
RECEIVED

March 8, 2011

Mr. Mark E. Detterman, PG, CEG Environmental Protection Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Fuel Leak Case No. R0000320, Former Paco Pumps Inc, 9201 San Leandro Street,

Oakland, CA

Dear Mr. Detterman:

Please find enclosed the *Fourth Quarter 2010 Groundwater Monitoring Report* (GMR) for the Former Paco Pumps facility located at 9201 San Leandro in Oakland, California, Case No. R0000320. The monitoring data presented represent groundwater conditions approximately six months after an aggressive (and costly) phase of dual-phase extraction (DPE) near and downgradient of the former gasoline underground storage tank (UST) area, previously referred to as AREA 4. That remediation effort removed approximately 1,600 pounds of hydrocarbons and 41,000 gallons of hydrocarbon-bearing groundwater (Source Group, Inc. [SGI], 2010).¹ The recent monitoring results indicate that petroleum hydrocarbon concentrations have rebounded to pre-DPE levels.

The GMR includes an evaluation of site conditions relative to low-risk groundwater criteria. In brief, this evaluation indicates that:

- The primary source (gasoline UST) has been removed and no free product has been observed in the site monitoring wells. With the excavation of associated soil during tank removal and recent DPE results and considering the low permeability soil and proximity to existing structures, the secondary source (sorbed to soil and dissolved in groundwater) has been remediated to the extent practicable.
- The extent of petroleum hydrocarbons in soil and groundwater has been adequately defined laterally and vertically.

¹ Source Group, Inc. 2010. *Investigation/Remediation (Area 4), Post Remediation Sampling and First Semi-Annual Monitoring Report*, Former Paco Pumps Site, 9201 San Leandro Street, Oakland, California. October 8.

- The dissolved hydrocarbon plume is limited to within the property boundaries and concentration trends, while accounting for fluctuations induced by recent DPE activities, are consistent with stable-to-declining trends.
- The site is located in a commercial/industrial area and no sensitive receptors have been identified within a 2,000-foot radius. Methyl-tert butyl ether (MTBE), a more mobile fuel additive, is not a significant concern at the site.
- A human health risk evaluation (SGI, 2010) concluded that potential commercial exposures via indoor air were within acceptable ranges.
- Natural attenuation and enhanced aerobic biodegradation with introduction of oxygen during recent DPE activities are expected to reduce petroleum hydrocarbon mass in the subsurface and their associated risks to human health and the environment.

Based on these findings, the site conditions do not appear to warrant further active remediation (e.g., continued DPE activities, building removal and additional excavation). Accordingly, we plan to conduct semi-annual monitoring events during the second and fourth quarters of 2011. If the monitoring results confirm stable-to-declining trends, we plan to request a no-further-action determination.

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Dave Murray

PCC Flow Technologies, Inc.

Cc: Mr. Scott J. Kaplan, Stoel Rives LLP

Mr. Marc A. Zeppetello, Barg Coffin Lewis & Trapp, LLP

Mr. Paul Parmentier, The Source Group, Inc.

FORMER PACO PUMPS OAKLAND FACILITY SECOND SEMI-ANNUAL 2010 GROUNDWATER MONITORING REPORT January 15, 2011

Location:

Former PACO Pumps Site Contact/Phone Primary Consultant/Contact Person/Phone SGI Project Number Lead Agency / Contact Person Agency Case No. Other Agencies to Receive Copies

9201 San Leandro St., Oakland, CA
Mr. Dave Murray (503) 777-7494
SGI / Paul Parmentier / (562) 597-1055 x106
04-PFT-001
ACDEH / Mr. Mark E. Detterman
R0000320
N/A

INTRODUCTION:

This report presents the results of the second semi-annual groundwater monitoring and sampling event, and includes a section on data interpretation and recommendations. The 2010 Q4 monitoring event was conducted as part of the ACDEH-instructed semi-annual monitoring schedule, and as a means to evaluate post-remediation groundwater conditions.

SITE REMEDIATION SUMMARY:

In 1992, the gasoline underground storage tank (UST) at the site was removed, along with the removal and off-site disposal of soil surrounding the UST. Multiple phases of investigation, including pilot testing, have been conducted to evaluate the elevated petroleum hydrocarbon concentrations that remained in the subsurface following these activities.

Although a workplan for in-situ treatment was submitted in 2009, a revised workplan was submitted in November 2009 (The Source Group, October 2009). Due to the predominance of clay, in-situ remedial methods were not considered applicable to the site, and a temporary, aggressive extraction approach rather than semi-permanent low-flow remediation methods was proposed. In 2010, 12 extraction wells were drilled in the vicinity and downgradient of the former UST. In April and June 2010, dual-phase extraction (DPE) of vapor and groundwater was conducted, resulting in the removal of an estimated 1,590 pounds of hydrocarbons, and approximately 41,000 gallons of hydrocarbon-bearing groundwater. The remediation activities confirmed that the subsurface consists of fine-grained (low permeability) vadose soil that would limit the effectiveness of any in-situ active remediation method.

An evaluation of the hydrocarbon concentrations, including benzene, in subsurface and potential exposures via indoor air inhalation indicated associated human health risk estimates within acceptable ranges.

The report describing well installation, DPE activities, and human health risk evaluation is pending review by the ACDEH.

GROUNDWATER MONITORING [SECOND SEMI-ANNUAL 2010]:

- 1. Conducted second semi-annual 2010 groundwater monitoring and sampling event on December 30, 2010.
- 2. Depth to groundwater measured in December 2010 was similar to previous measurements and ranged from approximately 5.70 to 7.89 feet below the top of well casings. Associated groundwater elevations ranged from 10.56 to 13.67 feet above Mean Sea Level. Groundwater contours are presented on Figure 3. The horizontal hydraulic gradient was toward the west-southwest at approximately 0.009 ft/ft with local variations.
- Diesel-range organics (DRO, total petroleum hydrocarbons as diesel [TPHd]) were reported in six of the fifteen well samples. Concentrations were generally within historic ranges with 1,220 micrograms per liter (μg/L) to 36,500 μg/L reported (Table 2). Since the second quarter 2010 DPE activities and sampling event, DRO concentrations increased in wells MW-3, MW-6, AS-1S, and ASMW-2S,

decreased in well MW-5, and were not reported in the remainder of the analyzed monitoring well samples.

- 4. Gasoline-range organics (GRO, total petroleum hydrocarbons as gasoline [TPHg]) were reported in eight of the fifteen well samples. Concentrations were generally within historic ranges with 29.2 μg/L (estimated) to 30,000 μg/L reported (Figure 4 and Table 2). Since the second quarter 2010 DPE activities and sampling event, GRO concentrations increased in wells MW-6 and AS-1S and decreased in wells MW-3, MW-4, ASMW-2S, and E7. GRO was not reported in samples from wells ASMW-2D, AS-1D, MW-1, MW-5, MW-7, MW-8, and E2.
- 5. Benzene was reported in seven of the fifteen well samples. Concentrations were generally within historic ranges with 7.4 μg/L to 4,530 μg/L reported (Figure 4 and Table 2). Since the second quarter 2010 DPE activities and sampling event, benzene concentrations increased in wells MW-3, MW-6, AS-1S and E7, and decreased in well E11. Benzene was not reported in samples from wells MW-1, MW-2, MW-5, MW-7, AS-1D, ASMW-2D, and E2.
- 6. Methyl tertiary-butyl ether (MTBE) was reported in four of the fifteen well samples, with concentrations ranging from 0.53 μg/L (estimated) to 5.4 μg/L.
- 7. 1,2-Dichloroethane (1,2-DCA) was reported in the samples from wells MW-6, ASMW-2S, E2, E7, and E8, with concentrations ranging from 0.41 μ g/L to 20.7 μ g/L (Table 2). Since the second quarter 2010 sampling event, concentrations of 1,2-DCA increased in wells MW-6, ASMW-2S, and E7, and decreased in AS-1S and E2.
- 8. The next semi-annual groundwater monitoring and sampling event will be conducted during the second quarter 2011.

MONITORING SUMMARY:

Current Phase of Project:	Groundwater Monitoring
Frequency of Monitoring/Sampling:	Semi-annual (per RWQCB's directive letter dated 6/15/2009)
Wells Sampled and/or Gauged this Quarter	MW-1 through MW-8, AS-1S, AS-1D, ASMW-2S, ASMW-2D E-2, E-7 and E-8
Depth to Groundwater (wells with no LPH):	10.56 to 13.67 feet below top of casings
Groundwater Gradient Direction/Magnitude:	West-southwest at approximately 0.009ft/ft.
Gradient Consistent w/Previous Quarters:	Yes
GRO Concentration Range:	ND (<50 μg/L) to 30,000 μg/L
Well with Highest GRO Concentration:	AS-1S
Benzene Concentration Range:	ND (<1.0 μg/L) to 4,530 μg/L
Well with Highest Benzene Concentration:	AS-1S
MTBE Concentration Range:	ND (<1.0 to <100 μg/L) to 5.4 μg/L
Well with Highest MTBE Concentration:	E-7
Separate Phase Hydrocarbons Present: Yes No X	None
Maximum Hydrocarbon Thickness:	N/A
Wells and/or Surface Water within 2,000 feet:	None
Distance and Direction from Site:	N/A
Current Remediation Techniques:	Natural Attenuation
Free Product Recovered Manually this Quarter:	None

Gallons of Groundwater Purged this Quarter:	155
Disposal/Recycling Facility:	Demenno Kerdoon, Compton, CA-Pending
Summary of Unusual Activity:	None
Agency Directive Requirements:	Groundwater Monitoring

DATA INTERPRETATION AND RECOMMENDATIONS

To facilitate review and determine if additional activities are warranted, the site conditions were evaluated using low-risk groundwater criteria:

 The leak has been stopped and ongoing sources, including free product, have been removed or remediated. As noted above, the gasoline UST, the primary source, has been removed, and associated soil was excavated. Free product has not been observed in the site groundwater monitoring wells.

Furthermore, recent DPE efforts resulted in significant hydrocarbon mass removal. However, the approach was costly and the dissolved petroleum compounds, particularly benzene, in groundwater were found to be in the same range of concentrations after a 6-month rebound period as prior to the remediation. Although the 1,000-µg/L benzene contour area centered west of the former UST has decreased, the concentrations in the western area of the former UST have remained in the same range as before the DPE event. Based on the fine-grained, low permeability soil (largely clay) present beneath the site, removal of hydrocarbons from the subsurface cannot be cost effectively completed using extraction or in-situ chemical methods. Although the affected soil and groundwater areas are shallow, access to the contaminated area is limited by the presence of the buildings and any approach to excavation of all the soil containing hydrocarbons is thus very limited. These findings indicate that the source area has been remediated to the extent practicable.

- 2. The site has been adequately characterized. The previous investigation and monitoring data indicated the presence of dissolved and adsorbed petroleum contamination in fine-grained soil and shallow groundwater. The groundwater wells west (downgradient) of the former UST (E-2, E-7 and E-8) that were recently added to the monitoring network report benzene concentrations (up to 480 μg/L) that are much lower than in the plume core area near the former UST, indicating a rapid lateral decrease in concentrations. An investigation of the lateral extent of hydrocarbons in groundwater near the western property line was conducted in 2008 (see Attachment A). Location GP-8 was sampled by Eras and Associates, who collected a soil sample at the groundwater interface (9.5-10 ft deep), and that sample reported no detectable hydrocarbon concentrations. Groundwater was also sampled at that location at three distinct depths, and none of the samples reported benzene concentrations. This finding marks the lateral delineation of the dissolved petroleum hydrocarbons, and documents the limited lateral migration of the dissolved hydrocarbons.
- 3. **The dissolved hydrocarbon plume is not migrating.** Except for recent concentration rebound following DPE activities, ongoing groundwater monitoring suggests stable to declining hydrocarbon concentrations. The plume does not appear to extend offsite.
- 4. No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted. As noted above, the dissolved hydrocarbon plume is stable. Monitoring results for the site wells that screen a deeper water-bearing zone, including those located in the source area, typically do not report the presence of petroleum hydrocarbons, suggesting the limited vertical extent of hydrocarbons.
- 5. The site presents no significant risk to human health. The site is a commercial property located in an industrial area. A review of the benzene concentrations in subsurface and potential exposures via indoor air inhalation indicated associated human health risk estimates within acceptable ranges. Natural attenuation is expected to further limit the potential human health risks associated with petroleum hydrocarbons in the subsurface.

6. **The site presents no significant risk to the environment.** As described above, the hydrocarbon plume is stable to declining, limited to within the property boundary, and no sensitive receptors have been identified in the site vicinity. Natural attenuation is expected to further limit the potential risk to the environment associated with petroleum hydrocarbons in the subsurface.

Based on this evaluation, we recommend semi-annual groundwater monitoring and reporting to confirm stable to declining concentration trends following completion of post-remediation rebound. Based on the focus on gasoline hydrocarbons and VOCs, analyses for DRO/TPHd and TPHmo will not be conducted.

The groundwater monitoring data will be used to further support a monitored natural attenuation approach, and a subsequent no-further-action determination based on low-risk groundwater criteria. If hydrocarbon concentrations suggest that further active remediation should be evaluated, the recently expanded network of monitoring and extraction wells is in-place to provide supplemental monitoring and/or remediation coverage.

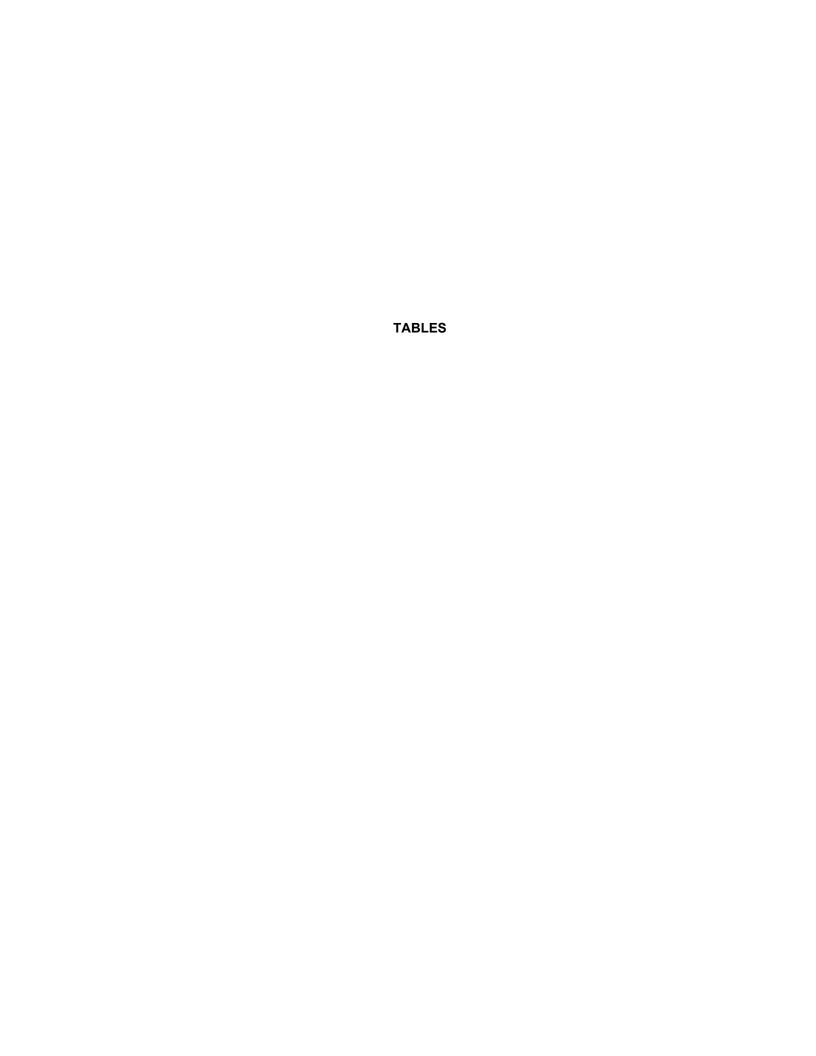
REVIEWED BY:

