

June 14, 2002

JUN 2 4 2002

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

Mr. Paul Supple Atlantic Richfield Company P.O. Box 6549 Moraga, CA 94570

Subject: Quarterly groundwater Monitoring Report, First Quarter 2002

ARCO Service Station No. 601 712 Lewelling Boulevard San Leandro, California Delta Project No. D000-303 JUN 2 4 2002

Dear Mr. Supple:

Delta Environmental Consultants, Inc. is submitting the attached report that presents the results of the first quarter 2002 groundwater monitoring program at ARCO Service Station No. 601, located at 712 Lewelling Boulevard, San Leandro, California. The monitoring program complies with the Alameda County Health Care Services Agency requirements regarding underground tank investigations.

The interpretations contained in this report represent our professional opinions and are based, in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeological and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions concerning this project, please contact Steven W. Meeks at (916) 536-2613.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Trevor L. Atkinson P.E Project Engineer

Stéven W. Meeks, P.E.

Project Manager

California Registered Civil Engineer No. C057461

PROFESSIONAL CHARGE SOLUTION OF CALIFORNIES (14/02

TLA (Lrp007.303.doc) Enclosures

cc: Mr. Scott Seery - Alameda County Health Care Services Agency

Mr. Mike Bakaldin - San Leandro Fire Department

June 14, 2002 Date:

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.: 601 Address: 712 Lewelling Boulevard, San Leandro, CA Atlantic Richfield Company Environmental Paul Supple 925-299-8891 Engineer/Phone No.: Consulting Co./Contact Person Delta Environmental Consultants, Inc. Steven W. Meeks, P.E. Consultant Project No.: D000-303 Primary Agency/Regulatory ID No. Alameda County Health Care Services Agency

WORK PERFORMED THIS QUARTER

Performed quarterly groundwater monitoring for first quarter 2002.

Prepared and submitted quarterly groundwater monitoring report for fourth quarter 200

AUADTER

WORK PROPOSED FOR NEXT QUARTER

Prepare and submit quarterly groundwater monitoring report for first quarter 2002.

Perform quarterly groundwater monitoring and sampling for second quarter 2002.

Perform groundwater sampling from utility lines (Investigation) during second quarter 2002.

Site will be transferred to new consultant (URS) during second quarter 2002.

QUARTERLY MONITORING:

Monitoring/Remediation with ORC **Current Phase of Project** Annual (1st Quarter): MW-2, MW-11, MW-13 Semi-Annual (1st/3rd Quarter) MW-9, MW-15 Frequency of Groundwater Sampling: Quarterly: MW-1, MW-3 through MW-8, MW-10 MW-14 Frequency of Groundwater Monitoring: Quarterly is Free Product (FP) Present On-Site: No FP Recovered this Quarter: None 3.45 gallons, Well MW-1 Cumulative FP Recovered to Date: Bulk Soil Removed This Quarter: 1,565 cubic yards of TPH impacted soil Bulk Soil Removed to Date: **Current Remediation Techniques:** Natural Attenuation 7.46 feet Approximate Depth to Groundwater: 0.015 ft/ft toward East Groundwater Gradient:

DISCUSSION:

- Methyl tertiary butyl ether was reported in MW-2, MW-4 and MW-8 at concentrations of 75, 12, and 830 micrograms per liter (µg/L), respectively.
- Total petroleum hydrocarbons as gasoline was reported in MW-1 through MW-6 and MW-8 at concentrations of 12,000; 100; 43,000; 490; 20,000; 2,100 and 1,100 µg/L respectively.
- Benzene was reported in MW-1, and MW-3 through MW-7 at concentrations of 1,800; 1,000; 34; 2,600; 380 and 1.3 µg/L, respectively.

ARCO QUARTERLY GROUNDWATER MONITORING REPORT (continued)

ARCO Service Station No. 601 June 14, 2002 Page 2

ATTACHMENTS:

Table 1 Groundwater Elevation and Analytical Data
 Table 2 Groundwater Flow Direction and Gradient
 Figure 1 Groundwater Analytical Summary Map
 Figure 2 Groundwater Elevation Contour Map
 Appendix A Sampling and Analysis Procedures
 Appendix B Historical Data Tables (IT Corporation)

Appendix C Certified Analytical Reports with Chain-of-Custody Documentation

Appendix D Field Data Sheet

TABLE 1
GROUNDWATER ANALYTICAL DATA

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (µg/L)	TPH as Gasoliņe (µg/L)	MTBE (µg/L)	Semi Volatiles (µg/L)
MW-1	06/20/00	19.19	8.20	10.99	2,400	50	1,800	680	23,000	<200	NA
	09/29/00		8.55	10.64	2,880	<50	2,130	871	23,600	<250	430 ^a /1,100 ^b
	12/17/00		8.28	10.91	1,980	<50	1,610	664	21,600	<250	270°/900°
	03/28/01		8.13	11.06	2,310	<100	2,010	517	19,800	<500	11(c)
	06/20/01		8.60	10.59	2,200	23	1,800	320	17,000	100	NA
	09/22/01		9.03	10.16	2,900	<200	2,500	270	20,000	<1000	360 ^a , 980 ^b
	12/27/01		7.93	11.26	2,000	<50	1,700	140	15,000	290	370 ^a ,1,200 ^b
	03/15/02		7.89	11.3	1,800	<50	1,400	79	12,000	<250	220ª; 880 ^b
MW-2	06/20/00	21.12	7.12	14.00	NS	NS	NS	NS	NS	NS	NS
	09/29/00		7.60	13.52	NS	NS	NS	NS	NS	NS	NS
	12/17/00		7.42	13.70	NS	NS	NS	NS	NS	NS	NS
	03/28/01		6.84	14.28	18.1	<5.0	7.63	5.98	838	39.5	NA
	06/20/01		7.66	13.46	NS	NS	NS	NS	NS	NS	NS
	09/22/01		8.08	13.04	NS	NS	NS	NS	NS	NS	NA
	12/27/01		6.48	14.64	NS	NS	NS	NS	NS	NS	NS
	03/15/02		6.84	14.28	<0.5	<0.5	2.5	<0.5	100	75	NA
MW-3	06/20/00	22.99	6.22	16.77	670	990	2,400	12000	45,000	<500	NA
	09/29/00		7.20	15.79	860	1,120	2,720	12900	51,000	<250	NA
	12/17/00		NM	NC	NS	NS	NS	NS	NS	NS	NA
	03/28/01		6.10	16.89	804	<200	250	11,000	43,500	<1,000	NA
	06/20/01		6.14	16.85	1,000	850	2,800	13,000	62,000	<2,500	NA
	09/22/01		7.24	15.75	1,200	1,200	3,100	13,000	53,000	<1,000	NA
	12/27/01		7.00	₃ 15.99	860	840	2,300	10,000	44,000	<250	NA T W
	03/15/02		7.02	Ā 15.97	1,000	810	2,300	11,000	43,000	<250	2002 to BOOK

TABLE 1
GROUNDWATER ANALYTICAL DATA

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH as Gasoline (µg/L)	MTBE (µg/L)	Semi Volatiles (µg/L)
MW-4	06/20/00	22.38	6.46	15.92	210	20	94	520	2,700	46	NA
	09/29/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	12/17/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	03/28/01		7.49	14.89	DRY	DRY	DRY	DRY	DRY	DRY	NA
	06/20/01		7.21	15.17	690	170	330	1,400	13,000	110	NA
	09/22/01		7.43	14.95	650	110	410	1,800	6,700	100	NA
	12/27/01		7,32	15. 0 6	47	15	46	250	1,200	15	NA
	03/15/02		7.43	14.95	34	7.4	26	110	490	12	NA
MW-5	06/20/00	22.45	6.78	15.67	3,000	650	260	700	10,000	<200	NA
	09/29/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	12/17/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	03/28/01		6.48	15.97	4,160	3,450	728	3,090	23,400	<250	NA
	06/20/01		7.26	15.19	1,200	49	190	540	120,000	<100	NA
	09/22/01		DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	12/27/01		6.56	15.89	1,500	2,700	730	3,200	16,000	<250	NA
	03/15/02		6.9	15.55	2,600	3,300	1,000	4,000	20,000	<250	NA
MW-6	06/20/00	22.77	DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	09/29/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	12/17/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS 🥳
	03/28/01		7.57	15.2	DRY	DRY	DRY	DRY	DRY	DRY	NA AMILI.
	06/20/01		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY N 1
	09/22/01		DRY	DRY	NS	NS	NS	NS	NS	NS	NS NS NA DRY NA ZOOL TO TO TO THE NA
	12/27/01		7.21	15. 56	3	1	1.1	2	<50	<2.5	NA
	03/15/02		7.51	15.2 6	380	8.6	110	17	2,100	<25	NA

TABLE 1
GROUNDWATER ANALYTICAL DATA

Weil Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH as Gasoline (μg/L)	MTBE (μg/L)	Semi Volatiles (μg/L)
MW-7	06/20/00	22.89	DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	09/29/00		DRY	DRY	NS	NS	NS	NS	NS	NS	NS
	12/17/00		8.93	13.96	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NA
	03/28/01		8.35	14.54	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NA
	06/20/01		DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	09/22/01		DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	12/27/01		8.42	14.47	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NA
	03/15/02		8.54	14.35	1.3	2.6	1.1	5.4	<50	<2.5	NA
MW-8	06/20/00	20.89	7.23	13.66	<0.5	0.9	<0.5	<1.0	150	310	NA
	09/29/00		7.91	12.98	< 0.5	<0.5	<0.5	<0.5	149	438	NA
	12/17/00		7.11	13.78	<5.0	<5.0	<5.0	<5.0	662	273	NA
	03/28/01		6.88	14.01	<5.0	<5.0	<5.0	<5.0	840	320	NA
	06/20/01		7.25	13.64	<0.5	<0.5	<0.5	0.65	230	330	NA
	09/22/01		8.14	12.75	<0.5	< 0.5	<0.5	<0.5	<50	6.5	NA
	12/27/01		6.73	14.16	<0.5	<0.5	0.6	0.89	780	160	NA
	03/15/02		6.94	13.95	<10	<10	<10	<10	1,100	830	NA
MW-9	06/20/00	22.26	8.01	14.25	NS	NS	NS	NS	NS	NS	NS
	09/29/00		8.44	13.82	<0.5	<0.5	<0.5	<0.5	<50	3.44	NA
	12/17/00		7.84	14.42	NS	NS	NS	NS	NS	NS	NS
	03/28/01		7.58	14.68	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NA ,
	06/20/01		7.75	14.51	NS	NS	NS	NS	NS	NS	NS C
	9/22/2001		8.69	13.57	<0.5	<0.5	<0.5	<0.5	<50	7.8	NA MILL
	12/27/2001		7.15	15.11	NS	NS	NS	NS	NS	NS	N/G ^U
	03/15/02		7.23	15.03	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	JOHNA

