

Soil and Ground Water Quality Evaluation

1/2/97

Former Shell Station 726 Harrison Street Oakland, California

This report has been prepared for:

Mr. Kin Chan

726 Harrison Street, Oakland, California 94607 July 31, 1997

Brock A. Foster Environmental Engineer

Peter M. Langtry, R.G., C.HG. Associate Environmental Geologist

Mountain View

Pleasanton

Oakland

Table of Contents

Lette	er of T	ransmittal
Title	Page	
Tabl	e of C	ontents
1.0	INTE	ODUCTION
	1.1	Purpose
	1.2	Scope of Work
2.0	REVI	EW OF ACEHSA FILES FOR NEIGHBORING FUEL LEAK INCIDENTS
3.0	SOIL	AND GROUND WATER QUALITY EVALUATION
	2.1	Subsurface Investigation
	2.2	Soil Quality
		2.2.1 Laboratory Analyses
		Table 1. Analytical Results of Selected Soil Samples
	2.3	Ground Water Quality
		2.3.1 Laboratory Analyses 4
		Table 2. Analytical Results of Selected Ground Water Samples5
4.0	CON	CLUSIONS AND RECOMMENDATIONS5
5.0	LIMI	FATIONS6
6.0	REFE	RENCES 7
FIGU	TRE 1	VICINITY MAP
FIGU	RE 2	SITE PLAN
APPE	ENDIX	A INFORMATION OBTAINED FROM THE ACEHSA
APPF	ENDIX	B SUBSURFACE INVESTIGATION, SOIL SAMPLING AND MONITORING WELL INSTALLATION PROTOCOL
APPE	ENDIX	C MONITORING WELL SURVEYING, DEVELOPMENT, AND GROUND WATER

APPENDIX D ANALYTICAL RESULTS

SOIL AND GROUND WATER QUALITY EVALUATION FORMER SHELL STATION 726 HARRISON STREET OAKLAND, CALIFORNIA

1.0 INTRODUCTION

In this report, we present the results of the soil and ground water quality evaluation at 726 Harrison Street in Oakland, California (Figure 1). This work was performed for Mr. Kin Chan, who is the current owner of the property. We understand that the site was formerly occupied by a Shell service station.

1.1 Purpose

The scope of work performed was outlined in our agreement dated May 22, 1997 and included:

1.2 Scope of Work

- ▼ Review of readily available information on-file at the Alameda County Environmental Health Services Agency (ACEHSA) for two neighboring fuel leak incidents.
- ▼ Drilling and logging of one exploratory boring.
- ▼ Conversion of the boring into a ground water monitoring well.
- ▼ Collection of selected soil and ground water samples for laboratory analysis.

2.0 REVIEW OF ACEHSA FILES FOR NEIGHBORING FUEL LEAK INCIDENTS

Information on-file at the ACEHSA for 706 Harrison Street (immediately down-gradient and adjacent to the project site [726 Harrison Street]) and 800 Harrison Street (across 8th Street and up-gradient of the project site [726 Harrison Street]) was reviewed to obtain information on ground water flow direction and ground water quality. The 800 Harrison Street parcel is currently occupied by a Unocal gasoline station and is located approximately 50 feet northeast, directly across 8th Street, from the site. The 706 Harrison Street parcel, which is adjacent to the southwest property boundary, is currently a vacant lot that was formerly an Arco service station. Selected information obtained from the ACEHSA is presented in Appendix A and summarized below.

As part of the ground water quality investigation for 800 Harrison Street, seven ground water monitoring wells were installed. The ground water flow direction beneath 800 Harrison Street was measured to the southwest (Figure 2). Two ground water monitoring wells (MW-7 and MW-8) were installed on the south side of 8th Street, approximately 5 feet from the northeast boundary of 726 Harrison Street. Laboratory analytical results of ground water samples collected from wells MW-7 and MW-8 from July 1996 are shown on Figure 2. Based on the analytical results, ground water sampled from these wells was impacted with low levels (up to 72 parts per billion [ppb]) of gasoline range total petroleum hydrocarbons (TPHg) ar

Four ground water monitoring wells were installed at the 706 Harrison Street parcel, including one well (MW-4) installed approximately 5 feet from the southwest boundary of 726 Harrison Street and approximately 30 feet down-gradient of the former onsite underground storage tanks (USTs) (Figure 2). The ground water flow direction has been measured to the southwest. In July 1996, 3,300 ppb TPHg and 520 ppb benzene were detected in well MW-4. The highest concentrations detected were in ground water samples collected from a well (MW-2) located down-gradient of the former UST excavation, including 90,000 ppb TPHg and 7,300 ppb benzene (Cambria Environmental 1996).

offine

3.0 SOIL AND GROUND WATER QUALITY EVALUATION

On July 3, 1997, environmental engineer Brock Foster directed a subsurface exploration program and logged one boring to an approximate depth of 28 feet. The boring was drilled within approximately 10 feet downgradient (southwest) of the former on-site UST excavation, based on the ground water flow direction obtained for 706 and 800 Harrison Street. Soil samples were obtained from the borings at 5-foot depth intervals. Ground water was encountered at an approximate depth of 20 feet. Soil sampling protocol, boring logs, and permits are presented in Appendix B.

3.1 Subsurface Investigation

The exploratory boring was converted to a permanent ground water monitoring well. Well installation protocol is discussed in Appendix B.

Soil samples collected a depth of approximately 14 feet and 19 feet were selected for submittal to a state-

3.2 Soil Quality

certified analytical laboratory. The sample collected from a depth of approximately 14 feet was selected for analysis based on the presence of petroleum odors. The sample collected from a depth of approximately 19 feet was selected for analysis to evaluate soil quality near the soil and ground water interface.

Two soil samples were analyzed for TPHg and benzene, toluene, ethylbenzene, xylene (BTEX) compounds, and MTBE (EPA Test Method 8015/8020). Analytical results are presented in Table 1 and on Figure 2. Copies of the analytical reports and chain of custody documentation are presented in Appendix D.

3.2.1 Laboratory Analyses and Results

TABLE 1. Analytical Results of Selected Soil Samples (concentrations in parts per million)

Boring Number	Depth (feet)	MTBE	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes
MW-1	14 - 14 1/2	<0.05	<1.0	0 ∙011	<0.005	<0.005	<0.005
MW-1	19 - 19 1/2	<0.05	650	1.2	<0.05	2.2	2.8

< Indicates that the compound was not detected at or above the stated laboratory reporting limit NE Not Established

1300 leys goober.

To evaluate ground water quality at the site, ground water samples were collected from monitoring well Copies of the well sampling logs and a discussion of sampling protocol are included in Appendix C.

The ground water samples were analyzed for TPHg, BTEX, and MTBE (EPA Test Method 8015/8020). Analytical results are shown in Table 2 and on Figure 2. Copies of the laboratory reports are attached in Appendix D.

3.3 Ground Water Quality

3.3.1 Laboratory Analyses and Results

TABLE 2. Analytical Results of Selected Ground Water Samples (concentrations in parts per billion)

Well Number	Date	мтве	ТРНд	Benzene	Toluene	Ethyl- benzene	Xylenes
MW-1	7/3/97	7,400	28 ,000	2.700	350	450	900
MCL		NE	NE	1.0	1,000	680	1,750

Indicates that the compound was not detected at or above the stated laboratory reporting limit

4.0 CONCLUSIONS AND RECOMMENDATIONS

The ground water flow direction beneath the site is anticipated to be toward the southwest, based on information obtained for 706 and 800 Harrison Street. This corresponds with the regional ground water flow direction toward the Oakland Inner Harbor.

Laboratory analysis of soil samples collected from the exploratory boring detected gasoline-range petroleum hydrocarbons, with the highest levels detected in soil collected near the soil and ground water interface.

Laboratory analysis of ground water samples collected from the on-site monitoring well (MW-1) detected TPHg (18,000 ppb), including MTBE (7,400 ppb) benzene and (2,700 ppb). The petroleum fuels detected in the on-site monitoring well ground water appear to be from the former on-site USTs. Quarterly monitoring by others of two off-site monitoring wells installed within approximately 5 feet of the up-gradient site boundary (MW-7 and MW-8) has generally detected levels of TPHg and benzene significantly below the concentrations detected in the on-site monitoring well. However,

MCL Drinking water Maximum Contaminant Levels - EPA Region 9, August 1991.

