Soil and Water Investigation Report

Atlantic Richfield Company Station #601 712 Lewelling Boulevard San Leandro, California

RECEIVED

12:53 pm, Apr 03, 2007

Alameda County Environmental Health

Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

28 March 2007

Project No. 06-08-605

Broadbent & Associates, Inc. 1324 Mangrove Ave., Suite 212 Chico, CA 95926 Voice (530) 566-1400 Fax (530) 566-1401

28 March 2007

Project No. 06-08-605

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re:

Soil and Water Investigation Report, Atlantic Richfield Company (a BP affiliated company) Station #601, 712 Lewelling Boulevard, San Leandro, Alameda County,

California: ACEH Case #RO0000309

Dear Mr. Supple:

Attached is the *Soil and Water Investigation Report* for Atlantic Richfield Company Station #601 (herein referred to as Station #601) located at 712 Lewelling Boulevard, San Leandro, California (Site). This report presents the results of the soil and ground water boring investigation conducted at Station #601 on 30 November 2006. This investigation was conducted in accordance with the letter dated 31 May 2006 from the Alameda County Health Care, Environmental Health Services (ACEH). This Soil and Water Investigation Report includes descriptions of the site background, scope of investigation and field work performed, discussion of findings, conclusions and recommendations.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Robert H. Miller, P.G., C.HG Principal Hydrogeologist

Alub 171. M.

Enclosure

cc: Mr. Steven Plunkett, Alameda County Environmental Health (Submitted via ACEH ftp site)

Mr. Karl Busche, City of San Leandro, 835 East 14th St., San Leandro, CA 94577

Electronic copy uploaded to GeoTracker

ARIZONA CALIFORNIA

NEVADA

TEXAS

ROBERT H.

MILLER

No. 4893

1.0 INTRODUCTION

This report presents the results of the soil and ground water investigation conducted at Station #601 on 30 November 2006. This investigation was conducted in accordance with the *Work Plan for On-Site Investigation, ARCO Service Station #0601, 712 Lewelling Boulevard, San Leandro, California, ACEH Case No.4275* (URS Corporation, 3 March 2006) which was presented to ACEH for approval. The Alameda County Health Care, Environmental Health Services (ACEH) responded to the proposed work with a letter dated 31 May 2006. Therefore this Soil and Water Investigation was also performed in order to comply with the stipulations within the ACEH letter dated 31 May 2006. This Soil and Water Investigation Report includes descriptions of the site background, scope of investigation and field work performed, discussion of findings, conclusions and recommendations.

2.0 SITE BACKGROUND

2.1 Site Description

The Site is located at 712 Lewelling Boulevard in San Leandro, California (Figures 1 and 2) and is an active ARCO gasoline service station. The Site is bound by Lewelling Boulevard to the northwest, Washington Avenue to the northeast, multi-family residential units to the southwest, and a commercial building and parking lot to the southeast. The majority of the Site is paved with cement and asphalt concrete.

Current structures on the Site include four 10,000-gallon underground storage tanks (USTs), two fuel dispenser islands with a total of eight dispensers, and a convenience store building with two unused vehicle service bays.

2.2 Previous Work

According to the Additional Offsite Subsurface Investigation Aquifer Pumping Test and Remedial Alternatives Feasibility Study, prepared by RESNA Industries Inc. (RESNA, 1993), two 6,000-gallon and two 4,000-gallon single-walled steel product USTs and a 280-gallon waste oil UST were excavated and removed from the Site by Gettler-Ryan Inc. of Hayward, California during January 1990. Investigations performed by Applied GeoSystems (AGS) prior to removal of these USTs revealed petroleum hydrocarbons on the north and east sides of the product USTs and in the vicinity of the waste oil UST.

In February 1990, four double-walled steel clad 10,000-gallon USTs were installed at the Site.

In December 1990, AGS converted three soil borings to ground-water monitoring wells (MW-1 through MW-3).

Product removal began at the Site in August 1991.

In October 1991, RESNA advanced six soil borings, converted five soil borings to ground-water monitoring wells (MW-4 through MW-8), and performed a vapor extraction test. Vapor extraction was deemed not feasible due to high ground-water elevation (average of approximately eight feet below ground surface) at the Site.

In October 1991, a well survey revealed a total of sixty-nine wells within a half-mile radius of the Site; two domestic wells (up-gradient), one cathodic protection well (half-mile east of Site),

twenty-seven monitoring wells (majority up-gradient), thirty-two irrigation wells (west and northwest of Site), four test wells (three located north and one located one-third mile south), two abandoned wells, and one well with an unidentified use (northeast).

In March 1992, RESNA submitted an addendum to a *Work Plan for Interim Groundwater Remediation*, proposing the installation of a ground-water extraction and treatment (GWET) system.

In October 1992, RESNA advanced nine off-site soil borings, and converted four of these borings to ground-water monitoring wells (MW-11 through MW-14).

In December 1992, the California Regional Water Quality Control Board (RWQCB) issued Cleanup and Abatement Order No. 92-147 (CAO 92-147) to ARCO Products Company (ARCO) and John J. Sullivan. This order required an access agreement be made between ARCO and Mr. Sullivan for the purpose of additional investigation of ground water and soil, or for Mr. Sullivan to submit a work plan to conduct the investigation himself.

In March 1993, one off-site down-gradient groundwater monitoring well (MW-15) was installed.

In August 1993, RESNA advanced four soil borings and converted three of these soil borings to ground-water monitoring wells (MW-9, MW-10, and MW-18). Two of these wells (MW-9 and MW-10) were installed on Mr. Sullivan's property, as originally requested in CAO 92-147. RESNA also performed a step drawdown aquifer test on wells MW-8 and MW-12 at that time, which indicated that pump and treat remediation would not be feasible due to numerous discrete water bearing sand zones. RESNA submitted their *Remedial Action Plan* at this time, which most notably stated that the shallowest ground water in the area was not of beneficial use due to local and regional impact by contaminants including arsenic, iron, manganese, tetrachloroethylene (also known as perchloroethylene, or PCE), trichloroethylene (TCE), and sewage.

In February 1997, EMCON Associates of San Jose (EMCON) conducted vapor testing at the Site near identified receptor locations in preparation for a *Risk-Based Corrective Action* (RBCA) report. Low concentrations of benzene were detected; however, the levels identified during this investigation required no further evaluation for potential sensitive receptor pathways.

In June 1997, EMCON prepared a *RBCA*, *Tier I and Tier II*, for the Site. EMCON concluded that the impact at the Site did not represent a hazard to human health (on-site commercial or off-site residential), that no further remedial action was necessary, and that all possible migration pathways had been investigated or were being investigated.

In July 2002, Delta Environmental Consultants, Inc. (Delta) conducted PG&E utility trench hand borings, as reported in a *Hand Auger Boring Installation Report* (Delta, 2002). Delta concluded that migration of contaminants had been occurring in utility trenches. High levels of total petroleum hydrocarbons as gasoline (TPH-g); benzene, toluene, ethylbenzene, and total xylenes (BTEX) were detected. Methyl tert-Butyl ether (MTBE) was not detected.

In June 2003, URS Corporation supervised the removal, disposal, and replacement of all product lines and dispensers, as reported in a *Dispenser and Product Line Removal and Upgrade Soil Sampling Report* (URS, 2003). A total of approximately 21,000 gallons of ground water was extracted during these activities.

In 2004, an oxygen release compound (ORC) was installed in wells MW-2, MW-3, MW-5, and MW-8.

Quarterly ground-water monitoring at the Site was initiated in June 1990 by RESNA, then by EMCON and URS for an unknown period of time, and is currently performed by Stratus Environmental, Inc. (Stratus).

2.3 Site Geology and Hydrogeology

The Site is situated within the East Bay Plain, located in the west-central portion of the San Leandro Cone (Hickenbottom and Muir, 1988). Helley *et. al.* (1979), mapped the subsurface material underlying the Site area as Quaternary bay mud deposits composed primarily of dark plastic clays and silty clay rich in organic material.

Based on interpretations made by RESNA in 1993, the shallow local water-bearing zone consists of one to three thin (1/2 to 5 feet thick) sand to clayey sand layers at depths ranging from 2 to 14 feet below ground surface (bgs). These sand layers are confined above and below by generally unsaturated clay and silt layers. According to geologic cross section and Site boring interpretations, these sand layers appear to be discontinuous, and appear to pinch out or bifurcate into multiple layers laterally over short distances. Geologic cross sections and a map showing cross section orientation are included as Figures 2 and 3.

According to a 27 January 1993 letter to Mr. Chuck Carmel (BP) from ACEH, ground water in the central San Leandro region has been impacted by volatile organic compounds (VOCs); primarily PCE, TCE, and dichloroethylene. Significant levels of primarily gasoline and diesel hydrocarbons, toxic metals, and nitrates have also been detected in the regional groundwater.

2.4 Surface Water

Based on the review of area topographic maps produced by the United States Geological Survey (USGS), three surface water bodies were located within a two-mile radius of the Site. San Lorenzo Creek (a channelized concrete aqueduct), Estudillo Canal, and Roberts Landing on the eastern shoreline of the San Francisco Bay are located approximately 700 feet south, 1,400 feet west, and 1 ½ mile southwest of the Site, respectively.

3.0 SCOPE OF WORK

3.1 Source Area Characterization

Work was performed in accordance with the *Work Plan for On-Site Investigation, ARCO Service Station #0601, 712 Lewelling Boulevard, San Leandro, California, ACEH Case No.4275* (URS, 3 March 2006), as amended by stipulations within the ACEH letter dated 31 May 2006. Work performed on-site included advancing one soil boring and one Hydropunch (B-1 and HP-1, respectively), to assess the presence of hydrocarbons in soil and ground water at depth on the Site. Figure 1 depicts the soil boring and Hydropunch boring locations.

3.1.1 Preliminary Field Activities

Prior to initiating field activities, a soil boring permit from Alameda County Public Works Agency (ACPWA) was appropriated. A site-specific Health and Safety Plan (HASP) was

prepared for the proposed work. The HASP described hazards and health concerns specific to the Site and also the route to the closest hospital in the area in case of emergency. Utility clearance of the Site, including notification of Underground Service Alert (USA-North) and contracting Cruz Brothers (a private utility locating company), was performed to confirm the absence of underground utilities. In addition, both borings were cleared to depth of five feet below ground surface (bgs) with the use of an air knife.

3.1.2 Soil Boring Advancement and Soil Samples

RSI Drilling, Inc., a California-licensed drilling contractor, advanced one soil boring (B-1) on 30 November 2006 to a total depth of 58 feet bgs using a Geoprobe 6600 rig. This exceeded the originally-anticipated maximum depth of approximately 50 ft bgs, due to the absence of higher water bearing zones. The soil boring B-1 was continuously cored using direct-push technology. Encountered lithology soil was described by the on-site Stratus geologist using the Universal Soil Classification System (USCS). Soil was screened with a photo-ionization detector (PID) for measurable hydrocarbons. The Soil Boring Log for boring B-1 is provided within Appendix A.

In the absence of evidence indicating gross contamination while screening with the PID, soil samples were collected every eight feet. Collected soil samples were submitted to Test America (Morgan Hill, California) for analysis of total petroleum hydrocarbons: Oil-range organics (ORO, C16-C36), Diesel-range organics (DRO, C10-C28), and gasoline-range organics (GRO, C4-C12), and for BTEX, MTBE, ethanol, tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), and tertiary butyl alcohol (TBA). Laboratory analytical reports and chain-of-custody documentation are provided in Appendix A. Following completion of sampling activities, boring B-1 was sealed to the surface using a neat Portland cement grout.

3.1.3 Ground Water Sampling

Ground water was sampled on 30 November 2006 using Hydropunch direct-push technology. Hydropunch sampling activities included advancing the boring down to the targeted water-bearing zone identified in the adjacent soil boring B-1, then sampling within the saturated zone. The Hydropunch boring HP-1 was advanced into the saturated zone to a total depth of 58 ft bgs, then withdrawn three feet, exposing the Hydropunch screen from 55-58 ft bgs. Following completion of sampling activities, boring HP-1 was sealed to the surface using a neat Portland cement grout. The collected ground water sample B1-58W from boring HP-1 was similarly submitted to Test America for analysis of ORO, DRO, GRO, BTEX, MTBE, ethanol, TAME, ETBE, DIPE, and TBA.

3.2 Geology and Hydrogeology

The lithology of soils encountered within boring B-1 consists of thick layers of clay (USCS classification CL) with intermittent thin layers of damp to moist, but not wet clayey sand (USCS classification SC) between 26.5-27 ft bgs and 46.5-47 ft bgs. At 55 ft bgs, boring B-1 encountered wet sand with clay (USCS classification SP-SC). The Soil Boring Log for boring B-1 is provided within Appendix A.

4.0 ANALYTICAL RESULTS

Collected soil and ground-water samples were submitted to Test America, Inc. (Morgan Hill) under chain-of-custody protocol. Samples were originally analyzed between 5 December and 12 December 2006, within allowable holding times. Based on comments noted by the laboratory that the chromatogram profile was inconsistent with the referenced fuel standards, BAI requested copies of the processed chromatograms for the subject analyses. Based on this review, the laboratory re-analyzed certain samples following silica-gel extraction on 7 February 2007. These later analyses were after expiration of the recommended holding time. The laboratory analytical reports and chain-of-custody documentation are provided in Appendix A.

4.1 Soil Analytical Results

Collected soil samples were analyzed for ORO and DRO by EPA Method 8015B, for GRO by CA LUFT GCMS Method, and for BTEX, ethanol, MTBE, TAME, ETBE, DIPE, and TBA by EPA Method 8260B. The table below provides analytical concentrations in milligrams per kilogram (mg/kg) for ORO, DRO, GRO, BTEX, and MTBE.

	Analytical Results of Soil Boring Samples (mg/kg)													
Boring	ORO	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes MTB							
B1-15	<10	1.8	< 0.10	<0.005	<0.005	<0.005	< 0.005	<0.005						
	<10* <1.0*													
B1-23	<10	<1.0	< 0.10	<0.005	<0.005	<0.005	< 0.005	<0.005						
B1-31	<10	<1.0	< 0.10	<0.005	<0.005	< 0.005	<0.005	<0.005						
B1-39	<10	<1.0	<0.10	<0.005	<0.005	< 0.005	< 0.005	<0.005						
B1-47	<10	1.2	< 0.10	<0.005	<0.005	< 0.005	< 0.005	<0.005						
	<10*	<1.0*												
B1-54	<10	<1.0	< 0.10	<0.005	<0.005	< 0.005	< 0.005	<0.005						

^{*} Samples re-analyzed on 7 February 2007 following silica-gel cleanup of extract.

Concentrations above laboratory reporting limits are shown in bold font. DIPE, ethanol, ETBE, TAME, and TBA were not detected above the respective reporting limits, and therefore, not included in the above table. Concentrations of DRO were detected above laboratory reporting limits during the original analysis on 8 December 2006. However, the laboratory reported that the chromatogram profiles for DRO in samples B1-15 and B1-47 were inconsistent with the patterns of referenced fuel standards. Following review of the chromatograms (provided within Appendix A), the laboratory was requested to re-analyze samples B1-15 and B1-47 following silica-gel cleanup of the extracts. Subsequent analysis on 7 February 2007 found that DRO was not detected above the reporting limit of 1.0 mg/kg.

4.2 Ground-Water Analytical Results

The collected ground-water sample was analyzed for ORO and DRO by EPA Method 8015B, for GRO by the CA LUFT GCMS method, and for BTEX, ethanol, MTBE, TAME, ETBE, DIPE, and TBA by EPA Method 8260B. The table below provides analytical concentrations in micrograms per liter (µg/L) for ORO, DRO, GRO, BTEX, and MTBE.

Analytical Results of Hydropunch Ground-Water Sample (µg/L)											
Boring ORO DRO GRO Benzene Toluene Ethylbenzene Xylenes MTB											
B1-58W	<470 310		<50	<0.50	<0.50	< 0.50	0.58	<0.50			
	<470*	260*	·								

^{*} Sample re-analyzed on 7 February 2007 following silica-gel extraction procedure.

Concentrations above laboratory reporting limits are shown in bold font. DIPE, ethanol, ETBE, TAME, and TBA were not detected above the respective reporting limits, and therefore, not included in the above table. DRO and xylenes were detected above laboratory reporting limits. However, the laboratory reported that the chromatogram profile for DRO in sample B1-58W was inconsistent with the patterns of referenced fuel standards. Following review of the chromatogram (provided within Appendix A), the laboratory was requested to re-analyze samples B1-58W following the silica-gel extraction procedure. Subsequent analysis on 7 February 2007 detected a lower concentration of DRO at 260 μ g/L. It should be noted that the detected total Xylenes concentration of 0.58 μ g/L was only marginally above the laboratory reporting limit of 0.50 μ g/L.

4.3 GeoTracker Reporting

Soil and ground-water analytical results were uploaded to the GeoTracker AB2886 Database. Copies of the confirmation pages are provided in Appendix B.

