

RECEIVED

9:20 am, Jun 07, 2010

Alameda County Environmental Health

September 17, 2009

Jerry Wickham, P.G., C.E.G., C.HG. Senior Hazardous Materials Specialist ALAMEDA COUNTY ENVIRONMENTAL HEALTH 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Bureau Veritas Project No. 33104-004578.00

Subject: Additional Subsurface Investigation Report Former Lemoine Sausage Factory 630 29th Avenue Oakland, California 94601 Fuel Leak Case No. RO0000334 and Geotracker ID T0600102114

Dear Mr. Wickham:

Enclosed please find the above referenced Additional Subsurface Investigation Report prepared by Bureau Veritas North America, Inc. (Bureau Veritas) for the subject property. The project was performed in accordance with our *Workplan for Additional Subsurface Investigation*, dated February 25, 2009.

We trust that the information provided herein will meet your needs at this time and look forward to continue working with you on this project. If you have any questions or comments regarding any of the information provided in this report, please do not hesitate to contact me at (925) 426-2626 or at timothy.bodkin@us.bureauveritas.com.

Sincerely,

mothy & Boath

Timothy G. Bodkin, C.E.G., R.E.A. II Senior Project Manager Health, Safety, and Environmental Services

Enclosure

cc: Nanda Thalasila, AIG Donna Profitt, Bank of America Heather Bush, Bureau Veritas North America, Inc.

Bureau Veritas North America, Inc.

Health, Safety, and Environmental Services 2430 Camino Ramon, Suite 122 San Ramon, CA 94583 Main: (925) 426.2600 Fax: (813) 426.0106-1692 www.us.bureauveritas.com

Additional Subsurface Investigation Report

Former Lemoine Sausage Factory 630 29th Avenue Oakland, California 94601

> September 17, 2009 33104-004578.00

Prepared for ALAMEDA COUNTY ENVIRONMENTAL HEALTH 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

For the benefit of business and people

Bureau Veritas North America, Inc.

2430 Camino Ramon, Suite 122 San Ramon, California 94583 925.426.2600 www.us.bureauveritas.com

CONTENTS

Page

1.0	INTR	ODUCT	ION	1									
2.0	SITE	SITE BACKGROUND											
	2.1	1 UST REMOVAL											
	2.2	PREVI	OUS INVESTIGATIONS	2									
		2.2.1	Risk Assessment/Feasibility Study (RA/FS)										
		2.2.2	Evaluation of Remedial Action Alternatives										
		2.2.3	ORC Injection Pilot Study										
3.0	SCO	PE OF V	VORK	5									
	3.1	PRE-F	IELD ACTIVITIES	6									
		3.1.1	Property Access	6									
		3.1.2	Permitting	6									
		3.1.3	Health and Safety Plan	6									
		3.1.4	Utility Clearance	7									
	3.2 FIELD ACTIVITIES												
		3.2.1	Soil Vapor Sampling	7									
		3.2.2	Soil Sampling	8									
		3.2.3	Grab-Groundwater Sampling	9									
		3.2.4	Decontamination and Waste Containerization	. 10									
		3.2.5	Groundwater Sampling from Existing Monitoring Wells										
	3.3	RATORY ANALYSES	. 10										
4.0	FIND	INGS		. 11									
	4.1 SUBSURFACE CONDITIONS												
	4.2	ASSES	SMENT OF UTILITY CORRIDORS	. 12									
	4.3	ANALY	TICAL RESULTS	. 12									
		4.3.1	Soil Vapor	.12									
		4.3.2	Soil	. 12									
		4.3.3	Groundwater	. 13									
	4.4	QUALITY ASSURANCE/QUALITY CONTROL											
		4.4.1	Leak Test Results	. 13									
		4.4.2	Duplicate Sample Results and Laboratory Analyses	. 14									
		4.4.3	Data Validation Summary	. 14									
5.0	CON	CLUSIO	NS AND RECOMMENDATIONS	.14									
6.0	REPF	RESENT	ATIONS AND LIMITATIONS	. 16									

7.0	REFERENCES 1	7

Tables

- 1 Soil Vapor Analytical Results, Volatile Organic Compounds (VOCs)
- 2 Groundwater Analytical Results, TPH-g, BTEX, and Volatile Organic Compounds (VOCs)

Figures

- 1 Property Location Map
- 2 Site Plan
- 3 Cross Section Locations
- 4 Cross Sections A-A' and B-B'
- 5 TCE, cis-1,.2-DCE, and Benzene Concentrations in Soil Vapor
- 6 Distribution of TPH and VOC Concentrations in Groundwater
- 7 TPH-g Concentrations in Groundwater
- 8 Benzene Concentrations in Groundwater
- 9 TCE Concentrations in Groundwater
- 10 Cis-1,2-DCE Concentrations in Groundwater

Appendices

- A Figures Showing Previous Investigation Results
- B Boring Logs and Monitoring Well Construction Details from Previous Investigations
- C Historical Groundwater Elevation Data
- D Historical Groundwater Analytical Results
- E Underground Utility Locations
- F Drilling and Excavation Permits
- G Boring Logs
- H Groundwater Monitoring and Sampling Logs
- I Chain-of-Custody Documentation and Certified Analytical Results for Soil Vapor
- J Chain-of-Custody Documentation and Certified Analytical Results for Soil
- K Chain-of-Custody Documentation and Certified Analytical Results for Groundwater

1.0 INTRODUCTION

This report presents the results of the additional subsurface investigation performed by Bureau Veritas North America, Inc. (Bureau Veritas) at the Former Lemoine Sausage Factory ("the Site"), located at 630 29th Avenue in Oakland, California. The work was performed in accordance with Bureau Veritas' *Workplan for Additional Subsurface Investigation* dated February 25, 2009, as well as in accordance with Alameda County Environmental Health's (ACEH) letters dated November 12, 2008, and March 24, 2009, both requiring additional subsurface investigation at the Site.

Previous investigation results at the Site have shown a plume of dissolved petroleum hydrocarbons extending in a west-southwest direction from a former underground storage tank (UST) location at the Site. As recently as the Second Quarter of 2009, total petroleum hydrocarbons quantified as gasoline (TPH-g) and benzene were detected in groundwater at concentrations up to 17,000 and 6,900 micrograms per liter (μ g/L), respectively. Detected concentrations of TPH-g and benzene have been found to exceed California Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for both drinking water and non-drinking water resources. Chlorinated volatile organic compounds (VOCs) also have been detected in groundwater in both on-site and off-site areas. Prior to this investigation, the source of the VOCs in groundwater was unknown.

The objectives of this additional subsurface investigation included the following:

- Delineating the extent of the dissolved petroleum hydrocarbon plume within its central and downgradient portions.
- Investigating potential source area(s) for the VOCs.
- Delineating the vertical and lateral extent of coarse-grained soils below the 15-foot depth.
- Assessing whether utility corridors that may serve as contaminant migration pathways.
- Evaluating potential vapor intrusion into the existing building on-site.

Descriptions of the site background, scope of work, findings, conclusions, and recommendations for this additional investigation are provided in the following sections.

2.0 SITE BACKGROUND

The Site is located at the southeast corner of the intersection of 29th Avenue and East 7th Street, in an area primarily zoned light industrial and commercial. The location of the Site is shown on Figure 1. The Site is surrounded by light industrial and commercial facilities to the northeast and southwest, the 29th Avenue overpass to the west, and a light industrial/commercial facility and residences to the east. A T-shaped, undeveloped lot containing automobile wreckage, miscellaneous equipment, and scrap metal materials is located to the southwest of the Site. A blacksmith and steel fabrication shop (Mor-Drop) is located adjacent to and further southwest of the undeveloped lot. According to historic maps, machine shops were formerly located in the undeveloped lot. An automotive repair facility also was formerly located to the southwest.

The Site is occupied by an approximately 9,262-square foot, L-shaped building formerly used as a sausage factory and cold storage warehouse. The building is a one-story, wood-framed, stucco exterior structure with concrete flooring and a wooden roof. The concrete flooring lies approximately 3.5 feet above street grade within the central portion of the building, and at ground level within the western and eastern portions of the building.

During earlier operations at the Site, the interior of the building was divided into a sausage production area, cold storage area, office area, refrigeration machinery room, and employee locker room. Additional refrigeration equipment was formerly present on the roof of the building, as noted during previous investigations. The building is currently subdivided into three tenant spaces. The eastern portion is occupied by an automobile repair and hobby shop (Pair-A-Dice Custom & Tow). The central portion is occupied by an architectural design and fabrication facility (Makerstudio). The western portion is occupied by a musical and electronic repair facility (Powerage Tube Amp and Electronic).

A 1,000-gallon gasoline underground storage tank (UST) and associated piping were formerly located beneath the sidewalk along 7th Street adjacent to the northeast side of the building. The UST was located adjacent to a roll-up door on the building. The fuel dispenser for the UST was located in a "cubby hole" adjacent to the building's roll-up door. The location of the former UST is shown on Figure 2.

2.1 UST REMOVAL

In November 1996, the UST and associated piping were removed. Groundwater was encountered at the 5-foot depth during excavation activities. A petroleum hydrocarbon sheen was observed in groundwater that entered the excavation during the UST removal.

Seven (7) soil samples (S-1 through S-7) were obtained during UST removal under the oversight of ACEH. The soil samples were collected at depths between 5 and 8 feet below ground surface (bgs) beneath the fill ends of the UST and the dispenser. The soil samples were analyzed for TPH-g, methyl tertiary butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX), and organic lead. Analytical results showed concentrations of these constituents ranging between non-detection and 4,300 milligrams per kilogram (mg/kg). Chemical concentrations detected in soil during the UST removal are shown in Appendix A (see Figure 3 in Appendix A). Appendix A contains various figures showing the results from previous investigations.

In May 2002, the existing sidewalk above the former UST excavation was repaired, followed by the reexcavation of the former UST pit. The former UST pit was excavated to a total depth of 6 feet bgs, and approximately 350 gallons of water were removed. Approximately 180 pounds of Oxygen Release Compound (ORC) was mixed into a slurry and placed with crushed rock into the pit. The crushed rock was approximately 3 feet thick and covered with geotextile fabric. The remaining portion of the excavation was backfilled with Class II aggregate baserock and compacted to 90% relative density. The replacement sidewalk above the excavation was constructed to City of Oakland specifications and was approximately 8 inches thick.

2.2 PREVIOUS INVESTIGATIONS

Since 1997, several investigations and quarterly groundwater monitoring events have been performed at the Site to characterize soil quality and groundwater conditions. Prior to this investigation, ten (10) soil

borings (B-1 through B-10) had been drilled to assess soil and groundwater quality around the vicinity of the former UST excavation and beneath the building footprint, and thirteen (13) groundwater monitoring wells (MW-1 through MW-13) had been installed to characterize groundwater conditions and quality within the uppermost water-bearing zone, as well as delineate the extent of impacted groundwater on-and off-site. Previous investigation results suggested that the mass of impacted soil is located around the former UST location and beneath a limited portion of the building footprint on the northeast side of the building along East 7th Street. Boring and monitoring well locations are shown on Figure 2, as well as in Appendix A (see Figure 2 in Appendix A). Soil analytical results from Borings B-1 through B-5 are shown in Appendix A (see Figure 3 in Appendix A). Boring logs and monitoring well construction details from these previous investigations are provided in Appendix B.

In 1999, Clayton Group Services, Inc. (Clayton, now Bureau Veritas) initiated quarterly groundwater monitoring activities at the Site. Since the inception of quarterly monitoring, groundwater flow consistently has been oriented to the west-southwest, and analytical data has shown TPH- and benzene-impacted groundwater extending across a portion of the Site, as well as off-site to the southwest. The highest concentrations of TPH-g and benzene have been detected in on-site Wells MW-2 and MW-9, which are both located inside the central and eastern portions of the building. Historical groundwater elevation data is presented in Appendix C. Historical groundwater analytical data is presented in Appendix D.

TPH-g and benzene concentrations in groundwater generally have remained within the same order of magnitude over the past several monitoring events. The lateral extent of the groundwater plume has been roughly defined by the TPH and benzene concentrations detected in the outermost monitoring wells with the exception of TPH-g and benzene concentrations detected in the most downgradient well (MW-13). Groundwater elevations measured during Fourth Quarter 2008 are shown in Appendix A (see Figure 4 in Appendix A). TPH-g and benzene concentrations detected in groundwater during Fourth Quarter 2008 are shown in Appendix A (see Figures 5 and 6 in Appendix A), respectively.

VOCs, primarily trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-DCE, and vinyl chloride (VC), have been detected in some of the wells (MW-8, MW-12, and MW-13) during previous monitoring events. The presence of cis-1,2-DCE, trans-1,2-DCE, and VC in groundwater over the past several monitoring events indicates that natural attenuation of the TCE is occurring. The VOC plume is stable in size and configuration, and has not shown further offsite migration to the west. The source of VOCs in groundwater is unknown. Previous monitoring results indicated that the VOC source appears to be offsite. TCE and cis-1,2-DCE concentrations detected in groundwater during Fourth Quarter 2008 are shown in Appendix A (see Figure 7 in Appendix A).

2.2.1 Risk Assessment/Feasibility Study (RA/FS)

In 2001, Clayton performed a risk assessment and feasibility study (RA/FS) to determine site-specific cleanup goals and evaluate potential remedial measures for the Site. The risk assessment was performed at the Tier II level in accordance with the California Code of Regulations Title 22, Division 21 (Title 22), American Society for Testing and Materials (ASTM-E1735) Standard Guide for Risk Based Corrective Action (RBCA) Applied at Petroleum Release Sites (ASTM, 1995), and the Oakland Urban Land Redevelopment Program (OULRP) Guidance Document (COPWA, 2000), as well as in accordance with the City of Oakland's document entitled "Oakland Risk-Based Corrective Action: Technical Background Document" updated January 1, 2000. The risk assessment identified chemicals of concern,

primary sources, secondary sources, transport mechanisms, and chemical exposure pathways to potential receptors. As part of the RA/FS, a receptor characterization and survey, risk evaluation, and identification of decision analysis-remedial action options were implemented.

The receptor survey determined that no domestic drinking water wells exist within a 2,000-foot radius of the Site, and, therefore, no risk of exposure from groundwater consumption downgradient and within 2,000 feet of the Site. Nearby underground utilities, including a storm drain and sanitary sewer, were identified as potential conduits for the transport of impacted groundwater. However, non-detect concentrations of the constituents in the monitoring wells adjacent to the Site indicated that groundwater impact to the utility trenches was unlikely. Appendix E provides a map showing storm drain and sanitary sewer locations around the Site.

The Oakland Estuary, located approximately 0.2 miles away to the south southwest between the Oakland and Alameda city limits, also was considered as a point of exposure. During the RA/FS, it was assumed that groundwater was able to enter the Oakland Estuary through natural pathways or via leakage from utility trenches. Upon further review, it was concluded that the Oakland Estuary was not a viable pathway of exposure due to its use as an active marine waterway.

In summary, the results of the risk assessment showed there were no off-site receptors that would be impacted by the Site constituents. Groundwater beneath the Site was not considered to be of beneficial use because it was located adjacent to a sanitary sewer system. Low permeability hydrogeologic conditions also showed that groundwater could not be extracted at sufficient rates for consumption over a prolonged period of time. Furthermore, groundwater beneath the Site was considered to be brackish and not suitable for consumption.

2.2.2 Evaluation of Remedial Action Alternatives

In 2004, remedial action alternatives were evaluated for practical consideration, technical applicability, and costs. Three (3) remedial action alternatives were selected for evaluation and included Alternative 1 (building demolition, excavation/disposal, and building reconstruction), Alternative 2 (soil excavation, groundwater extraction via the installation of an interceptor trench with soil vapor extraction); and Alternative 3 (groundwater injection using an Oxygen Release Compound (ORC)). Each alternative was evaluated with regard to implementability, effectiveness, and cost. This evaluation showed that each of the alternatives could be implemented, with the exception of several elements that were not technically or economically feasible. Restrictions for implementing the various remedial alternatives included the intrusiveness of each alternative relative to the building footprint and tenant occupancy, overall cost, and length of time to achieve a designated site-specific cleanup goal.

Alternative 1 was considered the most likely approach to achieve cleanup goals; however, it would have been the most costly and intrusive to implement because of completely displacing tenants during remedial activities. Alternative 1 involved building demolition and removal; excavation and offsite disposal of impacted soils; reuse of clean soil from the upper 6 feet of the excavation as fill; and placement of a limited volume of imported soil. Impacted groundwater would have been extracted and treated during construction dewatering. The time duration to complete Alternative 1 would have been significantly less than for Alternatives 2 or 3.

Alternative 2 also would have required temporary tenant relocation, and would have taken much longer to meet cleanup goals because a more localized area of impacted soil, rather than a larger area, would have to be removed. Soil vapor extraction for Alternative 2 would not have been effective because of predominant, fine-grained, low permeability soils within the vadose zone. VOC-impacted groundwater from the apparent off-site source likely would have been captured and transported on-site during implementation.

Alternative 3 was considered to be the least intrusive and costly of the remedial alternatives. Considering the intrusive nature, cost prohibition, time constraints, low permeability soil conditions, and necessity to capture VOC-impacted groundwater from an apparent off-site source associated with Alternatives 1 and 2, it was decided that a pilot test for Alternative 3 (ORC injection) would be conducted.

2.2.3 ORC Injection Pilot Study

In 2005, an ORC injection pilot study was performed at the Site to evaluate its technical feasibility for reducing chemical concentrations in groundwater. Two (2) temporary monitoring wells (T-1 and T-2) were installed and ORC injection borings were drilled. The wells were positioned downgradient of Well MW-9 to evaluate the effects of ORC injection. The injection borings were positioned upgradient of Wells MW-9 and MW-4. Well MW-9 also was utilized for groundwater monitoring purposes during the study.

Following injection, Wells T-1, T-2, and Well MW-9 were sampled three times over a five-month period. Sampling events were interspersed with the quarterly groundwater monitoring schedule. During the earlier RA/FS, bio-assessment test data showed that groundwater beneath the Site contained heterotrophic bacteria capable of degrading organic compounds. Test data also showed that groundwater beneath the Site was anaerobic (oxygen-poor) and lacked essential inorganic nutrients (nitrogen and phosphate). However, ORC injection was selected as a remedial alternative for pilot testing with the rationale that if the oxygen, nitrogen, and phosphate concentrations could be increased, those elements would potentially stimulate and increase bacteriological activity, thus allowing for biodegradation of the petroleum hydrocarbons.

Test results showed that minimal aerobic biodegradation of petroleum hydrocarbons occurred during the pilot study. No significant declines in hydrocarbon concentrations in groundwater were noted. It was also found that biodegradation appeared to occur at an extremely slow rate. It was concluded that it would be ineffective for reducing chemical concentrations in a timely manner. On this basis, ORC injection would have been conducted over a much longer time interval, and requiring more injection events than had been anticipated to achieve cleanup goals.

Based on the outcome of the pilot study, Alternative 3 was not recommended for implementation at the Site.

3.0 SCOPE OF WORK

The scope of work for the additional subsurface investigation was designed to meet objectives presented in Section 1.0 of this report. The scope of work included drilling and sampling nineteen (19) borings (including Borings SV-1 through SV-3, SVGW-1 through SVGW-4, and B-11 through B-22) for soil vapor, soil, and grab-groundwater sampling and analyses. Borings SV-1 through SV-3 were advanced inside

the Site building for soil vapor sampling. Borings SVGW-1 through SVGW4 were advanced inside the Pair-A-Dice Custom tenant space for both soil vapor and grab groundwater sampling. Boring B-11 was advanced within the sidewalk along the northeast side of the Pair-A-Dice tenant space to log stratigraphic conditions and define the vertical extent of a coarse-grained soil zone that was encountered in the bottom of Boring MW-13 during a previous investigation. Borings B-12 through B-19 were advanced within the undeveloped parcel of land between the Site and Mor-Drop facility for soil vapor, soil, and grab-groundwater sampling. Borings B-20 and B-21 were advanced within sidewalk areas outside the southwest corner of the Mor-Drop facility for the same purposes as those within the undeveloped parcel of the borings are shown on Figure 2.

Pre-field and field activities for the investigation are further described in the following sections.

3.1 PRE-FIELD ACTIVITIES

3.1.1 Property Access

The borings for this investigation were advanced inside the Site building, within the undeveloped parcel of land, and along sidewalk areas around the Site. Arrangements for accessing the tenant spaces, undeveloped land, and Mor-Drop facility were coordinated with the property owners in advance of field activities. Permission was not granted by the property owner for accessing the three (3) boring locations that originally were proposed inside the Mor-Drop facility. Because of the denial of permission, two (2) of the proposed borings (B-20 and B-21) were moved to sidewalk areas outside the southwest corner of the Mor-Drop facility, and one of the proposed borings was eliminated from the investigation.

3.1.2 Permitting

Permits for the exploratory borings were obtained from Alameda County Public Works Agency (ACPWA). An excavation permit for working within sidewalk areas also was obtained from the City of Oakland Community and Economic Development Agency. Copies of the drilling and excavation permits are provided in Appendix F.

3.1.3 Health and Safety Plan

A Health and Safety Plan (HASP) was prepared for the Site based upon results of previous investigations. The HASP provided information on the work to be performed, safety precautions, emergency response procedures, nearest hospital information, and on-site personnel responsible for managing emergency situations.

Bureau Veritas performed the investigation in accordance with the requirements of the State of California General Industry Safety Order 5192 and Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120). Prior to starting field activities, Bureau Veritas also conducted "tailgate" safety meetings with field personnel and subcontractors, which included discussions of the safety hazards and precautionary measures to be implemented during the course of the field activities. Tailgate safety meetings were performed on a regular basis, as necessary. A copy of the HASP was kept onsite during field activities.

During field activities, field personnel wore modified Level D health and safety gear, consisting of gloves, safety glasses, steel-toed boots, and hardhats for protection from overhead drilling equipment. On-site

health and safety issues were monitored by Bureau Veritas' Project Manager and/or Site Health and Safety Officer.

3.1.4 <u>Utility Clearance</u>

Boring locations were marked with white paint prior to contacting Underground Services Alert (USA). Upon contact, USA notified local utility companies regarding the upcoming exploration work, who, in turn, marked the locations of their utilities around designated investigation areas, as appropriate, and where accessible. Following the USA clearance, an experienced underground utility locator (OHS Underground Utility Locator of Oakland, California) was retained by Bureau Veritas to perform a detailed utility clearance and to confirm marked underground utility locations, as well as check for the presence of other underground utilities not already marked. Boring locations were shifted accordingly where underground utilities were found to be located directly beneath or in close proximity to the borings.

3.2 FIELD ACTIVITIES

Drilling for the borings was performed by a qualified, experienced, C-57 licensed drilling company (RSI Drilling of Woodland, California) under subcontract to Bureau Veritas. Drilling was accomplished with limited access and truck-mounted drilling equipment using direct push methods. Drilling operations were supervised by an experienced field scientist under the oversight of a Bureau Veritas California-licensed Certified Engineering Geologist. The locations of the borings are shown on Figure 2.

The borings were advanced to depths between 3.5 and 32 feet bgs. The borings were continuously cored throughout their entire depths for lithologic logging and field screening purposes, as well as for soil vapor, soil, and grab-groundwater sample collection. Soils were retained in acrylic liners lining the inside of the core barrel during each sample drive. Recovered soil cores were examined for soil classification and described on detailed boring logs in general conformance with the Unified Soil Classification System. Additional lithologic descriptions and drilling information, such as physical features, sample recovery, discoloration, odor, etc., were recorded on the boring logs. The boring logs are presented in Appendix G.

3.2.1 Soil Vapor Sampling

Soil vapor samples were collected from each of the borings (including Borings SV-1 through SV-3, SVGW-1 through SVGW-4, and B-12 through B-22) to locate potential source area(s) of VOCs and to evaluate potential vapor intrusion into the existing building at the Site. Temporary, nested soil vapor sampling points were installed at each location for sample collection. Soil vapor sampling activities were performed in accordance with the California Department of Toxic Substances Control (DTSC) and RWQCB *Advisory – Active Soil Gas Investigation* guidance dated January 28, 2003. The locations of the borings are shown on Figure 2.

3.2.1.1. Temporary, Nested Soil Vapor Sampling Point Construction

The temporary soil vapor points were installed at depth between 3.0 and 3.5 feet bgs because of the anticipated shallow depth of groundwater beneath the Site. Upon reaching the borehole bottom at each location, the construction of each sampling point was begun by placing approximately 6 inches of clean, dry sand in the borehole bottom along with a temporary soil vapor probe attached to an approximate 5-foot length of inert tubing, both extending to the borehole bottom. After the tubing was set in place, an

additional 6 inches of clean, dry sand was added above the tip of the tubing. Above the sand layer, the borehole annulus was filled with approximately one foot of dry granular bentonite and then filled with hydrated bentonite chips to grade.

3.2.1.2. Soil Vapor Sample Collection

Upon installation, the first soil vapor sampling point (Boring B-18) was equilibrated over a DTSC/RWQCBrequired minimum of 30 minutes. After equilibrium was achieved, purge volume testing was performed at Boring SVGW-3 using a combination of inert tubing, Teflon tape, gas-tight syringes equipped with Teflon plungers, and stainless steel and brass fittings. Purge volume samples were retained in the gas-tight, glass syringes. Purge volume testing was performed to determine the optimal purge volume for sample collection at subsequent soil vapor sampling locations. Purge testing consisted of collecting and analyzing soil vapor samples upon removing one (1), three (3), and seven (7) purge volumes. Soil vapor samples were obtained upon the removal of three (3) purge volumes at each location using the analytical results from the purge volume testing as a basis.

As with the purge volume testing, the soil vapor samples were retained in gas-tight, glass syringes. Upon retrieval, the samples were documented on chain-of-custody forms with the appropriate project information, including the project name, project number, sample location and depth, date of sampling, and sampler's name, which accompanied the soil vapor samples to a mobile analytical laboratory (TEG-Northern California of Rancho Cordova, California) stationed onsite during sampling activities. The samples were analyzed by the mobile analytical laboratory within 30 minutes of sample collection. The soil vapor samples were analyzed for VOCs using EPA Method 8260B.

Leak tests were conducted at each sampling location using a leak check compound (1,1-difluoroethane) to determine if leakage was occurring through the sampling apparatus during sample collection. Leak tests were conducted at the probe tubing/ground surface interface at each sample location.

Duplicate soil vapor samples were obtained at the minimum of one (1) sample per each field day. A total of three (3) duplicate soil vapor samples (SV-1 DUP, B-16 DUP, and B-18 DUP) were obtained during the investigation.

Upon completion of soil vapor sampling, the inert tubing and bentonite seals were removed from each borehole. The boreholes were then backfilled with a neat cement grout in accordance with ACPWA requirements, and capped either with asphalt patch or concrete to match existing grade, as appropriate.

3.2.2 Soil Sampling

Soil samples were obtained in Borings SVGW-3 and B-13 through B-18 to assess the presence of VOCs in the vadose zone. One (1) soil sample was obtained from the 5-foot depth in these borings for laboratory analyses, resulting in a total of seven (7) soil samples that were analyzed. The soil samples were retained in acrylic liners lining the inside of the core barrel during each sample drive. After the core barrel was retrieved, the acrylic liner was examined and cut for selecting and retaining samples for laboratory analyses. Samples submitted for laboratory analyses were transferred to Encore sampling devices using EPA Method 5035 protocol.

After the samples were retrieved from the core barrel and the acrylic liners were examined and cut, the ends of the acrylic tubes were covered with Teflon tape and sealed with airtight plastic caps. The acrylic tubes were then labeled with the project name, project number, boring number, sample depth, sampling date/time of sampling, and sampler's initials. The tubes were placed on crushed ice inside an insulated, pre-chilled cooler for transport to the analytical laboratory. Chain-of-custody (COC) documentation was completed and accompanied the soil samples to the analytical laboratory.

3.2.2.1. Field Screening

Soil samples from each sampling interval in the vadose zone were retained for headspace testing. Headspace tests were performed with a photo-ionization detector (PID) for detecting the presence of VOCs. To initiate the headspace testing procedure, soil samples were removed from the acrylic liners inside the core barrel, placed into labeled plastic bags, and sealed for conducting the tests. After sufficient time elapsed for vapor build-up inside the bags, the bags were punctured with the probe tip of the PID to allow for measurement of the headspace. Measurements were obtained in the parts per million (ppm) range for total VOCs. Results of the headspace tests (PID readings) were recorded on the boring logs.

3.2.3 Grab-Groundwater Sampling

Upon completion of soil sampling activities, Borings SVGW-1 through SVGW-4 and B-11 through B-21 were advanced into the uppermost water-bearing zone beneath the Site for grab-groundwater sampling purposes. Based upon our understanding of subsurface conditions prior to this investigation, it was anticipated that the borings would be advanced to depths approximately between 10 and 15 feet bgs to encounter groundwater. No groundwater was initially encountered in any of the borings at the 10- to 15-foot depths during drilling activities. As a result, the borings were advanced to greater depths between 16 and 32 feet bgs to obtain grab-groundwater samples.

Upon encountering groundwater and to initiate sample collection, the core barrel from the drilling rig was retracted a few feet upward in each boring to allow for the installation of one-inch-diameter PVC casing, which served as temporary well casing. The casing was installed to the borehole bottom. The lower five feet of each casing was slotted to allow the introduction of water into the casing.

Sufficient time was allowed for groundwater to enter the wells for collection of the grab-groundwater samples. Prior to sample collection, groundwater levels were measured and recorded on the boring logs. Grab groundwater samples were obtained using pre-cleaned, plastic, disposable bailers. Upon collection, the samples were poured from the bailers into appropriate laboratory-supplied containers. The sample containers were capped/sealed, labeled with identifying project information, and placed into a pre-chilled ice chest for transportation to the analytical laboratory. Chain of custody documentation accompanied the groundwater samples to the laboratory.

Upon sample collection, the temporary well casings were removed. The borings were then backfilled with neat cement grout in accordance with ACPWA permitting requirements.

3.2.4 Decontamination and Waste Containerization

Drilling and sampling equipment were steam cleaned or cleaned with a non-phosphate solution prior to drilling each boring. Decontamination of the drilling equipment was performed at a designated self-contained decontamination unit provided by the drilling subcontractor. Decontamination wastewater was pumped from the driller's self-contained unit into Department of Transportation (DOT)-approved 55-gallon waste drums. Soil cuttings generated during drilling activities also was placed into DOT-approved 55-gallon waste drums. Disposable health and safety gear worn during field activities also was placed into 55-gallon waste drums. The waste drums were temporarily stored onsite. Disposition of the waste(s) will be determined upon further review of the laboratory analytical data by a licensed treatment, storage, and disposal (TSD) facility.

3.2.5 Groundwater Sampling from Existing Monitoring Wells

As part of this investigation, and to further delineate the extent of impacted groundwater at the Site, groundwater samples were obtained from ten (10) existing monitoring wells (MW-1, MW-2, and MW-6 through MW-13) at the Site. Prior to sampling, the wells were purged using the same protocol typically performed during quarterly monitoring activities. Approximately three (3) well casing volumes of standing water were removed during purging, with the exception of Wells MW-1 and MW-2, which were not purged due to insufficient amounts of water in the wells and poor groundwater recharge. Wells MW-6 through MW-13 were purged by hand bailing with pre-cleaned, plastic, disposable bailers. Of these wells, Well MW-9 was purged dry. Water quality parameters (pH, specific conductivity, temperature, and turbidity) were measured and recorded onto Field Sampling Data Sheets. Water quality parameter measurements were taken prior to purging and after removing each well casing volume of water from each monitoring well. Groundwater purged from monitoring wells was stored onsite in sealed 55-gallon drums and labeled with the project-identifying information. Groundwater monitoring and sampling logs are provided in Appendix H.

Before groundwater sampling commenced, each purged monitoring well was allowed to recharge to at least 80% of the pre-purged standing water volume, except for Wells MW-1 and MW-2, for the reasons stated above. Groundwater samples for laboratory analyses were retrieved using either a peristaltic pump equipped with polytubing or a new disposable bailer. Groundwater samples were poured into appropriate laboratory-supplied containers. Sample containers were sealed, labeled with identifying project information, logged onto a chain-of-custody document, and temporarily stored in a chilled ice chest containing crushed ice for transport to the laboratory.

3.3 LABORATORY ANALYSES

Soil vapor, soil, and groundwater samples were analyzed by State of California-certified analytical laboratories. The soil vapor samples were analyzed for VOCs using EPA Method 8260 by a mobile analytical laboratory, TEG- Northern California of Rancho Cordova, California. The soil and grab-groundwater samples were analyzed by Curtis & Tompkins, Ltd. of Berkeley, California. The soil and grab-groundwater samples obtained from the exploratory borings were analyzed for TPH-g and BTEX using EPA Methods 8015B and 8021B, respectively, and for VOCs using EPA Method 8260B except for the soil sample obtained from the 5-foot depth in Boring SVGW-3, which was only analyzed for VOCs. The groundwater samples obtained from the monitoring wells were analyzed for TPH-g and BTEX using

EPA Methods 8015B and 8021B, respectively, and for VOCs using EPA Method 8010B. Laboratory analyses for the soil and grab-groundwater samples were performed over a standard turnaround time.

4.0 FINDINGS

4.1 SUBSURFACE CONDITIONS

Drilling program results from this investigation and previous investigation results show that the Site is predominately underlain by fine-grained soils containing occasional thin layers of coarse-grained soils. Subsurface conditions showing the soil lithologies and depths to groundwater beneath the Site are illustrated in cross-sectional view. The locations of the cross sections are shown on Figure 3. Cross Sections A-A' and B-B' are shown on Figure 4. The boring logs for this investigation are presented in Appendix G.

The uppermost soils beneath the Site generally consist of black to dark brown silty clays that extend to depths between 4 and 7 feet bgs. These clays are further underlain by brown sandy and silty clays and with occasional zones of gravelly clays, and silty and clayey gravels. Coarse-grained soils characterized by thin layers of sands, silty sands, and clayey sands were first encountered at depths between 16 and 23 feet bgs and ranged between approximately 0.2 and 3.5 feet in thickness. These units appear to be discontinuous in extent except for the sand units encountered at the 20-foot depth, as illustrated in Cross Section B-B'.

Green- to greenish-gray-colored zones were encountered in several of the borings during this investigation. These zones of discoloration were generally present at variable depths between 8 and 20 feet bgs. Boring B-14, located on the undeveloped parcel of land adjacent to the Site building, showed a relatively thicker zone of greenish-discolored soil extending from 10 to approximately 25 feet bgs. Zones of greenish-discolored soils appeared to be less thick at other borings locations. No zones of discoloration were observed in Borings B-19 and SVGW-3. No separate phase hydrocarbons were encountered in any of the borings advanced during this investigation.

Petroleum hydrocarbon odors also were noted at several borings during drilling, and were generally coincident with the zones of green discoloration. Petroleum hydrocarbon odors were most pervasive at the borings advanced in the undeveloped parcel of land. Moderate to strong chemical odors that appeared to be associated with VOCs rather than the petroleum hydrocarbons were noted in Borings B-16 and B-17, located with the undeveloped parcel of land. Elevated PID readings also were noted within the zones of soil discoloration and odor.

Groundwater was first encountered at depths between approximately 9 and 28 feet bgs. During drilling activities, the majority of the borings exhibited slow recharge, producing minimal quantities of groundwater due to the preponderance of fine-grained soils having thin zones of coarse grained soils. Some of the borings also were relatively dry throughout their vertical extent at the time the borings were first advanced to their total depths. Where the dry zones were noted, the borings were left open to allow the introduction of groundwater for sample collection.

4.2 ASSESSMENT OF UTILITY CORRIDORS

Existing utility corridors were evaluated to better understand whether the corridors serve as preferential pathways for contaminant migration. During this investigation, it was found that only the existing storm water drain and sanitary sewer systems are potential conduits for transporting Site contaminants, as shown on the City of Oakland underground utility drawing provided in Appendix E. The existing storm drain is located along 29th Avenue to the northwest of the Site. As shown in Appendix E, storm water in this drain flows from the northeast to the southwest. The closest sanitary sewers are located to the northeast and northwest of the Site along East 7th Street and 29th Avenue, respectively.

For the past several years, groundwater monitoring has been performed on a quarterly basis at the Site. Several of the wells are located adjacent to the existing storm drain and sanitary sewer systems. Wells MW-1, MW-6, and MW-10 lie adjacent to the existing sanitary sewer along East 7th Street, and Wells MW-7, MW-11, and MW-12 lie adjacent to the existing storm drain and sanitary sewer along 29th Avenue. Historical groundwater flow measurements show that Wells MW-7, MW-11, and MW-12 lie downgradient of the Site, as well as downgradient of the existing sanitary sewer that extends along East 7th Street. Historical groundwater analytical results in these wells over the past several years have shown low to non-detect concentrations of TPH-g and benzene. These analytical results further indicate that impact to the existing storm drain and/or sanitary sewer along 29th Avenue is unlikely, and that these underground utilities would not serve as conduits for contaminant migration.

4.3 ANALYTICAL RESULTS

4.3.1 Soil Vapor

Analytical results for soil vapor showed relatively low-level concentrations of VOCs in four (4) of the twenty-two (22) samples that were analyzed during this investigation. Trichloroethene (TCE) was detected at concentrations between 180 and 590 micrograms per cubic meter (μ g/m³) in Borings B-16 and B-18. Cis-1,2-dichloroethene (cis-1,2-DCE) were detected at concentrations between 580 and 670 μ g/m³ in Boring B-18. No benzene was detected in soil vapor at or above the laboratory reporting limits in any of the borings advanced during this investigation. No other VOCs were detected at or above the laboratory reporting limits in the remainder of the soil vapor samples analyzed during this investigation. The soil vapor analytical results are presented on Table 1. Concentrations of the detected VOCs (TCE and cis-1,2-DCE) in soil vapor are presented on Figure 5. Chain-of-custody documentation and certified analytical reports are presented in Appendix I.

Soil vapor analytical data for the detected VOCs were compared to the DTSC California Human Health Screening Levels (CHHSLs) for residential and commercial/industrial land uses. Of the VOCs detected, TCE and cis-1,2-DCE were found at concentrations below their established CHHSLs for commercial/industrial land uses. Only TCE was found to exceed its established CHHSL for residential land use in Boring B-16.

4.3.2 <u>Soil</u>

Analytical results for the soil samples obtained at the 5.0-foot depth in various borings advanced during this investigation showed non-detection at or above the laboratory reporting limits. Chain-of-custody documentation and certified analytical reports for soil are presented in Appendix J.

4.3.3 Groundwater

Analytical results for the groundwater samples obtained from borings and existing monitoring wells showed variable concentrations of TPH-g and VOCs, which were detected at each boring and well location except for Wells MW-6, MW-7, and MW-10. Groundwater analytical results for TPH-g and VOCs are presented on Table 2. The distribution of TPH-g and VOCs in groundwater is shown on Figure 6. Chain-of-custody documentation and certified analytical reports for groundwater are presented in Appendix K.

During this investigation, detected concentrations of TPH-g ranged between 57 and 88,000 µg/L, as shown on Figure 7. The highest concentrations of TPH-g were detected within an area encompassed by Wells MW-2 and MW-9 and Borings SVGW-4, B-11, and B-14 through B-16. The highest concentrations also cover the area occupied by the eastern and central portions of the Site building and undeveloped parcel of land adjacent to the Site building.

The primary VOCs detected during this investigation include benzene, toluene, ethylbenzene, and total xylenes, as well as TCE, cis-1,2-DCE, trans-1,2-dichloroethene (trans-1,2-DCE), vinyl chloride, 1,1-dichlorethene (1,1-DCE), and 1,2-dichloroethane (1,2-DCA). As shown on Table 2, other VOCs detected included naphthalene, methyl-tert-butyl ether (MtBE), n-Butylbenzene, sec-Butylbenzene, tert-Butylbenzene, isopropylbenzene, propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, acetone, and carbon disulfide.

Maps showing the concentrations of some primary VOCs, including benzene, TCE, and cis-1.2-DCE have been prepared, as shown on Figures 8 through 10. As shown on Figure 8, detected concentrations of benzene ranged between 1 and 17,000 µg/L, with the highest concentrations of benzene generally present within the same area encompassed by the elevated TPH-g concentrations. As shown on Figures 9 and 10, detected concentrations of TCE and cis-1,2-DCE ranged between 9 and 31,000 µg/L. The highest concentrations of TCE and cis-1,2-DCE are present around Borings B-14 through B-16, located within undeveloped lot adjacent to the Site building, in Boring B-18, located within the undeveloped lot between the Mor-Drop facility and International Art properties, and Well MW-12 located along the west side of the Mor-Drop facility. As presented on Figure 6, trans-1,2-DCE was detected at concentrations between 3.3 and 69 µg/L, and was present within an area encompassed by Wells MW-8 and MW-13 and Borings SVGW-3, B-16 through B-19, and B-20, as well as around Well MW-12. In addition, vinyl chloride was detected at concentrations of 92 and 100 µg/L in Boring SVGW-3 and Well MW-8, respectively, which are located within the southernmost portion of the Site building adjacent to International Art Properties. Concentrations of these VOCs were found to exceed their California Department of Public Health Maximum Contaminant Levels (MCLs).

4.4 QUALITY ASSURANCE/QUALITY CONTROL

4.4.1 Leak Test Results

Leak tests were performed for each soil vapor sample using 1,1-difluoroethane as the leak check test compound. The leak test was performed to determine if leakage was present during the sample collection process. No concentrations of 1,1-difluoroethane were detected in the soil vapor samples at or above the laboratory reporting limits except for Boring SVGW-3 during the purge volume test. The

detection of the 1,1-difluoroethane in Boring SVGW-3 is likely attributed to a combination of a shallow sampling depth and large purge volume (7 purge volumes) during testing. Non-detect analytical results in the other soil vapor samples indicated that there were no leaks present in the soil vapor monitoring probe or sample train during sampling. Analytical results of the leak tests for 1,1-difluoroethane are summarized in the certified analytical results for soil vapor presented in Appendix I.

4.4.2 Duplicate Sample Results and Laboratory Analyses

Three (3) duplicate soil vapor samples (B-16 DUP, B-18 DUP, and SV-1 DUP) were collected during this investigation to qualify the soil vapor analytical data. Analytical results for the duplicate samples are summarized on Table 1 and the certified analytical results are presented in Appendix I.

Analytical results for the PCE detected in Samples SG-8-5 DUP and SG-8-15 DUP showed concentrations of 208 and 420 µg/m³, respectively. TCE concentrations detected in the duplicate samples obtained from Borings B-16 and B-18 also showed fairly good precision with relative percent differences (RPDs) of 3.4% and 10%, respectively, and concentrations within the same order of magnitude. The cis-1,2-DCE concentration detected in the duplicate sample obtained from Boring B-18 also showed fairly good precision with a RPD of 13.4%. In general, the duplicate samples collected and analyzed were in close agreement and indicate the data is useful for its intended purpose.

For the soil and grab-groundwater laboratory analyses, EPA Methods 8021B and 8260B were run to analyze for benzene, toluene, ethylbenzene, and total xylenes (BTEX constituents). Analytical results for the detected BTEX constituents showed fairly good precision with relatively low percent differences, in comparing analytical results between both laboratory methods, as well as concentrations within the same order of magnitude, as shown on Table 2. In general, analytical results for the BTEX constituents for both laboratory analytical methods were in close agreement and indicate the data is useful for its intended purpose.

4.4.3 Data Validation Summary

The analytical laboratory data was reviewed by Bureau Veritas to establish its validity and to ensure the laboratory data was complete and accurate. Bureau Veritas verified that holding times for each analytical method were achieved and that the laboratory achieved the specific data quality objectives for each selected analytical method. A review of the data validation process indicates that the laboratory completed the QA/QC activities required for the samples such as blanks, lab control samples, matrix spikes, and duplicates. The QA/QC parameters for the samples were within acceptable limits and suggest that the data is useful for its intended purpose.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of this additional subsurface investigation, concentrations of TPH-g and VOCs were detected within underlying subsurface media (soil vapor and groundwater) at various locations across the Site. No concentrations of TPH-g and VOCs were detected in soils analyzed from the 5.0-foot depth during this investigation. Concentrations of TPH-g, benzene, and VOCs detected in groundwater are consistent with the historical groundwater analytical results that have been generated during quarterly monitoring events for past several years. Historical groundwater analytical results also show that the

TPH- and benzene-impacted plumes are defined, and that these plumes appear to be commingled with the VOC-impacted groundwater plume.

To date, numerous investigations and groundwater quarterly monitoring events have been performed at the Site. Results from these investigation and monitoring events have shown decreasing chemical concentrations over time. Historical groundwater analytical data show that the benzene-impacted groundwater plume beneath the Site has stabilized and not migrated further off-site. Historical groundwater analytical results detected in monitoring wells downgradient of the Site also show that impact to the existing storm drain and/or sanitary sewer along 29th Avenue is unlikely, and that the storm drain and sanitary sewer would not serve as conduits for contaminant migration of the Site constituents.

Existing subsurface data shows that the Site is predominately underlain by a thick preponderance of low permeability, fine-grained soils. Results from an earlier pilot study for evaluating a potential remedial measure showed that ORC injection would not be technically feasible nor cost-effective for achieving any cleanup goals. ORC pilot study results also showed that minimal biodegradation of petroleum hydrocarbons is occurring at an extremely slow rate, and that there were no significant declines in hydrocarbon groundwater concentrations observed during subsequent monitoring activities. On this basis, it was concluded that ORC injection would not effective in reducing chemical concentrations in a time-efficient, cost-effective manner.

Results from an earlier risk assessment/feasibility study (RA/FS) also were reviewed during this investigation. The RA/FS results showed that there are no potential off-site receptors downgradient of the Site. During the RA/FS, it was further concluded that groundwater could not be developed for beneficial uses because of the combination of low permeability, fine-grained soils and brackish nature of the groundwater beneath the Site.

Elevated TCE and cis-1,2-DCE concentrations in soil vapor were detected at two (2) locations during the investigation. Elevated TCE and cis-1,2-DCE concentrations that were detected in soil vapor are coincident with elevated TCE and cis-1,2-DCE concentrations detected in groundwater. As shown on Figures 5 through 10, the areas of elevated VOC concentrations in soil vapor and groundwater indicate that source(s) of VOCs are located offsite. Of the VOCs, benzene also has been detected in groundwater over the past several years. During this investigation, no benzene was detected in any of the soil vapor samples analyzed during this investigation. Of the two (2) boring locations where TCE was detected in soil vapor, only one (1) boring location showed TCE in soil vapor at concentrations exceeding the CHHSL for residential land use. This TCE soil vapor concentration appears to be restricted to a localized area within the undeveloped lot adjacent to the Site. The extent of TCE relative to its CHHSL for residential land use is defined to the north, west, and east of this localized area, but is undefined to the south.

In addition to the soil vapor data collected during this investigation, previous Site data was reviewed to evaluate potential vapor intrusion into the existing Site building. Assuming that the Site will continue to be used for commercial/industrial purposes, analytical data generated to date indicates that there does not appear to be potential human health risks in association with on-site worker exposure inside the building nor does there appear to be potential risk to the environment.

In summary, analytical data from this investigation and previous investigations does not establish the existence of a source of VOCs within the Site building footprint. Analytical data shows that sources for the VOCs are located offsite. Site investigations and feasibility studies conducted to date show that there

is no practical alternative for remediating the Site. Pilot study results show that biodegradation is occurring at a slow rate at the Site, and that ORC injection is not a practical remedial alternative. Because biodegradation is occurring at a slow rate beneath the Site, natural attenuation of the Site constituents will likely occur over time.

On the basis of the conclusions presented above, Bureau Veritas recommends that no further investigation or remedial action be performed at the Site. It is further recommended that a No Further Action (NFA) letter be issued for the Site.

6.0 REPRESENTATIONS AND LIMITATIONS

This report is based upon current Site conditions known by Bureau Veritas and current laws, policies, and regulations. The information and opinions rendered in this Report are exclusively for use by National Technical Systems, Inc. No other party shall rely on the information or opinions presented in this report. Bureau Veritas will not distribute or publish this report without consent except as required by law or court order. The information and opinions expressed in this report are given in response to a limited assignment and should be considered and implemented only in light of that assignment. The services provided by Bureau Veritas in completing this project were consistent with normal standards of the profession. No other warranty, expressed or implied, is made.

This report prepared by:

Twickly Boath

Timothy G. Bodkin, C.E.G., R.E.A. II Senior Project Manager Health, Safety, and Environmental Services

This report reviewed by:

Jon A. Rosso, P.E. Regional Director Health, Safety, and Environmental Services

September 17, 2009 Project No. 33104-004578.00

7.0 <u>REFERENCES</u>

- Alameda County Environmental Health, 2008, *Fuel Leak Case No. RO0000334 and Geotracker Global ID T0600102114, Lemoine Cold Storage, 630 29th Avenue, Oakland, CA 94601*, ACEH letter dated November 12, 2008, issued to Chuck and Norma Lemoine, Bank of America, and Michael Alders.
- Alameda County Environmental Health, 2008, *Fuel Leak Case No. RO0000334 and Geotracker Global ID T0600102114, Lemoine Cold Storage, 630 29th Avenue, Oakland, CA 94601*, ACEH letter dated March 24, 2009, issued to Chuck and Norma Lemoine, Bank of America, and Michael Alders.
- Bureau Veritas North America, Inc., 2006, *Request for No Further Action, Former Lemoine Sausage Factory, 630 29th Avenue, Oakland, CA,* report dated July 20, 2006, prepared for AIG Technical Services, Inc.
- Bureau Veritas North America, Inc., 2009, *Workplan for Additional Subsurface Investigation, Former Lemoine Sausage Factory, 630 29th Avenue, Oakland, CA 94601*, report dated February 25, 2009, report prepared for Alameda County Environmental Health.
- Bureau Veritas North America, Inc., 2009, *First Quarter 2009 Groundwater Monitoring Report, Former Lemoine Sausage Factory, 630 29th Avenue, Oakland, CA 94601*, report dated January 22, 2009, prepared for AIG Technical Services, Inc.
- Clayton Group Services, Inc., 2002, *Risk Assessment/Feasibility Study, Former Lemoine Sausage Factory, 630 29th Avenue, Oakland, CA 94601,* report dated February 16, 2001, prepared for Alameda County Environmental Health.
- Clayton Group Services, Inc., 2002, *Evaluation of Remedial Action Alternatives, Former Lemoine* Sausage Factory, 630 29th Avenue, Oakland, CA 94601, report dated September 21, 2004, prepared for AIG Technical Services, Inc.
- Clayton Group Services, Inc., 2002, ORC Injection Pilot Study, Former Lemoine Sausage Factory, 630 29th Avenue, Oakland, CA 94601, report dated February 22, 2006, prepared for AIG Technical Services, Inc

TABLES

TABLE 1

SOIL VAPOR ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS (VOCs) FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA

		Sample Depth	Purge	TCE	cis-1,2-DCE	Benzene
Boring	Sample Date	(feet)	Volume	(ug/m3)	(ug/m3)	(ug/m3)
B-12	6/4/2009	3	3	ND 100	ND 100	ND 100
B-13	6/4/2009	3	3	ND 100	ND 100	ND 100
B-14	6/4/2009	3	3	ND 100	ND 100	ND 100
B-15	6/4/2009	3	3	ND 100	ND 100	ND 100
B-16	6/4/2009	3	3	570	ND 100	ND 100
B-16 DUP	6/4/2009	3	3	590	ND 100	ND 100
B-17	6/3/2009	3	3	ND 100	ND 100	ND 100
B-18	6/3/2009	3	3	200	670	ND 100
B-18 DUP	6/3/2009	3	3	180	580	ND 100
B-19	6/3/2009	3	3	ND 100	ND 100	ND 100
B-20	6/3/2009	3	3	ND 100	ND 100	ND 100
B-21	6/3/2009	3.5	3	ND 100	ND 100	ND 100
SV-1	6/3/2009	3	3	ND 100	ND 100	ND 100
SV-1 DUP	6/3/2009	3	3	ND 100	ND 100	ND 100
SV-2	6/3/2009	3	3	ND 100	ND 100	ND 100
SV-3	6/3/2009	3.5	3	ND 100	ND 100	ND 100
SVGW-1	6/3/2009	3	3	ND 100	ND 100	ND 100
SVGW-2	6/3/2009	3	3	ND 100	ND 100	ND 100
SVGW-3	6/3/2009	3	1	ND 100	ND 100	ND 100
SVGW-3	6/3/2009	3	3	ND 100	ND 100	ND 100
SVGW-3	6/3/2009	3	7	ND 100	ND 100	ND 100
SVGW-4	6/3/2009	3	3	ND 100	ND 100	ND 100
AIR BLANK	6/3/2009			ND 100	ND 100	ND 100
AIR BLANK	6/4/2009			ND 100	ND 100	ND 100
			CHHSL res	528	15,900	36.2
			CHHSL c/i	1,770	44,400	122

Notes:

Soil vapor samples analyzed by USEPA Method 8260.

Analytical results are reported in micrograms per cubic meter (µg/m3).

ND 100 refers to not detected at or above the indicated laboratory reporting limit.

DUP refers to duplicate sample.

VOCs refer to Volatile Organic Compounds.

TCE refers to Trichloroethene.

cis-1,2-DCE refers to cis-1,2-Dichloroethene.

"--" refers to not applicable.

CHHSL res = California Human Health Screening Level (residential land use) (Cal/EPA, January 2005).

CHHSL c/i = California Human Health Screening Level (commercial/industrial land use) (Cal/EPA, January 2005).

TABLE 2

GROUNDWATER ANALYTICAL RESULTS TPH-g, BTEX, AND VOLATILE ORGANIC COMPOUNDS (VOCs) FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA

		Sample ID/Sample Date											
	CDPH	SVGW-1	SVGW-2	SVGW-3	SVGW-4	B-11	B-12	B-13	B-14	B-15	B-16	B-17	B-18
	MCL	6/10/2009	6/8/2009	6/8/2009	6/8/2009	6/5/2009	6/5/2009	6/4/2009	6/5/2009	6/4/2009	6/5/2009	6/5/2009	6/5/2009
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
TPH-g/BTEX (EPA 8015B/8021B)													
TPH-g	_	9700	1100	910 Y	61000	46000	57 Y	180	26000	88000	38000	120 Y	1000
Benzene	1	4100	350 C	74	17000 C	510 C	5.7	15	4800	5000	760	ND 0.50	65
Toluene	150	230	ND 2.5	4.5	16000 C	690	0.7	ND 0.50	42	640	ND 5.0	ND 0.50	24
Ethylbenzene	300	230	45	4.5	380	970	0.7	6.9	42	1900	1700	ND 0.50 ND 0.50	24 8.4
m,p-Xylenes	300 1750	230 410	45 19	2.4	1100 C	2600	0.59 ND 0.50	0.9 1.6	400	4000	760	ND 0.50 ND 0.50	8.4 38 C
o-Xylene	1750	100	ND 2.5	0.96 C	460	570	ND 0.50	ND 0.50	15	340 C	68	ND 0.50	5.5
VOCs (EPA 8260B & 8010B)													
Benzene	1	4100	290	45	15000	64	8.4	18	6200	5200	930	ND 0.5	65
Toluene	150	210	ND 1.7	ND 2.5	15000	590	ND 0.5	ND 0.5	ND 50	470	ND 25	ND 0.5	33
Ethylbenzene	300	210	43	12	400	1000	ND 0.5	9.0	580	1100	1800	ND 0.5	11
m,p-Xylene	1750	400	20	7.4	1000	2500	ND 0.5	1.9	450	2200	720	ND 0.5	45
o-Xylene	1750	91	ND 1.7	ND 2.5	460	560	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	8.9
Trichloroethene	5	ND 25	ND 1.7	ND 2.5	ND 130	ND 20	ND 0.5	ND 0.5	4000	1800	33	1.3	470
cis-1,2-Dichloroethene	6	ND 25	3.9	220	ND 130	ND 20	ND 0.5	ND 0.5	5600	31000	3700	9	47
Trans-1,2-Dichloroethene	-	ND 25	ND 1.7	31	ND 130	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	54	3.3	36
Vinyl Chloride	0.5	ND 25	ND 1.7	92	ND 130	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	ND 1.0
1,1-Dichloroethene	6	ND 25	ND 1.7	ND 2.5	ND 130	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	1.1
1,2-Dichloroethane	0.5	ND 25	3.8	ND 2.5	240	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	ND 1.0
Naphthalene	-	210	ND 6.7	ND 10	ND 500	720	ND 2.0	3.3	ND 200	ND 170	ND 100	ND 2.0	ND 4.0
Methyl-tert-butyl ether	-	ND 25	ND 1.7	ND 2.5	ND 130	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	ND 1.0
n-Butylbenzene	-	ND 25	3.8	9.2	ND 130	ND 20	ND 0.5	1.7	ND 50	ND 170	ND 25	ND 0.5	ND 1.0
sec-Butylbenzene	-	ND 25	2.1	8.2	ND 130	ND 20	ND 0.5	ND 0.5	ND 50	ND 170	64	0.5	1.5
tert-Butylbenzene	-	ND 25	1.9	11	ND 130	24	ND 0.5	0.6	ND 50	ND 170	ND 25	5.1	4.9
Isopropylbenzene	-	ND 25	6.5	33	ND 130	86	ND 0.5	3.8	86	ND 170	1000	ND 0.5	13
Propylbenzene	_	50	8.5	14	ND 130	230	ND 0.5	5.1	180	170	1100	ND 0.5	6.2
1,2,4-Trimethylbenzene	-	550	20	4.9	620	2500	ND 0.5	5.3	1100	1300	1400	ND 0.5	42
1,3,5-Trimethylbenzene	-	140	5.3	ND 2.5	150	630	ND 0.5	1.9	280	360	180	ND 0.5	13
Acetone	_	ND 500	ND 33	69	ND 2500	ND 400	ND 0.5	ND 10	ND 1000	ND 3300	ND 500	ND 0.5	ND 20
Carbon Disulfide	_	ND 25	ND 1.7	2.6	ND 130	ND 400	ND 0.5	ND 0.5	ND 50	ND 170	ND 25	ND 0.5	ND 1.0
				2.0	110 100						110 20		

Notes:

TPH-g refers to total petroleum hydrocarbons quantified as gasoline.

BTEX refers to benzene, toluene, ethylbenzene, and xylenes.

TPH-g/BTEX were analyzed using EPA Method 8015B/8021B.

BTEX constituents also were analyzed using EPA 8260B in Borings SVGW-1 through SVGW-4 and B-11 through B-21. VOCs refer to volatile organic compounds and were analyzed using EPA Method 8260B in Borings SVGW-1 through SVGW-4 and B-11 through B-21. VOCs also were analyzed for using EPA Method 8010B in Wells MW-1, MW-2, and MW-6 through MW-13. "-" refers to not established. "--" refers to not analyzed.

C refers to presence confirmed, but RPD exceeds 40%. Y refers to chromatographic pattern which does not resemble standard. ND 25 refers to non detected at or above the laboratory reporting limit.

CDPH MCL refers to the California Department of Public Health Maximum Contaminant Levels.

TABLE 2

GROUNDWATER ANALYTICAL RESULTS TPH-g, BTEX, AND VOLATILE ORGANIC COMPOUNDS (VOCs) FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA

					Sample ID/Sample Date									
	CDPH	B-19	B-20	B-21	MW-1	MW-2	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13
	MCL	6/5/2009	6/4/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
<u> TPH-g/BTEX (EPA 8015B/8021B)</u>														
TPH-g	-	60 Y	270	440 Y	7900	30000	ND 50	ND 50	2000 Y	43000	ND 50	ND 50	75 Y	2200
Benzene	1	ND 0.50	9.6	ND 0.5	1500	9400	ND 0.5	ND 0.5	210 C	12000	ND 0.5	1	1.7	14
Toluene	150	ND 0.50	0.54	ND 0.5	170	490	ND 0.5	ND 0.5	ND 0.5	77	ND 0.5	ND 0.5	ND 0.5	4.4
Ethylbenzene	300	ND 0.50	18	ND 0.5	360	1300	ND 0.5	ND 0.5	120 C	1500	ND 0.5	ND 0.5	ND 0.5	23 C
m,p-Xylenes	1750	ND 0.50	2.1	ND 0.5	220	1200	ND 0.5	ND 0.5	ND 0.5	1500	ND 0.5	ND 0.5	ND 0.5	7.1 C
o-Xylene	1750	ND 0.50	ND 0.5	ND 0.5	61	280	ND 0.5	ND 0.5	ND 0.5	160	ND 0.5	ND 0.5	ND 0.5	ND 0.5
VOCs (EPA 8260B & 8010B)														
Benzene	1	ND 0.5	12	ND 0.5										
Toluene	150	ND 0.5	ND 0.5	ND 0.5										
Ethylbenzene	300	ND 0.5	24	ND 0.5										
m,p-Xylene	1750	ND 0.5	2.6	ND 0.5										
o-Xylene	1750	ND 0.5	ND 0.5	ND 0.5										
Trichloroethene	5	91	8.1	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	ND 7.1	ND 36	ND 0.5	ND 0.5	98	17
cis-1,2-Dichloroethene	6	20	47	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	920	ND 36	ND 0.5	ND 0.5	42	48
Trans-1,2-Dichloroethene	_	5.9	24	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	36	ND 36	ND 0.5	ND 0.5	42	69
Vinyl Chloride	0.5	ND 0.5	ND 0.5	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	100	ND 36	ND 0.5	ND 0.5	ND 1.0	4.7
1,1-Dichloroethene	6	ND 0.5	ND 0.5	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	ND 7.1	ND 36	ND 0.5	ND 0.5	ND 1.0	ND 0.5
1,2-Dichloroethane	0.5	ND 0.5	ND 0.5	ND 0.5	ND 4.2	ND 31	ND 0.5	ND 0.5	ND 7.1	ND 36	ND 0.5	ND 0.5	ND 1.0	ND 0.5
Naphthalene	_	ND 2.0	8.1	ND 2.0										
Methyl-tert-butyl ether	-	4.2	ND 0.5	ND 0.5										
n-Butylbenzene	-	ND 0.5	5.5	0.8										
sec-Butylbenzene	-	ND 0.5	0.6	1.1										
tert-Butylbenzene	-	ND 0.5	0.7	ND 0.5										
Isopropylbenzene	-	ND 0.5	2.1	0.8										
Propylbenzene	_	ND 0.5	6.6	0.5										
1,2,4-Trimethylbenzene	_	ND 0.5	0.6	ND 0.5										
1,3,5-Trimethylbenzene	_	ND 0.5	1.3	ND 0.5										
Acetone	_	ND 10	10	ND 10										
Carbon Disulfide	_	ND 0.5	ND 0.5	ND 0.5										
		.12 010												

Notes:

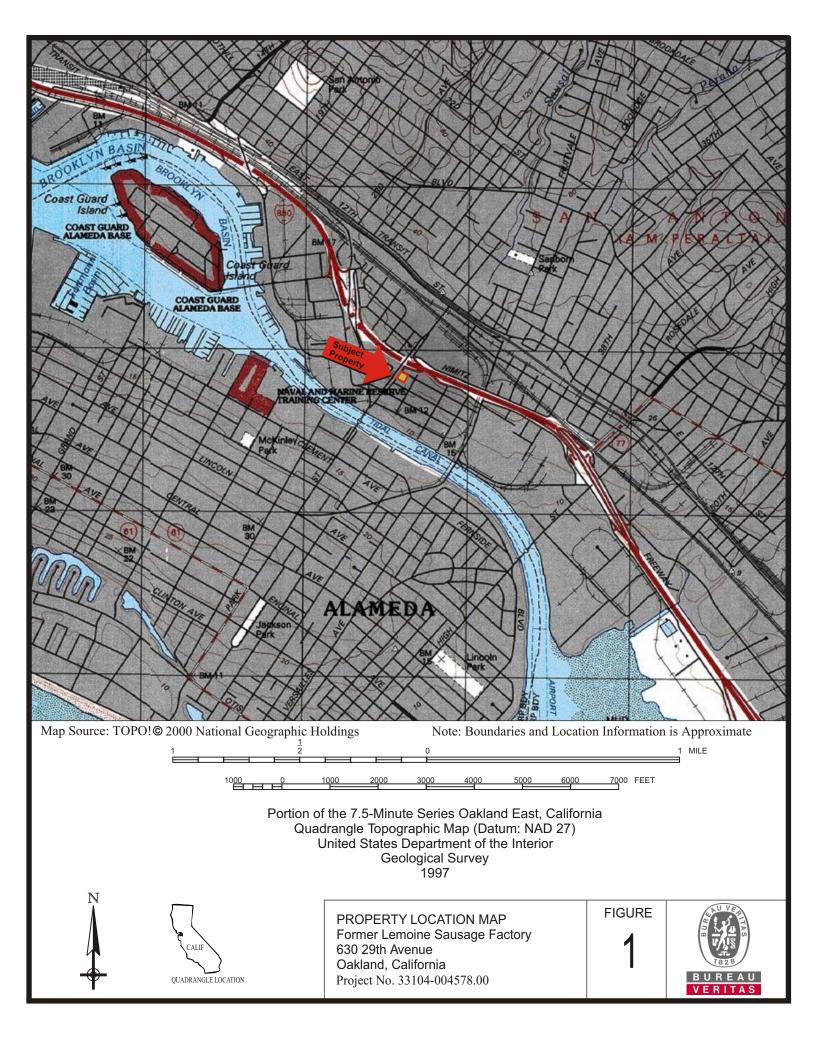
TPH-g refers to total petroleum hydrocarbons quantified as gasoline.

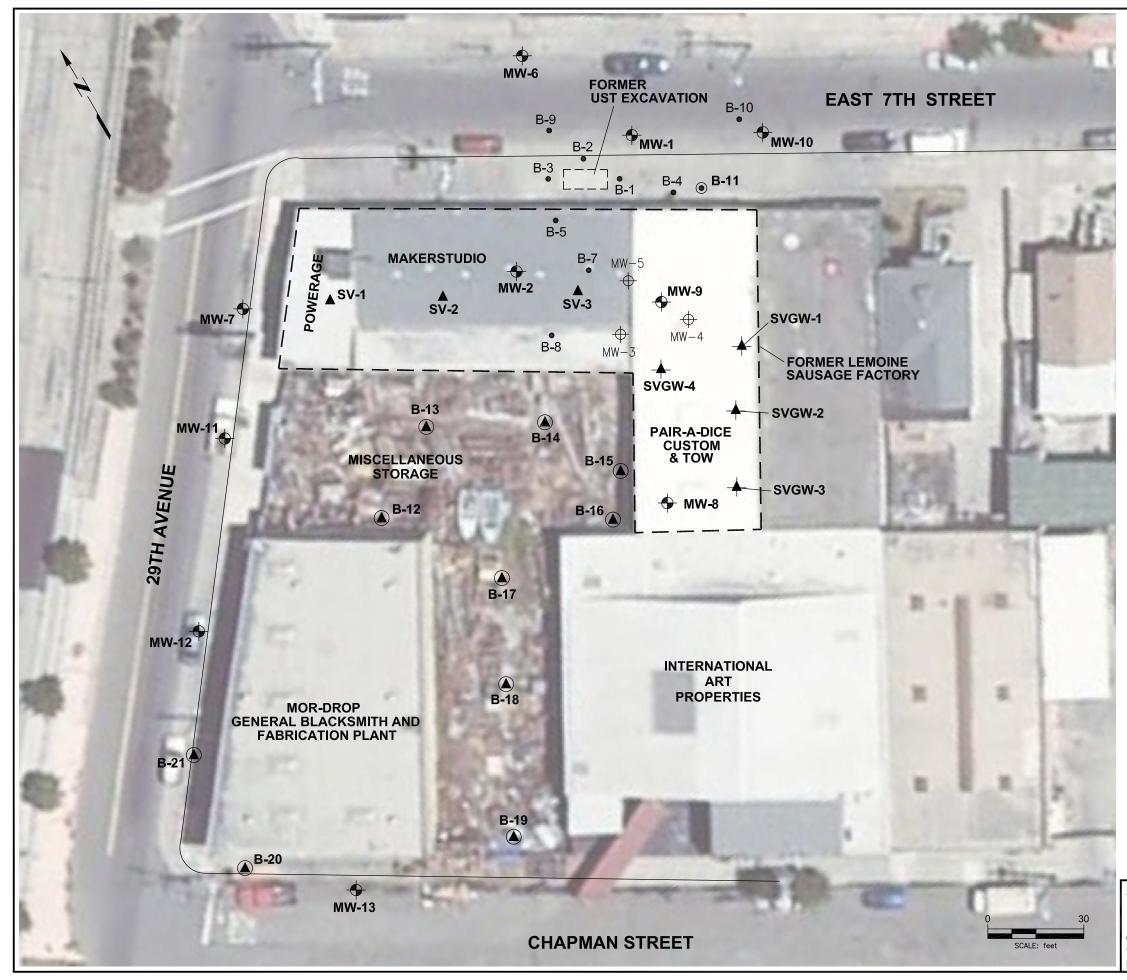
BTEX refers to benzene, toluene, ethylbenzene, and xylenes.

TPH-g/BTEX were analyzed using EPA Method 8015B/8021B.

BTEX constituents also were analyzed using EPA 8260B in Borings SVGW-1 through SVGW-4 and B-11 through B-21.

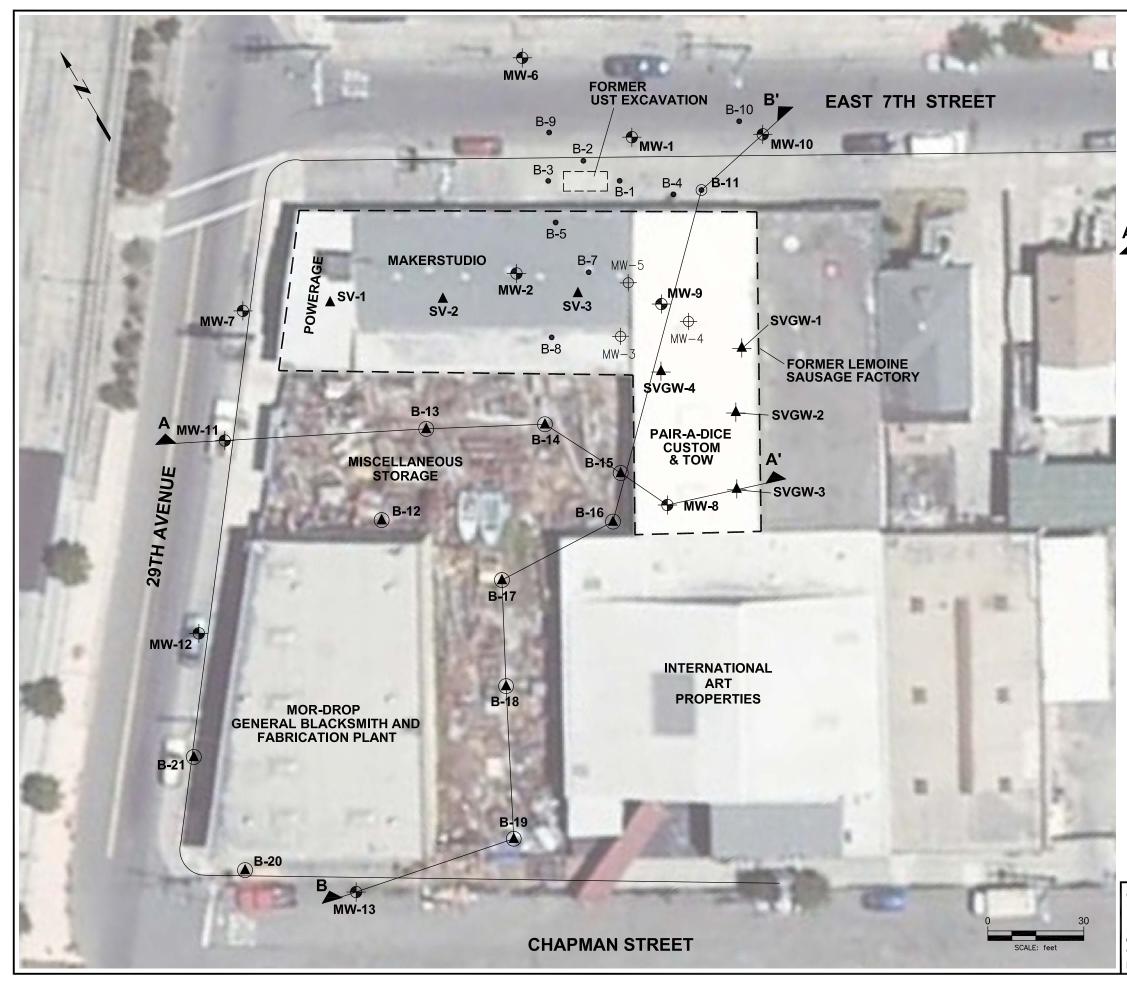
VOCs refer to volatile organic compounds and were analyzed using EPA Method 8260B in Borings SVGW-1 through SVGW-4 and B-11 through B-21. VOCs also were analyzed for using EPA Method 8010B in Wells MW-1, MW-2, and MW-6 through MW-13.


"-" refers to not established. "--" refers to not analyzed.


C refers to presence confirmed, but RPD exceeds 40%. Y refers to chromatographic pattern which does not resemble standard. ND 25 refers to non detected at or above the laboratory reporting limit.

CDPH MCL refers to the California Department of Public Health Maximum Contaminant Levels.

FIGURES


- + Existing Monitoring Well
- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

SITE PLAN

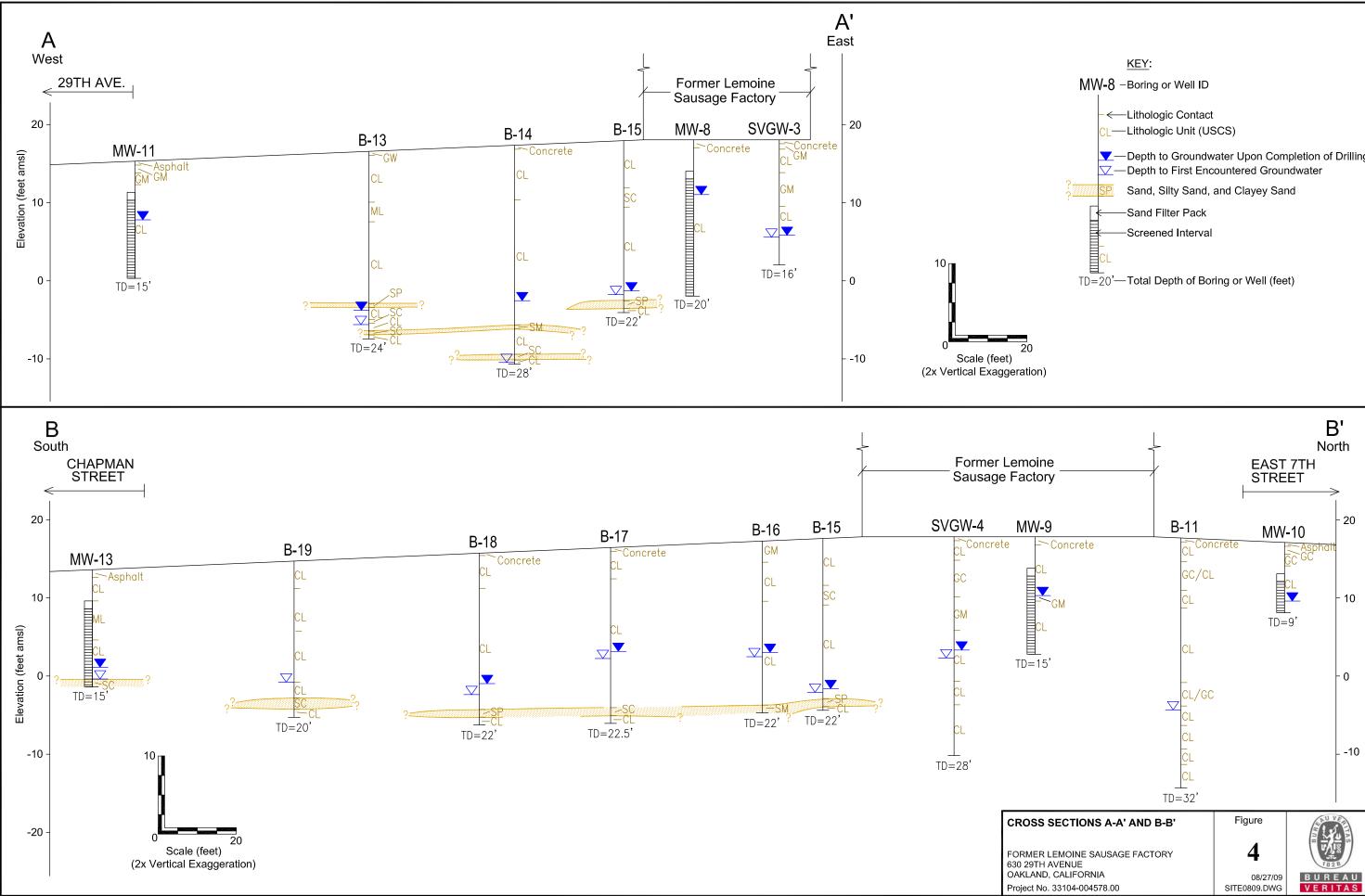
FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

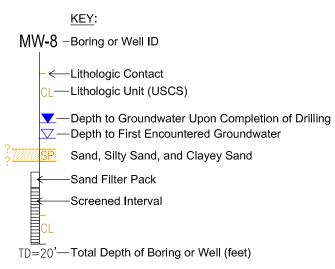
2 08/27/09 SITE0809.DWG

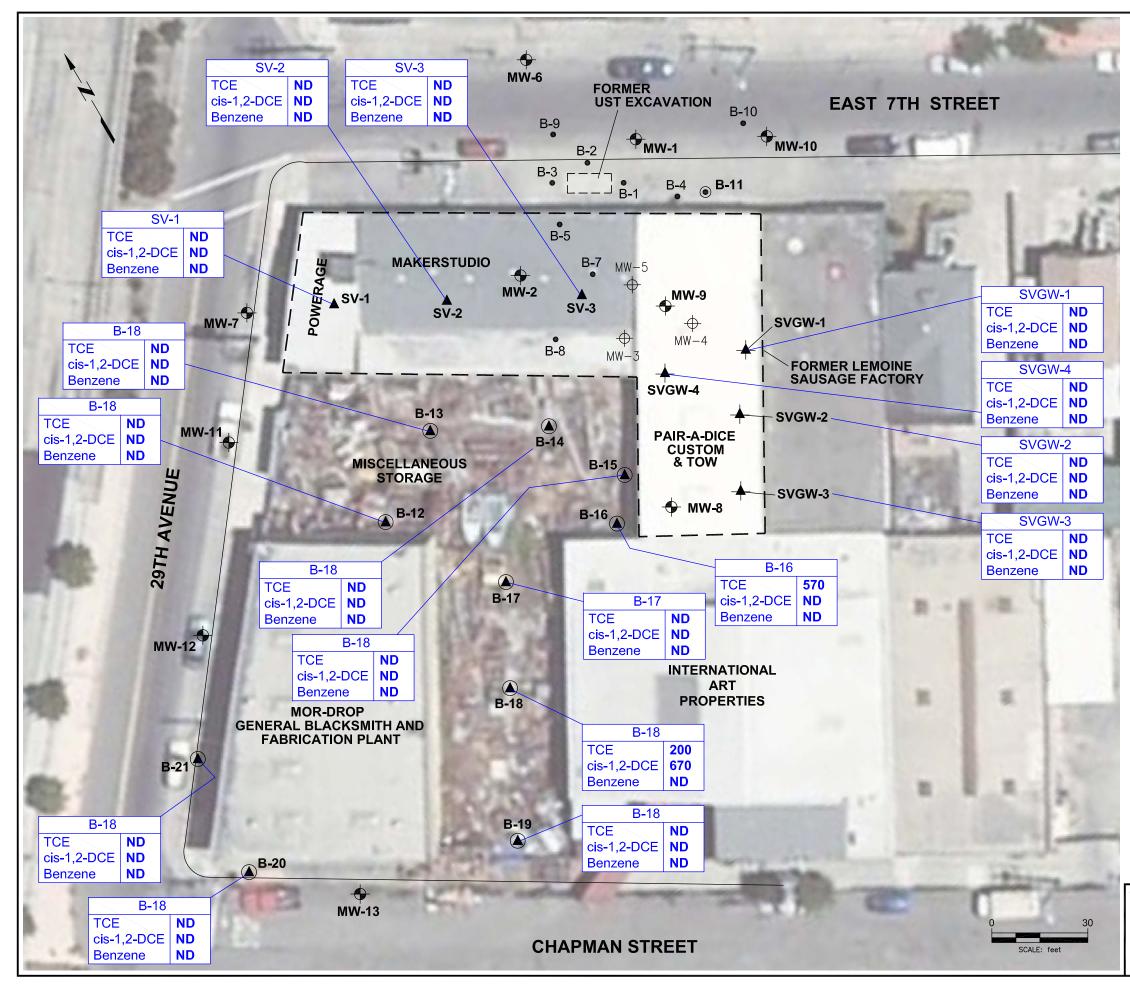
- + Existing Monitoring Well
- \oplus Abandoned Monitoring Well
- Soil Boring

A'

- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring


Cross-Section Locations


CROSS-SECTION LOCATIONS


FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

B U R E A U V E R I T A S

LEGEND:

- + Existing Monitoring Well
- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

Notes:

Soil vapor samples analyzed by USEPA Method 8260.

Analytical results are reported in micrograms per cubic meter (µg/m3).

'ND' refers to not detected at or above the indicated laboratory reporting limit.