TABLE 1
GROUNDWATER ANALYTICAL DATA

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	TPH as Gasoline (μg/L)	MTBE (μg/L)	Semi Volatiles (µg/L)
MW-10	06/20/00	21.33	7.99	13.34	<0.5	<0.5	<0.5	<0.5	<0.5	<3.0	NA
	09/29/00		8.40	12.93	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	12/17/00		7.91	13.42	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	03/28/01		7.47	13.86	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	06/20/01		8.11	13.22	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	09/22/01		8.77	12.56	< 0.5	< 0.5	<0.5	<0.5	<50	<2.5	NA
	12/27/01		6.94	14.39	< 0.5	< 0.5	<0.5	<0.5	<50	<2.5	NA
	03/15/02		7.48	13.85	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
MW-11	06/20/00	20.97	8.18	12.79	NS	NS	NS	NS	NS	NS	NS
	09/29/00		8.60	12.37	NS	NS	NS	NS	NS	NS	NS
	12/17/00		8.48	12.49	NS	NS	NS	NS	NS	NS	NS
	03/28/01		7.88	13.09	<0.5	<0.5	< 0.5	<0.5	<50	<2.5	NA
	06/20/01		8.48	12.49	NS	NS	NS	NS	NS	NS	NS
	09/22/01		9.11	11.86	NS	NS	NS	NS	NS	NS	NS
	12/27/01		7.50	13.47	NS	NS	NS	NS	NS	NS	NS
	03/15/02		7.87	13.1	< 0.5	< 0.5	< 0.5	<0.5	<50 ·	<2.5	NA
MW-12	06/20/00	20.11	8.55	11.56	NS	NS	NS	NS	NS	NS	NS /c
	09/29/00		8.98	11.13	NS	NS	NS	NS	NS	NS	NS 2 NS 2
	12/17/00		8.76	11.35	NS	NS	NS	NS	NS	NS	NS 🗞
	03/28/01		8.31	11.8	<0.5	<0.5	< 0.5	<0.5	<50	<2.5	NA. × 🗚
	06/20/01		9.10	11.01	NS	NS	NS	NS	NS	NS	ANT E
	09/22/01		9.48	10.63	NS	NS	NS	NS	NS	NS	ANS. S
	12/27/01		7.78	12.33	NS	NS	NS	NS	NS	NS	્ત્ર [†] ∜ NS
	03/15/02		8.22	11.89	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5 ∩	NA NA

TABLE 1
GROUNDWATER ANALYTICAL DATA

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH as Gasoline (μg/L)	MTBE (µg/L)	Semi Volatiles (μg/L)
MW-13	06/20/00	20.75	7.56	13.19	NS	NS	NS	NS	NS	NS	NS
	09/29/00		8.27	12.48	NS	NS	NS	NS	NS	NS	NS
	12/17/00		8.09	12.66	NS	NS	NS	NS	NS	NS	NS
	03/28/01		7.69	13.06	<0.5	<0.5	< 0.5	<0.5	<50	<2.5	NA
	06/20/01		8.46	12.29	NS	NS	NS	NS	NS	NS	NS
	09/22/01		8.57	12.18	NS	NS	NS	NS	NS	NS	NS
	12/27/01		7.14	13.61	NS	NS	NS	NS	NS	NS	NS
	03/15/02		7.62	13.13	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
MW-14	06/20/00	20.90	9.16	11,74	<0.5	<0.5	<0.5	<1.0	<50	<10	NA
	09/29/00		9.48	11.42	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.50	NA
	12/17/00		9.24	11.66	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	03/28/01		8.91	11.99	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA
	06/20/01		9.7	11.2	< 0.5	< 0.5	< 0.5	<0.5	<50	3.1	, NA
	09/22/01		10.04	10.86	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NA
	12/27/01		8.33	12.57	<0.5	<0.5	<0.5	<0.5	<50	<2.5	NΑ
	03/15/02		8.75	12.15	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA

TABLE 1
GROUNDWATER ANALYTICAL DATA

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH as Gasoline (µg/L)	MTBE (μg/L)	Semi Volatiles (µg/L)
MW-15	06/20/00	22.08	5. 98	16.10	NS	NS	NS	NS	NS	NS	NS
	09/29/00		6.50	15.58	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.50	NA
	12/17/00		5.89	16.19	NS	NS	NS	NS	NS	NS	NS
	03/28/01		5.78	16.3	< 0.5	< 0.5	< 0.5	<0.5	<50	11.1	NA
	06/20/01		5.72	16.36	NS	NS	NS	NS	NS	NS	NS
	09/22/01		6.79	15.29	<0.5	<0.5	<0.5	<0.5	<50	13	NA
	12/27/01		5.49	16.59	NS	NS	NS	NS	NS	NS	NS
	03/15/02		5.68	16.4	< 0.5	< 0.5	< 0.5	<0.5	<50	<2.5	NA

a 2-methylnaphthalene

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted

μg/L = Micrograms per liter

NA = Not analyzed

NS = Not sampled

Note: Please Refer to Appendix B for Historical Groundwater Elevation and Analytical Data Tables developed by IT Corporation

^b Naphthalene

[°] Phenol

TABLE 2

GROUNDWATER FLOW DIRECTION AND GRADIENT

ARCO Service Station 601

712 Lewelling Boulevard San Leandro, California

East

03/15/02

0.015

Note: Please refer to Appendix B for Historical Groundwater Elevation and Analytical Data Tables developed by IT Corporation

♠ MW-1 MONITORING WELL LOCATION SOIL VAPOR EXTRACTION WELL LOCATION GROUND WATER ELEVATION IN FEET ABOVE MEAN (14.28)SEA LEVEL (MSL) WATER TABLE CONTOUR IN FEET ABOVE MSL **— 13.0 — GROUND WATER FLOW DIRECTION** APPROXIMATE GROUND WATER FLOW GRADIENT 0.015 NOT USED IN CONTOUR MAP CONSTRUCTION

FIGURE 2

GROUND WATER ELEVATION CONTOUR MAP FIRST QUARTER 2002 (3/15/02)

ARCO STATION NO. 601

712 LEWELLING BOULEVARD

SAN LEANDRO, CALIFORNIA

PROJECT NO.	DRAWN BY
D000-303	TLA 5/23/02
FILE NO.	PREPARED BY
601-1	TLA
REVISION NO.	REVIEWED BY
i .	i .

APPENDIX A

Sampling and Analysis Procedures

FIELD METHODS AND PROCEDURES

1.0 GROUND WATER AND LIQUID-PHASE HYDROCARBON DEPTH ASSESSMENT

A water/liquid-phase hydrocarbon (LPH) interface probe was used to assess the thickness of LPH, if present, and a water level indicator was used to measure ground water depth in monitoring wells that did not contain LPH. Depth to ground water was measured from the top of each monitoring well casing. The tip of the water level indicator was subjectively analyzed for LPH sheen. All measurements and physical observations were recorded in the field.

2.0 SUBJECTIVE ANALYSIS OF GROUND WATER

Prior to purging, a water sample was collected from the monitoring well for subjective analysis. The sample was retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer was then retrieved and the sample contained within the bailer was examined for LPH and the appearance of a LPH sheen.

3.0 MONITORING WELL PURGING AND SAMPLING

Monitoring wells were purged using a centrifugal pump or disposable bailers until pH, temperature, and conductivity of the purge water had stabilized and a minimum of three to four well volumes of water had been removed. Ground water removed from the wells was stored in 55-gallon barrels at the site. The barrels were labeled with corresponding monitoring well numbers and the date of purging. After purging, ground water levels were allowed to stabilize. A ground water sample was then removed from each of the wells using a dedicated disposable bailer. If the well was purged dry, it was allowed to sufficiently recharge and a sample was collected. Samples were collected in air-tight vials, appropriately labeled, and stored on ice from the time of collection through the time of delivery to the laboratory. A chain-of-custody form was completed to document possession of the samples. Ground water samples were transported to the laboratory and analyzed within the EPA-specified holding times for the requested analyses. Purge water will be collected from the storage barrels in a vacuum truck and transported to an appropriate facility for treatment and/or disposal.

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low—flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol previously stated in the first paragraph of this sub-section. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low—yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

JUN 2 TOO

APPENDIX B

Historical Data Tables (IT Corporation)

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

		Well	Depth to	Groundwater	TPPH as			Ethyl-	Total		Total Oil	Dissolved	Purged/
Well	Date	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	and Grease	Oxygen	Not Purged
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-2	02/24/96	46.57	25.78	20.79	4,100	300	28	95	340	NA	NA	NA	
MW-2	05/24/96	46.57	24.35	22.22	6,300	540	57	320	1,100	NA	NA	NA	
MW-2	08/20/96	46.57	27.15	19.42	7,600	290	29	240	890	64	NA	NA	
MW-2	11/12/96	46.57	29.10	17,47	4,900	120	17	63	220	26	NA	NA	
MW-2	04/05/97	46.57	24.45	22.12	6,600	220	21	200	780	170	NA	NA	
MW-2	07/01/97	46.57	26.80	19.77	6,300	450	37	280	880	78	NA	NA	NP
MW-2	09/08/97	46.57	28.10	18.47	15,000	480	81	600	2,300	<120	NA	0.34	
MW-2	11/17/97	46.57	29.02	17.55	15,000	1,200	19	1,000	3,200	61	NA	0.6	NP
MW-2	03/18/98	46.57	21.11	25.46	9,400	320	34	410	1,100	<60	NA	0.5	Р
MW-2	04/30/98	46.57	21.27	25.30	3,900	180	10	180	520	<30	NA	3	P
MW-2	08/14/98	46.57	27.05	19.52	18,000	1,100	80	1,100	2,800	90	NA	1	NP
MW-2	10/13/98	46.57	28.91	17.66	4,400	300	18	62	600	<30	NA	1.5	NP
MW-2	01/19/99	46.57	28.67	17.90	18,000	690	56	830	2,200	<60	NA	0.5	NP
MW-2	04/13/99	46.57	26.83	19.74	14,000	620	42	980	1,500	82	NA	0.82	NP
MW-2	08/11/99	46.57	28.40	18.17	11,000	410	43	740	1,500	74	NA	1.06	NP
MW-2	10/26/99	46.57	29.50	17.07	14,000	430	36	790	1,700	32	NA	0.96	NP
MW-2	02/14/00	46.57	28.10	18.47	12,000	300	37	650	1,200	43	NA	1,26	NP
MW-3	02/24/96	44.30	23.47	20.83	820	<5.0	<5.0	5.0	24	NA	<5.0	NA	
MW-3	05/24/96	44.30	22.22	22.08	2,000	38	30	92	210	NA	< 5.0	NA	
MW-3	08/20/96	44.30	25.00	19.30	2,100	29	14	94	190	21	12	NA	
MW-3	11/12/96	44.30	26.85	17.45	3,800	21	11	81	210	<25	< 5.0	NA	
MW-3	04/05/97	44.30	22.35	21.95	3,200	<10	<10	13	66	<50	<5.0	NA	
MW-3	07/01/97	44.30	24.62	19.68	150	< 0.5	<0.5	0.62	4.5	14	<5.0	NA	NP
MW-3	09/08/97	44.30	25.97	18.33	420	< 0.5	0.7	7.6	18	5.0	< 0.5	0.41	
MW-3	11/17/97	44.30	26.65	17.65	470	<0.5	1.3	4.5	18	<2.5	< 5.0	0.8	NP
MW-3	03/18/98	44.30	18.90	25.40	7,200	<10	25	270	670	<60	NA	0.5	P
MW-3	04/30/98	44.30	19.18	25.12	16,000	<10	23	410	1,000	<60	13	3	P
MW-3	08/14/98	44.30	25.20	19.10	<1,000	<10	<10	<10	<10	660	0.5	2	NP
MW-3	10/13/98	44.30	26.65	17.65	380	<0.5	<0.5	6.2	12	<3	NA	1.5	NP
MW-3	01/19/99	44.30	26.30	18.00	150	< 0.5	0.6	0.6	3.3	<3	NA	0.5	· NP
MW-3	04/13/99	44.30	25.02	19.28	<50	<0.5	<0.5	<0.5	<0.5	4	NA	0.86	NP

