

August 18, 2011

Mr. Mark E. Detterman, PG, CEG Environmental Protection Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RECEIVED

9:26 am, Aug 23, 2011

Alameda County

Environmental Health

Subject:

Fuel Leak Case No. R0000320, Former Paco Pumps Inc, 9201 San Leandro Street,

Oakland, CA

Dear Mr. Detterman:

Please find enclosed the *First Semi-Annual 2011 Groundwater Monitoring Report* (GMR) for the Former Paco Pumps facility located at 9201 San Leandro in Oakland, California, Case No. R0000320. The June 2011 monitoring data, which were uploaded to Geotracker last month, represent groundwater conditions approximately one year after the dual-phase extraction (DPE) near and downgradient of the former gasoline underground storage tank (UST) area, previously referred to as AREA 4. As reported previously, that remediation effort removed approximately 1,600 pounds of hydrocarbons and 41,000 gallons of hydrocarbon-bearing groundwater (Source Group, Inc. [SGI], 2010)¹. The recent monitoring results indicate that petroleum hydrocarbon concentrations remain stable, and the site conditions indicate that:

- The primary source (gasoline UST) has been removed and no free product has been observed in
 the site monitoring wells. With the excavation of associated soil during tank removal and recent
 DPE results and considering the low permeability soil and proximity to existing structures, the
 secondary source (sorbed to soil and dissolved in groundwater) has been remediated to the
 extent practicable.
- The extent of petroleum hydrocarbons in soil and groundwater has been adequately defined laterally and vertically.

¹ Source Group, Inc. 2010. *Investigation/Remediation (Area 4), Post Remediation Sampling and First Semi-Annual Monitoring Report*, Former Paco Pumps Site, 9201 San Leandro Street, Oakland, California. October 8.

- The dissolved hydrocarbon plume is limited to within the property boundaries and concentration trends, while accounting for fluctuations induced by recent DPE activities, are consistent with stable-to-declining trends.
- The site is located in a commercial/industrial area and no sensitive receptors have been identified within a 2,000-foot radius. Methyl-tert butyl ether (MTBE), a more mobile fuel additive, is not a significant concern at the site.
- A human health risk evaluation (SGI, 2010) concluded that potential commercial exposures via indoor air were within acceptable ranges.
- Natural attenuation and enhanced aerobic biodegradation with introduction of oxygen during recent DPE activities are expected to reduce petroleum hydrocarbon mass in the subsurface and their associated risks to human health and the environment.

Based on these findings, the site conditions do not appear to warrant further active remediation (e.g., continued DPE activities, building removal and additional excavation). Accordingly, we plan to conduct semi-annual monitoring events during the fourth quarter of 2011. If the monitoring results confirm stable-to-declining trends, we plan to request a no-further-action determination.

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Dave Murray

PCC Flow Technologies, Inc.

Cc: Mr. Scott J. Kaplan, Stoel Rives LLP

Mr. Marc A. Zeppetello, Barg Coffin Lewis & Trapp, LLP

Mr. Paul Parmentier, The Source Group, Inc.

FORMER PACO PUMPS OAKLAND FACILITY FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT July 6, 2011

Location:

Former PACO Pumps Site Contact/Phone Primary Consultant/Contact Person/Phone SGI Project Number Lead Agency / Contact Person Agency Case No. Other Agencies to Receive Copies

9201 San Leandro St., Oakland, CA
Mr. Dave Murray (503) 777-7494
SGI / Paul Parmentier / (562) 597-1055 x106
04-PFT-001
ACDEH / Mr. Mark E. Detterman
R0000320

INTRODUCTION:

This report presents the results of the first semi-annual 2011 groundwater monitoring and sampling event, and includes a section on data interpretation and recommendations. The second quarter 2011 monitoring event was conducted as part of the ACDEH-instructed semi-annual monitoring schedule, and as a means to evaluate groundwater conditions following 2010 dual-phase extraction (DPE) activities.

N/A

SITE REMEDIATION SUMMARY:

In 1992, the gasoline underground storage tank (UST) at the site was removed, along with the excavation and off-site disposal of soil surrounding the UST. Multiple phases of investigation, including pilot testing, have been conducted to evaluate the elevated petroleum hydrocarbon concentrations that remained in the subsurface following these activities.

Although a workplan for in-situ treatment was submitted in 2009, a revised workplan was submitted in November 2009 (The Source Group, October 2009). Due to the predominance of clay, in-situ remedial methods were not considered applicable to the site, and a temporary, aggressive extraction approach rather than semi-permanent low-flow remediation methods was proposed. In 2010, 12 extraction wells were installed in the vicinity and downgradient of the former UST. In April and June 2010, DPE of vapor and groundwater was conducted, resulting in the removal of an estimated 1,590 pounds of hydrocarbons, and approximately 41,000 gallons of hydrocarbon-bearing groundwater. The remediation activities confirmed that the subsurface consists of fine-grained (low permeability) vadose soil that would limit the effectiveness of any in-situ active remediation method.

An evaluation of the hydrocarbon concentrations, including benzene, in subsurface and potential exposures via indoor air inhalation indicated associated human health risk estimates within acceptable ranges.

The report describing well installation, DPE activities, and human health risk evaluation is pending review by the ACDEH.

GROUNDWATER MONITORING [FIRST SEMI-ANNUAL 2011]:

- 1. Conducted the first semi-annual 2011 groundwater monitoring and sampling event on June 8, 2011. Based on previous site data, a selected number of monitoring wells were sampled to represent site groundwater conditions. The site groundwater wells were gauged for depth to groundwater data.
- 2. Depth to groundwater measured in June 2011 was similar to previous measurements and ranged from approximately 6.88 to 8.91 feet below the top of well casings. Associated groundwater elevations ranged from 9.64 to 12.49 feet above Mean Sea Level. Groundwater contours are presented on Figure 3 and are similar to previous groundwater gradient maps. The horizontal hydraulic gradient was toward the west-southwest at approximately 0.006 ft/ft with local variations. As noted in recent monitoring events, no free-phase hydrocarbons were measured in any of the wells.

- 3. Gasoline-range organics (GRO, total petroleum hydrocarbons as gasoline [TPHg]) were reported in five of the nine well samples. Where reported, concentrations were generally within historic ranges with 94.2 μg/L (estimated) to 20,400 μg/L reported (Figure 4 and Table 2). Since the second quarter 2010 DPE activities and sampling event, GRO concentrations increased slightly at well MW-4, and decreased in wells MW-3, MW-6, E-7, and E-8. GRO was not reported in samples collected from wells MW-2, MW-7, MW-8 and E-2.
- 4. Benzene was reported in five of the nine well samples. Where reported, concentrations were generally within historic ranges with 10.2 μg/L to 2,180 μg/L reported (Figure 4 and Table 2). Since the second quarter 2010 DPE activities and sampling event, benzene concentrations increased in wells MW-3, MW-4, and MW-6, and decreased in wells E-7 and E-8. Benzene was not reported in samples collected from wells MW-2, MW-7, MW-8 and E-2.
- 5. Methyl tertiary-butyl ether (MTBE) was reported in three of the nine well samples (see Table 2). Where reported, concentrations ranged from 0.97 μ g/L (estimated) to 4.3 μ g/L, which are below State drinking water standards.
- 6. 1,2-Dichloroethane (1,2-DCA) was reported in four of the nine wells samples. Where reported, concentrations ranged from 0.45 μ g/L (estimated) to 15.4 μ g/L (estimated) (Table 2). Since the second quarter 2010 sampling event, concentrations of 1,2-DCA decreased in wells MW-6, E-2, E-7, and E-8.
- 7. The next semi-annual groundwater monitoring and sampling event will be conducted during the fourth quarter 2011.

MONITORING SUMMARY:	
Current Phase of Project:	Groundwater Monitoring
Frequency of Monitoring/Sampling:	Semi-annual (per RWQCB's directive letter dated 6/15/2009)
Wells Sampled and/or Gauged this Quarter	MW-1 through MW-8, AS-1S, AS-1D, ASMW-2S, ASMW-2D E-2, E-7 and E-8
Depth to Groundwater (all wells had no LPH):	9.64 to 12.49 feet below top of casings
Groundwater Gradient Direction/Magnitude:	West-southwest at approximately 0.006 ft/ft.
Gradient Consistent w/Previous Quarters:	Yes
GRO Concentration Range:	ND (<50 μg/L) to 20,400 μg/L
Well with Highest GRO Concentration:	MW-3
Benzene Concentration Range:	ND (<1.0 μg/L) to 2,180 μg/L
Well with Highest Benzene Concentration:	MW-3
MTBE Concentration Range:	ND (<1.0 to <25 μg/L) to 4.3 μg/L
Well with Highest MTBE Concentration:	E-7
Separate Phase Hydrocarbons Present: Yes No X	None
Maximum Hydrocarbon Thickness:	N/A
Wells and/or Surface Water within 2,000 feet:	None
Distance and Direction from Site:	N/A
Current Remediation Techniques:	Natural Attenuation
Free Product Recovered Manually this Quarter:	None
Gallons of Groundwater Purged this Quarter:	117

Disposal/Recycling Facility:	Demenno Kerdoon, Compton, CA-Pending
Summary of Unusual Activity:	None
Agency Directive Requirements:	Groundwater Monitoring

DATA INTERPRETATION AND RECOMMENDATIONS

To facilitate review and determine if additional activities are warranted, the site conditions were evaluated using low-risk groundwater criteria:

 The leak has been stopped and ongoing sources, including free product, have been removed or remediated. As noted above, the gasoline UST, the primary source, has been removed, and associated soil was excavated. Free product has not been observed in the site groundwater monitoring wells.