Paul Parmentier, CHG

P.6-3915

DATE: 1-15-2011

Paul Parmentier No. 3915


ATTACHMENTS:

- Current Groundwater Analysis and Gauging Results (Table 1)
- Historical Groundwater Analysis and Gauging Results (Table 2)
- Site Location Map (Figure 1)
- Site Map With Well Locations (Figure 2)
- Groundwater Gradient Map December 2010 (Figure 3)
- Groundwater Concentrations Benzene and Total Petroleum Hydrocarbons December 2010 (Figure 4)
- Groundwater Monitoring Procedures and Field Data Sheets
- Groundwater Sampling Laboratory Report and Chain-of-Custody

Attachment A: Eras Environmental, Inc. excerpts of Subsurface Investigation and Groundwater Monitoring Report, July 31, 2008

DISTRIBUTION:

- Mr. Dave Murray, PCC Flow Technologies
- Mr. Vignoles, Site Owner

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
MW-1	15-Nov-92	18.05	9.34	8.71		
	9-Mar-93		8.50	9.55		
	21-Jul-93		9.00	9.05		
	26-May-94		9.06	8.99		
	24-Aug-94		8.40	9.65		
	22-Nov-94		8.20	9.85		
	8-Feb-95		8.30	9.75		
	31-May-95		9.35	8.70		
	8-Aug-95		9.16	8.89		
	29-Nov-95		9.28	8.77		
	29-Feb-96		7.62	10.43		
	23-May-96		8.28	9.77		
	4-Nov-96		9.20	8.85		
	13-May-97		9.04	9.01		
	14-Nov-07		8.50	9.55		
	17-Jun-08		9.04	9.01		
	13-Jan-09	17.76	8.65	9.11		
	28-Apr-09		8.67	9.09		
	6-Nov-09		8.79	8.97		
	28-Jun-10		8.77	8.99		
	30-Dec-10		7.20	10.56		
MW-2	15-Nov-92	19.40	10.05	9.35		
	9-Mar-93		9.21	10.19		
	21-Jul-93		9.72	9.68		
	26-May-94		9.58	9.82		
	24-Aug-94		9.98	9.42		
	22-Nov-94		8.70	10.70		
	8-Feb-95		8.68	10.72		
	31-May-95		9.48	9.92		
	8-Aug-95		9.64	9.76		
	29-Nov-95		9.86	9.54		
	29-Feb-96		8.12	11.28		
	23-May-96		8.70	10.70		
	4-Nov-96		9.50	9.90		
	13-May-97		9.44	9.96		
	14-Nov-07		8.94	10.46		
	17-Jun-08		9.57	9.83		
	13-Jan-09	19.12	9.21	9.91		
	28-Apr-09		9.30	9.82		
	6-Nov-09		8.91	10.21		
	28-Jun-10		9.33	9.79		
10110	30-Dec-10	10 =0	7.52	11.60		
MW-3	15-Nov-92	19.70	10.35	9.35		
	9-Mar-93		9.19	10.51		
	21-Jul-93		11.07	8.63		
	26-May-94		10.04	9.66		
	24-Aug-94		11.08	8.62		

Paco Pump 9201 San Leandro Street Oakland, California

Wall Idantification	Date Collected	Top-of-Casing	Depth to	Groundwater		
Well Identification	Date Collected	Elevation ⁽¹⁾	Groundwater (2)	Elevation (1)		
	22-Nov-94		8.92	10.78		
	8-Feb-95		8.90	10.80		
	31-May-95		10.16	9.54		
MW-3	8-Aug-95		9.92	9.78		
(continued)	29-Nov-95		10.7	9.00		
	29-Feb-96		8.52	11.18		
	23-May-96		8.15	11.55		
	4-Nov-96		7.21	12.49		
	13-May-97		9.82	9.88		
	14-Nov-07		9.21	10.49		
	17-Jun-08		9.81	9.89		
	13-Jan-09	19.42	9.58	9.84		
	28-Apr-09		9.59	9.83		
	6-Nov-09		9.52	9.90		
	28-Jun-10		9.60	9.82		
	30-Dec-10		7.74	11.68		
MW-4	15-Nov-92	19.65	8.87	10.78		
	9-Mar-93		7.96	11.69		
	21-Jul-93		8.06	11.59		
	26-May-94		8.57	11.08		
	24-Aug-94		8.75	10.90		
	22-Nov-94		7.41	12.24		
	8-Feb-95		7.20	12.45		
	31-May-95		8.32	11.33		
	8-Aug-95		8.66	10.99		
	29-Nov-95		8.93	10.72		
	29-Feb-96		6.54	13.11		
	23-May-96		7.24	12.41		
	4-Nov-96		8.58	11.07		
	13-May-97		8.42	11.23		
	14-Nov-07		7.61	12.04		
	17-Jun-08		8.31	11.34		
	13-Jan-09	19.37	NM	NM		
	28-Apr-09		NM	NM		
	6-Nov-09		8.00	11.37		
	28-Jun-10		8.05	11.32		
	30-Dec-10		5.70	13.67		
MW-5	24-Aug-94	18.49	8.22	10.27		
	22-Nov-94		7.90	10.59		
	8-Feb-95		7.92	10.57		
	31-May-95		8.74	9.75		
	8-Aug-95		8.93	9.56		
	29-Nov-95		9.11	9.38		
	29-Feb-96		7.36	11.13		
	23-May-96		7.92	10.57		
	4-Nov-96		8.78	9.71		
	13-May-97		8.82	9.67		

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
	14-Nov-07		8.16	10.33		
	17-Jun-08		8.75	9.74		
	13-Jan-09	18.21	8.46	9.75		
	28-Apr-09		8.50	9.71		
MW-5	6-Nov-09		9.93	8.28		
(continued)	28-Jun-10		8.42	9.79		
,	30-Dec-10		6.68	11.53		
MW-6	13-Jan-09	19.46	9.59	9.87		
	28-Apr-09		9.65	9.81		
	6-Nov-09		9.60	9.86		
	28-Jun-10		9.54	9.92		
	30-Dec-10		7.80	11.66		
MW-7	13-Jan-09	19.44	9.66	9.78		
	28-Apr-09	-	9.67	9.77		
	6-Nov-09		9.64	9.80		
	28-Jun-10		NM	NM		
	30-Dec-10		7.89	11.55		
MW-8	28-Jun-10	18.27	8.07	10.20		
	30-Dec-10		5.92	12.35		
AS-1S	13-Jan-09	19.38	9.45	9.93		
	28-Apr-09		9.67	9.71		
	6-Nov-09		9.63	9.75		
	28-Jun-10		9.90	9.48		
	30-Dec-10		7.65	11.73		
ASMW2S	13-Jan-09	19.38	9.51	9.87		
	28-Apr-09		9.55	9.83		
	6-Nov-09		9.53	9.85		
	28-Jun-10		10.30	9.08		
	30-Dec-10		7.73	11.65		
AS-1D	13-Jan-09	19.31	9.42	9.89		
	28-Apr-09		9.48	9.83		
	6-Nov-09		9.50	9.81		
	28-Jun-10		9.90	9.41		
	30-Dec-10		7.65	11.66		
ASMW-2D	13-Jan-09	19.52	9.65	9.87		
	28-Apr-09		9.69	9.83		
	6-Nov-09		9.70	9.82		
	28-Jun-10		9.70	9.82		
	30-Dec-10		7.88	11.64		
E-2	16-Jun-10	19.56				
	30-Jun-10					
	30-Dec-10		7.95	11.61		
E-7	16-Jun-10	19.59				
	30-Jun-10					

Paco Pump 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾
	30-Dec-10		7.95	11.64
E-8	30-Dec-10	19.59	7.96	11.63

Notes:

⁽¹⁾ Top-of-casing and groundwater elevation in North America Vertical Datum 1988; wells re-surveyed by Tronoff Assocaites Land Surveying on February 2, 2009.
(2) Depth to water measured in feet below top of casing.

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
LFR Area 1 - S	Southwestern (Corner of the	Site, west	of the "w	orkshop	building"					
MW-2	16-Nov-92	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
9-Mar-9	9-Mar-93		430	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	21-Jul-93		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Jan-94		<50	NA	<50	<2.0	<2.0	<2.0	<2.0	NA	NA
	26-May-94		<50	NA	<50	2.3	0.8	<0.5	<0.5	NA	NA
	24-Aug-94		<50	NA	<50	3.1	1.4	0.5	0.6	NA	NA
	22-Nov-94		<50	NA	<50	3.4	1.8	<0.5	0.5	NA	NA
	8-Feb-95		<50	NA	<50	4.5	1.3	<0.5	0.5	NA	NA
	31-May-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	8-Aug-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Nov-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	29-Feb-96		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	23-May-96		<50	NA	NA	NA	NA	NA	NA	NA	NA
	4-Nov-96		<50	NA	NA	NA	NA	NA	NA	NA	ND
	13-Nov-03		NA	NA	<50	<0.5	<0.5	<0.5	<2.0	NA	ND
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
	6-Nov-09		360	NA	<50	<0.5	<0.5	<0.5	<1.0	0.63	ND
	28-Jun-10		53.4J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<280	3,240	29.2 J ^a	<1.0	<1.0	<1.0	<2.0	<1.0	ND
LFR Area 2 - A	Area South of t	he Warehous	e Storage	Area Buil		cent to the	Southern	Property	Boundary		
MW-1	15-Nov-92	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
	9-Mar-93		140	NA	NA	NA	NA	NA	NA	NA	NA
	21-Jul-93		<50	NA	NA	NA	NA	NA	NA	NA	NA
	29-Jan-94		<50	NA	NA	NA	NA	NA	NA	NA	NA
	26-May-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	24-Aug-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	22-Nov-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	8-Feb-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	31-May-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	23-May-96		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	27-Oct-00		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	14-Nov-07		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	0.67	NA
	6-Nov-09		<51	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		56.8J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	114 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
LFR Area 4 - F	ormer UST ne	ar Groundwa	ter Monito	ring Well	MW-3						
MW-3	16-Nov-92	5.25-20.25	<50	NA	40,000	2,900	6,100	550	1,700	NA	NA
	9-Mar-93		290	NA	12,000	1,000	300	110	170	NA	NA
	21-Jul-93		<50	NA	3,400	420	63	36	37	NA	NA
	29-Jan-94		<50	NA	5,600	910	220	47	36	NA	NA
	26-May-94		<50	NA	5,200	890	180	45	43	NA	NA
	24-Aug-94		<50	NA	5,200	580	76	29	22	NA	NA
	22-Nov-94		<50	NA	2,200	670	130	31	28	NA	NA
	8-Feb-95		<50	NA	2,900	780	120	31	33	NA	NA
	31-May-95		NA	NA	9,100	2,800	160	91	72	NA	NA
D	31-May-95		NA	NA	5,300	1,300	170	37	44	NA	NA

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
MW-3	28-Aug-95	5.25-20.25	NA	NA	1,400	<0.5	<0.5	1.7	8.9	NA	NA
D	28-Aug-95		NA	NA	4,800	2,500	150	53	44	NA	NA
	29-Nov-95		NA	NA	3,000	780	43	32	32	NA	NA
D	29-Nov-95		NA	NA	2,400	830	38	21	16	NA	NA
	29-Feb-96		NA	NA	3,800	1,200	130	36	35	NA	NA
D	29-Feb-96		NA	NA	8,000	3,400	430	100	99	NA	NA
	23-May-96		NA	NA	6,900	3,300	340	71	74	NA	NA
D	23-May-96		NA	NA	4,300	3,200	350	72	74	NA	NA
	4-Nov-96		NA	NA	4,900	2,100	110	70	44	NA	NA
D	4-Nov-96		NA	NA	4,500	2,100	130	61	39	NA	NA
	13-May-97		NA	NA	10,000	4,800	530	100	92	<100	NA
	26-Jan-98		NA	NA	12,000	5,000	250	91	100	NA	NA
	27-Oct-00		NA	NA	19,000	9,000	1,000	250	130	NA	NA
	3-Nov-03		NA	NA	13,000	3,900	370	300	130	<40	NA
	17-Jun-08		NA	NA	13,000	4,400	600	300	150	<100	NA
	6-Nov-09		710	NA	13,000	3,400	400	310	220	<2.5	4.1 (1,2-DCA)
	28-Jun-10		699	NA	22,200	1,740	2,100	318	1,060	<50	ND
D	28-Jun-10		722	NA	31,000	1,560	2,210	380	1,240	<50	ND
	10-Aug-10		NA	NA	12,000	1,400	1,200	190	540	<13	ND
	30-Dec-10		36,500	3,900	22,200	1,730	2,030	406	1,530	<50	ND
MW-5	24-Aug-94	5.25-20.25	130	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
D	22-Nov-94		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	8-Feb-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	31-May-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	8-Aug-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Feb-96		NA	NA	<50	0.6	<0.5	<0.5	<0.5	NA	NA
	13-May-97		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	27-Oct-00		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	13-Nov-03		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	6-Nov-09		1,300	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		289	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	808	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-6	14-Jan-09	10-17	NA	NA	740	66	48	6.3	23	1.2	17 (1,2-DCA)
	6-Nov-09		1,200	NA	4,500	1,300	270	110	44	<2.5	39 (1,2-DCA)
	28-Jun-10		474	NA	3,810	484	284	78.7	233	<10	20.8 (1,2-DCA)
	10-Aug-10		NA	NA	4,600	800	160	160	210	<6.3	12 (1,2-DCA)
	30-Dec-10		2,470	<380	9,720	1,130	469	364	1,360	<20	20.7 (1,2-DCA)
AS-1S	13-Jan-09	14-17	NA	NA	41,000	4,100	2,700	510	1,000	<25	ND
	6-Nov-09		1,300	NA	3,800	950	7.3	76	42	<0.5	3.1 (1,2-DCA)
	28-Jun-10		214	NA	1,630	202	26.2	9.1	25.4	2.1	3.1 (1,2-DCA)
	10-Aug-10		NA	NA	1,200	370	44	34	34	<2.5	2.6 (1,2 DCA)
	30-Dec-10		2,790	<570	30,000	4,530	4,040	538	1,100	<100	ND
ASMW-2S	13-Jan-09	10-17	NA	NA	9,100	2,800	430	140	230	<10	25 (1,2-DCA)
	6-Nov-09		2,400	NA	18,000	4,700	540	330	530	<2.5	50 (1,2-DCA), 46 (TBA)
	28-Jun-10		479	NA	8,330	416	434	151	583	<33	ND
	10-Aug-10		NA	NA	3,200	420	69	61	130	<3.1	3.4 (1,2 DCA)
	30-Dec-10		3,440	<2,000	5,300	447	80.1	95.0	181	ND<10	5.7 (1,2 DCA)