4.4 Investigation-Derived Waste Disposal

During the boring and sampling activities, one 55 gallon drum of purge water and one 55 gallon drum of soil cuttings were generated. This waste material was scheduled to be picked up by Belshire Environmental Services, Inc. (Lake Forest, California) during the week of 22 January 2007. Belshire Environmental Services was to transport and dispose of the investigation-derived wastes in accordance with BP Remediation Management protocols.

5.0 DISCUSSION OF FINDINGS

The purpose of this Soil and Water Investigation was to delineate the vertical extent of onsite petroleum hydrocarbon contamination from Station #601. The soil and Hydropunch borings confirmed the presence of a thick clay layer beneath the Site to a depth of over 55 ft bgs. The presence and significant thickness of this material makes downward vertical migration of petroleum contamination from Station #601 highly unlikely.

Gasoline range organics, oil range organics, BTEX, MTBE, ethanol, TAME, ETBE, DIPE, and TBA were not detected above the laboratory reporting limits in soil samples collected from the numerous depths sampled within soil boring B-1. Concentrations of some petroleum hydrocarbons within the diesel range were detected in soil samples from 15 ft and 47 ft bgs, but at concentrations of 1.8 mg/kg and 1.2 mg/kg, respectively, barely above the laboratory reporting limit of 1.0 mg/kg. Furthermore, the laboratory noted that the gas chromatograms were inconsistent with the reference pattern for the DRO fuel standard. Subsequent silica-gel cleanup of the sample extracts and re-analysis did not detect DRO above the laboratory reporting limit.

Gasoline range organics, oil range organics, Benzene, Toluene, Ethylbenzene, MTBE, ethanol, TAME, ETBE, DIPE, and TBA were not detected above the laboratory reporting limits in the water sample B1-58W. Concentrations of some petroleum hydrocarbons within the diesel range were detected in the sample at a concentration of 310 μ g/L. However, the laboratory noted that the gas chromatographic profile did not match the typical reference pattern for the DRO fuel standard. Subsequent silica-gel cleanup of the sample and re-analysis detected a lower concentration of DRO of 260 μ g/L. Xylenes were detected at a concentration of 0.58 μ g/L, but this is only marginally (0.08 parts per billion, or 80 parts per trillion) above the reliable laboratory reporting limit of 0.50 μ g/L.

Typical diesel range organics have not been regularly detected at the Site in the past. However, petroleum hydrocarbons in the diesel range, but not resembling diesel, have been recorded at a few locations on the Site in the past. In the 18 July 1990 ground-water sample from well MW-2, reported 850 μ g/L Total Petroleum Hydrocarbons in the Diesel range (TPH-d), but the laboratory noted that the chromatogram resembled gasoline, not diesel. Similarly, between late 1992 and mid-1993, TPH-d was reported at concentrations of 460 μ g/L, 1100 μ g/L, and 5300 μ g/L. Again however, the laboratory reported that "The sample(s) contained a lower boiling point hydrocarbon mixture quantitated as diesel. The chromatogram does not match the typical diesel fingerprint."

6.0 CONCLUSIONS AND RECOMMENDATIONS

A soil and water investigation was performed in order to delineate the vertical extent of petroleum contamination from the Site. The soil and Hydropunch borings confirmed the presence of a thick clay layer beneath the Site to a depth of over 55 ft bgs. The presence and significant thickness of this material makes downward vertical migration of petroleum contamination from Station #601 highly unlikely. The absence of contamination at depth (aside from Xylenes in ground water just barely above the detection limit and something appearing within the range of diesel but not resembling diesel), concludes that the objective for this investigation was fulfilled.

Based on the findings and conclusions presented above, no further vertical contamination assessment at the Site is warranted nor recommended at this time. BAI recommends continued quarterly reporting at the Site in accordance with the current monitoring schedule.

7.0 LIMITATIONS

The findings presented in this report are based upon: observations of Stratus field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Test America (Morgan Hill, CA). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

8.0 REFERENCES

- Helley, E.J., and K.R. LaJoie, 1979. Flatland deposits of the San Francisco Bay Region, California their geology and engineering properties, and their importance to comprehensive planning. U.S. Geological Survey Professional Paper 943.
- Hickenbottom, Kelvin, and Muir, Kenneth S., 1988. Geohydrology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, California. Alameda County Flood Control and Water Conservation District.
- Applied GeoSystems, 9 November 1989. Limited Environmental Site Assessment at ARCO Service Station No. 601, San Leandro, California.
- GeoStrategies, Inc., 29 June 1990. Tank Replacement Report, ARCO Service Station #601, San Leandro, California.
- RESNA/Applied GeoSystems, 14 December 1990. Subsurface Environmental Assessment at ARCO Station 601.
- RESNA, 17 October 1991. Subsurface Environmental Assessment and Vapor Extraction Test at ARCO Service Station 601.
- RESNA, 14 September 1992. Addendum Five to Work Plan for Additional Subsurface Investigation.
- California Regional Water Quality Control Board, San Francisco Region, December 1992. Cleamup & Abatement Order No. 92-147. Issued to ARCO and Mr. John J. Sullivan.
- RESNA, 5 August 1993. Additional Offsite Subsurface Investigation, Aquifer Pumping Test and Remedial Alternatives Feasibility Study at ARCO Station 601, 712 Lewelling Boulevard, San Leandro, California.
- EMCON, June 1997. Risk-Based Corrective Action Report, Tier I and Tier II, ARCO Service Station #0601, 712 Lewelling Boulevard, San Leandro, California.
- Delta Environmental Consultants, July 2002. Hand Auger Boring Installation Report, ARCO Service Station #601, 712 Lewelling Boulevard, San Leandro, California.
- URS, June 2003. Dispenser and Product Line Removal and Upgrade, Soil Sampling Report, ARCO Service Station #601, 712 Lewelling Boulevard, San Leandro, California.
- URS, March 2006. Work Plan for On-Site Investigation, ARCO Service Station #0601, 712 Lewelling Boulevard, San Leandro, California, ACEH Case No. 4275.
- ACEH, 31 May 2006. Fuel Leak Case No. RO0000309, Arco #0601, 712 Lewelling Boulevard, San Leandro, CA 94579.

ATTACHMENTS:

- Figure 1. Site Map with Soil/Hydropunch Boring Locations, 30 November 2006, Station #601, 712 Lewelling Boulevard, San Leandro, California
- Figure 2. Generalized Site Plan, Station #601, 712 Lewelling Boulevard, San Leandro, California (RESNA, 1993)
- Figure 3. Geologic Cross Sections A-A', B-B', and C-C', Station #601, 712 Lewelling Boulevard, San Leandro, California (RESNA, 1993)
- Appendix A. Stratus Subsurface Assessment Data Package (Includes Field Data Sheets and Laboratory Analytical Report with Chain of Custody Documentation)
- Appendix B. GeoTracker Upload Confirmations

APPENDIX A

STRATUS SUBSURFACE ASSESSMENT DATA PACKAGE (INCLUDES FIELD DATA SHEETS AND LABORATORY ANALYTICAL REPORT WITH CHAIN OF CUSTODY DOCUMENTATION)

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

January 10, 2007

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, Nevada 89502 JAN 18 2007 BY JP

Re:

Subsurface Assessment Data Package, ARCO Service Station No. 601, located at 712 Lewelling Boulevard, San Leandro, California (utility locating and assessment activities performed between November 20 and 30, 2006)

General Information

Data Submittal Prepared / Reviewed by: Scott Bittinger / Jay Johnson

Phone Number: (530) 676-2062

Date: November 20, 2006 Arrival: 07:45 Departure: 08:40

On-Site Supplier Representative: Scott Bittinger

Scope of Work Performed: Meet with utility locating contractor at site to clear boring location,

mark for USA.

Variations from Work Scope: None noted

Weather Conditions: Not noted

Unusual Field Conditions: None noted

Date: November 22, 2006 Arrival: 07:40 Departure: 12:40

On-Site Supplier Representative: Scott Bittinger

Scope of Work Performed: Air knifed holes for soil boring event

Variations from Work Scope: None noted

Weather Conditions: Not noted

Unusual Field Conditions: None noted

Date: November 30, 2006 Arrival: 07:30 Departure: 12:45

On-Site Supplier Representative: Scott Bittinger

Scope of Work Performed: Complete one direct push boring for continuous soil sampling, and one direct push soil boring to collect hydropunch water sample.

Variations from Work Scope: Boring extended to approximately 60 feet bgs instead of 50 feet bgs.

Weather Conditions: Not noted

Unusual Field Conditions: None noted

This submittal presents the tabulation of data collected in association with the installation of one vapor extraction well. The attachments include field data sheets, boring log, well details, well completion report, well installation permit, chain of custody documentation and certified analytical results. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations. Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Scott G. Bittinger

No. 7477

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G. Project Geologist

Attachments:

- Field Data Sheets
- Boring Log
- Borehole Sampling Log
- Soil Boring Permit
- Site Plan
- Chain-of-Custody Documentation
- Certified Analytical Results

Cc: Paul Supple, BP/Arco

Areo 601, San Lea, 10 11-20=66

Onsite 71th 7:45 to Mark borns for USA clearance I conduct whiling Charany.

Meet Chris from Cruz Brother at 8:15

Conduct His Meeting is Shart work.

Dilling area is away from trafficked and in a parking area.

Dilling will not require hot work permit on fire watch.

Will 8:40. Drilling will be on asphalt.

Sold Billyn

Status Environ mendel, Inc.

Onsile 7: 40 .

RSI dilling orriver 7:45-8:00. How safety meeting & set up work area. Use 811 asphalt coring mechine to get through asphalt. Begin air Kniling at 9:00 dir Kniling goes goickly due to sandy soils Clear each boring to 5' bgs approximately 4th to 5'1 diameter each hole buckfilled with #2/16 sand.

Neplace asphalt cores over lach location.

Paul Supple onsik 1000-10135 For audit / Visit.

finish ar Knifny + back filly 12 car Offsile 12:40

Strakes En Monmental, Inc.

Arm by

11-30-06

Orisik 7:30 talk to manager & get can inged from unk auton. ASI insid \$7:55, Here meeting & set-up. Begin geophibing at \$135

Vicki from Alamba Granty onsity 9:30-9:40 Paul Supple onnote 9:40-11:35

drill 1058 byp, gent hote bogs a hydro panda buring of 10:55. wider comes in well (quickly). Whed with Sample from 11:15-

Contlude & deposts the at 12:45

I down water & I down soil onsite.

SOIL BO	RING LOG Boring N	lo. <u>B-1</u>	Sheet <u>1</u> of 3
Client	ARCO Station No. 601	Date 11/30/2006	
Address	712 Lewelling Boulevard San Leandro, CA	Driller RSI Drilling	rig type: Geoprobe 6600
Project No.	E-601	Drilling Foreman Jose Method Dual-cased direct push	
Logged By:	Scott Bittinger	BBBT BBBEB BILLECT PUSH	hole diam.: 2"

,

5	Sample Blow Sample		mple	Well Depth					
Туре	No.	Count	Time	Recov.	t.	1	LITHO	Descriptions of Materials	PID
S	B1-11	Count	8:42 8:45	Recov.	I .	Scale	COLUMN	asphalt surface Upper 5' of borehole not logged during air knife clearingmaterial observed to be sandy fill with asphalt and concrete pieces very poor recovery 5' to 8' bgs CLAY, very dark gray, moist (8'-9') CLAY, dark grayish brown, 3% very fine grained sand, moist (9'-11.5') CLAY, very dark gray, dry (11.5'-21')	(PPM) (PPM)
						1 9	<u> </u>		
S	B1-19		8:48			2 0			0.7
	This special							Comments:	

COIL	RORING	
31.111	THE INC.	1 11 -

Boring No. B-1

Sheet 2 of 3

			311661 Z 01 3
Client	ARCO Station No. 601	Date 11/30/2006	
Address	712 Leweiling Boulevard	Driller RSI Drilling	in the control of the
	San Leandro, CA	Drilling Foreman Jose	rig type: Geoprobe 6600
Project No.	E-601	Method Duat-cased direct push	L -1. 22
Logged By:	Scott Bittinger	Substitution of the control of the c	hole diam.: 2"

Type No. Count Time Recov. It. Scale COLUMN	5	iample	Blow	Sa	mple	Well	Depth			
CL CLAY, very dark gray, dry (11.5-21)	Туре	e No.	Count	Time	Recov.	Construc t.	l .		Descriptions of Materials	PID
2 CL CLAY, light clive brown, moist (21-22) CLAY, light clive brown, moist (21-22) CLAY, light clive brown, sold (22-22.7) CLAY, light clive brown, dry (27-33.5) CLAY, light clive brown, dry (27-33.5) CLAY, light clive brown, moist (33.5-35) CLAY, light clive brown, moist (33.5-										(PPM)
S B1-23		<u> </u>		 		1		UL	CLAY, very dark gray, dry (11.5'-21')	
S B1-23 B1-25 B1-25 B1-25 B1-25 B1-27			 	 	<u> </u>		2 2	CL	CLAY, light olive brown, moist (21'-22')	
S B1-23 B:52		 	 	ļ			3	CL	CLAY, light gray, moist (22'-22.7')	
CL	s	B1-23		8:52			2 4	CL	**************************************	
				i					(22.7'-24.5')	0.5
S B1-27 B:54 2 7 SC CLAYEY SAND light clive brown, 55% very fine grained sand, 45% clayer fines, damp (26.5°-27') 0.9										ļ
S B1-27 B:54 SC CLAYEY SAND light clive brown, 55% very fine grained sand, 45% Clayer fines, damp (26.5°-27') 0.9 CL SILTY CLAY, light clive brown, dry (27'-33.5') S B1-31 9:00 3 1 3 2 3 3 4 3 4 3 5 5 B1-35 9:03 3 3 6 3 7 3 8 CL CLAY, light clive brown, moist (33.5°-35') O.9 O.9 O.9 O.9 O.9 O.9 O.9 O.		 				•	I	CL	SANDY CLAY, light clive brown, 20% very fine grained sand, 80% clay,	ļ
S B1-27	ļ	-					2 7	SC	CLAYEY SAND light olive brown, 55% very fine prained sand, 45%	ļ
CL SILTY CLAY, light clive brown, dry (27'-33.5') S B1-31 9:00 3 1 CL CLAY, light clive brown, dry (27'-33.5') CL CLAY, light clive brown, moist (33.5'-35') S B1-35 9:03 3 6 3 7 3 8 CL CLAY, light clive brown, moist (33.5'-35') O.5	S	B1-27		8:54			8		Clayey fines, damp (26.5'-27')	
S B1-31 9:00 3 1				ļ		İ	- 1	CI	OR THE STATE OF TH	0.9
S B1-31 9:00 3 2 0.6 S B1-35 9:03 3 3 6 0.9 S B1-35 9:03 3 3 6 0.9 CL CLAY, light olive brown, moist (33.5'-35') CL CLAY, dark gray, moist (35'-42') S B1-39 9:05 4 0 0.5		†i					ļ	CL	SiL1Y CLAY, light clive brown, dry (27'-33.5')	
S B1-31 9:00 3 2 0.6 3 3 CL CLAY, light olive brown, moist (33.5'-35') 0.9 S B1-35 9:03 3 6 0.9 3 7 3 8 0.9 0.9 S B1-39 9:05 4 0 CL CLAY, light olive brown, moist (35'-42') CL CLAY, dark gray, moist (35'-42') 0.5		 					_3 0			
S B1-31 9:00 3 2 0.6 3 3 CL CLAY, light olive brown, moist (33.5'-35') 0.9 S B1-35 9:03 3 6 0.9 3 7 3 8 0.9 0.9 S B1-39 9:05 4 0 CL CLAY, light olive brown, moist (35'-42') CL CLAY, dark gray, moist (35'-42') 0.5		<u> </u>					3 1			
S B1-39 9:05 CL CLAY, light olive brown, moist (35'-42') CL CLAY, light olive brown, moist (35'-42') CL CLAY, light olive brown, moist (35'-42') CL CLAY, dark gray, moist (35'-42') O.5	S	B1-31		9:00		ł				
S B1-39 9:05 CL CLAY, light olive brown, moist (33.5'-35') CL CLAY, light olive brown, moist (33.5'-35') CL CLAY, light olive brown, moist (33.5'-35') CL CLAY, dark gray, moist (35'-42') CL CLAY, dark gray, moist (35'-42') O.5			ļ		ĺ			Ţ		0,6
S B1-39 9:05 4 0 0.5							_ "	ļ	\$	
S B1-39 9:05 4 0 0.5		 				Ì	_3 4	CL I	CLAY light dive brown, moint (23 5) 25h	
S B1-39 9:05 4 0 0.5							3 5		00 11, agrit dave blown, moist (33.5-35)	
S B1-39 9:05 4 0 0.5	S	B1-35		9:03						
S B1-39 9:05 4 0 0.5	,		Ì	İ	İ	İ		Ţ		0.9
S B1-39 9:05 4 0 0.5		-					= 1	ļ-		
S B1-39 9:05 4 0 0.5							_3 8	CI T	CLAY dark gray maint (as) con	
0.5							3 9			
	s	B1-39		9:05			4 0			
						****	<u> </u>		'Ammodis:	0.5
									with the state of	
										•
								1		
						•				
								İ		