Furthermore, the DPE efforts in 2010 removed a significant hydrocarbon mass. However, the approach was costly and the dissolved petroleum compounds, particularly benzene, in groundwater were found to be in the same general range of concentrations after a 1-year rebound period as prior to the remediation. Although the 1,000-µg/L benzene contour area centered west of the former UST has decreased, the concentrations in the western area of the former UST have remained in the same range as before the DPE event. Based on the fine-grained, low permeability soil (largely clay) present beneath the site, removal of hydrocarbons from the subsurface cannot be cost effectively completed using extraction or in-situ chemical methods. Although the affected soil and groundwater areas are shallow, access to the contaminated area is limited by the presence of the buildings and any approach to excavation of all the soil-containing hydrocarbons is thus very limited. These findings indicate that the source area has been remediated to the extent practicable.

2. The site has been adequately characterized. The previous investigation and monitoring data indicated the presence of dissolved and adsorbed petroleum contamination in fine-grained soil and shallow groundwater. The groundwater wells west (downgradient) of the former UST (E-2, E-7 and E-8) that were recently added to the monitoring network report benzene concentrations (up to 178 μg/L first semi-annual 2011) that exhibit declining trends and are much lower than in the plume core area near the former UST, indicating a rapid lateral decrease in concentrations.

In response to DPE activities, hydrocarbon concentrations increased in downgradient extraction wells, possibly as a response to mass withdrawal or mobilization during extraction. The declining trends in the downgradient wells are consistent with reequilibration of the hydrocarbon plume near the UST area following DPE activities.

During a 2008 investigation, location GP-8, near the western property boundary, reported no detectable hydrocarbon concentrations in soil and grab groundwater. This finding marks the western extent of the dissolved petroleum hydrocarbons, and together with monitoring data for wells MW-1, MW-2, MW-5, MW-7 and E-2 documents the limited lateral migration of the dissolved hydrocarbons.

- 3. *The dissolved hydrocarbon plume is not migrating.* Ongoing groundwater monitoring suggests stable to declining hydrocarbon concentrations. The plume does not appear to extend offsite.
- 4. No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted. As noted above, the dissolved hydrocarbon plume is stable. Monitoring results for the site wells that screen a deeper water-bearing zone, including those located in the source area, typically do not report the presence of petroleum hydrocarbons, suggesting the limited vertical extent of hydrocarbons.
- 5. The site presents no significant risk to human health. The site is a commercial property located in an industrial area. A review of the benzene concentrations in subsurface and potential exposures via indoor air inhalation indicated associated human health risk estimates within acceptable ranges, as reported previously. Natural attenuation is expected to further limit the potential human health risks associated with petroleum hydrocarbons in the subsurface.

6. The site presents no significant risk to the environment. As described above, the hydrocarbon plume is stable to declining, limited to within the property boundary, and no sensitive receptors have been identified in the site vicinity. Natural attenuation is expected to further limit the potential risk to the environment associated with petroleum hydrocarbons in the subsurface.

Based on this evaluation, the recommended semi-annual groundwater monitoring and reporting is sufficient to confirm stable to declining concentration trends. Future groundwater monitoring data will be used to further support a monitored natural attenuation approach, and a subsequent no-further-action determination based on low-risk groundwater criteria. If hydrocarbon concentrations suggest that further active remediation should be evaluated, the network of monitoring and extraction wells is in-place to provide supplemental monitoring and/or remediation coverage.

REVIEWED BY:

Paul Parmentier, CHG

Parmentier
No. 3915

ATE OF CALIFO

TE:

6.24-2011

ATTACHMENTS:

- Current Groundwater Analysis and Gauging Results (Table 1)
- Historical Groundwater Analysis and Gauging Results (Table 2)
- Site Location Map (Figure 1)
- Site Map With Well Locations (Figure 2)
- Groundwater Gradient Map June 2011 (Figure 3)
- Groundwater Concentrations Benzene and Total Petroleum Hydrocarbons June 2011 (Figure 4)
- Groundwater Monitoring Procedures and Field Data Sheets
- Groundwater Sampling Laboratory Report and Chain-of-Custody

DISTRIBUTION:

- Mr. Dave Murray, PCC Flow Technologies
- Mr. Vignoles, Site Owner

SGI THE SOURCE GROUP, INC.

FIGURE

3

OAKLAND, CALIFORNIA

SGI SOURCE GROUP, INC.

FIGURE

4

Paco Pump 9201 San Leandro Street Oakland, California

/ell Identification	Date Collected	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾	
MW-1	15-Nov-92	18.05	9.34	8.71	
	9-Mar-93		8.50	9.55	
	21-Jul-93		9.00	9.05	
	26-May-94		9.06	8.99	
	24-Aug-94		8.40	9.65	
	22-Nov-94		8.20	9.85	
	8-Feb-95		8.30	9.75	
	31-May-95		9.35	8.70	
	8-Aug-95		9.16	8.89	
	29-Nov-95		9.28	8.77	
	29-Feb-96		7.62	10.43	
	23-May-96		8.28	9.77	
	4-Nov-96		9.20	8.85	
	13-May-97		9.04	9.01	
	14-Nov-07		8.50	9.55	
	17-Jun-08		9.04	9.01	
	13-Jan-09	17.76	8.65	9.11	
		17.70	8.67	9.09	
	28-Apr-09 6-Nov-09		8.79	8.97	
	28-Jun-10		8.77	8.99	
			7.20	10.56	
	30-Dec-10				
	8-Jun-11		8.12	9.64	
MW-2	15-Nov-92	19.40	10.05	9.35	
	9-Mar-93		9.21	10.19	
	21-Jul-93		9.72	9.68	
	26-May-94		9.58	9.82	
	24-Aug-94		9.98	9.42	
	22-Nov-94		8.70	10.70	
	8-Feb-95		8.68	10.72	
	31-May-95		9.48	9.92	
	8-Aug-95		9.64	9.76	
	29-Nov-95		9.86	9.54	
	29-Feb-96		8.12	11.28	
	23-May-96		8.70	10.70	
	4-Nov-96		9.50	9.90	
	13-May-97		9.44	9.96	
	14-Nov-07		8.94	10.46	
	17-Jun-08		9.57	9.83	
	13-Jan-09	19.12	9.21	9.91	
	28-Apr-09		9.30	9.82	
	6-Nov-09		8.91	10.21	
	28-Jun-10		9.33	9.79	
	30-Dec-10		7.52	11.60	
	8-Jun-11		8.52	10.60	
MW-3		19.70			
10100-3	15-Nov-92	19.70	10.35	9.35	
	9-Mar-93		9.19	10.51	
	21-Jul-93		11.07	8.63	
	26-May-94		10.04	9.66	

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing	Depth to	Groundwater
weii identification	Date Collected	Elevation ⁽¹⁾	Groundwater (2)	Elevation (1)
	22-Nov-94		8.92	10.78
	8-Feb-95		8.90	10.80
	31-May-95		10.16	9.54
MW-3	8-Aug-95		9.92	9.78
(continued)	29-Nov-95		10.7	9.00
,	29-Feb-96		8.52	11.18
	23-May-96		8.15	11.55
	4-Nov-96		7.21	12.49
	13-May-97		9.82	9.88
	14-Nov-07		9.21	10.49
	17-Jun-08		9.81	9.89
	13-Jan-09	19.42	9.58	9.84
	28-Apr-09	10.42	9.59	9.83
	6-Nov-09		9.52	9.90
	28-Jun-10		9.60	9.82
			7.74	11.68
	30-Dec-10		I ====================================	10.62
	8-Jun-11		8.80	10.62
MW-4	15-Nov-92	19.65	8.87	10.78
	9-Mar-93		7.96	11.69
	21-Jul-93		8.06	11.59
	26-May-94		8.57	11.08
	24-Aug-94		8.75	10.90
	22-Nov-94		7.41	12.24
	8-Feb-95		7.20	12.45
	31-May-95		8.32	11.33
	8-Aug-95		8.66	10.99
	29-Nov-95		8.93	10.72
	29-Feb-96		6.54	13.11
	23-May-96		7.24	12.41
	4-Nov-96		8.58	11.07
	13-May-97		8.42	11.23
	14-Nov-07		7.61	12.04
	17-Jun-08		8.31	11.34
	13-Jan-09	19.37	NM	NM
		19.57	NM	NM
	28-Apr-09		8.00	11.37
	6-Nov-09		8.05	11.32
	28-Jun-10			13.67
	30-Dec-10		5.70	
	8-Jun-11		6.88	12.49
MW-5	24-Aug-94	18.49	8.22	10.27
	22-Nov-94		7.90	10.59
	8-Feb-95		7.92	10.57
	31-May-95		8.74	9.75
	8-Aug-95		8.93	9.56
	29-Nov-95		9.11	9.38
	29-Feb-96		7.36	11.13
	23-May-96		7.92	10.57
	4-Nov-96		8.78	9.71
	13-May-97		8.82	9.67

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing	Depth to	Groundwater
		Elevation ⁽¹⁾	Groundwater (2)	Elevation ⁽¹⁾
	14-Nov-07		8.16	10.33
	17-Jun-08		8.75	9.74
	13-Jan-09	18.21	8.46	9.75
	28-Apr-09		8.50	9.71
MW-5	6-Nov-09		9.93	8.28
(continued)	28-Jun-10		8.42	9.79
	30-Dec-10		6.68	11.53
	8-Jun-11		7.64	10.57
MW-6	13-Jan-09	19.46	9.59	9.87
	28-Apr-09		9.65	9.81
	6-Nov-09		9.60	9.86
	28-Jun-10		9.54	9.92
	30-Dec-10		7.80	11.66
	8-Jun-11		8.74	10.72
MW-7	13-Jan-09	19.44	9.66	9.78
	28-Apr-09		9.67	9.77
	6-Nov-09		9.64	9.80
	28-Jun-10		NM	NM
	30-Dec-10		7.89	11.55
	8-Jun-11		8.79	10.65
MW-8	28-Jun-10	18.27	8.07	10.20
	30-Dec-10		5.92	12.35
	8-Jun-11		7.30	10.97
AS-1S	13-Jan-09	19.38	9.45	9.93
	28-Apr-09		9.67	9.71
	6-Nov-09		9.63	9.75
	28-Jun-10		9.90	9.48
	30-Dec-10		7.65	11.73
	8-Jun-11		8.65	10.73
ASMW2S	13-Jan-09	19.38	9.51	9.87
	28-Apr-09		9.55	9.83
	6-Nov-09		9.53	9.85
	28-Jun-10		10.30	9.08
	30-Dec-10		7.73	11.65
	8-Jun-11		8.70	10.68
AS-1D	13-Jan-09	19.31	9.42	9.89
	28-Apr-09		9.48	9.83
	6-Nov-09	<u> </u>	9.50	9.81
	28-Jun-10		9.90	9.41
	30-Dec-10		7.65	11.66
	8-Jun-11		8.60	10.71
ASMW-2D	13-Jan-09	19.52	9.65	9.87
	28-Apr-09	<u> </u>	9.69	9.83
	6-Nov-09		9.70	9.82
	28-Jun-10		9.70	9.82
	30-Dec-10		7.88	11.64
	8-Jun-11		8.85	10.67