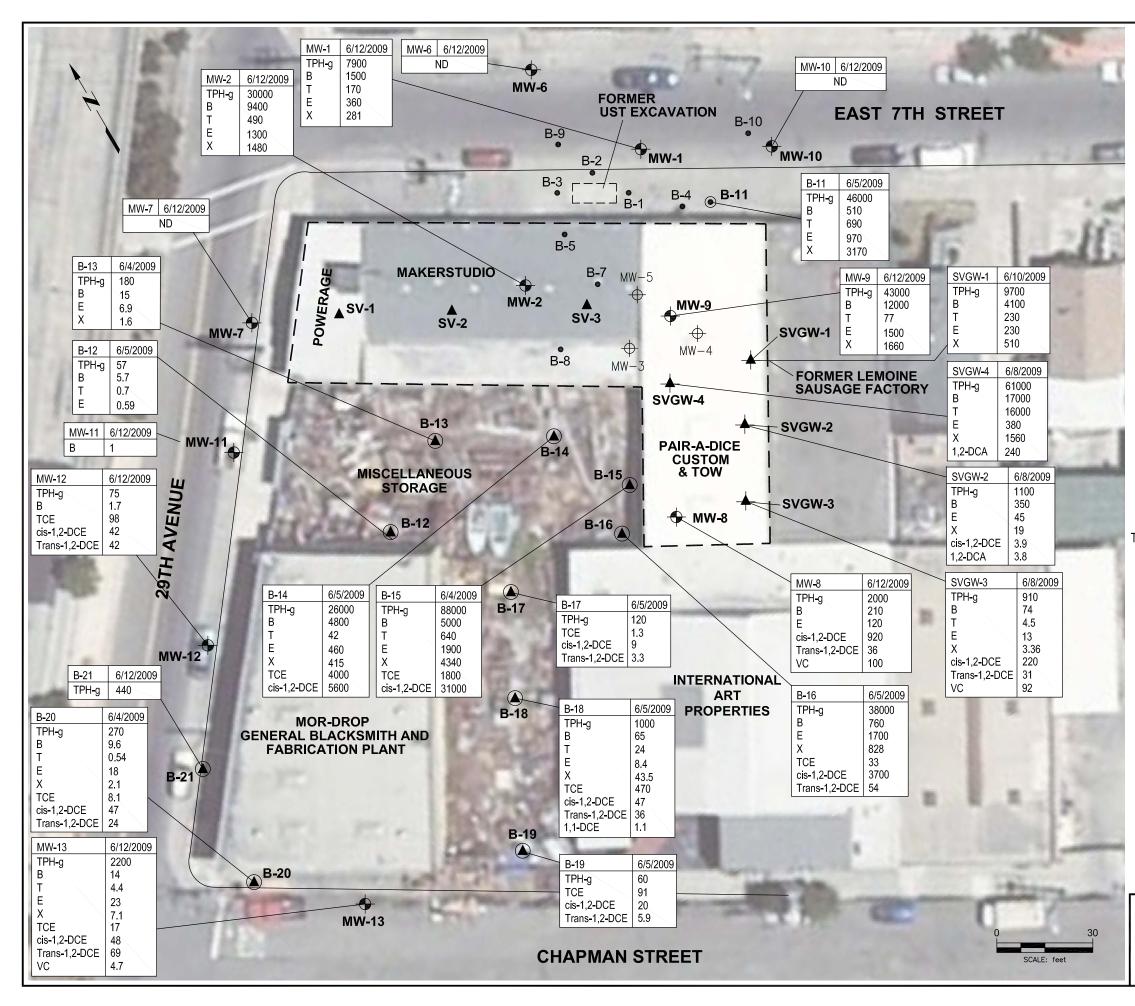
TCE = Trichloroethylene

cis-1,2-DCE = cis-1,2-Dichloroethene

Soil vapor samples were obtained on June 3 and 4, 2009.

Soil vapor samples were obtained at the 3-ft depth, except for the samples at Borings B-21 and SV-3 (3.5 ft depth).

TCE, cis-1,2-DCE, AND BENZENE CONCENTRATIONS IN SOIL VAPOR


FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

5

SITE0809.DWG

08/31/09

LEGEND:

- Existing Monitoring Well

- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

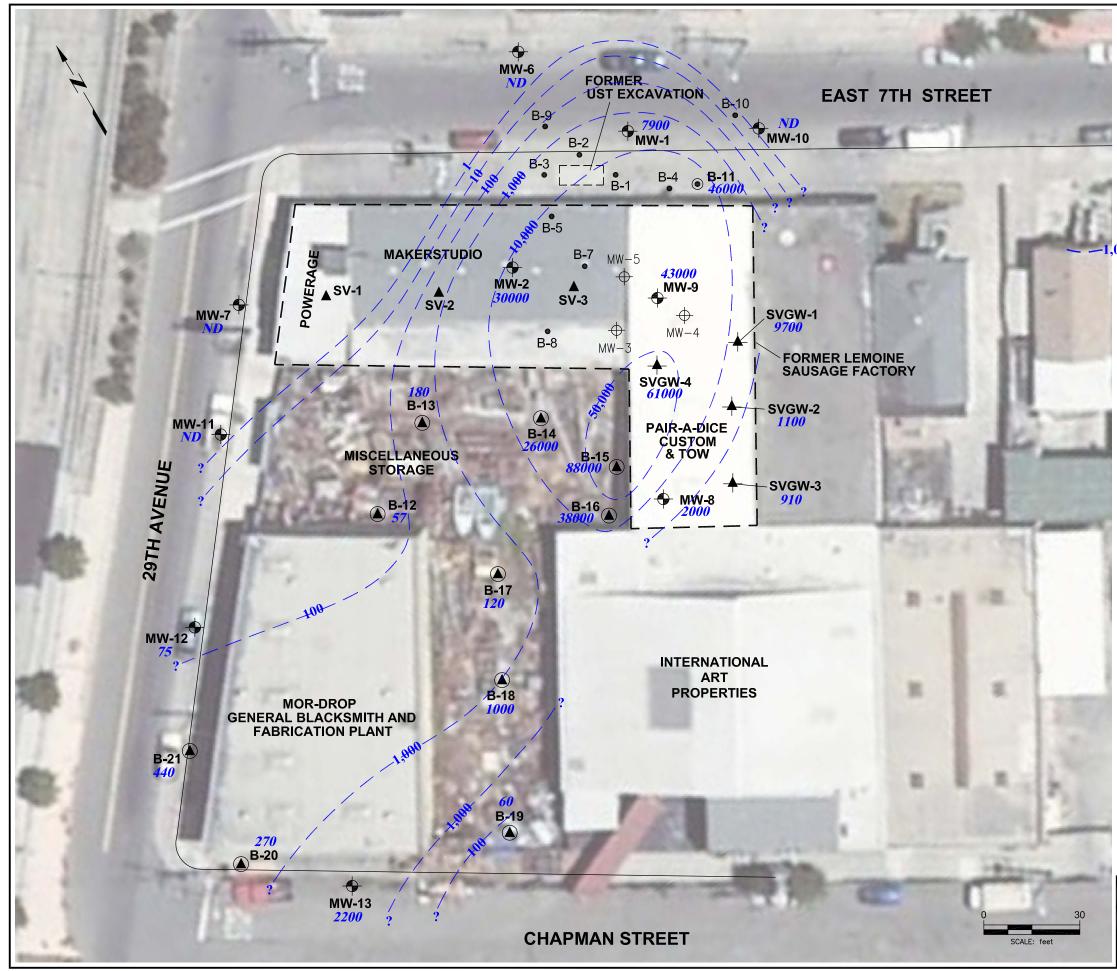
Notes:

Results reported in micrograms per liter (ug/L).

- TPH-g refers to total petroleum hydrocarbons quantified as gasoline.
- BTEX refers to benzene, toluene, ethylbenzene, and xylenes.
- TPH-g/BTEX were analyzed using EPA Method 8021B.

VOCs refer to volatile organic compounds, which were analyzed using EPA MethodS 8260B and 8610 (for the monitoring wells)

- "-" refers to not analyzed.
 - B Benzene
 - T Toluene
 - E Ethylbenzene
 - X Xylenes
- TCE Trichloroethene
- cis-1,2-DCE cis-1,2-Dichloroethene
- Trans-1,2-DCE Trans-1,2-Dichloroethene
 - 1,1-DCE 1,1-Dichloroethene
 - 1,2-DCA 1,2-Dichloroethane
 - VC Vinyl Chloride


DISTRIBUTION OF TPH AND VOC CONCENTRATIONS IN GROUNDWATER

FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

08/27/09 SITE0809.DWG

6

- Existing Monitoring Well

- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

7900 TPH-g concentration (ug/L) in groundwater

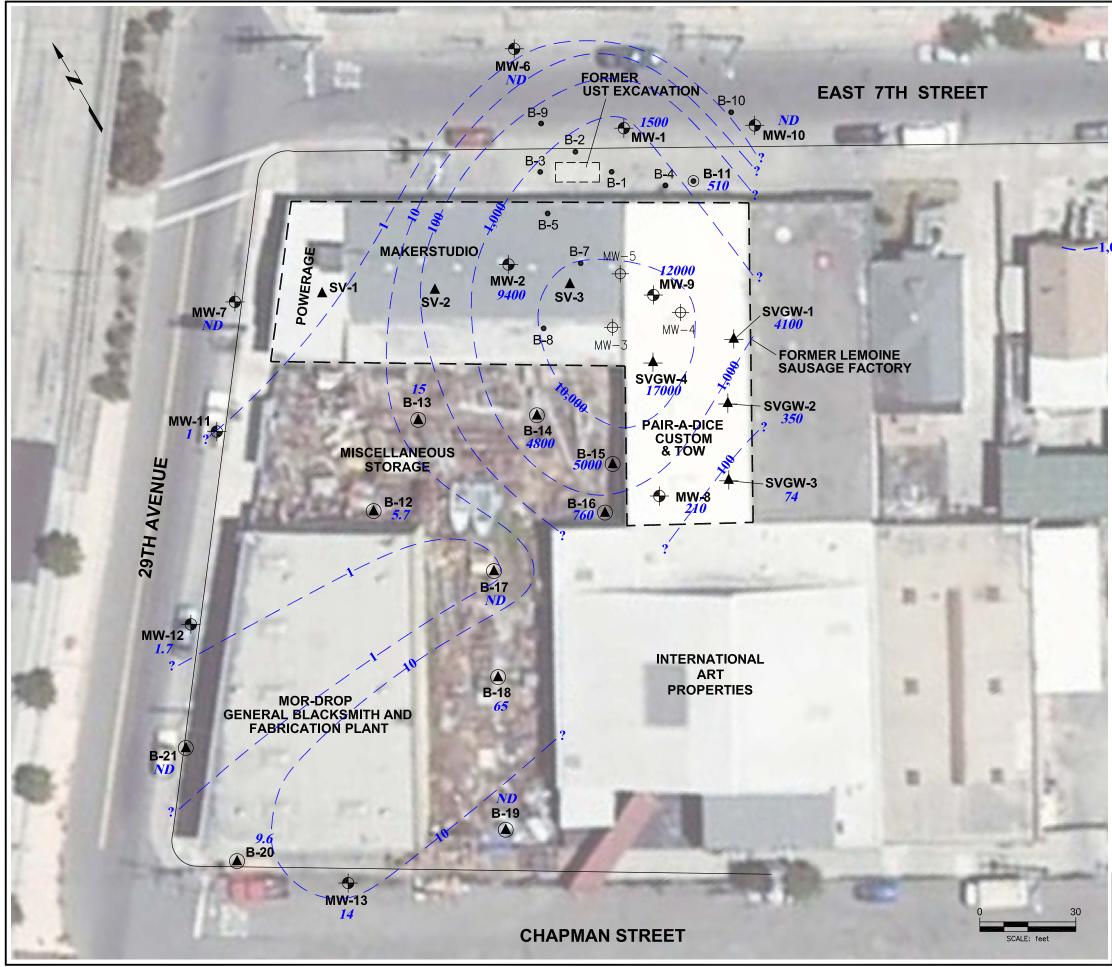
,000 — TPH-g concentration contour (ug/L) in groundwater

Notes:

Results reported in micrograms per liter (ug/L). TPH-g refers to total petroleum hydrocarbons quantified as gasoline.

TPH-g was analyzed using EPA Method 8021B. ND refers to not detected.

TPH-g CONCENTRATIONS IN GROUNDWATER


FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

7

SITE0809.DWG

08/27/09

- Existing Monitoring Well

- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

1500 Benzene concentration (ug/L) in groundwater

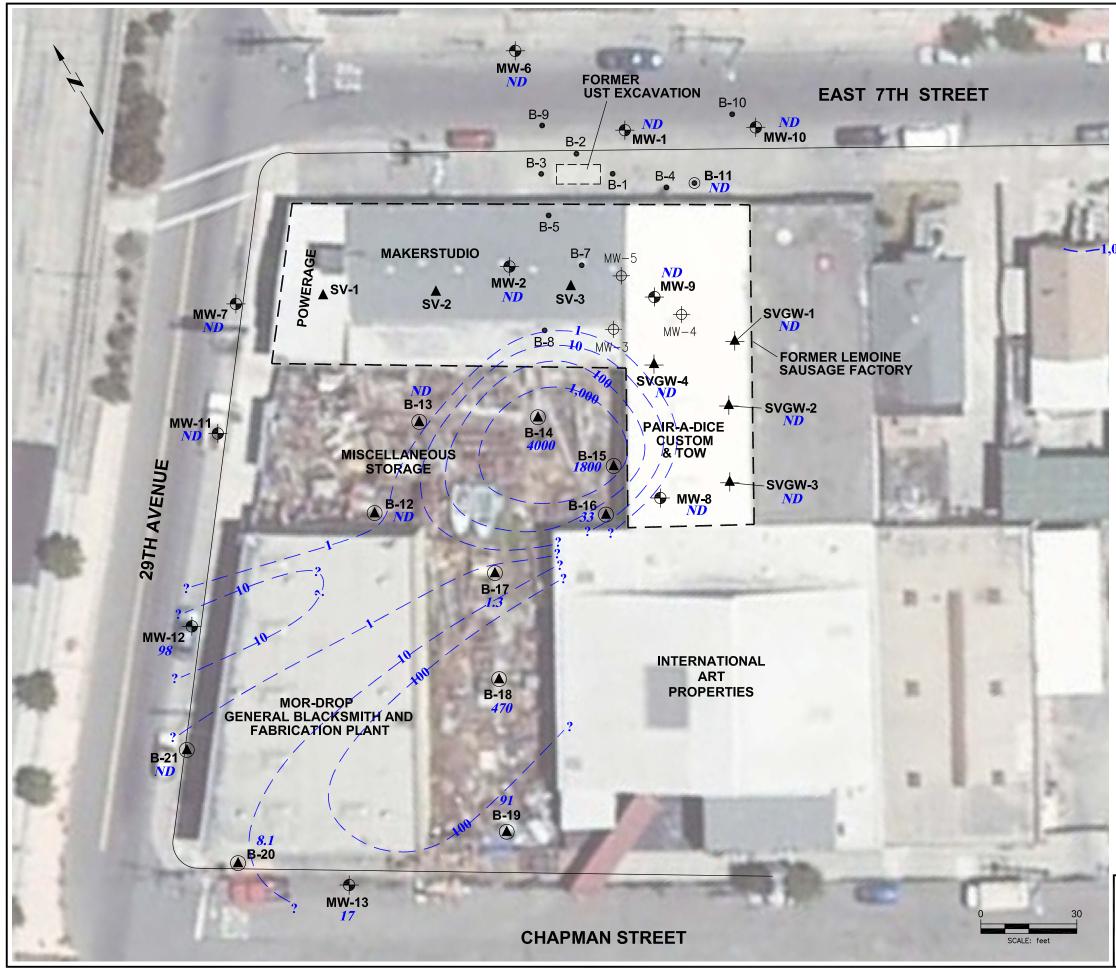
,000 — Benzene concentration contour (ug/L) in groundwater

Notes:

Results reported in micrograms per liter (ug/L). B refers to benzene.

Benzene was analyzed using EPA Method 8021B.

ND refers to not detected.


BENZENE CONCENTRATIONS IN GROUNDWATER

FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

08/27/09 SITE0809.DWG

8

- Existing Monitoring Well

- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

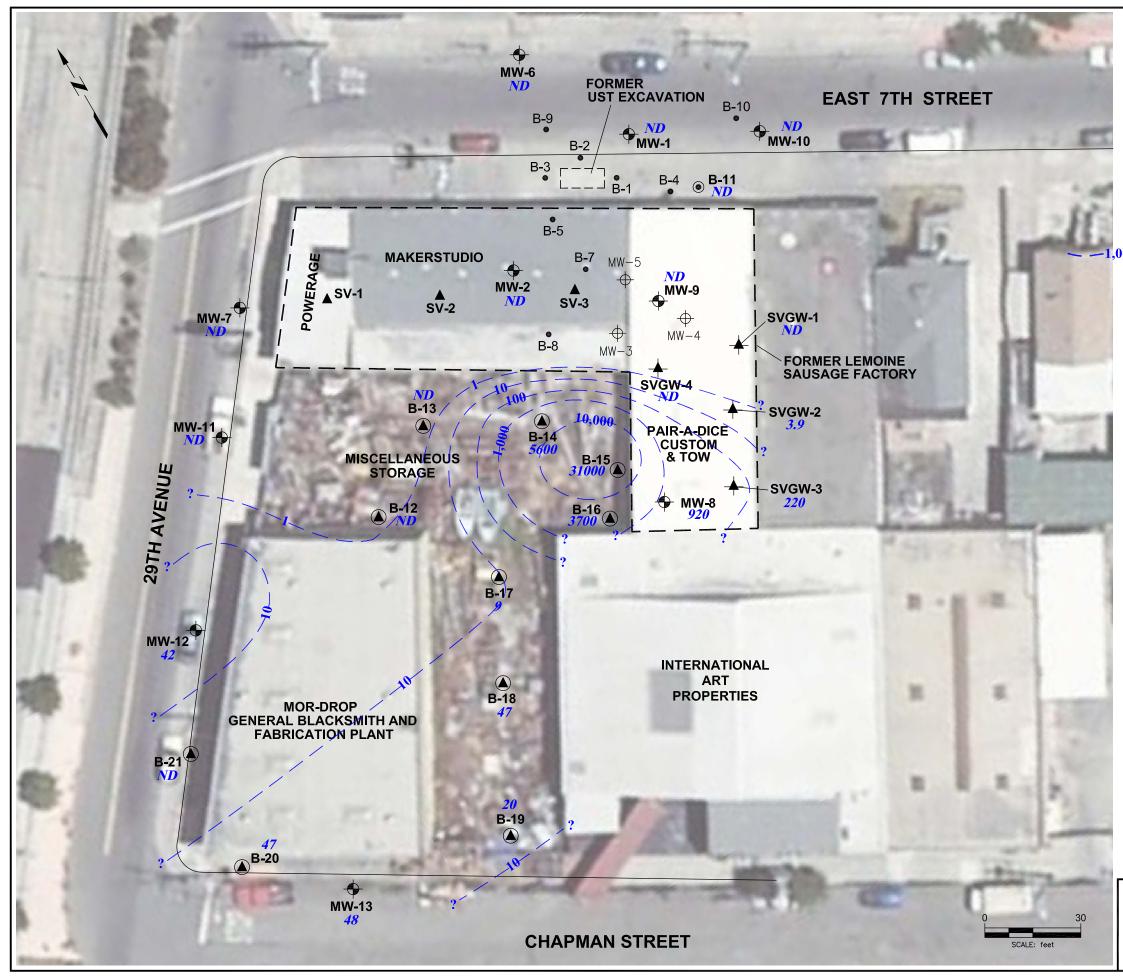
470 TCE concentration (ug/L) in groundwater

,000 — TCE concentration contour (ug/L) in groundwater

Notes:

Results reported in micrograms per liter (ug/L). VOCs refer to volatile organic compounds, which were analyzed using EPA Method 8260B. TCE refers to trichloroethene.

ND refers to not detected.


TCE CONCENTRATIONS IN GROUNDWATER

FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

08/27/09 SITE0809.DWG

9

LEGEND:

- Existing Monitoring Well

- \oplus Abandoned Monitoring Well
- Soil Boring
- ▲ Soil Vapor Boring
- ▲ Soil Vapor/Grab Groundwater Boring
- Soil Vapor, Soil, and Grab Groundwater Boring
- Exploratory Boring

47 cis-1,2-DCE concentration (ug/L) in groundwater

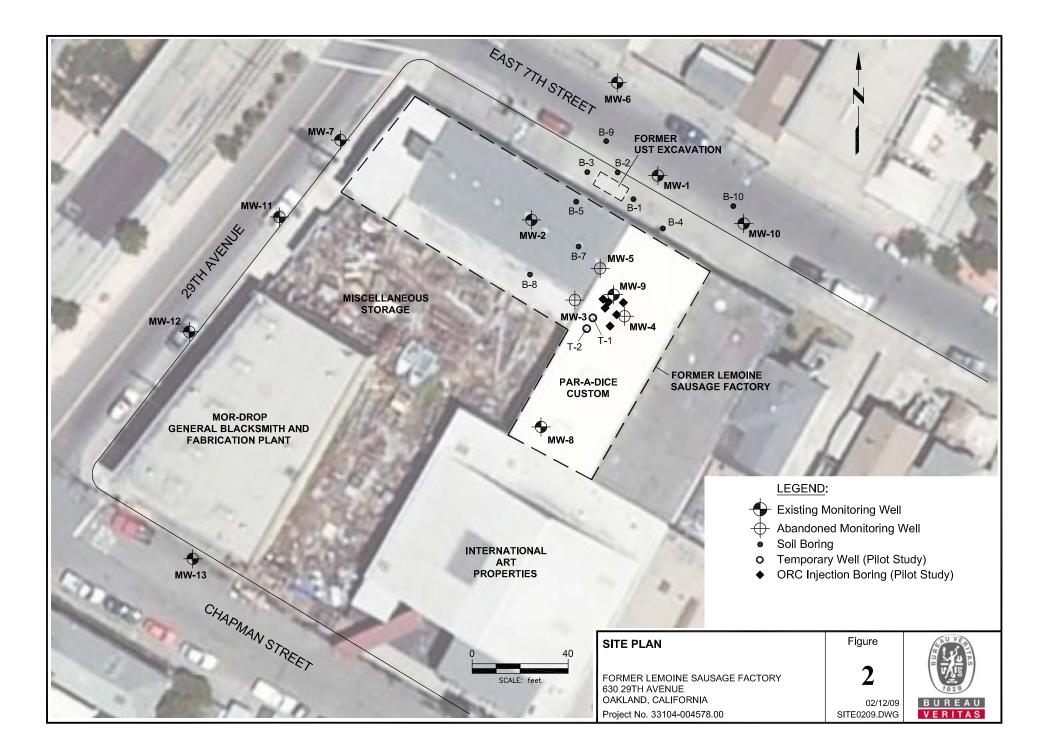
000 — cis-1,2-DCE concentration contour (ug/L) in groundwater

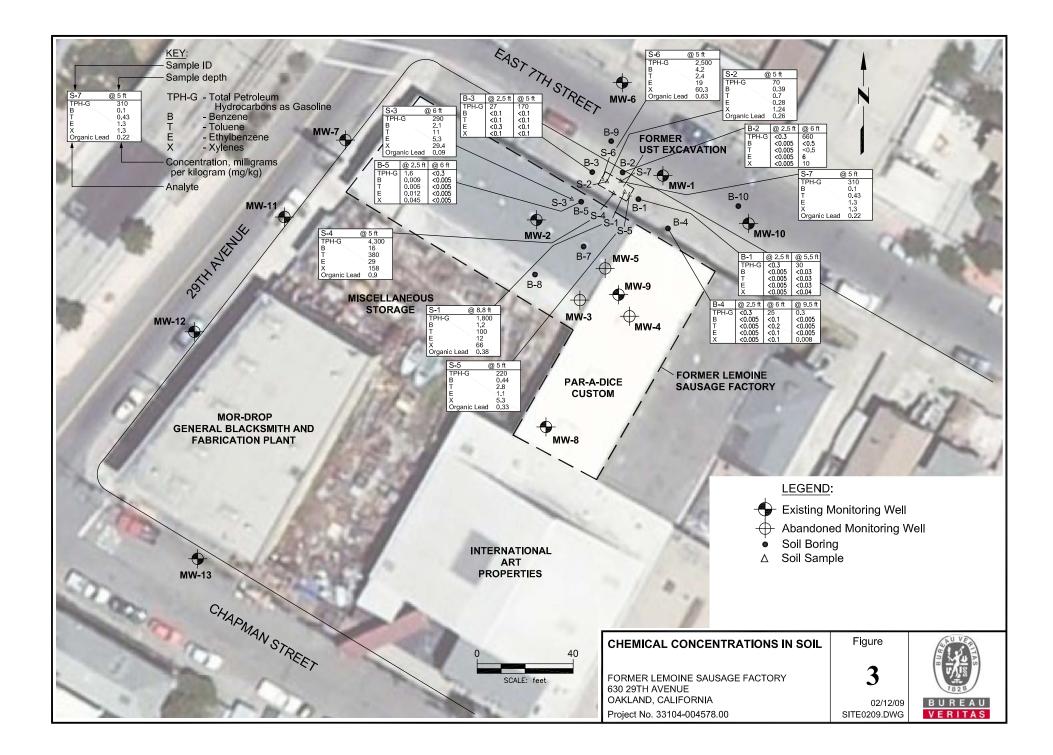
Notes:

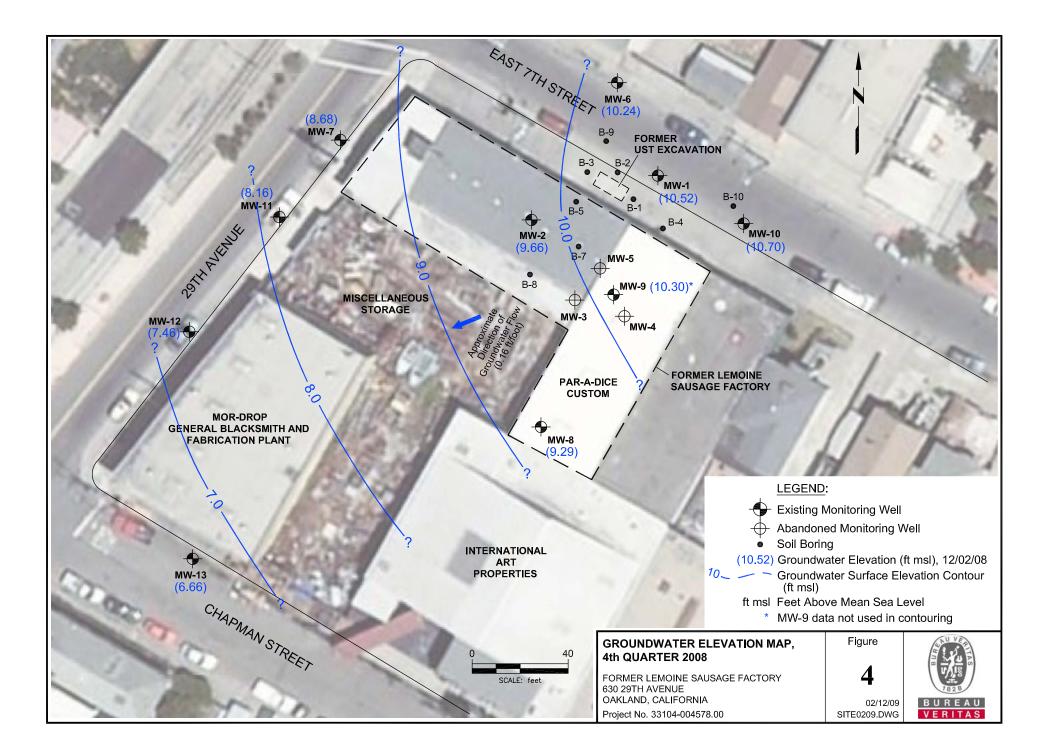
Results reported in micrograms per liter (ug/L). VOCs refer to volatile organic compounds, which were analyzed using EPA Method 8260B. cis-1,2-DCE refers to cis-1,2-dichloroethene. ND refers to not detected.

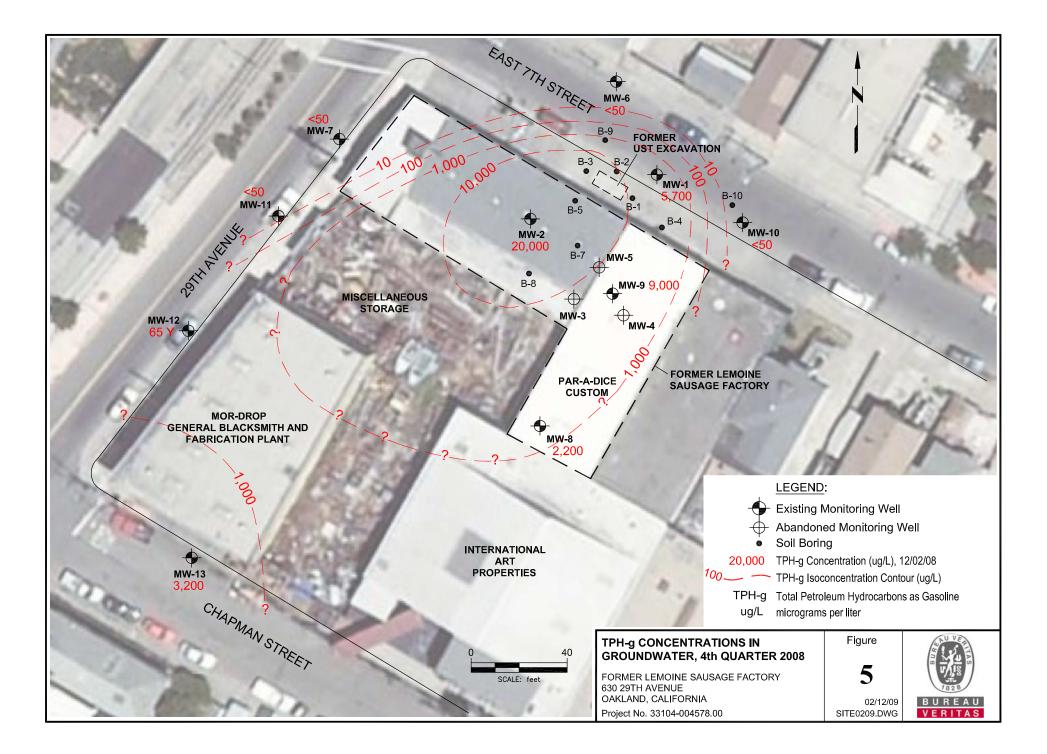
cis-1,2-DCE CONCENTRATIONS IN GROUNDWATER

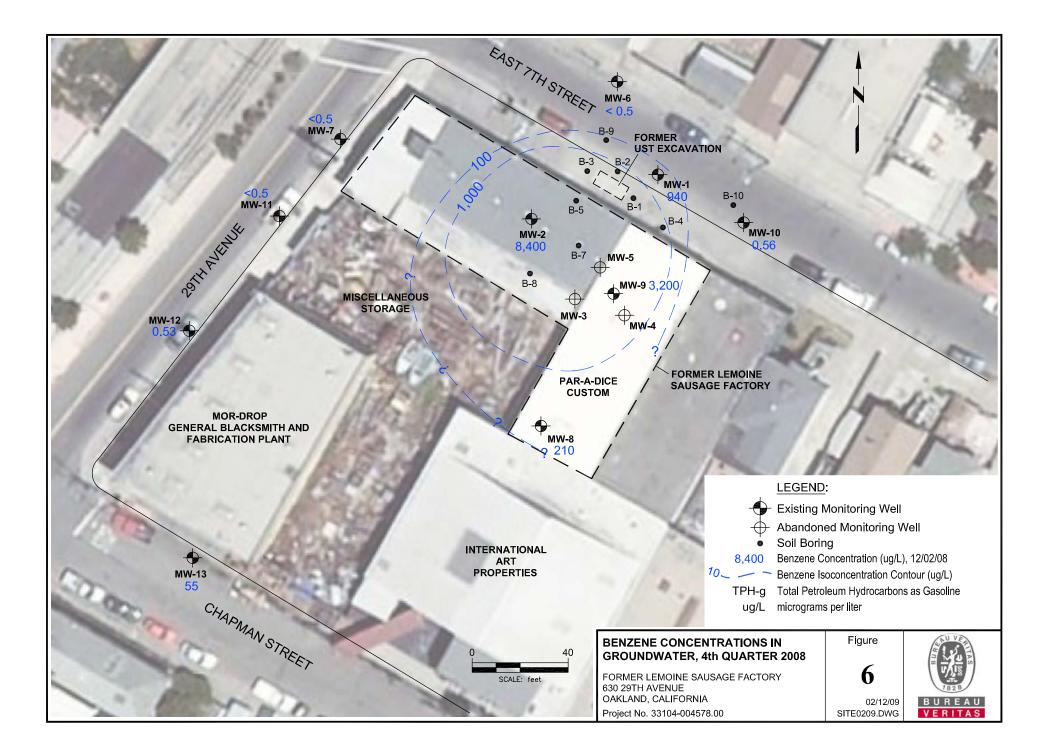
FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Project No. 33104-004578.00 Figure

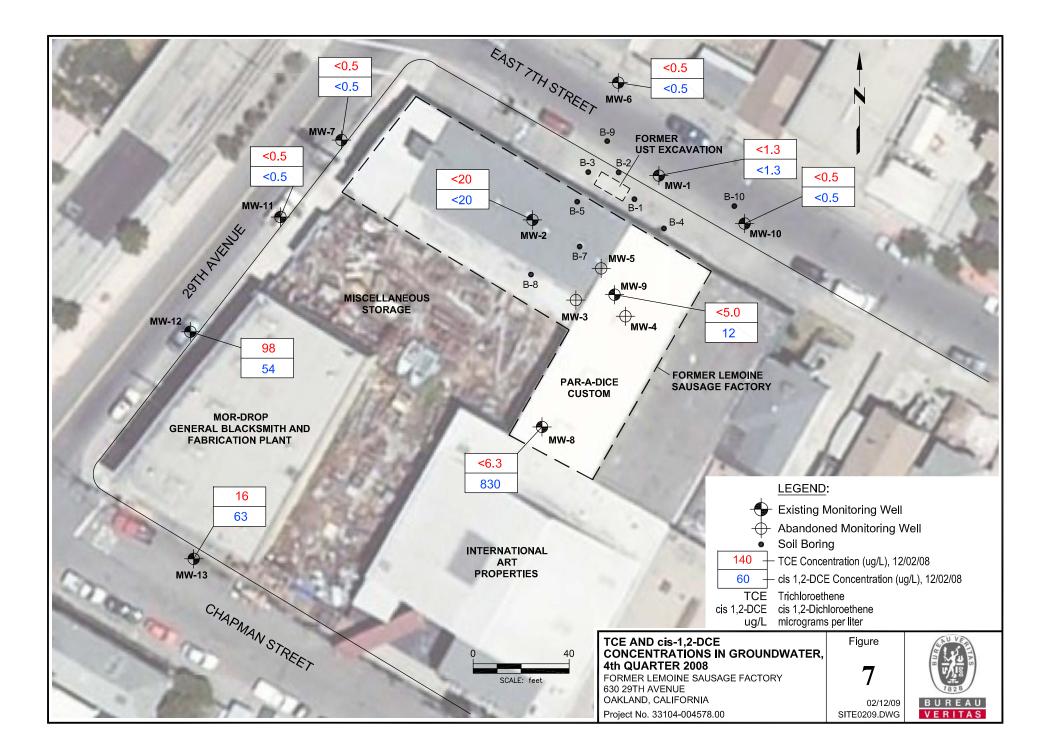

10 08/27/09 SITE0809.DWG

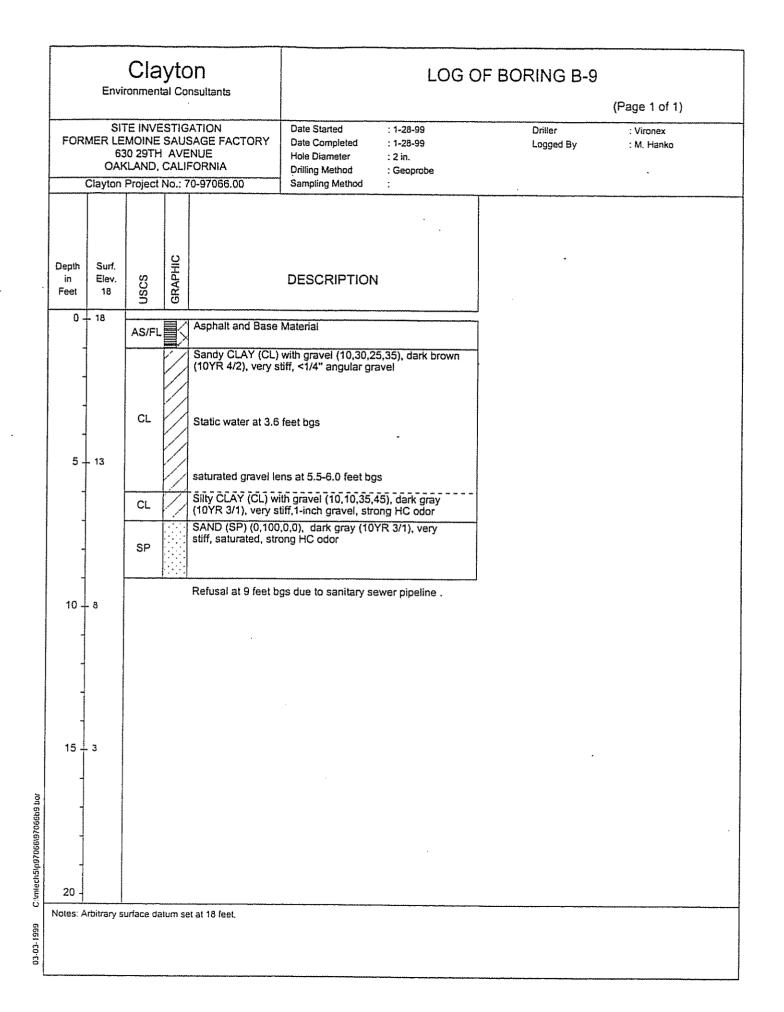


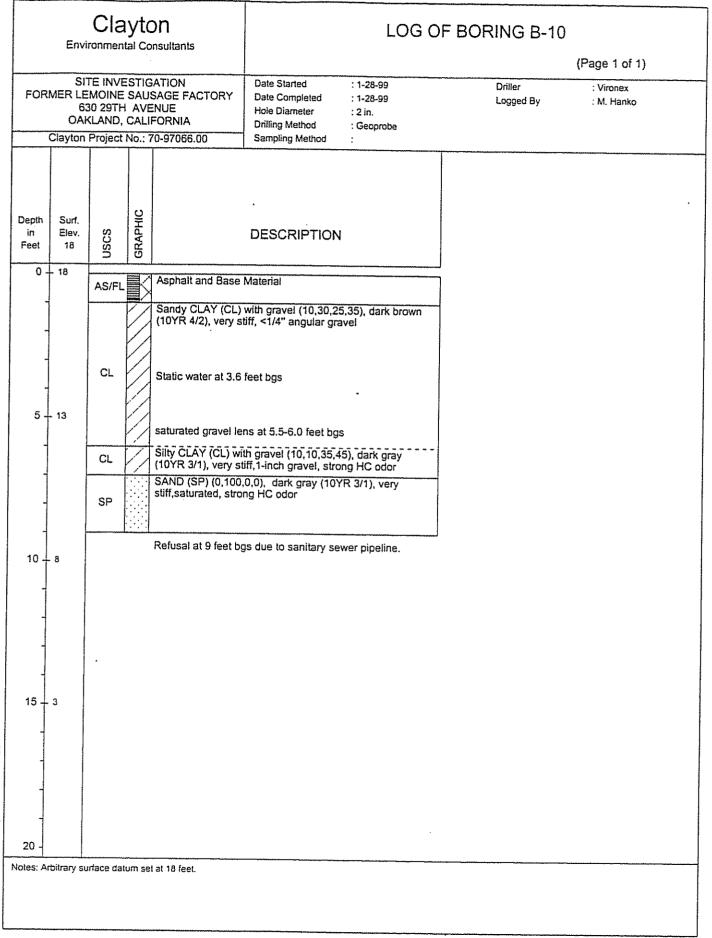



APPENDIX A

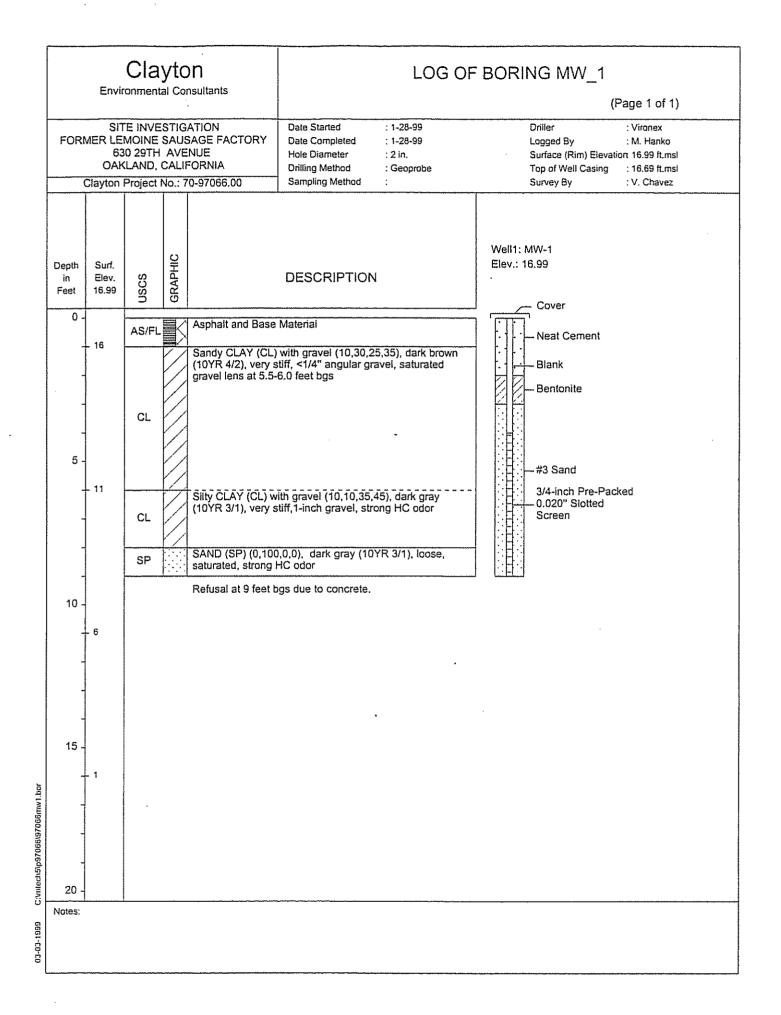

FIGURES SHOWING PREVIOUS INVESTIGATION RESULTS



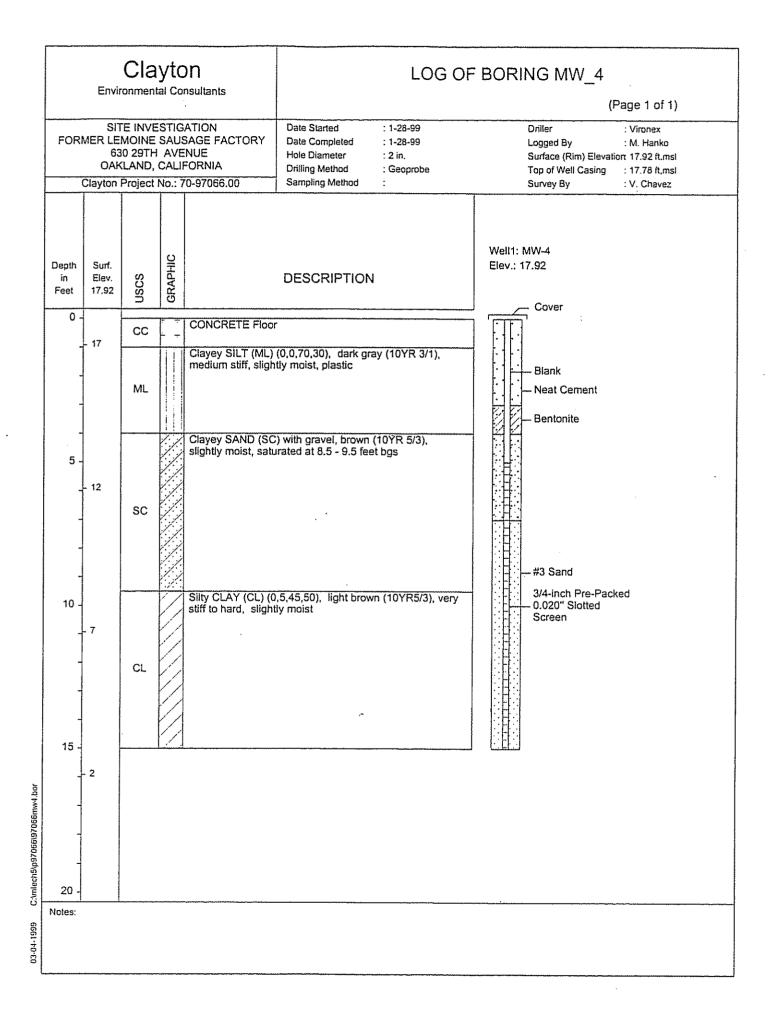

APPENDIX B

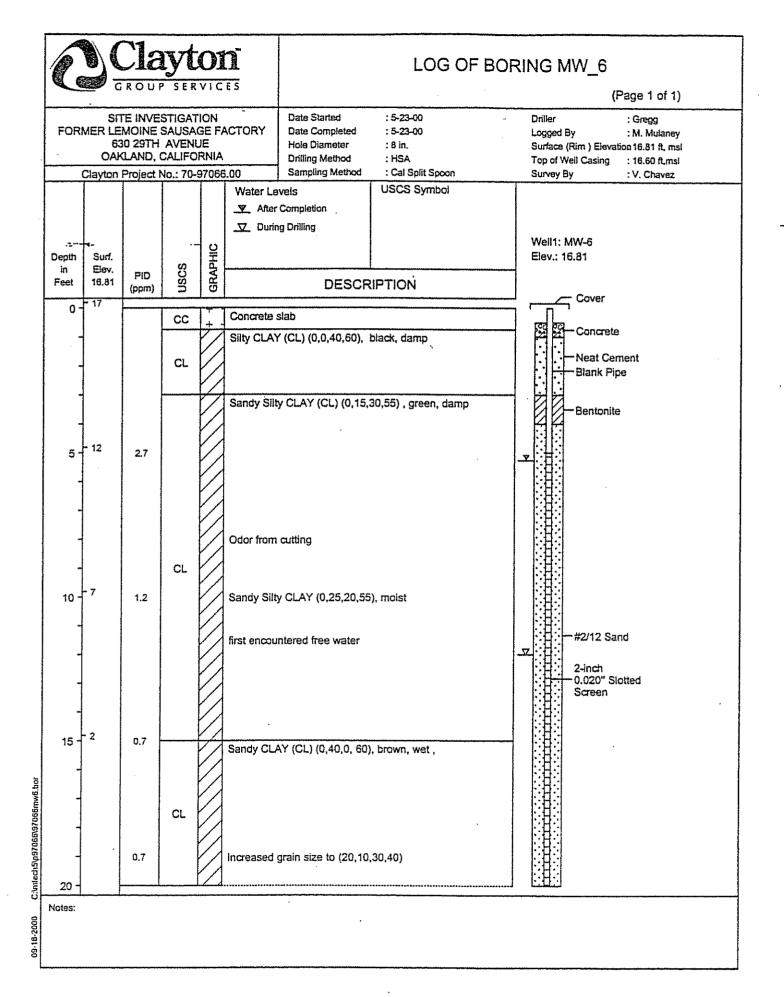

BORING LOGS AND MONITORING WELL CONSTRUCTION DETAILS FROM PREVIOUS INVESTIGATIONS

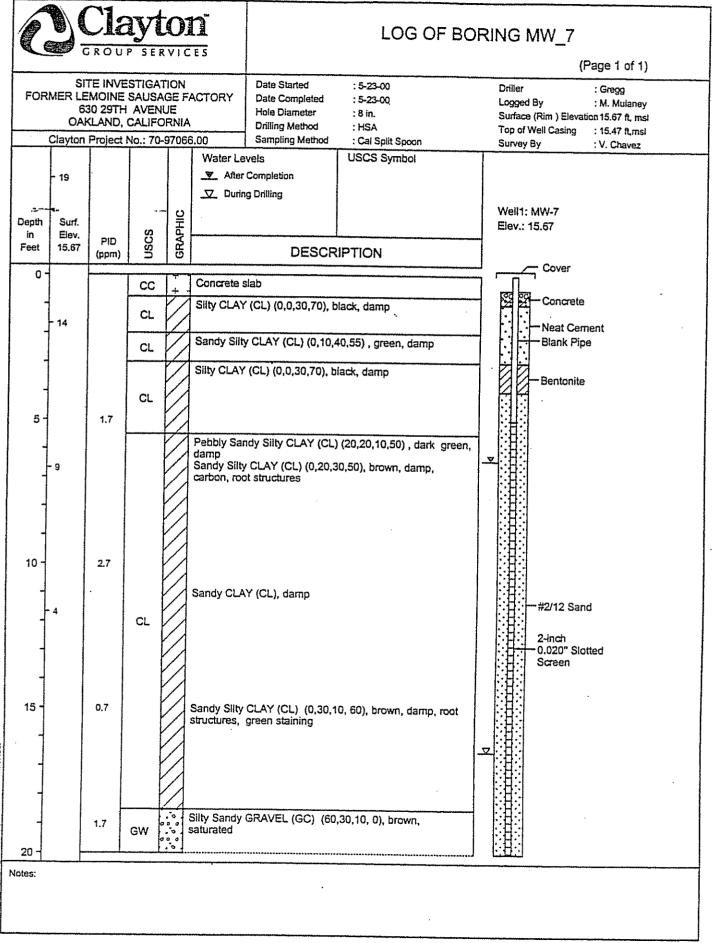
	Envi			DN Insultants		LOG	G OF BO	RING B-7		
									(Page 1 of 1)	
	MER LE 63 OAH	MOINE 30 29TH (LAND,	SAU AVE CALI	GATION SAGE FACTORY ENUE FORNIA 70-97066.00	Date Started Date Completed Hole Diameter Drilling Method	: 1-27-99 : 1-27-99 : 2 in. : Geoprobe		Driller Logged By	: Vironex : M. Hanko	
		Frojeci	NO.:	/0-9/066.00	Sampling Method				······	
Depth in Feet	Surf. Elev. 18	uscs	GRAPHIC		DESCRIPTION	l				
0 -	18		<u> </u>	CONCRETE Floor	r					
-		СС				·				
5	- 13		<u> </u>							
-		ML		Clayey SILT (ML) medium stiff, sligh	(0,0,70,30), dark gra tly moist, plastic	ay (10YR 3/1),				
	a	SM		Silty SAND (SM) w 5/3), moist, dense,	vith gravel (5,60,30,5 angular 1/4" gravel,), brown (10YR fine sand				
-	• 0	ML		Clayey SILT (ML) (medium stiff, slight	(0,0,70,30), dark gra ly moist, plastic, HC	y (10YR 3/1), odor in soil				
15 -	. 3									
20 -										
	rbitrary su	uríace da	itum se	et at 18 feet.						
	-									


03-04-1999 C:\mlech5\p97066\97066b7.bor

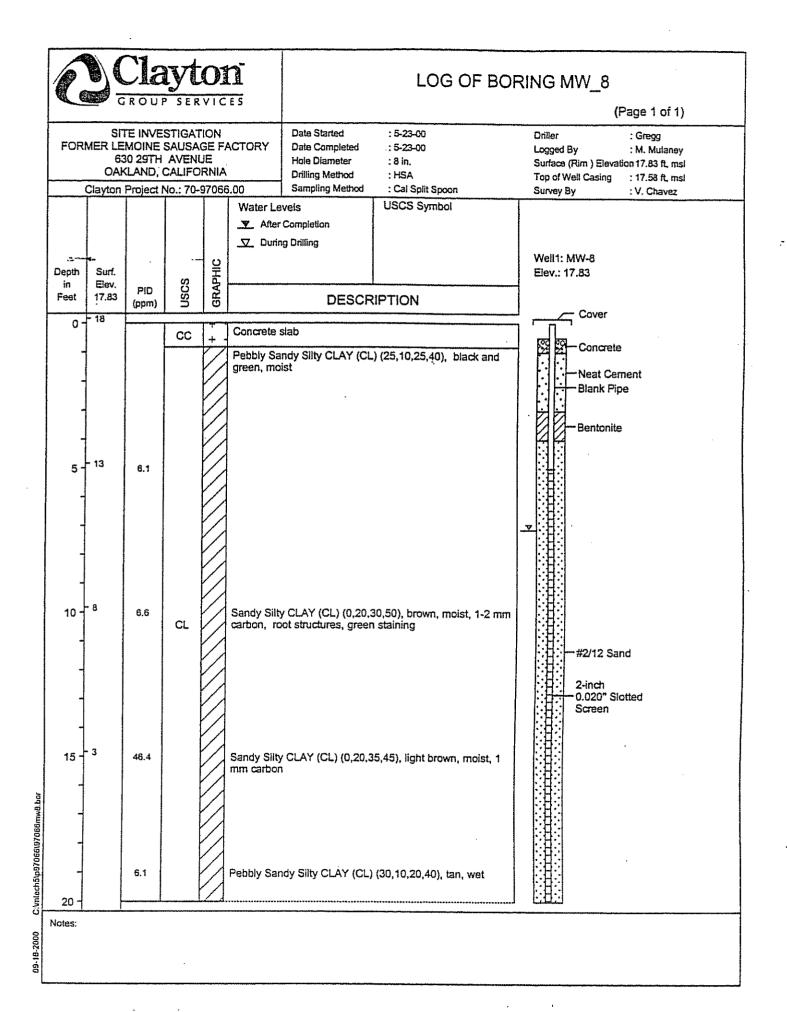
		Envi	Cla) n nsultants		LOG		IG B-8	
		SITE INVESTIGATION RMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA Clayton Project No.: 70-97066.00				Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 1-27-99 : 1-27-99 : 2 in. : Geoprobe :	Drii Log	ler ged By	(Page 1 of 1) : Vironex : M. Hanko
	Depth in Feet	Surf. Elev. 18	nscs	GRAPHIC		DESCRIPTION	I			
	0 -	- 18	сс		CONCRETE Floor	7				
	5 -	- 13	ML			(0,0,70,30), dark gra tly moist, plastic (0,20,60,20), grayis				
-	- - 10 -	8	ML		4/2), slightly moist	, stiff ,25,35,40), yellowis				
	- 15 -	- 3	CL							
C.Imtech5/p97066/97066h8.har	- 20		•							
03-03-1999 C	Notes: A	Arbitrary s	iurface da	itum s	et a t 18 feet.				<u></u>	

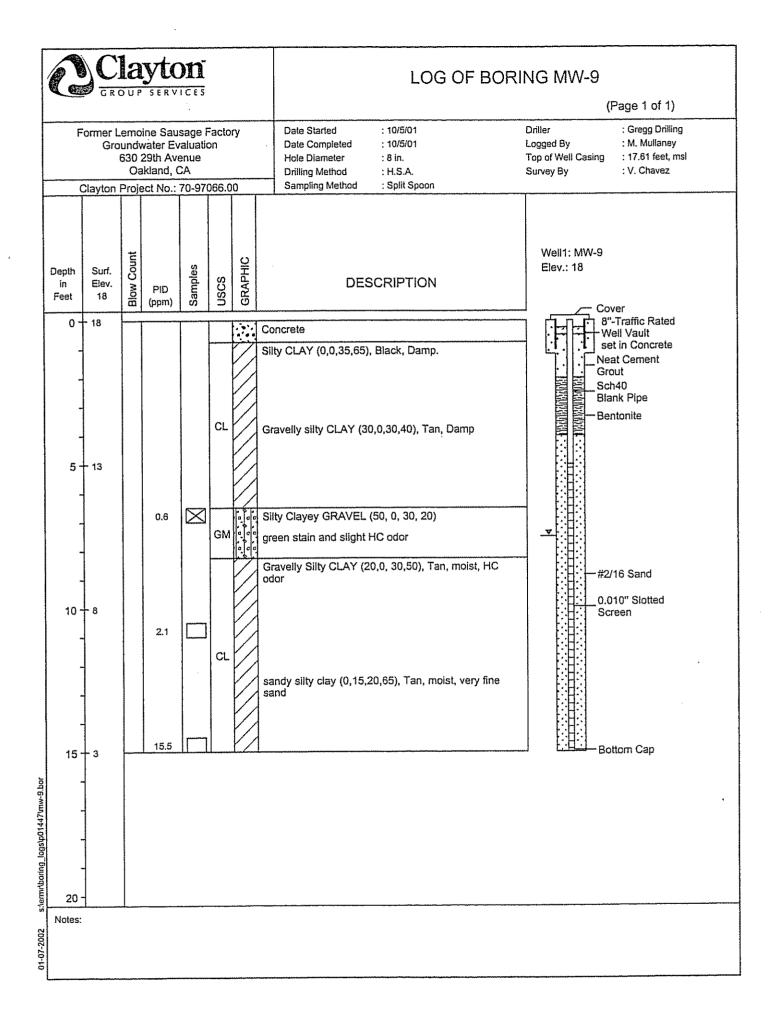

C:\mlech5\p97066\97066b10.bor 03-03-1999

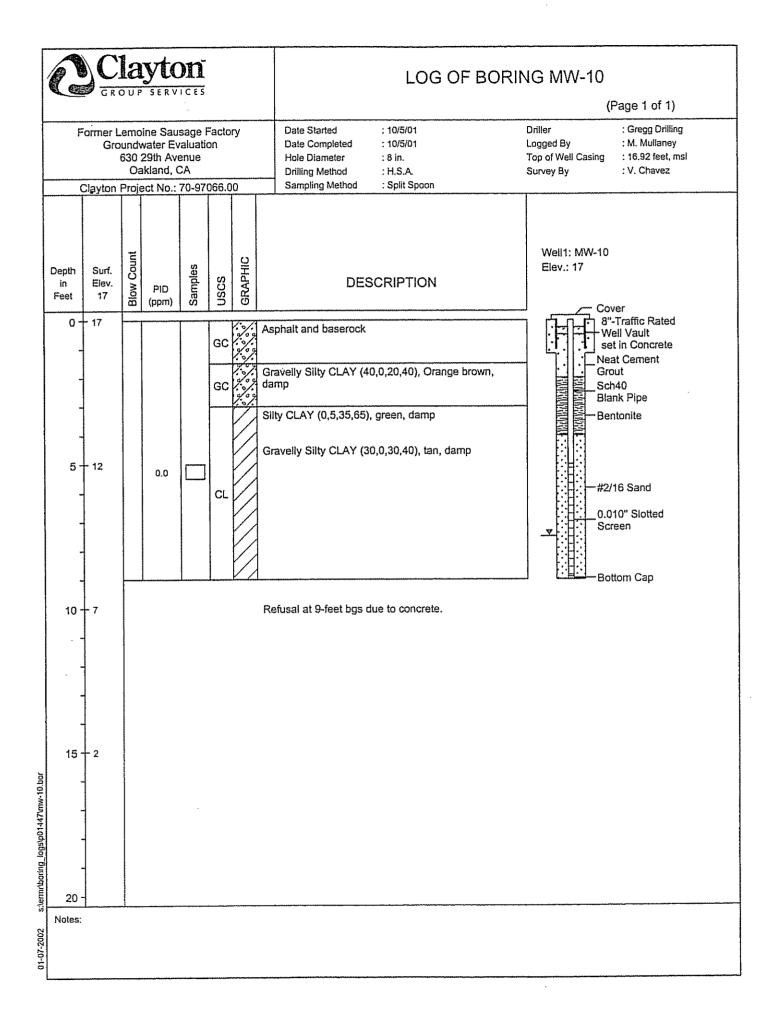

	E	nvironmen	tal Cor	nsultants	LOG OF BORING MW_2 (Page 1 of				
Deph In Peter Surf. Elev. g g g g g Description 0 21	FORMER	LEMOINE 630 29TH AKLAND,	SAUS AVE CALIF	AGE FACTORY NUE FORNIA	Date Completed Hole Diameter Drilling Method	: 1-27-99 : 2 in, : Geoprobe	······································	Logged By Surface (Rim) Ele Top of Well Casin	: M. Hanko vation 21.24 ft.msl g : 20.79 ft.msl
0 21 Suspended Slab, various layers of concrete slabs, wood slabs, steel slabs, and rubble 1 CCC + - + + - - - <th>in Ele</th> <th></th> <th>GRAPHIC</th> <th></th> <th>DESCRIPTIO</th> <th>N</th> <th>1</th> <th>: 21.24</th> <th></th>	in Ele		GRAPHIC		DESCRIPTIO	N	1	: 21.24	
		ML	+ + + + +	slabs, steel slabs, Clayey SILT (ML) medium stiff, sligh Silty SAND (SM) v 5/3), moist, dense Clayey SILT (ML)	and rubble (0,0,70,30), dark g tly moist, plastic vith gravel (5,60,30, , angular 1/4" grave (0,0,70,30), dark g	ray (10YR 3/1), 5), brown (10YR !, fine sand		- Neat Cement - Blank - Bentonite - #3 Sand - 3/4-inch Pre-P - 0.020" Slotted	acked
20 - Control C		m odor @	13' bos	retained sample @ 1					

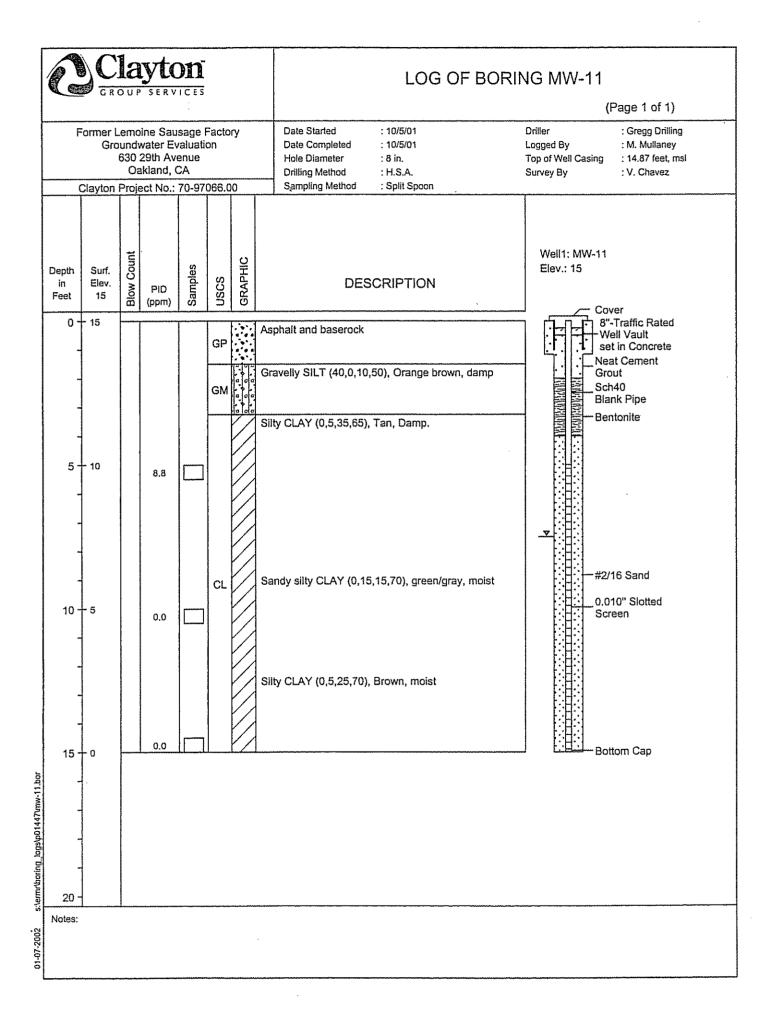

Env			LOG OF BORING MW_3 (Page 1 of 1)					
FORMER LE 6 OA	30 29TH AV KLAND, CAL	JSAGE FACTORY /ENUE	Date Started : 1-27-99 Date Completed : 1-27-99 Hole Diameter : 2 in. Drilling Method : Geoprobe Sampling Method :		Driller : Vironex Logged By : M. Hanko Surface (Rim) Elevation: 21.30 ft,msl Top of Well Casing : 21.10 ft,msl Survey By : V. Chavez			
Depth Surf. in Elev. Feet 21.30	USCS GRAPHIC		DESCRIPTIO	N	Weil1: MW-3 Elev.: 21.3			
0 - 21	cc	 Suspended Slab, slabs, steel slabs, - - - - 	various layers of co and rubble	ncrete slabs, wood	r			
5 - 16	ML	medium stiff, sligh			Blank			
10 - 11	sc	slightly moist, satt) with gravel, browr irated at 11.5 - 12.5	feet below the	Bentonite			
6	ML	Silty CLAY (CL) (C stiff to hard, slight	,5,45,50), light bro ly moist	wn (10YR5/3), very				
20 -								

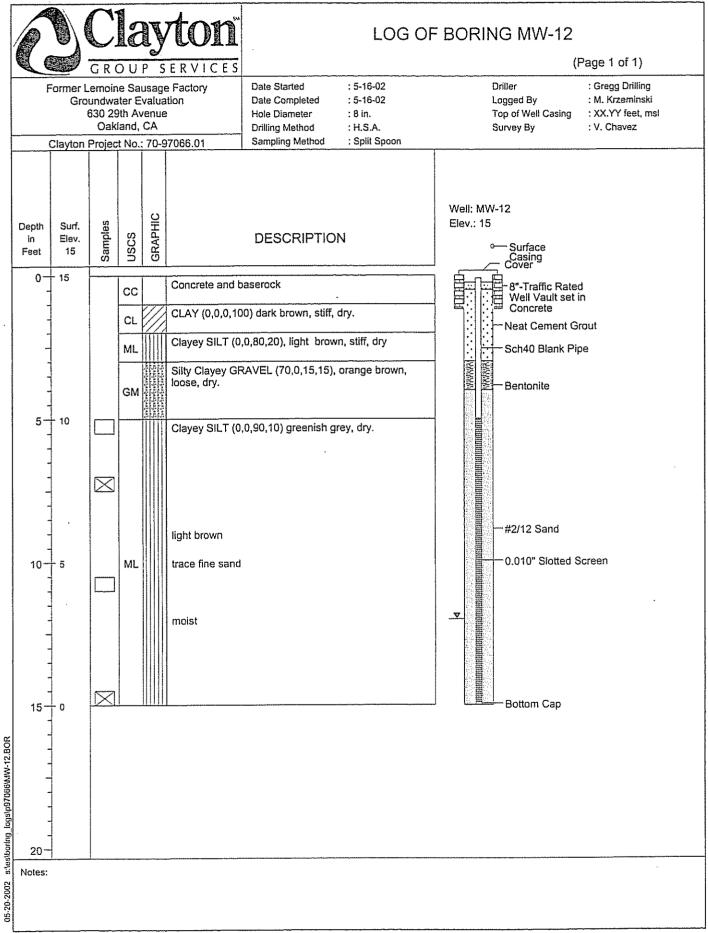
•

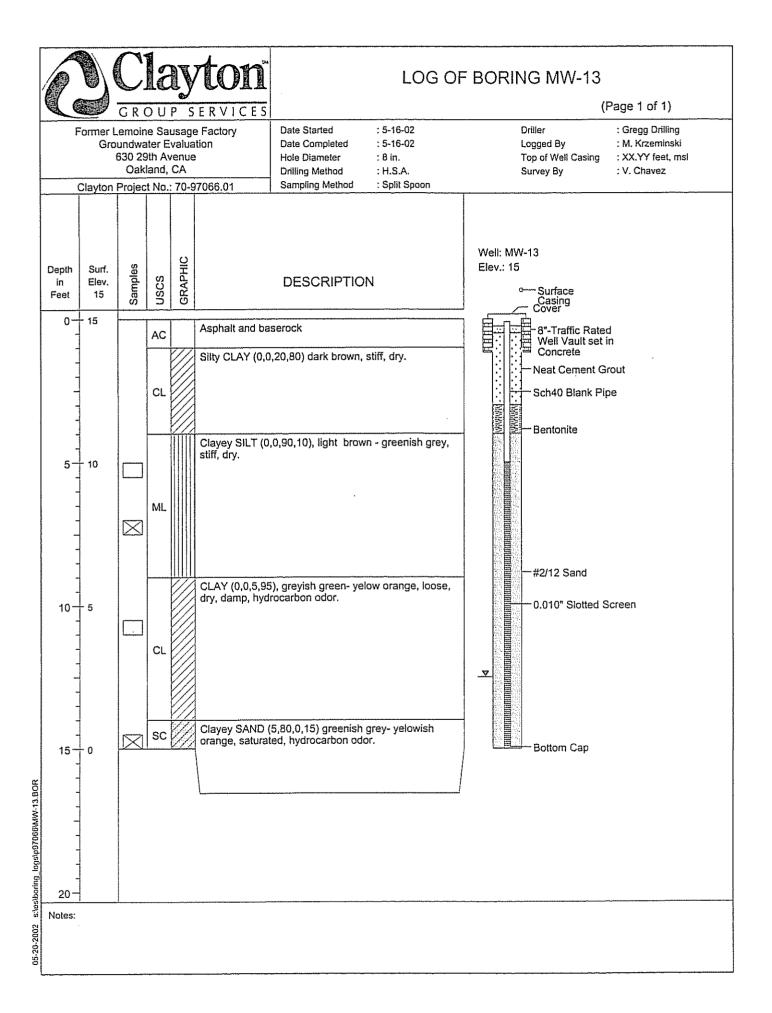

En		yton al Consul	tants		2000		NG MW_	-
FORMER L	EMOINE 530 29TH KLAND,	STIGATIO SAUSAG AVENUE CALIFOR No.: 70-91	E FACTORY E NIA	Date Started : 1-27-99 Date Completed : 1-27-99 Hole Diameter : 2 in. Drilling Method : Geoprobe Sampling Method :		Driller : Vironex Logged By : M. Hanko Surface (Rim) Elevation not deten Top of Well Casing : 21.12 ft.n		: M. Hanko Elevation not determined
Depth in Elev. Feet 21.5 0 - 21 5 - 16 	S	Cla me Cla ver	spended Slab, bs, steel slabs, ayey SILT (ML) dium stiff, sligh by SAND (SM) v), moist, dense ayey SILT (ML) y plastic	DESCRIPTION various layers of co and rubble (0,0,70,30), dark gi ly moist, plastic vith gravel (5,60,30, angular1/4" grave (5,10,50,35), stiff,	N ncrete slabs, wood ray (10YR 3/1), 5), brown (10YR I, fine sand slightly moist,	Weil11: Elev.:	MW-5	nt -Packed
20 -	surface da	atum set at i	21.5 feet.					






09-18-2000 C:\mtech5\p97068\97068mw7.bor


.



		UV.	Ē						Project No.: 70-04578.02 Client: AIG		BORING NO.
	44	Į				1.0		05	Location: 630 29th Avenue, Oakland, Ca Logged By: P. McLaughlin	lifornia	T-1
	T	7,0	¶° [DG		Start Date: 8/19/2005 Start Time:	Eleva	tion: N/A
		50 7821			IV		VEL		Finish Date: 8/19/2005 Finish Time:	Borin	g Dia.: 7"
	BÙ			C		V	VI	-	Driller: Exploration Geoservices Drill M Hammer Weight: N/A Drop:		low Stem Auger
	AE	3							Borehole Completion Data: Boring complet		
	(ii)	ġ	g						L		WELL
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID.	PID READING (ppm)	111	DEPTH (II)	GRAPHIC LOG LOG	ហ្គ		DESCRIPTION	1	ISTRUCTION
SAN	SAM REC(SAIV		TIME	DEP	GRA LOG	nscs		· · · · · · · · · · · · · · · · · · ·	Traffic cover with well plug	
			****						ab, 0.75' thick		
					1-	H	ML	CLAYEY SIL dark brown,			
					2-		IVEL.				Portland Type II
					-			SILTY SAND brown, damp) b, loose, trace fine gravel up to 3/8" dia.		Neat Cement from 0.5 to 3 feet bgs
		2.5			3-	Ă:¦:¦:	SM				
											 Bentonite Seal from 3 to 4 feet bgs
					4-]		0 WITH GRAVEL /n, damp, loose, with fine gravel up to 3/4" dia.		– 2" Blank SCH-40
		5.0			5~		SM				PVC Riser Casing from 0 to 5 feet bgs
		0.0									
					6-]				- Lonestar 2/12 Sand
			******		7-			SILTY SAND light brown, i) moist, loose, trace fine gravel up to 3/8" dia.		from 4 to 15 feet bgs
		7.5				₩. I	ļ				
					8-						
					9-						
								hydrocarbon	odor from ~9.0' - 15.0'		
		10.0			10-	X					– 2-inch diameter PVC Well Screen
					11-		SM				(0.010-in. Slot) from 5 to 15 feet bgs
					* * "						_
					12-						
		12.5			48	X 11					
					13-						
					14-						
		15.0				<u>x</u> [] [
					15-			EOB at 15 fe	et bgs		<u>, , , , , , , , , , , , , , , , , , , </u>
					16-			No Groundw	ater Encountered During Drilling.		
					17-						
					18-						
1						-					:
					19-			**************************************			
L											

	BURE		ATAS SATAS			10)G	OF	Project No.: 70-04578.02 Client: AIG Location: 630 29th Aven Logged By: P. McLaughlin	ue, Oakland, Cali	fornia	BORING NO. T-2
					N			RING	Start Date: 8/19/2005 Finish Date: 8/19/2005	Start Time: Finish Time:		tion: N/A g Dia.; 7"
	ر عارون	828				V	VEL		Driller: Exploration Geose			ow Stem Auger
	B U V E I								Hammer Weight: N/A	Drop:	N/A	
	- -				1				Borehole Completion Data	: Boring complete	d as test we	ell
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID.	PID READING (ppm)	TIME	DEPTH (II)	SAMPLE GRAPHIC LOG	nscs		DESCRIPTION		CON Traffic cover with well plug	
0 -	0.6	0,	ш.С	,				Concrete Sla	ab, 0.75' thick	******		
					1-		ML	CLAYEY SIL dark brown,		<u> </u>		
					2-		3VIL	SILTY SANE				 Portland Type II Neat Cement from
		2.5				X	SM		, loose, trace fine gravel up to	3/8" dia.		0.5 to 3 feet bgs
											A Lite of A Lite	 Bentonite Seal from 3 to 4 feet bgs
					5-	-) WITH GRAVEL n, damp, loose, with fine grave	el up to 3/4" dia.		 2" Blank SCH-40 PVC Riser Casing from 0 to 5 feet bgs
		5.0			6-	X. -	SM					
					7-			SILTY SAND light brown, r) moist, loose, trace fine gravel u	up to 3/8" dia.		 Lonestar 2/12 Sand from 4 to 15 feet bgs
		7.5			8-	X						
					9-			hydrocarbon	odor from ~9.0' - 15.0'			
		10.0			10-	T X						– 2-inch diameter PVC Well Screen
					11-		SM					(0.010-in. Slot) from 5 to 15 feet bgs
					12-							
		12.5			13-	X	-					
					14-							
		15.0			15-	X	ा 					
					16-			EOB at 15 fe No Groundw	et bgs ater Encountered During Drillir	ıg.		
					17-	-						
					18-							
					19-							
						-						

HISTORICAL GROUNDWATER ELEVATION DATA

Well Identification	Date Measured	Top of Casing Elevation (ft,msl)	Depth to Water (feet)	Groundwater Elevation (ft,msl)
MW-1	2/8/1000	16 60	2.60	12.00
101 0 0 - 1	2/8/1999	16.69	3.60	13.09
	6/15/2000	16.69	4.82	11.87
	9/22/2000	16.69	6.30	10.39
	12/19/2000	16.69	5.50	11.19
	3/21/2001	16.69	4.29	12.40
	6/20/2001	16.69	5.85	10.84
	9/25/2001	16.69	6.76	9.93
	12/3/2001	16.69	4.17	12.52
	3/25/2002	16.69	2.77	13.92
	6/28/2002	16.69	5.61	11.08
	9/11/2002	16.69	6.17	10.52
	12/16/2002	16.69	3.91	12.78
	3/28/2003	16.69	4.44	12.25
	6/24/2003	16.69	5.29	11.40
	9/26/2003	16.69	6.88	9.81
	12/16/2003	16.69	NM	NM
	4/6/2004	16.69	3.57	13.12
	6/23/2004	16.69	5.96	10.73
	9/15/2004	16.69	NM	NM
	12/16/2004	16.69	4.40	12.29
	3/22/2005	16.69	3.44	13.25
	6/24/2005	16.69	4.45	12.24
	9/13/2005	16.69	6.03	10.66
	12/2/2005	16.69	4.95	11.74
	3/2/2006	16.69	3.74	12.95
	6/15/2006	16.69	4.58	12.11
	9/14/2006	16.69	5.15	11.54
	1/11/2007	16.69	4.01	12.68
	4/9/2007	16.69	4.67	12.02
	9/17/2007	16.69	6.39	10.30
	12/19/2007	16.69	5.40	11.29
	3/11/2008	16.69	4.21	12.48
	6/10/2008	16.69	5.68	11.01
	9/9/2008	16.69	6.67	10.02
	12/2/2008	16.69	6.17	10.52
MW-2	2/8/1999	20.79	14.20	6.59
	6/15/2000	20.79	10.46	10.33
	9/22/2000	20.79	11.49	9.30
	12/19/2000	20.79	11.38	9.41
	3/21/2001	20.79	10.01	10.78
	6/20/2001	20.79	10.92	9.87
	9/25/2001	20.79	11.78	9.01
	12/3/2001	20.79	11.13	9.66
	3/25/2002	20.79	9.21	11.58
	6/28/2002	20.79	10.65	10.14
	9/11/2002	20.79	10.89	9.90
	12/16/2002	20.79	11.15	9.64
	3/28/2003	20.79	10.27	10.52
	6/24/2003	20.79	10.24	10.55
	9/26/2003	20.79	11.20	9.59

Well	Date	Top of Casing	Depth to	Groundwater
dentification	Measured	Elevation (ft,msl)	Water (feet)	Elevation (ft,msl)
MW-2	4/6/2004	20.79	9.40	11.39
IVI VV-2				9.19
	6/23/2004	20.79	11.60	
	9/15/2004	20.79	10.94	9.85
	12/16/2004	20.79	NM	NM
	3/22/2005	20.79	9.26	11.53
	6/24/2005	20.79	10.03	10.76
	9/13/2005	20.79	10.58	10.21
	12/2/2005	20.79	NM	NM
	3/2/2006	20.79	9.45	11.34
	6/15/2006	20.79	9.84	10.95
	9/14/2006	20.79	10.27	10.52
	1/11/2007	20.79	10.45	10.34
	4/9/2007	20.79	10.03	10.76
	9/17/2007	20.79	10.85	9.94
	12/19/2007	20.79	10.71	10.08
	3/11/2008	20.79	9.76	11.03
		20.79	9.78 10.64	10.15
	6/10/2008			
	9/9/2008	20.79	11.04	9.75
	12/2/2008	20.79	11.13	9.66
MW-3	2/8/1999	21.10	7.45	13.65
	6/15/2000	21.10	10.56	10.54
	9/22/2000	21.10	15.30	5.80
	12/19/2000	21.10	9.72	11.38
	3/21/2001	21.10	8.95	12.15
	6/20/2001	21.10	10.14	10.96
	9/25/2001	21.10	10.74	10.36
		itoring program in Octobe		10.50
	- /- /			
MW-4	2/8/1999	17.78	4.13	13.65
	6/15/2000	17.78	6.30	11.48
	9/22/2000	17.78	6.90	10.88
	12/19/2000	17.78	6.40	11.38
	3/21/2001	17.78	5.77	12.01
	6/20/2001	17.78	6.78	11.00
	9/25/2001	17.78	7.40	10.38
		itoring program in Octobe		
MW-5	2/0/1000	01 40	7.60	12 50
111 VV-J	2/8/1999	21.12	7.62	13.50
	6/15/2000	21.12	10.36	10.76
	9/22/2000	21.12	9.99	11.13
	12/19/2000	21.12	9.99	11.13
	3/21/2001	21.12	8.68	12.44
	6/20/2001	21.12	9.90	11.22
	9/25/2001	21.12	10.34	10.78
	Removed from mon	itoring program in Octobe	r 2001	
MW-6	6/15/2000	16.60	5.47	11.13
	9/22/2000	16.60	6.54	10.06
	12/19/2000	16.60	5.93	10.67
	3/21/2001	16.60	4.70	11.90
	6/20/2001	16.60	6.13	10.47
	9/25/2001	16.60	6.68	9.92

Well Identification	Date Measured	Top of Casing Elevation (ft,msl)	Depth to Water (feet)	Groundwater Elevation (ft,msl)
WW-6	12/3/2001	16.60	4.72	11.88
	3/25/2002	16.60	3.93	12.67
	6/28/2002	16.60	5.83	10.77
	9/11/2002	16.60	5.43	11.17
	12/16/2002	16.60	3.93	12.67
	3/28/2003	16.60	NM	NM
	6/24/2003	16.60	5.52	11.08
	9/26/2003	16.60	6.70	9.90
	12/16/2003	16.60	4.99	11.61
	4/6/2004	16.60	4.85	11.75
	6/23/2004	16.60	5.76	10.84
	9/15/2004	16.60	6.56	10.04
	12/16/2004	16.60	4.56	12.04
	3/22/2005	16.60	3.63	12.97
	6/24/2005	16.60	4.84	11.76
	9/13/2005	16.60	6.15	10.45
	12/2/2005	16.60	5.24	11.36
	3/2/2006	16.60	3.41	13.19
	6/15/2006	16.60	5.09	11.51
	9/14/2006	16.60	5.68	10.92
	1/11/2007	16.60	4.71	11.89
	4/9/2007	16.60	5.25	11.35
	9/17/2007	16.60	6.56	10.04
	12/19/2007	16.60	5.41	11.19
	3/11/2008	16.60	4.89	11.71
	6/10/2008	16.60	6.01	10.59
	9/9/2008	16.60	6.75	9.85
	12/2/2008	16.60	6.36	10.24
/W-7	12/16/2002	15.47	5.01	10.46
	12/17/2002	15.47	6.95	8.52
	12/18/2002	15.47	6.94	8.53
	12/19/2002	15.47	6.04	9.43
	12/20/2002	15.47	6.48	8.99
	12/21/2002	15.47	7.25	8.22
	12/22/2002	15.47	6.90	8.57
	12/23/2002	15.47	5.53	9.94
	12/23/2002	15.47	7.20	9.94 8.27
	12/25/2002	15.47	7.51	7.96
		15.47	6.40	
	12/26/2002			9.07
	3/28/2003	15.47	5.68	9.79
	6/24/2003	15.47	6.13	9.34
	9/26/2003	15.47	7.22	8.25
	12/16/2003	15.47	5.68	9.79
	4/6/2004	15.47	5.60	9.87
	6/23/2004	15.47	6.20	9.27
	9/15/2004	15.47	6.70	8.77
	12/16/2004	15.47	5.15	10.32
	3/22/2005	15.47	NM	NM
	6/24/2005	15.47	NM	NM
	9/13/2005	15.47	6.45	9.02
	12/2/2005	15.47	5.93	9.54
	3/2/2006	15.47	4.65	10.82

Well Identification	Date Measured	Top of Casing Elevation (ft,msl)	Depth to Water (feet)	Groundwater Elevation (ft,msl)
MW-7	6/15/2006	15.47	5.71	9.76
	9/14/2006	15.47	6.10	9.37
	1/11/2007	15.47	6.04	9.43
	4/9/2007	15.47	5.68	9.79
	9/17/2007	15.47	6.93	8.54
	12/19/2007	15.47	5.81	9.66
	3/11/2008	15.47	5.54	9.93
	6/10/2008	15.47	6.49	8.98
	9/9/2008	15.47	7.08	8.39
	12/2/2008	15.47	6.79	8.68
MW-8	6/15/2000	17.58	7.14	10.44
	9/22/2000	17.58	8.33	9.25
	12/19/2000	17.58	7.71	9.87
	3/21/2001	17.58	6.40	11.18
	6/20/2001	17.58	7.96	9.62
	9/25/2001	17.58	8.89	8.69
	12/3/2001	17.58	6.58	11.00
	3/25/2002	17.58	5.40	12.18
	6/28/2002	17.58	7.71	9.87
	9/11/2002	17.58	8.40	9.18
	12/16/2002	17.58	5.63	11.95
	3/28/2003	17.58	6.62	10.96
	6/24/2003	17.58	7.44	10.14
	9/26/2003	17.58	8.71	8.87
	12/16/2003	17.58	6.69	10.89
	4/6/2004	17.58	6.74	10.84
	6/23/2004	17.58	7.98	9.60
	9/15/2004	17.58	8.52	9.06
	12/16/2004	17.58	5.61	11.97
	3/22/2005	17.58	5.54	12.04
	6/24/2005	17.58	6.77	10.81
	9/13/2005		7.92	
		17.58		9.66
	12/2/2005	17.58	7.36	10.22
	3/2/2006	17.58	5.83	11.75
	6/15/2006	17.58	6.99	10.59
	9/14/2006	17.58	7.58	10.00
	1/11/2007	17.58	6.30	11.28
	4/9/2007	17.58	7.05	10.53
	9/17/2007	17.58	8.26	9.32
	12/19/2007	17.58	6.95	10.63
	3/11/2008	17.58	6.57	11.01
	6/10/2008	17.58	7.73	9.85
	9/9/2008	17.58	8.48	9.10
	12/2/2008	17.58	8.29	9.29
MW-9	12/3/2001	17.61	5.79	11.82
	3/25/2002	17.61	4.98	12.63
	6/28/2002	17.61	7.71	9.90
	9/11/2002	17.61	6.91	10.70
	9/11/2002	17.01		
	12/16/2002	17.61	6.58	11.03

Well Identification	Date Measured	Top of Casing Elevation (ft,msl)	Depth to Water (feet)	Groundwater Elevation (ft,msl)
MW-9	6/24/2003	17.61	6.42	11.19
	9/26/2003	17.61	8.14	9.47
	12/16/2003	17.61	6.76	10.85
	4/6/2004	17.61	5.97	11.64
	6/23/2004	17.61	7.80	9.81
	9/15/2004	17.61	7.14	10.47
	12/16/2004	17.61	5.73	11.88
	3/22/2005	17.61	5.31	12.30
	6/24/2005	17.61	6.05	11.56
	9/13/2005	17.61	6.70	10.91
	12/2/2005	17.61	6.92	10.69
	3/2/2006	17.61	5.83	11.78
	6/15/2006	17.61	6.32	11.29
	9/14/2006	17.61	6.79	10.82
	1/11/2007	17.61	5.59	12.02
	4/9/2007	17.61	6.35	11.26
	9/17/2007	17.61	7.26	10.35
	12/19/2007	17.61	6.81	10.80
	3/11/2008	17.61	5.95	11.66
	6/10/2008	17.61	6.98	10.63
	9/9/2008	17.61	7.34	10.27
	12/2/2008	17.61	7.31	10.30
MW-10	12/3/2001	16.92	4.22	12.70
	3/25/2002	16.92	3.00	13.92
	6/28/2002	16.92	5.65	11.27
	9/11/2002	16.92	6.16	10.76
	12/16/2002	16.92	3.74	13.18
	3/28/2003	16.92	4.54	12.38
	6/24/2003	16.92	5.40	11.52
	9/26/2003	16.92	6.98	9.94
	12/16/2003	16.92	4.94	11.98
	4/6/2004	16.92	4.54	12.38
	6/23/2004	16.92	5.96	10.96
	9/15/2004	16.92	6.86	10.06
	12/16/2004	16.92	4.45	12.47
	3/22/2005	16.92	3.56	13.36
	6/24/2005	16.92	4.58	12.34
	9/12/2005	16.92	6.08	10.84
	12/2/2005	16.92	4.94	
			-	11.98
	3/2/2006	16.92	3.90	13.02
	6/15/2006	16.92	4.74	12.18
	9/14/2006	16.92	5.27	11.65
	1/11/2007	16.92	4.37	12.55
	4/9/2007	16.92	4.81	12.11
	9/17/2007	16.92	6.48	10.44
	12/19/2007	16.92	5.21	11.71
	3/11/2008	16.92	4.60	12.32
	6/10/2008	16.92	5.77	11.15
	9/9/2008	16.92	6.71	10.21
	12/2/2008	16.92	6.22	10.70

Well	Date	Top of Casing	Depth to	Groundwater
dentification	Measured	Elevation (ft,msl)	Water (feet)	Elevation (ft,msl)
MW-11	12/3/2001	14.87	5.67	9.20
VIVV-I I	3/25/2002	14.87	4.68	10.19
	6/28/2002	14.87	6.35	8.52
	9/11/2002	14.87	6.91	7.96
			3.92	
	12/16/2002	14.87	5.92 5.17	10.95
	3/28/2003	14.87		9.70
	6/24/2003	14.87	5.86	9.01
	9/26/2003	14.87	7.16	7.71
	12/16/2003	14.87	5.61	9.26
	4/6/2004	14.87	5.49	9.38
	6/23/2004	14.87	5.68	9.19
	12/16/2004	14.87	4.69	10.18
	3/22/2005	14.87	4.20	10.67
	6/24/2005	14.87	5.41	9.46
	9/13/2005	14.87	6.23	8.64
	9/15/2005	14.87	6.45	8.42
	12/2/2005	14.87	5.95	8.92
	3/2/2006	14.87	4.31	10.56
	6/15/2006	14.87	5.40	9.47
	9/14/2006	14.87	5.94	8.93
	1/11/2007	14.87	5.45	9.42
	4/9/2007	14.87	5.52	9.35
	9/17/2007	14.87	NM	NM
	12/19/2007	14.87	5.74	9.13
	3/11/2008	14.87	4.82	10.05
	6/10/2008	14.87	6.17	8.70
	9/9/2008	14.87	6.98	7.89
	12/2/2008	14.87	6.71	8.16
/W-12	6/28/2002	14.05	6.13	7.92
	9/11/2002	14.05	6.82	7.23
	12/16/2002	14.05	4.94	9.11
	3/28/2003	14.05	5.08	8.97
	6/24/2003	14.05	5.73	8.32
	9/26/2003	14.05	6.94	7.11
	12/16/2003	14.05	4.99	9.06
	4/6/2004	14.05	4.99 5.04	9.00
	6/23/2004	14.05	5.78	8.27
	9/15/2004	14.05	6.43	7.62
	12/16/2004	14.05	4.34	9.71
	3/22/2005	14.05	3.50	10.55
	6/24/2005	14.05	4.9	9.15
	9/12/2005	14.05	4.9 6.11	9.15 7.94
	12/2/2005	14.05	5.13	8.92
	3/2/2005	14.05	3.83	10.22
	6/15/2006	14.05	5.18	8.87
	9/14/2006	14.05	5.86	8.19 7.08
	1/11/2007	14.05	6.97 5.31	
	4/9/2007	14.05	5.31	8.74
	9/17/2007	14.05	6.59 5.24	7.46
	12/19/2007	14.05	5.24	8.81
	3/11/2008	14.05	4.80	9.25
	6/10/2008	14.05	6.13	7.92

HISTORICAL GROUNDWATER ELEVATION DATA FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA

Well Identification	Date Measured	Top of Casing Elevation (ft,msl)	Depth to Water (feet)	Groundwater Elevation (ft,msl)
	0/0/0000	44.05	0.04	7.04
MW-12	9/9/2008	14.05	6.84	7.21
	12/2/2008	14.05	6.59	7.46
MW-13	6/28/2002	13.39	6.21	7.18
	9/11/2002	13.39	6.66	6.73
	12/16/2002	13.39	3.90	9.49
	3/28/2003	13.39	5.34	8.05
	6/24/2003	13.39	5.99	7.40
	9/26/2003	13.39	6.99	6.40
	12/16/2003	13.39	5.01	8.38
	4/6/2004	13.39	5.35	8.04
	6/23/2004	13.39	6.12	7.27
	9/15/2004	13.39	6.63	6.76
	12/16/2004	13.39	4.69	8.70
	3/22/2005	13.39	4.86	8.53
	6/24/2005	13.39	5.13	8.26
	9/12/2005	13.39	6.33	7.06
	12/2/2005	13.39	5.25	8.14
	3/2/2006	13.39	4.33	9.06
	6/15/2006	13.39	5.44	7.95
	9/14/2006	13.39	6.03	7.36
	1/11/2007	13.39	5.41	7.98
	4/9/2007	13.39	5.71	7.68
	9/17/2007	13.39	6.65	6.74
	12/19/2007	13.39	5.37	8.02
	3/11/2008	13.39	5.32	8.07
	6/10/2008	13.39	6.40	6.99
	9/9/2008	13.39	7.03	6.36
	12/2/2008	13.39	6.73	6.66

Notes:

1. Top of casing elevations are referenced to mean sea level (msl) and surveyed with reference to the benchmark located at Peterson Street and East 7th Street.

