

3315 Almaden Expressway, Suite 34 San Jose, CA 95118 Phone: (408) 264-7723

FAX: (408) 264-2435

TRANSMITTAL

TO: Mr. Scott Seery
Alameda County Health Care Services
80 Swan Way, Room 200
Oakland, California 94621

DATE: March 3, 1993 PROJECT NUMBER: 69034.10 SUBJECT: ARCO Station 601,

712 Lewelling Blvd., San Leandro,

California.

FROM: Erin McLucas TITLE: Staff Geologist

WE ARE SENDING YOU:

COPIES	DATED	NO.	DESCRIPTION
1	3/3/93	69034.10	Final - Subsurface Investigation at the above subject site.

THESE ARE TRANSMITTED as checked below:

[] For review and comment	[] Approved as submitted	[] Resubmit copies for approval
[X] As requested	[] Approved as noted	[] Submit copies for distribution
[] For approval	[] Return for corrections	[] Return corrected prints
[] For your files		

REMARKS: cc: Mr. Michael Whelan, ARCO Products Company

Mr. H.C. Winsor, ARCO Products Company

Mr. John Jang, RWQCB, San Francisco Bay Region

Mr. Joel Coffman, RESNA Industries Inc.

Copies: 1 to RESNA project file no. 69034.10

BARCLAY

3315 Almaden Expressway, Suite 34 San Jose, CA 95118 Phone: (408) 264-7723 FAX: (408) 264-2435

ADDITIONAL SUBSURFACE INVESTIGATION

at

B.20 78.22

ARCO Station 601 712 Lewelling Boulevard San Leandro, California

69034.10

Report prepared for

ARCO Products Company P.O. Box 5811 San Mateo, California 94402

by RESNA Industries Inc.

Erin McLucas Staff Geologist

Joel Coffman Project Geologist

Diane M. Barclay
Certified Engineering
Geologist No. 1366

March 3, 1993

CONTENTS

INTRODUCT	ION								
	PTION AND BACKGROUND 2								
General	1								
Geology	Geology and Hydrogeology								
	NVIRONMENTAL WORK 3								
FIELD WORK	3								
Drilling									
Soil Sar	npling and Description 4								
Monito	ring Well Construction and Development								
Surveyi	ng								
EVALUATIO	ng								
LABORATOR	RY METHODS 6								
Soil Sar	nples $\underline{6}$								
RESULTS OF	LABORATORY ANALYSES								
Soil Sar	nples 7								
	water Samples 8								
	led Soil Cuttings								
	NS 9								
	ON 10								
	S 10								
REFERENCE	S 11								
	PLATES								
	FLAILS								
PLATE 1:	SITE VICINITY MAP								
PLATE 2:	GENERALIZED SITE PLAN								
PLATE 3:	UNIFIED SOIL CLASSIFICATION SYSTEM AND SYMBOL KEY								
PLATES 4									
through 10: LOGS OF BORINGS/MONITORING WELLS									
PLATE 11:	·								
PLATE 12:	GROUNDWATER ELEVATION MAP, OCTOBER 28, 1992								
PLATE 13:	TE 13: GROUNDWATER ELEVATION MAP, NOVEMBER 16, 1992								
PLATE 14:	GROUNDWATER ELEVATION MAP, DECEMBER 16, 1992								
PLATE 15:	TPHg CONCENTRATIONS IN GROUNDWATER, NOVEMBER 16, 1992								
PLATE 16:	BENZENE CONCENTRATIONS IN GROUNDWATER, DECEMBER								
	16, 1992								

CONTENTS (Continued)

TABLES

TABLE 1: CUMULATIVE GROUNDWATER MONITORING DATA

TABLE 2: CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL

SAMPLES

TABLE 3: CUMULATIVE RESULTS OF LABORATORY ANALYSES OF

GROUNDWATER SAMPLES

APPENDICES

APPENDIX A: PREVIOUS ENVIRONMENTAL WORK

APPENDIX B: WELL PERMITS APPENDIX C: FIELD PROTOCOL APPENDIX D: WELLHEAD SURVEY

APPENDIX E: CHAIN OF CUSTODY RECORDS AND LABORATORY

ANALYTICAL REPORTS OF SOIL SAMPLES

3315 Almaden Expressway, Suite 34 San Jose, CA 95118 Phone: (408) 264-7723

FAX: (408) 264-2435

ADDITIONAL SUBSURFACE INVESTIGATION

at ARCO Station 601 712 Lewelling Boulevard San Leandro, California

For ARCO Products Company

INTRODUCTION

At the request of ARCO Products Company (ARCO), RESNA Industries Inc. (RESNA) performed an additional subsurface investigation at ARCO Station 601, located at 712 Lewelling Boulevard in San Leandro, California. The objectives of this investigation were to evaluate further the presence of gasoline hydrocarbons in the soil and first-encountered groundwater beneath the site and offsite to the east and southeast, and to evaluate the extent of lead in the soil and first-encountered groundwater in the vicinity of the former underground waste-oil tank. The further investigation pertaining to the former waste-oil tank was conducted at the request of Mr. Scott Seery of the Alameda County Health Care Services Agency (ACHCSA) in his letter dated July 30, 1992.

Work performed for this investigation included drilling five onsite soil borings (B-16 and B-17, and B-20 through B-22); constructing two 4-inch diameter groundwater monitoring wells (MW-11 and MW-12) in borings B-16 and B-17, respectively; drilling two offsite soil borings (B-18 and B-19); sampling the soil; constructing two 2-inch diameter groundwater monitoring wells (MW-13 and MW-14) in borings B-18 and B-19, respectively; developing the wells; surveying the monitoring wells; submitting selected soil samples collected from the borings and soil stockpile for laboratory analyses; and preparing this report which summarizes previous work performed at the site, field procedures used during this investigation, the results of laboratory analyses, interpretation of data, and conclusions. Field work at the site was conducted in accordance with Addendum Five to Work Plan (RESNA, September 14, 1992), RESNA's Site Safety Plan (RESNA, May 29, 1992), and

March 3, 1993 69034.10

RESNA's letter of response to Mr. Scott Seery of the ACHCSA (RESNA, September 11, 1992).

SITE DESCRIPTION AND BACKGROUND

<u>General</u>

ARCO Station 601 is located on the southwestern corner of the intersection of Lewelling Boulevard and Washington Avenue in San Leandro, California, as shown on the Site Vicinity Map, Plate 1. The site is an operating ARCO service station and is bounded by residential and professional buildings to the west-southwest and south, commercial buildings across Washington Avenue to the east and northeast, and an operating automotive repair station across Lewelling Boulevard to the north-northwest. The site is on a relatively flat, asphalt- and concrete-covered lot at an elevation of approximately 22 feet above mean sea level (msl).

Four 10,000-gallon gasoline underground storage tanks (USTs) are present at the site. These tanks replaced four former gasoline USTs (two 6,000-gallon tanks and two 4000-gallon tanks), which were installed in 1974 (GeoStrategies, June 29, 1990). The former gasoline USTs, associated piping and one 280-gallon waste-oil UST were excavated and removed from the site by Gettler-Ryan Inc. of Hayward, California during January 1990. The approximate locations of existing underground storage tanks, former tanks, and other pertinent site features are shown on the Generalized Site Plan (Plate 2).

Geology and Hydrogeology

The ARCO station is within the East Bay Plain, located in the west-central portion of the San Leandro Cone (Hickenbottom and Muir, 1988). Helley <u>et.al.</u> (1979) mapped the earth materials underlying the site area as Quaternary bay mud deposits composed primarily of dark plastic clay and silty clay rich in organic material. The site is located approximately 700 feet north of the San Lorenzo Creek (which has been channelized in a concrete aqueduct in this area), approximately 1,400 feet east of the Estudillo Canal, and

March 3, 1993 69034.10

approximately 1-3/4 miles northeast of Roberts Landing on the eastern shoreline of the San Francisco Bay. The active Hayward Fault is approximately 2½ miles east of the site.

The direction of groundwater flow in the vicinity of the site appears to be to the southwest based on regional and local topography and drainage patterns, and based on previous site investigations. Groundwater was encountered during previous drilling activities in June 1990 (RESNA, December 14, 1990) and May 1991 (RESNA, October 17, 1991) at depths of approximately 7½ to 11½ feet.

PREVIOUS ENVIRONMENTAL WORK

A summary of previous environmental work at the site is in included in Appendix A.

FIELD WORK

Drilling

Prior to drilling wells MW-11 through MW-14, permits for monitoring well construction were obtained from the Alameda County Flood Control and Water Conservation District, Zone 7 (ACFCWCD). Prior to drilling offsite well MW-13, an encroachment permit was obtained from the city of San Leandro, and prior to drilling well MW-14, written permission was granted by the property owner, Dr. Sherrill. Though access has been requested to install proposed offsite monitoring wells MW-9 and MW-10 at the Chateau Manor Apartments, located at 724 Lewelling Boulevard, these wells have not yet been constructed because access has not been granted by Mr. John Sullivan, owner of the property. Copies of the permits are included in Appendix B. A description of the field methods used is included in Appendix C, Field Protocol.

On October 12, 1992, two onsite soil borings (B-16 and B-17) were drilled and completed as groundwater monitoring wells (MW-11 and MW-12, respectively). The borings/wells

March 3, 1993 69034.10

were located along the eastern margin of the site to evaluate further the lateral and vertical extent of gasoline hydrocarbon-impacted soil and groundwater beneath the subject site. Three onsite soil borings (B-20 through B-22) were drilled near the former waste-oil UST to evaluate further the extent of lead impact to the soil.

comens ettins

On August 7, 1992, one offsite soil boring (B-19) was drilled southeast of the subject site and completed as groundwater monitoring well MW-14. On November 9, 1992, one offsite soil boring (B-18) was drilled across Washington Avenue east of the subject site, and completed as groundwater monitoring well MW-13. Both offsite borings/wells were drilled and installed to evaluate further the presence of gasoline hydrocarbons in the soil and first-encountered groundwater near the subject site.

Soil Sampling and Description

Soil samples were described in accordance with the Unified Soil Classification System (USCS) as shown on Plate 3, and collected at the depths indicated on the Logs of Borings B-16 through B-22 (Plates 4 through 10). Thirty-five samples were collected for description and possible laboratory analyses at intervals of 5 feet or less from the ground surface to the total depth of the borings. A summary of the sampling methods used is presented in Appendix C. Field monitoring of organic vapor concentrations in soil samples was performed using an organic vapor meter (OVM) for order of magnitude field readings only.

The earth materials encountered during this investigation consisted primarily of clayey silt to silty clay, and clayey sand to sand. Graphic interpretations of the soil stratigraphy encountered in the borings are shown on Geologic Cross Sections A-A' through C-C' (Plate 11). The locations of these cross sections are shown on Plate 2.

Five lithologic units were encountered at the site. Beneath the asphalt was baserock and fill material consisting of about 2 feet of sandy gravel. Underlying the baserock was a silty clay to clayey silt unit approximately 4 to 8 feet thick. This silty clay to clayey silt was underlain by a water-bearing unit consisting of interbedded sand to silty clay strata between about 6 and 10 feet deep. This water-bearing unit was underlain by a silty clay perching layer, the bottom of which was not encountered except at about 17 feet deep in boring B-10.

March 3, 1993 69034.10

Clayey sand was encountered from 17 feet to the bottom of B-10 (the deepest boring at the site). The water table appears to be unconfined due to the absence of an upper confining layer and the apparent drop of initial water levels measured in most of the completed wells.

Soil cuttings generated from the borings were temporarily stored along the western boundary of the site and placed on and covered with visqueen pending proper disposal. Following completion of drilling on August 7, October 12, and November 9, 1992, four soil samples were collected from each stockpile for compositing and laboratory analyses. Field methods used to collect these samples are described in Appendix C.

Monitoring Well Construction and Development

Four-inch diameter groundwater monitoring wells MW-11 and MW-12 were constructed in onsite borings B-16 and B-17, respectively, and 2-inch diameter groundwater monitoring wells MW-13 and MW-14 were constructed in offsite borings B-18 and B-19, respectively. The monitoring wells were constructed as summarized in Appendix C. The wells were completed with schedule 40 polyvinyl chloride (PVC) casing, and the screened interval consisted of 0.020-inch machine slotted PVC. The screened portions of the wells were set from depths of approximately 7 to 13½ feet.

Wells MW-11 and MW-12 were developed on October 21, well MW-14 on August 10, and well MW-13 on November 13, 1992, to remove fine-grained sediments and to allow better communication between the water-bearing zone and the groundwater monitoring well. Development was performed by a RESNA Technician as described in Appendix C.

Surveying

On November 11, 1992, the wellheads of groundwater monitoring wells MW-11 through MW-14 were surveyed for top-of-casing (TOC) elevations to a local City of San Leandro Datum benchmark by John E. Koch, Licensed Land Surveyor, of Oakland, California. The results of this wellhead survey are included in Appendix D, Wellhead Survey.

March 3, 1993 69034,10

EVALUATION OF GROUNDWATER GRADIENT

Measuring depth-to-water (DTW) in the monitoring wells, and evaluating the groundwater gradient, were accomplished during previous quarterly groundwater monitoring. Cumulative DTW measurements, wellhead elevations, and groundwater elevations are presented in Table 1, Cumulative Groundwater Monitoring Data. The Groundwater Gradient Maps for the three most recent DTW measurements are reproduced from the fourth quarter 1992 monitoring report on Plates 12 through 14 (RESNA, March 1, 1993). The groundwater gradient interpreted from these data ranged from nearly flat to 0.016, and the groundwater flow direction ranged from the west-northwest to south. The gradient estimates and flow directions are roughly consistent with previously interpreted gradients. The relatively low slope and shallow depth of the groundwater surface make it more susceptible to change by infiltration, seasonal variation, or local subsurface activities.

LABORATORY METHODS

Soil Samples

Twelve soil samples collected from borings B-16 through B-19 were analyzed by Sequoia Analytical of Redwood City, California (Hazardous Waste Testing Laboratory Certification # 1210) for TPHg and BTEX using Environmental Protection Agency (EPA) methods 5030/8015/8020. Nine samples collected from borings B-20 through B-22 were analyzed for TPHg and BTEX using EPA Methods 5030/8015/8020, total extractable petroleum hydrocarbons using EPA Methods 3550/8015, total oil and grease (TOG) using Standard Method 5520 E&F, Volatile Organic Compounds (VOCs) using EPA Method 8240, Semi-Volatile Organic Compounds (BNAs) using EPA Method 8270, and Total Metals (Cadmium [Cd], Chromium [Cr], Lead [Pb], Zinc [Zn], and Nickel [Ni]) using EPA method 6010. One sample from a depth of 9 feet in boring B-17, located crossgradient from the former waste-oil UST, was analyzed to gain information concerning background lead content of the soil at this site. Lead analysis was performed using EPA method 6010.

March 3, 1993 69034.10

Soil samples from the borings were selected for laboratory analyses based on:

- O Location above first-encountered groundwater;
- O Location in a potential confining or perching layer; and
- O Areas where the presence of gasoline hydrocarbons was suspected.

At the request of ARCO's contractor, Dillard Trucking, Inc. of Byron, California, the samples collected from the August 7, 1992, soil stockpile were composited and analyzed by Sequoia Analytical for TPHg and BTEX using EPA Methods 5030/8015/8020. At the request of the landfill where the soil was disposed, the samples collected from the October 12, and November 9, 1992 soil stockpiles were composited and analyzed by Sequoia Analytical for TPHg and BTEX using EPA Methods 5030/8015/8020, Metals by Total Threshold Limit Concentration (TCLP), Lead by Soluble Threshold Limit Concentration (STLC), and Corrosivity, Ignitability and Reactivity (RCI).

RESULTS OF LABORATORY ANALYSES

Soil Samples

Laboratory analytical results for the twenty one soil samples collected from borings B-18 through B-22 are summarized in Table 2, Cumulative Results of Laboratory Analyses of Soil Samples. Chain of Custody Records and Laboratory Analytical Reports of Soil Samples are included in Appendix E of this report.

Laboratory analytical results of soil samples collected from offsite borings B-18 and B-19 indicated nondetectable TPHg (less than 1 ppm) and BTEX (less than 0.0050 ppm). Laboratory analytical results from onsite boring B-17 indicated nondetectable TPHg and BTEX at depths analyzed, and nondetectable lead in the one sample analyzed for lead at a depth of 9 feet. Laboratory analytical results of soil samples collected from onsite boring B-16 indicated nondetectable TPHg and BTEX except for the sample collected at 8 feet,

March 3, 1993 69034.10

just above groundwater. Results of laboratory testing of this sample indicated a concentration of 87 ppm TPHg, and concentrations of BTEX ranging from nondetectable to 37 ppm.

Laboratory analytical results from borings B-20 through B-22 indicated the greatest hydrocarbon concentrations to be at a depth of approximately 7½ feet in these three borings. Concentrations of TPHg in samples from this depth ranged from 30 to 760 ppm; BTEX from nondetectable to 43 ppm; COG from 82 to 1,200 ppm; lead from 5.4 ppm to 240 ppm; and BNAs from 120 ppm to 7,100 ppm. Samples collected from borings B-20 through B-22 at depths of approximately 4½ and 16½ feet had results which indicated lower concentrations of TPHg, BTEX, TOG, and metals, and nondetectable BNAs.

Groundwater Samples

Groundwater sampling and laboratory analyses were accomplished during previous quarterly groundwater monitoring. Groundwater analyses performed to evaluate the extent of waste-oil constituents in the groundwater were performed on monitoring well MW-8, located downgradient of the former waste-oil UST, rather than on well MW-1 located next to the former waste-oil UST due to floating product in well MW-1 (RESNA, September 11, 1992). Cumulative results of laboratory analyses of ground water samples are presented in Table 3. Maps depicting concentrations of TPHg and benzene in groundwater are reproduced here as Plates 15 and 16.

Stockpiled Soil Cuttings

Results of laboratory analyses of the composited soil samples from the August 7, 1992 stockpile indicated nondetectable TPHg (less than 1.0 ppm) and BTEX (less than 0.005 ppm). This soil stockpile was removed by ARCO's contractor, Dillard Trucking of Byron, California, on August 25, 1992. Results of analyses of composite soil samples from the October 12, 1992 stockpile indicated concentrations of 33 ppm TPHg and 0.28 to 1.6 ppm BTEX; concentrations of metals by TCLP and lead by STLC below regulatory levels; and a pH of 8.2 and a flashpoint of >100 degrees C. This soil stockpile was disposed of by Dillard Trucking on October 28, 1992. Laboratory analytical results of the November 9,

March 3, 1993 69034.10

1992 stockpile indicated nondetectable TPHg and BTEX; concentrations of metals by TCLP and lead by STLC below regulatory levels; and a pH of 7.8 and a flashpoint of >100 degrees C. This stockpile was disposed of by Dillard Trucking on December 8, 1992. The results of stockpiled soil analyses are included in Table 2, Cumulative Results of Laboratory Analyses of Soil Samples.

CONCLUSIONS

RESNA concludes the following, based on the results of this and previous subsurface investigations:

- Sources of gasoline hydrocarbons at the site appear to be the former gasoline and waste-oil USTs, and possibly, to a lesser degree, the western former product lines. In addition, the shallow groundwater and variable groundwater flow direction, the presence of product in well MW-3 near the southwestern site boundary, and the presence of known fuel leak sites nearby indicate the possibility of at least one offsite source of gasoline hydrocarbons.
- Gasoline hydrocarbons in the soil beneath the site appear to have been delineated to 100 ppm except southwest of the former gasoline USTs, and near boring B-8 at the southwestern property boundary. The soil appears to be vertically delineated to less than 100 ppm at a depth of about 15 feet beneath the site, based on analytical data from samples collected in the silty clay perching layer.
- O Waste-oil hydrocarbons in the vadose zone soils and the aquitard underlying the water-bearing zone appear to be delineated laterally and vertically to 100 ppm, with the possible exception of directly east of the former waste-oil tank.
- O VOCs (except BTEX) and BNAs (except relatively low levels of 2-methylnapthalene, napthalene, and phenanthrene in the capillary fringe zone) related to the former waste-oil UST appear to be vertically delineated to below detection limits. Metals related to the former waste-oil UST appear to be delineated to below Total Threshold Limit Concentrations (TTLCs). The greatest

March 3, 1993 69034.10

concentrations of metals appear to be mainly in the capillary fringe zone immediately above groundwater.

- O Lead in the soil appears to be delineated to approximately 6 ppm in the vadose zone soils and the aquitard underlying the water-bearing zone except in the capillary fringe zone.
- O Groundwater impacted by gasoline hydrocarbons at the site appears to be delineated northeast and southeast of the site.
- The detection of relatively low amounts of TOG (1,200 ppb) in a single groundwater sample collected from well MW-8 near the southwestern site boundary is inconclusive.

DISTRIBUTION

We recommend that copies of this report be forwarded to:

Mr. John Jang
Regional Water Quality Control Board
San Francisco Bay Region
2101 Webster Street, Suite 500
Oakland, California 94612

Mr. Scott Seery

Alameda County Health Care Services Agency
Department of Environmental Health
Division of Hazardous Materials
80 Swan Way, Room 200
Oakland, California 94621

Mr. Mike Bakaldin
City of San Leandro Fire Department
Hazardous Materials Division
835 East 14th Street
San Leandro, California 94577

March 3, 1993 69034.10

LIMITATIONS

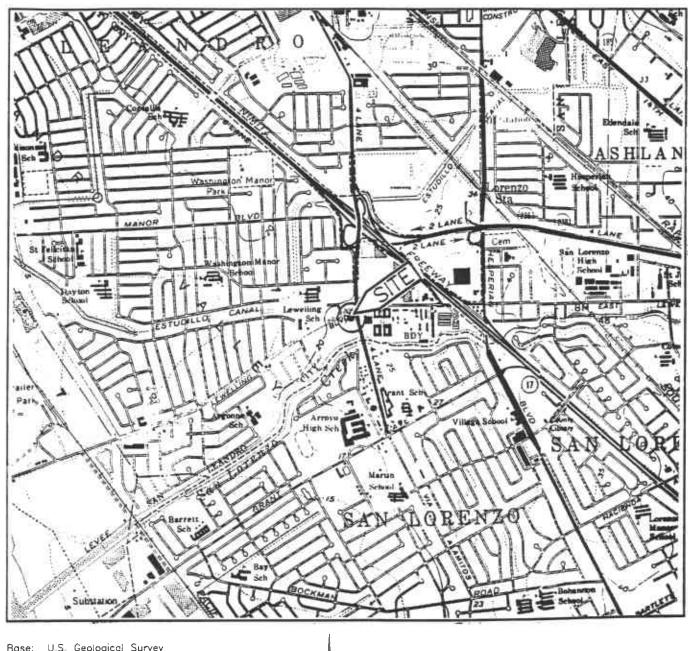
This report was prepared in accordance with generally accepted standards of environmental geological practice in California at the time this investigation was performed. This investigation was conducted solely for the purpose of evaluating environmental conditions of the soil and groundwater with respect to gasoline and waste-oil hydrocarbons related to the former gasoline and waste-oil USTs at the subject site. No soil engineering or geotechnical implications are stated or should be inferred. Evaluation of the geologic conditions at the site for the purpose of this investigation is made from a limited number of observation points. Subsurface conditions may vary away from the data points available.

March 3, 1993 69034.10

REFERENCES

- Applied GeoSystems, November 9, 1989, <u>Limited Environmental Site Assessment at ARCO Service Station No. 601</u>, San Leandro, California, AGS Report 69034-1.
- Alameda County Health Care Services Agency, July 30, 1992, Letter from Mr. Scott Seery concerning additional work at ARCO Station 601, 712 Lewelling Boulevard, San Leandro, California.
- California Administrative Code, Title 22, Register 85, No. 2-1-12-85, p.1800.77.
- California Department of Health Services, Office of Drinking Water, October 18, 1990.

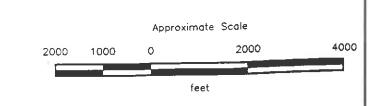
 <u>Summary of Drinking Water Standards.</u>
- GeoStrategies, Inc. June 29, 1990, <u>Tank Replacement Report, ARCO Service Station #601</u>, <u>San Leandro, California</u>, GSI Report 7918-2.
- Helley, E. S., K. R. Lajoie, W. E. Spangle, and M. L. Blair, 1979, <u>Flatland Deposits of the San Francisco Bay Region, California</u>, U.S. Geological Survey Professional Paper 943.
- Hickenbottom, Kelvin and Muir, Kenneth, June 1988, Geohydrology and Groundwater Quality overview of the East Bay Plain Area, Alameda County, California, Alameda County Flood Control and Water Conservation District, Report 205 (j).
- RESNA/Applied GeoSystems, December 14, 1990, Subsurface Environmental Assessment at ARCO Station 601, RESNA/AGS Report 69034-4W.
- RESNA, October 17, 1991, Subsurface Environmental Assessment and Vapor Extraction Test at ARCO Service Station 601, RESNA Report 69034.04
- RESNA, May 29, 1992, Site Safety Plan for ARCO Station 601, 712 Lewelling Boulevard, San Leandro, California, RESNA 69034.10.
- RESNA, September 11, 1992, Letter Response to Alameda County Health Care Services Agency.



March 3, 1993 69034.10

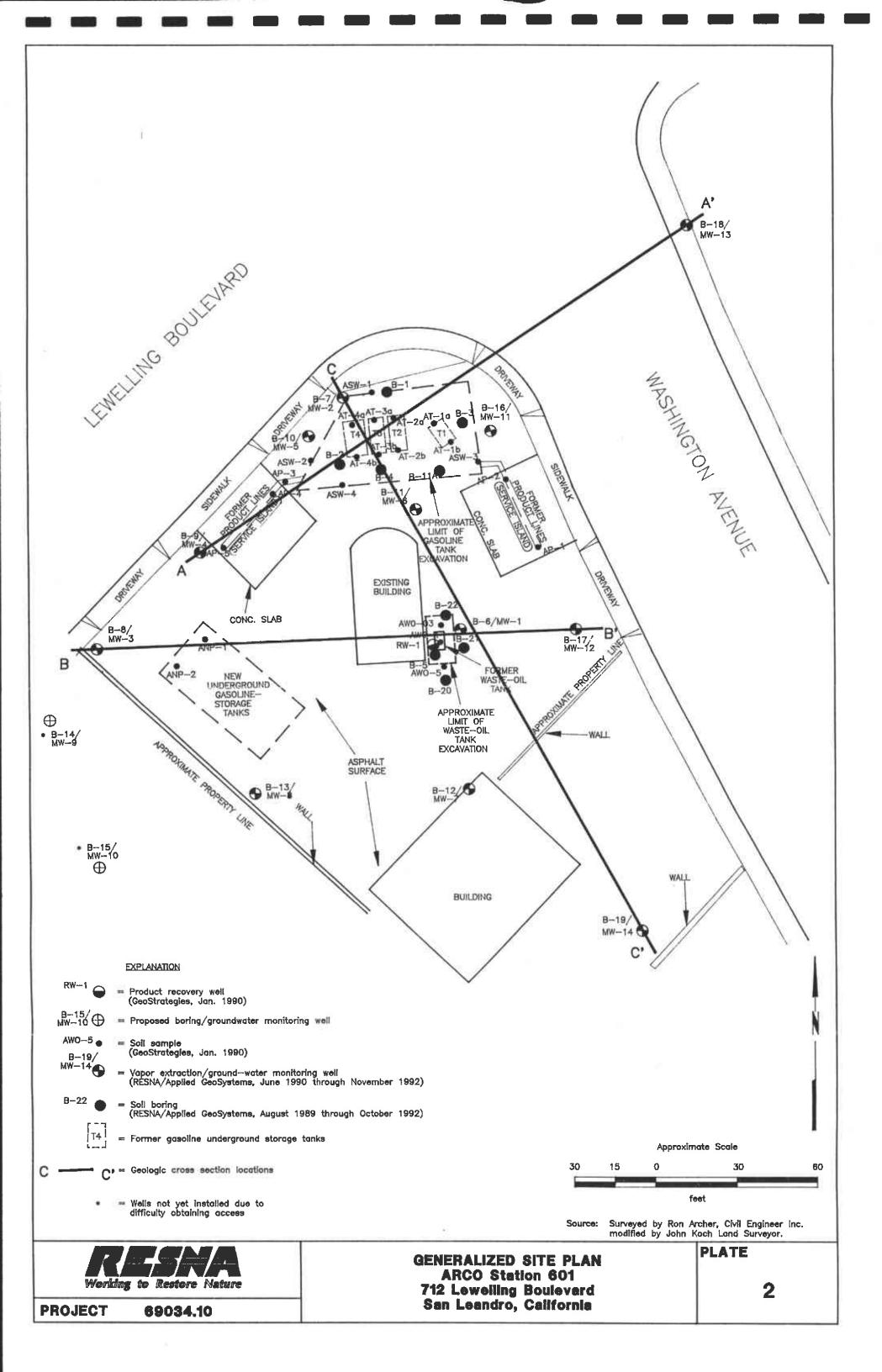
REFERENCES

(Continued)


- RESNA, September 14, 1992, <u>Addendum Five to Work Plan for Additional Subsurface Investigation</u>, RESNA Report 69034.10.
- RESNA, February 3, 1993, <u>Limited Offsite Subsurface Investigation at ARCO Station 601</u>, 712 Lewelling Boulevard, San Leandro, California, RESNA Report 69034.11
- RESNA, March 1, 1993, Letter Report, Quarterly Groundwater Monitoring Fourth Quarter 1992 at ARCO Station 601, 712 Lewelling Boulevard, San Leandro, California, RESNA Report 69034.12

Base: U.S. Geological Survey 7.5—Minute Quadrangles Hayward/San Leandro, California Photorevised 1980

LEGEND


Site Location

Working to Restore Nature

PROJECT 69034.10

SITE VICINITY MAP ACRO Station 601 712 Lewelling Boulevard San Leandro, California PLATE

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR [MAJOR DIVISION		DESCRIPTION	MAJOR (DIVISION	LTR	DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or no fines.			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight
ŀ	GRAVEL	GP	Poorly—graded gravels or gravel—sand mixtures,		SILTS AND CLAYS LL<50		plasticity.
	AND GRAVELLY		little or no fines.			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
	SOILS	GМ	Silty gravels, grave—sond— silt mixtures.				
COARSE-	. !	GC	Clayey gravel, gravel—sand—clay mixtures.	FINE-		OL	Organic silts and organic silt—clays of low plasticity.
GRAINED SOILS	SAND	SW	Well—graded sand or gravelly sands, little or no fines.	GRAINED SOILS	SILTS	мН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
	AND SANDY SOILS	SP	Poorly—graded sands or gravelly sands, little or no fines.		AND CLAYS LL>50	СН	Inorganic clays of high plasticity, fat clays.
	30.63	SM	Silty sonds, sond—silt mixtures.			ОН	Organic clays of medium to high plasticity, organic silts.
		SC	Clayey sands, sand-clay mixtures.	HIGHLY ORG	HIGHLY ORGANIC SOILS		Peat and other highly organic soils.