NE Not Established

13,000 ppb MTBE (October 1995) and 3,400 ppb MTBE (July 1996) have been detected in the up-gradient monitoring well MW-7 (Figure 2).

Ground water beneath the adjacent down-gradient parcel (706 Harrison Street), which was also formerly occupied by a gasoline station, has also been impacted by a petroleum fuel release. Gasoline impacted ground water originating from the project site (726 Harrison Street) appears to be migrating beneath 706 Harrison Street, based on analytical results from on-site well MW-1 and monitoring well MW-4 on the neighboring parcel. The down-gradient extent of the impacted ground water originating from both the 706 and 726 Harrison Street parcels has been characterized as evidenced by the non-detect levels of petroleum fuels reported for the two wells installed in 7th Street (MW-5 and MW-6) (Cambria Environmental 1996).

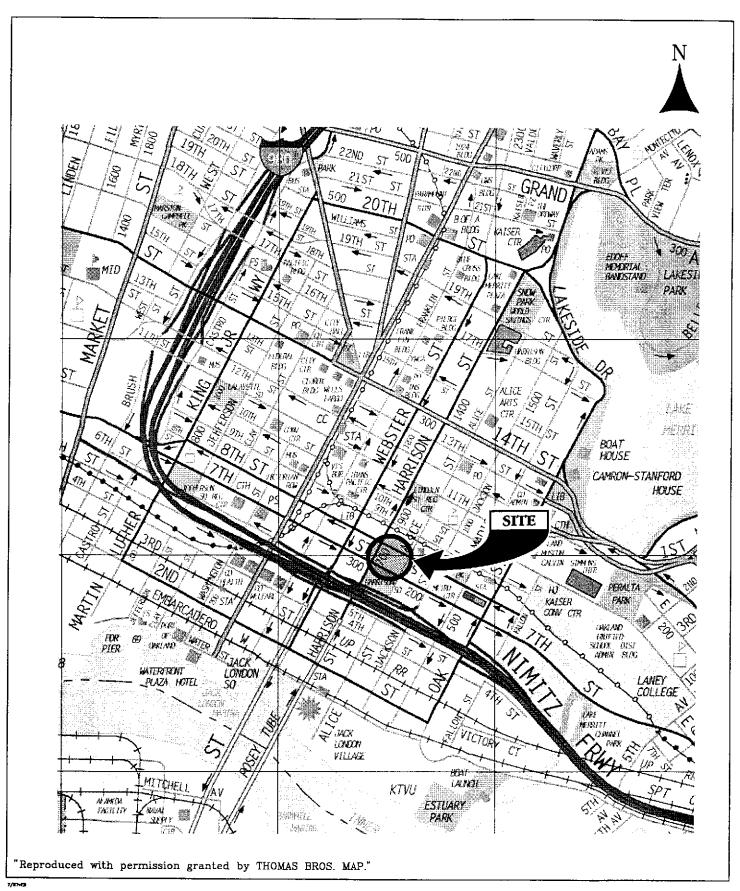
Based on our experience, the overseeing regulatory agency will likely require quarterly monitoring to document ground water quality.

We recommend that a copy of this report be sent to the California Regional Water Quality Control Board for their review.

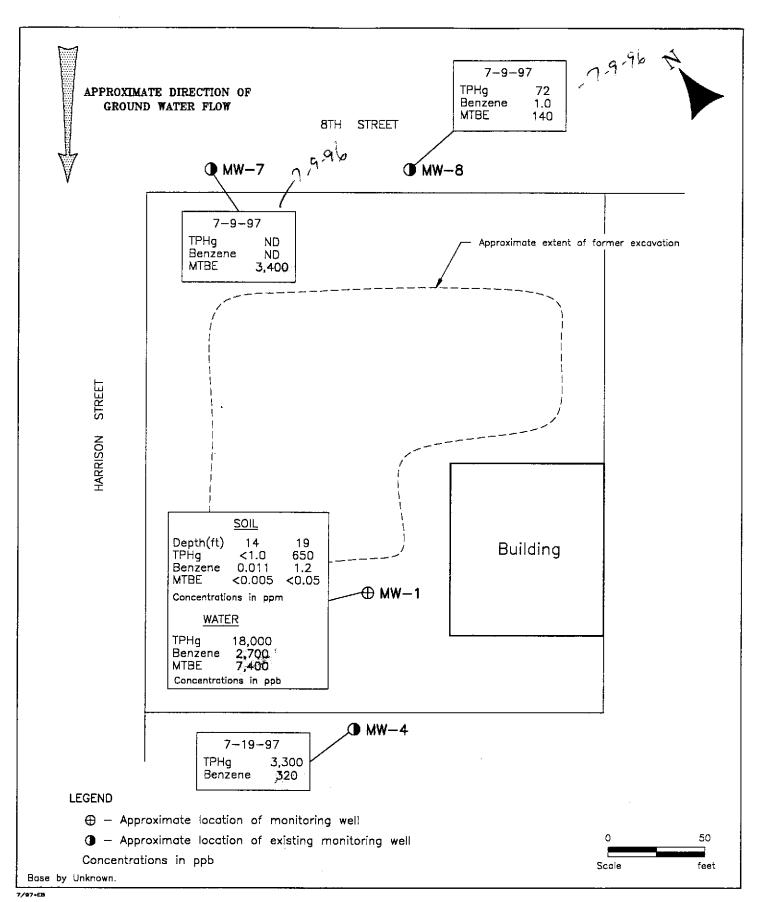
mut madical

5.0 LIMITATIONS

This report was prepared for the use of Mr. Kin Chan in evaluating soil and ground water quality at the referenced site at the time of this study. We make no warranty, expressed or implied, except that our services have been performed in accordance with environmental principles generally accepted at this time


and location. The chemical and other data presented in this report can change over time and are applicable only to the time this study was performed. We are not responsible for the data presented by others.

The accuracy and reliability of geo- or hydrochemical studies are a reflection of the number and type of samples taken and extent of the analyses conducted, and are thus inherently limited and dependent upon the resources expended. Chemical analyses were performed for specific parameters during investigation, as detailed in the scope of services. Please note that additional constituents not analyzed for during this investigation may be present in soil and ground water at the site. Our sampling and analytical plan was designed using accepted environmental principles and our judgment for the performance of a reconnaissance soil and ground water quality investigation, and was based on the degree of investigation desired by you. It is possible to obtain a greater degree of certainty, if desired, by implementing a more rigorous soil and ground water sampling program or evaluating the risk posed by the contaminants detected, if any.


6.0 REFERENCES

Cambria Environmental Technology, Inc. July 1996, "Second Quarter 1996 Monitoring, Former Arco Station, 706 Harrison Street, Oakland, California."

MPDs Services, Inc., August 1, 1996, "Semi-Annual Data Report, Unocal Service Station #0752, 800 Harrison Street, Oakland California."

VICINITY MAP 726 HARRISON STREET Oakland, California

SITE PLAN HARRISON STE

726 HARRISON STREET Oakland, California

APPENDIX A INFORMATION OBTAINED FROM THE ACEHSA

MPDS-UN0752-11 August 1, 1996

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Semi-Annual Data Report

Unocal Service Station #0752

800 Harrison Street Oakland, California

Dear Ms. Berry:

This data report presents the results of the most recent semi-annual monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this semi-annual period are indicated in Table 1. Oxygen Release Compound (ORC*) filter socks were present in all the monitoring wells. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during this semi-annual period is shown on the attached Figure 1.

Ground water samples were collected on July 9, 1996. Prior to sampling, the wells were each purged of between 7.5 and 10.5 gallons of water. In addition, dissolved oxygen concentrations were measured and are presented in Table 7. Samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. Trip blank, Equipment blank and Field blank samples (denoted as ES1, ES2 and ES3, respectively) were also collected for quality assurance and control. MPDS Services, Inc. transported the purged ground water to the Unocal Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Tables 2 through 6. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this semi-annual period are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN0752-11 August 1, 1996 Page 2

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to Ms. Jennifer Eberle of the Alameda County Health Care Services Agency.