2. NM refers to Not Measured.

3. ft, msl refers to feet above mean sea level.

APPENDIX D

HISTORICAL GROUNDWATER ANALYTICAL DATA

Well Location	Date	TPH-g	Benzene	Teluene		Total		1,2-	cis-1,2-	trans-1,2-	
Location	0		Delizene	Toluene	Ethylbenzene	Xylenes	TCE	DCA	DCE	DCE	VC
	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	2/8/1999	48,000	3,900	6,300	970	4,300	NA	<30	NA	NA	NA
	6/15/2000	29,000	3,900	<100	1,900	4,200	<5.0	<5.0	<5.0	<5.0	<5.0
	9/22/2000	25,000	3,100	1,800	470	3,600	NA	NA	NA	NA	NA
	12/19/2000	25,000	3,200	1,900	480	3,300	<2.5	<2.5	<2.5	<2.5	<2.5
	3/21/2000	21,000	3,200	1,700	290	2,600	<2.5	<2.5	<2.5	<2.5	<2.5
	6/21/2001	12,000	2,000	880	180	1,180	<0.5	3.0	<0.5	<0.5	<0.5
	9/26/2001	16,000	1,100	130	< 10	320	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
	12/3/2001	15,000	2,800	1,200	310	1,660	<3.1	<3.1	<3.1	<3.1	<3.1
	3/25/2002	11,000	3,200	1,200	73	1,860	<5	<5	<5	<5	<5
	6/28/2002	26,000	3,200	1,800	640	2,900	<3.1	<3.1	<3.1	<3.1	<3.1
	9/11/2002	27,000	3,200	1,900	720	3,500	<4.2	<4.2	<4.2	<4.2	<4.2
	12/16/2002	20,000	2,800	490	500	2,300	<4.2	<4.2	<4.2	<4.2	<4.2
	3/28/2003	20,000	2,700	1,500	650	2,300	<3.6	<3.6	<3.6	<3.6	<3.6
	6/24/2003	14,000	2,400	1,400	500	2,100	<4.2	<4.2	<4.2	<4.2	<4.2
	9/26/2003	11,000	1,200	960	370	1,600	<1.0	<1.0	<1.0	<1.0	<1.0
	12/16/2003	Not Sample		900	570	1,000	<1.0	<1.0	<1.0	<1.0	<1.0
				1 200	550	1 720	-2.0	-2.0	-2.0	-2.0	-2.0
	4/6/2004 6/23/2004	18,000	2,400	1,300		1,730	<2.0	<2.0	<2.0	<2.0	<2.0
		25,000	2,700	1,700	680	2,300	<2.5	<2.5	<2.5	<2.5	<2.5
	9/15/2004	Not Sample		00	20	440	0.5	0.5	0.5	-0 F	0.5
	12/16/2004	1,800	260	89	32	119	<2.5	<2.5	<2.5	<2.5	<2.5
	3/22/2005	19,000	2,400	960	530	1,330	<3.6	<3.6	<3.6	<3.6	<3.6
	6/24/2005	12,000	2,400	450	470	940	<3.6	<3.6	<3.6	<3.6	<3.6
	9/13/2005	17,000	2,700	1,000	740	1,760	<1.0	<1.0	<1.0	<1.0	<1.0
	12/2/2005	9,300	1,500	500	420	1,060	<3.6	<3.6	<3.6	<3.6	<3.6
	3/2/2006	6,200	1,400	200	180	370	<3.6	<3.6	<3.6	<3.6	<3.6
	6/15/2006	10,000	2,500	200	440	570	<4.2	<4.2	<4.2	<4.2	<4.2
	9/14/2006	13,000	2,300	320	450	870	<4.2	<4.2	<4.2	<4.2	<4.2
	1/11/2007	14,000	1,200	270	450	850	<2.0	<2.0	<2.0	<2.0	<2.0
	4/9/2007	12,000	1,800	270	520	750	<2.0	<2.0	<2.0	<2.0	<2.0
	9/17/2007	9,000	1,200	230	450	471	<2.0	<2.0	<2.0	<2.0	<2.0
	12/19/2007	12,000	1,400	290	670	746	<2.5	<2.5	<2.5	<2.5	<2.5
	3/11/2008	10,000	1,900	280	550	650	<2.5	<2.5	<2.5	<2.5	<2.5
	6/10/2008	8,700	1,700	170	430	373	<2.5	<2.5	<2.5	<2.5	<2.5
	9/9/2008	7,600	830	230	540	350	<1.7	<1.7	<1.7	<1.7	<1.7
	12/2/2008	5,700	940	220	430	299	<1.3	<1.3	<1.3	<1.3	<1.3
MW-2	2/8/1999	41,000	11,000	4,900	650	1,720	NA	60	NA	NA	NA
	6/29/2000	31,000	11,000	930	4,400	250	<5.0	25	<5.0	<5.0	<5.0
	9/22/2000	24,000	10,000	2,700	370	1,200	NA	NA	NA	NA	NA
	12/19/2000	43,000	9,800	4,000	810	2,430	<13	21	<13	<13	<13
	3/23/2001	34,000	10,000	3,200	410	1,220	<13	14	<13	<13	<13
	6/21/2001	30,000	8,600	2,600	440	1,230	<0.5	5.6	<0.5	<0.5	<0.5
	9/26/2001	26,000	12,000	3,900	590	1,960	< 10	11	< 10	< 10	< 10
	12/3/2001	45,000	13,000	5,100	950	2,930	<7.1	14	<7.1	<7.1	<7.1
	3/25/2002	21,000	11,000	3,700	1,000	2,790	<17	<17	<17	<17	<17
	6/28/2002	8,400	2,200	680	21	220	<3.1	8.8	<3.1	<3.1	<3.1
	9/11/2002	23,000	6,600	1,000	600	1,320	<6.3	10	<6.3	<6.3	<6.3
	12/16/2002	6,000	1,600	410	150	402	4.5	2.7	69	6.9	<2.5
	3/28/2003	30,000	9,300	920	930	2,000	<13	14	<13	<13	<13
	6/24/2003	19,000	10,000	1,700	1,100	2,530	<13	<13	<13	<13	<13
	9/26/2003	20,000	10,000	2,100	960	2,520	<17	<17	<17	<17	<17
	12/16/2003	22,000	10,000	2,700	1,200	2,920	<25	<25	<25	<25	<25
	4/6/2004	27,000	7,600	1,700	630	1,420	<10	<10	<10	<10	<10
	6/23/2004	33,000	8,200	1,800	870	1,930	<17	<17	<17	<17	<17
	9/15/2004	46,000	13,000	1,300	1,400	2,710	<17	<17	<17	<17	<17
	12/16/2004	Not Sample	•	1,000	1,400	2,710	211	211	517	211	211
	3/22/2005	42,000	9,900	1,200	1,200	2,530	<17	<17	<17	<17	<17
	512212005	72,000	3,300	1,200	1,200	2,000	~17	211	211	~11	~17

						Total		1,2-	cis-1,2-	trans-1,2-	
Well Location	Date Sampled	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TCE (ug/L)	DCA (ug/L)	DCE (ug/L)	DCE (ug/L)	VC (ug/L)
MW-2	6/24/2005	31,000	12,000	1,200	810	1,380	<20	<20	<20	<20	<20
	9/13/2005	35,000	13,000	1,100	1,300	2,260	<7.1	<7.1	<7.1	<7.1	<7.1
	12/2/2005	Not Sample		1,100	1,000	2,200	51.1	\$1.1	51.1	51.1	\$1.1
	3/2/2006	25,000	7,900	620	740	1,260	<7.1	<7.1	<7.1	<7.1	<7.1
	6/15/2006	47,000	11,000	800	1,200	2,230	<20	<20	<20	<20	<20
	9/14/2006	50,000	11,000	470	1,200	2,330 C	<10	<10	<10	<10	<10
	1/11/2007	29,000	10,000	240	1,100	1,340	<13	<13	<13	<13	<13
	4/9/2007	33,000	9,200	1,000	1,200	1,510	<13	<13	<13	<13	<13
	9/17/2007	33,000 11,000	9,200 9,200	410	1,100	•	<13	<13	<13	<13	<13
	9/17/2007 12/19/2007					1,300					
		32,000	9,900	240	1,100	770	<17	<17	<17	<17	<17
	3/11/2008	40,000	12,000	270	1,500	1,290	<13	<13	<13	<13	<13
	6/10/2008	26,000	9,700	160	990	890	<13	<13	<13	<13	<13
	9/9/2008	34,000	12,000	130	1,600	790	<13	<13	<13	<13	<13
	12/2/2008	20,000	8,400	110	1,000	610	<20	<20	<20	<20	<20
MW-3	2/8/1999	35,000	1,200	3,400	1,400	4,900	NA	<30	NA	NA	NA
	6/29/2000	39,000	7,800	630	8,000	3,400	<5.0	600	<5.0	<5.0	<5.0
	9/22/2000	83,000	16,000	20,000	1,300	7,000	NA	NA	NA	NA	NA
	12/19/2000	50,000	1,200	1,600	510	1,810	<8.3	350	<8.3	<8.3	<8.3
	3/22/2001	1,300	98	67	51	104	<0.5	2.3	<0.5	<0.5	<0.5
	6/21/2001	34,000	5,900	6,200	340	1,550	2.4	120	0.8	<0.5	<0.5
	9/26/2001	59,000	12,000	13,000	780	3,680	< 8.3	990	< 8.3	< 8.3	< 8.3
	Removed fron	n sampling pi I	rogram in Octo	ober 2001							
MW-4	2/8/1999	15,000	670	90	780	940	NA	<30	NA	NA	NA
	6/15/2000	2,300	230	<5	10	94	<0.5	0.88	2.1	<0.5	<0.5
	9/22/2000	12,000	2,800	82	1,100	1,300	NA	NA	NA	NA	NA
	12/19/2000	2,200	200	2.9	100	81.4	<0.5	<0.5	<0.5	<0.5	<0.5
	3/22/2001	5,600	1,100	13	310	303	<0.5	<0.5	1.6	<0.5	<0.5
	6/21/2001	11,000	2,300	26	570	641	<0.5	1.4	3.3	<0.5	<0.5
	9/26/2001	17,000	7,900	< 50	440	581	< 0.5	1.9	8.1	< 0.5	< 0.5
	Removed fron	n sampling p	rogram in Octo	ober 2001							
MW-5	2/8/1999	4,900	780	440	230	370	<0.5	<0.5	<0.5	<0.5	<0.5
	6/29/2000	3,900	1,500	28	330	260	<0.5	36	<0.5	<0.5	<0.5
	9/27/2000	16,000	4,300	3,100	420	1,600	NA	NA	NA	NA	NA
	12/19/2000	21,000	3,200	1,100	1,100	1,300	<4.2	15	<4.2	<4.2	<4.2
	3/22/2001	6,200	1,500	360	310	288	< 0.5	3.3	< 0.5	< 0.5	<0.5
	6/21/2001	18,000	3,400	2,300	350	1,020	<0.5	21	< 0.5	<0.5	<0.5
	9/26/2001	5,100	2,400	1,200	< 10	460	< 3.6	22	< 3.6	< 3.6	< 3.6
	Removed fron					400	< 0.0		< 0.0	< 0.0	< 0.0
MW-6	6/15/2000	1,100	3.8	2.2	2.1	4.8	< 0.5	0.78	< 0.5	< 0.5	< 0.5
	9/22/2000	71	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA
	12/19/2000	320	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/21/2001	820	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 1.4	< 0.5 0.52	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	6/21/2001	420	< 0.5 < 0.5	< 0.5 < 0.5	0.59	1	< 0.5 < 0.5	< 0.5 0.9	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	9/25/2001	760	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	2.9	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	9/25/2001	760						< 0.5			
			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	< 0.5	< 0.5	< 0.5
	3/25/2002	1,200	22	8.0	5.7	13.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/28/2002	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5
	9/11/2002	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/16/2002	62	< 0.5	0.54	3.0	8.39	0.7	1	< 0.5	< 0.5	< 0.5
		Not Sample									
	6/24/2003	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5
	12/16/2003	<50	< 0.5	< 0.5	< 0.5	0.88	1.7	< 0.5	0.6	<0.5	<0.5

Well Location MW-6	Date Sampled 4/6/2004 6/23/2004 9/15/2004 12/16/2004	TPH-g (ug/L) 260 63	Benzene (ug/L) < 0.5	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	TCE (ug/L)	1,2- DCA (ug/L)	cis-1,2- DCE (ug/L)	trans-1,2- DCE (ug/L)	VC (ug/L)
MW-6	6/23/2004 9/15/2004 12/16/2004		.0.5			(ug/L)	(49/=/	(49/=/	(49/2)	(~9,-)	(~9/-)
	6/23/2004 9/15/2004 12/16/2004		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
	9/15/2004 12/16/2004		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	0.8	<0.5	<0.5	<0.5
	12/16/2004	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
		240	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/22/2005	420	< 0.5	< 0.5	< 0.5	0.95	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/24/2005	91	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/13/2005	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/2/2005	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5
	3/2/2006	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/15/2006	51	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/14/2006	57	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	1/11/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	4/9/2007	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/17/2007	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/19/2007	<50	<0.5	0.51	<0.5	0.96	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/11/2008	64 Y	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/10/2008	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/9/2008	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/2/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
MW-7	6/15/2000	1,000	250	< 10	<10	16	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/22/2000	<50	2	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA
	12/19/2000	<50	1.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/21/2001	160	59	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/21/2001	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/25/2001	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/3/2001	82	24	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/25/2002	<50	0.56	0.75	<0.5	0.69	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/28/2002	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/11/2002	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/16/2002	<50	< 0.5	< 0.5	1.6	3.7	0.5	<0.5	<0.5	<0.5	<0.5
	3/28/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/24/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/16/2003	<50	< 0.5	< 0.5	< 0.5	0.75	1.8	< 0.5	0.6	< 0.5	< 0.5
	4/6/2004	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/23/2004	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/15/2004	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/16/2004	<50 Not Sampled	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	6/24/2005 9/12/2005	Not Sampled <50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	9/12/2005 12/2/2005	<50 <50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	3/2/2005	<50 <50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	6/15/2006	<50 <50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 0.62	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	9/14/2006	<50 <50	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	9/14/2000 1/11/2007	<50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	<0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5
	4/9/2007	<50 <50	< 0.5	< 0.5	< 0.5	<0.5 <0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	9/17/2007	<50 <50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5
	12/19/2007	<50 <50	0.93	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	3/11/2008	<50 <50	2.6	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5
	6/10/2008	<50 <50	<0.5	<0.5 <0.5	<0.5	<0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
	9/9/2008	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	12/2/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-8	6/15/2000	5,400	150	<5	8.9	8.7	210	<13	1,100	73	25
	9/22/2000	1,800	340	<2.5	<2.5	<2.5	NA	NA	ŇA	NA	NA

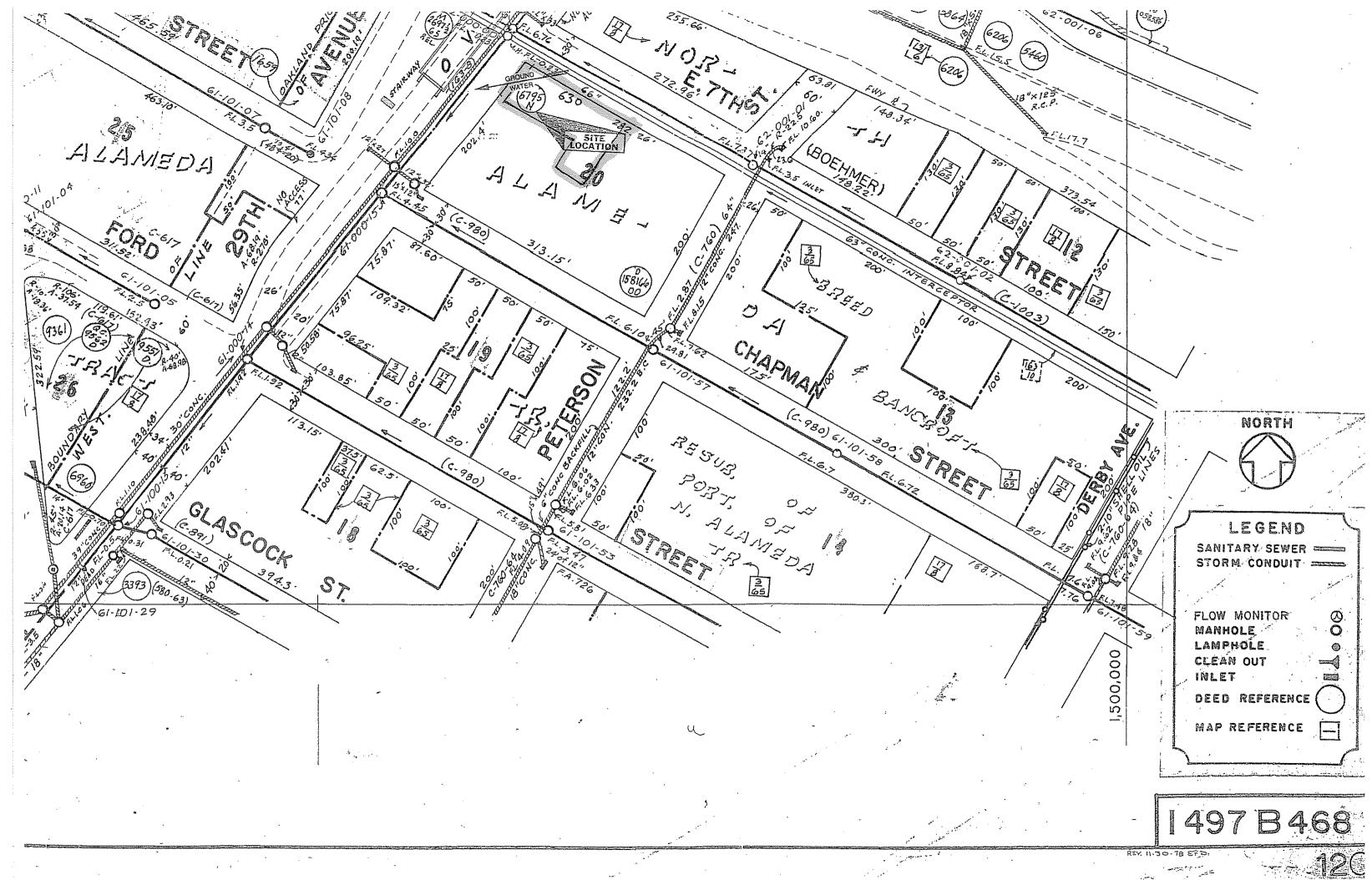
						Total		1,2-	cis-1,2-	trans-1,2-	
Well	Date	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	TCE	DCA	DCE	DCE	VC
Location	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-8	12/19/2000	2,700	410	<2.5	4.8	<2.5	130	9.1	1,000	67	48
	3/21/2001	3,500	530	<2.5	21	<2.5	32	<3.6	760	39	58
	6/21/2001	2,400	490	<2.5	29	<2.5	28	4.9	910	48	75
	9/25/2001	1,500	170	4.3	1.6	2.7	36	5.0	820	59	53
	12/3/2001	1,200	190	14	2.7	11.3	100	<2.5	650	44	31
	3/25/2002	990	280	7.2	1.4	6.8	10	3.6	790	33	49
	6/28/2002	2,200	410	<1.0	40	<1.0	18	4.9	900	54	80
	9/11/2002	2,000	390	1.6	39	<1.0	17	<3.6	1,000	60	91
	12/16/2002	95	26	<0.5	1	<0.5	17	2.2	330	36	4.7
	3/28/2003	1,500	400	<0.5	50	0.62	3.5	<2.5	700	39	41
	6/24/2003	3,300	520	<0.5	58	0.63	6.4	3.7	1,000	49	61
	9/26/2003	1,300	280	3.9	38	0.85	20	<3.6	890	49	47
	12/16/2003	1,100	310	<2.5	14	<2.5	12	4.3	1,200	53	110
	4/6/2004	3,800	420	<0.5	53	1.2	4.4	3.7	1,100	39	58
	6/23/2004	4,600	570	2.9	100	1.5	<8.3	<8.3	1,300	50	80
	9/15/2004	4,900	710	<1.0	100	<1.0	<7.1	<7.1	1,200	49	100
	12/16/2004	3,800	450	<0.5	75	6.5	<8.3	<8.3	1,500	60	86
	3/22/2005	1,700	120	<1.0	9.8	<1.0	<3.6	<3.6	620	27	38
	6/24/2005	1,400	100	<1.0	37	<1.0	<5.0	<5.0	770	29	51
	9/13/2005	2,700	250	<1.0	110	<1.0	<7.1	<7.1	1,000	35	60
	12/2/2005	1,500	160	<1.0	33	<1.0	13	<5.0	930	46	80
	3/2/2006	2,000 L	210	<0.5	36	<0.5	<6.3	<6.3	890	34	50
	6/15/2006	1,400	78	<0.5	21	<0.5	6.9	<5.0	700	28	41
	9/14/2006	1,600	120	<0.5	42	<0.5	7.6	<6.3	800	37	43
	1/11/2007	1,100 Y	130	<0.5	49	1.1 C	<6.3	<6.3	820	32	58
	4/9/2007	2,200 L	160	<0.5	65	1.1	<6.3	<6.3	820	24	55
	9/17/2007	3,300 L Y	230	<0.5	140	<0.5	<6.3	<6.3	900	28	91
	12/19/2007	3,300	280	<0.5	120	<0.5	<10	<10	1,200	36	150
	3/11/2008	1,700	180	2.1 C	110	3.5	1.0	<0.5	890	28	67
	6/10/2008	4,000	300	5.0 C	220	3.3 C	<6.3	<6.3	940	27	70
	9/9/2008	4,100	300	<0.5	230	<0.5	<6.3	<6.3	1,200	36	190
	12/2/2008	2,200	210	1.5	91	2.8	<6.3	<6.3	830	43	200
MW-9	12/3/2001	90,000	15,000	15,000	2,200	9,100	<10	<10	<10	<10	<10
	3/25/2002	71,000	15,000	17,000	1,900	8,000	<31	<31	<31	<31	<31
	6/28/2002	60,000	5,800	7,400	1,100	5,400	<13	<13	<13	<13	<13
	9/11/2002	57,000	8,300	6,100	340	4,700	<10	18	<10	<10	<10
	12/16/2002	29,000	5,500	3,900	300	1,860	<5	8.9	<5	<5	<5
	3/28/2003	61,000	13,000	8,600	860	4,800	<20	<20	<20	<20	<20
	6/24/2003	45,000	15,000	9,600	1,100	5,200	<5	10	<5	<5	<5
	9/26/2003	34,000	12,000	5,600	880	4,700	<17	<17	<17	<17	<17
	12/16/2003	34,000	14,000	4,900	940	4,700	<42	<42	<42	<42	<42
	4/6/2004	60,000	14,000	3,100	1,300	5,500	<17	<17	<17	<17	<17
	6/23/2004	53,000	12,000	2,600	1,100	4,800	<20	<20	<20	<20	<20
	9/15/2004	76,000	17,000	2,200	1,500	6,600	<20	<20	<20	<20	<20
	12/16/2004	63,000	15,000	1,700	1,300	5,900	<20	<20	<20	<20	<20
	3/22/2005	66,000	13,000	2,000	1,200	5,800	<17	<17	<17	<17	<17
	6/24/2005	54,000	16,000	780	1,300	5,200	<20	<20	<20	<20	<20
	9/13/2005	48,000	11,000	4,800	470	4,110	<17	<17	<17	<17	<17
	12/2/2005	39,000	12,000	3,800	650	3,470 C	<20	<20	<20	<20	<20
	3/2/2006	51,000	12,000	3,500	750	4,170	<20	<20	<20	<20	<20
	6/15/2006	67,000	16,000	5,000	1,900	5,790	<36	<36	<36	<36	<36
	9/14/2006	49,000	13,000	620	1,000	3,680	<13	<13	<13	<13	<13
	1/11/2007	45,000	13,000	460	1,100	3,050	<17	<17	<17	<17	<17
	4/9/2007	49,000	13,000	580	1,100	3,020	<17	<17	<17	<17	<17
	9/17/2007	19,000	9,600	250	1,000	2,540	<17	<17	<17	<17	<17
					.,						

						Total		1,2-	cis-1,2-	trans-1,2-	
Well Location	Date Sampled	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TCE (ug/L)	DCA (ug/L)	DCE (ug/L)	DCE (ug/L)	VC (ug/L)
MW-9	3/11/2008	17,000	12,000	300	1,100	2,350	<42	<42	<42	<42	<42
WIV-5	6/10/2008	9,500	2,500	54	400	494	<5.0	<5.0	<5.0	<5.0	<5.0
	9/9/2008	45,000	14,000	91	1,700	1,940	< <u>10</u>	<10	<10	<10	<10
	12/2/2008	9,000	3,200	15	290	417	<5.0	<5.0	12	<5.0	<5.0
	12/2/2000	3,000	5,200	15	250	417	<5.0	<0.0	12	<0.0	<0.0
MW-10	12/3/2001	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/25/2002	51	2.5	3.6	0.53	2.27	<0.5	<0.5	<0.5	<0.5	<0.5
	6/28/2002	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/11/2002	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/16/2002	<50	<0.5	0.65	3.0	7.53	0.8	<0.5	<0.5	<0.5	<0.5
	3/28/2003	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2003	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/26/2003	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/16/2003	<50	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5
	4/6/2004	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/23/2004	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/15/2004	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/16/2004	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/22/2005	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2005	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/12/2005	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/2/2005	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/2/2006	<50	0.74	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/15/2006	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/14/2006	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	1/11/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4/9/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/17/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/19/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/11/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/10/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/9/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/2/2008	<50	0.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-11	12/3/2001	1,600	470	<0.5	3.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/25/2002	130	11	20	3.3	14.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/28/2002	<50	7.7	<0.5	<0.5	< 0.5	0.6	<0.5	<0.5	<0.5	<0.5
	9/11/2002	120	66	<0.5	0.74	<0.5	< 0.5	<0.5	0.6	<0.5	<0.5
	12/16/2002	160	42	0.89	4.8	11.1	3.6	<0.5	1.1	<0.5	<0.5
	3/28/2003	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
	6/24/2003	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/26/2003	<50	1.2	0.69	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/16/2003	91	4.7	< 0.5	<0.5	0.51	2.9	<0.5	0.9	0.6	<0.5
	4/6/2004	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
	6/23/2004	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/15/2004	<50 <50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/15/2004 12/16/2004	<50 <50	<0.5 1.3	<0.5 <0.5	<0.5	<0.5 0.59	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	3/22/2004	<50 <50	<0.5	<0.5 <0.5	<0.5	<0.59 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	3/22/2005 6/24/2005	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	6/24/2005 9/13/2005	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		
										<0.5	<0.5
	12/2/2005	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
	3/2/2006	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
	6/15/2006	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
	9/14/2006	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
	1/11/2007	<50	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	4/9/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/17/2007	Not Sample	d								

						Total		1,2-	cis-1,2-	trans-1,2-	
Well Location	Date Sampled	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TCE (ug/L)	DCA (ug/L)	DCE (ug/L)	DCE (ug/L)	VC (ug/L)
MW-11	12/19/2007	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/11/2008	52 Y	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/10/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
	9/9/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/2/2008	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-12	6/28/2002	71	<0.5	<0.5	<0.5	<0.5	170	<0.5	42	47	0.9
	9/11/2002	89	<0.5	<0.5	<0.5	<0.5	180	<0.5	46	51	0.9
	12/16/2002	130	<0.5	0.9	4.2	9.9	200	<0.5	57	60	0.9
	3/28/2003	110	<0.5	<0.5	<0.5	<0.5	190	<0.7	53	53	0.9
	6/24/2003	140	<0.5	<0.5	<0.5	<0.5	220	<1.0	58	66	<1.0
	9/26/2003	230	2.9	1.1	3.8	6.71	210	<0.7	60	63	<0.7
	12/16/2003	120	< 0.5	<0.5	<0.5	0.65	140	<0.5	44	44	<0.5
	4/6/2004	76	<0.5	<0.5	<0.5	< 0.5	160	<0.5	49	54	<0.5
	6/23/2004	99	<0.5	<0.5	<0.5	<0.5	200	<0.5	65	74	<0.5
	9/15/2004	130	<0.5	<0.5	<0.5	<0.5	290	<1.7	73	83	<1.7
	12/16/2004	110	<0.3 0.94	<0.5	<0.5	<0.5 <0.5	230	<2.0	80	77	<2.0
	3/22/2005	61	<0.5	<0.5	<0.5	<0.5	95	<0.5	26	42	<0.5
	6/24/2005	59	<0.5	<0.5	<0.5	<0.5	120	<1.0	31	39	<1.0
	9/12/2005	64	<0.5	<0.5	<0.5	<0.5	130	<0.7	34	42	<0.7
	12/2/2005	80 Y,Z	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	130	<1.0	43	42	<1.0
	3/2/2005	54 Y Z	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	84	<0.8	43 27	49 31	<1.0 <0.8
	6/15/2006 9/14/2006	58 Y,Z	<0.5	<0.5	< 0.5	<0.5	99	< 0.5	30	38	<0.5
		81 Y Z	<0.5	<0.5	<0.5	<0.5	110	<1.0	41	47	<1.0
	1/11/2007	76 Y Z	<0.5	<0.5	< 0.5	<0.5	140	<1.0	47	53	<1.0
	4/9/2007	70 Y Z	1.4	<0.5	< 0.5	<0.5	130	<1.0	43	48	<1.0
	9/17/2007	84 L Y	<0.5	<0.5	< 0.5	<0.5	160	<1.0	61	63	<1.0
	12/19/2007	68 Y	<0.5	<0.5	< 0.5	<0.5	140	<0.7	55	57	<0.7
	3/11/2008	72 Y	<0.5	<0.5	< 0.5	<0.5	90	<0.7	29	32	<0.7
	6/10/2008	63 Y	<0.5	<0.5	< 0.5	<0.5	110	<0.7	44	44	<0.7
	9/9/2008	89 Y Z	1.2	<0.5	<0.5	<0.5	140	<0.7	60	59	<0.7
	12/2/2008	65 Y	0.53	<0.5	<0.5	<0.5	98	<0.5	54	58	<0.5
MW-13	6/28/2002	5,600	120	55	130	9.5	61	<0.5	430	14	4.4
	9/11/2002	4,500	58	7.5	150	14	63	<0.5	410	13	<1.3
	12/16/2002	4,800	90	<0.5	85	24	76	<0.5	250	9.4	1.8
	3/28/2003	4,400	55	<0.5	51	14.3	85	<0.5	150	13	1.8
	6/24/2003	8,300	100	<0.5	94	12	68	<1.0	250	19	4.2
	9/26/2003	7,200	150	<1.0	89	57	51	<1.0	270	23	5.1
	12/16/2003	8,100	120	36	72	26.6	66	<0.7	240	23	10
	4/6/2004	3,300	22	<1.0	37	9.0	90	<0.5	190	23	8
	6/23/2004	7,000	140	25	88	21	53	<2.0	350	31	25
	9/15/2004	6,700	84	<1.0	78	7.2	37	<1.7	300	40	31
	12/16/2004	4,300	61	<0.5	44	11.5	69	<2.0	240	32	15
	3/22/2005	3,000	24	<0.5	20	7.6	72	<0.5	120	23	6.6
	6/24/2005	2,600	63	<0.5	25	4.3	42	<1.0	150	36	16
	9/12/2005	2,500	20 C	<0.5	33	6.7 c	25	<1.3	170	38	22
	12/2/2005	4,200 Y	70 C	<0.5	21 C	15.5 C	17	<1.3	140	40	24
	3/2/2006	3,200 L Y	67 C	<0.5	27	5.19 C	43	<0.8	110	32	16
	6/15/2006	3,400	92 C	<0.5	26	3.4 C	43	<0.8	120	39	18
	9/14/2006	2,000	<0.5	<0.5	64 C	38 C	15	<0.8	93	45	17
	1/11/2007	25,000 Y	44	<5.0	160	69 C	24	<0.8	87	45	11
	4/9/2007	5,800 Y	42 C	<5.0	41	21.2 C	34	<0.8	82	43	14
	9/17/2007	3,800 L	52 C	4.0	25	8.2 C	11	<0.8	56	65	11
	12/19/2007	8,400	<0.5	<0.5	41	23.2 C	21	<0.5	77	61	10
	3/11/2008	6,300 Y	<0.5	<0.5	59	8.8 C	22	<1.0	49	41	7.4

HISTORICAL GROUNDWATER ANALYTICAL RESULTS FORMER LEMOINE SAUSAGE FACTORY 630 29TH AVENUE OAKLAND, CALIFORNIA

Well Location	Date Sampled	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	TCE (ug/L)	1,2- DCA (ug/L)	cis-1,2- DCE (ug/L)	trans-1,2- DCE (ug/L)	VC (ug/L)
MW-13	9/9/2008	4,300	29 C	<0.5	41	9.5 C	17	<0.5	52	<0.5	6.5
	12/2/2008	3,200	55 C	<0.5	27	13.2	16	<0.5	51	63	5.8
	CDPH MCL	-	1	150	300	1,750	5	0.5	6	10	0.5


Notes:

- 1. Results are reported in micrograms per liter (μ g/L).
- 2. NA refers to Not Analyzed.
- 3. TPH-g refers to Total Petroleum Hydrocarbons as Gasoline.
- 4. TCE refers to Trichloroethene.
- 5. trans-1,2-DCE refers to trans-1,2-dichlororethene.
- 6. cis-1,2-DCE refers to cis-1,2-dichlororethene.
- 7. VC refers to vinyl chloride.
- 8. 1,2-DCA refers to 1,2-dichloroethane.
- 9. Y = Sample exhibits chromatographic pattern which does not resemble standard.
- 10. Z = Sample exhibits unknown single peak or peaks.
- 11. C = Presence confirmed, but RPD between columns exceed 40%.
- 12. L = Lighter hydrocarbons contributed to the quantitation.
- 13. CDPH MCL refers to California Department of Public Health Maximum Contaminant Level.

APPENDIX E

UNDERGROUND UTILITY LOCATIONS

APPENDIX F

DRILLING AND EXCAVATION PERMITS

wells@acpwa.org 05/29/2009 02:13 PM To Timothy Bodkin/USA/VERITAS@VERITAS

CC Timothy Bodkin/USA/VERITAS@VERITAS, mike@abiindustries.com, nanda.thalasila@aiuholdings.com bcc

Subject Alameda County Well Permit Approval Notification

History: 🖉 This message has been replied to.

Thank you for your Online Request for Wells Permits. Your Application Id is: 1242252254105 Application submitted on: 05/13/2009 Project Site City/Location: Oakland / 630 29th Avenue Oakland, CA **Project Start Date:** 06/01/2009 **Completion Date:** 06/05/2009

Your Permit Application has been approved. Permit Number(s) Issued: W2009-0434 Valid from 06/01/2009 to 06/05/2009

Inspection is REQUIRED.

To avoid possible delay of your project, you must contact your assigned inspector, <u>Ron Smalley</u> at ronaldws@acpwa.org or (510) 670-5407, no later than 5 days before <u>the Project Start Date listed on your permit</u> to schedule your inspection.

Attached are 2 PDF files, one serves as your receipt and permit(s), please print for your record.

The other includes the General Conditions and Instructions you must follow. Note: You need to have the free <u>Adobe Reader</u> to open the pdf file.

Conditions of Permit:

Please follow and comply with conditions and instructions listed in the general conditions document.

In addition, you must comply with all specific conditions listed in your permit.

If you need further assistance regarding your permit, please visit our website at: <u>http://www.acgov.org/pwa/wells/</u> or contact us at <u>wells@acpwa.org</u>, and include your application id number.

Thank you, Public Works Agency-Water Resources

general_cond.pdf 1242252254105.pdf

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	d on: 05/29/2009 By jamesy	Permit Numbers: W2 Permits Valid from 06/01/2009 to 0	
Application Id: Site Location:	1242252254105 630 29th Avenue	City of Project Site: Oakland	
Project Start Date: Assigned Inspector:	Oakland, CA 06/01/2009 Contact Ron Smalley at (510) 670-5407 or rona	Completion Date:06/05/2009 Idws@acpwa.org	
Applicant:	Bureau Veritas North America, Inc Timothy	Phone: 925-426-2626	
Property Owner: Client: Contact:	Bodkin 2430 Camino Ramon, Suite 122, San Ramon, G Michael Alders 1714 San Jose Avenue, Alameda, CA 94501 Nanda Thalasila AIG Env Claims Div, 101 Hudson Street, 29th F Timothy Bodkin	Phone: 510-613-8200 Phone: 201-631-7225	
	Receipt Number: WR2009-0192	Total Due: Total Amount Paid:	\$230.00 \$230.00

Payer Name : Bureau Veritas Paid By: CHECK

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 1 Boreholes Driller: RSI Drilling - Lic #: 802334 - Method: DP

Work Total: \$230.00

PAID IN FULL

Specificatio	ons				
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	05/29/2009	08/30/2009	1	2.00 in.	35.00 ft
0434					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities

Alameda County Public Works Agency - Water Resources Well Permit

or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda,Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

	CITY OF	OAKLAND • Community a	and Economic Devel	Opment Agency
1 (Ann	Lee Human Ogawa Haza	a, 2nd Floor, Oakland, CA g	4612 • Phone (510)	238-3443 • Fax (510) 238-2263
	ications for which no permit is	s issued within 180 days sha	all expire by limitation	. No refund after 180 days when expired.
Appl# X09		te 2870 CHAPMAN		Parcel# 025 -0678-010-01
Descr	permit to conduct so c42 or class A lices	oil borings no exc nse	avation withou	t Permit Issued 05/21/09
Work Type	EXCAVATION-PRIVATE	P		
USA #		Util Co. Job # Util Fund #:		ACLES EOF
Owner A	ALDERS MICHAEL & MAR RESONANTSONIC			
Arch/Engr Agent		Х	(530)668-2424	4 802334 C57 A
Applic Addr 2	220 N EAST ST., WOOD	LAND CA, 95776		
			\$66.00 A \$.00 P	en Plan \$.00 Invstg
		Permit Iss	ued By	Date: 5-25.09
ADDRESS:			led By	Date:
DIST				AND SYK Stailog

CITY OF OAKLAND • Community and Economic Development Agency

250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263

Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired.

 Permit No.
 X0900556
 Parcel #:
 025 -0678-010-01
 Page 2 of 2

 Project Address:
 2870
 CHAPMAN ST
 Page 2 of 2

Licensed Contractors' Declaration

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

Construction Lending Agency Declaration

I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency.

Lender

_____Address

Workers' Compensation Declaration

I hereby affirm under penalty of perjury one of the following declarations:

[] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

[] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.

CARRIER:_____POLICY NO.

[] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions.

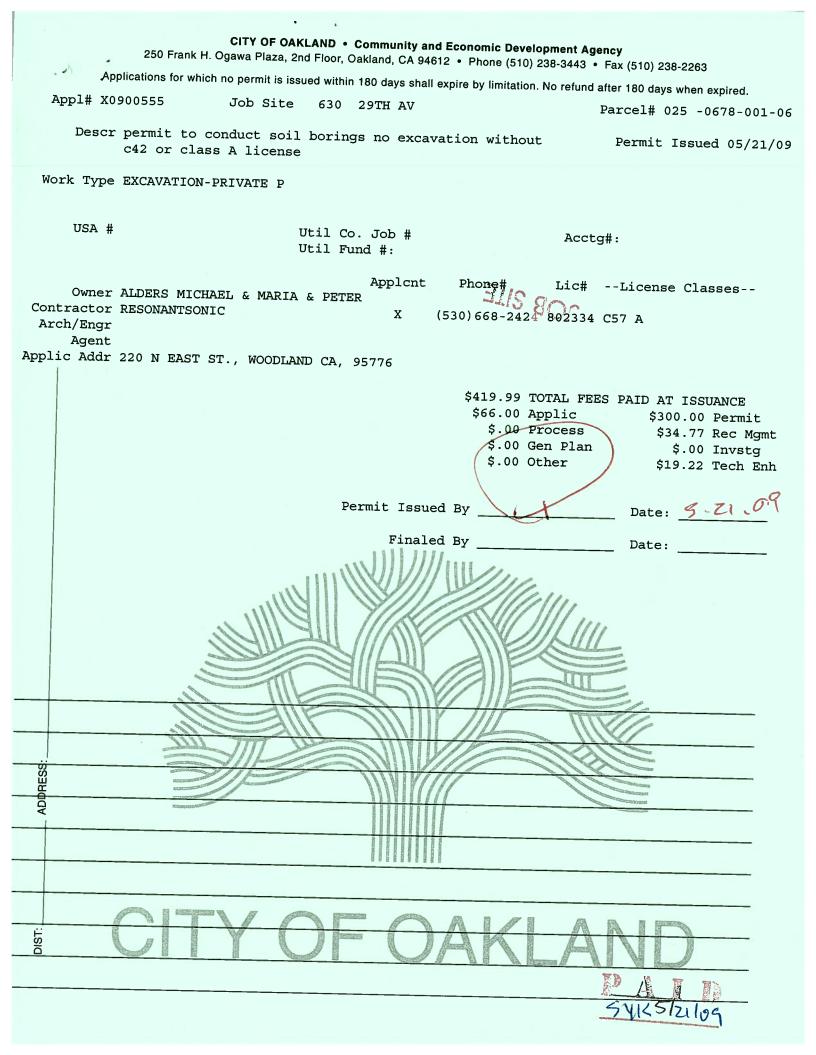
WARNING: FAILURE TO SECURE WORKERS' COMPENSATION OVERAGE IS UNLAWEUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND GIVE FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY S FEES.

Hazardous Materials Declaration

³³ I hereby affirm that the intended occupancy [] WILL [] WILL OT use, handle or store any hazaroous, or acutely hazaroous materials. (Checking "WILL" acknowledges that Sections 25505, 25533, a 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.)

HEREBY CERTIFY THE FOLLOWING: That Thave read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city o enter upon the above-mentioned property for inspection. I am fully authorized by the oner and to perform the work authorized by

PRINT NAME


EXCAVATION PERMIT TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

CIVIL ENGINEERING

PAGE 2 of 2

Permit valid for 90 days from date of issuance.

PERMIT NUMBER	190066	SITE ADDRESS/LOCATION
		S * 63029 HAVENUE, DAKAND CA
APPROX. START DATE	APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER
6/1/09	6/15/08	(Permit not valid without 24-Hour number) (530) 668-2424
CONTRACTOR'S LICENSE # /	AND CLASE	CITY BUSINESS TAX #
1-57 #80	12334	2649225
ATTENTION:	<u></u>	
1 - State law require secured an inqui	es that the contractor/owner call Underg	ground Service Alert (USA) two working days before excavating. This permit is not valid unless applicant has The USA telephone number is 1-800-642-2444. Underground Service Alert (USA) #
2- 48 hours p	rior to starting work, you	MUST CALL (510) 238-3651 to schedule an inspection.
	-	action certificate is required (waived for approved slurry backfill).
OWNER/BUILDER		
□ I, as owner of the property, am be performed prior to sale, (3) I has structures more than once during an □ I. as owner of the property, am does not apply to an owner of proper	ve resided in the residence for the 12 a ny three-year period. (Sec. 7044 Busin exclusively contracting with licensed of	the above due to: (1) I am improving my principal place of residence or appurtenances thereto, (2) the work will months prior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than two pess and Professions Code). contractors to construct the project, (Sec. 7044, Business and Professions Code: The Contractor's License Law and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law).
		certificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).
Policy # 71315537	O-8 Company N	Name S'7A7E FUND
I certify that in the performance		ssued, I shall not employ any person in any manner so as to become subject to the Worker's Compensation Laws
comply with such provisions or this p granted upon the express condition th perform the obligations with respect to and employees, from and against any sustained or arising in the construction	permit shall be deemed revoked. This nat the permittee shall be responsible for to street maintenance. The permittee s and all suits, claims, or actions broug on of the work performed under the pe	a, you should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith s permit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is or all claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to shall, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers ght by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property ermit or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This need by the Director of the Office of Planning and Building.
this permit and agree to its requirement <u> <u> </u></u>	the above information is the state of the s	Z DRILLING <u>5/20/09</u> Date
DATE STREET LAST	SPECIAL PAVING DETAIL	HOLIDAY RESTRICTION? LIMITED OPERATION AREA?
LESURFACED	REQUIRED? DYES DNO	(NOV I - JAN I) D YES D NO (7AM-9AM & 4PM-6PM) D YES D NO
SSUED BY		
		DATE ISSUED 3-21-09

CITY OF OAKLAND • Community and Economic Development Agency 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • Fax (510) 238-2263 "Applications for which no permit is issued within 180 days shall expire by limitation. No refund after 180 days when expired. Permit No. X0900555 Parcel #: 025 -0678-001-06 Page 2 of 2 Project Address: 630 29TH AV Licensed Contractors' Declaration I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect. Construction Lending Agency Declaration I hereby affirm under penalty of perjury that there is a construction-lending agency for the performance of the work for which this permit is issued, as provided by Section 3097 of the Business and Professions Code. N/A under Lender implies No Lending Agency. Lender _____Address_ Workers' Compensation Declaration I hereby affirm under penalty of perjury one of the following declarations: [] I have and will maintain a certificate of consent to self-insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. [] I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. CARRIER: _____POLICY NO. [] I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California and agree that if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code, I shall forthwith comply with those provisions comply with those provisions. WARNING: FAILURE TO SECURE WORKERS COMPENSATION COVERAGE IS UNEAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS, IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3707 OF THE LABOR CODE, INTEREST, AND ATTORNEY S FEES. Hazardous Materials Declaration I hereby affirm that the intended occupancy WILL [] WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, & 25534 of the Health & Safety Code, as well as filing instructions, were made available to you.) HEREBY CERTIFY THE FOLLOWING: That Thave read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection. I am fully authorized by the owner and to perform the work authorized by Ö this permit

PRINT NAME

ADDRESS

Signature [] Contractor, or [] Agent

Date

EXCAVATION PERMIT

CIVIL ENGINEERING

TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

PAGE 2 of 2

Permit valid for 90 days from date of issuance.

PERMIT NUMBER		
A DIGWIT INDIVIDER X	(090 <u>06</u> 6	24 2810 CHAPMAN OF
APPROX. START DATE	E APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER
6/1/09	6/15/08	(Permit not valid without 24-Hour number) (530) 668-2424
CONTRACTOR'S LICEN	NSE # AND CLASE	CITY BUSINESS TAX #
C-57 #	802334	2649225
ATTENTION.		
l - State law secured a	requires that the contractor/owner call Unde in inquiry identification number issued by US	erground Service Alert (USA) two working days before excavating. This permit is not valid unless applicant has SA. The USA telephone number is 1-800-642-2444. Underground Service Alert (USA) #
2- 48 hou	ers prior to starting work, yo	u MUST CALL (510) 238-3651 to schedule an inspection.
3- 48 hou	irs prior to re-paving, a comp	paction certificate is required (waived for approved slurry backfill).
OWNER/BUILDER		
I, as owner of the propert e performed prior to sale, (3 truptures more than once dur	 I have resided in the residence for the 12 ring any three-year period. (Sec. 7044 Busi 	of the above due to: (1) I am improving my principal place of residence or appurtenances thereto, (2) the work will 2 months prior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than two siness and Professions Code).
oes not apply to an owner of	y, am exclusively contracting with licensed f property who builds or improves thereon, , B&PC for this rea	d contractors to construct the project, (Sec. 7044, Business and Professions Code: The Contractor's License Law , and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
bes not apply to an owner of I am exempt under Sec	f property who builds or improves thereon, B&PC for this rea	, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law).
or an exempt under Sec	f property who builds or improves thereon, B&PC for this rea ON	, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
ORKER'S COMPENSATION	f property who builds or improves thereon, , B&PC for this rea , B&PC for this rea ON a certificate of consent to self-insure, or a	, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
TorkER'S COMPENSATION I hereby affirm that I have blicy # 713155 I certify that in the perform	f property who builds or improves thereon, , B&PC for this real ON a certificate of consent to self-insure, or a $\frac{3408}{208}$ Company b	, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
ORKER'S COMPENSATION ORKER'S COMPENSATION I hereby affirm that I have blicy # 713155 I certify that in the perform California (not required for the PTICE TO APPLICANT: If, apply with such provisions or nated upon the express conditions form the obligations with ress employees, from and agains ained or arising in the constr	f property who builds or improves thereon, , B&PC for this rea , B&PC for this rea ON a certificate of consent to self-insure, or a 3 7 0 8 Company if hance of the work for which this permit is i work valued at one hundred dollars (\$100) , after making this Certificate of Exemption this permit shall be deemed revoked. This ion that the permittee shall be responsible for spect to street maintenance. The permittees st any and all suits, claims, or actions broug ruction of the work performed under the pe	, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
CRKER'S COMPENSATION CORKER'S COMPENSATION Thereby affirm that I have blicy # 713155 I certify that in the perform California (not required for the California (not required for the construction) California (not required for the construction) Californi (not required f	f property who builds or improves thereon, , B&PC for this ready ON a certificate of consent to self-insure, or a <u>3702</u> Company if bance of the work for which this permit is i work valued at one hundred dollars (\$100) , after making this Certificate of Exemption this permit shall be deemed revoked. This ion that the permittee shall be responsible f spect to street maintenance. The permittee s at any and all suits, claims, or actions broug runction of the work performed under the pe date of issuance unless an extension is gran	and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
The provision of the pr	f property who builds or improves thereon, , B&PC for this ready in the property who builds or improves thereon, , B&PC for this ready is a certificate of consent to self-insure, or a 340 Company if the properties of the work for which this permit is in work valued at one hundred dollars (\$100) , after making this Certificate of Exemption this permit shall be deemed revoked. This is in that the permittee shall be responsible for speet to street maintenance. The permittee set any and all suits, claims, or actions broug ruction of the work performed under the perdate of issuance unless an extension is gran during that the above information is the above informati	And who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason
CORKER'S COMPENSATION I am exempt under Sec CORKER'S COMPENSATION I hereby affirm that I have blicy #	f property who builds or improves thereon, , B&PC for this ready and the set of consent to self-insure, or a 3 708 Company if ance of the work for which this permit is is work valued at one hundred dollars (\$100) , after making this Certificate of Exemption this permit shall be deemed revoked. This ion that the permittee shall be responsible f spect to street maintenance. The permittee st and all suits, claims, or actions broug ruction of the work performed under the pe date of issuance unless an extension is gran d under provisions of Chapter 9 of Division rements, and that the above information is t Company if Agent for Contrator I own SPECIAL PAVING DELAIL	And who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason certificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code). Name STATE_FUND issued, I shall not employ any person in any manner so as to become subject to the Worker's Compensation Laws or less). n, you should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith s permit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is for all claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to shall, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers ght by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property ermit or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This need by the Director of the Office of Planning and Building. A 3 of the Business and Professions Code and my license is in full force and effect (if contractor), that I have read true and correct under penalty of law. D D LIMATED OPERATION AREA?
The provision of the pr	f property who builds or improves thereon, , B&PC for this ready in the property who builds or improves thereon, , B&PC for this ready is a certificate of consent to self-insure, or a 340 Company if the properties of the work for which this permit is in work valued at one hundred dollars (\$100) , after making this Certificate of Exemption this permit shall be deemed revoked. This is in that the permittee shall be responsible for speet to street maintenance. The permittee set any and all suits, claims, or actions broug ruction of the work performed under the perdate of issuance unless an extension is gran during that the above information is the above informati	And who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). ason

Provide and	R 03 R 03 ROR* D FOR TY ERMIT RE SUED	1 1 0, 00 < 1370 PE OF WC 3QUIRED+	e licm 0 1
Name: RUCEEN.VERDIPUUEST NUMBER CA BUTROFE Address: 302 NETHUEST NO SUSET City. State, Zip: MRETHINEST NO SUSET Project Address: 630 254 MEWE (2014) of the following reason: Intereby petition for a refund of the amount paid by me for the following reason: PERMIT ISSUED IN ERP OCHANGE IN SCOPE (Decreased Fees) Image: PERMIT ISSUED IN ERP VALUATION CHANGE - old \$ Image: PERMIT TYPE OF P VALUATION CHANGE - old \$ Image: PERMIT ISSUED IN ERP VALUATION CHANGE - old \$ Image: PERMIT ISSUED IN ERP VALUATION CHANGE - old \$ Image: PERMIT ISSUED IN ERP OTHER* Comments: Proof of Payment (attached): Image: Original Cash Register Receipt Image: Dopy of Cancelled Check (from/bac Signature: Image: Date: Image: Date: Image: Date: Image: Date: Becoupt #: Image: Date: Image: Date: Image: Date: Image: D	R 03 R 03 R 03 R 03 R 03 R 03 R 03 R 03	1100 00	1508 156
Name: BUTROTE Address: 307. NORTHINEST IN D. SMEET City. State., Zip: NRETHINEST IN D. SMEET Project Address: 630.294" NEWE (AMH or Methinstown Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: PERMIT ISSUED IN ERP PROJECT CANCELLED D. PERMIT ISSUED IN ERP PERMIT NSCOPE (Decreased Fees) DIPFERENT TYPE OF PI VALUATION CHANGE - old \$ new \$ DIPFERENT TYPE OF PI PERMIT NOT REQUIRE! VALUATION CHANGE - old \$ new \$ DUPLICATE PERMIT ISSUED IN ERP VALUATION CHANGE - old \$ new \$ DUPLICATE PERMIT TYPE OF PI * Comments: OTHER* DUPLICATE PERMIT ISSUED OF PI Proof of Payment (attached): D original Cash Register Receipt D Copy of Cancelled Check (from/bac Signature: Do NOT WRITE BELOW THIS LINE Date: 5 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	R 03 R 03 ROR* D FOR TY ERMIT RE SUED	0, 00 < 0, 1310 ?PE OF WO 3QUIRED*	4578 156
Address: 302 NOETHINEST IN ONE AND A MERICA Phone No: Address: 302 NOETHINEST IN ONE AT Permit Number: City. State, Zip: MRETHINEST IN ONE AT Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: PERMIT ISSUED IN ERR OTHERY VALUATION CHANGE - old \$ DEPERMIT TYPE OF PERMIT ISSUED IN ERR VALUATION CHANGE - old \$ new \$ DIPERMIT NOT REQUIRE VALUATION CHANGE - old \$ new \$ DIPERMIT INT TYPE OF PERMIT ISSUED IN ERR OTHER* EXTERNOT CARGE INCORRECTLY ASSESSED* DUPLICATE PERMIT ISSUED IN ERR * Comments: DIPERMIT SERVER DUPLICATE PERMIT ISSUED IN ERR * Comments: DO NOT WRITE BELOW THIS LINE Date: 5/2/2 DO NOT WRITE BELOW THIS LINE DENIED DENIED Permit/Invoice #: Vendor #: Date: 5/2/2 Nomments: Permit/Invoice #: Vendor #: Date: 5/2/2	R 03 R 03 ROR* D FOR TY ERMIT RE SUED	- 00 < 1310 PE OF WC QUIRED+	156
Address: JOR NORTHINEST IND SWEET City, State, Zip: MRETH MIAMI, REPAIN FL 3316.9 Project Address: 630,29 ^H MENUE (AMV m) CM Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: PROJECT CANCELLED PERMIT ISSUED IN ERR CHANGE IN SCOPE (Decreased Fees) PERMIT NOT REQUIRED CHANGE INCORRECTLY ASSESSED* DIFFERENT TYPE OF PI OTHER* EXTENDED GATE BELOW THE DIFFERENT TYPE OF PI * Comments: DUPLICATE PERMIT ISS Proof of Payment (attached): O Original Cash Register Receipt D Copy of Cancelled Check (from/bac Signature: Matched Do NOT WRITE BELOW THIS LINE PERVIND DETERMINATION: APPROVED D DENIED Ormments: DO NOT WRITE BELOW THIS LINE Signature	R 03 COR+ D FOR TY ERMIT RE SUED	PE OF WO	156
City, State, Zip: MRT M MAN, REACH FL 33/69 Project Address: 630 RH MENUE (AMM R. 1990) I hereby petition for a refund of the amount paid by me for the following reason: Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: Permit Number: PROJECT CANCELLED PERMIT ISSUED IN ERR VALUATION CHANGE - old \$ DIFFERENT TYPE OF P VALUATION CHANGE - old \$ new \$ OTHER* EXTENDED OF PERMIT ISSUED IN ERR * Comments: DIFFERENT TYPE OF P Proof of Payment (attached): Original Cash Register Receipt D Copy of Cancelled Check (from/bac Signature: Do NOT WRITE BELOW THIS LINE Date: 5/2/2 DO NOT WRITE BELOW THIS LINE Dentied 5/2/2 Intronents: O APPROVED D DENIED Warments: Permit/Invoice #: Vendor #: 5/2	ROR* D FOR TY ERMIT RE SUED	PE OF WO	
Project Address: \$30,20 Mature (Address) Permit Number: I hereby petition for a refund of the amount paid by me for the following reason: PROJECT CANCELLED PERMIT ISSUED IN ERR CHANGE IN SCOPE (Decreased Fees) PERMIT NOT REQUIRED PERMIT NOT REQUIRED PERMIT NOT REQUIRED VALUATION CHANGE - old \$ new \$ DIFFERENT TYPE OF P DIFFERENT TYPE OF P OTHER* EXTRA MATURE Add38 DUPLICATE PERMIT ISS * Comments: OTHER* EXTRA MATURE Add38 Proof of Payment (attached): O Original Cash Register Receipt Copy of Cancelled Check (from/bac Signature: Date: 5/21 DO NOT WRITE BELOW THIS LINE Date: 5/21 Domments: APPROVED DENIED Date: 5/21 Domments: APPROVED DENIED	ROR* D FOR TY ERMIT RE SUED	PE OF WO	
I hereby petition for a refund of the amount paid by me for the following reason: PROJECT CANCELLED PERMIT ISSUED IN ERR CHANGE IN SCOPE (Decreased Fees) PERMIT NOT REQUIRE! VALUATION CHANGE - old \$ new \$ FEES INCORRECTLY ASSESSED* DUPFERENT TYPE OF P OTHER* DUPLICATE PERMIT ISS Proof of Payment (attached): Original Cash Register Receipt Copy of Cancelled Check (fromt/bac Signature: DO NOT WRITE BELOW THIS LINE Dentied EFUND DETERMINATION: APPROVED DENIED Domments: Permit/Invoice #: Vendor #: Date: Valuation Dentifier Date: 5/2/2	ROR* D FOR TY ERMIT RE SUED	PE OF WO	
Signature: Date: 5/2/ DO NOT WRITE BELOW THIS LINE Do NOT WRITE BELOW THIS LINE EFUND DETERMINATION: Image: Approved Image: Dentified Domments: Image: Approved Image: Dentified Seccipt #: Vendor #: Date: State Vendor #: Image: Dentified State	ſ	ker:	
Signature: Date: 5/2/ DO NOT WRITE BELOW THIS LINE Do NOT WRITE BELOW THIS LINE EFUND DETERMINATION: I APPROVED I DENIED Imments: I DENIED I DENIED ecceipt #: Vendor #: Date: Vordor #: I Deniet Site	ſ		
Date: 5/2/ DO NOT WRITE BELOW THIS LINE EFUND DETERMINATION: APPROVED DENIED DENIED CONTRACTOR #: Deniet/Invoice #: Vendor #: Data Signame Deniet/Invoice #: Deniet/Invoice	109	a - 01	
EFUND DETERMINATION: Dented De		× 14	
Demments: Receipt #: ROB 137956 Permit/Invoice #: Vendor #: Data 5			
CO3 137956 Vendor #: Date int Amount December 1000000000000000000000000000000000000			
CO3 137956 Vendor #: Date int Amount December 1000000000000000000000000000000000000			
ist Amount Duritill out of the	e Paid:	Amoun	t: •
	Loc	Task	Dept
Cost Ctr/wO	+		Spec
		+	+
	+	+	+
	+	 	<u> </u>
	Ψ	 	+
		+	+
		<u> </u>	+
rtment Approval			L
Date Office of Finance			Date
			Date

CITY OF OAKLAND Community & Economic Development Agency 250 Frank H. Ogawa Pl, Dakland CA, 94612 Phone: (510)238-4774 FAX: (510)238-2263

ŝ.

PAYMENT RECEIPT

Application#: X0900555 Pay APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE TECHNOLOGY ENHANCEMENT FE Subtotal:	ment#: 001 \$66.00 \$300.00 \$34.77 \$19.22 \$419.99
Application#: X0900556 Pay APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE TECHNOLOGY ENHANCEMENT FE Subtotal: EXTRA MONIES RECEIVED	ment#: 001 \$66.00 \$300.00 \$34.77 \$19.22 \$419.99
Sales Tax:	\$94.38 \$.00 \$934.36
AL 1 -	\$934.36
Payor: BUREAU VERITAS N AMERI Date: 05/21/09 Time: 11:54:5 By: SYK Register R03 Rece ***********************************	CA 56 ipt# 137956 ********** R REFUND

APPENDIX G

BORING LOGS

	URE		RITA					OF		Project Name: Fo			BORING NO. B-11 iion (ft, msl): N/A
			Ĵ				SO	IL		Finish Date: 6/5/20 Driller: RSI Drillin	009 Finish Tir		Diameter (in) 2
	ΒU					B	UR	ING		Hammer Weight:		Drop: N/	
-	VEI			-						Borehole Completion Data:	Backfilled with cem	ent grout using trer	nie methods
	counter atic Grou			er Deptl h	า					Depth To ⊻ (ft) Time:	22.0	Depth To 👤 (ft) Time:	N/A
1 =	mple Co mple Ar									Date:	06/05/09	Date:	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE GRAPHIC LOG	uscs		DESCF	RIPTION	
/				1310						CONCRETE DARK BROWN	SILTY CLAY (CL)		_
							1 · 2 ·		CL	medium stiff, mc	vist, no odor		
	48		6.0				3 · 4 ·			LIGHT BROWN medium dense,	CLAYEY GRAVEL (moist, no odor	GC) with GRAVELL	Y CLAY (CL)
							5 - 6 -		GC/CL				
	48		4.7				7 - 8 -		CL	medium stiff, mo	TO GRAY SILTY SA ist, some iron stainir	NDY CLAY (CL) ig, trace sand, bioge	nic debris
							9 - 10 -			GRAY TO LIGH medium stiff, mc	T BROWN SILTY CL iist, biogenic debris, I	AY (CL) no odor	
	48		2.9				11 · 12 ·			trace greenish-g	ray discoloration at 1	1 feet, no odor	
							13 - 14 -		CL				
	48		7.6				15 - 16 -						
							17 · 18 ·						
	48		24.5				19 ·		CL/GC	(GC)	YAND GRAVELLY C		YEY GRAVEL

		A U A S		LOG	6 OF	SOII	L BO	R	ING		Project No.:33104-004578.00BORING NO.Project Name:Former Sausage FactoryDokland, CaliforniaB-11Logged By:TGBTGB
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION
	48		84.7				21 - 22 - 23 -			CL/GC CL	☑ driller reports groundwater encountered at 22 feet (GW zone not discernible) MOTTLED GRAYISH GREEN TO BROWN SILTY CLAY (CL) medium stiff, moist, no odor
							24 - 25 - 26 - 27 -			CL	BROWN TO GRAY SILTY CLAY (CL) medium stiff, moist, no odor BROWN SANDY CLAY (CL)
	48						28 - 29 - 30 - 31 -			CL	medium stiff, moist, no odor, some fine gravel at 27 feet, increased sand content below 27.5 feet LIGHT BROWN SILTY CLAY (CL) medium stiff, moist, some sand, occasional iron staining, biogenic debris below 31 feet
							32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 44 -				Bottom of boring at 32 feet bgs.

											104-004578.00 rmer Sausage Facto	orv	BORING NO.
	RE	UVE	R								kland, California	,	B-12
	BU		A.S)G 60	OF		Start Date: 6/5/20 Finish Date: 6/5/20			ion (ft, msl): N/A Diameter (in) 2
Ι.	BII	7828 R E			l			ING		Driller: RSI Drillir Hammer Weight:		Drill Method: Dir Drop: N/	
li		RIT	AS							Borehole Completion Data:	Backfilled with cem	ent grout using trer	nie methods
-	ncounter atic Grou			er Depth h						Depth To ⊥ (ft)	14.0	Depth To 👤 (ft)	N/A
🛛 Sa	ample Co	ollected	k							Time: Date:	06/05/09	Time: Date:	
∎ Sa	ample Ar	nalyzed									06/05/09	Dale.	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE GRAPHIC LOG	NSCS		DESCR	RIPTION	
v≂	S R	S	68	⊢ 0955						CONCRETE			
/							1-			BROWN TO DA medium stiff, mo	RK BROWN SILTY (ist, no odor	CLAY (CL)	
$\left \right\rangle /$													
X							2-		CL				
$ / \rangle$							3-						
$\langle \rangle$	36						,						
			2.4	1120			4 -			MOTTLED ORA stiff, moist, no or	NGE TO LIGHT BRO dor, black-colored bio	OWN SILTY CLAY (Cogenic debris, less s	CL) andy and mottling
$\left \right\rangle /$							5-	-////		below 6 feet	,	.	
							6 -						
							0						
$ \rangle$							7-						
/	48		8.2	1121			8-						
Λ /							-						
$\left \right\rangle /$							9-						
V							10 -						
										strong petroleum	eenish-gray discolor odor, with vertically	striated greenish gra	ay to dark gray
$ \rangle \rangle$			13.6	1127			11 -		CL	seams present a	round sandy and fine	e gravel areas, less (UUUI
	48						12 -						
/													
$\left \right\rangle /$							13 -						
IX							14 -			⊊ color change to r	mottled grayish-gree	n to orange-brown be	elow 14 feet
$ \rangle$							4-						
$/ \setminus$			40.1	1125			15 -						
$\left(-\right)$	48					-	16 -	-/////		mottled grayish-	green seams become	e spotty and isolated	l below 16 feet,
$ \rangle /$							17 -			increased sand of	content below 17 feet wet and saturated b	t, with less mottling,	
$ \rangle /$							17			,			
							18 -		CL	GREENISH GRA	AY SANDY CLAY (C	L) - medium stiff, sat	turated
$ \rangle$			8.5	1127			19 -				with petroleum odor		
$ \rangle$	48								SC CL		SANDY CLAY (CL)		
	+0				1			//////	1 01				Page 1 of 2

	B U R E	A U		LOG	6 OF	SOII	_ BOI	RING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:TGB	BORING NO.
SAMPLE INTERVAL	r (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	GRAPHIC LOG	USCS	DESCRIPTION	
<u>∞</u> ≤		<u>o</u>					$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $			stiff, saturated, no odor, fine grained, root and biogenic	debris
							44 -	-			Page 2 of

	URE		RITA			00	OF		Project Name: Fo Location: Oa	104-004578.00 rmer Sausage Facto Ikland, California Wilson 009 Start Tim		BORING NO. B-13 ion (ft, msl): N/A
			Ĵ			SO			Finish Date: 6/4/20 Driller: RSI Drillir	009 Finish Tir	ne: 11:15 Boring Drill Method: Di	Diameter (in) 2 rect Push
	B U V E I	R E R I T	A U A S		2				Hammer Weight: Borehole Completion Data:	Neat cement grout	Drop: N/	A
				er Depth					Depth To ⊻ (ft)	22.18	Depth To 👤 (ft)	20.35
	atic Gro mple Co			h					Time:	14:00	Time:	17:50
Sa Sa	mple Ar	nalyzed							Date:	06/04/09	Date:	06/04/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	USCS			RIPTION	
\setminus /				0833				GW	GRAVEL (baser SILTY CLAY	ock)		
						1 - 2 -				own mottled, with trac nics	ce gravel, medium s	tiff, damp, no
						3 -			less silt, dark bro	own, damp to moist, i	no odor	
			54.2	0838		4-		CL	trace gravel at 3.	5 to 4.5 feet		
\setminus		5.0		0845		5 -			some coarse sar	nd, gray e to fine sand, gray		
Ň						6 -			CLAYEY SILT	, to fine cana, gray		
$/ \setminus$	48		29.1	0844		7-		ML		ium stiff, damp, no o	dor	
\setminus						8 -	$\frac{1}{2}$					
\backslash / \vert						9-			2" SILTY GRAVE	EL, brown, loose, dry	, no odor	
$\left \right\rangle$						10 -			SILTY CLAY light brown, med green discolorati	ium stiff, damp, sligh on	t petroleum odor, wi	th patches of
	48	12.0	77.3	0915		11 - 12 -						
\setminus						13 -						
						14 -		CL	moderate petrole	eum odor		
/	24	16.0	10.5	0955		15 - 16 -						
\setminus						17 -				green discoloration,	patches of green dis	scoloration
						18 -			continue			
$ \rangle$		19.0		1035		19 -					P 1 1 1 1 1 1	
/ \	48		9.8					SP	SAND, brown, w	ith trace clay (15%),	tine grained, mediur	n dense, damp, Page 1 of 2

		A U A S		LOG	OF	SOIL	BO	RI	NG		Project No.:33104-004578.00BORING NO.Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. WilsonB-13
	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION
SAMPLE	84 RECOVERY (ir	24.0		1110			(t) HLddd 21 22 23 24 25 26 27 28 28 29 30 31 32 33 33 33 33 33 35		GRAPHIC CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	CL SC CL	DESCRIPTION In o odor SILTY CLAY tan, trace fine sand, medium stiff, damp, no odor some fine sand, brown CLAYEY SAND brown, fine grained, medium dense, moist to wet, no odor, no discoloration SILTY CLAY tan, trace sand, medium stiff, damp, no odor, no discoloration SILTY CLAYEY SAND brown, fine to medium grained, wet, no odor SILTY CLAY tan, medium stiff, moist, no odor, no discoloration Bottom of boring at 24 feet bgs. Set PVC with 5' screen at bottom. Groundwater sampled at 1800.
							37 - 38 - 39 - 40 - 41 - 42 - 43 -				
							44 -				Page 2 of 2

	RE	UVE							Project Name: Fo Location: Oa	104-004578.00 rmer Sausage Facto okland, California Wilson	ory	BORING NO. B-14
	BU		AS			DG SO	OF		Start Date: 6/4/20 Finish Date: 6/5/20			ion (ft, msl): N/A Diameter (in) 2
Ι.	BU	7828 R E					NG		Driller: RSI Drillir Hammer Weight:		Drill Method: Dir Drop: N/	
1	VE								Borehole Completion Data:	Neat cement grout	to grade	
	icountei atic Gro			ter Depth h	l				Depth To ∑ (ft)	27.8	Depth To 👤 (ft)	19.9
🛛 Sa	Imple C	ollected	1						Time:	17:00	Time:	07:30
∎ Sa	imple Ai	nalyzed							Date:	06/04/09	Date:	06/05/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	USCS		DESCF	RIPTION	
\setminus /				1145			P 4 4 9////		CONCRETE SILTY CLAY			
						1 - 2 -				el and brick fragmen	ts, medium stiff, dan	np to moist, no
	48		0.2	1150		 3 -		CL				
		5.0		1155		5 - 6 -			becomes sandy,	some gravel, brown	, medium dense, dar	mp, no odor
$ \rangle \rangle$						7-				content, fine grained		
$/ \setminus$	48		0.2	1200					SILTY CLAY tan, medium der	nse, damp, no odor		
	48	12.0				8 - 9 - 10 - 11 -			small patches of	slight green discolor	ation, slight petroleu	m odor
						12 - 13 - 14 -		CL	trace gravel, sma odor continues	all patches of slight g	reen discoloration, s	light petroleum
	48	16.0	10.4	1240		 15 - 16 -			small patches of	slight green discolor	ation, slight petroleu	m odor continues
						17 - 18 -						
$/ \setminus$	48	20.0	74.6	1307		19 -			Ţ			Page 1 of 2

		AU		LOG	OF	SOII	_ BOF	RING		Project No.:33104-004578.00BORING NO.Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. WilsonB-14	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft) SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION	
				1330			21 22 23		CL	Small patches of slight petroleum odor and green discoloration continues CLAYEY SILTY SAND tan, fine grained, moist, small patches of slight petroleum odor and green discoloration	T
	48	28.0		1442			24		CL SC CL	SILTY CLAYEY SAND SILTY CLAYEY SAND brown, fine grained, medium dense to loose, with slight petroleum odor	
							28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44			tan, medium stiff, damp, moderate petroleum odor Bottom of boring at 28 feet bgs. Set PVC with 5' screen at 28 feet Groundwater sampled at 0745, 6-5-08.	