	_	
SOIL	RORING	100

Boring No. <u>B-1</u>

Sheet 3 of 3

Client	ARCO Station No. 601	Date 11/30/2006	45
Address	712 Lewelling Boulevard	Driller RSI Drilling	rig hype: Connecting the
	San Leandro, CA	Drilling Foreman Jose	rig type: Geoprobe 6600
Project No.	E-601	Method Dual-cased direct push	h. J. D
Logged By:	Scott Bittinger	Dodd-Cased direct push	hole diam.: 2"

	Sample	Blow	Sa	mple	Well	Depth		Depositelle	
Тур	e No.	Count	Time	Recov.	Construc t.	Scale	LITHO	Descriptions of Materials and Conditions	PID
			-			1	CL	CLAY, dark gray, moist (35'-42')	(PPM)
			ļ			<u>4</u> 2 <u>4</u> 3	CL	CLAY with SAND, olive gray, 5% very fine grained sand, 95% clay, moist (42'-45')	
S	B1-43		9:10	•		4 4 5	CL		0.6
	-					4 6		CLAY with SAND, gray, trace iron oxide stains, 3-5% very fine grained sand, 95-97% clay, moist (45'-46.5')	_
s	B1-47		9:15			4 7	SC CL	CLAYEY SAND, gray with iron oxide staining, 60% fine grained sand, 5% coarse grained sand, 35% clay, moist (46.5'-47') CLAY, olive brown, trace iron and manganese oxide staining, moist	-
						4 8 4 9 5 0	CL	(47'-48') CLAY, olive gray with iron oxide stains, moist (48'-51')	0.7
						5 1	. •		
S	B1-51		9:17			5 2 5 3	CL	CLAY, dark bluish gray, trace silt, moist (51'-54')	0.5
S	B1-54		10:08			5 4	sc_	CLAYEY SAND, olive gray, 60% fine grained sand, 40% clayey fines, moist	0.8
							SP-SC	SAND with CLAY, 90-98% fine grained sand, 2-20% clayey fines, damp to wet (55'-58')	
							 - -		
						<u> </u>	.	Comments: total depth is 58 feet bgs.	
							}		

STDATUS B	47.6.9 <u>20.744</u> -226.844	BOREH	OLE	SAMPLI	NG LO	7				HP-1	
STRATUS Proje	et No.: E-6	01	Fr	Site: ARCO	Station #60)1		and the second of the second o	Drilling Cor	nnons DELD III	
				712 Lewellin	g Boulevar	d. Sar	Lean	dro. CA	Drilling Company: RSI Drilling Driller: Jose		
Date: November	30, 2006							u. c, C.1	Field Geologist: Scott Bittinger		
							1 111811		Their George	ist. Scott Bittinger	
Drilling Rig:			probe 6	600		Dri	lling N	Aethod:		Direct Push	
Borchole Diamet	er:	2 in	ches			Soi	LSamr	le Equipme	nt.	NA NA	
Total Depth:		60 1	feet bgs			Wa	ter Sa	mpling Equ	inment:	Hydropunch TM	
				W	ell Comple	etion I)ata	mping Equ	іршень.		
Slotted Interval:								ng Material:	·		
Filter Pack Mate	rial:						Casir	ng Diameter	•		
Seal Material:							Slot S	Size:	-		
Backfill Material				Neat Cemen	t Slurry					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample ID	Depth	Sample	%	Time	PID	Soi	il .	Descript	ion:		
	(ft.)	Interval	Rec.		(ppm)	Cla		2 cocripe			
	}	(ft.)			,	Wai		-			
B1-58W			<u> </u>								
M 9C-1C	58	56-60				W	ater	6 voas, 2	amber bottles		
								T			
		<u></u>						<u> </u>			
										· <u> </u>	
					7						
										<u></u>	
					"						
										··· · · · · · · · · · · · · · · · · ·	
								· · · · · · · · · · · · · · · · · · ·			
									7		
							***	ļ			
								†			
							······································				
<u></u>									-	·	
					-						
ļ								A STATE OF THE STA	D 1-11-	** 20-	
ĺ			Ī	ļ	1			ENVIRO	RATUS NATENTAL INC.		
-			1							Í	
	1	1		-	1						

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/15/2006 By jamesy

Permit Numbers: W2006-0962

Permits Valid from 11/30/2006 to 12/01/2006

Application Id: Site Location:

1163525707886

City of Project Site:San Leandro

Project Start Date:

712 Lewelling Blvd, San Leandro, CA 94579 11/30/2006

Completion Date: 12/01/2006

Applicant:

Stratus Environmental Inc. - Scott Bittinger

Phone: 530-676-2062

3330 Cameron Park Dr. #550, Cameron Park, CA 95682

Property Owner:

BP/ ARCO

Phone: 925-946-1085

4 Centerpointe Dr., La Palma, CA 90623

Client:

same as Property Owner *

Total Due:

\$200.00

Receipt Number: WR2006-0515 Payer Name: Stratus Envirtonmental Inc.

Total Amount Paid:

\$2ብስ ስስ

Paid By: CHECK

PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 2 Boreholes

Driller: RSI Drilling - Lic #: 802334 - Method: other

02/28/2007

Work Total: \$200.00

Specifications

Permit Issued Dt Expire Dt

11/15/2006

Hole Diam Max Depth

Number

Boreholes

W2006-

2.00 in. 60.00 ft

0962

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street
Hayward, CA 94544
For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org
For Drilling Permit information and process contact James Yoo at
Phone: 510-670-6633
FAX: 510-782, 1030

FAX: 510-782-1939 Email: <u>Jamesy@acpwa.org</u>

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460

Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460

Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000

Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least ten (10) working days prior to the planned start of work. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact James Yoo at 510-670-6633 to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. NO refunds shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application before we issue the approved permit(s), will receive a FULL refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars) (with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such .

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

bp		1~		J
老	A BP	affiliated	comp	апу

Atlantic Richfield Company	Project	Name:	:	ly Record Area Skale s Segment: y Agency: Ale equested Due Date	M M minda	60 1 1 Am L G	- <u> </u> <u> </u> <u> </u>	A55 0/4 4 E1	355 11 1251 1. 1-	nevil Low Heal	1 -1 18	Urid/	Ala; 	nda/ 60)	Off- Sky Mete	rite 7 site T Condit orolog	ime; ions; gical Ev	vents:		Page Temp: Tcmp:	of _/	
Lab Name: Test Awriga Address: 885 Taggis Dr.				BP/AR Facility N	0.:	001									Cons	ultant/	Contra	ctor: S	Treclus	Enviror	1 nontal.	Thyle
Address: 885 Javis Dr.	9CNZ-1			BP/AR Facility A	ddres	ss:	17	Luu	<u>i~</u> _	D lu].,	524	<u>leard</u>	10	Addr	ess:	<u>J 550</u>	<u> (40</u>	18wn 1	in Dr.	、# <i>55</i> 0)
Lab PM: Lisa Rale	ו בייכו			Site Lat/Long:	TD 11	- F	īd n	at duic	~ ``								Con	ny y	Park, C	A 956	87	
Tele/Fax: 418-787-8156				California Global Enfos Project No.:						·									ect No.:		-	
				(Provision o) OOC				- <i>06</i>											J. J.			1
Address: 2010 (and Carying	Pl. #1	5))	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Phase/WBS: 0				1							Tele/)-676-6		676-600		1
San Ramon, CA	[15 4.]			Sub Phase/Task: (<u> </u>	יינר.		10			-					l EDD		Level:	IE WY	WI EDI		
Tele/Fax: 925-275-350	تأر			Cost Element: /					27 27									tant or B	P ox Atlan	tic Richfiel	d Co Vein	cla pna)
Lab Bottle Order No:			Matrix		П			reserv		:			I			Analy		tune or p	I GRANIAN	To retention	a Co. Con	ie one)
Item Sample Description 1 B1-58W		Date Soil/Solid		Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO,	HCI	Methanol	(280		TPH-M0.	<u> </u>	_ -	&toy.					ments	
	11-30	13000	V		45	¥—			_ _	_	_ _\	<u> </u>	V	V	<u> </u>	4_	-		2411	nlar bul	KE) voj	reserved
2					_					-	╢_	_			_	_			6 Vos	s Itu	_ presen	vid
3		_																			1	
4		Ì						•													a i	
5											╢	_		7		_			<u> </u>			
6				·			\vdash	_	十	-	╢┈	-		\dashv	- -	_				· · · · · · · · · · · · · · · · · · ·		
	 		 						+		-	-	\vdash				- -					1
7					\vdash		_	_	- -	_	╢—	-	<u> </u>	_	-	_		_		- (10	/ 00	
8								_	_	_	- -			_	_					$-\sqrt{Q}$	10	
9							_	_			\perp	_		_		_ _						
10										.											į	
Sampler's Name: Scott Billing	'n			Relipq			Affili	ntion			Ţ	ate	Tim				Accept	ed By / A	ffiliation		Date	Time
Sampler's Company: 5+ redus E	NVi/Da WWW	ت راتله	In (1	Dun Fr	MZ		-				11.	30	14:	3 î)		11/30	1430
Shipment Date: 1-30					/						_			_ ,							7	
Shipment Method: hard delive	Ned						·-				_			4					· · · · · · · · · · · · · · · · · · ·			
Shipment Tracking No:																******						
Special Instructions:																			·		5	
Custody Seals In Place Yes 7 N	No T	remp Bla	ank: Yes / 1	No Cooler	emp	on	Recei	ipt:		°F/C		Tr	ip Bla	ınk: ˈ	es /	No	N	MS/MSI) Sample	Submitted	d: Yes / N	io

Richfield Company

Chain of Custody, Record

Project Name: BP BU/AR Region/Enfos Segment:

State or Lead Regulatory Agency:

BC/American/wost Court/ Retail / Abundal
Alanda County Environmental Hally 601

 	
On-site Time:	Temp:
Off-site Time:	Temp:
Clay Car Paris	Temp:
Sky Conditions:	-
Meteorological Events:	
Wind Speed:	

A BP affiliated company

Requested Due Date (mm/dd/yy): 54d, 1A1. Lab Name: Test Amilia Wind Speed: Direction: 885 Jaivis Dr. BP/AR Facility No.: 60 Address: Consultant/Contractor: 5 - Takes Enviren mertal, Tri, BP/AR Facility Address: 712 Lewilling Blw., San Lagratio Morgan Hill, Lisa Race °1503 Address: 3330 Cameron Park Dr. #550 Site Lnt/Long: Lab PM: Camery Pat, A 95687 California Global ID No.: 0,00 00 08 Tele/Fax: 408- 782- 8156 Enfos Project No.: 60 (23-027 Consultant/Contractor Project No.: Ew BP/AR EBM: P. Sumle Consultant/Contractor PM: J. Johnson Provision or OOC (circle one) Address: 2010 Caw Canyon Pl., # 150 Phase/WBS: O- Assessment 530-676-1200 Jan Ramon, CA 925-275-3506 676-6005 Sub Phase/Task: 03 - analytical Report Type & QC Level: Red Tele/Fax: E-mail EDD To: Cost Element: Lab Bottle Order No: 01 -contactor abor Invoice to: Consultant or BP & Atlantic Richfield Co. (circle one) Matrix Preservative Requested Analysis No. of Containers Item Water/Liquid Sample Description Time No. Soil/Solid Laboratory No. Methanol Sample Point Lat/Long and ENO, Ą. Comments HCI Waste Compresite 1 10:30 11:30 2 3 4 5 6 8 10 Sampler's Name: SWH Bittinger Relinquished By / Affiliation Sampler's Company: Structus Environ mental, Inc Date Time Accepted By / Affiliation Shipment Date: -30-00 Date 11-3/ Time 14:31 11/30 1430 Shipment Method: hand alivery Shipment Tracking No: Special Instructions: Custody Seals In Place: Yes / No Temp Blank: Yes / No Cooler Temp on Receipt: °F/C Trip Blank: Yes / No MS/MSD Sample Submitted: Yes / No

Atlantic

bo				'				1
建造	ΑE	P	aff	liated	cor	npa	апу	

Special Instructions:

CC:

Custody Seals In Place: Yes / No

Millen - Broadhen

Temp Blank: Yes / No

Richfield Chain of Custo	rdy Record		Page 1 of 1
Project Name:	ARCO Studion 601- Assessment	On-site Time:	Temp:
Company BP BU/AR Region/En	Ifos Segment: RP/ his sand Is als	Off-site Time:	Temp:
State or Lead Regula	ory Agency: Alamada Comy Envior	> Alangua (a) Sky Conditions:	
A BP affiliated company	Requested Due Date (mm/dd/yy): Std. TAT	Meteorological Events:	
	. 31 <u>a. [A]</u>	Wind Speed:	Direction:
Lab Name: Test Awarila	BP/AR Facility No.: 601	ConsultantiCont	TT
Address: 835 Janvis Dr.	BP/AR Facility Address: 717 Lewelling Blue	Sua And Address: 3572	Trabos Envirannendad, Inc.
Morgan Hill, CA 95037	Site Lat/Long:	Consultant/Contractor: S. Address: 3530 Cam. Camera lay	1 C C 250
Lab PM: Lisa Race		Consultant/Contractor Pro	ingt No. 17568 C
Tele/Fax: ЦоВ — 787-8156	Enfos Project No.: GOC 23-0077	Consultant/Contractor PM	T Tolars
Address 222 C	Provision or OOC (circle one)	Tele/Fax: 550-676	-6000 / 60676-6005
BP/AR EBM: Paul Supple Address: 2010 Crate Canyon Pl., #150	Phase/WBS: OJ - ASSESSMEN	Report Type & QC Level:	level 1 W/EDF
San Ramon, (A Tele/Fax: 925 275-3506	Sub Phase/Task: 03- and yhill	E-mail EDD To:	1.00 (0) 12 212
	Cost Element: 01- Contractor 1960		BP of Atlantic Richfield Co. (circle one)
Lab Bottle Order No: Matrix	Preservative	Requested Analysis	
	ll ll ll ll ll ll ll ll ll ll ll ll ll		
No. Sample Description Limit Discription Sample Description	Taporatory No.		County Delay I
No. Till ample Description C Solid	Laboratory No. Of Colored Colo	그리 N 및 할	Sample Point Lat/Long and Comments
Item Time Date Description Time Air Air	Tapocatory No. of Conta H ₂ SO ₄ HCl Methanol	Sexys Sprys	1 '
1 DI-15 8:45 11-30 V			
2 B1-23 8:52			
4 131-39 9:05			
5 BI-47 9:15		<u></u>	
6 DI-54 12.06 V			
7			
8			(10.65)
9			
10			• •
Sampler's Name: S'cott Bittingen	Relinquished By / Affiliation I	Date Time Accepted By / A	Miliation Date Time
Sampler's Company: Stratus Environ member, Inc.		-3016 14:31	1/30 1430
Shipment Date: \\-30-06			
Shipment Method: For X hand dervice			
Shipment Tracking No:	,		

Cooler Temp on Receipt:

°F/C

Trip Blank: Yes / No

MS/MSD Sample Submitted: Yes / No

23 February, 2007

Jay Johnson Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park, CA 95682

RE: ARCO #0601, San Leandro, CA

Work Order: MPL0018

Enclosed are the results of analyses for samples received by the laboratory on 12/01/06 08:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

Amended Report

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

Amended Report

Stratus Environmental Inc. [Arco]	Project:	ARCO #0601, San Leandro, CA	MPL0018
3330 Cameron Park Dr., Suite 550	Project Number:	G0C23-0022	Reported:
Cameron Park CA, 95682	Project Manager:	Jay Johnson	02/23/07 14:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B1-15	MPL0018-01	Soil	11/30/06 08:45	12/01/06 08:00
B1-23	MPL0018-02	Soil	11/30/06 08:52	12/01/06 08:00
B1-31	MPL0018-03	Soil	11/30/06 09:00	12/01/06 08:00
B1-39	MPL0018-04	Soil	11/30/06 09:05	12/01/06 08:00
B1-47	MPL0018-05	Soil	11/30/06 09:15	12/01/06 08:00
B1-54	MPL0018-06	Soil	11/30/06 10:08	12/01/06 08:00

Revised report created 010507. Matrix units revised to report in mg/Kg.

Revised report created 2/23/07. Report includes the added TPH-D/MO with silica gel cleanup.