If you have any questions regarding this report, please do not hesitate to call Mr. Joel G. Greger at (510) 602-5120.

JOEL G. GREGER
No. EG 1633
CERTIFIED
ENGINEERING
GEOLOGIST

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian Senior Staff Geologist

Joel G. Greger, C.E.G. Senior Engineering Geologist

License No. EG 1633 Exp. Date 8/31/98

/bp

Attachments: Tables 1 through 7

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Robert H. Kezerian, Kaprealian Engineering, Inc.

Table 1
Summary of Monitoring Data

	Ground Water Elevation	Depth to Water	Total Well Depth	Product Thickness		Water Purged
Well#	(feet)	(fcet)•	(feet)∗	(feet)	Sheen	(gallons)
		(Monitored	and Sampled on	July 9, 1996)	,	
MW1	16.17	18.52	33.70	0	No	10.5
MW2	16.50	18.22	30.33	0	No	8.5
MW3	15.71	17.43	30.57	0	No	9
MW4	15.75	16.96	32.35	0	No	10.5
MW5	15.84	17.11	31.80	0	No	10
MW6	15.57	16.59	30.94	0	No	10
MW7	15.21	16.99	31.60	0	No	10
MW8	15.22	16.78	27.75	0	No	7.5
		(Monitored a	nd Sampled on A	April 10, 1996)		
MW1	17.04	17.65	33.90	0	No	11.5
MW2	17.37	17.35	30.45	Õ	No	9
MW3	16.74	16.40	31.80	Ö	No	10.5
MW4	16.71	16.00	32.51	Ö	No	11.5
MW5	16.90	16.05	31.95	0	No	11.5
MW6	16.60	15.56	31.03	0		
MW7	16.39	15.81	31.95	0	No No	11
MW8	16.30	15.70	27.60	0	No No	11 8.5
		(Monitored an	d Sampled on Ja	nuary 3, 1996)		
MW1	15.00	19.69	33.88	0	No	10
MW2	15.32	19.40	30.59	Õ	No	8
MW3	14.60	18.54	30.74	Ö	No	8.5
MW4	14.66	18.05	32.50	ő	No	10
MW5	14.75	18.20	31.80	ő	No	9.5
MW6	14.50	17.66	30.97	0	No	
MW7	14.18	18.02	31.93	0		- 9.5
MW8	14.18	17.82	27.61	0	No No	9.5 7
		(Monitored and	d Sampled on Oc	tober 10, 1995)		
MW1	15.09	19.60	33.96	Λ	No	10
MW2	15.47	19.00	33.96 30.75	0	No No	10
MW3	14.64	18.50		0	No No	8
MW4	14.68		30.81	0	No	8.5
MW5		18.03	32.61	0	No	10
MW6	14.80	18.15	32.00	0	No	10.5
	14.48	17.68	31.25	0	No	10
MW7	14.12	18.08	32.16	0	No	10
MW8	14.15	17.85	27.15	0	No	6.5

Table 2
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- Benzene	77.1
			BUILD	romene	Benzene	Xylenes
MW1	6/5/91	47	ND	ND	ND	ND
	9/30/91	ND	ND	ND	ND	ND
	12/30/91	ND	ND	ND	ND	ND
	4/2/92	ND	ND	ND	ND	ND
	6/30/92	ND	ND	ND	ND	ND
	9/15/92	76	1.0	ND	ND	ND
	12/21/92	95	0.69	ND	ND	1.0
	4/28/93	920	3.1	2.3	1.2	9.7
	7/23/93	ND	0.5	0.66	ND	ND
	10/5/93	92**	1.5	ND	ND	0.72
	1/3/94	ND	ND	ND	ND	ND
	4/2/94	ND	ND	ND	ND	ND
	7/5/94	250	4.8	13	1.2	7.3
	10/6/94	540	1.4	ND	0.66	11
	1/2/95	140	ND	ND	ND	ND
	4/3/95	580	3.6	0.75	ND	4.0
	7/14/95	260	2.1	ND	ND	1.2
	10/10/95	220	2.0	ND	25	5.6
	1/3/96	190	2.4	ND	0.71	1.2
	4/10/96	540	8.9	1.7	1.5	7.4
	7/9/96	490	3.0	1.4	1.3	2.5
MW2	6/5/91	49	ND	ND	ND	ND
	9/30/91	130	18	0.53	14	9.6
	12/30/91	91	16	0.89	11	1.9
	4/2/92	88	12	0.32	6.3	7.2
	6/30/92	76	9.3	0.76	4.8	6.9
	9/15/92	1,300	91	5.7	80	110
	12/21/92	960	97	3.2	74	96
	4/28/93	1,300	76	1.9	130	87
	7/23/93	66	1.8	ND	2.5	2.0
	10/5/93	120	12	ND	2.1	12
	1/3/94	260	25	ND	5.5	26
	4/2/94	ND	0.65	ND	ND	0.99
	7/5/94	160	16	ND	0.73	10
	10/6/94	170	15	ND	1.4	11
	1/2/95	190	27	ND	0.95	11
	4/3/95	2,400	65	6.6	19	63
	7/14/95	750	270	ND	ND	13
	10/10/95	50	1.6	ND	ND	ND
	1/3/96	ND	ND	ND	ND	ND
	4/10/96	300	42	ND	2.4	9.0
	7/9/96	760	230	ND	1.3	2.4

Table 2
Summary of Laboratory Analyses
Water

		TPH as			Ethyl-	
Well#	Date	Gasoline	Benzene	Toluene	Benzene	Xylenes
MW3	6/5/91	5,800	1,200	40	140	97
141 44 7	9/30/91	6,800	1,400	130	290	240
	12/30/91	7,200	2,100	690	410	550
	4/2/92	8,000	1,400	200	300	310
	6/30/92	8,900	1,900	210	430	550
	9/15/92	10,000	1,900	330	400	580
- og nåling	12/21/92	8,500	1,500	150	310	330
. <u></u>	4/28/93	2,600	220	7.6	41	27
	7/23/93	4,400	660	26	160	82
	10/5/93	9,200	720	88	140	140
	1/3/94	4,900	830	100	170	150
į.	4/2/94	6,000	800	30	140	110
`	7/5/94	25,000**	ND	ND	ND	ND
	10/6/94	49,000*	1,300	200	280	300
	1/2/95	480	1.6	ND	1.4	ND
	4/3/95	8,100**	65	ND	ND	ND
	7/14/95	ND	1,300	ND	ND	ND
	10/10/95	3,100	1,400	36	50	53
	1/03/96	ND	2,300	110	150	140
	4/10/96	940	38	33	39	47
	7/9/96	ND	2,000	ND	150	160
MW4	10/19/92	480	0.51	2.1	2.8	6.8
	12/21/92	220*	ND	ND	0.97	0.74
	4/28/93	ND	ND	ND	ND	ND
	7/23/93	85*	ND	ND	ND	ND
	10/5/93	130**	ND	ND	ND	ND
	1/3/94	210	ND	ND	0.76	1.6
	4/2/94	89	ND	ND	ND	ND
	7/5/94	190**	ND	ND	ND	ND
	10/6/94	170	0.85	ND	ND	0.74
	1/2/95	ND	ND	ND	ND	ND
	4/3/95	98**	ND	ND	ND ·	ND
	7/14/95	ND	ND	ND	ND	ND
	10/10/95	ND	ND	ND	ND	ND
	1/03/96🗸	ND	ND	ND	ND	ND
	4/10/96	ND	ND	ND	ND	ND
	7/9/96	ND	ND	ND	ND	ND