Table 2 Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

Sample Location	Date Collected	Depth (feet bgs)	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
MW-7	14-Jan-09	20-28	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
	6-Nov-09		<52	NA	<50	<0.5	<0.5	<0.5	<1.0	1.3	ND
	30-Dec-10		<96	<190	<50	<1.0	<1.0	<1.0	<2.0	1.1	ND
MW-8	28-Jun-10	8-18	<100	NA	<50	0.81J	1.3	0.41J	1.6 J	0.62J	ND
	30-Dec-10		<95	<190	<50	<1.0	<1.0	<1.0	<2.0	0.53J	ND
AS-1D	13-Jan-09	31-34	NA	NA	<50	0.69	0.54	<0.5	<0.5	<0.5	ND
	6-Nov-09		<53	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
ASMW-2D	13-Jan-09	24-34	NA	NA	<50	0.80	0.78	<0.5	<0.5	0.56	ND
	6-Nov-09		<51	NA	<50	<0.5	<0.5	<0.5	<1.0	0.58	ND
	28-Jun-10		<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<100	<200	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
E1	16-Jun-10	8-18	NA	NA	36,000	3,200	2,300	750	2,170	<25	<25
	30-Jun-10		NA	NA	124	11.7	9.4	1.5	7.7	<1	0.31 (1,2 DCA)
E2	16-Jun-10	8-18	NA	NA	72	5.3	5.9	0.89	4.9	2.1	0.68 (1,2 DCA)
	30-Jun-10		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	2.0	0.5 (1,2 DCA)
	30-Dec-10		<190	3,740	<50	<1.0	<1.0	<1.0	<2.0	1.8	0.41(1,2 DCA)
E7	16-Jun-10	8-18	NA	NA	780	100	73	20	80	5.2	1.9 (1,2 DCA)
	30-Jun-10		NA	NA	3,460	207	258	<25	360	3.8	2.5 (1,2 DCA)
	30-Dec-10		1,360	<190	3,380	339	20.0	83.3	23.9	5.4	3.5 (1,2 DCA)
E8	30-Dec-10		1,220	<190	8,930	480	19.1	164	51.8	<10	4.8 (1,2 DCA)
E11	16-Jun-10	8-18	NA	NA	25,000	1,800	1,500	480	980	<13	<13
	30-Jun-10		NA	NA	15,300	268	509	473	1,140	<40	<40
E12	16-Jun-10	8-18	NA	NA	4,300	190	15	43	49	<2	2.0 (1,2 DCA)
	30-Jun-10		NA	NA	1,570	130	6.6	<3	24.2	<3	<3
FR Area 5 - S	suspected For	mer UST near	Groundw	ater Moni	toring We	ell MW-4					
MW-4	16-Nov-92	5.25-20.25	<50	NA	560	66	73	16	130	NA	NA
D	16-Nov-92		<50	NA	520	63	67	15	140	NA	NA
	9-Mar-93		<50	NA	750	67	12	29	62	NA	NA
	21-Jul-93		<50	NA	250	21	4.2	8.4	11	NA	NA
	29-Jan-94		<50	NA	180	28	2.2	6.2	10	NA	NA
	26-May-94		NA	NA	130	14	3.2	6.1	4.7	NA	NA
	24-Aug-94		NA	NA	70	6.7	0.9	2.8	2.6	NA	NA
	22-Nov-94		NA	NA	90	16	1.7	5.6	3.4	NA	NA
	8-Feb-95		NA	NA	90	17	1.3	5.5	3.0	NA	NA NA
	31-May-95		NA	NA	90	13	0.6	2.3	1.2	NA	NA NA
	8-Aug-95 29-Nov-95		NA NA	NA NA	80 <50	3.6 4.5	<0.5 0.7	1.4	0.6 0.7	NA NA	NA NA
	29-Nov-95 29-Feb-96		NA	NA NA	<50 <50	7.4	1.0	3.2	2.4	NA	NA NA
	23-May-96		NA	NA	80	11	2.0	2.3	1.0	NA	NA NA
	3-Nov-03		<50	NA	<50	6.3	0.56	3.4	1.0	<2.0	NA NA
	18-Jun-08		<50	NA	81	11	0.51	4.7	1.6	<0.5	ND
	6-Nov-09		<50	NA	<50	4.0	<0.5	1.3	<1.0	<0.5	ND
	28-Jun-10		<100	NA	186	12.3	0.9	5.9	2.3	<1.0	ND
	30-Dec-10		<94	<190	77.4	7.4	<1.0	2.6	0.98	<1.0	ND
	water <u>is not</u> c		210	210	210	46	130	43	100	1,400	200 (1,2-DCA) 18,000 (TBA)

Table 2

Current and Historical Analytical Results for Volatile Organic Compounds in Groundwater

Paco Pump 9201 San Leandro Street Oakland, California

concentrations (µg/L)

	Date Depth (feet bgs)	TPHd TP	PHmo TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
--	-----------------------	---------	-----------	---------	---------	-------------------	------------------	------	-------------------------

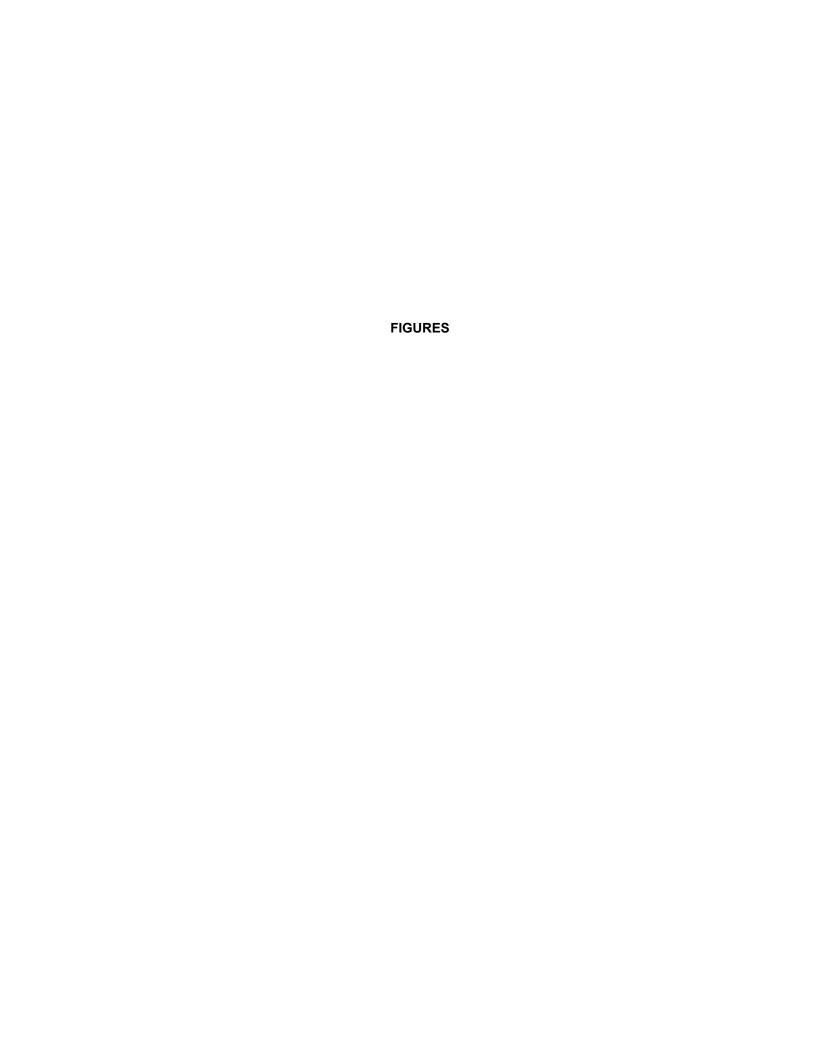
Notes:

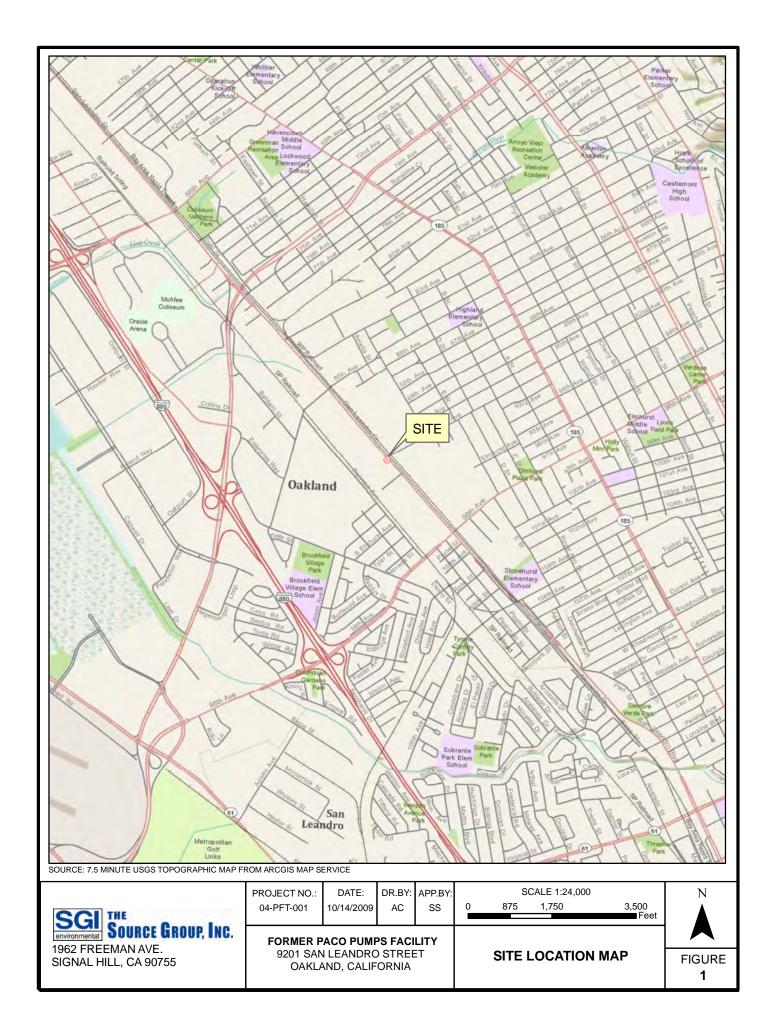
bgs = below ground surface

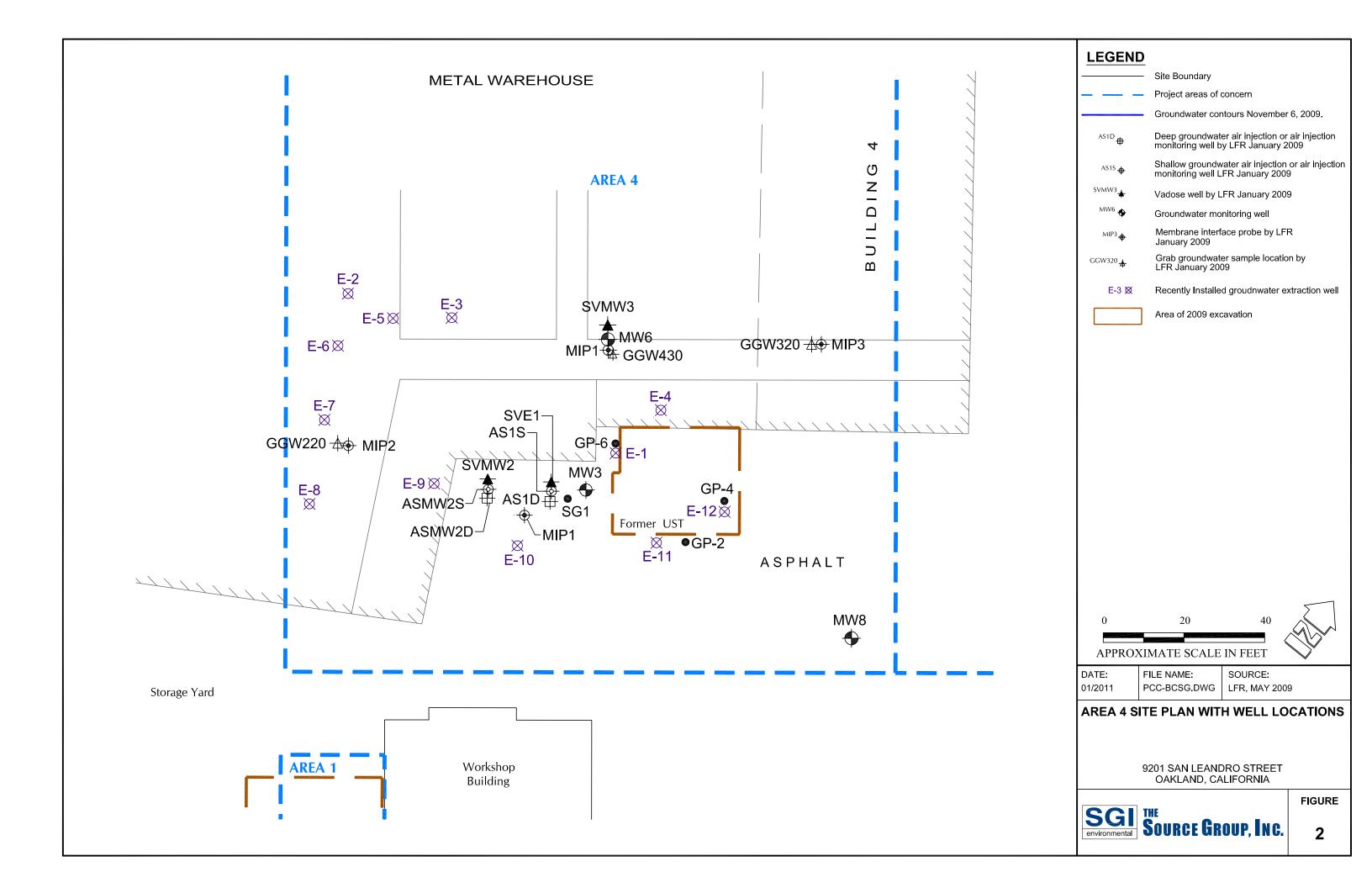
 $NA = parameter not analyzed \ ND = parameter not present above laboratory reporting limits$

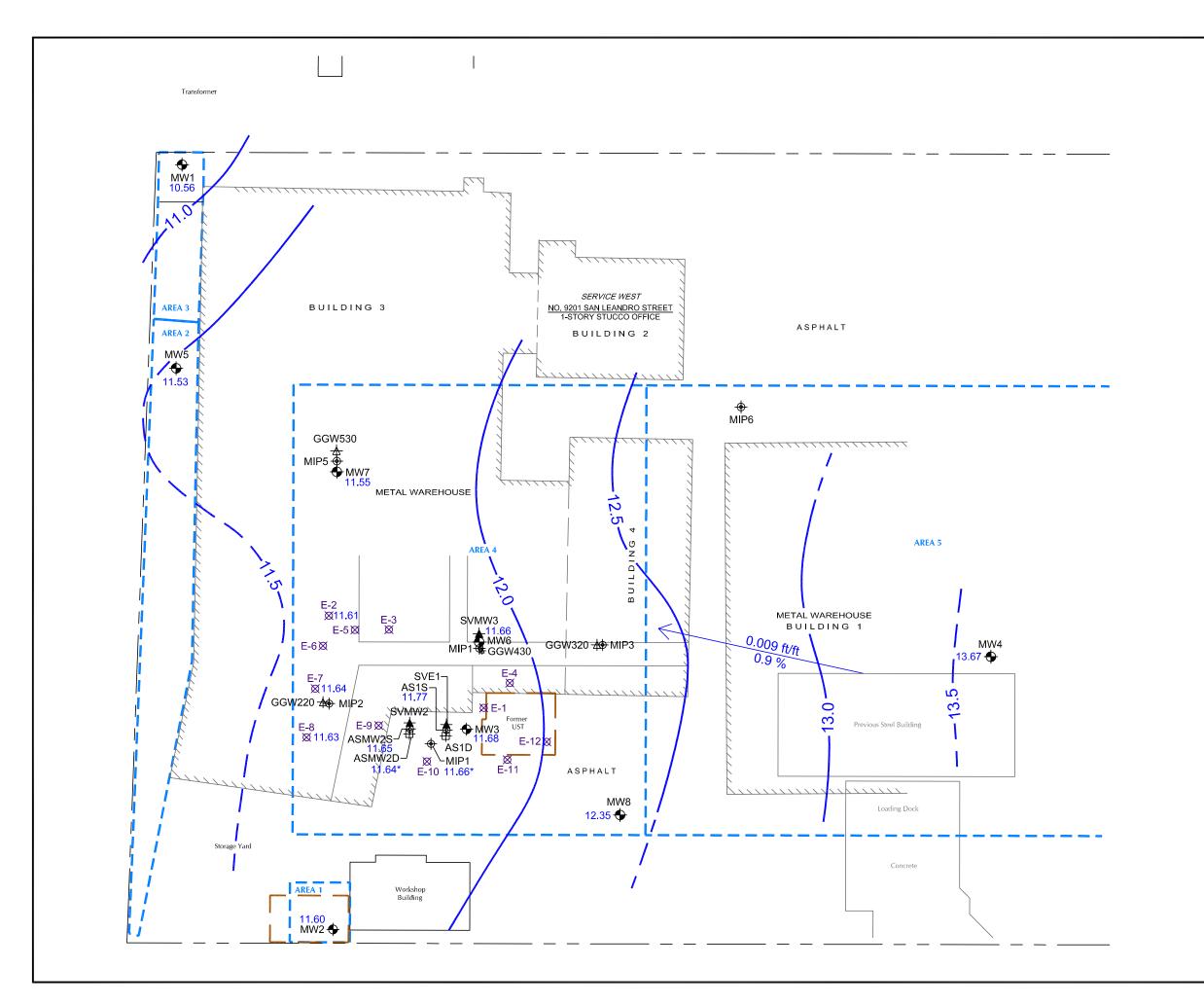
TPHd = total petroleum hydrocarbons as diesel