	URE	UVE	RITA				0.5		Project Name: Fo Location: Oa Logged By: J.	104-004578.00 rmer Sausage Fact kland, California Wilson		BORING NO. B-15
			S			OG SO	OF IL		Start Date: 6/4/20 Finish Date: 6/4/20	009 Finish Tir	me: 17:25 Boring	tion (ft, msl): N/A g Diameter (in) 2
	BU	7828 R E	A U		B	OR	NG		Driller: RSI Drillin Hammer Weight:		Drill Method: Di Drop: N/	
		RIT							Borehole Completion Data:	Neat cement grout	to grade	
	icounter atic Gro			er Depth h					Depth To ⊻ (ft) Time:	19.7 17:55	Depth To ⊥ (ft) Time:	19.23 18:15
	mple C mple A								Date:	06/04/09	Date:	06/04/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	USCS		DESCF	RIPTION	
				1510		1 -			SILTY CLAY black with mottle	d orange, medium s	tiff, trace gravel, loos	se, dry, no odor
						2-			trace organics, c	amp		
$\left \right\rangle$						3-		CL				
$\left(\right)$	36		3.2	1515	_	4 -						
\setminus /		5.0		1530		5 -			tan with orange	nottles		
V						6-			with trace gravel			
$\left \right\rangle$						7 -		SC	tan-brown with o	range mottling, medi	ium dense, damp, no	odor
$\langle - \rangle$	48		3.6	1530	_	8-						
						9 -			SILTY CLAY tan, medium stif petroleum odor	, damp, with small p	atches of green disc	oloration and
Å						10 -						
$/ \setminus$	48	12.0	233	1608		11 -			green discolorati	on throughout, with I	plack spots	
						12 - 13 -			trace gravel, sm	all patches of green	discoloration and sli	ght petroleum odor
$\langle \rangle$	24		8.5	1630		14 -		CL				
\setminus						15 -						
						16 -			trace small patcl	nes of green discolor	ation and trace petro	bleum odor
$/ \setminus$	48		155	1655		17 -			stronger petrole	ım odor		
	UT					18 -						
\bigwedge						19 -			⊻ ⊻			
					1		<u></u>	1	I			Page 1 of 2

	B U R E VERIT	AUAS		LOG	OF	SOII	L BO	R	ING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. Wilson	BORING NO. B-15
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION	
	48		241	1720			21 -		////// //////	CL SP CL	SAND gray, fine grained, loose, wet, medium petroleum odor SILTY CLAY	
			271	1720			22 -		//////	<u>UL</u>	tan, medium stiff, damp, no odor	/
							23 -				Bottom of boring at 22 feet bgs.	
							24 -				Set PVC with 5' screen at 22 feet Groundwater sampled at 1820.	
							25 -					
							26 -	_				
							27 -					
							28 -					
							29 -					
							30 -					
							31 -					
							32 -					
							33 -					
							34 -					
							35 -					
							36 -					
							37 -	_				
							38 -					
							39 -					
							40 -					
							-					
							41-					
							42 -					
							43 -					
							44 -					
L	1		I								1	Page 2 of 2

B U R E A U						LOG OF SOIL BORING						BORING NO. B-16	
									Finish Date: 6/5/2009Finish Time: 10:15Boring Diameter (in)2Driller:RSI DrillingDrill Method:Direct PushHammer Weight:N/ADrop:N/A				
li	VE								Borehole Completion Data: Neat cement grout to grade				
-	 								Depth To $ arrow$ (ft)	14.8	Depth To 👤 (ft)	14.25	
🛛 Sa	Sample Collected								Time:	10:30	Time:	10:40	
Sa Sa	Imple Ar	nalyzed					<u></u>		Date:	06/05/09	Date:	06/05/09	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)			DEPTH (ft)	SAMPLE GRAPHIC LOG	nscs	DESCRIPTION				
				0805		1-		GM	SILTY GRAVEL black, loose, dry, no odor				
	34		7.8	0812					SILTY CLAY black, trace mottles of orange, medium stiff, moist, no odor brown, with orange mottles, trace fine gravel				
	5.0			0821		5		CL	increased sand content with trace silty clay and gravel, damp, no odor				
	48		9.0	0823		7			SANDY SILTY (tan, trace fine g		ling, medium stiff (softe	er), moist, no odor	
\square	24		9.1	0840		9 			becomes less s	andy, stiff, trace b	lack organic deposits, r	no odor	
	48		9.5	0900		11 12 13	$\left \left \left \left \right \right \right \right $	CL	no odor	rained sand, trace	orange mottling, trace	fine gravel, damp,	
			17.6			— 14 15 16 17			▼ ↓ </td				
	48		61.3	0927		— 18 19						Page 1 of 2	

understand underst		B U R E	A U A S		LOG	OF	SOIL	_ BO	RI	NG		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. Wilson	BORING NO. B-16
48 22.0 23.4 1010 21 SM SILTY SAND 22 SM SILTY SAND gray-green, fine grained, dense, wet, strong chemical odor 23 Bottom of boring at 22 feet bgs. St.TY SAND 24 St.TY SAND St.TY SAND 23 Bottom of boring at 22 feet bgs. St.TY SAND 24 St.TY SAND St.TY SAND 25 St.TY SAND St.TY SAND 24 St.TY SAND St.TY SAND 25 St.TY SAND St.TY SAND 26 St.TY SAND St.TY SAND 27 St.TY SAND St.TY SAND 28 St.TY SAND St.TY SAND 29 St.TY SAND St.TY SAND 30 St.TY SAND St.TY SAND 31 St.TY SAND St.TY SAND 32 St.TY SAND St.TY SAND 33 St.TY SAND St.TY SAND 34 St.TY SAND St.TY SAND 35 St.TY SAND St.TY SAND 36 St.TY SAND St.TY SAND 37 St.TY SAND St.TY SAND<	SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION	
24 Set Point of Source at 22 feet 25 26 27 28 28 29 30 31 32 33 34 36 37 38 38 36 39 34 40 41		48	22.0	23.4	1010							SILTY SAND gray-green, fine grained, dense, wet, strong chemical oc	lor
								23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29				Set PVC with 5' screen at 22 feet	

	and the second se		RITAS			OG				Project Name: Fo Location: Oa	104-004578.00 rmer Sausage Fact akland, California Wilson 209 Start Tim		BORING NO. B-17 ion (ft, msl): N/A
			Ĵ			SO OR	IL			Finish Date: 6/5/20 Driller: RSI Drilli	009 Finish Tir	ne: 13:40 Boring Drill Method: Di	Diameter (in) 2 rect Push
	B U V E I	R E R I T	A U A S		_	•				Hammer Weight: Borehole Completion Data:	Neat cement grout	Drop: N/. to grade	A
				er Depth						Depth To $\underline{\nabla}$ (ft)	14.2	Depth To 👤 (ft)	13.3
_	atic Grou Imple Co		•	h						Time:	13:45	Time:	13:55
Sa Sa	mple Ar	nalyzed								Date:	06/05/09	Date:	06/05/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs		DESCF	RIPTION	
				1025			8			CONCRETE SILTY CLAY			-
						1 - 2 -			CL		e mottling, medium s	tiff to stiff, trace fine	gravel, damp to
	48		0.9	1032		3 -				SILTY SANDY (CLAY ange mottling, mediu	m stiff trace fine are	
		5.0		1055		5 - 6 -				odor, trace black	corganic deposits	n sun, trace nne gra	ver, damp, no
	48		1.2	1055		7 - 8 -				less sand, most	y Silty Clay		
\square	24		1.9	1113		9 - 10 -							
						11 - 12 -			CL	increase in sand	l, tan with orange mo	ttling	
\bigwedge	48		10.4	1133		13 -			0L		small patches of gree	n discoloration and s	slight odor
	-		16.9			14 - 15 -				-	discoloration and ch , fine grained, with tra		
						16 - 17 -				patches of green	, the graned, with the discoloration and sl	ight chemical odor	no ouor, small
	48			1210		18 - 19 -				increased green	discoloration, slight	chemical odor from ²	18.5 to 19.0 feet
\square			10.5										Page 1 of 2

		AUAS		LOG) OF	SOIL	BO	R	ING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. Wilson	BORING NO. B-17
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION	
			35.3	1330			21 -			CL SC CL	some fine sand CLAYEY SAND brown, fine grained, medium dense, wet, moderate petro green discoloration SILTY SANDY CLAY	bleum odor, slight
	48		13.5	1330			22 - 23 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 28 - 29 - 28 - 29 - 33 - 23 - 33 - 33 - 33 - 33 - 33			CL	SILTY SANDY CLAY tan, medium stiff, moist, no odor Bottom of boring at 22 feet bgs. Set PVC with 5' screen at 22 feet Groundwater sampled at 1355.	
												Page 2 of 2

									Project Name: Fo	104-004578.00 rmer Sausage Fact		BORING NO.
	E E	UVE	R							akland, California Wilson		B-18
			AS			OG SO	OF II		Start Date: 6/5/20 Finish Date: 6/5/20			ion (ft, msl): N/A Diameter (in) 2
Ι.	BU	828 R F					ING		Driller: RSI Drillin Hammer Weight:		Drill Method: Dir Drop: N//	
		RIT							Borehole Completion Data:	Neat cement grout	to grade	
	counter tic Grou			er Depth h					Depth To Σ (ft)	18.1	Depth To 👤 (ft)	16.7
1 =	mple Co mple Ar								Time: Date:	16:38 06/05/09	Time: Date:	16:52 06/05/09
	-	lalyzeu							Date.	00/03/03	Date.	00/03/03
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC I OG	USCS		DESCF	RIPTION	
				1345					CONCRETE (4" SILTY CLAY)		
$ \rangle / $						1-	+		black with orang	e mottling, medium s	stiff, moist, no odor (E	Bay Mud)
ΙVΙ						2-						
$ \wedge $								CL				
$ / \rangle $						3 -						
	36		9.1	1430		4 -						
Λ									SANDY SILTY O			
$ \rangle / $		5.0		1449		5 -			brown with orang deposits, no odd		stiff, damp, trace bla	ck organic
X						6 -						
$ / \rangle $						_						
$ \langle \rangle $						7 -			less sand, brown deposits	n-tan, stiff, damp, slig	ght petroleum odor, tr	ace black organic
$\left(- \right)$	48		41.3	1445		8-						
/						9 -						
$\left \right\rangle / \left \right\rangle$						9						
X			316			10 -				een discoloration and	d moderate petroleun	n odor from 10 to
$\left / \right $						11 -			11 feet			
	48		80.2	1455					slight petroleum	odor		
	40		09.2	1400		12 -		CL				
$ \rangle / $						13 -			some sand from	13 to 15 feet, mediu	m stiff	
$ \rangle $											un sun	
$ / \rangle $						14 -						
$\left(- \right)$	36		36.4	1515	_	15 -			minor vertical ar	een discoloration. sli	ght petroleum odor to	o 16.0 feet
$ \rangle / $						16			g.	· · · · · · · · · · · · · · · · · · ·		
$ \rangle $						16 -			Ţ			
/						17 -				odor, no discoloratio	'n	
	36		11.7			18 -			some sand			
Λ						10						
X						19 -			some fine sand			
$/ \setminus$												Page 1 of 2

	B U R E	A U A S		LOG	OF	SOII	BO	R	ING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:J. Wilson	BORING NO. B-18
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	SAMPLE	GRAPHIC LOG	NSCS	DESCRIPTION	
	48			1630			21 -			SP CL	SAND brown, fine to medium grained, loose, wet to saturated SILTY SANDY CLAY tan, medium stiff, damp, no odor	, no odor
							22 - 23 - 23 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 27 - 28 - 29 - 23 - 29 - 23 - 29 - 23 - 29 - 23 - 23				Bottom of boring at 22 feet bgs. Set PVC with 5' screen at 22 feet Groundwater sampled at 1700.	Page 2 of 2

	and the second se		RITA			OG	OE		Project Name: Fo			BORING NO. B-19 tion (ft, msl): N/A
			Ĵ			SOI ORII	L		Finish Date: 6/5/20 Driller: RSI Drillir	009 Finish Tir	ne: 11:10 Boring Drill Method: Di	g Diameter (in) 2 rect Push
	B U V E I				D		NG		Hammer Weight: Borehole Completion Data:	N/A Backfilled with cem	Drop: N/ ent grout using tree	
-				ter Depth					Depth To $\underline{\nabla}$ (ft)	15.5	Depth To 👤 (ft)	N/A
🛛 Sa	atic Grou Imple Co	ollected	1	'n					Time:	11:34	Time:	
∎ Sa	imple Ar	nalyzed							Date:	06/05/09	Date:	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft) SAMPLE	GRAPHIC LOG	NSCS		DESCR	RIPTION	
	0, 2		-	1050				CL	DARK BROWN soft to medium s	SILTY CLAY (CL) tiff, moist, no odor		
	36 48		26	1130				CL	medium stiff, mo	ROWN SILTY CLAY ist, no odor, some sa biogenic and root de	and, trace fine grave	el, iron-stained
	48		1.4	1132		9		CL	SANDY CLAY (C	ist, iron-stained, fine		
	48		1.4	1134				CL	☑ LIGHT BROWN soft to medium s	SANDY CLAY (CL) tiff, saturated, no od	or	
						17		SC	LIGHT BROWN medium dense, s	CLAYEY SAND (SC saturated, no odor, fi) ne grained	
$/ \setminus$	48		0.8	1135		19 —		CL	LIGHT BROWN medium stiff, sat	SILTY CLAY (CL) urated, no odor, trac	e of very fine sand	

	URE		RITA						DF		Project Name: Fo			BORING NO. B-20 tion (ft, msl): N/A
			Ĵ				SC				Finish Date: 6/4/20 Driller: RSI Drillin	009 Finish Ti		g Diameter (in) 2
	BUVE					D	Ur	KI F	NG		Hammer Weight: Borehole		Drop: N	
				or Dont	h						Completion Data:	Backfilled with cerr		1
T St	atic Grou	undwat	er Dept	•							Depth To ⊻ (ft) Time:	19.0 17:25	Depth To 👤 (ft) Time:	N/A
1 =	ample Co ample Ar										Date:	06/04/09	Date:	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE	GRAPHIC LOG	uscs		DESCF	RIPTION	
				1650							CONCRETE GRAY SILTY GI	RAVEL (GM)		
\backslash /							1	+		GM	\neg medium dense,	to loose, dry, (basero	ock)	7
	24						2 3 4 5 6 7 7 8			CL	Soft, moist, no o	EN SILTY CLAY (CL)	coarse sand
	48						9 10 11 12			CL		NGE BROWN TO G	RAYISH GREEN CI	-AYEY SAND
	48						13 14 15 16			SC/GC	wet at 14 feet, ir encountered, dri groundwater, co	moist, petroleum odd Istalled 1" PVC to 16 Iler advances boring Ior change to mottled	feet, lifted 4' casing to 20 feet, reports a l orange-brown at 14	, no groundwater bundant
\setminus /							10		7777	SP		(SP) - loose, saturate Y-GREEN TO LIGH		SAND (SC)
	48						17 18 19			SC CL	LIGHT BROWN	TO TAN SILTY CLA	Y (CL)	(/

	BURE		RITAS				OG				Project Name: Fo	009 Start Tim	e: 13:25 Eleva	BORING NO. B-21 tion (ft, msl): N/A g Diameter (in) 2
Ι.	BU	7 828 7 828					SC OR				Driller: RSI Drillir Hammer Weight:	ng	Drill Method: Di Drop: N/	rect Push
	VE										Borehole Completion Data:	Backfilled with cerr	ent grout using trer	mie methods
	ncounter atic Gro				ו						Depth To ⊻ (ft) Time:	8.9 16:10	Depth To 👤 (ft) Time:	N/A
	ample C ample A									-	Date:	06/04/09	Date:	
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME			DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs		DESCF	RIPTION	
\setminus				1325			1			CL	CONCRETE BLACK TO DAR medium stiff, mc	K GRAY SILTY CLA vist, no odor	Y (CL)	
\mathbb{A}	42						2			CL	MOTTLED ORA medium stiff, mo	NGE TO BROWN G iist, no odor	RAVELLY SANDY (CLAY (CL)
							4 5 6			ML	medium stiff to s	ROWN CLAYEY SIL ⁻ tiff, moist, no odor	Г (ML)	
\bigwedge	48						7				BROWN SILTY stiff, moist, with feet, no odor	CLAY (CL) spotty localized gree	n discolored zones b	between 10 and 14
							9 10 11			CL	Ϋ́			
\bigwedge	48						14	H		CL	BROWN SAND medium stiff, mo	vist	15 9 to 16 0 fact	
							16 17	H		CL	GREENISH GR/ medium stiff, mo	SILTY SAND from A AY SANDY CLAY (C ist, petroleum odor, ENISH-GRAY TO BI	L) fine grained	
$\left \right\rangle$							18 19			CL	medium stiff, wit	ENISH-GRAY TO BI h soft saturated zone and root debris, vertie	es, no odor, with blac	(CL) ck colored
	48								//////	1				Page 1 of 2

	B U R E	AU		LOG) of	SOIL	BO	RING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:TGB	BORING NO.
SAMPLE INTERVAL	Y (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	GRAPHIC	R CL	DESCRIPTION	
	48						21		ML CL/GC	GREENISH GRAY TO BROWN CLAYEY SILT (ML) medium stiff, moist, no odor ORANGE-BROWN TO GRAY-GREEN GRAVELLY CL CLAYEY GRAVEL (GC) stiff, moist, some coarse sand and fine gravel Bottom of boring at 24 feet bgs.	AY (CL) with
							28 28 29 30 31 32 33				
							34 35 36 37 38				
							39 40 41 42 43 44				

	RE	UV	R								Project Name: Fo	akland, C	usage Facto	ory		BORING NO	
	BUI	<u>יאר אין אין אין אין אין אין אין אין אין א</u> אין אין אין אין אין אין אין אין אין אין	FAS				OG SO				Start Date: 6/2/2 Finish Date: 6/2/2		Start Tim Finish Tir			tion (ft, msl): g Diameter (ir	N/A 1) 2
Ι.	RII	1828 B F	A U				OR				Driller: RSI Drilli Hammer Weight:			Drill Metho Drop:	od: Di N/		
1			AS								Borehole Completion Data:	Neat cer	ment grout	with concrete	e patch	n at grade	
-			oundwat ter Dept		h						Depth To ⊻ (ft)	N/A		Depth To	⊈ (ft)	N/A	
_	ample C ample A										Time: Date:			Time: Date:			
SAMPLE INTERVAL										NSCS		1	DESCR	RIPTION		1	
				1230					4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		CONCRETE						
										SM	CLAYEY SILTY						_
\mathbb{N}											BLACK TO DAF soft to medium	stiff, mois	t (Bay Mud)	LAY (CL)			
										CL							
\square																	
	36										Bottom of boring	g at 4 feet	bgs.				
							6				Temporary soil No groundwater	apor wel	l installed. ered during o	drilling.			
							7.										
							8										
							9.										
							10 -										
							11										
							12										
							13 ·										
							14										
							15										
							16										
							17										
							18	$\left \right $									
							19 ·										

⊥ T St	B U V E ancounter tatic Gro	RIT red Gro undwat	undwat er Dept	er Dept	h	SO	OF L NG		Project Name: Fo Location: Oa Logged By: TO Start Date: 6/2/20 Finish Date: 6/2/20 Driller: RSI Drillin Hammer Weight:	akland, Calif GB 009 S 009 F ng N/A	age Factor fornia Start Time Finish Tim	: 10:45 I	Boring d: Dir N// e patch	٩	2 N/A
	ample C ample A					 			Date:			Date:			
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	USCS			DESCRI	PTION		·	
				1045		-			CONCRETE						
	30					1 2 3		SM	GRAY SILTY S/ loose, moist, no	AND (SM) odor (Fill)					
						4			Bottom of boring Temporary soil v No groundwater	apor well ins	stalled.		ue to c	oncrete.	

	B U		AU				SO	OF IL ING		Project Name: Fo Location: Oa Logged By: TC Start Date: 6/2/20 Finish Date: 6/2/20 Driller: RSI Drillin Hammer Weight: Borehole	009 Start Tim 009 Finish Tir ng	e: 10:10 Eleva ne: 10:50 Boring Drill Method: Di Drop: N/	Ά
Ţs ⊠s	ncounte tatic Gro ample C ample A	red Gro oundwat	oundwat ter Dept d	er Dept	h					Completion Data: Depth To ⊻ (ft) Time: Date:	N/A	Depth To 👤 (ft) Time: Date:	N/A
SAMPLE INTERVAL	INTERVAL INTERVAL SAMPLE SAMPLE ID SAMPLE ID SAMPLE ID (ppm) (ppm) (ppm) DEPTH (ft) DEPTH (ft) USCS											RIPTION	
				1010				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		CONCRETE (10	")		
									SM		AND (SM) comes mottled orang at 4 feet. concrete ro		eet
							5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 15- 16- 17- 18- 19-			surface at 4 feet	g at 4 feet bgs Drilli g to 5 feet. Drilling re vapor well installed. encountered during of		drillers to attempt possible concrete

	URES		RITA				OF		Project Name: Fo Location: Oa	akland, California Wilson		BORING NO. SVGW-1 tion (ft, msl): N/A
			Ĵ			SO			Finish Date: 6/10/2 Driller: RSI Drillir	2009 Finish T		g Diameter (in) 2
	BUVE	R E R I T	A U A S		D	UR	ING		Hammer Weight: Borehole		Drop: N	
⊽ En				er Depth					Completion Data: Depth To \checkmark (ft)	23.0	Depth To $\mathbf{\Psi}$ (ft)	9.75
👤 Sta	atic Gro	undwat	er Dept						Time:	11:35		09:50
	ample Co ample Ar								Date:	06/09/09	Date:	06/10/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	nscs		DESC	RIPTION	
				1025								
	24		0.6	1030		1 - 2 - 3 - 4 -		CL			e gravel, damp to mo	iist, no odor
	48		1.1	1035		5 - 6 - 7 -		CL	SANDY SILTY C brown-tan, with f		stiff, damp to moist,	no odor
	48		45.9	1040		8 - 9 - 10 - 11 -			petroleum odor ▼		um stiff, damp to mois	
	40		466	1040		12 - 13 - 14 -		CL	odor		avel, increased green	
			75.4	1048		15 - 16 -			trace small local	ized black discolora	ation with slight petrol	eum odor
						17 - 18 -			increased sand o degraded organi		to wet, no odor, trace	e localized black
$/ \setminus$	48		79.3	1110		19 -			trace localized g	reen patches of dis	coloration with slight	petroleum odor Page 1 of 2

		A U A S		LOG	i OF	SOII	BO	RING		Project No.:33104-004578.00BORING NO.Project Name:Former Sausage FactoryJakland, CaliforniaSVGW-1Logged By:J. WilsonSVGW-1
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft) SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION
	24		1.7	1130			21		CL	medium stiff, damp, localized patches of green discoloration and slight petroleum odor
							23		SP	 ✓ soft, wet, no odor SAND, brown, fine to coarse grained, wet, no odor SILTY CLAY gray, stiff, trace isolated green discoloration with no odor
	48		1.8	1140			25		CL	soft to ~27.5' bgs.
\square	24		1.3	1148			27 — 28 —			stiff
							29 — 30 —	-		Bottom of boring at 28 feet bgs. PVC set to 28' bgs with 5' screen at bottom. Groundwater sampled at 1000 on 6/10/09.
							31 — 32 —	-		
							33 — 34 —			
							35 — 36 — 37 —	-		
							38	-		
							40	-		
							42			
							44	-		Page 2 of 2

	J RE	UVE	ALLA						Project Name: Fo Location: Oa Logged By: J.	akland, California Wilson		BORING NO.
	Ē		ŝ		L	OG SO			Start Date: 6/8/20 Finish Date: 6/8/20	009 Finish	Time: 14:20 Boring	tion (ft, msl): N/A g Diameter (in) 2
	BU	7828 R E	A U		В	OR	ING		Driller: RSI Drillin Hammer Weight:		Drill Method: D Drop: N	irect Push /A
	VEI								Borehole Completion Data:	Neat cement gro	ut with concrete patc	h at grade
	counter atic Grou			er Depth h					Depth To ⊻ (ft)	25.71	Depth To 👤 (ft)	25.15
=	mple Co mple Ar								Time: Date:	15:15 06/08/09	Time: Date:	15:30 06/08/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	USCS		1		
				1252					CONCRETE SILTY CLAY			
	16		1.3	1255		- 1- 2- 3- 4-		CL		e mottling, mediur	n stiff, damp to moist,	no odor
	24		2.0	1300		5 - 6 - 7 -			SANDY SILTY C tan, with gravel,		ft, damp to moist, no c	odor
			32.8			- 8 - 9 - 10 - 11 -			patches, mediur	n stiff, moderate p		
	48			1305		- 12 -			tan with isolated	patches of green	discoloration, slight pe	troleum odor
\setminus / \mid			93.2			13 -		CL	increase in sand moderate petrole	l content with trace eum odor	fine gravel, medium s	stiff, moist to wet,
\bigwedge	40		60.4	1210		14 - 15 -			tan, trace isolate slight petroleum	ed patches of green odor	n discoloration, mediur	m stiff, damp,
	48		00.4	1310		- 16 - 17 -			no discoloration,	no odor		
						18 -			increase in sand	l content, damp to	moist, no odor	
	48		19.5	1317		19 -			less sand with tr petroleum odor	ace isolated patch	es of green discolorati	on, slight

		AUAS		LOG) of	SOII	LBO	RING	i	Project No.:33104-004578.00BORING NO.Project Name:Former Sausage FactoryJogged By:J. WilsonLogged By:J. WilsonSVGW-2
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft)	GRAPHIC LOG	USCS	DESCRIPTION
			22	1325			21 22 23		CL SP	light tan trace fine gravel, trace deposits of black organics soft, wet, no odor SAND, brown, fine to medium grained, wet, no odor SILTY CLAY gray, medium stiff, trace isolated green discoloration, no odor
	48		1.8	1333			24		CL	gray, medium sum to sum, trace isolated green discoloration, no odor ✓ ✓ soft to 27.5', no odor
							28 - 29 - 29 - 29 - 29 - 29 - 29 - 29 -			Bottom of boring at 28 feet bgs. PVC set to 28' bgs with 5' screen at bottom. Groundwater sampled at 1535.

	URE		RITA			00	05		Project Name: Fo			BORING NO. SVGW-3 tion (ft, msl): N/A
			Ĵ			SO	OF IL ING		Finish Date: 6/8/20 Driller: RSI Drillir	009 Finish Ti		g Diameter (in) 2
	B U V E I				D	UR	ING		Hammer Weight: Borehole		Drop: N/	
-				er Depth					Completion Data:	-	with concrete patch	-
▼ Sta	atic Gro	undwat	er Dept						Depth To ⊻ (ft) Time:	12.45 09:30	Depth To $\mathbf{\Psi}$ (ft) Time:	12.22 09:45
1 =	mple Co mple Ar								Date:	06/08/09	Date:	06/08/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE GRAPHIC LOG	nscs		DESCF	RIPTION	
				1600					CONCRETE			
						1-		GM			m dense, dry, no odd	or (baserock)
	36		0.3	1700		2 - 3 -		CL	DARK BROWN medium stiff, mc	TO BLACK SILTY C ist, no odor	lay (CL)	
		5.0	0.1	1704		4 - 5 - 6 - 7 -		GM	medium dense,	NGE BROWN CLAY moist, no odor avelly below 6 feet	YEY SILTY GRAVEL	. (GM)
	48		0.0	1707		8-			ORANGE BROV	VN TO GRAY SILTY	CLAY (CL)	40.6 - 1
	48		0.0	1710		9 - 10 - 11 - 12 -			more silty below	10 feet	to coarse gravel at	
						13 - 14 - 15 -		CL	becomes gray co	olored, some orange	emottling, trace fine s	sand, at 12 feet
$\langle \rangle$	48					10			no groundwater	encountered at 16 fe	eet during drilling 17:	10/6-2/09
						16 - 17 - 18 -			Bottom of boring PVC set to 16' b Groundwater sa	at 16 feet bgs. gs with 5' screen at l npled at 0950, 6/8/0	bottom. 9.	
						19 -						Page 1 of 1

	URES		RITA					<u>ЭЕ</u>		P L	Project Name: Fo	ikland, Cali iB	age Facto ifornia		BORING NO. SVGW-4 tion (ft, msl): N/A
			ĵ			OG SC		_		F	inish Date: 6/8/20)09 I			Diameter (in) 2
	вU		A U		B	OR		NG		Н	lammer Weight:			Drop: N/	
	VE										orehole Completion Data:	Backfilled	with cem	ent grout using trer	nie methods
	icounter atic Gro			er Depth h							epth To ⊻ (ft)	15.05		Depth To 👤 (ft)	14.5
=	mple Co mple Ar										ïme: Date:	09:40 06/08/09	9	Time: Date:	10:20 06/08/09
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME		DEPTH (ft)	SAMPLE	GRAPHIC LOG	nscs				DESCR		
				1500		-			¢		CONCRETE BLACK TO DAR	K BROWN	SILTY CI	AY (CL)	
						1 2 3			CL		DARK BROWN	ist, no odor	r		
/ \/	12	5.0	1.5	1520		- 4 5								occasional seams of	gravelly and silty
\bigwedge	42	5.0	1.7	1320		6 7			GC						
	42	9.0	1.7	1530		8 9 10 11			GM		MOTTLED GRA GRAVEL (GM) medium dense, I			GHT BROWN CLAY	ΈΥ SILTY
/ \	48		53.2			12						(0.5.1)//0/		TO 00 41105 000	
						13					(CL)			TO ORANGE BRO eams, with slight oc	
\bigwedge						14 15			CL	⊻ ⊻		ight brown,	no mottlir	ng below 15 feet, no	odor
	48		93.2			16 17	\vdash				biogenic debris				
						18					LIGHT GRAY SA		Y (CL)	nt biogenic debris ar	nd staining
$/ \setminus$	48		47.6			19			CL		meaiain sun, ma	13t, 110 UUUI	, aburiudi		Page 1 of

	B U R E VERIT	AUAS		LOG	6 OF	SOIL	_ BOF	RING		Project No.:33104-004578.00Project Name:Former Sausage FactoryLocation:Oakland, CaliforniaLogged By:TGB	BORING NO. SVGW-4
SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	BLOW COUNT		DEPTH (ft) SAMPLE	GRAPHIC LOG	nscs	DESCRIPTION	
							21		CL	LIGHT GRAY TO BROWN SILTY CLAY (CL)	
							22			medium stiff, moist, no odor driller reports borehole dry, advance to 28 feet	
	48	-		-			24 — 25 —		CL	color change to light grayish green	
							26				
	48						28			slight petroleum odor at 27.5 feet	
							29			Bottom of boring at 28 feet bgs.	
							30			Groundwater encountered at 15.05 feet on 6/8/09.	
							31 —				
							32				
							33 —				
							34 -	-			
							35 -	-			
							36 -	-			
							37				
							38				
							39				
							40 +				
							41				
							43				
							44 -				
											Page 2 of 2

APPENDIX H

GROUNDWATER MONITORING AND SAMPLING LOGS

	(GROUNDWATE	R SAMP	LING DATA	SHEET			
Project Nam	e: Former Lemoine S	Sausage Factory		Well ID Numbe		MW-	1	
Project No .:				Sample ID Num		MW-		
Project Loca		Avenue, Oakland, CA	4	Date Gauged:		11-09	·	
Field Techni	the second s	Jeremy Wilson	n	Date Purged:		1		
Weather Cor	nditions: Mostly	Clear Jo's		Date Sampled:		t		
Top of Casin	ng Elevation (ft, msl):	16.69		Casing Diameter	(inches):	3/4		
	ter Elevation (ft, btoc)	<u> </u>	7	Wellhead Condi		OK		
	Elevation (ft, msl):	//. !		Presence of Wel	lhead Gases	s: No		
	ll Bottom (ft, btoc):	7.69		Vapor Reading (ppm):	1976 -	-	
	nn Height (ft):	2.4	3	Presence of SPH	:	10		
	urge Volume (gal):	0.079		Thickness of SPI	H (ft):	-		
allons Per Foot: ["=	e Volume (gal): 0.04, 2"=0.17, 3"=0.37, 4"=0.66, 6"=	=1.5 other =2 = 0.1/2		Comments:				
			3/4" = 0	ASUREMENTS				
	Volume Removed			Dissolved	T	Tunktit		
Time	(gal)	Specific Conductivity	Temp	Oxygen	pН	Turbidity (NTUs) or	ORP	0 4
	(8)		(°C)	(mg/L / %)	(units)	TDS g/L	UKF	Odor
								1
					┟──┤			
					┝───┼			
			·		┝───┼			
	†							
	<u>├</u> ────							
ater Level In	dicator Model & No.:	WIT-D.L.		Dumon Matha 1				
I/Cond/Tem		-22		Purge Method:	NA			
rbidity Mete		1-		Purge Equipment U		A		
				Purge Rate (gpm):	NA			
mple Collect	tion Time: 123	5		Themical Labor-t-				
mple Collect		talter Pump		Chemical Laborato Chemical Analysis		urtis and Tompk		
mple Contair		oas		Analysis		l-g/BTEX/VOC	<u> </u>	

	G	ROUNDWATE	R SAMP	LING DATA	SHEET			
Project Nam	e: Former Lemoine S	ausage Factory		Well ID Numbe		MW-	2	
Project No .:	33104-004578.00			Sample ID Num		MW-		
Project Loca		venue, Oakland, CA	4	Date Gauged:		11-09	4	
Field Techni		Jeremy Wilso	n	Date Purged:		1		
Weather Con	iditions: Mostly	class , 905		Date Sampled:		<u> </u>		
Fop of Casin	g Elevation (ft, msl):	20.79	9	Casing Diameter	(inches):	3/4'	1	
	ter Elevation (ft, btoc)	10.	54	Wellhead Condi				
	Elevation (ft, msl):	10.2	5	Presence of Wel	lhead Gase			
	ll Bottom (ft, btoc):	0.79)	Vapor Reading (~		
	n Height (ft):	9.4	6	Presence of SPH		No		
	urge Volume (gal):	0.7	7-	Thickness of SPI				
Actual Purge	Volume (gal):			Comments:	<u> </u>			
allons Per Foot: 1"=(0.04, 2"=0.17, 3"=0.37, 4"=0.66, 6"=						<u> </u>	
	T	PUR	GING ME	ASUREMENTS				
Time	Volume Removed	Specific	Temp	Dissolved	pН	Turbidity		
	(gal)	Conductivity	(°C)	Oxygen	(units)	(NTUs) or	ORP	Odor
				<u>(mg/L / %)</u>		TDS g/L		
	+							
······								
,								
ater Level In	dicator Model & No.:	WLI-In-how	<u>x</u>	Purge Method:	NA			
	o Meter Model: 🔰 🔰	-22		Purge Equipment I		A		
rbidity Mete	r Model:	L		Purge Rate (gpm):	A لہ			
				Se inte (Spin):				
nple Collect		-0	(Chemical Laborato	rv C	urtie and Tom-1	ina	
nple Collect	ion Method: Porr.3			Chemical Analysis		urtis and Tompk I-g/BTEX/VOC		
nple Contair		oas		Analysis	IPr	1-g/BIEX/VOC	<u> </u>	
er Field Obs	servations: NO D	Kying due .	o limite	d well volu.				

Project No.:	' Former Lamour - 6	Sausage Factory		LING DATA			· · · · · · · · · · · · · · · · · · ·	
	33104-004578.00			Well ID Numbe		MW-	-6	
Project Locati		Avenue, Oakland, C	A	Sample ID Num		MW	-6	
Field Technic				Date Gauged:	6-1	1-09		
Weather Conc		Jeremy Wilso	<u>n</u>	Date Purged:				
	mions. Mosty	Clear, Jo's		Date Sampled:				
Гор of Casing	Elevation (ft, msl):	16.6	0	Casing Diamete	r (inches):			
	er Elevation (ft, btoc)): [06	Wellhead Condi		ox		
	Elevation (ft, msl):	10	54	Presence of Wel				
	Bottom (ft, btoc):	-3.4	0	Vapor Reading (
Vater Column			r 1394	Presence of SPH		NO		
	rge Volume (gal):	-	F 2 37	Thickness of SP				
Actual Purge	Volume (gal):	0		Comments:	<u> </u>			
allons Per Foot: 1"=0.0	04, 2"=0.17, 3"=0.37, 4"=0.66, 6"							
	·		GING MEA	SUREMENTS		Vilacl		
Time	Volume Removed	W Specific	Temp	Dissolved	pH	Turbidity		
	(gal)	Conductivity	(°C)	Oxygen	(units)	(NTUs) or	ORP	Odor
250	2.5	1134	20,76	(mg/L//%)	7.34	TDS g/L Cew	25 0	
255	2 <	1759	20. 11	100	7.29		-30,3	NO
301	2.5	1799	19.86	2 2 10		clear slaufly	-9.4	NO
200	2.5	1288			1,20	clordy scantly	14.4	NU
5	- L. 3	1780	19.85	2.35	7.21	Cloudy	39.0	No
			┼───┤				┝───┤	
			┢━━━━━┥					
					┝───┤		└ <u>─</u> ──	
						· · · · · · · · · · · · · · · · · · ·		

	G	ROUNDWATE	R SAMP	LING DATA	SHEET			
Project Name:	Former Lemoine S	ausage Factory		Well ID Number		MW-	7	R - 8
Project No .:	33104-004578.00			Sample ID Num				
Project Locati	on: 630 29th A	venue, Oakland, CA		Date Gauged:		6-11-05	/	S
Field Technic	ian:	Jeremy Wilson	1	Date Purged:		1		
Weather Cond	litions: mostl+ c	lear 20's bri	lezu	Date Sampled:				
	Elevation (ft, msl):	15.47	7	Casing Diameter	(inches)	2		
	r Elevation (ft, btoc)	6.1	Ч	Wellhead Condit		ok		
	Elevation (ft, msl):	9.7		Presence of Well	lhead Gase	S: NO		
	Bottom (ft, btoc):	-4.53	}	Vapor Reading (AT		
Water Column		13.0	26	Presence of SPH		V 6		
	rge Volume (gal):	2.8	No Ko	Thickness of SPI				
Actual Purge V	Volume (gal):			Comments:				
allons Per Foot: 1"=0.0	04, 2"=0.17, 3"=0.37, 4"=0.66, 6"=	the second s						
		PUR	GING MEA	SUREMENTS		(h) wal		
Time	Volume Removed	Specific	Temp	Dissolved	pH	Turbidity		
	(gal)	Conductivity	(°C)	Oxygen (mg/L/ %)	(units)	(NTUs) or	ORP	Odoi
1430	2,50	1186	19.74	2,43	7.27	TDS g/L Clondy	131.5	4.44
1435	2,50	1162	19.24	192	7.28	Cload of + +ellowish		NO
1440	2.50	1155	19.61	1.1.5		fellowish Clonar un	124,1	No
1445				2.05	7.26	the sedments	120,5	In
1113	2.50	1151	18.83	1.98	7.26	the segment	121.3	No
		i	-					
ſ								
ater Level Inc	licator Model & No.:	WLI- Jahons	ie I	Purge Method:	Dec.	osoble Bri	160	
I/Cond/Temp	Meter Model:	1-22		Purge Equipment	Used:			
arbidity Meter	Model:	+		Purge Rate (gpm):				
				<u> </u>				
mple Collecti		1955	(Chemical Laborato	ory: (Curtis and Tomp	kins	
mple Collecti		suble Boner		Chemical Analysis		H-g/BTEX/VOC		
mple Contain		/oas				g bi LA VOC	<u>, </u>	
		· · · · · · · · · · · · · · · · · · ·			7/ 1			
her Field Obs	ervations: 40	dar						

Project Name	: Former Lemoine	GROUNDWATE						
Project No.:	33104-004578.00		#	Well ID Numbe		MW-8		
Project Locat		Avenue, Oakland, CA	2	Sample ID Num		MW-8	8	
Field Technic				Date Gauged:	6.	-11-09		
	ditions: Nostly	Jeremy Wilson	<u>n</u>	Date Purged:	_			
	attons. Nos Ply	cloudy VON		Date Sampled:				
	g Elevation (ft, msl):			Casing Diameter	r (inches):	2'		
	er Elevation (ft, btoc):7,5	57	Wellhead Condi	tion:	oK		
	Elevation (ft, msl):	<u> </u>	0	Presence of Wel	lhead Gase	s: NO		
	Bottom (ft, btoc):	-2.42	2	Vapor Reading (ppm):			
Vater Colum		12	.43	Presence of SPH	[:	NO		
	rge Volume (gal):	2.	11	Thickness of SP	H (ft):			
Actual Purge	Volume (gal):	7.25	_	Comments:				
alions Per Foot: 1"=0.	.04, 2"=0.17, 3"=0.37, 4"=0.66, 6							
	T	PUR	GING MEA	SUREMENTS				
Time	Volume Removed		Temp	Dissolved	рН	Turbidity		
	(gal)	Conductivity	(°C)	Oxygen (mg/L / %)	(units)	(NTUs) or TDS g/L	ORP	Odor
102	0,5	1392	15.86	2.21	7.48	Clerr	-50,7	705
1106	2.25	1317	15.97	1.98	7.44	c la	-48,3	
111	2.25	1387	16.07	1.85	7.18	creir	-39.6	+4
1120	2.25	14.01	16.19	1.94	7.14	CLEAR WI Some gratsite	-46.2	40
								1.02
						~		
,				· · · · · · · · · · · · · · · · · · ·	<u>├ </u>			
				8				
							+	
	12							
ater Level In	dicator Model & No	. WEI- Inhouse	• 1	Dunne Matha J	0			
I/Cond/Temp	Meter Model:	4-22	_	Purge Method: Purge Equipment		seble Ba	kr	
urbidity Meter		<u> </u>				<u></u>		_
			<u>-</u>	Purge Rate (gpm):				
mple Collect	ion Time: II S	D	(Chemical Laborate	om/ (Curtin and Town	l.:	
mple Collect	ion Method: 0.34	osybk Bater		Chemical Analysis		Curtis and Tomp H-g/BTEX/VOC		·
mple Contain		Voas	`		<u>. </u>	II-g/DICA/VUC	.5	
her Field Obs	servations: Moder	te petrolenn	alar	well ou	mad			
	re event		SODTW		sec a	Iry at e	nd 0 f	-

Project No.: 3 Project Location: Field Technician Veather Condition Cop of Casing El Depth to Water Ele Depth to Water Ele Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1°=0.04, 2	evation (ft, msl): Elevation (ft, msl): Elevation (ft, btoc): Evation (ft, msl): ottom (ft, btoc): Leight (ft): Evolume (gal):	venue, Oakland, CA Jeremy Wilson 17.61 0.5 17.61 0.5 1.5, other= r2 x 0.163	53 08 7 14	Well ID Number: Sample ID Numb Date Gauged: Date Purged: Date Sampled: Casing Diameter Wellhead Conditi Presence of Welll Vapor Reading (p Presence of SPH: Thickness of SPH Comments:	(inches): (inches): on: head Gase: ppm):	MW-5 MW-5 _11-09)	
Project Location: Field Technician Veather Condition Fop of Casing El Depth to Water Ele Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1"=0.04, 2 V	: 630 29th A : 0ns: 630 29th A	Jeremy Wilson 17.61 17.61 17.61 17.61 17.61 1.7.	53 08 7 14	Date Gauged: Date Purged: Date Sampled: Casing Diameter Wellhead Conditi Presence of Welll Vapor Reading (p Presence of SPH: Thickness of SPH	(inches): on: head Gase: ppm):	2' 2' 0 K 5: NO		
Field Technician Veather Condition Fop of Casing El Depth to Water E Depth to Water Ele Depth to Well Bo Vater Column H Calculated Purge Votal Purge Vol allons Per Foot: 1"=0.04.2	exation (ft, msl): Elevation (ft, msl): Elevation (ft, btoc): Evation (ft, msl): ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): 2 ^{*=0.17, 3*=0.37, 4*=0.66, 6*=}	Jeremy Wilson 17.61 17.61 17.61 17.61 17.61 1.7.	53 08 7 14	Date Purged: Date Sampled: Casing Diameter Wellhead Conditi Presence of Well Vapor Reading (p Presence of SPH: Thickness of SPH	(inches): on: head Gases opm):	2' 0 K s: No	•	
Veather Condition Fop of Casing El Depth to Water Ele Depth to Well Bo Vater Column H Calculated Purge Vol allons Per Foot: 1"=0.04, 2	ons: Mostly C levation (ft, msl): Elevation (ft, btoc): evation (ft, msl): ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): 2 ^{*-0.17, 3*-0.37, 4*-0.66, 6*-0}	17.61 17.61 17.61 17.61 2.61 8.4 1.5, other= r2 x 0.163 PURC	53 08 7 14	Date Sampled: Casing Diameter Wellhead Conditi Presence of Welll Vapor Reading (p Presence of SPH: Thickness of SPH	on: head Gase: opm):	0 K s: N0	1	
Top of Casing El Depth to Water Ele Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1"=0.04, 2	levation (ft, msl): Elevation (ft, btoc): evation (ft, msl): ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): 2 ^{*-0.17, 3*-0.37, 4*-0.66, 6*-}	17.61 b . 5 <u>1</u> . 6 <u>2.61</u> <u>8.4</u> <u>1.4</u> <u>2.5</u> 1.5, other= r2 x 0.163 PURC	53 58 7 14	Casing Diameter Wellhead Conditi Presence of Well Vapor Reading (p Presence of SPH: Thickness of SPH	on: head Gase: opm):	0 K s: No	· · · · · · · · · · · · · · · · · · ·	
Depth to Water Ele Groundwater Ele Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1"=0.04, 2	Elevation (ft, btoc): evation (ft, msl): ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): ^{2*-0.17, 3*-0.37, 4*-0.66, 6*-}	0.5 1.5. other= r2 x 0.163	53 58 7 14	Wellhead Conditi Presence of Well Vapor Reading (p Presence of SPH: Thickness of SPH	on: head Gase: opm):	0 K s: No	2	
Groundwater Ele Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1"=0.04, 2	evation (ft, msl): ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): 4. 2 ^{*-0.17, 3*-0.37, 4*-0.66, 6*-1}	1.5, other= r2 x 0.163	28 7 14	Presence of Well Vapor Reading (p Presence of SPH: Thickness of SPH	head Gases opm):	s: No		
Depth to Well Bo Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1°=0.04, 2	ottom (ft, btoc): leight (ft): e Volume (gal): lume (gal): 2"=0.17, 3"=0.37, 4"=0.66, 6"= Volume Removed	2.61 8.4 1.4 2.5 1.5, other= r2 x 0.163 PURC	7 14	Vapor Reading (p Presence of SPH: Thickness of SPH	opm):	-	19.	
Vater Column H Calculated Purge Actual Purge Vol allons Per Foot: 1°=0.04. 2	leight (ft): e Volume (gal): lume (gal): 4. 0.17, 3"=0.37, 4"=0.66, 6"= Volume Removed	8.4 1.4 2.5 1.5, other= r2 x 0.163 PURC	7	Presence of SPH: Thickness of SPH	N	200	30.	
Calculated Purge Actual Purge Vol allons Per Foot: 1"=0.04, 2	volume (gal): ume (gal): 4. "-0.17, 3"-0.37, 4"-0.66, 6"	1.5, other= r2 x 0.163		Thickness of SPH		<u>~~</u>		
Actual Purge Vol allons Per Foot: 1"=0.04, 2	lume (gal): 4. 2"=0.17, 3"=0.37, 4"=0.66, 6"= Volume Removed	25 1.5, other= r2 x 0.163 PURC			I (ft):	\sim		
allons Per Foot: 1"=0.04, 2	2*=0.17, 3*=0.37, 4*=0.66, 6*= /olume Removed	PURC		Comments:				
	/olume Removed	PURC						
Time				SUREMENTS	P141		·	
Time V		Specific 15/		Dissolved	200	Turbidity		
	Acri	Conductivity	⁄ ጝ Temp (°C)	Oxygen (mg/L) / %)	pH (units)	(NTUs) or TDS g/L	ORP	Odor
053	(SOQU.7	76.5	16.89	2-35	1.20	Var Clear	-41.8	Nes
1057	1.5	81.51	1686	2 PLV	692	Cler	-296	Yes
10-06	MARS1.5	111.23	1690	3,32	6.67	Goldy	-30.7	Vee
1115	0.75	117.38	1691	2 712	6.57	Cloudy	202	Yes
			10_0:				~~ <u>`</u>	105
							<u> </u>	
		· WLJ- Zohan		Purge Method:		osuble Bo	an	
H/Cond/Temp N		-22		Purge Equipment				
urbidity Meter N	Model:			Purge Rate (gpm):				
	11146							
ample Collection				Chemical Laborate		Curtis and Tomp		-
ample Collection		losoble Bailer		Chemical Analysis	<u>s: TP</u>	H-g/BTEX/VO	Cs	
ample Container	rs Used:	Voas						
ther Field Obser	rvations: lase 11	purged dry	dra b .	2.1 0	ree ev	Vat		
Moderate PC	holeis	oder	1135	ATIO II	1.	Supply 1		

	G	ROUNDWATE	R SAMP	LING DATA	SHEET					
Project Name	Former Lemoine S	ausage Factory		Well ID Number		MW-10)			
Project No.:	33104-004578.00			Sample ID Number: MW-10						
Project Locati	on: 630 29th A	venue, Oakland, CA	A	Date Gauged:		-11-09				
Field Technic	ian:	Jeremy Wilso	n	Date Purged:		1				
Weather Conc	litions: mosh	2 Clan 205		Date Sampled:		1		· · ·		
	Elevation (ft, msl):	16.92		Casing Diameter	(inches):	2"	· · · · · · · · · · · · · · · · · · ·			
	er Elevation (ft, btoc)	5.	01	Wellhead Condit	tion:	ok				
	Elevation (ft, msl):	11.7	21	Presence of Well	head Gase					
	Bottom (ft, btoc):	7.92		Vapor Reading (ppm):	-				
Water Column	the second s	3.		Presence of SPH	:	No				
	rge Volume (gal):	<u>0</u> .	58	Thickness of SPI	H (ft):	~				
Actual Purge	Volume (gal): 24, 2"=0.17, 3"=0.37, 4"=0.66, 6"=	2,25		Comments:						
anous rei root. 1 -0.4	4, 2 =0.17, 3*=0.37, 4*=0.66, 6*=		CINCIME	SUREMENTS						
				Dissolved	T					
Time	Volume Removed	Specific	Temp	Oxygen	pН	Turbidity (NTUs) or	ORP			
	(gal)	Conductivity	(°C)	(mg/L / %)	(units)	TDS g/L	URP	Odor		
12 50	0.75	726	2294	1-88	795	Are	-915	11		
17.55	77 (1)	793	2258	7.42	792	Clear Yellow		La		
1300					5		-184.2	TVU		
1,700	0.18		22.76	2.44	182	Clear	-94.5	-700		
								• · ·		
								_		
						T				
					0					
ater Level Inc	licator Model & No.:	WT- John			•					
H/Cond/Temp		4-22		Purge Method:	07	possible B.	nler_			
urbidity Meter		1		Purge Equipment						
				Purge Rate (gpm):						
ample Collecti	on Time: 13 C	>								
umple Collecti		stable A as		Chemical Laborate		Curtis and Tompl				
imple Contain		oas		Chemical Analysis	E TP	H-g/BTEX/VOC	s			
		043								
	6	0 0 0								
her Field Obs	ervations: h) L	Roxyed Dr	y dun	y 3rd	Puge	- Evens				

1.5

	G	GROUNDWATE	R SAMP	LING DATA S	SHEET			
Project Name	: Former Lemoine S			Well ID Number	the second s		<u> </u>	80 G
Project No .:	33104-004578.00			Sample ID Num				1997 - W. 199
Project Locati	ion: 630 29th A	Avenue, Oakland, CA		Date Gauged:		-09		
Field Technic		Jeremy Wilson		Date Purged:				
Weather Conc	ditions:	chardy 60's		Date Sampled:				
		,						
	g Elevation (ft, msl):	14.87		Casing Diameter	(inches):	2"	,	
	er Elevation (ft, btoc)			Wellhead Condit		OF		
	Elevation (ft, msl):		72	Presence of Well	head Gases	s: N6		
	Bottom (ft, btoc):	-0.13		Vapor Reading (ppm):	~		
Water Column		8.8	5	Presence of SPH	:	NO		
	rge Volume (gal):	1.0	51	Thickness of SPH	l (ft):	~		
Actual Purge	Volume (gal): 04, 2"=0.17, 3"=0.37, 4"=0.66, 6":	5.25		Comments:				
Ganons Per Poor: 1 =0,1	04, 2*=0.17, 3*=0.37, 4*=0.66, 6*:		TINC MEA	SUREMENTS				
				Dissolved		T		
Time	Volume Removed		Temp	Oxygen	рН	Turbidity (NTUs) or	ORP	Odor
	(gal)	Conductivity	(°C)	(mg/L / %)	(units)	TDS g/L	URF	Udor
1430	1757175	1759	19.93	3,81	782		44.2	NO
440	175	1802	19,87	3.50	730	(Lear -	-21.9	No
1445	175	1813	19.76	3,55	729	and a	- 19.5	$\frac{1}{1}$
		-10-2	11/6		101	Clear	192	NO
· · · · · · · · · · · · · · · · · · ·								
								(
			1					
Water Lovel In	diantar Madal 9 M	. 7. 7. 1.		,				
pH/Cond/Temp		WLL-I-hous		Purge Method:		soble Bor	<u> </u>	-
Turbidity Meter		- 22		Purge Equipment I				2
ruiolally wieter				Purge Rate (gpm):				
Sample Collect	ion Time: 1500	O		~				
Sample Collecti		soble Byiler		Chemical Laborato		Curtis and Tompl		
Sample Contain		Voas	(Chemical Analysis	<u> </u>	H-g/BTEX/VOC	S	
		1043			······		. <u> </u>	
Other Field Obs	servations:	Purged D	0.	. 210	,	<u>< </u>		
	We !!	- pr vy	him	J Jro K	vry2	Event		

	G	ROUNDWATE	R SAMPI	LING DATA S	HEET			
Project Name:	Former Lemoine S		11.5	Well ID Number	No.	MW-12	2	
Project No.:	33104-004578.00			Sample ID Numb	ber:	MW-12		9
Project Location	on: 630 29th A	venue, Oakland, CA		Date Gauged:		6-11-09		
Field Technici	ian:	Jeremy Wilson		Date Purged:		1		
Weather Cond	litions: porth	cloudy 60:	5	Date Sampled:				
Top of Casing	Elevation (ft, msl):	14.05		Casing Diameter	(inchoo);	2'	1	
	r Elevation (ft, btoc)			Wellhead Condit		• • ×		·
	Elevation (ft, msl):	8.3		Presence of Well				
	Bottom (ft, btoc):	-0.95		Vapor Reading (p		<u>, NO</u>		
Water Column		q.		Presence of SPH:		20		
	rge Volume (gal):		8	Thickness of SPH				
Actual Purge			<u> </u>	Comments:	<u>I (II)</u> .			
	04, 2*=0.17, 3*=0.37, 4*=0.66, 6*=	=1.5, other= r2 x 0.163	``	Comments.				
		PUR	GING MEA	SUREMENTS				
Time	Volume Removed (gal)	Specific Conductivity	Temp (°C)	Dissolved Oxygen (mg/L / %)	pH (units)	Turbidity (NTUs) or TDS g/L	ORP	Odor
13:37	0.5	1321	20.0Z	9.36	\$13	Clear	-721	No
13:40	1.75	1322	1950	431	7,62	Clear	-44.7	No
13:50	1.75	1290	1899	3.40	7.45	Clear	-36.1	No
13:55	175	1260	198.88	292	7.39	Clear	-212	NG
14:00	175	12 58	18.25	2,87	740	Cher	-220	NO
	,							
V., T 1T	N							
		· WLI-Inhow U-22		Purge Method: Purge Equipment		003 tole &	aller	
Turbidity Mete		7		Purge Rate (gpm):				
		5						
Sample Collect				Chemical Laborat		Curtis and Tomp		
Sample Collect		Voas	<u> </u>	Chemical Analysi	s: TP	H-g/BTEX/VO	Cs	
								-
Other Field Ob	servations: No	oder						
	·							

	G	ROUNDWATER	R SAMPI	JING DATA S	HEET						
Project Name:	Former Lemoine Sa	ausage Factory		Well ID Number	:	MW-13					
Project No.:	33104-004578.00			Sample ID Number: MW-13							
Project Locatio	on: 630 29th A	venue, Oakland, CA		Date Gauged:	b-	11-09		-			
Field Technici	an:	Jeremy Wilson		Date Purged:							
Weather Condi	itions: MOSHL	clear Do's		Date Sampled:	_						
	J										
	Elevation (ft, msl):	13.39		Casing Diameter	(inches):	2"					
•	r Elevation (ft, btoc):	6.1		Wellhead Condition:							
	Elevation (ft, msl):	Presence of Well	head Gases	s: <u>No</u>							
	Bottom (ft, btoc):	Vapor Reading (ppm):									
Water Column		8.8	9	Presence of SPH		No					
	ge Volume (gal):	1.51		Thickness of SPI	H (ft):						
Actual Purge	Volume (gal):)4, 2"=0.17, 3"=0.37, 4"=0.66, 6"=	7.25		Comments:	-						
Januis Fa 1'000: 1 #0.0	m, 2 −0.17, 3 −0.57, 4 =0.06, 6"=		ING ME	SUREMENTS				•			
				Dissolved		Turbidity	r				
Time	Volume Removed	Specific Conductivity	Temp	Oxygen	pH	(NTUs) or	ORP	Odor			
	(gal)	Conductivity	(°C)	(mg/L / %)	(units)	TDS g/L					
1342	1,5	M32	21.29	2.24	7.46	clear	52,6	Yes			
1345	1,5	1142	20.99	1.84	7.42	clear	-12.5	Jes			
1348	1.25	1099	20.28	1,89	2.38	crear w/ array sedment	-45.7	4es			
						,					
		· · · · ·									
· · · · · · · · · · · · · · · · · · ·											
					<u> </u>						
Vater Level In	dicator Model & No.	. D. house		Purge Method:		Brosdole	8-00				
		La- ZZ		Purge Equipment			10 46 hg-1				
urbidity Mete		<u>L-Ch</u>		Purge Rate (gpm)							
urolaty wrote				Turge Rate (gpin)	<u>). </u>	~					
ample Collect	tion Time: 1405	5		Chemical Labora	tory:	Curtis and Tom	pkins				
ample Collect	ion Method:	Posoble Built	er	Chemical Analys		PH-g/BTEX/VO					
ample Contair		Voas				<u> </u>					
	····										
ther Field Ob	servations: slight	- moderate ch	emizal e	odor	1403	DTW	8.54				
well purg		and the second	ge ever	A							

Groundwater Elevation Data Former Lemoine Sausage Factory 630 29th Avenue Alameda, California

Well Identification	Date Measured	Time Measured	Time Sampled	Top of Casing Elevation (ft,msl)	Initial Depth to Water (feet)	Sampling Depth to Water (feet)	Groundwater Elevation (ft,msl)
MW-1	6-11-09	948	1235	16.69	5.57	5.50	11.12
MW-2	6-11-09	1012	1220	20.79	10.54	10.54	10.25
				20.75		10.31	
MW-6	6.11.09	945	1315	16.6	6.06	6,00	10,54
MW-7	6-11-09	100 2	1455	15.47	6.14	6.14	9.33
MW-8	6-11-09	955	1150	17.58	n.57	1,57	10,01
MW-9	6.11-09	958	1140	17.61	6.53	6.53	11.08
				17.01	0.32		11.00
MW-10	6-11-09	952	1310	16.92	5.61	5.01	11.31
MW-11	6-11-09	1004	1500	14.87	6.15	6,15	8.72
MW-12	6-11-09	1007	1405	14.05	5.69	5.69	8.36
MW-13	6-11-09	1010	1405	13.39	6.1	6.11	2.28
Notası							

Notes:

4.10

1. Top of casing elevations are referenced to mean sea level (msl). The reference point is the benchmark

APPENDIX I

CHAIN-OF-CUSTODY DOCUMENTATION AND CERTIFIED ANALYTICAL RESULTS FOR SOIL VAPOR

18 June 2009

Mr. Timothy Bodkin Bureau Veritas North America Inc. 2430 Camino Ramon, Suite 122 San Ramon, CA 94583

SUBJECT: DATA REPORT - Bureau Veritas North America Inc. Project # 33104-004578.00 630 29th Avenue, Oakland, California

TEG Project # 90603D

Mr. Bodkin:

Please find enclosed a data report for the samples analyzed from the above referenced project for Bureau Veritas North America Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 22 analyses on 22 soil vapor samples.

-- 22 analyses on soil vapors for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

1,1 difluoroethane was used as a leak check compound around the probe rods during the soil vapor sampling. No 1,1 difluoroethane was detected in any of the vapor samples reported at or above the DTSC recommended leak check compound reporting limit of 10 μ g/L of vapor, except for leak check compound detected during subsequent sampling in SVGW-3 during the purge volume test, probably due to a combination of shallow sampling depth and a very large purge volume.

TEG appreciates the opportunity to have provided analytical services to Bureau Veritas North America Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

Bureau Veritas North America Inc. Project # 33104-004578.00 630 29th Avenue, Oakland, California

TEG Project #90603D

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		Air Blank	Air Blank	B-12	B-13	B-14	B-15	B-16	B-16 dup
SAMPLE DEPTH (feet):				3.0	3.0	3.0	3.0	3.0	3.0
PURGE VOLUME:				3	3	3	3	3	3
COLLECTION DATE:		6/03/09	6/04/09	6/04/09	- 6/04/09	6/04/09	6/04/09	6/04/09	6/04/09
COLLECTION TIME:		08:49	08:06	10:24	10:03	09:39	09:16	08:35	08:35
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1	1
Dichlorodifluoromethane	100	nd							
Vinyl Chloride	100	nd							
Chloroethane	100	nd							
Trichlorofluoromethane	100	nd							
1,1-Dichloroethene	100	nd							
1,1,2-Trichloro-trifluoroethane	100	nd							
Methylene Chloride	100	nd							
trans-1,2-Dichloroethene	100	nd							
1,1-Dichloroethane	100	nd							
cis-1,2-Dichloroethene	100	nd							
Chloroform	100	nd							
1,1,1-Trichloroethane	100	nd							
Carbon Tetrachloride	100	nd							
1,2-Dichloroethane	100	nd							
Benzene	100	nd							
Trichloroethene	100	nd	nd	nd	nd	nd	nd	570	590
Toluene	200	nd							
1,1,2-Trichloroethane	100	nd							
Tetrachloroethene	100	nd							
Ethylbenzene	100	nd							
1,1,1,2-Tetrachloroethane	100	nd							
m,p-Xylene	200	nd							
o-Xylene	100	nd							
1,1,2,2-Tetrachloroethane	100	nd							
1,1 Difluoroethane (leak check)	10000	nd							
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (1,4-BFB)		104% 98% 107%	102% 93% 107%	107% 99% 109%	106% 98% 109%	105% 96% 108%	104% 98% 110%	106% 98% 107%	105% 96% 109%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Jon Edmondson

page 1

Bureau Veritas North America Inc. Project # 33104-004578.00 630 29th Avenue, Oakland, California

TEG Project #90603D

SAMPLE NUMBER:	- :	B-17	B-18	B-18	B-19	B-20	B-21	SV-1	SV-1
				dup					dup
SAMPLE DEPTH (feet):		3.0	3.0	3.0	3.0	3.0	3.5	3.0	3.0
PURGE VOLUME:		3	3	3	3	3	3	3	3
COLLECTION DATE:		6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09
COLLECTION TIME:		16:01	15:22	15:22	15:03	12:40	12:19	14:09	14:09
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1	1
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	670	580	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Benzene	100	nd	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	100	nd	200	180	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (1,4-BFB)		104% 97% 109%	106% 97% 108%	105% 98% 109%	106% 99% 109%	107% 108% 110%	104% 96% 107%	105% 96% 108%	104% 96% 107%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Jon Edmondson

page 2

Bureau Veritas North America Inc. Project # 33104-004578.00 630 29th Avenue, Oakland, California

TEG Project #90603D

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		SV-2	SV-3	SVGW-1	SVGW-2	SVGW-3	SVGW-3	SVGW-3	SVGW-4
SAMPLE DEPTH (feet):		3.0	3.5	3.0	3.0	3.0	3.0	3.0	3.0
PURGE VOLUME:		3	3	3	3	1	3	7	3
COLLECTION DATE:		6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09	6/03/09
COLLECTION TIME:		11:31	10:51	11:57	13.09	09:17	09:51	10:26	13:39
DILUTION FACTOR (VOCs):	RL	1	1	1	1	1	1	1	1
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Benzene	100	nd	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd	260000	nd
Surrogate Recovery (DBFM) Surrogate Recovery (1,2-DCA-d4) Surrogate Recovery (1,4-BFB)		105% 99% 109%	106% 98% 108%	105% 96% 108%	105% 100% 108%	104% 97% 108%	104% 96% 110%	105% 98% 109%	106% 99% 110%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

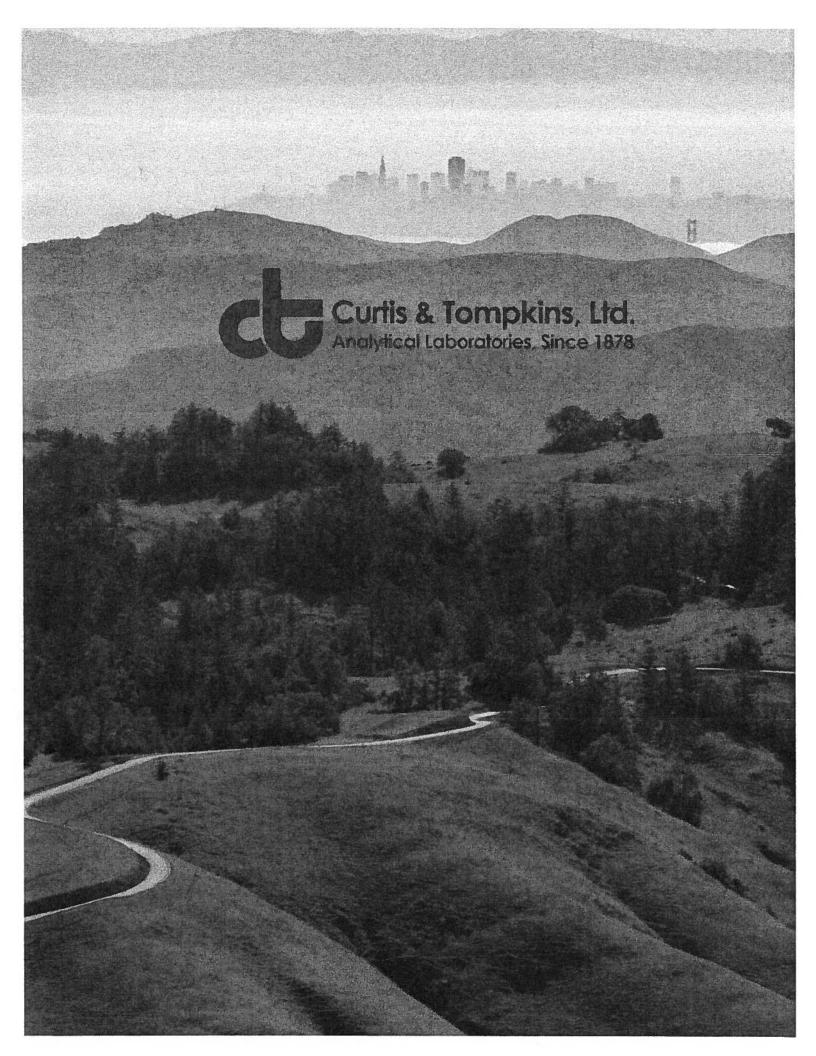
Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Jon Edmondson

page 3

Bureau Veritas North America Inc. Project # 33104-004578.00 630 29th Avenue, Oakland, California

TEG Project #90603D

CALIBRATION STANDARDS - Initial Calibration / LCS


	INITIAL CA	LIBRATION	1 (CS
COMPOUND	RF	%RSD	RF	%DIFF
Dichlorodifluoromethane*	0.416	8.1%	0.477	14.7%
Vinyl Chloride*	0.464	8.2%	0.539	16.2%
Chloroethane*	0.232	8.7%	0.256	10.3%
Trichlorofluoromethane	0.342	6.2%	0.378	10.5%
1,1-Dichloroethene	0.228	6.0%	0.228	0.0%
1,1,2-Trichloro-trifluoroethane*	0.230	6.2%	0.263	14.3%
Methylene Chloride	0.271	5.4%	0.286	5.5%
trans-1,2-Dichloroethene	0.262	4.2%	0.291	11.1%
1,1-Dichloroethane	0.582	6.6%	0.632	8.6%
cis-1,2-Dichloroethene	0.277	2.8%	0.306	10.5%
Chloroform	0.455	4.1%	0.490	7.7%
1,1,1-Trichloroethane	0.382	4.9%	0.412	7.9%
Carbon Tetrachloride	0.292	4.2%	0.326	11.6%
1,2-Dichloroethane	0.347	6.6%	0.373	7.5%
Benzene	1.169	9.8%	1.276	9.2%
Trichloroethene	0.281	2.7%	0.303	7.8%
Toluene	0.702	10.0%	0.752	7.1%
1,1,2-Trichloroethane	0.164	3.1%	0.175	6.7%
Tetrachloroethene	0.196	3.7%	0.213	8.7%
Ethylbenzene	0.584	6.2%	0.599	2.6%
1,1,1,2-Tetrachloroethane	0.296	6.6%	0.305	3.0%
m,p-Xylene	0.697	12.9%	0.750	7.6%
o-Xylene	0.663	8.7%	0.692	4.4%
1,1,2,2-Tetrachloroethane	0.620	6.0%	0.597	3.7%
Acceptable Limits		20.0%		15.0%

'*' Indicates RSD not to exceed 30% & LCS not to exceed 25%

APPENDIX J

CHAIN-OF-CUSTODY DOCUMENTATION AND CERTIFIED ANALYTICAL RESULTS FOR SOIL

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212583 ANALYTICAL REPORT

Bureau Veritas North America 2430 Camino Ramon San Ramon, Ca 94583 Project : 33104-004578.00 Location : Sausage Factory Level : II

Sample IDLab IDSVGW-3212583-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/09/2009

Date: 06/09/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212583 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/03/09 06/03/09

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 06/03/09. The sample was received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

1	s & Tompkins, Ltd. cal Laboratory Since 1878	CH				OF CU	S	T	0	D	Y							Pag	e	1	_of_	1	
(5	2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	C & T I	.OG	in #		212583										An		sis					
		Sample	er:		7,	BODKIN																	
Project	No .: 33,04-00 45 78.	C Report	To:		4	6						6											
Project	Name: FORMER STRUGAES	5 FAC?OpyCompa	iny:	BU	eea	UEATAS 1	va	27/-	1.14	nE	<u>ICA</u>	260											
Project	P.O.:	Teleph	one	9	25	- 426-26	<u>X</u>																
Turnaro	und Time: STADAR	Fax:		9	25	- 426-01	06					524											
[Mat	rix			Pres	erva	ative		٩											
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	НСГ	H ₂ SO4	ŐΝΗ	ЫG	ANDRE	Dau											
	SVGW-3	6/2/09/16:20	X			3				Х		X								+		_	
														1-									
														_		_				+		+	-
														1		+				_			
														╀	-	+			+	+			-
																			_	\neg			\square
															_								
													_							+			
Notes:		SAMPLE RECEIPT	RE			SHED BY:	 3	109			:25 / TIME	+		ED Z	BY:	Å	U		Ē		9 / ATE	7: / TI	LS ME
		Preservative Correct?			Œ				D	ATE	/ TIME									D/	ATE /	/ TII	ME
									D	ATE	/ TIME									D/	ATE /	/ TII	ME

)

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # $\frac{2}{2583}$ Date Received $\frac{6\cdot 3 - 9}{1000}$ Client <u>reprint Level</u> TAS Project <u>SAUSA</u>	Number of coolers $/$
Date Opened $6 - 3 - 9$ By (print) $5 - 6 - 6$ (sign) Date Logged in $6/9/29$ By (print) M - JUAN Using (sign)	fmo hai
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How manyName	DateYES NO
 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap □ Foam blocks Bags □ Cloth material □ Cardboard □ Styrofoam 7. Temperature documentation: Type of ice used: Wet □ Blue/Gel □ None 	
Samples Received on ice & cold without a temperature l	blank
8. Were Method 5035 sampling containers present?If YES, what time were they transferred to freezer?I 9. Did all bottles arrive unbroken/unopened?IO. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete?II. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested?II. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples?II. Was the client contacted concerning this sample delivery?II YES, Who was called?By COMMENTS	YES NO 7.'30 YES NO YES NO

. . .

		Purgeable Org	anics by GC	/MS
Lab #:	212583	and the second	Location:	Sausage Factory
Client:	Bureau Verita	s North America	Prep:	EPA 5035
Project#:	33104-004578.	00	Analysis:	EPA 8260B
Field ID:	SVGW-3		Diln Fac:	0.8772
Lab ID:	212583-001		Batch#:	151709
Matrix:	Soil		Sampled:	06/02/09
Units:	ug/Kg		Received:	06/03/09
Basis:	as received		Analyzed:	06/05/09
An	alyte	Result		RL
Freon 12		ND		8.8
Chloromethane		ND		8.8
Vinyl Chlorid	e	ND		8.8
Bromomethane		ND		8.8
Chloroethane		ND		8.8
Trichlorofluo	romethane	ND		4.4
Acetone		ND		18
Freon 113		ND		4.4
1,1-Dichloroe	thene	ND		4.4
Methylene Chl		ND		18
Carbon Disulf		ND		4.4
MTBE	140	ND		4.4
trans-1,2-Dic	hloroethene	ND		4.4
Vinyl Acetate		ND		44
1,1-Dichloroe		ND		4.4
2-Butanone	cinane	ND		8.8
cis-1,2-Dichl	oroethene	ND		4.4
2,2-Dichlorop		ND		4.4
Chloroform	Topane	ND		4.4
Bromochlorome	thana	ND		4.4
1,1,1-Trichlo		ND		4.4
		ND		4.4
1,1-Dichlorop Carbon Tetrac				
		ND ND		4.4 4.4
1,2-Dichloroe	thane	ND		
Benzene Trichloroethe	~ ~	ND		4.4 4.4
1,2-Dichlorop Bromodichloro	-	ND		4.4
		ND		4.4
Dibromomethan		ND		4.4
4-Methyl-2-Pe		ND		8.8
cis-1,3-Dichl	oropropene	ND		4.4
Toluene	b 1	ND		4.4
trans-1,3-Dic		ND		4.4
1,1,2-Trichlo	roethane	ND		4.4
2-Hexanone		ND		8.8
1,3-Dichlorop	_	ND		4.4
Tetrachloroet	hene	ND		4.4

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	anics by GC/1	MS
Lab #:	212583	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	SVGW-3	Diln Fac:	0.8772
Lab ID:	212583-001	Batch#:	151709
Matrix:	Soil	Sampled:	06/02/09
Units:	ug/Kg	Received:	06/03/09
Basis:	as received	Analyzed:	06/05/09
Analy		R	
Dibromochlorometh			4.4
1,2-Dibromoethane			4.4
Chlorobenzene	ND		4.4
1,1,1,2-Tetrachlo			4.4
Ethylbenzene	ND		4.4
m,p-Xylenes	ND		4.4
o-Xylene	ND		4.4
Styrene	ND		4.4
Bromoform	ND		4.4
Isopropylbenzene	ND		4.4
1,1,2,2-Tetrachle			4.4
1,2,3-Trichlorop:	ropane ND		4.4
Propylbenzene	ND		4.4
Bromobenzene	ND		4.4
1,3,5-Trimethylbe	enzene ND		4.4
2-Chlorotoluene	ND		4.4
4-Chlorotoluene	ND		4.4
tert-Butylbenzen	e ND		4.4
1,2,4-Trimethylb	enzene ND		4.4
sec-Butylbenzene	ND		4.4
para-Isopropyl Te	oluene ND		4.4
1,3-Dichlorobenze	ene ND		4.4
1,4-Dichlorobenz	ene ND		4.4
n-Butylbenzene	ND		4.4
1,2-Dichlorobenz	ene ND		4.4
1,2-Dibromo-3-Ch	loropropane ND		4.4
1,2,4-Trichlorob			4.4
Hexachlorobutadi			4.4
Naphthalene	ND		4.4
1,2,3-Trichlorob	enzene ND		4.4

Surrogate	*REC	Limits	
Dibromofluoromethane	96	71-128	
1,2-Dichloroethane-d4	85	69-135	
Toluene-d8	92	80-120	
Bromofluorobenzene	88	77–131	

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212583	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC498860	Diln Fac:	1.000
Matrix:	Soil	Batch#:	151709
Units:	ug/Kg	Analyzed:	06/05/09

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0

ND= Not Detected RL= Reporting Limit Page 1 of 2

. .

