interval from 17.5 to	22.5	<u>ft</u> .
	Pack material #2/12 sand		
k.	Bottom seal	2	ft.
	Seal mateial Bentonite		


I. Sluff in bottom of borehole

___0 ft.

1466 66th St. Emeryville, CA 94608 (510) 658-4363

WELL CONSTRUCTION DIAGRAM

PROJECT NUMBER	0304	BORING/WELL NO. 12	2
PROJECT NAME Califo	ornia Linen	TOP OF CASING ELEV. Unknown	
COUNTY	Alameda	GROUND SURFACE ELEVATION	Unknown
WELL PERMIT NO	W2006-0760	DATUM	None

EXPLORATORY BORING

a.	Total depth	<u>28</u> ft.
b.	Diameter	8_in.
	Drilling method	Hollow Stem Auger on
		30° Angle from Vertical

WELL CONSTRUCTION

C.	Casing length	<u>5 ft.</u>
d.	Material Schedule 40 PVC	
d.	Diameter	2 in.
e.	Depth to top of perforations	ft.
f.	Perforated length	5 ft.
	Perforated interval from 22 to	27 ft.
	Perforation typefactory slot	
	Perforation size 0.020 in.	
g.	Surface sanitary seal	1 ft.
	Seal material Type I-II Cement	
h.	Sanitary seal	<u>18 ft.</u>
	Seal material Type I-II Cement	
i.	Filter pack seal	2 ft.
	Seal material Bentonite	
j.	Filter pack length	<u>6 ft</u> .
	Filter pack interval from 21 to	<u>27 ft</u> .
	Pack material #2/12 sand	
k.	Bottom seal	<u>1 ft.</u>
	Seal mateial Bentonite	
I.	Sluff in bottom of borehole	0 ft.

*Note: All values measured along the length of the borehole.

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

BOREHOLE B18 - B32 SOIL RESULTS

Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

	au. King@rgac							1 1 2		•				-	_ / 1
PROJECT NUMBER	•	f		NAME:				T	·· /		7	7		PAG	E(_ OF1_
6304					Gren.				ES)	Z,	//	/ /		' ,, /	
SAMPLED BY: (PR	INTED AND	SIGNA	TURE 17	101104	Civer.		FS	1 0	5/2		/ /		/ /	2 /	1
Eric Ol	can C	7	4				NUMBER OF CONTAINERS	Air A	Malas(ES).		/ /		///	SERVA DVE	REMARKS
		1		T			MBE	₹/	7	DY	//	/ /		7	NEWINGOS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOC	CATION	30	1/5		3	/ /		/ 4		
B18-10,0	8-10-06		Soil				1	X	12		-	f	TCE	Manuel	T 1
B18-15.0	и		11				1	×	K	\vdash	+	-	11	Normal	Turnaround
B18-19.5	11		l)	1	V				1 .1		/(
B19-10,0	1(11				1	X	~					11	//
B19-15.0	n		i i					12			+	-	1	/1	1,
B19-20,0	h		11				1	1	\times		+	-	1,	1,	1
B20-7.0	n		41				1		X	-			11	/)	1
B20-10-0	1		J ₁				1	_	X	\dashv			1	/(11
B20-15.6	7		11					×	X	_			4	-406	- D B NOME
B20-20,0	2		1,				(X	X	_			4	Norma	(TUVNO 10 END
B22-10-0	1		31					×	×				1	11	1,
BZZ-15.0	1))	-			(X	X	\perp			1	h	11
B22-20.0	4		4					14	X				1,	//	4
B23-10-0	1,		1,					X	X				7	11	1
B23-15:0	/1		1					X	X				9	4	1
1323-200	7		11				1	X	XI.) te		'(
RELINQUISHED BY: (DATE	TIME	DECEMEN ST			X	X				1/	4	h
G # 8/2	,	A		245	RECEIVED BY:	(SIGNATURE)	-	(Th	HIS SH	OF SAM	2	16	LABO	RATORY:	
RELINQUISHED BY: (SIGNATURE)	9	DATE	TIME				TOTAL (TH	NO. 0	F CONT	AINERS	16	Me	Court	U Analytical
		1		(41)		(SIGNATURE)					CON		LABO	RATORY PHO	ONE NUMBER
RELINQUISHED BY:	CIONA TUDE)	ON	1196	10		Men		AC	951	61	Cul	1/10	(97	57252	97/7
TECHNOLOGIED BIS	SIGNA TURE)		DATE	TIME	RECEIVED FOR	LABORATORY I	3Y:	1		SAMI	PLE A	NAL	YSIS REI	QUEST SHEE	T
		1			(SIGNATURE)	TOTALO MARANTA				AT	TACHE	D: ()YES	(NO	
					REMARKS:	GOOD CONDIT	ION		AP	PROPI	RIATE	/			
						HEAD SPACE A DECHLORINAT	BSENT ED IN LAI	B	CO	NTAIN	ERS_	AR			1
						PRESERVATIO	WOAR I		M	ETALS	OTHER				
							-								■

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

08/11/2006

Date Received:

EDF: NO WorkOrder: 0608285 ClientID: RGAE

Report to:		Bill to:	Requested TAT:	5 days
Fric Olson	Fmail·	Accounts Pavable		

RGA Environmental TEL: FAX: (510) 547-1983 (510) 547-7771 **RGA Environmental** ProjectNo: #0304; California Liner

1466 66th Street 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 08/11/2006

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0608285-001	B18-10.0	Soil	8/10/06		Α	Α										
0608285-002	B18-15.0	Soil	8/10/06		Α	Α										
0608285-003	B18-19.5	Soil	8/10/06		Α	Α										
0608285-004	B19-10.0	Soil	8/10/06		Α	Α										
0608285-005	B19-15.0	Soil	8/10/06		Α	Α										
0608285-006	B19-20.0	Soil	8/10/06		Α	Α										
0608285-007	B20-7.0	Soil	8/10/06		Α	Α										
0608285-008	B20-10.0	Soil	8/10/06		Α	Α										
0608285-009	B20-15.0	Soil	8/10/06		Α	Α										
0608285-010	B20-20.0	Soil	8/10/06		Α	Α										
0608285-011	B22-10.0	Soil	8/10/06		Α	Α										
0608285-012	B22-15.0	Soil	8/10/06		Α	Α										
0608285-013	B22-20.0	Soil	8/10/06		Α	Α										
0608285-014	B23-10.0	Soil	8/10/06		Α	Α										
0608285-015	B23-15.0	Soil	8/10/06		Α	Α										

Test Legend:

1	G-MBTEX_S	2 TPH(DMO)_S	3	4	5
6		7	8	9	10
11		12			

Prepared by:	Rosa	Venegas
--------------	------	---------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

RGA Environmental

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

WorkOrder: 0608285

Bill to:

ClientID: RGAE

EDF: NO

Requested TAT:

Report to:

Eric Olson Email:

TEL: (510) 547-7771

FAX: (510) 547-1983

Accounts Payable RGA Environmental

1466 66th Street Proje Emeryville, CA 94608 PO:

ProjectNo: #0304; California Liner

1466 66th Street Emeryville, CA 94608 *Date Received:* 08/11/2006

Date Printed: 08/11/2006

				Requested Tests (See legend below)													
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1		2	3	4	5	6	7	8	9	10	11	12
0608285-016	B23-20.0	Soil	8/10/06		Α		Α										

Test Legend:

1	G-MBTEX_S	2 TPH(DMO)_S	3	4	5
6		7	8	9	10
11		12			

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Web: www.mccampbell.com
Telephone: 877-252-92

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California Liner	Date Sampled: 08/10/06
1466 66th Street		Date Received: 08/11/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/11/06
2, 6.17.1000	Client P.O.:	Date Analyzed: 08/12/06-08/13/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0608285 MTBE Toluene Ethylbenzene Xylenes DF Lab ID Client ID Matrix TPH(g) Benzene % SS 001A S ND B18-10.0 ND ND ND ND ND 1 96 002A B18-15.0 S ND ND ND ND ND ND 1 94 003A B18-19.5 S ND ND ND ND ND ND 1 80 004A B19-10.0 S ND ND ND ND ND ND 85 S 005A B19-15.0 ND ND ND ND ND ND 85 S ND 006A B19-20.0 ND ND ND ND ND 93 007A B20-7.0 S 14,g ND ND ND ND ND 84 008A B20-10.0 S ND ND ND ND ND 92 3.2,g009A B20-15.0 S ND ND ND ND ND ND 90 010A B20-20.0 S 41,g,m ND ND ND ND ND 91 S 011A B22-10.0 ND ND ND ND ND ND 82 012A B22-15.0 S ND ND ND ND ND ND 83 013A B22-20.0 S ND ND ND ND ND ND 95 014A B23-10.0 S ND ND ND ND ND ND 82 015A S ND B23-15.0 ND ND ND ND 2.2,g,m88 016A B23-20.0 S ND ND ND ND ND ND 85 Reporting Limit for DF = 1; W NA NA NA NA NA NA ug/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe,	,
product/oil/non-aqueous liquid samples in mg/L.	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California Liner	Date Sampled:	08/10/06
1466 66th Street	Liner	Date Received:	08/11/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted:	08/11/06
2, 6.17.1000	Client P.O.:	Date Analyzed	08/12/06-08/16/06

]	Diesel (C10-23) and Oil (C18+) Range Extra	actable Hydrocarbo	ns as Diesel and Motor Oil*			
Extraction method: SW3.	550C	Analytical me	thods: SW8015C	Wor	k Order: 0	608285	
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0608285-001A	B18-10.0	S	ND	ND	1	89	
0608285-002A	B18-15.0	S	ND	ND	1	86	
0608285-003A	B18-19.5	S	ND	ND	1	87	
0608285-004A	B19-10.0	S	ND	ND	1	90	
0608285-005A	B19-15.0	S	ND	ND	1	92	
0608285-006A	B19-20.0	S	1.4,g	26	1	110	
0608285-007A	B20-7.0	S	130,a,g	56	1	91	
0608285-008A	B20-10.0	S	31,a	15	1	91	
0608285-009A	B20-15.0	S	2.1,a	ND	1	87	
0608285-010A	B20-20.0	S	330,a,g	130	1	89	
0608285-011A	B22-10.0	S	2.8,g,b	6.9	1	91	
0608285-012A	B22-15.0	S	ND	ND	1	87	
0608285-013A	B22-20.0	S	ND	ND	1	91	
0608285-014A	B23-10.0	S	3.5,g	47	1	104	
0608285-015A	B23-15.0	S	1.2,d	ND	1	102	
0608285-016A	B23-20.0	S	1.9,g,b	12	1	94	
*	ng Limit for DF =1;	W	NA	NA	ug/L		
	ns not detected at or the reporting limit	S	1.0	5.0	mg	/Kg	

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg , product/oil/non-aqueous liquid samples in
mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

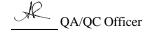
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608285

EPA Method SW8015C	E	xtraction	SW3550	С	Batch	nID: 23173	}	Spiked Sample ID 0608274-023A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	SD LCS-LCSD Acceptance		ce Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	ND	20	98.6	96.6	1.98	95.7	96.2	0.525	70 - 130	70 - 130	
%SS:	109	50	92	88	4.90	90	89	1.87	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23173 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608285-001A	8/10/06	8/11/06	8/15/06 5:35 AM	0608285-002A	8/10/06	8/11/06	8/15/06 6:41 AM
0608285-003A	8/10/06	8/11/06	8/15/06 7:46 AM	0608285-004A	8/10/06	8/11/06	8/13/06 4:20 AM
0608285-005A	8/10/06	8/11/06	8/13/06 5:26 AM	0608285-006A	8/10/06	8/11/06	8/16/06 1:52 PM
0608285-007A	8/10/06	8/11/06	8/13/06 8:44 AM	0608285-008A	8/10/06	8/11/06	3/13/06 10:57 AM
0608285-009A	8/10/06	8/11/06	8/16/06 4:29 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

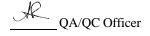
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608285

EPA Method SW8021B/8015	Cm E	xtraction	SW5030	В	Batch	nID: 23179)	Spiked Sa	Sample ID 0608292-002A		
Analyte	Sample	Spiked	ed MS MSD		MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	0.60	114	106	7.57	117	116	0.868	70 - 130	70 - 130	
MTBE	ND	0.10	85.7	81.1	5.52	81.5	87.1	6.66	70 - 130	70 - 130	
Benzene	ND	0.10	105	102	3.32	105	108	2.86	70 - 130	70 - 130	
Toluene	ND	0.10	105	101	3.19	104	108	3.23	70 - 130	70 - 130	
Ethylbenzene	ND	0.10	110	106	3.72	109	112	2.10	70 - 130	70 - 130	
Xylenes	ND	0.30	113	110	2.99	110	110	0	70 - 130	70 - 130	
%SS:	82	0.10	84	87	3.51	92	85	7.91	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23179 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608285-001A	8/10/06	8/11/06	8/12/06 10:16 PM	0608285-002A	8/10/06	8/11/06	8/12/06 10:48 PM
0608285-003A	8/10/06	8/11/06	3/13/06 12:26 AM	0608285-004A	8/10/06	8/11/06	3/13/06 12:59 AM
0608285-005A	8/10/06	8/11/06	8/13/06 2:04 AM	0608285-006A	8/10/06	8/11/06	8/13/06 2:36 AM
0608285-007A	8/10/06	8/11/06	8/13/06 4:45 AM	0608285-008A	8/10/06	8/11/06	8/13/06 5:17 AM
0608285-009A	8/10/06	8/11/06	8/13/06 5:49 AM	0608285-010A	8/10/06	8/11/06	8/13/06 6:53 AM
0608285-011A	8/10/06	8/11/06	8/13/06 6:21 AM	0608285-012A	8/10/06	8/11/06	8/13/06 3:21 PM
0608285-013A	8/10/06	8/11/06	8/13/06 7:58 AM	0608285-014A	8/10/06	8/11/06	8/13/06 3:55 PM
0608285-015A	8/10/06	8/11/06	8/13/06 5:36 PM	0608285-016A	8/10/06	8/11/06	8/13/06 7:50 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

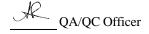
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608285

EPA Method SW8015C	E	xtraction	SW3550	С	Batch	nID: 23183	}	Spiked Sample ID 0608285-016A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCSD LCS-LCSD Acceptan		ance Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	1.9	20	94.6	92.7	1.83	101	102	0.898	70 - 130	70 - 130	
%SS:	94	50	98	96	1.99	98	99	0.164	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23183 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608285-010A	8/10/06	8/11/06	8/13/06 1:13 PM	0608285-011A	8/10/06	8/11/06	8/13/06 2:21 PM
0608285-012A	8/10/06	8/11/06	8/13/06 4:37 PM	0608285-013A	8/10/06	8/11/06	8/13/06 5:45 PM
0608285-014A	8/10/06	8/11/06	3/16/06 10:10 AM	0608285-015A	8/10/06	8/11/06	8/16/06 6:45 AM
0608285-016A	8/10/06	8/11/06	8/12/06 9:42 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

Pgal 0608261

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:		1	ROJECT Col, s		inen.		1, 10	10/0/	See Si	//	1	//	TVE	
SAMPLED BY: (PR			URE)	On			NUMBER OF CONTAINERS	ANAL YSICK	No.	///	//	PRESERVIT	7	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCA	TION	CON	12	7-1	//	//	4		
B24-10:0	8-9-06		Soil				1	X	V			TCE	Norma	1 Turnaran
B24-15.0	11		11					X	>			1	11	4
B24-2010	11		t				1	X	X			11	1,	1
B25-10.0	/1		11					X	X			11		1,
B25-15,0	11		-11	of a maller state			1	X	X			11	7	1
B25-22.0	11		٠,	Share some			l	X	x			11	11	_/,
B27-10,0	'1		4				1	X	X			11.	4	'(
B27-15.0	u		12				1	义	X			11	~	, 1,
B27-22.0	/1						l	X	X			11	1	1,
				/	, ,									
			HEAD	CONDITION SPACE ABSE LORINATED	IN LAB PRES	OPRIATE AINERS ERVED IN LAB								
			PRES	ERVATION	VOAS 0&G MET	ALS OTHER		F						
RELINQUISHED BY:	-1	1 8	DATE)	TIME Z	RECEIVED BY:	(SIGNATURE)	7	TOTA	L NO. OF S THES SHEPME L NO. OF CO THES SHEPME	ENT)	9	1.	ORATORY:	U AralyTreal
REUNQUISHED BY:		18	DATE DODE	STIME 63	RECEIVED BY:	(SIGNATURE)		LA		RY CON		T: LABO	DRATORY P	PHONE NUMBER:
RELINQUISHED BY:	(SIGNATURE		DATE	TIME	RECEIVED FOR (SIGNATURE)	LABORATORY	BY:						EQUEST SH	EET
					REMARKS:									

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date Received: 08/10/2006

WorkOrder: 0608261 ClientID: RGAE EDF: NO

Report to: Bill to Requested TAT: 5 days

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-777 FAX: (510) 547-198 RGA Environmental
1466 66th Street
ProjectNo: #0304; California Linen
1466 66th Street

						Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
0608261-001	B24-10.0	Soil	08/09/2006		A	Α											
0608261-002	B24-15.0	Soil	08/09/2006		Α	Α											
0608261-003	B24-20.0	Soil	08/09/2006		Α	Α										Ī	
0608261-004	B25-10.0	Soil	08/09/2006		Α	Α										Ī	
0608261-005	B25-15.0	Soil	08/09/2006		Α	Α										Ī	
0608261-006	B25-22.0	Soil	08/09/2006		Α	Α										Ī	
0608261-007	B27-10.0	Soil	08/09/2006		Α	Α										Ī	
0608261-008	B27-15.0	Soil	08/09/2006		Α	Α											
0608261-009	B27-22.0	Soil	08/09/2006		Α	Α											

Test Legend:

1	G-MBTEX_S	2 TPH(DMO)_S	3	4	5	
6		7	8	9	10	
11	<u> </u>	12				

Prepared by:	: Melissa Valles
--------------	------------------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Emeryville, CA 94608

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Date Analyzed 08/12/06-08/16/06

RGA Environmental

Client Project ID: #0304; California Linen

Date Sampled: 08/09/06

Date Received: 08/10/06

Client Contact: Eric Olson

Date Extracted: 08/10/06

Client P.O.:

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0608261 Lab ID Client ID Matrix TPH(g) MTBE Toluene Ethylbenzene Xylenes Benzene % SS S 001A B24-10.0 ND 0.0055 0.019 0.013 0.051 14.b.m 1 104 002A B24-15.0 S 2.3,a ND 0.021 0.0081 0.049 0.015 1 82 003A B24-20.0 S ND ND ND ND ND ND 1 94 004A B25-10.0 S ND ND ND ND ND ND 92 005A S ND B25-15.0 ND ND ND ND ND 81 006A S ND ND 95 B25-22.0 ND ND ND ND 007A B27-10.0 S ND ND ND ND ND 91 ND 008A B27-15.0 S ND ND ND ND ND ND 94 S 009A B27-22.0 ND ND ND ND ND ND 94 Reporting Limit for DF = 1; W NA NA ug/L NA NA NA NA ND means not detected at or S 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 08/09/06
1466 66th Street	Linen	Date Received: 08/10/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/10/06
2mary (ms, e.17) 1000	Client P.O.:	Date Analyzed 08/12/06-08/17/06
D: 1/C10.40\ 1011/		2. 1 136 4 00%

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method SW3550	OC .	Analytical me	ethods SW8015C		Work Orde	r: 0608261
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0608261-001A	B24-10.0	S	2.4,d,b	ND	1	102
0608261-002A	B24-15.0	S	4.0,g,d	19	1	85
0608261-003A	B24-20.0	S	ND	ND	1	104
0608261-004A	B25-10.0	S	ND	ND	1	104
0608261-005A	B25-15.0	S	ND	ND	1	103
0608261-006A	B25-22.0	S	ND	ND	1	103
0608261-007A	B27-10.0	S	8.2,g,b	24	1	89
0608261-008A	B27-15.0	S	7.8,g,b	13	1	96
0608261-009A	B27-22.0	S	ND	ND	1	101

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or	S	1.0	5.0	mg/Kg
above the reporting limit	5	1.0	5.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m)

QC SUMMARY REPORT FOR SW8021B/8015Cm

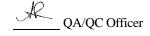
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608261

EPA Method SW8021B/8015	Cm I	Extraction	SW5030	В	Batch	ID: 23159)	Spiked Sa	mple ID 0608	3249-003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex [£]	ND	0.60	108	108	0	111	107	4.35	70 - 130	70 - 130
MTBE	ND	0.10	100	104	3.50	71.9	77.4	7.35	70 - 130	70 - 130
Benzene	ND	0.10	94.5	98.4	4.05	111	93.6	16.6	70 - 130	70 - 130
Toluene	ND	0.10	81.7	84.3	3.20	113	98.1	13.7	70 - 130	70 - 130
Ethylbenzene	ND	0.10	99.3	102	3.21	114	117	2.46	70 - 130	70 - 130
Xylenes	ND	0.30	91	95.3	4.65	117	120	2.82	70 - 130	70 - 130
%SS:	99	0.10	95	94	1.06	101	103	2.08	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23159 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608261-001A	8/09/06	8/10/06	3/16/06 10:46 PM	0608261-002A	8/09/06	8/10/06	8/12/06 4:54 AM
0608261-003A	8/09/06	8/10/06	8/12/06 5:23 AM	0608261-004A	8/09/06	8/10/06	8/12/06 5:53 AM
0608261-005A	8/09/06	8/10/06	8/12/06 4:33 AM	0608261-006A	8/09/06	8/10/06	8/12/06 5:05 AM
0608261-007A	8/09/06	8/10/06	8/15/06 8:53 AM	0608261-008A	8/09/06	8/10/06	8/12/06 6:41 AM
0608261-009A	8/09/06	8/10/06	8/12/06 7:14 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