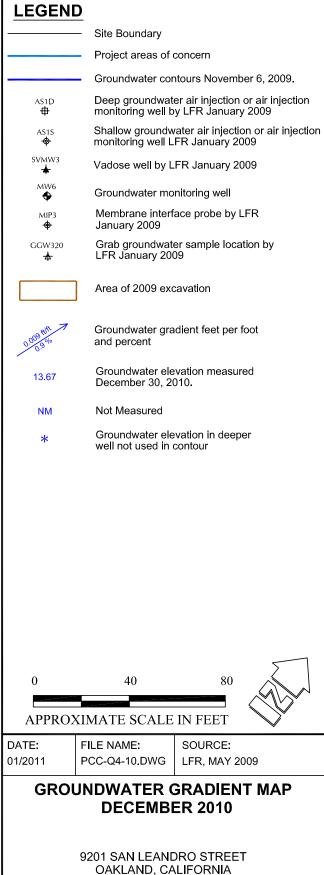
TPHg = total petroleum hydrocarbons as gasoline

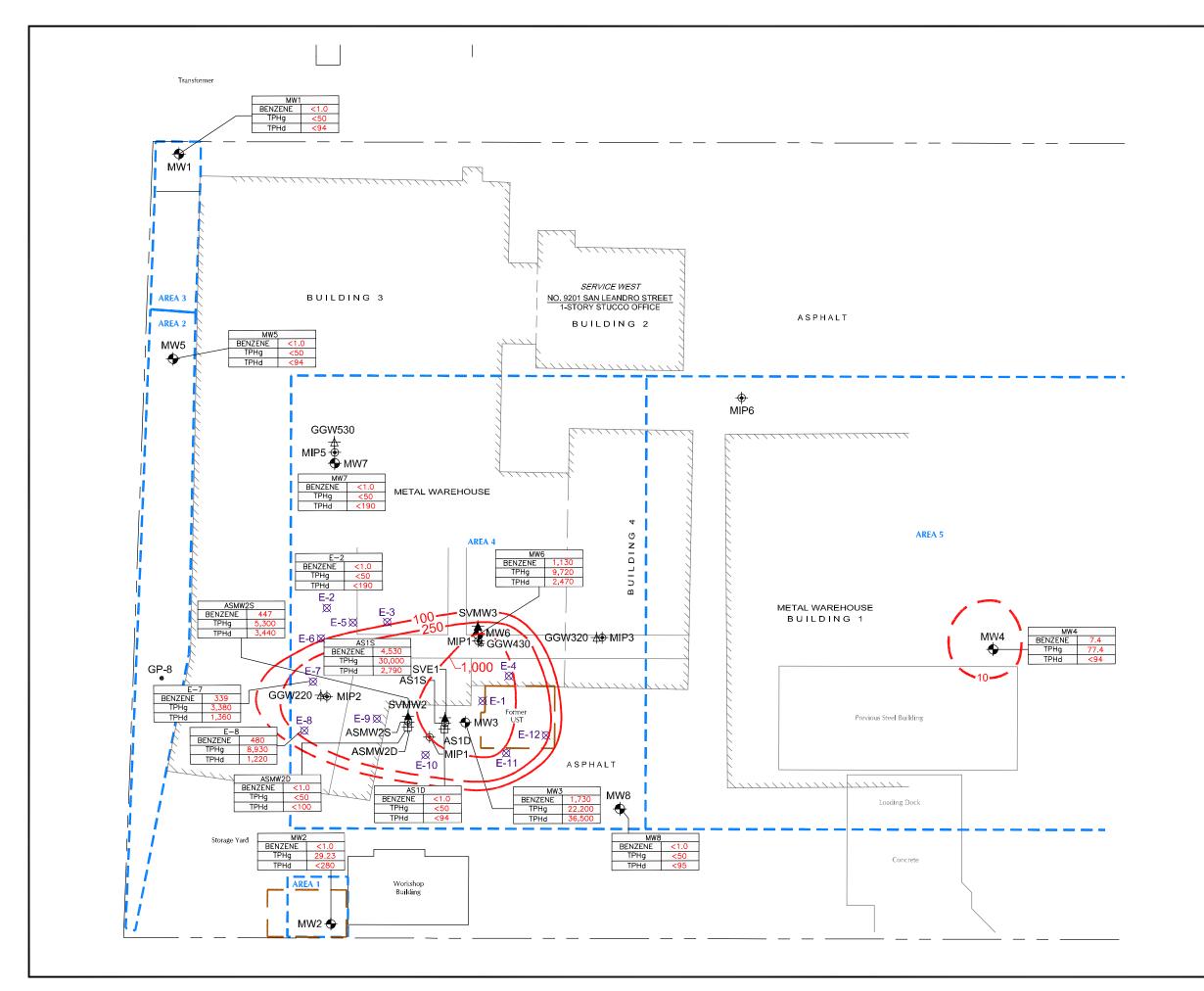

D = duplicate sample

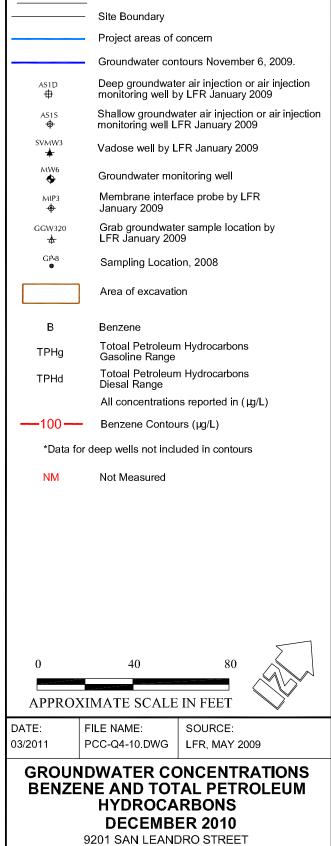

TBA - tertiary butyl alcohol


ESL = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels Table F-1a and Table F-1b RWQCB May 2008


Bold Font denotes concentration was greater than the ESL.


J = Estimated value above method detection limit but below laboratory reporting limit.





SGI THE SOURCE GROUP, INC.

FIGURE

3

OAKLAND, CALIFORNIA

SGI THE SOURCE GROUP, INC.

FIGURE

4

LEGEND

GROUNDWATER MONITORING PROCEDURES AND FIELD DATA SHEETS

2/30/10	CA	
I (Non)		
1 (New)		
		
ı		
No		
Perge 14,0		
NIA		
		1
12/30/10		
1 (Non)	100	The state of the s
4		
5		
375 45		
Purgette0		
allyways -	-3 E-38-10	In Stary
1	aren set.	6 DHLAS-1
	ally many.	

12/30/10

6-28-10

495

11-6-01

this event

Date of inspection:

Office reviewed by:

Drum(s) labelled properly: Logged by BTS Field Tech:

WELL GAUGING DATA

Project # 10 12 30 - DR | Date 12/30/10 Client The Source (4000)

Site 9201 San Ceandro St Oakland (A

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOO	Notes
MW-I	0970	4					7.20	20.09		
MW-Z	0927	4					7.52	20.14		
MW-3	0915	4					7.74	19.89		,
1W - 4	0836	4					5.70	20.02		
MW-5	0911	4					6.68	20.04		,
MW-6	0900	2					7.80	16.34		•
11W-7	0856	2					7.89	27.20		
HW-8	0912	2					5,92	18.12		•
A5-15	0918	2					7.65	16.58		
As-ID	0921	2					7.65	32.88		
ASMW-ZS	0927	2					7. 等 3	16.96		
ASMW-21)	0924	て					7.88	33.78	V	
É-Z	9900	2			:		795	18.31		*
E-7	0903	2					7.95	18.22		4*
E-8	0907	2					7.96	18.05		3
										75.44
* Un	capped	all u	icls	15 min.	prior	to gaugin	9.			

WELLHEAD INSPECTION CHECKLIST

Date 17/3	30/10	_ Client	TW	Soul	<u>u</u> C	MOUP		
Site Address	9201 5	an Le	andr	0 5+		akla	nd	
Job Number	101230-	DRI		Ted	chnician	OR.	/BP	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	. Well Not Inspected (explain below)
No.		X					1	
MW-Z	X			Α			X In	
MW-3				·			X	
MW -4			-	-			X	·
MW-5					X		<u> </u>	·
<u>MW-6</u>	X						,	
<u>MW-7</u>	X					·		·
MW-g	X			**				
A5-15	X						e-	
AS ID	<u> </u>							
45MW-25	X							
ASMW-ZD	X	- 1						
<u>F-Z</u>							*	
E-7							*	
<u> </u>	X			ş.·				
							-	
NOTES:	NW-4 Sta	1.1.	No ball	hole. E	-2 No	leek	E-7 No	leck
Mw-3 Several	y damaged 11	d 162	tabs b,	sky-1	12 bolts.	Mw-	1-2/2 be	115
mw-5 -2/2	5als.						· · · · · · · · · · · · · · · · · · ·	
	·····							
· a	_			**************************************	· · · · · · · · · · · · · · · · · · ·		***************************************	
***			; /				**************************************	

		7	S					
			V LL MONIT	CORING DAT	ASHL T			
Project #:	10123	0-01	21	Client: Tw:	Source Grow	P		
Sampler: g	R/BP			Date: 12/30/10				
Well I.D.:	MW-			Well Diamete	r: 2 3 4	0 6 8		
Total Well	Depth (T	D): 2	0.09	Depth to Wate	er (DTW): 7	7.20		
Depth to F	ree Produc	et:		Thickness of	Free Product (f	eet):		
Referenced	l to:	PVC) Grade	D.O. Meter (it	f req'd):	YSI HACH		
DTW with	80% Recl	narge [(F	Height of Water	Column x 0.20)) + DTW]:	9.77		
Purge Method:	Bailer Disposable Positive Air Electric Sub	Displacem	ent Extrac Other	Waterra Peristaltic ction Pump	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing		
Time	Temp (°F or C	p H	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations		
10 25	16.7	7.44	823.7	532	8. 4			
1027	17.8	7,17	8/4.1	33/	16.8	4,		
1029	18.1	7.01	8 25.1	163	25.2			
1031	18.3	6.92	830.6	177	33.6	.ii.		
Did well dev	vater?	Yes (No.	Gallons actuall	y evacuated:	33.6		
Sampling Da	ate: 12/30	110	Sampling Time	: 1110	Depth to Wate			
ample I.D.:	MW-	1	·	Laboratory:	Kiff CalScience			
nalyzed for	: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	E COC		
B I.D. (if ap	plicable):		@ . Time .	Duplicate I.D. (
nalyzed for	: ТРН-G	BTEX 1	MTBE TPH-D (Oxygenates (5)	Other:			
.O. (if req'd): Pre	e-purge:		mg/L Po	ost-purge:	mg/L		

mV

Post-purge:

O.R.P. (if req'd):

Pre-purge:

	W LL MONIT	CORING DAT	A SHI_T			
Project #: 101230-01	<i>ا</i>	Client: Twe	Client: The Source Group			
Sampler: DR/BP		. #				
Well I.D.: MW-Z		Well Diamete	r: 2 3 4	68		
	0.14	Depth to Wate	Depth to Water (DTW): 7.52			
Depth to Free Product:		Thickness of I	Free Product (f			
Referenced to: PVC) Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with 80% Recharge [(I	Height of Water	Column x 0.20) + DTW]:	10.04		
Purge Method: Bailer Disposable Bailer Positive Air Displacem Electric Submersible		Waterra Peristaltic ction Pump Well Diamet	Sampling Method Othe	Exposable Bailer Extraction Port Dedicated Tubing		
8.Z (Gals.) X 3 = Z4.6 Gals. 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius² * 0.163						
Temp Time (°F or pH	Cond. (mS orus)	Turbidity (NTUs)	Gals. Removed	Observations		
1254 18.5 6.94	1213	71000	8.2			
1302 18.6 6.71	1227	71000	16.4			
1310 18.4 6.65	1219	7/000	24.6			
Did well dewater? Yes	No)	Gallons actuall	y evacuated:	24.6		
Sampling Date: 12/30/10	Sampling Time	: 1320	Depth to Wate	r: 9.45		
Sample I.D.: MW-Z		Laboratory:	Kiff CalScience	e Other Accutest		
analyzed for: TPH-G BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC		
B I.D. (if applicable):	Time .	Duplicate I.D. (if applicable):			
nalyzed for: TPH-G BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
O.O. (if req'd): Pre-purge:		mg/L Po	ost-purge:	$^{\sf mg}/_{\sf L}$		
.R.P. (if req'd): Pre-purge:		mV Po	ost-purge:	mV		

W LL MONITORING DATA SHI T

Project #:	10123	0- DR	. The state of the	Client: The source Group				
Sampler: p	R/BP			Date: 12/30/10				
Well I.D.:	MW-	3		Well Diameter: 2 3 4 6 8				
Total Well	Depth (TD)): /	9.89	Depth to Wate	er (DTW):	7.74		
Depth to Fr	ee Produc			Thickness of I	Free Product (fe			
Referenced	to:	PVC	Grade	D.O. Meter (if	f req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	10.17		
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing		
7. 9 (1) Case Volume	Gals.) X Speci	3 fied Volum	= Z3.7 Calculated Vo	} 2"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163		
Time *	Temp (°F or C)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations		
1148	19.2	6.65	1066	528	7.9	·		
1150	19.4	6.58	985.6	196	15.8			
1152	19.4	6.51	1007	179	23.7	Sheen on pump		
•								
Did well der	water?	Yes (No)	Gallons actuall	y evacuated:	23.7		
Sampling D	ate: 12/30	110	Sampling Time	: 1215	Depth to Wate	r: 7. 80		
Sample I.D.	MW-3			Laboratory:	Kiff CalScience	e Other Accords t		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC		
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D.	(if applicable):	DUP-1 @ 1225		
Analyzed for	r: TPH-G	BTEX		Oxygenates (5)	Other:			
D.O. (if req'o	d): Pro	e-purge:	· · · · · · · · · · · · · · · · · · ·	mg/ _L P	ost-purge:	mg/L		
O.R.P. (if re	q'd): Pro	e-purge:		mV P	ost-purge:	mV		

W LL MONITORING DATA SHI T

			No. of the contract of the con		The same of the sa			
Project #:	101230	O-DR		Client: The	Source Groun	ρ		
Sampler	BASP			Date: 12/3	•	·		
Well I.D.:	· Mw·	-4		Well Diameter: 2 3 4 6 8				
Total Well	Depth (TD	رون :((0Z	Depth to Water (DTW): 5.70				
Depth to Fr	ee Product			Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]: 8	3.56		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump Well Diame	Sampling Method Other	Disposable Bailer3 Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) XSpeci:	3 fied Volum		Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp	рН	Cond. (mS or (LS)	Turbidity (NTUs)	Gals. Removed	Observations		
1237	16.6	7.81	915	71000	9.3	cloudy oder		
1247	14.5	7.53	903	71600	18,6	17 "		
1257	16.5	7.50	902	7100	27.9	11 11		
		-						
Did well dev	water?	Yes (No	Gallons actuall	y evacuated:	27.9		
Sampling Da	ate: 12/30	110	Sampling Time	: 1305	Depth to Wate	r: 8.29		
Sample I.D.:	MW-L	1		Laboratory:	Kiff CalScience	e Other (Ficults +)		
Analyzed for	r: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: 5E	E COC		
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D.				
Analyzed for	r: ТРН-G	BTEX		Oxygenates (5)	Other:			
D.O. (if req'o	d): Pre	e-purge:	ANTITION OF THE STATE OF THE ST	mg/ _L P	ost-purge:	mg _/ L		
O.R.P. (if red	q'd): Pre	-purge:	-	mV P	ost-purge:	mV		