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification			Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾
E-2	16-Jun-10	19.56		
	30-Jun-10			
	30-Dec-10		7.95	11.61
	8-Jun-11		8.91	10.65
E-7	16-Jun-10	19.59		
	30-Jun-10			
	30-Dec-10		7.95	11.64
	8-Jun-11		8.89	10.70
E-8	30-Dec-10	19.59	7.96	11.63
	8-Jun-11		8.88	10.71

Notes:

⁽¹⁾ Top-of-casing and groundwater elevation in North America Vertical Datum 1988; wells re-surveyed by Tronoff Assocaites Land Surveying on February 2, 2009.
(2) Depth to water measured in feet below top of casing.

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
LFR Area 1 - S	Southwestern (Corner of the	Site, west	of the "w	orkshop	building"					
MW-2	16-Nov-92	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	9-Mar-93		430	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	21-Jul-93		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Jan-94		<50	NA	<50	<2.0	<2.0	<2.0	<2.0	NA	NA
	26-May-94		<50	NA	<50	2.3	0.8	<0.5	<0.5	NA	NA
	24-Aug-94		<50	NA	<50	3.1	1.4	0.5	0.6	NA	NA
	22-Nov-94		<50	NA	<50	3.4	1.8	<0.5	0.5	NA	NA
	8-Feb-95		<50	NA	<50	4.5	1.3	<0.5	0.5	NA	NA
	31-May-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	8-Aug-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Nov-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	29-Feb-96		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	23-May-96		<50	NA	NA	NA	NA	NA	NA	NA	NA
	4-Nov-96		<50	NA	NA	NA	NA	NA	NA	NA	ND
	13-Nov-03		NA	NA	<50	<0.5	<0.5	<0.5	<2.0	NA	ND
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
	6-Nov-09		360	NA	<50	<0.5	<0.5	<0.5	<1.0	0.63	ND
	28-Jun-10		53.4J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<280	3,240	29.2 J ^a	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
LFR Area 2 - A	Area South of t	he Warehous	e Storage	Area Buil	lding Adja	cent to the	Southern	Property	Boundary		
MW-1	15-Nov-92	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
	9-Mar-93	0.20 20.20	140	NA	NA	NA	NA	NA	NA	NA	NA
	21-Jul-93		<50	NA	NA	NA	NA	NA	NA	NA	NA NA
	29-Jan-94		<50	NA	NA	NA	NA	NA	NA	NA	NA
	26-May-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	24-Aug-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	22-Nov-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	8-Feb-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	31-May-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	23-May-96		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	27-Oct-00		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	14-Nov-07		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	0.67	NA
	6-Nov-09		<51	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		56.8J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	114 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
LFR Area 4 - I	Former UST ne	ar Groundwa	_					-	-		
MW-3	16-Nov-92	5.25-20.25	<50	NA	40,000	2,900	6,100	550	1,700	NA	NA
	9-Mar-93	2.23 23.20	290	NA	12,000	1,000	300	110	170	NA	NA
	21-Jul-93		<50	NA	3,400	420	63	36	37	NA	NA
	29-Jan-94		<50	NA	5,600	910	220	47	36	NA	NA
	26-May-94		<50	NA	5,200	890	180	45	43	NA	NA
	24-Aug-94		<50	NA	5,200	580	76	29	22	NA	NA
	22-Nov-94		<50	NA	2,200	670	130	31	28	NA	NA
	8-Feb-95		<50	NA	2,900	780	120	31	33	NA	NA
	31-May-95		NA	NA	9,100	2,800	160	91	72	NA	NA
D	31-May-95		NA	NA	5,300	1,300	170	37	44	NA	NA

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater Paco Pump 9201 San Leandro Street

Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
MW-3	28-Aug-95		NA	NA	1,400	<0.5	<0.5	1.7	8.9	NA	NA
D	28-Aug-95		NA	NA	4,800	2,500	150	53	44	NA	NA
	29-Nov-95		NA	NA	3,000	780	43	32	32	NA	NA
D	29-Nov-95		NA	NA	2,400	830	38	21	16	NA	NA
	29-Feb-96		NA	NA	3,800	1,200	130	36	35	NA	NA
D	29-Feb-96		NA	NA	8,000	3,400	430	100	99	NA	NA
	23-May-96		NA	NA	6,900	3,300	340	71	74	NA	NA
D	23-May-96		NA	NA	4,300	3,200	350	72	74	NA	NA
	4-Nov-96		NA	NA	4,900	2,100	110	70	44	NA	NA
D	4-Nov-96		NA	NA	4,500	2,100	130	61	39	NA	NA
	13-May-97		NA	NA	10,000	4,800	530	100	92	<100	NA
	26-Jan-98		NA	NA	12,000	5,000	250	91	100	NA	NA
	27-Oct-00		NA	NA	19,000	9,000	1,000	250	130	NA	NA
	3-Nov-03		NA	NA	13,000	3,900	370	300	130	<40	NA
	17-Jun-08		NA	NA	13,000	4,400	600	300	150	<100	NA
	6-Nov-09		710	NA	13,000	3,400	400	310	220	<2.5	4.1 (1,2-DCA)
	28-Jun-10		699	NA	22,200	1,740	2,100	318	1,060	<50	ND
D	28-Jun-10		722	NA	31,000	1,560	2,210	380	1,240	<50	ND
	10-Aug-10		NA	NA	12,000	1,400	1,200	190	540	<13	ND
	30-Dec-10		36,500	3,900	22,200	1,730	2,030	406	1,530	<50	ND
	8-Jun-11		NA	NA	20,400	2,180	2,040	273	765	<25	ND
MW-5	24-Aug-94	5.25-20.25	130	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
D	22-Nov-94	0.20 20.20	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	8-Feb-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	31-May-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	8-Aug-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	29-Feb-96		NA	NA	<50	0.6	<0.5	<0.5	<0.5	NA	NA NA
	13-May-97		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	27-Oct-00		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	13-Nov-03		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA NA
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	6-Nov-09		1,300	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND ND
	28-Jun-10		289	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND ND
	30-Dec-10		<94	808	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND ND
MW-6	14-Jan-09	10-17	NA	NA	740	66	48	6.3	23	1.2	17 (1,2-DCA)
	6-Nov-09		1,200	NA	4,500	1,300	270	110	44	<2.5	39 (1,2-DCA)
	28-Jun-10		474	NA	3,810	484	284	78.7	233	<10	20.8 (1,2-DCA)
	10-Aug-10		NA	NA	4,600	800	160	160	210	<6.3	12 (1,2-DCA)
	30-Dec-10		2,470	<380	9,720	1,130	469	364	1,360	<20	20.7 (1,2-DCA)
	8-Jun-11		NA	NA	8,140	1,460	377	206	515	<20	15.4 (1,2-DCA)
AS-1S	13-Jan-09	14-17	NA	NA	41,000	4,100	2,700	510	1,000	<25	ND
	6-Nov-09		1,300	NA	3,800	950	7.3	76	42	<0.5	3.1 (1,2-DCA)
	28-Jun-10		214	NA	1,630	202	26.2	9.1	25.4	2.1	3.1 (1,2-DCA)
	10-Aug-10		NA	NA	1,200	370	44	34		<2.5	2.6 (1,2 DCA)
	30-Dec-10		2,790	<570	30,000	4,530	4,040	538	1,100	<100	ND
ASMW-2S	13-Jan-09	10-17	NA	NA	9,100	2,800	430	140	230	<10	25 (1,2-DCA)
	6-Nov-09		2,400	NA	18,000	4,700	540	330	530	<2.5	50 (1,2-DCA), 46 (TBA)
	28-Jun-10		479	NA	8,330	416	434	151	583	<33	ND
	10-Aug-10		NA	NA	3,200	420	69	61	130	<3.1	3.4 (1,2 DCA)
	30-Dec-10		3,440	<2,000	5,300	447	80.1	95.0	181	ND<10	5.7 (1,2 DCA)