	Purgeable Org	ganics by GC,	/MS
Lab #:	212583	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC498860	Diln Fac:	1.000
Matrix:	Soil	Batch#:	151709
Units:	ug/Kg	Analyzed:	06/05/09
			······
Analy		运动;"马克·拉拉合力的正式。4	RL
Dibromochloromet			5.0
1,2-Dibromoethar			5.0
Chlorobenzene	ND		5.0
1,1,1,2-Tetrachl			5.0
Ethylbenzene	ND		5.0
m,p-Xylenes	ND		5.0
o-Xylene	ND		5.0
Styrene	ND		5.0
Bromoform	ND		5.0
Isopropylbenzene			5.0
1,1,2,2-Tetrachl			5.0
1,2,3-Trichlorop			5.0
Propylbenzene	ND		5.0
Bromobenzene	ND		5.0
1,3,5-Trimethylk			5.0
2-Chlorotoluene	ND		5.0
4-Chlorotoluene	ND		5.0
tert-Butylbenzer			5.0
1,2,4-Trimethylk			5.0
sec-Butylbenzene			5.0
para-Isopropyl ገ			5.0
1,3-Dichlorobenz			5.0
1,4-Dichlorobenz	zene ND		5.0
n-Butylbenzene	ND		5.0
1,2-Dichlorobenz			5.0
1,2-Dibromo-3-Ch			5.0
1,2,4-Trichlorok			5.0
Hexachlorobutadi	iene ND		5.0
Naphthalene	ND		5.0
1,2,3-Trichlorok	penzene ND		5.0

Surrogate	*REC	Limits
Dibromofluoromethane	92	71-128
1,2-Dichloroethane-d4	81	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	87	77-131

ND= Not Detected RL= Reporting Limit Page 2 of 2

Lab #:	212583			Location:	Saus	age Fact	ory
Client:	Bureau Ver	itas Nort	h America	Prep:	EPA	5035	-
Project#:	33104-0045	78.00		Analysis:	EPA	8260B	
Matrix:	Soil			Diln Fac:	1.00	0	
Units:	ug/Kg			Batch#:	1517	09	
Basis:	as receive	d		Analyzed:	06/0	5/09	
Туре:	BS			Lab ID:	QC49	8861	
A	nalyte		Spiked		Result	\$REC	Limits
1,1-Dichloro	ethene		25.00		22.54	90	73-135
Benzene			25.00		25.91	104	80-125
Trichloroeth	ene		25.00		24.18	97	80-127
Toluene			25.00		25.92	104	80-126
Chlorobenzen	e		25.00		25.93	104	80-120
Su	rrogate	\$REC	Limits				
Dibromofluor	omethane	96	71-128				
1,2-Dichloro	ethane-d4	74	69-135				
Toluene-d8		95	80-120				
	enzene	84	77-131				

Analyte		Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene		25.00	26.23	105	73-135	15	20
Benzene		25.00	26.95	108	80-125	4	20
Trichloroethene		25.00	25.35	101	80-127	5	20
Toluene		25.00	26.22	105	80-126	1	20
Chlorobenzene		25.00	27.02	108	80-120	4	20
Surrogate	\$RE(C Limits		2次 市场市地市			
Dibromofluoromethane	98	71-128					
1,2-Dichloroethane-d4	79	69-135					

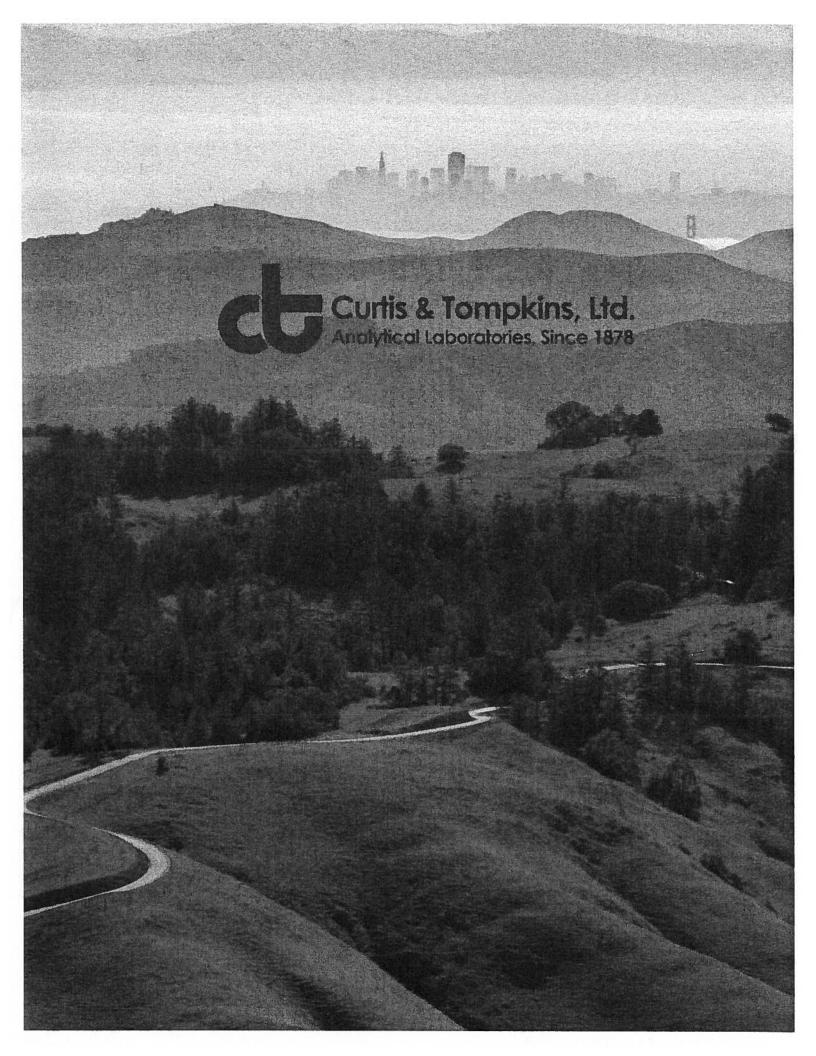
77-131

87

Bromofluorobenzene

MS

Type:


	Purgeable Org	anics by GC/N	KS
Lab #:	212583	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	222222222	Diln Fac:	0.9823
MSS Lab ID:	212551-015	Batch#:	151709
Matrix:	Soil	Sampled:	06/02/09
Units:	ug/Kg	Received:	06/02/09
Basis:	as received	Analyzed:	06/08/09

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.9781	49.12	44.48	91	58-145
Benzene	<0.9823	49.12	48.84	99	56-126
Trichloroethene	<0.9823	49.12	44.41	90	50-142
Toluene	<0.9823	49.12	49.53	101	52-125
Chlorobenzene	<0.9823	49.12	46.73	95	46-120

Lab ID: QC498930

Surrogate	*REC	Limits	
Dibromofluoromethane	96	71-128	
1,2-Dichloroethane-d4	84	69-135	
Toluene-d8	97	80-120	
Bromofluorobenzene	85	77-131	

Type: MSD		Lab ID: QC4	98931			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	49.12	53.02	108	58-145	18	28
Benzene	49.12	55.37	113	56-126	13	26
Trichloroethene	49.12	51.95	106	50-142	16	29
Toluene	49.12	52.90	108	52-125	7	29
Chlorobenzene	49.12	53.85	110	46-120	14	29
Surrogate	%REC Limits					
Dibromofluoromethane	102 71-128					-
1,2-Dichloroethane-d4	78 69-135					
Toluene-d8	96 80-120					
Bromofluorobenzene	83 77-131					

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212602 ANALYTICAL REPORT

Bureau Veritas North America	Project : 33104-004578.00
2430 Camino Ramon	Location : Sausage Factory
San Ramon, Ca 94583	Level : II

Sample ID	<u>Lab ID</u>
B-21	212602-001
B-20	212602-002
B-13	212602-003
B-15	212602-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/11/2009

Date: _06/11/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212602 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/05/09 06/04/09

This data package contains sample and QC results for four water samples, requested for the above referenced project on 06/05/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recoveries were observed for bromofluorobenzene (FID) and trifluorotoluene (FID) in B-15 (lab # 212602-004). No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

• •

	is & Tompkins, Ltd. ical Laboratory Since 1878		Cŀ	łA		N	0	F CU	ISI	ГО	DY							Page		01	f		
(2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax		C & T	LOG	IN #	ŧ:	2	1260-	L	-	- #:				ti	Ar		sis					
			Sample	er: 7	m	ber	Kn	+ Jirm	415	d~		8		: ۲									
Project	No.: 33104-004578	8,00						<u>Fin</u>				12											
Project	Name: Former Lemonto S	Guse se Fact										1208	1	N/P									
Project	P.O.:		Teleph	one:	97	25-1	42	6-2600				3	B										
Turnaro	ound Time:		Fax: 9									BTEX	260										
					Mat	trix			Pr	eserv	vative	4	6										
Lab No.	Sample ID.	Sampling Time	-	Soil	Water	Waste		# of Containers	HCL	HNO, HNO,	ICE	2-H9T	VOUS										
	B-21	6.4.09	1620		X			6	x		X	X	X						-				
2	6-20	6.4.09	1740		x			4	8		8	K.	<u>K</u>						4		\square		
3	B-13 B-15	6: 4109		1	X			<u>v</u>	X		X	X	XT.		_	;			_		┝──╋		
4	51-9	6.4.09	1820		8	_		20	K		×	×	X						- <u> </u>	+			
													-+			1			1				
		+					+		┥┥							+	$\left \right $		+	+ -	-+		
																			1-				
·		<u>`</u>											-	-+-	_		$\left \right $		╋	+			
		SAMPLE RE	CEIRT																				
Notes:				RE	LING	QUIS	SHEC) BY:			<i></i>	REC	EIV	ED	BY:		2		1		<u>^/</u>		
					بلامد ا	H	r	6.4.	99	1905	5 DATE / TIP		I	45	ť		h	Ľ	ん		<i>40С</i> (705
		Preservative (Correct?	1	Z	5				L			-	1	• <u>/</u>						.,		
		Yes No								0	DATE / TI	ME								DATE	: / TIN	ΛE	
										C		ИE								DATE		ME	
	QIONATI IDE																						

) ,

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 212607 Date Received 6409 Client 8 Project 6409 Date Opened 64909 By (print) $M \cdot 1103$ 600 By (print) Date Logged in 6509 By (print) (sign)	Number of coolers 1 Howe Saucate Factory Market Male
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES (No
 2A. Were custody seals present? □ YES (circle) on cooler How manyName 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top 6. Indicate the packing in cooler: (if other, describe) 	YES NO NA
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:Styrofoam	None Paper towels
Type of ice used: Wet 🛛 Blue/Gel 🗋 None	Temp(°C)5
Samples Received on ice & cold without a temperature b	
Samples received on ice directly from the field. Cooling	
8. Were Method 5035 sampling containers present?	YES NO YES NO

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

. . .

	Curtis &	Tompkins Labo	ratories An	alytical Repor	t
Lab #: Client: Project#:	212602 Bureau Verit 33104-004578	as North America	Location: Prep:	Sausage Fac EPA 5030B	tory
Matrix: Units:	Water ug/L		Sampled: Received:	06/04/09 06/04/09	
Field ID: Type: Lab ID:	B-21 SAMPLE 212602-001		Diln Fac: Batch#: Analyzed:	1.000 151744 06/06/09	
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result 440 Y ND ND ND ND ND ND		0.50 EPA 0.50 EPA 0.50 EPA 0.50 EPA 0.50 EPA	Analysis 8015B 8021B 8021B 8021B 8021B 8021B 8021B
Surro Trifluorotoluen Bromofluorobenz Trifluorotoluen Bromofluorobenz	le (FID) sene (FID) le (PID)	%REC Limits 116 63-146 134 70-140 106 50-140 131 56-132	Analys EPA 8015B EPA 8015B EPA 8021B EPA 8021B	318	
Field ID: Type: Lab ID:	B-20 SAMPLE 212602-002		Diln Fac: Batch#: Analyzed:	1.000 151744 06/06/09	
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result 270 9.6 0.54 18 2.1 ND	4	0.50 EPA 0.50 EPA 0.50 EPA 0.50 EPA	Analysis 8015B 8021B 8021B 8021B 8021B 8021B 8021B
Trifluorotoluen Bromofluorobenz Trifluorotoluen Bromofluorobenz	he (FID) cene (FID) he (PID)	%REC Limits 107 63-146 115 70-140 108 50-140 124 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	Sis	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 3

. .

	Curtis &	Tompkin	s Labor	atories A	nalytical	Report	
Lab #: Client: Project#:	212602 Bureau Verita 33104-004578		America	Location: Prep:	Sausa EPA 5	age Factory 5030B	
Matrix: Units:	Water ug/L			Sampled: Received:	06/04 06/04		
Field ID: Type: Lab ID:	B-13 SAMPLE 212602-003			Diln Fac: Batch #: Analyzed:	1.000 15174 06/06	14	
Ana Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	ND ND	Result 180 15 6.9 1.6		RL 50 0.50 0.50 0.50 0.50 0.50	Analy: EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	șiș
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC 108 112 105 117	Limits 63-146 70-140 50-140 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis 斗		
Field ID: Type: Lab ID:	B-15 SAMPLE 212602-004			Diln Fac: Batch#: Analyzed:		66	
Ana Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	1yte 2	88	Result 8,000 5,000 640 1,900 4,000 340 C		RL 1,000 10 10 10 10 10 10	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	Sis
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC 162 * 152 * 125 93	Limits 63-146 70-140 50-140 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 3

	Curtis &	Tompkins Labo	ratories An	alytical 1	Report	
Lab #: Client: Project#:	212602 Bureau Veri 33104-00457	tas North America	Location: Prep:	Sausa EPA 5	ge Factory 030B	
Matrix: Units:	Water ug/L		Sampled: Received:	06/04 06/04		
Type: Lab ID: Diln Fac:	BLANK QC499002 1.000		Batch#: Analyzed:	15174 06/06		
Ana Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Lyte	Result ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analysi EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	S
Surre Trifluorotoluen Bromofluoroben Trifluorotoluen Bromofluoroben	zené (FÍD) ne (PID)	%REC Limits 90 63-146 90 70-140 93 50-140 92 56-132	Analys EPA 8015B EPA 8015B EPA 8021B EPA 8021B	318		
Type: Lab ID: Diln Fac:	BLANK QC499092 1.000		Batch#: Analyzed:	15176 06/08		
Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	Result ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analysi EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	. 9
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC Limits 101 63-146 100 70-140 74 50-140 75 56-132	Analy: EPA 8015B EPA 8015B EPA 8021B EPA 8021B	Sis		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3

	Curtis & Tompkins Labor	atories Analy	tical Report
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	151744
Units:	ug/L	Analyzed:	06/06/09
Diln Fac:	1.000		

Type:	

BS

Analyte	Spiked	Result	\$REC	Limits
Benzene	10.00	10.25	103	79-120
Toluene	10.00	9.878	99	76-122
Ethylbenzene	10.00	10.20	102	77-125
m,p-Xylenes	10.00	10.26	103	76-126
o-Xylene	10.00	9.779	98	77-126

Lab ID: QC499003

Surrogate	%REC	Limits
Trifluorotoluene (PID)	108	50-140
Bromofluorobenzene (PID)	112	56-132

Type: BSD		Lab ID: QC4	199004		
Analyte	Spiked	Result	%REC I	imits R	PD Lim
Benzene	10.00	9.517	95 7	9-120 7	20
Toluene	10.00	9.061	91 7	6-122 9	21
Ethylbenzene	10.00	9.316	93 7	7-125 9	21
m,p-Xylenes	10.00	9.170	92 7	6-126 1	1 23
o-Xylene	10.00	8.792	88 7	7-126 1	1 21
Surrogate	%REC Limits				
Trifluorotoluene (PID)	98 50-140				
Bromofluorobenzene (PID)	102 56-132				

	Curtis & Tompkins Labor	atories Anal	ytical Report	
Lab #:	212602	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC499005	Batch#:	151744	
Matrix:	Water	Analyzed:	06/06/09	
Units:	ug/L	-		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	967.9	97	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	121	63-146
Bromofluorobenzene (FID)	120	70-140

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00		
Field ID:	ZZZZZZZZZ	Batch#:	151744
MSS Lab ID:	212620-003	Sampled:	06/04/09
Matrix:	Water	Received:	06/04/09
Units:	ug/L	Analyzed:	06/06/09
Diln Fac:	1.000		

Type: MS		Lab ID:		QC4990	06		
Analyte	MSS Result	Spik	ed	Result	*REC	Limits	Analysis
Gasoline C7-C12	22.97	2,0	00	1,873	92	66-120	EPA 8015B
Surrogate	\$REC	Limits		Analysis			
Trifluorotoluene (FIL) 124	63-146	EPA 80	15B			
Bromofluorobenzene (E	FID) 130	70-140	EPA 80	15B			
Trifluorotoluene (PID	D) 98	50-140	EPA 80	21B			
Bromofluorobenzene (H	PID) 102	56-132	EPA 80	21B			

MSD

Lab ID: QC499007

Analyte	Spiked	Result	%REC	Limits	RPD	Lim	Analysis
Gasoline C7-C12	2,000	1,868	92	66-120	0	20	EPA 8015B

Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	119	63-146	EPA 8015B
Bromofluorobenzene (FID)	132	70-140	EPA 8015B
Trifluorotoluene (PID)	94	50-140	EPA 8021B
Bromofluorobenzene (PID)	102	56-132	EPA 8021B

- -

Gasoline C7-C12

Bromofluorobenzene (FID)

	Curtis & Tompkins Labor		Jerour Report
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC499093	Batch#:	151766
Matrix:	Water	Analyzed:	06/08/09
Units:	ug/L		

Surrogate	\$REC	Limits	
Trifluorotoluene (FID)	118	63-146	

990.4

99

76-121

1,000

70-140

104

- -

. .

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	212602	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8021B		
Matrix:	Water	Batch#:	151766		
Units:	ug/L	Analyzed:	06/08/09		
Diln Fac:	1.000				

'ype: BS	Lab ID:	QC49	9094	
Analyte	Spiked	Result	\$REC	Limits
Benzene	10.00	9.595	96	79-120
Toluene	10.00	10.00	100	76-122
Ethylbenzene	10.00	9.807	98	77-125
m,p-Xylenes	10.00	9.839	98	76-126
o-Xylene	10.00	9.314	93	77-126

Surrogate	*REC	Limits	
Trifluorotoluene (PID)	71	50-140	
Bromofluorobenzene (PID)	74	56-132	2

Type: BSD			Lab ID:	QC49	9095			
Analyte		Spiked		Result	\$REC	Limits	RPD	Lim
Benzene		10.00		10.69	107	79-120	11	20
Toluene		10.00		11.02	110	76-122	10	21
Ethylbenzene		10.00		10.10	101	77-125	3	21
m,p-Xylenes		10.00		10.71	107	76-126	8	23
o-Xylene		10.00		10.51	105	77-126	12	21
Surrogate	*REC	Limits						111. 942 4
Trifluorotoluene (PID)	77	50-140						
Bromofluorobenzene (PID)	77	56-132						

- -

Curtis & Tompkins Laboratories Analytical Report					
Lab #:	212602	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	151766		
MSS Lab ID:	212619-006	Sampled:	06/03/09		
Matrix:	Water	Received:	06/04/09		
Units:	ug/L	Analyzed:	06/08/09		
Diln Fac:	1.000				

Type:	MS			Lab ID:	ç	QC499096			
	Analyte	MSS Re	sult	Spike	əd	Result	*REC	Lim	its
Gasoline	C7-C12	42	6.5	2,000)	2,120	85	66-	120
	Surrogate	*REC	Limits	in the second state in	a sana shi		and the second second		
Trifluoro	otoluene (FID)	127	63-146						
Bromofluc	probenzene (FID)	104	70-140			3	,		
						3			
Гуре:	MSD			Lab ID:	ς	2C499097		9 <u>8</u> 3	
South States of	Analyte		Spiked		Result	*REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		2,157	87	66-120	2	20
	Surrogate	*REC	Limits		使得到这个分别的				
Trifluoro	otoluene (FID)	125	63-146						
Bromofluc	probenzene (FID)	104	70-140						

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\157.seq Sample Name: 212602-001,151744,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_007 Instrument: GC04 (Offine) Vial: N/A Operator: Weldon Hail (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe148.met

Run Date: 6/6/2009 12:11:24 PM Analysis Date: 6/8/2009 10:38:33 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

Software Version 3.1.7

No items selected for this section

---< A >-----

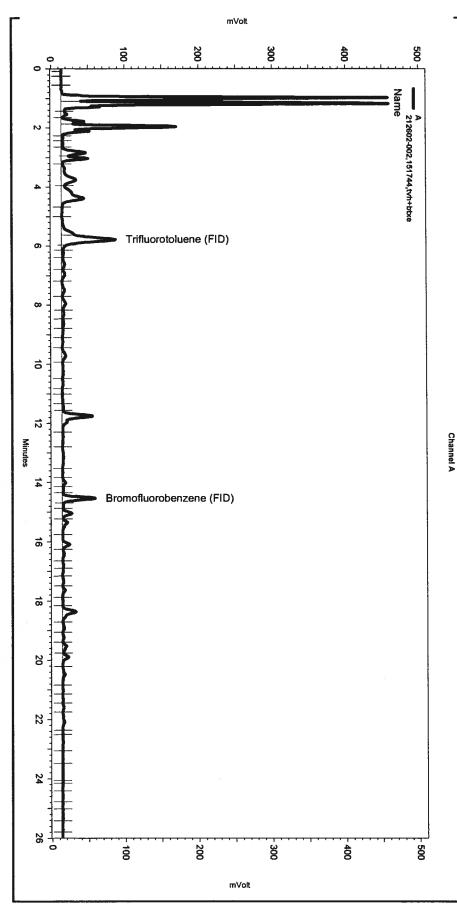
No items selected for this section

Integration Events

Enabl	ed Event Type	Start	Sto (Min⊔t		Minutes)	Value
Yes Yes	Width Threshold		0	0	0.2 50	

Manual Integration Fixes

Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_007


Enabled	Event Type	(Minutes) (Min	utes)	Value
Yes S	plit Peak	5.678	0	0	
Yes S	plit Peak	5.923	0	0	
Yes S	plit Peak	14.731	0	0	

Channel A

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\157.seq Sample Name: 212602-002,151744,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_008 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe148.met

Software Version 3.1.7 Run Date: 6/6/2009 12:49:00 PM Analysis Date: 6/8/2009 10:34:23 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

--- General Method Parameters >

Page 2 of 4 (6) Curtis & Tompkins Ltd.

No items selected for this section ---< A >--No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type 0 0.2 0 50 Yes Width 0 0 Yes Threshold Manual Integration Fixes
 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_008

 Start
 Stop

 Enabled
 Event Type
 (Minutes)
 Value
 Yes 5.635 Split Peak 0 0 ŏ 00 Split Peak Split Peak 5.964 14.696 Yes Yes

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\157.seq Sample Name: 212602-003,151744,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_009 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe148.met

8

20

C

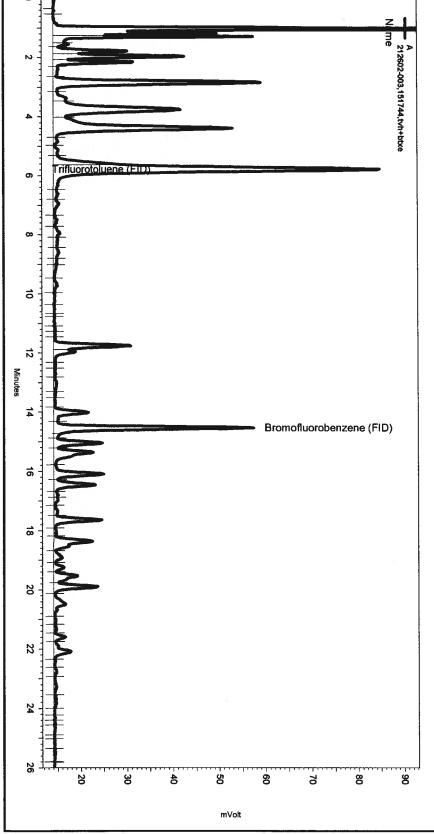
8

mVolt

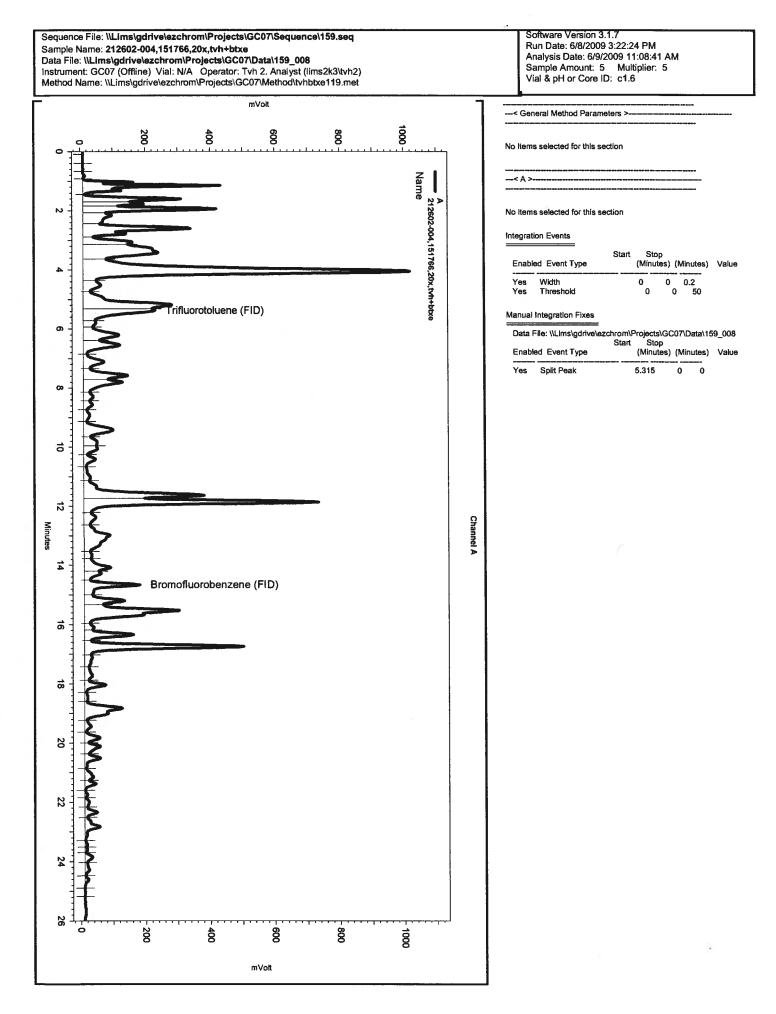
8

ង

Run Date: 6/6/2009 1:26:37 PM Analysis Date: 6/8/2009 10:34:27 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3 ---< General Method Parameters >-70 8 8 No items selected for this section ---< A >me I A 212602-003,151744,tvh+btxe No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type Yes Width 0 Threshold 0 Yes Manual Integration Fixes Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_009 Stop (Minutes) (Minutes) Value Start Enabled Event Type 5.627 14.733 Yes Split Peak Split Peak


Yes

Channel A


Software Version 3.1.7

0 0.2 50

> 0 0 0

Page 2 of 4 (10) Curtis & Tompkins Ltd.

- --

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\157.seq Sample Name: ccv/lcs,qc499005,151744,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_003 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe148.met

mVolt 200 ŝ 5 ង 0 me A ccv/lcs,qc499005,151744,tvh,s12128,2.5/5000 N Trifluorotoluene (FID) ດ 0 5 12 Minutes 4 Bromofluorobenzene (FID) 16 8 20 22 24 26 ģ ĝ 200 150 mVolt

Software Version 3.1.7 Run Date: 6/6/2009 9:14:53 AM Analysis Date: 6/8/2009 10:20:16 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

----< General Method Parameters >-No items selected for this section ----< A >---No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type Yes Yes Width Threshold 0 00 0.2 50 0 Manual Integration Fixes Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\157_003 Stop (Minutes) (Minutes) Value Start Enabled Event Type None

Channel A

Purgeable Organics by GC/MS					
Lab #:	212602	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-21	Batch#:	151839		
Lab ID:	212602-001	Sampled:	06/04/09		
Matrix:	Water	Received:	06/04/09		
Units:	ug/L	Analyzed:	06/10/09		
Diln Fac:	1.000	_			

Analyte	Result	RL	fite的中心。 中心中的中心中的
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	212602	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-21	Batch#:	151839		
Lab ID:	212602-001	Sampled:	06/04/09		
Matrix:	Water	Received:	06/04/09		
Units:	ug/L	Analyzed:	06/10/09		
Diln Fac:	1.000	_			

Analyte	Rea	sult	RL
Dibromochloromethane	ND		0.5
1,2-Dibromoethane	ND		0.5
Chlorobenzene	ND		0.5
1,1,1,2-Tetrachloroethane	ND		0.5
Ethylbenzene	ND		0.5
m,p-Xylenes	ND		0.5
o-Xylene	ND		0.5
Styrene	ND		0.5
Bromoform	ND		1.0
Isopropylbenzene		0.8	0.5
1,1,2,2-Tetrachloroethane	ND		0.5
1,2,3-Trichloropropane	ND		0.5
Propylbenzene		0.5	0.5
Bromobenzene	ND		0.5
1,3,5-Trimethylbenzene	ND		0.5
2-Chlorotoluene	ND		0.5
4-Chlorotoluene	ND		0.5
tert-Butylbenzene	ND		0.5
1,2,4-Trimethylbenzene	ND		0.5
sec-Butylbenzene		1.1	0.5
para-Isopropyl Toluene	ND		0.5
1,3-Dichlorobenzene	ND		0.5
1,4-Dichlorobenzene	ND		0.5
n-Butylbenzene		0.8	0.5
1,2-Dichlorobenzene	ND		0.5
1,2-Dibromo-3-Chloropropane	ND		2.0
1,2,4-Trichlorobenzene	ND		0.5
Hexachlorobutadiene	ND		2.0
Naphthalene	ND		2.0
1,2,3-Trichlorobenzene	ND		0.5

Surrogate	%REC	Linits
Dibromofluoromethane	96	80-122
1,2-Dichloroethane-d4	101	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	113	80-125

ND= Not Detected RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	212602	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-20	Batch#:	151839		
Lab ID:	212602-002	Sampled:	06/04/09		
Matrix:	Water	Received:	06/04/09		
Units:	ug/L	Analyzed:	06/10/09		
Diln Fac:	1.000	-			

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	10	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	24	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	47	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	12	0.5
Trichloroethene	8.1	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212602	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-20	Batch#:	151839	
Lab ID:	212602-002	Sampled:	06/04/09	
Matrix:	Water	Received:	06/04/09	
Units:	ug/L	Analyzed:	06/10/09	
Diln Fac:	1.000	-		

Analyte	Resu	lt RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	2	4 0.5	
m,p-Xylenes		2.6 0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene		2.1 0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene		6.6 0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene		1.3 0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene		0.7 0.5	
1,2,4-Trimethylbenzene		0.6 0.5	
sec-Butylbenzene		0.6 0.5	
para-Isopropyl Toluene	ND	0.5	8
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene		5.5 0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene		8.1 2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	80-122	
1,2-Dichloroethane-d4	100	77-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	106	80-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-13	Batch#:	151839
Lab ID:	212602-003	Sampled:	06/04/09
Matrix:	Water	Received:	06/04/09
Units:	ug/L	Analyzed:	06/10/09
Diln Fac:	1.000	_	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	18	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Org	anics by GC/	/ MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-13	Batch#:	151839
Lab ID:	212602-003	Sampled:	06/04/09
Matrix:	Water	Received:	06/04/09
Units:	ug/L	Analyzed:	06/10/09
Diln Fac:	1.000		

Analyte	Re	sult	RL
Dibromochloromethane	ND		0.5
1,2-Dibromoethane	ND		0.5
Chlorobenzene	ND		0.5
1,1,1,2-Tetrachloroethane	ND		0.5
Ethylbenzene		9.0	0.5
m,p-Xylenes		1.9	0.5
o-Xylene	ND		0.5
Styrene	ND		0.5
Bromoform	ND		1.0
Isopropylbenzene		3.8	0.5
1,1,2,2-Tetrachloroethane	ND		0.5
1,2,3-Trichloropropane	ND		0.5
Propylbenzene		5.1	0.5
Bromobenzene	ND		0.5
1,3,5-Trimethylbenzene		1.9	0.5
2-Chlorotoluene	ND		0.5
4-Chlorotoluene	ND		0.5
tert-Butylbenzene		0.6	0.5
1,2,4-Trimethylbenzene		5.3	0.5
sec-Butylbenzene	ND		0.5
para-Isopropyl Toluene	ND		0.5
1,3-Dichlorobenzene	ND		0.5
1,4-Dichlorobenzene	ND		0.5
n-Butylbenzene		1.7	0.5
1,2-Dichlorobenzene	ND		0.5
1,2-Dibromo-3-Chloropropane	ND		2.0
1,2,4-Trichlorobenzene	ND		0.5
Hexachlorobutadiene	ND		2.0
Naphthalene		3.3	2.0
1,2,3-Trichlorobenzene	ND		0.5

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	101	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	106	80-125

Purgeable Organics by GC/MS				
Lab #:	212602	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-15	Batch#:	151796	
Lab ID:	212602-004	Sampled:	06/04/09	
Matrix:	Water	Received:	06/04/09	
Units:	ug/L	Analyzed:	06/09/09	
Diln Fac:	333.3	-		

Analyte	Result	RL	
Freon 12	ND	330	
Chloromethane	ND	330	
Vinyl Chloride	ND	170	
Bromomethane	ND	330	
Chloroethane	ND	330	
Trichlorofluoromethane	ND	330	
Acetone	ND	3,300	
Freon 113	ND	670	
1,1-Dichloroethene	ND	170	
Methylene Chloride	ND	3,300	
Carbon Disulfide	ND	170	
MTBE	ND	170	
trans-1,2-Dichloroethene	ND	170	
Vinyl Acetate	ND	3,300	
1,1-Dichloroethane	ND	170	
2-Butanone	ND	3,300	
cis-1,2-Dichloroethene	31,000	170	
2,2-Dichloropropane	ND	170	
Chloroform	ND	170	
Bromochloromethane	ND	170	
1,1,1-Trichloroethane	ND	170	
1,1-Dichloropropene	ND	170	
Carbon Tetrachloride	ND	170	
1,2-Dichloroethane	ND	170	
Benzene	5,200	170	
Trichloroethene	1,800	170	
1,2-Dichloropropane	ND	170	
Bromodichloromethane	ND	170	
Dibromomethane	ND	170	
4-Methyl-2-Pentanone	ND	3,300	
cis-1,3-Dichloropropene	ND	170	
Toluene	470	170	
trans-1,3-Dichloropropene	ND	170	
1,1,2-Trichloroethane	ND	170	
2-Hexanone	ND	3,300	
1,3-Dichloropropane	ND	170	
Tetrachloroethene	ND	170	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS			
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-15	Batch#:	151796
Lab ID:	212602-004	Sampled:	06/04/09
Matrix:	Water	Received:	06/04/09
Units:	ug/L	Analyzed:	06/09/09
Diln Fac:	333.3	-	

Analyte	Result	RL
Dibromochloromethane	ND	170
1,2-Dibromoethane	ND	170
Chlorobenzene	ND	170
1,1,1,2-Tetrachloroethane	ND	170
Ethylbenzene	1,100	170
m,p-Xylenes	2,200	170
o-Xylene	ND	170
Styrene	ND	170
Bromoform	ND	330
Isopropylbenzene	ND	170
1,1,2,2-Tetrachloroethane	ND	170
1,2,3-Trichloropropane	ND	170
Propylbenzene	170	170
Bromobenzene	ND	170
1,3,5-Trimethylbenzene	360	170
2-Chlorotoluene	ND	170
4-Chlorotoluene	ND	170
tert-Butylbenzene	ND	170
1,2,4-Trimethylbenzene	1,300	170
sec-Butylbenzene	ND	170
para-Isopropyl Toluene	ND	170
1,3-Dichlorobenzene	ND	170
1,4-Dichlorobenzene	ND	170
n-Butylbenzene	ND	170
1,2-Dichlorobenzene	ND	170
1,2-Dibromo-3-Chloropropane	ND	670
1,2,4-Trichlorobenzene	ND	170
Hexachlorobutadiene	ND	670
Naphthalene	ND	670
1,2,3-Trichlorobenzene	ND	170

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-122
1,2-Dichloroethane-d4	102	77–137
Toluene-d8	107	80-120
Bromofluorobenzene	110	80-125

ND= Not Detected RL= Reporting Limit

Page 2 of 2

	Purgeable Org	anics by GC/	'MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	151796
Units:	ug/L	Analyzed:	06/09/09
Diln Fac:	1.000		

Type:

BS

Analyte	Spiked	Result	*REC	Limits
1,1-Dichloroethene	25.00	28.52	114	74-132
Benzene	25.00	24.96	100	80-120
Trichloroethene	25.00	26.62	106	80-120
Toluene	25.00	26.72	107	80-120
Chlorobenzene	25.00	23.65	95	80-120
Surrogate	REC Limits		alan area maara	
Surrogate	TREC LIMICS			出现这一种自由的现在分词是中国的变化的复数形式

Lab ID:

QC499208

Dibromofluoromethane	104	80-122
1,2-Dichloroethane-d4	97	77-137
Toluene-d8	106	80-120
Bromofluorobenzene	97	80-125

Туре:	BSD			Lab ID:	QC4	99209			
A	nalyte		Spiked		Result	\$REC	Limits	RPD	Lim
1,1-Dichloro	ethene		25.00		29.89	120	74-132	5	20
Benzene			25.00		25.89	104	80-120	4	20
Trichloroeth	ene		25.00		27.16	109	80-120	2	20
Toluene			25.00		27.30	109	80-120	2	20
Chlorobenzen	e		25.00		24.30	97	80-120	3	20
Su	rrogate	*REC	Limits						
Dibromofluor	omethane	105	80-122						
1,2-Dichloro	ethane-d4	97	77-137						
Toluene-d8		106	80-120						
Bromofluorob	enzene	98	80-125						

	Purgeable Org	anics by GC/	/MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499210	Batch#:	151796
Matrix:	Water	Analyzed:	06/09/09
Units:	ug/L		

Freen 12ND1.0ChloromethaneND1.0Vinyl ChlorideND0.5BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5Vinyl AcetateND0.5Vinyl AcetateND0.52-ButanoneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.5ChloroformND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5BromochloromethaneND0.5	
Vinyl ChlorideND0.5BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.5Vinyl AcetateND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroetheneND0.5Vinyl AcetateND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND0.52-ButanoneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.52,2-DichloropropaneND0.5	
AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
1,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	1
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
2-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5	
2,2-DichloropropaneND0.5ChloroformND0.5	
Chloroform ND 0.5	
Bromochloromethane ND 0.5	
1,1,1-Trichloroethane ND 0.5	
1,1-Dichloropropene ND 0.5	
Carbon Tetrachloride ND 0.5	
1,2-Dichloroethane ND 0.5	
Benzene ND 0.5	
Trichloroethene ND 0.5	
1,2-Dichloropropane ND 0.5	
Bromodichloromethane ND 0.5	
Dibromomethane ND 0.5	
4-Methyl-2-Pentanone ND 10	
cis-1,3-Dichloropropene ND 0.5	
Toluene ND 0.5	
trans-1,3-Dichloropropene ND 0.5	
1,1,2-Trichloroethane ND 0.5	
2-Hexanone ND 10	
1,3-Dichloropropane ND 0.5	
Tetrachloroethene ND 0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

-- --

	Purgeable Org	anics by GC/	/MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499210	Batch#:	151796
Matrix:	Water	Analyzed:	06/09/09
Units:	ug/L	-	

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	*REC	Limits
Dibromofluoromethane	106	80-122
1,2-Dichloroethane-d4	100	77–137
Toluene-d8	106	80-120
Bromofluorobenzene	112	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	151839
Units:	ug/L	Analyzed:	06/10/09
Diln Fac:	1.000		

Type:

BS

Analyte		Spiked	Result	\$REC	Limits
1,1-Dichloroethene		31.25	33.36	107	74-132
Benzene		31.25	31.18	100	80-120
Trichloroethene		31.25	32.72	105	80-120
Toluene		31.25	32.89	105	80-120
Chlorobenzene		31.25	31.13	100	80-120
Surrogate	*REC	Limits			
Dibromofluoromethane	97	80-122			
1,2-Dichloroethane-d4	100	77-137			

Lab ID: QC499392

1,2-Dichloroethane-d4	100	77-137			
Toluene-d8	101	80-120			e
Bromofluorobenzene	93	80-125			· · · ·
			-	·····	

Type: BSD		Lab ID: QC	2499393			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	31.25	5 31.98	102	74-132	4	20
Benzene	31.25	5 30.61	98	80-120	2	20
Trichloroethene	31.25	5 32.02	102	80-120	2	20
Toluene	31.25	5 32.39	104	80-120	2	20
Chlorobenzene	31.25	5 31.08	99	80-120	0	20
Surrogate	%REC Limits					
Dibromofluoromethane	96 80-122					
1,2-Dichloroethane-d4	98 77-137					
Toluene-d8	100 80-120					
Bromofluorobenzene	96 80-125					

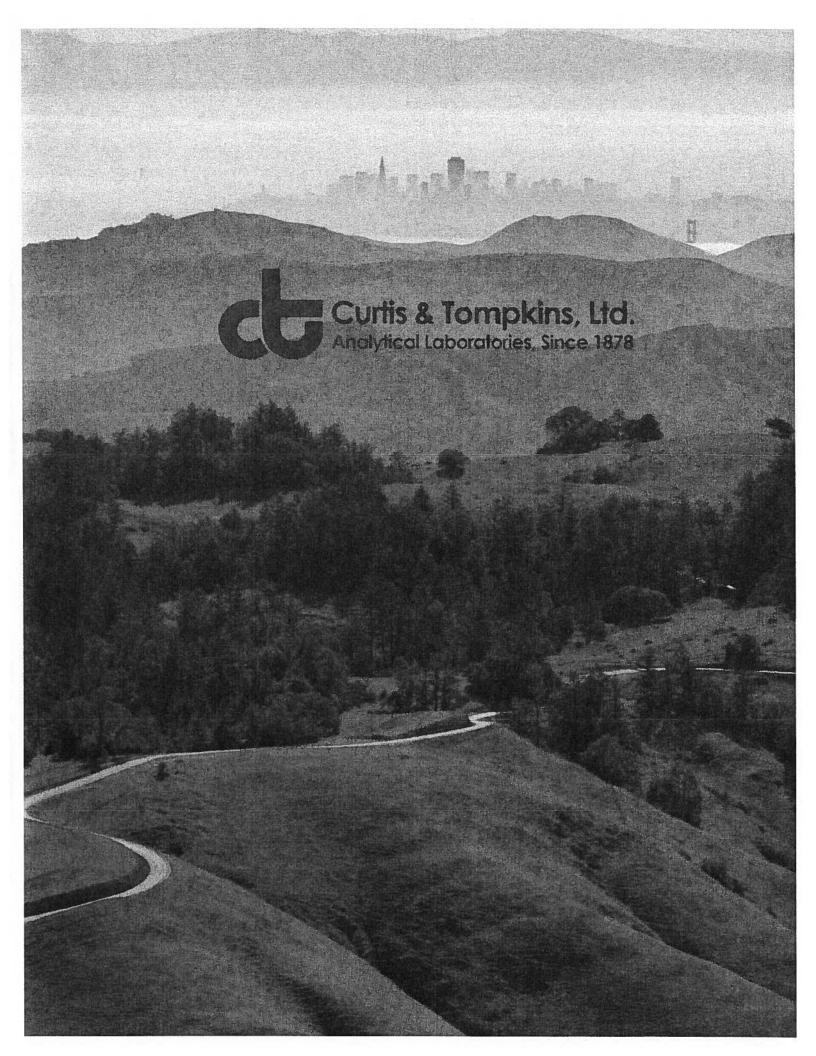
Purgeable Organics by GC/MS						
Lab #:	212602	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC499394	Batch#:	151839			
Matrix:	Water	Analyzed:	06/10/09			
Units:	ug/L					

Freon 12	ND	1 0	
	110	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	440
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2



	Purgeable Org	anics by GC/	/MS
Lab #:	212602	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499394	Batch#:	151839
Matrix:	Water	Analyzed:	06/10/09
Units:	ug/L		

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-122
1,2-Dichloroethane-d4	101	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	109	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212613 ANALYTICAL REPORT

Bureau Veritas North America	Project : 33104-004578.00
2430 Camino Ramon	Location : Sausage Factory
San Ramon, Ca 94583	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
B-13-5.0'	212613-001
B-13-12.0'	212613-002
B-13-16.0'	212613-003
B-13-19.0'	212613-004
B-13-24.0'	212613-005
B-14-5.0'	212613-006
B-14-12.0'	212613-007
B-14-16.0'	212613-008
B-14-20.0'	212613-009
B-14-24.0'	212613-010
B-14-28.0'	212613-011
B-15-5.0'	212613-012
B-15-12.0'	212613-013

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager

Signature:

Signature:

Senior Program Manager

Date: 06/11/2009

Date: <u>06/11/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212613 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/05/09 06/04/09

This data package contains sample and QC results for three soil samples, requested for the above referenced project on 06/05/09. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

	is & Tompkins, Ltd. tical Laboratory Since 1878	Cŀ	1/		Ν	0	F CU	S	T	0	D	Y			8			1	Pag€)	0	f		
	2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	С&Т	LOG)IN (#:	2	12613	7									Ana	alys	;is					
		Sampl	er:	5.	rem.	y h	nozh						8 1											
Project	No.: 20 33149 - 0045				-								1708											
Project	Name: Former Lenoine								_						٥									
Project		•					26-2600	•					87EX	001 0										
Turnarc	ound Time:	Fax:	9	25	- 4	20	-0106						61	0	X									
				Ма	trix			F	Pres	erv	ative		+ 5											
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste		# of Containers	HCL	H ₂ SO4	- SONH	ICE		-Hdr	ľu										
	B-13-5.0'	6.4.09 845	X				3				X		X	>	<									
2	B-13-12.0'	6.4.09 915	X.				3	ļ			X	_			40									
	8-13-16.01	6.4.09 955	X	<u> </u>			3	ļ			X			1	4D						+	╞──┼╸		
	B-13-19.0'	614109 1035	X	ļ			<u> </u>	ļ			70				10								_	
	B-13-24,01	6.4.09 1110	X	<u> </u>			3			<u> </u>	X				10		_		\rightarrow		+	╞╼╍┼╸	_	
	B-14- 5.01	6.4.07 1155	X		-		<u>3</u> 3	 			X		X			$\left \right $		_				┢──╁─		
	B-14- 12.0'	6.4.09 1218	x			-+	3				X	_	_	_	40								_	
	B-14-16.01	6.4.09 1240	X	-							X				40		-+			_				
	B-14-20.0' B-14-24.0'	6.4.09 1307	X		-		3				XX				40	$\left \right $			<u> </u>		+	┢──┼──	-	
	B-14-28.0'	6.4.09 1442	X				3			\square	x				20	+			-+		+			
17	R-16-6 0'	6.4.09 1530	Ŕ			\rightarrow	_ <u>_</u>				X		X	F.	ord	+			+		+		-	
12	B-15-5.0' B-15-12.0'	6.4.09 608	-				3				Ŷ				20	+		+			+			
Notes:	- 13 12:0	SAMPLE RECEIPT	1				D BY:	I		L					EIVED B	⊥⊥ ∨.						LL_		
1	•	Intact Cold	-							10	~ <		INE			<u>"</u> -	\blacktriangleright	\rightarrow	<u></u>	Ĥ	, 			
l'ŵ	rell gasoline.	On Ice Ambient			lla	Ľ	6'	4.0	7		0_S			1	/ M		1	A	K		5 C	2/4/		190
0.	T. 0	Preservative Correct?	P	1						U	ALE /		\mathbf{V}	4		+	<u> </u>					27 111	<u>"-</u>	
prv	I'll gasoline Tim Bodkin.									D	ATE /	TIME								<u> </u>	DATE		١E	
8										D.	ATE /	TIME									DATE	E / TIM	1E	
£	SIGNATI DE												· · · · · ·										ł	

)

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # $2/26/3$ Date Received $6/4/09$ Client 8 Project $6/4/09$	Number of coolers 1 Howe Saugate Factory
Date Opened <u>6/9/97</u> By (print) <u>M.VIULAPUR sign</u> Date Logged in <u>65/06</u> By (print) (sign)	my nel
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES (No
 2A. Were custody seals present? □ YES (circle) on cooler How many Name	YES NO NAYES NO NAYES NO
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:Styrofoam	None Paper towels
Type of ice used: Wet Blue/Gel None	
Samples Received on ice & cold without a temperature b	lank
□ Samples received on ice directly from the field. Cooling	process had begun
 8. Were Method 5035 sampling containers present?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
COMMENTS	

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Purge	able Orga	anics by G	C/MS
Lab #:	212613		Location:	Sausage Factory
Client:	Bureau Veritas Nort	h America	Prep:	EPA 5035
Project#:	33104-004578.00		Analysis:	EPA 8260B
Field ID:	B-13-5.0'		Diln Fac:	0.8726
Lab ID:	212613-001		Batch#:	151708
Matrix:	Soil		Sampled:	06/04/09
Units:	ug/Kg		Received:	06/04/09
Basis:	as received		Analyzed:	06/05/09
Analy	rte -	Result		RL
Freon 12	N	D		8.7
Chloromethane	N	D		8.7
Vinyl Chloride	N	D		8.7
Bromomethane	N	D		8.7
Chloroethane	N	D		8.7
Trichlorofluorom	Nethane N	D		4.4
Acetone	N	D		17
Freon 113	N	D		4.4
1,1-Dichloroethe	ene N	D		4.4
Methylene Chlori	.de N	D		17
Carbon Disulfide	e N	D		4.4
MTBE	N	D		4.4
trans-1,2-Dichlo	proethene N	D		4.4
Vinyl Acetate	N	D		44
1,1-Dichloroetha	ne N	D		4.4
2-Butanone	N	D		8.7
cis-1,2-Dichloro	Nethene N	D		4.4
2,2-Dichloroprop	oane N	D		4.4
Chloroform	N	D		4.4
Bromochlorometha		D		4.4
1,1,1-Trichloroe		D		4.4
1,1-Dichloroprop		D		4.4
Carbon Tetrachlo		D		4.4
1,2-Dichloroetha	ane N	D		4.4
Benzene		D		4.4
Trichloroethene		D		4.4
1,2-Dichloroprop		D		4.4
Bromodichloromet	chane N	D		4.4
Dibromomethane		D		4.4
4-Methyl-2-Penta		D		8.7
cis-1,3-Dichloro	-	D		4.4
Toluene		D		4.4
trans-1,3-Dichlo		D		4.4
1,1,2-Trichloroe		D		4.4
2-Hexanone		D		8.7
1,3-Dichloroprop		D		4.4
Tetrachloroether	ne N	D		4.4

- -

Purgeable Organics by GC/MS						
Lab #:	212613	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5035			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	B-13-5.0'	Diln Fac:	0.8726			
Lab ID:	212613-001	Batch#:	151708			
Matrix:	Soil	Sampled:	06/04/09			
Units:	ug/Kg	Received:	06/04/09			
Basis:	as received	Analyzed:	06/05/09			

Analyte	Result	RL
Dibromochloromethane	ND	4.4
1,2-Dibromoethane	ND	4.4
Chlorobenzene	ND	4.4
1,1,1,2-Tetrachloroethane	ND	4.4
Ethylbenzene	ND	4.4
m,p-Xylenes	ND	4.4
o-Xylene	ND	4.4
Styrene	ND	4.4
Bromoform	ND	4.4
Isopropylbenzene	ND	4.4
1,1,2,2-Tetrachloroethane	ND	4.4
1,2,3-Trichloropropane	ND	4.4
Propylbenzene	ND	4.4
Bromobenzene	ND	4.4
1,3,5-Trimethylbenzene	ND	4.4
2-Chlorotoluene	ND	4.4
4-Chlorotoluene	ND	4.4
tert-Butylbenzene	ND	4.4
1,2,4-Trimethylbenzene	ND	4.4
sec-Butylbenzene	ND	4.4
para-Isopropyl Toluene	ND	4.4
1,3-Dichlorobenzene	ND	4.4
1,4-Dichlorobenzene	ND	4.4
n-Butylbenzene	ND	4.4
1,2-Dichlorobenzene	ND	4.4
1,2-Dibromo-3-Chloropropane	ND	4.4
1,2,4-Trichlorobenzene	ND	4.4
Hexachlorobutadiene	ND	4.4
Naphthalene	ND	4.4
1,2,3-Trichlorobenzene	ND	4.4

Surrogate	\$REC	Limits
Dibromofluoromethane	99	71-128
1,2-Dichloroethane-d4	102	69-135
Toluene-d8	108	80-120
Bromofluorobenzene	102	77–131

Purgeable Organics by GC/MS				
Lab #:	212613	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5035	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-14-5.0'	Diln Fac:	0.9025	
Lab ID:	212613-006	Batch#:	151708	
Matrix:	Soil	Sampled:	06/04/09	
Units:	ug/Kg	Received:	06/04/09	
Basis:	as received	Analyzed:	06/05/09	

Analyte	Result	RL
Freon 12	ND	9.0
Chloromethane	ND	9.0
Vinyl Chloride	ND	9.0
Bromomethane	ND	9.0
Chloroethane	ND	9.0
Trichlorofluoromethane	ND	4.5
Acetone	ND	18
Freon 113	ND	4.5
1,1-Dichloroethene	ND	4.5
Methylene Chloride	ND	18
Carbon Disulfide	ND	4.5
MTBE	ND	4.5
trans-1,2-Dichloroethene	ND	4.5
Vinyl Acetate	ND	45
1,1-Dichloroethane	ND	4.5
2-Butanone	ND	9.0
cis-1,2-Dichloroethene	ND	4.5
2,2-Dichloropropane	ND	4.5
Chloroform	ND	4.5
Bromochloromethane	ND	4.5
1,1,1-Trichloroethane	ND	4.5
1,1-Dichloropropene	ND	4.5
Carbon Tetrachloride	ND	4.5
1,2-Dichloroethane	ND	4.5
Benzene	ND	4.5
Trichloroethene	ND	4.5
1,2-Dichloropropane	ND	4.5
Bromodichloromethane	ND	4.5
Dibromomethane	ND	4.5
4-Methyl-2-Pentanone	ND	9.0
cis-1,3-Dichloropropene	ND	4.5
Toluene	ND	4.5
trans-1,3-Dichloropropene	ND	4.5
1,1,2-Trichloroethane	ND	4.5
2-Hexanone	ND	9.0
1,3-Dichloropropane	ND	4.5
Tetrachloroethene	ND	4.5

	Purgeable Org	ganics by GC/1	MS
Lab #:	212613	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-14-5.0'	Diln Fac:	0.9025
Lab ID:	212613-006	Batch#:	151708
Matrix:	Soil	Sampled:	06/04/09
Units:	ug/Kg	Received:	06/04/09
Basis:	as received	Analyzed:	06/05/09
Analy		R	NAME PARTY AND
Dibromochloromet			4.5
1,2-Dibromoethar	ne ND		4.5
Chlorobenzene	ND		4.5
1,1,1,2-Tetrach	loroethane ND		4.5
Ethylbenzene	ND		4.5
m,p-Xylenes	ND		4.5
o-Xylene	ND		4.5
Styrene	ND		4.5
Bromoform	ND		4.5
Isopropylbenzen	e ND		4.5
1,1,2,2-Tetrach	loroethane ND		4.5
1,2,3-Trichlorop	propane ND		4.5
Propylbenzene	ND		4.5
Bromobenzene	ND		4.5
1,3,5-Trimethyl	oenzene ND		4.5
2-Chlorotoluene	ND		4.5
4-Chlorotoluene	ND		4.5
tert-Butylbenzer	ne ND		4.5
1,2,4-Trimethyll	benzene ND		4.5
sec-Butylbenzene	e ND		4.5
para-Isopropyl 1	Toluene ND		4.5
1,3-Dichloroben:	zene ND		4.5
1,4-Dichloroben:	zene ND		4.5
n-Butylbenzene	ND		4.5
1,2-Dichloroben:	zene ND		4.5
1,2-Dibromo-3-Cl			4.5
1,2,4-Trichlorol		4.5	
Hexachlorobutad			4.5
Naphthalene	ND		4.5
1,2,3-Trichloro	benzene ND		4.5

Surrogate	*REC	Limits
Dibromofluoromethane	102	71-128
1,2-Dichloroethane-d4	106	69-135
Toluene-d8	102	80-120
Bromofluorobenzene	104	77-131

3.0

- - -

		Purgeable Org	anics by GC	/MS
Lab #:	212613	1779年4月1日日日1月1日1日	Location:	Sausage Factory
Client:		s North America	Prep:	EPA 5035
Project#:	33104-004578.		Analysis:	EPA 8260B
Field ID:	B-15-5.0'		Diln Fac:	0.9381
Lab ID:	212613-012		Batch#:	151708
Matrix:	Soil		Sampled:	06/04/09
Units:	ug/Kg		Received:	06/04/09
Basis:	as received		Analyzed:	06/05/09
Anal	yte	Result		RL
Freon 12		ND		9.4
Chloromethane		ND		9.4
Vinyl Chloride		ND		9.4
Bromomethane		ND		9.4
Chloroethane		ND		9.4
Trichlorofluoro	omethane	ND		4.7
Acetone		ND		19
Freon 113		ND		4.7
1,1-Dichloroeth		ND		4.7
Methylene Chloride		ND	19	
Carbon Disulfic	le	ND		4.7
MTBE		ND		4.7
trans-1,2-Dichloroethene		ND	4.7	
Vinyl Acetate		ND	47 4.7	
1,1-Dichloroethane		ND	4./ 9.4	
2-Butanone		ND		
cis-1,2-Dichlor		ND	4.7	
2,2-Dichloropro	opane	ND	4.7	
Chloroform		ND	4.7	
Bromochlorometh		ND		4.7
1,1,1-Trichloro		ND		4.7
1,1-Dichloropro Carbon Tetrachl		ND ND		4.7 4.7
1,2-Dichloroeth		ND		4.7
Benzene	lalle	ND		4.7
Trichloroethene		ND		4.7
1,2-Dichloropro		ND		4.7
Bromodichlorome		ND		4.7
Dibromomethane	echane	ND		4.7
4-Methyl-2-Pent	anone	ND		9.4
cis-1,3-Dichlo		ND		4.7
Toluene	Lobrobene	ND		4.7
trans-1,3-Dichl	loropropene	ND	4.7	
1,1,2-Trichlord		ND		4.7
2-Hexanone		ND		9.4
1,3-Dichloropro	nane	ND		4.7
Tetrachloroethe	-	ND		4.7

ND

4.7

ND= Not Detected

Tetrachloroethene

RL= Reporting Limit

Page 1 of 2

Lab #:212613Location:Sausage FactoryClient:Bureau Veritas North AmericaPrep:EPA 5035Project#:33104-004578.00Analysis:EPA 8260BField ID:B-15-5.0'Diln Fac:0.9381Lab ID:212613-012Batch#:151708Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09AnalyteResultMatrix:ND4.71, 2-DibromoethaneND4.71, 1, 1, 2-TetrachloroethaneND4.7m, p-XylenesND4.7o-XyleneND4.7BromoformND4.7IsopropylbenzeneND4.71, 2, 3-TrichloropthaneND4.71, 2, 3-TrichloropthaneND4.71, 2, 3, 5-TrimethylbenzeneND4.71, 3, 5-TrimethylbenzeneND4.7 <tr <td="">1, 3, 5-Trimethylbenzene<t< th=""><th></th><th>Purgeable Org</th><th>ganics by GC/M</th><th>ß</th></t<></tr> <tr><td>Project#: 33104-004578.00 Analysis: EPA 8260B Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Analyte Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 mp-Xylenes ND 4.7 Styrene ND 4.7 Styrene ND 4.7 1,1,2.2-Tetrachloroethane ND 4.7 styrene ND 4.7 styrene ND 4.7 1,2.2-Tetrachloroethane ND 4.7 1,2.2.2-Tetrachloroethane ND 4.7 1,2.3-Trichloroppane ND 4.7 1,2.3-Trimethylbenzene ND 4.7<td>Lab #:</td><td>212613</td><td>Location:</td><td>Sausage Factory</td></td></tr> <tr><td>Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Matrix: Soil Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 Ethylbenzene ND 4.7 m,p-Xylenes ND 4.7 Styrene ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,1,2,2-Tetrachloroethane ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,2,3-Trichloropropane ND 4.7 Propylbenzene ND 4.7</td><td>Client:</td><td>Bureau Veritas North America</td><td>Prep:</td><td>EPA 5035</td></tr> <tr><td>Lab ID:212613-012Batch#:151708Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Matrix:ND4.7Colspan="2">AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7stylenesND4.7styreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7Isopropylb</td><td>Project#:</td><td>33104-004578.00</td><td>Analysis:</td><td>EPA 8260B</td></tr> <tr><td>Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Image: transformed baseND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7chlybenzeneND4.7m,p-XylenesND4.7styreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7StyreneND4.7BromoformND4.71,2,2-TetrachloroethaneND4.71,2,3-TrichloroptoaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Field ID:</td><td>B-15-5.0'</td><td>Diln Fac:</td><td>0.9381</td></tr> <tr><td>Units:ug/Kg as receivedReceived:06/04/09 06/05/09Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.7 4.71,2-DibromoethaneND4.7 4.7ChlorobenzeneND4.7 4.71,1,2-TetrachloroethaneND4.7 4.7m,p-XylenesND4.7 4.7o-XyleneND4.7 4.7StyreneND4.7 4.7BromoformND4.7 4.71,2,2-TetrachloroethaneND4.7 4.71,2,3-TrichloropopaneND4.7 4.7PropylbenzeneND4.7 4.7I,3,5-TrimethylbenzeneND4.7 4.7</td><td>Lab ID:</td><td>212613-012</td><td>Batch#:</td><td>151708</td></tr> <tr><td>Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7StyreneND4.7J,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Matrix:</td><td>Soil</td><td>Sampled:</td><td>06/04/09</td></tr> <tr><td>Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Units:</td><td>ug/Kg</td><td>Received:</td><td>06/04/09</td></tr> <tr><td>DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Basis:</td><td></td><td>Analyzed:</td><td>06/05/09</td></tr> <tr><th>DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7</th><th></th><th></th><th>*</th><th>2</th></tr> <tr><td>1,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td></td><td></td><td></td><td></td></tr> <tr><td>ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Dibromochloromet</td><td></td><td></td><td></td></tr> <tr><td>1,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7I,3,5-TrimethylbenzeneND4.7</td><td>1,2-Dibromoethan</td><td></td><td></td><td></td></tr> <tr><td>EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7</td><td></td><td></td><td></td><td>4.7</td></tr> <tr><td>m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7</td><td>1,1,1,2-Tetrachl</td><td>oroethane ND</td><td></td><td>4.7</td></tr> <tr><td>o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Ethylbenzene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>m,p-Xylenes</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>o-Xylene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Styrene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>1,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Bromoform</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>1,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>Isopropylbenzene</td><td>e ND</td><td></td><td>4.7</td></tr> <tr><td>PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>1,1,2,2-Tetrachl</td><td>oroethane ND</td><td></td><td>4.7</td></tr> <tr><td>PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7</td><td>1,2,3-Trichlorop</td><td>propane ND</td><td></td><td>4.7</td></tr> <tr><td>1,3,5-Trimethylbenzene ND 4.7</td><td>Propylbenzene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td></td><td>Bromobenzene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td></td><td>1,3,5-Trimethylk</td><td>oenzene ND</td><td></td><td>4.7</td></tr> <tr><td>Z-UNIOFOLOIUENE NU 4./</td><td>2-Chlorotoluene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>4-Chlorotoluene ND 4.7</td><td>4-Chlorotoluene</td><td>ND</td><td></td><td>4.7</td></tr> <tr><td>tert-Butylbenzene ND 4.7</td><td>tert-Butylbenzer</td><td>ne ND</td><td></td><td>4.7</td></tr> <tr><td>1,2,4-Trimethylbenzene ND 4.7</td><td>_</td><td></td><td></td><td>4.7</td></tr> <tr><td>sec-Butylbenzene ND 4.7</td><td></td><td></td><td></td><td>4.7</td></tr> <tr><td>para-Isopropyl Toluene ND 4.7</td><td></td><td></td><td></td><td>4.7</td></tr> <tr><td>1,3-Dichlorobenzene ND 4.7</td><td></td><td></td><td></td><td></td></tr> <tr><td>1,4-Dichlorobenzene ND 4.7</td><td>•</td><td></td><td></td><td></td></tr> <tr><td>n-Butylbenzene ND 4.7</td><td>•</td><td></td><td></td><td></td></tr> <tr><td>1,2-Dichlorobenzene ND 4.7</td><td>-</td><td></td><td></td><td></td></tr> <tr><td>1,2-Dibromo-3-Chloropropane ND 4.7</td><td>•</td><td></td><td></td><td></td></tr> <tr><td>1,2,4-Trichlorobenzene ND 4.7</td><td>-</td><td></td><td></td><td></td></tr> <tr><td>Hexachlorobutadiene ND 4.7</td><td></td><td></td><td></td><td></td></tr> <tr><td>Naphthalene ND 4.7</td><td></td><td></td><td></td><td></td></tr> <tr><td>1,2,3-Trichlorobenzene ND 4.7</td><td>-</td><td></td><td></td><td></td></tr>		Purgeable Org	ganics by GC/M	ß	Project#: 33104-004578.00 Analysis: EPA 8260B Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Analyte Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 mp-Xylenes ND 4.7 Styrene ND 4.7 Styrene ND 4.7 1,1,2.2-Tetrachloroethane ND 4.7 styrene ND 4.7 styrene ND 4.7 1,2.2-Tetrachloroethane ND 4.7 1,2.2.2-Tetrachloroethane ND 4.7 1,2.3-Trichloroppane ND 4.7 1,2.3-Trimethylbenzene ND 4.7 <td>Lab #:</td> <td>212613</td> <td>Location:</td> <td>Sausage Factory</td>	Lab #:	212613	Location:	Sausage Factory	Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Matrix: Soil Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 Ethylbenzene ND 4.7 m,p-Xylenes ND 4.7 Styrene ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,1,2,2-Tetrachloroethane ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,2,3-Trichloropropane ND 4.7 Propylbenzene ND 4.7	Client:	Bureau Veritas North America	Prep:	EPA 5035	Lab ID:212613-012Batch#:151708Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Matrix:ND4.7Colspan="2">AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7stylenesND4.7styreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7Isopropylb	Project#:	33104-004578.00	Analysis:	EPA 8260B	Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Image: transformed baseND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7chlybenzeneND4.7m,p-XylenesND4.7styreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7StyreneND4.7BromoformND4.71,2,2-TetrachloroethaneND4.71,2,3-TrichloroptoaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Field ID:	B-15-5.0'	Diln Fac:	0.9381	Units:ug/Kg as receivedReceived:06/04/09 06/05/09Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.7 4.71,2-DibromoethaneND4.7 4.7ChlorobenzeneND4.7 4.71,1,2-TetrachloroethaneND4.7 4.7m,p-XylenesND4.7 4.7o-XyleneND4.7 4.7StyreneND4.7 4.7BromoformND4.7 4.71,2,2-TetrachloroethaneND4.7 4.71,2,3-TrichloropopaneND4.7 4.7PropylbenzeneND4.7 4.7I,3,5-TrimethylbenzeneND4.7 4.7	Lab ID:	212613-012	Batch#:	151708	Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7StyreneND4.7J,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Matrix:	Soil	Sampled:	06/04/09	Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Units:	ug/Kg	Received:	06/04/09	DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Basis:		Analyzed:	06/05/09	DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7			*	2	1,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7					ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Dibromochloromet				1,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7I,3,5-TrimethylbenzeneND4.7	1,2-Dibromoethan				EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7				4.7	m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7	1,1,1,2-Tetrachl	oroethane ND		4.7	o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Ethylbenzene	ND		4.7	StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	m,p-Xylenes	ND		4.7	BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	o-Xylene	ND		4.7	IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Styrene	ND		4.7	1,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Bromoform	ND		4.7	1,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Isopropylbenzene	e ND		4.7	PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	1,1,2,2-Tetrachl	oroethane ND		4.7	PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	1,2,3-Trichlorop	propane ND		4.7	1,3,5-Trimethylbenzene ND 4.7	Propylbenzene	ND		4.7		Bromobenzene	ND		4.7		1,3,5-Trimethylk	oenzene ND		4.7	Z-UNIOFOLOIUENE NU 4./	2-Chlorotoluene	ND		4.7	4-Chlorotoluene ND 4.7	4-Chlorotoluene	ND		4.7	tert-Butylbenzene ND 4.7	tert-Butylbenzer	ne ND		4.7	1,2,4-Trimethylbenzene ND 4.7	_			4.7	sec-Butylbenzene ND 4.7				4.7	para-Isopropyl Toluene ND 4.7				4.7	1,3-Dichlorobenzene ND 4.7					1,4-Dichlorobenzene ND 4.7	•				n-Butylbenzene ND 4.7	•				1,2-Dichlorobenzene ND 4.7	-				1,2-Dibromo-3-Chloropropane ND 4.7	•				1,2,4-Trichlorobenzene ND 4.7	-				Hexachlorobutadiene ND 4.7					Naphthalene ND 4.7					1,2,3-Trichlorobenzene ND 4.7	-			
	Purgeable Org	ganics by GC/M	ß																																																																																																																																																																																																									
Project#: 33104-004578.00 Analysis: EPA 8260B Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Analyte Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 mp-Xylenes ND 4.7 Styrene ND 4.7 Styrene ND 4.7 1,1,2.2-Tetrachloroethane ND 4.7 styrene ND 4.7 styrene ND 4.7 1,2.2-Tetrachloroethane ND 4.7 1,2.2.2-Tetrachloroethane ND 4.7 1,2.3-Trichloroppane ND 4.7 1,2.3-Trimethylbenzene ND 4.7 <td>Lab #:</td> <td>212613</td> <td>Location:</td> <td>Sausage Factory</td>	Lab #:	212613	Location:	Sausage Factory																																																																																																																																																																																																								
Field ID: B-15-5.0' Diln Fac: 0.9381 Lab ID: 212613-012 Batch#: 151708 Matrix: Soil Sampled: 06/04/09 Units: ug/Kg Received: 06/04/09 Basis: as received Analyzed: 06/05/09 Matrix: Soil Result RL Dibromochloromethane ND 4.7 1,2-Dibromoethane ND 4.7 1,2-Dibromoethane ND 4.7 1,1,1,2-Tetrachloroethane ND 4.7 Ethylbenzene ND 4.7 m,p-Xylenes ND 4.7 Styrene ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,1,2,2-Tetrachloroethane ND 4.7 Isopropylbenzene ND 4.7 Isopropylbenzene ND 4.7 1,2,3-Trichloropropane ND 4.7 Propylbenzene ND 4.7	Client:	Bureau Veritas North America	Prep:	EPA 5035																																																																																																																																																																																																								
Lab ID:212613-012Batch#:151708Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Matrix:ND4.7Colspan="2">AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7stylenesND4.7styreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7Isopropylb	Project#:	33104-004578.00	Analysis:	EPA 8260B																																																																																																																																																																																																								
Matrix:SoilSampled:06/04/09Units:ug/KgReceived:06/04/09Basis:as receivedAnalyzed:06/05/09Image: transformed baseND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7chlybenzeneND4.7m,p-XylenesND4.7styreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7StyreneND4.7BromoformND4.71,2,2-TetrachloroethaneND4.71,2,3-TrichloroptoaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Field ID:	B-15-5.0'	Diln Fac:	0.9381																																																																																																																																																																																																								
Units:ug/Kg as receivedReceived:06/04/09 06/05/09Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.7 4.71,2-DibromoethaneND4.7 4.7ChlorobenzeneND4.7 4.71,1,2-TetrachloroethaneND4.7 4.7m,p-XylenesND4.7 4.7o-XyleneND4.7 4.7StyreneND4.7 4.7BromoformND4.7 4.71,2,2-TetrachloroethaneND4.7 4.71,2,3-TrichloropopaneND4.7 4.7PropylbenzeneND4.7 4.7I,3,5-TrimethylbenzeneND4.7 4.7	Lab ID:	212613-012	Batch#:	151708																																																																																																																																																																																																								
Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7StyreneND4.7J,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Matrix:	Soil	Sampled:	06/04/09																																																																																																																																																																																																								
Basis:as receivedAnalyzed:06/05/09AnalyteResultRLDibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7BromoformND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Units:	ug/Kg	Received:	06/04/09																																																																																																																																																																																																								
DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7	Basis:		Analyzed:	06/05/09																																																																																																																																																																																																								
DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.71,2,3-TrichloroptopaneND4.7PropylbenzeneND4.71,3,5-TrimethylbenzeneND4.71,3,5-TrimethylbenzeneND4.7			*	2																																																																																																																																																																																																								
1,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7																																																																																																																																																																																																												
ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Dibromochloromet																																																																																																																																																																																																											
1,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7I,3,5-TrimethylbenzeneND4.7	1,2-Dibromoethan																																																																																																																																																																																																											
EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7				4.7																																																																																																																																																																																																								
m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.7J,3,5-TrimethylbenzeneND4.7	1,1,1,2-Tetrachl	oroethane ND		4.7																																																																																																																																																																																																								
o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Ethylbenzene	ND		4.7																																																																																																																																																																																																								
StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	m,p-Xylenes	ND		4.7																																																																																																																																																																																																								
BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	o-Xylene	ND		4.7																																																																																																																																																																																																								
IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Styrene	ND		4.7																																																																																																																																																																																																								
1,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Bromoform	ND		4.7																																																																																																																																																																																																								
1,2,3-TrichloropropaneND4.7PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	Isopropylbenzene	e ND		4.7																																																																																																																																																																																																								
PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	1,1,2,2-Tetrachl	oroethane ND		4.7																																																																																																																																																																																																								
PropylbenzeneND4.7BromobenzeneND4.71,3,5-TrimethylbenzeneND4.7	1,2,3-Trichlorop	propane ND		4.7																																																																																																																																																																																																								
1,3,5-Trimethylbenzene ND 4.7	Propylbenzene	ND		4.7																																																																																																																																																																																																								
	Bromobenzene	ND		4.7																																																																																																																																																																																																								
	1,3,5-Trimethylk	oenzene ND		4.7																																																																																																																																																																																																								
Z-UNIOFOLOIUENE NU 4./	2-Chlorotoluene	ND		4.7																																																																																																																																																																																																								
4-Chlorotoluene ND 4.7	4-Chlorotoluene	ND		4.7																																																																																																																																																																																																								
tert-Butylbenzene ND 4.7	tert-Butylbenzer	ne ND		4.7																																																																																																																																																																																																								
1,2,4-Trimethylbenzene ND 4.7	_			4.7																																																																																																																																																																																																								
sec-Butylbenzene ND 4.7				4.7																																																																																																																																																																																																								
para-Isopropyl Toluene ND 4.7				4.7																																																																																																																																																																																																								
1,3-Dichlorobenzene ND 4.7																																																																																																																																																																																																												
1,4-Dichlorobenzene ND 4.7	•																																																																																																																																																																																																											
n-Butylbenzene ND 4.7	•																																																																																																																																																																																																											
1,2-Dichlorobenzene ND 4.7	-																																																																																																																																																																																																											
1,2-Dibromo-3-Chloropropane ND 4.7	•																																																																																																																																																																																																											
1,2,4-Trichlorobenzene ND 4.7	-																																																																																																																																																																																																											
Hexachlorobutadiene ND 4.7																																																																																																																																																																																																												
Naphthalene ND 4.7																																																																																																																																																																																																												
1,2,3-Trichlorobenzene ND 4.7	-																																																																																																																																																																																																											

Surrogate	+REC	Limits
Dibromofluoromethane	105	71-128
1,2-Dichloroethane-d4	109	69-135
Toluene-d8	107	80-120
Bromofluorobenzene	92	77-131

	Purgeable Org	anics by GC/	'MS
Lab #:	212613	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC498857	Batch#:	151708
Matrix:	Soil	Analyzed:	06/05/09
Units:	ug/Kg		

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	Purgeable Organics by GC/MS		
Lab #:	212613	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5035	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Туре:	BLANK	Diln Fac:	1.000	
Lab ID:	QC498857	Batch#:	151708	
Matrix:	Soil	Analyzed:	06/05/09	
Units:	ug/Kg	-	*	

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	:
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	:
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	*REC	Limits	
Dibromofluoromethane	105	71-128	
1,2-Dichloroethane-d4	109	69-135	
Toluene-d8	110	80-120	
Bromofluorobenzene	104	77-131	

ND= Not Detected RL= Reporting Limit Page 2 of 2

		Purge	able Org	anics by	GC/MS				
Lab #: 212613				Location:	Saus	age Facto	ory	1.11.11.11.11	
Client:	Bureau Ve	ritas Nort	h America	Prep:	EPA	5035	_		
Project#:	33104-004	578.00		Analysis:	EPA	8260B			
Matrix:	Soil			Batch#:	1517	08			
Units:	ug/Kg			Analyzed:	06/0	5/09			
Diln Fac:	1.000								
Type:	BS			Lab ID:	QC49	8858			
	Analyte		Spiked	an a statistica	Result	*REC	Limits		
1,1-Dichlor	oethene		25.00		28.99	116	73-135		
Benzene			25.00		29.17	117	80-125		
Trichloroet	hene		25.00		28.23	113	80-127		
Toluene			25.00		28.86	115	80-126		
Chlorobenze	ne		25.00		25.41	102	80-120		
Si	urrogate	*REC	Limits				NAME OF TAXABLE	1775 (SH	
Dibromofluo		103	71-128					Contra Hall	
1,2-Dichlor	oethane-d4	101	69-135						
Toluene-d8		108	80-120						
Bromofluoro	benzene	98	77-131						
Туре:	BSD			Lab ID:	QC49	8859			
	Analyte		Spiked		Result	*REC	Limits	RPD	Lim
1,1-Dichlor			25.00		29.43	118	73-135	2	20
Benzene			25.00		29.18	117	80-125	0	20
Trichloroet	hene		25.00		27.67	111	80-127	2	20
Toluene			25.00		28.93	116	80-126	0	20
C1 1 1			05.00			100	00 100	-	20

Surrogate	%REC	Limits
Dibromofluoromethane	106	71-128
1,2-Dichloroethane-d4	101	69-135
Toluene-d8	104	80-120
Bromofluorobenzene	101	77–131

25.58

102

80-120

25.00

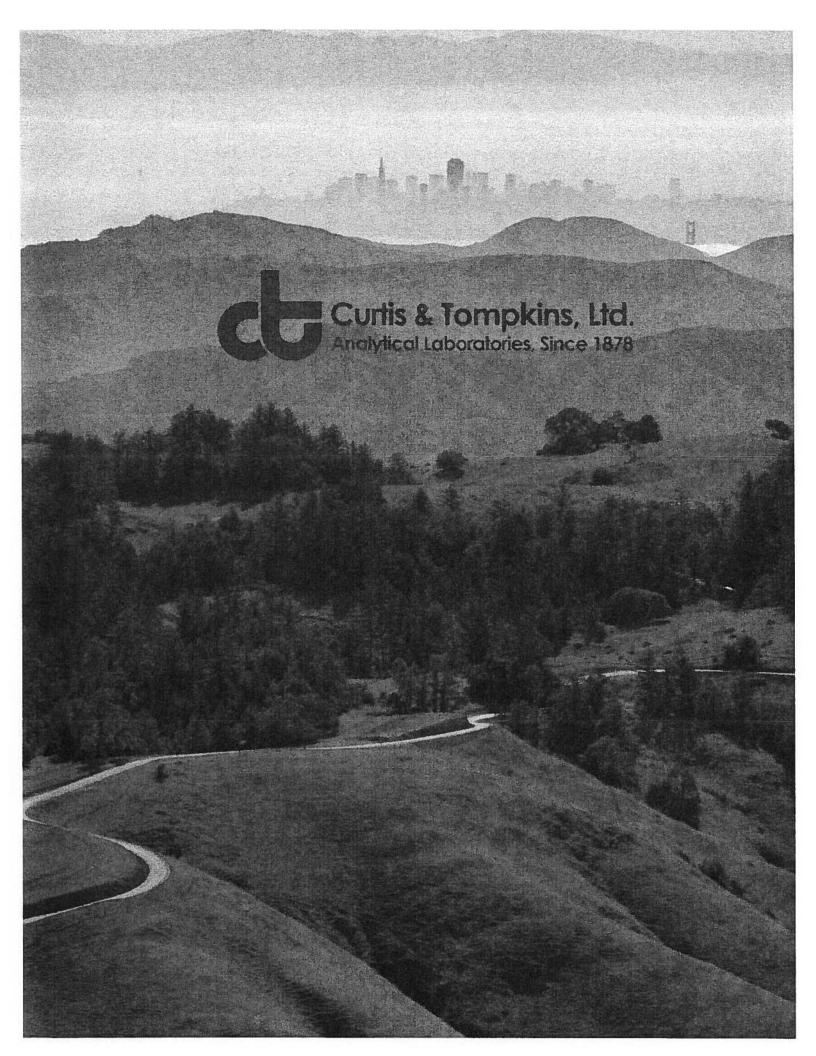
Chlorobenzene

20

1

Purgeable Organics by GC/MS										
Lab #:	212613	Location:	Sausage Factory							
Client:	Bureau Veritas North America	Prep:	EPA 5035							
Project#:	33104-004578.00	Analysis:	EPA 8260B							
Field ID:	ZZZZZZZZZZ	Batch#:	151708							
MSS Lab ID:	212621-002	Sampled:	06/05/09							
Matrix:	Miscell.	Received:	06/05/09							
Units:	ug/Kg	Analyzed:	06/05/09							
Basis:	as received		·····							

Type:	MS	Diln Fac:	0.8881
Lab ID:	QC498989		


Analyte	MSS Result	Spiked	Result	*REC	Limits
1,1-Dichloroethene	<0.8929	44.40	42.14	95	58-145
Benzene	7.751	44.40	46.14	86	56-126
Trichloroethene	<0.8929	44.40	42.58	96	50-142
Toluene	19.04	44.40	52.69	76	52-125
Chlorobenzene	<0.8929	44.40	35.76	81	46-120

Surrogate	%REC	Limits	
Dibromofluoromethane	99	71-128	
1,2-Dichloroethane-d4	94	69-135	
Toluene-d8	99	80-120	
Bromofluorobenzene	96	77-131	

Type:	MSD	Diln Fac:	0.8929
Lab ID:	QC498990		

Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	44.64	44.97	101	58-145	6	28
Benzene	44.64	50.87	97	56-126	9	26
Trichloroethene	44.64	48.14	108	50-142	12	29
Toluene	44.64	60.63	93	52-125	14	29
Chlorobenzene	44.64	39.12	88	46-120	8	29

Surrogate	*REC	Linits
Dibromofluoromethane	93	71-128
1,2-Dichloroethane-d4	86	69-135
Toluene-d8	100	80-120
Bromofluorobenzene	99	77-131

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212654 ANALYTICAL REPORT

Bureau Veritas North America Project : 33104-004578.00 Location : Sausage Factory 2430 Camino Ramon San Ramon, Ca 94583 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
B-11-5.0'	212654-001
B-11-22'	212654-002
SVGW-4-5.0'	212654-003
SVGW-4-9.0'	212654-004
B-16-5.0'	212654-005
B-16-22.0'	212654-006
B-17-5.0'	212654-007
B-18-5.0'	212654-008
B-16-18'	212654-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager

Signature:

Signature:

Senior Program Manager

Date: 06/11/2009

Date: <u>06/11/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212654 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/08/09 06/05/09

This data package contains sample and QC results for three soil samples, requested for the above referenced project on 06/08/09. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

	_				2	212654												- 1	.1
		Bureau Verita	ıs Nor	th A	meric	a, Inc.												Page	
		INTERDEPA	RTME	NTAL	INTE	RNAL						TAN	Γ			For		u Veritas Use roject No.	only
	B U R E A U V E R I T A S	CHAI	N-OF-C	CUST	ODY					s Reque	-		Yes		•				
	INTERNAL DEPARTMEN	TAL Consultant's Office Location	my Wils	6 n 6 m U A			NO	ſ		e Sche	dule P	rice				eport t			
		DN Internal Project No. <u>3</u> <u>5</u> Client Code:	04.00	1459	8.00	<u>}</u>	PRICING FORMATION			count		100			Clier Send V			ternal Office	
		ny Name:	-			······································	PRI(FOR			list			_	1	Reg.	Mail		vernight Mail mail	
	Mailing	Address:	Tele	phone No.	:925-9	26-269	- <u>Z</u>	[Sp	ecial P	rice At	tache	d	[∃ Fax	Fax #			
	Special Inst	ate, Zip: ructions: 17 to TM BodKM					ontainers	(Ent	ter an '	'X' in th	e box t				QUES uest. Er		' if Pres	ervative adde	ed.")
	¥-290	to to the bearing					NYO			214	0/							///	
	Soil Sample:	s Only: Which state are these fro	m?				ENCOR Number of		1007	Ž									
		ENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX/ MEDIA	AIR VOLUME (specify units)	Ū₽ I	~	<u> </u>	\square		\square	\square	\square	\square	\square	\square	FOR USE C	
١	B-11-	5.0	6-5-04	1	Soil		3	M	2	<u>Þ</u>									
2	B-11-	22	6.5.09	1345	50.7		3	H	と	<u>P</u>									
3	SVGU	-4- 5.0'		1520			3	_	OL	D									
4	SUGU	-4-9.0'		1525			3	H	921	Þ									
5	B-16-	5,0'		821			ļ	X											
6	B-16-	22,0		1010			3	H	OL	D									
7	B-17-	5,0'		1035			3	X											
9	B-18-	5.0'		1447	L		3	X											
	,				•														
		Collected by: To and to be	I	(print)	Collector's	Signature		. he	-							, i	<u> </u>		
	CHAIN	Collected by: Jerry Wilso Relinquished by:	<u>a</u>			6-5-09 1903	Hecel	ed by:		10	1	90h	Full.	\checkmark		Da	ate/Time	6-5-19	1903
	OF -	Relinquished by:		T	Date/Time		Receiv		C	Ż	<u> </u>		1	t			ate/Time		
		Authorized by:	<u></u>		Date	··· ·	Sampl	e Cond	ition U	pon Re	ceipt:		Accept	table)ther (e)	xplain)		
-		(Client Signature MUS	Accompany Red	uesl)															

Please return completed form and samples to one of the Bureau Veritas North America, Inc. locations below: Detroit Lab: (800) 806-5887 Atlanta Lab: (800) 252-9919

1

Distribution: White & Yellow: Lab Pink: Consultant

COOLER RECEIPT CHECKL	IST	Curtis & Te	ompkins, Ltd.
Login # <u>212659</u> Client BURGOU VEALTOS	Date Received 6/5/09 Project PEMR. 5	Number of coolers	ory
Date Opened $\frac{650}{200}$ By (print Date Logged in $\frac{900}{200}$ By (print Date Logged in 90	$\frac{M \cdot V[Llow Urve(sign)]}{mt} \leq C \cdot VA^{-2} (sign)$	Ant the	le.
1. Did cooler come with a shippin Shipping info	g slip (airbill, etc)	YES	Ø
 2A. Were custody seals present? . How many 2B. Were custody seals intact upor 3. Were custody papers dry and in 4. Were custody papers filled out p 5. Is the preject identificable form 	Name n arrival? tact when received? properly (ink, signed, etc)?	on samples Date YES	NO NA NO NO
5. Is the project identifiable from6. Indicate the packing in cooler:	(if other, describe)		NO
	oam blocks ØBags ardboard Styrofoam	None Paper tow	rels
Type of ice used: 🛛 Wet	□ Blue/Gel □ None	Temp(°C)	
Samples Received on ic	e & cold without a temperature l		
	directly from the field. Cooling		
 8. Were Method 5035 sampling constrained of 10 and 10 and 10 and 10 and 10 and 10. Are samples in the appropriate 	ontainers present? ey transferred to freezer? unopened?	2030	ÈS NO ES NO ES NO
 Are sample labels present, in g Do the sample labels agree wit Was sufficient amount of sample 	ood condition and complete?		ES NO
14. Are the samples appropriately15. Are bubbles > 6mm absent in V	preserved?	VIS I	NO TRA
16. Was the client contacted conce If YES, Who was called?	rning this sample delivery? By	Y Date:	TES NO
COMMENTS MCD GLAGUE NOT ON CO	c 10# B-16-18' 12 2	ciploc Bobs sc	DIL NOT ENCORE
SOP Volume:Client ServicesSection:1.1.2Page:1 of 1	Z:\ac\forms\checklis		umber 1 of 3 23 July 2008 klist ru6 doc

1 of 1

Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

. . .