· · · · · · · · · · · · · · · · · · ·										
	· · · · · · · · · · · · · · · · · · ·	``````````````````````````````````````	LL MONI	FORING DAT	ASHIT					
Project #:	10123	0-01	21	Client: The	Source Grou	P				
Sampler: 5	DR/BP			Date: 12/30/10						
Well I.D.:	MW-			Well Diamete	Well Diameter: 2 3 4 6 8					
Total Well	Depth (T	D): 2	0.04	Depth to Wat	Depth to Water (DTW): 6.68					
Depth to F	ree Produc			Thickness of Free Product (feet):						
Reference	d to:	PVC	Grade	D.O. Meter (i	f req'd):	· YSI HACH				
DTW with	80% Recl	narge [(F	Height of Water	Column x 0.20		9.35				
Purge Method:	Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Pump Dedicated Tubing Other:									
				Well Diame	ter Multiplier Wel	I Diameter Multiplier				
	Gals.) X			_ Gals. 2"	0.16 6" 0.37 Oth	0.55 1.47 er radius² * 0.163				
1 Case Volume	Spec	ified Volun	nes Calculated Vo	olume	0.37	radius * 0.163				
Time	Temp	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations				
1045	18.6	7.02	513.3	123	8.7					
1047	19./	6.78	513.7	67	17.4					
1049	19.3	6.7-3	5/6.3	63	76.1					
					·					
Did well dev	vater?	Yes (No)	Gallons actuall	y evacuated:	26.1				
Sampling Da	ite: 12/30	10	Sampling Time	: 1055	Depth to Wate					
Sample I.D.:	MW-			Laboratory:	Kiff CalScience	A . 8				
analyzed for	: ТРН-G	BTEX	MTBE TPH-D (Oxygenates (5)	Other: SE	ECOC				
B I.D. (if ap	plicable):		② Time]	Duplicate I.D. (
nalyzed for	: ТРН-G	BTEX 1			Other:					
O. (if req'd): Pre	-purge:	manuska toka kilikulun kalenda katu kan	mg/ _L Po	ost-purge:	mg/L				
R.P. (if rea	'd). Pre	-nurge:		mV						

		¥		OMMO		L OILL			
Project #:	10123	O-DR		Client:	Thes	source Groun	P		
Sampler: p	RIBP			Date:					
Well I.D.:	MW-6			Well Di	iameter	: 2 3 4	6 8		
Total Well		•	.34	Depth to	Depth to Water (DTW): 7.80				
Depth to Fr	ee Produc			Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. M	eter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	Ieight of Water	Column	x 0.20)) + DTW]:	9.50		
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump		Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X Speci	3 fied Volum		Gals.	Vell Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 2.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163		
Time	Temp (°F or C	рН	Cond. (mS o(µS)	Turbi (NTI	- 1	Gals. Removed	Observations		
1000	18.6	6.37	1523	4	01	1.4			
1003	19.7	6.42	1456	5	70	7.8			
1006	19.4	6.49	1439	61	7	4.2			
Did well dev	water?	Yes C	No)	Gallons	actually	y evacuated:	4.2		
Sampling Da	ate: 12/30	110	Sampling Time	: 101	0	Depth to Water	r: 7.99		
Sample I.D.:	MW-G	\$		Laborato	ory:	Kiff CalScience	e Other <u>Accordes</u>		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D (Oxygenate	es (5)	Other: SE	ECOC		
EB I.D. (if a	pplicable):	,	@ Time]	Duplicate	e I.D. (i	if applicable):			
Analyzed for	r: TPH-G	BTEX 1	МТВЕ ТРН-D (Oxygenate	es (5) (Other:			
D.O. (if req'o	i): Pre	e-purge:		mg/L	Po	ost-purge:	mg/ _L		
O.R.P. (if rec	٦'d): Pre	e-purge:	*	mV	Po	st-purge:	mV		

LL MONITORING DATA SHI TRESOURE Group Project #: 101230-DRI Client: Sampler: OR BP 12/30/10 Date: Well Diameter: 🗇 Well I.D.: 4 6 8 MW-7 Total Well Depth (TD): Depth to Water (DTW): 7.89 27.20 Depth to Free Product: Thickness of Free Product (feet): Referenced to: (PVC) D.O. Meter (if req'd): Grade **HACH** DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11.75

Electric Submersible	Other	-	Dedicated Tubing			
				Other:		_
		Well Diameter	Multiplier	Well Diameter	Multiplier	-
		1"	0.04	4"	0.65	
$3 \cdot (Gals.) X =$	9.3 Gals.	2" .	0.16	6"	1.47	
	Calculated Volume	3"	0.37	Other	radius ² * 0.163	

Waterra

Peristaltic

Extraction Pump

Other

Sampling Method:

(Disposable Bailer)

Extraction Port

Purge Method: Bailer

Disposable Bailer

Electric Submersible

Positive Air Displacement

Time	Temp (°F or C)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations
1030	17.6	7.57	(17)	71606	3-1	clardy
1033	16,9	7.21	1130	71000	6.2	//
1036	16.8	7.18	1127	>1006	9.3	11
				·		
Did well dev	vater?	y evacuated:	9.3			
Sampling Da	ite: 12/30	110	Sampling Time	: 1040	Depth to Water	: 8.12
Sample I.D.:	MW-7			Laboratory:	Kiff CalScience	Other Accupes
Analyzed for	: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC
EB I.D. (if ap	plicable):		@ Time	Duplicate I.D. (
Analyzed for	: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'd): Pre	-purge:		mg/ _L Po	ost-purge:	mg/L
O.R.P. (if req	'd): Pre	-purge:		mV Po	ost-purge:	mV

WELL MONITORING DATA SHEET

Project #:	10123	O-DR		Client: The Source Group					
Sampler: 0	R/BP			Date: 12/	30/10	•			
Well I.D.:	MW-8	,		Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI	D): 18.	.12	Depth to Water (DTW): 5.92					
Depth to Fr	ee Produc	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (if req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.2	0) + DTW]:	4,36			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other Other:									
8.0 (0		3 ified Volum	= ZY. 0 Calculated Vo	Gals. Gals.	Multiplier Well	Diameter Multiplier 0.65 1.47 er radius ² * 0.163			
Time	Temp (°F or ©C)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1130	18.2	6.91	911,1	56	8.0				
1132	19.6	6.77	890.5	223	16.0				
1134	Well	Dewate	ered @ 1	9.0 Gals	19.0	17W: 15.10			
`				,					
1205	19.1	6.68	9/2.1	39	Филопология				
Did well dev	vater?	Yes	No	Gallons actua	lly evacuated:	19.0			
Sampling Da	ate: 12/32	110	Sampling Time	:1205	Depth to Wate				
Sample I.D.:	MW-	ર		Laboratory:	Kiff CalScienc	e Other <u>Accutes</u> t			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: 5E	ECOC			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D	. (if applicable):				
Analyzed for	r: TPH-G	BTEX		Oxygenates (5)	Other:				
D.O. (if req'o	1): Pr	e-purge:	Territorio de contrata que en Estado como em primeiro de Asial Andréa de Comercia. Estado en Carlos de Car	mg/L	Post-purge:	$^{ m mg}/_{ m L}$			
O.R.P. (if red		e-purge:	,	mV	Post-purge:	mV			

V LL MONITORING DATA SHI I

		,	\	OMING DAIR					
Project #:	10123	O-DR	a de la companya de l	Client: TWS	Source Grow	ρ			
Sampler:	NBP		,	Date: 12/3					
Well I.D.:	AS-1	ς		Well Diameter	r: ② 3 4	6 8			
Total Well			B	Depth to Wate	er (DTW): 7.0	ßS			
Depth to Fr	ee Produc	•		Thickness of F	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	Ieight of Water	Column x 0.20) + DTW]: 6	7.44			
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	Gals.) X Speci	3 fied Volum	= 4.2 Calculated Vo		er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 radius² * 0.163			
Time	Temp	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations			
133/	17.6	7.18	1075	174	1.4	oder			
1334	18.3	7.00	1069	192	2.8	11			
1336	18.4	6.97	1067	168	4.2	" .			
-				ı					
					·				
Did well dev	vater?	Yes (No	Gallons actuall	y evacuated:	4.2			
Sampling Da	ate: 12/30	110	Sampling Time	: 1340	Depth to Wate	r: 8.27			
Sample I.D.:	45-15			Laboratory:	Kiff CalScience	e Other Accurse.			
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOL			
EB I.D. (if a _l	pplicable):	•	② Time	Duplicate I.D. (if applicable):				
Analyzed for	:: ТРН-G	BTEX	MTBE TPH-D	• • • • • • • • • • • • • • • • • • • •	Other:				
D.O. (if req'o	l): Pre	-purge:		mg/ _L Po	ost-purge:	mg/L			
O.R.P. (if rec	1'd): Pre	-purge:		mV Po	ost-purge:	mV			

		¥	PL MONIX	URING DATE	A SILL A		
Project #: 101230-DR1				Client: The Source Group			
Sampler: OR/BP				Date: 12/30/10			
Well I.D.: 45 - 10				Well Diameter: 2 3 4 6 8			
Total Well Depth (TD): 32.28				Depth to Water (DTW): 7.65			
Depth to Free Product:				Thickness of Free Product (feet):			
Referenced to: PVC Grade				D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(H	Ieight of Water	Column x 0.20) + DTW]: 17	.70	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	
I Case Volume	Gals.) X Speci	3 fied Volum	$\frac{1}{100} = \frac{12.0}{\text{Calculated Vo}}$	Gals. lume	Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163	
Time	Temp (°F or C)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1405	18.9	7,59	806	116	4.0	oder	
1410	19.0	7.20	803	496	0.9	claydy lader	
1415	18.8	7/17	864	598	No 1	11 11 11	
				{		X-1	
Did well dev	water?	Yes	Ng	Gallons actuall	y evacuated: 1	20	
Sampling Da	ate: 12/30	110	Sampling Time	:: 1420	Depth to Wate	r: 8 (8	
Sample I.D.:	AS-11)		Laboratory:	Kiff CalScience	e Other (Accures f)	
Analyzed for	r: трн-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC	
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. ((if applicable):		
Analyzed for	r: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'o	d): Pre	e-purge:		mg/ _L P	ost-purge:	mg/L	
O.R.P. (if red	q'd): Pre	e-purge:		mV . P	ost-purge:	mV	

		V	LL MONIT	URING DATA	4 2HT T			
Project #:	10123	O-DR		Client: The	Source Group	2		
Sampler: DR/BP				. [30/10			
Well I.D.: ASMW - 2S				Well Diameter: 7 3 4 6 8				
Total Well Depth (TD): 16.96				Depth to Water (DTW): 7,73				
Depth to Fr	Depth to Free Product:				Thickness of Free Product (feet):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 9	.58		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X Speci	3 fied Volum	$=\frac{4.5}{\text{Calculated Vol}}$	Gals. Slume Well Diamet 1" 2" 3"	ter Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163		
Time	Temp	рН	Cond. (mS or(µS)	Turbidity (NTUs)	Gals. Removed	Observations		
13 38	18.1	7.10	1061	870	1.5			
1342	18.3	6.71	1041	71000	3. 0			
1345	18.4	6.65	1024	71000	4.5			
			1					
Did well dev	water?	Yes C	No	Gallons actuall	y evacuated:	4.5		
Sampling Da	ate: 12/30	110	Sampling Time	: /350	Depth to Water			
Sample I.D.:	: ASMW.	-VS		Laboratory:	Kiff CalScience	A 2 F		
Analyzed for	r: трн-G	BTEX !		Oxygenates (5)	Other: SE	E COC		
EB I.D. (if a	pplicable):	•	@ Time	Duplicate I.D. ((if applicable):			
Analyzed for	r: TPH-G	BTEX I	MTBE TPH-D (Oxygenates (5)	Other:			
D.O. (if req'o	1): Pro	e-purge:		mg/L P	ost-purge:	mg/ _L		
O.R.P. (if red	q'd): Pro	e-purge:		mV . P	ost-purge:	mV		

V LL MONITORING DATA SHI T

Project #: 101230-DR1				Client: The Source Group				
Sampler: OR/BP				Date: 12/30/10				
Well I.D.: ASMW-2D				Well Diameter: (2) 3 4 6 8				
				Depth to Wate	Depth to Water (DTW): 7.88			
Depth to Fr	ee Produc	t:		Thickness of I	Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20) + DTW]:	13.06		
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme		Waterra Peristaltic etion Pump	Sampling Method Other	Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X Speci	3 ified Volum	$= \frac{12.3}{\text{Calculated Vo}}$	Gals. Olume Well Diameter 1" 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius² * 0.163		
Time	Temp (°F or C)	рН	Cond. (mS or (IS)	Turbidity (NTUs)	Gals. Removed	Observations		
1410	18.2	6.78	947.6	190	4.1			
1417	17.8	6.74	925.1	287	8.2			
1425	18.2	6.68	910,9	4//	12.3			
Did well dev	vater?	Yes (No	Gallons actually	y evacuated:	12.3		
Sampling Da	ite: 12/30	110	Sampling Time	: 1430	Depth to Water	r: 8.13		
Sample I.D.:	A-SMW-	ZD			Kiff CalScience	e Other Acc ufest		
Analyzed for	r: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	E COC		
EB I.D. (if ap	pplicable):	,	@ Time]	Duplicate I.D. (
Analyzed for	TPH-G	BTEX 1			Other:			
O.O. (if req'd	l): Pre	e-purge:	THE PRINTED THE PRINTED THE STREET, AND ADDRESS OF THE PRINTED THE	mg/L Po	ost-purge:	mg/ _L		
R.P. (if req	ı'd): Pre	e-purge:	~	mV Po	ost-purge:	mV		

LL MONITORING DATA SHI

			No. of the second		14.545				
Project #:	10123	O-DR	. 1	Client: TW =	Source Grown	ρ			
Sampler 6	BBP			. I	30/10				
Well I.D.:	Ē-2			Well Diameter		6 8			
Total Well)):	[8.3]	Depth to Wate	er (DTW): 7.4	95			
Depth to Fr	ree Produc	t:		Thickness of F	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if		YSI HACH			
DTW with	80% Rech	arge [(H	Height of Water	· ····································		10.02			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	Gals.) XSpeci	3 fied Volum	= 5.1 Calculated Vol	Gals. Well Diamete 1" 2" 3"		Diameter Multiplier 0.65 1.47			
Time	Temp (°F or C)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations			
0953	16.8	6.38	1617	> 1000	1.7	light cloudy			
© 955	17.4	6.70	1546	7 1000	3.4	//			
0957	17.3	6.71	1542	71000	5.1	11			
	*	<u> </u>							
Did well dev	voter?	Yes /	Ne	Gallons actually	· cycomotad				
Sampling Da			Sampling Time:		***************************************	<i>5-1</i> r: 8-41			
		/10 -			Depth to Water	TIN			
Sample I.D.:				.: •	Kiff CalScience				
Analyzed for				Oxygenates (5)	Other: SE	E COC			
EB I.D. (if ap	Tarah	mark) control () () () ()	Time I	Duplicate I.D. (if applicable):				
Analyzed for		BTEX 1	MTBE TPH-D (, ,	Other:				
D.O. (if req'd	1): Pre	e-purge:		mg/ _L Po	ost-purge:	mg/L			
O.R.P. (if red	ı'd): Prε	e-purge:	-	mV Pc	ost-purge:	mV			