T	Depth through which sampler is driven		Sand pack	
$\frac{1}{T}$	Relatively undisturbed		Bentonite	Stratigraphic contact
=	sample	₽ ₽	Neat cement	
X	No sample recovered		Caved native soil	 Gradational contact
<u>=</u>	Static water level observed in well/boring		Blank PVC	
$\frac{\bar{z}}{\Delta}$	initial water level observed in boring		Machine—slotted PVC	 Inferred contact
S-10	Sample number	P.I.D.	Photoionization detector	11101100

BLOWS REPRESENT THE NUMBER OF BLOWS OF A 140-POUND HAMMER FALLING 30 INCHES TO DRIVE THE SAMPLER THROUGH EACH 6 INCHES OF AN 18-INCH PENETRATION.

GRADATIONAL AND INFERRED CONTACT LINES SEPARATING UNITS ON THE LOG REPRESENT APPROXIMATE BOUNDARIES ONLY. ACTUAL BOUNDARIES MAY BE GRADUAL. LOGS REPRESENT SUBSURFACE CONDITIONS AT THE BORING LOCATION AT THE TIME OF DRILLING ONLY.

PROJECT 69034.10

UNIFIED SOIL CLASSIFICATION SYSTEM PLATE
AND SYMBOL KEY
ARCO Station 601
712 Lewelling Boulevard
San Leandro, California

,	/2 feet Diameter of boring:_		d: 10/12/92
Well depth: 12 fee	t Material type: Sch 4	<u>0 PVC</u> Casing diame	ter: 4 inches
Screen interval:	7 to 12 feet Filter pac	k: <u>#3 Sand</u> Slot	size: <u>0.020-inch</u>
Drilling Company:	Exploration GeoServices Drille	r: John and Mike	
Method Used:	Hollow—Stem Auger	Field Geologist:	Erin McLucas
Signatu	re of Registered Professional:	Dione M. Barley	
	Registration No.: CFG 1366 S	tate: CA 🕖	

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 - - 2 - - 4 - - 6 -	S-6 S-8	*	5 8 11	ONING	GP CL ∇SP	Asphalt—covered surface. Asphalt (6 inches). Sandy gravel, angular, brown, damp, medium dense:	
- 10 - - 12 - - 14 -	S-10 S-12	X	4 4 4 8 1 7 1 1 1 2 4 6 1 3	MALFUN	CL	Silty clay with sand, dark brown and olive, moist, medium plasticity, stiff; strong hydrocarbon odor. Dark gray, damp; strong hydrocarbon odor.	
- 16 - - 18 - - 20 -	S-15.5		4 9 10			Total depth = 16 feet.	

R	SHA
Working to	o Restore Nature

LOG OF BORING B-16/MW-11 +

ARCO Station 601 712 Lewelling Boulevard San Leandro, California PLATE

Depth of boring: 14-1/2 feet	Diameter of boring:1	2 inches Date	e drilled:	10/12/92
Well depth: 12-1/2 feet	Material type: Sch 40	PVC Casing	diamete	r: 4 inches
Screen interval: 7-1/2 to 12	2-1/2 feet Filter pack	: #3 Sand	Slot si	ze: <u>0.020-inch</u>
Drilling Company:Explorati	ion GeoServices Driller	John and	Mike	
	Stem Auger			rin McLucas
Signature of Re	egistered Professional:	Dione M. Bar	eley	
	tion No · CEC 1386 St		0	

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -					GP	Asphalt—covered surface. Asphalt (6 inches). Sandy gravel, angular, brown, damp, medium dense: baserock.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 4 -		4	۲	6.7	ML	Clayey silt, trace sand, dark brown to olive, damp, medium plasticity, stiff.	7
- 6 -	S-5.5 S-7.5	Ш	9	6.3 10.6	CL	Silty clay, dark brown to olive, damp to very moist, medium plasticity, stiff; root holes.	
8 -	S-7.5 S-9 S-9.5	\mathbf{x}	018015	2.1	▽	Color change to dark gray. Silty sand, fine—grained, brown, wet, medium dense.	
F 12 -	S-12 S-12.5		8	2.1	CL	Silty clay, brown to gray, damp to wet, medium plasticity very stiff; root fibers.	
- 14 -	S14		6 10 13	0		Total depth = 14-1/2 feet.	
- 16 -							
- 18							
20 -							

R		SX	
Working	UФ	Restore	Nature

LOG OF BORING B-17/MW-12

ARCO Station 601 712 Lewelling Boulevard San Leandro, California PLATE

Depth of boring: 16 Well depth: N/	<u>-1/2 feet</u> Diameter of b			drilled: <u>11/9/92</u> diameter: N/A
Screen interval:	N/AFil	ter pack:	N/A	_Slot size:N/A
	Exploration GeoServices	Driller:	Dave and	
	Hollow-Stem Auger		eld Geologi	
Signa	iture of Registered Profes	ssional: Acone	m. Back	wy.
	Registration No.: CEG 1			0

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 - - 2 -					SM	Concrete (4-1/2 inches). Silty sand, gray, damp, dense. Silty clay, gray to alive, damp, medium plasticity, soft.	V V V V V V V V V V V V V V V V V V V
- 4 -	S-5		1 2 3	9		3010.	7
- 8 -	S-7.5		2 3 4 4	MALFUNCTIONING	SC	Brown. Clayey sand, brown, very moist, loose; root fibers.	\[\forall \
- 10-	S-11	+	234456456677	MALFUI	CL	Silty clay, dark brown, damp, medium plasticity, dense; root fibers.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
_ 12 -			1		- SP CL	Sand, fine—grained, brown, wet, medium dense. Silty clay, dark brown, damp, medium plasticity, stiff.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
14-			4 6 8 7 7 8			Sitty Clay, dark brown, damp, mediam plasticity, stills	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	S-16		8			Total depth = 16-1/2 feet.	7 7 7 7
- 18 - - 20 -							

		A
Working 10	Restore	Nature

69034.10 PROJECT

LOG OF BORING B-18/MW-13

ARCO Station 601 712 Lewelling Boulevard San Leandro, California

PLATE

Depth of boring: 16 feet Dian	neter of boring: 8 incl		ed: 8/7/92
Well depth: 13-1/2 feet Mate	rial type: Sch 40 PVC	Casing diam	eter: 2 inches
Screen interval: 7-1/2 to 13-1/2	feet Filter pack:	#3 Sand Slot	size: 0.020-inch
Drilling Company: Bayland Drillin	g Driller:	Mike and Cliff	
Method Used: Hollow-Stem A		Field Geologist:	Lou Leet
Signature of Register	red Professional: Alian	M. Backley	
		<u>CA</u>	

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 2 -			3 2 2	0	GP SP/SW ML	Asphalt. Sandy gravel, gravel to 1-1/2", fine— to coarse—grained sand, brown, damp, dense: baserock. Clayey silt, dark brown, moist, low to medium plasticity, stiff.	7
6 -	S-7.5		1 33 3 5 5 1	0	√ SM	Silty sand, fine— to medium—grained, light brown, wet, loose to medium dense.	V V
- 10-	S-10		1 4 4 3 5 5	0	ML SC	Clayey silt, brown, very moist, medium plasticity, firm. Clayey sand, with silt, fine—grained, brown, moist, loose to medium dense.	
_ 12 -			1	0	ML SM	Clayey silt, gray-brown, moist, medium plasticity, firm. Silty sand, fine— to medium—grained, light brown, wet, loose.	
- 14 -	S-14		2 3 2 2 2	0	CL	Silty clay, gray—brown, moist, medium plasticity, stiff to very stiff.	
- 16 - - 18 -	S-15.5					.Total Depth = 16 feet.	
- 20 -							

R		SN	A
Working	10	Restore	Nature

LOG OF BORING B-19/MW-14

ARCO Station 601 712 Lewelling Boulevard San Leandro, California PLATE

Depth of boring: 17- Well depth: N/A		of boring: <u>8 inct</u>		drîlled: <u>10/12/92</u> diameter: <u>N/A</u>				
Screen interval:		_Filter_pack:	N/A	_Slot size:N/A				
Drilling Company:	Exploration GeoService	es Drill er:	John and	Mike				
Method Used:	Hollow-Stem Auger			ist: Erin McLucas				
Signature of Registered Professional: Dione M. Backley								
	Registration No.: CE	G 1366 State:_	<u>CA</u>					

Depth	Sample No.		Sample No.		Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -					GP	Asphalt—covered surface. Asphalt (6 inches). Sandy gravel, brown, damp, dense: baserock.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
2 -					CL	Silty clay, dark brown to gray, damp, medium plasticity, stiff.	7		
- 4 - - 6 -	S-4.5	X	7 7 8		SP	Sand, fine— to medium—grained, olive, damp, medium dense.	2		
8 -	S-7.5		11 10 13	10°	CL V	Silty clay, olive, moist, medium plasticity, very stiff; strong hydrocarbon odor. Sand, medium—grained, olive, very moist to wet, medium	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
10-	S-10.5		7 8	MALFUCTIONING	CL	Silty clay with sand, dark gray to olive, damp to moist, medium plasticity; hydrocarbon odor.			
. 12 - . 14 -	S-13.5		12 10 15	MAL		Color change to dark brown; no noticeable odor.	7		
- 16 -	S-17		16 5 13				7		
- 18 -	5-1/		16			Total depth = $17-1/2$ feet.	\\ \neq \qua		
- 20 -									

	<i>TEMA</i>	LOG OF BORING B-20	PLATE
IS. Working	to Restore Nature	ARCO Station 601 712 Lewelling Boulevard	8
PROJECT	69034.10	San Leandro, California	

Depth of boring: 17-				drilled: <u>19</u> diameter:				
Well depth: N/A	Material ty	pe:N/A	casing	didmeter:	14771			
Screen interval:	N/A	_Filter pack:	N/A	Slot size:	N/A			
Drilling Company:	Exploration GeoServic	es Driller:	John and	Mike	 			
Method Used:	Hollow—Stem Auger		Field Geolog	ist: Erin M	AcLucas			
Signature of Registered Professional: Dune M. Barcley								
	Registration No.: CE	G 1366 State:_	CA	0				

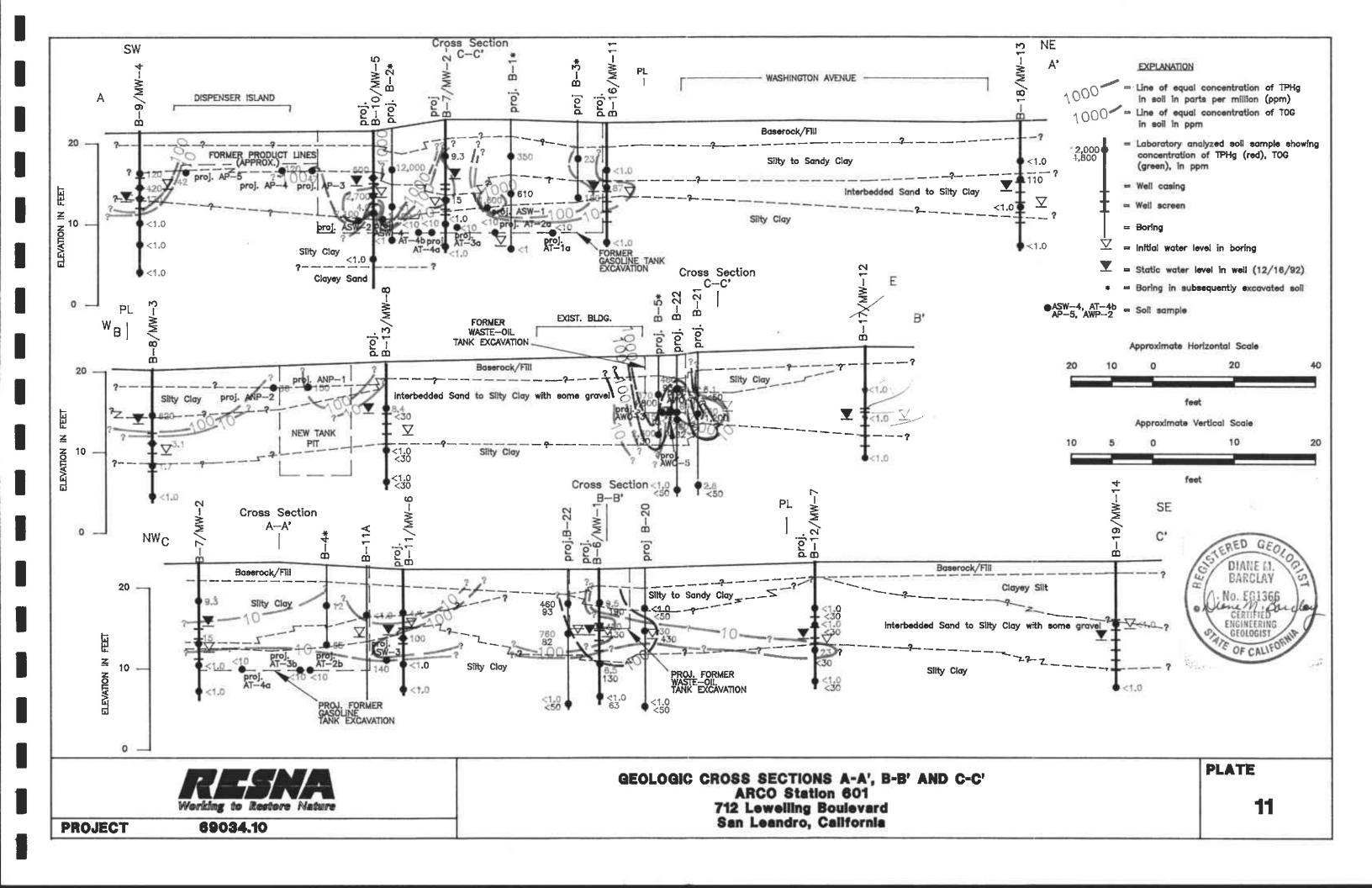
Depth	tr Sample No.		P.I.D.	USCS Code	Description	Well Const.
- 0 -		3		GP CL	Asphalt—covered surface. Asphalt (6 inches). Sandy gravel, brown, damp, dense: baserock. Silty clay, dark brown to olive, damp, medium plasticity, stiff.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 6 -	S-4.5	6 10		SP CL	Sand, medium—grained, gray to olive, damp, medium dense; hydrocarbon odor. Silty clay, olive, damp, medium plasticity, stiff.	7
- 8 -	S-7.5	5 7 9	SNI	= SP	Sand, medium—grained, olive, wet, medium dense; strong hydrocarbon odor.	7
- 10 <i>-</i>	S-10.5	5 11 13		CL	Silty clay, dark gray, moist to wet, medium plasticity, very stiff; slight hydrocarbon odor.	7
- 14 -	S-13.5	8 13 17				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 16 -	S-16.5	7 11 16				2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
- 18 - - 20 -					Total depth = $17-1/2$ feet.	

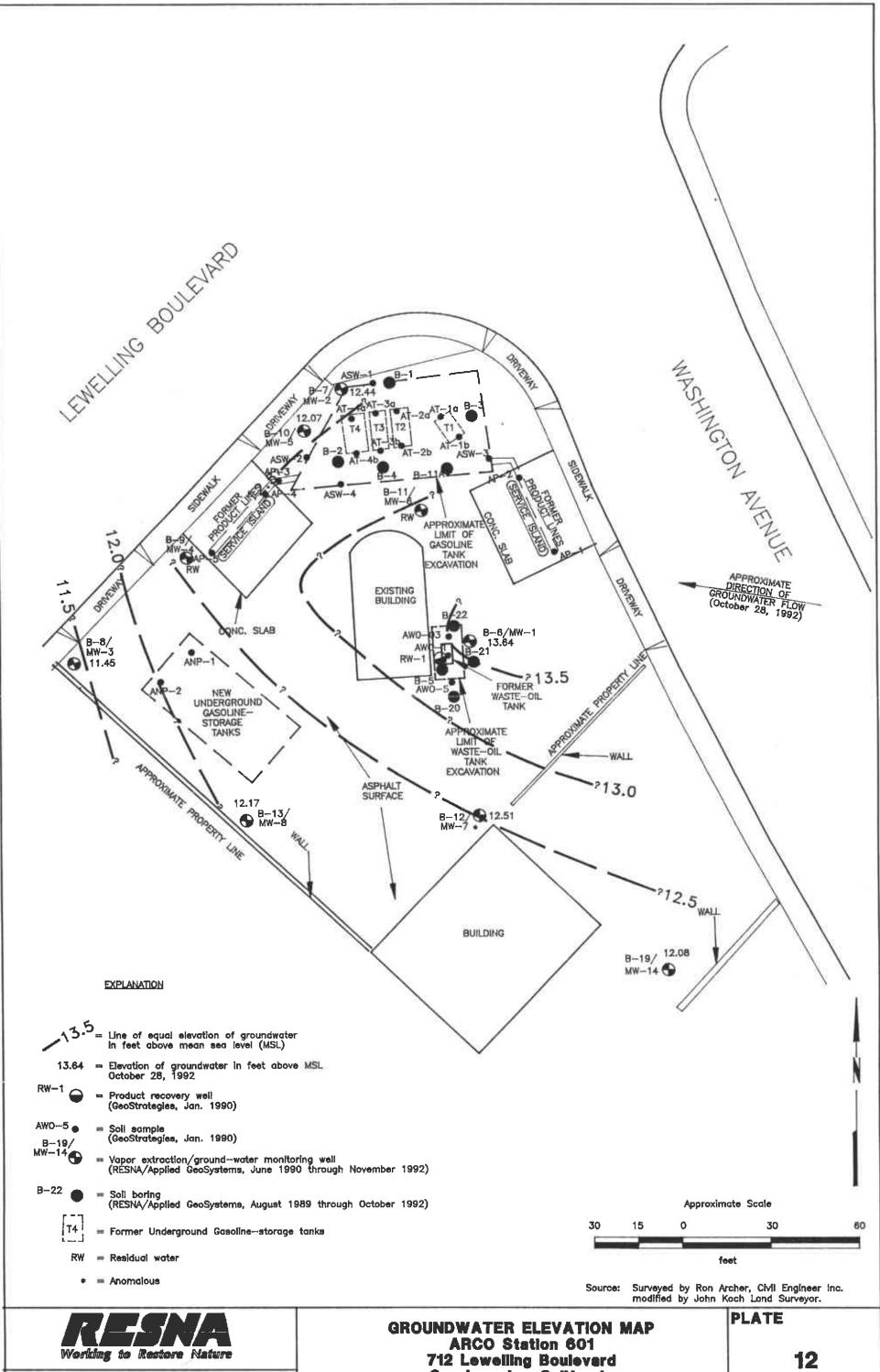
R		SN	
Working	(O	Restore	Nature

ARCO Station 601

ARCO Station 601 712 Lewelling Boulevard San Leandro, California PLATE

Depth of boring: 17-		-		d: 10/12/92				
Well depth: N/A	<u>A</u> Material ty	/pe:N/A	Casing diam	eter: <u>N/A</u>				
Screen interval:	N/A	_Filter pack:	N/A Slot	size: N/A				
Drilling Company:	Exploration GeoServi	ces Driller:	John and Mike					
Method Used:	Hollow-Stem Auger		Field Geologist:	Erin McLucas				
Signature of Registered Professional: Dione M. Barcley								
	Registration No.: CE							

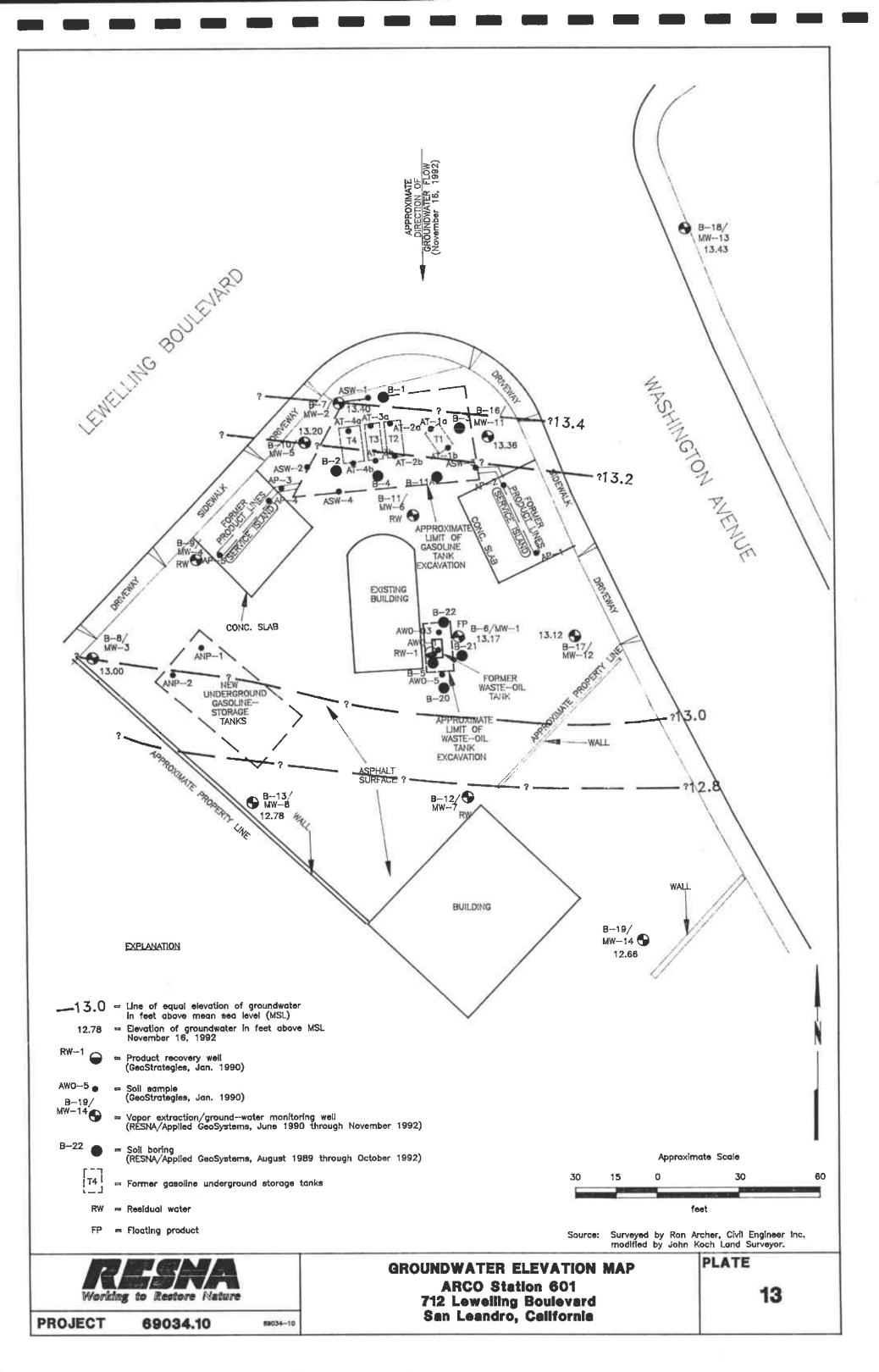

Depth	epth Sample No.		Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 - - 2 -					GP	Asphalt—covered surface. Asphalt (6 inches). Sandy gravel, brown, damp, dense: baserock.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 4 - - 6 -	S-4.5		5 20 5		GC	Sandy gravel with silt, brown to olive, damp, medium dense; strong hydrocarbon odor.	
- 8 -	S-7.5		5 6 4	UNG -	<u> </u>		7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 - 12 -	S-10.5		10 3 4	MALFUNCTIONING	SP CL	Sand with gravel, medium— to coarse—grained, black, wet, loose. Silty clay, olive, damp, medium plasticity, stiff.	7 V V V V
- 14 -	S-13.5		7 10 13	W		Slight hydrocarbon odor.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 16 -	S-16.5		4 14 15				7
- 18 - - 20 -						Total depth = 17−1/2 feet.	

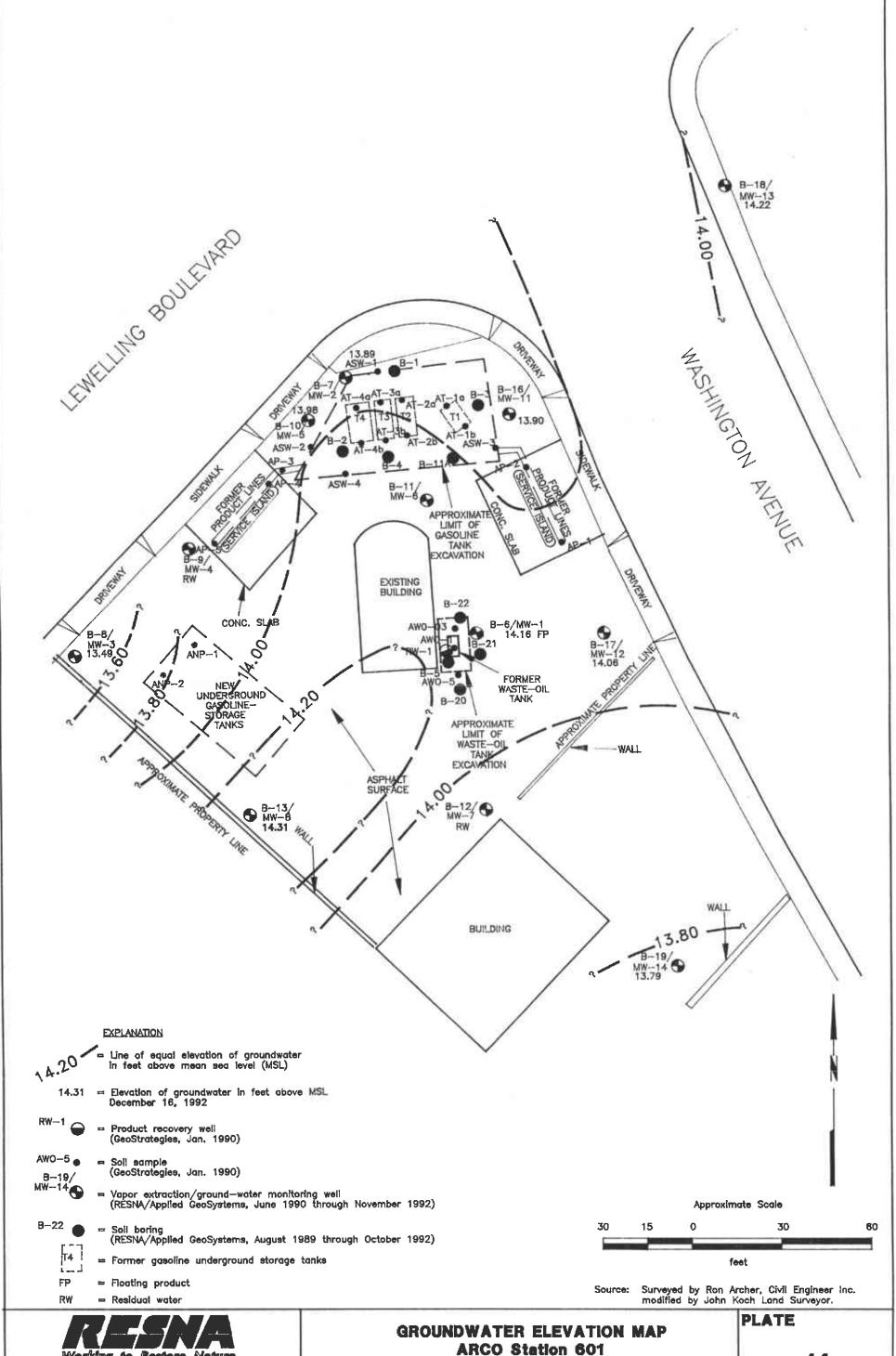

R	T W	S A		
Working	(1a)	Restore	Nature	

LOG OF BORING B-22

ARCO Station 601
712 Lewelling Boulevard
San Leandro, California

PLATE

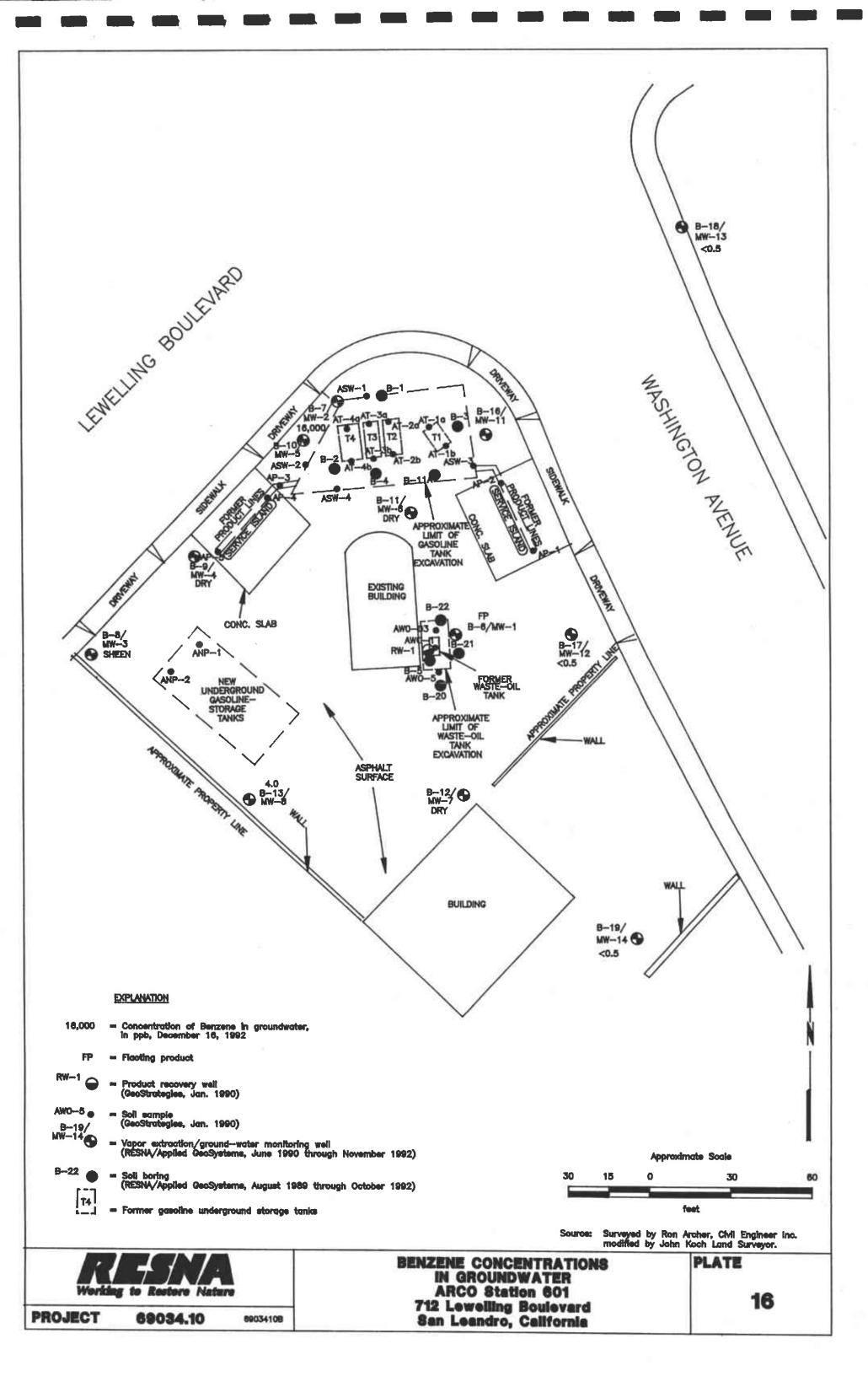



PROJECT

69034.10

90341010

San Leandro, California



Working to Restore Nature
PROJECT 69034.10

00341012

GROUNDWATER ELEVATION MAP
ARCO Station 601
712 Lewelling Boulevard
San Leandro, California

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 1 of 6)

Date Well Measured	Depth of Well	Well Elevation	Depth-to- Water	Water Elevation	Floating Product
MW-1	···				
07/17/90	11.20	22.98	9.03	13.95	Emulsion
08/07/90			9.19	13.79	None
10/15/90			9.85*	13.13	0.25
11/20/90			9.79*	13.19	0.46
12/21/90			9.18	13.80	Sheen
01/09/91			9.47*	13.51*	0.02
02/27/91			9.31*	13.67*	0.03
03/20/91			7.81**	15.17**	Sheen
04/16/91			6.12	16.86	Sheen
05/16/91			8.60*	13.66*	0.01
06/10/91		22.26	9.00	13.26	Sheen
07/18/91			9.33*	12.93*	0.01
08/22/91			9.49*	12.77*	0.04
09/18/91			9.63*	12.63*	0.04
10/10/91			9.73*	12.53*	0.04
11/21/91			8.40*	13.86*	0.01
12/24/91			9.68*	13.30*	0.13
01/19/92	11.10		8.84	13.42	None
02/20/92			7.22	15.04	None
03/23/92			7.40	14.86	Sheen
04/21/92			8.30	13.96	None
05/15/92			8.77*	13.49*	0.01
06/08/92			9.08*	13.18*	0.02
07/15/92			9.40	12.86	None
08/25/92			8.21	14.05	None
09/15/92			8.18*	14.08*	0.02
10/28/92			8.62	13.64	None
11/16/92		22.26	9.09*	13.17*	0.02
12/16/92			8.10*	14.16*	0.02
,, -	•		5125	21725	
<u>MW-2</u>	1				
07/17/90	12.33	22.06	7.86	14.20	None
08/07/90			8.03	14.03	None
10/15/90			8.61	13.45	None
11/20/90			8.76	13.30	None
12/21/90			8.28	13.78	None
01/09/91			8.43	13.63	None
02/27/91			8.28	13.78	None
03/20/91			7.26**	14.80**	None
04/16/91			6.97	15.09	None
05/16/91			7.52	15.27	None
06/10/91		21.33	7.91	14.88	None

See notes on page 6 of 6.