Amended Report

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica - Morgan Hill, CA

Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-15 (MPL0018-01) Soil Sampled: 11/30/06 08:45	Received: 12	01/06 08:00)					
Gasoline Range Organics (C4-C12) ND	0.10	mg/kg	1	6L04011	12/01/06	12/05/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	104 %	55-13	5	n	"	"	н	
Surrogate: 4-Bromofluorobenzene	95 %	60-12	0	н	"	n	II.	
Surrogate: Dibromofluoromethane	97 %	70-12	0	н	n	II.	n.	
Surrogate: Toluene-d8	101 %	70-12	0	ır	u	n	rr rr	
B1-15 (MPL0018-01RE1) Soil Sampled: 11/30/06 0	8:45 Received	l: 12/01/06 (00:81					
Gasoline Range Organics (C4-C12) ND	0.10	mg/kg	1	6L04001	12/04/06	12/05/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	104 %	55-13	5	"	rt	rt	"	
Surrogate: 4-Bromofluorobenzene	95 %	60-12	0	"	rr	tt	н	
Surrogate: Dibromofluoromethane	97 %	70-12	0	u	n	Ħ	n	
Surrogate: Toluene-d8	101 %	70-12	0	u	"	u	n	
B1-23 (MPL0018-02) Soil Sampled: 11/30/06 08:52	Received: 12	/01/06 08:00)					
Gasoline Range Organics (C4-C12) ND	0.10	mg/kg	1	6L04011	12/01/06	12/05/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	108 %	55-13	5	n.	n	"	u	
Surrogate: 4-Bromofluorobenzene	98 %	60-12	0	"	"	"	n	
Surrogate: Dibromofluoromethane	98 %	70-12	0	"	n	н	n	
Surrogate: Toluene-d8	101 %	70-12	0	TP.	"	u	n	
B1-31 (MPL0018-03) Soil Sampled: 11/30/06 09:00	Received: 12	/01/06 08:00)					
Gasoline Range Organics (C4-C12) ND	0.10	mg/kg	1	6L04011	12/01/06	12/05/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4	106 %	55-13	5	H	n	н	n	
Surrogate: 4-Bromofluorobenzene	96 %	60-12	0	Ħ	,,	"	n,	
Surrogate: Dibromofluoromethane	98 %	70-12	0	"	II	rt	n	
Surrogate: Toluene-d8	100 %	70-12	10	#	rr	Ħ	II	

Amended Report

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) TestAmerica - Morgan Hill, CA

		_						
Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Nate
0/06 09:05	Received: 12,	/01/06 08:0	D					
ND	0.10	mg/kg	1	6L05027	12/05/06	12/05/06	LUFT GCMS	
	100 %	55-13	15	"	"	n	13	
	92 %	60-12	20	n	"	n	n	
	100 %	70-12	20	n	Ħ	n	ti	
	99 %	70-12	20	"	"	"	"	
0/06 09:15	Received: 12	/01/06 08:0)					
ND	0.10	mg/kg	1	6L04011	12/01/06	12/05/06	LUFT GCMS	
	111 %	55-13	5	11	r,	11	tt	
	96 %	60-12	20	n	n	"	"	
	99 %	70-12	20	Ħ	71	n	#	
	100 %	70-12	20	"	u	n	n	
0/06 10:08	Received: 12	/01/06 08:0	0					
ND	0.10	mg/kg	t	6L04011	12/01/06	12/05/06	LUFT GCMS	
	107 %	55-13	5	п	11	п	n	
	96 %	60-12	20	"	11	"	"	
	94 %	70-12	20	n	11	"	n	
	100 %	70-12	20	Ħ	#	u	n	
	0/06 09:05 ND 0/06 09:15 ND	Result Limit 0/06 09:05 Received: 12 ND 0.10 100 % 92 % 100 % 99 % 0/06 09:15 Received: 12 ND 0.10 111 % 96 % 99 % 100 % 0/06 10:08 Received: 12 ND 0.10 107 % 96 % 94 %	Result Limit Units 0/06 09:05 Received: 12/01/06 08:00 ND 0.10 mg/kg 100 % 55-13 92 % 60-12 100 % 70-12 99 % 70-12 0/06 09:15 Received: 12/01/06 08:00 ND 0.10 mg/kg 111 % 55-13 96 % 60-12 99 % 70-12 100 % 70-12 0/06 10:08 Received: 12/01/06 08:00 ND 0.10 mg/kg 107 % 55-13 96 % 60-12 94 % 70-12	Result Limit Units Dilution 0/06 09:05 Received: 12/01/06 08:00 1 ND 0.10 mg/kg 1 100 % 55-135 92 % 60-120 100 % 70-120 70-120 99 % 70-120 70-120 ND 0.10 mg/kg 1 111 % 55-135 96 % 60-120 99 % 70-120 100 % 70-120 100 % 70-120 100 % 70-120 ND 0.10 mg/kg 1 107 % 55-135 96 % 60-120 96 % 60-120 94 % 70-120	Result Limit Units Dilution Batch 0/06 09:05 Received: 12/01/06 08:00	Result Limit Units Dilution Batch Prepared	ND 0.10 mg/kg 1 6L05027 12/05/06 12/05/06 ND 0.10 mg/kg 1 6L05027 12/05/06 12/05/06 100 % 55-135 " " " " 100 % 70-120 " " " " 100 % 70-120 " " " " 0/06 09:15 Received: 12/01/06 08:00 ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 111 % 55-135 " " " " 96 % 60-120 " " " " 100 % 70-120 " " " " 99 % 70-120 " " " " 100 % 70-120 " " " " 100 % 70-120 " " " " 100 % 70-120 " " " " 0/06 10:08 Received: 12/01/06 08:00 ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 107 % 55-135 " " " " 96 % 60-120 " " " " 94 % 70-120 " " " " "	ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS ND 0.10 mg/kg 1 6L04011 12/01/06 12/05/06 LUFT GCMS

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Extractable Hydrocarbons by EPA 8015B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-15 (MPL0018-01) Soil	Sampled: 11/30/06 08:45	Received: 12	/01/06 08:0	0					
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	
Diesel Range Organics (C10)-C28) 1.8	1.0	ti	h	Jt .	Ħ	n	H 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	HD
Surrogate: n-Octacosane		93 %	40-12	20	rr	"	"	"	
B1-23 (MPL0018-02) Soil	Sampled: 11/30/06 08:52	Received: 12	/01/06 08:0	0					
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	
Diesel Range Organics (C10-	C28) ND	1.0	11	11	n n	11	O .	0	
Surrogate: n-Octacosane		59 %	40-12	20	11	ıı	11	"	
B1-31 (MPL0018-03) Soil	Sampled: 11/30/06 09:00	Received: 12	/01/06 08:0	0					
Motor Oil (C16-C36)	ND	10	mg/kg	I	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	
Diesel Range Organics (C10-	C28) ND	1.0	H	I†	U	I†	H	" " " " " " " " " " " " " " " " " " "	
Surrogate: n-Octacosane		93 %	40-12	10	**	н	n	ıı	
B1-39 (MPL0018-04) Soil	Sampled: 11/30/06 09:05	Received: 12	/01/06 08:00)					
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	•
Diesel Range Organics (C10-	C28) ND	1.0	JI		"	1+	н	11	
Surrogate: n-Octacosane		90 %	40-12	-	B	#	n	н	
B1-47 (MPL0018-05) Soil	Sampled: 11/30/06 09:15	Received: 12/	01/06 08:00)					
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	
Diesel Range Organics (C10	-C28) 1.2	1.0	II	ti	#1	O.	1+	"	HD
Surrogate: n-Octacosane		87 %	40-12	0	11	ıı	rt	lt.	
B1-54 (MPL0018-06) Soil	Sampled: 11/30/06 10:08	Received: 12/	01/06 08:00)					
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	12/08/06	EPA 8015B-SVOA	
Diesel Range Organics (C10-0	C28) ND	1.0	0	п	li .	п	н	"	
Surrogate: n-Octacosane		90 %	40-12	0	**	"	n	tt .	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B1-15 (MPL0018-01) Soil	Sampled: 11/30/06 08:45	Received: 12	/01/06 08:	00					BL
Motor Oil (C16-C36)	ND	10	mg/kg	I	6L,07020	12/07/06	02/07/07	EPA 8015B-SVOA	
Diesel Range Organics (C10)-C28) ND	1.0	n	н	It	n	U	If	
Surrogate: n-Octacosane		79 %	40-	120	"	11)1	n	
B1-47 (MPL0018-05) Soil	Sampled: 11/30/06 09:15	Received: 12.	/01/06 08:	00					Bŧ
Motor Oil (C16-C36)	ND	10	mg/kg	1	6L07020	12/07/06	02/07/07	EPA 8015B-SVOA	
Diesel Range Organics (C10)-C28) ND	1.0	It	0	†I	16	lt .	ti	
Surrogate: n-Octacosane		71 %	40-	120	11	"	"	ıt	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-15 (MPL0018-01) Soil	Sampled: 11/30/06 08:45	Received: 12	01/06 08	:00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	6L04011	12/01/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	II .	н	U	It	ti	ji	
tert-Butyl alcohol	ND	0.020	н	¥I.	п	15	11	и	
Di-isopropyl ether	ND	0.0050	ri .	**	*1	17	li	H	
1,2-Dibromoethane (EDB)	ND	0.0050	41	16	11	n	И	11	
1,2-Dichloroethane	ND	0.0050	#1	11	и	O O	И	U	
Ethanol	ND	0.10	II .	n	It	ŧi	H	o o	
Ethyl tert-butyl ether	ND	0.0050	It	D	11	#1	0	41	
Ethylbenzene	ND	0.0050	14	0	19	п	U	41	
Methyl tert-butyl ether	ND	0.0050	11	tı	0	IF.	ŧ1	И	
Toluene	ND	0.0050	U	11	0	I†	N	И	
Xylenes (total)	ND	0.0050	II	11	(1	II	ıı	H	
Surrogate: Dibromofluorom	ethane	97 %	70-	120	rr	ii.	"	n	
Surrogate: 1,2-Dichloroetha	me-d4	104 %	55-	135	"	11	н	11	
Surrogate: Toluene-d8		101 %	70-	120	**	n.	u	If	
Surrogate: 4-Bromofluorobe	enzene	95 %	60-	120	"	n	"	"	
B1-23 (MPL0018-02) Soil		Received: 12	/01/06 08	:00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	6L04011	12/01/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	b)ii	ŧI	U	II	0	
tert-Butyl alcohol	ND	0.020	**	14	11	U	I I	0	
Di-isopropyl ether	ND	0.0050	41	17	Д	u	U	н	
1,2-Dibromoethane (EDB)	ND	0.0050	ıı	D	19	11	U	И	
1,2-Dichloroethane	ND	0.0050	и	н	D	ır	u	If	
Ethanol	ND	0.10	tt.	*1	U	19	Ħ	19	
Ethyl tert-butyl ether	ND	0.0050	n	'n	tt	U	ıı	O .	
Ethylbenzene	ND	0.0050	n	"	*1	U	н	ţ1	
Methyl tert-butyl ether	ND	0.0050	+1	19	н	† 1	ti .	ļi.	
Toluene	ND	0.0050	h	U	It	H	a	μ	
Xylenes (total)	ND	0.0050	"	ęı	0		#		
Surrogate: Dibromofluorom	ethane	98 %	70-	-120	ır	0	u	n	
Surrogate: 1,2-Dichloroetha	nne-d4	108 %	55	-135	"	и	#	n	
Surrogate: Toluene-d8		101 %	70-	-120	rr .	п	н	u .	
Surrogate: 4-Bromofluorob	enzene	98 %	60	-120	"	11	n	rr	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022
Project Manager: Jay Johnson

MPL0018 Reported: 02/23/07 14:53

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-31 (MPL0018-03) Soil	Sampled: 11/30/06 09:00	Received: 12/	01/06 08:	00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	6L04011	12/01/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	n	U	II .	11	И	n	
tert-Butyl alcohol	ND	0.020	u	O	U)r	н	U	
Di-isopropyl ether	ND	0.0050	*1	н	ıı.	14	IF	O	
1,2-Dibromoethane (EDB)	ND	0.0050	#1	n	H	It	II	41	
1,2-Dichloroethane	ND	0.0050	11	#1	н	D	H	ti	
Ethanol	ND	0.10	И	И	н	H	U	II	
Ethyl tert-butyl ether	ND	0.0050	И	11	n	0	ij)ı	
Ethylbenzene	ND	0.0050	16	II	11	U	u	II	
Methyl tert-butyl ether	ND	0.0050	It	H	jr	ti	0	17	
Toluene	ND	0.0050	17	H	l+	ŧ	ti	1)	
Xylenes (total)	ND	0.0050	H	l1	n n	#f	H	lt	
Surrogate: Dibromofluorom	ethane	98 %	70-	120	"	"	II	n .	
Surrogate: 1,2-Dichloroetha	nne-d4	106 %	55-	135	u	n	u	II .	
Surrogate: Toluene-d8		100 %	70-	120	u	**	"	11	
Surrogate: 4-Bromofluorobe	enzene	96 %	60-	120	17	,,	"	n	
B1-39 (MPL0018-04) Soil		Received: 12	/01/06 08:	:00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	6L05027	12/05/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	0	U	H	Ħ	п	0	
tert-Butyl alcohol	ND	0.020	0	U	11	It	п	ŧI	
Di-isopropyl ether	ND	0.0050	H	H	н	19	II .)ı	
1,2-Dibromoethane (EDB)	ND	0.0050	#1	*1	**	n	0	It	
1,2-Dichloroethane	ND	0.0050	Ħ	II	н	U	a	17	
Ethanol	ND	0.10	И	и	H	ti	łı	ij	
Ethyl tert-butyl ether	ND	0.0050	14	It	II	*1	11	0	
Ethylbenzene	ND	0.0050	17	n	11	11	"	†I	
Methyl tert-butyl ether	ND	0.0050	U	n	0	и	II .	*1	
Toluene	ND	0.0050	ti	U	ú	It	It .	н	
Xylenes (total)	ND	0.0050	11	n	ti	11	H	II .	
Surrogate: Dibromofluorom	nethane	100 %	70-	120	17	n	n	"	
Surrogate: 1,2-Dichloroetho	ane-d4	100 %	55-	135	n	11	11	H	
Surrogate: Toluene-d8		99 %	70-	120	н	II	11	n	
Surrogate: 4-Bromofluorobe	enzene	92 %	60-	120	"	"	**	If	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022
Project Manager: Jay Johnson

MPL0018 Reported: 02/23/07 14:53

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-47 (MPL0018-05) Soil Sai	mpled: 11/30/06 09:15	Received: 12	01/06 08:	00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	6L04011	12/01/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	It	*11	0	U	If	и	
tert-Butyl alcohol	ND	0.020	It	И	O	u	H	u u	
Di-isopropyl ether	ND	0.0050	It.	II	n n	a a	H	И	
1,2-Dibromoethane (EDB)	ND	0.0050	I†	IF	a	tt	U	н	
1,2-Dichloroethane	ND	0.0050	I)	le .	tt	tt	U	И	
Ethanol	ND	0.10	n	11	ŧ	el	u	U	
Ethyl tert-butyl ether	ND	0.0050	11	н	11	Ħ	ü	D.	
Ethylbenzene	ND	0.0050	u	D	#1	11	11	n	
Methyl tert-butyl ether	ND	0.0050	u	11)t	н	11	a	
Toluene	ND	0.0050	u	п	lf .	И	11	**	
Xylenes (total)	ND	0.0050	ti	u	n	It	lt .	11	
Surrogate: Dibromofluorometha	пе	99 %	70-	120	n	"	"	ıt	
Surrogate: 1,2-Dichloroethane-a	14	111 %	55-	135	,,,	n	**	n	
Surrogate: Toluene-d8		100 %	70-	120	n	n	ii .	TP .	
Surrogate: 4-Bromofluorobenzer	пе	96 %	60-	120	**	n	n	"	
B1-54 (MPL0018-06) Soil Sa	mpled: 11/30/06 10:08	Received: 12	/01/06 08:	:00					
tert-Amyl methyl ether	ND	0.0050	mg/kg	l	6L04011	12/01/06	12/05/06	EPA 8260B	
Benzene	ND	0.0050	11	ti	16	И	It	Œ	
tert-Butyl alcohol	ND	0.020	II .	0	H	11	lt.	łı	
Di-isopropyl ether	ND	0.0050	tt	U	n	0	11	11	
1,2-Dibromoethane (EDB)	ND	0.0050	11	et e	II .	0	n	п	
1,2-Dichloroethane	ND	0.0050	#1	#1	II	n	n	iŧ	
Ethanol	ND	0.10	н	It	tt	*1	Ø	It	
Ethyl tert-butyl ether	ND	0.0050	и	16	†1	#1	*1	ti .	
Ethylbenzene	ND	0.0050	19	11	I+	II	н	u .	
Methyl tert-butyl ether	ND	0.0050	H	U	19	It	н	Œ	
Toluene	ND	0.0050	n	D	ti .	It.	I)	tl	
Xylenes (total)	ND	0.0050	н	ti		п	0	н	
Surrogate: Dibromofluorometha	me	94 %	70-	120	n	n	n	tt	
Surrogate: 1,2-Dichloroethane-	14	107 %	55-	135	"	II	u	"	
Surrogate: Toluene-d8		100 %	70-	120	н	Tf	n	n	
Surrogate: 4-Bromofluorobenze	ne	96 %	60-	120	"	"	"	n	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6L04001 - EPA 5030B P/T	/ LUFT GCMS			····						- 10140
Blank (6L04001-BLK1)				Prepared &	Ł Analyze	:d: 12/04/	06			
Gasoline Range Organics (C4-C12)	ND	0.10	mg/kg							****
Surrogate: 1,2-Dichloroethane-d4	0,00546		tr	0.00500	·	109	55-135			***************************************
Surrogate: 4-Bromofluorobenzene	0.00514		11	0.00500		103	60-120			
Surrogate: Dibromofluoromethane	0.00484		"	0.00500		97	70-120			
Surrogate: Toluene-d8	0.00514		"	0.00500		103	70-120			
Laboratory Control Sample (6L0400	1-BS2)			Prepared &	k Analyze	d: 12/04/0	06			
Gasoline Range Organics (C4-C12)	0.846	0.10	mg/kg	0.880		96	75-140			
Surrogate: 1,2-Dichloroethane-d4	0.00540	······································	"	0.00500	***************************************	108	55-135			
Surrogate: 4-Bromofluorobenzene	0.00534		"	0.00500		107	60-120			
Surrogate: Dibromofluoromethane	0.00520		11	0.00500		104	70-120			
Surrogate: Toluene-d8	0.00520		II	0.00500		104	70-120			
Laboratory Control Sample Dup (6L	04001-BSD2)			Prepared &	Ł Analyze	d: 12/04/0	06			
Gasoline Range Organics (C4-C12)	0.791	0.10	mg/kg	0.880		90	75-140	7	35	
Surrogate: 1,2-Dichloroethane-d4	0.00554		11	0.00500		111	55-135			
Surrogate: 4-Bromofluorobenzene	0.00528		v	0.00500		106	60-120			
Surrogate: Dibromofluoromethane	0.00494		H	0.00500		99	70-120			
Surrogate: Toluene-d8	0.00526		"	0.00500		105	70-120			
Batch 6L04011 - EPA 5030 (pres	48h)/5035 / LUF	T GCMS								
Blank (6L04011-BLK1)				Prepared &	z Analyze	d: 12/04/0)6			
Gasoline Range Organics (C4-C12)	ND	0.10	mg/kg	······································					·····	
Surrogate: 1,2-Dichloroethane-d4	0.00546		u	0.00500		109	55-135			
Surrogate: 4-Bromofluorobenzene	0.00514		н	0.00500		103	60-120			
Surrogate: Dibromofluoromethane	0.00484		n	0.00500		97	70-120			
Surrogate: Toluene-d8	0.00514		13	0.00500		103	70-120			