W LL MONITORING DATA SHI

			1100							
Project #:	10123	O-DR		Client: Th	esoure Grou	ρ				
Sampler: 6				Date: 12/	•					
Well I.D.:	G-7			Well Diame		6 8				
Total Well	Depth (TD)): [8	.22	Depth to Wa	ater (DTW): 7.0	95				
Depth to Fr	ree Produc	t:			Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter	(if req'd):	YSI HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.2	20) + DTW]:	10.00				
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme		Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing				
1 Case Volume	Gals.) XSpeci	3 fied Volum		_ Gals. 1" 2" 2"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47				
Time	Temp (°F or C)	рН	Cond. (mS or US)	Turbidity (NTUs)	Gals. Removed	Observations				
nh68	16.6	7-11	1614	502	1-6	claudy 1 podor				
	16.5	6.90	1566	394	3-2	11				
1113	164	6.28	1562	495	4.8	11 11				
Did well dev	water?	Yes (1	No)	Gallons actu	ally evacuated:	4.8				
Sampling Da			Sampling Time		Depth to Wate					
Sample I.D.:		<u>/</u>		Laboratory:	Kiff CalScience					
Analyzed for	7.0-	BTEX !		Oxygenates (5)		ECOL				
EB I.D. (if a	pplicable):		(a).		(if applicable):					
Analyzed for				Oxygenates (5)						
D.O. (if req'o	i): Pre	e-purge:		mg/L	Post-purge:	mg/L				
O.R.P. (if red		e-purge:		mV	Post-purge:	mV				

W LL MONITORING DATA SHI

Project #: 101230-DR1	Client: The Source Group						
Sampler: OR BP	Date: 12/30/10						
Well I.D.: 6-8	Well Diameter: 2 3 4 6 8						
Total Well Depth (TD): 18.05	Depth to Water (DTW): 7.96						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH						
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 9,98						

Purge Method: Bailer Waterra Sampling Method: Bailer

Disposable Bailer Peristaltic

Positive Air Displacement Extraction Pump

Electric Submersible Other

Other:

				Well Diameter	Multiplier	Well Diameter	Multiplier
11 4				1"	0.04	4"	0.65
(Gals.) >		4.8	Gals.	2" .	0.16	6"	1.47
1 Case Volume	Specified Volumes	Calculated Volu		3"	0.37	Other	radius ² * 0.163

Time	Temp (°F or C)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations		
1132	16,9	7.16	1416	71000	a. 1.6	oder lelend		
1135	16.5	7.01	1392	71000	3.2	11		
1137	16,4	7.00	1383	>1000	4.8	17		
						· .		
Did well dev	Did well dewater? Yes (No) Gallons actually evacuated: 4.8							
Sampling Da	ite: 12/30	110	Sampling Time	: 1145	Depth to Water	r: 8.22		
Sample I.D.:	E-8			Laboratory:	Kiff CalScience	e Other Acculst		
Analyzed for	: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SE	ECOC		
EB I.D. (if ap	plicable):		@ Time	Duplicate I.D. ((if applicable):			
Analyzed for	: ТРН-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'd): Pre	-purge:		mg/L Po	ost-purge:	mg/L		
O.R.P. (if req	'd): Pre	-purge:		mV Po	ost-purge:	mV		

GROUNDWATER SAMPLING LABORATORY REPORT AND CHAIN OF CUSTODY

01/08/11

Technical Report for

The Source Group

9201 San Leandro Street, Oakland CA

PACO PUMPS

Accutest Job Number: C14009

Sampling Date: 12/30/10

Report to:

The Source Group 3451C Vincent Road Pleasant Hill, CA 94523 pparmentier@thesourcegroup.net

ATTN: Paul Parmentier

Total number of pages in report: 51

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ its \ entirety, \ without \ the \ written \ approval \ of \ Accutest \ Laboratories.$

Test results relate only to samples analyzed.

Sections:

C

·

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	5
2.1: C14009-1: TB-1	6
2.2: C14009-2: E-2	7
2.3: C14009-3: MW-7	9
2.4: C14009-4: E-7	11
2.5: C14009-5: E-8	13
2.6: C14009-6: MW-4	15
2.7: C14009-7: AS-1S	17
2.8: C14009-8: AS-1D	19
2.9: C14009-9: MW-6	21
2.10: C14009-10: MW-1	23
2.11: C14009-11: MW-5	25
2.12: C14009-12: MW-8	27
2.13: C14009-13: MW-3	29
2.14: C14009-14: DUP-1	31
2.15: C14009-15: MW-2	33
2.16: C14009-16: ASMW-2S	35
2.17: C14009-17: ASMW-2D	37
Section 3: Misc. Forms	39
3.1: Chain of Custody	40
Section 4: GC/MS Volatiles - QC Data Summaries	43
4.1: Method Blank Summary	44
4.2: Blank Spike Summary	45
4.3: Matrix Spike/Matrix Spike Duplicate Summary	47
Section 5: GC Semi-volatiles - QC Data Summaries	48
5.1: Method Blank Summary	49
5.2: Blank Spike Summary	50
5.3: Matrix Spike/Matrix Spike Duplicate Summary	51

Sample Summary

Job No:

C14009

The Source Group

9201 San Leandro Street, Oakland CA Project No: PACO PUMPS

110/0001110.	11100	1 01/11 5				
Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C14009-1	12/30/10	06:45 BTS	12/30/10	AQ	Trip Blank Water	TB-1
C14009-2	12/30/10	10:05 BTS	12/30/10	AQ	Ground Water	E-2
C14009-3	12/30/10	10:40 BTS	12/30/10	AQ	Ground Water	MW-7
C14009-4	12/30/10	11:20 BTS	12/30/10	AQ	Ground Water	E-7
C14009-5	12/30/10	11:45 BTS	12/30/10	AQ	Ground Water	E-8
C14009-6	12/30/10	13:05 BTS	12/30/10	AQ	Ground Water	MW-4
C14009-7	12/30/10	13:40 BTS	12/30/10	AQ	Ground Water	AS-1S
C14009-8	12/30/10	14:20 BTS	12/30/10	AQ	Ground Water	AS-1D
C14009-9	12/30/10	10:10 BTS	12/30/10	AQ	Ground Water	MW-6
C14009-10	12/30/10	11:10 BTS	12/30/10	AQ	Ground Water	MW-1
C14009-11	12/30/10	10:55 BTS	12/30/10	AQ	Ground Water	MW-5
C14009-12	12/30/10	12:05 BTS	12/30/10	AQ	Ground Water	MW-8
C14009-13	12/30/10	12:15 BTS	12/30/10	AQ	Ground Water	MW-3

Sample Summary (continued)

Job No:

C14009

The Source Group

9201 San Leandro Street, Oakland CA Project No: PACO PUMPS

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C14009-14	12/30/10	12:25 BTS	12/30/10	AQ	Ground Water	DUP-1
C14009-15	12/30/10	13:20 BTS	12/30/10	AQ	Ground Water	MW-2
C14009-16	12/30/10	13:50 BTS	12/30/10	AQ	Ground Water	ASMW-2S
C14009-17	12/30/10	14:30 BTS	12/30/10	AQ	Ground Water	ASMW-2D

Page 1 of 1

Client Sample ID: TB-1

 Lab Sample ID:
 C14009-1
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4117.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	103%		60-1	30%	
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	103%		60-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-2

 Lab Sample ID:
 C14009-2
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4118.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.41	1.0	0.30	ug/l	J
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.8	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	100%		60-1	30%	
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	103%		60-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-2

 Lab Sample ID:
 C14009-2
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20655.D 2 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 3.74	0.19 0.38	0.096 0.19	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	Limits	
630-01-3	Hexacosane	100%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-7

 Lab Sample ID:
 C14009-3
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4119.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.1	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		60-1	30%	
2037-26-5	Toluene-D8	104%		60-1	30%	
460-00-4	4-Bromofluorobenzene	105%				

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-7

 Lab Sample ID:
 C14009-3
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20656.D 1 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	90%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-7

 Lab Sample ID:
 C14009-4
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4120.D 5 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	339	5.0	1.5	ug/l	
108-88-3	Toluene	20.0	5.0	2.5	ug/l	
100-41-4	Ethylbenzene	83.3	5.0	1.5	ug/l	
1330-20-7	Xylene (total)	23.9	10	3.5	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	1.0	ug/l	
107-06-2	1,2-Dichloroethane	3.5	5.0	1.5	ug/l	J
108-20-3	Di-Isopropyl ether	ND	25	2.5	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	25	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	5.4	5.0	2.5	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	25	2.5	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	50	25	ug/l	
	TPH-GRO (C6-C10)	3380	250	130	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1868-53-7	Dibromofluoromethane	103%	60-130%			
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	106%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-7

 Lab Sample ID:
 C14009-4
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20657.D 1 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	1.36 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	87%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-8

 Lab Sample ID:
 C14009-5
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4121.D 10 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	480	10	3.0	ug/l	
Toluene	19.1	10	5.0	ug/l	
Ethylbenzene	164	10	3.0	ug/l	
Xylene (total)	51.8	20	7.0	ug/l	
1,2-Dibromoethane	ND	10	2.0	ug/l	
1,2-Dichloroethane	4.8	10	3.0	ug/l	J
Di-Isopropyl ether	ND	50	5.0	ug/l	
Ethyl Tert Butyl Ether	ND	50	5.0	ug/l	
Methyl Tert Butyl Ether	ND	10	5.0	ug/l	
Tert-Amyl Methyl Ether	ND	50	5.0	ug/l	
Tert-Butyl Alcohol	ND	100	50	ug/l	
TPH-GRO (C6-C10)	8930	500	250	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
Dibromofluoromethane	100%	60-130%			
Toluene-D8	104%		60-13	30%	
4-Bromofluorobenzene	106%		60-13	30%	
	Benzene Toluene Ethylbenzene Xylene (total) 1,2-Dibromoethane 1,2-Dichloroethane Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene 480 Toluene 19.1 Ethylbenzene 164 Xylene (total) 51.8 1,2-Dibromoethane ND 1,2-Dichloroethane 4.8 Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) 8930 Surrogate Recoveries Run# 1 Dibromofluoromethane 100% Toluene-D8 104%	Benzene	Benzene	Benzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-8

Lab Sample ID: C14009-5 **Date Sampled:** 12/30/10 Matrix: AQ - Ground Water **Date Received:** 12/30/10 Method: SW846 8015B M SW846 3510C Percent Solids: n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 GG20658.D 1 01/04/11 JH 01/03/11 OP3266 **GGG588**

Run #2

Final Volume Initial Volume Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	1.22 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	89%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-4

 Lab Sample ID:
 C14009-6
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4122.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	7.4	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	2.6	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	0.98	2.0	0.70	ug/l	J
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	77.4	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		60-1	30%	
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	102%		60-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-4

 Lab Sample ID:
 C14009-6
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20659.D 1 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	88%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: AS-1S

 Lab Sample ID:
 C14009-7
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4123.D 100 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	4530	100	30	ug/l	
108-88-3	Toluene	4040	100	50	ug/l	
100-41-4	Ethylbenzene	538	100	30	ug/l	
1330-20-7	Xylene (total)	1100	200	70	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	20	ug/l	
107-06-2	1,2-Dichloroethane	ND	100	30	ug/l	
108-20-3	Di-Isopropyl ether	ND	500	50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	500	50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	100	50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	500	50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	1000	500	ug/l	
	TPH-GRO (C6-C10)	30000	5000	2500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	100%		60-13	30%	
2037-26-5	Toluene-D8	103%		60-13	30%	
460-00-4	4-Bromofluorobenzene	103%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

2

Report of Analysis

Page 1 of 1

Client Sample ID: AS-1S

 Lab Sample ID:
 C14009-7
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20660.D 3 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	2.79 ND	0.28 0.57	0.14 0.28	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
630-01-3	Hexacosane	92%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: AS-1D

 Lab Sample ID:
 C14009-8
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4124.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1868-53-7	Dibromofluoromethane	101%	60-130%			
2037-26-5	Toluene-D8	102%		60-1	30%	
460-00-4	4-Bromofluorobenzene	102%				

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: AS-1D

 Lab Sample ID:
 C14009-8
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20661.D 1 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	90%		45-1	40%	

ND = Not detected MDL - Method Detection Limit J

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C14009-9
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4125.D 20 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	1130	20	6.0	ug/l	
108-88-3	Toluene	469	20	10	ug/l	
100-41-4	Ethylbenzene	364	20	6.0	ug/l	
1330-20-7	Xylene (total)	1360	40	14	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	4.0	ug/l	
107-06-2	1,2-Dichloroethane	20.7	20	6.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	100	10	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	100	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	10	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	100	10	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	200	100	ug/l	
	TPH-GRO (C6-C10)	9720	1000	500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	105%		60-13	30%	
2037-26-5	Toluene-D8	103%		60-13	30%	
460-00-4	4-Bromofluorobenzene	104%		60-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C14009-9
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20662.D 2 01/04/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1050 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	2.47 ND	0.19 0.38	0.095 0.19	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	87%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 C14009-10
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4126.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		30%		
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	103%		30%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Report of Analysis

Client Sample ID: MW-1

 Lab Sample ID:
 C14009-10
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20615.D 1 01/03/11 JH 01/03/11 OP3266 GGG587

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.114	0.094 0.19	0.047 0.094	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	82%		45-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-5

 Lab Sample ID:
 C14009-11
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4127.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		30%		
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	103%		30%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

N

Report of Analysis

Page 1 of 1

Client Sample ID: MW-5

 Lab Sample ID:
 C14009-11
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20616.D 1 01/03/11 JH 01/03/11 OP3266 GGG587

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.808	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-8

 Lab Sample ID:
 C14009-12
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4128.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.53	1.0	0.50	ug/l	J
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		60-1	30%	
2037-26-5	Toluene-D8	104%		60-1	30%	
460-00-4	4-Bromofluorobenzene	104%		60-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Report of Analysis

Client Sample ID: MW-8

 Lab Sample ID:
 C14009-12
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20617.D 1 01/03/11 JH 01/03/11 OP3266 GGG587

Run #2

Initial Volume Final Volume

Run #1 1050 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	90%		45-1	40%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-3

Lab Sample ID: C14009-13 **Date Sampled:** 12/30/10 Matrix: AQ - Ground Water **Date Received:** 12/30/10 Method: Percent Solids: n/a SW846 8260B

Project: 9201 San Leandro Street, Oakland CA

File ID **Prep Batch Analytical Batch** DF Analyzed By **Prep Date** Run #1 L4129.D 50 01/04/11 TF n/a VL138 n/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

its Q
1
1
1
1
1
1
/1
/1
/1
1
1
1

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-3

 Lab Sample ID:
 C14009-13
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20618.D 20 01/04/11 JH 01/03/11 OP3266 GGG587

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil) ^b	36.5 3.90	1.9 3.8	0.94 1.9	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	89%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

(b) Atypical Motor Oil pattern (C26-C32).

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

7

Report of Analysis

Page 1 of 1

Client Sample ID: DUP-1

 Lab Sample ID:
 C14009-14
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4130.D 50 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	1660	50	15	ug/l	
108-88-3	Toluene	1910	50	25	ug/l	
100-41-4	Ethylbenzene	402	50	15	ug/l	
1330-20-7	Xylene (total)	1550	100	35	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	10	ug/l	
107-06-2	1,2-Dichloroethane	ND	50	15	ug/l	
108-20-3	Di-Isopropyl ether	ND	250	25	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	250	25	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	25	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	250	25	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	500	250	ug/l	
	TPH-GRO (C6-C10)	25200	2500	1300	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%	60-130%			
2037-26-5	Toluene-D8	104%		60-13	30%	
460-00-4	4-Bromofluorobenzene	105%	60-130%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

2

Report of Analysis

Page 1 of 1

Client Sample ID: DUP-1

 Lab Sample ID:
 C14009-14
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20667.D 50 01/05/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil) ^b	61.9 7.78	4.7 9.4	2.4 4.7	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits	
630-01-3	Hexacosane	94%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

(b) Atypical Motor Oil pattern (C26-C32).

