

HOTEUTION

99 MAR 11 PH 2:41

March 8, 1999 Project 20805-121-006

Mr. John Sullivan 17760 Sweetbriar Place Castro Valley, California 94546

Re: Quarterly Groundwater Monitoring Results, Fourth Quarter 1998, for Chateau Manor Apartments, located at 724 Lewelling Boulevard, San Leandro, California

Dear Mr. Sullivan:

Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached laboratory analytical results for groundwater samples collected from wells MW-9 and MW-10 during the fourth quarter of 1998. This wells are located at Chateau Manor Apartments, 724 Lewelling Boulevard, San Leandro, California. The groundwater samples were collected during quarterly sampling of the ARCO Products Company (ARCO) Service Station No. 0601, located at 712 Lewelling Boulevard, San Leandro, California. The laboratory analytical results indicate that the groundwater sample concentrations were not detectable for total petroleum hydrocarbons as gasoline, and the gasoline constituents benzene, toluene, ethylbenzene, and total xylenes.

Please call if you have questions.

Sincerely,

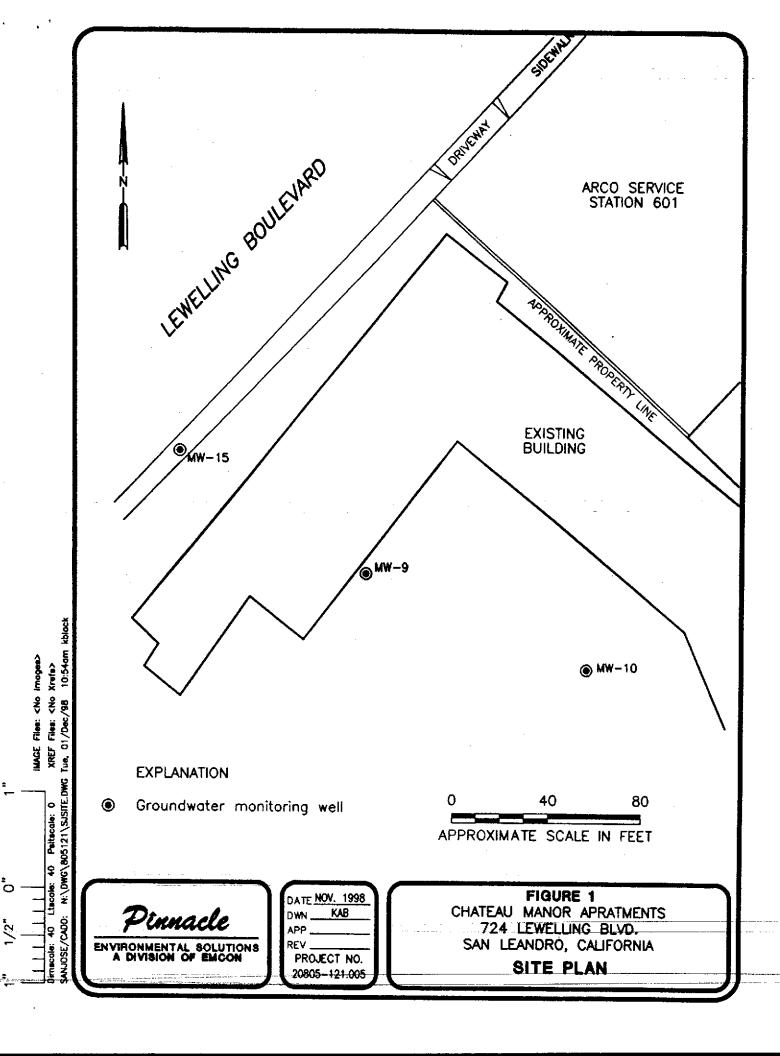
Pinnacle

Glen VanderVeen Project Manager

Attachments: Figure 1

Site Plan

Appendix A


Copies of Certified Analytical Report and Chain-of Custody-

Documentation, Wells MW-9 and MW-10, Fourth Quarter 1998

cc: Scott Seery, ACHCSA

Paul Supple, ARCO Products Company

File

APPENDIX A

COPIES OF CERTIFIED ANALYTICAL REPORT, AND CHAIN-OF-CUSTODY DOCUMENTATION, WELLS MW-9 AND MW-10 FOURTH QUARTER 1998

October 27, 1998

Service Request No.: <u>\$9802771</u>

Glen Vanderveen
PINNACLE
144 A Mayhew Wy.
Walnut Creek, CA 94596

RECEIVED

OCT 2 9 1998

BY: OM

RE: 20805-121,005/TO#22312.00/RAT8/601 SAN LEANDRO

Dear Mr. Vanderveen:

The following pages contain analytical results for sample(s) received by the laboratory on October 14, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 10, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

Dernadette V. Cox you

COLUMBIA ANALYTICAL SERVICES, Inc. Acronyms

AZLA American Association for Laboratory Accreditation
ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COB Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

Inductively Coupled Plasma atomic emission spectrometry

Initial Calibration Verification sample

Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Medimum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable

NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802771

Date Collected: 10/14/98

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-9(15)

Lab Code:

S9802771-001

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/23/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	.1	NA.	10/23/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Methyl tert-Butyl Ethor	EPA 5030	8020	3	1	NA	10/23/98	ND	

S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121,005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: 89802771

Date Collected: 10/14/98

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-10(16)

Lab Code:

S9802771-002

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802771

Date Collected: NA

S.