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6L04011 - EPA 5030 (pres	48h)/5035 / LUI	T GCMS								
Laboratory Control Sample (6L0401	1-BS2)			Prepared &	k Analyze	d: 12/04/	06	•		
Gasoline Range Organics (C4-C12)	0,846	0.10	mg/kg	0.880		96	75-140			***************************************
Surrogate: 1,2-Dichloroethane-d4	0.00542	•	"	0.00500		108	55-135	•		
Surrogate: 4-Bromofluorobenzene	0.00530		**	0.00500		106	60-120			
Surrogate: Dibromofluoromethane	0.00496		Ħ	0.00500		99	70-120			
Surrogate: Toluene-d8	0.00526		"	0.00500		105	70-120			
Laboratory Control Sample Dup (6L	04011-BSD2)			Prepared &	k Analyze	d: 12/04/0	06			
Gasoline Range Organics (C4-C12)	0.791	0.10	mg/kg	0.880		90	75-140	7	35	
Surrogate: 1,2-Dichloroethane-d4	0.00554		1)	0.00500		111	55-135			
Surrogate: 4-Bromofluorobenzene	0.00528		n	0.00500		106	60-120			
Surrogate: Dibromofluoromethane	0.00494		11	0.00500		99	70-120			
Surrogate: Toluene-d8	0.00526		tt	0.00500		105	70-120			
Batch 6L05027 - EPA 5030 (pres	48h)/5035 / LUF	T GCMS								
Blank (6L05027-BLK1)				Prepared &	Ł Analyze	d: 12/05/0	06			
Gasoline Range Organics (C4-C12)	ND	0.10	mg/kg							
Surrogate: 1,2-Dichloroethane-d4	0.00508	***************************************	"	0.00500	***************************************	102	55-135			
Surrogate: 4-Bromofluorobenzene	0.00506		n	0.00500		101	60-120			
Surrogate: Dibromofluoromethane	0.00522		u	0.00500		104	70-120			
Surrogate: Toluene-d8	0.00534		"	0.00500		107	70-120			
Laboratory Control Sample (6L0502	7-BS2)			Prepared &	z Analyze	d: 12/05/0	06			
Gasoline Range Organics (C4-C12)	1.11	0.10	mg/kg	0.880		126	75-140			
Surrogate: 1,2-Dichloroethane-d4	0.00490		n	0.00500		98	55-135			•
Surrogate: 4-Bromofluorobenzene	0.00556		#	0.00500		111	60-120			
Surrogate: Dibromofluoromethane	0.00492		11	0.00500		98	70-120			
Surrogate: Toluene-d8	0.00542		n	0.00500		108	70-120			

Stratus Environmental Inc. [Arco] Project: ARCO #0601, San Leandro, CA MPL0018
3330 Cameron Park Dr., Suite 550 Project Number: G0C23-0022 Reported:
Cameron Park CA, 95682 Project Manager: Jay Johnson 02/23/07 14:53

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	į
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6L05027 - EPA 5030 (pres 48h)/5035 / LUFT GCMS

Laboratory Control Sample Dup (6L	05027-BSD2)	Prepared & Analyzed: 12/05/06								
Gasoline Range Organics (C4-C12)	1.11	0.10	mg/kg	0.880	126	75-140	0	35		
Surrogate: 1,2-Dichloroethane-d4	0.00474		tt	0.00500	95	55-135				
Surrogate: 4-Bromofluorobenzene	0.00572		U	0.00500	114	60-120				
Surrogate: Dibromofluoromethane	0.00496		n	0.00500	99	70-120				
Surrogate: Toluene-d8	0.00536		n	0.00500	107	70-120				

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Extractable Hydrocarbons by EPA 8015B - Quality Control TestAmerica - Morgan Hill, CA

										•
Analys	Danuli	Reporting	1 Index	Spike	Source	P/1117C	%REC	nnr	RPD	Mate
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6L07020 - EPA 3550B / EPA 80	15B-SVOA				·					
Blank (6L07020-BLK1)				Prepared:	12/07/06	Analyzed:	12/08/06			
Motor Oil (C16-C36)	ND	10	mg/kg							
Diesel Range Organics (C10-C28)	ND	1.0	н							
Surrogate: n-Octacosane	1.71		Ħ	1.67		102	40-120			
Laboratory Control Sample (6L07020-BS	1)			Prepared:	12/07/06	Analyzed:	12/08/06			
Diesel Range Organics (C10-C28)	16.1	1.0	mg/kg	16.7		96	60-115			
Surrogate: n-Octacosane	1.73		11	1.67		104	40-120	٠		
Matrix Spike (6L07020-MS1)	Source: M	PL0130-08		Prepared:	12/07/06	Analyzed:	12/08/06			
Diesel Range Organics (C10-C28)	23.2	2.0	mg/kg	16.7	12	67	60-115			
Surrogate: n-Octacosane	1.99		11	1.67		119	40-120	***************************************	***************************************	
Matrix Spike Dup (6L07020-MSD1)	Source: M	PL0130-08		Prepared:	12/07/06	Analyzed:	12/08/06			
Diesel Range Organics (C10-C28)	25,5	2.0	mg/kg	16.7	12	81	60-115	9	40	
Surrogate: n-Octacosane	2.13		n	1.67		128	40-120			LH,.

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6L07020 - EPA 3550B / EPA 8	015B-SVOA									
Blank (6L07020-BLK1)				Prepared:	12/07/06	Analyzed	I: 02/07/07			BU
Motor Oil (C16-C36)	ND	10	mg/kg							
Diesel Range Organics (C10-C28)	ND	1.0	11							
Surrogate: n-Octacosane	1.14		"	1.67		68	40-120			,,,,
Laboratory Control Sample (6L07020-B	S1)			Prepared:	12/07/06	Analyzed	l: 02/07/07			BU
Diesel Range Organics (C10-C28)	15.6	1.0	mg/kg	16.7		93	60-115			
Surrogate: n-Octacosane	1.55		,,	1.67		93	40-120			

Stratus Environmental Inc. [Arco] Project: ARCO #0601, San Leandro, CA MPL0018
3330 Cameron Park Dr., Suite 550 Project Number: G0C23-0022 Reported:
Cameron Park CA, 95682 Project Manager: Jay Johnson 02/23/07 14:53

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (6L04011-BLK1) Prepared & Analyzed: 12/04/06							
tert-Amyl methyl ether	ND	0.0050	mg/kg				
Benzene	ND	0.0050	11				
tert-Butyl alcohol	ND	0.020	H				
Di-isopropyl ether	ND	0.0050	и				
1,2-Dibromoethane (EDB)	ND	0.0050	n				
1,2-Dichloroethane	ND	0.0050	U				
Ethanol	ND	0.10	U				
Ethyl tert-butyl ether	ND	0.0050	U				
Ethylbenzene	ND	0.0050	0				
Methyl tert-butyl ether	ND	0.0050	U				
Toluene	ND	0.0050	Œ				
Xylenes (total)	ND	0.0050	*1				
Surrogate: Dibromofluoromethane	0.00484		ıŗ	0.00500	97	70-120	
Surrogate: 1,2-Dichloroethane-d4	0.00546		rr	0.00500	109	55-135	
Surrogate: Toluene-d8	0.00514		H	0.00500	103	70-120	
Surrogate: 4-Bromofluorobenzene	0.00514		11	0.00500	103	60-120	
Laboratory Control Sample (6L0401	1-BS1)			Prepared & An	alyzed: 12/04/	06	
ert-Amyl methyl ether	0.0233	0.0050	mg/kg	0.0200	116	65-140	
Benzene	0.0213	0.0050	11	0.0200	106	70-130	
ert-Butyl alcohol	0.428	0.020	17	0.400	107	75-130	
Di-isopropyl ether	0.0222	0.0050	н	0.0200	111	70-130	
1,2-Dibromoethane (EDB)	0.0234	0.0050	U	0.0200	117	80-135	
1,2-Dichloroethane	0.0232	0.0050	U	0.0200	116	70-120	
Ethanol	0.360	0.10	п	0.400	90	65-150	
Ethyl tert-butyl ether	0.0236	0.0050	II .	0.0200	118	70-125	
Ethylbenzene	0.0228	0.0050	Ħ	0.0200	114	75-130	
Methyl tert-butyl ether	0.0239	0.0050	Ħ	0.0200	120	75-130	
Гоluene	0.0221	0.0050	16	0.0200	110	75-130	
Xylenes (total)	0.0686	0.0050	16	0.0600	114	75-135	
Surrogate: Dibromofluoromethane	0.00520		**	0.00500	104	70-120	
Surrogate: 1,2-Dichloroethane-d4	0.00540		"	0.00500	108	55-135	
Surrogate: Toluene-d8	0.00520		n	0.00500	104	70-120	
Surrogate: 4-Bromofluorobenzene	0.00534		n	0.00500	107	60-120	

Batch 6L04011 - EPA 5030 (pres 48h)/5035 / EPA 8260B

Amended Report

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson

MPL0018 Reported: 02/23/07 14:53

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (6L04011-MS1)	Source: M	PL0018-01		Prepared:	12/04/06	Analyzed:	12/05/06			
tert-Amyl methyl ether	0.0234	0.0050	mg/kg	0.0200	ND	117	65-140		., .,	
Benzene	0.0224	0.0050	#1	0.0200	ND	112	70-130			
tert-Butyl alcohol	0.452	0.020	ti	0.400	ND	113	75-130			
Di-isopropyl ether	0.0232	0.0050	Ħ	0.0200	ND	116	70-130			
1,2-Dibromoethane (EDB)	0.0236	0.0050	ij	0.0200	ND	118	80-135			
1,2-Dichloroethane	0.0232	0.0050	H	0.0200	ND	116	70-120			
Ethanol	0.339	0.10	ıt	0.400	ND	85	65-150			
Ethyl tert-butyl ether	0.0240	0.0050	ıt	0.0200	ND	120	70-125			
Ethylbenzene	0.0246	0.0050	п	0.0200	ND	123	75-130			
Methyl tert-butyl ether	0.0245	0.0050	ti	0.0200	0.00040	120	75-130			
Toluene	0.0231	0.0050	u	0.0200	ND	116	75-130			
Xylenes (total)	0.0751	0.0050	u	0.0600	0.00098	124	75-135			
Surrogate: Dibromofluoromethane	0.00512		"	0.00500		102	70-120	**********		
Surrogate: 1,2-Dichloroethane-d4	0.00528		n	0.00500		106	55-135			
Surrogate: Toluene-d8	0.00516		u	0.00500		103	70-120			
Surrogate: 4-Bromofluorobenzene	0.00508		"	0.00500		102	60-120			
Matrix Spike Dup (6L04011-MSD1)	Source: Ml	PL0018-01		Prepared:	12/04/06	Analyzed:	12/05/06			
tert-Amyl methyl ether	0.0216	0.0050	mg/kg	0.0200	ND	108	65-140	8	25	
Benzene	0.0195	0.0050	н	0.0200	ND	98	70-130	14	25	
tert-Butyl alcohol	0.405	0.020	Ħ	0.400	ND	101	75-130	11	25	
Di-isopropyl ether	0.0207	0.0050	tı	0.0200	ND	104	70-130	11	40	
1,2-Dibromoethane (EDB)	0.0215	0.0050	0	0.0200	ND	801	80-135	9	20	
1,2-Dichloroethane	0.0212	0.0050	U	0.0200	ND	106	70-120	9	30	
Ethanol	0.301	0.10	II .	0.400	ND	75	65-150	12	30	
Ethyl tert-butyl ether	0.0219	0.0050	12	0.0200	ND	110	70-125	9	30	
Ethylbenzene	0.0210	0.0050	It	0.0200	ND	105	75-130	16	30	
Methyl tert-butyl ether	0.0227	0.0050	и	0.0200	0,00040	112	75-130	8	25	
Toluene	0.0200	0.0050	If	0.0200	ND	100	75-130	14	20	

0.0050

0.0600

0.00500

0.00500

0.00500

0.00500

0.00098

0.0645

0.00520

0.00540

0.00520

0.00500

Surrogate: Dibromofluoromethane

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Xylenes (total)

Surrogate: Toluene-d8

75-135

70-120

55-135

70-120

60-120

15

25

106

104

108

104

100

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

İ		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
							-			

Batch 6L05027 - EPA 5030 (pres	s 48h)/5035 / EPA	8260B	<u></u> .					
Blank (6L05027-BLK1)				Prepared & An	alyzed: 12/05/	06		
tert-Amyl methyl ether	ND	0.0050	mg/kg			***************************************		
Benzene	ND	0.0050	11					
tert-Butyl alcohol	ND	0.020	II .					
Di-isopropyl ether	ND	0.0050	11					
1,2-Dibromoethane (EDB)	ND	0.0050	ti					
1,2-Dichloroethane	ND	0.0050	0					
Ethanol	ND	0.10	11					
Ethyl tert-butyl ether	ND	0.0050	D.					
Ethylbenzene	ND	0.0050	n					
Methyl tert-butyl ether	ND	0.0050	If					
Toluene	ND	0.0050	н					
Xylenes (total)	ND	0.0050	н					
Surrogate: Dibromofluoromethane	0,00522		п	0.00500	104	70-120		
Surrogate: 1,2-Dichloroethane-d4	0.00508		п	0.00500	102	55-135		
Surrogate: Toluene-d8	0.00534		11	0.00500	107	70-120		
Surrogate: 4-Bromofluorobenzene	0.00506		11	0.00500	101	60-120		
Laboratory Control Sample (6L0502	27-BS1)			Prepared & An	alyzed: 12/05/	06		
tert-Amyl methyl ether	0.0237	0.0050	mg/kg	0.0200	118	65-140		
Benzene	0.0224	0.0050	H	0.0200	112	70-130		
tert-Butyl alcohol	0.392	0.020	ıt	0.400	98	75-130		
Di-isopropyl ether	0.0218	0.0050	IF	0.0200	109	70-130		
1,2-Dibromoethane (EDB)	0.0240	0.0050	"	0.0200	120	80-135		
1,2-Dichloroethane	0.0217	0.0050	И	0,0200	108	70-120		
Ethanol	0.370	0.10	H	0.400	92	65-150		
Ethyl tert-butyl ether	0.0220	0.0050	11	0.0200	110	70-125		
Ethylbenzene	0.0208	0.0050	tt	0.0200	104	75-130		
Methyl tert-butyl ether	0.0227	0.0050	ti	0.0200	114	75-130		
Toluene	0.0222	0.0050	U	0.0200	111	75-130		
Xylenes (total)	0.0663	0.0050	U	0.0600	110	75-135		
Surrogate: Dibromofluoromethane	0.00514	···	"	0.00500	103	70-120	THE PARTY OF THE P	
Surrogate: 1,2-Dichloroethane-d4	0.00480		"	0.00500	96	55-135		
Surrogate: Toluene-d8	0.00546		ti .	0.00500	109	70-120		
Surrogate: 4-Bromofluorobenzene	0.00544		#	0.00500	109	60-120		