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

Client Sample ID: MW-2

 Lab Sample ID:
 C14009-15
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4131.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10) ^a	29.2	50	25	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1060 52 7	Dibasas of lusas and base	1020/		60.1	200/	
1868-53-7	Dibromofluoromethane	103%		60-1		
2037-26-5	Toluene-D8	103%		60-1		
460-00-4	4-Bromofluorobenzene	110%		60-1	30%	

⁽a) Atypical pattern.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-2

 Lab Sample ID:
 C14009-15
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20669.D 3 01/05/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 3.24	0.28 0.57	0.14 0.28	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	85%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: ASMW-2S

 Lab Sample ID:
 C14009-16
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 L4132.D 10 01/04/11 TF n/aVL138 n/a Run #2

Purge Volume Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q			
71-43-2	Benzene	447	10	3.0	ug/l				
108-88-3	Toluene	80.1	10	5.0	ug/l				
100-41-4	Ethylbenzene	95.0	10	3.0	ug/l				
1330-20-7	Xylene (total)	181	20	7.0	ug/l				
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l				
107-06-2	1,2-Dichloroethane	5.7	10	3.0	ug/l	J			
108-20-3	Di-Isopropyl ether	ND	50	5.0	ug/l				
637-92-3	Ethyl Tert Butyl Ether	ND	50	5.0	ug/l				
1634-04-4	Methyl Tert Butyl Ether	ND	10	5.0	ug/l				
994-05-8	Tert-Amyl Methyl Ether	ND	50	5.0	ug/l				
75-65-0	Tert-Butyl Alcohol	ND	100	50	ug/l				
	TPH-GRO (C6-C10)	5300	500	250	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its				
1868-53-7	Dibromofluoromethane	102%		60-1	30%				
2037-26-5	Toluene-D8	104%		60-130%					
460-00-4	4-Bromofluorobenzene	106%		60-1	30%				

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: ASMW-2S

 Lab Sample ID:
 C14009-16
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20683.D 10 01/05/11 JH 01/03/11 OP3266 GGG589

Run #2

Initial Volume Final Volume

Run #1 1000 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	3.44 ND	1.0 2.0	0.50 1.0	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	80%		45-1	40%	

(a) Higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: ASMW-2D

 Lab Sample ID:
 C14009-17
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L4133.D 1 01/04/11 TF n/a n/a VL138

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%		60-1	30%	
2037-26-5	Toluene-D8	103%		60-1	30%	
460-00-4	4-Bromofluorobenzene	103%		60-1	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: ASMW-2D

 Lab Sample ID:
 C14009-17
 Date Sampled:
 12/30/10

 Matrix:
 AQ - Ground Water
 Date Received:
 12/30/10

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: 9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG20668.D 1 01/05/11 JH 01/03/11 OP3266 GGG588

Run #2

Initial Volume Final Volume
Run #1 1000 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.10 0.20	0.050 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	81%		45-1	40%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Misc. Forms
Custody Documents and Other Forms
Includes the following where applicable:

· Chain of Custody

										S	aRP.	CAP	1 280	05	-			
BLA		64	N IOSE		ROGERS DRNIA 95				CON	NDUC1	ANA	YSIS	TO DE	TECT	 LAB	ACCUTEST		DHS#
			M 303E,		AX (408)										ALL ANALYSES MUS' LIMITS SET BY CALIF			DEFECTION
TECH SER	VICES, 1	VC.		PHO	NE (408)	573-05	55					1	1	1 1	☐ EPA ☐ RWQCB REGION			
CHAIN OF CUS	TODY						1								☐ LIA ☐ OTHER			
GIAM OF COS	11001	BTS#	101	230-	DAI		တ္တ	İ							☐ OTHER			
CLIENT	The So	urce Gro	up				CONTAINERS								SPECIAL INSTRUCTI	ONS		
SITE	Paco Pumps					NO.								Invoice and Repo	ort to: The S	Source Gro	up	
						¥				Oxygenates (8260)	æ			Attn: Paul Parmer	ntier pparmen	tier@theso	urcegroup.net	
	Oakland	, CA					COMPOSITE		5)		es (EDB						
			MATRIX	CC	ONTAINE	RS	ĕ	(092	TPH-d (8015)	(09	nat	1,2-DCA,			(562)597-105	5 ext106	
	1	ı	98		1		Š	8) 8	할	8	yge	ΙĂ				1	1	
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL			Ü	TPH-g (8260)		BTEX (8260)	ĺõ	1,2			ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
TB-1	12/30/10		1	3	HEL VO	oas		×		入	火	X						-1
E-2		1005	w	6	1+cv 1	halos		X	٤	Х	久	火						-2.
MW.7		1040	W	6				X	1	1	ス	K						-3
E-7	T	1120	W	6				X	У	X	ス	X						-4
E-8		1145	W	6				X	×	X	Х	火						-5
MW-4		1305	W	6				X	ኦ	X	又	x						-6
AS-15		1340	W	6				×	X	X	X	K						-7
A5-10	V	14/20	ω	6	V			K	又	火	火	X			,			-B
						sten.												
																		1
SAMPLING	DATE	TIME	SAMPLI					<u> </u>				·	J	l	RESULTS NEEDED		l	
COMPLETED D	2 12/30/10	1525	PERFOR	KWED B	<u>ل</u> ٧	. Ra	719	<u> </u>							NO LATER THAN	Standard TA		
RELEASED BY	1)	-(1)		2		ſ	DATI IZ/	: 30/10		TIME \	610		RECE	IVED BY	e Vina		DATE 12 30 11	TIME 1610
RELEASED BY		~ VE				П	DATI	=		TIME			RECE	IVED BY	 -,,,,		DATE	TIME
RELEASED BY							DATI			TIME			RECE	IVED BY	 		DATE	TIME
						i	J, 171	٠.	1								1	1
SHIPPED VIA							DATE	SEN'	Т	TIME	SENT		COOL	ER#				

C14009: Chain of Custody

Page 1 of 3

DIA						S AVENU		Г	CON	NDUC	T ANA	LYSIS	TO DETE	CT	LAB	ACCUTEST	C14009	DHS#
BLA TECH SER			IN JOSE,	F	AX (408)	5112-110) 573-77) 573-05!	71								ALL ANALYSES MUS LIMITS SET BY CAL	IFORNIA DHS AN		
CHAIN OF CUS	STODY	BTS#]								LIA OTHER			
CLIENT	The Sou						CONTAINERS								SPECIAL INSTRUCT	TIONS		
SITE	Paco Pu		oup				ATA								Invoice and Ren	out to . The	Caumaa Cma	
	9201 Sa		iro St				ALL CC				(8260)				Attn: Paul Parme			•
	Oakland,		110 51.				TE AI				88	EDB			Aun. Faui Faink	энцег ррагине.	nner@meso	urcegroup.net
	Oakianu,	UA	MATRIX	CC	ONTAINE	ERS	COMPOSITE	TPH-g (8260)	TPH-d (8015)	BTEX (8260)	Oxygenates	1,2-DCA, I				(562)597-10	55 ext106	ı
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL			0=0	TPH-	TPH	втех	ő	1,2-			ADD'L INFORMATIO	STATUS	CONDITION	LAB SAMPLE #
M10-6	12/30/10	1010	W	6	MCCLE NP/L	Amber		X	X	X	X	X						-9
110-1	- '	11/0	W	6		-		X	X	χ	X	×						-10
MW-5	- 4	1055	W	6				У	X	X	X	х						-11
MW-8		1205	ω	6				×	X	χ	X	X						-12_
11w-3	- 🖵	1215	w	6				X	X	X	Х	¥			Pers. crasted bythe			-13
DUP-1		1225	W	6				×	X	X_	x	Х			KXIN VOAW/Pres.	id		-14
MW-Z		1320	W	6				X	X	×	X	X						-15
ASMW-25	- —	1350	w	6				×	Х	Х	Х	×			erected slam bubble	6		-16
ASMW-ZD	_ 🕹	<u> 1430</u>	W	6	1			X	X	X	×	×						-17
SAMPLING COMPLETED	DATE [2/30/10		SAMPLII PERFOR		Y B	en Pa	me	اار							RESULTS NEEDED NO LATER THAN	Standard TA	Т	ť
RELEASED BY	BIT	Ru	el			en Pa	DATE	30/1	0	TIME (d	510		RECEIVE	D BY	elm		DATE DATE	
RELEASED BY							DATE	=		TIME			RECEIVE	D BY			DATE	TIME
RELEASED BY						ļi	DATE	Ē	1	TIME			RECEIVE	D BY			DATE	TIME
SHIPPED VIA						1	DATE	SEN'	r	TIME	SENT		COOLER	#	1.	5-0-2=3.3°C 5-0-2=5.4°C		-0.2 = 3.9 °C -02 = 4.0 °C

C14009: Chain of Custody

Page 2 of 3

	C14009:
	: Chain of
Doma (
n of n	Custody

	Northern California	
Ø AI	CCUTEST.	

Sample Receiving Checklist

Job # C14009

Review Chain of Custody: The Chain of Custody is to be completely and legibly filed out by Client.
Are these regulatory (NPDES) samples? (Yes) / No circle one // Is pH requested? Yes / (No circle one
We AWas Client informed that the hold time is 15mins Yes / No circle one If yes, did they consent to continue? NA
Are sample within one-half hold-time? Yes / No circle one If no, was the lab informed? NA
Report to info is complete and legible, including;
□ Type of Deliverable needed □ name □ address □ phone □ email
□ Bill to info is complete and legible, including: □ PO# □ Credit card □ contact □ address □ phone □ email
Contact and/or Project Mgr identified, including; phone semail
Project name / number Special requirements? Yes / No circle one
Sample IDs / date & time of collection provided? Yes y No circle one
Matrix listed and correct? Yes No circle one
Analyses listed are those we do or client has authorized a subcontract? Yes / No circle one
Chain is signed / dated by both client and sample custodian? Yes)! No circle one
TAT requested available? Approved byPM
Review Coolers: 4 Coolers Revid
Samples / Coolers are at 0-6°C? If sampled within 4hrs, then "on ice" is acceptable.
If a cooler is outside the 0-6°C range; note below the bottles in that cooler below.
Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators)
Shipment Method: walk In (BTI)
Custody Seals Present: Yes / No circle one Un-broken: Yes / No circle one
Review of Sample Bottles: If you answer no, explain below
IDs / bottle number / Date / Time of bottle labels match CoC?
Sample bottle intact? Yes / No circle one
Proper containers and volumes? (Yes) / No circle one
Proper preservatives? Check pH on preserved samples except 1664, 625, 8270, and VOAs and list below.
VOAs received without headspace? (Yes) / No circle one

Lab#	Client Sample ID	pH Check:	Other Comments / Issues

	***************************************		1000 600
			44.0

 Client informed of irregularities at receiving Comments: Project Mgr needs to contact Client for issues

:T:\Laboratory\Forms\SampleControl\Form_SampleReceiving_2008-04-12.doc

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

Sample VL138-MB	File ID L4114.D	DF 1	Analyzed 01/04/11	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VL138

The QC reported here applies to the following samples:

 $C14009-1,\ C14009-2,\ C14009-3,\ C14009-4,\ C14009-5,\ C14009-6,\ C14009-7,\ C14009-8,\ C14009-9,\ C14009-10,\ C14009-11,\ C14009-12,\ C14009-13,\ C14009-14,\ C14009-15,\ C14009-16,\ C14009-17$

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	100%	60-130%
2037-26-5	Toluene-D8	103%	60-130%
460-00-4	4-Bromofluorobenzene	104%	60-130%

Blank Spike Summary

Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

Sample VL138-BS	File ID L4115.D	DF 1	Analyzed 01/04/11	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VL138

The QC reported here applies to the following samples:

 $C14009-1,\ C14009-2,\ C14009-3,\ C14009-4,\ C14009-5,\ C14009-6,\ C14009-7,\ C14009-8,\ C14009-9,\ C14009-10,\ C14009-11,\ C14009-12,\ C14009-13,\ C14009-14,\ C14009-15,\ C14009-16,\ C14009-17$

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	20.9	105	60-130
106-93-4	1,2-Dibromoethane	20	21.8	109	60-130
107-06-2	1,2-Dichloroethane	20	20.7	104	60-130
108-20-3	Di-Isopropyl ether	20	20.7	104	60-130
100-41-4	Ethylbenzene	20	20.9	105	60-130
637-92-3	Ethyl Tert Butyl Ether	20	21.6	108	60-130
1634-04-4	Methyl Tert Butyl Ether	20	20.6	103	60-130
994-05-8	Tert-Amyl Methyl Ether	20	21.4	107	60-130
75-65-0	Tert-Butyl Alcohol	100	107	107	60-130
108-88-3	Toluene	20	20.8	104	60-130
1330-20-7	Xylene (total)	60	62.8	105	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane Toluene-D8	104% 102%	60-130% 60-130%
460-00-4	4-Bromofluorobenzene	104%	60-130%

Blank Spike Summary Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

	Sample VL138-BS	File ID L4116.D	DF 1	Analyzed 01/04/11	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VL138
--	--------------------	---------------------------	----------------	--------------------------	-----------------	----------------------	-----------------------	---------------------------

The QC reported here applies to the following samples:

C14009-1, C14009-2, C14009-3, C14009-4, C14009-5, C14009-6, C14009-7, C14009-8, C14009-9, C14009-10, C14009-10 11, C14009-12, C14009-13, C14009-14, C14009-15, C14009-16, C14009-17

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	126	101	60-130
CAS No.	Surrogate Recoveries	BSP	Liı	mits	

CAS 110.	Surrogate Recoveries	DSI	Limits
	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 103% 104%	60-130% 60-130% 60-130%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

C14009-17 I 4133 D 1 01/04/11 TF n/a n/a VI 138	Sample C14009-17MS C14009-17MSD	File ID L4140.D L4141.D	DF 1 1	Analyzed 01/05/11 01/05/11	By TF TF	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Bate VL138 VL138
	C14009-17	L4133.D	1	01/04/11	TF	n/a	n/a	VL138

The QC reported here applies to the following samples:

C14009-1, C14009-2, C14009-3, C14009-4, C14009-5, C14009-6, C14009-7, C14009-8, C14009-9, C14009-10, C14009-10 11, C14009-12, C14009-13, C14009-14, C14009-15, C14009-16, C14009-17

CAS No.	Compound	C14009-17 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	20.4	102	21.2	106	4	60-130/25
106-93-4	1,2-Dibromoethane	ND	20	21.0	105	21.0	105	0	60-130/25
107-06-2	1,2-Dichloroethane	ND	20	20.1	101	20.2	101	0	60-130/25
108-20-3	Di-Isopropyl ether	ND	20	20.3	102	20.6	103	1	60-130/25
100-41-4	Ethylbenzene	ND	20	20.1	101	21.3	107	6	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND	20	21.1	106	21.2	106	0	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	20.3	102	20.4	102	0	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND	20	20.9	105	21.0	105	0	60-130/25
75-65-0	Tert-Butyl Alcohol	ND	100	102	102	103	103	1	60-130/25
108-88-3	Toluene	ND	20	20.0	100	21.1	106	5	60-130/25
1330-20-7	Xylene (total)	ND	60	60.3	101	64.0	107	6	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C14009-17	Limits
	Dibromofluoromethane	102%	102%	100%	60-130%
2037-26-5	Toluene-D8	100%	101%	103%	60-130%
460-00-4	4-Bromofluorobenzene	104%	104%	103%	60-130%

α	α	•	1	
(÷(`	Ser	ni-vo	Mati	Iec

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8015B M

Method Blank Summary

Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

Sample OP3266-MB	File ID GG20637.D	DF 1	Analyzed 01/04/11	Ву ЈН	Prep Date 01/03/11	Prep Batch OP3266	Analytical Batch GGG588

The QC reported here applies to the following samples:

C14009-2, C14009-3, C14009-4, C14009-5, C14009-6, C14009-7, C14009-8, C14009-9, C14009-10, C14009-11, C14009-12, C14009-13, C14009-14, C14009-15, C14009-16, C14009-17

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.10 0.20	0.050 0.10	mg/l mg/l
CAS No.	Surrogate Recoveries		Limits		
630-01-3	Hexacosane	89%	45-140	%	

Page 1 of 1

Method: SW846 8015B M

Blank Spike Summary

Job Number: C14009

Account: SGRPCAPH The Source Group
Project: 9201 San Leandro Street, Oakland CA

Sample OP3266-BS	File ID GG20638.D	DF 1	Analyzed 01/04/11	Ву ЈН	Prep Date 01/03/11	Prep Batch OP3266	Analytical Batch GGG588

The QC reported here applies to the following samples:

 $C14009-2,\ C14009-3,\ C14009-4,\ C14009-5,\ C14009-6,\ C14009-7,\ C14009-8,\ C14009-9,\ C14009-10,\ C14009-11,\ C14009-12,\ C14009-13,\ C14009-14,\ C14009-15,\ C14009-16,\ C14009-17$

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	Limits
	TPH (Diesel)	1	0.929	93	45-140
	TPH (Motor Oil)	1	0.912	91	45-140

CAS No.	Surrogate Recoveries	BSP	Limits
630-01-3	Hexacosane	101%	45-140%

Page 1 of 1

Method: SW846 8015B M

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C14009

Account: SGRPCAPH The Source Group **Project:** 9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP3266-MS	GG20620.D	1	01/04/11	JH	01/03/11	OP3266	GGG587
OP3266-MSD	GG20621.D	1	01/04/11	JH	01/03/11	OP3266	GGG587
C14009-2	GG20655.D	2	01/04/11	JH	01/03/11	OP3266	GGG588

The QC reported here applies to the following samples:

C14009-2, C14009-3, C14009-4, C14009-5, C14009-6, C14009-7, C14009-8, C14009-9, C14009-10, C14009-11, C14009-12, C14009-13, C14009-14, C14009-15, C14009-16, C14009-17

CAS No.	Compound	C14009-2 mg/l Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	ND 3.74	1.89 1.89	2.63 2.69	139 -56*	2.47 2.53	131 -64*	6 6	45-140/25 45-140/25
CAS No.	Surrogate Recoveries	MS	MSD	C14	1009-2	Limits			
630-01-3	Hexacosane	86%	88%	100	%	45-140%	ó		

Attachment: ERAS 2008 Site Investigation Report Excerpted Figures and Tables

Q42010 SAMPLING PFT PACOPUMPS ATTACHMENT A.