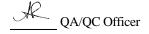
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608261

EPA Method SW8015C	Extraction SW3550C				BatchID: 23163			Spiked Sample ID 0608260-004A			
Analyte	Sample	Spiked	spiked MS MSD		MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria		
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	ND	20	123	123	0	123	122	1.33	70 - 130	70 - 130	
%SS:	102	50	103	102	0.936	105	104	1.24	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23163 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608261-001A	8/09/06	8/10/06	3/15/06 11:56 PM	0608261-002A	8/09/06	8/10/06	8/15/06 10:48 PM
0608261-003A	8/09/06	8/10/06	3/12/06 10:50 AM	0608261-004A	8/09/06	8/10/06	8/12/06 12:02 PM
0608261-005A	8/09/06	8/10/06	8/12/06 1:16 PM	0608261-006A	8/09/06	8/10/06	8/12/06 4:06 PM
0608261-007A	8/09/06	8/10/06	8/16/06 1:05 AM	0608261-008A	8/09/06	8/10/06	8/15/06 11:23 PM
0608261-009A	8/09/06	8/10/06	8/17/06 4:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com pgal

0608222

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:				NAME: Fora Cres.	L S	Sieres		//	/	//	A. /	
SAMPLED BY: (PR	SON	SIGNAT	URE)	2	NUMBER OF CONTAINERS	ANAL YSIS(ES):		1//		PRESER		REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	CON	12/2	13	//	/ /	/ ª		
321-10-0	88.06	Const	8,1		1	X	X			PUE	Hornel	Turnoround
321-15.0	· · ·		11		1	X	V			.,	. (' '4
321-22,0			10		1	1	X			4	(,	ž
B29-6-5	"(١.		1	K	X			11	4	
B29-10.0	11		16		1	1	X			11	1	
B29-15,0	1.		1.		1	X	X			16	٤	,
B29-20.0	16	Maria	-1,		1	X	X			11		,
B30-10,0	٠.		4		1	X	X			11	-	
1330 - 15.0			11		1	X	X			11	5	1 4
1320-20-0	, ,		- 51		1	X	X			/1	4	t v
	3			ICE/te_ GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PRESERVED I VOAS OAG METALS OTT	NIAB							
RELINQUISHED BY:	(SIGNATURE	E)	PATE	TIME RECEIVED BY: (SIGNATURE		TOTAL	L NO. OF S	ENT) ONTAINERS	10	_	ORATORY:	pell Analytica
RECUNQUISHED BY:	SIGNATURE	189	DATE 966	TIME RECEIVED BY: (SIGNATURE		LAE	BORATO MULA	RY CON		T: LAB	ORATORY F	PHONE NUMBER:
RELINQUISHED BY:	(SIGNATURE	=) /	DATE	TIME RECEIVED FOR LABORATOR (SIGNATURE)	RY BY:		SA	MPLE .	ANAL		EQUEST SH	IEET
		la	1991	REMARKS:			4.4			na ja		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date Received: 08/09/2006

WorkOrder: 0608222 ClientID: RGAE EDF: NO

Report to: Bill to Requested TAT: 5 days

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-777 FAX: (510) 547-198 RGA Environmental
1466 66th Street
ProjectNo: #0304; California Linen
1466 66th Street

				Ī				Requ	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
							1			1	1	,	,			
0608222-001	B21-10.0	Soil	08/08/2006		Α	Α										
0608222-002	B21-15.0	Soil	08/08/2006		Α	Α										
0608222-003	B21-22.0	Soil	08/08/2006		Α	Α										
0608222-004	B29-6.5	Soil	08/08/2006		Α	Α										
0608222-005	B29-10.0	Soil	08/08/2006		Α	Α										
0608222-006	B29-15.0	Soil	08/08/2006		Α	Α										
0608222-007	B29-20.0	Soil	08/08/2006		Α	Α										
0608222-008	B30-10.0	Soil	08/08/2006		Α	Α										
0608222-009	B30-15.0	Soil	08/08/2006		Α	Α										
0608222-010	B30-20.0	Soil	08/08/2006		Α	Α										

Test Legend:

1 G-MBTEX_S	2 TPH(DMO)_S	3	4	5
6	7	8	9	10
11	12			

Prepared by	y: Melissa	Valles
-------------	------------	--------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

RGA Environmental

Client Project ID: #0304; California Linen

Date Sampled: 08/08/06

Date Received: 08/09/06

Client Contact: Eric Olson

Date Extracted: 08/09/06

Client P.O.:

Date Analyzed 08/10/06-08/12/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	Work Ord	er: 06	08222							
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	B21-10.0	S	ND	ND	ND	ND	ND	ND	1	103
002A	B21-15.0	S	ND	ND	ND	ND	ND	ND	1	104
003A	B21-22.0	S	ND	ND	ND	ND	ND	ND	1	105
004A	B29-6.5	S	ND	ND	ND	ND	ND	ND	1	109
005A	B29-10.0	S	ND	ND	ND	ND	ND	ND	1	106
006A	B29-15.0	S	ND	ND	ND	ND	ND	ND	1	98
007A	B29-20.0	S	ND	ND	ND	ND	ND	ND	1	82
008A	B30-10.0	S	ND	ND	ND	ND	ND	ND	1	80
009A	B30-15.0	S	ND	ND	ND	ND	ND	ND	1	81
010A	B30-20.0	S	ND	ND	ND	ND	ND	ND	1	100
Rep	orting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

To Controlled				1					
			Project	ID: #0304; California	Date Sampled: 08/	/08/06			
1466 66th Stre	et	Linen			Date Received: 08/	/09/06			
Emeryville, CA	A 94608	Client	Contac	et: Eric Olson	Date Extracted: 08/	/09/06			
Linery vine, Cr	174000	Client	P.O.:		Date Analyzed 08/11/06-08/16/06				
	Diesel (C10-23) and Oil (C18+) R	lange E	xtractable Hydrocarbons as	Diesel and Motor Oil*				
Extraction method S	SW3550C		Analytica	al methods SW8015C	Work Order:				
Lab ID	Client ID	N	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0608222-001A	B21-10.0		S	ND	ND	1	96		
0608222-002A	B21-15.0		S	ND	ND	1	96		
0608222-003A	B21-22.0		S	ND	ND	1	97		
0608222-004A	B29-6.5		S	9.3,g,b	53	2	90		
0608222-005A	B29-10.0		S	ND	ND	1	96		
0608222-006A	B29-15.0		S	1.5,g,b	8.3	1	95		
0608222-007A	B29-20.0		S	ND	ND	1	95		
0608222-008A	B30-10.0		S	ND	ND	1	98		
0608222-009A	B30-15.0		S	ND	ND	1	97		
0608222-010A	B30-20.0		S	2.1,g	13	1	108		

NA

1.0

W

S

ug/L

mg/Kg

NA

5.0

Reporting Limit for DF =1;

ND means not detected at or

above the reporting limit

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608222

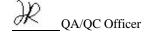
EPA Method: SW8021B/8015	EPA Method: SW8021B/8015Cm Extraction: SW503					SW5030B BatchID: 23124 5				Spiked Sample ID 0608206-001a			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD			
TPH(btex [£]	ND	0.60	79.4	80.5	1.37	78.4	103	27.5	70 - 130	70 - 130			
MTBE	ND	0.10	85.4	85.4	0	86.8	77.8	10.9	70 - 130	70 - 130			
Benzene	ND	0.10	103	105	1.57	105	98.1	7.17	70 - 130	70 - 130			
Toluene	ND	0.10	103	106	2.13	105	102	3.00	70 - 130	70 - 130			
Ethylbenzene	ND	0.10	108	108	0	111	108	2.61	70 - 130	70 - 130			
Xylenes	ND	0.30	110	110	0	110	110	0	70 - 130	70 - 130			
%SS:	105	0.10	97	100	3.05	101	97	4.04	70 - 130	70 - 130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23124 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608222-001A	8/08/06	8/09/06	8/11/06 1:10 AM	0608222-002A	8/08/06	8/09/06	8/11/06 1:40 AM
0608222-003A	8/08/06	8/09/06	8/11/06 2:10 AM	0608222-004A	8/08/06	8/09/06	8/12/06 8:18 PM
0608222-005A	8/08/06	8/09/06	8/11/06 3:10 AM	0608222-006A	8/08/06	8/09/06	8/11/06 5:51 PM
0608222-007A	8/08/06	8/09/06	8/11/06 6:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608222

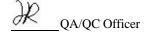
EPA Method: SW8021B/8015	EPA Method: SW8021B/8015Cm Extraction: SW5030B						BatchID: 23139 Spiked Sample ID 0608222-010						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	cceptance Criteria (%)			
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD			
TPH(btex [£]	ND	0.60	110	106	3.61	82.7	82	0.848	70 - 130	70 - 130			
MTBE	ND	0.10	111	119	6.92	83	83.6	0.745	70 - 130	70 - 130			
Benzene	ND	0.10	101	107	6.56	106	109	2.42	70 - 130	70 - 130			
Toluene	ND	0.10	84.7	90.5	6.61	107	109	2.19	70 - 130	70 - 130			
Ethylbenzene	ND	0.10	101	105	3.66	111	114	2.32	70 - 130	70 - 130			
Xylenes	ND	0.30	94.7	96	1.40	113	117	2.90	70 - 130	70 - 130			
%SS:	100	0.10	100	103	3.04	103	104	1.00	70 - 130	70 - 130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23139 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608222-008A	8/08/06	8/09/06	8/11/06 7:23 PM	0608222-009A	8/08/06	8/09/06	8/11/06 8:24 PM
0608222-010A	8/08/06	8/09/06	8/10/06 5:01 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608222

EPA Method SW8015C	W8015C Extraction SW3550C					ID: 23085	j	Spiked Sample ID 0608146-021A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	ce Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	ND	20	100	112	11.0	107	108	0.497	70 - 130	70 - 130	
%SS:	92	50	86	100	14.7	107	107	0	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23085 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608222-001A	8/08/06	8/09/06	8/11/06 8:56 PM	0608222-002A	8/08/06	8/09/06	8/12/06 8:52 PM
0608222-003A	8/08/06	8/09/06	3/11/06 10:04 PM	0608222-004A	8/08/06	8/09/06	3/16/06 10:10 AM
0608222-005A	8/08/06	8/09/06	8/13/06 1:25 AM	0608222-006A	8/08/06	8/09/06	8/12/06 7:43 PM
0608222-007A	8/08/06	8/09/06	3/12/06 10:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

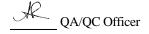
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608222

EPA Method SW8015C	SW8015C Extraction SW3550C					ID: 23141		Spiked Sample ID 0608222-010A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	2.1	20	129	123	3.76	112	112	0	70 - 130	70 - 130	
%SS:	108	50	105	103	2.76	110	111	0.905	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23141 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608222-008A	8/08/06	8/09/06	3/12/06 11:08 PM	0608222-009A	8/08/06	8/09/06	3/13/06 12:17 AM
0608222-010A	8/08/06	8/09/06	8/11/06 2:17 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

PAGE ___ OF __ ANAL YSIS(ES). PROJECT NAME: PROJECT NUMBER: Californa Lines NUMBER OF CONTAINERS SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Dre C SAMPLE LOCATION DATE TIME TYPE SAMPLE NUMBER 8-11-06 Soil B26-100 TURNAVOUR Normal BZ6-15.0 10 11 B26-2010 11 1 2. 8 B31-10.0 11 11 -1 B31-15.0 51 11 B31-20,0 n 11 1332-10,0 0 6 B37-15.0 21 01 B37-20,0 41 11 GOOD CONDITION APPROPRIATE PRESERVED IN LAB DECHIORINATED IN LAB PRESERVATION RELINOUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) TOTAL NO. OF SAMPLES TIME DATE LABORATORY: (THIS SHIPMENT) 8/11 TOTAL NO. OF CONTAINERS McCampbell Anoly New! (THIS SHIPMENT) RELINQUISHED BY: (SIGNATURE) LABORATORY CONTACT: LABORATORY PHONE NUMBER: DATE TIME RECEIVED BY: (SIGNATURE) 13claRydo (105 (925) 252 926 2 RELINQUISHED BY: (SIGNATURE) SAMPLE ANALYSIS REQUEST SHEET TIME RECEIVED FOR LABORATORY BY: DATE ATTACHED: ()YES ()NO (SIGNATURE) REMARKS:

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

08/11/2006

Date Received:

WorkOrder: 0608294 ClientID: RGAE EDF: NO

Report to: Bill to: Requested TAT: 5 days

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-7771 FAX: (510) 547-1983 RGA Environmental
1466 66th Street ProjectNo: #0304; California Linen 1466 66th Street

Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: **08/14/2006**

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
000004 004	D00.40.0	0.11	0/44/00							1					ı	
0608294-001	B26-10.0	Soil	8/11/06		А	Α										
0608294-002	B26-15.0	Soil	8/11/06		Α	Α										
0608294-003	B26-20.0	Soil	8/11/06		Α	Α										
0608294-004	B31-10.0	Soil	8/11/06		Α	Α										
0608294-005	B31-15.0	Soil	8/11/06		Α	Α										
0608294-006	B31-20.0	Soil	8/11/06		Α	Α										
0608294-007	B32-10.0	Soil	8/11/06		Α	Α										
0608294-008	B32-15.0	Soil	8/11/06		Α	Α										
0608294-009	B32-20.0	Soil	8/11/06		Α	Α										

Test Legend:

1	G-MBTEX_S	2	TPH(DMO)_S	3	4		5
6		7		8	9		10
11		12					

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

RGA Environmental

Client Project ID: #0304; California Linen

Date Sampled: 08/11/06

Date Received: 08/11/06

Client Contact: Eric Olson

Date Extracted: 08/14/06

Client P.O.:

Date Analyzed 08/14/06-08/15/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0608294 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes % SS 001A B26-10.0 S ND ND ND ND ND ND 1 96 002A B26-15.0 S ND ND ND ND ND ND 1 97 003A B26-20.0 S ND ND ND ND ND ND 1 94 004A B31-10.0 S ND ND ND ND ND ND 93 005A S ND B31-15.0 ND ND ND ND 0.015 107 006A B31-20.0 S ND ND 91 ND ND ND ND 007A B32-10.0 S ND ND ND ND ND ND 101 008A B32-15.0 S ND ND ND ND ND ND 98 S 009A B32-20.0 ND ND ND ND ND 0.0050 96 Reporting Limit for DF = 1; NA NA NA NA NA NA

ND means not detected at or above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg
* water and vapor samples and all TCLF	% SPL	P extracts are re	ported in µg/L,	soil/sludge/solid	samples in mg/	kg, wipe sample	es in µg/wipe,		

product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 08/11/06
1466 66th Street	Linen	Date Received: 08/11/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/14/06
	Client P.O.:	Date Analyzed 08/15/06-08/18/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method SW3550	0C	Analytical m	ethods SW8015C		Work Orde	r: 0608294
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0608294-001A	B26-10.0	S	ND	ND	1	87
0608294-002A	B26-15.0	S	ND	ND	1	87
0608294-003A	B26-20.0	S	ND	ND	1	88
0608294-004A	B31-10.0	S	ND	ND	1	94
0608294-005A	B31-15.0	S	1.7,g,b	6.4	1	91
0608294-006A	B31-20.0	S	ND	ND	1	107
0608294-007A	B32-10.0	S	8.1,g,b	25	2	86
0608294-008A	B32-15.0	S	ND	ND	1	105
0608294-009A	B32-20.0	S	ND	ND	1	106

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or	C	1.0	5.0	mg/Kg
above the reporting limit	ъ	1.0	3.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m)

QC SUMMARY REPORT FOR SW8021B/8015Cm

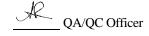
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608294

EPA Method SW8021B/8015	Cm E	Extraction	SW5030	В	Batch	ID: 23190)	Spiked Sample ID 0608299-002A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (9			
, many to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
TPH(btex [£]	ND	0.60	106	106	0	102	107	5.06	70 - 130	70 - 130		
MTBE	ND	0.10	112	108	3.51	111	112	0.835	70 - 130	70 - 130		
Benzene	ND	0.10	113	104	8.08	108	103	4.76	70 - 130	70 - 130		
Toluene	ND	0.10	90	86.2	4.29	90.5	86.6	4.39	70 - 130	70 - 130		
Ethylbenzene	ND	0.10	104	103	1.10	107	103	3.63	70 - 130	70 - 130		
Xylenes	ND	0.30	95.7	95.7	0	100	95.7	4.43	70 - 130	70 - 130		
%SS:	89	0.10	98	90	8.51	98	92	6.32	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23190 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608294-001A	8/11/06	8/14/06	8/14/06 4:27 PM	0608294-002A	8/11/06	8/14/06	8/14/06 5:01 PM
0608294-003A	8/11/06	8/14/06	8/14/06 6:42 PM	0608294-004A	8/11/06	8/14/06	8/14/06 7:16 PM
0608294-005A	8/11/06	8/14/06	8/15/06 9:36 PM	0608294-006A	8/11/06	8/14/06	8/14/06 7:00 PM
0608294-007A	8/11/06	8/14/06	8/14/06 7:30 PM	0608294-008A	8/11/06	8/14/06	8/14/06 8:01 PM
0608294-009A	8/11/06	8/14/06	8/14/06 8:31 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

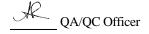
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608294

EPA Method SW8015C	SW3550	Batch	ID: 23183	}	Spiked Sample ID 0608285-016A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	S-MSD LCS LCSD LCS		SD LCS LCSD LCS-LCSD A		Acceptance Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	1.9	20	94.6	92.7	1.83	101	102	0.898	70 - 130	70 - 130	
%SS:	94	50	98	96	1.99	98	99	0.164	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23183 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608294-001A	8/11/06	8/14/06	3/16/06 12:44 AM	0608294-002A	8/11/06	8/14/06	8/16/06 1:50 AM
0608294-003A	8/11/06	8/14/06	8/16/06 2:56 AM	0608294-004A	8/11/06	8/14/06	8/16/06 2:04 PM
0608294-005A	8/11/06	8/14/06	8/18/06 2:11 AM	0608294-006A	8/11/06	8/14/06	8/16/06 1:50 AM
0608294-007A	8/11/06	8/14/06	8/18/06 4:28 AM	0608294-008A	8/11/06	8/14/06	8/16/06 2:56 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

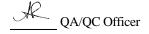
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608294

EPA Method SW8015C	SW3550	Batch	ID: 23191		Spiked Sample ID 0608294-009A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	CSD LCS-LCSD Accep		Criteria (%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD LCS/LCS	
TPH(d)	ND	20	103	111	6.98	98.4	108	8.82	70 - 130	70 - 130
%SS:	106	50	92	110	18.1	90	99	9.89	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23191 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608294-009A	8/11/06	6 8/14/06	3/15/06 12:22 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

WELLS E1, E6, I1 SOIL SAMPLE RESULTS

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

pyak

0609201

CHAIN OF CUSTODY RECORD

pai	ıl.king@rgaer	nv.com						NBTE	> N			PAGE OF
PROJECT NUMBER: 0304 SAMPLED BY: (PRI Encolsor	NTED AND			NAME: Braia Linea	NUMBER OF CONTAINERS	AWAL YSISTER			/		PRESERV	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION .	NOO	TPW	//				/ &	
E4-105	9-6-06		Sail		1	X	1.3	l			ICE	Normal Turnoround
81-105	M		le	•	41			12			11	HULD
E1-20.5	24				1						FC	i (i
E1-25.5	н		14		1						Ét	
B6-10.5	9-5-06		41		1	X					1 (Normal Turnaround
E6-15.5	8 (11		1						t t	HOLD
E6-20.5	*(12		1						F.C.	T+1
E6-255	3 (1.	1	(*				Vic	41
86-30,5	14		10		1						4.4	((
I1-10.5	9-6-06		14		1	X	1.00				· ('	Normal Turnaround
I1-15.5	11		12		1						1.0	HOLD
T1-20.5	P.L		12		1						. (1	11
IL-25.5	e t	-		ONDITION APPROPRIATE ACE ABSENT CONTAINERS	1						1.1	11
			DECHLO	RINATED IN LAB PRESERVED IN LAB	-		•					No. 1
			PRESER	VATION								
											_	
RELINQUISHED BY:			DATE	TIME RECEIVED BY: (SIGNATURE)		C	NO. OF S HIS SHIPM NO. OF C HIS SHIPM	ent)		13		Campbell Analtral
RELINQUISHED BY:	SIGNATURE) / (1	DATE	TIME RECEIVED BY: (SIGNATURE)		1 A	ORATO	Λ	18	1	100	ORATORY PHONE NUMBER:
RELINQUISHED BY:	(SIGNATURE	5/1	OXTE Vallae	TIME RECEIVED FOR LABORATORY (SIGNATURE))8Y:							EQUEST SHEET 5 (NO
		ana arraffania anamakaran	• • •	REMARKS:							1	
				and the second second								

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0609201

ClientID: RGAE

EDF: NO

Report to: Bill to: **Requested TAT:** 5 days

Eric Olson Email: Accounts Payable

RGA Environmental TEL: (510) 547-7771 FAX: (510) 547-1983 **RGA Environmental** 1466 66th Street ProjectNo: #0304; California Linen 1466 66th Street

Date Received: 09/11/2006 Emeryville, CA 94608 PO: Emeryville, CA 94608 09/11/2006 Date Printed:

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0609201-001	E1-10.5	Soil	9/6/06		Α											
0609201-005	E6-10.5	Soil	9/5/06		Α											
0609201-010	I1-10.5	Soil	9/6/06		Α											

Test Legend:

1 G-MBTEX_S	2	3	4	5	
6	7	8	9	10	
11	12				

The following SampIDs: 0609201-001A, 0609201-005A, 0609201-010A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