Purgeable Organics by GC/MS					
Lab #:	212654	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5035		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-16-5.0'	Diln Fac:	0.8432		
Lab ID:	212654-005	Batch#:	151799		
Matrix:	Soil	Sampled:	06/05/09		
Units:	ug/Kg	Received:	06/05/09		
Basis:	as received	Analyzed:	06/09/09		

Analyte	Result	RL	
Freon 12	ND	8.4	
Chloromethane	ND	8.4	
Vinyl Chloride	ND	8.4	
Bromomethane	ND	8.4	
Chloroethane	ND	8.4	
Trichlorofluoromethane	ND	4.2	
Acetone	ND	17	
Freon 113	ND	4.2	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.2	
MTBE	ND	4.2	
trans-1,2-Dichloroethene	ND	4.2	
Vinyl Acetate	ND	42	
1,1-Dichloroethane	ND	4.2	
2-Butanone	ND	8.4	
cis-1,2-Dichloroethene	ND	4.2	
2,2-Dichloropropane	ND	4.2	
Chloroform	ND	4.2	
Bromochloromethane	ND	4.2	
1,1,1-Trichloroethane	ND	4.2	
1,1-Dichloropropene	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Benzene	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
Dibromomethane	ND	4.2	
4-Methyl-2-Pentanone	ND	8.4	
cis-1,3-Dichloropropene	ND	4.2	
Toluene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
2-Hexanone	ND	8.4	
1,3-Dichloropropane	ND	4.2	
Tetrachloroethene	ND	4.2	

Purgeable Organics by GC/MS					
Lab #:	212654	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5035		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-16-5.0'	Diln Fac:	0.8432		
Lab ID:	212654-005	Batch#:	151799		
Matrix:	Soil	Sampled:	06/05/09		
Units:	ug/Kg	Received:	06/05/09		
Basis:	as received	Analyzed:	06/09/09		

Analyte	Result	RL
Dibromochloromethane	ND	4.2
1,2-Dibromoethane	ND	4.2
Chlorobenzene	ND	4.2
1,1,1,2-Tetrachloroethane	ND	4.2
Ethylbenzene	ND	4.2
m,p-Xylenes	ND	4.2
o-Xylene	ND	4.2
Styrene	ND	4.2
Bromoform	ND	4.2
Isopropylbenzene	ND	4.2
1,1,2,2-Tetrachloroethane	ND	4.2
1,2,3-Trichloropropane	ND	4.2
Propylbenzene	ND	4.2
Bromobenzene	ND	4.2
1,3,5-Trimethylbenzene	ND	4.2
2-Chlorotoluene	ND	4.2
4-Chlorotoluene	ND	4.2
tert-Butylbenzene	ND	4.2
1,2,4-Trimethylbenzene	ND	4.2
sec-Butylbenzene	ND	4.2
para-Isopropyl Toluene	ND	4.2
1,3-Dichlorobenzene	ND	4.2
1,4-Dichlorobenzene	ND	4.2
n-Butylbenzene	ND	4.2
1,2-Dichlorobenzene	ND	4.2
1,2-Dibromo-3-Chloropropane	ND	4.2
1,2,4-Trichlorobenzene	ND	4.2
Hexachlorobutadiene	ND	4.2
Naphthalene	ND	4.2
1,2,3-Trichlorobenzene	ND	4.2

Surrogate	*REC	Limits
Dibromofluoromethane	102	71-128
1,2-Dichloroethane-d4	101	69-135
Toluene-d8	107	80-120
Bromofluorobenzene	102	77-131

		irgeable Org	anics by G	C/MS	
	212654		Location:		Sausage Factory
	Bureau Veritas		Prep:		EPA 5035
	33104-004578.00		Analysis:		EPA 8260B
	B-17-5.0'		Diln Fac:		0.8237
	212654-007		Batch#:		151799
	Soil		Sampled:		06/05/09
Units:	ug/Kg		Received:		06/05/09
Basis:	as received		Analyzed:		06/09/09
Analyt	0	Result	的原因是有意思。这些	RL	
Freon 12		ND		8.	
Chloromethane		ND		8.	
Vinyl Chloride		ND		8.	
Bromomethane		ND		8.	
Chloroethane		ND		8.	
Trichlorofluorome	thane	ND		4.	1
Acetone		ND		16	
Freon 113		ND		4.	
1,1-Dichloroethen		ND	4.1		
Methylene Chlorid	e	ND		16	
Carbon Disulfide		ND		4.	1
MTBE		ND		4.	
trans-1,2-Dichlor	oethene	ND		4.	1
Vinyl Acetate		ND		41	
1,1-Dichloroethan	e	ND		4.	
2-Butanone		ND		8.	
-	cis-1,2-Dichloroethene ND		4.1		
2,2-Dichloropropa	ne	ND	4.1		
Chloroform		ND	4.1		1
Bromochloromethan	-	ND	4.1		1
1,1,1-Trichloroet	hane	ND		4.	1
1,1-Dichloroprope	ne	ND		4.	
Carbon Tetrachlor	ide	ND		4.	1

4.1

4.1

4.1

4.1

4.1

4.1

8.2

4.1

4.1

4.1

4.1

8.2

4.1

4.1

ND

trans-1,3-Dichloropropene
1,1,2-Trichloroethane
2-Hexanone
1,3-Dichloropropane
Tetrachloroethene

1,2-Dichloroethane

1,2-Dichloropropane

Bromodichloromethane

4-Methyl-2-Pentanone

cis-1,3-Dichloropropene

Trichloroethene

Dibromomethane

Benzene

Toluene

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Or	ganics by GC,	/MS
Lab #:	212654	Location:	Sausage Factory
Client:	Bureau Veritas North America	-	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-17-5.0'	Diln Fac:	0.8237
Lab ID:	212654-007	Batch#:	151799
Matrix:	Soil	Sampled:	06/05/09
Units:	ug/Kg	Received:	06/05/09
Basis:	as received	Analyzed:	06/09/09
Analyt Dibromochlorometh			RL 4.1
1,2-Dibromoethane			4.1
Chlorobenzene	ND ND		4.1
1,1,1,2-Tetrachlo			4.1
Ethylbenzene	ND		4.1
m,p-Xylenes	ND		4.1
o-Xylene	ND		4.1
Styrene	ND		4.1
Bromoform	ND		4.1
Isopropylbenzene	ND		4.1
1,1,2,2-Tetrachlo			4.1
1,2,3-Trichlorop			4.1
Propylbenzene	ND ND		4.1
Bromobenzene	ND		4.1
1,3,5-Trimethylbe			4.1
2-Chlorotoluene	ND		4.1
4-Chlorotoluene	ND		4.1
tert-Butylbenzene			4.1
1,2,4-Trimethylbe			4.1
sec-Butylbenzene	ND		4.1
para-Isopropyl To			4.1
1,3-Dichlorobenze			4.1
1,4-Dichlorobenze			4.1
n-Butylbenzene	ND		4.1
1,2-Dichlorobenze			4.1
1,2-Dibromo-3-Chl		4.1	
1,2,4-Trichlorobe	1 <u>1</u>		4.1
Hexachlorobutadie			4.1
Naphthalene	ND ND		4.1
1,2,3-Trichlorobe			4.1
1, 2, 3-11101010De			д. Т

Surrogate	\$REC	CLinits	
Dibromofluoromethane	103	71-128	
1,2-Dichloroethane-d4	100	69-135	
Toluene-d8	107	80-120	
Bromofluorobenzene	96	77-131	i

Lab #:	212654	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5035	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-18-5.0'	Diln Fac:	0.4363	
Lab ID:	212654-008	Batch#:	151842	
Matrix:	Soil	Sampled:	06/05/09	
Units:	ug/Kg	Received:	06/05/09	
Basis:	as received	Analyzed:	06/10/09	
Units: Basis:	ug/Kg	Received: Analyzed:	06/05/09	

Freon 12	ND	4.4	
Chloromethane	ND	4.4	
Vinyl Chloride	ND	4.4	
Bromomethane	ND	4.4	
Chloroethane	ND	4.4	
Trichlorofluoromethane	ND	2.2	
Acetone	ND	8.7	
Freon 113	ND	2.2	
1,1-Dichloroethene	ND	2.2	
Methylene Chloride	ND	8.7	
Carbon Disulfide	ND	2.2	
MTBE	ND	2.2	
trans-1,2-Dichloroethene	ND	2.2	
Vinyl Acetate	ND	22	
1,1-Dichloroethane	ND	2.2	
2-Butanone	ND	4.4	
cis-1,2-Dichloroethene	ND	2.2	
2,2-Dichloropropane	ND	2.2	
Chloroform	ND	2.2	
Bromochloromethane	ND	2.2	
1,1,1-Trichloroethane	ND	2.2	
1,1-Dichloropropene	ND	2.2	
Carbon Tetrachloride	ND	2.2	
1,2-Dichloroethane	ND	2.2	
Benzene	ND	2.2	
Trichloroethene	ND	2.2	
1,2-Dichloropropane	ND	2.2	
Bromodichloromethane	ND	2.2	
Dibromomethane	ND	2.2	
4-Methyl-2-Pentanone	ND	4.4	
cis-1,3-Dichloropropene	ND	2.2	
Toluene	ND	2.2	
trans-1,3-Dichloropropene	ND	2.2	
1,1,2-Trichloroethane	ND	2.2	
2-Hexanone	ND	4.4	
1,3-Dichloropropane	ND	2.2	
Tetrachloroethene	ND	2.2	

	Purge	able Orga	anics by GC	C/MS	
Lab #:	212654		Location:	Sausage Factory	
Client:	Bureau Veritas Nort	h America	Prep:	EPA 5035	
Project#:	33104-004578.00		Analysis:	EPA 8260B	
Field ID:	B-18-5.0'		Diln Fac:	0.4363	
Lab ID:	212654-008		Batch#:	151842	
Matrix:	Soil		Sampled:	06/05/09	
Units:	ug/Kg		Received:	06/05/09	
Basis:	as received		Analyzed:	06/10/09	
				· · · · · · · · · · · · · · · · · · ·	
Analy		Result		RL	
Dibromochloromet		D		2.2	
1,2-Dibromoethar		D		2.2	
Chlorobenzene		D		2.2	
1,1,1,2-Tetrach]	loroethane N	D		2.2	
Ethylbenzene		D		2.2	
m,p-Xylenes	N	D		2.2	
o-Xylene	N	D		2.2	
Styrene		ID		2.2	
Bromoform		ID		2.2	
Isopropylbenzene		ID		2.2	
1,1,2,2-Tetrach1		ID	2.2		
1,2,3-Trichlorop	propane N	ID	2.2		
Propylbenzene	N	ID	2.2		
Bromobenzene		ID	2.2		
1,3,5-Trimethylk	penzene N	ID		2.2	
2-Chlorotoluene	N	ID	2.2		
4-Chlorotoluene	N	ID	2.2		
tert-Butylbenzer		ID		2.2	
1,2,4-Trimethylk	penzene N	ID		2.2	
sec-Butylbenzene		ID		2.2	
para-Isopropyl 7		ID		2.2	
1,3-Dichloroben:	zene N	ID	2.2		
1,4-Dichloroben:	zene N	ID	2.2		
n-Butylbenzene	N	ID	2.2		
1,2-Dichloroben:	zene N	ID	2.2		
1,2-Dibromo-3-Ch	hloropropane N	ID	2.2		
1,2,4-Trichlorob		ID		2.2	
Hexachlorobutad	iene N	ID		2.2	
Naphthalene	N	ID		2.2	
1,2,3-Trichlorob	penzene N	ID		2.2	

Surrogate	%REC	Limits
Dibromofluoromethane	104	71-128
1,2-Dichloroethane-d4	104	69-135
Toluene-d8	110	80-120
Bromofluorobenzene	100	77-131

4.0

. . .

	Purgeable Org	anics by GC/	′MS
Lab #:	212654	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499217	Batch#:	151799
Matrix:	Soil	Analyzed:	06/09/09
Units:	ug/Kg	_	

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	212654	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5035		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC499217	Batch#:	151799		
Matrix:	Soil	Analyzed:	06/09/09		
Units:	ug/Kg				

Analyte	Result	RL
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	*REC	Limits
Dibromofluoromethane	96	71-128
1,2-Dichloroethane-d4	98	69-135
Toluene-d8	106	80-120
Bromofluorobenzene	104	77–131

ND= Not Detected RL= Reporting Limit Page 2 of 2

Balch QC Re			able Ore						
		Purge	able Org	anics by G	C/MS				
Lab #:	212654			Location:	Sausa	age Facto	ry		
Client:	Bureau Veri	tas Nort	h America	Prep:	EPA	5035			
Project#:	33104-00457	8.00		Analysis:	EPA	8260B			
Matrix:	Soil			Batch#:	1517	99			
Units:	ug/Kg			Analyzed:	06/0	9/09			
Diln Fac:	1.000								
Type:	BS			Lab ID:	QC49	9218			
Ar	alyte		Spiked		Result	%REC	Limits		
1,1-Dichloroe	ethene		25.00		28.01	112	73-135		(* 1911) 1
Benzene			25.00		28.28	113	80-125		
Trichloroethe	ene		25.00		28.80	115	80-127		
Toluene			25.00		28.17	113	80-126		
Chlorobenzene	2		25.00		25.86	103	80-120		
Sur	rogate	*REC	Limits					line and	SNE AR
Dibromofluoro		97	71-128						
1,2-Dichloroe		89	69-135						
Toluene-d8		99	80-120						
Bromofluorobe	enzene	100	77-131						
Туре:	BSD			Lab ID:	QC49	9219			
Ar	alyte		Spiked		Result	\$REC	Limits	RPE) Lim
1,1-Dichloroe	ethene		25.00		27.10	108	73-135	3	20
Benzene			25.00		27.81	111	80-125	2	20
Trichloroethe	ene		25.00		29.38	118	80-127	2	20
Toluene			25.00		28.20	113	80-126	0	20
Chlorobenzene	9		25.00		25.81	103	80-120	0	20
Su	crogate	*REC	Limits						1,7986
Dibromofluoro		97	71-128			and a substantial state of the substantial sta			
		93	69-135						
1,2-Dichioroe									
1,2-Dichloroe Toluene-d8		102	80-120						

6.0

. .

Purgeable Organics by GC/MS						
Lab #:	212654	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5035			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZ	Diln Fac:	0.9653			
MSS Lab ID:	212666-001	Batch#:	151799			
Matrix:	Soil	Sampled:	06/08/09			
Units:	ug/Kg	Received:	06/08/09			
Basis:	as received	Analyzed:	06/09/09			

Туре:

MS

Lab ID: QC499264

Analyte	MSS Result	Spiked	Result	*REC	Limits
1,1-Dichloroethene	<0.9653	48.26	51.50	107	58-145
Benzene	<0.9653	48.26	50.93	106	56-126
Trichloroethene	<0.9653	48.26	48.34	100	50-142
Toluene	<0.9653	48.26	51.40	107	52-125
Chlorobenzene	<0.9653	48.26	41.26	85	46-120

Surrogate	*REC	Limits
Dibromofluoromethane	107	71-128
1,2-Dichloroethane-d4	102	69-135
Toluene-d8	99	80-120
Bromofluorobenzene	98	77-131

Type: MSD		Lab ID:	QC499265			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	48.26	50.	57 105	58-145	2	28
Benzene	48.26	50.	22 104	56-126	1	26
Trichloroethene	48.26	48.	89 101	50-142	1	29
Toluene	48.26	49.	60 103	52-125	4	29
Chlorobenzene	48.26	41.	41 86	46-120	0	29
Surrogate	%REC Limits					
Dibromofluoromethane	102 71-128					
1,2-Dichloroethane-d4	96 69-135					
Toluene-d8	101 80-120					
Bromofluorobenzene	99 77-131					

- -

. .

Purgeable Organics by GC/MS						
Lab #:	212654	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5035			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC499403	Batch#:	151842			
Matrix:	Soil	Analyzed:	06/10/09			
Units:	ug/Kg					

Analyte	Result	RL	建立的加速的电子 和
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	anics by GC/	/ MS
Lab #:	212654	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499403	Batch#:	151842
Matrix:	Soil	Analyzed:	06/10/09
Units:	ug/Kg		

Analyte	Result	RL
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	&REC	Limits
Dibromofluoromethane	98	71-128
1,2-Dichloroethane-d4	106	69-135
Toluene-d8	107	80-120
Bromofluorobenzene	98	77-131

ND= Not Detected RL= Reporting Limit Page 2 of 2

8.0

	Purgeable Org	anics by GC/	/MS
Lab #:	212654	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5035
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Soil	Batch#:	151842
Units:	ug/Kg	Analyzed:	06/10/09
Diln Fac:	1.000		

Type: BS	5	Lab	D ID: QC499	404		
Analyte		Spiked	Result	\$REC	Limits	
1,1-Dichloroethene	9	25.00	28.09	112	73-135	
Benzene		25.00	29.98	120	80-125	
Trichloroethene		25.00	29.25	117	80-127	
Toluene		25.00	30.00	120	80-126	
Chlorobenzene		25.00	25.49	102	80-120	
Surroga	te	%REC Limits				大学学 的内容
Dibromofluorometha	ane	9 71-128				

Dibromofluoromethane	99	71-128
1,2-Dichloroethane-d4	98	69-135
Toluene-d8	102	80-120
Bromofluorobenzene	95	77-131

Type: BSD	Lab I	D: QC49	9405			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	27.56	110	73-135	2	20
Benzene	25.00	28.18	113	80-125	6	20
Trichloroethene	25.00	27.77	111	80-127	5	20
Toluene	25.00	28.71	115	80-126	4	20
Chlorobenzene	25.00	25.04	100	80-120	2	20
Surrogate	REC Limits					
Dibromofluoromethane	100 71-128					
1,2-Dichloroethane-d4	97 69-135					
Toluene-d8	106 80-120					
Bromofluorobenzene	103 77-131					

Purgeable Organics by GC/MS						
Lab #:	212654	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5035			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	2222222222	Diln Fac:	0.9940			
MSS Lab ID:	212692-001	Batch#:	151842			
Matrix:	Soil	Sampled:	06/09/09			
Units:	ug/Kg	Received:	06/09/09			
Basis:	as received	Analyzed:	06/10/09			

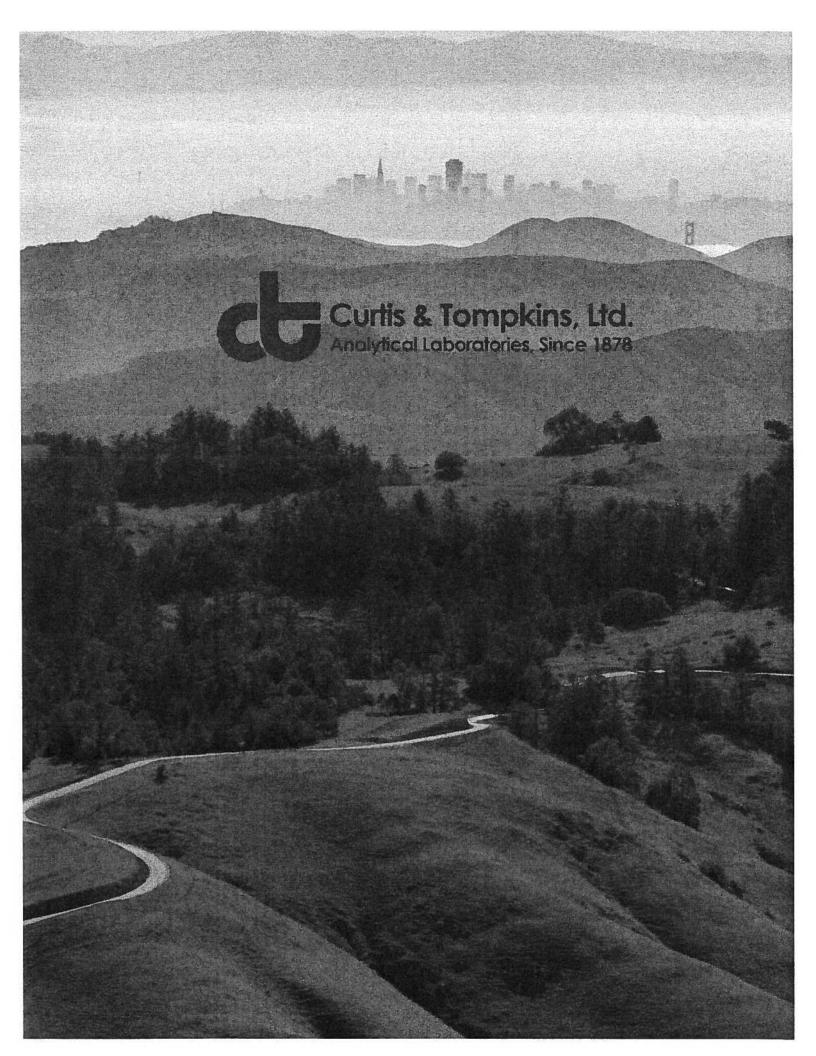
Type:

MS

Lab ID:

QC499501

MSS Result	Spiked	Result	&REC	Limits
<0.9940	49.70	52.80	106	58-145
<0.9940	49.70	53.61	108	56-126
<0.9940	49.70	51.63	104	50-142
<0.9940	49.70	51.92	104	52-125
<0.9940	49.70	40.98	82	46-120
	<0.9940 <0.9940 <0.9940 <0.9940 <0.9940	<0.9940	<0.994049.7052.80<0.9940	<0.994049.7052.80106<0.9940


Surrogate	%REC	Limits
Dibromofluoromethane	107	71-128
1,2-Dichloroethane-d4	98	69-135
Toluene-d8	98	80-120
Bromofluorobenzene	101	77–131

Type: MSD		Lab ID: QC	C499502			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	49.70	57.24	115	58-145	8	28
Benzene	49.70	54.34	109	56-126	1	26
Trichloroethene	49.70	53.01	107	50-142	3	29
Toluene	49.70	50.00	101	52-125	4	29
Chlorobenzene	49.70	41.84	84	46-120	2	29
Surrogate	%REC Limits		a Friday and Storage and	Min (Edit La		
Dibromofluoromethane	103 71-128					
1,2-Dichloroethane-d4	96 69-135					
Toluene-d8	98 80-120					
Bromofluorobenzene	99 77-131					

APPENDIX K

CHAIN-OF-CUSTODY DOCUMENTATION AND CERTIFIED ANALYTICAL RESULTS FOR GROUNDWATER

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212656 ANALYTICAL REPORT

Bureau Veritas North America 2430 Camino Ramon San Ramon, Ca 94583	Project : 33104-004578.00 Location : Sausage Factory Level : II	
--	---	--

<u>Sample ID</u>	<u>Lab ID</u>
B-12	212656-001
B-11	212656-002
B-14	212656-003
B-16	212656-004
B-17	212656-005
B-18	212656-006
B-19	212656-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager Signature:

Signature:

Senior Program Manager

Date: 06/18/2009

Date: 06/18/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212656 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/08/09 06/05/09

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 06/08/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for trifluorotoluene (FID) in B-16 (lab # 212656-004); the corresponding bromofluorobenzene (FID) surrogate recovery was within limits. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

.

Curtis & Tompkins, Ltd. Analytical Laboratory Since 1878 2323 Fifth Street	Cł	IAIN (OF CU	STO	DDY	÷			Anch	-	ie	0	ıf_[
Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax	C & T	LOGIN #: <u>2</u>	12656								~~~~~			
	Sampl	er: Jerca	w/1son/T	m Bod	(67									
Project No.: 33104-004578			Badkin		۲	Ø								
Project Name: Former Son sege						802								
Project P.O.:			426-260	00			-							
Turnaround Time: Standard			426-0101			+87EX	82608							
P		Matrix		Prese			28							
Lab No. Sample ID.	Sampling Date Time	Soil Water Waste	# of Containers	HCL H ² SQ4	E CE	2-H97	Vocs							
1 B-12	6-5-05 1150		6	X	k		X							
2 B-11 3 B-14	6-5-09 1350 6-5-09 745		6	X	X	Ŷ	<u> </u>	+ $-$				+	╉╍╌╂	-
4 8-16	6-5-09 1040	X X	6	k	X	X	$\frac{\mathbf{x}}{\mathbf{x}}$		+			+	╉╼╍╂	
5 8-17	6-5-01 1355	X	6	x	X	X	X		1-1		-+-	+	<u></u> †−−†	_
6 8-18	6-5-09 1700	X	6	x	1	X	6							
7 6-19	6-5-09 1300	X	6	¥	×	X	X					<u> </u>	\downarrow	_
													╆╌╊	
				-+				$\left\{ -\right\} $		┞──╋			++	_
												+	+	
Notes:	SAMPLE RECEIPT													
Notes:		RELINQUIS				L		D BY:		-		-		7
	On Ice Ambient	halles	65	-09 191	03 DATE / TIME	7	ZNO	- 21	1 Min	// "	e-50	/	1 <i>79)</i> E/TIN	フ ME
	Preservative Correct?				DATE / TIME	4	1			l			E / TIN	
SIGNATURE					DATE / TIME							DATI	E / TIN	ИE

,

1

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 217656 Date Received 6/5/09 Client BUREOU VERITAS Project PRMR. 5	Number of coolers
Date Opened <u>G</u> [5[9] By (print) <u>M</u> · V[U0+ U2Ve (sign) Date Logged in <u>6100</u> By (print) (sign)	mt hale
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES D
 2A. Were custody seals present? □ YES (circle) on cooler How many Name 2B. Were custody seals intact upon arrival? 	Date
 3. Were custody sears infact upon arrival? 3. Were custody papers dry and infact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out to 6. Indicate the packing in cooler: (if other, describe) 	YES NO NA MES NO YES NO p of form) YES NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation:	NonePaper towels
Type of ice used: 🛛 Wet 🗌 Blue/Gel 🗌 None	Temp(°C)
Samples Received on ice & cold without a temperature	blank
Samples received on ice directly from the field. Cooling	process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES NO
9. Did all bottles arrive unbroken/unopened?	YES NO
10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete?	
12. Do the sample labels agree with custody papers?	YES NO YES NO
13. Was sufficient amount of sample sent for tests requested?	YES NO
14. Are the samples appropriately preserved?	TES NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
16. Was the client contacted concerning this sample delivery?	
If YES, Who was called?By COMMENTS SRDIMENT IN SMAPLES	Date:

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis &	Fompkin	s Labor	atories A	nalytic	al Repor	t	J.	
Lab #: Client: Project#:	212656 Bureau Verita 33104-004578		America	Location: Prep:		ausage Fac PA 5030B	ctory	2(3.2	Killing Refers
Matrix: Units:	Water ug/L			Sampled: Received:		6/05/09 6/05/09			
Field ID: Type: Lab ID:	B-12 SAMPLE 212656-001			Diln Fac: Batch #: Analyzed:	1	.000 51858 6/10/09			
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND	Result 57 Y 5.7 0.70 0.59		RL 50 0.50 0.50 0.50 0.50 0.50) EPA EPA) EPA) EPA	Analy 8015B 8021B 8021B 8021B 8021B 8021B	SiS 40	
Surro Trifluorotoluer Bromofluorobenz Trifluorotoluer Bromofluorobenz	ne (FID) zene (FID) ne (PID)	%REC 106 105 68 73	Limits 63-146 70-140 50-140 56-132	Anal: EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis				
Field ID: Type: Lab ID:	B-11 SAMPLE 212656-002			Diln Fac: Batch #: Analyzed:	1	20.00 151858 06/10/09			
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		4	Result 6,000 510 C 690 970 2,600 570		RL 1,000 10 10 10 10 10	EPA EPA EPA EPA	Analy 8015B 8021B 8021B 8021B 8021B 8021B 8021B	Sis	
Surro Trifluorotoluer Bromofluorobenz Trifluorotoluer Bromofluorobenz	ne (FID) zene (FID) ne (PID)	%REC 142 115 110 77	Limits 63-146 70-140 50-140 56-132	AnalEPA8015BEPA8015BEPA8021BEPA8021B	ysis				

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 5

	Curtis	& Tompkins Labor	atories A	nalytical 1	Report	
Lab #: Client: Project#:	212656 Bureau Ve: 33104-004	ritas North America 578.00	Location: Prep:	EPA 5		
Matrix: Units:	Water ug/L		Sampled: Received:	06/05		
Field ID: Type:	B-14 SAMPLE		Lab ID:		56-003	
Analyte Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result RL 26,000 500 4,800 10 42 5. 460 5. 400 5. 15 5.	$\begin{array}{r} 10.00\\ 20.00\\ 0\\ 10.00\\ 0\\ 10.00\\ 0\\ 10.00 \end{array}$	151858 C 151940 C 151858 C 151858 C 151858 C	06/10/09 E 06/12/09 E 06/10/09 E 06/10/09 E 06/10/09 E	Analysis PA 8015B PA 8021B PA 8021B PA 8021B PA 8021B PA 8021B PA 8021B
Surroc Trifluorotoluene Bromofluorobenze Trifluorotoluene Bromofluorobenze	e (FID) ene (FID) e (PID)	%REC Limits 120 63-146 101 70-140 93 50-140 71 56-132	Diln Fac 10.00 10.00 10.00 10.00	Batch# Analy 151858 06/10 151858 06/10 151858 06/10 151858 06/10)/09 EPA 8)/09 EPA 8)/09 EPA 8	015B 021B
Field ID: Type: Lab ID:	B-16 SAMPLE 212656-004		Diln Fac: Batch#: Analyzed:	10.00 15185 06/10	58 0/09	
Analy Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	/te	Result 38,000 760 ND 1,700 760 68		RL 500 5.0 5.0 5.0 5.0 5.0 5.0	Ar EPA 8015 EPA 8021 EPA 8021 EPA 8021 EPA 8021 EPA 8021	.B .B .B .B
Surroc Trifluorotoluena Bromofluorobenza Trifluorotoluena Bromofluorobenza	e (FID) ene (FID) e (PID)	%REC Limits 153 * 63-146 139 70-140 75 50-140 93 56-132	Anal EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 5

	Curtis &	Tompkin	s Labor	atories A	nalytical	Report		
Lab #: Client: Project#:	212656 Bureau Verit 33104-004578		America	Location: Prep:	Saus EPA	sage Facto 5030B	ory	
Matrix: Units:	Water ug/L			Sampled: Received:)5/09)5/09		
Field ID: Type: Lab ID:	B-17 SAMPLE 212656-005			Diln Fac: Batch#: Analyzed:	1518			
Analy Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	rte	ND ND ND ND ND			RL 50 0.50 0.50 0.50 0.50 0.50	EPA 80 EPA 80 EPA 80 EPA 80 EPA 80 EPA 80 EPA 80)21B)21B)21B)21B)21B	
Surro Trifluorotoluen Bromofluorobenz Trifluorotoluen Bromofluorobenz	e (FID) ene (FID) e (PID)	%REC 108 104 64 67	Limits 63-146 70-140 50-140 56-132	Anal EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis			
Field ID: Type: Lab ID:	B-18 SAMPLE 212656-006			Diln Fac: Batch#: Analyzed:	151			
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	vte		Result 1,000 65 24 8.4 38 C 5.5		RL 50 0.50 0.50 0.50 0.50 0.50	EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8	021B 021B 021B 021B 021B	
Surro Trifluorotoluen Bromofluorobenz Trifluorotoluen Bromofluorobenz	e (FID) ene (FID) e (PID)	%REC 116 117 125 109	Limits 63-146 70-140 50-140 56-132	Anal EPA 8015B EPA 8015B EPA 8021B EPA 8021B	ysis			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 5

	Curtis &	Tompkins Labor	atories An	alytical R	leport	
Lab #: Client: Project#:	212656 Bureau Verit: 33104-004578	as North America	Location: Prep:	Sausac EPA 50	ge Factory)30B	
Matrix: Units:	Water ug/L		Sampled: Received:	06/05/ 06/05/		
Field ID: Type: Lab ID:	B-19 SAMPLE 212656-007		Diln Fac: Batch #: Analyzed:	1.000 151901 06/11,		
Ana Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	1 yte 2	Result 60 Y ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analys EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	:15 :::::::::::::::::::::::::::::::::::
Surre Trifluorotoluen Bromofluoroben Trifluorotoluen Bromofluoroben	zené (FID) ne (PID)	%REC Limits 82 63-146 98 70-140 85 50-140 87 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	818		
Type: Lab ID: Diln Fac:	BLANK QC499467 1.000		Batch#: Analyzed:	15185 06/10		
Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	Result ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analy: EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	sis
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC Limits 103 63-146 104 70-140 68 50-140 74 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	sis		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 5

- -

	Curtis &	. Tompkin	s Labor	atories A	alytical	Report	B
Lab #: Client: Project#:	212656 Bureau Ver: 33104-0045		America	Location: Prep:	Saus EPA	age Fac [.] 5030B	tory
Matrix: Units:	Water ug/L	,, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	Sampled: Received:	06/01 06/01		······
Type: Lab ID: Diln Fac:	BLANK QC499648 1.000			Batch #: Analyzed:	1519 06/1		
	lyte		Result		RL		Analysis
Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2	NC NC NC NC NC NC)))		50 0.50 0.50 0.50 0.50 0.50	EPA EPA EPA EPA	8015B 8021B 8021B 8021B 8021B 8021B
Surr	ogate	*REC	Limits	Analv	ais	MONTH OF THE	异和言意·地名美国法尔吉尔 的 "这些
Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	ne (FID) zene (FID) ne (PID)	82 82 82 82 82	63-146 70-140 50-140 56-132	EPA 8015B EPA 8015B EPA 8021B EPA 8021B			
Type: Lab ID: Diln Fac:	BLANK QC499789 1.000			Batch #: Analyzed: Analysis:	1519 06/1 EPA		
	lyte		Result		RL		ærimink.
Benzene		NE)		0.50		
	ogate		Result	&REC	Limits		
Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	NA NA		69 73	50-140 56-132		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected DL= Deporting Limit RL= Reporting Limit Page 5 of 5

2.2

	Curtis & Tompkins Labor	atories Anal	lytical Report
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	151858
Units:	ug/L	Analyzed:	06/10/09
Diln Fac:	1.000		

Туре:	BS	Lab ID:	QC499	9468	
	Analyte	Spiked	Result	*REC	Limits
Benzene		10.00	9.425	94	79-120
Toluene		10.00	9.694	97	76-122
Ethylben	zene	10.00	8.985	90	77-125
m,p-Xyle:	nes	10.00	9.499	95	76-126
o-Xylene		10.00	9.101	91	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	72	50-140
Bromofluorobenzene (PID)	73	56-132

Type: BSD		Lab ID:	QC499469			
Analyte	Spiked	Resu	lt %	REC Limit	s RPD	Lim
Benzene	20.	00 1	.8.18 91	. 79–12	20 4	20
Toluene	20.	00 1	.8.14 91	. 76-12	22 7	21
Ethylbenzene	20.	00 1	7.47 87	77-12	25 3	21
m,p-Xylenes	20.	00 1	.8.20 91	. 76-12	26 4	23
o-Xylene	20.	00 1	7.85 89	77-12	26 2	21
Surrogate	%REC Limit	3			20.0	
Trifluorotoluene (PID)	72 50-14	0				
Bromofluorobenzene (PID)	73 56-13	2				

	Curtis & Tompkins Labor		
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC499470	Batch#:	151858
Matrix:	Water	Analyzed:	06/10/09
Units:	ug/L	-	

Analyte	Spiked	Result	\$REC		
Gasoline C7-C12	1,000	941.0	94	76-121	

Surrogate	*REC	Limits
Trifluorotoluene (FID)	113	63-146
Bromofluorobenzene (FID)	103	70-140

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ	Batch#:	151858			
MSS Lab ID:	212693-004	Sampled:	06/09/09			
Matrix:	Water	Received:	06/09/09			
Units:	ug/L	Analyzed:	06/11/09			
Diln Fac:	1.000					

Туре:	MS			Lab ID:	QC	2499471		
	Analyte	MSS Re	sult	Spike	d	Result	\$REC	Limits
Gasoline	e C7-C12		9.342	2,000)	1,844	92	66-120
	Surrogate	8REC	Limits					
Trifluor	cotoluene (FID)	128	63-146					
Bromoflu	orobenzene (FID)	113	70-140					
Туре:	MSD			Lab ID:	Q	2499472		
	Analyte		Spiked		Result	*REC	Limits	RPD Lim
Gasoline	e C7-C12		2,000		1,854	92	66-120	1 20
	Surrogate	\$REC	Limits					
Trifluor	cotoluene (FID)	128	63-146					
	orobenzene (FID)	112	70-140					

- -

. .

	Curtis & Tompkins Labor	Curtis & Tompkins Laboratories Analytical Report				
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8021B			
Matrix:	Water	Batch#:	151901			
Units:	ug/L	Analyzed:	06/11/09			
Diln Fac:	1.000					

Type: BS	Lab ID:	QC499	9649	
Analyte	Spiked	Result	*REC	Limits
Benzene	10.00	9.927	99	79-120
Toluene	10.00	9.912	99	76-122
Ethylbenzene	10.00	10.59	106	77-125
m,p-Xylenes	10.00	10.37	104	76-126
o-Xylene	10.00	9.958	100	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	94	50-140
Bromofluorobenzene (PID)	93	56-132

Type: BSD		Lab I	D:	QC499650)			
Analyte	8	piked	Result		*REC	Limits	RPD	Lim
Benzene		10.00	8.	170 8	32	79-120	19	20
Toluene		10.00	8.3	380 8	34	76-122	17	21
Ethylbenzene		10.00	9.1	159 9	92	77-125	14	21
m,p-Xylenes		10.00	9.1	252	93	76-126	11	23
o-Xylene		10.00	9.	022	90	77-126	10	21
Surrogate	*REC	Limits						
Trifluorotoluene (PID)	89	50-140						
Bromofluorobenzene (PID)	95	56-132						

-

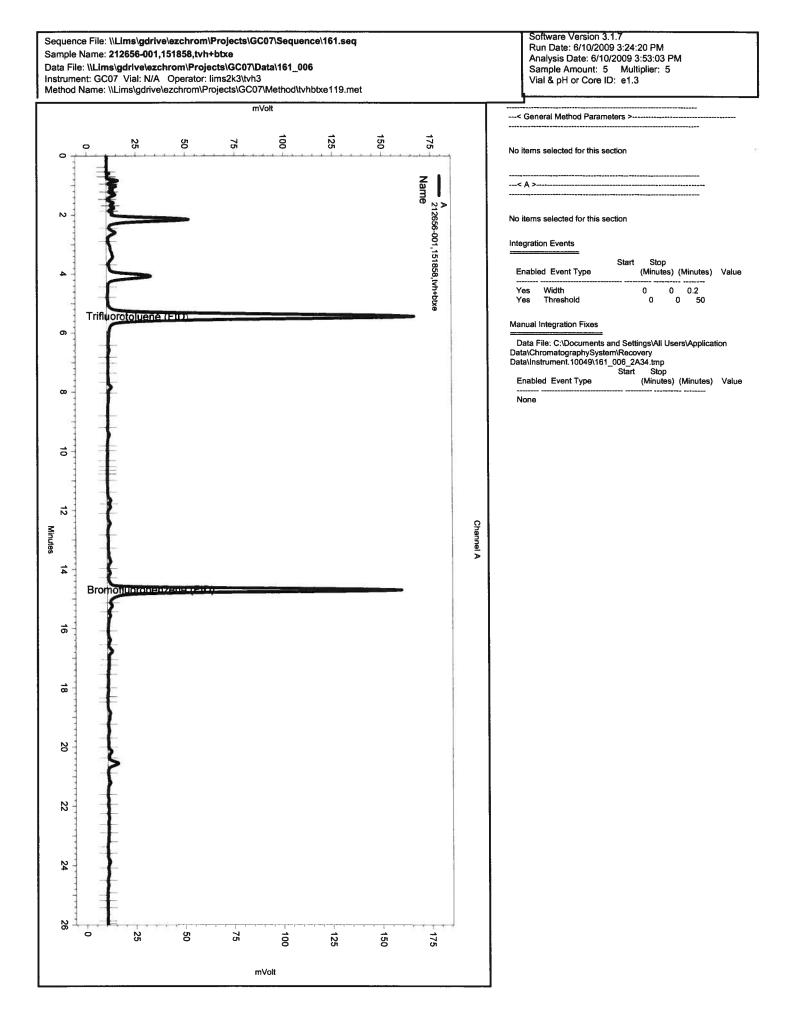
. .

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	212656	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC499651	Batch#:	151901				
Matrix:	Water	Analyzed:	06/11/09				
Units:	ug/L						

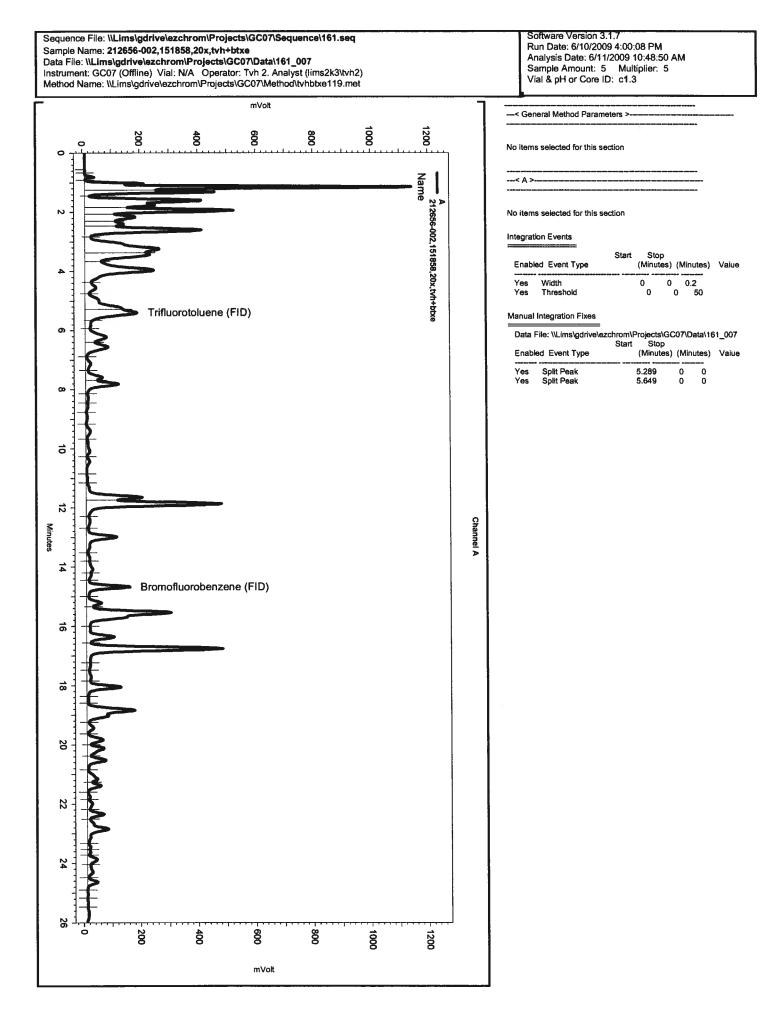
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	922.8	92	76-121

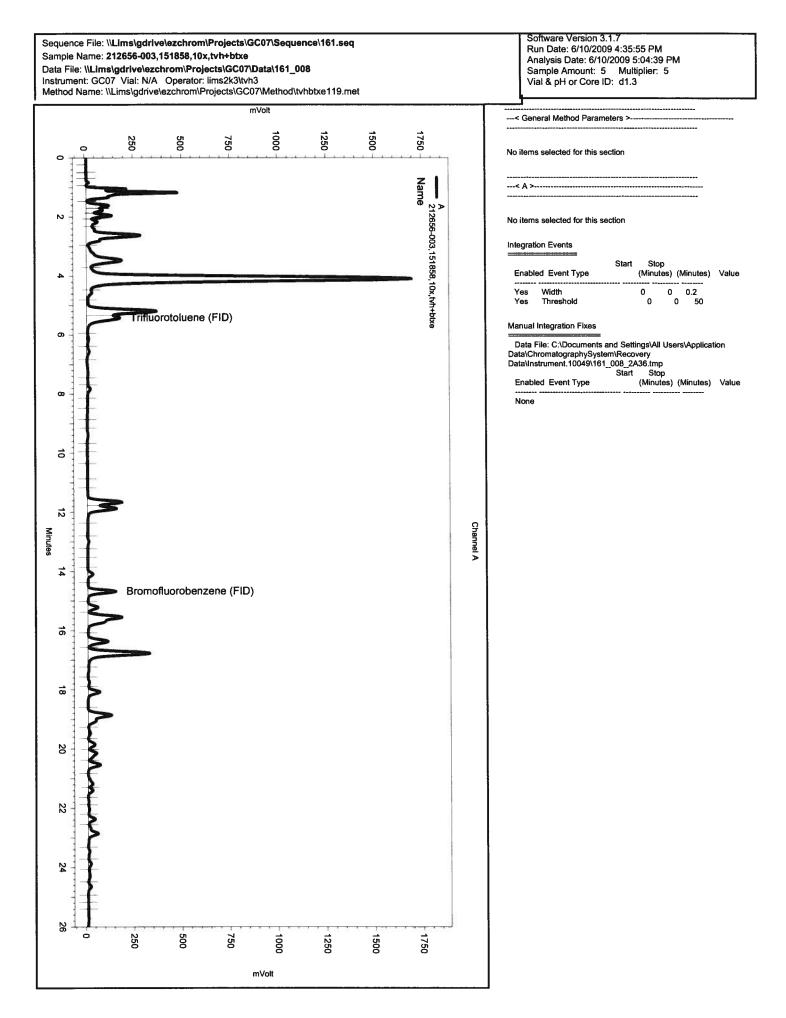
Surrogate	*REC	Limits
Trifluorotoluene (FID)	120	63-146
Bromofluorobenzene (FID)	116	70-140

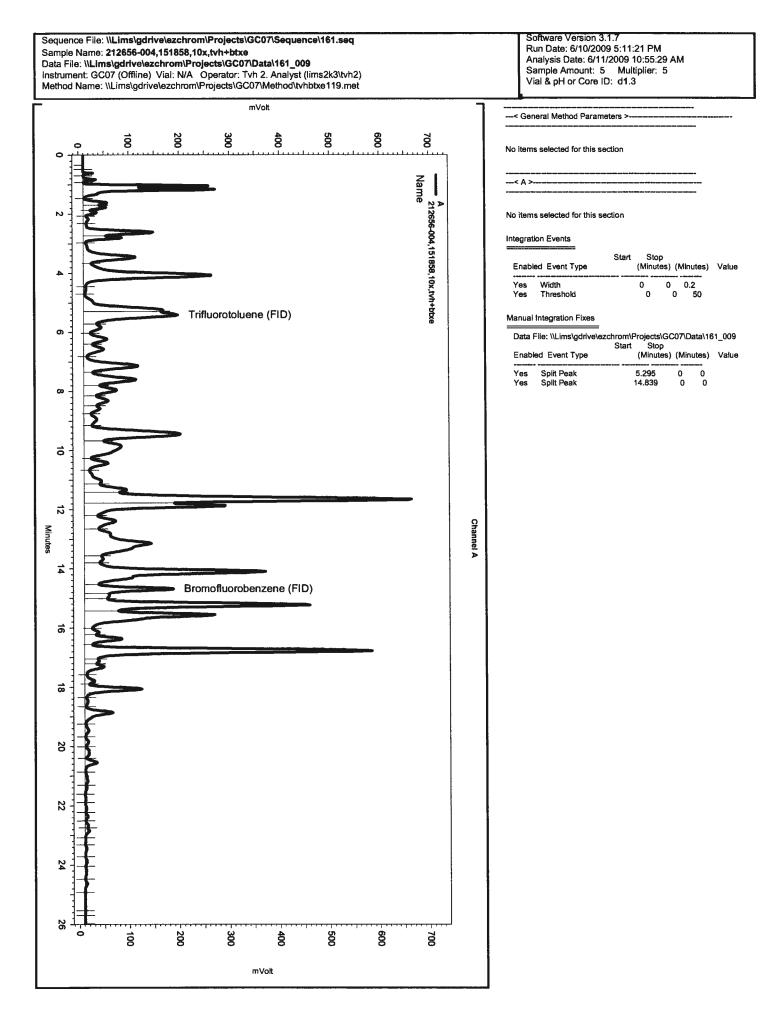
	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Field ID:	222222222	Batch#:	151901
MSS Lab ID:	212734-003	Sampled:	06/09/09
Matrix:	Water	Received:	06/10/09
Units:	ug/L	Analyzed:	06/12/09
Diln Fac:	1.000		

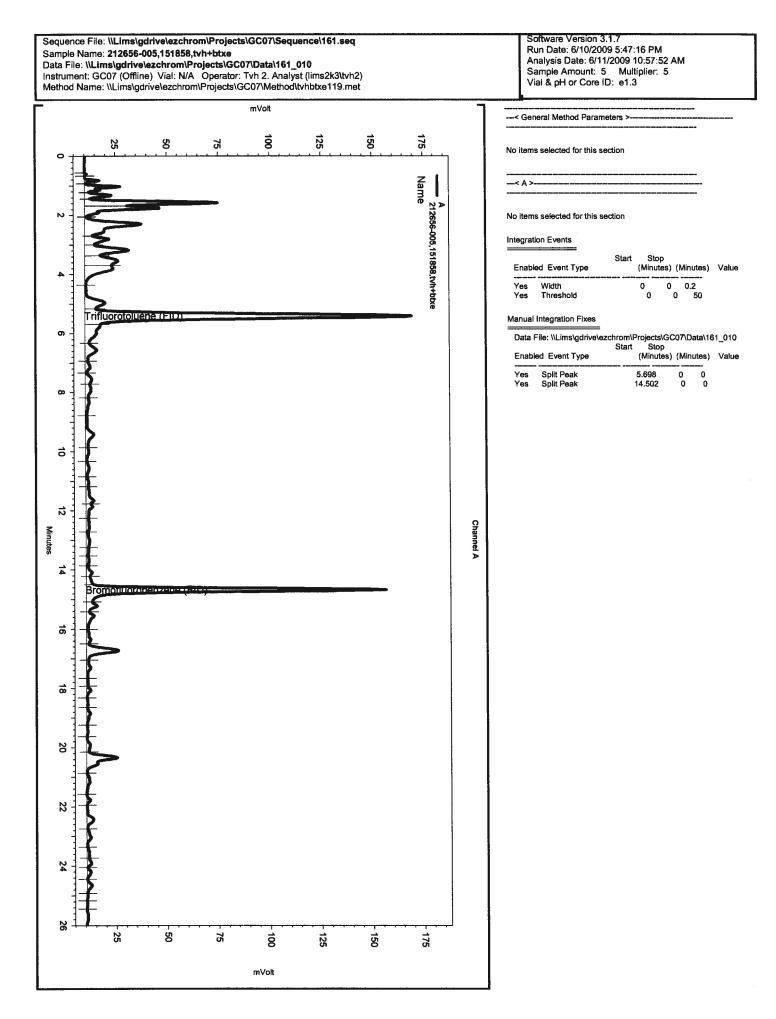

Туре:	MS			Lab ID:	Ç	QC499652			
	Analyte	MSS Re	sult	Spike	d	Result	*REC	Limi	ts
Gasoline	e C7-C12	16	3.2	2,000)	2,050	94	66-12	20
	Surrogate	*REC	Limits				建筑时间的世俗		
Trifluor	cotoluene (FID)	108	63-146						
Bromoflu	lorobenzene (FID)	131	70-140						
Туре:	MSD			Lab ID:	(QC499653			
	Analyte		Spiked		Result	*REC	Limits	RPD L	im
Gasoline	e C7-C12		2,000		2,043	94	66-120	0 2	0
	Surrogate	\$REC	Limits						(Kernige
Trifluor	cotoluene (FID)	113	63-146						
Bromoflu	lorobenzene (FID)	135	70-140						

- -


-

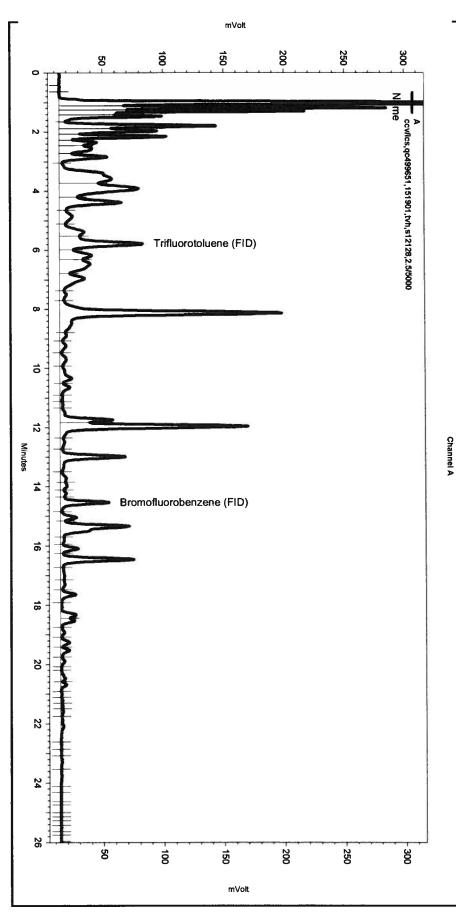


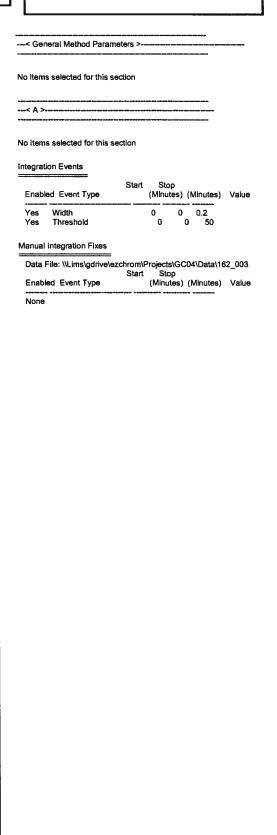

Lab #:	212656			Location:	Sausa	ge Facto	rv		Construction of the second
Client:	Bureau Ver:	itas Nor	th America	Prep:	EPA 5	-	- <u>y</u>		
Project#:	33104-0045			Analysis:	EPA 8				
Matrix:	Water			Batch#:	15194	0			
Units:	ug/L			Analyzed:	06/12	/09			
Diln Fac:	1.000								
Type:	BS			Lab ID:	OC499	793			
1920	20				¥				
	Analyte		Spiked		Result	*REC	Limits	编辑编	
Benzene	······································		10.00		8.929	89	79-120		
S	urrogate	\$RE	C Limits						
Trifluoroto	luene (PID)	68	50-140						
Bromofluoro	benzene (PID)	74	56-132		+ ··· · · · · · · · · · · · · · · · · ·				
Type:	BSD			Lab ID:	QC499	794			
	Analyte		Spiked		Result	*REC	Limits	RPD	Lim
Benzene			10.00		9.180	92	79-120	3	20
	urrogate	\$RE	C Limits						
Traifluorata	luene (PID)	72	50-140						
	benzene (PID)	74	56-132						



Page 2 of 4 (2) Curtis & Tompkins Ltd.

Software Version 3.1.7 Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\162.seq Run Date: 6/11/2009 1:29:21 PM Sample Name: 212656-006,151901,tvh+btxe Analysis Date: 6/12/2009 12:54:00 PM Data File: \\Lims\gdrive\accelstrom\Projects\GC04\Data\162_008 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\accelstrom\Projects\GC04\Method\tvhbtxe162.met Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: d1.3 mVolt ----< General Method Parameters > 2000 1500 8 50 c No items selected for this section C ---< A >-me A 212656-006,151901,tvh+btxe N No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type 0 0.2 Yes Width 0 0 50 Yes Threshold Manual Integration Fixes Trifluorotoluene (FID) თ Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\162_008 Start Stop Enabled Event Type (Minutes) (Minutes) Value Yes Split Peak 5.73 0 0 œ ð 12 Channel A Minutes 14 Bromofluorobenzene (FID) 16 18 20 22 24 26 -2000 ò 8 1000 1500 mVolt


- -


Software Version 3.1.7 Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\162.seq Run Date: 6/11/2009 2:06:59 PM Sample Name: 212656-007,151901,tvh+btxe Analysis Date: 6/12/2009 12:54:03 PM Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\162_009 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: f1.3 mVolt --- General Method Parameters > 20 \$ ଞ 8 70 8 No items selected for this section 0 ---< A >me I A 212656-007,151901,tvh+btxe N No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type 4 0 Yes Width 0 0.2 Threshold 0 50 Yes Manual Integration Fixes I rilluoroioiuentententen σ Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\162_009 Start Stop Enabled Event Type (Minutes) (Minutes) Value None œ 10 12 Channel A Minutes 4 Bromofluorobenzene (FID) 16 8 20 22 24 26 20 ġ Ś ġ \$ 2

mVolt

Page 2 of 4 (26) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\162.seq Sample Name: ccv/lcs,qc499651,151901,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\162_003 Instrument: GC04 (Offline) Vial: N/A Operator: Weidon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbbe162.met Software Version 3.1.7 Run Date: 6/11/2009 9:04:39 AM Analysis Date: 6/12/2009 12:53:41 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

	Purgeable Organics by GC/MS					
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	B-12	Batch#:	151808			
Lab ID:	212656-001	Sampled:	06/05/09			
Matrix:	Water	Received:	06/05/09			
Units:	ug/L	Analyzed:	06/09/09			
Diln Fac:	1.000	-				

Treen 12 ND 1.0 Chloromethane ND 1.0 Vinyl Chloride ND 0.5 Bronomethane ND 1.0 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 1.0 Freen 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Dichloroptopane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-Dichloropropane ND 0.5 1,2-Dichloroptomethane ND 0.5 1,2	Analyte	Result	RL
Vinyl ChlorideND0.5BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5Vinyl AcetateND0.5Vinyl AcetateND0.5J. 2-DichloroetheneND0.5Vinyl AcetateND0.5Vinyl AcetateND0.52ButanoneND0.5ChloroformND0.5BromochloromethaneND0.51,1-DichloroetheneND0.52,2-DichloroetheneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5<	Freon 12	ND	1.0
BromomethaneND1.0ChlorothaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freen 113ND2.01,1-DichlorotheneND0.5Methylene ChlorideND0.5Methylene ChlorideND0.5Trans-1, 2-DichloroetheneND0.5trans-1, 2-DichloroetheneND0.5J,1-DichloroethaneND0.5Z-ButanoneND0.5ChloroftmND0.5ChloroftmND0.5SpromochloromethaneND0.5ChloroftmND0.5SpromochloromethaneND0.5ChloroftmND0.5SpromochloromethaneND0.5ChloroftmND0.5SpromochloromethaneND0.5ChloroftmND0.5SpromochloromethaneND0.5Carbon TetrachlorideND0.5TrichloroethaneND0.5SpromodichloromethaneND0.5FrinchloroethaneND0.5Benzene8.40.5TrichloroethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TrichloroptopeneND0.5TrichloroptopeneND0.5ToileneND0.5ToileneND0.5ToileneND0.5ToileneND0.5 <td>Chloromethane</td> <td>ND</td> <td>1.0</td>	Chloromethane	ND	1.0
ChloroethaneND1.0TrichlorofluoromethaneND10AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND0.5Methylene ChlorideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5trans-1,2-DichloroetheneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52-ButanoneND0.5ChloroformND0.52-DichloroethaneND0.52,2-DichloroethaneND0.52,2-DichloroethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-Dich	Vinyl Chloride	ND	0.5
TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01, 1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5Tras-1, 2-DichloroetheneND0.5trans-1, 2-DichloroetheneND0.52-ButanoneND0.52-ButanoneND0.52-ButanoneND0.52-DichloroetheneND0.52-DichloroethaneND0.52,2-DichloroethaneND0.52,2-DichloroethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.55TrichloroethaneND0.56arcon TetrachlorideND0.57SS80.5S90.5S90.5S90.5S90.5S90.5S90.5S90.5S90.5S90.5S90.5S90.5S <tr< td=""><td>Bromomethane</td><td>ND</td><td>1.0</td></tr<>	Bromomethane	ND	1.0
AcetoneND10Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5MTBEND0.5Vinyl AcetateND101,1-DichloroetheneND0.5Z-ButanoneND0.5ChloroformND0.5SylenchloroethaneND0.52-ButanoneND0.5ChloroformND0.5BromochloromethaneND0.51,1-DichloroethaneND0.51,1-TrichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloropopaneND0.51,2-DichloropopaneND0.51,1-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,3-DichloropopaneND0.51,3-DichloropopaneND0.51,3-DichloropopaneND0.51,3-DichloropopaneND0.51,3-DichloropopaneND0.5	Chloroethane	ND	1.0
Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.5ChloroformND0.5ChloroformND0.5ChloroformND0.5ChloroformND0.5ChloroformND0.5I,1,-TrichloroethaneND0.51,1,-DichloroethaneND0.5ChloroformND0.5StromochloromethaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.51,2-DichloropopaneND0.5StromochloromethaneND0.5StromochloromethaneND0.51,2-DichloropopaneND0.5StromodichloromethaneND0.5StromodichloromethaneND0.5StromodichloromethaneND0.5JibromomethaneND0.54-Methyl-2-PentanoneND0.5Strans-1, 3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND	Trichlorofluoromethane	ND	1.0
1,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.51,1-TrichloroethaneND0.51,1-TrichloroethaneND0.51,2-DichloropeneND0.5Carbon TetrachlorideND0.5Carbon TetrachlorideND0.5TrichloroethaneND0.5StromodichloromethaneND0.5TrichloroetheneND0.5TrichloroethaneND0.5Benzene8.40.5TrichloroethaneND0.5JibromomethaneND0.5JibromomethaneND0.54-Methyl-2-PentanoneND0.5trans-1, 3-DichloropropeneND0.5trans-1, 3-DichloropropeneND0.51, 1, 2-TrichloroethaneND0.52-HexanoneND0.51, 3-DichloropropeneND0.52-HexanoneND0.51, 3-DichloropropaneND0.52-Hexanon	Acetone	ND	10
Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5MTBEND0.5Vinyl AcetateND101,1-DichloroetheneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloroetheneND0.52,2-DichloropropaneND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloropropeneND0.52,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.51,2-DichloropropeneND0.5Benzene8.40.5TrichloroethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.51,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.5<	Freon 113	ND	2.0
Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloropropaneND0.5StromochloromethaneND0.51,1-DichloroetheneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5TrichloroethaneND0.5Benzene8.40.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TolueneND0.5TolueneND0.51,1,2-TrichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.5 <t< td=""><td>1,1-Dichloroethene</td><td>ND</td><td>0.5</td></t<>	1,1-Dichloroethene	ND	0.5
MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5Benzene8.40.5TrichloroethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5Trans-1,3-DichloropropaneND0.5trans-1,3-DichloropropaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.	Methylene Chloride	ND	10
trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.5cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,2-DichloropropeneND0.52,2-DichloropropeneND0.51,1-DichloroethaneND0.51,2-DichloropropeneND0.51,2-DichloroethaneND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.51,2-DichloropropaneND0.5Benzene8.40.5DibromomethaneND0.5DibromomethaneND0.5Vetwhyl-2-PentanoneND0.5TolueneND0.5trans-1, 3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-Dichloropropane	Carbon Disulfide	ND	0.5
Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.51,2-DichloropthaneND0.5DibromomethaneND0.5DibromomethaneND0.5TolueneND0.5trans-1, 3-DichloroptopeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloropthaneND0.51,3-DichloroptopaneND101,3-DichloroptopaneND101,3-DichloroptopaneND0.51,3-DichloropthaneND0.51,3-DichloropthaneND0.51,3-DichloropthaneND0.51,3-DichloropthaneND0.5 <trr>1,3-DichloropthaneND0.5</trr>	MTBE	ND	0.5
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5Benzene8.40.5TrichloroethaneND0.51,2-DichloropropaneND0.5Benzene8.40.5TrichloroethaneND0.5J,2-DichloropropaneND0.5J,2-DichloropropaneND0.5J,2-DichloropropaneND0.5J,2-DichloropropaneND0.5JoromothaneND0.5DibromothaneND0.5TolueneND0.5TolueneND0.51,1,2-TrichloropropaneND0.51,1,2-TrichloroptopaneND0.51,1,2-TrichloroptopaneND0.51,1,2-TrichloroptopeneND0.51,1,2-TrichloroptopaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.5 <td< td=""><td>trans-1,2-Dichloroethene</td><td>ND</td><td>0.5</td></td<>	trans-1,2-Dichloroethene	ND	0.5
2-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.51,2-DichloropropaneND0.5Benzene8.40.5TrichloroptopaneND0.5J,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TolueneND0.5trans-1, 3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroptopaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-Dichloropropane<	Vinyl Acetate	ND	10
cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5J.2-DichloropropaneND0.5DibromomethaneND0.5DibromomethaneND0.5ToilueneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-	1,1-Dichloroethane	ND	0.5
2,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloropropaneND0.5BromodichloromethaneND0.5Benzene8.40.5TrichloroethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5Johnson0.50.5TolueneND0.5trans-1, 3-DichloropropeneND0.51, 2-TrichloroethaneND0.51, 3-DichloropropaneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND	2-Butanone	ND	10
ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloropropaneND0.5J,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5DibromomethaneND0.5TolueneND0.5trans-1, 3-DichloropropeneND0.5trans-1, 3-DichloropropeneND0.51, 2-TrichloroethaneND0.52-HexanoneND101, 3-DichloropropaneND101, 3-DichloropropaneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.52-HexanoneND0.53-No0.50.53-No0.50.53-No0.5 <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td>0.5</td>	cis-1,2-Dichloroethene	ND	0.5
BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloropropaneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5JibromomethaneND0.5JointonomethaneND0.5JointonomethaneND0.5JointonomethaneND0.5JointonomethaneND0.5JointonomethaneND0.5JointonomethaneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.5JointonopropeneND0.	2,2-Dichloropropane	ND	0.5
1,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5BromodichloromethaneND0.5DibromomethaneND0.5Other StateND0.5Joint StateND0.5Joint StateND0.5Joint StateND0.5TolueneND0.51,1,2-TrichloroptopeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND101,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-Dichloropr	Chloroform	ND	0.5
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.51,3-DichloropropeneND0.51,3-DichloropropeneND0.52-HexanoneND101,3-DichloropropaneND0.5	Bromochloromethane	ND	0.5
Carbon TetrachlorideND0.51,2-DichloroethaneND0.5Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.51,1,2-TrichloroethaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.51,3-DichloropropaneND0.52-HexanoneND101,3-DichloropropaneND0.5	1,1,1-Trichloroethane	ND	0.5
1,2-DichloroethaneND0.5Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND101,3-DichloropropaneND0.5	1,1-Dichloropropene	ND	0.5
Benzene8.40.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.5	Carbon Tetrachloride	ND	0.5
TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.52-HexanoneND0.51,3-DichloropropaneND0.5	1,2-Dichloroethane	ND	0.5
1,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND101,3-DichloropropaneND0.5	Benzene	8.4	0.5
BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	Trichloroethene	ND	0.5
DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	1,2-Dichloropropane	ND	0.5
4-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	Bromodichloromethane	ND	0.5
cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	Dibromomethane	ND	0.5
TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	4-Methyl-2-Pentanone	ND	10
trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	cis-1,3-Dichloropropene	ND	0.5
1,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5	Toluene	ND	0.5
1,1,2-TrichloroethaneND0.52-HexanoneND101,3-DichloropropaneND0.5		ND	0.5
2-HexanoneND101,3-DichloropropaneND0.5		ND	0.5
1,3-Dichloropropane ND 0.5		ND	10
		ND	0.5
	Tetrachloroethene	ND	0.5

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS					
Lab #:	212656	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	B-12	Batch#:	151808		
Lab ID:	212656-001	Sampled:	06/05/09		
Matrix:	Water	Received:	06/05/09		
Units:	ug/L	Analyzed:	06/09/09		
Diln Fac:	1.000				

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	*REC	Limits	
Dibromofluoromethane	102	80-122	
1,2-Dichloroethane-d4	94	77-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	80-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

11.0

Purgeable Organics by GC/MS				
Lab #:	212656	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-11	Batch#:	152082	
Lab ID:	212656-002	Sampled:	06/05/09	
Matrix:	Water	Received:	06/05/09	
Units:	ug/L	Analyzed:	06/17/09	
Diln Fac:	40.00	_		

ChloromethaneMVinyl ChlorideMBromomethaneMChloroethaneMTrichlorofluoromethaneM	1D 1D 1D 1D 1D 1D	40 40 20 40 40 40
Vinyl ChlorideNBromomethaneNChloroethaneNTrichlorofluoromethaneN	4D 4D 4D	20 40 40
Bromomethane M Chloroethane M Trichlorofluoromethane M	1D 1D 1D	4 0 4 0
Chloroethane I Trichlorofluoromethane I	1D 1D	4 O
Trichlorofluoromethane	ND	
		40
	ND	10
Acetone		400
Freon 113	ND	80
1,1-Dichloroethene	ND	20
Methylene Chloride	ND	400
Carbon Disulfide	ND	20
MTBE	ND	20
trans-1,2-Dichloroethene	ND	20
Vinyl Acetate	ND	400
1,1-Dichloroethane I	ND	20
2-Butanone I	ND	400
cis-1,2-Dichloroethene	ND	20
2,2-Dichloropropane	ND	20
Chloroform	ND	20
Bromochloromethane	ND	20
1,1,1-Trichloroethane	ND	20
1,1-Dichloropropene	ND	20
Carbon Tetrachloride	ND	20
1,2-Dichloroethane	ND	20
Benzene	64	20
Trichloroethene	ND	20
1,2-Dichloropropane	ND	20
Bromodichloromethane	ND	20
Dibromomethane	ND	20
4-Methyl-2-Pentanone	ND	400
cis-1,3-Dichloropropene	ND	20
Toluene	590	20
trans-1,3-Dichloropropene	ND	20
1,1,2-Trichloroethane	ND	20
	ND	400
1,3-Dichloropropane	ND	20
Tetrachloroethene	ND	20

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

- -

	Purgeable Org	manics by GC/M	S
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-11	Batch #:	152082
Lab ID:	212656-002	Sampled:	06/05/09
Matrix:	Water	Received:	06/05/09
Units:	ug/L	Analyzed:	06/17/09
Diln Fac:	40.00		
An	nalyte Result	RL	
Dibromochloro	omethane ND	20)
1,2-Dibromoet	hane ND	20)
Chlorobenzene	ND ND	20	0
1,1,1,2-Tetra	achloroethane ND	20	0
77(1) 11	1 000	24	n

Analyte	Result	RL	國國國國際部
Dibromochloromethane	ND	20	
1,2-Dibromoethane	ND	20	
Chlorobenzene	ND	20	
1,1,1,2-Tetrachloroethane	ND	20	
Ethylbenzene	1,000	20	
m,p-Xylenes	2,500	20	
o-Xylene	560	20	
Styrene	ND	20	
Bromoform	ND	40	
Isopropylbenzene	86	20	
1,1,2,2-Tetrachloroethane	ND	20	
1,2,3-Trichloropropane	ND	20	
Propylbenzene	230	20	
Bromobenzene	ND	20	
1,3,5-Trimethylbenzene	630	20	
2-Chlorotoluene	ND	20	
4-Chlorotoluene	ND	20	
tert-Butylbenzene	24	20	
1,2,4-Trimethylbenzene	2,500	20	
sec-Butylbenzene	ND	20	
para-Isopropyl Toluene	ND	20	
1,3-Dichlorobenzene	ND	20	
1,4-Dichlorobenzene	ND	20	
n-Butylbenzene	ND	20	
1,2-Dichlorobenzene	ND	20	
1,2-Dibromo-3-Chloropropane	ND	80	
1,2,4-Trichlorobenzene	ND	20	
Hexachlorobutadiene	ND	80	
Naphthalene	720	80	
1,2,3-Trichlorobenzene	ND	20	

Surrogate	\$REC	Limits	
Dibromofluoromethane	99	30-122	
1,2-Dichloroethane-d4	95	77–137	
Toluene-d8	99	30-120	
Bromofluorobenzene	109	30-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	212656	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-14	Batch#:	151841	
Lab ID:	212656-003	Sampled:	06/05/09	
Matrix:	Water	Received:	06/05/09	
Units:	ug/L	Analyzed:	06/10/09	
Diln Fac:	100.0			

Analyte	Result	RL	
Freon 12	ND	100	
Chloromethane	ND	100	
Vinyl Chloride	ND	50	
Bromomethane	ND	100	
Chloroethane	ND	100	
Trichlorofluoromethane	ND	100	
Acetone	ND	1,000	
Freon 113	ND	200	
1,1-Dichloroethene	ND	50	
Methylene Chloride	ND	1,000	
Carbon Disulfide	ND	50	
MTBE	ND	50	
trans-1,2-Dichloroethene	ND	50	
Vinyl Acetate	ND	1,000	
1,1-Dichloroethane	ND	50	
2-Butanone	ND	1,000	
cis-1,2-Dichloroethene	5,600	50	
2,2-Dichloropropane	ND	50	
Chloroform	ND	50	
Bromochloromethane	ND	50	
1,1,1-Trichloroethane	ND	50	
1,1-Dichloropropene	ND	50	
Carbon Tetrachloride	ND	50	
1,2-Dichloroethane	ND	50	
Benzene	6,200	50	
Trichloroethene	4,000	50	
1,2-Dichloropropane	ND	50	
Bromodichloromethane	ND	50	
Dibromomethane	ND	50	
4-Methyl-2-Pentanone	ND	1,000	
cis-1,3-Dichloropropene	ND	50	
Toluene	ND	50	
trans-1,3-Dichloropropene	ND	50	
1,1,2-Trichloroethane	ND	50	
2-Hexanone	ND	1,000	
1,3-Dichloropropane	ND	50	
Tetrachloroethene	ND	50	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212656	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-14	Batch#:	151841	
Lab ID:	212656-003	Sampled:	06/05/09	
Matrix:	Water	Received:	06/05/09	
Units:	ug/L	Analyzed:	06/10/09	
Diln Fac:	100.0	-		

Analyte	Result	RL	
Dibromochloromethane	ND	50	
1,2-Dibromoethane	ND	50	
Chlorobenzene	ND	50	
1,1,1,2-Tetrachloroethane	ND	50	
Ethylbenzene	580	50	
m,p-Xylenes	450	50	
o-Xylene	ND	50	
Styrene	ND	50	
Bromoform	ND	100	
Isopropylbenzene	86	50	
1,1,2,2-Tetrachloroethane	ND	50	
1,2,3-Trichloropropane	ND	50	
Propylbenzene	180	50	
Bromobenzene	ND	50	
1,3,5-Trimethylbenzene	280	50	
2-Chlorotoluene	ND	50	
4-Chlorotoluene	ND	50	
tert-Butylbenzene	ND	50	
1,2,4-Trimethylbenzene	1,100	50	
sec-Butylbenzene	ND	50	
para-Isopropyl Toluene	ND	50	
1,3-Dichlorobenzene	ND	50	
1,4-Dichlorobenzene	ND	50	
n-Butylbenzene	ND	50	
1,2-Dichlorobenzene	ND	50	
1,2-Dibromo-3-Chloropropane	ND	200	
1,2,4-Trichlorobenzene	ND	50	
Hexachlorobutadiene	ND	200	
Naphthalene	ND	200	
1,2,3-Trichlorobenzene	ND	50	

Surrogate	\$REC	Limits
Dibromofluoromethane	102	80-122
1,2-Dichloroethane-d4	91	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	108	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	212656	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-16	Batch#:	151841	
Lab ID:	212656-004	Sampled:	06/05/09	
Matrix:	Water	Received:	06/05/09	
Units:	ug/L	Analyzed:	06/10/09	
Diln Fac:	50.00	_		

Analyte	Result	RL	
Freon 12	ND	50	
Chloromethane	ND	50	
Vinyl Chloride	ND	25	
Bromomethane	ND	50	
Chloroethane	ND	50	
Trichlorofluoromethane	ND	50	
Acetone	ND	500	
Freon 113	ND	100	
1,1-Dichloroethene	ND	25	
Methylene Chloride	ND	500	
Carbon Disulfide	ND	25	
MTBE	ND	25	
trans-1,2-Dichloroethene	54	25	
Vinyl Acetate	ND	500	
1,1-Dichloroethane	ND	25	
2-Butanone	ND	500	
cis-1,2-Dichloroethene	3,700	25	
2,2-Dichloropropane	ND	25	
Chloroform	ND	25	
Bromochloromethane	ND	25	
1,1,1-Trichloroethane	ND	25	
1,1-Dichloropropene	ND	25	
Carbon Tetrachloride	ND	25	
1,2-Dichloroethane	ND	25	
Benzene	930	25	
Trichloroethene	33	25	
1,2-Dichloropropane	ND	25	
Bromodichloromethane	ND	25	
Dibromomethane	ND	25	
4-Methyl-2-Pentanone	ND	500	
cis-1,3-Dichloropropene	ND	25	
Toluene	ND	25	
trans-1,3-Dichloropropene	ND	25	
1,1,2-Trichloroethane	ND	25	
2-Hexanone	ND	500	
1,3-Dichloropropane	ND	25	
Tetrachloroethene	ND	25	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS								
Lab #:	212656	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8260B					
Field ID:	B-16	Batch#:	151841					
Lab ID:	212656-004	Sampled:	06/05/09					
Matrix:	Water	Received:	06/05/09					
Units:	ug/L	Analyzed:	06/10/09					
Diln Fac:	50.00	-						

Analyte	Result	RL	
Dibromochloromethane	ND	25	
1,2-Dibromoethane	ND	25	
Chlorobenzene	ND	25	
1,1,1,2-Tetrachloroethane	ND	25	
Ethylbenzene	1,800	25	
m,p-Xylenes	720	25	
o-Xylene	ND	25	
Styrene	ND	25	
Bromoform	ND	50	
Isopropylbenzene	1,000	25	
1,1,2,2-Tetrachloroethane	ND	25	
1,2,3-Trichloropropane	ND	25	
Propylbenzene	1,100	25	
Bromobenzene	ND	25	
1,3,5-Trimethylbenzene	180	25	
2-Chlorotoluene	ND	25	
4-Chlorotoluene	ND	25	
tert-Butylbenzene	ND	25	
1,2,4-Trimethylbenzene	1,400	25	
sec-Butylbenzene	64	25	
para-Isopropyl Toluene	ND	25	
1,3-Dichlorobenzene	ND	25	
1,4-Dichlorobenzene	ND	25	
n-Butylbenzene	ND	25	
1,2-Dichlorobenzene	ND	25	
1,2-Dibromo-3-Chloropropane	ND	100	
1,2,4-Trichlorobenzene	ND	25	
Hexachlorobutadiene	ND	100	
Naphthalene	ND	100	
1,2,3-Trichlorobenzene	ND	25	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-122
1,2-Dichloroethane-d4	95	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	109	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	212656	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8260B				
Field ID:	B-17	Batch#:	151808				
Lab ID:	212656-005	Sampled:	06/05/09				
Matrix:	Water	Received:	06/05/09				
Units:	ug/L	Analyzed:	06/09/09				
Diln Fac:	1.000	-					