Table 2
Summary of Laboratory Analyses
Water

		TPH as			Ethyi-	
Well#	Date	Gasoline	Benzene	Toluene	Benzene	Xylenes
MW7	4/28/93	110	2.8	1.3	1.4	
	7/23/93	790	23	3.3	28	1.7
	10/5/93	360	10	1.2	0.91	5.4
	1/3/94	ND	0.93	ND	0.75	0.99
	4/2/94	360	2.0	ND ND	ND	1.9
	7/5/94	ND	ND	ND ND	ND	0.8
	10/6/94	340	5.6	0.85	ND ND	ND
	1/2/95	ND	ND	ND	ND ND	1.2
	4/3/95	570	24	ND ND	3.4	ND
	7/14/95	ND	14	ND ND	ND	5.8
	10/10/95	740	170	ND ND	ND ND	ND
	1/03/96	360	16	1.3		ND
	4/10/96	120	4.1	1.5	2.7	1.4
	7/9/96	ND	ND	ND	ND ND	0.88
	715750	1110	КD	ND	ND	ND
MW8	4/28/93	450	18	1.8	1.8	1.4
	7/23/93	260	5.1	ND	0.6	ND
	10/5/93	120**	1.7	ND	ND	ND
	1/3/94	ND	ND	ND	ND	ND
	4/2/94	150	1.2	ND	ND	ND
	7/5/94	730	17	ND	1.6	ND
	10/6/94	140**	ND	ND	ND	ND
	1/2/95	440	18	0.72	2.0	1.8
	4/3/95	960	11	ND	ND	ND
	7/14/95	280	4.2	2.6	1.1	3.3
	10/10/95	110	1.3	0.62	0.67	ND
	1/03/96❤	63	ND	0.51	ND	1.8
	4/10/96	ND	1.1	0.61	ND	ND
	7/9/96	72	1.0	ND	ND	ND

Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.

ND = Non-detectable

-- Indicates analysis was not performed.

^{*} Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

^{**} Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.

Table 2
Summary of Laboratory Analyses
Water

		TPH as			Ethyi-	
Well#	Date	Gasoline	Benzene	Toluene	Benzene	Xylenes
MW7	4/28/93	110	2.8	1.2		
141 44 7	7/23/93	790	2.8	1.3	1.4	1.7
	10/5/93	360	23 10	3.3	28	5.4
	1/3/94	ND	0.93	1.2	0.91	0.99
	4/2/94	360	2.0	ND	0.75	1.9
	7/5/94	ND		ND	ND	0.8
	10/6/94	340	ND	ND	ND	ND
	1/2/95		5.6	0.85	ND	1.2
	4/3/95	ND	ND	ND	ND	ND
		570	24	ND	3.4	5.8
	7/14/95	ND	14	ND	ND	ND
	10/10/95	740	170	ND	ND	ND
	1/03/96	360	16	1.3	2.7	1.4
	4/10/96	120	4.1	1.5	ND	0.88
	7/9/96	ND	ND	ND	ND	ND
MW8	4/28/93	450	18	1.8	1.8	1.4
	7/23/93	260	5.1	ND	0.6	ND
	10/5/93	120**	1.7	ND	ND	ND
	1/3/94	ND	ND	ND	ND	ND
	4/2/94	150	1.2	ND	ND	ND
	7/5/94	730	17	ND	1.6	ND
	10/6/94	140**	ND	ND	ND	ND
	1/2/95	440	18	0.72	2.0	1.8
	4/3/95	960	11	ND	ND	ND
	7/14/95	280	4.2	2.6	1.1	3.3
	10/10/95	110	1.3	0.62	0.67	ND
	1/03/96▼	63	ND	0.51	ND	1.8
	4/10/96	ND	1 .1	0.61	ND	ND
	7/9/96	72	1.0	ND	ND	ND.

Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.

ND = Non-detectable

-- Indicates analysis was not performed.

^{*} Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

^{**} Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.

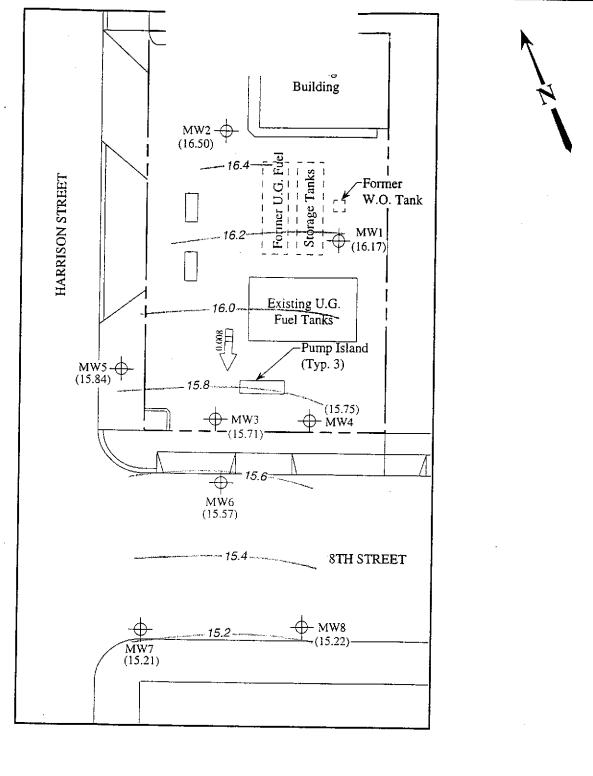
Table 3
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Diesel	Chloroform	Tetrachioro- ethene	Trichlaro- ethene	MTBE
MW1	6/5/91	ND	7.8	2.0		
	9/30/91	ND		2.9	1.3	
	12/30/91	ND	 6.4	 2.1		
	4/2/92	94	7.1	2.1	0.9	
	6/30/92	120	9.5	2.6	1.4	
	9/15/92	ND	12	2.2	1.3	
	12/21/92	ND		2.2	1,3	
	4/28/93 ♦	470AA	12	1.4	0.83	
	7/23/93	ND	12	0.89	0.85	
	10/5/93	57A	16	1.3	0.91	
•	1/3/94*	ND	13	1.3	0.66	**
	4/2/94		18	1.4	0.93	
	10/10/95	ND	15	1.1	0.68	
	4/10/96					29
						50
	7/9/96					150
MW2	10/10/95					200
	4/10/96					
	7/9/96					620 1,500
⁄IW3	10/10/95	***				
	4/10/96					190,000
	7/9/96					69,000
	117730				~-	140,000
1W4	1/3/94		9.0	1.0	ND	240
	10/10/95					120
	4/10/96			***		
	7/9/96	•				240 480
IW5	10/10/95					
-	4/10/96					1,100
	7/9/96	,				640
	115150				**	150
W6	10/10/95				<u></u> .	75,000
	4/10/96					_
	7/9/96					53,000 76,000
W 7	10/10/95					-,,,,,,
7. 1	4/10/96					13,000
						3,200
	7/9/96					3,400

Table 3
Summary of Laboratory Analyses
Water

	Date	TPH as Diesel	Chloroform	Tetrachioro- ethene	Trichioro- ethene	MTBE
MW8	1/3/94◆		1.5	1.2	ND	51
	10/10/95					170
	4/10/96					60
	7/9/96					140

- * A fuel fingerprint analysis was conducted on this sample. Sequoia Analytical Laboratory reported that total extractable petroleum hydrocarbons in this sample were not detected in high enough concentrations to compare with known standards and approximate their makeup.
- 1,2-dichloroethane was detected in MW8 at a concentration of 4.0 μ g/L on 1/03/94, and 1.1 μ g/L in MW1 on 4/28/93.
- A Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.


ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

Note: - All EPA method 8010 constituents were non-detectable, except as indicated above.