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S981021-WB1

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/21/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/21/98	ND	

1822/020597p

Analytical Report

27

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: \$9802771

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S981022-WB2

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	· 1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: \$9802771 Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Analysis Method: 8020

20 CA/LUFT

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
MW-9(15)	\$9802771-001		97	91
MW-10(16)	S9802771-002		86	90
BATCH QC	S9802704-004MS		115	86
BATCH QC	S9802704-004DMS		112	93
Method Blank	S981021-WB1		100	99
Method Blank	S981022-WB2		108	92

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: 89802771

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 10/22/98

Matrix Spike/Duplicate Matrix Spike Summary

BTE

Sample Name:

BATCH QC

Lab Code:

S9802704-004MS,

S9802704-004DMS

Units: ug/L (ppb)

Basis: NA

Test Notes:

Percent Recovery

	Prep	Analysis		Spik	e Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Benzene	EPA 5030	8020	0.5	25	25	ND	25	26	100	104	75-135	4
Toluene	EPA 5030	8020	0.5	25	25	ND	25	26	100	104	73-136	4
Ethylbenzene	EPA 5030	8020	0.5	25	25	1.5	27	28	102	106	69-142	4

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: 89802771

Date Analyzed: 10/22/98

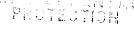
Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: **ICV**

ICVI

Units: ug/L (ppb)

Basis: NA


Test Notes:

				CAS		
				Percent Recovery		
Prep	Analysis	True		Acceptance	Percent	Result
Method	Method	Value	Result	Limits	Recovery	Notes
EPA 5030	CA/LUFT	250	260	90-110	104	
EPA 5030	8020	25	28	85-115	112	
EPA 5030	8020	25	28	85-115	112	
EPA 5030	8020	25	27	85-115	108	
EPA 5030	8020	75	84	85-115	112	
EPA 5030	8020	25	26	85-115	104	
	Method EPA 5030 EPA 5030 EPA 5030 EPA 5030 EPA 5030	Method Method EPA 5030 CA/LUFT EPA 5030 8020 EPA 5030 8020 EPA 5030 8020 EPA 5030 8020 EPA 5030 8020	Method Method Value EPA 5030 CA/LUFT 250 EPA 5030 8020 25 EPA 5030 8020 25 EPA 5030 8020 25 EPA 5030 8020 25 EPA 5030 8020 75	Method Method Value Result EPA 5030 CA/LUFT 250 260 EPA 5030 8020 25 28 EPA 5030 8020 25 28 EPA 5030 8020 25 27 EPA 5030 8020 75 84	Percent Recovery Prep Analysis True Acceptance Method Value Result Limits EPA 5030 CA/LUFT 250 260 90-110 EPA 5030 8020 25 28 85-115 EPA 5030 8020 25 28 85-115 EPA 5030 8020 25 27 85-115 EPA 5030 8020 75 84 85-115	Percent Recovery Percent Recovery Prep Method Analysis True Acceptance Percent Method Value Result Limits Recovery EPA 5030 CA/LUFT 250 260 90-110 104 EPA 5030 8020 25 28 85-115 112 EPA 5030 8020 25 28 85-115 112 EPA 5030 8020 25 27 85-115 108 EPA 5030 8020 75 84 85-115 112