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

Well	Date	Well Elevation	Depth to Water	Groundwater Elevation	TPPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве	Total Oil and Grease	Dissolved Oxygen	Purged/ Not Purged
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-3	08/11/99	44.30	26.15	18.15	53	<0.5	0.8	<0.5	1.9	11	NA	0.87	NP
MW-3	10/26/99	44.30	27.31	16.99	95	<0.5	<0.5	0.6	1.1	5	NA	0.80	NP
MW-3	02/14/00	44.30	25.72	18.58	85	<0.5	<0.5	<0.5	1.2	4	NA	1.22	NP
MW-4	02/24/96	47.62	27.03	20.59	<50	1.1	0.87	<0.5	0.83	NA	NA	NA	
MW-4	05/24/96	47.62	25.68	21.94	<50	<0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	
MW-4	08/20/96	47.62	28.45	19.17	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	
MW-4	11/12/96	47.62	30.35	17.27	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	
MW-4	04/05/97	47.62	25.88	21.74	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	
MW-4	07/01/97	47.62	28.08	19.54	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	
MW-4	09/08/97	47.62	29.55	18.07	<50	< 0.5	<0.5	< 0.5	< 0.5	<3.0	NA	0.06	
MW-4	11/17/97	47.62	30.10	17.52	<50	< 0.5	<0.5	<0.5	< 0.5	<2.5	NA	0.0	NP
MW-4	03/18/98	47.62	22.50	25.12	<50	< 0.5	<0.5	< 0.5	< 0.5	<3	NA	NA	P
MW-4	04/30/98	47.62	22.61	25.01	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	2.4	P
MW-4	08/14/98	47.62	28.21	19.41	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	1.0	P
MW-4	10/13/98	47.62	30.12	17.50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	1.5	NP
MW-4	01/19/99	47.62	29.90	17.72	<50	< 0.5	<0.5	< 0.5	< 0.5	<3	NA	0.1	P
MW-4	04/13/99	47.62	28.02	19.60	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	0.64	P
MW-4	08/11/99	47.62	29.57	18.05	<50	< 0.5	< 0.5	<0.5	< 0.5	<3	NA	1.03	P
MW-4	10/26/99	47.62	30.72	16.90	<50	< 0.5	< 0.5	<0.5	<1	<3	NA	2.23	NP
MW-4	02/14/00	47.62	29.33	18.29	<50	< 0.5	< 0.5		<1	<3	NA	1.11	P
MW-5	02/24/96	43.03	22.54	20.49				We	ll Sample	d Annually	y		
MW-5	05/24/96	43.03	21.05	21,98	< 50		<0.5		< 0.5	NA	NA	NA	
MW-5	08/20/96	43.03	23.60	19.43	***			We	ll Sample	d Annually	y		
MW-5	11/12/96	43.03	25,56	17.47							y		
MW-5	04/05/97	43.03	21.02	22.01				We	ll Sample	d Annually	, y		
MW-5	07/01/97	43.03	23.24	19.79	<50		<0.5	< 0.5		<2.5	NA	NA	
MW-5	09/08/97	43.03	24.63	18.40				We	ll Sample	d Annually	y 		
MW-5	11/17/97	43.03	25,45	17.58							y		
MW-5	03/18/98	43.03	17.60	25.43							y		
MW-5	04/30/98	43.03	17.81	25.22	<50		<0.5		< 0.5	<3	NA	1.5	P

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

		Well	Depth to	Groundwater	TPPH as			Ethyl-	Total		Total Oil	Dissolved	Purged/
Well	Date	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	and Grease	Oxygen	Not Purge
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-5	08/14/98	43.03	23.60	19.43		******		We	Il Sampleo	Annually			
MW-5	10/13/98	43.03	25.28	17.75				We	Il Sampled	i Annually			
MW-5	01/19/99	43.03	24.84	18.19				We	ll Sampleo	l Annually			
MW-5	04/13/99	43.03	23.23	19.80									
MW-5	08/11/99	43.03	24.80	18.23	<50	< 0.5	< 0.5	< 0.5	<0.5	<3	NA	1.05	NP
MW-5	10/26/99	43.03	25.97	17.06				We	II Sampled	l Annually			
MW-5	02/14/00	43.03	24.24	18.79				We	ll Sampleo	l Annually			
MW-6	02/24/96	42.30	21.77	20.53		**************************************		We	ll Sampleo	l Annually		**************************************	
MW-6	05/24/96	42.30	20.63	21.67	<50		<0.5		< 0.5	NA	NA	NA	
MW-6	08/20/96	42.30	23.43	18.87				We	Il Sampleo	l Annually			
MW-6	11/12/96	42.30	25.15	17.15					-				
MW-6	04/05/97	42.30	20.72	21.58									
MW-6	07/01/97	42.30	23.05	19.25	< 50		<0.5		<0.5	<2.5	ΝA	NA	
MW-6	09/08/97	42.30	24.27	18.03				We	ll Sampled	l Annually			
MW-6	11/17/97	42.30	24.80	17.50									
MW-6	03/18/98	42.30	NM	NM				V	Vell Inacce	ssible			
MW-6	04/30/98	42.30	17.70	24.60	<50	<0.5	< 0.5	< 0.5	< 0.5	<3	NA	l	P
MW-6	08/14/98	42.30	NM	NM				V	Vell Inacce	essible			
MW-6	10/13/98	42.30	NM	NM				V	Vell Inacce	essible			
MW-6	01/19/99	42,30	NM	NM									
MW-6	04/13/99	42.30	NM	NM				V	Vell Inacce	essible		**********	
MW-6	08/11/99	42.30	NM	NM									
MW-6	10/26/99	42,30	NM	NM				V	Vell Inacce	essible			
MW-6	02/14/00	42.30	NM	NM		~~~~~~		V	Vell Inacce	essible			
MW-7	02/24/96	43.75	23.31	20.44				We	II Sample	i Annually			
MW-7	05/24/96	43.75	22.12	21.63	<50				< 0.5	NA	NA		
MW-7	08/20/96	43.75	24.85	18.90				We	ll Sample	i Annually			
MW-7	11/12/96	43.75	26.62	17.13					-	•	·		
MW-7	04/05/97	43.75	22.28	21.47							·		
MW-7	07/01/97	43.75	24.35	19.40	< 50				< 0.5	<2.5	NA		NP

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

		Well	Depth to	Groundwater	TPPH as			Ethyl-	Total		Total Oil	Dissolved	Purged/
Well	Date	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	and Grease	Oxygen	Not Purged
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-7	09/08/97	43.75	25.73	18.02									
MW-7	11/17/97	43.75	26.22	17.53		,,,		We	Il Sampled	l Annually			
MW-7	03/18/98	43.75	18.95	24.80				We	Il Sampled	l Annually			
MW-7	04/30/98	43.75	19.22	24.53	<50	<0.5	< 0.5	< 0.5	< 0.5	10	NA	1	P
MW-7	08/14/98	43.75	24.73	19.02									
MW-7	10/13/98	43.75	26.50	17.25									
MW-7	01/19/99	43.75	25.90	17.85									
MW-7	04/13/99	43.75	24.37	19.38						l Annually			
MW-7	08/11/99	43.75	25.80	17.95	<50		<0.5		<0.5	<3	NA		NP
MW-7	10/26/99	43.75	26.95	16.80									
MW-7	02/14/00	43.75	25.30	18.45				We	ll Sampled	l Annually			
MW-8	02/24/96	46.77	26.30	20.47				We	ll Sampleo	l Annually			
MW-8	05/24/96	46.77	24.90	21.87	<50		< 0.5		< 0.5	NA	NA		
MW-8	08/20/96	46.77	27.65	19.12				We	ll Sampled	Annually			
MW-8	11/12/96	46.77	29.55	17.22				We	ll Sampled	l Annually			
MW-8	04/05/97	46.77	25.12	21.65									
MW-8	07/01/97	46.77	27.29	19.48	<50		<0.5		<0.5	<2.5	NA		NP
MW-8	09/08/97	46.77	28.62	18.15				We	ll Sampled	l Annually			
MW-8	11/17/97	46.77	29.33	17.44				We	ll Sample	l Annually			
MW-8	03/18/98	46.77	21.75	25.02									
MW-8	04/30/98	46.77	21.92	24.85	<50	< 0.5	<0.5	< 0.5	<0.5	<3	NA	1	P
MW-8	08/14/98	46.77	27.27	19.50				We	Il Sampled	i Annually			
MW-8	10/13/98	46.77	29.28	17.49				We	Il Sample	i Annually			
MW-8	01/19/99	46.77	29.15	17.62				We	Il Sample	l Annually			
MW-8	04/13/99	46.77	27.21	19.56				We	Il Sample	1 Annually			
MW-8	08/11/99	46.77	28.73	18.04	< 50				<0.5	<3	NA		NP
MW-8	10/26/99	46.77	29.88	16.89				We	ll Sample	d Annually	·		
MW-8	02/14/00	46.77	28.55	18.22				We	Il Sample	d Annually			
MW-9	02/24/96	48,37	27.55	20.82				We	ll Sample	i Annually	·	· • • • • • • • • • • • • • • • • • • •	
MW-9	05/24/96	48.37	25.78	22.59	<50		<0.5		<0.5	NA	NA		

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

<u></u>		Well	Depth to	Groundwater	TPPH as			Ethyl-	Total	 	Total Oil	Dissolved	Purged/
Well	Date	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	and Grease	Oxygen	Not Purged
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-9	08/20/96	48.37	28.67	19.70				We	II Sampled	d Annually		,_,_,_,	
MW-9	11/12/96	48.37	30.75	17.62				We	II Sampled	d Annually			
MW-9	04/05/97	48.37	25.90	22.47				We	Il Sampleo	d Annually		,-,-,-,-	
MW-9	07/01/97	48.37	28.30	20.07	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5	NA	NΑ	NP
MW-9	09/08/97	48.37	29.78	18.59				We	Il Sampled	d Annually		·	
MW-9	11/17/97	48.37	30.72	17.65				We	Il Sampled	d Annually			
MW-9	03/18/98	48.37	22.60	25.77				We	Il Sampleo	i Annually			
MW-9	04/30/98	48.37	21.63	26.74	< 50	< 0.5	< 0.5	< 0.5	<0.5	<3	NA	NA	P
MW-9	08/14/98	48.37	28.42	19.95				We	Il Sampled	d Annually			
MW-9	10/13/98	48.37	30.42	17.95		44000000000000000000000000000000000000		We	Il Sample	d Annually			
MW-9	01/19/99	48.37	30.37	18.00				We	II Sample	d Annually	***************************************		
MW-9	04/13/99	48.37	28.35	20.02				We	ll Sample	d Annually			
MW-9	08/11/99	48.37	29.92	18.45	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	0.47	NP
MW-9	10/26/99	48.37	31.15	17.22				We	ll Sampled	d Annually			
MW-9	02/14/00	48.37	29.86	18.51				We	li Sampleo	i Annually			#
MW-10	02/24/96	46.70	25.33	21.37				We	ll Sampleo	d Annually	·		
MW-10	05/24/96	46.70	23.90	22.80	<50				<0.5	NA	NA		
MW-10	08/20/96	46.70	26.85	19.85									
MW-10	11/12/96	46.70	28.93	17.77									
MW-10	04/05/97	46.70	24.18	22.52							·		
MW-10	07/01/97	46.70	26.54	20.16	<50				< 0.5	<2.5	NA		
MW-10	09/08/97	46,70	27.95	18.75				We	ll Sample	d Annually	·		
MW-10	11/17/97	46.70	28.95	17.75							·		
MW-10	03/18/98	46.70	20.50	26.20				We	Il Sample	d Annually	·		
MW-10	04/30/98	46.70	20.75	25.95	<50				<0.5	<3	NA		
MW-10	08/14/98	46.70	26.71	19.99				We	II Sample	d Annually	,		
MW-10	10/13/98	46.70	28.59	18.11							/		
MW-10	01/19/99	46.70	28.43	18.27				We	ll Sample	d Annually	·		
MW-10	04/13/99	46.70	26.43	20.27							·		
MW-10	08/11/99	46.70	28.18	18.52	<50				< 0.5	<3	NA		NP
MW-10	10/26/99	46.70	29.38	17.32				We	II Sample	d Annually	·		