- Laboratory analyses data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

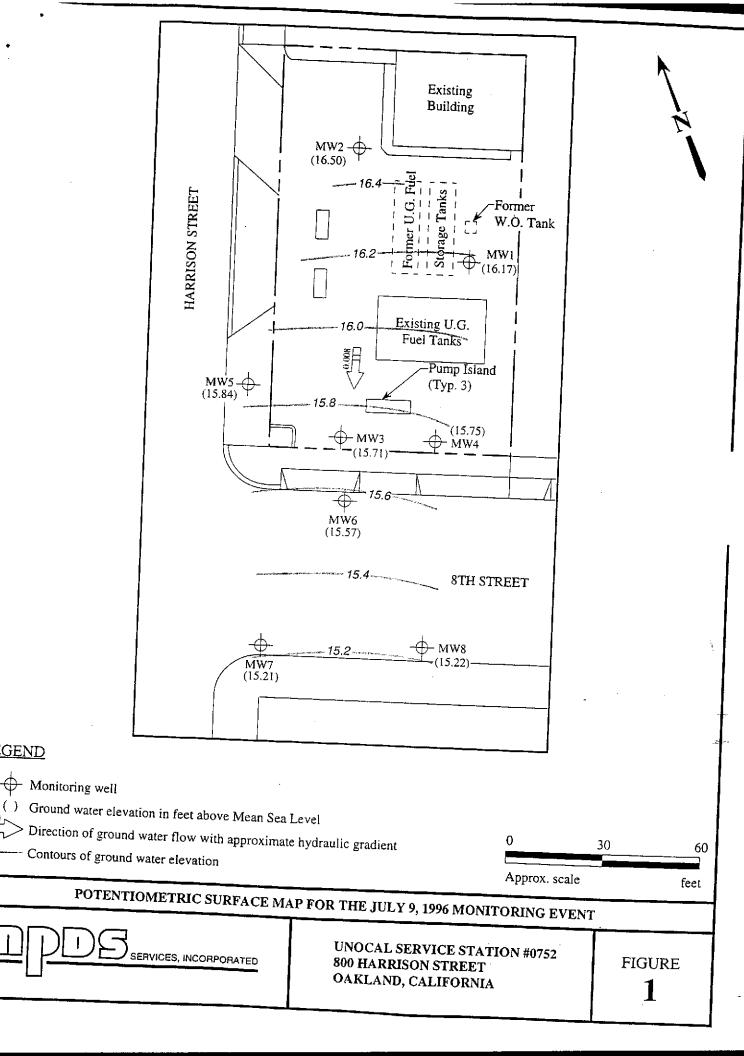
LEGEND

Monitoring well

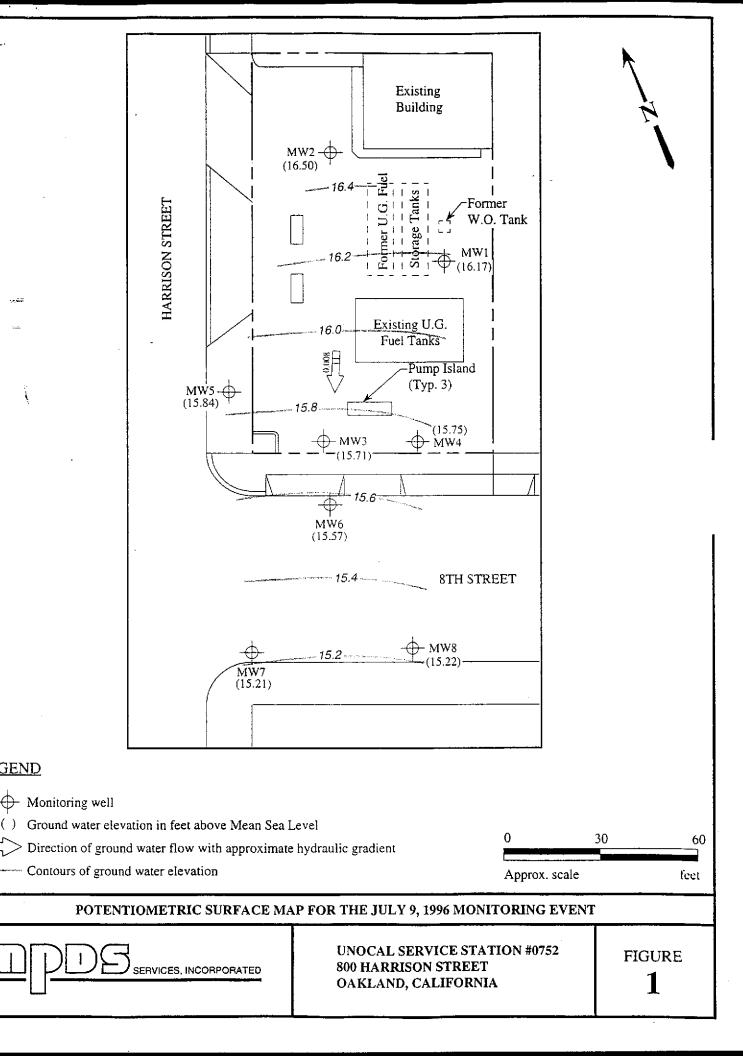
() Ground water elevation in feet above Mean Sea Level

Direction of ground water flow with approximate hydraulic gradient

Contours of ground water elevation


Approx. scale feet

POTENTIOMETRIC SURFACE MAP FOR THE JULY 9, 1996 MONITORING EVENT


SERVICES, INCORPORATED

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

FIGURE

<u>EGEND</u>

LEGEND

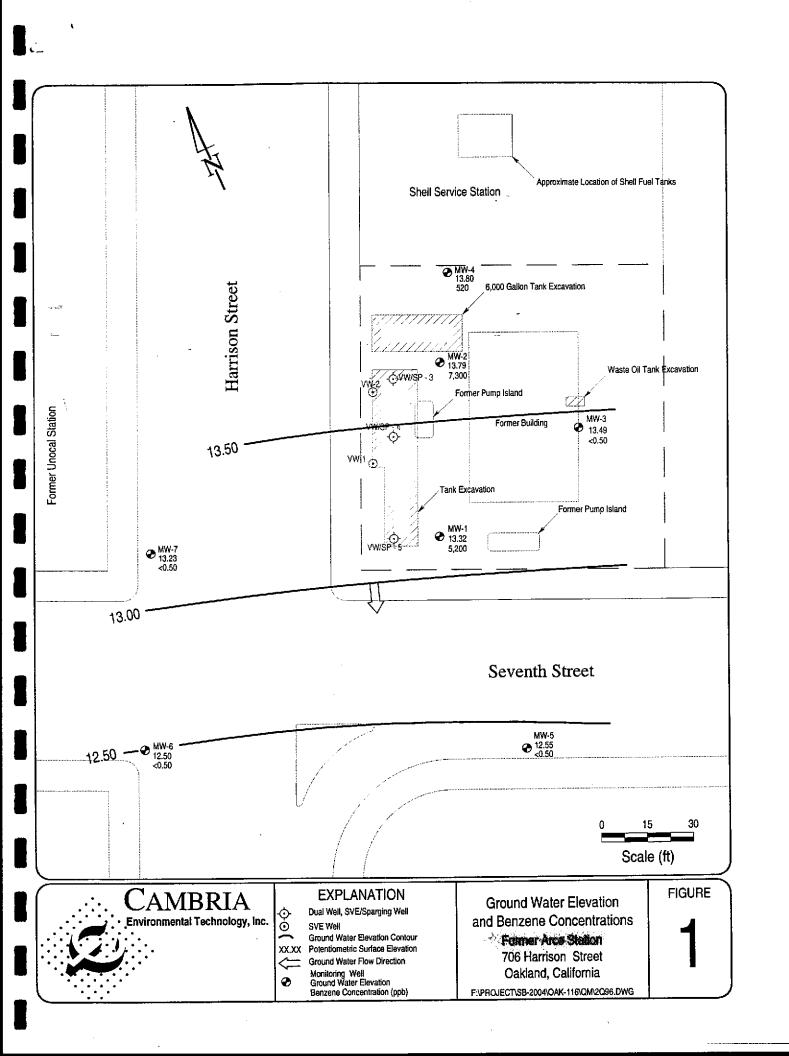


Table 1. Ground Water Analytic Data - Former Arco Station - 706 Harrison Street Oakland, California