When Guardy Counts		Telephone. 077 252 7262 Tux. 725 252 7207										
RGA Environmental	Client Project ID:	#0304; California Linen	Date Sampled:	09/05/06-09/06/06								
1466 66th Street			Date Received:	09/11/06								
Emeryville, CA 94608	Client Contact: Er	ic Olson	Date Extracted:	09/11/06								
	Client P.O.:		Date Analyzed	09/13/06								

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method SW5030B	runge (Analy	Work Order	: 060	9201				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	E1-10.5	s	ND	ND	ND	ND	ND	ND	1	108
005A	E6-10.5	S	ND	ND	ND	ND	ND	ND	1	100
010A	I1-10.5	S	5.9,m	ND	ND	ND	0.016	ND	1	109
	orting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/mg/L$, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California Linen	Date Sampled:	09/05/06-09/06/06							
1466 66th Street	Linen	Date Received:	09/11/06							
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted:	09/11/06							
2	Client P.O.:	Date Analyzed	09/14/06							
Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*										

Extraction method: SW35	550C	Analytical m	ethods: SW8015C	Wo	rk Order: 0	609201	
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0609201-001A	E1-10.5	S	ND	ND	1	109	
0609201-005A	E6-10.5	S	ND	ND	1	108	
0609201-010A	I1-10.5	S	ND	ND	1	107	
	Reporting Limit for DF =1;		NA	NA	ug	ug/L	
ND mean	ns not detected at or	2	1.0	5.0	mo	/Ka	

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in
mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in u.g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

mg/Kg

5.0

above the reporting limit

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0609201

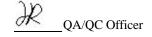
EPA Method: SW8021B/8015	Cm E	xtraction	: SW5030)B	BatchID: 23635 Spiked Sample ID: 0609184-03							32A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%			
, many to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£])	ND	0.60	123	99.1	21.7	117	118	1.26	70 - 130	30	70 - 130	30
MTBE	ND	0.10	114	119	4.53	115	114	0.998	70 - 130	30	70 - 130	30
Benzene	ND	0.10	92.1	92.5	0.381	90.4	91.7	1.46	70 - 130	30	70 - 130	30
Toluene	ND	0.10	84.7	83.6	1.30	82.9	84.4	1.79	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	94.4	92.8	1.69	91.6	92.7	1.28	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	91.3	91	0.366	87.3	88	0.760	70 - 130	30	70 - 130	30
%SS:	96	0.10	87	93	6.15	90	91	0.986	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23635 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609201-001	9/06/06	9/11/06	9/13/06 6:54 PM	0609201-005	9/05/06	9/11/06	9/13/06 7:24 PM
0609201-010	9/06/06	9/11/06	9/13/06 10:24 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

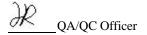
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0609201

EPA Method: SW8015C	N8015C Extraction: SW3550C							BatchID: 23646 S				Spiked Sample ID: 0609200-004A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			%)				
7 thatyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
TPH(d)	ND	20	111	112	0.616	119	120	1.02	70 - 130	30	70 - 130	30				
%SS:	91	50	92	89	3.59	114	115	1.03	70 - 130	30	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23646 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609201-001	9/06/06	9/11/06	9/14/06 12:14 AM	0609201-005	9/05/06	9/11/06	9/14/06 1:23 AM
0609201-010	9/06/06	9/11/06	9/14/06 2:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1466 - 66" St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:			_				Z			PAC	GE OF
SAMPLED BY: (PRINTED AND SIG	PROJECT	Forma Cinen	L CO	AWAL YSISTER			1	1	///	34	
Paul H. King	NA TURET	Paul H. Krng	NUMBER OF CONTAINERS	MALTS	J.		1/1/19/2/	$^{\prime}$ $/$		SWA TWE	REMARKS
SAMPLE NUMBER DATE T	ME TYPE		NOM	am	TA VA	12/2	/	/	\		
Anomaly A F. 11 10-18-06 Anomaly A-S.5	5011		1	X,	X		1	1	ICG	Normal	(turnaround
Anomaly B-0.5	11		1	X	X	X	+	1	11	11	"(
					1	1					
9					#	#	1				
					+						,
					+	-	+				
			HEAD	COND		BNT_	+		APPROPRIATE CONTAINERS	3	
				LORIN. ERVAT		IN LA	A.18	7.8.0	PRESERVED	HER	
RELINQUISHED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE)	DATE DATE	TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED FOR LABORATORY E (SIGNATURE) REMARKS:		THE	CA CA	CONT. WENT) ORY AMP	CO Le (NTA	3 Mec CT: LABOR 5 (975)	RATORY PH	Malygicul HONE NUMBER: 1162 ET

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Nickole White

WorkOrder: 0610430 ClientID: RGAE

				□EDF	DF Fax Email			□н	lardCopy		ThirdParty						
Report to: Paul King			Bill to: DKing0000@aol.com								Requ	Requested TAT:			days		
RGA Environmental 1466 66th Street Emeryville, CA 94608		•	510) 547-777 0304; Califor	fornia Linen 1466 66th Street I									Date Received: Date Printed:		10/20/ 10/27/		
									Re	quested	Tests ((See lege	nd belo	w)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0610430-001	Anomaly A Fill		Soil	10/18/06		Α	Α									T	
0610430-002	Anomaly A-5.5		Soil	10/18/06		Α	Α	Α									
0610430-003	Anomaly B-0.5		Soil	10/18/06		Α	Α	Α						-			
Test Legend:	_												_				
1 8270D-PNA_S	2	CAM17MS	S_S		-MBTE	X_S		4					5				
6	7			8				9)				10	0			
11	12																

Comments:

thanks.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The following SampIDs: 0610430-002A, 0610430-003A contain testgroup. Please make sure all relevant testcodes are reported. Many

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
Emeryville, CA 94608	Client Contact: Paul King	Date Extracted: 10/20/06
	Client P.O.:	Date Analyzed 10/26/06

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS*

Extraction Method: SW3550C Analytical Method: SW8270C					0610430			
Lab ID	0610430-001A	0610430-002A	0610430-003A					
Client ID	Anomaly A Fill	Anomaly A-5.5	Anomaly B-0.5		Reporting Limit for DF =1			
Matrix	S	S	S					
DF	1	10	50	S	W			
Compound		Concentration						
Acenaphthene	ND	ND<0.050	ND<0.25	0.005	NA			
Acenaphthylene	ND	ND<0.050	ND<0.25	0.005	NA			
Anthracene	ND	ND<0.050	ND<0.25	0.005	NA			
Benzo(a)anthracene	0.024	ND<0.050	ND<0.25	0.005	NA			
Benzo(a)pyrene	0.021	ND<0.050	ND<0.25	0.005	NA			
Benzo(b)fluoranthene	0.014	ND<0.050	ND<0.25	0.005	NA			
Benzo(g,h,i)perylene	0.015	ND<0.050	ND<0.25	0.005	NA			
Benzo(k)fluoranthene	0.017	ND<0.050	ND<0.25	0.005	NA			
Chrysene	0.026	ND<0.050	ND<0.25	0.005	NA			
Dibenzo(a,h)anthracene	ND	ND<0.050	ND<0.25	0.005	NA			
Fluoranthene	0.034	ND<0.050	ND<0.25	0.005	NA			
Fluorene	ND	ND<0.050	ND<0.25	0.005	NA			
Indeno (1,2,3-cd) pyrene	0.012	ND<0.050	ND<0.25	0.005	NA			
1-Methylnaphthalene	ND	ND<0.050	ND<0.25	0.005	NA			
2-Methylnaphthalene	ND	ND<0.050	ND<0.25	0.005	NA			
Naphthalene	0.0066	ND<0.050	ND<0.25	0.005	NA			
Phenanthrene	0.018	0.055	ND<0.25	0.005	NA			
Pyrene	0.031	ND<0.050	ND<0.25	0.005	NA			
	Surrogate Recoveries (%)							
%SS1	80	96	109		-			
%SS2	80	92	111					
Comments			j					

^{*} water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due

"When Quality Counts"				Telephone: 877-252-9262 Fax: 925-252-9269					
RGA Environmental	nvironmental		Client Project ID: #0304; California		Date Sampled: 10/18/06				
1466 66th Street		Linen			Date Received:	ate Received: 10/20/06			
		Client Contact: Paul King				Date Extracted: 10/20/06			
		Client C	ontact: Pa	ul King	5	Date Extracted:	ed: 10/20/06		
Emeryville, CA 94608	Client P.O.:					Date Analyzed	10/24/06-10/25/06		
		C	AM / CCR	17 Me	tals*				
Lab ID	0610430-001A		0610430-	002A	0610430-003A		Reporting Lir	nit for DF =1:	
Client ID	Anomaly A Fill		Anomaly	A-5.5	Anomaly B-0.5	ND means n above the rep		not detected	
Matrix		S	S		S		S	W	
Extraction Type	TTLC		TTL	С	TTLC		mg/Kg	mg/L	
		ICP-N	AS Metals,	Conce	ntration*		-		
Analytical Method: 6020A			action Method				Work Order:	0610430	
Dilution Factor		1	1		1		1	1	
Antimony	().91	0.94		5.2		0.5	NA	
Arsenic		4.9	4.3		6.7		0.5	NA	
Barium	150		110		180		5.0	NA	
Beryllium	ND		ND		ND		0.5	NA	
Cadmium	().36	0.84		1.4		0.25	NA	
Chromium		29	21		60		0.5	NA	
Cobalt		7.9	4.6		12		0.5	NA	
Copper		27	48		1100		0.5	NA	
Lead	560		260		380		0.5	NA	
Mercury	().23	0.98		0.40		0.05	NA	
Molybdenum	().69	2.0		1.1		0.5	NA	
Nickel		32	24		67		0.5	NA	
Selenium	ND		ND		ND		0.5	NA	
Silver		ND	0.51		ND		0.5	NA	
Thallium	ND		ND		ND		0.5	NA	
Vanadium	32		22		36		0.5	NA	
Zinc		140	300		450		5.0	NA	
%SS:		90	91		91				
	ī		1			<u> </u>			
Comments	1		ı		1	1	1		

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
Emeryville, CA 94608	Client Contact: Paul King	Date Extracted: 10/20/06
2.1.0.1y	Client P.O.:	Date Analyzed 10/24/06-10/25/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0610430

Extraction method: SV	V5030B	Analytical method:	s: SW8021B/8015Cm	Work Order: 06	10430
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
002A	Anomaly A-5.5	S	ND	1	103
003A	Anomaly B-0.5	S	ND	1	98
	rting Limit for DF =1;	W	NA	N	ĪΑ
	eans not detected at or	S	1.0	mg	g/Kg

above the reporting limit				
* water and vapor samples and all TCLP & SPLP extrac	ts are repo	orted in µg/L, soil/sludge/solid samples in mg/kg, wipe sample	in μg/wipe.	,
product/oil/non-aqueous liquid samples in mg/L.				

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environr	mental		ID: #0304; California	Date Sampled: 10/	Date Sampled: 10/18/06			
1466 66th Stree	et	Linen		Date Received: 10/2	20/06			
Emeryville, CA	. 94608	Client Contac	et: Paul King	Date Extracted: 10/	Date Extracted: 10/20/06			
Emery vine, er	191000	Client P.O.:		Date Analyzed: 10/	Date Analyzed: 10/21/06-10/23/06			
Extraction method: \$			Extractable Hydrocarbons al methods: SW8015C		k Order: 06	510430		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0610430-002A	Anomaly A-5.5	S	7.1,g,f	12	1	103		
0610430-003A	Anomaly B-0.5	S	68,g,b	170	2	107		
	orting Limit for DF =1;	W	NA	NA	ug	/L		
	ND means not detected at or above the reporting limit		1.0	5.0	mg/	ng/Kg		

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

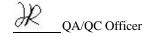
QC SUMMARY REPORT FOR SW8270C

WorkOrder: 0610430 QC Matrix: Soil W.O. Sample Matrix: Soil

EPA Method: SW8270C	E	Extraction: SW3550C					BatchID: 24402 Spiked Sample ID: 0610430-003A				03A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
, analyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzo(a)pyrene	ND<0.25	0.10	NR	NR	NR	83.5	83.4	0.164	30 - 130	30	30 - 130	30
Chrysene	ND<0.25	0.10	NR	NR	NR	103	103	0	30 - 130	30	30 - 130	30
1-Methylnaphthalene	ND<0.25	0.10	NR	NR	NR	107	107	0	30 - 130	30	30 - 130	30
2-Methylnaphthalene	ND<0.25	0.10	NR	NR	NR	102	102	0	30 - 130	30	30 - 130	30
Phenanthrene	ND<0.25	0.10	NR	NR	NR	98.3	98.3	0	30 - 130	30	30 - 130	30
Pyrene	ND<0.25	0.10	NR	NR	NR	92.7	93.4	0.709	30 - 130	30	30 - 130	30
%SS1:	109	0.050	117	116	0.305	82	82	0	30 - 130	30	30 - 130	30
%SS2:	111	0.050	106	104	2.60	80	80	0	30 - 130	30	30 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24402 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610430-001	10/18/06	10/20/06)/26/06 11:15 AM	0610430-002	10/18/06	10/20/06	10/26/06 3:48 AM
0610430-003	10/18/06	10/20/06	10/26/06 5:01 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0610430

EPA Method 6	EPA Method 6020A)B	В	atchID: 2	4392	Spiked Sample ID 0610413-001A			
Analyte	Sample	Spiked	MS	MSD MS-MSD Spiked			LCS	LCS LCSD LCS-LCSD		Acceptance Criteria (%)			
,a., 10	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	0.89	50	89.9	89.4	0.525	10	93.5	94.3	0.809	75 - 125	20	80 - 120	20
Arsenic	4.3	50	91.2	95.4	4.10	10	92.2	94.7	2.64	75 - 125	20	80 - 120	20
Barium	110	500	101	101	0	100	90.6	90.7	0.154	75 - 125	20	80 - 120	20
Beryllium	ND	50	84.1	84	0.165	10	98	99.5	1.54	75 - 125	20	80 - 120	20
Cadmium	0.26	50	95.5	96	0.478	10	95.1	95.1	0	75 - 125	20	80 - 120	20
Chromium	69	50	87.9	83.9	1.78	10	89.3	90.4	1.30	75 - 125	20	80 - 120	20
Cobalt	17	50	91.6	89.7	1.56	10	100	102	1.29	75 - 125	20	80 - 120	20
Copper	50	50	98.1	97.3	0.385	10	89.2	90	0.915	75 - 125	20	80 - 120	20
Lead	130	50	110	114	0.855	10	94.6	96.2	1.71	75 - 125	20	80 - 120	20
Mercury	0.14	2.5	103	105	2.04	0.50	104	106	1.26	75 - 125	20	80 - 120	20
Molybdenum	ND	50	90.1	90.3	0.266	10	87.1	89.7	2.92	75 - 125	20	80 - 120	20
Nickel	75	50	97.6	95.6	0.810	10	90	92	2.26	75 - 125	20	80 - 120	20
Selenium	2.2	50	83.8	83.9	0.0906	10	88.5	88.7	0.237	75 - 125	20	80 - 120	20
Silver	ND	50	95.3	95.2	0.126	10	86.6	87.4	0.977	75 - 125	20	80 - 120	20
Thallium	ND	50	95.2	99.5	4.40	10	91.3	93.1	2.01	75 - 125	20	80 - 120	20
Vanadium	82	50	89.1	85.1	1.59	10	90	91.7	1.78	75 - 125	20	80 - 120	20
Zinc	130	500	102	101	0.828	100	93.9	95.1	1.29	75 - 125	20	80 - 120	20
%SS:	100	250	99	97	1.88	250	96	96	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24392 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610430-001A	10/18/06	10/20/06	10/24/06 1:30 AM	0610430-001A	10/18/06	10/20/06)/25/06 12:57 AM
0610430-002A	10/18/06	10/20/06	10/24/06 1:37 AM	0610430-002A	10/18/06	10/20/06	10/25/06 1:02 AM
0610430-003A	10/18/06	10/20/06	10/24/06 1:44 AM	0610430-003A	10/18/06	10/20/06	10/25/06 1:07 AM
0610430-003A	10/18/06	10/20/06	10/25/06 1:13 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

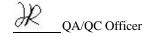
QC SUMMARY REPORT FOR SW8021B/8015Cm

WorkOrder: 0610430 W.O. Sample Matrix: Soil QC Matrix: Soil

EPA Method: SW8021B/8015Cm Extraction: SW5030B BatchID: 24401 Spiked Sample ID: 0610420-010A												
Analyte	Sample	Spiked MS MSD			MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	100	0.60	NR	NR	NR	106	115	8.30	70 - 130	30	70 - 130	30
MTBE	ND<1.7	0.10	91.7	94.7	3.28	99.4	93.1	6.56	70 - 130	30	70 - 130	30
Benzene	0.62	0.10	NR	NR	NR	102	100	1.26	70 - 130	30	70 - 130	30
Toluene	0.52	0.10	NR	NR	NR	82.8	84.1	1.53	70 - 130	30	70 - 130	30
Ethylbenzene	7.1	0.10	NR	NR	NR	97.8	99	1.16	70 - 130	30	70 - 130	30
Xylenes	26	0.30	NR	NR	NR	94.3	94.7	0.353	70 - 130	30	70 - 130	30
%SS:	108	0.10	100	100	0	99.5	99.7	0.172	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24401 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610430-002	10/18/06	10/20/06	10/25/06 9:53 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

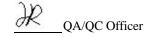
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610430

EPA Method: SW8021B/8015	EPA Method: SW8021B/8015Cm Extraction: SW5030B								BatchID: 24405 Spiked Sample ID: 0610430-			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ınce Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	110	108	1.98	109	108	0.985	70 - 130	30	70 - 130	30
MTBE	ND	0.10	113	113	0	112	111	0.833	70 - 130	30	70 - 130	30
Benzene	ND	0.10	99.9	101	1.25	97.2	97.7	0.517	70 - 130	30	70 - 130	30
Toluene	0.0077	0.10	75.8	75.1	0.783	80.3	82.1	2.31	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	99.9	98.3	1.69	96	95.7	0.307	70 - 130	30	70 - 130	30
Xylenes	0.014	0.30	90.3	85.6	5.04	90	90.7	0.738	70 - 130	30	70 - 130	30
%SS:	98	0.10	111	111	0	105	117	10.8	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24405 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610430-003	10/18/06	10/20/06	10/24/06 3:38 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

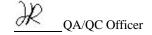
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610430

EPA Method: SW8015C	E	Extraction: SW3550C					D: 24395	S	Spiked Sample ID: 0610416-020A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	121	121	0	107	106	1.57	70 - 130	30	70 - 130	30
%SS:	113	50	100	101	0.267	105	104	1.38	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24395 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610430-002	10/18/06	10/20/06	10/23/06 1:07 PM	0610430-003	10/18/06	10/20/06	10/21/06 8:48 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

GEOPHYSICAL ANOMALY INVESTIGATION SOIL SAMPLE RESULTS

BOREHOLE B33 - B39 SOIL RESULTS

RGA Environmental, Inc. PGAR 0610431 Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:		NAME:	1, 10	AWAL YSICK	(3)	10	May 1	/	PRESERVI	3/4			
SAMPLED BY: (PR	INTED AND	SIGNAT	UREST		ERS	17	15	19/	4/	/		7	REMARKS
ENCO 60	4 6	- TC	0		TAIN	3	2	3/2	//	/	ESE	/	
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUMBER OF CONTAINERS	10	tox	13	//	/	4		
B33-0.5	10-18-06		Soil					X			ICE	Normal	Turnaround
ß33-3.5	10-18-06		el .				X		\perp	_	11	1,	/(
B34-0.5	10-19-06		*1					X	\perp		11	11	11
B34-3.5	10-14-06		1.1				X		\perp	_	11	11	11
B35-0.5	10-18-06		11					X	\perp		1	11	11
B35-3.5	10-18-06		'(X				/1	"1	11
B36-0,5	10-18-06		11					X			11	11	11
B36-3,5	10-18-06		"(X				11	1/	1.1
B36-7.5	10-18-06		ч			X	X				1	11	1/
B37-0.5	10-19-06		1					X			7	()	"
B37-3.5	10-19-06		71				X				11	(1	4
B38-0,5	10-18-X		11	ICE/10 10.8 C	1			X			11	11	4
B38-3.5	10-18-06		11	GOOD CONDITION APPROPRIAT	TH V	1	X				11	11	11
B39-0.5	10-19-06		11	DECHLORINATED IN LABPRESERVED		-		X			11	11	11
B39-3.5	10-19-06		11	PRESERVATION O&G METALS OT	THER		X				11	11	4
STATE OF THE PARTY				4 -							*	*	4
RELIMOUISHED BY:		10%	DATE	TIME RECEIVED BY: (SIGNATURE)		0	THES	OF SA SHEPHED OF COL SHEPHED	TAMES TO TAMES T)	15	M	Camp	el (Malytical
RELINIOUISMED BY:	(SIGNATURE	10/	DOL.	TIME RECEIVED BY: (SIGNATURE)		A	BOR	la R	y del	19	19	27725	PHONE NUMBER:
RELINQUISHED BY:	(SICNATURE)/	DATE	TIME RECEIVED FOR LABORATOR (SIGNATURE)	Y BY:		0					EQUEST S	
	April 18			REMARKS:		•							

McCampbell Analytical, Inc.