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-0022 Project Manager: Jay Johnson MPL0018 Reported: 02/23/07 14:53

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	İ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (6L05027-MS1)	Source: M	PL0046-04I	RE2	Prepared a	& Analyze	d: 12/05/	' 06			
tert-Amyl methyl ether	0.0230	0.0050	mg/kg	0.0200	ND	115	65-140	***************************************		
Benzene	0.0210	0.0050	IP	0.0200	ND	105	70-130			
tert-Butyl alcohol	0.385	0.020	н	0.400	ND	96	75-130			
Di-isopropyl ether	0.0230	0.0050	ŧı	0.0200	ND	115	70-130			
1,2-Dibromoethane (EDB)	0.0225	0.0050	**	0.0200	ND	112	80-135			
I,2-Dichloroethane	0.0223	0.0050	"	0.0200	ND	112	70-120			
Ethanol	0.402	0.10	U	0.400	ND	100	65-150			
Ethyl tert-butyl ether	0.0224	0.0050	н	0.0200	ND	112	70-125			
Ethylbenzene	0.0187	0.0050	H	0.0200	0.00026	92	75-130			
Methyl tert-butyl ether	0.0223	0.0050	H	0.0200	ND	112	75-130			
Toluene	0.0207	0.0050	н	0.0200	ND	104	75-130			
Xylenes (total)	0.0589	0.0050	я	0.0600	0,00096	97	75-135			
Surrogate: Dibromofluoromethane	0.00534	·····	11	0.00500		107	70-120			
Surrogate: 1,2-Dichloroethane-d4	0.00540		п	0.00500		108	55-135			
Surrogate: Toluene-d8	0.00540		n	0.00500		108	70-120			
Surrogate: 4-Bromofluorobenzene	0.00534		"	0.00500		107	60-120			
Matrix Spike Dup (6L05027-MSD1)	Source: Ml	PL0046-04F	RE2	Prepared a	& Analyzed	i: 12/05/	06			
ert-Amyl methyl ether	0.0208	0.0050	mg/kg	0.0200	ND	104	65-140	10	25	
Benzene	0.0199	0.0050	11	0.0200	ND	100	70-130	5	25	
ert-Butyl alcohol	0.371	0.020	jŧ.	0.400	ND	93	75-130	4	25	
Di-isopropyl ether	0.0216	0.0050	и	0.0200	ND	108	70-130	6	40	
,2-Dibromoethane (EDB)	0.0207	0.0050	н	0.0200	ND	104	80-135	8	20	
,2-Dichloroethane	0.0208	0.0050	н	0.0200	ND	104	70-120	7	30	
Ethanol	0.469	0.10	fl	0.400	ND	117	65-150	15	30	
Ethyl tert-butyl ether	0.0204	0.0050	'n	0.0200	ND	102	70-125	9	30	
Ethylbenzene	0.0183	0.0050	"	0.0200	0.00026	90	75-130	2	30	
Methyl tert-butyl ether	0.0200	0.0050	u	0.0200	ND	100	75-130	11	25	
Coluene	0.0198	0.0050	Ø	0.0200	ND	99	75-130	4	20	
(vlenes (total)	0.0574	0.0050	O	0.0600	0.00096	94	75-135	3	25	
Surrogate: Dibromofluoromethane	0.00496		H	0.00500		99	70-120			***************************************
Surrogate: 1,2-Dichloroethane-d4	0.00526		"	0.00500		105	55-135			
	0.00537		"	0.00500		105	70-120			
Surrogate: Toluene-d8	0.00526			0.00200		103	70-120			

Stratus Environmental Inc. [Arco] Project: ARCO #0601, San Leandro, CA MPL0018
3330 Cameron Park Dr., Suite 550 Project Number: G0C23-0022 Reported:
Cameron Park CA, 95682 Project Manager: Jay Johnson 02/23/07 14:53

Notes and Definitions

SG A silica gel cleanup procedure was performed.

LH,AY Surrogate recovery above the acceptance limits. Matrix interference suspected.

HD Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.

BU Sample analyzed after holding time expired

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Lisa Race

From:

Scott Bittinger [sbittinger@stratusinc.net]

Sent:

Friday, February 02, 2007 10:08 AM

To:

Lisa Race

Subject: ARCO Station 601 sample issues

Please proceed with the silica gel clean-up procedure and re-run of these samples.

Scott Bittinger

Revised

MPLOOPS

MPLOODS

MPLOODO

----Original Message----

From: Rob Miller [mailto:rhmiller@broadbentinc.com]

Sent: Friday, February 02, 2007 9:03 AM

To: Tom Venus; jjohnson@stratusinc.net; 'Supple, Paul V'

Cc: 'Scott Bittinger'

Subject: Re: Request for Test America re: BP 601

In speaking with Paul about re-running this analysis following silica gel cleanup, he would like us to move forward. Tom is on vacation starting today, so I'm not sure if he already requested Stratus to provide Test America with this go-ahead direction. If so, great. If not, Jay or Scott, could you provide authorization to Lisa to move forward with the rerun?

Many thanks,

Rob

-- Original Message ----

From: Tom Venus

To: iiohnson@stratusinc.net; 'Supple, Paul V'; 'Rob Miller'

Cc: 'Scott Bittinger'

Sent: Wednesday, January 31, 2007 4:44 PM Subject: RE: Request for Test America re: BP 601

I spoke with Lisa Race at Test America about the chromatograms. The sharp distinct peak at 19.6 minutes is the Test Surrogate (It is intentionally introduced in the lab - It was not within the sample). Lisa also said that it was highly unlikely that the peaks were those of solvents, which would have been expected to appear much sooner after the methylene chloride solvent carrier flush around the first minute of run time. The peak at 17.8 minutes in water sample 20-01 appears around the average expected time for motor oil. Test America could rerun the sample extracts following silica gel cleanup, but that request would have to come from Stratus.

Tom Venus, PE Senior Engineer Broadbent & Associates, Inc. 1324 Mangrove Ave., Ste. 212 Chico, California 95926 (530) 566-1400 phone (530) 566-1401 fax (530) 588-5887 mobile tvenus@broadbentinc.com

From: Lisa Race [mailto:lrace@testamericainc.com]

Sent: Wednesday, January 31, 2007 3:19 PM

To: Tom Venus: Scott Bittinger

Cc: jjohnson@stratusinc.net; Supple, Paul V; Rob Miller Subject: RE: Request for Test America re: BP 601

Please find attached the chromatograms for the requested samples. We still have the extracts if you would like to have the Silica Gel cleanup done on them. That may clean up some of the peaks. We have identified the peaks to the best of our abilities using this method on the attached chromatograms.

Lisa Race Senior Project Manager, Morgan Hill, CA TestAmerica Analytical Testing Corporation

Tel.: 408-776-9600 Direct.: 408-782-8156 Fax: 408-782-6308

e-mail: <u>lrace@testamericainc.com</u> NOTE NEW E-MAIL ADDRESS

This transmission contains information that may be legally confidential. The information is intended solely for the individual or entity named above and access by anyone else is unauthorized. If you are not the intended recipient, any disclosure, copying, distribution, or use of the contents of this information is prohibited and may be unlawful. If you have received this transmission in error, please reply immediately to the sender that you have received the message in error. Because access to receiving equipment is not under our control, we cannot be responsible for the confidentiality of electronically transmitted data.

From: Tom Venus [mailto:tvenus@broadbentinc.com]

Sent: Monday, January 29, 2007 4:10 PM

To: 'Scott Bittinger'

Cc: jjohnson@stratusinc.net; 'Supple, Paul V'; Lisa Race; 'Rob Miller'

Subject: Request for Test America re: BP 601

Scott.

Paul Supple asked me to ask Test America if they could tentatively identify the compound(s) that were detected in the DRO analyses during the deep boring investigation at BP 601 (1.8 and 1.2 mg/kg in soil samples B1-15 and B1-47; and 310 µg/L in water sample B1-58)

I contacted Test America, who informed me that the request must come from Stratus. Therefore, would you please ask Test America if they can clarify how the pattern differed from the DRO standard, or perhaps even tentatively identify the compound in the samples listed below? If they can not tentatively identify the compounds from the previous analyses, would you ask them if they have any of the samples left to re-analyze, following silica-gel extraction?

<u>Test America Report/Order No. MPL0018</u> Soil Sample B1-15 (MPL0018-01) Soil Sample B1-47 (MPL0018-05

<u>Test America Report/Order No. MPL0020</u> Water Sample B1-58 (MPL0020-01)

Probably the easiest for you would be to forward this email to Lisa Race at Irace@testamericainc.com

Any questions, please call me at your earliest convenience. With regards,

Tom Venus, PE Senior Engineer Broadbent & Associates, Inc. 1324 Mangrove Ave., Ste. 212 Chico, California 95926 (530) 566-1400 phone (530) 566-1401 fax (530) 588-5887 mobile tvenus@broadbentinc.com

Atlantic Richfield Company

A BP affiliated company

Chain of Custody Record
Project Name: ARW Skulim

Project Name:

BP BU/AR Region/Enfos Segment: State or Lead Regulatory Agency:

Requested Due Date (mm/dd/yy): Skil 7AT

On-site Time: Temp: Off-site Time: Тепір: Sky Conditions: Meteorological Events: Wind Speed: Direction:

Lab Name: 125+ Awin'ca		
Address: 885 Techie Do	BP/AR Facility No.: GO	Complement
1 3 4 VIS UI	BP/AR Facility Address: 717 (Plastling Blad Sala)	Consultant/Contractor: Stratus Enviraging market, Inc.
Morgan Hill, CA 95037	Site Lat/Long:	THE COST DOOL CONNEW THAT (V. H 550)
Lab PM: Lisa V Race	California Global ID No.: 106 001 00108	CHIUM EUN. (A YEART
Tele/Fax: 408 - 797- 8156	Enfos Project No.: GOC23-0072	Consultant/Contractor Project No.: Ewi
BP/AR EBM: Paul Supple	Provision or OOC (circle one)	Consultant/Contractor PM: J. Johnsen
Address: LOID CCOW CONYON Pl. #150	Phase/WBS: O ASSESSMENT	Tele/Fax: 550-676-1000 / 1915712-15005
San Kamon, (A	Sub Phase/Task: 03- c149 4 ich	Report Type & QC Level: Put I W/EDE
Tele/Fax: 925 275-3506		E-mail EDD To:
Lab Bottle Order No: Matrix		Invoice to: Consultant or BP of Atlantic Richfield Co. (circle one)
	Kegu	ested Analysis
Item Sample Description Time Date Air Air	Tapeserved HNO, of Containers HNO, HCI Methanol TPHD TPHD TPHD TPHD TPHD TPHD TPHD TPHD	Sample Point Lat/Long and Comments
	No. of Unpress H.SO, HCI Methan	N 2
1 BI-15 8:45 11-30 V		
2 BI-23 8:52 1	" N N N N N N N N N N N N N N N N N N N	
3 (3)-31 9:00	<u> </u>	
	97 1	
<u> </u>	64	
5 BI-47 9:15		┠┤┞╎╸┤┈┤┈╎┈┈┈┈┈┈┈┈┈┈ ┈┈║
6 DI-54 1038 V		
7	04 1 1 1 1 1 1 1 1	
8		++++
9	╶╶╶┈┈┈╢┈╟╼╎╼╎╸┧╸┧╸┧╸╏╸┆╸ ╽	(10.6 52)
10		
Sampler's Name: Scott Bittings		
Sampler's Company 51	Relinquished By / Affiliation Date Time	Accepted By / Affiliation Date Time
Sampler's Company: Stredus Edvices Mental, Inc.	July 11-3046 14:31/	Time
	1/30 1/32 /	11/30 1/43U
Shipment Method: For Name delived Shipment Tracking No:		THUE NG. (MH) 12/01 0800
·		
edal Instructions: (C: Rolp Miller - Broadhen)	ASSEKTEDA	
* Seals In Place: Yes (No) Temp Blank: Yes /No	7	
Seals In Place: Yes (No) Temp Blank: Yes /(No	〉 Cooler Temp on Receipt: 4.3°F(C) Trip Blank: Y	es /(No) MS/MSD Sample Submitted: Yes / No
·		- The sample Submitted: Yes / No

TEST AMERICA SAMPLE RECEIPT LOG

CLIENT NAME: EP/ARCO REC. BY (PRINT) JULIENG. WORKORDER: HPL 6018	· ·	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	12/01 /06 0800 W-1-04				=	tory Purposes? WATER YES / NO
CIRCLE THE APPROPRIATE RESPONSE	LAB		CONTAINER	PRESER	- I	SAMPLE	DATE	REMARKS:
Ontoll The At Thornta Theorem	SAMPLE#	. CĹIENT ID	DESCRIPTION		pН	MATRIX	1 1	CONDITION (ETC.)
Custody Seal(s) Present / Absent Intact / Broken*	91 0V-	B1 - 15	1-plastic is	· 1		S	11/30	
2. Chain-of-Custody ' Present / Absent*	0'}	-31.		, i				
Traffic Reports or Packing List: Present / Alcsent	ьч .	- 39 - 47						
4. Airbill: Airbill / Sticker	04	V -54	· V	, v		V	<u> </u>	
Present / Absent 5. Airbill #: DIDOIO 11:274:2849								7
6. Sample Labels: Present / Absent						-	<u>-</u> -	
7. Sample IDs: Listed / Not Listed	•							
on Chain-of-Custody 8. Sample Condition: Intact / Broken*/	-					<u> </u>	,	
Leaking*		• • •				121011		
9. Does information on chain-of-custody,						131	•	
traffic reports and sample labels agree? Yes / No*	.				(6)			•
10. Sample received within				Just		-		
hold time? Yes / No*	•		<u>.</u>	3/				
11. Adequate sample volume		· · · · · · · · · · · · · · · · · · ·		/ .				
received? (es / No* 12. Proper preservatives used? (es / No*			· · · · · · · · · · · · · · · · · · ·	· · · · · ·				· · · · · · · · · · · · · · · · · · ·
13. Trip Blank / Temp Blank Received?	·····							***************************************
(circle which, if yes) Yes / No*)								
14. Read Temp: 3.3°C	•							
Corrected Temp: 4.3°C.				3				1325
Is corrected temp 4+/-2°C? YE9 / No**			•		<u></u>		* ,	•
(Acceptance range for samples requiring thermal pres.)	· ·	/	•	·			·	
-xception (if any): METALS / DEF ON ICE						· · · · ·		
**************************************	*IF CIRCI	ED, CONTÁCT PROJECT	r MANAGER A	ND ATTA	CH RE	CORD OF	RESOLUTI	ON.

23 February, 2007

Jay Johnson Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park, CA 95682

RE: ARCO #0601, San Leandro, CA

Work Order: MPL0020

Enclosed are the results of analyses for samples received by the laboratory on 12/01/06 08:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

Amended Report

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B1-58W	MPL0020-01	Water	11/30/06 11:30	12/01/06 08:00

Revised report created 2/23/07. Report includes the added TPH-D/MO with silica gel cleanup.