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
MW-7	14-Jan-09	20-28	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
	6-Nov-09		<52	NA	<50	<0.5	<0.5	<0.5	<1.0	1.3	ND
	30-Dec-10		<96	<190	<50	<1.0	<1.0	<1.0	<2.0	1.1	ND
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	1.0	ND
MW-8	28-Jun-10	8-18	<100	NA	<50	0.81J	1.3	0.41J	1.6 J	0.62J	ND
	30-Dec-10		<95	<190	<50	<1.0	<1.0	<1.0	<2.0	0.53J	ND
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D	13-Jan-09	31-34	NA	NA	<50	0.69	0.54	<0.5	<0.5	<0.5	ND
	6-Nov-09		<53	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
ASMW-2D	13-Jan-09	24-34	NA	NA	<50	0.80	0.78	<0.5	<0.5	0.56	ND
	6-Nov-09		<51	NA	<50	<0.5	<0.5	<0.5	<1.0	0.58	ND
	28-Jun-10		<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<100	<200	<50	<1.0	<1.0	<1.0	<2.0	<1.0	
E1	16-Jun-10	8-18	NA	NA	36,000	3,200	2,300	750	2,170	<25	<25
	30-Jun-10		NA	NA	124	11.7	9.4	1.5	7.7	<1	0.31 (1,2 DCA)
E2	16-Jun-10	8-18	NA	NA	72	5.3	5.9	0.89	4.9	2.1	0.68 (1,2 DCA)
	30-Jun-10		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	2.0	0.5 (1,2 DCA)
	30-Dec-10		<190	3,740	<50	<1.0	<1.0	<1.0	<2.0	1.8	0.41 (1,2 DCA)
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	1.7	0.45 (1,2-DCA)
E7	16-Jun-10	8-18	NA	NA	780	100	73	20	80	5.2	1.9 (1,2 DCA)
	30-Jun-10		NA	NA	3,460	207	258	<25	360	3.8	2.5 (1,2 DCA)
	30-Dec-10		1,360	<190	3,380	339	20.0	83.3	23.9	5.4	3.5 (1,2 DCA)
	8-Jun-11		NA	NA	1,580	143	17.4	26.9	21.7	4.3	2.2 (1,2-DCA)
E8	30-Dec-10		1,220	<190	8,930	480	19.1	164	51.8	<10	4.8 (1,2-DCA)
	8-Jun-11		NA	NA	3,520	178	9.6	56	49.5	<5	2.7 (1,2-DCA)
E11	16-Jun-10	8-18	NA	NA	25,000	1,800	1,500	480	980	<13	<13
	30-Jun-10		NA	NA	15,300	268	509	473	1,140	<40	<40
E12	16-Jun-10	8-18	NA	NA	4,300	190	15	43	49	<2	2.0 (1,2 DCA)
	30-Jun-10		NA	NA	1,570	130	6.6	<3	24.2	<3	<3
_FR Area 5 - S	suspected For	mer UST near	Groundw	ater Moni	toring We	ell MW-4					
MW-4	16-Nov-92	5.25-20.25	<50	NA	560	66	73	16	130	NA	NA
D	16-Nov-92		<50	NA	520	63	67	15	140	NA	NA
	9-Mar-93		<50	NA	750	67	12	29	62	NA	NA
	21-Jul-93		<50	NA	250	21	4.2	8.4	11	NA	NA
	29-Jan-94		<50	NA	180	28	2.2	6.2	10	NA	NA
	26-May-94		NA	NA	130	14	3.2	6.1	4.7	NA	NA
	24-Aug-94		NA	NA	70	6.7	0.9	2.8	2.6	NA	NA
	22-Nov-94		NA	NA	90	16	1.7	5.6	3.4	NA	NA
	8-Feb-95		NA	NA	90	17	1.3	5.5	3.0	NA	NA
	31-May-95		NA	NA	90	13	0.6	2.3	1.2	NA	NA
	8-Aug-95		NA	NA	80	3.6	<0.5	1.4	0.6	NA NA	NA NA
	29-Nov-95		NA	NA	<50	4.5	0.7	1.0	0.7	NA	NA NA
	29-Feb-96		NA NA	NA NA	<50	7.4	1.0	3.2	2.4	NA NA	NA NA
	23-May-96		NA	NA	80	11	2.0	2.3	1.0	NA	NA NA
	3-Nov-03		∠5 ∩	NΙΛ	<i>></i> 50	1 62	0.56	.3 1			
	3-Nov-03 18-Jun-08		<50 <50	NA NA	<50 81	6.3 11	0.56 0.51	3.4 4.7	1.0	<2.0 <0.5	NA ND

Table 2

Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
	28-Jun-10		<100	NA	186	12.3	0.9	5.9	2.3	<1.0	ND
	30-Dec-10		<94	<190	77.4	7.4	<1.0	2.6	0.98	<1.0	ND
	8-Jun-11		NA	NA	94.2	10.2	1	3.4	1.60	<1.0	ND
ESL's Groundwater <u>is</u> current or potential drinking water source			100	100	100	1.0	40	30	20	5.0	0.5 (1,2-DCA), 12 (TBA)

Notes:

bgs = below ground surface NA = parameter not analyzed ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

D = duplicate sample

TBA - tertiary butyl alcohol

ESL = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels Table F-1a and Table F-1b RWQCB **Bold Font** denotes concentration was greater than the ESL.

J = Estimated value above method detection limit but below laboratory reporting limit.

GROUNDWATER MONITORING PROCEDURES AND FIELD DATA SHEETS

WELL GAUGING DATA

Project #	110609	-S01	Date	6-	9-11	Client	The_	Source	groy
						***************************************			V
~. /y-	. 0.	À	1	Λ	A 1	1. 100			

Well ID	Time	Well Size (in.)	Sheen / Odor	Thickness of Immiscible Liquid (ft.)	Depth to water (ft.)	Depth to well bottom (ft.)	Surve Point TOB	: or	Notes
MW-1	0130	4			8,12	19.98	* company		
MW-Z	0901	4			9.52	20.22			
MW-3	0943	4	·		8.80	20.00			
MW-4	09140	4			6.99	193			
MW-S	0927	4			7.64	20.08			
Mw-6	0845	2			8.74	16-32			
MW-7	0916	2			8.79	27,13	susenside de la company		
MW-8	の行	4		-	7.30	18.10	Real Parties of The Control		
٤-(MY	2			0.21	19.10	er and the second secon		
ヒ・ユ	0900	2			8.97	18.24	guega provincia de la companya de la		
6-3	લા	2			8.84	1878	Control of		
E-4	onzi	2			8.76	19.19	nice en		
£-5	0855	2			8.95	18.9	e de la constante de la consta		,
6-0	0904	2			9.79	18-13	Age voca in grant de la missión		
6-7	0908	2		Ŀ	8.89	(8.14			
包-8	Out	2			8.98	18,02	opposite province and the second seco		
EA	6945	2			9.75	19.05	A Paris Control of the Control of th		

WELL GAUGING DATA

Proje	ct #\\ <i>0\c</i>	08-201	Date	6-9-11	Client	the	Source	mous
	*							1
014.	9201	C	Levelor)	St	Oakland	00		

Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
きつい	0907	2					8.60	18.10)	
	0930	2					8.40	18.05	ST COLOR OF THE STATE OF THE ST	
6-12 6-12 45-15	0934	2					8.05	17.90		
19-15	OW	2					8.65	16.60 32.88	The Control of the Co	
AS-10	0917	2					9.60	3288		
MSMW 2S	MG	2	,				8.70 8.85	16.90		
ASMWZD		2					8.85	<i>33.90</i>		
		Trage 1								390
	1.0								¥ %.	
									N	
	-			-						-
										7 ~
:								,		

WELLHEAD INSPECTION CHECKLIST

Date		Client		ne Si	owce Oukli	G032)		
Site Address	9201 5	in L	ecusio	St	Oulde	und ca		
Job Number	110000-101				chnician	101	BP	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain
Mw-1					Wellbox	·	below)	below)
NW2					· · · · ·	"	X	
New-3							X	
							×	
MW-4 MW-5					-			
NW-6	×				7			
NW-7	×							
Mul							K	
2-1	×							
E-Z	X							
6-3	*							
E-4	X							
E-S	X							
E-6	× .						·	·
6-7	X							
6.8	<u> </u>							
NOTES: M	NO 1	Wi M	N-4 1	Diamond	1 11.1.	MALJ	7 20	211K
MISSY, M	W-8 1/7	2 70/5	Bolker					

		······						Western day the learning of the selection

WELLHEAD INSPECTION CHECKLIST

Page of Z

Date <u>6</u>	9-11	Client	- he	Souc	e 000	W)		
Site Address	9201 SW	n Lea	P	67	Oable	L cr	4.	
Job Number	10609-101	•	·	Ted	chnician	02	132	· · · · · · · · · · · · · · · · · · ·
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
E-9	X							
E 710	X							
ET	×							
6-12	X		·					
AS-15	ン							
145-ID	×							·
AGMU12S	·×							
ASMWZD	×							:
	·							
NOTES:								

	·							
					· · · · · · · · · · · · · · · · · · ·			
		W. W. S. C.	<u> </u>					WHAT I AMERICAN

			VELL MONIT	ORING DATA	ASHELI	·		
Project #:	110608-	JUI	·	Client: 1/2	source q	(Ch)		
Sampler:	SO 1B	P		Date: 6-9)-([
Well I.D.:	MW-7_			Well Diameter: 2 3 (4) 6 8				
Total Well	Depth (TI)): ZO	.22	Depth to Wate	er (DTW): 💪.	52		
Depth to Fr	ee Produc	t:	A CONTRACTOR OF THE PROPERTY O	Thickness of I	Free Product (fe	et):		
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	(YSI) HACH		
DTW with	80% Rech	arge [(H	Ieight of Water	Column x 0.20) + DTW]: lo	.86		
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displacem	ent Extrac	Waterra Peristaltic ction Pump Well Diame	Other Multiplier Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X	ified Volum	$\frac{1}{1000} = \frac{72.9}{\text{Calculated Volumes}}$	Gals. 2"	0.16 6" 0.37 Other	1.47		
Time	Temp (°F on °C)	pH 7-7-	Cond. (mS or us)	Turbidity (NTUs)	Gals. Removed	Observations		
	19.3	4.12	1/220	631	15,2			
6101	19.3	7.10	1202	630	72.0			
			·					
Did well dev	water?	Yes (Nd	Gallons actuall	y evacuated:	728		
Sampling Da	ate: 6-E	1-11	Sampling Time	e: 1015	Depth to Wate	r: 936		
Sample I.D.:	Mu	-1		Laboratory:	Kiff CalScience	e Other Vocates+		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	_ COC		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:	1,52	mg/ _L P	ost-purge:	\.36 mg/L		
O.R.P. (if red	q'd): (Pr	e-purge:	190	mV . (P	ost-purge:	∖&\ mV		