Freen 12ND1.0ChloromethaneND1.0Vinyl ChlorideND0.5BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5Vinyl AcetateND0.52.ButanoneND0.52.ButanoneND0.52.Putchloroethene9.00.52.PutchloroetheneND0.52.PutchloroetheneND0.51,1-DichloroetheneND0.52,2-Dichloroethene9.00.51,1-TrichloroetheneND0.51,1,1-TrichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND	
Vinyl ChlorideND0.5BromomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroetheneND0.5ztans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-Dichloroethene9.00.52-ButanoneND0.5ChloroformND0.5BromochloromethaneND0.5HoroformND0.5J,1-TrichloroethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.5HoroformND0.5StronchloromethaneND0.5StronchloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.5	
BrowomethaneND1.0ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroetheneND0.5ztans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND0.5ChloroformND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.5	
ChloroethaneND1.0TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroetheneND101,1-Dichloroethene9.00.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloroethaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.5	
TrichlorofluoromethaneND1.0AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.52,2-Dichloroethene9.00.51,1-TrichloroethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.5	
AcetoneND10Freon 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-Butanone9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1-DichloroethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.5	
Freen 113ND2.01,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.51,1-DichloropropeneND0.5	
1,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.5	
Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.5	
Carbon DisulfideND0.5MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1-DichloropropaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.5	
MTBEND0.5trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.5	
trans-1,2-Dichloroethene3.30.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.5	
Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropaneND0.51,1-DichloropropeneND0.5	
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
2-ButanoneND10cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
cis-1,2-Dichloroethene9.00.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
2,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5	
1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5	
1,1-Dichloropropene ND 0.5	
Carbon Tetrachloride ND 0.5	
1,2-Dichloroethane ND 0.5	
Benzene ND 0.5	
Trichloroethene 1.3 0.5	
1,2-Dichloropropane ND 0.5	
Bromodichloromethane ND 0.5	
Dibromomethane ND 0.5	
4-Methyl-2-Pentanone ND 10	
cis-1,3-Dichloropropene ND 0.5	
Toluene ND 0.5	
trans-1,3-Dichloropropene ND 0.5	
1,1,2-Trichloroethane ND 0.5	
2-Hexanone ND 10	
1,3-Dichloropropane ND 0.5	
Tetrachloroethene ND 0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS								
Lab #:	212656	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8260B					
Field ID:	B-17	Batch#:	151808					
Lab ID:	212656-005	Sampled:	06/05/09					
Matrix:	Water	Received:	06/05/09					
Units:	ug/L	Analyzed:	06/09/09					
Diln Fac:	1.000	-						

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	5.1	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	0.5	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-122	
1,2-Dichloroethane-d4	94	77-137	
Toluene-d8	97	80-120	
Bromofluorobenzene	106	80-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

		Purgea	ble Org	anics by	GC/MS			
Lab #:	212656			Location:		Sausage Facto	ry	
Client:	Bureau Verita		America	Prep:		EPA 5030B		
Project#:	33104-004578.	00		Analysis:		EPA 8260B		
Field ID:	B-18			Units:		ug/L		
Lab ID:	212656-006			Sampled:		06/05/09		
Matrix:	Water			Received:		06/05/09		
	1 Martin Carlos and States and States and States	Notice and the second			the second s			
Analy	rte		esult		RL	Diln Fac		Analyzed
Freon 12		ND			2.0	2.000		06/10/09
Chloromethane		ND			2.0	2.000		06/10/09
Vinyl Chloride		ND			1.0	2.000		06/10/09
Bromomethane		ND			2.0	2.000		06/10/09
Chloroethane		ND			2.0	2.000		06/10/09
Trichlorofluorom	lethane	ND			2.0	2.000		06/10/09
Acetone		ND			20	2.000		06/10/09
Freon 113		ND			4.0	2.000		06/10/09
1,1-Dichloroethe			1.1		1.0	2.000		06/10/09
Methylene Chlori		ND			20	2.000		06/10/09
Carbon Disulfide	5	ND			1.0	2.000		06/10/09
MTBE		ND	26		1.0	2.000		06/10/09
trans-1,2-Dichlo	proethene		36		1.0	2.000		06/10/09
Vinyl Acetate		ND			20	2.000		06/10/09
1,1-Dichloroetha	ine	ND			1.0	2.000		06/10/09
2-Butanone		ND	47		20	2.000		06/10/09
cis-1,2-Dichloro			47		1.0	2.000		06/10/09
2,2-Dichloroprop	bane	ND			1.0	2.000		06/10/09
Chloroform		ND			1.0	2.000		06/10/09
Bromochlorometha		ND			1.0	2.000		06/10/09
1,1,1-Trichloroe		ND			1.0	2.000		06/10/09
1,1-Dichloroprop		ND			1.0	2.000		06/10/09
Carbon Tetrachlo		ND			1.0	2.000		06/10/09
1,2-Dichloroetha	ine	ND	<u> </u>		1.0	2.000		06/10/09
Benzene			65		1.0	2.000		06/10/09
Trichloroethene			470		3.1	6.250		06/11/09
1,2-Dichloroprop		ND			1.0	2.000		06/10/09
Bromodichloromet	inane	ND			1.0	2.000		06/10/09
Dibromomethane		ND			1.0	2.000		06/10/09
4-Methyl-2-Penta		ND			20	2.000		06/10/09
cis-1,3-Dichloro	propene	ND	22		1.0	2.000		06/10/09
Toluene		115	33		1.0	2.000		06/10/09
trans-1,3-Dichlo		ND			1.0	2.000		06/10/09
1,1,2-Trichloroe	etnane	ND			1.0	2.000		06/10/09
2-Hexanone		ND			20	2.000		06/10/09
1,3-Dichloroprop		ND			1.0	2.000		06/10/09
Tetrachloroether		ND			1.0	2.000		06/10/09
Dibromochloromet		ND			1.0	2.000		. 06/10/09
1,2-Dibromoethar	1e	ND			1.0	2.000	151841	06/10/09

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	1	Purgea	ble Org	anics by	GC/MS		
Lab #:	212656			Location:		Sausage Facto	ry
Client:	Bureau Veritas	s North	America	Prep:		EPA 5030B	
Project#:	33104-004578.0	00		Analysis:		EPA 8260B	
Field ID:	B-18			Units:		ug/L	
Lab ID:	212656-006			Sampled:		06/05/09	
Matrix:	Water			Received:		06/05/09	
·							
Analy	rte		sult	I State I	RL	Diln Fac	Batch# Analyzed
Chlorobenzene		ND			1.0	2.000	151841 06/10/09
1,1,1,2-Tetrachl	oroethane	ND			1.0	2.000	151841 06/10/09
Ethylbenzene			11		1.0	2.000	151841 06/10/09
m,p-Xylenes			45		1.0	2.000	151841 06/10/09
o-Xylene			8.9		1.0	2.000	151841 06/10/09
Styrene		ND			1.0	2.000	151841 06/10/09
Bromoform		ND			2.0	2.000	151841 06/10/09
Isopropylbenzene	9		13		1.0	2.000	151841 06/10/09
1,1,2,2-Tetrach1	Loroethane	ND			1.0	2.000	151841 06/10/09
1,2,3-Trichlorop	propane	ND			1.0	2.000	151841 06/10/09
Propylbenzene			6.2		1.0	2.000	151841 06/10/09
Bromobenzene		ND			1.0	2.000	151841 06/10/09
1,3,5-Trimethylk	penzene		13		1.0	2.000	151841 06/10/09
2-Chlorotoluene		ND			1.0	2.000	151841 06/10/09
4-Chlorotoluene		ND			1.0	2.000	151841 06/10/09
tert-Butylbenzer	ne		4.9		1.0	2.000	151841 06/10/09
1,2,4-Trimethylk	penzene		42		1.0	2.000	151841 06/10/09
sec-Butylbenzene	e		1.5		1.0	2.000	151841 06/10/09
para-Isopropyl 1	Toluene	ND			1.0	2.000	151841 06/10/09
1,3-Dichlorobenz	zene	ND			1.0	2.000	151841 06/10/09
1,4-Dichlorobenz	zene	ND			1.0	2.000	151841 06/10/09
n-Butylbenzene		ND			1.0	2.000	151841 06/10/09
1,2-Dichlorobenz	zene	ND			1.0	2.000	151841 06/10/09
1,2-Dibromo-3-Ch		ND			4.0	2.000	151841 06/10/09
1,2,4-Trichlorok		ND			1.0	2.000	151841 06/10/09
Hexachlorobutad		ND			4.0	2.000	151841 06/10/09
Naphthalene		ND			4.0	2.000	151841 06/10/09
1,2,3-Trichlorob	penzene	ND			1.0	2.000	151841 06/10/09

Surrogate	*REC	Limits	Diln Fac	Batch#	Analyzed
Dibromofluoromethane	102	80-122	2.000	151841	06/10/09
1,2-Dichloroethane-d4	94	77-137	2.000	151841	06/10/09
Toluene-d8	100	80-120	2.000	151841	06/10/09
Bromofluorobenzene	112	80-125	2.000	151841	06/10/09

	Purgeable Org	anics by GC/	/MS
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	B-19	Batch#:	151808
Lab ID:	212656-007	Sampled:	06/05/09
Matrix:	Water	Received:	06/05/09
Units:	ug/L	Analyzed:	06/09/09

Analyte	Result	RL Diln Fac	and a
Freon 12	ND	1.0 1.000	
Chloromethane	ND	1.0 1.000	
Vinyl Chloride	ND	0.5 1.000	
Bromomethane	ND	1.0 1.000	
Chloroethane	ND	1.0 1.000	
Trichlorofluoromethane	ND	1.0 1.000	
Acetone	ND	10 1.000	
Freon 113	ND	2.0 1.000	
1,1-Dichloroethene	ND	0.5 1.000	
Methylene Chloride	ND	10 1.000	
Carbon Disulfide	ND	0.5 1.000	
MTBE	4.2	0.5 1.000	
trans-1,2-Dichloroethene	5.9	0.5 1.000	
Vinyl Acetate	ND	10 1.000	
1,1-Dichloroethane	ND	0.5 1.000	
2-Butanone	ND	10 1.000	
cis-1,2-Dichloroethene	20	0.5 1.000	
2,2-Dichloropropane	ND	0.5 1.000	
Chloroform	ND	0.5 1.000	
Bromochloromethane	ND	0.5 1.000	
1,1,1-Trichloroethane	ND	0.5 1.000	
1,1-Dichloropropene	ND	0.5 1.000	
Carbon Tetrachloride	ND	0.5 1.000	
1,2-Dichloroethane	ND	0.5 1.000	
Benzene	ND	0.5 1.000	
Trichloroethene	91	2.0 4.000	
1,2-Dichloropropane	ND	0.5 1.000	
Bromodichloromethane	ND	0.5 1.000	
Dibromomethane	ND	0.5 1.000	
4-Methyl-2-Pentanone	ND	10 1.000	
cis-1,3-Dichloropropene	ND	0.5 1.000	
Toluene	ND	0.5 1.000	
trans-1,3-Dichloropropene	ND	0.5 1.000	
1,1,2-Trichloroethane	ND	0.5 1.000	
2-Hexanone	ND	10 1.000	
1,3-Dichloropropane	ND	0.5 1.000	ł
Tetrachloroethene	ND	0.5 1.000	
Dibromochloromethane	ND	0.5 1.000	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212656	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	B-19	Batch#:	151808	
Lab ID:	212656-007	Sampled:	06/05/09	
Matrix:	Water	Received:	06/05/09	
Units:	ug/L	Analyzed:	06/09/09	

Analyte	Result	RL	Diln Fac	
1,2-Dibromoethane	ND	0.5	1.000	
Chlorobenzene	ND	0.5	1.000	
1,1,1,2-Tetrachloroethane	ND	0.5	1.000	
Ethylbenzene	ND	0.5	1.000	
m,p-Xylenes	ND	0.5	1.000	
o-Xylene	ND	0.5	1.000	
Styrene	ND	0.5	1.000	
Bromoform	ND	1.0	1.000	
Isopropylbenzene	ND	0.5	1.000	
1,1,2,2-Tetrachloroethane	ND	0.5	1.000	
1,2,3-Trichloropropane	ND	0.5	1.000	
Propylbenzene	ND	0.5	1.000	
Bromobenzene	ND	0.5	1.000	
1,3,5-Trimethylbenzene	ND	0.5	1.000	
2-Chlorotoluene	ND	0.5	1.000	
4-Chlorotoluene	ND	0.5	1.000	
tert-Butylbenzene	ND	0.5	1.000	
1,2,4-Trimethylbenzene	ND	0.5	1.000	
sec-Butylbenzene	ND	0.5	1.000	
para-Isopropyl Toluene	ND	0.5	1.000	
1,3-Dichlorobenzene	ND	0.5	1.000	
1,4-Dichlorobenzene	ND	0.5	1.000	
n-Butylbenzene	ND	0.5	1.000	
1,2-Dichlorobenzene	ND	0.5	1.000	
1,2-Dibromo-3-Chloropropane	ND	2.0	1.000	
1,2,4-Trichlorobenzene	ND	0.5	1.000	
Hexachlorobutadiene	ND	2.0	1.000	
Naphthalene	ND	2.0	1.000	
1,2,3-Trichlorobenzene	ND	0.5	1.000	

Surrogate	*REC	Limits	Diln Fac
Dibromofluoromethane	101	80-122	1.000
1,2-Dichloroethane-d4	96	77-137	1.000
Toluene-d8	98	80-120	1.000
Bromofluorobenzene	106	80-125	1.000

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC499250	Batch#:	151808
Matrix:	Water	Analyzed:	06/09/09
Units:	ug/L		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	!
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499250	Batch#:	151808
Matrix:	Water	Analyzed:	06/09/09
Units:	ug/L		

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	*REC	Limits
Dibromofluoromethane	98	80-122
1,2-Dichloroethane-d4	94	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	107	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	151808
Units:	ug/L	Analyzed:	06/09/09
Diln Fac:	1.000		

Type: BS		Lab ID: QC499251			
	Analyte	Spiked	Result	\$REC	Limits
1,1-Dichlos	roethene	21.25	25.67	121	74-132
Benzene		21.25	23.21	109	80-120
Trichloroe	thene	21.25	20.92	98	80-120
Toluene		21.25	22.63	106	80-120
Chlorobenze	ene	21.25	24.01	113	80-120

Surrogate	*REC	Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	89	77–137
Toluene-d8	98	80-120
Bromofluorobenzene	109	80-125

Type: BSD		Lab ID: Q	C499252			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	21.25	25.33	119	74-132	1	20
Benzene	21.25	22.53	106	80-120	3	20
Trichloroethene	21.25	20.72	98	80-120	1	20
Toluene	21.25	22.40	105	80-120	1	20
Chlorobenzene	21.25	22.72	107	80-120	6	20
Surrogate	%REC Limits					
Dibromofluoromethane	98 80-122					
1,2-Dichloroethane-d4	88 77-137					
Toluene-d8	98 80-120					
Bromofluorobenzene	110 80-125					

- ---

. ...

Purgeable Organics by GC/MS						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC499398	Batch#:	151841			
Matrix:	Water	Analyzed:	06/10/09			
Units:	ug/L					

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC499398	Batch#:	151841			
Matrix:	Water	Analyzed:	06/10/09			
Units:	ug/L					

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	93	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	108	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Bromofluorobenzene

Purgeable Organics by GC/MS						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	151841			
Units:	ug/L	Analyzed:	06/10/09			
Diln Fac:	1.000					

Type: BS	Lab	ID: QC49	9399	
Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	22.50	26.51	118	74-132
Benzene	22.50	24.31	108	80-120
Trichloroethene	22.50	21.35	95	80-120
Toluene	22.50	22.82	101	80-120
Chlorobenzene	22.50	23.49	104	80-120
Surrogate	%REC Limits			
Dibromofluoromethane	102 80-122			
1,2-Dichloroethane-d4	93 77-137			
Toluene-d8	98 80-120			

109

80-125

Type: BSD	Lak	DID: QC49	9400			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	22.50	25.88	115	74-132	2	20
Benzene	22.50	23.62	105	80-120	3	20
Trichloroethene	22.50	21.44	95	80-120	0	20
Toluene	22.50	23.36	104	80-120	2	20
Chlorobenzene	22.50	24.06	107	80-120	2	20
Surrogate	%REC Limits				11 23	
Dibromofluoromethane	100 80-122					
1,2-Dichloroethane-d4	89 77-137					
Toluene-d8	98 80-120					
Bromofluorobenzene	110 80-125					

Purgeable Organics by GC/MS						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC499628	Batch#:	151894			
Matrix:	Water	Analyzed:	06/11/09			
Units:	ug/L					

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org		
Lab #:	212656	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC499628	Batch#:	151894
Matrix:	Water	Analyzed:	06/11/09
Units:	ug/L		

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	*REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	94	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	108	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	212656	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	151894			
Units:	ug/L	Analyzed:	06/11/09			
Diln Fac:	1.000					

Type:	BS	Lab ID:	QC49	9629	
	Analyte	Spiked	Result	*REC	Limits
1,1-Dichlo	roethene	23.75	27.89	117	74-132
Benzene		23.75	24.85	105	80-120
Trichloroe	thene	23.75	22.05	93	80-120
Toluene		23.75	24.59	104	80-120
Chlorobenz	ene	23.75	25.01	105	80-120

Surrogate	%REC	Linits
Dibromofluoromethane	100	80-122
1,2-Dichloroethane-d4	90	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	110	80-125

Type: BSD		Lab ID: QC4	99630			
Analyte	Spiked	Result	\$REC	Limits	RPD	Lim
1,1-Dichloroethene	23.75	27.65	116	74-132	1	20
Benzene	23.75	25.07	106	80-120	1	20
Trichloroethene	23.75	22.27	94	80-120	1	20
Toluene	23.75	24.27	102	80-120	1	20
Chlorobenzene	23.75	25.37	107	80-120	1	20
Surrogate	%REC Limits					Nd 2 Page
Dibromofluoromethane	100 80-122					
1,2-Dichloroethane-d4	90 77-137					
Toluene-d8	97 80-120					
Bromofluorobenzene	110 80-125					

Purgeable Organics by GC/MS					
Lab #:	212656	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC500376	Batch#:	152082		
Matrix:	Water	Analyzed:	06/17/09		
Units:	ug/L		······································		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit

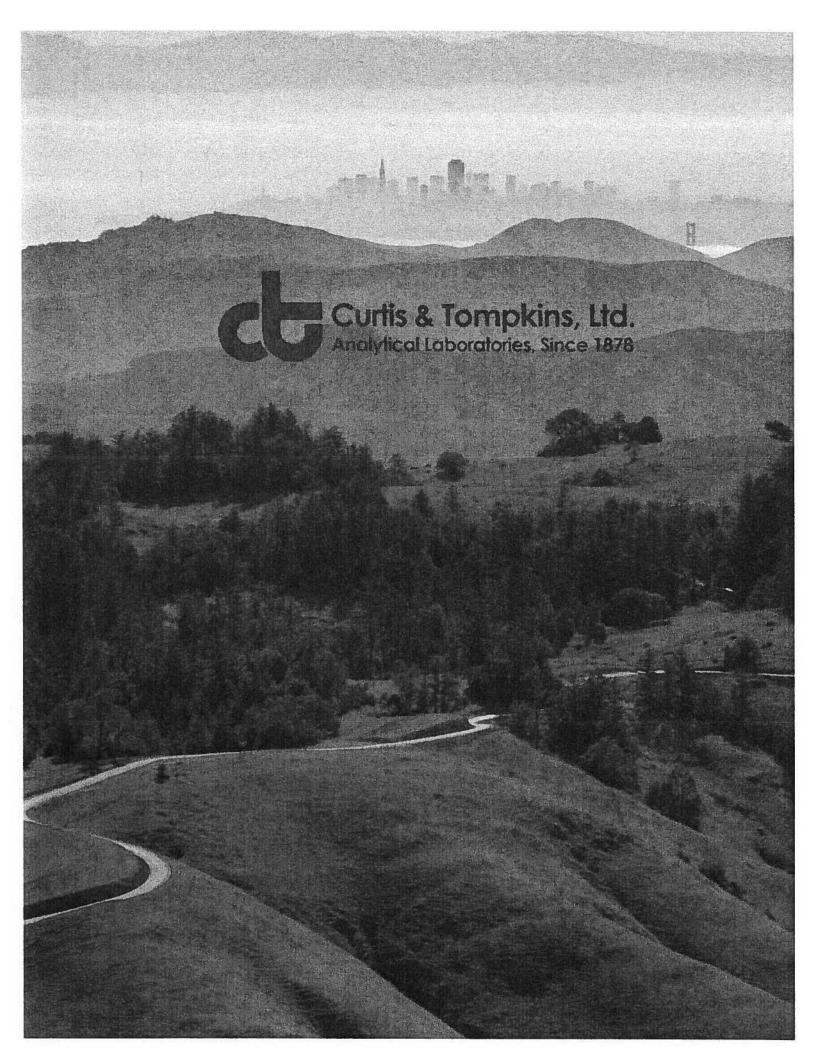
Purgeable Organics by GC/MS					
Lab #:	212656	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Туре:	BLANK	Diln Fac:	1.000		
Lab ID:	QC500376	Batch#:	152082		
Matrix:	Water	Analyzed:	06/17/09		
Units:	ug/L				

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	95	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	107	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Bromofluorobenzene


Purgeable Organics by GC/MS					
Lab #:	212656	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	152082		
Units:	ug/L	Analyzed:	06/17/09		
Diln Fac:	1.000				

Type: BS	Lab	DID: QC50	QC500378			
Analyte	Spiked	Result	\$REC	Limits		
1,1-Dichloroethene	22.50	25.57	114	74-132		
Benzene	22.50	23.95	106	80-120		
Trichloroethene	22.50	21.62	96	80-120		
Toluene	22.50	23.20	103	80-120		
Chlorobenzene	22.50	23.38	104	80-120		
Surrogate	*REC Limits					
Dibromofluoromethane	103 80-122			<u></u>		
1,2-Dichloroethane-d4	94 77-137					
Toluene-d8	99 80-120					

106

80-125

Type: BSD		Lab ID: QC500379						
Analyte	8	Spiked	R	esult	*REC	Limits	RPD	Lim
1,1-Dichloroethene		22.50		25.11	112	74-132	2	20
Benzene		22.50		23.56	105	80-120	2	20
Trichloroethene		22.50		21.13	94	80-120	2	20
Toluene		22.50		23.22	103	80-120	0	20
Chlorobenzene		22.50		23.75	106	80-120	2	20
Surrogate	*REC	Limits						if are
Dibromofluoromethane	101	80-122						
1,2-Dichloroethane-d4	91	77-137						
Toluene-d8	100	80-120						
Bromofluorobenzene	106	80-125						

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212668 ANALYTICAL REPORT

Bureau Veritas North America 2430 Camino Ramon San Ramon, Ca 94583 Project : 33104-004578.00 Location : Sausage Factory Level : II

Sample ID	<u>Lab ID</u>
SVGW-2	212668-001
SVGW-3	212668-002
SVGW-4	212668-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/19/2009

Date: 06/22/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212668 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/08/09 06/08/09

This data package contains sample and QC results for three water samples, requested for the above referenced project on 06/08/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Matrix spikes QC500391,QC500392 (batch 152076) were not reported because the autosampler had an error that stopped the sequence. No other analytical problems were encountered.

. .

Bureau Verita	s Nor	th A	meric	a, Inc.								2	121	060	ろ	Page of
BUREAU VERITAS	I-OF-C	UST	ODY				Results Charge	Reque	sted:		Yes			Fo		u Veritas Use Only Project No.
INTERNAL Consultant's Name 5 errors DEPARTMENTAL Consultant's Office Location INFORMATION Internal Project No. 3 3 1 E 3 Vision Client Code:	6.75 • 5 < ^ R < 2 4 • 0 (42 2 4 5 9	<u>5-260-</u> <u>8</u> • <u>0</u>	2	PRICING FORMATION		- Fee	ount l		rice] Clier Send V	'ia:		nternal Office
Client Name: Client Name: Mailing Address: 2.430 C4mmo R4m City, State, Zip: Seg R4mon CA			.: 925-4	98-6518] Fax	eg. Mail					
Special Instructions: Report to TIM Bod Fin Standard TAT				of Containers	(Ent	ter an ')	(' in the	e box b						P' if Pre	servative added.*)	
Soil Samples Only: Which state are these from CLIENT SAMPLE IDENTIFICATION	DATE SAMPLED	TIME	MATRIX/ MEDIA	AIR VOLUME (specify units)	Number		il co		Ales	Ž		\square		\square	\square	FOR LAB USE ONLY
7	<u> </u>	1535 950 1005	GW GW GW			オメア		XXX								
										-						
CHAIN OF CUSTODY Relinquished by:	<u>^</u>		Collector's Date/Time	Signature	141	red by:	(Un	w	lit	<u></u>					ate/Tim ate/Tim	e U/45/04 1715
Authorized by: (Client Signature MUST)	Accompany Bag	I	Date		Sample	e Condi	tion Up	on Rec	ceipt:		Accept	table)ther (e	xplain)	

Please return completed form and samples to one of the Bureau Veritas North America, Inc. locations below: Detroit Lab: (800) 806-5887 Atlanta Lab: (800) 252-9919

•

. .

Distribution: White & Yellow: Lab Pink: Consultant

COOLER RECEIPT CHECKLIST	Curtis & 7	fompkins, Ltd.
Login # 212668 Date Received 6/8/09 Client BUREAU VERITAS Project 3609647	Number of cooler FXCTORY	s
Date Opened $\frac{6}{2}$ By (print) M NIUANUM (sign) Date Logged in By (print) (sign)	mil	kly
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES	20
2A. Were custody seals present? YES (circle) on cooler How many Name	Date	
 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top 6. Indicate the packing in cooler: (if other, describe) 	ATES	
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:Styrofoam	None Paper to	wels
Type of ice used: Wet Blue/Gel None	Temp(°C)	
Samples Received on ice & cold without a temperature l	olank	
Samples received on ice directly from the field. Cooling	process had begu	1
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?		YES A
9. Did all bottles arrive unbroken/unopened?	Ŕ	TES NO
10. Are samples in the appropriate containers for indicated tests?		TES NO
11. Are sample labels present, in good condition and complete?12. Do the sample labels agree with custody papers?		YES NO
13. Was sufficient amount of sample sent for tests requested?		DES NO
14. Are the samples appropriately preserved?	VES	NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES	NO N/A
16. Was the client contacted concerning this sample delivery?	······································	YES NO
If YES, Who was called?By	Date:	
COMMENTS GEDIMIENT IN SAMPLES		• @
	·····	

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Curtis &	Tompkin	s Labor	atories A	nalytical	Report	
Lab #:	212668		~ .	Location:		sage Factory	
Client:	Bureau Verit		America	Prep:	EPA	5030B	
Project#:	33104-004578	.00		0	0.01	00/00	
Matrix:	Water			Sampled:		08/09	
Units:	ug/L			Received:	067	08/09	
Field ID:	SVGW-2			Diln Fac:	5.0		
ſype:	SAMPLE			Batch#:	151		
Lab ID:	212668-001			Analyzed:	06/	13/09	
Ana Gasoline C7-C1	lyte	the second s	Result 1,100		RL 250	Analy EPA 8015B	sis
	-2		350 C		2.50		
Benzene Toluene		ND			2.5	EPA 8021B EPA 8021B	
Ethylbenzene		ND	45		2.5	EPA 8021B EPA 8021B	
m,p-Xylenes			43 19		2.5	EPA 8021B	
o-Xylene		ND			2.5	EPA 8021B	
о хутене				· · · · · · · · · · · · · · · · · · ·	2.5		<u> </u>
Surr	rogate	%REC	Limits	Analy	sis		
Trifluorotolue		95	63-146	EPA 8015B			
Bromofluorober	nzene (FID)	97	70-140	EPA 8015B			
Trifluorotolue	ene (PID)	104	50-140	EPA 8021B			
Bromofluorober	nzene (PID)	109	56-132	EPA 8021B			
Field ID:	SVGW-3			Diln Fac:	1.0	00	
ſype:	SAMPLE			Batch#:	151	.901	
Lab ID:	212668-002			Analyzed:	06/	11/09	
	alyte		Result		RL	Analy	sis
Gasoline C7-C1	12		910 Y		50	EPA 8015B	
Benzene			74		0.50	EPA 8021B	
Toluene			4.5		0.50	EPA 8021B	
Ethylbenzene			13		0.50	EPA 8021B	
m,p-Xylenes			2.4	C	0.50	EPA 8021B	
o-Xylene			0.96	<u> </u>	0.50	EPA 8021B	
	rogate	%REC	Limits	Analy	sis		
Trifluorotolue		92	63-146	EPA 8015B			
Bromofluorober		120	70-140	EPA 8015B			
Trifluorotolue		109	50-140	EPA 8021B			
Bromofluorober	nzene (PID)	116	56-132	EPA 8021B	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·
	onfirmed, but RE ibits chromatogr					standard	

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

				atories A				
Lab #:	212668			Location:	S	Sausage Fac	ctory	
Client:	Bureau Verit	as Nort	h America	Prep:	E	EPA 5030B		
Project#:	33104-004578	.00						
Matrix:	Water			Sampled:		06/08/09		
Units:	ug/L			Received:	(06/08/09		
Tield ID:	SVGW-4			Diln Fac:		100.0		а. 1
ype:	SAMPLE			Batch#:		151971		
ab ID:	212668-003			Analyzed:	(06/13/09		
	alyte		Result		RL		Analysis	
Gasoline C7-C2	12		61,000		5,000		8015B	
Benzene			17,000 C		50		8021B	
Toluene			16,000 C		50		8021B	
Ethylbenzene			380		50		8021B	
m,p-Xylenes			1,100 C		50		8021B	
o-Xylene			460		50	EPA	8021B	
Sur:	rogate	*REC	Limits	Analy	vsis			
Trifluorotolue	ene (FID)	92	63-146	EPA 8015B				
Bromofluorober		95	70-140	EPA 8015B				
Trifluorotolue		101	50-140	EPA 8021B				
Bromofluorober	nzene (PID)	110	56-132	EPA 8021B				
31000	BLANK			Batch#:		151901		
Type: Lab ID:	OC499648			Analyzed:		06/11/09		
Diln Fac:	1.000			Anaryzea.	``	00/11/09		
An	alyte		Result		RL		Analysis	TANK MARKE
Gasoline C7-C		N	ID		50	EPA	8015B	an allow set have all
Benzene			1D		0.5		8021B	
Toluene			1D		0.5		8021B	
Ethylbenzene			1D		0.5		8021B	
m,p-Xylenes			1D		0.5		8021B	
o-Xylene			1D		0.5		8021B	
G	rogate	*REC	. Limits	Analy				
Trifluorotolu		82	63-146	EPA 8015B	970	日本には、日本の日本では、	RESULT AND ADDRESS OF THE OWNER OF THE	
Bromofluorobe		82	70-140	EPA 8015B				
Trifluorotolu		82	70-140 50-140	EPA 8021B				
	nzene (PID)	82	56-132	EPA 8021B				

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

- -

Lab #:	212668			Location:	Sau	isage Fac	ctory	
Client:	Bureau Verit	as North An	merica	Prep:		A 5030B	-	
Project#:	33104-004578	3.00		-				
Matrix:	Water			Sampled:		/08/09		
Units:	ug/L			Received:	06,	/08/09		
Type:	BLANK			Batch#:	15	1971		
Lab ID:	QC499927			Analyzed:	06.	/13/09		
Diln Fac:	1.000			_				
Anal	yte	Rei	sult		RL		Analysis	
Gasoline C7-C12		ND			50	EPA	8015B	
Benzene		ND			0.50	EPA	8021B	
Toluene		ND			0.50	EPA	8021B	
Ethylbenzene		ND			0.50	EPA	8021B	
m,p-Xylenes		ND			0.50	EPA	8021B	
m, p-xyrenes								
o-Xylene		ND			0.50	EPA	8021B	
	gate	ND	imits	Analy		EPA	8021B	
o-Xylene	-	ND		Analy: EPA 8015B		EPA	80218	
o-Xylene Surro	e (FID)	ND %REC L 80 6	3-146			EPA	8021B	
o-Xylene Surro Trifluorotoluen	e (FID) ene (FID)	ND %REC L: 80 6: 80 7	3-146 0-140	EPA 8015B		EPA	8021B	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 3 of 3

- --

	Curtis & Tompkins Labor	Curtis & Tompkins Laboratories Analytical Report								
Lab #:	212668	Location:	Sausage Factory							
Client:	Bureau Veritas North America	Prep:	EPA 5030B							
Project#:	33104-004578.00	Analysis:	EPA 8021B							
Matrix:	Water	Batch#:	151901							
Units:	ug/L	Analyzed:	06/11/09							
Diln Fac:	1.000									

Туре:	BS	Lab ID:	QC499	9649	
	Analyte	Spiked	Result	*REC	Limits
Benzene		10.00	9.927	99	79-120
Toluene		10.00	9.912	99	76-122
Ethylben	zene	10.00	10.59	106	77-125
m,p-Xyle	nes	10.00	10.37	104	76-126
o-Xylene		10.00	9.958	100	77-126

Surrogate	*REC	Limits
Trifluorotoluene (PID)	94	50-140
Bromofluorobenzene (PID)	93	56-132

Type: BSD			Lab ID:			QC499650			ċ
			Spiked	Ale ale and a second	Result	Limits	RPD	Lim	
Benzene	•		10.00		8.170	82	79-120	19	20
Toluene			10.00		8.380	84	76-122	17	21
Ethylbenzene			10.00		9.159	92	77-125	14	21
m,p-Xylenes			10.00		9.252	93	76-126	11	23
o-Xylene			10.00		9.022	90	77-126	10	21
Surr	ogate	*REC	Limits			distant data data			
Trifluorotolue		89	50-140						
Bromofluoroben	zene (PID)	95	56-132						

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	212668	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC499651	Batch#:	151901					
Matrix:	Water	Analyzed:	06/11/09					
Units:	ug/L							

Analyte	Spiked	Result	*REC	C Limits	(出)了他也是这多点。
Gasoline C7-C12	1,000	922.8	92	76-121	

Surrogate	*REC	Limits
Trifluorotoluene (FID)	120	63-146
Bromofluorobenzene (FID)	116	70-140

- -

	Curtis & Tompkins Labor	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	212668	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZ	Batch#:	151901					
MSS Lab ID:	212734-003	Sampled:	06/09/09					
Matrix:	Water	Received:	06/10/09					
Units:	ug/L	Analyzed:	06/12/09					
Diln Fac:	1.000							

Type: MS				Lab ID:		QC499652			
Analyte	MS	S Resu	lt	Spike	d	Result	\$REC	Liı	aits
Gasoline C7-C12	· · ·	163.	2	2,000		2,050	94	66-	-120
Surrogat	e *	REC L	imits						
Trifluorotoluene (FID) 10	8 6	3-146						
Bromofluorobenzene	(FID) 13	1 7	0-140						
Type: MS	D			Lab ID:		QC499653			
Analyte		Sp	iked		Result	\$RI	C Limits	RPD	Lim
Gasoline C7-C12		2,	000		2,043	94	66-120	0	20
Surrogat	8	REC I	imits						
Trifluorotoluene (FID) 11	.3 6	53-146						

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	212668	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8021B				
Matrix:	Water	Batch#:	151971				
Units:	ug/L	Analyzed:	06/13/09				
Diln Fac:	1.000						

Type: BS	Lab	ID: QC499	9928		
Analyte	Spiked	Result	*REC	C Limits	
Benzene	10.00	8.546	85	79-120	
Toluene	10.00	8.743	87	76-122	
Ethylbenzene	10.00	9.802	98	77-125	
m,p-Xylenes	10.00	9.697	97	76-126	
o-Xylene	10.00	9.510	95	77-126	

Surrogate	\$REC	Limits
Trifluorotoluene (PID)	96	50-140
Bromofluorobenzene (PID)	103	56-132

Type: BSD			QC4	QC499929				
Analyte	Sp	iked	Result	\$REC	Limits	RPD	Lim	
Benzene		20.00	18.18	91	79-120	6	20	
Toluene		20.00	17.34	87	76-122	1	21	
Ethylbenzene		20.00	18.28	91	77-125	7	21	
m,p-Xylenes		20.00	18.00	90	76-126	7	23	
o-Xylene		20.00	17.22	86	77-126	10	21	
Surrogate	%REC L	imits						
Trifluorotoluene (PID)	94 5	0-140						
Bromofluorobenzene (PID)	98 5	6-132						

Lab #:	212668	Location:	Saus	age Facto	ory
Client:	Bureau Veritas North America	Prep:	EPA	5030B	
Project#:	33104-004578.00	Analysis:	EPA	8015B	
Туре:	LCS	Diln Fac:	1.00	0	
Lab ID:	QC499930	Batch#:	1519	71	
Matrix:	Water	Analyzed:	06/1	3/09	
Units:	ug/L				
An	alyte Spiked		Result	*REC	Limits
Gasoline C7-C	12 1,000		899.1	90	76-121

Surrogate	&REC	Limits	
Trifluorotoluene (FID)	111	63-146	
Bromofluorobenzene (FID)	106	70-140	

	Curtis & Tompkins Laboratories Analytical Report					
Lab #:	212668	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	151971			
MSS Lab ID:	212780-001	Sampled:	06/10/09			
Matrix:	Water	Received:	06/10/09			
Units:	ug/L	Analyzed:	06/14/09			
Diln Fac:	1.000					

Type:

MS

Bromofluorobenzene (FID)

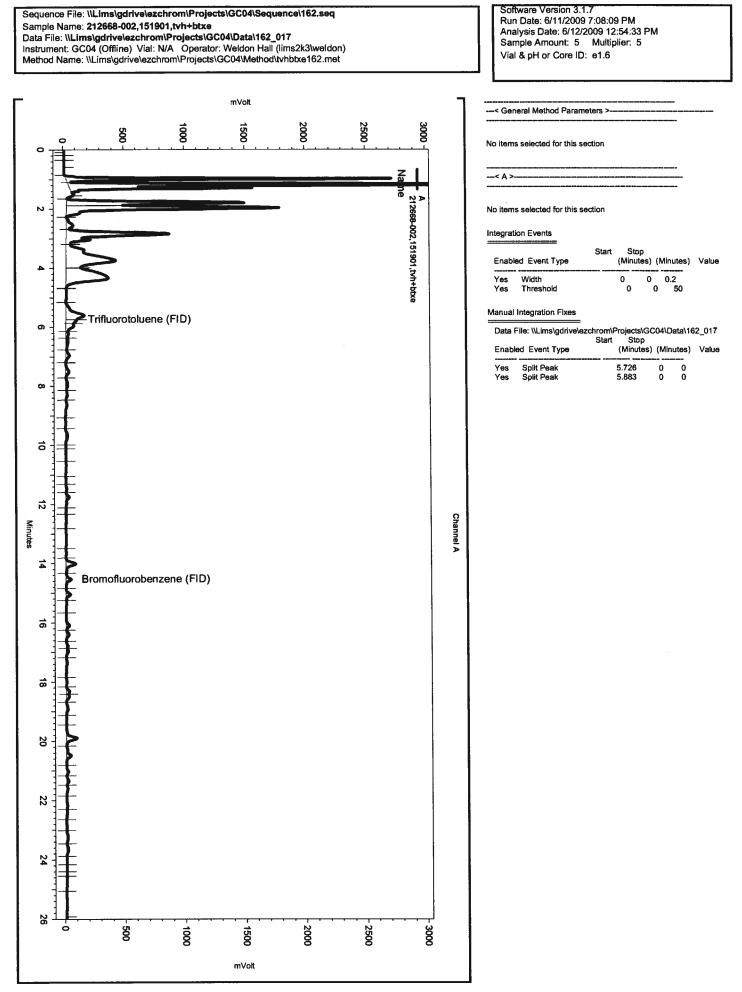
Lab ID:

QC499931

Analyte	MSS Rea	sult	Spiked	Result	%REC	Limits
Gasoline C7-C12	1	6.16	2,000	1,984	98	66-120
Surrogate	*REC	Limits				
Trifluorotoluene (FID)	144	63-146				
Bromofluorobenzene (FID)	135	70-140				

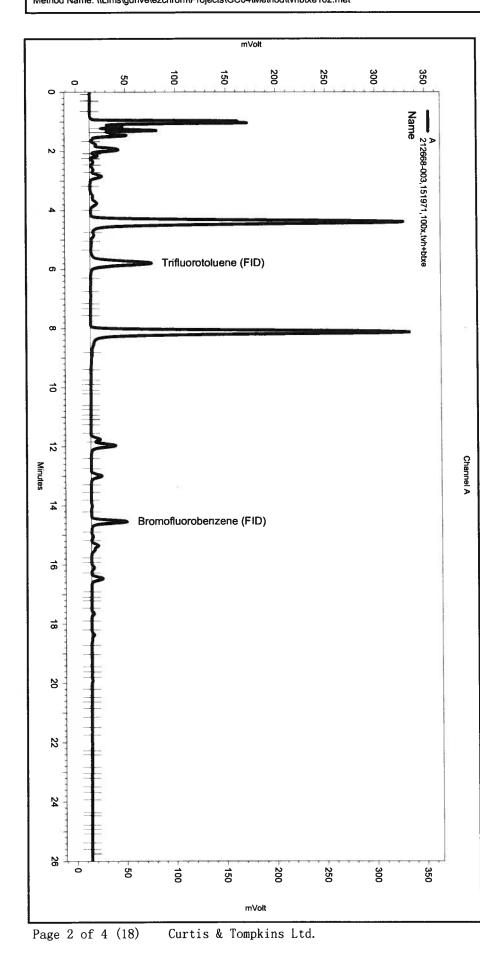
Туре:	MSD			Lab ID:	QC	2499932			
ey an ar	Analyte	S	piked		Result	*REC	Limits	RPD	Lim
Gasoline C7-C12		2	,000		1,953	97	66-120	2	20
	Surrogate	*REC	Limits					13	(the faith
Trifluor	otoluene (FID)	145	63-146						

70-140

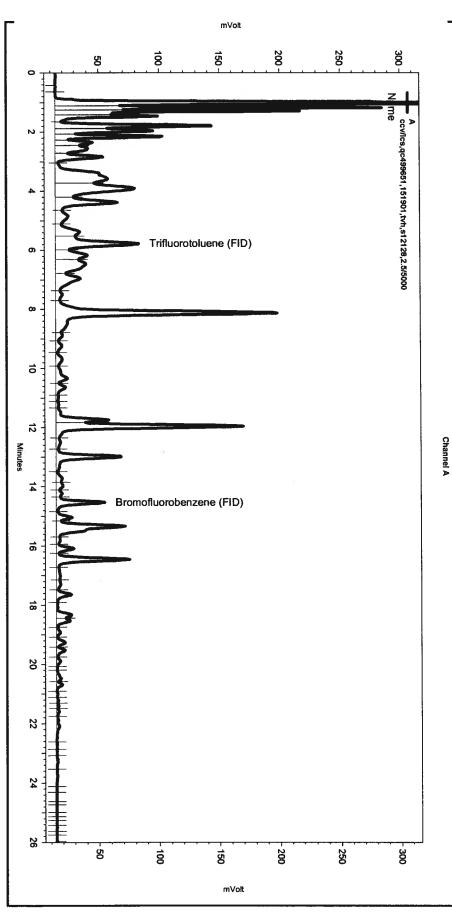

131

Software Version 3.1.7 Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\164.seq Run Date: 6/13/2009 2:53:43 PM Sample Name: 212668-001,151971,5x,tvh+btxe Analysis Date: 6/15/2009 10:42:47 AM Sample Amount: 5 Multiplier: 5 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\164_012 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Vial & pH or Core iD: a1.3,HS<1ml Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met mVolt ----< General Method Parameters >-140 ŝ 120 160 20 \$ စ 8 No items selected for this section 0 z ---< A > me Ł A 212668-001,151971,5x,tvh+btxe N No items selected for this section Integration Events Stop (Minutes) (Minutes) Value Start Enabled Event Type Width Threshold 0 0 0.2 50 Yes ٥ Yes 0 Manual Integration Fixes Trifluorotoluene (FID) ດ
 Data File: \\Lims\gdrive\zchrom\Projects\GC04\Data\164_012

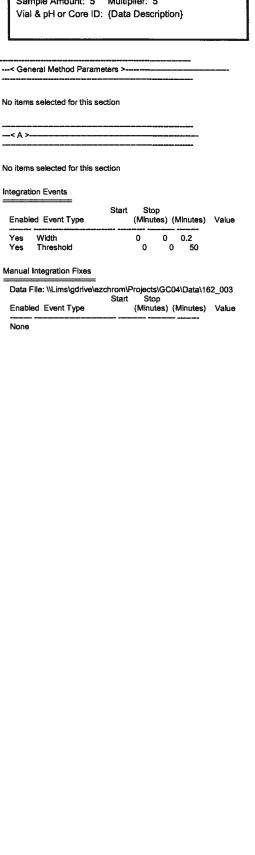
 Start
 Stop


 Enabled
 Event Type
 (Minutes)
 Value
 Yes Split Peak 5.647 0 0 œ 5 12 Channel A Minutes 14 Bromofluorobenzene (FID) 6 18 20 22 24 26 120 8 8 8 20 140 ŝ 6

mVolt


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\164.seq Sample Name: 212668-003,151971,100x,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\164_013 Instrument: GC04 Vial: N/A Operator: lims2k3\tvh3 Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Software Version 3.1.7 Run Date: 6/13/2009 3:31:21 PM Analysis Date: 6/13/2009 4:00:53 PM Sample Amount: 5 Multiplier: 5

Vial & pH or Core ID: a1.3,HS<1ml



< Gen	eral Method Parame	ters >			
	selected for this se				
< A >					
No items	selected for this se	ction			
Integrati	on Events				
	ed Event Type	Start		(Minutes)	Value
			0 0		
Yes	Width Threshold		0	0 50	
Manual	Integration Fixes				
Data F	ile: C:\Documents a	ind Sett	ings\Ali Use	ers\Applicat	ion
Data\Ch Data\Ins	romatographySyste trument.10047\164_	_013_0	522.tmp		
Enable	ed Event Type	Start	Stop (Minutes)	(Minutes)	Value
None					

Sequence File: \\Lims\gdrlve\ezchrom\Projects\GC04\Sequence\162.seq Sample Name: ccv/lcs,qc499651,151901,tvh,s12128,2.5/5000 Data File: \\Lims\gdrlve\ezchrom\Projects\GC04\Data\162_003 Instrument: GC04 (Offline) Vial: N/A Operator: Weldon Hall (lims2k3\weldon) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Software Version 3.1.7 Run Date: 6/11/2009 9:04:39 AM Analysis Date: 6/12/2009 12:53:41 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Page 2 of 4 (2) Curtis & Tompkins Ltd.

Purgeable Organics by GC/MS						
Lab #:	212668	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	SVGW-2	Batch#:	152076			
Lab ID:	212668-001	Sampled:	06/08/09			
Matrix:	Water	Received:	06/08/09			
Units:	ug/L	Analyzed:	06/17/09			
Diln Fac:	3.333					

Analyte	Result	RL
Freon 12	ND	3.3
Chloromethane	ND	3.3
Vinyl Chloride	ND	1.7
Bromomethane	ND	3.3
Chloroethane	ND	3.3
Trichlorofluoromethane	ND	3.3
Acetone	ND	33
Freon 113	ND	6.7
1,1-Dichloroethene	ND	1.7
Methylene Chloride	ND	33
Carbon Disulfide	ND	1.7
MTBE	ND	1.7
trans-1,2-Dichloroethene	ND	1.7
Vinyl Acetate	ND	33
1,1-Dichloroethane	ND	1.7
2-Butanone	ND	33
cis-1,2-Dichloroethene	3.9	1.7
2,2-Dichloropropane	ND	1.7
Chloroform	ND	1.7
Bromochloromethane	ND	1.7
1,1,1-Trichloroethane	ND	1.7
1,1-Dichloropropene	ND	1.7
Carbon Tetrachloride	ND	1.7
1,2-Dichloroethane	3.8	1.7
Benzene	290	1.7
Trichloroethene	ND	1.7
1,2-Dichloropropane	ND	1.7
Bromodichloromethane	ND	1.7
Dibromomethane	ND	1.7
4-Methyl-2-Pentanone	ND	33
cis-1,3-Dichloropropene	ND	1.7
Toluene	ND	1.7
trans-1,3-Dichloropropene	ND	1.7
1,1,2-Trichloroethane	ND	1.7
2-Hexanone	ND	33
1,3-Dichloropropane	ND	1.7
Tetrachloroethene	ND	1.7

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeabl	e Org	anics by GC/	/MS	
Lab #: 21266	8		Location:	Sausage Factory	
	u Veritas North Am	erica	Prep:	EPA 5030B	
Project#: 33104	-004578.00		Analysis:	EPA 8260B	
Field ID: SVGW-	2		Batch#:	152076	
Lab ID: 21266	8-001		Sampled:	06/08/09	
Matrix: Water			Received:	06/08/09	
Units: ug/L			Analyzed:	06/17/09	
Diln Fac: 3.333			_		
Analyte	Rea	ult		ST.	
Dibromochloromethane	ND			1.7	
1,2-Dibromoethane	ND			1.7	
Chlorobenzene	ND			1.7	
1,1,1,2-Tetrachloroeth	ane ND			1.7	
Ethylbenzene		43		1.7	
m,p-Xylenes		20		1.7	
o-Xylene	ND			1.7	
Styrene	ND			1.7	
Bromoform	ND			3.3	
Isopropylbenzene		6.5		1.7	
1,1,2,2-Tetrachloroeth	nane ND			1.7	
1,2,3-Trichloropropane	ND			1.7	
Propylbenzene		8.5		1.7	
Bromobenzene	ND			1.7	
1,3,5-Trimethylbenzene	2	5.3		1.7	
2-Chlorotoluene	ND			1.7	
4-Chlorotoluene	ND			1.7	
tert-Butylbenzene		1.9		1.7	
1,2,4-Trimethylbenzene	9	20		1.7	
sec-Butylbenzene		2.1		1.7	
para-Isopropyl Toluene	e ND			1.7	
1,3-Dichlorobenzene	ND			1.7	
1,4-Dichlorobenzene	ND			1.7	
n-Butylbenzene		3.8		1.7	
1,2-Dichlorobenzene	ND			1.7	
1,2-Dibromo-3-Chlorop				6.7	
1,2,4-Trichlorobenzene	e ND			1.7	
Hexachlorobutadiene	ND			6.7	

Surrogate	*REC	Limits
Dibromofluoromethane	95	80-122
1,2-Dichloroethane-d4	87	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	95	80-125

6.7

1.7

ND ND

ND

ND= Not Detected RL= Reporting Limit Page 2 of 2

1,2,3-Trichlorobenzene

Naphthalene

Lab #:	212668	Location:	Sausage Factory	- 19 - 11 - 11 - 11
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	SVGW-3	Batch#:	151958	
Lab ID:	212668-002	Sampled:	06/08/09	
Matrix:	Water	Received:	06/08/09	
Units:	ug/L	Analyzed:	06/13/09	
Diln Fac:	5.000	-		

Analyte	Result	RL	
Freon 12	ND	5.0	
Chloromethane	ND	5.0	
Vinyl Chloride	92	2.5	
Bromomethane	ND	5.0	
Chloroethane	ND	5.0	
Trichlorofluoromethane	ND	5.0	
Acetone	69	50	
Freon 113	ND	10	
1,1-Dichloroethene	ND	2.5	
Methylene Chloride	ND	50	
Carbon Disulfide	2.6	2.5	
MTBE	ND	2.5	
trans-1,2-Dichloroethene	31	2.5	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	2.5	
2-Butanone	ND	50	
cis-1,2-Dichloroethene	220	2.5	
2,2-Dichloropropane	ND	2.5	
Chloroform	ND	2.5	
Bromochloromethane	ND	2.5	
1,1,1-Trichloroethane	ND	2.5	
1,1-Dichloropropene	ND	2.5	
Carbon Tetrachloride	ND	2.5	
1,2-Dichloroethane	ND	2.5	
Benzene	45	2.5	
Trichloroethene	ND	2.5	
1,2-Dichloropropane	ND	2.5	
Bromodichloromethane	ND	2.5	
Dibromomethane	ND	2.5	
4-Methyl-2-Pentanone	ND	50	
cis-1,3-Dichloropropene	ND	2.5	
Toluene	ND	2.5	
trans-1,3-Dichloropropene	ND	2.5	
1,1,2-Trichloroethane	ND	2.5	
2-Hexanone	ND	50	
1,3-Dichloropropane	ND	2.5	
Tetrachloroethene	ND	2.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Org	anics by GC/	'MS
Lab #:	212668	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	SVGW-3	Batch#:	151958
Lab ID:	212668-002	Sampled:	06/08/09
Matrix:	Water	Received:	06/08/09
Units:	ug/L	Analyzed:	06/13/09
Diln Fac:	5.000		

Analyte	Result	RL
Dibromochloromethane	ND	2.5
1,2-Dibromoethane	ND	2.5
Chlorobenzene	ND	2.5
1,1,1,2-Tetrachloroethane	ND	2.5
Ethylbenzene	12	2.5
m,p-Xylenes	7.4	2.5
o-Xylene	ND	2.5
Styrene	ND	2.5
Bromoform	ND	5.0
Isopropylbenzene	33	2.5
1,1,2,2-Tetrachloroethane	ND	2.5
1,2,3-Trichloropropane	ND	2.5
Propylbenzene	14	2.5
Bromobenzene	ND	2.5
1,3,5-Trimethylbenzene	ND	2.5
2-Chlorotoluene	ND	2.5
4-Chlorotoluene	ND	2.5
tert-Butylbenzene	11	2.5
1,2,4-Trimethylbenzene	4.9	2.5
sec-Butylbenzene	8.2	2.5
para-Isopropyl Toluene	ND	2.5
1,3-Dichlorobenzene	ND	2.5
1,4-Dichlorobenzene	ND	2.5
n-Butylbenzene	9.2	2.5
1,2-Dichlorobenzene	ND	2.5
1,2-Dibromo-3-Chloropropane	ND	10
1,2,4-Trichlorobenzene	ND	2.5
Hexachlorobutadiene	ND	10
Naphthalene	ND	10
1,2,3-Trichlorobenzene	ND	2.5

Surrogate	*REC	Limits
Dibromofluoromethane	102	80-122
1,2-Dichloroethane-d4	113	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

- - -

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	SVGW-4	Batch#:	152026	
Lab ID:	212668-003	Sampled:	06/08/09	
Matrix:	Water	Received:	06/08/09	
Units:	ug/L	Analyzed:	06/16/09	
Diln Fac:	250.0	-		

Analyte	Result	RL	
Freon 12	ND	250	
Chloromethane	ND	250	
Vinyl Chloride	ND	130	
Bromomethane	ND	250	
Chloroethane	ND	250	
Trichlorofluoromethane	ND	250	
Acetone	ND	2,500	
Freon 113	ND	500	
1,1-Dichloroethene	ND	130	
Methylene Chloride	ND	2,500	
Carbon Disulfide	ND	130	
MTBE	ND	130	
trans-1,2-Dichloroethene	ND	130	
Vinyl Acetate	ND	2,500	
1,1-Dichloroethane	ND	130	
2-Butanone	ND	2,500	
cis-1,2-Dichloroethene	ND	130	
2,2-Dichloropropane	ND	130	
Chloroform	ND	130	
Bromochloromethane	ND	130	
1,1,1-Trichloroethane	ND	130	
1,1-Dichloropropene	ND	130	
Carbon Tetrachloride	ND	130	
1,2-Dichloroethane	240	130	
Benzene	15,000	130	
Trichloroethene	ND	130	
1,2-Dichloropropane	ND	130	
Bromodichloromethane	ND	130	
Dibromomethane	ND	130	
4-Methyl-2-Pentanone	ND	2,500	
cis-1,3-Dichloropropene	ND	130	
Toluene	15,000	130	
trans-1,3-Dichloropropene	ND	130	
1,1,2-Trichloroethane	ND	130	
2-Hexanone	ND	2,500	
1,3-Dichloropropane	ND	130	
Tetrachloroethene	ND	130	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	SVGW-4	Batch#:	152026	
Lab ID:	212668-003	Sampled:	06/08/09	
Matrix:	Water	Received:	06/08/09	
Units:	ug/L	Analyzed:	06/16/09	
Diln Fac:	250.0	-		

Analyte	Result	RL	
Dibromochloromethane	ND	130	
1,2-Dibromoethane	ND	130	
Chlorobenzene	ND	130	
1,1,1,2-Tetrachloroethane	ND	130	
Ethylbenzene	400	130	
m,p-Xylenes	1,000	130	
o-Xylene	460	130	
Styrene	ND	130	
Bromoform	ND	250	
Isopropylbenzene	ND	130	
1,1,2,2-Tetrachloroethane	ND	130	
1,2,3-Trichloropropane	ND	130	
Propylbenzene	ND	130	
Bromobenzene	ND	130	
1,3,5-Trimethylbenzene	150	130	
2-Chlorotoluene	ND	130	15
4-Chlorotoluene	ND	130	.*
tert-Butylbenzene	ND	130	
1,2,4-Trimethylbenzene	620	130	
sec-Butylbenzene	ND	130	
para-Isopropyl Toluene	ND	130	
1,3-Dichlorobenzene	ND	130	
1,4-Dichlorobenzene	ND	130	
n-Butylbenzene	ND	130	
1,2-Dichlorobenzene	ND	130	
1,2-Dibromo-3-Chloropropane	ND	500	
1,2,4-Trichlorobenzene	ND	130	
Hexachlorobutadiene	ND	500	
Naphthalene	ND	500	
1,2,3-Trichlorobenzene	ND	130	

Surrogate	**********************	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	101	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	103	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Туре:	BLANK	Diln Fac:	1.000	
Lab ID:	QC499878	Batch#:	151958	
Matrix:	Water	Analyzed:	06/12/09	
Units:	ug/L			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC499878	Batch#:	151958	
Matrix:	Water	Analyzed:	06/12/09	
Units:	ug/L			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND .	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	121	77-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	101	80-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	151958	
Units:	ug/L	Analyzed:	06/12/09	
Diln Fac:	1.000			

Type: BS	Lab	ID: QC49	9879		
Analyte	Spiked	Result	\$REC	Limits	
1,1-Dichloroethene	25.00	23.50	94	74-132	
Benzene	25.00	23.44	94	80-120	
Trichloroethene	25.00	26.02	104	80-120	
Toluene	25.00	24.10	96	80-120	
Chlorobenzene	25.00	23.91	96	80-120	
Surrogate	%REC Limits				
Dibromofluoromethane	104 80-122				
1.2-Dichloroethane-d4	115 77-137				

Bromofluorobenzene	99	80-125		
Toluene-d8	100	80-120		
1,2-DICHIOIOECHAHE U4	TTJ	//-13/		

Type: BSD	Lab I	D: QC499	9880			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	24.70	99	74-132	5	20
Benzene	25.00	24.29	97	80-120	4	20
Trichloroethene	25.00	26.46	106	80-120	2	20
Toluene	25.00	25.18	101	80-120	4	20
Chlorobenzene	25.00	24.58	98	80-120	3	20
Surrogate	%REC Limits		ST 自己的自己的			
Dibromofluoromethane	104 80-122					
1,2-Dichloroethane-d4	116 77-137					
Toluene-d8	100 80-120					
Bromofluorobenzene	100 80-125					

RPD= Relative Percent Difference
Page 1 of 1

Toluene

Chlorobenzene

Lab #:	212668		Location:	Saus	age Facto	rv
Client:	Bureau Veritas North	America	Prep:		5030B	- 1
Project#:	33104-004578.00		Analysis:	EPA	8260B	
Type:	LCS		Diln Fac:	1.00	0	
Lab ID:	QC500151		Batch#:	1520	26	
Matrix:	Water		Analyzed:	06/1	6/09	
Units:	ug/L		······································			
An	alyte	piked		Result	*REC	Limits
1,1-Dichloroe	ethene	25.00		25.33	101	74-132
Benzene		25.00		24.91	100	80-120
Trichloroethe	ene	25.00		25.04	100	80-120

Surrogate	\$REC	Limits	
Dibromofluoromethane	99	80-122	
1,2-Dichloroethane-d4	98	77-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	98	80-125	

25.00

25.00

25.09

24.66

100

99

80-120

80-120

- -

Purgeable Organics by GC/MS				
Lab #:	212668	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Туре:	BLANK	Diln Fac:	1.000	
Lab ID:	QC500152	Batch#:	152026	
Matrix:	Water	Analyzed:	06/16/09	
Units:	ug/L			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	14
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND -	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212668	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500152	Batch#:	152026
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	1
Bromoform	ND	1.0	81.
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	*REC	Linits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	93	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	104	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	212668	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZ	Batch#:	152026			
MSS Lab ID:	212747-001	Sampled:	06/10/09			
Matrix:	Water	Received:	06/10/09			
Units:	ug/L	Analyzed:	06/16/09			
Diln Fac:	1.000	_				

Гуре:	MS		Lab ID:	QC500171		
	Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichlo	roethene	<0.1000	25.00	26.95	108	77-134
Benzene		<0.1000	25.00	25.75	103	80-122
Trichloroe	thene	<0.1000	25.00	25.81	103	75-130
Toluene		<0.1000	25.00	25.61	102	80-121
Chlorobenz	ene	<0.1000	25.00	24.75	99	80-120

Surrogate	\$REC	Limits	
Dibromofluoromethane	103	80-122	
1,2-Dichloroethane-d4	103	77-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	96	80-125	

Type: MSD	Lab I	D: QC500	0172			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	25.98	104	77-134	4	20
Benzene	25.00	24.58	98	80-122	5	20
Trichloroethene	25.00	24.67	99	75-130	5	20
Toluene	25.00	24.84	99	80-121	3	20
Chlorobenzene	25.00	23.65	95	80-120	5	20
Surrogate	REC Limits					
Dibromofluoromethane	102 80-122					
1,2-Dichloroethane-d4	101 77-137					
Toluene-d8	101 80-120					
Bromofluorobenzene	98 80-125					

Toluene-d8

Bromofluorobenzene

Lab #:	212668			Location:	Saus	age Facto	ory
Client:	Bureau Verita	as North	n America	Prep:	EPA	5030B	
Project#:	33104-004578	.00		Analysis:	EPA	8260B	
Туре:	LCS			Diln Fac:	1.00	0	
Lab ID:	QC500348			Batch#:	1520	76	
Matrix:	Water			Analyzed:	06/1	7/09	
Units:	ug/L						
-							
Analy	rte		Spiked	这些 <u>这些</u> 的情况。	Result	%REC	Limits
1,1-Dichloroeth	ene		25.00		26.26	105	74-132
Benzene			25.00		24.02	96	80-120
Trichloroethene			25.00		24.94	100	80-120
Toluene			25.00		26.18	105	80-120
Chlorobenzene			25.00		25.44	102	80-120
Surro	gate	*REC	Limits				
Dibromofluorome	thane	93	80-122				
1,2-Dichloroeth	ane-d4	84	77-137				

96

96

80-120

80-125

	Purgeable Org	anics by GC/	MS
Lab #:	212668	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500349	Batch#:	152076
Matrix:	Water	Analyzed:	06/17/09
Units:	ug/L		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable Org	anics by GC/	'MS
Lab #:	212668	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500349	Batch#:	152076
Matrix:	Water	Analyzed:	06/17/09
Units:	ug/L		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	\$REC	Limits	
Dibromofluoromethane	96	80-122	
1,2-Dichloroethane-d4	90	77-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	100	80-125	

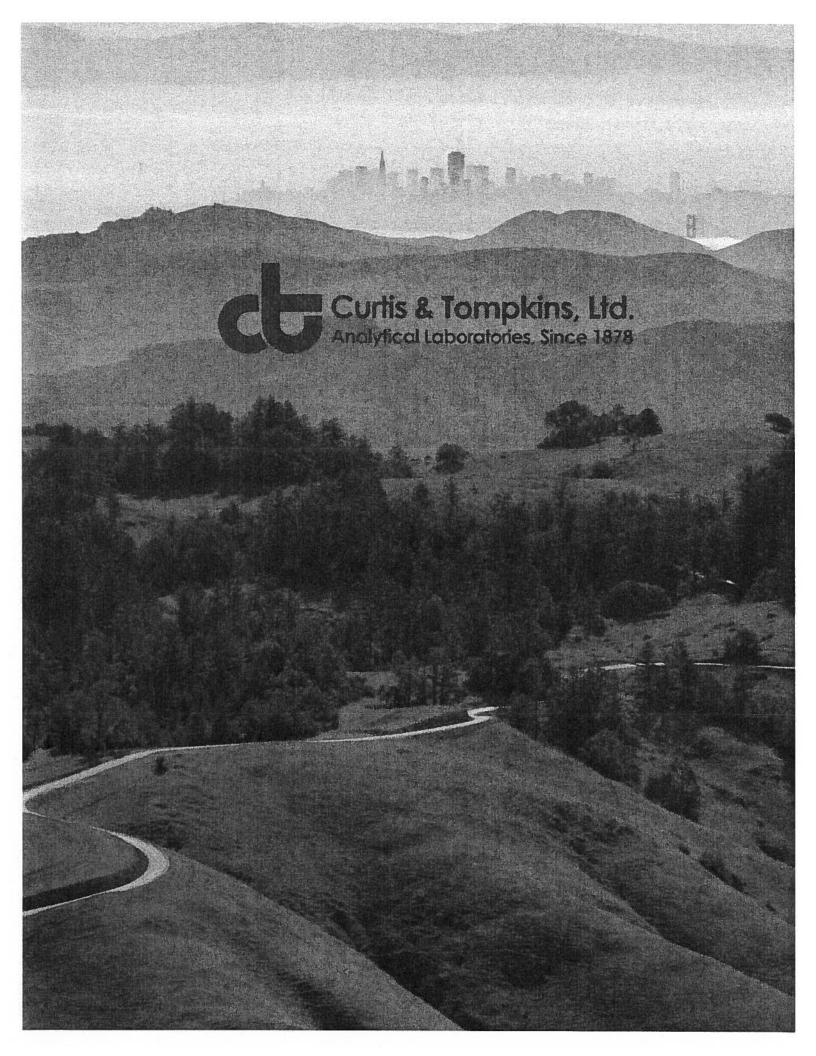
ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	212668	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8260B			
Field ID:	222222222	Batch#:	152076			
MSS Lab ID:	212851-005	Sampled:	06/15/09			
Matrix:	Water	Received:	06/15/09			
Units:	ug/L	Analyzed:	06/18/09			
Diln Fac:	1.000	-				

т	v	n	P	•	
τ.	y	\sim	\sim	٠	

100

MS


Lab ID:

QC500391

Analyte	MSS Result	Spiked	Result	&REC	Limits
1,1-Dichloroethene	3.031	25.00	27.80	99	77-134
Benzene	<0.1000	25.00	23.84	95	80-122
Trichloroethene	16.63	25.00	38.19	86	75-130
Toluene	0.4282	25.00	25.97	102	80-121
Chlorobenzene	<0.1000	25.00	25.90	104	80-120

Surrogate	\$REC	Limits
Dibromofluoromethane	90	80-122
1,2-Dichloroethane-d4	84	77–137
Toluene-d8	95	80-120
Bromofluorobenzene	95	80-125

Type: MSD		Lab]	ID: Ç	QC500392			
Analyte	Spi	ked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene		25.00	26.56	5 94	77-134	5	20
Benzene		25.00	22.50	90	80-122	6	20
Trichloroethene		25.00	36.15	5 78	75-130	5	20
Toluene		25.00	25.42	2 100	80-121	2	20
Chlorobenzene	·····	25.00	25.26	5 101	80-120	2	20
Surrogate	%REC Li	mits					
Dibromofluoromethane	90 80	-122					
1,2-Dichloroethane-d4	83 77	-137					
Toluene-d8	96 80	-120					
Bromofluorobenzene	98 80	-125					

Laboratory Job Number 212767 ANALYTICAL REPORT

Bureau Veritas North America 2430 Camino Ramon San Ramon, Ca 94583

Project : 33104-004578.00 Location : Sausage Factory Level : II

<u>Sample ID</u> SVGW-1

<u>Lab ID</u> 212767-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/18/2009

Date: 06/18/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212767 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/10/09 06/10/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 06/10/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Samples analyzed within 7 day hold time for unpreserved containers. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

Samples analyzed within 7 day hold time for unpreserved containers. No other analytical problems were encountered.

1	is & Tompkins, Ltd. ical Laboratory Since 1878					OF CU			_							Ρ	age .		of.		5k
(2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	С&Т	LOC	GIN	2 #:_ <u>6</u>	12767 212767	Jł.	2 06/1	ulo.	σ					Ana	lysi	s]
		Samp	ler:	7	ene	my Wilson	<u> </u>														
Project	No.: 33104-004578					Bodkin					18										
Project	Name: Former Sturs	ege Fichery Com	any	: 8	vin	can Vente	s		_		80218										
Project		• •				-426-26)				a 0									2
Turnaro	ound Time: Standard	Fax:	9	25		126-0106	,					20768									
				M	atrix		F	Prese	erva	ative	+	à	2								
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	ਸੂ	H ₂ SQ4	ΰИН	Ð	TPH-9 +8722	VDCS									
	SUGW-1	6-10-09 1000	,	X		6	X			X	×	X							+		1
																			#		1
	· · · · · · · · · · · · · · · · · · ·]
				-						+			\vdash		_		-				-
			1								-					-			_		
									+												-
			+	+	+							+									
Notae		SAMPLE RECEIPT	_																		4
Notes:		On Ice Ambient	RE			SHED BY:	-09	7 }	<u>ک</u> DA	1S ATE / TIN			DB	Y: La	p	l	l	/ 6 z D	7707. ATE /	19/2 TIME	45
									DA	TE / TIM	IE							D	ATE /	TIME	:
									DA	TE / TIM	IE							D	ATE /	TIME	
	SIGNATI IRF																12.22				26

•

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Z127407 Date Received 6/10/09 Client By reau Veritas Project Date Opened 6/10/09 By (print) Mice h Smith Date Opened 6/10/09 By (print) Mice h Smith (sign) Date Logged in 6/10/09 By (print) A. KATHAIN (sign)	Number of coolers / <u>r Sausage</u> , Factory
Date Opened <u>6/10/09</u> By (print) <u>Micely</u> Smith (sign) Date Logged in 6/11/09 By (print) <u>A. KATTHAIN</u> (sign)	mare - Anne Koth :-
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	
 2A. Were custody seals present? □ YES (circle) on cooler How many Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top 6. Indicate the packing in cooler: (if other, describe) 	DateYES_NOA
Bubble Wrap Foam blocks Cloth material Cardboard Temperature documentation:	None Paper towels
Type of ice used: Wet Blue/Gel None	Temp(°C)
Samples Received on ice & cold without a temperature l	blank
Samples received on ice directly from the field. Cooling	
8. Were Method 5035 sampling containers present?	VEG (TA)
It is, what time were they transferred to freezer?	res (NU)
9. Did all doules arrive unbroken/unopened?	(VEQ NO
10. Are samples in the appropriate containers for indicated tests?	VES NO
11. Are sample labels present, in good condition and complete?	VES NO
12. Do the sample labels agree with custody papers?13. Was sufficient amount of sample sent for tests requested?	YES NO
14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples?	(YES) NO N/A (YES) NO N/A
10. Was the client contacted concerning this sample delivery?	VEC NO
If YES, Who was called?By	Date:
COMMENTS	
	······································

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc 1

- -

	Curtis &	Tompki	ns Labor	atories	Analytic	al Repor	t	
Lab #:	212767			Location	: S.	ausage Fac	tory	
Client:	Bureau Veri	tas North	America	Prep:		PA 5030B	-	
Project#:	33104-00457	78.00						
Field ID:	SVGW-1			Batch#:	1	52049		
Matrix:	Water			Sampled:	0	6/10/09		
Units:	ug/L			Received	: 0	6/10/09		
Туре:	SAMPLE			Lab ID:	2	12767-001		
Analyte	8	Result		RL	Diln Fac	Analyzed		Analysis
Gasoline C7-C12		9,700		50	1.000	06/16/09		8015B
Benzene		4,100		10	20.00	06/17/09		8021B
Toluene		230		10	20.00	06/17/09		8021B
Ethylbenzene		230		10	20.00	06/17/09		8021B
m,p-Xylenes		410		10	20.00	06/17/09		8021B
o-Xylene		100		10	20.00	06/17/09		8021B
Surro		\$REC	Limits	Diln Fac			alysi	8
Trifluorotoluen		143	63-146	1.000	06/16/09			
Bromofluorobenze		118	70-140	1.000	06/16/09			
Trifluorotoluen		108	50-140	20.00	06/17/09			
Bromofluorobenzo	ene (PID)	102	56-132	20.00	06/17/09	EPA 8021	LB	
Type: Lab ID:	BLANK QC500241			Diln Fac Analyzed		.000 6/16/09		
Anal	vte		Result	tu standardi	RL		Ana	lysis
Gasoline C7-C12		NI			50	EPA	8015B	
Benzene		NI			0.50		8021B	
Toluene		NI			0.50		8021B	
Ethylbenzene		NI)		0.50		8021B	
m,p-Xylenes		NI			0.50		8021B	
o-Xylene		NI)		0.50		8021B	
	······································							
Surro		\$REC	Limits		lysis			
Trifluorotoluen		96	63-146	EPA 8015B				
Bromofluorobenz		99	70-140	EPA 8015B				
Trifluorotoluen		89	50-140	EPA 8021B				
Bromofluorobenz	ene (PID)	94	56-132	EPA 8021B				

ND= Not Detected RL= Reporting Limit Page 1 of 1

QC500242

Batch QC Report

BS

	Curtis & Tompkins Labor	atories Anal	lytical Report
Lab #:	212767	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152049
Units:	ug/L	Analyzed:	06/16/09
Diln Fac:	1.000		

Туре	:

物行和现金 Analyte Spiked Result %REC Limits 92 79-120 Benzene 10.00 9.167 Toluene 10.00 9.579 96 76-122 Ethylbenzene 10.00 9.590 96 77-125 m,p-Xylenes 10.00 76-126 10.12 101 o-Xylene 10.00 9.235 77-126 92

Lab ID:

Surrogate	\$REC	Limits	
Trifluorotoluene (PID)	100	50-140	
Bromofluorobenzene (PID)	101	56-132	

Type: BSD		Lab ID: Q	C500243			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
Benzene	20.00	19.41	97	79-120	6	20
Toluene	20.00	19.94	100	76-122	4	21
Ethylbenzene	20.00	19.65	98	77-125	2	21
m,p-Xylenes	20.00	20.38	102	76-126	1	23
o-Xylene	20.00	18.51	93	77-126	0	21
Surrogate	%REC Limits				active of	
Trifluorotoluene (PID)	106 50-140					
Bromofluorobenzene (PID)	110 56-132					

Curtis & Tompkins Laboratories Analytical Report									
Lab #:	212767	Location:	Sausage Factory						
Client:	Bureau Veritas North America	Prep:	EPA 5030B						
Project#:	33104-004578.00	Analysis:	EPA 8015B						
Туре:	LCS	Diln Fac:	1.000						
Lab ID:	QC500244	Batch#:	152049						
Matrix:	Water	Analyzed:	06/16/09						
Units:	ug/L	-							

Analyte	Spiked	Result	&REC	Limits
Gasoline C7-C12	1,000	873.7	87	76-121

Surrogate	%REC	Linits
Trifluorotoluene (FID)	116	63-146
Bromofluorobenzene (FID)	105	70-140

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212767	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Field ID:	222222222	Batch#:	152049
MSS Lab ID:	212844-001	Sampled:	06/12/09
Matrix:	Water	Received:	06/15/09
Units:	ug/L	Analyzed:	06/17/09
Diln Fac:	1.000		

Type:	MS			Lab ID:		QC500245		
	Analyte	MSS Re	sult	Spike	əd	Result	*REC	Limits
Gasoline	C7-C12	2	20.01	2,000)	1,666	82	66-120
	Surrogate	*REC	Limits		te a transfer		40	
Trifluoro	otoluene (FID)	132	63-146					
Bromofluc	probenzene (FID)	111	70-140					
Туре:	MSD	14		Lab ID:		QC500246		
	Analyte		Spiked		Result	*REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		1,635	81	66-120	2 20
	C	*REC	Limits		San Barris		Marting Trees	
	Surrogate	OTTEC	TITHT CO		4. 福利尼兰加加加加加			

110

70-140

Bromofluorobenzene (FID)

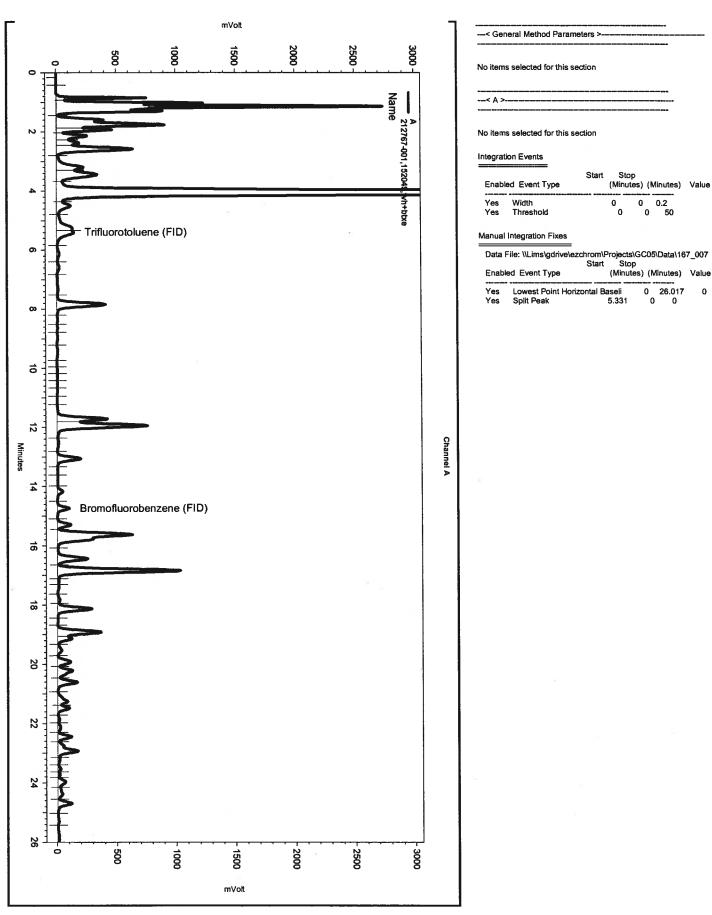
- -

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212767-001,152049,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_007 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

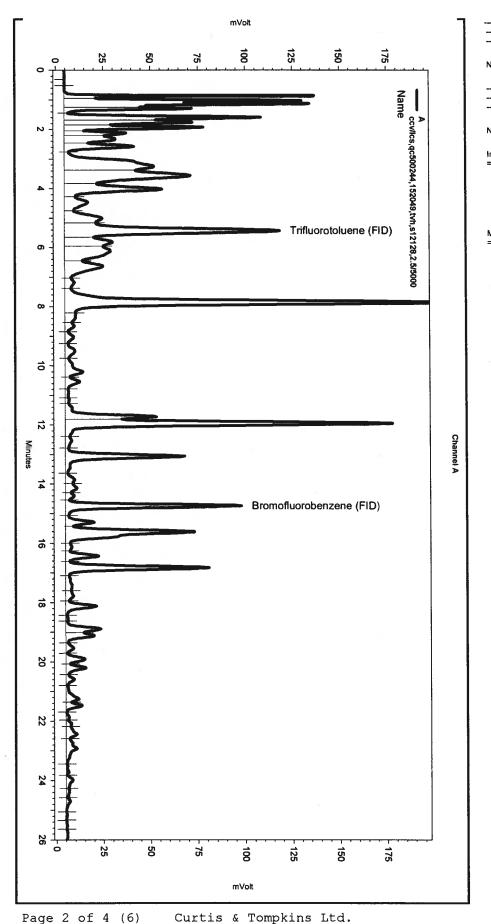
Software Version 3.1.7 Run Date: 6/16/2009 5:16:43 PM Analysis Date: 6/17/2009 10:15:06 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a7

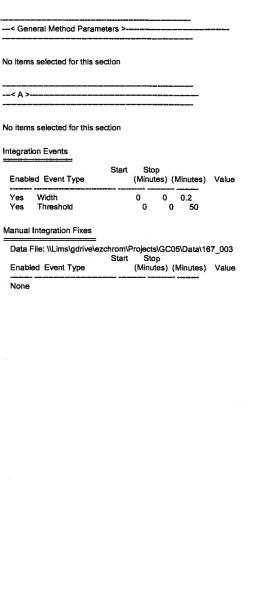
Start

Stop


5.331

(Minutes) (Minutes) Value


0 0.2 0 50


0 26.017 0 0

0

Page 2 of 4 (2) Curtis & Tompkins Ltd. Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: ccv/lcs,qc500244,152049,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_003 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met Software Version 3.1.7 Run Date: 6/16/2009 11:47:27 AM Analysis Date: 6/17/2009 7:38:28 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Purgeable Organics by GC/MS					
Lab #:	212767	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	SVGW-1	Batch#:	152026		
Lab ID:	212767-001	Sampled:	06/10/09		
Matrix:	Water	Received:	06/10/09		
Units:	ug/L	Analyzed:	06/16/09		
Diln Fac:	50.00	·			

Analyte	Result	RL	
Freon 12	ND	50	
Chloromethane	ND	50	
Vinyl Chloride	ND	25	
Bromomethane	ND	50	
Chloroethane	ND	50	
Trichlorofluoromethane	ND	50	
Acetone	ND	500	
Freon 113	ND	100	
1,1-Dichloroethene	ND	25	
Methylene Chloride	ND	500	
Carbon Disulfide	ND	25	
MTBE	ND	25	
trans-1,2-Dichloroethene	ND	25	
Vinyl Acetate	ND	500	
1,1-Dichloroethane	ND	25	
2-Butanone	ND	500	
cis-1,2-Dichloroethene	ND	25	
2,2-Dichloropropane	ND	25	
Chloroform	ND	25	
Bromochloromethane	ND	25	
1,1,1-Trichloroethane	ND	25	
1,1-Dichloropropene	ND	25	
Carbon Tetrachloride	ND	25	
1,2-Dichloroethane	ND	25	
Benzene	4,100	25	
Trichloroethene	ND	25	
1,2-Dichloropropane	ND	25	
Bromodichloromethane	ND	25	
Dibromomethane	ND	25	
4-Methyl-2-Pentanone	ND	500	
cis-1,3-Dichloropropene	ND	25	
Toluene	210	25	
trans-1,3-Dichloropropene	ND	25	
1,1,2-Trichloroethane	ND	25	
2-Hexanone	ND	500	
1,3-Dichloropropane	ND	25	
Tetrachloroethene	ND	25	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	212767	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	SVGW-1	Batch#:	152026	
Lab ID:	212767-001	Sampled:	06/10/09	
Matrix:	Water	Received:	06/10/09	
Units:	ug/L	Analyzed:	06/16/09	
Diln Fac:	50.00	-		

Analyte	Res	ult RL	
Dibromochloromethane	ND	25	
1,2-Dibromoethane	ND	25	
Chlorobenzene	ND	25	
1,1,1,2-Tetrachloroethane	ND	25	1
Ethylbenzene	2	25	
m,p-Xylenes	4	00 25	
o-Xylene		91 25	
Styrene	ND	25	
Bromoform	ND	50	
Isopropylbenzene	ND	25	
1,1,2,2-Tetrachloroethane	ND	25	
1,2,3-Trichloropropane	ND	25	
Propylbenzene		50 25	
Bromobenzene	ND	25	
1,3,5-Trimethylbenzene	1	.40 25	
2-Chlorotoluene	ND	25	
4-Chlorotoluene	ND	25	
tert-Butylbenzene	ND	25	
1,2,4-Trimethylbenzene	С. С	50 25	
sec-Butylbenzene	ND	25	
para-Isopropyl Toluene	ND	25	
1,3-Dichlorobenzene	ND	25	
1,4-Dichlorobenzene	ND	25	
n-Butylbenzene	ND	25	
1,2-Dichlorobenzene	ND	25	
1,2-Dibromo-3-Chloropropane	ND	100	
1,2,4-Trichlorobenzene	ND	25	
Hexachlorobutadiene	ND	100	2
Naphthalene	2	210 100	
1,2,3-Trichlorobenzene	ND	25	

Surrogate	\$REC	Limits
Dibromofluoromethane	101	80-122
1,2-Dichloroethane-d4	102	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-125

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable Org	anics by GC/	/MS
Lab #:	212767	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC500151	Batch#:	152026
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L	-	

Analyte	Spiked	Result	\$REC	Limits
1,1-Dichloroethene	25.00	25.33	101	74-132
Benzene	25.00	24.91	100	80-120
Trichloroethene	25.00	25.04	100	80-120
Toluene	25.00	25.09	100	80-120
Chlorobenzene	25.00	24.66	99	80-120

Surrogate	*REC	Limits Alt.
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	98	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	98	80-125

	Purgeable Org	anics by GC/	'ms
Lab #:	212767	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500152	Batch #:	152026
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L	-	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Org	anics by GC	'MS
Lab #:	212767	Location:	A Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500152	Batch#:	152026
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L	_	

Analyte	Result	RL
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	*REC	Limits	
Dibromofluoromethane	99	80-122	
1,2-Dichloroethane-d4	93	77-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	104	80-125	

ND= Not Detected RL= Reporting Limit Page 2 of 2

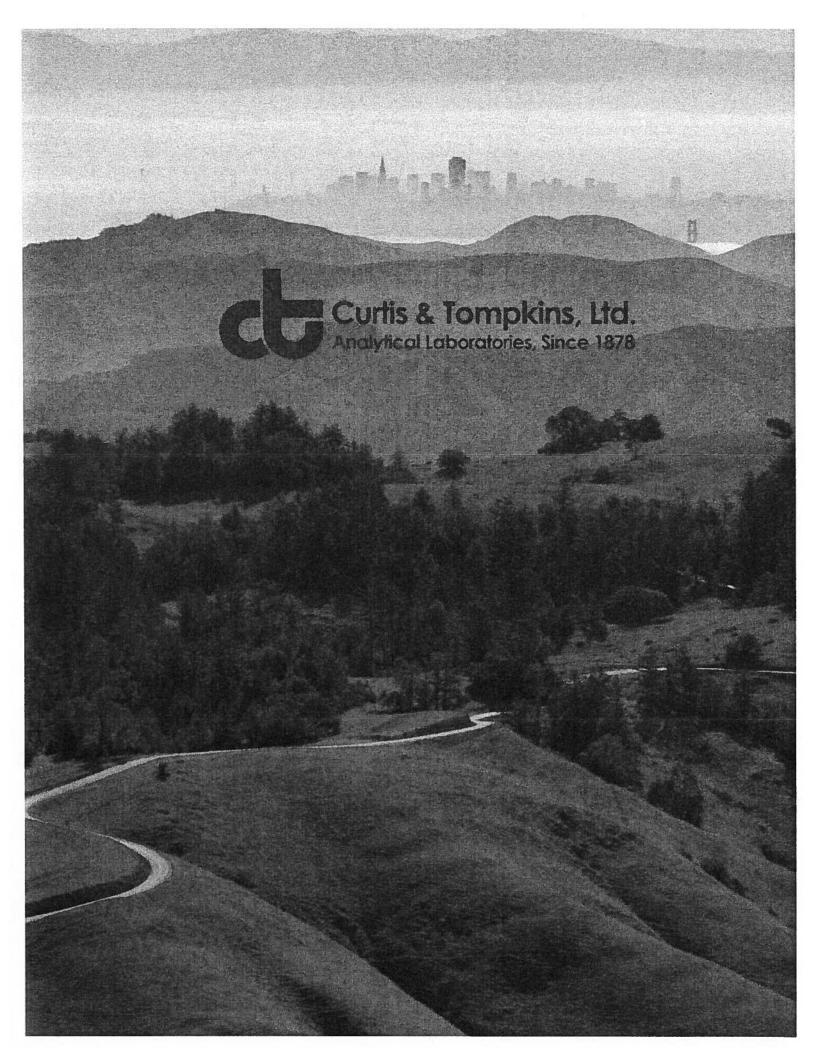
	Purgeable Org	anics by GC/	'MS	
Lab #:	212767	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	ZZZZZZZZZZ	Batch#:	152026	
MSS Lab ID:	212747-001	Sampled:	06/10/09	
Matrix:	Water	Received:	06/10/09	
Units:	ug/L	Analyzed:	06/16/09	
Diln Fac:	1.000			

Type:

MS

Lab ID:

QC500171


MSS Result	Spiked	Result	%REC	Limits
<0.1000	25.00	26.95	108	77-134
<0.1000	25.00	25.75	103	80-122
<0.1000	25.00	25.81	103	75-130
<0.1000	25.00	25.61	102	80-121
<0.1000	25.00	24.75	99	80-120
	<0.1000 <0.1000 <0.1000 <0.1000	<0.1000 25.00 <0.1000 25.00 <0.1000 25.00 <0.1000 25.00	<0.1000	<0.1000

Surrogate	*REC	Limits
Dibromofluoromethane	103	80-122
1,2-Dichloroethane-d4	103	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	96	80-125

Type: MSD	Lab I	D: QC50	0172			
Analyte	Spiked	Result	*REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	25.98	104	77-134	4	20
Benzene	25.00	24.58	98	80-122	5	20
Trichloroethene	25.00	24.67	99	75-130	5	20
Toluene	25.00	24.84	99	80-121	3	20
Chlorobenzene	25.00	23.65	95	80-120	5	20
Surrogate	%REC Limits					
Dibromofluoromethane	102 80-122					and the second sec

102	80-122				
101	77-137				
101	80-120				
98	80-125				
	101 101	101 77-137 101 80-120	101 77-137 101 80-120	101 77-137 101 80-120	101 77-137 101 80-120

. .