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 2 of 6)

Date Well Measured	Depth of Well	Well Elevation	Depth-to- Water	Water Elevation	Floating Product
MW-2	 -				
07/18/91			8.30	14.49	None
08/22/91			8.50	14.29	None
09/18/91			8.63	14.16	None
10/10/91			8.82	13.97	None
11/21/91			8.46	14.33	None
12/24/91			8.72	14.07	None
01/19/92	12.20		7.96	14.83	None
02/20/92	14.00		6.55	16.24	None
03/23/92	•		6.86	15.93	None
04/21/92			7.15	14.18	None
05/15/92			7.61	13.72	None
06/08/92			7.95	13.38	None
07/15/92			8.45	12.88	None
08/25/92			8.53	12.80	None
09/15/92			8.71	12.62	None
10/28/92			8.89	12.44	None
11/16/92		21.33	7.93	13.40	None
12/16/92		DILLO	7.44	13.89	None
,,			7.77	13.07	110110
MW-3					
07/17/90	11.99	20.84	7.03	13.81	Sheen
08/07/90			7.21	13.63	None
10/15/90			8.19*	12.65*	0.75
11/20/90			7.98*	12.85*	1.08
12/21/90			7.22*	13.62*	0.01
01/09/91			7.46*	13.38*	0.30
02/27/91			7.37*	13.47*	0.02
03/20/91			5.79**	15.05**	Sheen
04/16/91			7.95	12.89	Sheen
05/16/91			7.5 0	12.61	None
06/10/91		20.11	7.14	12.97	Sheen
07/18/91			7.55	12.56	None
08/22/91			7.64	12.47	Sheen
09/18/91			7.89*	12.22*	0.12
10/10/91			7.82*	12.29*	0.26
11/21/91			7.59*	12.52*	0.04
12/24/91			8.74*	11.37*	0.01
01/19/92	11.94		6.98	13.13	0.01
02/20/92			5.05	15.06	0.01
03/23/92			5.75	14.36	Sheen
04/21/92			6.55	13.56	None
05/15/92			7.11*	13.00*	0.03

See notes on page 6 of 6.

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 3 of 6)

Date Well Measured	Depth of Well	Well Elevation	Depth-to- Water	Water Elevation	Floating Product
MW-3	-				
06/08/92			7.52*	12.59*	0.02
07/15/92			7.92	12.19	None
08/25/92			8.00	12.11	None
09/15/92			8.01*	12.10*	0.02
10/28/92			8.66	11.45	None
11/16/92		20.11	7.11	13.00	Sheen
12/16/92			6.62	13.49	None
MW-4					
06/10/91	8.30	20.75	Dry		None
07/18/91			7.86	12.89	None
08/22/91			7.85	12.90	None
09/18/91			7.84	12.91	None
10/10/91			Dry		None
11/21/91			Dry		None
12/24/91			Dry		None
01/19/92	12.02		8.20	Residual Water	None
02/20/92	8.50		8.13	Residual Water	None
03/23/92			7.94	Residual Water	None
04/21/92			8.20	Residual Water	None
05/15/92			8.16	Residual Water	None
06/08/92			8.12	Residual Water	None
07/15/92	8.90		8.81	Residual Water	None
08/25/92			8.39	Residual Water	None
09/15/92			Dry	***************************************	None
10/28/92	8.4		8.23	Residual Water	None
11/16/92	8.5	20.75	8.29	Residual Water	None
12/16/92	8.5		8.18	Residual Water	None
MW-5					
06/10/91	9.88	20.90	7.58	13.32	None
07/18/91		- ·	7.97	12.93	None
08/22/91			8.18	12.72	None
09/18/91			8.31	12.59	None
10/10/91			8.51	12.39	Sheen
11/21/91			8.13	12.77	None
12/24/91			8.32	12.58	None
01/19/92	10.10		7.50	13.40	None
02/20/92	•		5.97	14.93	None
03/23/92			6.06	14.84	None
04/21/92			6.90	14.00	None
05/15/92			7.32	13.58	None

See notes on page 6 of 6.

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 4 of 6)

Date Well Measured	Depth of Weil	Well Elevation	Depth-to- Water	Water Elevation	Floating Product	
MW-5			·			
06/08/92			7.66	13.24	None	
07/15/92			8.34	12.56	None	
08/25/92			8.18	12.72	None	
09/15/92			8.40	12.50	0.02+	
10/28/92			8.83	12.07	None	
11/16/92		20.90	7.70	13.20	None	
12/16/92			6.92	13.98	None	
MW-6						
06/10/91	8.40	22.08	Dry		None	
07/18/91			Dry		None	
08/22/91			Dry		None	
09/18/91			Drý		None	
10/10/91			Dry		None	
11/21/91			Dry		None	
12/24/91			Dry		None	
01/19/92	8.60		8.58	Residual water	None	
02/20/92			7.28	14.80	None	
03/23/92			7.45	14.63	None	
04/21/92			7.74	14.34	None	
05/15/92			8.50	Residual Water	None	
06/08/92			Dry		None	
07/15/92			8.81	Residual Water	None	
08/25/92			8.42	Residual Water	None	
09/15/92			Dry	10010101	None	
10/28/92	8.75		8.75	Residual Water	None	
11/16/92	8.6	22.08	8.57	Residual Water	None	
12/16/92	8.6		8.10	Residual Water	None	
MW-7						
06/10/91	9.36	22.89	Dry		None	
07/18/91			Dry		None	
08/22/91			Dry		None	
09/18/91	•	•	Dry		None	
10/10/91			Dry		None	
11/21/91	•		Dry		None	
12/24/91			Dry		None	
01/19/92	9.55		Dry		None	
02/20/92			8.74	14.15	None	
03/23/92			8.20	14.69	None	
04/21/92			8.86	14.03	None	
05/15/92			9.29	Residual Water	None	

See notes on page 6 of 6.

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 5 of 6)

Date Well Measured	Depth of Well	Well Elevation	Depth-to- Water	Water Elevation	Floating Product
MW-7					
06/08/92			9.52	Residual Water	None
07/15/92			9.78	Residual Water	None
08/25/92			9.33	Residual Water	None
09/15/92			Dry		None
10/28/92	11.7**		10.38**	12.51	None
11/16/92	9.6	22.89	9.53	Residual Water	None
12/16/92	9.6		9.21	Residual Water	None
<u>MW-8</u>					
06/10/91	10.00	20.97	7.80	13.17	None
07/18/91			8.36	12.61	None
08/22/91			8.53	12.44	None
09/18/91			8.68	12.29	None
10/10/91			8.87	12.10	None
11/21/91			8.43	12.54	None
12/24/91			8.68	1 2.29	None
01/19/92	10.15		7. 7 3	13.24	None
02/20/92			5.57	15.40	None
03/23/92			5.81	15.16	None
04/21/92			7.05	13.92	None
05/15/92			7.79	13.18	None
06/08/92	•		8.01	12.9 6	None
07/15/92			8.46	12.51	None
08/25/92			8.64	12.33	None
09/15/92			8.80	12.17	None
10/28/92			8.80	12.17	None
11/16/92		20.97	8.19	12.78	None
12/16/92			6.66	14.31	None
MW-11					
11/16/92	11.9	22.38	9.02	13.36	None
12/16/92			8.48	13.90	None
MW-12					
11/16/92	11.6	22.77	9.65	13.12	None
12/16/92			8.71	14.06	None
MW-13	44.0				
11/16/92	13.0	22.45	9.02	13.43	None
12/16/92			8.23	14.22	None

See notes on page 6 of 6.

March 3, 1993 69034.10

TABLE 1 CUMULATIVE GROUNDWATER MONITORING DATA ARCO Station 601 San Leandro, California (Page 6 of 6)

Date Well Measured	Depth of Well	Well Elevation	Depth-to- Water	Water Elevation	Floating Product
MW-14					
09/15/92	13.0	22.99	10.66	12.33	None
10/28/92			10.91	12.08	None
11/16/92			10.33	12.66	None
12/16/92			9.20	13.79	None

Measurements in feet.

Datum mean sea level.

Depth-to-Water measured in feet below top of casing.

Residual Water = less than 4 inches of water trapped within the cap at the base of the well.

^{*}The recorded thickness of the floating product was multiplied by 0.80 to obtain an approximate value for the displacement of water by the floating product. This approximate displacement value was then subtracted from the measured depth to water to obtain a calculated depth to water.

^{** =} Anomalous data.

⁺ Floating Product entered well during purging, therefore DTW was not affected.

March 3, 1993 69034.10

TABLE 2 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES

ARCO Station 601 San Leandro, California (Page 1 of 4)

Sample ID	TPHg	TPHd	TOG	В	T	E	x	F
Borings August	1989							
S-5-B1	350	NA	NA	8.3	19	5.1	26	N
S-10-B1	610	NA.	NA	10	37	6	48	N
S-15-B1	<10	NA	NA	0.007	0.011	< 0.005	0.012	N
S-5-B2	12,000	NA	NA	60	450	110	660	N
S-10-B2	<1	NA.	NA	0.015	0.016	< 0.005	0.018	N
S-14-B2	<1	NA	NA	0.015	0.030	< 0.005	0.035	N
S-5-B3	23	NA	NA	0.710	< 0.05	0.40	0.034	N
S-10-B3	180	NA	NA	0.700	3.2	1.4	9.6	N
S-5-B4	12	NA	NA	0.33	0.37	< 0.05	0.75	N
S-10-B4	65	NA	NA	1.9	2.0	0.7	4.6	ľ
S-5-B5	370	NA	4,800	2.1	3.8	0.8	2.8	N
S-10-B5	2,600	NA	130	10	90	21	130	N
S-4.5-B6	9.5	<10	190	1.4	0.099	0.25	1.3	N
S-7.5-B6	420	280	130	6.0	27	8.8	52	N
S-12-B6	6.5	<10	130	0.062	0.29	0.10	0.60	N
S-16.5-B6	< 1.0	<10	63	< 0.0050	0.040	0.011	0.069	N
S-4.5-B7	9.3	NA	NA	0.71	0.040	0.18	0.68	N
S-10-B7	15	NA	NA	0.99	0.71	0.50	1.3	N
S-12.5-B7	< 1.0	NA	NA	0.56	0.015	< 0.0050	0.011	N
S-16-B7	<1.0	NA	NA	0.0085	0.0071	< 0.0050	0.0094	N
S-6-B8	620	NA	NA	11	30	16	82	N
S-9-B8	3.1	NA	NA	0.18	0.25	0.0094	0.43	N
S-12-B8	1.7	NA	NA	0.034	0.039	0.0098	0.046	N
S-15.5-B8	< 1.0	NA	NA	0.082	0.076	< 0.0050	0.079	N
Borings May 199	<u>1</u>							
S-5.5-B9	120	NA	NA	1.6	4.2	1.9	12	N
S-7-B9	420	NA	NA	5.9	24	8.4	48	N
S-8.5-B9	170	NA	NA	3.7	14	3.5	20	N
S-11.5-B9	< 1.0	NA	NA.	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-14.5-B9	<1.0	NA	NA.	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-17.5-B9	<1.0	, NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-5.5-B10	500	NA	NA	2.8	8.1	7.4	34	N
S-7.5-B10	2,700	NA	NA	27	150	65	370	N

See notes on page 4 of 4.

March 3, 1993 69034.10

TABLE 2 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 601 San Leandro, California (Page 2 of 4)

Sample ID	TPHg	ТРНа	TOG	В	T	E	x	Pl
Borings May 199	1							
S-10-B10	4.9	NA	NA	0.33	0.33	0.10	0.51	N/
S-16-B10	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-6-B11A	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-5.5-B11	4.4	NA	NA	0.72	0.019	0.022	0.041	N
S-8.5-B11	100	NA	NA	3.0	9.3	2.7	1.5	N
S-12-B11	< 1.0	NA	NA	0.011	0.019	0.0055	0.025	N.
S-15-B11	< 1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-5.5-B12	< 1.0	<1.0	<30	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-7.5-B12	< 1.0	<1.0	<30	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-10.5-B12	23	6.0	<30	< 0.0050	0.24	0.50	2.2	N.
S-14.5-B12	<1.0	< 1.0	<30	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-5.5-B13	8.4	15	<30	0.022	0.017	0.20	0.59	N
S-11-B13	< 1.0	< 1.0	<30	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-15-B13	<1.0	< 1.0	< 30	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
Borings Oct 1992								
S-6-B16	< 1.0	NA.	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-8-B16	87	NA	NA	< 0.2500	< 0.2500	8.4	37	N
S-15.5-B16	< 1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
S-5.5-B17	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N.
S-9-B17	< 1.0	NA.	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<5
S-14-B17	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	0.025	N
Boring Nov 1992								
S-5-B18	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N.
S-7.5-B18	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N/
S-11-B18	< 1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N/
S-16-B18	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N
Composited Soil								
SP A-D	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.00
Boring Aug 1992								
S-7.5-B19	< 1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N/
S-15.5-B19	< 1.0	NA.	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	N/

See notes on page 4 of 4.

March 3, 1993 69034.10

TABLE 2 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 601 San Leandro, California (Page 3 of 4)

Sample ID		T	PHg	TP	Hd	TOG	I	3		T			E		x	Pb
Composited Soil SP-0807 A-D					1992 NA		< 0.0050		< 0.0050			< 0.0050			40.00e0	NA
31-000/A			1.0	NA.		NA	< 9,0	AUSU	<0	J.UUDH	J	<	u.uu	3 0	< 0.0050	ĮN.
		1000	λ													
Sample ID	TPHg	TPPE	L T OG	В	Т	E	x	VOC	C4	Cr	Pb	Zn	Ni		BNAs	
Borings Oct	1992			· · · -												-
S-4.5-B20	< 1.0	< 1.0	<50	0.074	< 0.0050	< 0.0050	0.034	ND	< 0.50	49	5.0	70	53		ND	
	-					(<0.100)	. ,								a	
S-7.5- B20	30	300	430	0.40	< 0.1000	0.88	0.96	ND	< 0.50	44	5.4	59	43	7.100 °	4 .900* 0.12 0°	
				(0.480)	(<0.100)	` '	(2.300)									
S-17 -B20	< 1.0	< 1.0	< 50	< 0.0050	< 0.0050		< 0.0050	ND	< 0.50	50	< 5.0	64	60		ND	
				(<0.100)	(<0.100)	(<0.100)	(<0.100)									
S-4.5-B21	6.1	2.2	< 50	0.40	0.0070	0.10	0.47	N.T.	-0.50			/7	=,		NTD.	
3-4-D-D21	D.1	2.2	< 30	0.42	0.0070	0.10	0.17	ND	< 0.50	20	< 5.0	67	20		ND	
S-7.5-B21	460	2 000	1,200	(0.270)	• ,	(<0.100)	(0.130)	N.17%	-0.50	42	40	59	40	9.700	a annh	
5-7-D41	400	4,000	1,200	(2.100)	2.4	9.6	14	ND	< 0.50	42	7.9	32	40	3.600	3,300	
S-16.5-B21	2.8	-10	<50	0.013	< 0.0050	(23.000) 0.056	(7.700) 0.18	ND	<0.50	sa.	. 5 4	71	67		ND	
J-102J-1321	2.0	₹1.0	\J0			(<0.100)		ND	<0.50	30	3.4	/1	67		ND	
				(~0.100)	(~0.100)	(<0.100)	(<0.100)									
5-4.5-B22	460	300	93	(29)	11	10	28	ND	< 0.50	28	<5.0	80	48		ND	
			•	(57.000)	18.000)	(28.000)	(77.000)		1020		10.0				. 122	
S-7.5-B22	760	390	82	3.6	3.2	12	43	ND	1.4	15	240 2	1500	0.52	5,700°	4400	
				(1.300)	(<0.500)	(0.500)	(23.000)					-,				
S-16.5-B22	< 1.0	< 1.0	< 50	0.014	0.027	0.014	0.070	ND	< 0.50	56	6.3	80	70		ND	
				(<0.100)	(<0.100)	(<0.100)	(0.160)									
Metals									Cd	Cr	Pb	Zn	Ni			
ITLC Value									100 5	00 1,	000 5,	000	2,00	0		
TLE									1.4	1.2	5.2	12.15	12			
Sample ID		TI	PHg	TPI	Hd	TOG	В			т	-		Е	.,	х	Pb
Composite	d Stock	pile Sa	mpies	Oct 1992												
SPA-SPD			33	N.	A	NA	0.2	8	0.	.28		(0.50		1.6 0	.006

March 3, 1993 69034.10

TABLE 2 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 601

San Leandro, California (Page 4 of 4)

	Boring number Sample depth in feet below ground surface Soil sample
SPA-SPD	Composite sample Soil stockpile

March 3, 1993 69034.10

TABLE 3 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES ARCO Station 601

San Leandro, California (Page 1 of 3)

Sample	TPHg	TPHd	В	Т	Е	X	TOG	BNAs	VOCs	Cd	Cr	Pb	Ni	Zı
MW-1					•						•			
07/18/90						Not a	sampled-	sheen						
10/15/90					N	Vot sampl	edfloati	ng produ	ict					
01/09/91					N	lot sampl	ed-floati	ng produ	ict					
04/16/91							ampled-							
06/10/91					_		ampled-							
10/10/91					Ŋ	lot sampl			ict					
03/23/92					_		ampled—							
06/08/92						lot sampl								
09/15/92						Not sampl								
11/16/92					N	lot sampi	ed-Hoatu	ng produ	ict					
MW-2	25,000	850*	* 000	2.000	600	2 (00	- 5 000	240	204	-20	£ 0	50	NA	120
07/18/90	35,000	920.	3,800 (3,200)	2,900 (2,400)	690 (270)	3,600 (2,900)	<5,000	340° 170°	39°	< 20	50	30	NA	12
10/15/90	6,400	NA	650	290	110	560	NA	NA	18°	NA	NA	NA	NA	N/
01/09/91	13,000	NA	1500	970	390	1500	NA	NA	6.5ª	NA	NA	NA	NA	N/
			(1700)	(1200)	(370)	(2400)								
04/16/91	54,000	NA	5,200	9,000	1,500	7,700	NA	NA	NA	NA	NA	NA	NA	N/
06/10/91	26,000	NA	3,000	2,500	880	4,200	NA	NA	NA	NA	NA	NA	NA.	N/
10/10/91	10,000	NA	1,600	910	280	1,400	<5,000	NA	1.74	< 10	< 10	11	72	91
03/23/92	33,000	NA	4,100	5,000	1,100	5,300	NA	NA	NA	NA	NA	NA	NA.	N/
06/08/92	18,000	NA	1,200	980	330	1,800	NA	NA	NA	NA	NA	NA	NA	N/
09/15/92	13,000	NA	430	500	340	1,800	NA	NA	NA	NA	NA	NA	NA	N/
11/16/92	13,000	NA	900	940	300	1,400	NA	NA	ŅA	NA	NA	NA	NA	N/
MW-3														
07/18/90	NA	NA	NA	NA	NA	NA	<5,000	NA	NA	NA	NA	NA	NA.	NA
10/15/90					N	lot sample	ed—floatii	ig produ	ct					
01/09/91					N	lot sample	ed-floatii	ig produ	ct					
04/16/91						Not s	ampled	heen						
06/10/91							ampled—							
10/10/91					N	lot sample			ct					
03/23/92							ampied⊸				-			
06/08/92						lot sample								
19/15/92					N	ot sample			ct					
11/16/92						Not s	ampled—€	iheen						
<u>MW-4</u>														
06/10/91							sampled-	-						
10/10/91	15,000	NA	5,300	1,500	470	1,300	NA	NA	NA	NA	NA	NA	NA	N/
3/23/92	24,000	NA	5,600	4,000	580	3,100	NA	NA	NA	NA	NA	NA	NA	N/A

March 3, 1993 69034.10

TABLE 3 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES

ARCO Station 601 San Leandro, California (Page 2 of 3)

						(ige 2 or 3	,						
Sample	ТРНg	TPHd	В	Т	Е	х	TOG	BNAs	VOCs	<i>16€6</i> Cd /©	Sec 6 Cr GC	ಕ್ಟಾರ Pb ಶಾಸ್ತ್ರಿ	Ni Ni	Zn Zn Sime Face
MW-4														
06/08/92	5,700	NA	2,000	170	92	270	NA	NA	NA	NA	NA	NA	NA	NA
09/15/92						Not	sampled-	-dry						
11/16/92							sampled							
MW-5														
06/10/91	100,000	NA	25,000	20,000	2,600	12,000	NA	NA	NA	NA	NA	NA	NA	NA
10/10/91	•		•	,	,		ampled-							
03/23/92	150,000	NA	24,000	31,000	4,400	23,000	ΝA	NA	NA	NA	NA	28	NA	NA
06/08/92			17,000		2,400	11,000	NA	NA	NA	NA	NA	NA	NA	NA.
09/15/92	,		,	.,			ed-floati							
11/16/92	110,000	NA	16,000	16,000	3,200	18,000	NA	NA	NA	NA	NA	NA	NA	NA
MW-6														
06/10/91						Not	sampled-	_dev						
10/10/91							sampled-	•						
03/23/92	75,000	NA	19,000	10,000	1,600	8,600	NA	NA.	NA	NA	NA	NA	NA	NA
06/08/93	15,000	ITT	17,000	10,000	1,000	•	sampled-		1101	IVA	IW	IW	1471	141
09/15/92							sampled-	-						
11/16/92							sampled-	~						
, ,								,						
MW-7														
06/10/91						Not	sampled-	-drv						
10/10/91							sampled-	•						
03/23/92	270	NA	10	0.5	3.0	13	ŃA	NA.	NA	NA	NA	NA	NA	NA
06/08/92					1	Vot samp	led-resid	ual wate	r					
09/15/92							sampled-							
11/16/92							sampled-							
						- 1.00	F	,						
<u>MW-8</u> 6/10/91	5,800	NA	73	7.2	150	21	<5,000	NA	NA	NA	NA	NA	NA	NA
10/10/91	2,800	NA	31	6.1	4.5	3.9	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.
3/23/92	8,000	NA	18	<5.0	320	42	NA.	NA.	ND	NA	NA.	NA.	NA.	NA.
,,	0,000	1471	(23**)	(<5.0**)		(23**)	1474	1471	1423	IVA	14/1	144	141	141
06/08/92	4,000	NA	<10**	<10**	110	<10**	NA	NA	NA	NA	NA	NA	NA	NA
09/15/92	4,200	460***	6.4	<5*	120	<5*	NA	6"	ND	ND	59	18	78	128
1/16/92	2,600	1,100***	4.0	<2.5**	21	5.2	1,200	32°	ND	7	42	20	69	123
24357.44							•							
MW-11	5 000	214		40.00	40				274		274			3.7.4
11/16/92	7,000	NA	21	< 10**	18	230	NA	NA	NA	NA	NA	NA	NA	NA
MW 12														
MW-12	<50	NA	<0.5	-0.e	-06	~0.¢	374	NA	NTA	NIA	NA	NYA	NIA	NIA
11/16/92	<.30	NA	< 0.5	<0.5	< 0.5	<0.5	NA	NA	NA	NA	NA	NA.	NA	NA

See Notes on page 2 of 3.

March 3, 1993 69034.10

TABLE 3 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES

ARCO Station 601 San Leandro, California (Page 3 of 3)

Sample	ТРНд	TPHd	В	Т	Е	х	TOG	BNAs	VOC	Cd	Cr	Pb	Ni	Zn
<u>MW-13</u> 11/16/92	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA
<u>MW-14</u> 09/15/92 11/16/92	<50 <50	NA NA	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DWAL: MCLs:	_	_	<u>_</u>	100 NA	— 680	 1,750	_	-	_	10	<u>_</u> 50	 50	_	 5,000

Results in micrograms per liter (ug/L) = parts per billion (ppb).

NA: Not analyzed.

<: Results reported as less than the detection limit.

Applied analytical laboratories reports that the chromatograph resembled gasoline not diesel.

**: Laboratory reported raised maximum reporting limit due to high analyte concentration requiring sample dilution.

***: Sample contains a lower boiling point hydrocarbon mixture quantitated as diesel. The chromatogram does not match the typical diesel fingerprint, possibly reflecting weathered gasoline.

(): BTEX results analyzed as VOCs.

TPHg: Total petroleum hydrocarbons as gasoline by EPA method 8015.

TPHd: Total petroleum hydrocarbons as diesel by EPA method 3550/3510.

B: Benzene, T: Toluene, E: Ethylbenzene, X: Total Xylene isomers.

BTEX: Measured by EPA method 8020/602.

TOG: Total oil and grease measured by Standard Method 503A/E or EPA Method 418.1.

BNAs: Base neutral and acid extractables including polynuclear aromatics concentrations are below laboratory reporting limits for respective compounds except as indicated. (* = naphthalene, * = 2-methylnaphthalene, * = Bis (2-ethylhexyl) Phthalate)

VOCs: volatile organics except for BTEX concentrations are below laboratory reporting limits for respective compounds except as indicated. (° = methylene chloride, ⁴ = 1,2-Dichloroethane)

Cd: Cadmium (By EPA Method 6010)

Cr. Chromium (By EPA Method 6010)

Pb: Lead (By EPA Method 7421)

Ni: Nickel (By EPA Method 6010)

Zn: Zinc (By EPA Method 6010)

ND: Below detection limits. Detection limits for VOCs varied according to analyte.

DWAL: California Department of Health Services recommended drinking water action levels (October 1990).

MCLs: Maximum Contaminant Level in ppb (October 1990).

APPENDIX A PREVIOUS ENVIRONMENTAL WORK

March 3, 1993 69034.10

PREVIOUS ENVIRONMENTAL WORK

August 1989

Applied Geosystems (AGS)(1989) performed a limited environmental site assessment at the request of ARCO to evaluate possible hydrocarbons in the soil in the vicinity of the underground storage tanks prior to removal of the four gasoline USTs and one waste-oil UST. Work performed during this limited assessment included: drilling and obtaining soil samples for laboratory analysis from five soil borings (B-1 through B-5) to depths to or just above the first-encountered groundwater; analyzing selected soil samples from each of the borings for total petroleum hydrocarbons as gasoline (TPHg) and the gasoline constituents benzene, toluene, ethylbenzene, and total xylenes (BTEX); analyzing selected soil samples from the boring located near the waste-oil tank for total oil and grease (TOG) and halogenated volatile organics (VOC); and preparation of a report including results, conclusions and recommendations for future work.