Well ID (TOC)	Date Sampled	Depth to Water (ft)	Ground Water	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	Notes
			Elevation (ft)		Co	oncentrations in part	ts per billion		
MW-1	8/13/93	17.40	11.75	20,000	8,500	640	280	440	
(29.15)	12/14/93	17.27	11.88	17,000	9,200	1,200	4,400	540	
	4/15/94	17.00	12.15	9,500	3,600	530	160	280	
	12/29/94	16.40	12.75	· -	•	-	-	200	
	7/19/96	15.83	13,32	17,000	5,200	1,100	330	530	sheen/odor
MW-2	8/13/93	17.05	13.46	34,000	6,800	10,000	740	3,900	
(30.51)	12/14/93	18.28	12.23	16,000	3,200	4,200	500	1,700	
	4/15/94	18.10	12.41	23,000	2,500	4,200	470	1,800	
	12/29/94	17.40	13.11		-	7	-	-	
	7/19/96	16.72	13.79	90,000	7,300	14,000	1,600	7,300	odor .
MW-3	8/13/93	17.05	12.72	<50	<0.50	<0.50	<0.50	<1.5	
(29.77)	12/14/93	17.70	12.07	<50	<0.50	< 0.50	<0.50	<1.5	
	4/15/94	17.40	12.37	<50	<0.5	<0.5	<0.5	<0.5	
	12/29/94	16.80	12.97	_	-	-			
	7/19/96	16:28	13.49	ර0	<0.5	<0.5	<0.5	<0.5	usus a meneralisma
MW-4	12/16/94	18.10	13.08	2,500	32	6.5	4.5	17	
(31.18)	12.29/94	17.95	13.23	-	<u>-</u>	-	•	-	
	7/19/96	17.98	13.80	3,300	520	39	67	60	
MW-5	12/16/94	16.07	11.97	<50	1.1	<0.5	<0.5	2.4	
(28.04)	12/29/94	16.10	11.94	-	-	<u>-</u>	*	±. T	
	7/19/96	15.49	12.55	<50	⊲0.5	<0.5	<0.5	<0.5	

Table 1. Ground Water Analytic Data - Former Arco Station - 706 Harrison Street Oakland, California

Well ID (TOC)	Date	Depth to Water	Ground Water	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	Notes
(IOC)	Sampled	(ft)	Elevation (ft)		Co	oncentrations in part	ts per billion		
MW-6	12/16/94	17.74	11.36	<50	<0.5	<0.5	<0.5	<0.5	
(29.10)	12/29/94 7/19/96	17.40 16.60	11.70 12.50		- <0.5	- 40.5	<0.5		
MW-7	12/16/94	17.07	12.60	<50	<0.5	<0.5	<0.5	<0.5	
(29.67)	12/29/94 7/19/96	17.65 1 6 :44	12.02 13.23	- ≤5 0	- ≮0.5	<0.5	k0.5	<0.5	

Abbreviations

TPHg = Total petroleum hydrocarbons as gasoline parts per billion which is equivalent to ug/l in water TOC = Top of casing elevation with respect to mean sea level

<u>Notes</u>

TPHg analyzed by modified EPA Method 8015. Benzene, ethylbenzene, toluene and xylenes analyzed by EPA Method 8020. Data prior to 12/16/94 provided by previous consultant.

APPENDIX B

SUBSURFACE INVESTIGATION, SOIL SAMPLING, AND MONITORING WELL INSTALLATION PROTOCOL

The subsurface investigation was performed on July 3, 1997 using a truck-mounted drill rig equipped with an 8-inch O.D. hollow-stem auger. One soil borings was drilled to a depth of approximately 25 feet. The standard penetration resistance blow counts were obtained by dropping a 140-pound hammer through a 30-inch free fall. The blows per foot recorded on the boring logs represent the accumulated number of blows required to drive the sampler the last 12 inches of the interval indicated. Soil samples were collected at approximately 5-foot depth intervals using a 2.5-inch diameter modified California split-spoon sampler.

Drilling

Soil encountered in the boring was logged using the Unified Soil Classification System (ASTM D-2487). The log of the boring, as well as a key to the classification of soil (Figure A-1), are included as part of this appendix. The permit obtained for the well is also included.

Sampling Protocol

Soil samples for laboratory analysis were collected in brass liners, the ends covered in aluminum foil, taped, then labeled with a unique identification number, placed in an ice-chilled cooler, and transported to a state-certified analytical laboratory with chain of custody documentation. Soil vapors from each sample were also monitored with an OVM by first placing the soil in a ZiplockTM bag for several minutes. The OVM probe was then used to pierce the bag and record the organic vapor levels present.

exploratory boring was converted into a "permanent" ground water monitoring wells with the installation of 2-inch I.D. flush-threaded, Schedule 40 PVC casing. The casing in the lower portion of the well had 0.02-inch factory machined slots. After the casing was installed, a filter pack composed of Number 3 sand was placed in the 3- to 4-inch annular space to approximately 1 to 2 feet above the slotted casing. annual seal consisted remaining approximately 1-foot thick seal of bentonite pellets or chips, followed by a 11-sack Portland cement and sand slurry to the surface. The well was completed with a flush-mounted wellhead box. In addition, the PVC well casing was fitted with a watertight, locking well cap at the surface. Well construction details are shown on the boring logs.

Monitoring Well
Installation

All drilling and sampling equipment was cleaned in a solution of laboratory grade detergent and distilled water or steam cleaned before use at each sampling point.

Equipment
Decontamination

91992

ZONE 7 WATER AGENCY

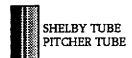
5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

775 VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT	PERMIT NUMBER 97401
726 Harrison Street	LOCATION NUMBER
caklond, CA	
CLIENT	• • • •
Name Mr. Kin Chan	PERMIT CONDITIONS
Address 726 Harrison St. Voice 510-444-6583	
City Oakland (A) Dp 94607	Circled Permit Requirements Apply
APPLICANT	
Name Peter Langtry	A. GENERAL
Lowney 4 ssociate Fax 510-267-1972	1. A permit application should be submitted so as to arrive at the
Address 129 F: 16ert St. Voice 510.267-1970	·
City Dak Land CA ZD 94607	Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of cermitted
25 17607	
TYPE OF PROJECT	work the original Department of Water Resources Water Well
Well Construction Georechnical Investigation	Drillers Report or equivalent for well Projects, or drilling logs
Cathodic Protection General	and location sketch for geotechnical projects.
	3. Permit is void if project not begun within 90 days of approval
	date.
Monitoring Well Destruction	(B.) WATER WELLS, INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE	Minimum surface seal thickness is two inches of cement grout
	placed by tremie.
Domestic Industrial Other	Minimum seal depth is 50 feet for municipal and industrial wells
Municipal imigation	or 20 feet for domestic and irrigation wells unless a lesser
	depth is specially approved. Minimum seal depth for
PRILLING METHOD:	monitoring wells is the maximum depth practicable or 20 feet.
Mud Rotary Air Rotary Auger	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or
Cable Other	heavy bentonite and upper two feet with compacted material. In
	areas of known or suspected contamination, tremied cement grout
DAILLER'S LICENSE NO. <u>C57 484288</u>	shall be used in place of compacted cuttings.
	D. CATHODIC. Fill hole above anode zone with concrete placed by
VELL PROJECTS	tremie.
Drill Hole Diameter 😕 in. Maximum	E. WELL DESTRUCTION. See anached.
Casing Diameter 2 in. Depth 30 ft.	
Surface Seal Depth 15 ft. Number	
GEOTECHNICAL PROJECTS	
Number of Borings Maximum	
Hole Diameter	
note Diameter in. Depth tt.	•
ESTIMATED STARTING DATE 7-3-97	
STIMATED COMPLETION DATE 7-3-97	ili 1i
	Approved William Holl Date 26 Jun 97
Thereby agree to comply with all requirements of this permit and Alameda	Wyman Hong
County Ordinance No. 73-68.	y myneur rong
PPLICANTS	