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212786 ANALYTICAL REPORT

Bureau Veritas North America 2430 Camino Ramon San Ramon, Ca 94583

Project : 33104-004578.00 Location : Sausage Factory Level : II

<u>Sample ID</u> DRUM COMPOSITE

<u>Lab ID</u> 212786-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/23/2009

Date: <u>06/23/200</u>9

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212786 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/11/09 06/11/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 06/11/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

DRUM COMPOSITE (lab # 212786-001) had pH greater than 2. This sample was analyzed within the seven day holding time for unpreserved samples. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

	is & Tompkins, Ltd. tical Laboratory Since 1878		Cŀ	łA		Ν	0	F CU	S	T	0	D	Y							Pa	nge _		of_	1_	_
	2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax		C & T	B T LOGIN #: 212786											Anal	lysi:	S								
		-	Sample	er:	۲	Jen	emy	Wisa													57				
Project	No.: 33 104-004508.0							1 Wilson						1872											
Project	Name: Former Sunsage						-							181											
Project		,	Teleph	one	: 9	irs	; - L	198-651	3					TPH-91	Ь	HUOCS									
Turnaround Time: Standord Fax: 925-926-0106					<u> </u>	TPH		F																	
	•	······································			Ma	trix			F	Pres	erv	ativ	e	B		-0									
Lab No.	Sample ID.	Sampling Time		Soil	Water	Waste		# of Containers	НСГ	H ₂ SO	ю́ НNО	Ы		8021		8260B									
	Drum Composite	6-11-09 1	510		X			0	2			X		X		X	0.4				+		_		-
																									4
								· · _ · _ · _ · · · · · · · ·	-								-		_	_			-+		4
2.1								·	 								-				+		-+		-
																		_		_					-
								· = HE																	
Notes:		SAMPLE REC	CEIPT	DE	1 161			D BY:						DE		VED									-
			Cold							6			1600 / TIM	1	Z	Z		ĘĹ	\int_{2n}		L				₽ ₽ ₽
		Preservative C		1	-						D	DATE	/ TIM	E					2	\mathcal{D}	0				
		=									0	DATE	/ TIM	E								0	DATE		E
	CIONATHE																							-	-

•

COULER RECEIPT CHECKLIST	CUT Curtis & Tompkins, Ltd.
Login # 212786 Date Received 6/11/09 Client BUREON VERTOS Project FRAR. 3	Number of coolers
Date Opened <u>6/11/09</u> By (print) <u>M. / UDPUEUSe (sign)</u> Date Logged in <u>6/12/09</u> By (print) <u>Micak Smith</u> (sign)	mani
(Sign	- septo
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES O
2A. Were custody seals present? YES (circle) on cooler How many Name	Date
 Were custody papers dry and intact when received? Were custody papers filled out properly (ink, signed, etc)? 	X NO
4. Were custody papers filled out properly (ink, signed, etc)?	Qes NO
5. Is the project identifiable from custody papers? (If so fill out to 6. Indicate the packing in cooler: (if other, describe)	
Bubble Wrap Foam blocks Bags Cloth material Cardboard Styrofoam	None
Cloth material Cardboard Styrofoam	Paper towels
7. Temperature documentation:	
Type of ice used: Wet Blue/Gel None	
Samples Received on ice & cold without a temperature	blank
Samples received on ice directly from the field. Cooling	process had begun
8. Were Method 5035 sampling containers present?	VEG GO
If YES, what time were they transferred to freezer?	
7. Did an boules arrive unbroken/unonened?	
TO. Are samples in the appropriate containers for indicated tests?	VEC NO
11. Are sample labels present, in good condition and complete?	CYES NO
12. Do the sample labels agree with custody papers?	VRS NO
13. Was sufficient amount of sample sent for tests requested?	YES NO
14. Are the samples appropriately preserved?	YES NO N/A
15. Are bubbles > 6mm absent in VOA samples?	YES NO N/A
16. Was the client contacted concerning this sample delivery?	YES NO
If YES, Who was called? By	Date:
COMMENTS	
\	ž
SOP Volume: Client Services	Rev. 6 Number 1 of 3
Section: 1.1.2	Effective 22 Life 2008

.

l of i

Page:

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

1.10

.

- -•

	Curtis & Tompkins Laboratories Analytical Report							
Lab #:	212786	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	-						
Field ID:	DRUM COMPOSITE	Batch#:	152049					
Matrix:	Water	Sampled:	06/11/09					
Units:	ug/L	Received:	06/11/09					
Diln Fac:	1.000	Analyzed:	06/16/09					

Type:	SAMPLE	Lab ID:	212786-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,300	50	EPA 8015B
Benzene	380	0.50	EPA 8021B
Toluene	2.2 C	0.50	EPA 8021B
Ethylbenzene	65	0.50	EPA 8021B
m,p-Xylenes	35	0.50	EPA 8021B
o-Xylene	2.5 C	0.50	EPA 8021B

Surrogate	****	Limits	Analysis
Trifluorotoluene (FID)	126	63-146	EPA 8015B
Bromofluorobenzene (FID)	114	70-140	EPA 8015B
Trifluorotoluene (PID)	130	50-140	EPA 8021B
Bromofluorobenzene (PID)	119	56-132	EPA 8021B

Туре:	BLANK			Lab	ID:	QC5	00241		
	Analyte		Result			RL		Analysis	
Gasoline C7	-C12	ND				50	EPA	8015B	-
Benzene		ND				0.50	EPA	8021B	
Toluene		ND				0.50	EPA	8021B	
Ethylbenzen	.e	ND				0.50	EPA	8021B	
m,p-Xylenes		ND				0.50	EPA	8021B	
o-Xylene		ND				0.50	EPA	8021B	
S	urrogate	*REC	Limits		Analysi	.8			
Trifluoroto	luene (FID)	96	63-146	EPA	8015B				
Bromofluoro	benzene (FID)	99	70-140	EPA	8015B				

50-140 EPA 8021B

56-132 EPA 8021B

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 1 of 1

89

94

Trifluorotoluene (PID)

Bromofluorobenzene (PID)

2.0

de negel	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212786	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152049
Units:	ug/L	Analyzed:	06/16/09
Diln Fac:	1.000		

ype:	BS	Lab ID:	QC500)242	
	Analyte	Spiked	Result	\$REC	Limits
Benzene		10.00	9.167	92	79-120
Toluene		10.00	9.579	96	76-122
Ethylbenzen	e	10.00	9.590	96	77 - 125
m,p-Xylenes		10.00	10.12	101	76-126
o-Xylene		10.00	9.235	92	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	100	50-140
Bromofluorobenzene (PID)	101	56-132

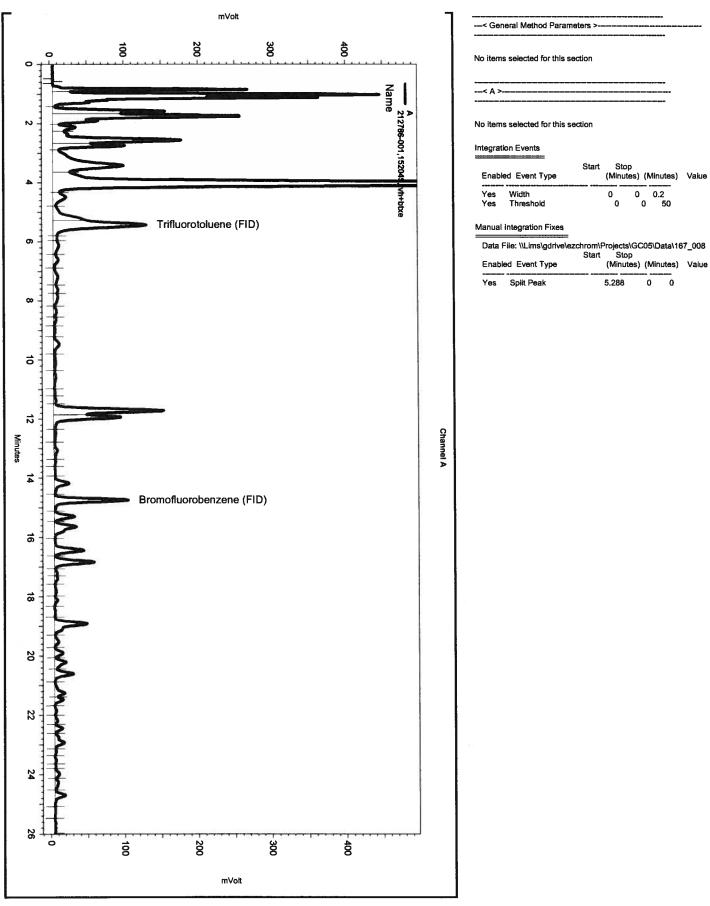
Type: BSD		Lab ID:	QC500243			
Analyte	Spiked	Result	\$REC	Limits	RPD	Lim
Benzene	20.00	19.43	1 97	79-120	6	20
Toluene	20.00	19.9	4 100	76-122	4	21
Ethylbenzene	20.00	19.6	5 98	77-125	2	21
m,p-Xylenes	20.00	20.3	8 102	76-126	1	23
o-Xylene	20.00	18.5	1 93	77-126	0	21
Surrogate	%REC Limits					
Trifluorotoluene (PID)	106 50-140					
Bromofluorobenzene (PI	D) 110 56-132					

- -

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	212786	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC500244	Batch#:	152049				
Matrix:	Water	Analyzed:	06/16/09				
Units:	ug/L						

Analyte	Spiked	Result	%REC	C Limits	
Gasoline C7-C12	1,000	873.7	87	76-121	

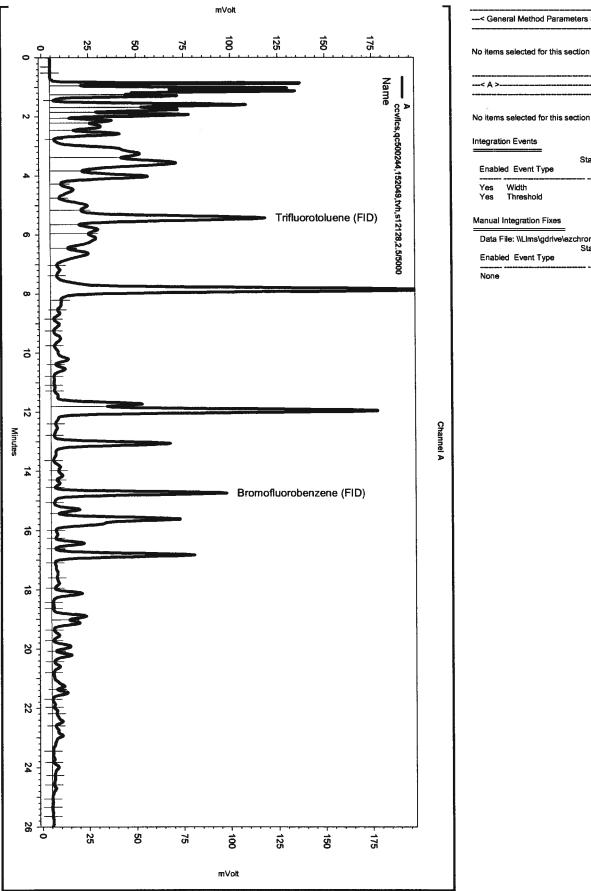
Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	63-146
Bromofluorobenzene (FID) ·	105	70-140



	Curtis & Tompkins Laboratories Analytical Report					
Lab #:	212786	Location:	Sausage Factory			
Client:	Bureau Veritas North America	Prep:	EPA 5030B			
Project#:	33104-004578.00	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	152049			
MSS Lab ID:	212844-001	Sampled:	06/12/09			
Matrix:	Water	Received:	06/15/09			
Units:	ug/L	Analyzed:	06/17/09			
Diln Fac:	1.000	- 57				

Туре:	MS			Lab ID:		QC500245		
Analyt	.e	MSS Re	sult	Spike	bd	Result	\$REC	Limits
Gasoline C7-C12		2	20.01	2,000)	1,666	82	66-120
Surrog	rate	*REC	Limits					
Trifluorotoluene	e (FID)	132	63-146					
Bromofluorobenze	ene (FID)	111	70-140					
Type:	MSD			Lab ID:		QC500246		
rype.	1100					20000210		
Analy	te		Spiked	THE PARTY OF	Result	*REC	Limits	RPD Lim
Gasoline C7-C12	-	n	2,000		1,635	81	66-120	2 20
Surrog	pate	\$REC	Limits					
T 1 C1 1 1								
Trifluorotoluene	e (FID)	132	63-146					

. .


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: 212786-001,152049,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_008 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met Software Version 3.1.7 Run Date: 6/16/2009 5:52:16 PM Analysis Date: 6/17/2009 10:17:10 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b7

Page 2 of 4 (2) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC05\Sequence\167.seq Sample Name: ccv/lcs,qc500244,152049,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC05\Data\167_003 Instrument: GC05 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC05\Method\tvhbtxe150.met

< General Method Parameters >

Stop Start (Minutes) (Minutes) Value Enabled Event Type 0 0 Yes Width 0.2 50 Yes Threshold Manual Integration Fixes Data File: \\Llms\gdrive\ezchrom\Projects\GC05\Data\t67_003 Start Stop

Enabled Event Type (Minutes) (Minutes) Value None

	Purgeable Halo	carbons by G	C/MS
Lab #:	212786	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Field ID:	DRUM COMPOSITE	Batch#:	152173
Lab ID:	212786-001	Sampled:	06/11/09
Matrix:	Water	Received:	06/11/09
Units:	ug/L	Analyzed:	06/20/09
Diln Fac:	1.667		

Analyte	Result	RL	
Chloromethane	ND	1.7	П
Vinyl Chloride	7.2	0.8	
Bromomethane	ND	1.7	
Chloroethane	ND	1.7	- 1
Trichlorofluoromethane	ND	1.7	
Freon 113	ND	3.3	
1,1-Dichloroethene	ND	0.8	
Methylene Chloride	ND	33	1
trans-1,2-Dichloroethene	9.2	0.8	
1,1-Dichloroethane	ND	0.8	
cis-1,2-Dichloroethene	100	0.8	
Chloroform	ND	1.7	
1,1,1-Trichloroethane	ND	0.8	
Carbon Tetrachloride	ND	0.8	
1,2-Dichloroethane	ND	0.8	1
Trichloroethene	10	0.8	
1,2-Dichloropropane	ND	0.8	
Bromodichloromethane	ND	0.8	
cis-1,3-Dichloropropene	ND	0.8	
trans-1,3-Dichloropropene	ND	0.8	
1,1,2-Trichloroethane	ND	0.8	
Tetrachloroethene	ND	0.8	
Dibromochloromethane	ND	0.8	
Chlorobenzene	ND	0.8	
Bromoform	ND	0.8	
1,1,2,2-Tetrachloroethane	ND	0.8	
1,3-Dichlorobenzene	ND	0.8	
1,4-Dichlorobenzene	ND	0.8	
1,2-Dichlorobenzene	ND	0.8	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	78	77-137
Toluene-d8	97	80-120
Bromofluorobenzene	104	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

- -

. .

Purgeable Halocarbons by GC/MS								
Lab #:	212786	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC500743	Batch#:	152173					
Matrix:	Water	Analyzed:	06/19/09					
Units:	ug/L	-						

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	*REC	Limits;
1,2-Dichloroethane-d4	94	77-137
Toluene-d8	100	80-120
Bromofluorobenzene	105	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

- -

. .

Chlorobenzene

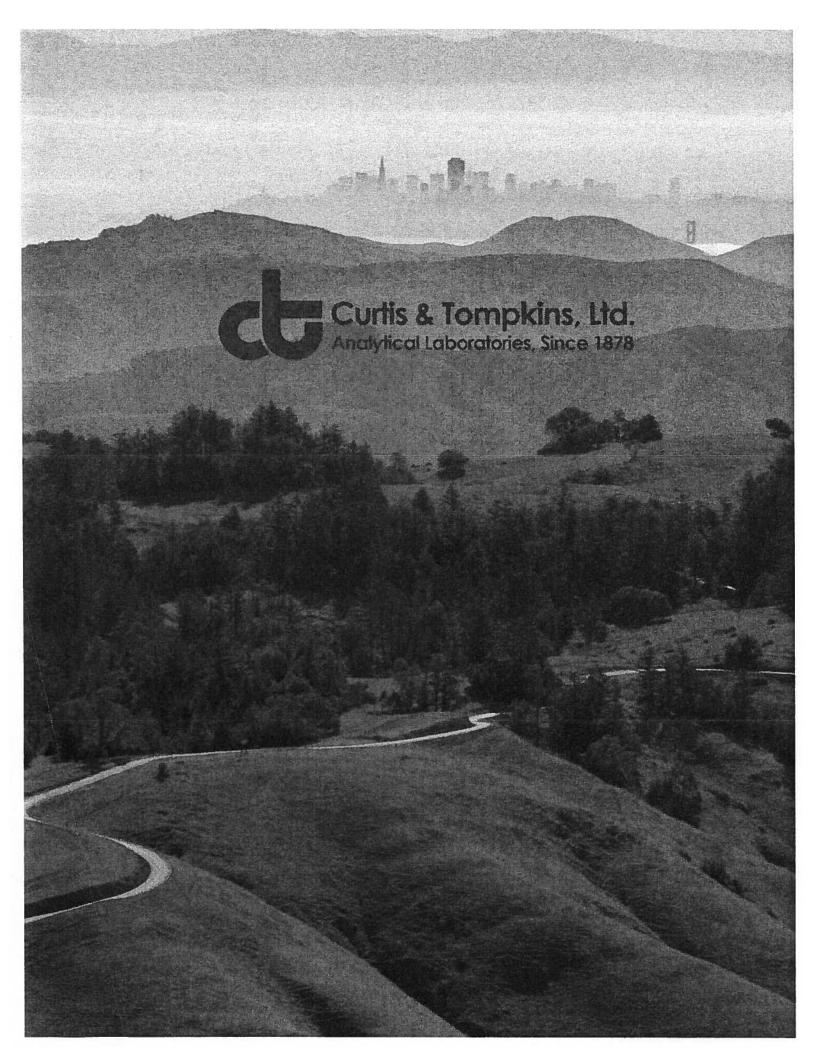
Ducon go n	epoze								
		Purgea	ble Halo	carbons b	Y GC/MS				
Lab #:	212786			Location:	Sausa	age Facto	ory		
Client:	Bureau Ver	itas Nort	h America	Prep:	EPA S	5030B			
Project#:	33104-0045	78.00		Analysis:	EPA 8				
Matrix:	Water			Batch#:	15217				
Units:	ug/L			Analyzed:	06/19	9/09			
Diln Fac:	1.000								
<i>a</i>									
Type:	BS			Lab ID:	QC50(745			
iype.	20			nao ib.	Q0000	5,15			
	Analyte		Spiked	派用的复数形式 的复数形式	Result	%REC	Limits	N Rect 2	
1,1-Dichlor	oethene		25.00		27.80	111	74-132		
Trichloroet	hene		25.00		24.23	97	80-120		
Chlorobenze	ne		25.00		26.43	106	80-120		
	urrogate	\$RE(: Limits						
1,2-Dichlor	oethane-d4	89	77-137						
Toluene-d8		100	80-120						
Bromofluoro	benzene	107	80-125	* *** *** *** *** *** ***					
Type:	BSD			Lab ID:	QC50	0746			
-15-1									
	Analyte		Spiked		Result	\$REC	Limits	AND DESCRIPTION OF THE OWNER.	Lim
1,1-Dichlor			25.00		27.19	109	74-132	2	20
Trichloroet	hene		25.00		24.34	97	80-120	0	20

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	89	77-137
Toluene-d8	99	80-120
Bromofluorobenzene	106	80-125

26.85

107

80-120


20

2

25.00

MAXIMUM CONTAMINANT LEVELS AND REGULATORY DATES FOR DRINKING WATER U.S. EPA VS CALIFORNIA NOVEMBER 2008

Contominant	U.S.	lifornia		
Contaminant	MCL (mg/L)	Date ^a	MCL (mg/L)	Effective Date
Inorganics				
	0.05 to 0.2 ^b	1/91	1	2/25/89
Aluminum			0.2 ^b	9/8/94
Antimony	0.006	7/92	0.006	9/8/94
Arsenic	0.05	eff: 6/24/77	0.05	77
	0.010	eff: 1/23/06	0.010	11/28/08
Asbestos	7 MFL ^c	1/91	7 MFL°	9/8/94
Barium		eff: 6/24/77	1	77
Dopulium	2	1/91	0.004	0/0/04
Beryllium	0.004	7/92 eff: 6/24/77	0.004	9/8/94
Cadmium	0.010	eii: 6/24/77 1/91	0.010	77 9/8/94
	0.005	eff: 6/24/77	0.005	<u> </u>
Chromium	0.03	1/91	0.05	
	1.3 ^d	6/91	1 ^b	77
Copper	1.0	0/01	1.3 ^d	12/11/95
	0.2	7/92	0.2	9/8/94
Cyanide	0.2		0.15	6/12/03
	4	4/86	2	4/98
Fluoride	2 ^b	4/86		
	0.05 ^e	eff: 6/24/77	0.05 ^e	77
Lead	0.015 ^d	6/91	0.015 ^d	12/11/95
Mercury	0.002	eff: 6/24/77	0.002	77
Nickel	Rema	anded	0.1	9/8/94
Nitrate	(as N) 10	eff: 6/24/77	(as N03) 45	77
Nitrite (as N)	1	1/91	1	9/8/94
Total Nitrate/Nitrite (as N)	10	1/91	10	9/8/94
Perchlorate		-	0.006	10/18/07
Selenium	0.01	eff: 6/24/77	0.01	77
	0.05	1/91	0.05	9/8/94
Thallium	0.002	7/92	0.002	9/8/94
Radionuclides				
Uranium	30 ug/L	12/7/00	20 pCi/L	1/1/89
Granium			20 pCi/L	6/11/06
Combined Radium - 226+228	5 pCi/L	eff: 6/24/77	5 pCi/L	77
			5 pCi/L	6/11/06
Gross Alpha particle activity	15 pCi/L	eff: 6/24/77	15 pCi/L	77
(excluding radon & uranium)			15 pCi/L	6/11/06
Gross Beta particle activity	4 millirem/yr	eff: 6/24/77	50 pCi/L'	77
	0.01	11 0 10 1 1 -	4 millirem/yr	6/11/06
Strontium-90	8 pCi/L	eff: 6/24/77	8 pCi/L	77
Gaonadin-30		now covered by Gross Beta	8 pCi/L ^f	6/11/06
	20,000 pCi/L	eff: 6/24/77	20,000 pCi/L	77
Tritium		now covered by	20,000 pCi/L ^f	6/11/06
Γ		Gross Beta		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 212789 ANALYTICAL REPORT

Bureau Veritas North America	Project : 33104-004578.00
2430 Camino Ramon	Location : Sausage Factory
San Ramon, Ca 94583	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-1	212789-001
MW-2	212789-002
MW-6	212789-003
MW-7	212789-004
MW-8	212789-005
MW-9	212789-006
MW-10	212789-007
MW-11	212789-008
MW-12	212789-009
MW-13	212789-010

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Project Manager

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 06/23/2009

Date: 06/23/2009

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 212789 Bureau Veritas North America 33104-004578.00 Sausage Factory 06/11/09 06/11/09

This data package contains sample and QC results for ten water samples, requested for the above referenced project on 06/11/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recovery was observed for trifluorotoluene (PID) in MW-9 (lab # 212789-006); the corresponding bromofluorobenzene (PID) surrogate recovery was observed for bromofluorobenzene (PID) in MW-13 (lab # 212789-010); the corresponding trifluorotoluene (PID) surrogate recovery was within limits. High surrogate recovery was within limits. High surrogate recoveries were observed for bromofluorobenzene (FID) in MW-13 (lab # 212789-010); the corresponding trifluorotoluene (PID) surrogate recovery was within limits. High surrogate recoveries were observed for bromofluorobenzene (FID) in MW-13 (lab # 212789-010) and the MS for batch 152048; the corresponding trifluorotoluene (FID) surrogate recoveries were within limits. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

MW-1 (lab # 212789-001), MW-2 (lab # 212789-002), and MW-9 (lab # 212789-006) were diluted due to high non-target analytes. No other analytical problems were encountered.

Page 1 of 1

32.0

.

	s & Tompkins, Ltd.		CH	A	IN	(of Cu	S	TC	DDY	7						Page	,	of		
	ical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax		C & T	LOGII	.ogin #:Z12789									Analy	vsis						
			Sampl	er: 🕻	Jore	My	WBON				2	×									
Project	No.: 33104-004578,	UN	Report	eport To: Jeremy Willson					- J	TPH-91BIEX											
	Name: Former Sauscale										-	PR									
	-	ructory									- .	3	H VOC'S								
Project			Teleph	one:	92	5-	498-6518	<u> </u>			-	휜	15								
Turnaro	und Time: Standard		Fax:	92	5.	47	26-0106				_	7	-1-								
				N	latri	x	7	P	rese	rvative	ן ר	2	8								
Lab No.	Sample ID.	-	ng Date me		Waste	1	# of Containers	† ** • •		UE E		G 1708	82608								
	MW-1	6-11-09	1235		x	+	6	ĸ		X	1				_			-			
	MW.Z		1220		K _		4	メ		X											
	MW-6	┼╌┠───	1315.		× _	<u> </u>	<u> </u>	1			┥┝				-+						_
	MW-7		1455		X		6	ト			┥┝╴						+				-
	MW-8		NSQ.				6	XX		X	┥┝			┝╌┤			┼╌┼╴	+			-
	<u>MW-9</u> MW-10		0 NB. NO	+	X X	+	6				┥╞╴			+			┼╌┾╴	+			-
	MW-10 MW-11	150			\uparrow	+		X		X	┥┝		+	1-1			┼╌┼╴				-
	MW-12		405		K		6	X		X	┥┝			††					+		
	MW-13		405		X		6	K		X]
] [_
											↓ ∟	_									4
											┥┝										-
Notes:		SAMPLE		REL	INQL	JISH	IED BY:				+ +	RECE		D BY	<u>'</u>	- f					
			Ambient	las	Alb	Ø	-	b	-11-0	9 60 DATE / T		\int	$\int d$!	\int	no	h		<i>/ // //</i> DATE	<i>69</i> : / TIME	606
		1	re Correct? No 🔲 N/A	/*/	V					DATE / T						0			DATE	: / TIMI	E
										DATE / T	IME								DATE		E

•

COOLER RECEIPT CHECKLIST	rtis & Tompkins, Ltd.
Login # 212789 Date Received 6/11/09 Number of c Client Purcen VERITOS Project FRAR. 3XUE-266E 1	COOLERS
Date Opened <u>6/11/09</u> By (print) <u>M. VIUD Utve</u> (sign) <u>M. J</u> Date Logged in <u>6 (1) 9</u> By (print) <u>Mical Snith</u> (sign) <u>Mical</u>	the
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES O
 2A. Were custody seals present? □ YES (circle) on cooler on samples How many Name Date Date	YES NO-NA WBS NO WBS NO NO NO
7. Temperature documentation:	per towels
Type of ice used: \square Wet \square Blue/Gel \square None Temp(°C)	14.D
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had	begun
 8. Were Method 5035 sampling containers present?	YES NO YES NO
SOP Volume: Client Services	•

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

. . .

	Curtis &	Tompkin	s Labor	atories a	Analytica	1 Report		
Lab #: Client: Project#:	212789 Bureau Verit 33104-004578		America	Location: Prep:		usage Facto A 5030B	ory	
Matrix: Units:	Water ug/L			Sampled: Received:		/11/09 /11/09		
Field ID: Type: Lab ID:	MW-1 SAMPLE 212789-001			Diln Fac: Batch #: Analyzed:	15	000 2048 7/16/09		
Ana Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2		Result 7,900 1,500 170 360 220 61		RL 250 2.5 2.5 2.5 2.5 2.5 2.5	EPA 80 EPA 80 EPA 80 EPA 80 EPA 80 EPA 80 EPA 80)21B)21B)21B)21B	
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC 97 118 104 122	Limits 63-146 70-140 50-140 56-132	Ana. EPA 8015B EPA 8015B EPA 8021B EPA 8021B	lysis			
Field ID: Type:	MW-2 SAMPLE			Lab ID: Batch#:		2789-002 2048		
Analy Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result 30,000 9,400 490 1,300 1,200 280		RL 1,000 13 13 13 13 13 13 13	Diln Fac 20.00 25.00 25.00 25.00 25.00 25.00 25.00	Analyzed 06/16/09 06/17/09 06/17/09 06/17/09 06/17/09 06/17/09	AnalysEPA8015BEPA8021BEPA8021BEPA8021BEPA8021BEPA8021B	is
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC 104 102 126 105	Limits 63-146 70-140 50-140 56-132	Diln Fac 20.00 20.00 25.00 25.00	Analyzed 06/16/09 06/16/09 06/17/09 06/17/09		lysis	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 6

- 14

	Curtis &	Tompkins La	aboratories	Analytical	Report	
Lab #: Client: Project#:	212789 Bureau Verit 33104-004578	as North Amei	Location rica Prep:		age Factory 5030B	
Matrix: Units:	Water uq/L		Sampled: Received		1/09 1/09	
Field ID: Type: Lab ID:	MW-6 SAMPLE 212789-003		Diln Fac Batch #: Analyzed	1520	48 6/09	-
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Resu ND ND ND ND ND ND ND	lt	RL 50 0.50 0.50 0.50 0.50 0.50	Analy: EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	sis
Surre Trifluorotoluer Bromofluorobenz Trifluorotoluer Bromofluorobenz	ne (FID) zene (FID) ne (PID)	%REC Lim: 125 63- 103 70- 106 50- 109 56-	146 EPA 8015B 140 EPA 8015B 140 EPA 8021B			
Field ID: Type: Lab ID:	MW-7 SAMPLE 212789-004		Diln Fac Batch #: Analyzed	1520		
Ana Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Resu ND ND ND ND ND ND ND	14	RL 50 0.50 0.50 0.50 0.50 0.50	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	sis
Surro Trifluorotoluer Bromofluoroben Trifluorotoluer Bromofluoroben	ne (FID) zene (FID) ne (PID)	%REC Lim 91 63- 91 70- 99 50- 95 56-	146 EPA 8015E 140 EPA 8015E 140 EPA 8021E	3		

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Nor 6 f

Page 2 of 6

	Curtis &	Tompkin	s Labor	atories a	Analytica	l Report		
Lab #: Client: Project#:	212789 Bureau Veri 33104-00457		America	Location: Prep:		isage Fact A 5030B	ory	
Matrix: Units:	Water ug/L			Sampled: Received:		/11/09 /11/09		
Field ID: Type: Lab ID:	MW-8 SAMPLE 212789-005			Diln Fac: Batch #: Analyzed:	15:	000 2000 /15/09		
Ana Gasoline C7-C Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	alyte 12		Result 2,000 Y 210 C 120 C		RL 50 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8 EPA 8	021B 021B 021B 021B	
Sur Trifluorotolu Bromofluorober Trifluorotolu Bromofluorober	nzene (FID) ene (PID)	%REC 118 113 107 108	Limits 63-146 70-140 50-140 56-132	Ana. EPA 8015B EPA 8015B EPA 8021B EPA 8021B	Lysis			
Field ID: Type:	MW-9 Sample			Lab ID: Batch#:		2789-006 2048		
Analy Gasoline C7-C Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result 43,000 12,000 77 1,500 1,500 160		RE: 38 500 25 5.0 5.0 5.0 5.0 5.0	Diln Fac 10.00 50.00 10.00 10.00 10.00 10.00	Analyzed 06/16/09 06/17/09 06/16/09 06/16/09 06/16/09 06/16/09	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Sur: Trifluorotolu Bromofluorobe Trifluorotolu Bromofluorobe	nzene (FID) ene (PID)	%REC 135 126 191 * 127	Limits 63-146 70-140 50-140 56-132	Diln Fac 10.00 10.00 10.00 10.00 10.00	Analyzed 06/16/09 06/16/09 06/16/09 06/16/09		3	

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 3 of 6

Curtis & Tompkins, Ltd.

	Curtis &	Fompkins La	aboratories	Analytical	Report	
Lab #: Client: Project#:	212789 Bureau Verit 33104-004578		Location rica Prep:	: Saus EPA	age Factory 5030B	
Matrix: Units:	Water ug/L		Sampled: Received		1/09 1/09	
Field ID: Type: Lab ID:	MW-10 SAMPLE 212789-007		Diln Fac Batch#: Analyzed	1520	48	
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Resu ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	SİS
Surro Trifluorotoluer Bromofluorobenz Trifluorotoluer Bromofluorobenz	he (FID) zene (FID) he (PID)	%REC Lim 107 63- 109 70- 100 50- 96 56-	146 EPA 8015B 140 EPA 8015B 140 EPA 8021B			
Field ID: Type: Lab ID:	MW-11 SAMPLE 212789-008		Diln Fac Batch#: Analyzed	1520		
Ana. Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Resu ND ND ND ND ND ND	1 t 1.0	RL 50 0.50 0.50 0.50 0.50 0.50	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	7818
Surre Trifluorotoluer Bromofluoroben: Trifluorotoluer Bromofluoroben:	zene (FID) ne (PID)	%REC Lim 87 63- 87 70- 86 50- 83 56-	146 EPA 8015B 140 EPA 8015B 140 EPA 8021B			

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 4 of 6

.

	Curtis & Tompkins Laboratories Analytical Report									
Lab #: Client: Project#:	212789 Bureau Verit 33104-004578	as North Ameri	Location: Loca Prep:	Sausa EPA 5	ge Factory 030B					
Matrix: Units:	Water uq/L		Sampled: Received:	06/11 06/11						
Field ID: Type: Lab ID:	MW-12 SAMPLE 212789-009		Diln Fac: Batch#: Analyzed:	1.000 15200 06/16	0					
Ana Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	Resul 75 1. ND ND ND ND ND	Y	RL 50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	sis				
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC Limit 80 63-14 85 70-14 73 50-14 71 56-13	46 EPA 8015B 40 EPA 8015B 40 EPA 8021B	VSis						
Field ID: Type: Lab ID:	MW-13 SAMPLE 212789-010		Diln Fac: Batch #: Analyzed:	1.000 15200 06/16	0					
Ana Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	23	. 4	RL 50 0.50 0.50 0.50 0.50 0.50	Analy EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	SIS				
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC Limi 128 63-1 165 70-1 132 50-1 141 56-1	46 EPA 8015B 40 EPA 8015B 40 EPA 8021B	ysis™						

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 6 of 6

Page 5 of 6

- -

	Curtis &	Tompkins Labo	ratories Ar	nalytical H	leport	
Lab #: Client: Project#:	212789 Bureau Veri 33104-00457	tas North America	Location: Prep:	Sausa EPA 50	ge Factory 030B	
Matrix: Units:	Water uq/L		Sampled: Received:	06/11 06/11		
Type: Lab ID: Diln Fac:	BLANK QC500037 1.000		Batch #: Analyzed:	15200 06/15		
Anal Gasoline C7-C12 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50	Analysis EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surre Trifluorotoluer Bromofluoroben: Trifluorotoluer Bromofluoroben:	zene (FID) ne (PID)	%REC Limits 87 63-146 88 70-140 96 50-140 94 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	818		
Type: Lab ID: Diln Fac:	BLANK QC500235 1.000		Batch #: Analyzed:	15204 06/16		
Ana Gasoline C7-C1 Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	lyte 2	Result ND ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50 0.50	Analysis EPA 8015B EPA 8021B	
Surr Trifluorotolue Bromofluoroben Trifluorotolue Bromofluoroben	zene (FID) ne (PID)	%REC Limits 94 63-146 93 70-140 88 50-140 85 56-132	Analy EPA 8015B EPA 8015B EPA 8021B EPA 8021B	7518		, he assistent to

*= Value outside of QC limits; see narrative C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 6 of 6

2.0

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152000
Units:	ug/L	Analyzed:	06/15/09
Diln Fac:	1.000		

Гуре:	BS	Lab ID:	QC500	0038	
	Analyte	Spiked	Result	%REC	Limits
Benzene		10.00	9.583	96	79-120
Toluene		10.00	9.177	92	76-122
Ethylbenzen	е	10.00	9.495	95	77-125
m,p-Xylenes		10.00	9.395	94	76-126
o-Xylene		10.00	9.018	90	77-126

Surrogate	*REC	Linits
Trifluorotoluene (PID)	99	50-140
Bromofluorobenzene (PID)	96	56-132

Type: BSD	Lak	DID: QC50	0039			
				Ψ		
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	20.00	18.34	92	79-120	4	20
Toluene	20.00	17.89	89	76-122	3	21
Ethylbenzene	20.00	18.51	93	77-125	3	21
m,p-Xylenes	20.00	18.58	93	76-126	1	23
o-Xylene	20.00	17.75	89	77-126	2	21
Surrogate	%REC Limits					
Trifluorotoluene (PID)	102 50-140					
Bromofluorobenzene (PID)	103 56-132					

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC500040	Batch#:	152000
Matrix:	Water	Analyzed:	06/15/09
Units:	ug/L	-	

Analyte	Spiked	Result	\$REC	C Limits	
Gasoline C7-C12	1,000	871.7	87	76-121	

Surrogate	*REC	Linits
Trifluorotoluene (FID)	119	63-146
Bromofluorobenzene (FID)	113	70-140

. .

. .

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Field ID:	MW-7	Batch#:	152000
MSS Lab ID:	212789-004	Sampled:	06/11/09
Matrix:	Water	Received:	06/11/09
Units:	ug/L	Analyzed:	06/15/09
Diln Fac:	1.000		

Type:	MS			Lab ID:	ç	2C500045		
	Analyte	MSS Re	sult	Spike	d	Result	\$REC	Limits
Gasoline	c7-C12	2	6.74	2,000)	1,588	78	66-120
	Surrogate	*REC	Limits					
Trifluor	otoluene (FID)	111	63-146					
Bromoflu	orobenzene (FID)	124	70-140					
_								
Туре:	MSD			Lab ID:	(2C500046		
	Analyte		Spiked		Result	*REC	Limits	RPD Lim
Gasoline	e C7-C12		2,000		1,585	78	66-120	0 20
	Surrogate	*REC	Limits					
THE REAL PROPERTY AND ADDRESS OF THE PARTY				The second s				
Trifluor	otoluene (FID)	110	63-146					

	Curtis & Tompkins Labor	atories Anal	lytical Report
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	152048
Units:	ug/L	Analyzed:	06/16/09
Diln Fac:	1.000		

Type: BS	Lab ID:	QC500	0236	
Analyte	Spiked	Result	\$REC	Limits
Benzene	10.00	9.689	97	79-120
Toluene	10.00	10.24	102	76-122
Ethylbenzene	10.00	10.35	104	77-125
m,p-Xylenes	10.00	10.77	108	76-126
o-Xylene	10.00	10.64	106	77-126

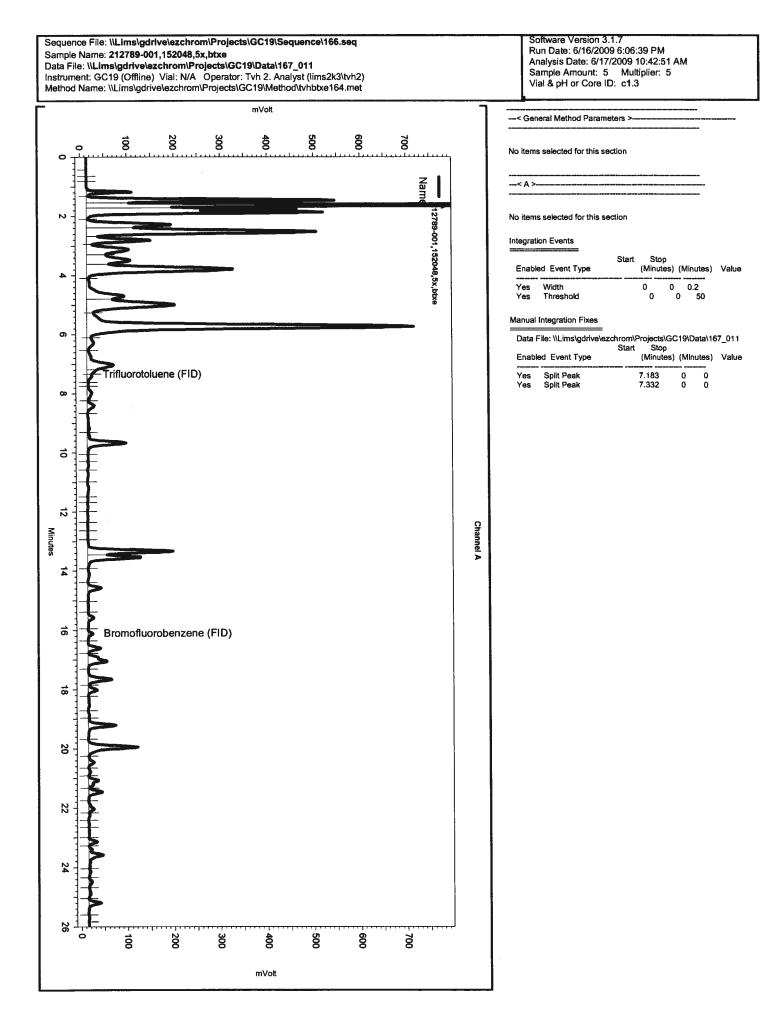
Surrogate	\$REC	Limits
Trifluorotoluene (PID)	101	50-140
Bromofluorobenzene (PID)	105	56-132

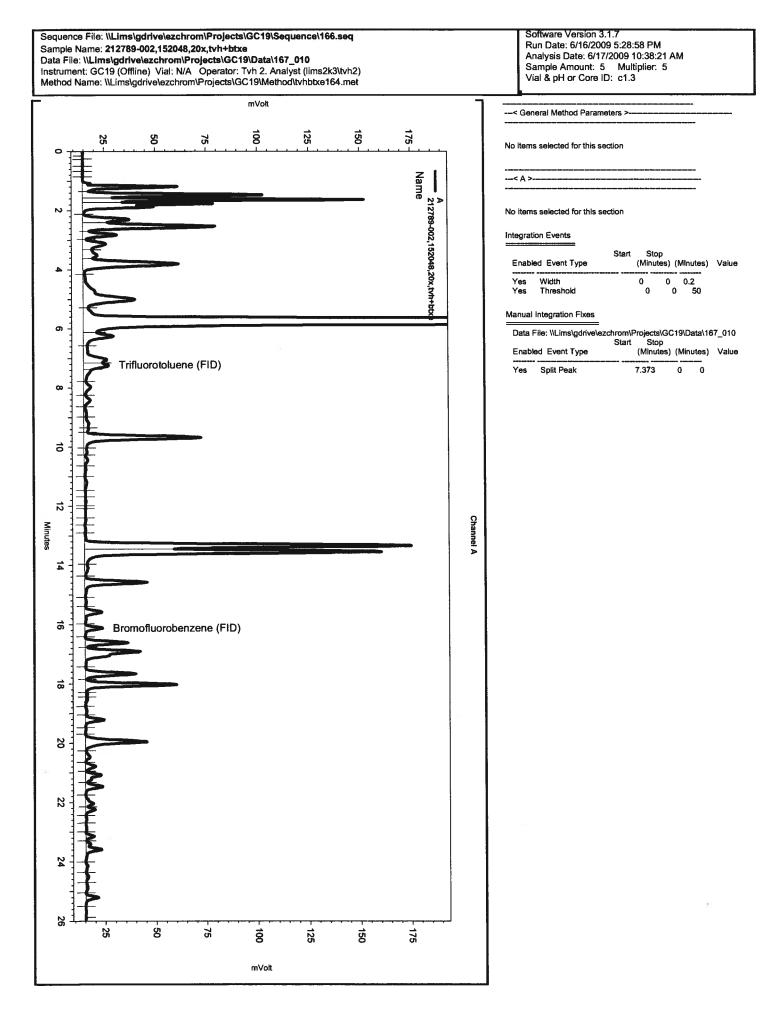
Туре:	BSD		<u>fu</u>	Lab ID:	QC500	0237			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Benzene		<u> </u>	10.00		9.710	97	79-120	0	20
Toluene			10.00		10.16	102	76-122	1	21
Ethylbenz	ene		10.00		10.10	101	77-125	2	21
m,p-Xylen	es		10.00		10.20	102	76-126	5	23
o-Xylene		10.00			10.17	102	77-126	5	21
	Surrogate	*REC	Limits						
Trifluoro	toluene (PID)	99	50-140						
Bromofluorobenzene (PID)		103	56-132						

6.0

	Curtis & Tompkins Labor	atories Anal	ytical Report
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC500238	Batch#:	152048
Matrix:	Water	Analyzed:	06/16/09
Units:	ug/L	-	

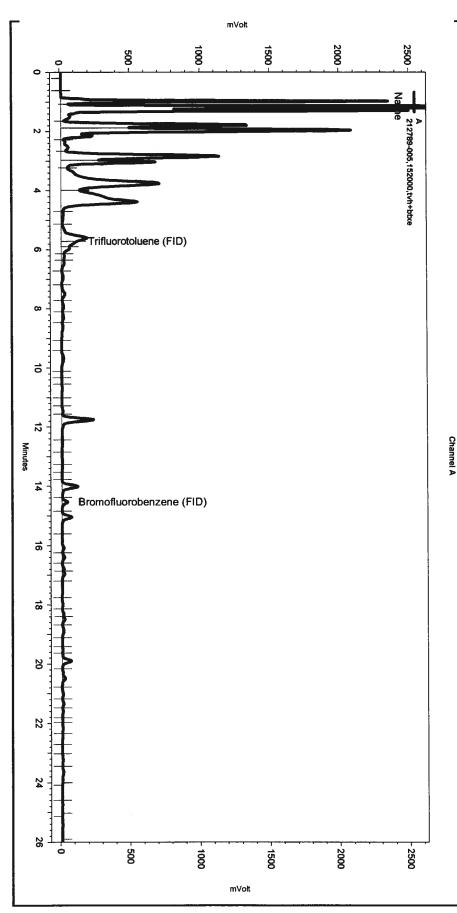
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	953.1	95	76-121


Surrogate	\$REC	Limits	
Trifluorotoluene (FID)	126	63-146	
Bromofluorobenzene (FID)	132	70-140	2

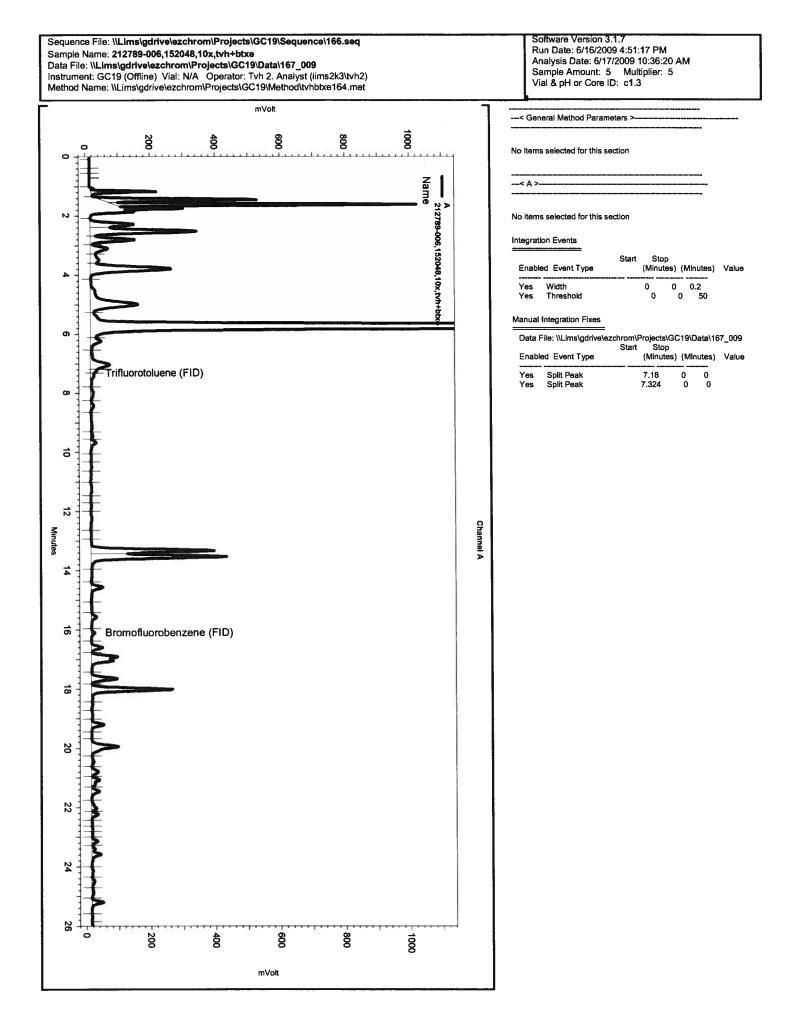


Curtis & Tompkins Laboratories Analytical Report								
Lab #:	212789	Location:	Sausage Factory					
Client:	Bureau Veritas North America	Prep:	EPA 5030B					
Project#:	33104-004578.00	Analysis:	EPA 8015B					
Field ID:	ZZZZZZZZZ	Batch#:	152048					
MSS Lab ID:	212764-001	Sampled:	06/11/09					
Matrix:	Water	Received:	06/11/09					
Units:	ug/L	Analyzed:	06/16/09					
Diln Fac:	1.000							

Туре:	MS			Lab ID:		QC500239		
	Analyte	MSS Re	esult	Spike	d	Result	%REC	Limits
Gasoline	C7-C12		33.54	2,000)	1,846	91	66-120
於地路這些時間	Surrogate	\$REC	Limits					
Trifluoro	otoluene (FID)	130	63-146					
Bromofluc	probenzene (FID)	162 *	70-140					
Туре:	MSD			Lab ID:		QC500240		
	Analyte		Spiked		Result	\$REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		1,909	94	66-120	3 20
	Surrogate	*REC	Limits					
Trifluoro	otoluene (FID)	127	63-146					
Bromofluc	probenzene (FID)	137	70-140					


*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

- -


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\166.seq Sample Name: 212789-005,152000,tvh+btxe Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_021 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Software Version 3.1.7 Run Date: 6/15/2009 11:07:36 PM Analysis Date: 6/16/2009 10:44:40 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

Page 2 of 4 (2) Curtis & Tompkins Ltd.

--- < General Method Parameters > No items selected for this section ----< A >-No items selected for this section Integration Events Stop (Minutes) (Minutes) Vaiue Start Enabled Event Type Width 0.2 50 0 0 Yes Threshold 0 0 Yes Manual Integration Fixes Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_021 Stop (Minutes) (Minutes) Value Start Enabled Event Type 0 Spiit Peak Split Peak Yes Yes 5.71 0 5.903

. .

Software Version 3.1.7 Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\166.seq Run Date: 6/16/2009 1:00:25 AM Sample Name: 212789-009,152000,tvh+btxe Analysis Date: 6/16/2009 10:55:12 AM Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_024 Sample Amount: 5 Multiplier: 5 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Vial & pH or Core ID: b1.3 mVolt --- General Method Parameters >-20 5 ຶ 70 ဗ 8 No items selected for this section 0 z ---< A >-me A 212789-009,152000,tvh+btxe No items selected for this section Integration Events Stop Start Enabled Event Type (Minutes) (Minutes) Value 4 0 0.2 Yes Width 0 0 50 Yes Threshold Manual Integration Fixes Tilluorololuene 1210 σ Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_024 Start Stop Enabled Event Type (Minutes) (Minutes) Value

Bromofluorobenzene (FID)

None

Channel A

Page 2 of 4 (2) Curtis & Tompkins Ltd.

8

mVolt

ខ

g

2

ë

œ

5

12

4

6

18

20

22

24

26

ģ

Minutes

- · ·

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\166.seq Sample Name: 212789-010,152000,tvh+btxe Data File: **ILLinstygdrivelezchrom\Projects\GC04\Data\166_025** Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: **ILLims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met** Software Version 3.1.7 Run Date: 6/16/2009 1:38:01 AM Analysis Date: 6/16/2009 11:00:57 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

---< General Method Parameters >

No items selected for this section

No items selected for this section

Stop (Minutes) (Minutes) Value

0.2 50

0

0 0

Start

Data File: \\Lims\gdrlve\ezchrom\Projects\GC04\Data\166_025 Start Stop Enabled Event Type (Minutes) (Minutes) Value

0

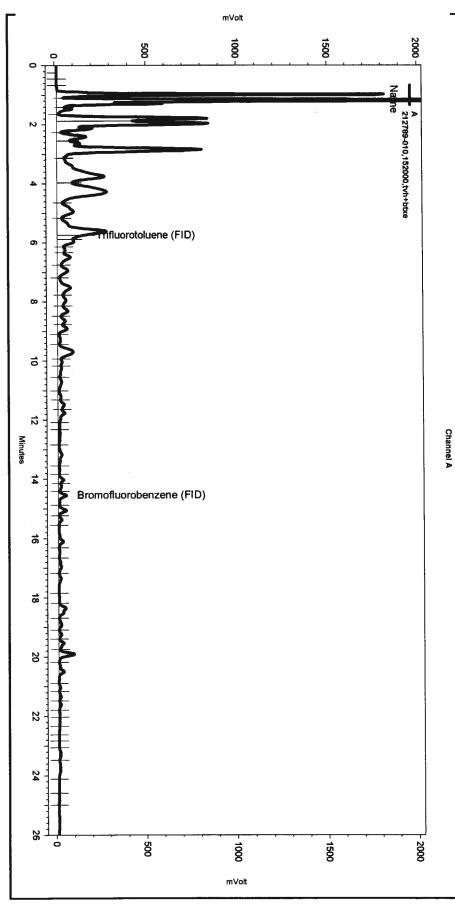
0

5.74

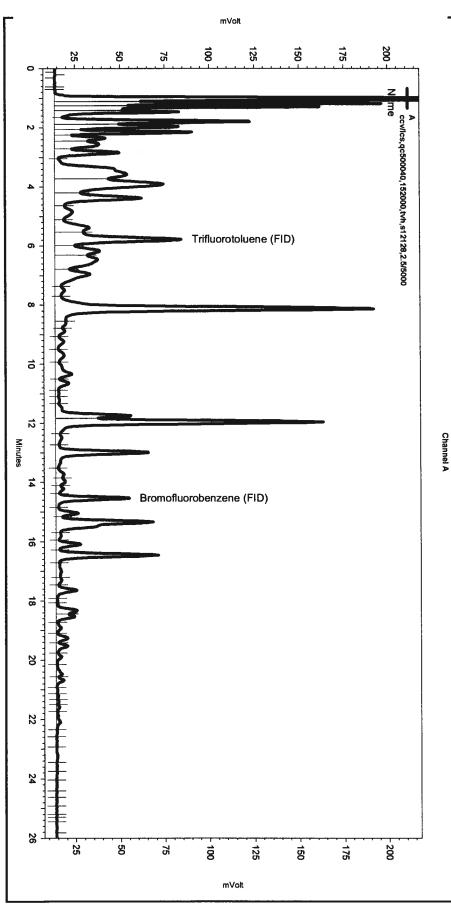
----< A >-

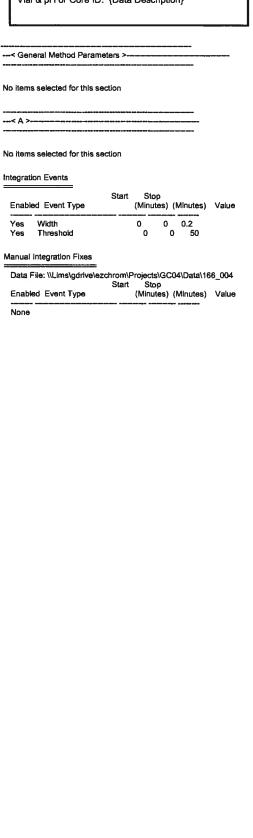
Yes

Yes


Integration Events

Enabled Event Type


Width


Yes Split Peak

Threshold Manual Integration Fixes

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\166.seq Sample Name: ccv/ics,qc500040,152000,tvh,s12128,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\166_004 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe162.met Software Version 3.1.7 Run Date: 6/15/2009 11:51:18 AM Analysis Date: 6/16/2009 7:21:19 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

Purgeable Halocarbons by GC/MS					
Lab #:	212789	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	MW-1	Batch#:	152172		
Lab ID:	212789-001	Sampled:	06/11/09		
Matrix:	Water	Received:	06/11/09		
Units:	ug/L	Analyzed:	06/20/09		
Diln Fac:	8.333	-			

Analyte	Result	RL	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND	8.3	-
Vinyl Chloride	ND	4.2	
Bromomethane	ND	8.3	
Chloroethane	ND	8.3	
Trichlorofluoromethane	ND	8.3	
Freon 113	ND	17	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	170	
trans-1,2-Dichloroethene	ND	4.2	
1,1-Dichloroethane	ND	4.2	
cis-1,2-Dichloroethene	ND	4.2	
Chloroform	ND	8.3	
1,1,1-Trichloroethane	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
cis-1,3-Dichloropropene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
Tetrachloroethene	ND	4.2	
Dibromochloromethane	ND	4.2	
Chlorobenzene	ND	4.2	
Bromoform	ND	4.2	
1,1,2,2-Tetrachloroethane	ND	4.2	
1,3-Dichlorobenzene	ND	4.2	
1,4-Dichlorobenzene	ND	4.2	
1,2-Dichlorobenzene	ND	4.2	а С

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	125	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-125

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-2	Batch#:	152127	
Lab ID:	212789-002	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/18/09	
Diln Fac:	62.50	-		

Analyte	Result	RL	
Chloromethane	ND	63	
Vinyl Chloride	ND	31	
Bromomethane	ND	63	
Chloroethane	ND	63	
Trichlorofluoromethane	ND	63	
Freon 113	ND	130	
1,1-Dichloroethene	ND	31	
Methylene Chloride	ND	1,300	
trans-1,2-Dichloroethene	ND	31	
1,1-Dichloroethane	ND	31	
cis-1,2-Dichloroethene	ND	31	
Chloroform	ND	63	<i>ा</i>
1,1,1-Trichloroethane	ND	31	
Carbon Tetrachloride	ND	31	
1,2-Dichloroethane	ND	31	
Trichloroethene	ND	31	
1,2-Dichloropropane	ND	31	
Bromodichloromethane	ND	31	
cis-1,3-Dichloropropene	ND	31	
trans-1,3-Dichloropropene	ND	31	
1,1,2-Trichloroethane	ND	31	
Tetrachloroethene	ND	31	
Dibromochloromethane	ND	31	
Chlorobenzene	ND	31	
Bromoform	ND	31	
1,1,2,2-Tetrachloroethane	ND	31	
1,3-Dichlorobenzene	ND	31	
1,4-Dichlorobenzene	ND	31	
1,2-Dichlorobenzene	ND	31	

Surrogate	%REC	Linits
1,2-Dichloroethane-d4	119	77–137
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-125

11.0

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-6	Batch#:	152082	
Lab ID:	212789-003	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/17/09	
Diln Fac:	1.000	-		

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	97	77-137
Toluene-d8	100	80-120
Bromofluorobenzene	105	80-125

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-7	Batch#:	152082	
Lab ID:	212789-004	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/17/09	
Diln Fac:	1.000	-		

Analyte	Result	RL
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	20
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	1.0
1,1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Linits
1,2-Dichloroethane-d4	97	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	108	80-125

• •

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-8	Batch#:	152128	
Lab ID:	212789-005	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/19/09	
Diln Fac:	14.29			

Analyte	Result	RL	学们于自由和资源 和社会会
Chloromethane	ND	14	
Vinyl Chloride	100	7.1	
Bromomethane	ND	14	
Chloroethane	ND	14	
Trichlorofluoromethane	ND	14	
Freon 113	ND	29	
1,1-Dichloroethene	ND	7.1	
Methylene Chloride	ND	290	
trans-1,2-Dichloroethene	36	7.1	
1,1-Dichloroethane	ND	7.1	
cis-1,2-Dichloroethene	920	7.1	
Chloroform	ND	14	
1,1,1-Trichloroethane	ND	7.1	
Carbon Tetrachloride	ND	7.1	
1,2-Dichloroethane	ND	7.1	
Trichloroethene	ND	7.1	
1,2-Dichloropropane	ND	7.1	
Bromodichloromethane	ND	7.1	
cis-1,3-Dichloropropene	ND	7.1	
trans-1,3-Dichloropropene	ND	7.1	
1,1,2-Trichloroethane	ND	7.1	
Tetrachloroethene	ND	7.1	
Dibromochloromethane	ND	7.1	
Chlorobenzene	ND	7.1	
Bromoform	ND	7.1	
1,1,2,2-Tetrachloroethane	ND	7.1	
1,3-Dichlorobenzene	ND	7.1	
1,4-Dichlorobenzene	ND	7.1	
1,2-Dichlorobenzene	ND	7.1	

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	90	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	104	80-125

Purgeable Halocarbons by GC/MS					
Lab #:	212789	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	MW-9	Batch#:	152128		
Lab ID:	212789-006	Sampled:	06/11/09		
Matrix:	Water	Received:	06/11/09		
Units:	ug/L	Analyzed:	06/19/09		
Diln Fac:	71.43	-			

Analyte	Result	RL	
Chloromethane	ND	71	
Vinyl Chloride	ND	36	
Bromomethane	ND	71	
Chloroethane	ND	71	
Trichlorofluoromethane	ND	71	
Freon 113	ND	140	
1,1-Dichloroethene	ND	36	
Methylene Chloride	ND	1,400	
trans-1,2-Dichloroethene	ND	36	
1,1-Dichloroethane	ND	36	
cis-1,2-Dichloroethene	ND	36	
Chloroform	ND	71	
1,1,1-Trichloroethane	ND	36	
Carbon Tetrachloride	ND	36	
1,2-Dichloroethane	ND	36	
Trichloroethene	ND	36	
1,2-Dichloropropane	ND	36	
Bromodichloromethane	ND	36	
cis-1,3-Dichloropropene	ND	36	
trans-1,3-Dichloropropene	ND	36	
1,1,2-Trichloroethane	ND	36	
Tetrachloroethene	ND	36	
Dibromochloromethane	ND	36	
Chlorobenzene	ND	36	
Bromoform	ND	36	
1,1,2,2-Tetrachloroethane	ND	36	
1,3-Dichlorobenzene	ND	36	
1,4-Dichlorobenzene	ND	36	
1,2-Dichlorobenzene	ND	36	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	78	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	107	80-125

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-10	Batch#:	152082	
Lab ID:	212789-007	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/17/09	
Diln Fac:	1.000	-		

Analyte	Result	RL
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	20
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	1.0
1,1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	96	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	105	80-125

16.0

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-11	Batch#:	152082	
Lab ID:	212789-008	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/17/09	
Diln Fac:	1.000	_	<	

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	1
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	98	77–137
Toluene-d8	100	80-120
Bromofluorobenzene	110	80-125

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Field ID:	MW-12	Batch#:	152082	
Lab ID:	212789-009	Sampled:	06/11/09	
Matrix:	Water	Received:	06/11/09	
Units:	ug/L	Analyzed:	06/18/09	
Diln Fac:	2.000			

Analyte	Result	RL
Chloromethane	ND	2.0
Vinyl Chloride	ND	1.0
Bromomethane	ND	2.0
Chloroethane	ND	2.0
Trichlorofluoromethane	ND	2.0
Freon 113	ND	4.0
1,1-Dichloroethene	ND	1.0
Methylene Chloride	ND	40
trans-1,2-Dichloroethene	42	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	42	1.0
Chloroform	ND	2.0
1,1,1-Trichloroethane	ND	1.0
Carbon Tetrachloride	ND	1.0
1,2-Dichloroethane	ND	1.0
Trichloroethene	98	1.0
1,2-Dichloropropane	ND	1.0
Bromodichloromethane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Dibromochloromethane	ND	1.0
Chlorobenzene	ND	1.0
Bromoform	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	98	77-137	
Toluene-d8	98	80-120	
Bromofluorobenzene	110	80-125	

18.0

Purgeable Halocarbons by GC/MS					
Lab #:	212789	Location:	Sausage Factory		
Client:	Bureau Veritas North America	Prep:	EPA 5030B		
Project#:	33104-004578.00	Analysis:	EPA 8260B		
Field ID:	MW-13	Batch#:	152128		
Lab ID:	212789-010	Sampled:	06/11/09		
Matrix:	Water	Received:	06/11/09		
Units:	ug/L	Analyzed:	06/18/09		
Diln Fac:	1.000	-			

Analyte	Result	RL	傳輸
Chloromethane	ND	1.0	
Vinyl Chloride	4.7	0.5	
Bromomethane	ND	1.0	1
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	69	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	48	0.5	
Chloroform	ND	1.0	- 1
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	17	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	88	77-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	111	80-125	

- - -

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC500376	Batch#:	152082	
Matrix:	Water	Analyzed:	06/17/09	
Units:	ug/L			

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	1
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	95	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	107	80-125

Purgeable Halocarbons by GC/MS				
Lab #:	212789	Location:	Sausage Factory	
Client:	Bureau Veritas North America	Prep:	EPA 5030B	
Project#:	33104-004578.00	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC500377	Batch#:	152082	
Matrix:	Water	Analyzed:	06/17/09	
Units:	ug/L			

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	1
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropanę	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	*REC	Limits	用的影响的影响
1,2-Dichloroethane-d4	96	77–137	
Toluene-d8	99	80-120	
Bromofluorobenzene	109	80-125	

	212789			Togotior:					
Lab #:		dhaa Maad	h Durandara	Location:		age Facto	ory		
Client:	Bureau Ver 33104-0045		n America	Prep:		5030B 8260B			
Project#:		78.00		Analysis: Batch#:	1520				
Matrix: Units:									
Diln Fac:	ug/L 1.000			Analyzed:	06/1	1709			
		<u>,</u>							
Гуре:	BS			Lab ID:	QC50	0378			
	analyte		Spiked		Result	\$REC	Limits	and a star	
1,1-Dichloro	bethene		22.50		25.57	114	74-132		
Trichloroeth	nene		22.50		21.62	96	80-120		
Chlorobenzer	ne		22.50		23.38	104	80-120		
Sı	irrogate	*REC	Limits						
1,2-Dichlor	pethane-d4	94	77-137						
Toluene-d8		99	80-120						
Bromofluoro	oenzene	106	80-125			- · ·			
ſype:	BSD			Lab ID:	QC50	0379			
	Analyte		Spiked		Result	\$REC	Limits	RPD	Lim
1,1-Dichlor	pethene		22.50		25.11	112	74-132	2	20
Trichloroet	nene		22.50		21.13	94	80-120	2	20
Chlorobenzer	ne		22.50		23.75	106	80-120	2	20

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	91	77-137	
Toluene-d8	100	80-120	8.
Bromofluorobenzene	106	80-125	

- -

- -

Purgeable Halocarbons by GC/MS							
Lab #:	212789	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC500562	Batch#:	152127				
Matrix:	Water	Analyzed:	06/18/09				
Units:	ug/L						

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	50
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	119	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

23.0

	Purgeable Halo	carbons by G	SC/MS
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500563	Batch#:	152127
Matrix:	Water	Analyzed:	06/18/09
Units:	ug/L		

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	109	77-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	80-125	

ND= Not Detected RL= Reporting Limit Page 1 of 1

.

-

	Purgeable Halo	carbons by G	GC/MS
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	152127
Units:	ug/L	Analyzed:	06/18/09
Diln Fac:	1.000		

Туре:	BS		1	Lab ID:	QC50	0564	
	Analyte		Spiked		Result	*REC	Limits
1,1-Dichlo	oroethene		23.75		23.24	98	74-132
Trichloroe	ethene		23.75		25.05	105	80-120
Chloroben:	zene		23.75		23.22	98	80-120
	Surrogate	*REC	Limits	海洋的经济和通			
1,2-Dichlo	oroethane-d4	118	77-137				<u> </u>
Toluene-d	8	100	80-120				
Bromofluo	robenzene	99	80-125				

Туре:	BSD		Lab	ID:	QC50	0565			
A	nalyte		Spiked	Rea	sult	\$REC	Limits	RPD	Lim
1,1-Dichloro	ethene		23.75		23.92	101	74-132	3	20
Trichloroethe	ene		23.75		25.76	108	80-120	3	20
Chlorobenzen	e		23.75		23.40	99	80-120	1	20
Su	rrogate	*REC	Limits						
1,2-Dichloro	ethane-d4	119	77-137						
Toluene-d8		100	80-120						
Bromofluorob	enzene	99	80-125						

.

- -

Purgeable Halocarbons by GC/MS							
Lab #:	212789	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZŻŻ	Batch #:	152127				
MSS Lab ID:	212772-004	Sampled:	06/10/09				
Matrix:	Water	Received:	06/11/09				
Units:	ug/L	Analyzed:	06/18/09				
Diln Fac:	1.000	_					

Type:	
-------	--

MS

Lab ID: QC500566

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.1040	25.00	24.84	99	77-134
Trichloroethene	0.9949	25.00	28.66	111	75-130
Chlorobenzene	<0.1291	25.00	25.17	101	80-120

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	115	77-137
Toluene-d8	101	80-120
Bromofluorobenzene	103	80-125

Гуре:	MSD		Lal	b ID:	QC50	0567			
Analy	yte		Spiked		Result	\$REC	Limits	RPD	Lim
1,1-Dichloroeth	ene		25.00		24.86	99	77-134	0	20
Trichloroethene			25.00		27.70	107	75-130	3	20
Chlorobenzene			25.00		24.95	100	80-120	1	20
Surro	gate	%REC	Limits			這個人的自己的		id out ja	101年1月11
1,2-Dichloroetha	ane-d4	115	77-137						
Toluene-d8		101	80-120						
Bromofluorobenz	ene	102	80-125						

	Purgeable Halo	carbons by G	SC/MS
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500568	Batch#:	152128
Matrix:	Water	Analyzed:	06/18/09
Units:	ug/L		

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	97	77–137
Toluene-d8	101	80-120
Bromofluorobenzene	106	80-125

ND= Not Detected RL= Reporting Limit Page 1 of 1

- -

. .

	Purgeable Halo	carbons by G	GC/MS
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC500569	Batch#:	152128
Matrix:	Water	Analyzed:	06/18/09
Units:	ug/L		

Analyte	Result	RL	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	20	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	1.0	
1,1,1-Trichloroethane	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
Chlorobenzene	ND	0.5	
Bromoform	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	93	77–137
Toluene-d8	99	80-120
Bromofluorobenzene	107	80-125

Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	152128
Units:	ug/L	Analyzed:	06/18/09
Diln Fac:	1.000		

Type: BS	Lab ID:	QC50	0570			
Analyte	Spiked	Result	*REC	Limits		
1,1-Dichloroethene	23.75	26.70	112	74-132		
Trichloroethene	23.75	22.42	94	80-120		
Chlorobenzene	23.75	25.04	105	80-120		

Surrogate	*REC	Limits	
1,2-Dichloroethane-d4	93	77-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	105	80-125	

Туре:	BSD	Lab ID: QC500571							
	Analyte		Spiked		Result	*REC	Limits	RPD	Lim
1,1-Dichlo	proethene		23.75		28.44	120	74-132	6	20
Trichloroe	ethene		23.75		24.26	102	80-120	8	20
Chlorobenzene			23.75		26.44	111	80-120	5	20
	Surrogate	*REC	Limits					in the set	
1,2-Dichlo	proethane-d4	94	77-137						
Toluene-d8	}	100	80-120						
Bromofluor	cobenzene	108	80-125						

Purgeable Halocarbons by GC/MS							
Lab #:	212789	Location:	Sausage Factory				
Client:	Bureau Veritas North America	Prep:	EPA 5030B				
Project#:	33104-004578.00	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC500740	Batch#:	152172				
Matrix:	Water	Analyzed:	06/19/09				
Units:	ug/L						

Analyte	Result	RL
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	20
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	1.0
1,1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	123	77-137
Toluene-d8	98	80-120
Bromofluorobenzene	101	80-125

	Purgeable Halo	carbons by G	SC/MS
Lab #:	212789	Location:	Sausage Factory
Client:	Bureau Veritas North America	Prep:	EPA 5030B
Project#:	33104-004578.00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	152172
Units:	ug/L	Analyzed:	06/19/09
Diln Fac:	1.000		

Туре:	BS			Lab ID:	QC500)741			
	Analyte		Spiked		Result	*REC	Limits	都後。對	
1,1-Dichl	loroethene		25.00		24.09	96	74-132		
Trichloro	pethene		25.00		27.33	109	80-120		
Chlorober	nzene		25.00		24.74	99	80-120		
	Surrogate	*REC	Limits					网络家外	
1,2-Dichl	loroethane-d4	124	77-137	(a			2		
Toluene-c	d8	102	80-120						
Bromofluc	orobenzene	100	80-125						
				.*	5*				
Type:	BSD			Lab ID:	QC500	0742			
	Analyte		Spiked		Result	*REC	Limits	RPD	Lim
1,1-Dichl	loroethene		25.00		23.97	96	74-132	1	20
Trichloro	oethene		25.00		26.78	107	80-120	2	20
Chlorober	nzene		25.00		24.27	97	80-120	2	20
	Surrogate	*REC	Limits	ARE CHER			建筑工具。在		
1,2-Dich	loroethane-d4	122	77-137						
Toluene-c	d8	101	80-120						

98

80-125

Bromofluorobenzene

31.0

. . . .