Soil borings B-1 though B-5 were drilled to depths between approximately 10½ and 15½ feet. Groundwater was encountered in boring B-1 and B-2 at depths of 14½ and 11½ feet, respectively, and stabilized after a period of approximately one hour at a depth of approximately 11 feet. Groundwater was not encountered in borings B-3, B-4, and B-5 which were drill to total depths of approximately 10½ feet. Free hydrocarbon product was encountered in each of the five soil borings drilled. The soil encountered during this limited assessment consisted primarily of silty clay with lesser amounts of sandy clay and clayey silt.

Results of laboratory analyses of selected soil samples from boring B-1 through B-4, drilled in the area of the former gasoline USTs, indicated concentrations of TPHg up to 12,000 parts per million (ppm) and concentrations of BTEX up to 660 ppm. Results of laboratory analyses of selected samples from boring B-5, drilled adjacent to the former waste-oil tank, indicated TPHg at concentrations up to 2,600 ppm, TOG up to 4,800 ppm, and BTEX up to 130 ppm. No VOCs were detected in samples analyzed from boring B-5. The laboratory results are summarized in Table 1 in the main body of this report.

Applied GeoSystems concluded that the shallow soil in the area of the four underground gasoline USTs and the waste-oil UST had been impacted by elevated levels of hydrocarbons, and that the first-encountered groundwater beneath the site appeared to have been impacted by hydrocarbons.

March 3, 1993 69034.10

January 1990

GSI (1990) observed removal of four gasoline USTs and one waste-oil UST, noted contaminant distribution within the subsurface, obtained soil samples for laboratory analysis from the tank excavations (including new tank excavation), the product line trenches and soil stockpiles, and assisted in directing soil excavation.

Approximately 1565 cubic yards of soil were removed from the former gasoline UST and product line trench, the former waste-oil UST, and the new gasoline UST excavations. Laboratory analytical results of composite soil samples obtained from soil stockpiles from the former gasoline UST excavation indicated TPHg concentrations above 1,000 ppm for approximately 200 cubic yards, above 100 ppm for approximately 350 cubic yards, and less than 100 ppm for approximately 50 cubic yards. Laboratory analytical results from the soil stockpiles from the new UST excavation indicated TPHg concentrations of less than 100 ppm for approximately 950 cubic yards of soil. Laboratory analytical results from the soil stockpile from the former waste-oil UST indicated TPHg above 100 ppm for approximately 15 cubic yards of soil. The approximately 565 cubic yards of soil with TPHg above 100 ppm were removed to disposal facilities operated by GSX (as identified by GSI, presently Laidlaw Environmental Services, Inc., Limited Class I Disposal Facility, Button Willow, California). Approximately 1,000 cubic yards of soil with TPHg below 100 ppm were removed to a Class III landfill. Excavations were backfilled with clean pea gravel. In addition, a 6-inch diameter 0.020 slot site PVC casing product recovery well (RW-1) was installed in the backfill of the former waste-oil UST excavation, at the approximate location shown on the Generalized Site Plan (Plate 2) of this report.

The results of laboratory analysis of native soil samples obtained from the former gasoline UST excavation, former product line trenches, former waste-oil excavation, and new tank excavation are included in Table A1 of this Appendix.

<u>June 1990</u>

In June 1990, RESNA/AGS performed a Limited Subsurface Investigation (RESNA/AGS, December 1990) at the site including drilling borings B-6 through B-8 and installing groundwater monitoring wells MW-1 through MW-3 in the borings. The monitoring wells were developed and sampled as part of this investigation, and selected soil and groundwater samples were sent to a state-certified laboratory for analyses. Groundwater monitoring data and laboratory analytical results are shown in Tables 1 through 3 in the main body of this report. The groundwater gradient was tentatively evaluated to be to the southwest.

March 3, 1993 69034.10

RESNA/Applied GeoSystems concluded: 1) The majority of gasoline and waste-oil hydrocarbons at concentration above 100 parts per million (ppm) in the soil at the site outside the immediate areas of the former gasoline and waste-oil USTs appeared to be within or just above the interbedded clayey sand to silty clay at depths between approximately 8 and 12 feet, and that the presence of water in this relatively permeable zone appeared to have facilitated the movement of gasoline and waste-oil hydrocarbons laterally; 2) The lateral extent of the majority of hydrocarbons in the soil associated with the former gasoline and waste-oil USTs at the site had not been delineated below 100 ppm; 3) The vertical extent of TPHg and waste-oil related hydrocarbons in the soil had not been delineated; 4) Laboratory analytical results of soil and groundwater samples obtained from near the former waste-oil UST indicated concentrations of the metals cadmium, chromium, lead, and zinc at or below Total Threshold Limit Concentration Values and California Department of Health Services (DHS) drinking water action levels; 5) The lateral and vertical extent of hydrocarbons in the groundwater had not been delineated at the site; 6) An additional offsite source of gasoline hydrocarbons may have been indicated by the presence of a product sheen in well MW-3.

May and June 1991

In May and June 1991, a subsurface investigation and vapor extraction test was performed at the site (RESNA, October 1991). The tasks involved included drilling six soil borings (B-9 through B-13), installing five monitoring wells (MW-4 through MW-8), submitting for laboratory analyses selected soil and groundwater samples; researching wells located within ½-mile of the site and potential secondary hydrocarbon sources in the site vicinity; and performing a vapor extraction test. Wells MW-4, MW-6, and MW-7 were not sampled due to insufficient water in the wells. The groundwater gradient was evaluated to be toward the southwest. RESNA concluded that: the lateral extent of TPHg was delineated to 100 ppm in the southern and eastern portions of the site, and northwest of the former gasoline UST excavation; The later extent of waste-oil hydrocarbons associated with the former waste-oil UST was delineated south and southwest of the waste-oil UST excavation; the vertical extent of TPHg in soil was delineated except east of the former gasoline USTs and near the former waste-oil UST; and the lateral and vertical extents of hydrocarbons in groundwater were not delineated except for waste-oil related hydrocarbons southwest of the former waste-oil UST.

RESNA also concluded that gasoline hydrocarbons reported in the soil of the former gasoline UST excavation might be the source of hydrocarbons detected in groundwater, and that several sites reported to have tank leaks were upgradient of the site or near the site. Horizontal vapor extraction lines were proposed as more practical and efficient than vertical vapor extraction wells for this site, and pumping to depress groundwater levels was

March 3, 1993 69034.10

presented as a possible method to enhance the efficiency of soil-vapor extraction as a site remediation alternative. Air sample results indicated the presence of significant levels of petroleum hydrocarbons throughout the majority of the site.

October 1992

In October 1992, RESNA conducted a limited offsite subsurface investigation in response to the discovery of gasoline hydrocarbons by Pacific Gas and Electric (PG&E) during gas line replacement activities along Lewelling Boulevard. The investigation included drilling 9 soil borings along the shoulder of Lewelling Boulevard in the proposed PG&E alignment; sampling the borings; and submitting selected soil samples to an onsite mobile laboratory and another analytical laboratory for analyses. Results of this investigation will be submitted under separate cover.

Ongoing Quarterly Monitoring

Quarterly water-level measurements and sampling for analyses were started in June 1990 by RESNA, and continue to be done by ARCO's contracted sampler, EMCON Associates of San Jose California. The interpretation of the results is done by RESNA on a quarterly basis (RESNA, March 2, 1993). Groundwater monitoring data is presented in Table 1, and groundwater laboratory analytical data is presented in Table 3, in the main body of this report.

The groundwater at the site continues to flow generally westward, fluctuating between northwest and southwest. Hydrocarbon concentrations in the groundwater fluctuate from quarter to quarter; however, the greatest concentrations remain in wells MW-1 through MW-5, located downgradient from and in the vicinity of the former gasoline USTs.

March 3, 1993 69034.10

TABLE A1 LABORATORY ANALYSIS OF SOIL SAMPLES BY GEOSTRATEGIES

ARCO Station 601 712 Lewelling Boulevard San Leandro, California (Page 1 of 2)

Sample ID	TPHg	TPHd	ТРНо	TOG	В	T	E	x
 AP-1	6.8	NA.	NA.	NA	0.13	< 0.025	< 0.025	0.20
AP-2	12	MA	MA	NA	0.71	0.049	0.31	0.60
AP-3	47	NA	NA	NA	1.1	2.1	0.63	5.5
AP-4	120	NA	NA	NA	5.2	10	2.8	18
AP-5	42	NA	NA	NA	1.5	3.9	0.95	14
AT-1a	<10	NA	NA	NA	0.043	0.072	0.013	0.085
AT-1b	<10	NA	NA	NA	0.014	0.035	0.0079	0.046
AT-2a	<10	NA	NA	NA	< 0.005	0.0068	< 0.005	< 0.005
AT-2b	<10	NA	NA	NA	0.0071	< 0.005	< 0.005	< 0.005
AT-3a	< 10	NA	NA	NA	0.023	0.041	0.013	0.036
AT-3b	<10	NA	NA	NA	0.016	< 0.005	< 0.005	0.0077
AT-4a	< 10	NA	NA.	NA	0.068	0.17	< 0.005	0.014
AT-4b	<10	NA	NA	NA	< 0.005	0.048	< 0.005	0.08
ASW-1	1,600	NA	NA	NA	36	111	50	210
ASW-2	7,100	NA	NA	NA	175	509	220	980
ASW-3	140	NA	NA	NA	3.1	3.1	3.8	15
ASW-4	1,400	NA	NA	NA	12	46	26	129
ANP-1	150	NA	NA	NA	8.1	3.9	5,8	20
ANP-2	36	NA	NA.	NA	2	0.8	1.4	5.1
AWO-1	690	630	4,400	NA	< 0.010	0.027	0.019	0.69
AWO-3	15	11	< 50	< 20	1.5	80.0	0.25	0.88
AWO-5	< 3.0	<5	< 50	< 20	0.11	0.11	< 0.03	0.10

Results in parts per million (ppm).

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHo = Total petroleum hydrocarbons as oil

TOG = Total oil and grease using SM 5520 E&F (gravimetric).

B = benzene, T = toluene, E = ethylbenzene, X = total xylenes (EPA Method 8020/8015)

< = Below indicated laboratory reporting limits.

NA = Not analyzed

Sample Number explanation:

AP-5 = Product line soil sample

AT-4b = Former product tank number base soil sample

ASW-4 = Former product tank excavation sidewall soil sample

ANP-2 = New product tank excavation soil sample

AWO-5 = Former waste-oil tank excavation soil sample

APPENDIX B
WELL PERMITS

nty Ordinance No. 73-68.

ZONE ZWATER AGENCY

5997 PARKSIDE DRIVE - PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
TIZ LEWELLING BLUD	PERMIT NUMBER 92560 LOCATION NUMBER
SAN LEANDING CA 9	
THE ARCO PO. BOX 6 5811 Voice(415) 571-2435	PERMIT CONDITIONS
CITY SAN MATEO ZIP 94402	Circled Permit Requirements Apply
Name RESNA WIDISTRIES INC	A. GENERAL 1. A parmit application should be submitted so as to arrive at the
Lives 3315 ALMADEN (1974 INT. York (400) 264-7723 CAN SOLE DP 9588	Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Wes
PE OF PROJECT Will Construction Geotechnical investigation Cathodic Protection General	Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval
Water Supply Contamination Monitoring Well Destruction	date. (B. WATER WELLS, INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE Industrial Other Municipal Irrigation	1. Minimum surface seal thickness is two inches of cament grout placed by tramis. 2. Minimum seal depth is 50 feet for municipal and industrial well or 20 feet for comestic and imigation wells unless a lesser.
Mod Rotary Air Rotary Auger HUGU STEM Cable Other	depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backill bote hole with compacted cuttings or heavy bentonite and upper two feet with compacted meterial. In
DELLER'S LICENSE NO. 484288 (C-57)	areas of known or suspected contamination, tramied cament grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hale above aneds sone with concrete placed by
VELL PROJECTS Drill Hole Diameter 8 in. Maximum Casing Diameter 2 in. Depth 80 n. Surface Seal Depth 5 tt. Number 1	tramile. E. WELL DESTRUCTION. See attached.
GEOTECHNICAL PROJECTS Number of Borings Maximum	·
Hale Diameter in. Dapth t.	•
ESTIMATED STARTING DATE 11 -9-92 ESTIMATED COMPLETION DATE 11 -13-92	Approved Wyman Hong Date 4 Nov 92
I hereby agree to comply with all requirements of this permit and Alameda	Wyman Hong

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2800 FAX (510) 452-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
TION OF PROJECT ARCO STATION 601 712 Lewelling Boulevard AN LEANDED (A	PERMIT NUMBER 92500 LOCATION NUMBER
APLD PRODUCTS Company State 70. Box 5800 Phone Ty SAN MATEO Zip	PERMIT CONDITIONS Circled Permit Requirements Apply
APPECANT and RESNA dd as 3315 AND APPEN FIRST Surrest Phone (40.5) 264-7723 TO SAN JUSE TP OF PROJECT responstruction Cathodic Protection Cathodic Protection General Vister Supply Contamination Well Destruction	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS
ROPOSED WATER SUPPLY WELL USE Industrial Other ' Industrial Other ' Industrial Auger Hollow Stem Industry Air Rotary Auger Hollow Stem It R's LICENSE NO. 48488 (C-57)	1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied dement grout shall be used in place of compacted outlings. D. CATHOOIC. Fill hole above anode zone with concrete placed by
THE PROJECTS If Hole Diameter 10 In. Maximum Casing Diameter 4 In. Depth 25 ft. Surface See Depth 5 ft. Number 2 COTECHNICAL PROJECTS	tremie. E. WELL DESTRUCTION, See attached.
Number of Borings It is Diameter It is Diameter Number of Borings In Depth In Dep	Approved Myman Hong Date 9 Oct 92 Wyman Hong

Service No. CITY OF SO APPLICATION TO IN THE PUBLIC	PERFORM WORK	Permit Runber
	elling Blady Son	Date Approved
TOTAL STREET		c .t. 2 4 Tel 1448) 264-7-
Applicant: Name Zinn Industrial Inc. Address 3315 / Owner: Name ARLy Products Cu. Address 2007	50, W 95118 SON N	Tel. (417) 52 743
Purpose of Permit:	944	02
Utility	idewalk, Driveway	ther full in Stallation
Detailed Description and Dimensions of Work:	Charles that	of the west of the
Agridat John Ashport of the Be Co. S.		the state of the s
WORLD DRIVE and INSTALL OF		TWATER DINITORING
WELL ON WASHINGTON TO AUFNUE AC	RUSS FROM THE WI	CRK SIJE (in Sideubik)
Plan Submitted: Yes No No 1 27	Profile Submitted:	
Date Work to be Started: 10-15-92	Date Work To Be Completed	No
wilding Permit Ho.	Atameda County Flood Cont	
Oro Loma Permit No	ann Atalieus Court I The	8
روان المراجع ا	and the second s	THE STATE OF THE S
Applicant has on file, with the City of San Leard	of evidence that dorkban's c	ompensation insurance is carried.
Applicant will not employ anyone so as to become	ubject to the workman's comp	ensation laws of California.
Statement of State Contractor's License: In accordance with Se	ction 7031.5 of the State Bu	siness and Professions Code?
Applicant has State License No.	, Class	In full force and effect.
Applicant is exempt from the State Contractor's L		
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese	d intending to be legally bot this permit and all regulation his permit is to serve as a station of information reques	guaranty for payment of all permit ted from the applicant on this form
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the fire. Further, the undersigned agrees that t	d intending to be legally bot this permit and all regulation his permit is to serve as a	guaranty for payment of all permit ted from the applicant on this form
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misrepreses shall make this permit null and voids.	d intending to be legally bot this permit and all regulation is to serve as a station of information reques	guaranty for payment of all permit ted from the applicant on this form
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: PLEASE CALL 577-27	d intending to be legally bot this permit and all regulation is permit is to serve as a tation of information reques 8. FOR INSPECTIONS	guaranty for payment of all permit ted from the applicant on this form
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the undersigned agrees the undersigned a	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT PROPERTY Any onissis	pate: 10-6-921 Date: 10-6-921 MILE STORY AND CLEAN DELLY to
By the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void provided the city of the City. Signed: Signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required	d intending to be legally bot this permit and all regulation is permit is to serve as a tation of information reques 8. FOR INSPECTIONS Any onissispecify on	pate: 10-6-921 Date: 10-6-921 Whit properties signed Type he Abit LEAND City to this permit any rule, regula-
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and voidy. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required Minimum Depth of Cover	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS Any onissispecify on the property of the property o	pate: 10-6-921 Date: 10-6-921 Will programment signed A OF he AbytLEA NO Fity to this permit any rule, regula- islon, or specification shall the permit the from complying
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start:	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8 FOR INSPECTIONS Any onissispecify on tion, proving the proving specify on the proving specific	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the undersigned agrees that it and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start:	d intending to be legally bot this permit and all regulations permit is to serve as a station of information reques 8. FOR INSPECTIONS Any onises specify on tion, proven the secure with all refrese or of the secure of the se	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONE ONE MONITON IN THE ARONE A	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY omission proving	pate: U-G-921 Date: U-G-921 Pate: U-G-921 WARPEN ANTISATION SIGNED TO PENSON THE ANTISATION SIGNED THE ANTISATI
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misrepress shall make this permit null and void provisions. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: PARONS ONE MONITOR IN WELL A 24 HOURS PRIOR TO COMM MC STANSA	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY omission proving	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void please that the permit null and void please that the provisions of the provisions are shall make this permit null and void please that the provisions of the provisi	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY omission proving	pate: U-G-921 Date: U-G-921 Pate: U-G-921 WARDEN AND CITY to this permit any rule, regulation, or specification shall the permit the from complying equirements of the and approinances and all applicable regressions, and specifications PNANCE OFFICE
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misrepress shall make this permit null and void provisions. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: PARONS ONE MONITOR IN WELL A 24 HOURS PRIOR TO COMM MC STANSA	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY omission proving	pate: U-G-921 Date: U-G-921 Pate: U-G-921 WARDEN AND CITY to this permit any rule, regulation, or specification shall the permit the from complying equirements of the and approinances and all applicable regressions, and specifications PNANCE OFFICE
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the sand/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required AS PLOY STANDARD Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS PLANT OF TO CHARGE ADOPT OF APPLICABLE TO ALL PERMIT WORK	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY omission proving	pate: U-G-921 Date: U-G-921 Pate: U-G-921 WARPEN ANTISATION SIGNED TO PENSON THE ANTISATION SIGNED THE ANTISATI
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: THE PROVISIONS SEE REVERSE SIDE FOR GENERAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECTION RECORD	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT ANY onises specify on tion, proving proving proving proving the all regulations, and the all regulations are specified by the all regulations.	parametry for payment of all permit ted from the applicant on this form Date:
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the sand/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required AS PLOY STANDARD Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS PLANT OF TO CHARGE ADOPT OF APPLICABLE TO ALL PERMIT WORK	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS 8. FOR INSPECTIONS 9. FARL Any omission specify on tion, proven the secure with all respective to the secure of t	pate:
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: THE PROVISIONS SEE REVERSE SIDE FOR GENERAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECTION RECORD	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS 8. FOR INSPECTIONS 9. FARL Any omission specify on tion, proven the secure with all respective to the secure of t	parametry for payment of all permit ted from the applicant on this form Date: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and voidy. Signed: PIEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS APPLICABLE TO ALL PERMIT WORK INSPECIAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECIAL RECORD Inspecial Records Inspecial Re	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT PERMIT FEE RESTORE/IN	pate:
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the and/or inspection charges as billed by the City. Any misreprese shall make this permit null and voidy. Signed: PIEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS APPLICABLE TO ALL PERMIT WORK INSPECIAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECIAL RECORD Inspecial Records Inspecial Re	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT PERMIT FEE RESTORE/INDIA RESTORE/INDI	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that the analysis of inspection charges as billed by the City. Any misreprese shall make this permit null and void provisions. Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required AS AS CITY STANDARD Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS ONE PROVISIONS SEE REVERSE SIDE FOR GENERAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECTION RECORD	d intending to be legally bot this permit and all regulations permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT PERMIT FEE RESTORED ANY OMISSISSISSISSISSISSISSISSISSISSISSISSISS	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Sy the application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that it and/or inspection charges as billed by the City. Any misreprese shall make this permit null and void. Signed: PLEASE CALL 577-27 PLEASE CALL 577-27 PLEASE CALL 577-27 PLEASE CALL 577-27 PROVISIONS Backfill Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS PARMED AND THE MAN AND THE ARONES AND THE CHARGE AND APPLICABLE TO ALL PERMIT WORK INSPECTION RECORD Date Comments INSPECTION RECORD HOURS forwarded from reverse thousands and the comments of the commen	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS PERMIT PERMIT FEE RESTORE/IN PERMIT FEE RESTORE/IN STREET CUT JOTALS All Consumers of the consumers o	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Systhe application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that it and/or inspection charges as billed by the City. Any misreprese shall make this permit null and voids. Signed: Signed: PIEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required As APP CITY STANDARD Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: COUNTY FOR ADDITY CITY INSA 24 HOURS PRIOR TO PERMIT WORK INSPECTION RECORD Date Comments Inspection Record	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS 2. PERMIT PERMIT FEE Any onissis specify not excuse with all regulations, sometimes are considered by the permit of the permit in the permit i	Date: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -
Systhe application and acceptance of this permit, the undersigned performed will be in accordance with all applicable provisions of as adopted by the City. Further, the undersigned agrees that it and/or inspection charges as billed by the City. Any misreprese shall make this permit null and voids. Signed: Signed: PLEASE CALL 577-27 SPECIAL PROVISIONS Backfill Required As AS CITY STANDARD Pavement Section Required Minimum Depth of Cover Police & Fire Dept, to be notified 24 hours prior to start: ARONS PLEAS ADTIFY CITY INSA 24 HOURS PLOAD TO COMMON SEE REVERSE SIDE FOR GENERAL PROVISIONS APPLICABLE TO ALL PERMIT WORK INSPECTION RECORD HOTE: 1 hr. minimum charge PORT OF WARD AND TO STANDARD INSPECTION RECORD HOURS FOR WARD AND TO STANDARD INSPECTION RECORD	d intending to be legally bot this permit and all regulation is permit is to serve as a station of information reques 8. FOR INSPECTIONS 2. PERMIT PERMIT FEE Any onissis specify not excuse with all regulations, sometimes are considered by the permit of the permit in the permit i	pate: 1 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -

APPENDIX C FIELD PROTOCOL

March 3, 1993 69034.10

FIELD PROTOCOL

The following presents RESNA Industries' field protocol for a typical site investigation involving petroleum-impacted soil and/or groundwater.

Site Safety Plan

The Site Safety Plan describes the safety requirements for the evaluation of gasoline hydrocarbons in soil, groundwater, and the vadose-zone at the site. The site Safety Plan is applicable to personnel of RESNA Industries and its subcontractors. RESNA Industries personnel and subcontractors of RESNA Industries scheduled to perform the work at the site are briefed on the contents of the Site Safety Plan before work begins. A copy of the Site Safety Plan is available for reference by appropriate parties during the work. A site Safety Officer is assigned to the project.

Sampling of Stockpiled Soil

One composite soil sample is collected for each 50 cubic yards of stockpiled soil, and for each individual stockpile composed of less than 50 cubic yards. Composite soil samples are obtained by first evaluating relatively high, average, and low areas of hydrocarbon concentration by digging approximately one to two feet into the stockpile and placing the intake probe of a field calibrated OVM against the surface of the soil; and then collecting one sample from the "high" reading area, and three samples from the "average" areas. Samples are collected by removing the top one to two feet of soil, then driving laboratory-cleaned brass sleeves into the soil. The samples are sealed in the sleeves using aluminum foil, plastic caps, and aluminized duct tape; labeled; and promptly placed in iced storage for transport to the laboratory, where compositing is performed.

Soil Borings

Prior to the drilling of borings and construction of monitoring wells, permits are acquired from the appropriate regulatory agency. In addition to the above-mentioned permits, encroachment permits from the City or State are acquired if drilling of borings offsite on City or State property is necessary. Copies of the permits are included in the appendix of the project report. Prior to drilling, Underground Services Alert (USA) is notified of our intent to drill, and known underground utility lines and structures are approximately marked.

March 3, 1993 69034.10

The borings are drilled by a truck-mounted drill rig equipped with 8- or 10-inch-diameter, hollow-stem augers. The augers are steam-cleaned prior to drilling each boring to minimize the possibility of cross-contamination. After drilling the borings, monitoring wells are constructed in the borings, or neat-cement grout with bentonite is used to backfill the borings to the ground surface.

Borings for groundwater monitoring wells are drilled to a depth of no more than 20 feet below the depth at which a saturated zone is first encountered, or a short distance into a stratum beneath the saturated zone which is of sufficient texture, moisture, and consistency to be judged as a perching layer by the field geologist, whichever is shallower. Drilling into a deeper aquifer below the shallowest aquifer is begun only after a conductor casing is properly installed and allowed to set, to seal the shallow aquifer.

Drill Cuttings

Drill cuttings subjectively evaluated as containing gasoline hydrocarbons at levels greater than 100 parts per million (ppm) are separated from those subjectively evaluated as containing gasoline hydrocarbons at levels less than 100 ppm. Evaluation is based either on subjective evidence of soil discoloration, or on measurements made using a field calibrated OVM. Readings are taken by placing a soil sample into a ziplock-type plastic bag and allowing volatilization to occur. The intake probe of the OVM is then inserted into the headspace created in the plastic bag immediately after opening it. The drill cuttings from the borings are placed in labeled 55-gallon drums approved by the Department of Transportation, or on plastic at the site, and covered with plastic. The cuttings remain the responsibility of the client.

Soil Sampling in Borings

Soil samples are collected at no greater than 5-foot intervals from the ground surface to the total depth of the borings. The soil samples are collected by advancing the boring to a point immediately above the sampling depth, and then driving a California-modified, split-spoon sampler containing brass sleeves through the hollow center of the auger into the soil. The sampler and brass sleeves are laboratory-cleaned, steam-cleaned, or washed thoroughly with Alconox® and water, prior to each use. The sampler is driven with a standard 140-pound hammer repeatedly dropped 30 inches. The number of blows to drive the sampler each successive six inches are counted and recorded to evaluate the relative consistency of the soil.

March 3, 1993 69034.10

The samples selected for laboratory analysis are removed from the sampler and quickly sealed in their brass sleeves with aluminum foil, plastic caps, and plastic zip-lock bags or aluminized duct tape. The samples are then labeled, promptly placed in iced storage, and delivered to a laboratory certified by the State of California to perform the analyses requested.

One of the samples in brass sleeves not selected for laboratory analysis at each sampling interval is tested in the field using an OVM that is field calibrated at the beginning of each day it is used. This testing is performed by inserting the intake probe of the OVM into the headspace in the plastic bag containing the soil sample as described in the Drill Cuttings section above. The OVM readings are presented in Logs of Borings included in the project report.

Logging of Borings

A geologist is present to log the soil cuttings and samples using the Unified Soil Classification System. Samples not selected for chemical analysis, and the soil in the sampler shoe, are extruded in the field for inspection. Logs include texture, color, moisture, plasticity, consistency, blow counts, and any other characteristics noted. Logs also include subjective evidence for the presence of gasoline hydrocarbons, such as soil staining, noticeable or obvious product odor, and OVM readings.

Monitoring Well Construction

Monitoring wells are constructed in selected borings using clean 2- or 4-inch-diameter, thread-jointed, Schedule 40 polyvinyl chloride (PVC) casing. No chemical cements, glues, or solvents are used in well construction. Each casing bottom is sealed with a threaded endplug, and each casing top with a locking plug. The screened portions of the wells are constructed of machine-slotted PVC casing with 0.020-inch-wide (typical) slots for initial site wells. Slot size for subsequent wells may be based on sieve analysis and/or well development data. The screened sections in groundwater monitoring wells are placed to allow monitoring during seasonal fluctuations of groundwater levels.

The annular space of each well is backfilled with No. 2 by 12 sand, or similar sorted sand, to approximately two feet above the top of the screened casing for initial site wells. The sand pack grain size for subsequent wells may be based on sieve analysis and/or well development data. A 1- to 2-foot-thick bentonite plug is placed above the sand as a seal against cement entering the filter pack. The remaining annulus is then backfilled with a

March 3, 1993 69034.10

slurry of water, neat cement, and bentonite to approximately one foot below the ground surface.

An aluminum utility box with a PVC apron is placed over each wellhead and set in concrete placed flush with the surrounding ground surface. Each wellhead cover has a seal to protect the monitoring well against surface-water infiltration and requires a special wrench to open. The design discourages vandalism and reduces the possibility of accidental disturbance of the well.

Groundwater Monitoring Well Development

The monitoring wells are developed by bailing or over-pumping and surge-block techniques. The wells are either bailed or pumped, allowed to recharge, and bailed or pumped again until the water removed from the wells is determined to be clear. Turbidity measurements (in NTUs) are recorded during well development and are used in evaluating well development. The development method used, initial turbidity measurement, volume of water removed, final turbidity measurement, and other pertinent field data and observations are recorded. The wells are allowed to equilibrate for at least 48 hours after development prior to sampling. Water generated by well development is stored in 17E Department of Transportation (DOT) 55-gallon drums on site, and remains the responsibility of the client.

Sample Labeling and Handling

Sample containers are labeled in the field with the job number, sample location and depth, and date, and promptly placed in iced storage for transport to the laboratory. A Chain of Custody Record is initiated by the field geologist and updated throughout handling of the samples, and accompanies the samples to a laboratory certified by the State of California for the analyses requested. Samples are transported to the laboratory promptly to help ensure that recommended sample holding times are not exceeded. Samples are properly disposed of after their useful life has expired.