	PRIMARY DIVISIO	NS	SOIL TYPE	LEGEND	SECONDARY DIVISIONS
		CLEAN GRAVELS	GW	*	Well graded gravels, gravel-sand mixtures, little or no fines.
SOILS TERUAL 200	GRAVELS MORE THAN HALF	(LESS THAN 5% FINES)	GP		Poorly graded gravels or gravel-sand mixtures, little or no fines.
	OF COARSE PRACTION IS LARGER THAN NO. 4 SIEVE	GRAVEL	GM		Silty gravels, gravel-sand-silt mixtures, non-plastic fines.
GRAINED N HALF OF MA SEVE SIZE		WITH FINES	GC		Clayey gravels, gravel-sand-clay mixtures, plastic fines.
GR. TAN HAN GER TI SIEVE		CLEAN SANDS	sw		Well graded sands, gravelly sands, little or no fines.
COARSE MORETHU IS LARG	SANDS MORE THAN HALF OF COARSE PRACTION IS SMALLER THAN NO. 4 SIEVE	(LESS THAN 5% FINES)	SP		Poorly graded sands or gravelly sands, little or no fines.
8 €		SANDS	SM		Silty sands, sand-silt mixtures, non-plastic fines.
	10. 4 3.272	WITH FINES	SC		Clayey sands, sand-clay mixtures, plastic fines.
νί			ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
ED SOILS HALF OF SMALLER SIEVE SIZE	·	SILTS AND CLAYS SILTS AND CLAYS LIQUID LIMIT IS LESS THAN 50% CL Inorgan clays, si	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.		
NED N HALL S SMAI			OL		Organic silts and organic silty clays of low plasticity.
ETHAI			МН		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
FINE GRAINED MORE THAN HAG MATERIAL IS SMA THAN NO. 200 SIEV	SILTS AND CLAYS LIQUID LIMIT IS GREATER THAN 50%		СН		Inorganic clays of high plasticity, fat clays.
E					Organic clays of medium to high plasticity, organic silts.
HIGHLY ORGANIC SOILS			Pt		Peat and other highly organic soils.


DEFINITION OF TERMS

	U.S. STANDARD	SERIES SIEVE		CLEAR SQUARE SIEVE OPENINGS			
200 40 10 4			<u> 3</u>	/4"	3* 1	2*	
077770 AND 67 AV		SAND		GRA	VEL	CORRIES	BOULDERS
SILTS AND CLAY	FINE	MEDIUM	COARSE	FINE	COARSE	CODDLES	DOULDERS

GRAIN SIZES

SAMPLERS

BLOWS/FOOT*
0 - 4 4 - 10
10 - 30 30 - 50
OVER 50

SILTS AND CLAYS	STRENGTH ‡	BLOWS/FOOT*
VERY SOFT	0 - 1/4	0 - 2
SOFT	1/4 - 1/2	2 - 4
MEDIUM STIFF	1/2 - 1	4 - 8
Stiff	1 - 2	8 - 16
VERY STIFF	2 - 4	16 - 32
HARD	OVER 4	OVER 32

RELATIVE DENSITY

CONSISTENCY

- Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch O.D. (1-3/8 inch I.D.) split spoon (ASTM D-1586).
- Unconfined compressive strength in tons/sq. ft. as determined by laboratory testing or approximated by the standard penetration test (ASTM D-1586), pocket penetrometer, torvane, or visual observation.

KEY TO EXPLORATORY BORING LOGS Unified Soil Classification System (ASTM D - 2487)

DRILL RIG:

SURFACE ELEVATION: -

LOGGED BY: BAF

DEPTH TO GROUND WATER: 20 ft. (From Surface Elevation)

BORING DIAMETER: 8 inches

DATE DRILLED: 7/3/97

DEPTH (Gee) (Gee) (Gee)	TOP OF CHRISTIE BOX	DESCRIPTION	SYMBOL	CONSISTENCY	SOIL TYPE	LEGEND	DEPTH (fect)	SAMPLER	WATER CONTENT (%) PENETRATION RESISTANCE (BLOWS/FT.) ORGANIC VAPONS (ppm)
<u> </u>	TOP OF CASING	Asphalt/Baserock	Af	J					<u> </u>
<u>5</u>	— GROUT	SAND, Brown, moist, fine to medium grained	A	Loose	SP		- - 5		7
10	2-INCH DIAMETER PVC CASING	Brown and gray mottled, trace silt, moderate petroleum odor		Dense			10		54
15	BENTONITE SEAL	Trace silt and clay, strong petroleum odor		Medium dense	ı				21
20	SAND	Gray, wet, no silt and clay, very strong petroleum odor		Very dense			20		▼ 60
25	DIAMETER PERFORATED PVC CASING	Saturated, petroleum odor		Medium dense	ı				37
		Brown, saturated, no odor		Dense			_		44
30		Bottom of Well = 28.0 feet NOTE: The stratification lines represent the approximate boundary between the soil types. The transition may be gradual.					<u>30</u>		•

812-3, 11/15 TJR*EB

MONITORING WELL LOG - MW-1

726 HARRISON STREET Oakland, California

ENTINOMISENTAL FROTECTION STAUG-6 FM 3:21 Mountain View

Oakland

Pleasanton

July 31, 1997 1260-1 57/11/17

Mr. Kin Chan 726 Harrison Street Oakland, California 94607 RE: SOIL AND GROUND WATER
QUALITY EVALUATION
FORMER SHELL STATION
726 HARRISON STREET
OAKLAND, CALIFORNIA

Dear Mr. Chan:

The attached report summarizes the results of our soil and ground water quality evaluation performed at 726 Harrison Street in Oakland, California. This work was performed per our agreement with you dated May 22, 1997.

We refer you to the text of the report for details regarding our findings. If you have any questions, please call and we shall be glad to discuss them with you.

Very truly yours,

LOWNEY ASSOCIATES

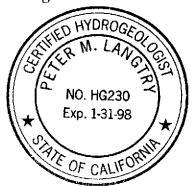
Brock A. Foster

Environmental Engineer

Stri Cochran

Peter M. Langtry, R.G., C.HG.

Associate


Environmental Geologist

RLH:PML:BAF:tjc

Copies: Addressee (2)

Alameda County Environmental Health Services (1)

Attn: Mr. Kevin Tinsley

APPENDIX C

MONITORING WELL SURVEYING, DEVELOPMENT, AND GROUND WATER SAMPLING

Approximately 72 hours after well installation, the static water level was measured to the nearest 0.01 foot using an electronic depth sounder. The well was then developed by purging several well volumes of water to remove fine-grained material from the well and surrounding soil disturbed during well installation and improve the yield of the well.

Development

Approximately 72 hours after development, ground water from the monitoring well was sampled. Teflon bailer or submersible pump was used to purge a minimum of four well casing volumes of water from the well. After purging each well volume, pH, temperature, and conductivity measurements were In general, these measurements stabilize recorded. (consecutive readings within 10 percent) after three to four well volumes. If, after the third well volume the pH and conductivity did not stabilize, additional well volumes were removed until these measurements did stabilize. If the yield was low and the well was pumped dry, the well was allowed to recharge to the 80 percent level before sampling. Samples were collected in appropriate sample bottles, labeled, and immediately placed into an ice-chilled chest for delivery to a state-certified analytical laboratory for analysis.

Ground Water Sampling All well development and sampling equipment was cleaned in a solution of laboratory grade detergent and distilled water or steam cleaned before use at each sampling point.

Well development and sampling records are attached as part of this appendix.

Equipment Decontamination

RECORD OF WELL DEVELOPMENT/SAMPLING

Project Number		260-1						
Project Name	_8	Th/ HADZIDON	<u></u>				_	
Field Geologist/Engi	neer	AF						
Well Number	1-mm	_	Total V	Well Depth ((completed)	27,17	(Feet)	
Casing Diameter _		(Inches)		opment Date		-7/7/4	<u>'</u>	
Volume Produced _	olume Produced (liter/gal) Development Method Development Method							
WELL VOLUME CONVERSION FACTORS								
Vol (Gallons) = Feet of Water x 0.17 Vol (Liters) = Feet of Water x 0.62 4-Inch Casing Diameter; Vol (Gallons) = Feet of Water x 0.66 Vol (Liters) = Feet of Water x 2.5								
	1 1					D: 73.	/	
Sampling Date 7/10/97 Time 12:00 Method Disp. Bailer								
Static Water Level Pr (Measured from top o	f casing)		(ft)	Well Volumes	ρН	Cond µsx100⊖	Temp °F	
Feet of Water	_	9.04 (ft)	ĺ	1	8.1	1.5	69	
				2	7.5	,7	ይያ	
Well Volume	_	5.4 (liter/	(gal)	3	75	٠,٠	<u> دع</u>	
Three Well Volumes		16.8 (liter/	gal)	4				
Total Produced		18 (liter/	gal)	5	1+454			
Number of Well Vol	umes _	3∻		6			,	
				7			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Production Time	_	(min)	,	8				
Production Rate		(/n	nin)	9			*** *** **** ****	
				10	والمراجع والم			
Water Characteristic	انداء	a Charachae	ı			<u> </u>		
Water Characteristics: While perging Color; Clear Cloudy Very Silty Cloud; None Slight Moderate Strong Sheen; Yes No Moderate Other								
Water Level After Recovery								
Sample LD Laboratory								
Comments: No F	DATING P	DIDDUCT, LA	Corane	ry sampl	's clear			