Project #:	110608-	JU1		Client: Me	source of	(OU)				
Sampler:	SO 1B1	$\overline{\mathcal{C}}$		Date: 6-8	~(<u> </u>					
Well I.D.:	MW-3	:		Well Diameter	: 2 3 4	6 8				
Total Well I			20,00	Depth to Water (DTW): 49.00 8.00						
Depth to Fre	ee Product			Thickness of F	Thickness of Free Product (feet):					
Referenced		PVC	Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW with 8	30% Recha	arge [(H	leight of Water	Column x 0.20) + DTW]: 1(-04						
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing				
7.3 (C 1 Case Volume	Gals.) XSpeci	ろ fied Volun	$= \frac{2.9}{\text{Calculated Vo}}$	Gals. Slume	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163				
Time	Temp (°F or Ĉ	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations				
1057	19.3	6.8	1054	2:74	73	Oder				
1050	19.3	674	1060	299	14.6	12 4				
1100	19.4	6.71	W63	271	71.1	ic ci.				
	***		-		1					
					-					
Did well dev	water?	Yes	No	Gallons actuall	y evacuated:	21.9				
Sampling Da	ate: 6-8)~((Sampling Time	e: 1(0G	Depth to Water	r:				
Sample I.D.:	: Nw-3			Laboratory:	Kiff CalScience	e Other Uccutes+				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COL				
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:					
D.O. (if req'o	d): Pr	e-purge.	0.95	mg/L P	ost-purge:	0.76 mg/L				
O.R.P. (if re	a'd): Pr	e-purge:	31	mV . P	ost-purge:	~ 70 mV				

Project #:	110608	JU1		Client: The source group					
Sampler:	(A) (B	\bigcirc		Date:	6-8	((\	
Well I.D.:	MW-H			Well Diameter: 2 3 4 6 8					
Total Well): Ra	(3	Depth to Water (DTW): 6.96					
Depth to Fr	ee Product		,	Thickness of Free Product (feet):					
Referenced	to:	PVO	Grade	D.O. M	eter (if	req'd):		YSI HAC	CH
DTW with	80% Rech	arge [(H	Ieight of Water	Column	x 0.20) + DTW	<u>]:</u> 9	149	
Purge Method:	0.1	Waterra Peristaltic ction Pump		Sampling	g Method: Other:	Disposable Extraction Dedicated T	Bailer Port		
B.4 ((Gals.) XSpeci	fied Volum	= 25.2 nes Calculated Vo	_ Gals.	Vell Diamet 1" 2" 3"	er Multiplie 0.04 0.16 0.37	r Well 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0	.163
Time	Temp (°F or C)	рН	Cond. (mS or us)	Turb:	•	Gals. Re	emoved	Observat	ions
1039	14-2	7.36	93	300	<u>) </u>	8.4			
1040	173	74	906	24	O	16.6	····		
1042	17:2	7.40	9,0	217		15.7			
			-						
Did well dev	water?	Yes (No	Gallons	actuall	y evacua	ted:	25.2	
Sampling D	ate: 6-9	i~((Sampling Time	e: 10£	<u> </u>	Depth to) Water	r: 7-00	
Sample I.D.	: Mw-4			Laborato	ory:	Kiff Ca	alScience	e Other <i>Accu</i>	test_
Analyzed fo	Oxygenat	es (5)	Other:	See	coc				
EB I.D. (if a	Duplicat	te I.D. ((if applic	able):					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other:			
D.O. (if req'o	d): Pr	e-purge	192	$^{ m mg}/_{ m L}$	P	ost-purge:)	1.36	$^{mg}/_{L}$
O.R.P. (if re	q'd): Pr	e-purge:	Contraction of the Contraction o	mV	. (ost-purge:		150	mV

Project #:	110000	101		Client	: The	Source q	KOUD			
Sampler:	50 B	0		Date:	6-8	· · · · · · · · · · · · · · · · · · ·				
Well I.D.:	MW-6			Well I	Well Diameter: 2 3 4 6 8					
Total Well	Depth (TD)): <u>[</u>	16.32	Depth	to Wate	er (DTW):	8.74			
Depth to Fr	ee Product	t:	quariantes,	Thicks	ness of F	Free Product (fe	et):			
Referenced	to:	(PVC)	Grade	D.O. N	Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	Ieight of Water	: Colum	n x 0.20)) + DTW]:	10.25			
Purge Method:	Bailer Disposable Bailer Positive Air I Electric Subm	Displaceme	ent Extrac Other	Waterra Peristaltic action Pump	-	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	Gals.) XSpecif	ified Volum	nes = 3.6 Calculated Vo	Gals. olume	Well Diameter 1" 2" 3"	er <u>Multiplier</u> <u>Well</u> 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163			
Time	Temp (°F or Ĉ)	рН	Cond (mS of µS)	1	bidity TUs)	Gals. Removed	Observations			
1120	17.9	649	11 52	700	00	1.2	Oder (
1123	17.6	6-78	1(67	>0%	90	24				
1126	4.1	6.77	1168	>100	<u>'</u> O	3.6				

Did well dev	water?	Yes	No	Gallon	s actuall	y evacuated:	3.6			
Sampling Da	ate: 6-8)~((Sampling Time	e: ((30	Depth to Water				
Sample I.D.:	: BAWY	0		Laborat	tory:	Kiff CalScience	e Other Uccutes+			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See	COL			
EB I.D. (if a	pplicable):	•	@ Time	Duplica	ate I.D. ((if applicable):				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:				
D.O. (if req'o	d): Pr	e-purge.	1:34	$^{ m mg}/_{ m L}$	Q	ost-purge:	l.a> mg/L			
O.R.P. (if red	q'd): Pr	e-purge:	-23	mV	(Po	ost-purge:	~2(mV			

					ġ.					
Project #:	110608-	Jui		Client: 14	e Source c	KOW				
Sampler:	Sn 1B	·()		Date: 6-9	8-11					
Well I.D.:	MW-	7		Well Diamete	er: (2) 3 4	6 % . 8				
Total Well			7.13	Depth to Wat	Depth to Water (DTW): 8.79					
Depth to Fr	ee Produc	:t:		Thickness of	Thickness of Free Product (feet):					
Referenced		PVO	Grade	D.O. Meter (if req'd): (YSI) HACH						
DTW with	80% Rech	iarge [(F	Height of Water	Column x 0.2	0) + DTW]:	12.45				
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme		Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing				
7.9 (01) 1 Case Volume	Gals.) XSpeci	ified Volum	$=\frac{8.7}{\text{Calculated Vo}}$	Gals. Gals.	Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	<u>Diameter Multiplier</u> 0.65 1.47 er radius ² * 0.163				
Time	Temp (°F or °C)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations				
1117	20.0	6.98	1185	71000	2.9					
1123	19.4	6.93	1032	71000	5.8					
1129	19.4	6.94	1017	71000	8.7					
Did well dev	vater?	Yes (No,	Gallons actual	lly evacuated:	8.7				
Sampling Da	ate: 6-8	<u>) ~(</u>	Sampling Time	: //35	Depth to Wate	er: 8.9Z				
Sample I.D.:	MW	1-7		Laboratory:	Kiff CalScience	e Other Accutes+				
Analyzed for	r: TPH-G	BTEX		Oxygenates (5)	Other: Sel	<u>'</u>				
EB I.D. (if a _l	pplicable)	:	② Time	Duplicate I.D.	(if applicable):					
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	÷				
O.O. (if req'o	i): Pr	e-purger	0.17	mg/L	Post-purge:	0,38 mg/L				
D.R.P. (if red	a'd): Pr	e-purge:	13	mV . (Post-purge:	75 mV				

WELL WORLD	ORING DATA SHEET
Project #: \\0\000 -\J0\	Client: The sauce acous
Sampler: (3) 130	Date: 6-8-11
Well I.D.: MW-8	Well Diameter: 2 3 4 6 8
Total Well Depth (TD):	Depth to Water (DTW): 7.30
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVO Grade	D.O. Meter (if req'd): (YSI) HACH
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 9.46
Diopositore Burrer	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer tion Pump Extraction Port Dedicated Tubing
	Other:
$\frac{\frac{1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{2}{\text{Calculated Volumes}}$	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius² * 0.163

Time	Temp (°F or °C)	рН	Cond. (mS or (\hat{\mu}S))	Turbidity (NTUs)	Gals. Removed	Observations
1023	P.F.I	7.06	426	7000	70	
1024	17.6	7.04	830	>1006	14.0	
1026	17-7	701	834	>1000	21.0	·
			-			
					·	
Did well dev	vater?	Yes	(No)	Gallons actuall:	y evacuated:	40
Sampling Da	nte: 6-8	~((Sampling Tim	e: ₍₀₃₀	Depth to Water	· 0.6
Sample I.D.:	Mw-8			Laboratory:	Kiff CalScience	Other Vocates+
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COL
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. ((if applicable):	
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'o	l): Pro	e-purge.	3.24	mg/L Po	ost-purge:	\.\\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
O.R.P. (if red	q'd): Pro	e-purge:	164	mV . Po	ost-purge:	NG mV

Project #: \\0\partial 0\partial 0\partial 0\partial 101				Client: Me	source of	<u> </u>		
Sampler: JO IBP				Date: 6-8-1				
Well I.D.:	E-3			Well Diameter: (2) 3 4 6 8				
Total Well	Depth (TI)): / 8	.24	Depth to Water (DTW): 8.9/				
Depth to Fr	ee Produc			Thickness of Free Product (feet):				
Referenced		PVC	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	10.77		
Purge Method:	Bailer Disposable B Positive Air l Electric Subr	Displaceme		Waterra Peristaltic tion Pump	Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing		
1.5 (0 1 Case Volume	Gals.) XSpeci	3 ified Volum	$=\frac{4.5}{\text{Calculated Vo}}$	3"	0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163		
Time	Temp	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1056	19.9	6.81	1405	7/000	1.5			
1059	19.5	6.83	1408	71000	3.0			
1103	19.1	6.82	1422	71000	4.5			
Did well dev	water?	Yes (No	Gallons actuall	y evacuated:	4.5		
Sampling Da	ate: 6-9		Sampling Time	e: //10	Depth to Water	r: 10.02		
Sample I.D.:				Laboratory:	Kiff CalScience	e Other <u>Accutes</u>		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COL		
EB I.D. (if a	.pplicable)	•	@ Time	Duplicate I.D. ((if applicable):			
Analyzed for			MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:	0.36	mg/L Pc	ost-purge:	0.16 mg/L		
O.R.P. (if red	q'd): (Pr	e-purge:	-38	mV . Po	ost-purge:	0.16 mg/ _L		