APPENDIX D WELLHEAD SURVEY

JOHN E. KOCH Land Surveyor CA. State Lic. No. LS4811 5427 Telegraph Ave., Suite A Oakland, CA 94609 (510)655-9956 FAX(510)655-9745

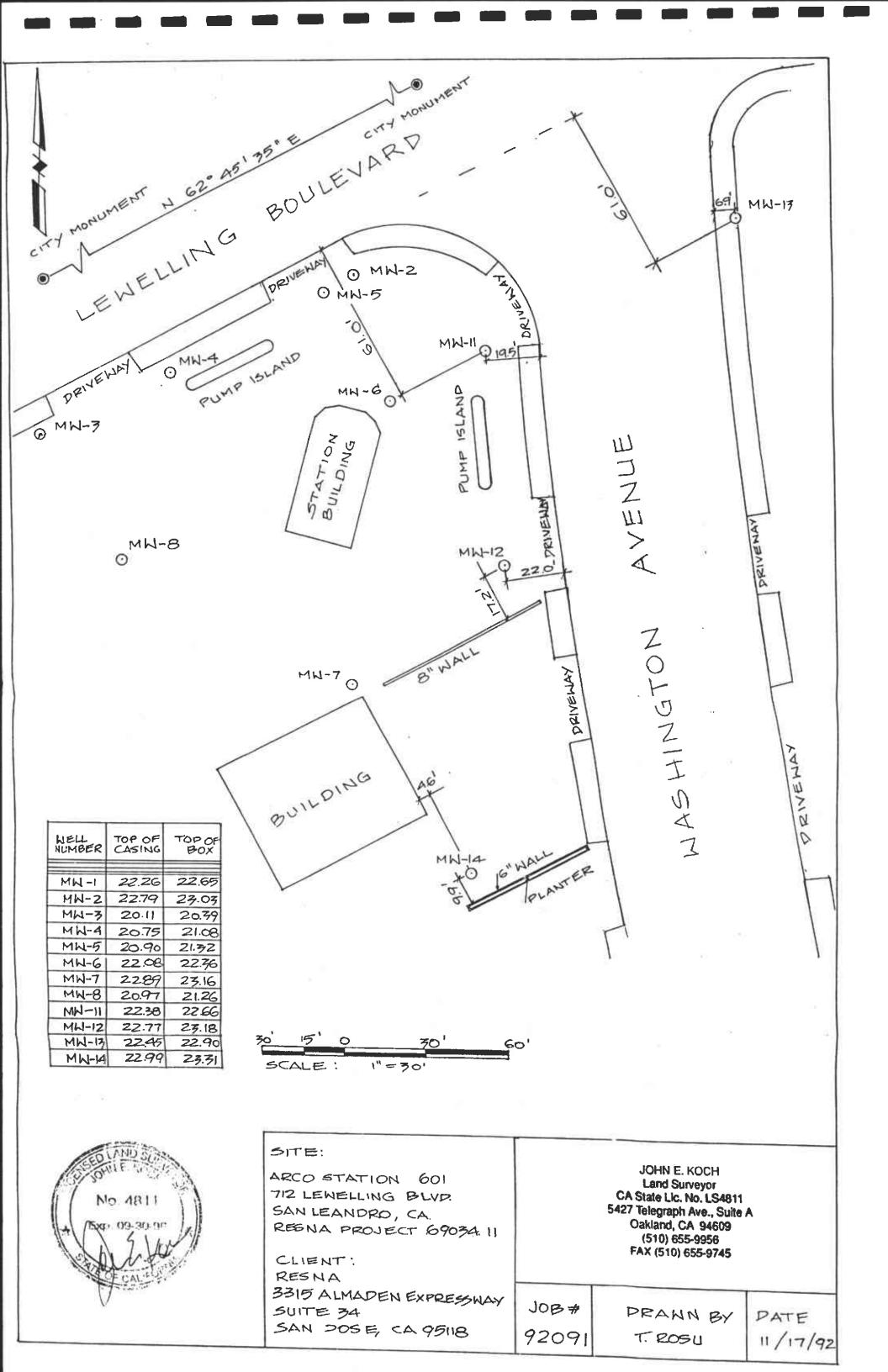
RESNA 3315 Almaden Expressway, Suite 34 San Jose, CA 95118 (408)264-7723 FAX(408)264-2435

02/01/93

Tabulation of Elevations as of 03:00 p.m. 11/11/92

Job #92091*revised
RESNA Project # 69034.11
Project Manager: Joel Coffman
Site: Arco Station 601
712 Lewelling Boulevard
@ Washington Ave.
San Leandro, CA

BENCHMARK: Cinch nail on curb at Storm Water Inlet at NW corner of the intersection of Lewelling and Washington (El. 21.107').


MONITOR WELL DATA TABLE

Well Designation	Elevation	Description
MW-1	22.26 22.65	Top of PVC casing Top of Box
HW-2	21.33* 21.57*	Top of PVC casing Top of Box
MM-3	20.11 20.39	Top of PVC casing Top of Box
MW-4	20.75 21.08	Top of PVC Casing Top of Box
MW-5	20.90 21.32	Top of PVC Casing Top of Box
MW-6	22.08 22.36	Top of PVC Casing Top of Box

JOHN E. KOCH, P.L.S.	RESNA PROJ. #69034.11	JEK JOB #92091
MW-7		Top of PVC Casing Top of Box
MW-8		Top of PVC Casing Top of Box
MW-11		Pop of PVC Casing Pop of Box
MW-12		Top of PVC Casing Top of Box
MW-13		Top of PVC Casing Top of Box
MW-14		Top of PVC Casing Top of Box

NOTES:

- 1. Datum is City of San Leandro= 1973 Adj., NGS
- Top of PVC Casing elevation located on the top of a 4" PVC for MW-1, 3 through 7, 11, 12 and on the top of a 2" PVC for MW-13, 14.
- Top of Box elevation located at the rim of "Christie" box for all wells.
- 4. * denotes that the elevation arrived at was achieved by subtracting the mean differential of 0.73 feet found between the current elevations of MW-1 (0.72') and MW-3 (0.73') and previous data of 07/17/90 provided by client. MW-2 was not surveyed on the above date.
- 5. MW-1 and MW-3 through 8 were surveyed on 06\20\91 (JEK JOB #91037).
- 6. TOC elevation of MW-2 was surveyed on 02/01/93 and found to be 21.33' as given on report of 06/20/91 (JEK JOB #91037).

APPENDIX E

CHAIN OF CUSTODY RECORDS AND LABORATORY ANALYTICAL REPORTS OF SOIL SAMPLES

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Matrix:

ARCO 601, San Leandro

Soil

Analysis Method: EPA 5030/8015/8020 First Sample #:

210-2075

Sampled:

Oct 12, 1992

Received: Oct 13, 1992 Reported: Oct 21, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 210-2075 S-5.5-B17	Sample I.D. 210-2076 S-9-B17	Sample I.D. 210-2077 S-14-B17	Sample I.D. 210-2078 S-6-B16	Sample I.D. 210-2079 S-8-B16	Sample I.D. 210-2080 S-15.5-B16
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	87	N.D.
Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Toluene	0.0050	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	N.D.	8.4	N.D.
Total Xylenes	0.0050	N.D.	N.D.	0.025	N.D.	37	N.D.
Chromatogram Pat	tern:	i.		•-		Gas & Non-Gas Mix C4 - C12	

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	50	1.0
Date Analyzed:	10/15/92	10/15/92	10/19/92	10/19/92	10/15/92	10/15/92
Instrument Identification:	GCHP-6	GCHP-6	GCHP-7	GCHP-1	GCHP-1	GCHP-6
Surrogate Recovery, %: (QC Limits = 70-130%)	92	88	113	111	114	74

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102075.RES <1>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102075-80

Reported: Oct 21, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
	Benzene	Toluene	benzene	Xylenes	
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 R. Lee mg/kg Oct 19, 1992 GBLK101992	EPA 8020 R. Lee mg/kg Oct 19, 1992 GBLK101992		EPA 8020 R. Lee mg/kg Oct 19, 1992 GBLK101992	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	0.20	0.20	0.20	0.60	
Conc. Matrix Spike:	0.22	0.22	0.22	0.64	
Matrix Spike % Recovery:	110	110	110	107	
Conc. Matrix Spike Dup.:	0.22	0.21	0.21	0.63	
Matrix Spike Duplicate % Recovery:	. 110	105	105	105	
Relative % Difference:	0.0	4.7	4.7	1.6	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
	Spike Conc. Added	•	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		·

2102075.RE\$ <2>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102075-80

Reported: Oct 21, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	benzene	Xylenes
			·	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020
Analyst:	C. Donohue	C. Donohue	C. Donohue	C. Donohue
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date Analyzed: QC Sample #:	Oct 19, 1992 GBLK101992	Oct 19, 1992		Oct 19, 1992
QC Sample #.	MS/MSD	GBLK101992 MS/MSD	GBLK101992 MS/MSD	GBLK101992 MS/MSD
	NIO/NIOD	IVIO/IVIOD	MIG/MIGID	MIS/MISD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	0.20	0.20	0.20	0.60
,	0.20	0.20	0.20	0.00
Conc. Matrix				
Spike:	0.23	0.22	0.22	0.68
Matrix Spike				
% Recovery:	115	110	110	113
•				
Come Metric				
Conc. Matrix Spike Dup.:	0.20	0.20	0.20	0.58
opike Dup	0.20	0.20	0.20	0.58
Matrix Spike	•			
Duplicate				
% Recovery:	100	100	100	97
Relative				
% Difference:	14	9.5	9.5	16
	• ,	0.0	3.5	10

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Maria Lee Hroject Manager
 % Recovery:
 Conc. of M.S. - Conc. of Sample
 x 100

 Spike Conc. Added
 Spike Conc. Added
 x 100

 Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 (Conc. of M.S. + Conc. of M.S.D.) / 2
 x 100

2102075.RES <3>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102075-80

Reported: Oct 21, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
	Benzene	Toluene	benzene	Xylenes	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	R. Lee	R. Lee	R. Lee	R. Lee	
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg	
Date Analyzed:	Oct 15, 1992	Oct 15, 1992		Oct 15, 1992	
QC Sample #:	GBLK101492	GBLK101492	GBLK101492		
a o oampio ,,	00011101402	GDENTOTTO	GBG(101482	GBER 10 1492	
Sample Conc.:	N.D.	N.D.	N.D.	ND	
Sample Conc.,	N.D.	IN.D.	N.D.	N.D.	
Calles Cons					
Spike Conc. Added:	0.00	0.00			
Addea:	0.20	0.20	0.20	0.60	
Conc. Matrix					
Spike:	0.24	0.23	0.23	0.70	
Matrix Spike					
% Recovery:	120	115	115	117	
Conc. Matrix					
Spike Dup.:	0.24	0.24	0.23	0.71	
Madeiro Onthe					
Matrix Spike Duplicate					
% Recovery:	120	120	115	118	
	,20	izu	110	110	
Dalation					
Relative % Difference:	0.0	4.2	0.0	1.4	
's rinerence.	0.0	7.4	0.0	1.4	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added	-	
Relative % Difference:	Conc. of M.S Conc. of M,S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		
		2102075.RE	S <4>

ARCO	Prod Divisio	ucts	Comp					Task O	rder No.	60	1.9	<u>)</u> -	2								,		Chain of Custody
ARCO Faci	lity no.	60		Cit (Fi	y acility)	500	Telepho	127273		Project	manag	jer -	Too	<u></u>	Cor	FM	AN		,				Laboratory name
ARCO engi	name {:`S/V	1165 A 11	<u>- Wi</u>	TRIF	<u>N</u> S 111	/C	(ARĆO)	Address (Consulta	ant) 33/5	(Consu	Itant) I/I <i>DY</i>	(40 W	1 × 100	164) 1,50	11,13 111E	34/	nsultai	ng P	Deg.	543. CA.	951	1/8	Contract number
		"		Matrix		1	ervation					l							10/7000		14	<u>y</u>	Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 801. Gas 🗀 Diesel	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	CAM Metals EPA 60 TTLC STLC	Lead Org./DHS Clead EPA	Hold +0. Pb	analysis	
5-5-5-4	B17					سسا		10-12			·	-											Special detection Limit/reporting
5-75-24	B/7	ļ	<u>اسا</u>			L		10 12													/]
5.9.BH	Bij	ļ <u>.</u>	V	ļ <u>.</u>	ļ	U.	<u> </u>	.00					<u></u>]
9.9 BHG	817	ļ				V	<u> </u>	10-12			ļ										سسسا		Special QA/QC
-J.7 - Sister	BIT	ļ <u>.</u>	V			U.		10-12]
-10.55-EA	BN	<u> </u>	1			V		10-12						•					<u>.</u>		سسا	ļ	
14 Ata	B17	ļ	ium.		ļ	~	ļ	10-12			lore a												Remarks
6.47	116	_	in	ļ	ļ	<i>U</i>		16-17			سسا												* Corthes being
OF BA	BIL	ļ	1			<i>L</i>		11 13			مسديا												for Trily + BIEX Ther be held for #?
10 819 5 15 819 5 15 819	Blb	<u> </u>	V		<u> </u>	1	ļ	11. 42		<u> </u>					ļ								_
5-12 13-43	B16	<u> </u>	100			2,000		10 10		ļ	_												首 行
<u> 215 Sep</u>	Blb	<u> </u>	1			L		10-2		ļ											ļ		
																							Lab number
		,																					Turnaround time
Condition o	f sample:									Tempi	erature	receive	ad:										Priority Rush 1 Business Day
Relinquishe Relinquishe	d by san		Len	1			Date // ~/ Date	3-92	Time //25 Time	Recei			a	7	ia	N	1	<u></u>					Rush 2 Business Days Expedited 5 Business Days [
Relinquishe	d by	·					Date		Time	Receiv	ved by	laborat	ory			ם [Date			Time			Standard 10 Business Days

3079. H

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

OCT 2 9 1992

RESNA SAN JOSE

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman

Project: ARCO 601, San Leandro

Enclosed are the results from 9 soil samples received at Sequoia Analytical on October 13,1992. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
2102066	Soil, S-4.5-B20	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102067	Soil, S-7.5-B20	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102068	Soil, S-17-B20	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102069	Soil, S-4.5-B21	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102070	Soil, S-7.5-B21	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Matrix:

ARCO 601, San Leandro

Soil

Analysis Method: EPA 5030/8015/8020 First Sample #:

210-2066

Sampled:

Oct 12, 1992

Received: Reported:

Oct 13, 1992 Oct 27, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 210-2066 \$-4.5-B20	Sample I.D. 210-2067 S-7.5-B20	Sample I.D. 210-2068 \$-17-B20	Sample I.D. 210-2069 S-4.5-B21	Sample I.D. 210-2070 S-7.5-B21	Sample I.D. 210-2071 S-16.5-B21
Purgeable Hydrocarbons	1.0	N.D.	30	N.D.	6.1	460	2.8
Benzene	0.0050	0.074	0.40	N.D.	0.42	14	0.013
Toluene	0.0050	N.D.	N.D.	N.D.	0.0070	2.4	N.D.
Ethyl Benzene	0.0050	N.D.	0.88	N.D.	0.10	9.6	0.056
Total Xylenes	0.0050	0.034	0.96	N.D.	0.17	14	0.18
Chromatogram Pat	tern:		Gas	 -	Non-Gas Mix C4 - C12	Gas	Gas

Quality Control Data

Report Limit Multiplication Factor:	1.0	20	1.0	1.0	400	1.0
Date Analyzed:	10/15/92	10/15/92	10/15/92	10/15/92	10/15/92	10/15/92
Instrument Identification:	GCHP-6	GCHP-6	GCHP-6	GCHP-1	GCHP-6	GCHP-6
Surrogate Recovery, %: (QC Limits = 70-130%)	118	73	100	111	129	120

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <1>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992

Sample Matrix: Analysis Method: Soil

EPA 5030/8015/8020

Received:

Oct 13, 1992

loel Coffman Fi

First Sample #:

210-2072

Reported: Oct 27, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 210-2072 S-4.5-B22	Sample I.D. 210-2073 S-7.5-B22	
Purgeable Hydrocarbons	1.0	460	760	N.D.
Benzene	0.0050	29	3.6	0.014
Toluene	0.0050	11	3.2	0.027
Ethyl Benzene	0.0050	10	12	0.014
Total Xylenes	0.0050	28	43	0.070
Chromatogram Pati	tern:	Gas	Gas	

Quality Control Data

Report Limit Multiplication Facto	r: 400	50	1.0
Date Analyzed:	10/19/92	10/19/92	10/15/92
Instrument Identification:	GCHP-1	GCHP-1	GCHP-6
Surrogate Recovery, %: (QC Limits = 70-130%) *Coelution confirmed	112	141*	110

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES <2>

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
2102071	Soil, S-16.5-B21	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102072	Soil, S-4.5-B22	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102073	Soil, S-7.5-B22	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)
2102074	Soil, S-16.5-B22	10/12/92	Cadmium, Chromium, Lead Zinc, Nickel EPA 3550/8015 EPA 5030/8015/8020 EPA 8240 EPA 8270 SM 5520 E&F (Gravimetric)

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Maria Lee Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992

Sample Matrix: Analysis Method:

Soil

Received:

Oct 13, 1992

First Sample #:

EPA 3550/8015 210-2066 Reported:

Oct 27, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit mg/kg	Sample I.D. 210-2066 S-4.5-B20	Sample I.D. 210-2067 S-7.5-B20	Sample I.D. 210-2068 S-17-B20	Sample I.D. 210-2069 S-4.5-B21	Sample I.D. 210-2070 S-7.5-B21	Sample I.D. 210-2071 \$-16.5-B21
Extractable Hydrocarbons	1.0	N.D.	300	N.D.	2.2	2,000	N.D.
Chromatogram Pa	ttern:	• •	Non-Diesel Mix C9 - C14		Non-Diesel Mix C9 - C13	Non-Diesel Mix C9 - C13	

Quality Control Data

Report Limit Multiplication Factor:	1.0	10	1.0	1.0	50	1.0
Date Extracted:	10/19/92	10/19/92	10/19/92	10/19/92	10/19/92	10/19/92
Date Analyzed:	10/19/92	10/20/92	10/19/92	10/19/92	10/20/92	10/19/92
Instrument Identification:	GCHP-5	GCHP-5	GCHP-5	GCHP-5	GCHP-5	GCHP-5

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES <3>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992

Sample Matrix:

Soil

Received:

Oct 13, 1992

Analysis Method: First Sample #:

d: EPA 3550/8015 210-2072 Reported:

Oct 27, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit mg/kg	Sample I.D. 210-2072 S-4.5-B22	Sample I.D. 210-2073 S-7.5-B22	Sample I.D. 210-2074 S-16.5-B22
Extractable Hydrocarbons	1.0	300	390	N.D.
Chromatogram Patte	ern:	Non-Diesel Mix C9 - C13	Non-Diesel Mix C9 - C14	

Quality Control Data

Report Limit Multiplication Factor:	20	10	1.0
Date Extracted:	10/19/92	10/19/92	10/19/92
Date Analyzed:	10/20/92	10/20/92	10/19/92
Instrument Identification:	GCHP-5	GCHP-5	GCHP-5

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Rroject Manager

2102066.RES <4>

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Matrix Descript:

Soil d: SM 5520 E&F (Gravimetric)

Analysis Method: SM 5520 First Sample #: 210-2066

Sampled:

Oct 12, 1992

Received:

Oct 13, 1992 Oct 19, 1992

Extracted: Analyzed: Reported:

Oct 19, 1992 Oct 27, 1992

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg
210-2066	S-4.5-B20	N.D.
210-2067	S-7.5-B20	430
210-2068	S-17-B20	N.D.
210-2069	S-4.5-B21	N.D.
210-2070	S-7.5-B21	1,200
210-2071	S-16.5-B21	N.D.
210-2072	S-4.5-B22	93
210-2073	\$-7.5-B22	82
210-2074	S-16.5-B22	N.D.

Detection Limits:

50

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES <5>

Lab Number:

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B20 Analysis Method: EPA 8240

210-2066

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Analyzed: Oct 19, 1992 Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
	L919		P3/ ~3
Acetone	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzene	100	***************************************	N.D.
Bromodichloromethane	100		N.D.
Bromoform	100	***************************************	N.D.
Bromomethane	100	***************************************	N.D.
2-Butanone	500	****************************	N.D.
Carbon disulfide	100		N.D.
Carbon tetrachioride	100		N.D.
Chlorobenzene	100		N.D.
Chloroethane	100	*******************************	N.D.
2-Chloroethyl vinyl ether	500	***************************************	N.D.
Chloroform	100	***************************************	N.D.
Chloromethane	100	*******************************	N.D.
Dibromochloromethane	100	***************************************	N.D.
1,1-Dichloroethane	100		N.D.
1,2-Dichloroethane	100	***********	N.D.
1,1-Dichloroethene	100		N.D.
cis-1,2-Dichloroethene	100	***************************************	N.D.
trans-1,2-Dichloroethene	100		N.D.
1,2-Dichloropropane	100	***************************************	N.D.
cis-1,3-Dichloropropene	100	******************************	N.D.
trans-1,3-Dichloropropene	100	*****************************	N.D.
Ethylbenzene	100	***************************************	N.D.
2-Hexanone	500	**********************************	N.D.
Methylene chloride	250	><68><68<	N.D.
4-Methyl-2-pentanone	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachioroethane	100	**************************	N.D.
Tetrachioroethene	100	453445646646646646546446646646646	N.D.
Toluene	100	************************	N.D.
1,1,1-Trichloroethane	100	***************************************	N.D.
1,1,2-Trichloroethane	100	************	N.D.
Trichloroethene	100	******************************	N.D.
Trichlorofluoromethane	100	*******************************	N.D.
Vinyl acetate	100	*******************************	N.D.
Vinyl chloride	100	140444	N.D.
Total Xylenes	100	177110040041111111111111111111111111111	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES <6>

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B20 Analysis Method: **EPA 8240** Lab Number:

210-2067

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Oct 19, 1992 Analyzed: Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit μg/kg		Sample Results µg/kg
Acetone	500	***************************************	N.D.
Benzene	100	***************************************	480
Bromodichloromethane	100		N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	500		N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	1.41.411.41.41.41.11.11.41.41.41.41.41.4	N.D.
Chloroethane	100		N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100		N.D.
Chloromethane	100	*******************************	N.D.
Dibromochloromethane	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1-Dichloroethane	100		N.D.
1,2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100	****************************	N.D.
cis-1,2-Dichloroethene	100	**************************	N.D.
trans-1,2-Dichloroethene	100	*******************************	N.D.
1,2-Dichloropropane	100	************	N.D.
cis-1,3-Dichloropropene	100	***************************************	N.D.
trans-1,3-Dichloropropene	100		N.D.
Ethylbenzene	100		. 2,600
2-Hexanone	500		N.D.
Methylene chloride	250	*******************************	N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100	***************************************	N.D.
1,1,2,2-Tetrachloroethane	100	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Tetrachloroethene	100		N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane	100	***************************************	N.D.
1,1,2-Trichloroethane	100	***************************************	N.D.
Trichloroethene	100		N.D.
Trichlorofluoromethane	100		N.D.
Vinyl acetate	100		N.D.
Vinyl chloride	100	***************************************	N.D.
Total Xylenes	100	******************************	CONTRACTOR OF THE STATE OF THE

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <7>

3315 Almaden Expwy., Suite 34

Attention: Joel Coffman

Client Project ID: Sample Descript: ARCO 601, San Leandro

Sampled:

Oct 12, 1992

San Jose, CA 95118

Analysis Method:

Soil, S-17-B20 **EPA 8240**

Received: Analyzed: Oct 13, 1992 Oct 19, 1992

Lab Number:

210-2068

Reported:

Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene	100	*******************************	N.D.
Bromodichloromethane	100		N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	500		N.D.
Carbon disulfide	100	*****************************	N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	*****************************	N.D.
Chloroethane	100	******************************	N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100	******************************	N.D.
Chloromethane	100		N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100		N.D.
1,2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100	*	N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100	*******************************	N.D.
1,2-Dichloropropane	100	***************************************	N.D.
cis-1,3-Dichloropropene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
trans-1,3-Dichloropropene	100		N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500		N.D.
Methylene chloride	250		N.D.
4-Methyl-2-pentanone	500		N.D.
Styrené	100	***************************************	N.D.
1,1,2,2-Tetrachloroethane	100		N.D.
Tetrachloroethene	100		N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane	100		N.D.
1,1,2-Trichloroethane	100		N.D.
Trichloroethene	100		N.D.
Trichlorofluoromethane	100		N.D.
Vinyl acetate	100		N.D.
Vinyl chloride	100		N.D.
Total Xylenes	100	(8+45+45144+45+45+45+45+45+45+45+45+45+45+45+45+4	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <8>

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B21 Analysis Method: EPA 8240 Lab Number:

210-2069

Sampled: Oct 12, 1992

Received: Oct 13, 1992 Analyzed: Oct 19, 1992 Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene	100	**************************	
Bromodichloromethane			N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	===	***************************************	N.D.
Carbon disulfide	100	***************************************	N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	4	N.D.
Chloroethane	100		N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100		N.D.
Chloromethane	100	**********	N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100		N.D.
1,2-Dichloroethane	100	1	N.D.
1,1-Dichloroethene			N.D.
cis-1,2-Dichloroethene	100	*********************************	N.D.
trans-1,2-Dichloroethene	100		N.D.
1,2-Dichloropropane	100		N.D.
cis-1,3-Dichloropropene	100		N.D.
trans-1,3-Dichloropropene	100	***********	N.D.
Ethylbenzene	100	***********	N.D.
2-Hexanone	500		N.D.
Methylene chloride			N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachloroethane	100		N.D.
Tetrachloroethene	100	***************************************	N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane.	100		N.D.
1,1,2-Trichloroethane	100		N.D. N.D.
Trichloroethene	100	***************************************	N.D. N.D.
Trichlorofluoromethane		******************************	N.D. N.D.
	100	********************************	
Vinyl acetate	100	*******************************	N.D.
Vinyl chloride	100 100		N.D. . 130

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <9>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B21 Analysis Method: **EPA 8240** Lab Number:

210-2070

Sampled: Oct 12, 1992 Received:

Oct 13, 1992 Oct 19, 1992 Analyzed: Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	5,000		N.D.
Benzene	1,000	*************************	2,100
Bromodichloromethane	1,000		N.D.
Bromoform	1,000	***************************************	N.D.
Bromomethane	1,000		N.D.
2-Butanone	5,000	***************************************	N.D.
Carbon disulfide	1,000	*************************************	N.D.
Carbon tetrachloride	1,000		N.D.
Chlorobenzene	1,000	*******************************	N.D.
Chloroethane	1,000	*****************************	N.D.
2-Chloroethyl vinyl ether	5,000	44	N.D.
Chloroform	1,000	***************************************	N.D.
Chloromethane	1,000		N.D.
Dibromochloromethane	1,000		N.D.
1,1-Dichloroethane	1,000		N.D.
1,2-Dichloroethane	1,000		N.D.
1,1-Dichloroethene	1,000		N.D.
cis-1,2-Dichloroethene	1,000	4	N.D.
trans-1,2-Dichloroethene	1,000		N.D.
1,2-Dichloropropane	1,000		N.D.
cis-1,3-Dichloropropene	1,000	************	N.D.
trans-1,3-Dichloropropene	1,000		N.D.
Ethylbenzene	1,000	***************************************	**************************************
2-Hexanone	5,000		N.D.
Methylene chloride	2,500		N.D.
4-Methyl-2-pentanone	5,000		N.D.
Styrene	1,000		N.D.
1,1,2,2-Tetrachloroethane	1,000		N.D.
Tetrachloroethene	1,000		N.D.
Toluene	1,000		N.D.
1,1,1-Trichloroethane	1,000		N.D.
1,1,2-Trichloroethane	1,000		N.D.
Trichloroethene	1,000		N.D.
Trichlorofluoromethane	1,000		N.D.
Vinyl acetate	1,000		N.D.
Vinyl chloride	1,000		N.D.
Total Xylenes	1.000		**************************************

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES < 10>

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-16.5-B21
Analysis Method: EPA 8240
Lab Number: 210-2071

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Analyzed: Oct 19, 1992 Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene	100		N.D.
Bromodichloromethane	100		N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	500		N.D.
Carbon disulfide	100		N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100		N.D.
Chloroethane	100		N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100		N.D.
Chloromethane	100	***************************************	N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100	***************************************	N.D.
1,2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100	***************************************	N.D.
cis-1,2-Dichloroethene	100		N.D.
trans-1,2-Dichloroethene	100		N.D.
1,2-Dichloropropane	100		N.D.
cis-1,3-Dichloropropene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
trans-1,3-Dichloropropene	100		N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500		N.D.
Methylene chloride	250	14	N.D.
4-Methyl-2-pentanone	500	,	N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachloroethane	100		N.D.
Tetrachloroethene	100	4014414141414	N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane	100		N.D.
1,1,2-Trichloroethane	100	4,,4,,4,,4,,4,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Trichloroethene	100		N.D.
Trichlorofluoromethane	100	•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Vinyl acetate	100	***************************************	N.D.
Vinyl chloride	100	***************************************	N.D.
Total Xylenes	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES < 11 >

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B22 Analysis Method: EPA 8240

Lab Number: 210-2072

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Analyzed: Oct 20, 1992 Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit μg/kg		Sample Results μg/kg
Acetone	6,300		N.D.
Benzene	1,300		57,000
Bromodichloromethane	1,300	***************************************	N.D.
Bromoform	1,300	***************************************	N.D.
Bromomethane	1,300	,,,,,	N.D.
2-Butanone	6,300		N.D.
Carbon disulfide	1,300		N.D.
Carbon tetrachloride	1,300		N.D.
Chlorobenzene	1,300		N.D.
Chloroethane	1,300		N.D.
2-Chloroethyl vinyl ether	6,300	***************************************	N.D.
Chloroform	1,300		N.D.
Chloromethane	1,300		N.D.
Dibromochloromethane	1,300		N.D.
1,1-Dichloroethane	1,300	*******	N.D.
1,2-Dichloroethane	1,300		N.D.
1,1-Dichloroethene	1,300		N.D.
cis-1,2-Dichloroethene	1,300	************	N.D.
trans-1,2-Dichloroethene	1,300		N.D.
1,2-Dichloropropane	1,300		N.D.
cis-1,3-Dichloropropene	1,300	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
trans-1,3-Dichloropropene	1,300	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Ethylbenzene	1,300		. 28,000
2-Hexanone	6,300		N.D.
Methylene chloride	3,100		N.D.
4-Methyl-2-pentanone	6,300		N.D.
Styrene	1,300		N.D.
1,1,2,2-Tetrachloroethane	1,300		N.D.
Tetrachloroethene	1,300		N.D.
Toluene	1,300	*4*4*4*4*4*4*4*4*4******	18,000
1,1,1-Trichloroethane	1,300		N.D.
1,1,2-Trichloroethane	1,300		N.D.
Trichloroethene	1,300	***************************************	N.D.
Trichlorofluoromethane	1,300		N.D.
Vinyl acetate	1,300		N.D.
Vinyl chloride	1,300		N.D
Total Xylenes	1,300	******************************	. 77,000