ERAS

1533 B Street

Environmental, Inc.

Hayward, CA 94541

(510) 247-9885 Facsimile: (510) 886-5399

info@eras.biz

SUBSURFACE INVESTIGATION AND GROUNDWATER MONITORING REPORT QUARTER 2, 2008

FOR

FORMER PACO PUMPS FACILITY 9201 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Prepared for

Mr. Mark Vignoles Service West 9201 San Leandro Street Oakland, California 94603

July 31, 2008

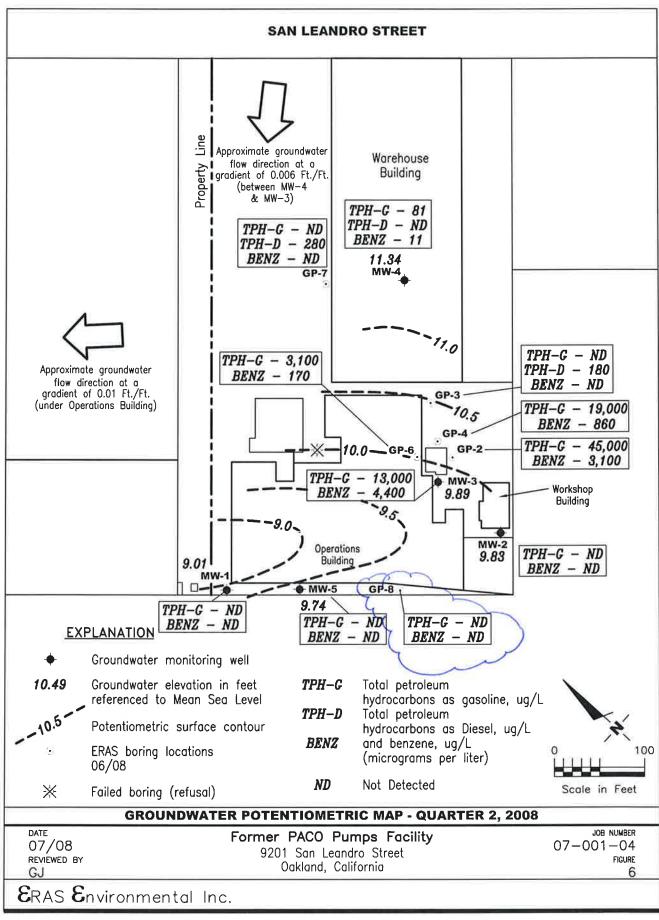


TABLE 2. ANALYTICAL RESULTS - GROUNDWATER GRAB-SAMPLES
9201 San Leandro Street, Oakland, CA

Sample Id	Date	Depth	TPH-d	TPH-g	Benzene	Toluene	thylbenzer	Xylenes	MTBE	Other
		/c \					(// //)			Oxygenates
14/2-4-66	550	(feet)					(µg/L)			
100	rmer 550-ga									
B1	3-Feb-97	15-20	NA	31,000	7,100	4,100	520	1,400	NA	NA NA
B2	3-Feb-97	15-20	NA	41,000	14,000	2,600	740	1,700	NA	NA
B3	2-Feb-98	15-20	NA	1,400	310	9.9	27	56	NA	NA
B4	2-Feb-98	15-20	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
ERAS Env	vironmental I	nvestigatio	on							
GP-1	12-Jun-08	13.5-16	NA	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	ND
GP-1	12-Jun-08	24-28	NA	<50	<0.5	0.62	<0.5	<0.5	<0.5	ND
GP-1	12-Jun-08	32-36	NA	<50	0.71	0.75	<0.5	<0.5	<0.5	ND
GP-2	12-Jun-08	8.5-13.5	NA	45,000	2900	2600	450	1100	<10	14 (1,2-DCA)
GP-2	12-Jun-08	25-29	NA	210	7.1	7.1	1.0	2.7	1.2	ND
GP-2	12-Jun-08	31-35	NA	70	5.2	3.0	<0.5	1.2	1.0	ND
GP-3	13-Jun-08	19.5-22	180	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	2.1 (TBA)
GP-3	13-Jun-08	25-29	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-3	13-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-4	13-Jun-08	13-15	NA	19000	860	670	260	420	<17	ND
GP-4	13-Jun-08	25-29	NA	12000	240	230	130	240	<5.0	ND
GP-4	13-Jun-08	31-35	NA	330	15	12	5.7	10	0.65	ND
GP-5	13-Jun-08	16-20	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-5	13-Jun-08	25-29	NA	<50	<0.5	0.69	<0.5	<0.5	<0.5	ND
GP-5	13-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-6	16-Jun-08	13.5-18	NA	3100	170	30	22	35	<5.0	ND
GP-6	16-Jun-08	25-29	NA	3000	160	39	40	75	<5.0	ND
GP-7	16-Jun-08	13-15	280	<50	<0.5	<0.5	<0.5	<0.5	0.93	ND
GP-7	16-Jun-08	25-29	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-8	16-Jun-08	20-24	NA	<50	<0.5	<0.5	<0.5	<0.5	6.1	1.9 (1,2-DCA)
GP-8	16-Jun-08	25-29	NA	<50	<0.5	<0.5	<0.5	<0.5	0.78	ND
GP-8	16-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
ESL			100	100	1	40	30	20	5	0.5 (1,2(DCA)

TABLE 2. ANALYTICAL RESULTS - GROUNDWATER GRAB-SAMPLES
9201 San Leandro Street, Oakland, CA

Sample Id	Date	Depth	TPH-d	TPH-g	Benzene	Toluene	thylbenzer	Xylenes	MTBE	Other
		(foot)					(=/ \			Oxygenates
West of fo	rmer 550-ga	(feet)					(µg/L)			
B1	3-Feb-97	15-20	l NA	21 000	7 100	4 100	530	1 400	NI A	NA
B2	3-Feb-97	15-20	NA NA	31,000 41,000	7,100 14,000	4,100 2,600	520 740	1,400	NA	NA NA
B3	2-Feb-98	15-20	NA NA	1,400	310	9.9	27	1,700 56	NA	NA NA
B4	2-Feb-98	15-20	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA NA	NA NA
10000000				/30	\ \0.5	<0.5	<0.5	<0.5	INA	NA
	vironmental I	and the second s								
GP-1	12-Jun-08	13.5-16	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-1	12-Jun-08	24-28	NA	<50	<0.5	0.62	<0.5	<0.5	<0.5	ND
GP-1	12-Jun-08	32-36	NA	<50	0.71	0.75	<0.5	<0.5	<0.5	ND
GP-2	12-Jun-08	8.5-13.5	NA	45,000	2900	2600	450	1100	<10	14 (1,2-DCA)
GP-2	12-Jun-08	25-29	NA	210	7.1	7.1	1.0	2.7	1.2	ND
GP-2	12-Jun-08	31-35	NA	70	5.2	3.0	<0.5	1.2	1.0	ND
GP-3	13-Jun-08	19.5-22	180	<50	<0.5	<0.5	<0.5	<0.5	<0.5	2.1 (TBA)
GP-3	13-Jun-08	25-29	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-3	13-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-4	13-Jun-08	13-15	NA	19000	860	670	260	420	<17	ND
GP-4	13-Jun-08	25-29	NA	12000	240	230	130	240	<5.0	ND
GP-4	13-Jun-08	31-35	NA	330	15	12	5.7	10	0.65	ND
GP-5	13-Jun-08	16-20	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-5	13-Jun-08	25-29	NA	<50	<0.5	0.69	<0.5	<0.5	<0.5	ND
GP-5	13-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-6	16 - Jun-08	13.5-18	NA NA	3100	170	30	22	35	<5.0	ND
GP-6	16-Jun-08	25-29	NA	3000	160	39	40	75	<5.0	ND
GP-7	16-Jun - 08	13-15	280	<50	<0.5	<0.5	<0.5	< 0.5	0.93	ND
GP-7	16-Jun-08	25-29	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
GP-8	16-Jun-08	20-24	NA	<50	<0.5	<0.5	<0.5	<0.5	6.1	1.9 (1,2-DCA)
GP-8	16-Jun-08	25-29	NA	<50	<0.5	<0.5	<0.5	<0.5	0.78	ND
GP-8	16-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
ESL			100	100	1	40	30	20	5	0.5 (1,2(DCA)

TABLE 6 - ANALYTICAL RESULTS - SOIL, JUNE 2008 9201 San Leandro Street Oakland, CA

SOIL ALONG RAILROAD TRACKS

Sample:	Depth	Date	TPH-d	TPH-mo	Anthracene	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g,h,i)	Benzo(k)	Chrysene	Dibenzo(a,h)	Flouranthene	Indeno (1,2,3-cd)	Phen-	Pyrene	Other SVOCs
ID		1 4				anthracene	pyrene	flouranthene	perylene	flouranthene		anthracene	vi-	pyrene	anthrene		
	(feet)			o				-W ====		(milligrams per	kilogram)						
PITSSE	1.25-1.5	12-Jun-08	140	550	< 0.25	<0.25	< 0.25	< 0.25	< 0.25	<0.25	< 0.25	< 0.25	<0.25	<0.25	<0.25	< 0.25	ND
Pit3SE	2.75-3	12-Jun-08	11	31	<0.005	0.010	0.012	0.012	0.011	0.012	0.014	<0.005	0.014	0.0073	0.011	0.014	ND
Pit3E	1.25-1.5	12-Jun-08	2.3	6.5	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	ND
Pit3E	2.75-3	12-Jun-08	4.7	22	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0,005	<0.005	<0.005	ND
Pit3NW	1.25-1.5	12-Jun-08	55	170	0.036	0.15	0.15	0.13	0.12	0.14	0.19	0.042	0.19	0.078	0.15	0.23	ND
Pit3NW	2.25-2.5	12-Jun-08	2.3	6.0	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	ND
Pit4SE	1-1.25	12-Jun-08	6.5	25	0.0057	0.032	0.042	0.031	0.035	0.032	0.042	0.014	0.030	0.025	0.017	0.042	ND
Pit4SE	3.25-3.5	12-Jun-08	<1.0	<5.0	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	ND
Pit4E	1.25-1.5	12-Jun-08	71	170	<0.005	<0.005	< 0.005	0.0082	<0.005	0.0058	< 0.005	<0.005	0.011	<0.005	<0.005	0.0081	ND
Pit4E	3-3.25	12-Jun-08	2.8	12	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	ND
Pit4NW	1.25-1.5	12-Jun-08	8.2	26	<0.005	0.018	0.020	0.033	0.016	0.021	0.021	0.0065	0.021	0.011	0.013	0,025	ND
Pit4NW	2.75-3	12-Jun-08	<1.0	<5.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
ESL			83	410		0.38	0.038	0.38	35	0.38	40	0.062	40	0.62	46	500	

PCB IN SOIL NEAR WESTERN CORNER OF PROPERTY

Sample ID	Depth	Date	PCB's		
	(feet)		(mg/kg)		
Adjacer	it to MW-1				
HA-1	1.25-1.5	12-Jun-08	ND		
HA-1	3-3.25	12-Jun-08	ND		
HA-2	1.25-1.5	12-Jun-08	ND		
HA-2	2.5-2.75	12-Jun-08	0.050		
HA-3	1.25-1.5	12-Jun-08	ND		
HA-3	2.5-2.75	12-Jun-08	0.140		
ESL res			0.089		

SOIL IN VICINITY OF MW-2

Sample	Depth	Date	TPH-d	TPH-mo	TPH-K	Acetone	2-Butanone	n-Butyl	tert Butyl	cis 1,2-	Toluene	Napthalene	1,2,4 Trimethyl	sec Butyl	Isopropyi	n-Propyi	1,3,5-Trimethyl	Xylenes	Other
ID		1 8		-			(MEK)	Benzene	Benzene	Dichloroethene			Benzene	Benzene	Benzene	Benzene	Benzene		VOCs
	(feet)									(milligrams	per kilogram)				- v			
HA-4	1-1.25	12-Jun-08	2.8	21	2.1	0,12	<0.02	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	ND
HA-4	2.75-3	12-Jun-08	16	69	2.5	0.20	0.026	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
HA-5	1-1.25	12-Jun-08	1,000	1,600	1,200	<0.20	<0.080	0.20	<0.020	<0.020	<0.020	0.067	0.73	0.16	0.056	0.13	0.36	0.11	ND
HA-5	2.75-3	12-Jun-08	78	180	61	<0.05	<0.02	0.077	0.010	0.0079	0.035	0.011	0.032	0.084	0.030	0.057	0.046	0.015	ND
HA-6	1-1.25	12-Jun-08	7,600	20,000	2,700	<0.05	<0.02	0.019	<0.005	<0.005	0.021	<0.005	0.042	0.045	0.0073	0.012	0.015	0.0086	ND
HA-6	2.75-3	12-Jun-08	2,3	9.6	<1	<0.05	<0.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
ESL			83	2500	83	2-1	3.9	31		0.19	*	2.8	*:	- 4	25.5		- 5	2.3	-

SOIL FROM DIRECT-PUSH BORINGS

Sample Id	Depth (feet)	Date	TPH-g	TPH-d	Benzene (Toluene milligrams p	Ethylbenzene er kilogram)	Xylenes	Oxygenates
GP-2	9.5-10	6/12/2008	340	NA	1.2	0.19	2.2	2.0	NO
SG-1	9.5-10	6/16/2008	400	NA	1.2	2.8	1.9	2.9	ND
GP-3	9.5-10	6/13/2008	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	ND
GP-4	9.5-10	6/13/2008	450	NA	0.72	< 0.10	2.1	1.4	ND
GP-6	11.5-12	6/16/2008	520	NA	4.6	2.6	2.6	7.4	ND
GP-8	9.5-10	6/16/2008	<1.0	NA	<0.005	<0.005	<0.005	<0.005	ND
ESL			83	83	0.044	2.9	3.3	2.3	

ND = Not detected above the reported detection limit

TPH-g = Total petroleum hydrocarbons as gasoline TPH-d = Total petroleum hydrocarbons as diesel

TPH-H = Total petroleum hydrocarbons as diesel
TPH-H = Total petroleum hydrocarbons as motor oil
SVOCs = Semi volitile organic compounds
PCBs = Polychlorinated biphenyls
VOCs = Volatile Organic Compounds
Oxygenates = methyl t-butyl ether, t-amyl methyl ether, t-butyl akohol, 1,2-dirbromoethane, 1,2-dichloroethane, diisopropyl ether, ethyl t-butyl ether
ESL = Environmental Screening Level, RWQCB November 2007, shallow soil, residential land use, groundwater is potential drinking water