1534 Willow Pass Rd
Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	(925) 252-9262					Work	Order:	06104	131	(ClientII	D: RGA	E				
,	-			□ EDF	=	F	ax		Ema	il	□ H	HardCopy		ThirdF	Party		
RG/ 146	: Olson A Environmental 6 66th Street eryville, CA 94608		Email: TEL: (510) 547-777 ProjectNo: #0304; Califo PO:	`	0) 547-19	983	RG 146	counts GA Envi 66 66th neryville	ronmer Street	ntal			Date	ested T Receiv	ved:	10/20/ 10/20/	
									Re	queste	d Tests	(See lege	nd belo	w)			
Sample	ID	ClientSampID	Matrix	Collection Date	te Hold	1	2	3	4	5	6	7	8	9	10	11	12
0610431	-001	B33-0.5	Soil	10/18/2006			А										T
0610431	-002	B33-3.5	Soil	10/18/2006		Α											
0610431	-003	B34-0.5	Soil	10/19/2006			Α										
0610431	-004	B34-3.5	Soil	10/19/2006		Α											
0610431	-005	B35-0.5	Soil	10/18/2006			Α									-	
0610431	-006	B35-3.5	Soil	10/18/2006		Α											
0610431	-007	B36-0.5	Soil	10/18/2006			Α										
0610431	-008	B36-3.5	Soil	10/18/2006		Α											
0610431	-009	B36-7.5	Soil	10/18/2006		Α		Α									
0610431	-010	B37-0.5	Soil	10/19/2006			Α										
0610431	-011	B37-3.5	Soil	10/19/2006		Α											
0610431	-012	B38-0.5	Soil	10/18/2006			Α										
0610431	-013	B38-3.5	Soil	10/18/2006		Α											
0610431	-014	B39-0.5	Soil	10/19/2006			Α										
0610431	-015	B39-3.5	Soil	10/19/2006		Α											<u> </u>
Test Le	gend:																
1	8260B_S	2	CAM17MS_S	3	G-MBTE	X_S		4					5	i			
6		7		8				9					10	0			
11		12															
The follo	wing SampID: 061043	1-009A contains te	estgroup. Please make sure	all relevant testco	des are re	eported.	Many th	nanks.				I	Prepare	ed by:	Melis	ssa Vall	es

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 dour sueet	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID	0610431-002A		
Client ID	B33-3.5		
Matrix	Soil	•	
	2		l n

Matrix		Soil								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05			
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005			
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005			
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005			
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005			
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05			
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005			
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005			
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01			
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005			
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005			
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005			
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005			
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005			
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005			
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005			
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005			
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005			
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005			
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005			
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005			
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005			
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005			
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005			
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005			
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005			
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005			
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005			
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005			
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005			
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005			
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005			
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005			
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005			
		Surr	ogate Re	coveries (%)						

%SS3: Comments:

%SS1:

%SS2:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

101

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID	0610431-004A		
Client ID	B34-3.5		
Matrix	Soil	•	
	2		l n .:

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

%SS3: Comments:

%SS1:

%SS2:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

90

102

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 Oour Sueet	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID	0610431-006A	
Client ID	B35-3.5	
Matrix	Soil	
	n e	n .:

Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

%SS3: Comments:

%SS1:

%SS2:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

100

100

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 oolii Sueet	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID		0610431-008A		
Client ID		B36-3.5		•
Matrix		Soil		
	Reporting			Reporting

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

	Surrogate Re	ecoveries (%)	
%SS1:	90	%SS2:	109
%SS3:	100		
	<u> </u>		

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 Oour Sueet	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID				0610431-009A			
Client ID				B36-7.5			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

Matrix	Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)								
%SS1:	109	%SS2:	106					
%SS3:	93							
			-					

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 Oddi Sueet	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/23/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID				0610431-011A			
Client ID				B37-3.5			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.003
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.003
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.003
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.003
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.003
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.003
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.00
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.00
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.00
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.00
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.00
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.003
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.00
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.00
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.00
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.00
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.00
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.00
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.00
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.00
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.00
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.00
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.00
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.00
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.00
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.00
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.00
Vinvl Chloride	ND	1.0	0.005	7-7-	ND	1.0	0.00
		Surr	ogate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	106	%SS2:	114				
%SS3:	98						
			<u> </u>				

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

	Lab ID		0610431-013A										
	Client ID		B38-3.5										
	Matrix		Soil										
_		_			Reporting	_			_				Reporting

Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	gate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	95	%SS2:	110				
%SS3:	101						

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/20/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610431

Lab ID		0610431-015A									
Client ID	B39-3.5										
Matrix		Soil									
G 1	C *	DE	Reporting	C 1	C	DE	Reporting				

Matrix Soil							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	91	%SS2:	111				
%SS3:	100						

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Client Project ID: #0304; California Date Sampled: 10/18/06-10/19/06 **RGA** Environmental Linen 10/20/06 Date Received: 1466 66th Street Client Contact: Eric Olson 10/20/06 Date Extracted: Client P.O.: Emeryville, CA 94608 Date Analyzed 10/24/06-10/25/06 CAM / CCR 17 Metals* Lab ID 0610431-001A 0610431-003A 0610431-005A 0610431-007A Reporting Limit for DF =1; ND means not detected Client ID B33-0.5 B34-0.5 B35-0.5 B36-0.5 above the reporting limit Matrix S S S S S TTLC TTLC TTLC TTLC Extraction Type mg/Kgmg/L ICP-MS Metals, Concentration* Analytical Method: 6020A Extraction Method: SW3050B Work Order: 0610431 Dilution Factor 1 1 1 Antimony 2.6 0.72ND 0.70 0.5 NA Arsenic 9.8 7.4 5.1 5.5 0.5 NA Barium 110 160 160 160 5.0 NA Beryllium 0.70 0.55 ND 0.5 ND NA Cadmium 0.49 ND ND 0.290.25NA 0.5 Chromium 28 49 43 33 NA Cobalt 7.6 5.0 9.9 8.6 0.5 NA 22 22 23 0.5 NA Copper 100 Lead 53 7.8 6.5 34 0.5 NA Mercury 1.7 0.058 ND 0.12 0.05 NA Molybdenum 1.2 1.9 0.90 1.4 0.5 NA Nickel 42 39 0.5 28 42 NA Selenium ND ND ND ND 0.5 NA Silver ND ND ND ND 0.5 NA Thallium ND ND ND ND 0.5 NA

Comments								
*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in								
mg/L, soil/sludge/solid samples in mg/kg, v	wipe samples in ug/v	wine, filter samples i	n ug/filter.					

45

92

46

42

96

35

64

93

0.5

5.0

NA

NA

43

210

92

Vanadium

%SS:

Zinc

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Quality Counts"					Telephone: 8	77-252-9262 Fax: 92:	3-232-9209		
RGA Environmental			roject ID:	#0304;	California	Date Sampled:	10/18/06-1	0/19/06	
1166 661 0		Linen				Date Received: 10/20/06			
1466 66th Street	-	Client Contact: Eric Olson				Date Extracted:	10/20/06		
Emeryville, CA 94608		Client P.O.:			Date Analyzed	10/24/06-1	0/25/06		
CAM / CCR 17 Metals*									
Lab ID	061043	31-010A	0610431-	012A	0610431-014A		Reporting Lin	nit for DF =1;	
Client ID	B37-0.5		B38-0).5	B39-0.5			not detected porting limit	
Matrix		S	S		S		S	W	
Extraction Type	T	TLC	TTL	С	TTLC		mg/Kg	mg/L	
		ICP-N	AS Metals,	Conce	ntration*				
Analytical Method: 6020A		Extr	action Method	: SW305	50B		Work Order:	0610431	
Dilution Factor		1	1		1		1	1	
Antimony	0	.68	0.75	1	0.68		0.5	NA	
Arsenic	(5.4	4.1		9.0		0.5	NA	
Barium	1	00	150		160		5.0	NA	
Beryllium	1	ND	0.64		0.61		0.5	NA	
Cadmium	0	.41	0.26	i	ND		0.25	NA	
Chromium		54	51		50		0.5	NA	
Cobalt	Ģ	9.2	8.3		10		0.5	NA	
Copper	:	24	26		25		0.5	NA	
Lead	:	59	7.5		8.1		0.5	NA	
Mercury	0	.12	0.06	2	ND		0.05	NA	
Molybdenum	0	.70	0.50)	1.9		0.5	NA	
Nickel		70	53		47		0.5	NA	
Selenium	0	.59	ND		ND		0.5	NA	
Silver	1	ND	ND		ND		0.5	NA	
Thallium	1	ND	ND		ND		0.5	NA	
Vanadium		44	50		52	2		NA	
Zinc	1	30	60		47		5.0	NA	
%SS: 93		94		92					

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

Comments

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental			Projec	t ID: #0304; California	Date Sampled: 10/18/06						
1466 66th Str	reet	Linen			Date Received: 10/20/	Date Received: 10/20/06					
Emeryville, C	°A 94608	Client (Conta	ct: Eric Olson	Date Extracted: 10/20/06						
Emery vine, C	A 7 1 000	Client F	P.O.:		Date Analyzed 10/23/	06					
Extraction method:		ange (C6	ge (C6-C12) Volatile Hydrocarbons as Gasoline* Analytical methods: SW8021B/8015Cm Work Orde								
Lab ID	Client ID	Ma	atrix	TPH(g)		DF	% SS				
009A	B36-7.5		S	43,g,m		3.3	92				
	1										
Re	eporting Limit for DF =1;		W	NA		N	Δ				
NE	O means not detected at or	<u> </u>	S	1.0			/Kg				

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/kg$, product/oil/non-aqueous liquid samples in mg/L.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 10/20/06
	Client P.O.:	Date Analyzed 10/21/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: S	W3550C	Analytical n	nethods: SW8015C	Wor	Work Order: 0610431					
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
0610431-009A	B36-7.5	S	140,a/c	84	1	114				
	orting Limit for DF =1;	W	NA	NA	ug	g/L				
ND n	neans not detected at or	2	1.0	5.0	mo	/ K \(\sigma \)				

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

1.0

S

mg/Kg

5.0

above the reporting limit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

QC SUMMARY REPORT FOR SW8260B

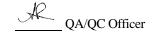
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0610431

EPA Method SW8260B	E	xtraction	SW503	0B	BatchID: 24400 Spiked Sample ID: 0610429-00							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
rilaryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	80.9	87.9	8.24	88.9	85.6	3.83	70 - 130	30	70 - 130	30
Benzene	ND	0.050	110	116	4.50	117	113	3.27	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	98.4	114	15.0	119	110	7.71	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	89.1	95.1	6.44	94.4	93.1	1.39	70 - 130	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	96.7	103	6.80	105	103	2.16	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	85.1	87.4	2.64	88.8	85.5	3.85	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	98.3	101	3.01	114	97.8	15.0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	94	99.6	5.75	103	96.4	7.01	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	83.7	89.2	6.37	91.6	85.9	6.43	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	85.1	91.7	7.49	94.3	87.1	7.87	70 - 130	30	70 - 130	30
Toluene	ND	0.050	92.3	98.4	6.04	103	101	1.72	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	78.5	81.5	3.77	83.5	80.2	4.05	70 - 130	30	70 - 130	30
%SS1:	108	0.050	94	93	1.16	97	95	1.81	70 - 130	30	70 - 130	30
%SS2:	108	0.050	97	96	0.809	96	96	0	70 - 130 30 70 - 130			30
%SS3:	94	0.050	96	96	0	98	95	2.58	70 - 130	30	70 - 130	30

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 24400 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610431-002	10/18/06	10/20/06	10/21/06 7:59 PM	0610431-004	10/19/06	10/20/06	10/21/06 5:01 PM
0610431-006	10/18/06	10/20/06	10/21/06 4:16 PM	0610431-008	10/18/06	10/20/06	10/21/06 7:15 PM
0610431-009	10/18/06	10/20/06	0/24/06 12:59 PM	0610431-011	10/19/06	10/20/06	10/23/06 4:04 PM
0610431-013	10/18/06	10/20/06	10/21/06 5:46 PM	0610431-015	10/19/06	10/20/06	10/21/06 6:30 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR 6020A

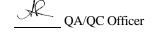
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0610431

EPA Method 6	020A			Extracti	on SW3050)B	В	atchID: 2	4392	Spiked Sample ID 0610413-001A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	·)		
,a., 10	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Antimony	0.89	50	89.9	89.4	0.525	10	93.5	94.3	0.809	75 - 125	20	80 - 120	20		
Arsenic	4.3	50	91.2	95.4	4.10	10	92.2	94.7	2.64	75 - 125	20	80 - 120	20		
Barium	110	500	101	101	0	100	90.6	90.7	0.154	75 - 125	20	80 - 120	20		
Beryllium	ND	50	84.1	84	0.165	10	98	99.5	1.54	75 - 125	80 - 120	20			
Cadmium	0.26	50	95.5	96	0.478	10	95.1	95.1	0	75 - 125	80 - 120	20			
Chromium	69	50	87.9	83.9	1.78	10	89.3	90.4	1.30	75 - 125	20	80 - 120	20		
Cobalt	17	50	91.6	89.7	1.56	10	100	102	1.29	75 - 125	20	80 - 120	20		
Copper	50	50	98.1	97.3	0.385	10	89.2	90	0.915	75 - 125	20	80 - 120	20		
Lead	130	50	110	114	0.855	10	94.6	96.2	1.71	75 - 125	20	80 - 120	20		
Mercury	0.14	2.5	103	105	2.04	0.50	104	106	1.26	75 - 125	20	80 - 120	20		
Molybdenum	ND	50	90.1	90.3	0.266	10	87.1	89.7	2.92	75 - 125	20	80 - 120	20		
Nickel	75	50	97.6	95.6	0.810	10	90	92	2.26	75 - 125	20	80 - 120	20		
Selenium	2.2	50	83.8	83.9	0.0906	10	88.5	88.7	0.237	75 - 125	20	80 - 120	20		
Silver	ND	50	95.3	95.2	0.126	10	86.6	87.4	0.977	75 - 125	20	80 - 120	20		
Thallium	ND	50	95.2	99.5	4.40	10	91.3	93.1	2.01	75 - 125	20	80 - 120	20		
Vanadium	82	50	89.1	85.1	1.59	10	90	91.7	1.78	75 - 125	20	80 - 120	20		
Zinc	130	500	102	101	0.828	100	93.9	95.1	1.29	75 - 125	20	80 - 120	20		
%SS:	100	250	99	97	1.88	250	96	96	0	70 - 130	20	70 - 130	20		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24392 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610431-001A	10/18/06	10/20/06	10/24/06 1:52 AM	0610431-001A	10/18/06	10/20/06	10/25/06 1:43 AM
0610431-003A	10/19/06	10/20/06)/24/06 11:24 PM	0610431-005A	10/18/06	10/20/06	0/24/06 11:31 PM
0610431-007A	10/18/06	10/20/06)/24/06 11:39 PM	0610431-010A	10/19/06	10/20/06	0/24/06 11:46 PM
0610431-012A	10/18/06	10/20/06)/25/06 12:19 AM	0610431-014A	10/19/06	10/20/06)/25/06 12:26 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

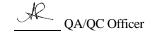
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0610431

EPA Method SW8015Cm	E	xtraction	SW503	0B		BatchII	D: 24397	5	Spiked San	nple ID	: 0610421-0)01A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)	
, way to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex [£]	ND	0.60	108	109	0.580	106	112	5.55	70 - 130	30	70 - 130	30	
МТВЕ	ND	0.10	104	101	3.33	98.1	96.1	2.01	70 - 130	30	70 - 130	30	
Benzene	ND	0.10	101	94.5	6.18	92.9	93.8	0.924	70 - 130	30	70 - 130	30	
Toluene	ND	0.10	92.3	87.3	5.63	85.8	87.1	1.42	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	0.10	98.5	98.8	0.318	96.7	99.3	2.59	70 - 130	30	70 - 130	30	
Xylenes	ND	0.30	100	96.3	3.74	92	96.7	4.95	70 - 130 30 70 - 130				
%SS:	94	0.10	101	93	8.25	92	87	5.59	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24397 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610431-009	10/18/06	10/20/06	0/23/06 10:40 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

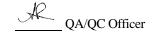
QC SUMMARY REPORT FOR SW8015C

WorkOrder 0610431 W.O. Sample Matrix: Soil QC Matrix: Soil

EPA Method SW8015C		BatchI	D: 24395	5	Spiked Sample ID: 0610416-020A							
Analyte	Analyte Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance				ce Criteria (º	e Criteria (%)						
, many to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	121	121	0	107	106	1.57	70 - 130	30	70 - 130	30
%SS:	113	50	100	101	0.267	105	104	1.38	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24395 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610431-009	10/18/06	10/20/06	10/21/06 9:34 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

BOREHOLE B40 – B48 SOIL RESULTS

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

19ME 0610616

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:						1 \			IT	U				3
0304		F	ROJECI	NAME:				:/4	7	1	7 7	7	P /	AGE 1 OF 3
SAMPLED BY: (PRI	INTED AND	Siours	_alite	ornia Linea			(ES	13	/	5/65	/ /3	0//	" w /	
Steve Carmo	ack	SIGNAT	HIK.	ch_	ER OF		N TO SIS(ES).	7/0		8 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9/8/		74 47	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUMBER OF CONTAINERS	AA	7	86/	PHALL	AT.		Para	SERVA TVE	KEMAKKS
B40-0.5	10/24/06	1255	5		1.	1	7	4	7	1		/		
1340-1.25	10/26/06	1445				X						Tu	Abrend	25-0-1
1340-3.0	10/26/01	1570				X	1		X			1	Torna	25-Day.
B41-635	10/26/06	1015				<u> </u>	1X							
B41-2.5	10/27/06	1055				X	فمي	. X		X	:			
B41-3-0	10/27/06	1105					3	X	X	X				
	10/26/04	1115					X	X		X				
417 - 2 2	,	145			1	X		X		X				
	0/27/06 1						X	X		X				
	0/27/061					X								
Outline -	0/27/06/1				1	X								
	126/061						X							
A	0/26/06 10			10EM 11.96	1	X				+	+			
	127/06/10	120		GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB CONTAINERS	1/	100	X			\top	+	-		
346 - 3,0 11	0/30/06 10	110	-	PRESERVED IN	LAB	V	The state of the s		Zt	-	-			
0.13	0/27/06/1			PRESERVATION VOAS ORG METALS OTHER	R		X	-	+	+	_	+/-		
ELINQUISHED BY: (SIC	GNATURE)			218	1	x		\dashv				1		
St. Our	-	1	ATE	TIME RECEIVED BY: (SIGNATURE)	Ī	DIAL	NO.	OF SA	MPLE			V		
ELINOWISHED BY: TSLE	SNATURE)		7946 1.	300	π	JATC	NO. C	OF CO	TAINE	DIS		LYBOI	RATORY:	01111
	The state of the s	7 1/	TE	TIME RECEIVED BY: (SIGNATURE)	001			TOR	_	ONT	ACT:	1.4.7		I Analytical
LINGUISHED BY: (SIC	NA TURE	10/3	TE S	9 Me Val	1/	ligi	ch	Ry	del	را ۱۷ اد ک	AC 1:	_	(ATORY P	HONE NUMBER:
		/ /		TIME RECEIVED FOR LABORATORY BY (SIGNATURE)	r:			SAL	PLE	AN HED	ALYSI : (S REQ	UEST SHE	and the second second
				REMARKS:			-					* *************************************		
														estation of the state of the st
		-												

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

PAGE 2 OF 2 PROJECT NUMBER: PROJECT NAME: 0304 California Linen SAMPLED BY: (PRINTED AND SIGNATURE) Steve Carmack REMARKS SAMPLE NUMBER DATE TIME | TYPE SAMPLE LOCATION 10/27/06 1555 Worked 5 - Day RELINQUISHED BY (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) TOTAL NO. OF SAMPLES LABORATORY: (THIS SHIPMENT) 1300 McCampbell Andy tred TOTAL NO. OF CONTAINERS (THES SHPMENT) RELINOUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) LABORATORY CONTACT: LABORATORY PHONE NUMBER: (925) 252-9262 RELINGUISHED BY: (SIGNATURE) DATE TIME RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET (SIGNATURE) ATTACHED: ()YES (VINO REMARKS:

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Melissa Valles

WorkOrder: 0610616 ClientID: RGAE □ EDF □ Email □ HardCopy ☐ ThirdParty ∏Fax Report to: Bill to: **Requested TAT:** 5 days Steve Carmack Email: Accounts Payable TEL: FAX: (510) 547-1983 **RGA Environmental** (510) 547-7771 **RGA Environmental** Date Received: 10/30/2006 1466 66th Street ProjectNo: #0304; California Linen 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 10/30/2006 Date Printed: Requested Tests (See legend below) ClientSampID 2 3 10 11 12 Sample ID Matrix Collection Date Hold 0610616-001 B40-0.5 Soil 10/26/06 12:55:00 Α B40-1.25 10/26/06 2:45:00 0610616-002 Soil Α Α 0610616-003 B40-3.0 Soil 10/26/06 3:25:00 Α 0610616-004 B41-0.5 Soil 10/26/06 10:15:00 Α Α Α Soil 0610616-005 B41-2.5 Α Α 10/27/06 10:55:00 Α 0610616-006 B41-3.0 Soil 10/27/06 11:05:00 Α Α Α 0610616-007 B42-0.5 Soil Α Α Α 10/26/06 11:15:00 0610616-008 B42-3.0 Soil 10/26/06 11:45:00 Α Α Α 0610616-009 B43-0.5 Soil 10/27/06 11:55:00 Α 0610616-010 B44-0.5 Soil 10/27/06 12:15:00 Α 0610616-011 B44-3.0 10/27/06 12:55:00 Soil Α 0610616-012 B45-0.5 Soil 10/26/06 12:05:00 Α 0610616-013 B45-3.0 Soil 10/26/06 2:30:00 Α 0610616-014 B46-1.5 Soil 10/27/06 4:10:00 Α Α 0610616-015 B46-3.0 Soil 10/30/06 10:10:00 Α **Test Legend:** 1 8260B S 2 8270D-PNA S 3 CAM17MS S 4 5 TPH(DMO)_S **G-MBTEX S** 10 7 8 9 6 11 12

Comments:

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Melissa Valles

WorkOrder: 0610616 ClientID: RGAE

			□EDF		□F	ax		Emai	il	HardCo	эу	Third	Party		
Report to: Steve Carmack RGA Environmental 1466 66th Street Emeryville, CA 94608		Email: TEL: (510) 547-7 ProjectNo: #0304; Calif PO:		547-19	983	RC 14	counts l GA Envir 66 66th neryville	onmen Street	ntal		Dat	quested te Recei te Print	ived:	5 days 10/30/2006 10/30/2006	
								Re	equested Te	ests (See le	gend be	low)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
0610616-016	B47-0.5	Soil	10/27/06 3:10:00				Α								
0610616-017	B47-3.0	Soil	10/27/06 3:55:00		Α						+	+	+		
0610616-018	B48-0.5	Soil	10/30/06 10:25:00				Α						+		
0610616-019	B48-3.0	Soil	10/30/06 10:35:00		Α								<u> </u>		
Test Legend:															
1 8260B_S	2	8270D-PNA_S	3 C	AM17N	1S_S		4		G-MBTE	(_S	, [5	TPH((DMO)_S)
6	7		8				9				. [10			
11	12														

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/26/06
1466 66th Street	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/06/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID	0610616-003A						
Client ID	B40-3.0						
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
777 1 011 11	175	4.0	0.005	** 1	1175	4.0	0.005

Surrogate Recoveries (%)						
%SS1:	98	%SS2:	94			
%SS3:	95					

Comments:

Vinvl Chloride

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Lab ID

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/27/06
1466 66th Street	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/03/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

0610616 0064

Lab ID	0610616-006A						
Client ID	B41-3.0						
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1.0	20	0.05	Acrolein (Propenal)	ND<1.0	20	0.05
Acrylonitrile	ND<0.40	20	0.02	tert-Amyl methyl ether (TAME)	ND<0.10	20	0.005
Benzene	ND<0.10	20	0.005	Bromobenzene	ND<0.10	20	0.005
Bromochloromethane	ND<0.10	20	0.005	Bromodichloromethane	ND<0.10	20	0.005
Bromoform	ND<0.10	20	0.005	Bromomethane	ND<0.10	20	0.005
2-Butanone (MEK)	ND<0.40	20	0.02	t-Butyl alcohol (TBA)	ND<1.0	20	0.05
n-Butyl benzene	0.29	20	0.005	sec-Butyl benzene	0.39	20	0.005
tert-Butyl benzene	ND<0.10	20	0.005	Carbon Disulfide	ND<0.10	20	0.005
Carbon Tetrachloride	ND<0.10	20	0.005	Chlorobenzene	ND<0.10	20	0.005
Chloroethane	ND<0.10	20	0.005	2-Chloroethyl Vinyl Ether	ND<0.20	20	0.01
Chloroform	ND<0.10	20	0.005	Chloromethane	ND<0.10	20	0.005
2-Chlorotoluene	ND<0.10	20	0.005	4-Chlorotoluene	ND<0.10	20	0.005
Dibromochloromethane	ND<0.10	20	0.005	1,2-Dibromo-3-chloropropane	ND<0.10	20	0.005
1,2-Dibromoethane (EDB)	ND<0.10	20	0.005	Dibromomethane	ND<0.10	20	0.005
1,2-Dichlorobenzene	ND<0.10	20	0.005	1,3-Dichlorobenzene	ND<0.10	20	0.005
1,4-Dichlorobenzene	ND<0.10	20	0.005	Dichlorodifluoromethane	ND<0.10	20	0.005
1,1-Dichloroethane	ND<0.10	20	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.10	20	0.005
1,1-Dichloroethene	ND<0.10	20	0.005	cis-1,2-Dichloroethene	ND<0.10	20	0.005
trans-1,2-Dichloroethene	ND<0.10	20	0.005	1,2-Dichloropropane	ND<0.10	20	0.005
1,3-Dichloropropane	ND<0.10	20	0.005	2,2-Dichloropropane	ND<0.10	20	0.005
1,1-Dichloropropene	ND<0.10	20	0.005	cis-1,3-Dichloropropene	ND<0.10	20	0.005
trans-1,3-Dichloropropene	ND<0.10	20	0.005	Diisopropyl ether (DIPE)	ND<0.10	20	0.005
Ethylbenzene	ND<0.10	20	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.10	20	0.005
Freon 113	ND<2.0	20	0.1	Hexachlorobutadiene	ND<0.10	20	0.005
Hexachloroethane	ND<0.10	20	0.005	2-Hexanone	ND<0.10	20	0.005
Isopropylbenzene	0.47	20	0.005	4-Isopropyl toluene	ND<0.10	20	0.005
Methyl-t-butyl ether (MTBE)	ND<0.10	20	0.005	Methylene chloride	ND<0.10	20	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.10	20	0.005	Naphthalene	2.2	20	0.005
Nitrobenzene	ND<2.0	20	0.1	n-Propyl benzene	0.64	20	0.005
Styrene	ND<0.10	20	0.005	1,1,1,2-Tetrachloroethane	ND<0.10	20	0.005
1,1,2,2-Tetrachloroethane	ND<0.10	20	0.005	Tetrachloroethene	ND<0.10	20	0.005
Toluene	ND<0.10	20	0.005	1,2,3-Trichlorobenzene	ND<0.10	20	0.005
1,2,4-Trichlorobenzene	ND<0.10	20	0.005	1,1,1-Trichloroethane	ND<0.10	20	0.005
1,1,2-Trichloroethane	ND<0.10	20	0.005	Trichloroethene	ND<0.10	20	0.005
Trichlorofluoromethane	ND<0.10	20	0.005	1,2,3-Trichloropropane	ND<0.10	20	0.005
1,2,4-Trimethylbenzene	0.20	20	0.005	1,3,5-Trimethylbenzene	ND<0.10	20	0.005
TT 1 C11 11	375 0 40	20	0.005	** 1	0.40	20	0.005

Surrogate Recoveries (%)							
%SS1: 83 %SS2: 102							
%SS3:	115						

Comments:

Vinvl Chloride

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/26/06
1466 66th Street	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/06/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID	0610616-008A						
Client ID				B42-3.0			
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<0.20	4.0	0.05	Acrolein (Propenal)	ND<0.20	4.0	0.05
Acrylonitrile	ND<0.080	4.0	0.02	tert-Amyl methyl ether (TAME)	ND<0.020	4.0	0.005
Benzene	ND<0.020	4.0	0.005	Bromobenzene	ND<0.020	4.0	0.005
Bromochloromethane	ND<0.020	4.0	0.005	Bromodichloromethane	ND<0.020	4.0	0.005
Bromoform	ND<0.020	4.0	0.005	Bromomethane	ND<0.020	4.0	0.005
2-Butanone (MEK)	ND<0.080	4.0	0.02	t-Butyl alcohol (TBA)	ND<0.20	4.0	0.05
n-Butyl benzene	0.18	4.0	0.005	sec-Butyl benzene	0.19	4.0	0.005
tert-Butyl benzene	ND<0.020	4.0	0.005	Carbon Disulfide	ND<0.020	4.0	0.005
Carbon Tetrachloride	ND<0.020	4.0	0.005	Chlorobenzene	ND<0.020	4.0	0.005
Chloroethane	ND<0.020	4.0	0.005	2-Chloroethyl Vinyl Ether	ND<0.040	4.0	0.01
Chloroform	ND<0.020	4.0	0.005	Chloromethane	ND<0.020	4.0	0.005
2-Chlorotoluene	ND<0.020	4.0	0.005	4-Chlorotoluene	ND<0.020	4.0	0.005
Dibromochloromethane	ND<0.020	4.0	0.005	1,2-Dibromo-3-chloropropane	ND<0.020	4.0	0.005
1,2-Dibromoethane (EDB)	ND<0.020	4.0	0.005	Dibromomethane	ND<0.020	4.0	0.005
1,2-Dichlorobenzene	ND<0.020	4.0	0.005	1,3-Dichlorobenzene	ND<0.020	4.0	0.005
1,4-Dichlorobenzene	ND<0.020	4.0	0.005	Dichlorodifluoromethane	ND<0.020	4.0	0.005
1,1-Dichloroethane	ND<0.020	4.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND<0.020	4.0	0.005
1,1-Dichloroethene	ND<0.020	4.0	0.005	cis-1,2-Dichloroethene	ND<0.020	4.0	0.005
trans-1,2-Dichloroethene	ND<0.020	4.0	0.005	1,2-Dichloropropane	ND<0.020	4.0	0.005
1,3-Dichloropropane	ND<0.020	4.0	0.005	2,2-Dichloropropane	ND<0.020	4.0	0.005
1,1-Dichloropropene	ND<0.020	4.0	0.005	cis-1,3-Dichloropropene	ND<0.020	4.0	0.005
trans-1,3-Dichloropropene	ND<0.020	4.0	0.005	Diisopropyl ether (DIPE)	ND<0.020	4.0	0.005
Ethylbenzene	ND<0.020	4.0	0.005	Ethyl tert-butyl ether (ETBE)	ND<0.020	4.0	0.005
Freon 113	ND<0.40	4.0	0.1	Hexachlorobutadiene	ND<0.020	4.0	0.005
Hexachloroethane	ND<0.020	4.0	0.005	2-Hexanone	ND<0.020	4.0	0.005
Isopropylbenzene	0.16	4.0	0.005	4-Isopropyl toluene	ND<0.020	4.0	0.005
Methyl-t-butyl ether (MTBE)	ND<0.020	4.0	0.005	Methylene chloride	ND<0.020	4.0	0.005
4-Methyl-2-pentanone (MIBK)	ND<0.020	4.0	0.005	Naphthalene	0.44	4.0	0.005
Nitrobenzene	ND<0.40	4.0	0.1	n-Propyl benzene	0.18	4.0	0.005
Styrene	ND<0.020	4.0	0.005	1,1,1,2-Tetrachloroethane	ND<0.020	4.0	0.005
1,1,2,2-Tetrachloroethane	ND<0.020	4.0	0.005	Tetrachloroethene	ND<0.020	4.0	0.005
Toluene	ND<0.020	4.0	0.005	1,2,3-Trichlorobenzene	ND<0.020	4.0	0.005
1,2,4-Trichlorobenzene	ND<0.020	4.0	0.005	1,1,1-Trichloroethane	ND<0.020	4.0	0.005
1,1,2-Trichloroethane	ND<0.020	4.0	0.005	Trichloroethene	ND<0.020	4.0	0.005
Trichlorofluoromethane	ND<0.020	4.0	0.005	1,2,3-Trichloropropane	ND<0.020	4.0	0.005
1,2,4-Trimethylbenzene	ND<0.020	4.0	0.005	1,3,5-Trimethylbenzene	ND<0.020	4.0	0.005
Vinvl Chloride	ND<0.020	4.0		Xvlenes	ND<0.020	4.0	0.005
		Surr		coveries (%)			,

%SS3: Comments:

%SS1:

%SS2:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

104

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/27/06
1466 66th Street	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/06/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID				0610616-011A			
Client ID				B44-3.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.003
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.003
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.003
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.003
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.003
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005

Surrogate Recoveries (%)						
%SS1:	96	% SS2:	94			
%SS3:	94					

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/26/06
1466 66th Street Emeryville, CA 94608	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
	Client P.O.:	Date Analyzed: 11/03/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID				0610616-013A			
Client ID				B45-3.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

IVIALITX				3011			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.00
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.003
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.003
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.003
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.003
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.003
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.003
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.003
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.00
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.00
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.003
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.003
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.003
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.003
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.003
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.003
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.003
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.003
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.003
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.003
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.00
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.00
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.003
1,2,4-Trichlorobenzene	ND	1.0	0.005		ND	1.0	0.003
1.1.2-Trichloroethane	ND	1.0	0.005		ND	1.0	0.00
Trichlorofluoromethane	ND	1.0		1,2,3-Trichloropropane	ND	1.0	0.00
1,2,4-Trimethylbenzene	ND	1.0	0.005		ND	1.0	0.00
Vinyl Chloride	ND	1.0		Xvlenes	ND	1.0	0.00

Surrogate Recoveries (%)							
%SS1:	86	%SS2:	105				
%SS3:	116						

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/30/06
1466 66th Street	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/06/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID	0610616-015A							
Client ID		B46-3.0						
Matrix		Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005		ND	1.0	0.005	

Surrogate Recoveries (%) %SS1: 99 95 %SS3:

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/27/06
1466 66th Street Emeryville, CA 94608	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
	Client P.O.:	Date Analyzed: 11/03/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID				0610616-017A			
Client ID				B47-3.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit

Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.003
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.003
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.003
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.003
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.003
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes	ND	1.0	0.005

Surrogate Recoveries (%)							
%SS1:	84	%SS2:	105				
%SS3:	108						
	<u> </u>		<u> </u>				

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/30/06
1466 66th Street Emeryville, CA 94608	Linen	Date Received: 10/30/06
	Client Contact: Steve Carmack	Date Extracted: 10/30/06
	Client P.O.:	Date Analyzed: 11/03/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610616

Lab ID		0610616-019A						
Client ID		B48-3.0						
Matrix		Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	

Surrogate Recoveries (%) %SS1: 106 %SS3

0.005 Xylenes

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

0.005

0.005

Comments:

Vinvl Chloride

Trichlorofluoromethane

1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND

ND

ND

1.0

1.0

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

ND

ND

ND

0.005

0.005

1.0

1.0

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/26/06-10/27/06
1466 66th Street	Linen	Date Received: 10/30/06
Emeryville, CA 94608	Client Contact: Steve Carmack	Date Extracted: 10/30/06
	Client P.O.:	Date Analyzed: 11/04/06

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS*

Extraction Method: SW3550C		Anal	ytical Method: SW827	0C	Work Order:	0610616
	Lab ID	0610616-002A	0610616-005A	0610616-014A		
Cl	Client ID		B41-2.5	B46-1.5	Reporting DF	
Matrix		S	S	S	_	
	DF	2	5	1	S	W
Compound			Conce	entration	mg/kg	ug/L
Acenaphthene		ND<0.010	ND<0.025	ND	0.005	NA
Acenaphthylene		ND<0.010	ND<0.025	ND	0.005	NA
Anthracene		ND<0.010	ND<0.025	ND	0.005	NA
Benzo(a)anthracene		ND<0.010	ND<0.025	0.0052	0.005	NA
Benzo(a)pyrene		ND<0.010	ND<0.025	0.0070	0.005	NA
Benzo(b)fluoranthene		ND<0.010	ND<0.025	ND	0.005	NA
Benzo(g,h,i)perylene		ND<0.010	ND<0.025	ND	0.005	NA
Benzo(k)fluoranthene		ND<0.010	ND<0.025	ND	0.005	NA
Chrysene		ND<0.010	ND<0.025	0.0066	0.005	NA
Dibenzo(a,h)anthracene		ND<0.010	ND<0.025	ND	0.005	NA
Fluoranthene		ND<0.010	ND<0.025	0.0087	0.005	NA
Fluorene		ND<0.010	ND<0.025	ND	0.005	NA
Indeno (1,2,3-cd) pyrene		ND<0.010	ND<0.025	ND	0.005	NA
1-Methylnaphthalene		ND<0.010	1.4	ND	0.005	NA
2-Methylnaphthalene		ND<0.010	2.3	ND	0.005	NA
Naphthalene		ND<0.010	2.5	ND	0.005	NA
Phenanthrene		ND<0.010	ND<0.025	ND	0.005	NA
Pyrene		ND<0.010	ND<0.025	0.0097	0.005	NA
		Surr	ogate Recoveries	s (%)		
%SS1		85	112	86		
%SS2		93	96	91		
Comments						

^{*} water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/26/06-10/30/06				
1466 66th Street	Linen	Date Received: 10/30/06				
1400 00th Street	Client Contact: Steve Carmack	Date Extracted: 10/30/06				
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 11/01/06-11/07/06				
CAM / CCR 17 Metals*						

Lab ID	0610616-001A	0610616-002A	0610616-004A	0610616-007A	Reporting Lin	nit for DF =1;
Client ID	B40-0.5	B40-1.25	B41-0.5	B42-0.5	ND means not detected above the reporting limit	
Matrix	S	S	S	S	S	W
Extraction Type	TTLC	TTLC	TTLC	TTLC	mg/Kg	mg/L

ICP-MS Metals, Concentration*

Analytical Method: 6020A	Extraction Method: SW3050B				Work Order:	0610616	
Dilution Factor	1	1	1	1	1	1	
Antimony	2.1	0.75	0.64	ND	0.5	NA	
Arsenic	6.8	6.3	4.9	4.3	0.5	NA	
Barium	300	160	190	210	5.0	NA	
Beryllium	0.54	ND	ND	0.60	0.5	NA	
Cadmium	0.72	0.33	0.34	ND	0.25	NA	
Chromium	52	38	40	50	0.5	NA	
Cobalt	67	33	8.5	9.0	0.5	NA	
Copper	93	26	25	25	0.5	NA	
Lead	190	150	120	7.3	0.5	NA	
Mercury	0.64	0.18	0.11	ND	0.05	NA	
Molybdenum	0.65	2.0	1.1	1.0	0.5	NA	
Nickel	58	53	47	42	0.5	NA	
Selenium	ND	ND	0.57	ND	0.5	NA	
Silver	16	ND	ND	ND	0.5	NA	
Thallium	ND	ND	ND	ND	0.5	NA	
Vanadium	43	40	42	52	0.5	NA	
Zinc	180	90	84	55	5.0	NA	
%SS:	107	104	107	104			

$*water\ samples\ are\ reported\ in\ \mu g/L,\ product/oil/non-aqueous\ liquid\ samples\ and\ all\ TCLP\ /\ STLC\ /\ DISTLC\ /\ SPLP\ extracts\ are\ reported\ in\ product\ /\ SPLP\ extracts\ are\ reported\ in\ product\ /\ SPLP\ extracts\ are\ reported\ in\ samples\ and\ all\ TCLP\ /\ SPLP\ extracts\ are\ reported\ in\ product\ /\ SPLP\ extracts\ product\ product\ /\ SPLP\ extracts\ product\ /\ SPLP\ extrac$
mg/L, soil/sludge/solid samples in mg/kg, wine samples in ug/wine, filter samples in ug/filter

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Comments

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

when outlity C	ounts			тетернопе. в	11-232-9202 Fax. 925	-232-7207	
RGA Environmental		Client Project ID: #0304; California			Date Sampled: 10/26/06-10/30/06		
		n			Date Received:	10/30/06	
1466 66th Street	Clie	Client Contact: Steve Carmack			Date Extracted: 10/30/06		
Emeryville, CA 94608	Clier	nt P.O.:			Date Analyzed:	11/01/06-1	1/07/06
					<u>*</u>		
		CAN	M / CCR 17 Me	tals*			
Lab ID	0610616-00	9A (0610616-010A	0610616-012A	0610616-014A	Reporting Lin	nit for DF =1;
Client ID	B43-0.5		B44-0.5	B45-0.5	B46-1.5	ND means rabove the rep	
Matrix	S		S	S	S	S	W
Extraction Type	TTLC		TTLC	TTLC	TTLC	mg/Kg	mg/L
	I	CP-MS	Metals, Concer	ntration*	•	<u>,</u>	
Analytical Method: 6020A			ion Method: SW305			Work Order:	0610616
Dilution Factor	1		1	1	1	1	1
Antimony	0.67		1.2	ND	0.52	0.5	NA
Arsenic	5.5		7.2	7.5	8.6	0.5	NA
Barium	130		580	150	220	5.0	NA
Beryllium	ND		0.56	ND	0.52	0.5	NA
Cadmium	ND		0.39	0.38	ND	0.25	NA
Chromium	50		56	58	40	0.5	NA
Cobalt	20		15	13	12	0.5	NA
Copper	32		68	25	23	0.5	NA
Lead	44		92	280	15	0.5	NA
Mercury	0.30		0.36	0.16	0.070	0.05	NA
Molybdenum	0.54		1.3	ND	ND	0.5	NA
Nickel	52		54	68	56	0.5	NA
Selenium	ND		ND	ND	ND	0.5	NA
Silver	ND		ND	ND	ND	0.5	NA
Thallium	ND		ND	ND	ND	0.5	NA
Vanadium	53		65	56	33	0.5	NA
Zinc	100		150	220	55	5.0	NA
%SS:	111		107	110	105	<u> </u>	
Comments							

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Ouality Counts"			Telephone: 877-252-9262 Fax: 925-252-9269				
RGA Environmental		roject ID: #0304	t ID: #0304; California Date Sampled: 10/26/06-10/3			0/30/06	
1466 664 0	Linen	Linen Date			Date Received: 10/30/06		
1466 66th Street	Client C	Contact: Steve C	armack	Date Extracted	: 10/30/06		
Emeryville, CA 94608	Client P	.O.:		Date Analyzed	l: 11/01/06-1	1/07/06	
		CAM / CCR 17 M	Ietals*				
	T	T	<u> </u>	<u> </u>			
Lab ID	0610616-016A	0610616-018A				mit for DF =1;	
Client ID	B47-0.5	B48-0.5				not detected eporting limit	
Matrix	S	S			S	W	
Extraction Type	TTLC	TTLC			mg/Kg	mg/L	
	ICP-	MS Metals, Cond	centration*				
Analytical Method: 6020A		traction Method: SW3			Work Order:	0610616	
Dilution Factor	1	1			1	1	
Antimony	5.4	0.70			0.5	NA	
Arsenic	130	6.2			0.5	NA	
Barium	360	150			5.0	NA	
Beryllium	ND	0.53			0.5	NA	
Cadmium	1.9	0.43			0.25	NA	
Chromium	21	50			0.5	NA	
Cobalt	7.8	9.6			0.5	NA	
Copper	54	25			0.5	NA	
Lead	160	26			0.5	NA	
Mercury	0.94	0.13			0.05	NA	
Molybdenum	3.1	1.2			0.5	NA	
Nickel	20	55			0.5	NA	
Selenium	ND	1.0			0.5	NA	
Silver	1.2	ND			0.5	NA	
Thallium	6.6	ND			0.5	NA	
Vanadium	33	49			0.5	NA	
Zinc	770	79			5.0	NA	
%SS:	111	108					