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

		Well	Depth to	Groundwater	TPPH as		*	Ethyl-	Total		Total Oil	Dissolved	Purged/
Well	Date	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	and Grease	Oxygen	Not Purged
Number	Gauged	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(P/NP)
MW-10	02/14/00	46.70	27.90	18.80				We	ll Sampleo	i Annually			
MW-11	02/24/96	43.80	22.65	21.15									
MW-11	05/24/96	43.80	21.35	22.45	<50		1.0		1.1	NA	NA		
MW-II	08/20/96	43.80	27.32	16.48				We	ll Sample	i Annually			
MW-11	11/12/96	43.80	26.20	17.60				We	ll Sample	i Annually			
MW-11	04/05/97	43.80	21.53	22.27									
MW-11	07/01/97	43.80	23.90	19.90	<50		<0.5		<0.5	<2.5	NA		NP
MW-11	09/08/97	43.80	25.29	18.51									
MW-11	11/17/97	43.80	26.15	17.65				We	ll Sample	l Annually	·		
MW-11	03/18/98	43.80	18.05	25.75							/		 D
MW-11	04/30/98	43.80	16.36	27.44	<50				<0.5	<3	NA		P
MW-11	08/14/98	43.80	24.22	19.58							/		
MW-11	10/13/98	43.80	25.92	17.88				We	ell Sample	d Annually	/ 		-44
MW-11	01/19/99	43.80	25.58	18.22				We	ll Sample	i Annually	/		
MW-11	04/13/99	43.80	23.78	20.02							/		
MW-11	08/11/99	43.80	25.43	18.37	<50					<3	NA		NP
MW-11	10/26/99	43.80	Dry	Dry							<i></i>		
MW-11	02/14/00	43.80	24.90	18.90				W6	ell Sample	d Annually	f		
EW-1	02/24/96	43.92	23.35	20.57	54					NA	NA		
EW-1	05/24/96	43.92	21.80	22.12	<50		<0.5			NA	NA		
EW-1	08/20/96	43.92	24.60	19.32	410					18	NA		
EW-1	11/12/96	43.92	26.67	17.25	220					17	NA		
EW-1	04/05/97	43.92	22.22	21.70	<50	0.83	<0.5			9.5	NA		
EW-1	07/01/97	43.92	24.44	19.48	<50	< 0.5	< 0.5			61	NA		NP
EW-1	09/08/97	43.92	25.70	18.22	<50	<0.5	< 0.5			63	NA		
EW-1	11/17/97	43.92	26.45	17.47	<50	< 0.5	< 0.5			36	NA		NP
EW-1	03/18/98	43.92	18.80	25.12	<50	<0.5	< 0.5			<3	NA		P
EW-1	04/30/98	43.92	19.06	24.86	<50	<0.5	< 0.5			14	NA		P
EW-1	08/14/98	43.92	25.22	18.70	<50	<0.5				<3	NA		NP
EW-1	10/13/98	43.92	26.47	17.45	<50	<0.5	< 0.5	<0.5	<0.5	16	NA	1.5	NP

Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, Total Oil and Grease, and MtBE)

ARCO Service Station 0362 29900 Mission Boulevard, Hayward, California

Well Number	Date Gauged	Well Elevation (feet, MSL)	Depth to Water (feet, TOC)	Groundwater Elevation (feet, MSL)	TPPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	MTBE (ppb)	Total Oil and Grease (ppm)	Dissolved Oxygen (ppm)	Purged/ Not Purged (P/NP)
EW-1	01/19/99	43.92	26.07	17.85	<50	<0.5	<0.5	<0.5	< 0.5	13	NA	0.5	NP
EW-1	04/13/99	43.92	25.08	18.84	<50	< 0.5	< 0.5	< 0.5	< 0.5	6	NA	0.62	NP
EW-1	08/11/99	43.92	25.90	18.02	<50	<0.5	< 0.5	<0.5	< 0.5	10	NA	1.29	NP
EW-1	10/26/99	43.92	27.08	16.84	<50	< 0.5	< 0.5	< 0.5	<1	10	NA	1.93	NP
EW-1	02/14/00	43.92	25.52	18.40	<50	<0.5	<0.5	<0.5	<1	6	NA	1.03	NP

BTEX = Benzene, toluene, ethylbenzene, total xylenes by EPA method 8021B. (EPA method 8020 prior to 10/26/99).

MTBE = Methyl tert-butyl ether by EPA method 8021B. (EPA method 8020 prior to 10/26/99).

MSL = Mean sea level

TOC = Top of casing ppb = Parts per billion

TPPH

ppm = Parts per million NM = Not measured NA = Not analyzed

= Denotes concentration was not present above the laboratory detection limit stated to the right.

202 2 Mg

Table 2 Groundwater Flow Direction and Gradient

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
02/24/96	West	0.004
05/24/96	Southwest	0.004
08/20/96	West	0.004
11/12/96	West	0.003
04/05/97	West	0.004
07/01/97	West	0.004
09/08/97	West-Southwest	0.003
11/17/97	West	0.0008
03/18/98	West	0.005
04/30/98	variable	variable
08/14/98	West-Southwest	0.004
10/13/98	West	0.03
01/19/99	Northwest	0.003
04/13/99	West	0.09
08/11/99	West	0.003
10/26/99	West-Southwest	0.003
02/14/00	Northwest	0.004

- U4-2 # 20cs

APPPENDIX C

Certified Analytical Reports And Chain-of-Custody Documentation

2 April, 2002

Steven Meeks Delta Environmental Consultants (Rancho Cordova) 3164 Gold Camp Drive Ste. 200 Rancho Cordova, CA 95670

RE: ARCO 601, San Leandro, CA Sequoia Report: S203293

Enclosed are the results of analyses for samples received by the laboratory on 03/19/02 14:06. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ron Chew

Client Services Representative

Lito Diaz

Laboratory Director

CA ELAP Certificate #1624

Yen ?

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Page

Reported: 04/02/02 15:31

ANALYTICAL REPORT FOR SAMPLES

				
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	S203293-01	Water	03/15/02 10:30	03/19/02 14:06
MW-2	S203293-02	Water	03/15/02 09:05	03/19/02 14:06
MW-3	S203293-03	Water	03/15/02 08:20	03/19/02 14:06
MW-4	\$203293-04	Water	03/15/02 10:00	03/19/02 14:06
MW-5	\$203293-05	Water	03/15/02 09:20	03/19/02 14:06
MW-6	S203293-06	Water	03/15/02 09:40	03/19/02 14:06
MW-7	S203293-07	Water	03/15/02 08:50	03/19/02 14:06
MW-8	S203293-08	Water	03/15/02 08:35	03/19/02 14:06
MW-11	S203293-09	Water	03/15/02 06:30	03/19/02 14:06
MW-12	S203293-10	Water	03/15/02 06:20	03/19/02 14:06
MW-13	S203293-11	Water	03/15/02 06:50	03/19/02 14:06
MW-14	S203293-12	Water	03/15/02 07:00	03/19/02 14:06
MW-15	S203293-13	Water	03/15/02 07:55	03/19/02 14:06
тв	S203293-14	Water	03/15/02 06:00	03/19/02 14:06

Sequoia Analytical - Sacramento

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

	quoia 2111a	-J						
Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sampled: 03/15/02 10:30	Received: 03	3/19/02 1	4:06		·			
12000	5000	ug/l	100	2030345	03/25/02	03/25/02	DHS LUFT	
1800	50	н		P	n	n	U	
ND	50	Ħ	11	н	"	n	n	
1400	50	¥f	14	II .	17	19	π	
79	50	11	"	н	11	n	**	
ND	250	π	n	н	н	11		
ne	112 %	60-	-140	"	n	n	u	
Sampled: 03/15/02 09:05	Received: 0	3/19/02 1	14:06					
100	50	ug/l	1	2030345	03/25/02	03/25/02	DHS LUFT	
ND	0.50	u	19	10	**	ਸ	ш	
ND	0.50	U	H	"	14	n	II	
2.5	0.50	н	"	"	n	"	ıı	
ND	0.50	+1	11	n	**	"	**	
75	2.5	*1	"	11	I I	Ħ	18	
rne	105 %	60	-140	a	"	"	"	
Sampled: 03/15/02 08:20	Received: 0	3/19/02 I	14:06					_
43000	5000	ug/l	100	2030345	03/25/02	03/25/02	DHS LUFT	
1000	50	**	11	77	н	II .	11	
810	50	14	**		H	n	16	
2300	50	n	41	н	tt	п	n	
11000	50	U	#	**	**	¥f	ŋ	
ND	250	н	ы	11	п	14	U	
	Result Sampled: 03/15/02 10:30 12000 1800 ND 1400 79 ND ne Sampled: 03/15/02 09:05 100 ND ND ND 2.5 ND 75 nne Sampled: 03/15/02 08:20 43000 1000 810 2300 11000	Result Reporting Limit Sampled: 03/15/02 10:30 Received: 0:00 12000 5000 1800 50 ND 50 1400 50 79 50 ND 250 ne 112 % Sampled: 03/15/02 09:05 Received: 0 ND 0.50 To 2.5 0.50 75 2.5 0.00 1000 50 810 50 2300 50 11000 50	Result Limit Units	Result Limit Units Dilution	Result Limit Units Dilution Batch	Result	Result Climit Units Dilution Batch Prepared Analyzed	Result

60-140

110 %

Surrogate: a,a,a-Trifluorotoluene

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT

Sequoia Analytical - Sacramento

	DC	quvia Ana	ily tical	- Dacia	щенто				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4 (S203293-04) Water	Sampled: 03/15/02 10:00	Received: 0.	3/19/02 1	4;06					
Purgeable Hydrocarbons	490	50	ug/l	1	2030345	03/25/02	03/25/02	DHS LUFT	
Benzene	34	0.50	n	,	II .	"	**	II	
Toluene	7.4	0.50	u	H	u	n	я	II	
Ethylbenzene	26	0.50	71	II	н		H	u	
Xylenes (total)	110	0.50	11-	n	*	н	H	H	
Methyl tert-butyl ether	12	2.5	н	n	9	н	D	n	
Surrogate: a,a,a-Trifluorotolu	ene	110 %	60	-140	п	n .	n	ø	
MW-5 (S203293-05) Water	Sampled: 03/15/02 09:20	Received: 0	3/19/02 1	4:06					
Purgeable Hydrocarbons	20000	5000	ug/I	100	2030373	03/27/02	03/27/02	DHS LUFT	
Benzene	2600	50	n	•	"	N	17	**	
Toluene	3300	50	н	**	п	**	n	n	
Ethylbenzene	1000	50	n	10	н	16	Ħ	н	
Xylenes (total)	4000	50	**	19	"	n	17	н	
Methyl tert-butyl ether	ND	250	+1	n	Ħ	11	11		
Surrogate: a.a.a-Trifluorotolu	ene	106 %	60	-140	n	4	"	u	
MW-6 (S203293-06) Water	Sampled: 03/15/02 09:40	Received: 0	3/19/02	14:06					
Purgeable Hydrocarbons	2100	500	ug/l	10	2030361	03/26/02	03/26/02	DHS LUFT	
Benzene	380	5.0	n	**	•	10	**	vi	
Toluene	8.6	5.0	IF	11	19	•	10	78	
Ethylbenzene	110	5.0	11	n	II .	н	rt	IT.	
Xylenes (total)	17	5.0	н	fr	u u	H	n	n	
Methyl tert-butyl ether	ND	25		19	н	It	11	0	
Surrogate: a,a,a-Trifluorotolu	ene	103 %	60	-140	ır	, ,	"	"	