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Attn: Peter Langtry Lowney Associates 129 Filbert Street Oakland, CA 94607

RECEIVED

JUL 1 6 1997

LOWNEY OK

Date:	7/11/97
Date Received:	7/3/97
Date Analyzed:	7/7/97
Project Name:	Harrison
Job No.:	1260-1
Sampled By:	Client

Certified Analytical Report

Soil Sample Analysis:

Test	MW-1	MW-1	Units	PQL	EPA
	14-141/2	19-191/2			Method#
Sample Matrix	Soil	Soil			
Sample Date	7/3/97	7/3/97			-
Sample Time	8:00	8:00			
Lab#	D10820	D10821			
DF-Gas/BTEX	1	125			
TPH-Gas	ND	650	mg/kg	1.0 mg/kg	8015M
MTBE	ND	ND	mg/kg	0.05 mg/kg	8020
Вепzепе	0.011	1.2	mg/kg	0.005 mg/kg	8020
Toluene	ND	ND	mg/kg	0.005 mg/kg	8020
Ethyl Benzene	ND	2.2	mg/kg	0.005 mg/kg	8020
Xylenes	ND	2.8	mg/kg	0,005 mg/kg	8020

- 1. DLR=DF x PQL
- 2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit
ND=None Detected at or above DLR

QUALITY CONTROL RESULTS SUMMARY

METHOD: Gas Chromatography

QC Batch #: GBG4970707

Date Analyzed: 07/07/97

Matrix: Soil

Quality Control Sample: D10839

Units: ug/kg

PARAMETER	Method #	MB ug/kg	SA ug/kg	SR ug/kg	SP ug/kg	SP % R	SPD ug/kg	SPD %R	RPD	`	LIMITS VISORY) %R
Benzene	i 8020	<5.0 i	80	ND i	106	132	103	129	2.1	25	50-150
Toluene	8020	<5.0	80	ND	105	132	104	130	1.5	25	50-150
Ethyl Benzene	8020	<5.0	80	ND	104	131	103	129	1.6	25	50-150
Xylenes	8020	i <5.0 i	240	ND	318	133	315	131	1.1	25	50-150
Gasoline	8015	<1000.00	1000	ND	920	92	910	91	1.1	25	50-150

Note: LCS and LCSD results reported for the following Parameters:

None

Acceptable LCS and LCSD results are reported when matrix interferences cause MS and MSD results to fall outside established QC limits.

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

LOWNEYASSOCIATES

CHAIN OF CUSTODY RECORD

Fax Copy To:

405 Clyde Avenue Mountain View, CA 94043

415-967-2365

415-967-2785 (fax)

129 Filbert Street
Oakland, CA 94607
510-267-1970
510-267-1972 (fax)

Project Name: Turnaround ANALYSES REQUESTED l-larrison Requirements 1260-1 ☐ 10 working days Job Number: PETER LANGTRY Report To: 5 working days Sampler (print): Breack Foster ☐ 3 working days Sampler (signature): 48 hours ☐ 24 hours QC Requirements: 2-3 hours (RUSH) ■ Level A (standard) □ Level B □ Level C □ Level D Laboratory Sample # of Sample I.D. Date Matrix LD. Time Cont. Remarks MW-1 14-14/2 Soi 1 010830 ١ පියව MW-1 19-19% 5011 8:00 D1082 Received By: Letty Helser world #1905 Date: 7/3/97 Time: 127 Relinquished By: PM initials Relinquished By: Received By: Temperature Relinquished By: Date: Time: Lab of Record: Received by Lab: Date: Time:

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

RECEIVEL

JUL 2 3 1997

Attn: Peter Langtry Lowney Associates 129 Filbert Street Oakland, CA 94607

LOWNEY OK

Date:	7/17/97
Date Received:	7/10/97
Date Analyzed:	7/15/97
Project Name:	8th/Harrison St.
Job No.:	1260-1
Sampled By:	Client

Certified Analytical Report

Water Sample Analysis:

Test	MW-1	Units	PQL	EPA Method #
Sample Matrix	Water			
Sample Date	7/10/97			·
Sample Time	12:00			
Lab#	D11116			
DF-Gas/BTEX	100			
TPH-Gas	18,000	μg/liter	50.0 μg/l	8015M
MTBE	7,400	μg/liter	5.0 μ g/ l	8020
Benzene	2,700	μg/liter	0.5 μg/l	8020
Toluene	350	μg/liter	0.5 μg/l	8020
Ethyl Benzene	450	μg/liter	0.5 μ g/l	8020
Xylenes	900	μg/liter	0.5 μg/l	8020

- 1. DLR=DF x PQL
- 2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit

PQL=Practical Quantitation Limit
ND=None Detected at or above DLR

QUALITY CONTROL RESULTS SUMMARY

METHOD: Gas Chromatography

QC Batch #: GBG5970714

Date Analyzed: 07/15/97

Matrix: Water

Quality Control Sample: Blank Spike

Units: µg/L

PARAMETER	Method #	MB SA		SR	SP	SP	SPD	SPD	RPD	(AD	LIMITS VISORY)
1	*	μg/L	μg/L	μg/L	μg/L	% R	μg/L	%R		RPD	%R
Benzene	i 8020	<0.5	i 10	ND	14.2	142	13.0	130	9.0	i 25 i	50-150
Toluene	8020	< 0.5	10	ND	9.6	96	10.4	104	8.2	25	50-150
Ethyl Benzene	8020	< 0.5	10	ND	9.2	92	10.7	107	15.0	25	50-150
Xylenes	8020	< 0.5	30	ND	29	97	32	107	9.8	i 25 i	50-150
Gasoline	8015	<50.0	625	ND	532	85	514	82	3.4	25	50-150

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

LOWNEYASSOCIATES

CHAIN OF C						Fax (Сору	To:			Moun 415-90	lyde A tain Vi 67-236 67-278	iew, (5	CA 94	1043		-	129 Filbert Oakland, C 510-267-197 510-267-197	A 94607 70
Project Name:	Turnaround Requirements						A	NALY	SES	REG	QUES	TED)						
Job Number: 786 Report To: 787 Sampler (print): 78 Sampler (signature): 78	☐ 10 working days				MICH														
QC Requirements: Level A (standard)	🗇 Level B	☐ Level C	🗇 Level D		24 hours 2-3 hours (RUSH)	,	/ œ,	·) /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	
Sample I.D.	Date	Time	Sample Matrix	# of Cont.	Laboratory I.D.	//	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,											Res	narks
MW-1	7/10/97	12:00	H=0	3	011116					/				,		[
			<u>.</u>							<u> </u>									
							ļ												
		ļ				—					<u> </u>								
	ļ	<u> </u>				-													
			-													i			
						 													
						 	<u> </u>												
		-									ļ								
				· · · · · · · · · · · · · · · · · · ·			<u> </u>												٠
 						 -												····	
Relinquished By:	3 <u>\</u>	<u>'</u>	Date:	7/0/17	Time: 17:40	Rece	ived E	3y: /2	2 st	w	Po	ane	, fe	D:	ate: 7	//a	(P) Time	100	PM initials
Relinquished By:	Roho	March	Date:	7/11	Prime: 196	l l	eived E		el	lag	40	14/	77 745_		ate: //	w/7	7 _{Time}	13%	
Relinquished By:	<u> </u>		Date:	' / '	/ Time:	Lab	of Rec	ord:	_	<u> </u>) —–	<u>()'</u>				,			Temperature
						Rece	eived b	y Lab:						D	ate:		Time	:	

Send Results To:

☐ Mountain View Office

Oakland Office