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

Comments

	·		
RGA Environmental	Client Project ID: #0304; California Linen	Date Sampled:	10/26/06-10/27/06
1466 66th Street	Linen	Date Received:	10/30/06
Emeryville, CA 94608	Client Contact: Steve Carmack	Date Extracted:	10/30/06
	Client P () ·	Date Analyzed	10/31/06-11/02/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

Extraction method: SW5030B Analytical methods: SW8015Cm Work Order: 0610616

straction method: SW50	J30B	Analytical metho	Analytical methods: SW8015Cm Work Order: 06		0010010	
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	
004A	B41-0.5	S	630,g,m	100	110	
005A	B41-2.5	S	750,g,m	100	101	
006A	B41-3.0	S	1100,g,m	100	91	
007A	B42-0.5	S	640,g,m	33	92	
008A	B42-3.0	S	450,g,m	20	90	
Reporti	ng Limit for DF =1;	W	NA	N	A	

above the reporting limit	3	1.0	mg/Kg	
above the reporting limit	S	1.0		
ND means not detected at or	C	1.0		

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

RGA Environmental 1466 66th Street		Client Project ID: #0304; California		Date Sampled: 10/	Date Sampled: 10/26/06-10/27/06		
		Linen		Date Received: 10/	Date Received: 10/30/06		
Emeryville, CA	0.1608	Client Contac	ct: Steve Carmack	Date Extracted: 10/	Date Extracted: 10/30/06		
Emeryvine, CA	. 94000	Client P.O.:		Date Analyzed: 10/	31/06-11/	06/06	
	Diesel (C10-23) and Oil (C18+) Range F	Extractable Hydrocarbons	as Diesel and Motor Oil*			
Extraction method: S	SW3550C	Analytica	al methods: SW8015C	Wor	rk Order: 06	510616	
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0610616-004A	B41-0.5	S	1400,k,g	1300	50	116	
0610616-005A	B41-2.5	S	910,k,g	850	50	115	
0610616-006A	B41-3.0	S	1900,k,g	1700	50	97	
0610616-007A	B42-0.5	S	2700,k,g	2500	50	113	
0610616-008A	B42-3.0	S	840,k,g	630	20	108	

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

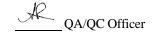
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method SW8260B	E	xtraction	SW5030)B		Batchil	D: 24564	\$	Spiked Sar	nple ID	: 0610630-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (º	%)
Allaryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	77.8	77.7	0.0681	104	103	0.465	70 - 130	30	70 - 130	30
Benzene	ND	0.050	102	103	1.25	121	115	5.43	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	101	102	1.23	111	116	5.06	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	87.4	86.3	1.19	115	114	0.708	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	96.9	96.1	0.873	129	129	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	72.6	75.5	3.93	86.1	86.1	0	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	106	108	1.89	116	121	4.25	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	83.4	85.5	2.49	95.7	96.8	1.23	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	78.4	78.9	0.679	103	103	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	78.6	81.1	3.10	107	108	0.492	70 - 130	30	70 - 130	30
Toluene	ND	0.050	91.5	92.7	1.33	127	127	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	77.6	77.6	0	96	95.6	0.434	70 - 130	30	70 - 130	30
%SS1:	99	0.050	99	101	1.84	85	86	0.348	70 - 130	30	70 - 130	30
%SS2:	97	0.050	95	96	1.01	93	95	1.70	70 - 130	30	70 - 130	30
%SS3:	93	0.050	90	91	0.544	97	96	0.655	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24564 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-003	10/26/06 3:25 PM	10/30/06	11/06/06 1:37 PM	0610616-006)/27/06 11:05 AM	10/30/06	11/03/06 9:43 PM
0610616-008)/26/06 11:45 AM	10/30/06	1/06/06 12:10 PM	0610616-011)/27/06 12:55 PM	10/30/06	11/06/06 2:23 PM
0610616-013	10/26/06 2:30 PM	10/30/06	11/03/06 7:25 PM	0610616-015)/30/06 10:10 AM	10/30/06	1/06/06 12:52 PM
0610616-017	10/27/06 3:55 PM	10/30/06	11/03/06 8:11 PM	0610616-019)/30/06 10:35 AM	10/30/06	11/03/06 8:56 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8270C

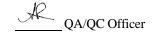
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method SW8270C	E	xtraction	SW355	0C	BatchID: 24464				Spiked Sample ID: 0610493-008A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)	
Analyto	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Benzo(a)pyrene	ND	0.10	76.8	77.9	1.43	80.9	80.6	0.342	30 - 130	30	30 - 130	30	
Chrysene	ND	0.10	95.2	93.6	1.68	90.2	91.3	1.24	30 - 130	30	30 - 130	30	
1-Methylnaphthalene	ND	0.10	92.3	93.6	1.37	92	91.5	0.556	30 - 130	30	30 - 130	30	
2-Methylnaphthalene	ND	0.10	88.2	88.8	0.672	88	85.2	3.19	30 - 130	30	30 - 130	30	
Phenanthrene	ND	0.10	86.6	87.7	1.27	85.2	81.1	4.87	30 - 130	30	30 - 130	30	
Pyrene	ND	0.10	82.9	82	1.07	79.2	78.2	1.35	30 - 130	30	30 - 130	30	
%SS1:	78	0.050	78	78	0	81	81	0	30 - 130	30	30 - 130	30	
%SS2:	76	0.050	78	77	0.940	80	80	0	30 - 130	30	30 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 24464 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-002	10/26/06 2:45 PM	10/30/06	11/04/06 2:06 PM	0610616-005)/27/06 10:55 AM	10/30/06	11/04/06 3:23 PM
0610616-014	10/27/06 4:10 PM	10/30/06	1/04/06 12:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR 6020A

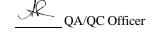
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method 60	020A			Extracti	on SW3050)B	В	atchID: 2	4563	Spiked Sample ID 0610608-011A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	5)	
7a.y 10	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	ND	50	101	103	1.97	10	109	103	5.64	75 - 125	20	80 - 120	20	
Arsenic	3.2	50	102	101	0.797	10	110	107	3.04	75 - 125	20	80 - 120	20	
Barium	130	500	106	109	1.83	100	107	101	5.58	75 - 125	20	80 - 120	20	
Beryllium	ND	50	87.2	88.9	2.01	10	105	96.2	8.45	75 - 125	20	80 - 120	20	
Cadmium	ND	50	98.9	101	1.76	10	108	102	6.28	75 - 125	20	80 - 120	20	
Chromium	49	50	97.5	97.5	0	10	104	98.8	5.50	75 - 125	20	80 - 120	20	
Cobalt	7.2	50	94.6	97	2.12	10	111	103	7.18	75 - 125	20	80 - 120	20	
Copper	12	50	99	97.9	0.947	10	107	101	5.88	75 - 125	20	80 - 120	20	
Lead	13	50	102	105	2.38	10	110	103	6.77	75 - 125	20	80 - 120	20	
Mercury	ND	2.5	105	108	2.96	0.50	117	111	5.20	75 - 125	20	80 - 120	20	
Molybdenum	ND	50	98.8	101	2.13	10	108	103	4.84	75 - 125	20	80 - 120	20	
Nickel	24	50	101	99.8	1.09	10	109	103	6.04	75 - 125	20	80 - 120	20	
Selenium	ND	50	95.7	95.8	0.125	10	102	99.2	2.89	75 - 125	20	80 - 120	20	
Silver	ND	50	81.6	82.6	1.27	10	111	105	5.48	75 - 125	20	80 - 120	20	
Thallium	ND	50	101	104	2.62	10	107	100	6.43	75 - 125	20	80 - 120	20	
Vanadium	40	50	98.6	97.8	0.450	10	107	101	5.00	75 - 125	20	80 - 120	20	
Zinc	29	500	98	99.2	1.21	100	104	97.1	6.60	75 - 125	20	80 - 120	20	
%SS:	106	250	112	114	1.74	250	113	109	3.75	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24563 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-001A	0/26/06 12:55 PM	10/30/06	11/06/06 5:52 PM	0610616-001A	0/26/06 12:55 PM	10/30/06	11/07/06 2:12 PM
0610616-002A	10/26/06 2:45 PM	10/30/06	11/06/06 6:00 PM	0610616-002A	10/26/06 2:45 PM	10/30/06	11/07/06 2:17 PM
0610616-004A)/26/06 10:15 AM	10/30/06	11/06/06 6:07 PM	0610616-004A)/26/06 10:15 AM	10/30/06	11/07/06 2:22 PM
0610616-007A)/26/06 11:15 AM	10/30/06	11/06/06 6:39 PM	0610616-009A)/27/06 11:55 AM	10/30/06	11/06/06 6:46 PM
0610616-010A	0/27/06 12:15 PM	10/30/06	11/06/06 6:53 PM	0610616-012A	0/26/06 12:05 PM	10/30/06	11/07/06 2:51 PM
0610616-012A	0/26/06 12:05 PM	10/30/06	11/07/06 2:59 PM	0610616-014A	10/27/06 4:10 PM	10/30/06	11/06/06 7:08 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

QC SUMMARY REPORT FOR 6020A

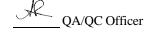
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method 6	020A			Extracti	on SW3050)B	В	atchID: 2	4567	Spiked Sample ID 0610616-018A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%	·)	
,a., 10	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	0.7	50	101	101	0	10	104	103	0.579	75 - 125	20	80 - 120	20	
Arsenic	6.2	50	97.5	99.2	1.59	10	104	101	3.80	75 - 125	20	80 - 120	20	
Barium	150	500	106	107	0.795	100	101	101	0	75 - 125	20	80 - 120	20	
Beryllium	0.53	50	85	85.3	0.348	10	98.1	96.2	1.97	75 - 125	20	80 - 120	20	
Cadmium	0.43	50	98.7	98.8	0.141	10	102	102	0	75 - 125	20	80 - 120	20	
Chromium	50	50	84.7	89.6	2.59	10	99	98.8	0.162	75 - 125	20	80 - 120	20	
Cobalt	9.6	50	93.5	93.2	0.213	10	105	105	0	75 - 125	20	80 - 120	20	
Copper	25	50	92.7	95.3	1.78	10	101	99.6	1.81	75 - 125	20	80 - 120	20	
Lead	26	50	103	103	0	10	103	102	1.17	75 - 125	20	80 - 120	20	
Mercury	0.13	2.5	106	106	0	0.50	112	111	0.770	75 - 125	20	80 - 120	20	
Molybdenum	1.2	50	99.3	99.5	0.177	10	103	101	1.18	75 - 125	20	80 - 120	20	
Nickel	55	50	92.4	96.8	2.15	10	102	100	1.58	75 - 125	20	80 - 120	20	
Selenium	1	50	94.2	94.8	0.580	10	97	97.8	0.770	75 - 125	20	80 - 120	20	
Silver	ND	50	80.9	81.1	0.295	10	104	104	0	75 - 125	20	80 - 120	20	
Thallium	ND	50	102	103	0.272	10	101	99.4	1.26	75 - 125	20	80 - 120	20	
Vanadium	49	50	87.2	91.7	2.36	10	102	100	1.68	75 - 125	20	80 - 120	20	
Zinc	79	500	101	99.7	0.811	100	98.3	96.9	1.39	75 - 125	20	80 - 120	20	
%SS:	108	250	110	110	0	250	108	108	0	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24567 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-016A	10/27/06 3:10 PM	10/30/06	11/06/06 7:15 PM	0610616-016A	10/27/06 3:10 PM	10/30/06	11/07/06 3:04 PM
0610616-016A	10/27/06 3:10 PM	10/30/06	11/07/06 3:09 PM	0610616-018A)/30/06 10:25 AM	10/30/06	11/01/06 5:48 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

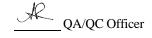
QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method SW8021B/8015	xtraction	SW5030	0B		Batchll	D: 24546	5	Spiked San	nple ID	: 0610578-0	003A	
Analyte	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%)			
7 mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	230	0.60	NR	NR	NR	107	103	3.47	70 - 130	30	70 - 130	30
MTBE	ND<10	0.10	89.7	110	20.1	91	88.2	3.19	70 - 130	30	70 - 130	30
Benzene	ND<1.0	0.10	103	122	16.3	107	103	4.22	70 - 130	30	70 - 130	30
Toluene	5.1	0.10	NR	NR	NR	88.2	85.2	3.46	70 - 130	30	70 - 130	30
Ethylbenzene	4.6	0.10	NR	NR	NR	105	101	3.81	70 - 130	30	70 - 130	30
Xylenes	53	0.30	NR	NR	NR	99.3	94	5.52	70 - 130	30	70 - 130	30
% SS1	102	0.10	104	117	11.9	106	106	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24546 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-004)/26/06 10:15 AM	10/30/06	10/31/06 7:27 PM	0610616-005)/27/06 10:55 AM	10/30/06	10/31/06 6:22 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

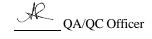
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method SW8021B/8015	0B	BatchID: 24568 Spiked Sample ID: 061062						0610621-0	01A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	105	103	2.00	102	105	2.19	70 - 130	30	70 - 130	30
MTBE	ND	0.10	92.6	92.2	0.354	99.1	84.9	15.5	70 - 130	30	70 - 130	30
Benzene	ND	0.10	107	104	2.37	113	99.9	12.0	70 - 130	30	70 - 130	30
Toluene	ND	0.10	88.9	86.7	2.52	94	82.3	13.2	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	104	102	1.39	108	98.2	9.22	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	96	94.7	1.40	99.3	94.7	4.81	70 - 130	30	70 - 130	30
%SS:	94	0.10	107	106	0.939	105	87	18.8	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 24568 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-006)/27/06 11:05 AM	10/30/06	10/31/06 8:32 PM	0610616-007)/26/06 11:15 AM	10/30/06	11/02/06 4:34 AM
0610616-008)/26/06 11:45 AM	10/30/06	1/02/06 11:00 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

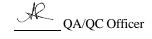
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0610616

EPA Method SW8015C	EPA Method SW8015C Extraction SW3550C							BatchID: 24561 Spiked Sample ID				002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%			%)
7 mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	79	20	NR	NR	NR	110	111	1.19	70 - 130	30	70 - 130	30
%SS:	103	50	117	118	0.363	84	88	4.15	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24561 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610616-004)/26/06 10:15 AM	10/30/06	10/31/06 7:00 PM	0610616-005)/27/06 10:55 AM	10/30/06	10/31/06 4:44 PM
0610616-006)/27/06 11:05 AM	10/30/06	10/31/06 4:44 PM	0610616-007)/26/06 11:15 AM	10/30/06	10/31/06 9:17 PM
0610616-008)/26/06 11:45 AM	10/30/06	1/06/06 12:24 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

BOREHOLE B18 - B32 GROUNDWATER RESULTS

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

Pgal 0608226

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:			PROJECT Cu PURE)	NAME: UBING LINES	IR OF	ANAL YSISCE		//	///	PRESERVANVE	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUMBER OF	7 DAW	13/	//	//	PRESE	
B21-24.0	8-8-06		ware		7	X			To	5 NO1 401	Turan
B29-21.0	11		1/		5	1x	X		111		TUING our
B30-30.0	17		.1		5	X	Ŕ				٠.
La Table 9											
						H					
	3.9%					H			100		
				,	-3	H					
RELINQUISHED BY:	(SIGNATURE) _	DATE	TIME RECEIVED BY: (SIGNATE	URE)	C	HO. OF SAMPLES SHEPMENT)	5	3 L	ABORATORY:	. 4 .
REUNQUISHED BX	(SICNATURE)	DATE	TIME RECEIVED BY: (SIGNATE	JREY	LAB	, 1	11		McCampbe ABORATORY PH 925) 252	IONE NUMBER:
RELINQUISHED BY:	(SIGNATURE)/	DATE	TIME RECEIVED FOR LABORA (SIGNATURE)	TORY BY:	1	SAMPL ATTA	E ANA	LYSIS	REQUEST SHE	
			•	REMARKS: ICE/tº_GOOD C HEAD S DECHLO	CONDITION_ PACE ABSENT_ DRINATED IN LAB VOAS		APPROPRIA' CONTAINER PRESERVED	IN LAB			

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date Received: 08/09/2006

WorkOrder: 0608226 ClientID: RGAE EDF: NO

Report to: Bill to Requested TAT: 5 days

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-777 FAX: (510) 547-198 RGA Environmental
1466 66th Street ProjectNo: #0304; California Liner 1466 66th Street

Emeryville, CA 94608 PO: Emeryville, CA 94608 **Date Printed: 08/09/2006**

-					Requested Tests (See legend below)												
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3		4	5	6	7	8	9	10	11	12
0608226-001	B21-24.0	Water	08/08/2006		Α	В											
0608226-002	B29-21.0	Water	08/08/2006		Α	В											
0608226-003	B30-30.0	Water	08/08/2006		Α	В											

Test Legend:

1 G-MBTEX_W	2 TPH(DMO)_W	3	4	5
6	7	8	9	10
44	40			

Prepared by:	Rosa	Venegas
--------------	------	---------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Date Analyzed 08/14/06-08/15/06

RGA Environmental

Client Project ID: #0304; California Liner

Date Sampled: 08/08/06

Date Received: 08/09/06

Emeryville, CA 94608

Date Extracted: 08/14/06-08/15/06

Client P.O.:

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0608226 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes % SS W 001A ND,i ND ND ND ND ND B21-24.0 1 105 002A B29-21.0 W ND,i ND ND 1.1 ND 0.94 1 105 003A B30-30.0 W ND.i ND ND 2.9 ND 1.6 1 106 Reporting Limit for DF = 1; μg/L W 0.5 50 5.0 0.5 0.5 0.5 ND means not detected at or S NA NA NA NA NA NA mg/Kg

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

RGA Environmental	Client Project ID: #0304; California Liner	Date Sampled: 08/08/06
1466 66th Street	Liner	Date Received: 08/09/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/09/06
	Client P.O.:	Date Analyzed 08/12/06-08/15/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method SW3510	esel (C10-23) and Oil (_C	=	ethods SW8015C	W 210001 W 1120001	Work Order	: 060822
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0608226-001B	B21-24.0	W	4600,g,b,i	27,000	10	92
0608226-002B	B29-21.0	W	2700,g,b,i	12,000	10	95
0608226-003B	B30-30.0	W	110,g,b,i	600	1	109
Reporting	Limit for DF =1;	W	50	250	με	ŗ/L

reporting Emilitian 11,	vv	30	230	μg/L				
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg				
* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid sample								

mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608226

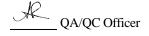
EPA Method SW8021B/8015	Cm E	Extraction	SW5030	В	Batch	ID: 23140)	Spiked Sample ID 0608224-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	60	111	110	0.793	112	113	0.535	70 - 130	70 - 130	
MTBE	ND	10	75.3	72.3	4.06	73.9	77.3	4.45	70 - 130	70 - 130	
Benzene	ND	10	110	111	0.919	106	109	2.44	70 - 130	70 - 130	
Toluene	ND	10	111	113	1.81	107	110	2.81	70 - 130	70 - 130	
Ethylbenzene	ND	10	113	115	1.44	111	113	1.36	70 - 130	70 - 130	
Xylenes	ND	30	117	117	0	117	117	0	70 - 130	70 - 130	
%SS:	103	10	102	103	0.977	99	100	0.858	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23140 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608226-001A	8/08/06	8/15/06	8/15/06 6:50 AM	0608226-002A	8/08/06	8/15/06	3/15/06 12:20 AM
0608226-003A	8/08/06	8/14/06	3/14/06 12:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

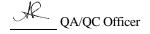
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608226

EPA Method SW8015C	5C Extraction SW3510C				BatchID: 23143			Spiked Sample ID N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	CSD LCS-LCSD Acceptance		ceptance Criteria (%)	
, mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	113	116	2.80	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	93	114	20.7	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23143 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608226-001B	8/08/06	8/09/06	8/12/06 5:26 PM	0608226-002B	8/08/06	8/09/06	8/12/06 3:10 PM
0608226-003B	8/08/06	8/09/06	8/15/06 7:19 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

Posal

0608263

CHAIN OF CUSTODY RECORD

PAGE OF

PROJECT NUMBER:				NAME: Forma Linen.	- F0	M. M. Misseles):	7//	PRESER VA TIVE SYLVA TIVE
SAMPLED BY: (PRI	1	SIGNAL	H	2	AINER	TO SEE SEE	//	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUMBER OF CONTAINERS	123 //		PRE
B24-25.0	89-06		warer		17	XX	I	CE Normal Turnament
B25-25.0	11		11		7	XX		16 11 16
B2\$-2510	+1		11		7	XX		11 11
				TODA'S / 1	1			
				GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PRESERVED IN VOAS OF METALS OTH	V AB			
				PRESERVATION 7	2			
RELINQUISHED BY:	~ M	8		TIME RECEIVED BY: (SIGNATURE		TOTAL NO. OF SAMPLES (THIS SHEPMENT) TOTAL NO. OF CONTAINER (THIS SHEPMENT)	3 21	Mc Compbell Anglitical
RELINQUISHED BY.	SICHATURE	E) /	DO DE	TIME RECEIVED BY: (SIGNATURE	9	LABORATORY CO	1 .	LABORATORY PHONE NUMBER:
RELINQUISHED BY:	(SIGNATURE	(1)	DATE	TIME RECEIVED FOR LABORATOR (SIGNATURE)	Y BY:	SAMPLE	ANALYS	SIS REQUEST SHEET)YES ()NO
• actually	y labell	ed Bi	27-2:	5-0 REMARKS:				

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

08/10/2006

WorkOrder: 0608263

ClientID: RGAE

EDF: NO

Requested TAT:

Date Received:

Report to: Bill to:

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-7771 FAX: (510) 547-1983 RGA Environmental
1466 66th Street ProjectNo: #0304; California Linen 1466 66th Street

Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 08/24/2006

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			1													
0608263-001	B24-25.0	Water	8/9/06		Α	В										
0608263-002	B25-25.0	Water	8/9/06		Α	В										
0608263-003	B27-25.0	Water	8/9/06		Α	В										

Test Legend:

1	G-MBTEX_W	2	TPH(DMO)_W	3	4	5	
6		7		8	9	10	0
11		12					

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Extraction method: SW5030B

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Work Order: 0608263

RGA Environmental	Client Project ID: #0304; California Linen	Date Sampled: 08/09/06
1466 66th Street		Date Received: 08/10/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/15/06-08/16/06
Emery vine, Crt > 1000	Client P.O.:	Date Analyzed: 08/15/06-08/16/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Cm

Client ID TPH(g) MTBE Ethylbenzene Lab ID Matrix Toluene Xylenes DF % SS Benzene W 001A B24-25.0 6600,a,i ND<50 1000 14 260 41 10 118 002A B25-25.0 W ND,i ND ND ND ND ND 107 003A B27-25.0 W ND.i ND ND ND ND ND 1 104

above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 08/09/06
1466 66th Street	Linen	Date Received: 08/10/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted: 08/10/06
Emery vine, C11 > 1000	Client P.O.:	Date Analyzed: 08/14/06-08/15/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3510C Analytical methods: SW8015C Work Order: 0608263

Extraction method: 5 W 3310			chiods. Bwoolse		Work Orde	
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0608263-001B	B24-25.0	W	12,000,d,g,i	14,000	20	106
0608263-002B	B25-25.0	W	140,g,b,i	390	1	98
0608263-003B	B27-25.0	W	2700,g,b,i	6700	2	103

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608263

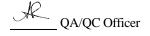
EPA Method SW8021B/8015	Cm E	Extraction	SW5030	В	Batch	ID: 23162	2	Spiked Sample ID 0608264-007A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	60	98.9	101	2.15	105	98.4	6.49	70 - 130	70 - 130	
MTBE	ND	10	95.3	100	5.27	107	113	5.84	70 - 130	70 - 130	
Benzene	ND	10	85.1	102	18.3	96.6	101	4.94	70 - 130	70 - 130	
Toluene	ND	10	81.3	96.3	16.8	93.6	95.1	1.62	70 - 130	70 - 130	
Ethylbenzene	ND	10	98.9	104	4.54	99.2	102	2.96	70 - 130	70 - 130	
Xylenes	ND	30	90.7	92.7	2.18	90.7	94.7	4.32	70 - 130	70 - 130	
%SS:	103	10	100	101	1.34	99	102	3.58	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23162 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608263-001A	8/09/06	8/16/06	8/16/06 2:43 AM	0608263-002A	8/09/06	8/15/06	3/15/06 10:15 AM
0608263-003A	8/09/06	8/15/06	3/15/06 10:47 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

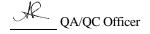
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608263

EPA Method SW8015C	E	Extraction SW3510C				ID: 23164	ļ	Spiked Sample ID N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	101	101	0	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	86	86	0	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23164 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608263-001B	8/09/06	8/10/06	8/14/06 9:29 PM	0608263-002B	8/09/06	8/10/06	8/15/06 8:30 PM
0608263-003B	8/09/06	8/10/06	8/15/06 7:21 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

U9W 281

CHAIN OF CUSTODY RECORD

														C Ur
PROJECT NUMBER:		Р	ROJECT	NAME:		T	5	7	7	7	7	77		
0304	4 .		Cal	FING LINES	1. 10	ANAL YSICA		Reg				/ /	JAKE .	
SAMPLED BY: (PRINT	TED AND				P. S.	1	?/ <	1/2	/ /	/	/ /	/ / ;	Z	DEMARKS
Eric Olson	5	+			BER	NA N	12	W					<i>[]</i>	REMARKS
		TIME	TYPE	SAMPLE LOCATION	NUMBER OF CONTAINERS	1/3		2)				PRESFE	/	
SAMPLE NUMBER	DATE	TIME	TIPE	SAMILE LOCATION		V	11	_	\Box		_			
- B18-25.0 8	10-06	•	water		7	X	X	1	~-(TCG	Norma	Turnarund
B19-32-0	1		ч.		17	X	1		1			1 -		
B20-25.0	11		/ (7	×	X					ч		
r B22-21.0	11	-	14		7	义	X					+ 1		
B23-30,0	11		7		7	X	X					73		
									5					
		TO	7/0											
		G	OD COND AD SPACE CHI ORIN	TTION										1
		DE	CHLORIN.	APPROPRIATE CONTAINERS TED IN LAB PRESERVED					\neg					
		PR	ESERVATI	VOAS O&G METALS OTHER			at politica	4e-1						
				OTHER					\neg					
A.									\neg					
									\dashv					
				\mathcal{A} .										
RELINQUISHED BY: (SI	GNATURE))*	DATE	TIME RECEIVED BY: (SIGNATURE)			THIS :	OF S	(דאכ		5		ORATORY:	
Stell		8	11/20	240 141				OF CO			35	Mc	Carpbel	1 Analytical
RELINQUISHED BY: (SI	IGNATURE)) /	DATE	TIME RECEIVED BY: (SIGNATURE)	>>	LAE	BOR	ATOF	RY (CON	TAC	T: LAB	ORATÓRY P	HONE NUMBER:
		81	11/26	5901 / Thull		An	sel	3 R	yd	le (,	US	(72	5)252	9262
RELINQUISHED BY: (SI	GNATURE)) /	DATE	TIME RECEIVED FOR LABORATORY (SIGNATURE)	BY:			SA	MPL	E A	NAL		EQUEST SHI	EET
2					_		1	,	11	-0		7		
				REMARKS:	preser	ve	<i>!!</i> \	11/	140	X				

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

08/11/2006

Date Received:

WorkOrder: 0608281 ClientID: RGAE EDF: NO

Report to: Bill to: Requested TAT: 5 days

Eric Olson Email: Accounts Payable

RGA Environmental
TEL: (510) 547-7771 FAX: (510) 547-1983 RGA Environmental
1466 66th Street ProjectNo: #0304; California Liner 1466 66th Street

Emeryville, CA 94608 PO: Emeryville, CA 94608 *Date Printed:* **08/11/2006**

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0608281-001	B18-25.0	Water	08/10/2006		Α	В										
0608281-002	B19-32.0	Water	08/10/2006		Α	В										
0608281-003	B20-25.0	Water	08/10/2006		Α	В										
0608281-004	B22-21.0	Water	08/10/2006		Α	В										
0608281-005	B23-30.0	Water	08/10/2006		A	В										

Test Legend:

1	G-MBTEX_W	2 TPH(DMO)_W	3	4	5
6		7	8	9	10
11		12			

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

 RGA Environmental
 Client Project ID: #0304; California Liner
 Date Sampled: 08/10/06

 1466 66th Street
 Date Received: 08/11/06

 Emeryville, CA 94608
 Client Contact: Eric Olson
 Date Extracted: 08/15/06-08/16/06

 Client P.O.:
 Date Analyzed 08/15/06-08/16/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with B1EX and M1BE*													
Extraction	method SW5030B		Analy	ytical methods SV	V8021B/8015Cm			Work Order	r: 060	8281				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001A	B18-25.0	W	ND	ND	ND	ND	ND	ND	1	108				
002A	B19-32.0	W	ND	ND	ND	ND	ND	ND	1	102				
003A	B20-25.0	W	ND	ND	ND	0.65	ND	1.6	1	107				
004A	B22-21.0	W	ND	ND	ND	ND	ND	ND	1	104				
005A	B23-30.0	W	ND	ND	ND	ND	ND	ND	1	105				
Rene	orting Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L				
ND r	neans not detected at or	S	NA	NA	NA	NA	NA	NA	1	mg/Kg				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

RGA Environme	ental	_	t ID: #0304; California	Date Sampled: 08/	/10/06	
1466 66th Street	i	Liner		Date Received: 08/	11/06	
Emeryville, CA	94608	Client Conta	ct: Eric Olson	Date Extracted: 08/	11/06	
Linery vine, CA	7-1000	Client P.O.:		Date Analyzed 08/	13/06-08/	17/06
	Diesel (C10-23) and Oil	(C18+) Range F	Extractable Hydrocarbons	as Diesel and Motor Oil*		
Extraction method: SV	W3510C	Analytic	al methods: SW8015C	Wor	k Order: 0	608281
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0608281-001B	B18-25.0	W	180,g,b	710	2	99
0608281-002B	B19-32.0	W	ND	ND	1	98
0608281-003B	B20-25.0	W	3000,a,g	2300	1	102
0608281-004B	B22-21.0	W	280,g,b	1300	1	104
0608281-005B	B23-30.0	W	ND	ND	1	105

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

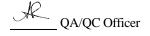
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608281

EPA Method SW8021B/8015	Cm i	Extraction	SW5030	В	Batch	ID: 23182	2	Spiked Sample ID 0608281-005A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	60	104	103	1.41	97.8	105	7.56	70 - 130	70 - 130	
MTBE	ND	10	104	96.7	6.93	103	101	1.63	70 - 130	70 - 130	
Benzene	ND	10	105	104	0.626	101	105	3.21	70 - 130	70 - 130	
Toluene	ND	10	99.3	98.4	0.856	94.4	99	4.71	70 - 130	70 - 130	
Ethylbenzene	ND	10	107	108	0.517	98.2	107	8.25	70 - 130	70 - 130	
Xylenes	ND	30	99.7	100	0.334	92.3	100	7.97	70 - 130	70 - 130	
%SS:	105	10	103	101	1.39	100	102	2.68	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23182 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608281-001A	8/10/06	8/16/06	8/16/06 4:49 AM	0608281-002A	8/10/06	8/15/06	8/15/06 6:25 AM
0608281-003A	8/10/06	8/16/06	8/16/06 5:21 AM	0608281-004A	8/10/06	8/16/06	8/16/06 5:52 AM
0608281-005A	8/10/06	8/15/06	8/15/06 1:56 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608281

EPA Method SW8015C	E	Extraction SW3510C				ID: 23164	ļ	Spiked Sample ID N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	101	101	0	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	86	86	0	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23164 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608281-001B	8/10/06	8/11/06	8/16/06 5:37 AM	0608281-002B	8/10/06	8/11/06	8/13/06 3:14 AM
0608281-003B	8/10/06	8/11/06	8/13/06 4:20 AM	0608281-004B	8/10/06	8/11/06	8/17/06 11:51 PM
0608281-005B	8/10/06	8/11/06	3/16/06 11:14 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

CHAIN OF CUSTODY RECORD

	pau	ul.king@rgaen	ıv.com						·			,				PAGE	OF	: 1_
	PROJECT NUMBER: 036 4 SAMPLED BY: (PRI	RINTED AND S		PROJECT Cal		a Lines.		NUMBER OF CONTAINERS	ANALYSICA	MU/ 3 (ES):	To lake		<i> </i>		SERVA NVE	7	REMARKS	5
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCA	лоп	NUM	1	*	STA 1	//	///	A A				
120	B26-25.0	8-11-06		Water				7	1	X	£.	and the same of		TIE	Nor	me/	Tungan	ound
130	B31-35.0	11		"				A	ź	×	-	-	+	11	-			
												1	+		-	k i		
			-									*						
												+	+	-	-		AND AND THE PROPERTY OF THE PR	
												-	+					
												1	1					
		-	. '								-	\perp			-			
									H	CE/ť	CO	OILION	N L	Al	PPROPRIA	ATE ,		
						/k				HEAL TEC	J 5P/3	CB AB	SENT		CNTAINER RESERVEI	RS V	B	
										n P P	RRV/	ATION	I VOAS	0&6	HIALS L	House		
	RELINQUISHED BY:	(SIGNATURE)	jan	DATE 8/11/06	TIME	RECEIVED BY:	(SIGNATURE)	945		THIS :	SHIPWE	AMPLES ONT) ONTAINED ONT)	_		ORATOR Le Cau	b a	zell Ma	Ltreat
	RELINQUISHED BY:	(SIGNATURE))	DATE	TIME	RECEIVED BY:	(SIGNATURE)	4	LAE	BOR	ATOR	RY CO	DATAC	CT: LAB	ORATOR	RY PH	ONE NUM	BER:
	RELINQUISHED BY:	(SIGNATURE))	DATE	TIME	RECEIVED FOR (SIGNATURE)	LABORATORY	BY:		1-6	SA	MPLE	ANA	LYSIS RI	EQUEST	SHEE		
						REMARKS:	W 4	5 pre	ser	ves	Q (w/	H	R				

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

WorkOrder: 0608295

ClientID: RGAE

EDF: NO

Requested TAT:

Report to:

Email:

Accounts Payable

RGA Environmental

TEL: (510) 547-7771 FAX: (510) 547-1983

RGA Environmental

1466 66th Street

Eric Olson

ProjectNo: #0304; California Linen

1466 66th Street

Date Received: 08/11/2006

Emeryville, CA 94608 PO:

Emeryville, CA 94608

Date Printed: 08/14/2006

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0608295-001	B26-25.0	Water	8/11/06		Α	В										
0608295-002	B31-35.0	Water	8/11/06		A	В										

Test Legend:

1	G-MBTEX_W	2 TPH(DMO)_W	3	4	5
6		7	8	9	10
11		12			

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

 RGA Environmental
 Client Project ID: #0304; California Linen
 Date Sampled: 08/11/06

 1466 66th Street
 Date Received: 08/11/06

 Emeryville, CA 94608
 Client Contact: Eric Olson
 Date Extracted: 08/15/06-08/16/06

 Client P.O.:
 Date Analyzed 08/15/06-08/16/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0608295 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes % SS B26-25.0 W 001A ND,i ND ND ND ND ND 1 98 002A B31-35.0 W ND.i ND ND ND ND ND 1 102 Reporting Limit for DF = 1; W 50 5.0 0.5 0.5 μg/L 0.5 0.5 ND means not detected at or S NA NA NA NA NA NA mg/Kg

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

RGA Environmental			t ID: #0304; California	Date Sampled: 08/	Date Sampled: 08/11/06						
1466 66th Stree	t	Linen		Date Received: 08/	Date Received: 08/11/06						
Emeryville, CA	0.4608	Client Conta	ct: Eric Olson	Date Extracted: 08/	/14/06						
Emeryvine, CA	94008	Client P.O.:		Date Analyzed 08/	Date Analyzed 08/16/06						
	Diesel (C10-23) and Oil (C18+) Range l	Extractable Hydrocarbons a	Diesel and Motor Oil*							
Extraction method SV	W3510C	Analyti	cal methods SW8015C		Work Order: 0608295						
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS					
0608295-001B	B26-25.0	W	ND,i	ND	1	108					
0608295-002B	B31-35.0	W	ND,i	ND	1	107					
	orting Limit for DF =1;	W	50	250	μе	g/L					
	neans not detected at or	S	NA	NA	mg/	/Kg					

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil;

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608295

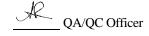
EPA Method SW8021B/8015	Cm E	xtraction	SW5030	В	Batch	ID: 23186)	Spiked Sample ID 0608295-002A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	60	101	101	0	107	113	5.16	70 - 130	70 - 130	
MTBE	ND	10	95.4	93.2	2.34	111	104	6.54	70 - 130	70 - 130	
Benzene	ND	10	107	103	3.83	103	97.1	5.78	70 - 130	70 - 130	
Toluene	ND	10	98.8	90.8	8.45	99.4	93.5	6.15	70 - 130	70 - 130	
Ethylbenzene	ND	10	106	105	0.545	105	99.5	5.53	70 - 130	70 - 130	
Xylenes	ND	30	96.7	96	0.692	100	96	4.08	70 - 130	70 - 130	
%SS:	102	10	107	105	1.54	102	99	2.17	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23186 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608295-001A	8/11/06	8/16/06	8/16/06 4:57 AM	0608295-002A	8/11/06	8/15/06	8/15/06 2:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

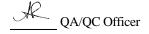
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608295

EPA Method SW8015C	E	xtraction	SW3510	С	Batch	ID: 23164	ļ	Spiked Sample ID N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	101	101	0	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	86	86	0	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23164 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608295-001B	8/11/06	5 8/14/06	3/16/06 10:05 PM	0608295-002B	8/11/06	5 8/14/06	8/16/06 4:15 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

0304

DKG:560

SAMPLE NUMBER

632-30,0 water

B32-56.0 weter

B24-55.0 Will 8/14/06

RELINQUISHED BY (SIGNATURE)

RELINQUISHED BY: (SIGNATURE)

RELINQUISHED BY: (SIGNATURE)

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

SAMPLED BY: (PRINTED AND SIGNATURE)

DATE

TIME

1127

1330

0945

PROJECT NAME:

TYPE

rebe

DATE

8/148

DATE

DATE

TIME

TIME

Caldonn Cinin

CHAIN OF CUSTODY RECORD

SAMPLE LOCATION

RECEIVED BY: (SIGNATURE)

RECEIVED BY: (SIGNATURE)

(SIGNATURE)

REMARKS:

RECEIVED FOR LABORATORY BY:

GOOD CONDITION

HEAD SPACE ABSENT.

ANAL YSIS(ES);

TOTAL NO. OF SAMPLES

(THIS SHIPMENT)

TOTAL NO. OF CONTAINERS (THIS SHIPMENT)

LABORATORY CONTACT:

YOAS | OAG | METALS | OTHER

SAMPLE ANALYSIS

ATTACHED: (

APPROPRIATE

PRESERVED IN L

CONTAINERS,

NUMBER OF CONTAINERS

J. J	/	OF
"RESERVA TIVE		REMARKS
= N	onel f	rnaround
	ž c	11
	, ι	11
		,
+		
-		
-		
BORA	TORY:	
DONA	OK I.	
BORA	TORY PH	IONE NUMBER:
REQU	EST SHE	ET

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date Received: 08/15/2006

WorkOrder: 0608345 ClientID: RGAE EDF: NO

Report to: Bill to Requested TAT: 5 days

Paul King Email: Accounts Payable

RGA Environmental
TEL: (510) 547-777 FAX: (510) 547-198 RGA Environmental
1466 66th Street ProjectNo: #0304; California Liner 1466 66th Street

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0608345-001	B24-55.0 Water	Water	08/14/2006		Α	В										
0608345-002	B32-30.0 Water	Water	08/14/2006		Α	В										
0608345-003	B32-56.0 Water	Water	08/14/2006		Α	В										

Test Legend:

1 G-MBTEX_W	2 TPH(DMO)_W	3	4	5
6	7	8	9	10
44	40			

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

RGA Environmental	Client Project ID: #0304; California Liner	Date Sampled: 08/14/06
1466 66th Street		Date Received: 08/15/06
Emeryville, CA 94608	Client Contact: Paul King	Date Extracted: 08/17/06
2.1.017 (1.10)	Client P.O.:	Date Analyzed 08/17/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0608345 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001A W B24-55.0 Water ND ND 1.2 ND ND ND 1 113 002A B32-30.0 Water W ND ND ND ND ND ND 1 105 003A B32-56.0 Water W ND ND ND ND ND ND 1 112 Reporting Limit for DF = 1; W μg/L 50 5.0 0.5 0.5 0.5 0.5 ND means not detected at or S NA NA NA NA NA NA mg/Kg above the reporting limit

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

Telephone: 877-252-9262 Fax: 9

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental				ID: #0304; California	Date Sampled: 08/14/06				
1466 66th Stree	et	Line	Γ		Date Received: 08/	15/06			
Emeryville, CA	04608	Clier	nt Contac	et: Paul King	Date Extracted: 08/15/06				
Linery vine, CA	7-1000	Clien	nt P.O.:		Date Analyzed 08/	Date Analyzed 08/17/06-08/22/06			
	Diesel (C10-23) and Oil (C18+)	Range E	xtractable Hydrocarbons as	Diesel and Motor Oil*				
Extraction method S	W3510C		Analytica	al methods SW8015C		Work Order	0608345		
Lab ID	Client ID		Matrix	TPH(d)	TPH(mo)	DF	% SS		
0608345-001B	B24-55.0 Water		W	ND	ND	1	91		
0608345-002B	B32-30.0 Water		W	220,g,b(f)	1700	1	88		
0608345-003B	B32-56.0 Water		W	160,g,b	310	1	98		
Ren	porting Limit for DF =1;		w	50	250	110	·/I		
ND i	means not detected at or ove the reporting limit		S	NA NA	NA	μg/L mg/Kg			
40						<u> </u>			

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil;

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608345

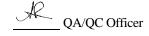
EPA Method SW8021B/8015	Cm E	Extraction	SW5030	В	BatchID: 23233			Spiked Sample ID 0608343-005a			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex [£]	ND	60	99	111	11.7	90.2	102	12.4	70 - 130	70 - 130	
MTBE	ND	10	90.8	108	17.6	95.4	89.1	6.81	70 - 130	70 - 130	
Benzene	ND	10	103	97	5.84	89	103	14.8	70 - 130	70 - 130	
Toluene	ND	10	95.8	91.5	4.67	79.2	99	22.2	70 - 130	70 - 130	
Ethylbenzene	ND	10	100	100	0	97	105	7.96	70 - 130	70 - 130	
Xylenes	ND	30	87	91.7	5.22	94.7	96	1.40	70 - 130	70 - 130	
%SS:	102	10	102	102	0	103	102	0.674	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23233 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608345-001A	3/14/06 11:27 AM	8/17/06	8/17/06 9:08 AM	0608345-002A	8/14/06 1:30 PM	8/17/06	8/17/06 9:38 AM
0608345-003A	8/14/06 9:45 AM	8/17/06	3/17/06 10:08 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

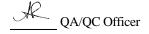
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0608345