		·						
Project #: \\ 0\(\phi\) 0\(\phi\) -\] (1)				Client: The	Source q	(1)U)		
Sampler: JO (BP				Date: 6-8-11				
Well I.D.: <i>E-7</i>				Well Diameter: 2 3 4 6 8				
				Depth to Water (DTW): 8,89				
Depth to Fr	ee Produc			Thickness of Free Product (feet):				
Referenced		PVO	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with 8	80% Rech	arge [(H	Ieight of Water	Column x 0.20		10.74		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Waterra Peristaltic Extraction Pump Other: Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 2" 0.16 6" 1.47								
l Case Volume		fied Volun		3" -	0.37 Other	radius ² * 0.163		
Time	Temp	pН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations		
1010	21.1	7.16	2150	243	1.5			
1013	[4.]	6.79	1428	207	3.0			
1016	18.5	6.77	1379	219	4.5			
		.*			, ,			
			·					
Did well dewater? Yes No				Gallons actually evacuated: 4.5				
Sampling Date: 6-8-1 Sampling Time: 10 25 Depth to Water: 10.21								
Sample I.D.: E-7 Laboratory: Kiff CalScience Other vicintes+								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COL								
EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):								
Analyzed for	r: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:	0.10	mg/L P	ost-purge:	0.09 mg/L		
O.R.P. (if red	q'd): Pr	e-purge:	-26	mV P	ost-purge:	-66 mV		

Project #: \\0000 - JU1				Client: Me	Source a	<0.07 h ∩			
Sampler: SO IBP				Date: 6-8-4					
Well I.D.:	E-8	>		Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI	D): /5	3.02	Depth to Water (DTW): 8,88					
Depth to F	ree Produc			Thickness of Free Product (feet):					
Referenced	l to:	(PVC)	Grade	D.O. Meter (if	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	narge [(H	leight of Water	Column x 0.20) + DTW]:	10.70			
Purge Method:	Disposable I Positive Air Electric Sub	Displaceme	Other	Waterra Peristaltic ction Pump Gals. Well Diamet 1" 2" 3"	Other Other	Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier 0.65 1.47			
Time	Temp	pH	Cond. (mS or us)	Turbidity (NTUs)	Gals. Removed	Observations			
1036	20.2	6.95	1266	7/000	1.5				
1039	19.1	6.91	1288	802	3.0	·			
1042	18.7	6.95	1277	794	4.5				
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	4.5			
Sampling D	ate: 6-G	β~l(Sampling Time	: 1045	Depth to Water	r: 10.55			
Sample I.D.	: E-	8		Laboratory:	Kiff CalScience	e Other Macutes+			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COL			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. ((if applicable):				
Analyzed fo	r: TPH-G	BTEX	мтве трн-р	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge	0.20	mg/L P	ost-purge:	0.09 mg/L			
O.R.P. (if re	q'd): Pr	e-purge:	-69	mV . P	ost-purge:	- QL mV			

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Ma Sonce	anno Pi	co punos	PROJECT NUMBER 10608-30				
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS	
myrone Uttameter II	622284	6-8-11 09 <i>00</i>	7,10,4 3900ms 00p	7-2,10.01,421 388645 2424	yes	16°C	SS	
yest Dometry	06E14Z4 AS	6-9-11	100%.	99.7.	Yes	NA	Sz	
					V			
	,							

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAME SGI Paco Pumps Oakland PROJECT NUMBER 110608-201									
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:		INITIALS		
YS1550	03 A03 90 AB	6/8/11 @ 0630	0.00 ma/L	9.87 mg/c	ges	67.1	BP		
Myson C Ultragety	6207755	10/11	PN 7,00 10.00 4.00	PN 699 10.01 3.91	yes	20.6°C	* 0		
/			ORP 237.5 E 20°C	0RP 2380	yes	20.8	89		
	,		cond 3900us	cand 3897 mg	GR)	20.9	8 P		
						·.			
16 N									
				,					

Si . or Purge Water Drum Lo

Client:	SGI			
Site Address:		IPADRO A	NE BALLAND	, CA

STATUS OF DRUM(S) UPON	ARRIVA			
Date	11-6-0	6-28-16	12/30/10	6-8-11
Number of drum(s) empty:	2	10	100000000000000000000000000000000000000	
Number of drum(s) 1/4 full:			1 (Non)	
Number of drum(s) 1/2 full:				
Number of drum(s) 3/4 full:		element of		
Number of drum(s) full:		10		8
Total drum(s) on site:	2		1	8
Are the drum(s) properly labeled?	NO	NO	No	a _O
Drum ID & Contents:			Purge 140	pure the
If any drum(s) are partially or totally filled, what is the first use date:		MA	NA	NA

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.
- -All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON DEPARTURE						
Date	11-6-09	6-28-10	12/30/10	6-8-4		
Number of drums empty:	2	7				
Number of drum(s) 1/4 full:			1 (Non)			
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:						
Number of drum(s) full:	2	13	4	10		
Total drum(s) on site:	5		5	10		
Are the drum(s) properly labeled?	45	8ts ges	BIETES	2005 Sel		
Drum ID & Contents:	Pune (50)	PMICHO	Punelteo	mackato		

Describe location of drum(s): Next to Boildy In Alyway avenuent to bet AS-15

FINAL STATUS					
Number of new drum(s) left on site this event	3	0	4	2	
Date of inspection:	11-6-01	6-28-10	12/30/10	6-8-4	
Drum(s) labelled properly:	ges	465	us	<u>487₽</u>	
Logged by BTS Field Tech:	80	37,	DR	め	
Office reviewed by:	和	M	M	MORJ	

GROUNDWATER SAMPLING LABORATORY REPORT AND CHAIN OF CUSTODY

06/21/11

Technical Report for

The Source Group

T0600101592-9201 San Leandro Street, Oakland CA

PACO PUMPS (PO#:04-PFT-001)

Accutest Job Number: C16434

Sampling Date: 06/08/11

Report to:

The Source Group
3451C Vincent Road
Pleasant Hill, CA 94523
pparmentier@thesourcegroup.net; sdaro@thesourcegroup.net

ATTN: Paul Parmentier

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ its \ entirety, \ without \ the \ written \ approval \ of \ Accutest \ Laboratories.$

Test results relate only to samples analyzed.

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C16434-1: MW-2	5
2.2: C16434-2: MW-3	6
2.3: C16434-3: MW-4	7
2.4: C16434-4: MW-6	8
2.5: C16434-5: MW-7	9
2.6: C16434-6: MW-8	10
2.7: C16434-7: E-2	11
2.8: C16434-8: E-7	12
2.9: C16434-9: E-8	13
2.10: C16434-10: TB-1	14
Section 3: Misc. Forms	15
3.1: Chain of Custody	16
Section 4: GC/MS Volatiles - QC Data Summaries	18
4.1: Method Blank Summary	19
4.2: Blank Spike Summary	21
4.3: Blank Spike/Blank Spike Duplicate Summary	23
4.4: Matrix Spike/Matrix Spike Duplicate Summary	25

_

Sample Summary

Job No:

C16434

The Source Group

T0600101592-9201 San Leandro Street, Oakland CA Project No: PACO PUMPS (PO#:04-PFT-001)

06/08/11 09:40 BTS

06/08/11 AQ

C16434-10

Sample Collected Matrix Client Time By Number Date **Received Code Type** Sample ID C16434-1 06/08/11 10:15 BTS 06/08/11 AQ Ground Water MW-2 C16434-2 06/08/11 11:05 BTS 06/08/11 AQ Ground Water MW-3 C16434-3 06/08/11 10:50 BTS MW-4 06/08/11 AQ Ground Water C16434-4 06/08/11 11:30 BTS MW-6 06/08/11 AQ Ground Water C16434-5 06/08/11 11:35 BTS 06/08/11 AQ Ground Water MW-7 C16434-6 06/08/11 10:30 BTS MW-8 06/08/11 AQ Ground Water C16434-7 06/08/11 11:10 BTS 06/08/11 AQ Ground Water E-2 C16434-8 06/08/11 10:25 BTS E-7 06/08/11 AQ Ground Water C16434-9 06/08/11 10:45 BTS 06/08/11 AQ Ground Water E-8

Trip Blank Water

TB-1

Sample Results	
Report of Analysis	
Report of Analysis	

Page 1 of 1

Client Sample ID: MW-2

 Lab Sample ID:
 C16434-1
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N22803.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	98%		60-13	30%	
2037-26-5	Toluene-D8	102%		60-13	30%	
460-00-4	4-Bromofluorobenzene	102%		60-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-3

 Lab Sample ID:
 C16434-2
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N22805.D 25 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	2180	25	7.5	ug/l	
108-88-3	Toluene	2040	25	13	ug/l	
100-41-4	Ethylbenzene	273	25	7.5	ug/l	
1330-20-7	Xylene (total)	765	50	18	ug/l	
106-93-4	1,2-Dibromoethane	ND	25	5.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.5	ug/l	
108-20-3	Di-Isopropyl ether	ND	130	13	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	130	13	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	25	13	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	130	13	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	250	130	ug/l	
	TPH-GRO (C6-C10)	20400	1300	630	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		60-13	30%	
2037-26-5	Toluene-D8	102%		60-13	30%	
460-00-4	4-Bromofluorobenzene	102%		60-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-4