Reported: 044202 15:31

Delta Environmental Consultants (Rancho Cordova 3164 Gold Camp Drive Ste. 200

Rancho Cordova CA, 95670

Project: ARCO 601, San Leandro, CA Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (S203293-07) Water	Sampled: 03/15/02 08:50	Received: 03	3/19/02 1	4:06				<u></u>	
Purgeable Hydrocarbons	ND	50	ug/l	1	2030345	03/25/02	03/25/02	DHS LUFT	
Benzene	1.3	0.50	D	n	Ħ	H	II .	**	
Toluene	2.6	0.50	u	**	II.	H	II	19	
Ethylbenzene	1.1	0.50	н	"	"	11	#	*1	
Xylenes (total)	5.4	0.50	**	n	n	н	¥f	19	
Methyl tert-butyl ether	ND	2.5	11	19	н	n	9	D	
Surrogate: a.a,a-Trifluorotolu	ene	89.5 %	60-	-140	н		"	,,	
MW-8 (S203293-08) Water	Sampled: 03/15/02 08:35	Received: 0	3/19/02 1	4:06					
Purgeable Hydrocarbons	1100	1000	ug/l	20	2030361	03/26/02	03/26/02	DHS LUFT	HC-12
Benzenc	ND	10	n	11	**	n	н	11	
Toluene	ND	10	U	**	19	н	II .	н	
Ethylbenzene	ND	10		**	IP.	**	н	H	
Xylenes (total)	ND	10	u	*	n	71	**	**	
Methyl tert-butyl ether	830	50	a	и		II	*	"	
Surrogate: a,a,a-Trifluorotolu	iene	104 %	60	-140	,,	"	**	"	
MW-11 (S203293-09) Water	Sampled: 03/15/02 06:30	Received:	03/1 <u>9/02</u>	14:06					
Purgeable Hydrocarbons	ND	50	ug/l	1	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50	n	н	**	10	11	н	
Toluene	ND	0.50	10	21	rt	10	,,	н	
Ethylbenzene	ND	0.50	н	**	*	и	10	**	
Xylenes (total)	ND	0.50	н	11	17	II	n	1f	
Methyl tert-butyl ether	ND	2.5	D	n		n .			
Surrogate: a,a,a-Trifluorotoh	iene	88.0 %	60	-140	"	n	n	**	

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 04/02/02 15:31

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-12 (S203293-10) Water	Sampled: 03/15/02 06:20	Received:	03/19/02	14:06					
Purgeable Hydrocarbons	ND	50	ug/l	l	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50	n	10	W	u	n	71	
Toluene	ND	0.50	m	'n	H	п	n	IF	
Ethylbenzene	ND	0.50	*	n	и	"	H		
Xylenes (total)	ND	0.50	#	n	п	**	H	n	
Methyl tert-butyl ether	ND	2.5	11	II		н	*1	n .	
Surrogate: a,a,a-Trifluorotolue	ene	89.3 %	60	140	11	"	*	n	
MW-13 (S203293-11) Water	Sampled: 03/15/02 06:50	Received:	03/19/02	14:06					
Purgeable Hydrocarbons	ND	50	ug/1	1	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50	н	19	19	n	**	u	
Toluene	ND	0.50	n	1+	17	н	II .	tt.	
Ethylbenzene	ND	0.50	*1	n	77	H	"	н	
Xylenes (total)	ND	0.50	40	**	"	n	II .	•	
Methyl tert-butyl ether	ND	2.5	**	16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	н	11		
Surrogate: a,a,a-Trifluorotolue	ene	87.3 %	60	-140	,,	"	n	"	
MW-14 (S203293-12) Water	Sampled: 03/15/02 07:00	Received:	03/19/02	14:06					
Purgeable Hydrocarbons	ND	50	ug/l	1	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50		н	п	•	11	н	
Toluene	ND	0.50	,	,	**	**	17	*1	
Ethylbenzene	ND	0.50	ı,	11	Ħ	*	*1	11	
Xylenes (total)	ДИ	0.50	u	16	14	11	11	**	
Methyl tert-butyl ether	ND	2.5		10	n	U	11	n	
Surrogate: a,a,a-Trifluorotolue	ene	85.0 %	60	-140	"	,,	"	"	

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670

Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: (204/02/02 15:31

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT

Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-15 (S203293-13) Water S	ampled: 03/15/02 07:55	Received:	03/19/02	14:06				<u></u>	
Purgeable Hydrocarbons	ND	50	ug/l	1	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50	н	7	*	**	**	п	
Toluene	ND	0.50	*1	19	н	77	19	19	
Ethylbenzene	ND	0.50	**)*	n	•	**	u	
Xylenes (total)	ND	0.50		,,	п	**	n	U	
Methyl tert-butyl ether	ND	2.5	n	D.	0	п	1+	ч	
Surrogate: a,a,a-Trifluorotoluene		78.7 %	60-	140	"	,,	"	"	
TB (S203293-14) Water Samp	led: 03/15/02 06:00 Re	ceived: 03/19	9/02 14:0)6					
Purgeable Hydrocarbons	ND	50	ug/l	1	2030346	03/25/02	03/25/02	DHS LUFT	
Benzene	ND	0.50	"	It	"	#	4	11	
Toluene	ND	0.50	n		11	44	n	16	
Ethylbenzene	ND	0.50	н	n	п	н	IF	n	
Xylenes (total)	ND	0.50	**	7	,	n	•	п	
Methyl tert-butyl ether	ND	2.5	71	P	U	, ti	91		
Surrogate: a,a,a-Trifluorotoluene		86.9 %	60-	-140	n	"	n	n	

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 304/02/02 15:31

Total Metals by EPA 200 Series Methods Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (S203293-01) Water	Sampled: 03/15/02 10:30	Received: 0.	3/19/02	14:06					
Cadmium	ND	0.0050	mg/l	1	2030311	03/25/02	03/27/02	EPA 200.7	
Chromium	ND	0.0050	10	IJ	н	n	•	11	
Nickel	ND	0.020	11	n	41	н	H	n	
Lead	ND	0.050	19	н	**		11	16	
Zinç	ND	0.020	H	*1	Ħ	16	It	1+	

UNZ

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported:

04/02/02 15:31

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (S203293-01) Water	Sampled: 03/15/02 10:30	Received: 0	3/ <u>19/02</u> 1	4:06					
Acenaphthene	ND	50	ug/l	10	2C22016	03/22/02	03/29/02	EPA 8270C	
Acenaphthylene	ND	50	н	н	n	н	II	11	
Aniline	ND	50	11	H	11	**	Ħ	n	
Anthracene	ND	50	**	10	,	*	11	n.	
Benzoic acid	ND	100	н	н	'n	**	19	п	
Benzo (a) anthracene	ND	50	н	11	н	**	r	н	
Benzo (b) fluoranthene	ND	50	"	11	н	n	**	ţı	
Benzo (k) fluoranthene	ND	50	н	H	н	11	19	**	
Benzo (ghi) perylene	ND	50	#1	н	H	11	n	н	
Benzo[a]pyrene	ND	50	**	п	**	н	n	n .	
Benzyl alcohol	ND	50	rt .	u	r	Ħ	п	n	
Bis(2-chloroethoxy)methane	ND	50	•	••	n	**	n .	••	
Bis(2-chloroethyl)ether	ND	50	"	91	"	**	н	H-	
Bis(2-chloroisopropyl)ether	ND	50	11	н	19	н		u u	
Bis(2-ethylhexyl)phthalate	ND	100	n	•	n	**	"	III	
4-Bromophenyl phenyl ether	ND	50	н	er .	II	**	n	19	
Butyl benzyl phthalate	ND	500	п	19	п	79	n	U	
4-Chloroaniline	ND	250	п	19	н	11	**	H	
2-Chloronaphthalene	ND	50	Ħ	11	н	II.	17	Ħ	
4-Chloro-3-methylphenol	ND	50	P	н	W	п	11	Ħ	
2-Chlorophenol	ND	50	**	n	**	п	ш	H	
4-Chlorophenyl phenyl ether	ND	50	w	H	#	**	н	n	
Chrysene	ND	50	n	Ħ	11	**	u	π	
Dibenz (a,h) anthracene	ND	100	**	79	#	"	**	"	
Dibenzofuran	ND	50	If	b	19	*1	**	,	
Di-π-butyl phthalate	ND	100	n	n	n	п	44	u	
1,2-Dichlorobenzene	ND	50	11	11	II .	II.	H	II .	
1,3-Dichlorobenzene	ND	50	u	19	u	ii	**	н	
1,4-Dichlorobenzene	ND	100	**	17	н	п	n	п	
3,3'-Dichlorobenzidine	ND	100	**	н	**	п	11	"	
2,4-Dichlorophenol	ND	50	**	н	11	н	þi	н	
Diethyl phthalate	ND	50	"	п	17	н	п	19	
2,4-Dimethylphenol	ПN	50	77	H	π	**	n	и	
Dimethyl phthalate	ND	50	91	**	**	n	п	**	
4,6-Dinitro-2-methylphenol	ND	100	"	11	17	11	**	ti	
2,4-Dinitrophenol	ND	100	19	11	n	11	#	"	
2,4-Dinitrotoluene	ND	100	н		n	ø	n	и	
2,6-Dinitrotoluene	ND	100	н	н	п	H	**	п	

Sequoia Analytical - Sacramento

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

~ 10N 2 4 2005

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported:

04/02/02 15:31

Semivolatile Organic Compounds by EPA Method 8270C

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (S203293-01) Water	Sampled: 03/15/02 10:30	Received: 03	3/19/02 1	4:06					
Di-n-octyl phthalate	ND	100	ug/l	10	2C22016	03/22/02	03/29/02	EPA 8270C	
Fluoranthene	ND	50	"	н	**	U	н	17	
Fluorene	ND	50	н	Ħ	Ħ	п	н	19	
Hexachlorobenzene	ND	100		11	+	н	Ħ	н	
Hexachlorobutadiene	ND	100	н	17	**	*1	н	п	
Hexachlorocyclopentadiene	ND	100	н	Ħ	11	n	31	п	
Hexachloroethane	ND	50	**	**	*	P	*	H	
Indeno (1,2,3-cd) pyrene	ND	100	11	11	n	н	п	"	
Isophorone	ND	50	16	н	n	**	"	10	
2-Methylnaphthalene	220	50	**	n	н	10	P	H	
2-Methylphenol	ND	50	17	п	н)ı		**	
4-Methylphenol	ND	50	71	п	ŗı	n	n	**	
Naphthalene	880	50	19	**	11	II.	"	н	
2-Nitroaniline	ND	100	n	"	**	п	n	II .	
3-Nitroaniline	ND	100	n	11	n	н	a	п	
4-Nitroaniline	ND	200	o	n	,,	41	n	ıı.	
Nitrobenzene	ND	50	u u	11	,,	н	**	н	
2-Nitrophenol	ND	50	71	11	rr ·	н	н	n .	
4-Nitrophenol	ND	100	н	н	"	н	*	*1	
N-Nitrosodimethylamine	ND	50	н	19	n	n	*1	it	
N-Nitrosodiphenylamine	ND	50	•	p	п	**	*1	10	
N-Nitrosodi-n-propylamine	ND	50	**	11	н	11	**	n	
Pentachlorophenol	ND	100	Ħ	н	ш	11	10	ti	
Phenanthrene	ND	50	Ħ	н	н	n	II	**	
Phenol	ND	50		**	v	n	н	10	
Pyrene	ND	50	н	**	16	α	u	n	
1,2,4-Trichlorobenzene	ND	50	II .	74	*	н	H	n	
2,4,5-Trichlorophenol	ND	100	4	r	*1	н	4	н	
2,4,6-Trichlorophenol	ND	100	н	Ħ		**	**	н	
Surrogate: 2-Fluorophenol		37 %	21.	-110	,,	"	"	11	
Surrogate: Phenol-d6		23 %		-110 -110	"	"	"	rt	
Surrogate: Nitrobenzene-d5		86 %		-114	,,	,,	"	rt	
Surrogate: 2-Fluorobiphenyl		73 %		-116	"	"	"	"	
Surrogate: 2,4,6-Tribromopher	iol	96 %		-123	я	"	**	n	
Surrogate: p-Terphenyl-d14		30 %		-141	11	u	"	n	S-BN

JUN 2 TOO

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA Project Manager: Steven Meeks Reported:

04/02/02 15:31

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 2030345 - EPA 5030B (P/T)											
Blank (2030345-BLK1)	Prepared & Analyzed: 03/25/02										
Purgeable Hydrocarbons	ND	50	ug/l								
Benzene	ND	0.50	17								
Toluene	ND	0.50	11								
Ethylbenzene	ND	0.50	п								
Xylenes (total)	ND	0.50	н								
Methyl tert-butyl ether	ND	2.5	н			- 11					
Surrogate: a,a,a-Trifluorotoluene	11.1	-	"	10.0		111	60-140				
LCS (2030345-BS1)	Prepared & Analyzed: 03/25/02										
Benzene	9.31	0.50	ug/l	10.0		93.1	70-130				
Toluene	10.1	0.50	11	10.0		101	70-130				
Ethylbenzene	10.7	0.50	H	10.0		107	70-130				
Xylenes (total)	30.8	0.50	н	30.0		103	70-130				
Methyl tert-butyl ether	10.9	2.5	n	10.0		109	70-130				
Surrogate: a,a,a-Trifluorotoluene	12.1		n	10.0		121	60-140				
LCS Dup (2030345-BSD1)				Prepared	& Analyz	ed: 03/25/	02				
Benzene	9.57	0.50	ug/l	10.0		95.7	70-130	2.75	25		
Toluene	10.4	0.50	n	10.0		104	70-130	2.93	25		
Ethylbenzene	10.9	0.50	"	10.0		109	70-130	1.85	25		
Xylenes (total)	31.8	0.50	11	30.0		106	70-130	3.19	25		
Methyl tert-butyl ether	12.5	2.5	"	10.0		125	70-130	13.7	25		
Surrogate: a,a,a-Trifluorotoluene	11.0		"	10.0		110	60-140				
Batch 2030346 - EPA 5030B (P/T)											
Blank (2030346-BLK1)	Prepared & Analyzed: 03/25/02										
Purgeable Hydrocarbons	ND	50	ug/l								
Benzene	ND	0.50	19								
Toluene	ND	0.50	н								
Ethylbenzene	ND	0.50	*								
Xylenes (total)	ND	0.50	•								
Methyl tert-butyl ether	ND	2.5	17								
Surrogate: a,a,a-Trifluorotoluene	8.88		"	10.0		88.8	60-140				

3164 Gold Camp Drive Ste. 200

Rancho Cordova CA, 95670

Delta Environmental Consultants (Rancho Cordova

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Project: ARCO 601, San Leandro, CA Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Ww...
Reported:
04/02/02 15:31

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Sacramento

	Donate	Reporting		Spike	Source	A/DEC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KrD	FIGH	140(6)
Batch 2030346 - EPA 5030B (P/T)										
LCS (2030346-BS1)			Prepared a	& Analyze	02					
Benzene	7.79	0.50	ug/l	10.0		77.9	70-130			
Toluene	7.91	0.50	п	10.0		79.1	70-130			
Ethylbenzene	8.55	0.50	II .	10.0		85.5	70-130			
Xylenes (total)	24.8	0.50	II .	30.0		82.7	70-130			
Methyl tert-butyl ether	8.16	2.5	11	10.0		81.6	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.09		H	10.0		90.9	60-140			
Matrix Spike (2030346-MS1)	Source: S203291-03			Prepared & Analyzed: 03/25/02					1/4 2 X 201/4	_
Benzene	8.43	0.50	ug/l	10.0	ND	84.3	60-140		ر م	
Toluene	8.33	0.50	н	10.0	ND	83.3	60-140		· 177	
Ethylbenzene	9.11	0.50	н	10.0	ND	91.1	60-140		70) _
Xylenes (total)	26.5	0.50	11	30.0	ND	88.3	60-140		*	
Methyl tert-butyl ether	9.44	2.5	**	10.0	ND	87.5	60-140			
Surrogate: a,a,a-Trifluorotoluene	8.94		rr	10.0		89.4	60-140			
Matrix Spike Dup (2030346-MSD1)	Source: S203291-03			Prepared & Analyzed: 03/25/02						
Benzene	8.57	0.50	ug/l	10.0	ND	85.7	60-140	1.65	25	
Toluene	8.61	0.50	*	10.0	ND	86.1	60-140	3.31	25	
Ethylbenzene	9.44	0.50	11	10.0	ND	94.4	60-140	3.56	25	
Xylenes (total)	27.3	0.50	IT	30.0	ND	91.0	60-140	2.97	25	
Methyl tert-butyl ether	9.53	2.5	ÞT	10.0	ND	88.4	60-140	0.949	25	
Surrogate: a,a,a-Trifluorotoluene	9.51		"	10.0		95.1	60-140			
Batch 2030361 - EPA 5030B (P/T)										
Blank (2030361-BLK1)	Prepared & Analyzed: 03/26/02									
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	н							
Toluene	ND	0.50	н							
Ethylbenzene	ND	0.50	и							
Xylenes (total)	ND	0.50	* e							
Methyl tert-butyl ether	ND	2.5	**							

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Sacramento

	D)-	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	POREC	Limits	KI D		.10103
Batch 2030361 - EPA 5030B (P/T)										
LCS (2030361-BS1)				Prepared	& Analyze	d: 03/26/0	02			
Benzene	8.54	0.50	ug/l	10.0		85.4	70-130			
Toluene	9.50	0.50	н	10.0		95.0	70-130			
Ethylbenzene	10.2	0.50	**	10.0		102	70-130			
Xylenes (total)	29.9	0.50	17	30.0		99.7	70-130			
Methyl tert-butyl ether	10.5	2.5	н	10.0		105	70-130			
Surrogate: a.a,a-Trifluorotoluene	11.1		n	10.0		III	60-140			
LCS Dup (2030361-BSD1)			****	Prepared	& Analyz	ed: 03/26/0	02			
Benzene	8.79	0.50	ug/I	10.0		87.9	70-130	2.89	25	
Toluene	9.74	0.50	0	10.0		97.4	70-130	2.49	25	
Ethylbenzene	10.4	0.50	**	10.0		104	70-130	1.94	25	
Xylenes (total)	30.9	0.50	*1	30.0		103	70-130	3.29	25	
Methyl tert-butyl ether	10.4	2.5	17	10.0		104	70-130	0.957	25	· · ·
Surrogate: a,a,a-Trifluorotoluene	10.2		п	10.0		102	60-140			
Batch 2030373 - EPA 5030B (P/T)										
Blank (2030373-BLK1)				Prepared	& Analyz	ed: 03/27/	02			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	n							
Toluene	ND	0.50	U							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50								
Methyl tert-butyl ether	ND	2.5						<u> </u>		<u> </u>
Surrogate: a,a,a-Trifluorotoluene	10.6		"	10.0		106	60-140			
LCS (2030373-BS1)				Prepared	& Analyz	ed: <u>03/27/</u>			···	
Benzene	9.05	0.50	ug/i	10.0		90.5	70-130			
Toluene	10.2	0.50	"	10.0		102	70-130			
Ethylbenzene	11.0	0.50	"	10.0		110	70-130			
Xylenes (total)	31.9	0.50	11	30.0		106	70-130			
Methyl tert-butyl ether	11.4	2.5	u	10.0		114	70-130			
Surrogate: a,a,a-Trifluorotoluene	11.6		- "	10.0		116	60-140			

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 94/02/02 15:31

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Sacramento

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2030373 - EPA 5030B (P/T)										
Matrix Spike (2030373-MS1)	Sou	rce: S20333	8-01	Prepared	& Analyze	ed: 03/27/	02			•••
Benzene	8.82	0.50	ug/l	10.0	ND	88.2	60-140			
Toluene	9.98	0.50	**	10.0	ND	99.8	60-140			
Ethylbenzene	10.9	0.50	17	10.0	ND	109	60-140			
Xylenes (total)	32.0	0.50	H	30.0	ND	107	60-140			
Methyl tert-butyl ether	8.72	2.5	н	10.0	ND	87.2	60-140			
Surrogate: a,a,a-Trifluorotoluene	10.2		"	10.0		102	60-140			
Matrix Spike Dup (2030373-MSD1)	Sou	rce: S20333	8-01	Prepared	& Analyze	ed: 03/27/	02			
Benzene	9.24	0.50	ug/l	10.0	ND	92.4	60-140	4.65	25	
Toluene	10.4	0.50	11	10.0	ND	104	60-140	4.12	25	
Ethylbenzene	11.2	0.50	ш	10.0	ND	112	60-140	2.71	25	
Xylenes (total)	32.9	0.50	n	30.0	ND	110	60-140	2.77	25	
Methyl tert-butyl ether	10.7	2.5	н	10.0	ND	107	60-140	20.4	25	
Surrogate: a,a,a-Trifluorotoluene	11.2		a a	10.0		112	60-140			

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported:

04/02/02 15:31

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesun	Emm	Oille		- Result	, on a				
Batch 2030311 - EPA 3010A	-									
Blank (2030311-BLK1)	· 			Prepared:	03/25/02	Analyzed	: 03/27/02			
Cadmium	ND	0.0050	mg/l							
Chromium	ND	0.0050	10							
Lead	ND	0.050	17							
Nickel	ND	0.020	n							
Zinc	ND	0.020	0							
LCS (2030311-BS1)				Prepared:	03/25/02	Analyzed	1: 03/27/02			
Cadmium	0.510	0.0050	mg/l	0.500		102	80-120			
Chromium	0.502	0.0050	11	0.500		100	80-120			
Lead	0.503	0.050	n	0.500		101	80-120			
Nickel	0.522	0.020	**	0.500		104	80-120			
Zinc	0.515	0.020	10	0.500		103	80-120			
Matrix Spike (2030311-MS1)	So	urce: S20332	6-01	Prepared:	03/25/02	Analyzec	1: 03/27/02			
Cadmium	0.486	0.0050	mg/l	0.500	ND	97.2	80-120			
Chromium	0.480	0.0050	U	0.500	0.0053	94.9	80-120			
Lead	0.473	0.050		0.500	ND	94.6	80-120			
Nickel	0.505	0.020	#1	0.500	ND	99.4	80-120			
Zinc	0.508	0.020	Ħ	0.500	ND	102	80-120			
Matrix Spike Dup (2030311-MSD1)	So	urce: S20332	26-01	Prepared:	03/25/02	Analyzed	1: 03/27/02			
Cadmium	0.518	0.0050	mg/l	0.500	ND	104	80-120	6.37	20	
Chromium	0.510	0.0050	*1	0.500	0.0053	101	80-120	6.06	20	
Lead	0.503	0.050	*	0.500	ND	101	80-120	6.15	20	
Nickel	0.531	0.020	n	0.500	ND	105	80-120	5.02	20	
Zinc	0.535	0.020	n	0.500	ND	107	80-120	5.18	20	

JUN 2 4 2002

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.sequoialabs.com

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670

Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported:

04/02/02 15:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2C22016 - EPA 3520B Liq Liqu	id						·			
Blank (2C22016-BLK1)				Prepared:	03/22/02	Analyzed	: 03/28/02			•
Acenaphthene	ND	5.0	ug/l							
Acenaphthylene	ND	5.0								
Aniline	ND	5.0	н							
Anthracene	ND	5.0	"							
Benzoic acid	ND	10	н							
Benzo (a) anthracene	ND	5.0	**							
Benzo (b) fluoranthene	ND	5.0	19							
Benzo (k) fluoranthene	ND	5.0	H							
Benzo (ghi) perylene	ND	5.0	**							
Benzo[a]pyrene	ND	5.0	*							
Benzyl alcohol	ND	5.0	n							
Bis(2-chloroethoxy)methane	ND	5.0	н							
Bis(2-chloroethyl)ether	ND	5.0	U							
Bis(2-chloroisopropyl)ether	ND	5.0	Ħ							
Bis(2-ethylhexyl)phthalate	ND	10	**							
4-Bromophenyl phenyl ether	ND	5.0	19							
Butyl benzyl phthalate	ND	50	*							
4-Chloroaniline	ND	25	77							
2-Chloronaphthalene	ND	5.0	19							
4-Chloro-3-methylphenol	ND	5.0	н							
2-Chlorophenol	ND	5.0	"							
4-Chlorophenyl phenyl ether	ND	5.0								
Chrysene	ND	5.0	Ħ							
Dibenz (a,h) anthracene	ND	10	**							
Dibenzofuran	ND	5.0	н							
Di-n-butyl phthalate	ND	10	**							
1,2-Dichlorobenzene	ND	5.0	v							
1,3-Dichlorobenzene	ND	5.0	19							
1,4-Dichlorobenzene	ND	10	н							
3,3'-Dichlorobenzidine	ND	10	п							
2,4-Dichlorophenol	ND	5.0	п							
Diethyl phthalate	ND	5.0	#							
2,4-Dimethylphenol	ND	5.0	**							
Dimethyl phthalate	ND	5.0	Ħ							
4,6-Dinitro-2-methylphenol	ND	10	**							
2,4-Dinitrophenol	ND	10	19							