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES < 12>

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B22 Analysis Method: **EPA 8240**

Lab Number: 210-2073

Sampled: Oct 12, 1992 Received:

Oct 13, 1992

Analyzed: Oct 19, 1992 Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit µg/kg	t	Sample Results µg/kg
Acetone	2,500		N.D.
Benzene	500	****************************	
Bromodichloromethane			N.D.
Bromoform	500		N.D.
Bromomethane	500		N.D.
2-Butanone	2,500	***************************************	N.D.
Carbon disulfide	500		N.D.
Carbon tetrachloride	500	,	N.D.
Chlorobenzene	500		N.D.
Chloroethane	500		N.D.
2-Chloroethyl vinyl ether	2,500		N.D.
Chloroform	500		N.D.
Chloromethane			N.D.
Dibromochloromethane	500		N.D.
1,1-Dichloroethane	500		N.D.
1,2-Dichloroethane			N.D.
1,1-Dichloroethene	500		N.D.
cis-1,2-Dichloroethene	500		N.D.
trans-1,2-Dichloroethene	500		N.D.
1,2-Dichloropropane	500		N.D.
cis-1,3-Dichloropropene	500		N.D.
trans-1,3-Dichloropropene	500	***************************************	N.D.
Ethylbenzene		**************************	***************************************
2-Hexanone	2,500	*************************	N.D.
Methylene chloride	1,300		N.D.
4-Methyl-2-pentanone	2,500		N.D.
Styrené	500		N.D.
1,1,2,2-Tetrachioroethane	500		N.D.
Tetrachloroethene	500		N.D.
Toluene	500		N.D.
1,1,1-Trichloroethane	500		N.D.
1,1,2-Trichloroethane	500		N.D.
Trichloroethene	500		N.D.
Trichlorofluoromethane	500		N.D.
Vinyl acetate	500		N.D.
Vinyl chloride	500	******************************	N.D.
Total Xylenes	500	***************************************	00100000000000000000000000000000000000

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

2102066.RE\$ <13>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript:

Lab Number:

ARCO 601, San Leandro

Soil, S-16.5-B22

Analysis Method: **EPA 8240** 210-2074

Sampled:

Oct 12, 1992 Oct 13, 1992

Received: Analyzed:

Oct 19, 1992

Reported: Oct 27, 1992

VOLATILE ORGANICS by GC/MS (EPA 8240)

Analyte	Detection Limit μg/kg		Sample Results µg/kg
Acetone	500		N.D.
Benzene	100	***************************************	N.D.
Bromodichloromethane	100		N.D.
Bromoform	100		N.D.
Bromomethane	100		N.D.
2-Butanone	500		N.D.
Carbon disulfide	100	*******************************	N.D.
Carbon tetrachloride	100		N.D.
Chlorobenzene	100	45449449149149149144514491495144814	N.D.
Chloroethane	100	*******************************	N.D.
2-Chloroethyl vinyl ether	500		N.D.
Chloroform	100		N.D.
Chloromethane	100		N.D.
Dibromochloromethane	100		N.D.
1,1-Dichloroethane	100	*************	N.D.
1,2-Dichloroethane	100		N.D.
1,1-Dichloroethene	100	************	N.D.
cis-1,2-Dichloroethene	100	************************	N.D.
trans-1,2-Dichloroethene	100	*************************************	N.D.
1,2-Dichloropropane	100	***************************************	N.D.
cis-1,3-Dichloropropene	100		N.D.
trans-1,3-Dichloropropene	100		N.D.
Ethylbenzene	100		N.D.
2-Hexanone	500		N.D.
Methylene chloride	250		N.D.
4-Methyl-2-pentanone	500		N.D.
Styrene	100		N.D.
1,1,2,2-Tetrachioroethane	100		N.D.
Tetrachloroethene.	100		N.D.
Toluene	100		N.D.
1,1,1-Trichloroethane	100		N.D.
1,1,2-Trichloroethane	100		N.D.
Trichloroethene	100		N.D.
Trichlorofluoromethane	100		N.D.
Vinyl acetate	100		N.D.
Vinyl chloride	100		N.D.
Total Xylenes	100	****************	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <14>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Sample Descript: Analysis Method:

Lab Number:

ARCO 601, San Leandro

Soil, S-4.5-B20 EPA 8270 210-2066 Sampled: Oct 12, 1992 Received: Oct 13, 1992

Received: Oct 13, 1992 Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	100		N.D.
Acenaphthylene	100		N.D.
Aniline	100		N.D.
Anthracene	100	4	N.D.
Benzidine	2,500	***************************************	N.D.
Benzoic Acid	500		N.D.
Benzo(a)anthracene	100	*****************************	N.D.
Benzo(b)fluoranthene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzo(k)fluoranthene	100		N.D.
Benzo(g,h,i)perylene	100		N.D.
Benzo(a) pyrene	100	(40440440140110114114014014401440141011111	N.D.
Benzyl alcohol	100		N.D.
Bis(2-chloroethoxy)methane	100		N.D.
Bis(2-chloroethyl)ether	100	4	N.D.
Bis(2-chloroisopropyl)ether	100		N.D.
Bis(2-ethylhexyl)phthalate	500	******************************	N.D.
4-Bromophenyl phenyl ether	100		N.D.
Butyl benzyl phthalate	100		N.D.
4-Chloroaniline	100	***************************************	N.D.
2-Chloronaphthalene	100	*******************************	N.D.
4-Chloro-3-methylphenol	100	*************	N.D.
2-Chlorophenol	100	***************************************	N.D.
4-Chlorophenyl phenyl ether	100	44544244544544544544544544544544544	N.D.
Chrysene	100		N.D.
Dibenz(a,h)anthracene	100	4	N.D.
Dibenzofuran	100	4	N.D.
Di-N-butyl phthalate	500		N.D.
1,3-Dichlorobenzene	100	***************************************	N.D.
1,4-Dichlorobenzene	100	************	N.D.
1,2-Dichlorobenzene	100		N.D.
3,3-Dichlorobenzidine	500	***************************************	N.D.
2,4-Dichlorophenol	100		N.D.
Diethyl phthalate	100	,,,	N.D.
2,4-Dimethylphenol	100	***************************************	N.D.
Dimethyl phthalate	100		N.D.
4,6-Dínitro-2-methylphenol	500	***************************************	N.D.
2,4-Dinitrophenol	500		N.D.

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B20

Analysis Method: EPA 8270 Lab Number: 210-2066 Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100	***************************************	N.D.
2,6-Dinitrotoluene	100	.44=-140+444444	N.D.
Di-N-octyl phthalate		*****************************	N.D.
Fluoranthene	100		N.D.
Fluorene	100		N.D.
Hexachlorobenzene	100	******************************	N.D.
Hexachlorobutadiene.	100	***************************************	N.D.
Hexachlorocyclopentadiene	100	***************************************	N.D.
Hexachloroethane	100	***************************************	N.D.
Indeno(1,2,3-cd)pyrene	100	***************************************	N.D.
Isophorone	100	***************************************	N.D.
2-Methylnaphthalene	100		N.D.
2-Methylphenol	100		N.D.
4-Methylphenol	100		N.D.
Naphthalene	100	***************************************	N.D.
2-Nitroaniline	500		N.D.
3-Nitroaniline	500		N.D.
4-Nitroaniline	500	***************************************	N.D.
Nitrobenzene		***************************************	N.D.
2-Nitrophenol	100		N.D.
4-Nitrophenol	500		N.D.
N-Nitrosodiphenylamine	100	***************************************	N.D.
N-Nitroso-di-N-propylamine	100		N.D.
Pentachlorophenol			N.D.
Phenanthrene		,,	N.D.
Phenol	100	***************************************	N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene	100		N.D.
2,4,5-Trichlorophenol	500	***************************************	N.D.
2,4,6-Trichlorophenol	100		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

Page 2 of 2

2102066.RES <16>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B20

Analysis Method: EPA 8270 Lab Number: 210-2067 Sampled: Oct 12, 1992 Received: Oct 13, 1992 Extracted: Oct 20, 1992

Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	100		N.D.
Acenaphthylene	100		N.D.
Aniline			N.D.
Anthracene	100		N.D.
Benzidine		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzoic Acid		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzo(a)anthracene	100		N.D.
Benzo(b)fluoranthene			N.D.
Benzo(k)fluoranthene			N.D.
Benzo(g,h,i)perylene			N.D.
Benzo(a)pyrene			N.D.
Benzyl alcohol			N.D.
Bis(2-chloroethoxy)methane			N.D.
Bis(2-chloroethyl)ether			N.D.
Bis(2-chloroisopropyl)ether			N.D.
Bis(2-ethylhexyl)phthalate			N.D.
4-Bromophenyl phenyl ether			N.D.
Butyl benzyl phthalate			N.D.
4-Chloroaniline			N.D.
2-Chloronaphthalene			N.D.
4-Chloro-3-methylphenol			N.D.
2-Chlorophenol			N.D.
4-Chlorophenyl phenyl ether			N.D.
Chrysene			N.D.
Dibenz(a,h)anthracene			N.D.
Dibenzofuran			N.D.
Di-N-butyl phthalate			N.D.
1,3-Dichlorobenzene			N.D.
1,4-Dichlorobenzene			N.D.
1,2-Dichlorobenzene			N.D.
3,3-Dichlorobenzidine			N.D.
2,4-Dichlorophenol			N.D.
Diethyl phthalate	100		N.D.
2,4-Dimethylphenol			N.D.
Dimethyl phthalate			N.D.
4,6-Dinitro-2-methylphenol			N.D.
2,4-Dinitrophenol			N.D.

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B20 Analysis Method: EPA 8270

Lab Number: 210-2067

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100	******************************	N.D.
2,6-Dinitrotoluene			N.D.
Di-N-octyl phthalate			N.D.
Fluoranthene			N.D.
Fluorene	100		N.D.
Hexachlorobenzene	100		N.D.
Hexachlorobutadiene	100	149442442449447449449449449449449	N.D.
Hexachlorocyclopentadiene	100		N.D.
Hexachloroethane	100		N.D.
Indeno(1,2,3-cd)pyrene	100	******************************	N.D.
Isophorone	100	***************************************	N.D.
2-Methylnaphthalene	100	***************************************	. 7,100
2-Methylphenol	100		N.D.
4-Methylphenol	100	***************************************	N.D.
Naphthalene	100		. 4,900
2-Nitroaniline	500		N.D.
3-Nitroaniline	500	***************************************	N.D.
4-Nitroaniline	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Nitrobenzene	100	***************************************	N.D.
2-Nitrophenol	100		N.D.
4-Nitrophenol	500		N.D.
N-Nitrosodiphenylamine	100	************	N.D.
N-Nitroso-di-N-propylamine	100	***********	N.D.
Pentachlorophenol	500		N.D.
Phenanthrene			. 120
Phenol	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene	100		N.D.
2,4,5-Trichlorophenol	500		N.D.
2,4,6-Trichlorophenol	100		N.D.

Analytes reported as N.D. were not present above the stated limit of detection,

SEQUOIA ANALYTICAL

Maria Lee Project Manager

Page 2 of 2

2102066.RES <18>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34 Sap Jose CA 95118

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-17-B20 Analysis Method: EPA 8270 Lab Number: 210-2068 Sampled: Oct 12, 1992 Received: Oct 13, 1992 Extracted: Oct 20, 1992

Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit μg/kg		Sample Results µg/kg
Acenaphthene	100	***************************************	N.D.
Acenaphthylene	100	***************************************	N.D.
Aniline	100		N.D.
Anthracene	100		N.D.
Benzidine	•		N.D.
Benzoic Acid	500	,	N.D.
Benzo(a)anthracene	100		N.D.
Benzo(b)fluoranthene	100		N.D.
Benzo(k)fluoranthene	100		N.D.
Benzo(g,h,i)perylene	100	***************************************	N.D.
Benzo(a)pyrene	100		N.D.
Benzyl alcohol			N.D.
Bis(2-chloroethoxy)methane	100	1814894894894894894	N.D.
Bis(2-chloroethyl)ether	100		N.D.
Bis(2-chloroisopropyl)ether			N.D.
Bis(2-ethylhexyl)phthalate	500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
4-Bromophenyl phenyl ether		***************************************	N.D.
Butyl benzyl phthalate		4**************************************	N.D.
4-Chloroaniline	100	***************************************	N.D.
2-Chloronaphthalene	100		N.D.
4-Chloro-3-methylphenol	100		N.D.
2-Chlorophenol	100	***************************************	N.D.
4-Chlorophenyl phenyl ether	100		N.D.
Chrysene	100		N.D.
Dibenz(a,h)anthracene	100		N.D.
Dibenzofuran	100		N.D.
Di-N-butyl phthalate	500		N.D.
1,3-Dichlorobenzene	100	***************************************	N.D.
1,4-Dichlorobenzene	100		N.D.
1,2-Dichlorobenzene		***************************************	N.D.
3,3-Dichlorobenzidine	500		N.D.
2,4-Dichlorophenol	100	***************************************	N.D.
Diethyl phthalate	100	***************************************	N.D.
2,4-Dimethylphenol	100		N.D.
Dimethyl phthalate	100		N.D.
4,6-Dinitro-2-methylphenol	500	***************************************	N.D.
2,4-Dinitrophenol	500	***************************************	N.D.

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-17-B20 Analysis Method: EPA 8270

Analysis Method: EPA 8270 Lab Number: 210-2068 Sampled: Oct 12, 1992 Received: Oct 13, 1992 Extracted: Oct 20, 1992

Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100		N.D.
2,6-Dinitrotoluene		191191111111111111111111111111111111111	N.D.
Di-N-octyl phthalate		*****************************	N.D.
Fluoranthene	100	***************************************	N.D.
Fluorene	. 100		N.D.
Hexachlorobenzene	100	***************************************	N.D.
Hexachlorobutadiene	. 100	***************************************	N.D.
Hexachlorocyclopentadiene	100	***************************************	N.D.
Hexachloroethane	100		N.D.
Indeno(1,2,3-cd)pyrene	100		N.D.
Isophorone			N.D.
2-Methylnaphthalene	100		N.D.
2-Methylphenol			N.D.
4-Methylphenol		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Naphthalene			N.D.
2-Nitroaniline	500		N.D.
3-Nitroaniline	500		N.D.
4-Nitroaniline	500		N.D.
Nitrobenzene	100		N.D.
2-Nitrophenol	100		N.D.
4-Nitrophenol		*******	N.D.
N-Nitrosodiphenylamine	100	***************************************	N.D.
N-Nitroso-di-N-propylamine			N.D.
Pentachlorophenol	500	***************************************	N.D.
Phenanthrene	100	**********	N.D.
Phenol	100	**************************************	N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene			N.D.
2,4,5-Trichlorophenol			N.D.
2,4,6-Trichlorophenol	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria/Lee Project Manager

Page 2 of 2

2102066.RES <20>

Client Project ID:

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Sample Descript: Analysis Method: Lab Number:

ARCO 601, San Leandro Soil, S-4.5-B21 EPA 8270 210-2069 Sampled: Oct 12, 1992 Received: Oct 13, 1992 Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	100	***************************************	N.D.
Acenaphthylene	100		N.D.
Aniline	100	***************************************	N.D.
Anthracene	100		N.D.
Benzidine	2,500		N.D.
Benzoic Acid	500		N.D.
Benzo(a)anthracene	100	*****************************	N.D.
Benzo(b)fluoranthene	100		N.D.
Benzo(k)fluoranthene	100	AROAROAREAAAA	N.D.
Benzo(g,h,i)perylene	100	4+14+14+14+++++++++++++++++++++++++++++	N.D.
Benzo(a) pyrene	100	************************	N.D.
Benzyl alcohol	100	*************************	N.D.
Bis(2-chloroethoxy)methane	100	*************************	N.D.
Bis(2-chloroethyl)ether	100	*****************************	N.D.
Bis(2-chloroisopropyl)ether	100		N.D.
Bis(2-ethylhexyl)phthalate	500		N.D.
4-Bromophenyl phenyl ether	100		N.D.
Butyl benzyl phthalate	100		N.D.
4-Chloroaniline	100		N.D.
2-Chloronaphthalene	100	**************************	N.D.
4-Chloro-3-methylphenol	100	************************	N.D.
2-Chlorophenol	100	**************************	N.D.
4-Chlorophenyl phenyl ether	100		N.D.
Chrysene	100		N.D.
Dibenz(a,h)anthracene	100	,	N.D.
Dibenzofuran	100		N.D.
Di-N-butyl phthaiate	500	***************************************	N.D.
1,3-Dichlorobenzene	100		N.D.
1,4-Dichlorobenzene	100		N.D.
1,2-Dichlorobenzene	100		N.D.
3,3-Dichlorobenzidine	500	**************************	N.D.
2,4-Dichlorophenol	100	*************************	N.D.
Diethyl phthalate	100		N.D.
2,4-Dimethylphenol	100		N.D.
Dimethyl phthalate	100	***************************************	N.D.
4,6-Dinitro-2-methylphenol	500		N.D.
2,4-Dinitrophenol	500		N.D.

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B21

Analysis Method: EPA 8270 Lab Number: 210-2069 Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100		N.D.
2,6-Dinitrotoluene	100		N.D.
Di-N-octyl phthalate			N.D.
Fluoranthene	_	******	N.D.
Fluorene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Hexachlorobenzene	100		N.D.
Hexachlorobutadiene	100	*********	N.D.
Hexachlorocyclopentadiene	100	4144444444444444444444	N.D.
Hexachloroethane		***************************************	N.D.
Indeno(1,2,3-cd)pyrene			N.D.
Isophorone			N.D.
2-Methylnaphthalene			N.D.
2-Methylphenol	100		N.D.
4-Methylphenol		,	N.D.
Naphthalene	100		N.D.
2-Nitroaniline	500		N.D.
3-Nitroaniline	500		N.D.
4-Nitroaniline	500		N.D.
Nitrobenzene	100		N.D.
2-Nitrophenol	100		N.D.
4-Nitrophenol		*****************************	N.D.
N-Nitrosodiphenylamine			N.D.
N-Nitroso-di-N-propylamine	100	***************************************	N.D.
Pentachlorophenol	500		N.D.
Phenanthrene	100		N.D.
Phenol	100	***************************************	N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene			N.D.
2,4,5-Trichlorophenol		***********	N.D.
2,4,6-Trichlorophenol	100		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

Page 2 of 2

2102066.RES <22>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B21

Analysis Method: EPA 8270 Lab Number: 210-2070 Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	400		N.D.
Acenaphthylene	400		N.D.
Aniline	400		N.D.
Anthracene	400		N.D.
Benzidine	10,000		N.D.
Benzoic Acid	2,000		N.D.
Benzo(a)anthracene	400		N.D.
Benzo(b)fluoranthene	400		N.D.
Benzo(k)fluoranthene	400		N.D.
Benzo(g,h,i)perylene	400	*******************************	N.D.
Benzo(a)pyrene	400	***************************************	N.D.
Benzyl alcohol	400		N.D.
Bis(2-chloroethoxy)methane	400	***************************************	N.D.
Bis(2-chloroethyl)ether	400	***************************************	N.D.
Bis(2-chloroisopropyl)ether	400		N.D.
Bis(2-ethylhexyl)phthalate	2,000		N.D.
4-Bromophenyl phenyl ether	400		N.D.
Butyl benzyl phthalate	400	***************************************	N.D.
4-Chloroaniline	400		N.D.
2-Chloronaphthalene	400	***************************************	N.D.
4-Chloro-3-methylphenol	400	***************************************	N.D.
2-Chlorophenol	400	***************************************	N.D.
4-Chlorophenyl phenyl ether	400	***************************************	N.D.
Chrysene	400		N.D.
Dibenz(a,h)anthracene	400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Dibenzofuran	400	***************************************	N.D.
Di-N-butyl phthalate	2,000		N.D.
1,3-Dichlorobenzene	400		N.D.
1,4-Dichlorobenzene	400		N.D.
1,2-Dichlorobenzene	400	***************************************	N.D.
3,3-Dichlorobenzidine	2,000	*************	N.D.
2,4-Dichlorophenol	400	***************************************	N.D.
Diethyl phthalate	400	*************	N.D.
2,4-Dimethylphenol	400		N.D.
Dimethyl phthalate	400		N.D.
4,6-Dinitro-2-methylphenol	2,000	***************************************	N.D.
2,4-Dinitrophenol	2,000	***********	N.D.

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B21 Analysis Method: EPA 8270 Lab Number: 210-2070 Sampled: Oct 12, 1992
Received: Oct 13, 1992
Extracted: Oct 20, 1992
Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results μg/kg
2,4-Dinitrotoluene	400	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
2,6-Dinitrotoluene		******************************	N.D.
Di-N-octyl phthalate		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Fluoranthene			N.D.
Fluorene	. 400		N.D.
Hexachlorobenzene	400		N.D.
Hexachlorobutadiene	. 400		N.D.
Hexachlorocyclopentadiene	400	***************************************	N.D.
Hexachloroethane	400	***************************************	N.D.
Indeno(1,2,3-cd)pyrene	400	***************************************	N.D.
Isophorone	400		N.D.
2-Methylnaphthalene	400		
2-Methylphenol	400		N.D.
4-Methylphenol	400		N.D.
Naphthalene	400	*******************************	. 3,300
2-Nitroaniline	2,000		N.D.
3-Nitroaniline	2,000		N.D.
4-Nitroaniline	,		N.D.
Nitrobenzene			N.D.
2-Nitrophenol			N.D.
4-Nitrophenoi	2,000		N.D.
N-Nitrosodiphenylamine	400	***************************************	N.D.
N-Nitroso-di-N-propylamine	400		N.D.
Pentachlorophenol	2,000		N.D.
Phenanthrene	400	***************************************	N.D.
Phenol	400	***************************************	N.D.
Pyrene			N.D.
1,2,4-Trichlorobenzene		***************************************	N.D.
2,4,5-Trichlorophenol			N.D.
2,4,6-Trichlorophenol			N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

Page 2 of 2

2102066.RES < 24>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman

Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-16.5-B21

Analysis Method: EPA 8270 Lab Number: 210-2071 Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	100		N.D.
Acenaphthylene	100	***************************************	N.D.
Aniline	100		N.D.
Anthracene	100		N.D.
Benzidine	2,500	***************************************	N.D.
Benzoic Acid	500		N.D.
Benzo(a)anthracene	100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzo(b)fluoranthene	100		N.D.
Benzo(k)fluoranthene	100		N.D.
Benzo(g,h,i)perylene	100		N.D.
Benzo(a)pyrene		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Benzyl alcohol	100		N.D.
Bis(2-chloroethoxy)methane	100	************	N.D.
Bis(2-chloroethyl)ether	100		N.D.
Bis(2-chloroisopropyl)ether	100		N.D.
Bis(2-ethylhexyl)phthalate	500		N.D.
4-Bromophenyl phenyl ether	100		N.D.
Butyl benzyl phthalate	100	,	N.D.
4-Chloroaniline	100	***********	N.D.
2-Chloronaphthalene	100		N.D.
4-Chloro-3-methylphenol	100	**********	N.D.
2-Chlorophenol	100	***********	N.D.
4-Chlorophenyl phenyl ether	100	*******************************	N.D.
Chrysene	100	********************************	N.D.
Dibenz(a,h)anthracene	100	******************************	N.D.
Dibenzofuran	100		N.D.
Di-N-butyl phthalate	500		N.D.
1,3-Dichlorobenzene	100		N.D.
1,4-Dichlorobenzene	100		N.D.
1,2-Dichlorobenzene	100		N.D.
3,3-Dichlorobenzidine	500		N.D.
2,4-Dichlorophenol	100		N.D.
Diethyl phthalate	100	***************************************	N.D.
2,4-Dimethylphenol	100		N.D.
Dimethyl phthalate	100	(**************************************	N.D.
4,6-Dinitro-2-methylphenol	500		N.D.
2,4-Dinitrophenol	500	,	N.D.

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-16.5-B21
Analysis Method: EPA 8270
Lab Number: 210-2071

Sampled: Oct 12, 1992 Received: Oct 13, 1992 Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
2,6-Dinitrotoluene	100		N.D.
Di-N-octyl phthalate			N.D.
Fluoranthene		*****	N.D.
Fluorene			N.D.
Hexachlorobenzene	100	***************************************	N.D.
Hexachlorobutadiene			N.D.
Hexachlorocyclopentadiene			N.D.
Hexachloroethane			N.D.
Indeno(1,2,3-cd)pyrene	100		N.D.
Isophorone			N.D.
2-Methylnaphthalene			N.D.
2-Methylphenol			N.D.
4-Methylphenol	100	***************************************	N.D.
Naphthalene	100		N.D.
2-Nitroaniline	500	,,	N.D.
3-Nitroaniline	500		N.D.
4-Nitroaniline	500	***************************************	N.D.
Nitrobenzene	100		N.D.
2-Nitrophenol		************	N.D.
4-Nitrophenol	500		N.D.
N-Nitrosodiphenylamine	100		N.D.
N-Nitroso-di-N-propylamine	100		N.D.
Pentachlorophenol	500		N.D.
Phenanthrene	100		N,D.
Phenol	100		N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene			N.D.
2,4,5-Trichlorophenol	500		N.D.
2,4,6-Trichlorophenol	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

Page 2 of 2

2102066.RES <26>

RESNA Client Project ID: 3315 Almaden Expwy., Suite 34 Sample Descript:

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B22 Analysis Method: EPA 8270 Lab Number: 210-2072 Sampled: Oct 12, 1992
Received: Oct 13, 1992
Extracted: Oct 20, 1992
Analyzed: Oct 22, 1992
Reported: Oct 27, 1992

2102066.RES <27>

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Acenaphthene	1,000	**************************	N.D.
Acenaphthylene	1,000		N.D.
Aniline	1,000		N.D.
Anthracene	1,000		N.D.
Benzidine	25,000		N.D.
Benzoic Acid	5,000		N.D.
Benzo(a)anthracene	1,000		N.D.
Benzo(b)fluoranthene	1,000	*******************************	N.D.
Benzo(k)fluoranthene	1,000		N.D.
Benzo(g,h,i)perylene	1,000	*******************************	N.D.
Benzo(a)pyrene	1,000	40-40-1110-10-10-10-10-10-10-10-10-10-10-1	N.D.
Benzyl alcohol	1,000	********************************	N.D.
Bis(2-chloroethoxy)methane	1,000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N.D.
Bis(2-chloroethyl)ether	1,000	***************************************	N.D.
Bis(2-chloroisopropyl)ether	1,000	************	· N.D.
Bis(2-ethylhexyl)phthalate	5,000	***************************************	N.D.
4-Bromophenyl phenyl ether	1,000		N.D.
Butyl benzyl phthalate	1,000		N.D.
4-Chloroaniline	1,000	***************************************	N.D.
2-Chloronaphthalene	1,000	***************************************	N.D.
4-Chloro-3-methylphenol	1,000		N.D.
2-Chlorophenoi	1,000		N.D.
4-Chlorophenyl phenyl ether	1,000	***************************************	N.D.
Chrysene	1,000	***************************************	N.D.
Dibenz(a,h)anthracene	1,000	***************************************	N.D.
Dibenzofuran	1,000	.,	N.D.
Di-N-butyl phthalate	5,000	************	N.D.
1,3-Dichlorobenzene	1,000	***************************************	N.D.
1,4-Dichlorobenzene	1,000		N.D.
1,2-Dichlorobenzene	1,000		N.D.
3,3-Dichlorobenzidine	5,000		N.D.
2,4-Dichlorophenol	1,000		N.D.
Diethyl phthalate	1,000	*************	N.D.
2,4-Dimethylphenol	1,000		N.D.
Dimethyl phthalate	1,000		N.D.
4,6-Dinitro-2-methylphenol	5,000		N.D.
2,4-Dinitrophenol	5,000		N.D.

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-4.5-B22 Analysis Method: EPA 8270

Lab Number: 210-2072

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Received: Oct 13, 1992 Extracted: Oct 20, 1992 Analyzed: Oct 22, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	1,000		N.D.
2,6-Dinitrotoluene			N.D.
Di-N-octyl phthalate	1,000		N.D.
Fluoranthene	1,000		N.D.
Fluorene	1,000		N.D.
Hexachlorobenzene	1,000	***************************************	N.D.
Hexachlorobutadiene	1,000		N.D.
Hexachlorocyclopentadiene	1,000		N.D.
Hexachloroethane	1,000		N.D.
Indeno(1,2,3-cd)pyrene	1,000	***************************************	N.D.
Isophorone	1,000		N.D.
2-Methylnaphthalene	1,000		N.D.
2-Methylphenol	1,000		N.D.
4-Methylphenol	1,000		N.D.
Naphthalene	1,000		N.D.
2-Nitroaniline	5,000		N.D.
3-Nitroaniline	5,000		N.D.
4-Nitroaniline	5,000		N.D.
Nitrobenzene	1,000		N.D.
2-Nitrophenol	1,000		N.D.
4-Nitrophenol	5,000		N.D.
N-Nitrosodiphenylamine	1,000		N.D.
N-Nitroso-di-N-propylamine	1,000		N.D.
Pentachlorophenol	5,000		N.D.
Phenanthrene	1,000		N,D.
Phenol	1,000		N.D.
Pyrene	1,000		N.D.
1,2,4-Trichlorobenzene	1,000	***************************************	N.D.
2,4,5-Trichlorophenol	5,000		N.D.
2,4,6-Trichlorophenol	1,000		N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Project Manager

Page 2 of 2

2102066.RES <28>

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: ARCO 601, San Leandro Sample Descript:

Soil, S-7.5-B22 EPA 8270

Analysis Method: Lab Number: 210-2073

Sampled: Oct 12, 1992 Received:

Oct 13, 1992 Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Accepanhthana	•		N.D.
Acenaphthulana	200	************	N.D. N.D.
Acenaphthylene	200 200	***************************************	N.D.
Aniline		***************************************	N.D. N.D.
Anthracene	200	***************************************	
Benzidine	5,000		N.D.
Benzoic Acid	1,000	***************************************	N.D.
Benzo(a)anthracene	200		N.D.
Benzo(b)fluoranthene	200		N.D.
Benzo(k)fluoranthene	200		N.D.
Benzo(g,h,i)perylene	200		N.D.
Benzo(a)pyrene	200		N.D.
Benzyl alcohol	200	***************************************	N.D.
Bis(2-chloroethoxy)methane	200	***************************************	N.D.
Bis(2-chloroethyl)ether	200	***************************************	N.D.
Bis(2-chloroisopropyl)ether	200		N.D.
Bis(2-ethylhexyl)phthalate	1,000	***************************************	N.D.
4-Bromophenyl phenyl ether	200	***************************************	N.D.
Butyl benzyl phthalate	200		N.D.
4-Chloroaniline	200	***************************************	Ň.D.
2-Chloronaphthalene	200		N.D.
4-Chloro-3-methylphenol	200		N.D.
2-Chlorophenol	200		N.D.
4-Chlorophenyl phenyl ether	200	***************************************	N.D.
Chrysene	200	***************************************	N.D.
Dibenz(a,h)anthracene	200		N.D.
Dibenzofuran	200		N.D.
Di-N-butyl phthalate	1,000		N.D.
1,3-Dichlorobenzene	200	***************************************	N.D.
1,4-Dichlorobenzene	200	********	N.D.
1,2-Dichlorobenzene	200		N.D.
3,3-Dichlorobenzidine	1,000	***************************************	N.D.
2,4-Dichlorophenol	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Diethyl phthalate	200	*************	N.D.
2,4-Dimethylphenol	200		N.D.
Dimethyl phthalate	200	,=-,=-,-,-,-,-,	N.D.
4,6-Dinitro-2-methylphenol	1,000	***************************************	N.D.
2,4-Dinitrophenol	1,000		N.D.