 Lab Sample ID:
 C16434-3
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 N22807.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	10.2	1.0	0.30	ug/l	
108-88-3	Toluene	0.59	1.0	0.50	ug/l	J
100-41-4	Ethylbenzene	3.4	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	1.6	2.0	0.70	ug/l	J
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	94.2	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	97%		60-13	80%	
2037-26-5	Toluene-D8	101%		60-13	80%	
460-00-4	4-Bromofluorobenzene	100%		60-13	80%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C16434-4
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1N22809.D2006/15/11TFn/an/aVN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	1460	20	6.0	ug/l	
108-88-3	Toluene	377	20	10	ug/l	
100-41-4	Ethylbenzene	206	20	6.0	ug/l	
1330-20-7	Xylene (total)	515	40	14	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	4.0	ug/l	
107-06-2	1,2-Dichloroethane	15.4	20	6.0	ug/l	J
108-20-3	Di-Isopropyl ether	ND	100	10	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	100	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	10	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	100	10	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	200	100	ug/l	
	TPH-GRO (C6-C10)	8140	1000	500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	97%		60-1	30%	
2037-26-5	Toluene-D8	100%		60-1	30%	
460-00-4	4-Bromofluorobenzene	101%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-7

 Lab Sample ID:
 C16434-5
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N22810.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	ND	1.0	0.30	ug/l	
Toluene	ND	1.0	0.50	ug/l	
Ethylbenzene	ND	1.0	0.30	ug/l	
Xylene (total)	ND	2.0	0.70	ug/l	
1,2-Dibromoethane	ND	1.0	0.20	ug/l	
1,2-Dichloroethane	ND	1.0	0.30	ug/l	
Di-Isopropyl ether	ND	5.0	0.50	ug/l	
Ethyl Tert Butyl Ether	ND	5.0	0.50	•	
Methyl Tert Butyl Ether	0.97	1.0	0.50	ug/l	J
Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
Tert-Butyl Alcohol	ND	10	5.0	ug/l	
TPH-GRO (C6-C10)	ND	50	25	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	un# 2 Limits		
Dibromofluoromethane	95%		60-1	30%	
Toluene-D8	100%		60-1	30%	
4-Bromofluorobenzene	99%		60-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) 1,2-Dibromoethane 1,2-Dichloroethane Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene ND Toluene ND Ethylbenzene ND Xylene (total) ND 1,2-Dibromoethane ND 1,2-Dichloroethane ND Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) ND Surrogate Recoveries Run# 1 Dibromofluoromethane 95% Toluene-D8	Benzene Toluene Ethylbenzene Xylene (total) 1,2-Dibromoethane ND 1.0 Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) Surrogate Recoveries ND 1.0 ND 1.0 ND 5.0 ND 5.0 ND 1.0 ND 5.0 ND 1.0 ND 5.0 ND 1.0 ND 5.0 ND 1.0	Benzene	ND

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-8

 Lab Sample ID:
 C16434-6
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N22811.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1060 52 5	D'1	0.60/		co 1	2007	
1868-53-7	Dibromofluoromethane	96%		60-1		
2037-26-5	Toluene-D8	101%		60-1		
460-00-4	4-Bromofluorobenzene	100%		60-13	30%	

ND = Not detected MDL - Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-2

 Lab Sample ID:
 C16434-7
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 N22812.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.45	1.0	0.30	ug/l	J
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.7	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		60-13	30%	
2037-26-5	Toluene-D8	99%	60-130%			
460-00-4	4-Bromofluorobenzene	101%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-7

 Lab Sample ID:
 C16434-8
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 N22839.D 2 06/16/11 TF n/a n/a VN763

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	143	2.0	0.60	ug/l	
Toluene	17.4	2.0	1.0	ug/l	
Ethylbenzene	26.9	2.0	0.60	ug/l	
Xylene (total)	21.7	4.0	1.4	ug/l	
1,2-Dibromoethane	ND	2.0	0.40	ug/l	
1,2-Dichloroethane	2.2	2.0	0.60	ug/l	
Di-Isopropyl ether	ND	10	1.0	ug/l	
Ethyl Tert Butyl Ether	ND	10	1.0	ug/l	
Methyl Tert Butyl Ether	4.3	2.0	1.0	ug/l	
Tert-Amyl Methyl Ether	ND	10	1.0	ug/l	
Tert-Butyl Alcohol	ND	20	10	ug/l	
TPH-GRO (C6-C10)	1580	100	50	ug/l	
C	D# 1	D# 2	T ::	4	
Surrogate Recoveries	Kun# 1	Kun# 2	Limi	ts	
Dibromofluoromethane	94%		60-13	80%	
Toluene-D8	99%	60-130%			
4-Bromofluorobenzene	98%		60-13	30%	
	Benzene Toluene Ethylbenzene Xylene (total) 1,2-Dibromoethane 1,2-Dichloroethane Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene 143 Toluene 17.4 Ethylbenzene 26.9 Xylene (total) 21.7 1,2-Dibromoethane ND 1,2-Dichloroethane 2.2 Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) 1580 Surrogate Recoveries Run# 1 Dibromofluoromethane 94% Toluene-D8 99%	Benzene	Benzene	Benzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-8

 Lab Sample ID:
 C16434-9
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 N22840.D 5 06/16/11 TF n/a n/a VN763

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	178	5.0	1.5	ug/l	
108-88-3	Toluene	9.6	5.0	2.5	ug/l	
100-41-4	Ethylbenzene	55.7	5.0	1.5	ug/l	
1330-20-7	Xylene (total)	49.5	10	3.5	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	1.0	ug/l	
107-06-2	1,2-Dichloroethane	2.7	5.0	1.5	ug/l	J
108-20-3	Di-Isopropyl ether	ND	25	2.5	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	25	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	2.5	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	25	2.5	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	50	25	ug/l	
	TPH-GRO (C6-C10)	3520	250	130	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%		60-1	30%	
2037-26-5	Toluene-D8	100%		60-1	30%	
460-00-4	4-Bromofluorobenzene	101%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: TB-1

 Lab Sample ID:
 C16434-10
 Date Sampled:
 06/08/11

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 06/08/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N22815.D 1 06/15/11 TF n/a n/a VN762

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%	60-130%			
2037-26-5	Toluene-D8	101%	60-130%			
460-00-4	4-Bromofluorobenzene	99%	60-130%			

ND = Not detected MDL - NOT - NOT

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Misc. Forms	
Custody Documents and Other Forms	

Includes the following where applicable:

• Chain of Custody

										SGR	PCA	PH 2805					
BLAI	NE	SA	N JOSE,		ROGERS							SIS TO DETECT		LAB ACCUTEST DHS #			
			,	F	AX (408)	573-777	71							LIMITS SET BY CALIFO			DETECTION
TECH SER	VICES, IN	C.		PHO	NE (408)	573-05	55							☐ EPA ☐ LIA		RWQCB REC	SION
CHAIN OF CUS	TODY	BTS#	- / N	clos.	(4)		ູ							OTHER		0164	174
CLIENT	The Sou	irce Gro	7 ,				E E				_		Ī	SPECIAL INSTRUCTION	18	31.0	7
SITE	Paco Pu		up	· · · · ·			CONTAINERS				(8260B)		,		. m		•
										109 109	(82			Invoice and Repor			•
	9201 Sa		iro St.				EAL	(B)	<u> </u>	(82	EDB			Attn: Paul Parment (562)597-1055 ext		tier@thesou	rcegroup.net
	Oakland	, CA	MATRIX	7	ONTAINE	RS	TISC	826	326(tes			1 1	PO #: 04-PFT-00:			
					J1417 (114E	.110)MP() g-	×] Sens	🌣				_		
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL			C = COMPOSITE ALL	TPH-g (8260B)	BTEX (8260B)	Oxygenates (8260B)	1,2-DCA,		,	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
MW-Z	6-8-11	1015	w	3	Viou	67		λ	X	·~	X		3	3~V:045 (W/KC)			ΣI
MW-3	- <u> </u>	1105	ı	1	1			X	K	X	~						2
MW-4		1050						Ή	سلا	7	+						3
MW-6		1130						χ	ょ	×	~						- 4
F-WM		1135		Π				χ	x	\times	X-						- 5
NW-8		1030		\prod				×	X	X	X						26
E-7_		100						X	K	X	X			1 1 1 1			77
5-7		1025						\times	X	X	入						-8
E-8		1045	5	1)		×	X	X	X						_ q
1-87	6-8-1	10940	W	至	Von	 %		X	せ	ىك	λ		1	2-Wars Carther			-10
SAMPLING COMPLETED	DATE 6-8-11	TIME	SAMPLI PERFO		ΙΥ	7.00	ارما						T)	RESULTS NEEDED			
RELEASED BY	P.B.11	1200				7,01	DAT	F		TIME		RECEIVED BY		2/	Standard TA	I DATE	TIME
1 fre	\triangle						6-	0-1	1		53~	t 1 (ml)	ın	- Mar	7	6.8.1	1537
RELEASED BY	\bigcirc		_				DAT	E		TIME		RECEIVED BY	Y	0		DATE	TIME
RELEASED BY							DAT	E		TIME		RECEIVED BY	Y			DATE	TIME
SHIPPED VIA							DAT	E SEN	Т	TIME	SENT	COOLER#		13-05=	1000	 ب	-

C16434: Chain of Custody

Page 1 of 2

		U
	•	

Accutest Laboratories Northern California Sample Recei	ving Check List	Job# : C <u>l</u>	16434	Initial: _TM
Review Chain of Custody Chain of Custody is to be comp	lete and legible.			
Are these regulatory (NPDES) samples? SWA	(es/) No	Client Sample ID	pH Check	Other Comments/Issues
v/s pH requested?	Yes/(NG)			
□ Was Client informed that hold time is 15 min? Yes / No Continue	Yes / No			
c Was ortho-Phosphate filtered with in 15 min? Yes / No Continue	Yes / No			
► Are sample within hold time?	(€9/No			
Are sample in danger of exceeding hold-time	Yes /(No)			
Existing Client? Yes / No Existing Project?	(Yes) / No			
If No: Is Report to info complete and legible, including;	<u> </u>			
□ deliverable □ Name □ Address □ phone □ e-mail	<u> </u>			
Is Bill to info complete and legible, including;	<u> </u>			
□ PO# □ Credit card □ Contact □address □ phone □ e-mail	<u> </u>			
is Contact and/or Project Manager Identified, including;	_			
phone e-mail		4.4.7.		
a Project name / number				
Special requirements? Special requirements?	Yes / No)			
Sample IDs / date & time of collection provided?	(YES)/ No			
s Matrix listed and correct?	(reg/No			
Analyses listed, we do, or client has authorized a subcontract?	(res)/No			
Chain is signed and dated by both client and sample custodian?	(reg)/No			
TAT requested available? Yesy No Approved by PM				
Review Coolers:				
✓Were all Coolers temperatures measured at ≤6°C?	€es / No			
• If cooler is outside the ≤6°C; note down the affected bottles in that cooler on the left	_			
Are samples on Ice?	(res) No			
Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators)			
	' -			
Shipment Received Method UMIK IM	-			
Custody Seals: Present: Yes / No. If Yes; Unbroken:	Yes / No			
Review of Sample Bottles; If you answer no, explain to the side	_			
Chain matches bottle labels? (es) / No Sample bottle intact?	(Yeg)/No			
s there enough sample volume in proper bottle for requested analyses?	(Yes) / No			

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

Yes / No

Check pH on preserved samples except 1664, 625, 8270 and VOAs; make notes on left.