EPA Method SW8015C	Extraction SW3510C				BatchID: 23200			Spiked Sample ID N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%		
, mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	112	102	9.48	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	111	98	12.2	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23200 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0608345-001B	3/14/06 11:27 AM	8/15/06	8/17/06 3:37 PM	0608345-002B	8/14/06 1:30 PM	8/15/06	8/22/06 2:15 AM
0608345-003B	8/14/06 9:45 AM	8/15/06	8/17/06 7:06 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

BOREHOLE B33 - B39 GROUNDWATER RESULTS

1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax

CHAIN OF CUSTODY RECORD

4011,

pat	n. King@rgaei	IV.COIII														PAGE	OF
PROJECT NUMBER:		P	ROJECT		Lisen			AWAL YSICKE	(5)		/	7	/	//	\ \ <u>\</u>	/	
SAMPLED BY: (PRI	NTED AND	SIGNAT	URE)	101/104	CITOI		RS RS	18		10	/	/		/ /	K Z	/	
Encols		> 7	W_	~			NUMBER OF CONTAINERS	ANAL	With						TESERVA TIVE		REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCAT	пон	NOS.	JA.			//						
B33-25W 120			Water		۵.		7	X	V					ICE	5 N	ormal	TURNARON
B34-25W 130	10-19-06		· C				7	X	X					le		16	10
	10-18-06		11				7	X	X					11		15	10
B36-25W+20	10-18-06		11				7	X	X					10		10	10
B37-25W 40	10-19-06		4				7	X	X					16		10	4
B38-25W460	10-18-06		4				7	X	X					10		10	11
B39-25W +30	10-19-06		/1				7	X	X					ll .		(1	11
							ı										-
									ICE/	.7	14						
									GOO	D CO	NDI	ION	NT	mette	CONTA	PRIATE	_
									DEC	HLO	CINAI	ED	NLA	3	PRESE	EVED IN L	AB
									PRE	SER	ATI	- E	OAS	O&G	METAL	S OTHER	
					<u>-</u>				1	_	\dashv			,			^
RELINOUISHED BY: (SIGNATURE)	DATE	TIME 720	RECEIVED BY:	(SICNATURE)		TOTAL	HES S	OF SHIPME	HTAIN		7		BORA	TORY:	ell Analote
RELINQUISHED BY:	SIGNATURE) /	DATE		RECEIVED BY	(SIGNATURE)		_		- 10		CON	TAC	T: LA	-	The state of the s	ONE NUMBER
		19	20/06	210				A	lae	4	Ry	Se	2/10	30	(25)	2520	1167
RELINQUISHED BY: (SIGNA TURE		DATE	TIME	RECEIVED FOR (SIGNATURE)	LABORATORY	BY:		7	SA					REQUE	ST SHEE	
1					REMARKS:	ten kankata selikalikahan dan 1927 (1977 terupapan selah dalah selika-selik Papa pelapatan										-	anner a description de l'Agènciant à description à l'Artering princesses au destingir à Philis

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Nickole White

WorkOrder: 0610432 ClientID: RGAE □ EDF □ Email □ HardCopy ☐ ThirdParty ∏Fax Report to: Bill to: **Requested TAT:** 5 days Eric Olson Email: Accounts Payable TEL: **RGA Environmental RGA Environmental** (510) 547-7771 FAX: (510) 547-1983 Date Received: 10/20/2006 1466 66th Street ProjectNo: #0304; California Linen 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 10/20/2006 Requested Tests (See legend below) ClientSampID 1 2 3 10 11 12 Sample ID Matrix Collection Date Hold 0610432-001 B33-25W Water 10/18/2006 В Α 0610432-002 B34-25W В Water 10/19/2006 Α 0610432-003 B35-25W Water 10/18/2006 В Α 0610432-004 B36-25W Water 10/18/2006 В Α 0610432-005 B37-25W Water 10/19/2006 Α 0610432-006 B38-25W Water 10/18/2006 В Α В 0610432-007 B39-25W Water Α 10/19/2006

Test Legend:

1 8260B_W	2 G-MBTEX_W	3	4	5	
6	7	8	9	10	
11	12				

The following SampIDs: 0610432-001A, 0610432-002A, 0610432-003A, 0610432-004A, 0610432-005A, 0610432-006A, 0610432-007A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 00th Street	Client Contact: Eric Olson	Date Extracted: 10/23/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/23/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

Lab ID	0610432-001B
Client ID	B33-25W
Matrix	Water

Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5	
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5	
	- · -			coveries (%)				

%SS1 102 93 %SS3:

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
1400 Oour Sueet	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

Lab ID	0610432-002B							
Client ID	B34-25W							
Matrix	Water							
	D		D					

Matrix	Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)							
%SS1:	100	%SS2:	93				
%SS3:	94						

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

	Lab ID		0610432-003B				
	Client ID	B35-25W					
	Matrix		Water				
ĺ	~ ,	Reporting	a ,	_			Reporting

Matrix	Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
	- · -			coveries (%)			

Surrogate Recoveries (%)						
%SS1:	100	%SS2:	93			
%SS3:	95					

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

	,							
Lab ID		0610432-004B						
Client ID		B36-25W						
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	

Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5

Surrogate Recoveries (%)						
%SS1:	101	%SS2:	93			
%SS3:	94					
_						

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

Lab ID	0610432-005B	
Client ID	B37-25W	
Matrix	Water	
	n :	l ln .

Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surre	ogate Re	coveries (%)			

%SS1: 94 %SS2: %SS3: 94

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/18/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

Lab ID	0610432-006B
Client ID	B38-25W
Matrix	Water

Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surre	ogate Re	coveries (%)			

Surrogate Recoveries (%)						
%SS1:	100	%SS2:	93			
%SS3:	95					

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled: 10/19/06
1466 66th Street	Linen	Date Received: 10/20/06
	Client Contact: Eric Olson	Date Extracted: 10/24/06
Emeryville, CA 94608	Client P.O.:	Date Analyzed 10/24/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0610432

Lab ID	0610432-007B						
Client ID		B39-25W					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0

IVIALITA				water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5

Surrogate Recoveries (%)					
%SS1:	101	%SS2:	93		
%SS3:	93				

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California	Date Sampled:	10/18/06-10/19/06
1466 66th Street	Linen	Date Received:	10/20/06
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted:	10/24/06-10/25/06
	Client P.O.:	Date Analyzed	10/24/06-10/25/06

Linery vine, CA 74000	,	Client P.O.:	Date Analyzed	10/24/06-10/2	5/06
	Gasoline	Range (C6-C12) Volatile F	ydrocarbons as Gasoline *		
extraction method SW5030E	3	Analytical method	SW8015Cm	Work Order: 06	10432
Lab ID	Client ID	Matrix	TPH(g)	DF	% S
001A	B33-25W	W	ND,i	1	101
002A	B34-25W	W	ND,i	1	100
003A	B35-25W	w	ND,i	1	94
004A	B36-25W	W	ND,i	1	94
005A	B37-25W	w	ND,i	1	96
006A	B38-25W	w	ND,i	1	97
007A	B39-25W	w	ND,i	1	94
	Limit for DF =1;	W	50	μ	g/L
	ot detected at or reporting limit	S	NA	N	Α

ND	**	30	μg/L			
ND means not detected at or	C	NI A	NI A			
above the reporting limit	3	NA	NA			
* water and wants complete and all TCU D & SDI D outstants are concerted in yellowing decided complete in maller, wing complete in yellowing						

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

RGA Environmental	Client Project ID: #0304; California Linen	Date Sampled:	10/18/06-10/19/06				
1466 66th Street	Linen	Date Received:	10/20/06				
Emeryville, CA 94608	Client Contact: Eric Olson	Date Extracted:	10/20/06				
Zinery vine, Crry 1000	Client P.O.:	Date Analyzed	10/21/06-10/23/06				
Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*							

Extraction method: SW351		_	thods: SW8015C	Wor	k Order: 0	610432
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0610432-001A	B33-25W	W	ND,i	ND	1	105
0610432-002A	B34-25W	W	ND,i	ND	1	103
0610432-003A	B35-25W	W	ND,i	ND	1	108
0610432-004A	B36-25W	W	120,g,b,i	480	1	114
0610432-005A	B37-25W	W	110,g,b,i	880	1	111
0610432-006A	B38-25W	W	ND,i	ND	1	104
0610432-007A	B39-25W	W	89,g,d,i	350	1	106
	g Limit for DF =1;	W	50	250	με	g/L
	s not detected at or	S	NA	NA	mg	/Kg

ND				18
ND means not detected at or	C	NT A	NT A	/IZ
above the reporting limit	3	NA	NA	mg/Kg
* water samples are reported in µg/L, wipe samples in µ	g/wipe, soi	l/solid/sludge samples in mg/k	g, product/oil/non-aqueous liq	uid samples in

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

QC SUMMARY REPORT FOR SW8260B

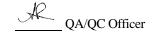
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0610432

EPA Method SW8260B	E	xtraction	SW503	0B		Batchil	D: 24390	5	Spiked San	nple ID	: 0610258-0	001A
Analyte	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-L			LCS-LCSD	-LCSD Acceptance Criteria (%)							
7 that y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	10	83.4	88.3	5.73	87	89.2	2.56	70 - 130	30	70 - 130	30
Benzene	ND	10	114	119	3.81	115	114	0.697	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	101	113	11.5	110	119	7.67	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	94.2	98.5	4.40	91.6	94.1	2.73	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	106	108	2.56	102	104	1.82	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	87.6	87.9	0.412	87.2	87.3	0.113	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	104	107	3.05	108	106	1.88	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	96.6	101	4.45	100	101	0.610	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	85.1	90.1	5.64	89.3	91.1	1.96	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	88.7	91.3	2.85	92.4	94.9	2.76	70 - 130	30	70 - 130	30
Toluene	ND	10	103	107	4.34	101	102	1.04	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	82.8	86.6	4.54	82.2	82.2	0	70 - 130	30	70 - 130	30
%SS1:	106	10	100	100	0	100	98	2.02	70 - 130	30	70 - 130	30
%SS2:	96	10	94	95	1.17	95	95	0	70 - 130	30	70 - 130	30
%SS3:	98	10	95	95	0	96	97	0.525	70 - 130	30	70 - 130	30

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 24390 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610432-001	10/18/06	10/23/06	0/23/06 11:20 PM	0610432-002	10/19/06	10/24/06)/24/06 12:09 AM
0610432-003	10/18/06	10/24/06)/24/06 12:57 AM	0610432-004	10/18/06	10/24/06	10/24/06 1:45 AM
0610432-005	10/19/06	10/24/06	10/24/06 2:32 AM	0610432-006	10/18/06	10/24/06	10/24/06 3:16 AM
0610432-007	10/19/06	10/24/06	10/24/06 4:03 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

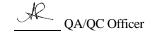
WorkOrder 0610432 W.O. Sample Matrix: Water QC Matrix: Water

EPA Method SW8015Cm	E	extraction	SW503	0B		BatchII	D: 24393	5	Spiked San	nple ID	: 0610416-0	04A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	99.4	105	5.52	100	88	12.9	70 - 130	30	70 - 130	30
МТВЕ	ND	10	113	112	0.990	105	103	1.84	70 - 130	30	70 - 130	30
Benzene	ND	10	93.4	98.9	5.75	103	87.7	15.7	70 - 130	30	70 - 130	30
Toluene	ND	10	79.9	92.1	14.1	93.8	73.6	24.1	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	98.3	98.5	0.196	90.1	78.2	14.2	70 - 130	30	70 - 130	30
Xylenes	ND	30	94.3	91	3.60	92.3	94.7	2.50	70 - 130	30	70 - 130	30
%SS:	115	10	99	98	1.14	97	98	2.02	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 24393 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610432-001	10/18/06	10/25/06	10/25/06 4:10 AM	0610432-002	10/19/06	10/25/06	10/25/06 4:40 AM
0610432-003	10/18/06	10/24/06	10/24/06 7:11 PM	0610432-004	10/18/06	10/24/06	10/24/06 8:15 PM
0610432-005	10/19/06	10/24/06	10/24/06 9:20 PM	0610432-006	10/18/06	10/24/06)/24/06 10:56 PM
0610432-007	10/19/06	10/24/06	0/24/06 11:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

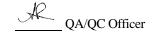
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0610432

EPA Method SW8015C	EPA Method SW8015C Extraction SW3510C					BatchID: 24424 Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	110	112	1.75	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	110	111	0.887	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24424 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610432-001	10/18/06	10/20/06	10/21/06 8:25 AM	0610432-002	10/19/06	10/20/06	10/23/06 2:29 PM
0610432-003	10/18/06	10/20/06	10/21/06 9:34 AM	0610432-004	10/18/06	10/20/06	10/21/06 2:07 PM
0610432-005	10/19/06	10/20/06)/21/06 10:42 AM	0610432-006	10/18/06	10/20/06)/21/06 11:50 AM
0610432-007	10/19/06	10/20/06	0/21/06 12:59 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

WELLS E1, E2, E3, E6, E7, I1, I2, MW1, MW2 GROUNDWATER RESULTS

RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

pgae 06/1045

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:		10	alifo	rnia Linen	OF	TO LA AWAL YSIS(ES).	Ships of the state	////	PRESERVANI	REMARKS
SAMPLED BY: (PRIL	NTED AND S	SIGNATU	IRE)		NUMBER OF CONTAINERS	ANA	1000	///	PRES	
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION		11	1	HH	1.0	TE E
E I-W	11/01/06	1210	GW	5 HCL VORS ZNP symbers	7	X	X		1	Normal travard
EZ-W		1640			7	X	X		1	fine.
E3-W	11	1340			7	X	X		14	
E6-W	10/31/06	-			17	X	X			
F7-W	11/01/06	1310			7	X	X			1 1//
MWI-W		1600	11,	V	7	X	X		14	V .
MWZ-W	1	1020	-	A STATE OF THE RESIDENCE OF THE STATE OF THE		+	++	+++		
							++			
N. W. Shirt		La Maria				1	11	+++		
				7.80	4	+	++	-		
200			120	APPROPRIATE CONTAINERS		1	11			
0			H	FAD SPACE ABSENT CONTAINED	£)		CRAS S	OF SAMPLES HIPMENT)		ABORATORY: Mc Campbell Analyt
RELINQUISHED B	Y: (SIGNATI	IKE)	11/07	NESTRYANDON		-	(THES S	OF CONTAINERS HIPMENT)	TACT: I	ABORATORY PHONE NUMB
RELINQUISHED B	(SIGNAT	URE)	DAT	E TIME RECEIVED BY: (SIGNA 19	20		Ange	le Pull		(925) 252 - 9262
RELINQUISHED E		10	1/3/CAT	THE TOP LABORATO	DRY BY			SAMPLE A	NALYSI:	S REQUEST SHEET)YES (V)NO
				REMARKS: VONS Pre	Santod	2 /	HCL			

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0611045 ClientID: RGAE □EDF □Fax ✓ Email HardCopy ☐ ThirdParty Report to: Bill to: Requested TAT: 5 days Steve Carmack Email: Accounts Payable TEL: **RGA Environmental** (510) 547-7771 FAX: (510) 547-1983 **RGA Environmental** Date Received: 11/02/2006 ProjectNo: #0304; California Linen 1466 66th Street 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 11/02/2006 Requested Tests (See legend below) 2 3 5 10 11 12 ClientSampID 1 Sample ID Matrix Collection Date Hold 0611045-001 E1-W Water 11/01/2006 Α В В 0611045-002 E2-W Water 11/01/2006 Α 0611045-003 E3-W В Water 11/01/2006 Α 0611045-004 E6-W Water 11/01/2006 Α В 0611045-005 E7-W В Water 10/31/2006 Α 0611045-006 I1-W Water В 11/01/2006 Α 0611045-007 MW1-W Water 11/01/2006 В Α 0611045-008 MW2-W Water 11/01/2006 Α В Test Legend:

1	G-MBTEX_W	2 TPH(DMO)_W	3	4	5
6		7	8	9	10
11		12			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

RGA Environmental	Client Project ID: #0304; California Linen	Date Sampled: 10/31/06-11/01/06							
1466 66th Street		Date Received: 11/02/06							
Emeryville, CA 94608	Client Contact: Steve Carmack	Date Extracted: 11/04/06-11/06/06							
2	Client P.O.:	Date Analyzed: 11/04/06-11/06/06							
Casalina Danas (C	Casalina Danas (C.C. C12) Valadila Hudusaashana ay Casalina widh DTEV ay d MTDE*								

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0611045

Extraction	i iliculod. S w 5050D		Allaly	yticai ilictilous. 5 v	V 8021B/8013CIII			WOIR Older	Work Order. 0011043				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS			
001A	E1-W	W	ND	ND	ND	ND	ND	ND	1	100			
002A	E2-W	W	1900,b	ND	0.52	6.9	17	150	1	97			
003A	E3-W	W	2600,b	ND<17	ND<1.7	ND<1.7	44	350	3.3	99			
004A	E6-W	W	310,a,i	ND	4.9	ND	ND	6.4	1	106			
005A	E7-W	W	ND	ND	ND	ND	ND	ND	1	104			
006A	I1-W	W	ND,i	ND	ND	ND	ND	ND	1	105			
007A	MW1-W	W	8500,b	ND<50	ND<5.0	30	69	1000	10	103			
008A	MW2-W	W	ND	ND	ND	ND	ND	ND	1	110			
Rep	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L			
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg			

ND . 1 1	**	30	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or	C	NΑ	NΙΔ	NΙΔ	NΑ	NΑ	NΑ	1	mg/Kg
above the reporting limit		IVA	IVA	IVA	IVA	IVA	IVA	1	mg/rxg
* water and vapor samples and all TCLI	o & CDI	D avtragts are re-	norted in ug/I	soil/sludge/solid	samples in ma/	ka wina sample	os in ug/wing		

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0304; California **RGA** Environmental Date Sampled: 10/31/06-11/01/06 Linen Date Received: 11/02/06 1466 66th Street Client Contact: Steve Carmack Date Extracted: 11/02/06 Emeryville, CA 94608 Client P.O.: Date Analyzed 11/07/06-11/09/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW35		_	ethods: SW8015C	Wo	rk Order: 0	611045
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0611045-001B	E1-W	W	ND	ND	1	115
0611045-002B	E2-W	W	1100,d,g,b	1500	1	111
0611045-003B	E3-W	W	640,d,g	260	1	100
0611045-004B	E6-W	W	260,g,d,i	470	1	86
0611045-005B	E7-W	W	ND	ND	1	115
0611045-006B	I1-W	W	ND,i	ND	1	114
0611045-007B	MW1-W	W	5800,d,g	2600	1	114
0611045-008B	MW2-W	W	ND	ND	1	111
	g Limit for DF =1;	W	50	250	μ,	g/L
	s not detected at or he reporting limit	S	NA	NA		/Kg

1 0				
* water samples are reported in μg/L, wipe samples in	μg/wipe, soil/	/solid/sludge samples in mg/k	g, product/oil/non-aqueous liq	uid samples in
			• • • • • • • • • • • • • • • • • • • •	•
mg/L, and all DISTLC / STLC / SPLP / TCLP extrac	as are reported	1 in μg/L.		

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

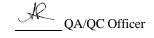
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0611045

EPA Method SW8021B/8015	Cm E	Extraction SW5030B				BatchID: 24632				Spiked Sample ID: 0611054-003E			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	ND	60	102	102	0	101	103	2.10	70 - 130	30	70 - 130	30	
MTBE	ND	10	97.9	97.2	0.680	107	105	1.95	70 - 130	30	70 - 130	30	
Benzene	ND	10	95.9	96.1	0.253	102	95	6.90	70 - 130	30	70 - 130	30	
Toluene	ND	10	89.2	88.8	0.458	94.1	88	6.75	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	94.6	94.8	0.271	98.9	101	1.68	70 - 130	30	70 - 130	30	
Xylenes	ND	30	86.3	89.7	3.79	94.7	95	0.351	70 - 130	30	70 - 130	30	
%SS:	105	10	100	100	0	102	99	2.86	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 24632 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611045-001	1/01/06 12:10 PM	11/04/06	1/04/06 12:35 PM	0611045-002	11/01/06 4:40 PM	11/06/06	1/06/06 10:21 PM
0611045-003	11/01/06 1:40 PM	11/06/06	11/06/06 8:21 PM	0611045-004	11/01/06 2:25 PM	11/06/06	1/06/06 10:51 PM
0611045-005	10/31/06 3:45 PM	11/04/06	11/04/06 5:51 AM	0611045-006	11/01/06 1:10 PM	11/04/06	11/04/06 6:21 AM
0611045-007	11/01/06 4:00 PM	11/06/06	11/06/06 7:51 PM	0611045-008	/01/06 10:20 AM	11/04/06	11/04/06 6:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

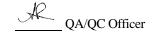
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0611045

EPA Method SW8015C Extraction SW3510C						BatchID: 24594 Spiked Sample ID: N/A					: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	112	114	1.87	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	121	112	8.19	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24594 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611045-001	1/01/06 12:10 PM	11/02/06	11/08/06 5:43 PM	0611045-002	11/01/06 4:40 PM	11/02/06	11/08/06 6:50 PM
0611045-003	11/01/06 1:40 PM	11/02/06	1/07/06 12:26 AM	0611045-004	11/01/06 2:25 PM	11/02/06	1/09/06 11:25 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

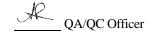
QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0611045

EPA Method SW8015C	E	Extraction SW3510C				BatchID: 24633			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	116	113	2.76	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	91	91	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24633 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611045-005	10/31/06 3:45 PM	11/02/06	11/08/06 2:15 PM	0611045-006	11/01/06 1:10 PM	11/02/06	11/08/06 3:30 PM
0611045-007	11/01/06 4:00 PM	11/02/06	11/08/06 2:23 PM	0611045-008	/01/06 10:20 AM	11/02/06	11/08/06 4:37 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