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

ARCO 601, San Leandro

Sample Descript: Analysis Method:

Lab Number:

Soil, S-7.5-B22 EPA 8270 210-2073 Sampled: Received: Oct 12, 1992 Oct 13, 1992

Extracted: Analyzed:

Oct 20, 1992 Oct 21, 1992

Reported:

Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	200		N.D.
2,6-Dinitrotoluene	200		N.D.
Di-N-octyl phthalate	200	***************************************	N.D.
Fluoranthene	200	•	N.D.
Fluorene	200	***************************************	N.D.
Hexachlorobenzene	200		N.D.
Hexachlorobutadiene	200		N.D.
Hexachlorocyclopentadiene	200		N.D.
Hexachloroethane	200		N.D.
Indeno(1,2,3-cd)pyrene	200		N.D.
Isophorone	200		N.D.
2-Methylnaphthalene	200	1+	. 5,700
2-Methylphenol	200		N.D.
4-Methylphenol	200		N.D.
Naphthalene	200	***************************************	
2-Nitroaniline	1,000		N.D.
3-Nitroaniline	1,000	***************************************	N.D.
4-Nitroaniline	1,000		N.D.
Nitrobenzene	200		N.D.
2-Nitrophenol			N.D.
4-Nitrophenol	1,000	***************************************	N.D.
N-Nitrosodiphenylamine	200		N.D.
N-Nitroso-di-N-propylamine	200		N.D.
Pentachlorophenol	1,000	***************************************	N.D.
Phenanthrene	200		N.D.
Phenol	200		N.D.
Pyrene	200		N.D.
1,2,4-Trichlorobenzene	200		N.D.
2,4,5-Trichlorophenol	1,000		N.D.
2,4,6-Trichlorophenol	200	******	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

Page 2 of 2

2102066.RES <30>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: ARCO 601, San Leandro

Sample Descript: Soil, S-16.5-B22 Analysis Method: EPA 8270

Lab Number: 210-2074

Sampled: Oct 12, 1992 Received: Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992 Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit		Sample Results
	µg∕kg		μg/kg
Acenaphthene	100	**(***********************	N.D.
Acenaphthylene	100	************	N.D.
Aniline	100	************	N.D.
Anthracene	100		N.D.
Benzidine	2,500		N.D.
Benzoic Acid	500	***************************************	N.D.
Benzo(a)anthracene	100		N.D.
Benzo(b)fluoranthene	100		N.D.
Benzo(k)fluoranthene	100		N.D.
Benzo(g,h,i)perylene	100	***************************************	N.D.
Benzo(a)pyrene	100		N.D.
Benzyl alcohol	100		N.D.
Bis(2-chloroethoxy)methane	100		N.D.
Bis(2-chloroethyl)ether	100		N.D.
Bis(2-chloroisopropyl)ether	100		N.D.
Bis(2-ethylhexyl)phthalate	500		N.D.
4-Bromophenyl phenyl ether	100		N.D.
Butyl benzyl phthalate	100		N.D.
4-Chloroaniline	100		N.D.
2-Chloronaphthalene	100		N.D.
4-Chloro-3-methylphenol	100	***************************************	N.D.
2-Chlorophenol	100		N.D.
4-Chlorophenyl phenyl ether	100		N.D.
Chrysene	100		N.D.
Dibenz(a,h)anthracene	100		N.D.
Dibenzofuran	100		N.D.
Di-N-butyl phthalate	500		N.D.
1,3-Dichlorobenzene	100		N.D.
1,4-Dichlorobenzene	100		N.D.
1,2-Dichlorobenzene	100		N.D.
3,3-Dichlorobenzidine	500		N.D.
2,4-Dichlorophenol	100	***************************************	N.D.
Diethyl phthalate	100		N.D.
2,4-Dimethylphenol	100		N.D.
Dimethyl phthalate	100	,,	N.D.
4,6-Dinitro-2-methylphenol	500		N.D.
2,4-Dinitrophenol	500		N.D.

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript:

ARCO 601, San Leandro

Sample Descript: Soil, S-16.5-B22
Analysis Method: EPA 8270
Lab Number: 210-2074

Sampled: Received:

Oct 12, 1992 Oct 13, 1992

Extracted: Oct 20, 1992 Analyzed: Oct 21, 1992

Reported: Oct 27, 1992

SEMI-VOLATILE ORGANICS by GC/MS (EPA 8270)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
2,4-Dinitrotoluene	100	***************************************	N.D.
2,6-Dinitrotoluene	100	******************************	N.D.
Di-N-octyl phthalate		4,14,044,,15,14,44,44,44,44,44,44,44,44	N.D.
Fluoranthene	100	********************************	N.D.
Fluorene	. 100		N.D.
Hexachlorobenzene	100		N.D.
Hexachlorobutadiene	. 100		N.D.
Hexachlorocyclopentadiene	. 100		N.D.
Hexachloroethane	100	,.,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Indeno(1,2,3-cd)pyrene	100		N.D.
Isophorone		***************************************	N.D.
2-Methylnaphthalene	100	***************************************	N.D.
2-Methylphenol			N.D.
4-Methylphenol	100		N.D.
Naphthalene		.,	N.D.
2-Nitroaniline	500		N.D.
3-Nitroaniline	500		N.D.
4-Nitroaniline	500		N.D.
Nitrobenzene	100		N.D.
2-Nitrophenol	100		N.D.
4-Nitrophenol		***************************************	N.D.
N-Nitrosodiphenylamine		,	N.D.
N-Nitroso-di-N-propylamine	100	***************************************	N.D.
Pentachlorophenol	500		N.D.
Phenanthrene	100	*****************************	N.D.
Phenol	100		N.D.
Pyrene	100		N.D.
1,2,4-Trichlorobenzene	100		N.D.
2,4,5-Trichlorophenol	500	•••••	N.D.
2,4,6-Trichlorophenol	100		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Froject Manager

Page 2 of 2

2102066.RES <32>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript: ARCO 601, San Leandro

Soil, S-4.5-B20

Sampled:

Oct 12, 1992

Received:

Oct 13, 1992 see below

Analyzed:

Lab Number: 210-2066 Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	Date Analyzed	Detection Limit mg/kg	Sample Result mg/kg	
Cadmium	10/26/92	0.50	N.D.	
Chromium	10/26/92		49	
Lead	10/26/92	, 5.0	5.0	
Zinc	10/26/92	0.50	70	
Nickel	10/26/92		53	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <33>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sample Descript: Soil, S-7.5-B20

210-2067

Sampled: Received: Oct 12, 1992

Analyzed:

Oct 13, 1992 see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	Date Analyzed			Detection Limit mg/kg	Sample Result mg/kg
Cadmium	10	/26,	/92	0.50	N.D.
Chromium	10	/26	/92	0.50	44
Lead	10	26	/92	5.0	5.4
Zinc	10	/26	/92	0.50	59
Nickel,	10	/26	/92		43

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102066.RES <34>

.

Client Project ID:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992

3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Sample Descript:

Soil, S-17-B20

Received:

Oct 13, 1992 see below

Attention: Joel Coffman

Lab Number:

210-2068

Analyzed: Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	Date Analyzed			Detection l mg/kg		Sample Result mg/kg	
Cadmium	10	/26	/92	0.50	N.D.		
Chromium	10	/26	/92	0.50	50		
Lead	10	/26	/92	5.0	N.D.		
Zinc	10	/26	/92	0.50	64		
Nickel	10	/26	/92		60		

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102066.RES <35>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript:

Lab Number:

ARCO 601, San Leandro

210-2069

Sampled:

Oct 12, 1992

Soil, S-4.5-B21

Received: Analyzed: Oct 13, 1992 see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	Date Analyz		Det	ection Li mg/kg	mit Sample Re mg/kg	sult
Cadmium	10/26/	92		0.50		
Chromium	10/26/	92		0.50	56	
Lead	10/26/	92	******************	5.0		
Zinc	10/26/	92	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.50	67	
Nickel	10/26/	92		2.5	56	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2102069.RES <1>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript:

Lab Number:

ARCO 601, San Leandro

Soil, S-7.5-B21

Sampled: Received: Oct 12, 1992 Oct 13, 1992

Analyzed:

see below

210-2070

Reported: Oct 27, 1992

LABORATORY ANALYSIS

Analyte		Date alyz		Detection Limit mg/kg	Sample Result mg/kg
Cadmium	10,	/26,	/92	0.50	N.D.
Chromium	10	26	/92	0.50	42
Lead	10	26	92	5.0	7.9
Zinc	10	26	/92	0.50	52
Nickel	10,	26	/92	2.5	46

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102069.RES <2>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

Sample Descript:

ARCO 601, San Leandro Soil, S-16.5-B21

Sampled:

Oct 12, 1992

Received: Analyzed: Oct 13, 1992 see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

210-2071

Analyte	Date Analyzed	Detection Limit mg/kg	Sample Result mg/kg
Cadmium	10/26/92	0.50	
Chromium	10/26/92	0.50	50
Lead	10/26/92	5.0	5.4
Zinc	10/26/92	0.50	71
Nicket	10/26/92		67

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102069.RES <3>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sample Descript:

Soil, S-4.5-B22

210-2072

Sampled:

Oct 12, 1992

Received: Analyzed:

Oct 13, 1992 see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	_	Dat aly:	e zed	De	tection L mg/kg	imit Sample Result mg/kg
Cadmium	10	/26	/92	***************************************	0.50	N.D.
Chromium	10	/26	/92	***********	0.50	28
Lead	10	/26	/92	***********	5.0	N.D.
Zinc	-10	/26	/92	************	0.50	80
Nickel	10	/26	/92	HARMANA	2.5	48

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Froject Manager

2102069.RES <4>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sample Descript:

210-2073

Soil, S-7.5-B22

Sampled: Received:

Oct 12, 1992 Oct 13, 1992

Analyzed:

see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

Analyte	Date Analyzed	Detection Limit mg/kg	Sample Result mg/kg
Cadmium	10/26/92	0.50	1.4
Chromium	10/26/92	0.50	15
Lead	10/26/92	5.0	240
Zinc	10/26/92	0.50	2,600
Nickel	10/26/92	2.5	52

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102069.RES <5>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992 Oct 13, 1992

Sample Descript: Soil, S-16.5-B22 Received: Analyzed:

see below

Reported:

Oct 27, 1992

LABORATORY ANALYSIS

210-2074

Analyte	Date Analyzed	Detection Limit mg/kg	Sample Result mg/kg
Cadmium	10/26/92	0.50	N.D.
Chromium	10/26/92	0.50	56
Lead	10/26/92	5.0	6.3
Zinc	10/26/92	0.50	80
Nickel	10/26/92		70

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2102069.RES <6>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102066-74

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl- benzene	Xylenes	Extractable Hydrocarbons	T. Recov. Petrol. Oil
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 C. Donohue mg/kg Oct 19, 1992 GBLK101992 MS/MSD	EPA 8020 C. Donohue mg/kg Oct 19, 1992 GBLK101992 MS/MSD	EPA 8020 C. Donohue mg/kg Oct 19, 1992 GBLK101992 MS/MSD		EPA 8015 C. Lee mg/kg Oct 15, 1992 DBLK101492A	SM 5520 E&F M, Shkidt mg/kg Oct 19, 1992 BLK101992
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60	15	1000
Conc. Matrix Spike:	0.23	0.22	0.22	0.68	13	770
Matrix Spike % Recovery:	115	110	110	113	87	77
Conc. Matrix Spike Dup.:	0.20	0.20	0.20	0.58	14	860
Matrix Spike Duplicate % Recovery:	100	100	100	97	93	86
Relative % Difference:	14	9.5	9.5	16	7.4	11

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2	-	
		2102069.RES <	7>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102066-74

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-			
	Benzene	Toluene	benzene	Xylenes		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020		
Analyst:	R. Lee	R. Lee	R. Lee	R. Lee		
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg		
Date Analyzed:	Oct 15, 1992	Oct 15, 1992	Oct 15, 1992	Oct 15, 1992		
QC Sample #:	GBLK101492	GBLK101492	GBLK101492	GBLK101492		
·						
Sample Conc.:	N.D.	N.D.	N.D.	N.D.		
Sample Conc	(4.1).	14.5.	N.D.	N.D.		
Spike Conc.						
Added:	0.20	0.20	0.20	0.60		
Conc. Matrix						
Spike:	0.24	0.23	0.23	0.70		
opine.	0.24	0.20	0.20	0.70		
Matrix Spike						
% Recovery:	120	115	115	117		
Conc. Matrix						
	0.24	0.94	0.00	0.74		
Spike Dup.:	U. 4 4	0.24	0.23	0.71		
Matrix Spike						
Duplicate						
% Recovery:	120	120	115	118		
	,	.20				
Relative						
% Difference:	0.0	4.2	0.0	1.4		
	5.5		0.0	•••		

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	<u> </u>
_	Spike Conc. Added		
Relative % Difference:	Cane. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2	•	
			2102069.RES <8>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102066-74

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	benzene	Xylenes
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020
Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date Analyzed:	Oct 15, 1992	Oct 15, 1992	Oct 15, 1992	Oct 15, 1992
QC Sample #:	GBLK101592	GBLK101592	GBLK101592	GBLK101592
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
0				
Spike Conc.	0.00			
Added:	0.20	0.20	0.20	0.60
Conc. Matrix	0.00			
Spike:	0.22	0.23	0.22	0.67
Matrix Spike				
% Recovery:	110	115	110	112
Conc. Matrix				
Spike Dup.:	0.23	0.23	0.23	0.70
Matrix Spike				
Duplicate				
% Recovery:	115	115	115	117
•				•••
Relative				
% Difference:	4.4	0.0	4.4	4.4
		13.13	•••	

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
<u></u>	(Conc. of M.S. + Conc. of M.S.D.) / 2		

2102069.RES <9>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

Method (units):

QC Sample #:

Analyst(s):

ARCO 601, San Leandro EPA 8240 (μg/L purged)

G. Meyer

G. Meyer BLK101392 Q.C. Sample Dates

Analyzed: Oct 13, 1992

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
1,1-Dichloro- ethene	N.D.	50	50	100	49	98	2.0
Trichloroethene	N.D.	50	52	104	55	110	5.6
Benzene	N.D.	50	48	96	48	96	0.0
Toluene	N.D.	50	51	102	55	110	7.5
Chlorobenzene	N.D.	50	50	100	50	100	0.0

SEQUOIA ANALYTICAL

Marià Lee Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2102069.RES < 10>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

QC Sample #:

ARCO 601, San Leandro

Method (units): EPA 8240 (µg/L purged) Analyst(s):

G. Meyer BLK101492 Q.C. Sample Dates

Analyzed: Oct 14, 1992

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
1,1-Dichloro- ethene	N.D.	50	55	110	51	102	7.5
Trichloroethene	N.D.	50	43	86	47	94	8.9
Benzene	N.D.	50	49	98	42	84	15
Toluene	N.D.	50	48	96	47	94	2.1
Chlorobenzene	N.D.	50	47	94	45	90	4.3

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

% Recovery:

Relative % Difference:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

x 100

Conc. of M.S. - Conc. of M.S.D.

(Conc. of M.S. + Conc. of M.S.D.) / 2

2102069.RES <11>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID:

ARCO 601, San Leandro

Method:

EPA 8270

Analyst(s): QC Sample #: N. Injejikian S102092

Q.C. Sample Dates

Extracted: Oct 20, 1992 Analyzed: Oct 20, 1992

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

Analyte	Sample Conc.	Spike Conc. Added	Conc. Matrix Spike	Matrix Spike % Recovery	Conc. Matrix Spike Duplicate	Matrix Spike Duplicate % Recovery	Relative % Difference
Phenol	N.D.	100	104	104	101	101	2.9
2-Chlorophenol	N.D.	100	106	106	102	102	3.8
1,4-Dichloro- benzene	N.D.	50	50	100	47	94	6.2
N-Nitroso-Di-N- propylamine	N.D.	50	45	90	46	92	2.2
1,2,4-Trichloro- benzene	N.D.	50	51	102	49	98	4.0
4-Chloro- 3-Methylphenol	N.D.	100	98	98	95	95	3.1
Acenaphthene	N.D.	50	47	94	47	94	0.0
4-Nitrophenol	N.D.	100	85	85	87	87	2.3
2,4-Dinitro- toluene	N.D.	50	42	84	38	76	10
Pentachloro- phenol	N.D.	100	110	110	102	102	7.5
Pyrene	N.D.	50	55	110	54	108	1.8

SEQUOIA ANALYTICAL

roject Manager

nc. of M.S Conc. of M.S.D.	x 100	
	nc. of M.S Conc. of M.S.D. , of M.S. + Conc. of M.S.D.) / 2	

2102069.RES <12>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2102066-74

Reported: Oct 27, 1992

QUALITY CONTROL DATA REPORT

ANALYTE		· · · · · · · · · · · · · · · · · · ·		
	Beryllium	Cadmium	Chromium	Nickel
Method:	EPA 6010	EPA 6010	EPA 6010	EPA 6010
Analyst:	M. Mistry	M. Mistry	M. Mistry	M. Mistry
Reporting Units:	mg/kg	mg/kg	mg/k g	mg/kg
Date Analyzed:	Oct 26, 1992	Oct 26, 1992	Oct 26, 1992	Oct 26, 1992
QC Sample #:	2100394-7	2100394-7	2100394-7	2100394-7
Occupio Occup	0.04	NB	400	400
Sample Conc.:	0.64	N.D.	120	120
Cuite Cana				
Spike Conc. Added:	100	100	100	100
Added.	100	100	100	100
Conc. Matrix				
Spike:	100	100	200	210
opike.	100	100	200	210
Matrix Spike				
% Recovery:	99	100	80	90
70 11000 vary.	33	100	00	
Conc. Matrix				
Spike Dup.:	100	100	200	210
opo zap	100	100	200	210
Matrix Spike				
Duplicate				
% Recovery:	99	100	80	90
Relative				
% Difference:	0.0	0.0	0.0	0.0

SEQUOIA ANALYTICAL

Maria Lee
Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100
	Spike Conc. Added	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100
	(Conc. of M.S. + Conc. of M.S.D.) / 2	·

2102069.RES <13>

CO	Division	of Atlantic	Cont	Company				Task O	rder No.	(00	1-4	77-	人									- (hain of Custody
ARCO Facili		001				SALL	EAUDR	0		Project (Consul	manag	jer 🌱	c E 1		166	ara n	1					************	Laboratory name
ARCO engir	neer //	IKE	LDH.	ELAN	j	1100	Telephon (ARCO)	ie no.≒/ = ≥	11-2125	Telepho (Consu	one no. Itant)⊷/	0816	244	773	2 3	Fax (Co	cno. ∤∈ osultar	/683 i.)/.¶= .	ज्ञाउ ह	>		SECUCIA Contract number
Consultant r	name Z	FSN	ň į	WDa-	(TR)	F5		Address (Consulta	ant) 33/5	ALII	1/1 D	EN	EX	$P_{I_{i}}^{U}$	Sun	F 3	4.31	410 3	DEF	CA	9511	13	
				Matrix		Pres	ervation				l		l					YOA 🗌	0007/0		**		Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8015	TPH Modified 8015 Gas ☐ Diesel 🏻	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ vOA □ vOA □	CAM Metals EPA 60 TTLC TSTLC	Lead Org./DHS ☐ Lead EPA 7420/7421 ☐	9: 7:0	Metas	
5-45-2819	Bao		مسسا					10-12		٠		مسمدا				مسما	مسسا				مسما	\checkmark	Special detection Limit/reporting
5- 25-20	Bao									.سىما		سسا				سرا	سسا				بسد	سسا)
5-10-5-399	Вао																						/
5-13.534	820																						Special QA/Q0
-17-819	B20									V		1,000				سسا	'سسسن					1	MIRTAIS PL 7
5.115. 300	I .			<u> </u>						<u></u>		الممرا				ندمحمن	مسدا				ممس	سسا	SOPPORIS DAVIDO Metals Cd, Cr, Pb, Zh, Ni by TCAP Method
3-7.5-£DE	i .											lumma				1/	معس.ميا				1	مسسد	Me Flivel
5-10.5 10	5621																						Remarks TOG by niethod which detects any Petrolonin TOG USING Silica Gel.
5- <i>13.5-12</i> 2	B21													·									method which
5-165-BA	1531			ļ					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V		/				V	سمسا				-	سسن	detects only
5-45-52	B22			·						un"		''سما				اسمسا	L-				است		Betroloun -
s-7.5 Bot	B22			ļ						W.		است				الممسا					<i></i>	مسس	106 nsin
570 5-201	B22			ļ			ļ				ļ <u>.</u>		ļ										Lab number
5-13-5-127																ļ							
516.59	1883		1		ļ	1				سسا	<u> </u>	<u></u>				1	سا				سسا	مسنا	Turnaround time
				<u> </u>	<u> </u>																		Priority Rush 1 Business Day
Condition of Relinquishe			Tico	1		.,	Date // - 53	92 1	Time		erature ved by	receive	ed:	, <u> </u>		in Ma	es v	·ec	า				Rush 2 Business Days
Rélinquishe	d by						Date	· · · · · · · · · · · · · · · · · · ·	Time	Recei	ved by	- 											Expedited 5 Business Days
Relinquishe	d by						Date		Time	Recei	ved by	laborat	ory				Date			Time			Standard 10 Business Days

RECEIVED

OCT 1 9 1992

RESNA SAN JOSE

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman

Project: ARCO 601, San Leandro

Enclosed are the results from 1 soil sample received at Sequoia Analytical on October 13,1992. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
2101721	Soil, S-1012-SPA-D Comp.	10/12/92	EPA 5030/8015/8020 TCLP Metals Lead by STLC Corrosivity, Ignitability and Reactivity

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Sampled:

Oct 12, 1992

Sample Matrix: Analysis Method:

Soil, Comp. EPA 5030/8015/8020 Received:

Oct 13, 1992 Oct 16, 1992

First Sample #:

210-1721

Reported:

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 210-1721 S-1012-SPA-D
Purgeable Hydrocarbons	1.0	33
Benzene	0.0050	0.28
Toluene	0.0050	0.28
Ethyl Benzene	0.0050	0.50
Total Xylenes	0.0050	1.6
Chromatogram Pat	tern:	Gas

Quality Control Data

Report Limit Multiplication Factor:

25

Date Analyzed:

10/13/92

Instrument Identification:

GCHP-6

Surrogate Recovery, %:

105

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript:

Lab Number:

ARCO 601, San Leandro

Extract of Soil Sample S-1012-SPA-D Comp.

Sampled: Received: Oct 12, 1992

пр. <u>I</u>

Oct 13, 1992

Extracted: Analyzed:

Oct 13, 1992 Oct 15, 1992

Reported:

l: Oct 16, 1992

TCLP METALS

210-1721

Analyte	EPA HW No.	Detection Limit	Chronic Toxicity Reference Level	Regulatory Level	Sample Results
		mg/L (ppm)	mg/L (ppm)	mg/L (ppm)	mg/L (ppm)
Arsenic	D004	0.0050	0.05	5.0	0.012
Barium	D005	0.10	1	100	72
Cadmium	D006	0.010	0.01	1.0	N.D.
Chromium	D007	0.010	0.05	5.0	N.D.
Lead	D008	0.0050	0.05	5.0	N.D.
Mercury	D009	0.00020	0.002	0.2	N.D.
Selenium	D010	0.0050	0.01	1.0	0.0072
Silver	D011	0.010	0.05	5.0	0.016

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2101721.RES <2>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Descript: ARCO 601, San Leandro

Soil, S-1012-SPA-D Comp.

Sampled: Received: Oct 12, 1992 Oct 13, 1992

Analyzed:

see below

Lab Number: 210-1721

Reported:

Oct 16, 1992

LABORATORY ANALYSIS by STLC

Analyte

Date Analyzed Detection Limit mg/kg

Sample Result mg/kg

Lead.....

10/13/92

0.0050

..... 0.060

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2101721.RES <3>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sample Descript: Soil, S-1012-SPA-D Comp. Sampled:

Oct 12, 1992

Received: Analyzed:

Oct 13, 1992 10/13-14/92

Reported:

Oct 16, 1992

CORROSIVITY, IGNITABILITY, AND REACTIVITY

210-1721

Analyte	Detection Limit	Sample Results	
Corrosivity:	N.A.		8.2
Ignitability: Flashpoint (Pensky-Martens), °C	N.A.		> 100 °C
Reactivity: Sulfide, mg/kg Cyanide, mg/kg Reaction with water	10 0.50 N.A.		N.D. N.D. Negative

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2101721.RES <4>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 210-1721

Reported: Oct 16, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		Lead	
	Benzene	Toluene	benzene	Xylenes	STLC	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 7421	
Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler	S. Chin	
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	
Date Analyzed:	Oct 13, 1992	Oct 13, 1992	Oct 13, 1992	*. *	Oct 15, 1992	
QC Sample #:	GBLK101392	GBLK101392	GBLK101392	GBLK101392	210-1263	
·						
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	0.0091	
Sample Colic.:	N.D.	N.D.	N.D.	N.D.	0.0091	
Spike Conc.						
Added:	0.20	0.20	0.20	0.60	0.50	
Conc. Matrix						
Spike:	0.21	0.21	0.22	0.63	0.47	
•	5 , _ .	312 ,	0.22	0.00	J	
Matrix Spike						
% Recovery:	105	105	110	105	92	
Conc. Matrix						
Spike Dup.:	0.21	0.22	0.22	0.65	0.47	
•			-			
Matrix Spike						
Duplicate						
% Recovery:	105	110	110	108	92	
Relative						
% Difference:	0.0	4.7	0.0	3.1	0.0	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

Maria Lee Project Manager (Conc. of M.S. + Conc. of M.S.D.) / 2

2101721.RES <5>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 210-1721

Reported: Oct 16, 1992

QUALITY CONTROL DATA REPORT - TCLP

ANALYTE					
	Barium	Cadmium	Chromium	Silver	Lead
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 6010 C. Medefesser mg/L Oct 14, 1992 209-1722	EPA 7421 S. Chin mg/L Oct 15, 1992 210-1721			
Sample Conc.:	1.8	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	1.0	- 1.0	1.0	1.0	0.50
Conc. Matrix Spike:	2.7	1.0	1.0	0.99	0.45
Matrix Spike % Recovery:	90	100	100	99	90
Conc. Matrix Spike Dup.:	2.7	1.0	1.0	0.99	0.45
Matrix Spike Duplicate % Recovery:	90	100	100	99	90
Relative % Difference:	0.0	0.0	0.0	0.0	0.0

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added x 100

x 100

Maria Lee Project Manager Relative % Difference: Co

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2

2101721.RES <6>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 210-1721

Reported: Oct 16, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Mercury TCLP	Arsenic TCLP	Selenium TCLP	pН	Reactive Sulfide	Flashpoint	Cyanide
				,			
Method: Analyst: Reporting Units: Date Analyzed:	EPA 7471 J. Martinez mg/L Oct 15, 1992	EPA 7060 F. Contreras mg/L Oct 15, 1992	EPA 7740 F. Contreras mg/L Oct 15, 1992	EPA 9045 Y. Arteaga N.A. Oct 13, 1992	EPA 9030 K. Follett mg/kg Oct 13, 1992	EPA 1010 K. Follett °C Oct 13, 1992	EPA 9010 A. Savva mg/kg Oct 7, 1992
QC Sample #:	210-1751	210-1722	210-1722	210-1722	210-0759	210-0946	209-4004
Sample Conc.:	N.D.	N.D.	N.D.	8.0	N.D.	>100	3.6
Spike Conc. Added:	0.0020	0.50	0.50	N.A.	1300	N.A.	2.9
Conc. Matrix Spike:	0.0022	0.51	0.44	N.A.	1300	N.A.	5.7
Matrix Spike % Recovery:	110	102	88	N.A.	100	N.A.	72
Conc. Matrix Spike Dup.:	0.0022	0.54	0.45	8.0	1200	>100	6.0
Matrix Spike Duplicate % Recovery:	110	108	90	N.A.	92	N.A.	83
Relative % Difference:	0.0	5.7	2.2	0.0	8.0	0.0	5.1