Proper Preservatives? (es)/ No

Headspace-VOAs? Greater than 6mm in diameter
List sample ID and affected container

\Accunca.accutest.com\depts\qa\sops\sop_completelist_2010\current_active_sop_oct_2010\sc001f1_0_form1_samplecontrol_samplereceivingchecklist_2009-01-01.doc

C16434: Chain of Custody Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: C16434

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN762-MB	N22797.D	1	06/15/11	TF	n/a	n/a	VN762

The QC reported here applies to the following samples:

C16434-1, C16434-2, C16434-3, C16434-4, C16434-5, C16434-6, C16434-7, C16434-10

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries	rogate Recoveries				
1868-53-7	Dibromofluoromethane	97%	60-130%			
2037-26-5	Toluene-D8	101%	60-130%			
460-00-4	4-Bromofluorobenzene	100%	60-130%			

Method Blank Summary Job Number: C16434

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VN763-MB	N22835.D	1	06/16/11	TF	n/a	n/a	VN763

The QC reported here applies to the following samples:

C16434-8, C16434-9

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
106-93-4	1.2-Dibromoethane	ND	1.0	0.30	•
	,				ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	95%	60-130%
2037-26-5	Toluene-D8	99%	60-130%
460-00-4	4-Bromofluorobenzene	98%	60-130%

Blank Spike Summary Job Number: C16434

Account: SGRPCAPH The Source Group

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample VN762-BS1	File ID N22800.D	DF 1	Analyzed 06/15/11	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN762

The QC reported here applies to the following samples:

C16434-1, C16434-2, C16434-3, C16434-4, C16434-5, C16434-6, C16434-7, C16434-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	124	99	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	96%	60-1	30%	
2037-26-5	Toluene-D8	101%		130%	
460-00-4	4-Bromofluorobenzene	101%		130%	
400-00-4	4-Di ollioriuoi obelizelle	101%	00-1	30%	

Blank Spike Summary Job Number: C16434

Account: SGRPCAPH The Source Group

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample VN763-BS1	File ID N22838.D	DF 1	Analyzed 06/16/11	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN763

The QC reported here applies to the following samples:

C16434-8, C16434-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	125	100	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	94% 101%	60-1	30%	
460-00-4	4-Bromofluorobenzene	100%	60-1	30%	

Blank Spike/Blank Spike Duplicate Summary

Job Number: C16434

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VN762-BS	N22798.D	1	06/15/11	TF	n/a	n/a	VN762
VN762-BSD	N22799.D	1	06/15/11	TF	n/a	n/a	VN762

The QC reported here applies to the following samples:

C16434-1, C16434-2, C16434-3, C16434-4, C16434-5, C16434-6, C16434-7, C16434-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	20.9	105	21.9	110	5	60-130/30
106-93-4	1,2-Dibromoethane	20	21.2	106	22.0	110	4	60-130/30
107-06-2	1,2-Dichloroethane	20	21.7	109	21.7	109	0	60-130/30
108-20-3	Di-Isopropyl ether	20	22.2	111	23.0	115	4	60-130/30
100-41-4	Ethylbenzene	20	20.0	100	21.5	108	7	60-130/30
637-92-3	Ethyl Tert Butyl Ether	20	21.1	106	21.8	109	3	60-130/30
1634-04-4	Methyl Tert Butyl Ether	20	21.9	110	22.1	111	1	60-130/30
994-05-8	Tert-Amyl Methyl Ether	20	21.7	109	22.1	111	2	60-130/30
75-65-0	Tert-Butyl Alcohol	100	108	108	101	101	7	60-130/30
108-88-3	Toluene	20	19.9	100	21.5	108	8	60-130/30
1330-20-7	Xylene (total)	60	60.7	101	65.3	109	7	60-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	100%	98%	60-130%
2037-26-5	Toluene-D8	97%	100%	60-130%
460-00-4	4-Bromofluorobenzene	102%	102%	60-130%

Page 1 of 1

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C16434

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN763-BS	N22836.D	1	06/16/11	TF	n/a	n/a	VN763
VN763-BSD	N22837.D	1	06/16/11	TF	n/a	n/a	VN763

The QC reported here applies to the following samples:

C16434-8, C16434-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	22.6	113	20.8	104	8	60-130/30
106-93-4	1,2-Dibromoethane	20	22.6	113	20.7	104	9	60-130/30
107-06-2	1,2-Dichloroethane	20	22.6	113	20.3	102	11	60-130/30
108-20-3	Di-Isopropyl ether	20	23.2	116	21.4	107	8	60-130/30
100-41-4	Ethylbenzene	20	22.2	111	20.6	103	7	60-130/30
637-92-3	Ethyl Tert Butyl Ether	20	22.4	112	20.2	101	10	60-130/30
1634-04-4	Methyl Tert Butyl Ether	20	22.8	114	20.7	104	10	60-130/30
994-05-8	Tert-Amyl Methyl Ether	20	22.6	113	20.6	103	9	60-130/30
75-65-0	Tert-Butyl Alcohol	100	103	103	90.0	90	13	60-130/30
108-88-3	Toluene	20	22.2	111	20.9	105	6	60-130/30
1330-20-7	Xylene (total)	60	68.2	114	63.4	106	7	60-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	98%	96%	60-130%
2037-26-5	Toluene-D8	100%	99%	60-130%
460-00-4	4-Bromofluorobenzene	103%	102%	60-130%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C16434

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C16434-6MS	N22816.D	1	06/15/11	TF	n/a	n/a	VN762
C16434-6MSD	N22817.D	1	06/15/11	TF	n/a	n/a	VN762
C16434-6	N22811.D	1	06/15/11	TF	n/a	n/a	VN762

The QC reported here applies to the following samples:

C16434-1, C16434-2, C16434-3, C16434-4, C16434-5, C16434-6, C16434-7, C16434-10

CAS No.	Compound	C16434-6 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	19.8	99	21.2	106	7	60-130/25
106-93-4	1,2-Dibromoethane	ND	20	19.5	98	20.8	104	6	60-130/25
107-06-2	1,2-Dichloroethane	ND	20	19.9	100	21.1	106	6	60-130/25
108-20-3	Di-Isopropyl ether	ND	20	20.9	105	22.7	114	8	60-130/25
100-41-4	Ethylbenzene	ND	20	19.5	98	20.4	102	5	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND	20	19.8	99	21.4	107	8	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	20.2	101	22.2	111	9	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND	20	19.9	100	21.6	108	8	60-130/25
75-65-0	Tert-Butyl Alcohol	ND	100	84.7	85	98.2	98	15	60-130/25
108-88-3	Toluene	ND	20	19.5	98	20.6	103	5	60-130/25
1330-20-7	Xylene (total)	ND	60	59.3	99	62.1	104	5	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C16434-6	Limits
	Dibromofluoromethane	99%	99%	96% 101%	60-130%
2037-26-5	Toluene-D8	99%	99%	101/0	60-130%
460-00-4	4-Bromofluorobenzene	101%	100%	100%	60-130%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C16434

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C16447-13MS	N22855.D	1	06/16/11	TF	n/a	n/a	VN763
C16447-13MSD	N22856.D	1	06/16/11	TF	n/a	n/a	VN763
C16447-13	N22853.D	1	06/16/11	TF	n/a	n/a	VN763

The QC reported here applies to the following samples:

C16434-8, C16434-9

CAS No.	Compound	C16447- ug/l	-13 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND		20	21.3	107	22.1	111	4	60-130/25
106-93-4	1,2-Dibromoethane	ND		20	20.7	104	21.5	108	4	60-130/25
107-06-2	1,2-Dichloroethane	7.5		20	29.0	108	29.2	109	1	60-130/25
108-20-3	Di-Isopropyl ether	1.8	J	20	23.6	109	24.6	114	4	60-130/25
100-41-4	Ethylbenzene	ND		20	20.9	105	21.8	109	4	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND		20	21.0	105	21.5	108	2	60-130/25
1634-04-4	Methyl Tert Butyl Ether	1.7		20	22.7	105	23.3	108	3	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND		20	21.1	106	21.6	108	2	60-130/25
75-65-0	Tert-Butyl Alcohol	ND		100	88.5	89	89.3	89	1	60-130/25
108-88-3	Toluene	ND		20	20.9	105	22.0	110	5	60-130/25
1330-20-7	Xylene (total)	ND		60	63.7	106	67.1	112	5	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C16447-13	Limits
1868-53-7	Dibromofluoromethane	98%	96%	96%	60-130%
2037-26-5	Toluene-D8	99%	99%	100%	60-130%
460-00-4	4-Bromofluorobenzene	101%	101%	100%	60-130%