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 04/02/02 15:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2C22016 - EPA 3520B Liq Li	quid	, , , , , , , , , , , , , , , , , , , ,								
Blank (2C22016-BLK1)				Prepared:	03/22/02	Analyzed	: 03/28/02			
2,4-Dinitrotoluene	ND	10	ug/l							
2,6-Dinitrotoluene	ND	10	n							
Di-n-octyl phthalate	ND	10	*1							
Fluoranthene	ND	5.0	**							
Fluorene	ND	5.0	11							
Hexachlorobenzene	ND	10	n							
Hexachlorobutadiene	ND	10	Ħ							
Hexachlorocyclopentadiene	ND	10	**							
Hexachloroethane	ND	5.0	r							
Indeno (1,2,3-cd) pyrene	ND	10	н							
Isophorone	ND	5.0	n							
2-Methylnaphthalene	ND	5.0	n							
2-Methylphenol	ND	5.0	II .							
4-Methylphenol	ND	5.0	a							
Naphthalene	ND	5.0	*1							
2-Nitroaniline	ND	10	41							
3-Nitroaniline	ND	10	ır							
4-Nitroaniline	ND	20	**							
Nitrobenzene	ND	5.0	tr							
2-Nitrophenol	ND	5.0	Ir							
4-Nitrophenol	ND	10	,,							
N-Nitrosodimethylamine	ND	5.0	D							
N-Nitrosodiphenylamine	ND	5.0	U							
N-Nitrosodi-n-propylamine	ND	5.0	n							
Pentachlorophenol	ND	10	п							
Phenanthrene	ND	5.0	н							
Phenol	ND	5.0	*1							
Ругепе	ND	5.0	**							
1,2,4-Trichlorobenzene	ND	5.0	**							
2,4,5-Trichlorophenol	ND	10	ri							
2,4,6-Trichlorophenol	ND	10	v							
Surrogate: 2-Fluorophenol	28.1		п	150		19	21-110			S-A
Surrogate: Phenol-d6	21.8		"	150		15	10-110			
Surrogate: Nitrobenzene-d5	38.3		**	100		38	35-114			
Surrogate: 2-Fluorobiphenyl	35.2		"	100		35	43-116			S-LI
Surrogate: 2,4,6-Tribromophenol	35.8		n	150		24	10-123			

Sequoia Analytical - Sacramento

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100

Delta Environmental Consultants (Rancho Cordova 3164 Gold Camp Drive Ste. 200

Rancho Cordova CA, 95670

Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

www.sequoialabs.com

Reported: 04/02/02 15:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC_	%REC Limits	RPD	RPD Limit	Notes
Batch 2C22016 - EPA 3520B Liq Liq	uid		_:				·			
Blank (2C22016-BLK1)			 .	Prepared:	03/22/02	Analyzed	: 03/28/02			
Surrogate: p-Terphenyl-d14	23.5		ug/l	100		24	33-141			S-LIM
LCS (2C22016-BS1)				Prepared:	03/22/02	Analyzed	: 03/28/02			
Acenaphthene	62.4	5.0	ug/l	100		62	46-118			
4-Chloro-3-methylphenol	40.1	5.0	n	150		27	23-97			
2-Chlorophenol	43.0	5.0	n	150		29	27-123			
4-Dichlorobenzene	56.2	10	77	100		56	36-97			
2,4-Dinitrotoluene	63.3	10	"	100		63	24-96			
4-Nitrophenol	17.2	10	11	150		11	10-80			
N-Nitrosodi-n-propylamine	66.6	5.0	11	100		67	41-116			
Pentachlorophenol	41.6	10		150		28	9-103			
Phenol	25.3	5.0	н	150		17	12-110			
Pyrene	54.3	5.0	"	100		54	26-127			
1,2,4-Trichlorobenzene	56.4	5.0	н	100		56	39-98			
Surrogate: 2-Fluorophenol	30.6		,,	150		20	21-110			S-AC
Surrogate: Phenol-d6	25.2		"	150		17	10-110			
Surrogate: Nitrobenzene-d5	67.8		JI .	100		68	35-114			
Surrogate: 2-Fluorobiphenyl	66.9		a	100		67	43-116			
Surrogate: 2,4,6-Tribromophenol	48. I		**	150		32	10-123			
Surrogate: p-Terphenyl-d14	51.5		"	100		52	33-141			
LCS Dup (2C22016-BSD1)				Prepared:	03/22/02	Analyzed	: 03/28/02			
Acenaphthene	70.6	5.0	ug/l	100		71	46-118	12	30	
4-Chloro-3-methylphenol	87.6	5.0	n	150		58	23-97	74	30	QR-02
2-Chlorophenol	87.7	5.0	H	150		58	27-123	68	30	QR-02
1,4-Dichlorobenzene	60.1	10	*1	100		60	36-97	7	30	
2,4-Dinitrotoluene	73.2	10	"	100		73	24-96	15	30	
4-Nitrophenol	28.3	10	*	150		19	10-80	49	30	QR-02
N-Nitrosodi-n-propylamine	69.9	5.0	17	100		70	41-116	5	30	
Pentachlorophenol	102	10	п	150		68	9-103	84	30	QR-02
Phenol	33.9	5.0	н	150		23	12-110	29	30	
Pyrene	63.4	5.0	U	100		63	26-127	15	30	
1,2,4-Trichlorobenzene	61.8	5.0	н	100		62	39-98	9	30	
Surrogate: 2-Fluorophenol	48.1		"	150		32	21-110			
Surrogate: Phenol-d6	32.5		"	150		22	10-110			
Surrogate: Nitrobenzene-d5	68.2		"	100		68	35-114			
Surrogate: 2-Fluorobiphenyl	72.4		u	100		72	43-116			

Sequoia Analytical - Sacramento

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA
Project Manager: Steven Meeks

2002 Reported: 04/02/02 15:31

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Walnut Creek

	Reporting		Spike	Source		%REC		RPD	ļ
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2C22016 - EPA 3520B Liq Liquid

LCS Dup (2C22016-BSD1)			Prepared: 03/2	2/02 Analyze	d: 03/28/02	
Surrogate: 2,4,6-Tribromophenol	112	ug/l	150	75	10-123	
Surrogate: p-Terphenyl-d14	56.9	"	100	57	33-141	

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 04/02/02 15:31

Notes and Definitions

HC-12	Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
QR-02	The RPD result exceeded the control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
S-AC	Acid surrogate recovery outside control limits. The data was accepted based on valid recovery of remaining two acid surrogates.
S-BN	Base/Neutral surrogate recovery outside control limits. The data was accepted based on valid recovery of remaining two base/neutral surrogates.
S-LIM	The surrogate recovery was outside control limits. The result may still be useful for its intended purpose.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

28 March, 2002

Steven Meeks Delta Environmental Consultants (Rancho Cordova) 3164 Gold Camp Drive Ste. 200 Rancho Cordova, CA 95670

RE: ARCO 601, San Leandro, CA Sequoia Report: S203294

Enclosed are the results of analyses for samples received by the laboratory on 03/19/02 14:06. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ron Chew

Client Services Representative

Lito Diaz

Laboratory Director

CA ELAP Certificate #1624

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 03/28/02 13:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-9	S203294-01	Water	03/15/02 07:40	03/19/02 14:06
MW-10	S203294-02	Water	03/15/02 07:17	03/19/02 14:06

Sequoia Analytical - Sacramento

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

YELL

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 03/28/02 13:50

${\bf Total\ Purgeable\ Hydrocarbon,\ BTEX\ and\ MTBE\ by\ DHS\ LUFT}$

Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-9 (S203294-01) Water	Sampled: 03/15/02 07:40	Received: 0.	3/19/02 1	4:06					
Purgeable Hydrocarbons	ND	50	ug/l	ŧ	2030346	03/25/02	03/26/02	DHS LUFT	
Веплеле	ND	0.50	н	H	II	IŦ	H	п	
Toluene	ND	0.50	**	n	4	"	"	**	
Ethylbenzene	ND	0.50	**	n	41	н	u	H .	
Xylenes (total)	ND	0.50	#	II	**	п	н	n	
Methyl tert-butyl ether	ND	2.5	n	tı	H	н		D	
Surrogate: a.a,a-Trifluorotolue	ne	90.2 %	60-	-140	,,	n	"	H	
MW-10 (S203294-02) Water	Sampled: 03/15/02 07:17	Received:	03/19/02	14:06					
Purgeable Hydrocarbons	ND	50	ug/l	1	2030346	03/25/02	03/26/02	DHS LUFT	
Benzene	ND	0.50	II .	"	н	**	**	**	
Toluene	ND	0.50	н	78	11	**	**		
Ethylbenzene	ND	0.50	н	,,	н	n	n	н	
Xylenes (total)	ND	0.50	н	11	п	10	n	и	
Methyl tert-butyl ether	ND	2.5	**	11	rl	. 11	II	er .	
Surrogate: a,a,a-Trifluorotolue	ene	81.1 %	60	-140	rr	,,	n	"	

Surrogate: a,a,a-1 rijiuorololuene

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported: 03/28/02 13:50

Total Purgeable Hydrocarbon, BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2030346 - EPA 5030B (P/T)			-							
				D	e. A 1	-1.02/25/	02			
Blank (2030346-BLK1)				Prepared	& Analyz	ea: U3/23/	<u> </u>			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50								
Toluene	ND	0.50	*							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50								
Methyl tert-butyl ether	ND	2.5	*					_		
Surrogate: a,a,a-Trifluorotoluene	8.88		"	10.0		88.8	60-140			
LCS (2030346-BS1)				Prepared	& Analyz	ed: 03/ <u>25</u> /	02			
Benzene	7.79	0.50	ug/l	10.0		77.9	70-130			
Toluene	7.91	0.50	n	10.0		79.1	70-130			
Ethylbenzene	8.55	0.50	н	10.0		85.5	70-130			
Xylenes (total)	24.8	0.50	п	30.0		82.7	70-130			
Methyl tert-butyl ether	8.16	2.5	n	10.0		81.6	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.09		q	10.0		90.9	60-140			
Matrix Spike (2030346-MS1)	So	urce: S2032	91-03	Prepared & Analyzed: 03/25/02			02	<u>.</u>		
Benzene	8.43	0.50	ug/l	10.0	ND	84.3	60-140			
Toluene	8.33	0.50	и	10.0	ND	83.3	60-140			
Ethylbenzene	9.11	0.50	"	10.0	ND	91.1	60-140			
Xylenes (total)	26.5	0.50	"	30.0	ND	88.3	60-140			
Methyl tert-butyl ether	9.44	2.5	n	10.0	ND	87.5	60-140			
Surrogate: a,a,a-Trifluorotoluene	8.94	•	н	10.0		89.4	60-140			
Matrix Spike Dup (2030346-MSD1)	So	urce: S2032	91-03	Prepared	& Analyz	ed: 03/25/	/02			
Benzene	8.57	0.50	ug/l	10.0	ND	85.7	60-140	1.65	25	
Toluene	8.61	0.50	41	10.0	ND	86.1	60-140	3.31	25	
Ethylbenzene	9.44	0.50	19	10.0	ND	94.4	60-140	3.56	25	
Xylenes (total)	27.3	0.50	*	30.0	ND	91.0	60-140	2.97	25	
Methyl tert-butyl ether	9.53	2.5	н	10.0	ND	88.4	60-140	0.949	25	
Surrogate: a,a,a-Trifluorotoluene	9.51		"	10.0		95.1	60-140			

Delta Environmental Consultants (Rancho Cordova

3164 Gold Camp Drive Ste. 200 Rancho Cordova CA, 95670 Project: ARCO 601, San Leandro, CA

Project Number: 601, San Leandro, CA

Project Manager: Steven Meeks

Reported:

03/28/02 13:50

VUN 2 # 2002

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

of custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain

ARCO								W	lotk A	uthoriza	tion I	vo.	25	990	000	······								hain of Custody
ARCO Facil	ity No.	601		Ç	ity Saciliou ^t	San	1.00	Nd	ro	CA	Projec (Cons	t Mana	ger	< Ter	10N	D	nee	k 5						Laboratory name
ARGO engir			ر. پ	2 to Je	•		Teleph (AHCO	one n	g.		Tetaph	one no	ال كارىخ	57es	200	٠,	Fa	x (H). Susselle	on 6	38	43	سے ن		Se((Uo) A Contract number
Сотралуп	ame	Paul	1.1				\$2.5.2	,	Address (Consu	g A		-lo	A /	ou	des	 (1 ₇₀₁			., .		<u>4 - </u>	D_ 		. Contract number
(Consultant	,		120r					Τ	(CONSU	nearly - I	1	200		1				0	g	ĺ		=		Method of shipment
		é		Matrix		Prese	rvetion		deto	ST-TE	, 55	4.7 B	를 다. 1 등 등 다.	86 18.2 C	14503E	3E.5	ygenztes	Seril AC VOA	74 GG137	8		よってん		
Semplo I.D.	Lab na.	Contsiner	Sod	Water	Other	koe	Acid		Samplifug deto	Sampling timo	BTEX Bozyepa 8021	BTEVTPH EPA M602/8	TPH Kroding Gas O Die	Oll and Greate 415.1 🗆 415.2 🗅	7PH 1874 478.7	87EX + MT EPA 8260	BYEX + Standard Ox EPA, 8260	TCLP Metals⊡ V()	CANTAIGNE E	Lead Org./Di- Load EPA 7470/7421 C	5 voc	ps. c. c. c. h		Special detection Limit/reporting
mw-1		7		Х		Х	Х	3-	15-02	10:30		Х					32	\3 -	٥l		-\-			
4w-2		12		۱,		1	1			9:05		($\Omega \mathcal{I}$	<u> </u>				
MW-3		· ·								8:20		\							03					Special OA/OC
Mw-4		TT							[10:00	1		Ì					J	<u>64</u>					
MW-5	 									9:20									<u>5</u> 0					
mw-6										9:40									10					Remarks
MW-7									}	8:50								<u>-</u>	[0		<u> </u>			
MW-8										8.35									D&]
MW-9		4-4-	╁					-		740-	╁). }	Ď9,	h				Type of Work
NV-70		 - -			!	1		F	 	7.77	<u>'</u>	П						ļ	(D Dispenser Work Uno Jou
mw-11		1-1-	 					T	1	6:30	<u> </u>	- "						J	09					☐ Routine Sampling ☐ Site Acquisitions
MN-13								T		6:20			1						10			w		Site Assessment UST Removal UST Replacement
mw-1	i	1	1					T		6:50		\sqcap							ιş					D Other
July 14	1	11	1	1 1	<u> </u>			╁		7:00		\prod						-	19					Lab number
MW-1	3	11					1-1-	Τ		7:55	1	\sqcap	ĺ						3					Tucneround time
TB		1						1	7	600									انا					Priority Rush 1 Business Day
Condition	of samp	e:	•	•••			•	_			Termp	erature	rocelvi	#70	~				•		-			l Rush
Retinquished by sampler 3-19-02 1406						Roce	Proceived by Received by Received by									2 Business Days								
					Time	Received by					[Ues.	Expedited 65 Business Days			Expedited 65 Business Days									
Relinquisi	ed by			<u> </u>			Cate			emiŢ	flece	ved by	laborat	ory		,		Oála			Time			Standard 10 Business Cays 🗓

3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 Direct: (916) 638-2085 Fax: (916) 638-8385

Arco Site Address:	712 Lewelling Blvd.	Arco Site Number:	601	
	San Leandro, CA	Delta Project No.:	D000-303	
Arco Project Manager:	Paul Supple	Delta Project PM:	Steven W. Meeks	
Site Sampled By:	Doulos	Date Sampled:	03/15/02	

Site Contact & Phone Number:

Water Level Data					Purge Volume Calculations					Sampling Analytes					Sample Record			
Well ID	Time	Depth to Water (feet)	Top of Screen Interval (feet)	Total Depth of Well (feet)	Check if Purge Not Required	Casing Water Column (A)	Well Diameter (inches)	Multiplier Value (B)	Three Casing Volumes (gallons)	Actual Water Purged (gallons)	BTEX (8020) VOA	TPH-g (8015M) VOA	MTBE (8020) VOA	SVOCs (8270) VOA	Dissolved Oxygen (mg/L)	Sample Frequency (A, S, Q)	Sample 1.D.	Sample Time
MW-1	5:40	7.89	7.0	10.8	7	2.89	4 inch	2.0	5.8	NP	7	\	V	V	NM	Q/2,5,8,11	MW-1	10:30
MW-2	5:43	6.84	8.0	12.1		5.30	4 inch	2.0	10.6	10.5	>	4	7		NM	A/2	MW-2	9:05
MW-3	5:46	7.02	8.0	11.8		4.79	4 inch	2.0	9.6	9.66	>	\	7		NM	Q/2,5,8,11	MW-3	8:20
MW-4	5:48	7.43	NM	8.3		0.83	4 inch	2.0	1.7	1.74	[7]	Image: section of the content of the	Image: section of the content of the		NM	Q/2,5,8,11	MW-4	10:00
MW-5	5:50	6.90	NM	8.0		1.07	4 inch	2.0	2.1	2.2	১	7	্য		NM	Q/2,5,8,11	MW-5	9:20
MW-6	5:53	7.51	NM	8.4		0.91	4 inch	2.0	1.8	19.8	7	Image: section of the content of the	১		NM	Q/2,5,8,11	MW-6	9:40
MW-7	5:56	8.54	NM	9.4		0.83	4 inch	2.0	1.7	1.7	>	7	>		NM	Q/2,5,8,11	MW-7	8:50
MW-8	5:58	6.94	NM	10.1		3.16	4 inch	2.0	6.3	6.1	5	স	্য		NM	Q/2,5,8,11	MW-8	9:35
MW-9	5:35	7.23	NM	15.9		8.71	2 inch	0.5	4.4	4.3	[7]	7	হি		NM	S/2,8	MW-9	7:40
MW-10	5:33	7.48	NM	11.9		4.44	2 inch	0.5	2.2	2.2	হ	[7]	্য		NM	Q/2,5,8,11	MW-10	7:17
MW-11	6:00	7.87	7.0	11.6	Ø	3.71	4 inch	2.0	7.4	NP	১	7	7		NM	A/2	MW-11	6:30
MW-12	6:05	8.22	7.5	11.1	V	2.92	4 inch	2.0	5.8	NP	>	V	٦		NM	A/2	MW-12	6:20
MW-13	6:13	7.62	NM	12.7		5.06	2 inch	0.5	2.5	2.5	১	V	7		NM	A/2	MW-13	6:50
MW-14	6:15	8.75	7.5	12.6	V	3.86	2 inch	0.5	1.9	NP	[১]	V	ি		NM	Q/2,5,8,11	MW-14	7:00
MW-15	6:03	5.68	NM	9.8		4.13	2 inch	0.5	2.1	2.6	7	V	7		NM	S/2,8	MW-15	7:55
		<u> </u>		İ		Note: Use Separate COC for Samples collected from wells MW-9 and MW-10 Note: Sample well MW-1 for Metals												
																		
	<u> </u>						Annually in February (Cd, Cr, Pb, Ni & Zn)											
							T	ļ <u> </u>										

(A)-Casing Water Column: Depth to Bottom - Depth to Water (B)-Multiplier Values: (2" Well: 0.5) (4" Well: 2.0) (6" Well: 4.4)

Sampling Sequence: Annual: MW-11, MW-12, MW-13, MW-2; Semi-Annual: MW-9, MW-15
Quarterly: MW-10,MW-14,MW-7,MW-8,MW-4,MW-6,MW-5,MW-1,MW-3

Sampling Notes: List depth of Sample on C.O.C. [I.e. MW-1(30)]. Make Sure to Note on C.O.C. "Provide Lowest Reporting Limit Available."

Original Copies of Field Sampling Sheets are Located in Project File

If the water level is below the top of the screen, take a grab sample and check box for NO PURGE (NP). If the water level is above the screen, purge as normal.

*Sample MW-1 for Metals Annually in February.

3164 Gold Camp Drive, Suite 200 Direct: (916) 638-2085

Rancho Cordova, California 95670 Fax: (916) 638-8385

Arco Site Address:	712 Lewelling Blvd.	Arco Site Number:	601
	San Leandro, CA	Delta Project No.:	D000-303
Arco Project Manager:	Paul Supple	Delta Project PM:	Steven W. Meeks

Date Sampled:

Doulos

Site Contact & Phone Number:

Sp. Cond. Gallons Well ID Time Temp °C | pH Units Sp. Cond. Gallons Well ID Temp °C | pH Units Temp °C pH Units Sp. Cond. Gallons Time Well ID MW-15 7:45 14.8 7.06 598 0.6 7.24 603 2 MW-8 8:24 15.5 MW-1 No Purge Required 539 1.6 7:46 15.4 7.04 7.16 609 4 8:26 16.8 7:47 7.03 472 2.6 16.7 7.08 572 6 8:28 16.7 Temp °C pH Units Sp. Cond. Gallons Well ID Time Temp °C pH Units Sp. Cond. Gallons Well ID Temp °C pH Units Sp. Cond. Gallons Time Well ID Time 7:25 7.06 752 17.7 1.4 8:52 16.8 7.00 774 4 MW-9 MW-2 17.9 7.04 750 2.8 7 7:26 17.7 7.90 847 8:53 745 7:27 18.7 7.03 4.3 8:54 18.3 7.74 864 11 Temp °C pH Units Sp. Cond. Gallons Well ID Time Temp °C pH Units Sp. Cond. Gallons Temp °C pH Units Sp. Cond. Gallons Well ID Time Well ID Time 6.98 761 0.7 7.45 573 3.2 MW-10 7:06 16.4 8:05 15.3 MW-3 7.21 575 7:07 16.7 6.99 784 1.6 17.0 6.4 8:06 7.06 821 2.2 7:08 17.3 17.2 7.06 630 9.6 8:07 Temp °C pH Units Sp. Cond. Gallons Well ID Time Temp C pH Units Sp. Cond. Gallons Well ID Time Temp °C pH Units | Sp. Cond. Gallons Well ID Time MW-11 No Purge Required 7.15 847 0.58 MW-4 9:46 12.8 9:48 17.3 7.09 853 0.87 17.5 7.06 857 1.74 9:50 Gallons Temp °C pH Units Sp. Cond. Temp °C pH Units Sp. Cond. Gallons Well ID Time Well ID Time Gallons Well ID Temp °C pH Units Sp. Cond. Time MW-12 No Purge Required 936 9:07 20.0 7.38 0.7 MW-5 7.34 1.040 9:08 19.8 1.1 7.30 1.011 2.2 9:09 19.4 Temp °C pH Units Sp. Cond. Gallons Well ID Time Temp °C pH Units Sp. Cond. Gallons Well ID Time Temp °C pH Units Sp. Cond. Gallons Well ID Time 16.5 7.25 755 0.8 9:25 15.9 7.31 992 0.5 MW-13 6:35 MW-6 7.15 762 7.28 1,003 1.0 6:36 16.4 1.6 14.0 9:26 6:37 16.5 7.08 787 2.5 1,014 1.7 9:27 14.0 7.21 Time Temp °C pH Units Sp. Cond. Gallons Gallons Well ID Temp °C pH Units Sp. Cond. Well ID Time Well ID Time Temp °C pH Units Sp. Cond. Gallons MW-14 No Purge Required 778 8:40 16.4 7.24 0.5 MW-7 16.8 7.18 755 8:41 1.0 739 14:42 17.0 7.12 1.7

Site Sampled By:

Notes: NP = NO PURGE

Original Copies of Field Sampling Sheets are Located in Project File

3/15/02