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

Maria Lee Project Manager (Conc. of M.S. + Conc. of M.S.D.) / 2

2101721.RES <7>

CO	Division	of Atlantic	Conq.	ompany			į, i	Task O	rder No.	601	. 9	<u> </u>	2				•					- 0	chain of Custody	
ARCO Pacilit	y no.	1001		Cit (Fa	y Icility)	M'n) L	EAN	א ממ		Project	manag	jer	N. G.	100	CT w	144	ļ						Laboratory name	┪
ARCO engin	er v	M. r. c	2 /	1)v E	LAN		Telephon	e no/qr; 1;	76 - 215.	Telepho	ne πο.	· C \	(1-1-1-1	. <i> </i>	Fax	no.	Ku ~	1/ //	317.72			SEQUOIA Contract number	
Consultant n		ESN	A 1	NDuc	TRIE	<u>-</u>	T(AHOO)	Address	ant) 3 <i>3/5</i>	Project (Consul Telepho (Consul	1A IX	- N E	CYDU	117. 50	3 1T/~ :	2/ - 1(00	nsultar A. A.						Contract number	
				Matrix	/ ~ /		rvation								l .				90)// C	1	Method of shipment	-
		ė	<u>.</u>	ļ	<u> </u>		i	age .	e e		0,8015	25 	2	903E				Sem				1,0	*	
Sample I.D.	Lab no.	Container n	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH (ファミン EPA M602/8020/8015	TPH Modified ≀ Gas □ Diese	Oil and Grease 413.1	TPH EPA 418.1/SM	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Semi Metals (₹) vOA □ vOA □	CAM Metals EPA	Lead Org./DHS Lead EPA 7420/7421	708	2777.5		
5-1012-5PA			1			V		10-13)												-		Special detection Limit/reporting	
5-1012-SPB		2.64	-			~		10-12	्या		سسا										-	سسا		
STED SPC.			1			V		10-12	1 2 2								_							
5 1012-SPD			1			1		10-12	19.2														Special QA/QC	
				. ;						<u> </u>							,						·	
								`																
* 4																`							Remarks	_
																							nemarks	
										1														
				-			<u> </u>																	
							-							_										
				 	 	ļ	-											ļ						
	· -											:											210172	
																							Turnaround time	
															<u> </u>								Priority Rush 1 Business Day	ΣŲ
Condition of			1000	: f			r 5		***			receive	ed:	G c	e\	,	_/						Rush	
Relinquished	() ()	11/2	1400	22			Date 10-13-	-92	Time 1125		vert by	Л	1/2	/ !~ .		. 1	us	, e	-					
Relinquished	//	(~)	P		ren		Date 10 /12		72/0	Recei	ved by	- 7 \						-				•	Expedited 5 Business Days	
Relinquished		0				7	Date	· · · · · · · · · · · · · · · · · · ·	Time	Recei	1	laborat Ucru					Date	3 · 1		Time	121	<u></u>	Standard 10 Business Days	
·							<u> </u>				-	17	`				`		1		· · ·			

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APPC-3292 (2-91)

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RECZIVED

NOV 1 ? 1992

PESNA SAN JOSE

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: Joel Coffman

Project: ARCO 601, San Leandro

Enclosed are the results from 1 soil sample received at Sequoia Analytical on November 10,1992. The requested analyses are listed below:

2111404

Soil, SP A-D

11/9/92

TCLP Metals STLC Lead Corrosivity, Ignitability Reactivity EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Matrix:

Analysis Method:

First Sample #:

ARCO 601, San Leandro

Soil

211-1404

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

EPA 5030/8015/8020

Sampled: Received: Nov 9, 1992

Nov 10, 1992

Reported:

Nov 12, 1992

Analyte	Reporting Limit mg/kg	Sample I.D. 211-1404 SP A-D
Purgeable Hydrocarbons	1.0	N.D.
Benzene	0.0050	N.D.
Toluene	0.0050	N.D.
Ethyl Benzene	0.0050	N.D.
Total Xylenes	0.0050	N.D.
Chromatogram Pat	tern:	••

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

11/11/92

Instrument Identification:

GCHP-7

Surrogate Recovery, %:

(QC Limits = 70-130%)

92

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

óject Manager

2111404.RES <1>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

Lab Number:

ARCO 601, San Leandro

Sample Descript: Soil, SP A-D

Sampled: Received: Nov 9, 1992 Nov 10, 1992

Analyzed:

11/10-12/92

Reported:

Nov 12, 1992

CORROSIVITY, IGNITABILITY, AND REACTIVITY

211-1404

Analyte	Detection Limit	Sample Results
Corrosivity:	N.A.	 7.8
Ignitability: Flashpoint (Pensky-Martens), °C	N.A.	 > 100 °C
Reactivity: Sulfide, mg/kg Cyanide, mg/kg Reaction with water	10 0.50 N.A.	 N.D. N.D. Negative

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2111404.RES <2>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA 3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman Client Project ID: Sample Descript:

Lab Number:

ARCO 601, San Leandro Extract of Soil Sample

SP A-D comp

211-1404

Sampled: Received:

Nov 9, 1992 Nov 10, 1992

Extracted: Nov 11, 1992 Analyzed: Nov 12-13, 1992

Reported: Nov 12, 1992

TCLP METALS

Analyte	EPA HW No.	Detection Limit	Chronic Toxicity Reference Level	Regulatory Level	Sample Results
		mg/L (ppm)	mg/L (ppm)	mg/L (ppm)	mg/L (ppm)
Arsenic	D004	0.0050	0.05	5.0	N.D.
Barium	D005	0.10	1	100	1.5
Cadmium	D006	0.010	0.01	1.0	N.D.
Chromium	D007	0.010	0.05	5.0	N.D
Lead	D008	0.0050	0.05	5.0	0.0060
Mercury	D009	0.00020	0.002	0.2	N.D.
Selenium	D010	0.0050	0.01	1.0	N.D.
Silver	D011	0.010	0.05	5.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTIÇAL

Maria Lee Froject Manager

2111404.RES <3>

RESNA 3315 Almaden Expwy., Suite 34 Client Project ID:

ARCO 601, San Leandro

Sampled:

Nov 9, 1992

San Jose, CA 95118

Sample Descript: Soil, SP A-D comp

Received: Extracted: Nov 10, 1992 Nov 11, 1992

Attention: Joel Coffman

Lab Number:

211-1404

Reported:

Nov 12, 1992

INORGANIC PERSISTENT AND BIOACCUMULATIVE TOXIC SUBSTANCES

Soluble Threshold Limit Concentration

Total Threshold Limit Concentration

Waste Extraction Test

Anglido	STLC Max, Limit	Detection Limit	Analysis Result	TTLC Max. Limit	Detection Limit	Analysis Result
Analyte	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)
						•
Antimony	15	0.10	-	500	5.0	-
Arsenic 2	5.0	0.10	-	500	5.0	-
Barium	100	0.10	-	10,000	5.0	-
Beryllium	0.75	0.010	-	75	0.50	-
Cadmium	1.0	0.010	-	100	0.50	-
Chromium (VI)	5.0	0.0050	-	500	0.050	-
Chromium (III)	560	0.010	-	2,500	0.50	-
Cobalt	80	0.050	-	8,000	2.5	-
Copper	25	0.010	-	2,500	0.50	-
Lead	5.0	0.10	0.30	1,000	5.0	-
Mercury	0.20	0.00020	-	20	0.010	-
Molybdenum	350	0.050	-	3,500	2.5	-
Nickel	20	0.050	-	2,000	2.5	-
Selenium	1.0	0.10	- 1	100	5.0	-
Silver	5.0	0.010	-	500	0.50	-
Thallium	7.0	0.10	-	700	5.0	-
Vanadium	24	0.050	-	2,400	2.5	-
Zinc	250	0.010	-	5,000	0.50	-
Asbestos	-	10		10,000	100	-
Fluoride	180	0.10	-	18,000	1.0	-

TTLC results are reported as mg/kg of wet weight. Asbestos results are reported as fibers/g. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

2111404.RES <4>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 211-1404

Reported: Nov 12, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	benzene	Xylenes
B S - ato - at		501	554 0000	FD4 2000
Method: Analyst:	EPA 8020 B. Ali	EPA 8020 B. Ali	EPA 8020 B. Ali	EPA 8020 B. Ali
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date Analyzed:	Nov 11, 1992	Nov 11, 1992	Nov 11, 1992	
QC Sample #:	GBLK111192	GBLK111192	GBLK111192	GBLK111192
ao oampio "	MS/MSD	MS/MSD	MS/MSD	MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	0.20	0.20	0.20	0.60
O Makele				
Conc. Matrix Spike:	0.21	0.21	0.21	0.63
Op.no.	J	0.2.	•	
Matrix Spike				
% Recovery:	105	105	105	105
Conc. Matrix				
Spike Dup.:	0.21	0.21	0.21	0.63
Matrix Spike				
Duplicate	105	105	105	105
% Recovery:	105	105	105	105
Relative				
Relative % Difference:	0.0	0.0	0.0	0.0
	J. J	3.0		

SEQUOIA ANALYTICAL

roject Manager

Conc. of M.S. - Conc. of Sample x 100 % Recovery: Spike Conc. Added

x 100 Relative % Difference: Conc. of M.S. - Conc. of M.S.D.

(Conc. of M.S. + Conc. of M.S.D.) / 2

2111404.RES <5>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 211-1404

Reported: Nov 12, 1992

QUALITY CONTROL DATA REPORT

ANALYTE Reactive Cyanide STLC Sulfide STLC Sulfide PH Lead Method: EPA 9020 EPA 1010 EPA 9030 EPA 9045 EPA 7421 Analyst: A. Savva K. Follett K. Follett Y. Arteaga S. Chin Reporting Units: mg/kg °C mg/kg N.A. mg/L Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25 N.D. 8.0 0.30 Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix Spike: 9.7 N.A. 1400 N.A. 0.73	
Analyst: A. Savva K. Follett Y. Arteaga S. Chin Reporting Units: mg/kg °C mg/kg N.A. mg/L Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25 N.D. 8.0 0.30 Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Analyst: A. Savva K. Follett Y. Arteaga S. Chin Reporting Units: mg/kg °C mg/kg N.A. mg/L Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25 N.D. 8.0 0.30 Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Analyst: A. Savva K. Follett Y. Arteaga S. Chin Reporting Units: mg/kg °C mg/kg N.A. mg/L Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25 N.D. 8.0 0.30 Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Reporting Units: mg/kg °C mg/kg N.A. mg/L Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25	
Date Analyzed: Nov 4, 1992 Nov 11, 1992 Nov 12, 1992 Nov 10, 1992 Nov 13, 1992 QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25	
QC Sample #: 211-0150 210-4506 211-0404 211-1406 211-1404 Sample Conc.: N.D. <25	
Sample Conc.: N.D. <25 N.D. 8.0 0.30 Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Spike Conc. Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
Added: 11 N.A. 1300 N.A. 0.50 Conc. Matrix	
opine.	
Matrix Spike	
% Recovery: 88 N.A. 108 N.A. 86	
/8 Nectivery. 00 14.A. 100 14.A. 00	
Conc. Matrix	
Spike Dup.: 9.7 <25 1400 8.1 0.79	
Matrix Spike	
Duplicate	
% Recovery: 88 N.A. 108 N.A. 98	
Relative	
% Difference: 0.0 0.0 0.0 1.2 7.9	
// Billerende. 0.0 0.0 0.0 1.2 7.0	

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100
-	Spike Conc. Added	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100
_	(Conc. af M.S. + Conc. of M.S.D.) / 2	
		2111404.RES <6>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 211-1404

Reported: Nov 12, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	TCLP Lead	TCLP Mercury	TCLP Beryllium	TCLP Cadmium	TCLP Chromium	TCLP Nickel
Method:	EPA 7421	EPA 7471	EPA 6010	EPA 6010	EPA 6010	EPA 6010
Analyst:	S. Chin	J. Martinez	M. Mistry	M. Mistry	M. Mistry	M. Mistry
Reporting Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Date Analyzed:	Nov 12, 1992	Nov 12, 1992				Nov 12, 1992
QC Sample #:	211-1181	211-1658	211-0892	211-0892	211-0892	211-0892
Sample Conc.:	0.052	0.00095	N.D.	N.D.	N.D.	ND
Spike Conc. Added:	0.50	0.0020	1.0	1.0	1.0	1.0
Conc. Matrix						
Spike:	0.53	0.0029	1.0	1.0	1.0	1.0
Matrix Spike						
% Recovery:	96	95	100	100	100	100
Conc. Matrix						
Spike Dup.:	0.54	0.0029	1.0	1.0	1.0	1.0
Matrix Spike						
Duplicate % Recovery:	98	95	100	100	100	100
Relative % Difference:	1.9	0.0	0.0	0.0	0.0	0.0

SEQUOIA ANALYTICAL

Waria Lee Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2111404.RES <7>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RESNA

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 211-1404

Reported: Nov 12, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	TCLP	TCLP
	Arsenic	Selenium
Method:	EPA 7060	EPA 7740
Analyst:	F. Contreras	F. Contreras
Reporting Units:	mg/L:	mg/L:
Date Analyzed:	Nov 13, 1992 211-0912	Nov 13, 1992 211-0912
QC Sample #:	211-0912	211-0912
Sample Conc.:	N.D.	N.D.
Spike Conc.		
Added:	0.50	0.50
Conc. Matrix		
Spike:	0.42	0.44
•		
Matrix Spike		
% Recovery:	84	88
-		
Conc. Matrix		
Spike Dup.:	0.44	0.46
•	-	
Matrix Spike		
Duplicate	20	00
% Recovery:	88	92
Relative		
% Difference:	4.7	4.4

SEQUOIA ANALYTICAL

Maria Lee Project Manager % Recovery: Conc. of M.S. - Conc. of Sample x 100
Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2111404.RES <8>

ARCO	Produ Givision	ICTS (Comp	ompany	*			Task Or	der No.	<u>(d)</u>	/	92	-2									C	Chain of Custody
ARCO Facili	ly no.	(00	1	Cit	y Icility)	SAN	/EA	NAZO	1,	Project Consul	manag Itanti	ger	nEI.	Col	-A11	AL)					,		Laboratory name
ARCO engin	eer	MIK				n)	Telephon	1/c)47/-	2435	Telepho (Consul	one no.	408	21.0	-77	23°	Fax	no.	n 40	8 /2	164)	-24	135-	SEQUOIA Contract number
Consultant n	ame 7	Esh	IA II	MILLE	7 D 16	=<	11/20/1	Address	nn 23/5	-A/	MA	DE/	عرار بحرارا	VP9	1.51	IT	`	. S	AL)	\(\sigma\) \(\sigma\)	G 92	7/83	Contract Humber
				Matrix	15/6	Preser		(00)100110	······································	Project manager DEL COFFINAN (Consultant) DEL COFFINAN Telephone no (Consultant) 400 AL4-7723 Fax no. (Consultant) 400 ALMADEN EXPY SUITE 34, SI											g	Method of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH(944) EPA M602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 U 413.2	TPH EPA 418.1/SM503	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals,XVOA□VOA□	CAM Metals EPA 60	Lead Org./DHS C	好	1	Special detection
5P - A			سا				i	11-9-92) .	NOC IT	Į.							<u> </u>					Limit/reporting
SP-A SP-B SP-C SP-D			~			~		11-9-92) (5/1)) 4	0	~										~	1	·
5P-C			V					11-9-92	۲ ۲	<u> </u>												ļ	
SP-D			V					11-9-92		ļ			·										Special QA/QC
1																							
		!																					
																							Remarks
															-								Hemarks
 .			 																		-		
	<u> </u>				<u> </u>						-								ļ	<u> </u>			-
	<u> </u>	<u> </u>	<u> </u>			1	<u> </u>				1							<u> </u>	ļ		-		
				 _						ļ		<u> </u>	<u> </u>			ļ	ļ <u>.</u>	ļ		-	<u> </u>		
																			<u> </u>				Lab number 2111404
		 																1		1			Turnaround time
	 		. <u> </u>									-	-					 					Priority Rush
Condition o	samole	<u> </u>	!	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Temr	eratur	receiv	ed:	J	1	<u> </u>	L	1	1	1	1	1	1 Business Day
Religquished by sample() Date Tin					Time	Rece	ived by	1	p	~!					· · · · · · · · · · · · · · · · · · ·				Rush 2 Business Days				
Rekingujshed by Dale, Tir						7111 Time	ne Received by							Expedited 5 Business Days									
Relinquishe	<u> </u>	0	<i></i>				Date		Time	1	Jun	labora	tory				Date //-	10 q	2	Time	—— 11 v	5	Standard . 10 Business Days

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

RECEIVED

NOV 1 2 1992

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

wy., Suite 34 SAN JOSE 18

Project: ARCO 601, San Leandro

Enclosed are the results from 4 soil samples received at Sequoia Analytical on November 10,1992. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
2111398	Soil, S-5-B18	11/9/92	EPA 5030/8015/8020
2111399	Soil, S-7.5-B18	11/9/92	EPA 5030/8015/8020
2111400	Soil, S-11-B18	11/9/92	EPA 5030/8015/8020
2111401	Soil, S-16-B18	11/9/92	EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Maria Lee

Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID: Sample Matrix:

First Sample #:

ARCO 601, San Leandro

Soil

Analysis Method: EPA 5030/8015/8020

211-1398

Sampled:

Nov 9, 1992

Received:

Nov 10, 1992

Reported: Nov 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 211-1398 S-5-B18	Sample I.D. 211-1399 S-7.5-B18	Sample I.D. 211-1400 S-11-B18	Sample I.D. 211-1401 S-16-B18
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.
Benzene	0.0050	N.D.	N.D.	N.D.	N.D.
Toluene	0.0050	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.	N.D.	N.D.
Total Xylenes	0.0050	N.D.	N.D.	N.D.	N.D.
Chromatogram Pat	tern:				

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0
Date Analyzed:	11/10/92	11/10/92	11/10/92	11/10/92
Instrument Identification:	GCHP-1	GCHP-1	GCHP-1	GCHP-1
Surrogate Recovery, %: (QC Limits = 70-130%)	103	100	107	109

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2111398.RES <1>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2111398-1401

Reported: Nov 11, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	benzene	Xylenes
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020
Analyst:	C. Donohue	C. Donohue	C. Donohue	C. Donohue
Reporting Units:	mg/kg	mg/kg	mg/kg	mg/kg
Date Analyzed:	Nov 10, 1992	Nov 10, 1992		Nov 10, 1992
QC Sample #:	GBLK111092	GBLK111092	GBLK111092	GBLK111092
	MS/MSD	MS/MSD	MS/MSD	MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	0.20	0.20	0.20	0.60
Conc. Matrix				
Spike:	0.23	0.21	0.23	0.64
opike.	0.20	0.21	0.20	0.04
Matrix Spike	446	465	44=	407
% Recovery:	115	105	115	107
Conc. Matrix				
Spike Dup.:	0.24	0.22	0.24	0.70
Matrix Cuiles				
Matrix Spike Duplicate				
% Recovery:	120	110	120	117
% necovery.	120	110	120	117
Relative	4.0	4.7	4.0	0.0
% Difference:	4.3	4.7	4.3	9.0

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Maria Lee Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added	-	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		
)			2111398.RES <2>

		JCTS of Atlantic	Comp	Daily :				Task Or	der No. (0	T -	92) 	2									hain of Custody
ARCO Facili	у по.	60	1	Cit (Fa	y icility)	SAN	LEA	MINDO		Project (Consul	manag Itant)	ger	0F	7		1) E	EI	nA.	1)				Laboratory name SEQUOIN
ARCO engin	eer M	IVF	1,7	HELI		<u> </u>	Telephon (ARCO)	18 no 4/5) < 7/ -	1425	Telepho (Consul	one no	408	9),7	L 64-2	772	7 Fax	no.	0//	8	V64-	\mathcal{L}^{2}	35-	Contract number
Consultant n		5	VÄ	11	1/7	1572	IE <	e no 4/5 257/ - Address (Consulta	15 A/W	117-7)/-	1) 5	ZX)	7.5	11/1	<u> </u>	34	3	94).	PSE	9	- 5119	Contract number
				Matrix	10-2-00	1	vation						, v ,	/	-1288		- ',						Method of shipment
<u> </u>					<u> </u>			Jate	ime		ВТЕХ/ГРН (945) ЕРА М602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1	TPH EPA 418.1/SM503E	e			TCLP Semi	CAM Metals EPA 6010/7000				
Sample I.D.	0	Container	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	PA 802	TPH (dodifiec	GGeage 14	18.1/5/	EPA 601/8010	24/824	EPA 625/8270) 	letals El	25.25 10.25			
Samp	dg.	Conti						Sami	Sam	BTEX 602/EPA 8020	BTEX/ EPA N	TPH N Gas	Oil an	TPH EPA 4	EPA 6	EPA 624/8240	EPA 6	TCLP	CAM M	Lead Org./DHS C Lead EPA 7420/7421	İ		
-5-B18			/			~		11-9-92			-			2.	1	1	1	3	9	8			Special detection Limit/reporting
-75-BB			/			V		11-9-92							(9	9			
		· · · · · · · · · · · · · · · · · · ·	L/			~				<u> </u>							j	4	0	Ö		.	
-11-BB								11-9-92								,		<u> </u>	0				
5 <i>-16-<u>B</u>18</i>		· · · · · · · · · · · · · · · · · · ·			 			11-9-92			-				У	1				'			Special QA/QC
				-														 					
					 						<u> </u>												
												-				_							Remarks
					ļ								ļ <u>-</u>										
					ļ	ļ 						ļ	ļ	ļ									
																ı							
						<u> </u>					ļ												
												 ., <u>.,.</u>. .	ļ						<u> </u>	 			Lab number
				 		-			P.											-			Turnaround time
			ļ. 		<u> </u>	 				<u> </u>			ļ <u>.</u>	<u></u>				-		-			Defends Dunk
Condition of	namele:	l	<u></u>	1]		Te						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			1 Business Day
Condition of sample: Relinguished by sampler 112 Date					7 7	Time	-	erature	receiv	. DB										Rush 2 Business Days			
Phin	(h)		Tuc	as		·····	11/	10/92	0914	10	let	201	4	. A	ery	m				· · · · · · · · · · · · · · · · · · ·			1
Relinquished	l by	Han	naa				Date (/ ////o/9.	ι 2	Time 76:11	. 17							Expedited 5 Business Days						
Relinquished by Date Time							Time Received by laboratory Date Time St					Standard											
													Received by laboratory					11.10.92 1105					10 Business Days

HECETTED

AUG 1 8 1992

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118

Attention: Joel Coffman

Project: ARCO 601, San Leandro

RESNA SAN JOSE

Enclosed are the results from 2 soil samples received at Sequoia Analytical on August 7,1992. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
2082119	Soil, S-7.5-B19	8/7/92	EPA 5030/8015/8020
2082120	Soil, S-15.5-B19	8/7/92	EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Sampled:

Aug 7, 1992

Sample Matrix: Analysis Method: Soil

Received:

Aug 7, 1992

First Sample #:

EPA 5030/8015/8020 208-2119

Reported:

Aug 14, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 208-2119 S-7.5-B19	Sample I.D. 208-2120 S-15.5-B19
Purgeable Hydrocarbons	1.0	N.D.	N.D.
Benzene	0.0050	N.D.	N.D.
Toluene	0.0050	N.D.	N.D.
Ethyl Benzene	0.0050	N.D.	N.D.
Total Xylenes	0.0050	N.D.	N.D.
Chromatogram Pat	tern:		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0
Date Analyzed:	8/14/92	8/14/92
Instrument Identification:	GCHP-1	GCHP-1
Surrogate Recovery, %: (QC Limits = 70-130%)	101	83

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2082119.RES <1>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 2082119-20

Reported: Aug 14, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	benzene	Xylenes
				-:
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 R. Lee mg/kg Aug 14, 1992 GBLK081492			
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.20	0.20	0.20	0.58
Matrix Spike % Recovery:	100	100	100	97
Conc. Matrix Spike Dup.:	0.21	0.21	0.21	0.62
Matrix Spike Duplicate % Recovery:	105	105	105	103
Relative % Difference:	4.9	4.9	4.9	6.7

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Maria Lee Project Manager
 % Recovery:
 Conc. of M.S. - Conc. of Sample
 x 100

 Spike Conc. Added
 x 100

 Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 (Conc. of M.S. + Conc. of M.S.D.) / 2
 x 100

2082119.RES <2>

Anco	TOGI Division	ICLS of Atlantic	com Richfield	ompany	\$			Task Or	der No.	60	- 	92	۔ س								-	-	chain of Custody
ARCO Facili	ity no.	903	4.10	O (Fa	cility) S AN	ANU L	EAN Telephon (ARCO)	ORD ne no.		Project (Consul Telepho (Consul	manag Itant) one no Itant) (408 101	EL)26	<u>Cof</u> 4-7	= F1 703	71 /4 . Fax 3 (Co	N/ c no. ensultar	LOV 10(40)	(L)	EE 64-	7 943	سع3	Laboratory name SEQUOIA Contract number
Consultant r	name R	E 5 /	VA					Address (Consulta	3315 nt) 5 A-r	Project manager (Consultant) JOEL (OFFMAN)/LOULEET Telephone no, (Consultant) (408) 264-7703 (Consultant) (4/18) 264-343 5 ALMADEN EXPLUY, SUITE 34 N JOSE, CA											07-090		
	Matrix Preservation							•	1									0007/000				Method of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020/8016	TPH Modified 8015 Gas ☐ Diesel ☐	Oil and Grease 413.1	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Metals EPA 6	Lead Org./OHS ☐ Lead EPA 7420/7421 ☐			X
5-7/5-	RI9		Х			X		8-7-92	8:30	ſ	X								ર.	1	1151		Special detection Limit/reporting
5-10-1	1 1		X			X		8-7-92			0					,			1				
5-14-1	819	*	X			X			8:48	1 1	1												
5-15/2	1 :		X			X		8-7-92	9125		X								2.	57	w		Special QA/QC
					-,014																		Remarks HOLD 510,514 + recon other 2 per long 8/11 ml
											1.											h.*	Lab number
					<u> </u>							<u> </u>											Turnaround time
										<u> </u>	<u></u>												Priority Rush 1 Business Day
Relinguished by Date Tim					Time /5/0	Recei	yed by	uh	· · · · · · · · · · · · · · · · · · ·	é 6.								um +	Rush 2 Business Days				
Helinquished by Date					733 Time	Received by laboratory Date Time S						5 Business Days Standard 10 Business Days											

HECEIVED

AUG 1 6 1992

RESNA

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: Joel Coffman

Project: ARCO 601, San Leandro

RESNA SAN JOSE

Enclosed are the results from 1 soil sample received at Sequoia Analytical on August 7,1992. The requested analyses are listed below:

 SAMPLE #
 SAMPLE DESCRIPTION
 DATE OF COLLECTION
 TEST METHOD

 2081014
 Soil, SP-0807 A-D
 8/7/92
 EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Project Manager

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

Client Project ID:

ARCO 601, San Leandro

Soil

Sample Matrix: Analysis Method: EPA 5030/8015/8020

208-1014 First Sample #:

Sampled:

Aug 7, 1992

Received:

Aug 7, 1992

Reported:

Aug 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample i.D. 208-1014 SP-0807 A-D
Purgeable Hydrocarbons	1.0	N.D.
Benzene	0.0050	N.D.
Toluene	0.0050	N.D.
Ethyl Benzene	0.0050	N.D.
Total Xylenes	0.0050	N.D.
Chromatogram Pat	••	

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

8/9/92

Instrument Identification:

GCHP-3

Surrogate Recovery, %:

102

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Maria (el roject Manager

2081014.RES <1>

Client Project ID: ARCO 601, San Leandro

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: Joel Coffman

QC Sample Group: 208-1014

Reported: Aug 11, 1992

QUALITY CONTROL DATA REPORT

ALIAL MER				
ANALYTE	Benzene	Toluene	Ethyl- benzene	Vidence
	benzene	Loineue	Denzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 A. Miraftab mg/kg Aug 9, 1992 GBLK080992			
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.18	0.19	0.19	0.56
Matrix Spike % Recovery:	90	95	95	93
Conc. Matrix Spike Dup.:	0.19	0.21	0.20	0.60
Matrix Spike Duplicate % Recovery:	95	105	100	100
Relative % Difference:	5.4	10	5.1	6.9

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

aria Lee roject Manager
 % Recovery:
 Conc. of M.S. - Conc. of Sample
 x 100

 Spike Conc. Added

 Relative % Difference:
 Conc. of M.S. - Conc. of M.S.D.
 x 100

 (Conc. of M.S. + Conc. of M.S.D.) / 2

2081014.RES <2>

ARÇO	TOUL Division	ICLS (om P	Company	À			Task Or	der No.	60) -	92	~ °	_ 2			-						Chain of Custody
ARCO Facil						ANLL	EAN	DRO		Project (Consul Telepho (Consul	manag	Jer. To	F.L.	00	FF	m	411	110	uz	EF		-	Laboratory name
ARCO engir	neer	r E	,,, <u>,</u>	1 E 1	u nl		Telephon (ARCO)	e no.		Telepho	ne no	108	266	1-7	72	5 Fax	no.	(400	26	,U- L	743	5	SEQUOIA Contract number
Consultant i	name	CAL	<u>υυ γ</u> 1	1 1	71 ! *		(Anoo)	Address	int)33/5	A).Y	nAr	γ ε η) = x	יטום	<u>,</u> 1 <1	11)E	: <i>₹</i>	<u>√. ∠</u> 5∆	<u>, en . Tz</u>	201-	^ /4	1	C7-673
	<u> </u>	210 6	1					I (Consulta	inijo o 7 o		,,,,	.) (/ (7 5-	۱ <i>۱ را</i>	(/ /)	77,		8		-/:	ý.	Method of shipment
Matrix			Prese	rvation		9	-	/8015	% □		703E				SE VO	<u>m</u> 20107		,		:			
Sample 1.D.	Lab no.	Container no.	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH G- EPA M602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 🔲 413.2 🗀	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA-625/8270	TCLP Metals □ VOA □ VOA □	CAM Metals EPA TTLC STU	Lead Org./DHS ☐ Lead EPA 7420/7421 ☐	4		Cassis detastics
SPSPO	807-	# A	Kist			K		08-07-9	11:00		ťΧ								1		- Libert		Special detection Limit/reporting
SP-08						X			11:05							20{	310	14					1
5P-08			N X		ļ				11:10			ļ							*		<u>.</u>	ļ	-
SP-080'	7-0	_)c	1			×		<u> </u>	11:15	<u> </u>	, , , , , , , , , , , , , , , , , , , 	<u> </u>		ļ			1.						Special QA/QC
				1					<u> </u>	1										<u> </u>			
,			٠.							<u> </u>					,					<u></u>			_
							.					<u> </u>				ļ							Remarks
				<u> </u>								ļ											COMPOSITE
										<u> </u>										ļ			COMPOSITE TPHG+BETEX
		 									<u> </u>												_
		:																					2-DAY
																			<u> </u>				1 2001
																					م		Lab number
											-												Lao number
		-							4	7													Turnaround time
													1										Priority Rush 1 Business Day
Condition of	f sample:	1	1	40	اےہ					np	erature	receiv	ed:	Ċ	عو(Rush
Relinquish	ريك	pler Lee	A	<u> </u>		·	Date 8-7	-92	Time 1513			orh	Lieu	بلار	_								2 Business Days
Religionish		in					Date デ- フー		Time 1733	Rece	ived by	,											5 Business Days
Hellnquish							Date	·	Time	Rece	ived by	/ labora	tory				Date ≲ (~	Jq.	.1	Time	.33		Standard 10 Business Days