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Nates
B1-58W (MPL0020-01) Water Sampled	l: 11/30/06 11:30	Received	l: 12/01/(6 08:00					
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6L08028	12/08/06	12/09/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		116%	60-	145	"	11	"	"	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Extractable Hydrocarbons by EPA 8015B

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-58W (MPL0020-01) Water Samp	led: 11/30/06 11:30	Received	1: 12/01/	06 08:00					
Motor Oil (C16-C36)	ND	470	ug/l	1	6L05022	12/05/06	12/07/06	EPA 8015B-SVOA	
Diesel Range Organics (C10-C28)	310	47	11	ır	ti	it	u	0	HD
Surrogate: n-Octacosane		98 %	30-	115	n	n n	11	J†	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022

MPL0020 Reported:

Project Manager: Jay Johnson 02/23/07 15:03

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-58W (MPL0020-01) Water San	npled: 11/30/06 11:30	Received	1: 12/01/	06 08:00					BU
Motor Oil (C16-C36)	ND	470	ug/l	I	6L05022	12/05/06	02/07/07	EPA 8015B-SVOA	
Diesel Range Organics (C10-C28)	260	47	ti	н	If	÷1	0)I	HD
Surrogate: n-Octacosane		95 %	30-	115	"	#	"	rr .	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-58W (MPL0020-01) Water	Sampled: 11/30/06 11:30	Received	1: 12/01/	06 08:00			•		
tert-Amyl methyl ether	ND	0.50	ug/l	1	6L08028	12/08/06	12/09/06	EPA 8260B	
Benzene	ND	0.50	μ	n	ų	п	ti .	ıt	
tert-Butyl alcohol	ND	20	и	+1	*1	и	u u	H	
Di-isopropyl ether	ND	0.50	н	91	*1	н	Ħ	0	
Ethanol	ND	300	н	**	Ħ	I‡	Ħ	n .	IC
Ethyl tert-butyl ether	ND	0.50	н	и	и	H	71	U	
Ethylbenzene	ND	0.50	п	10	н	0	*1	а	
Methyl tert-butyl ether	ND	0.50	п	14	It	0	II	Ħ	
Toluene	ND	0.50	11	n	11	tt)†	11	
Xylenes (total)	0.58	0.50	14	n	Iţ	ti	It	11	
Surrogate: Dibromofluoromethane	?	104 %	<i>75</i> -	-130	"	II.	11	ır	
Surrogate: 1,2-Dichloroethane-d4		116%	60-	-145	"	11	"	"	
Surrogate: Toluene-d8		103 %	70-	-130	"	11	tt .	r)	
Surrogate: 4-Bromofluorobenzene		90 %	60-	-120	u	ır	"	"	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6L08028 - EPA 5030B P/T /	LUFT GCMS								-	
Blank (6L08028-BLK1)				Prepared	& Analyze	ed: 12/08/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/i							
Surrogate: 1,2-Dichloroethane-d4	2.60		Ħ	2,50		104	60-145		***************************************	
Laboratory Control Sample (6L08028	-BS2)			Prepared	& Analyze	ed: 12/08/0	06			
Gasoline Range Organics (C4-C12)	468	50	ug/l	500		94	75-140			
Surrogate: 1,2-Dichloroethane-d4	2,72	****	11	2.50		109	60-145			
Laboratory Control Sample Dup (6L0	8028-BSD2)			Prepared	& Analyza	ed: 12/08/0	06			
Gasoline Range Organics (C4-C12)	506	50	ug/l	500		101	75-140	8	20	
Surrogate: 1,2-Dichloroethane-d4	2.72		и	2.50		109	60-145			

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Spike

Source

Project Number: G0C23-022 Project Manager: Jay Johnson

Reporting

MPL0020 Reported: 02/23/07 15:03

RPD

%REC

Extractable Hydrocarbons by EPA 8015B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 6L05022 - EPA 3510C / EPA	4 8015B-SVOA										
Blank (6L05022-BLK1)				Prepared	& Analyze	ed: 12/05/	06				
Motor Oil (C16-C36)	ND	500	ug/l								
Diesel Range Organics (C10-C28)	ND	50	п								
Surrogate: n-Octacosane	34.4		11	50.0		69	30-115				
Laboratory Control Sample (6L05022	-BS1)			Prepared	& Analyz	ed: 12/05/	06				
Diesel Range Organics (C10-C28)	307	50	ug/l	500		61	40-140				
Surrogate: n-Octacosane	36.6		tr .	50.0		73	30-115				
Laboratory Control Sample Dup (6L0	.05022-BSD1) Prepared & Analyzed: 12/05/06										
Diesel Range Organics (C10-C28)	269	50	ug/l	500		54	40-140	13	35		
Surrogate: n-Octacosane	31.4		n	50.0		63	30-115				

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022
Project Manager: Jay Johnson

MPL0020 Reported:

02/23/07 15:03

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6L05022 - EPA 3510C / EP	A 8015B-SVOA	.								
Blank (6L05022-BLK1)				Prepared:	12/05/06	Analyzed	l: 02/07/07			BU
Motor Oil (C16-C36)	ND	500	ug/l							
Diesel Range Organics (C10-C28)	ND	50	#							
Surrogate: n-Octacosane	40.0		If	50.0		80	30-115			
Laboratory Control Sample (6L05022	2-BS1)			Prepared:	12/05/06	Analyzed	1: 02/07/07			BU
Diesel Range Organics (C10-C28)	369	50	ug/l	500		74	40-140		***************************************	
Surrogate: n-Octacosane	44.4		11	50.0		89	30-115			
Laboratory Control Sample Dup (6L	05022-BSD1)			Prepared:	12/05/06	Analyzed	1: 02/07/07			BU
Diesel Range Organics (C10-C28)	309	50	ug/l	500		62	40-140	18	35	
Surrogate: n-Octacosane	36.4		17	50.0		73	30-115			

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682

Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Ratch 61 08028 - EPA 5030R P	/T / EPA 8260B									

Blank (6L08028-BLK1)				Prepared & An	alyzed: 12/08/	06	
tert-Amyl methyl ether	ND	0.50	ug/l	•			
Benzene	ND	0.50	Ħ				
tert-Butyl alcohol	ND	20	н				
Di-isopropyl ether	ND	0.50	и				
Ethanol	ND	300	ı				
Ethyl tert-butyl ether	ND	0.50	IF				
Ethylbenzene	ND	0.50	Iŧ				
Methyl tert-butyl ether	ND	0.50	l†				
Toluene	ND	0.50	O				
Xylenes (total)	ND	0.50	ı)				
Surrogate: Dibromofluoromethane	2.43		n	2.50	97	75-130	
Surrogate: 1,2-Dichloroethane-d4	2.60		"	2.50	104	60-145	
Surrogate: Toluene-d8	2.52		n	2.50	101	70-130	
Surrogate: 4-Bromofluorobenzene	2.33		"	2.50	93	60-120	
Laboratory Control Sample (6L08028-BS1)				Prepared & An	alyzed: 12/08/	06	
tert-Amyl methyl ether	0.01	0.50	ug/l	0.01	100	65-135	
Benzene	9.60	0.50	И	10.0	96	70-125	
ert-Butyl alcohol	187	20	н	200	94	60-135	
Di-isopropyl ether	9.04	0.50	It	10.0	90	70-130	
Ethanol	151	300	н	200	76	15-150	
Ethyl tert-butyl ether	9.59	0.50	IJ	10.0	96	65-130	
Ethylbenzene	9.36	0.50	II .	10.0	94	70-130	
Methyl tert-butyl ether	10.5	0.50	а	10.0	105	50-140	
Toluene	9.27	0.50	ŧ1	0.01	93	70-120	
Xylenes (total)	28.5	0.50	Ħ	30.0	95	80-125	
Surrogate: Dibromofluoromethane	2.64		rr	2.50	106	75-130	
Surrogate: 1,2-Dichloroethane-d4	2.60		"	2.50	104	60-145	
Surrogate: Toluene-d8	2.63		"	2.50	105	70-130	
Surrogate: 4-Bromofluorobenzene	2,60		H	2.50	104	60-120	

Stratus Environmental Inc. [Arco] 3330 Cameron Park Dr., Suite 550 Cameron Park CA, 95682 Project: ARCO #0601, San Leandro, CA

Project Number: G0C23-022 Project Manager: Jay Johnson MPL0020 Reported: 02/23/07 15:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (6L08028-MS1)	Source: MP	L0188-01		Prepared:	12/08/06	Analyzed:	12/09/06			
tert-Amyl methyl ether	12.8	0.50	ug/l	10.0	ND	128	65-135			
Benzene	10.5	0.50	"	10.0	ND	105	70-125			
tert-Butyl alcohol	211	20	U	200	ND	106	60-135			
Di-isopropyl ether	11.7	0.50	u	10.0	ND	117	70-130			
Ethanol	231	300	ø	200	ND	116	15-150			
Ethyl tert-butyl ether	8,11	0.50	ŧı	10.0	ND	118	65-130			
Ethylbenzene	9.67	0.50	11	10.0	ND	97	70-130			
Methyl tert-butyl ether	13.0	0.50	н	10.0	ND	130	50-140			
l'oluene l'alle	9.97	0.50	Д	10.0	ND	100	70-120			
Xylenes (total)	29,6	0.50	И	30.0	ND	99	80-125			
Surrogate: Dibromofluoromethane	2.94		"	2.50		118	75-130			
Surrogate: 1,2-Dichloroethane-d4	3,12		"	2.50		125	60-145			
Surrogate: Toluene-d8	2.65		"	2.50		106	70-130			
Surrogate: 4-Bromofluorobenzene	2.70		H	2.50		108	60-120			
Matrix Spike Dup (6L08028-MSD1)	Source: MP	L0188-01		Prepared:	12/08/06	Analyzed:	12/09/06			
ert-Amyl methyl ether	10.4	0.50	ug/l	10.0	ND	104	65-135	21	25	
Benzene	9.44	0,50	11	10.0	ND	94	70-125	11	15	
ert-Butyl alcohol	193	20	11	200	ND	96	60-135	9	35	
Di-isopropyl ether	10.3	0.50	н	10.0	ND	103	70-130	13	35	
Ethanol	261	300	II	200	ND	130	15-150	12	35	
Ethyl tert-butyl ether	10.5	0.50	H	10.0	ND	105	65-130	12	35	
Ethylbenzene	8.79	0.50	r	10.0	ND	88	70-130	10	15	
Methyl tert-butyl ether	11.1	0.50	O	10.0	ND	111	50-140	16	25	
Toluene	9,19	0.50	II .	0.01	ND	92	70-120	8	15	
Xylenes (total)	27.1	0.50	*1	30.0	ND	90	80-125	9	15	
Surrogate: Dibromofluoromethane	2.67		n	2.50		107	75-130			
Surrogate: 1,2-Dichloroethane-d4	3.10		"	2.50		124	60-145			
Surrogate: Toluene-d8	2.57		"	2.50		103	70-130			
Surrogate: 4-Bromofluorobenzene	2,66		**	2.50		106	60-120			

Stratus Environmental Inc. [Arco]	Project:	ARCO #0601, San Leandro, CA	MPL0020
3330 Cameron Park Dr., Suite 550	Project Number:	G0C23-022	Reported:
Cameron Park CA, 95682	Project Manager:	Jay Johnson	02/23/07 15:03

Notes and Definitions

SG	A silica gel cleanup procedure was performed.
IC	Calib. verif. is within method limits but outside contract limits
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
BU	Sample analyzed after holding time expired
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Lisa Race

From:

Scott Bittinger [sbittinger@stratusinc.net]

Sent:

Friday, February 02, 2007 10:08 AM

To:

Lisa Race

Subject: ARCO Station 601 sample issues

Please proceed with the silica gel clean-up procedure and re-run of these samples.

Scott Bittinger

Revised

MPLOUSE

MPLOOLO

-----Original Message---

From: Rob Miller [mailto:rhmiller@broadbentinc.com]

Sent: Friday, February 02, 2007 9:03 AM

To: Tom Venus; jjohnson@stratusinc.net; 'Supple, Paul V'

Cc: 'Scott Bittinger'

Subject: Re: Request for Test America re: BP 601

In speaking with Paul about re-running this analysis following silica gel cleanup, he would like us to move forward. Tom is on vacation starting today, so I'm not sure if he already requested Stratus to provide Test America with this go-ahead direction. If so, great. If not, Jay or Scott, could you provide authorization to Lisa to move forward with the rerun?

Many thanks,

Rob

---- Original Message ----

From: Tom Venus

To: jjohnson@stratusinc.net; 'Supple, Paul V'; 'Rob Miller'

Cc: Scott Bittinger

Sent: Wednesday, January 31, 2007 4:44 PM Subject: RE: Request for Test America re: BP 601

I spoke with Lisa Race at Test America about the chromatograms. The sharp distinct peak at 19.6 minutes is the Test Surrogate (It is intentionally introduced in the lab - It was not within the sample). Lisa also said that it was highly unlikely that the peaks were those of solvents, which would have been expected to appear much sooner after the methylene chloride solvent carrier flush around the first minute of run time. The peak at 17.8 minutes in water sample 20-01 appears around the average expected time for motor oil. Test America could rerun the sample extracts following silica gel cleanup, but that request would have to come from Stratus.

Tom Venus, PE Senior Engineer Broadbent & Associates, Inc. 1324 Mangrove Ave., Ste. 212 Chico, California 95926 (530) 566-1400 phone (530) 566-1401 fax (530) 588-5887 mobile tvenus@broadbentinc.com

From: Lisa Race [mailto:lrace@testamericainc.com] Sent: Wednesday, January 31, 2007 3:19 PM

To: Tom Venus; Scott Bittinger

Cc: jjohnson@stratusinc.net; Supple, Paul V; Rob Miller Subject: RE: Request for Test America re: BP 601

Please find attached the chromatograms for the requested samples. We still have the extracts if you would like to have the Silica Gel cleanup done on them. That may clean up some of the peaks. We have identified the peaks to the best of our abilities using this method on the attached chromatograms.

Lisa Race Senior Project Manager, Morgan Hill, CA TestAmerica Analytical Testing Corporation

Tel.: 408-776-9600 Direct.: 408-782-8156 Fax: 408-782-6308

e-mail: <u>lrace@testamericainc.com</u> NOTE NEW E-MAIL ADDRESS

This transmission contains information that may be legally confidential. The information is intended solely for the individual or entity named above and access by anyone else is unauthorized. If you are not the intended recipient, any disclosure, copying, distribution, or use of the contents of this information is prohibited and may be unlawful. If you have received this transmission in error, please reply immediately to the sender that you have received the message in error. Because access to receiving equipment is not under our control, we cannot be responsible for the confidentiality of electronically transmitted data.

From: Tom Venus [mailto:tvenus@broadbentinc.com]

Sent: Monday, January 29, 2007 4:10 PM

To: 'Scott Bittinger'

Cc: jjohnson@stratusinc.net; 'Supple, Paul V'; Lisa Race; 'Rob Miller'

Subject: Request for Test America re: BP 601

Scott,

Paul Supple asked me to ask Test America if they could tentatively identify the compound(s) that were detected in the DRO analyses during the deep boring investigation at BP 601 (1.8 and 1.2 mg/kg in soil samples B1-15 and B1-47; and 310 µg/L in water sample B1-58)

I contacted Test America, who informed me that the request must come from Stratus. Therefore, would you please ask Test America if they can clarify how the pattern differed from the DRO standard, or perhaps even tentatively identify the compound in the samples listed below? If they can not tentatively identify the compounds from the previous analyses, would you ask them if they have any of the samples left to re-analyze, following silica-gel extraction?

<u>Test America Report/Order No. MPL0018</u> Soil Sample B1-15 (MPL0018-01) Soil Sample B1-47 (MPL0018-05

<u>Test America Report/Order No. MPL0020</u> Water Sample B1-58 (MPL0020-01)

Probably the easiest for you would be to forward this email to Lisa Race at Irace@testamericainc.com

Any questions, please call me at your earliest convenience. With regards,

Tom Venus, PE Senior Engineer Broadbent & Associates, Inc. 1324 Mangrove Ave., Ste. 212 Chico, California 95926 (530) 566-1400 phone (530) 566-1401 fax (530) 588-5887 mobile tvenus@broadbentinc.com

Page_	1		oí	-		1		
			_		-		-	

Atlantic Richfield Company

Chain of Custody Record
Project Name: Arco Station 601 - Assessment
BP BU/AR Region/Enfos Segment: BP (America) West Cost / Retil Alanda/
State or Lead Regulatory Agency: Alarmy County Env. Health 60
Requested Due Date (mm/dd/yy): 5th, 1/41.

	·	
On-site Time:	Тетр:	
Off-site Time:	Temp:	
Sky Conditions:		
Meteorological Events:	•	
Wind Speed:	Direction:	

Lab Name:	Test America						BP/AR Facility No).: (,	ωI										Cons	sulta	nt/Co	ontra	ctor:		<u>קלייטיסרן</u>	FIL	161 1	untu,	chil.
Address: <	885 Tarvis Dr.						BP/AR Facility Ac	dress	: 7	121	PW	dlin	<u>ß1</u>	w.,	5,	n b	and1	0	Add	ress:	5	<u>55i</u>)	Cam	ewn P	<u>~jK</u>	Dr	<u>#550</u>	
7	Morgan Hill, CA	15037					Site Lat/Long:					-					<u></u>								aik, G		<u>568</u>	<u> </u>	
Lab PM:	Lisa Race	• /					California Global I	ID No)] ندد) ₆ 0) (O	y) ot)			-									ct No.: E				
Tele/Fax:	408-782-8156				······································		Enfos Project No.:	6	00	23	3-0	77							Cons	sulta					J. JO				
		***************************************					Provision of OOC				,								Tele	/Fax	:	530)-[5]	16-6	000 /	<u>67b-</u>	605		
Address:	VI: PAUL Supple 2010 Cow Caryon	Pl. 44	- 150	-			Phase/WBS: 0 [-				לאעו								Repo	ort T	ype d	ይ QC	Lev	el:	Rvy 1	WIE	EDF		
Address.	San Ramon CA	1 ((+41					Sub Phase/Task: (13_	Δ'n	$d\Lambda$	ial								E-m	ail E	DD T	Γo:							
Tele/Fax:	925-275-350	da					Cost Element: /												lnvo	ice t	o: C	onsu	Itant	or Bl	P or Atlan	tic Ric	hlield (о Дсігс	le one)
Lab Bottle		70		┰	Matr	ix						crvat	ive				Ţ	lequ	estec	d An	alysi	5							·N
Item No.	Sample Description	Time	Date	Soil/Solid		Aır	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO,	HCI	Methanol		6ko	TPHD	TPH-MO.	352	50m's	eton.					Sa		Point-L Comme	nt/Long ents	
1 (2)	-580	11230	1130		1		6/	4				T						/	V	V	<u> </u>				291	nhi	bolk	נוחט נש	nsewed ved
	700	1						1														1			600	aa 1	+CL	DN523	ved
2		-	╢	+		-	l	╫┈	\parallel	1	1	1												T			•		
3		ļ	╂	╂╾╉	_			╢	╢┈		╁─	-	-							 	\vdash		├─	 	 				
4			<u> </u>		•				ـــــــ	ļ	╄						 			<u> </u>		<u> </u>	ļ	 	 				
5																					<u> </u>	<u> </u>		<u> </u>					
6																													
		╢	1					╢			T								·							•			
7		 		╂				╢─	╢	╁	╁╌	+	-	Н						_		T		T		(10	1000	- \
8		<u> </u>	 	┦	_			╢	╟	┼	╀				ļ	_				 	-	-	-	┼	 	<u>`</u>	70	<i>'</i>	
9	-								<u> </u>		_		<u> </u>		<u> </u>					ļ	ļ		<u> </u>		 				
10	•																				<u> </u>		<u> </u>						
Sampler's	Name: Scott Bitting	h	<u> </u>	<u>-11</u>		'	Relip	quişije	ed By	/ Afi	filiat	ion			Q.	ate	Tir	ne				Acce	pted	By / .	Affiliation			Date	Time
	Company: 5 tradus E	TAVE ON	141244		In (1		SWAR	M	۲,	_					11-	3u	14	:31)			11/30	1430
Shipment 1		*	VIVIOLO ,					 	<i>*</i>	Σ					11/2	Ö	143	12	/		2	4	W	ΪĒ	NG (<u>vut)</u>		12/0	<i><u>@00</u></i>
Shipment 1		ered			*****		/	62																					
	Tracking No:																<u>L</u>										<u>_</u>		<u>l</u>
\	tructions:																												
-		page 14.					~S					- 1-	7	_ /25					7.5	14.	. ``	1	3.77	0 /h / C	TD 0	In Carl	:44	. 37 /3	
_	'ndy Seals In Place/Yes (No)	Tem	ıp Bla	ank: '	Yes/	(No) Cooler	Теп	ıp o	n Red	ceip	t: 4	ľ°ሮ <u>,</u>	·/C		Tı	rip B	lank	: Ye	s / /	40)		M:	5/IVI	SD Samp				
																										UP C	JUC Rev	. 5 10/11/2	UUG

TEST AMERICA SAMPLE RECEIPT LOG

16)	ENT NAME:	BP/ARCO GOT	•:	DATE REC'D AT LAB:	12./01	106			For Regula	itory Purposes?
취 :	C. BY (PRINT)	JULIENG.	••	TIME REC'D AT LAB: -	. 08	00	•		_	WATER YES (NO)
} WΦ!	RKORDER:	· MPL bodo		DATE LOGGED IN:		01-09			WASTE W	
	•			• •		· · · · · · · · · · · · · · · · · · ·	•	•		120,110
CIRC	CLE THE APPRO	OPRIATE RESPONSE	LAB		CONTAINER	PRESER		SAMPLE	DATE	REMARKS:
		••	SAMPLE#	CLIENT ID	DESCRIPTION		pН	MATRIX		CONDITION (ETC.)
1. Cust	tody Seal(s)	Present / Absent	v	B1-58W	2(1) A			W.	11/30	
		Intact / Broken*	J -		6 VOA	the	V.	V	Ŵ	· . ·
	n-of-Custody ·	Present / Absent*								
	ic Reports or									
	ing List:	Present / Absent		•						
4. Airbill	i:	· Airbill / Sticker								/
		Present / Absent				-: - 				
	1#: DIBOID112	742849	·		· .			156		-
6. Samp	ole Labels:	Present / Absent						101/0	- 	
7. Samp	ole IDs:	Listed / Not Listed						101		
	•	on Chain-of-Custody		_			─-}}		<u> </u>	· · · · · ·
8. Samp	le Condition:	Intact / Broken*/				100	$\overline{}$	· · · · · · ·		
	•••	Leaking*								
9. Does	information on	chain-of-custody,			3/9					
traffic	c reports and sa	imple labels	•							
agree		(eg/No*							<u> </u>	
D. Sampl	le received within									<u></u>
hold tir	me?	Ye₃ / No*	•							
1. Adequ	ate sample volur	ne .								
receive	ed?	· Yes / No*		/				 -		
2. Proper	preservatives us	sed? Yes / No*					·	 -		
3. Trip Bl	ank / Temp Blani			. /			 			
	hich, if yes)	Yes / (No*)	·	. /-						
I. Read T	Temp:	3.3°C								
Correct	ted Temp:	4.5°C	· · · · · ·		-			<u> </u>		
į.		2°C? (Ye) / No**		· · · ·			-		١.	
		guiring thermal pres.)	/							
Exception	n (if any): META	LS / DFF ON ICE	//		· ·	·	- 		- 	
	olem COC	<u> </u>								
Amen	likalyon taka Wali mada Ekanadaa	and the property of the property of the state of the stat		ED CONTACT DECISE	e de la company de la company de la company de la company de la company de la company de la company de la comp	ird Calmenterial	Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de	CONTRACTOR DO		

קע 7 (07/19/05) . יחה

Software Version: 4.1<2F12>

Sample Name : MPL0018-01

Sample Number: B1-23

Operator : rv

Time : 12/10/06 09:47 AM

Study : ARCO

Channel: A A/D mV Range: 1000

Instrument : GCHP_05 AutoSampler : HP7673A Rack/Vial : 0/36

Interface Serial # : NONE Data Acquisition Time: 12/8/06 08:43 PM

Delay Time : 0.00 min.

End Time : 29.65 min.

Sampling Rate : 1.2500 pts/sec

Raw Data File : S:\GHP_05\120706\D07A054.RAW Result File : S:\GHP_05\120706\D07A054.RST

Inst Method : S:\GHP_05\MET_SEQ\TPH05A from S:\GHP_05\120706\D07A054.RST

Proc Method : S:\GHP_05\MET_SEQ\TPH05A.mth
Calib Method : S:\GHP_05\MET_SEQ\TPH05A.mth
Sequence File : S:\GHP_05\MET_SEQ\H05_1207.SEQ

Sample Volume : 1.0000 uL Area Reject : 0.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Report stored in ASCII file: S:\GHP_05\120706\D07A054.TX0

Software Version: 4.1<2F12> Time : 12/10/06 09:47 AM Sample Name : MPL0018-05 Study : ARCO Sample Number: B1-47 Operator Instrument : GCHP_05 AutoSampler : HP7673A A/D mV Range : 1000 Channel : A Rack/Vial : 0/40 Data Acquisition Time: 12/8/06 11:11 PM Interface Serial # : NONE Delay Time : 0.00 min. : 29.65 min. End Time Sampling Rate : 1.2500 pts/sec Raw Data File : S:\GHP_05\120706\D07A058.RAW
Result File : S:\GHP_05\120706\D07A058.RST : S:\GHP_05\MET_SEQ\TPH05A from S:\GHP_05\120706\D07A05B.RST Inst Method : S:\GHP_05\MET_SEQ\TPH05A.mth Proc Method Proc Method : S:\GHP_US\MET_SEQ\TPHUSA.mth
Calib Method : S:\GHP_05\MET_SEQ\TPHUSA.mth
Sequence File : S:\GHP_05\MET_SEQ\H05_1207.SEQ : 0.000000 Sample Volume : 1.0000 Sample Amount : 1.0000 Area Reject иL Dilution Factor : 1.00 Ó A 400-United LIFE CYRESPONDED 300 Response [mV] 200 100 ┍┍╒┉╒┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ <u>համավարկային իրականությունների արձականությունների արականությունների արակարիությունների արտակարիությունների և</u> 18 20 22 26 å 14 16 10 12 6 2 Time [min] Rew Amount (ng) Component Name 855244 855244 855244 125244 12204252 1273572 1273572 1273572 1273572 1273573 12736800 12735892 1273589 0.01000 0.01000 0.01783 0.01783 0.02148 0.02148 0.02148 0.02148 0.0216 0 2221111006599439547 444456619994399547 00466128366677709911112833405

Report stored in ASCII file: S:\GHP_05\120706\D07A058.TX0

1956702 61433738 131.2

Software Version: 4.1<2F12>

Sample Name : MPL0020-01 Time : 12/8/06 10:42 AM

Sample Number: B1-J8W Study : ARCO

: rv Operator

: GCHP 05 Channel: B A/D mV Range: 1000 Instrument

AutoSampler : HP7673A Rack/Vial : 0/56

Interface Serial # : NONE Data Acquisition Time: 12/7/06 02:39 PM

: 0.00 min. Delay Time End Time : 29.65 min.

Sampling Rate : 1.2500 pts/sec

Raw Data File : S:\GHP_05\120706\D07B006.RAW
Result File : S:\GHP_05\120706\D07B006.PST Result File : S:\GHP_05\120706\D07B006.RST

Inst Method

: S:\GHP_05\MET_SEQ\TPH05A from S:\GHP_05\120706\D07B006.RST : S:\GHP_05\MET_SEQ\TPH05B.mth : S:\GHP_05\MET_SEQ\TPH05B.mth : S:\GHP_05\MET_SEQ\H05_1207.SEQ Proc Method Calib Method Sequence File

Sample Volume : 1.0000 uLArea Reject : 0.000000

Dilution Factor : 1.00 : 1,0000 Sample Amount

Time [nin]	Component Name	Area [uV·s]	Raw Amount (ng)	501l [mg/kg]	[pg/L]	
Iman 1 4 620 4 620 4 620 6 800 6 800 7 277 9 5 31 10 329 11 382 11 382 11 382 12 4 268 14 667	Name n-C9 to n-C13 Stoddard Solv n-C9 to n-C13 Paint Thinner n-C9 to n-C13 Minoral Spir n-C9 to n-C15 JP-4 n-C9 to n-C15 JP-4 n-C9 to n-C16 JP-6 n-C9 to n-C17 Jet A n-C9 to n-C18 JP-8 n-C9 to n-C18 Koronene n-C9 to n-C18 Hortonene n-C9 to n-C24 TPH-D LUFT DRO n-C10 to n-C23 n-C9 to n-C26 Heating Oil Bit Dirbel C12 to C23 n-C10 to n-C26 BOST TOTAL n-C9 to n-C36 n-C12 to n-C36 Transformer C n-C10 to n-C36 DRO n-C10 to n-C36 DRO n-C10 to n-C40 Tetal n-C13 TO n-C32 BOST	920112 920112 920112 920112 2170177 4402397 5734845 5734845 107164741 10212673 11901046 9758720 12341823 16441662 14450082 145208331 17040971 14638627	0.520 0.520 0.520 2.178 4.402 235.507 5.735 5.735 051.552 053.167 11.902 920.833 988.048 16.442 14.445 1278.388	[mg/kg] 0.010 0.010 0.024 0.049 3.749 3.749 3.749 0.064 9.460 0.132 10.320 10.978 0.183 0.181 14.204 12.623	[MO 13232-1000 3418
16.350 16.889 17.377 18.572 19.722 21.503	n-C12 to n-C38 Fuel Oil #6 n-C15 to n-C34 Mineral Oil n-C16 to n-C34 Transmiss Oil n-C16 to n-C36 Motor Oil n-C16 to n-C40 Hydraulic Oil n-C28 BAC MOTOR OIL C23 to C40 n-24 to n-40 Motor Oil	13232363 13831672 1800159 6676966 6276229	16.207 12.830 12.830 1166.052 147.011 731.779 6.276	0.100 0.154 0.143 12.956 0.154 1.633 0.131 0.070	5.402 4.627 3.86.605 4.605 4.605 49.004 243.526 2.092	`?'
		24+08	9740,728			

Report stored in ASCII file: S:\GHP_05\120706\D07B006.TX0

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATIONS

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

TestAmerica Inc.-Morgan Hill **ORGANIZATION NAME:**

USER NAME: LRACE

2/23/2007 3:00:45 PM DATE CHECKED: NOT SELECTED GLOBAL ID:

ARCO#0601-edf_rev_#2-**FILE UPLOADED:**

MPL0018.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Because you have not chosen a facility, field point names have not been checked.

Logged in as LRACE (LABORATORY)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

ORGANIZATION NAME: TestAmerica Inc.-Morgan Hill

USER NAME: LRACE

DATE CHECKED: 2/23/2007 3:07:17 PM
GLOBAL ID: NOT SELECTED
ARCO#0601-rev_edf-

MPL0020.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Because you have not chosen a facility, field point names have not been checked.

Logged in as LRACE (LABORATORY)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6309287369

Date/Time of Submittal: 3/22/2007 10:26:29 AM

Facility Global ID: T0600100108

Facility Name: ARCO #0601

Submittal Title: 1106 Soil Sample

Submittal Type: Miscellaneous Sample Results

PENDING REVIEW

Click here to view the detections report for this upload.

ARCO #0601 Regional Board - Case #: 01-0116 SAN FRANCISCO BAY RWOCB (REGION 2) - (CM) 712 LEWELLING SAN LEANDRO, CA 94579 Local Agency (lead agency) - Case #: RO0000309 ALAMEDA COUNTY LOP - (SP) TITLE CONF# QUARTER 6309287369 1106 Soil Sample Q4 2006 SUBMITTED BY SUBMIT DATE **STATUS**

SAMPLE DETECTIONS REPORT

Broadbent & Associates, Inc.

SAMPLE DETECTIONS REPORT	
# FIELD POINTS SAMPLED	6
# FIELD POINTS WITH DETECTIONS	2
# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL	0
SAMPLE MATRIX TYPES	SOIL

3/22/2007

METHOD OA/OC REPORT

METHODS USED	8260FA,8260TPH,SW8015B
TESTED FOR REQUIRED ANALYTES?	Υ
LAB NOTE DATA QUALIFIERS	Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS	6
METHOD HOLDING TIME VIOLATIONS	б
LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0
LAB BLANK DETECTIONS	0
DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?	
- LAB METHOD BLANK	Υ
- MATRIX SPIKE	N
- MATRIX SPIKE DUPLICATE	N
- BLANK SPIKE	Υ
- SURROGATE SPIKE - NON-STANDARD SURROGATE USED	Υ
MATER CAMPLES COR 0024/0260 SERIES	

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%	n/a
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%	n/a
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%	n/a

SOIL SAMPLES FOR 8021/8260 SERIES MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% Y MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% Υ SURROGATE SPIKES % RECOVERY BETWEEN 70-125% N BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% n/a FIELD QC SAMPLES <u>SAMPLE</u> COLLECTED DETECTIONS > REPDL **QCTB SAMPLES** N 0 **QCEB SAMPLES** Ν 0 QCAB SAMPLES Ν 0

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 7352264344

Date/Time of Submittal: 3/22/2007 10:17:02 AM

Facility Global ID: T0600100108
Facility Name: ARCO #0601

Submittal Title: 1106 Water Sample

Submittal Type: Miscellaneous Sample Results

Click here to view the detections report for this upload.

ARCO #0601 Regional Board - Case #: 01-0116 712 LEWELLING SAN FRANCISCO BAY RWQCB (REGION 2) - (CM) SAN LEANDRO, CA 94579 Local Agency (lead agency) - Case #: RO0000309 ALAMEDA COUNTY LOP - (SP) CONF# TITLE QUARTER 7352264344 1106 Water Sample Q4 2006 SUBMITTED BY SUBMIT DATE **STATUS** Broadbent & Associates, Inc. 3/22/2007 PENDING REVIEW SAMPLE DETECTIONS REPORT # FIELD POINTS SAMPLED 1 # FIELD POINTS WITH DETECTIONS 1 # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 1 SAMPLE MATRIX TYPES WATER METHOD QA/QC REPORT METHODS USED 8260FA,8260TPH,SW8015B TESTED FOR REQUIRED ANALYTES? MISSING PARAMETERS NOT TESTED: - SW8015B REQUIRES DCA12 TO BE TESTED - SW8015B REQUIRES EDB TO BE TESTED LAB NOTE DATA QUALIFIERS Υ QA/QC FOR 8021/8260 SERIES SAMPLES TECHNICAL HOLDING TIME VIOLATIONS 3 METHOD HOLDING TIME VIOLATIONS 3 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 LAB BLANK DETECTIONS 0 DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE N - MATRIX SPIKE DUPLICATE N - BLANK SPIKE Υ SURROGATE SPIKE - NON-STANDARD SURROGATE USED WATER SAMPLES FOR 8021/8260 SERIES MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%

SURROGATE SPIKES % RE	COVERY BETWEEN 85-115%		N
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY BET	VEEN 70-130%	Υ
SOIL SAMPLES FOR	8021/8260 SERIES		
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) % RECOVERY	3ETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) RPD LESS THA	N 30%	n/a
SUPPOCATE SPIKES % DE	COVERY BETWEEN 70-125%		n/a
SOUGGALE SELVES 10 KE	COAFILL DELMERIA AG-15349		11/4
	KE DUPLICATES % RECOVERY BETV	VEEN 70-130%	n/a
		VEEN 70-130% DETECTIONS :	n/a
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES	KE DUPLICATES % RECOVERY BETV		n/a
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES SAMPLE	KE DUPLICATES % RECOVERY BETV		n/a

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.