ICV/032196

AR	CC) Pr Divisio	odu	cts (Com	pany	1598	1027	30	15 19 53 Task Order	No. 2	223	12.0	20				 -							of Custod	ÿ
ARCC	Fa	cility no	06	01		City (Facility	n Sar	$1/\alpha$	ndro		Pr (X	xiect m xnsulte	anage nt)	Gl	enl	<i>lan</i>	de	rVe	er	2	76)4				Laboratory Name	7
AHOL	eng	Diveet	Dal	1151	/חחי	e		Tele (AR	phone no.		Tel (Cc	ephon: Xneulte	no C	08)	453	-73/	∞	Fax ((Con	no. aultani	1)(40	28)4	/37	-95	26	CA S Contract Number	
Cons	lten	t name	T-M	CON	7-7-					kiress onsultant/4	14-1	M	auh	<i></i>	Wa	11/1	رادرا	nit	Cta	206		4 0	7450	26		
				1	Matrix		Dross	rvation	T			£ 2	7		<u>ر بر م</u>	/	<u> </u>			<u>8</u>	Lead Org/DHSC] Lead EPA 74207421C]			,,,,	Method of shipment	
٠			2	ļ	MODIA		FIESE	· vauo:	4			Z 2	<u>_</u>	6	딿				E S	25 C	27.50				Sampler	
7.		ان	يق	Soil	Water	Other	Ice	Acid	콩	<u>g</u>	8	至		五言	SHS	55	\$240	S S	\2	STLC	2 AS				will deliver	į
Sample 1.D		on de l	Container]			Sampling dalk	Sampling lime	200	BTEVTPH incts. EPA MENZACTURA	夏豆	Off and Greate 413.1 G 413.2 G	H A 418	EPA 601/8010	A 624/	A 625.	교육	₹ B	2 P				deliver	
	Щ		0	ļ				ļ	f		58	5.6	E 3	8#	₽ 85	85	85	83	은 골	ઇ F	33			-	Special Detection	
HW-	24	5)[]	2	<u> </u>	X		X_	HCL	1di4l9			X.													Limit/reporting LOWEST	
MW-	07	62	2		X		X	HCL	V	1930		X													Possible	
		_														}									·	
																									Special QA/QC	
			:						·															·	As Normal	
	1	:						<u> </u>					<u> </u>								1				Normal	
				 					 		 					1										
	+			 	 				-		 														Remarks	
			<u> </u>	<u> </u>		<u> </u>		<u> </u>	ļ	ļ	╄	ļ		ļ											RAT 8	ا د
				<u> </u>					<u> </u>	ļ	L.,														2-40ml HCL VOAs	
			<u>. </u>									<u> </u>	:	٠											VOAs	
Ĺ													!													
	-																					·				
			:							1															#20805-121.0	2
								<u> </u>	 	 	 		 			\dashv									Seg 0277	
	Н		<u> </u>	-		\vdash			 		 					-									Turneround Time:	\dashv
	\vdash		<u> </u>	 	\vdash			-	 		├─	 									 				4	
	1		ļ	 	 	 	<u> </u>	<u> </u>	-		<u> </u>														Priority Rush 1 Business Day	
	İ								ļ			ļ													•	
		:						<u> </u>				•													Rush 2 Business Days	
Condi		of sam	li	1	.			ł	I		7		. <u></u>	handa ^a		. \ i/	178	100		₹11/	D2		<u> </u>		Expedited	
	11:		pie: iamplei					Doter		Time	I I WHITE		- 1000	TOTAL S		2 \ 14	مراحم	į-14		_	_					
VID	16	×65	HITTORY					Date/ N/4	198	/500 IIMe	medi	7	(COA)	-la	Ma	ek.	ædk	c	4 5	10/1	4/98		120	•	Standard	
Reling	ulah	ed by	:					Date				wed b		V	- 7		,			· · · · ·			***		10 Business Ditys	×
Reling	uleh	ed by				•		Date		Time	Rece	wed b	y lebor	alory			ין	Date			Time	<u> </u>	<u> </u>		· ·	

99 KAR 11 PK 2: 61

March 8, 1999 Project 20805-121.006

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Quarterly Groundwater Monitoring Report, Fourth Quarter 1998, for ARCO Service Station No. 0601, Located at 712 Lewelling Boulevard, San Leandro, California

Dear Mr. Supple:

Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached report which presents the results of the fourth quarter 1998 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 0601, located at 712 Lewelling Boulevard, San Leandro, California. The monitoring program complies with the Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope and limitations of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

Pinnacle

Glen Vander Veen

Project Manager

Jay R. Johnson, R.G.

Senior Project Supervisor

Attachment: Quarterly Groundwater Monitoring Report, Fourth Quarter 1998

cc: Scott Seery, ACHCSA

Mike Bakaldin, SLFD

Date:	March 8, 1999

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.:	0601	Address:	712 Lewelling Boulevard, San Leandro, California
		innacle Project No.	
ARCO			Paul Supple /(925) 299-8891
7O	innacle Project M	anager/Phone No.:	Glen VanderVeen /(925) 977-9020
•	Primary Agency	/Regulatory ID No.:	ACHCSA /Scott Seery

WORK PERFORMED THIS QUARTER (FOURTH - 1998):

- 1. Prepared and submitted quarterly groundwater monitoring report for third quarter 1998.
- 2. Performed quarterly groundwater monitoring and sampling for fourth quarter 1998.

WORK PROPOSED FOR NEXT QUARTER (FIRST - 1999):

- 1. Prepare and submit quarterly groundwater monitoring report for fourth quarter 1998.
- 2. Perform quarterly groundwater monitoring and sampling for first quarter 1999.
- 3. Evaluate potential off-site plume migration.

QUARTERLY MONITORING:

Current Phase of Project:	Quarterly Groundwater Monitoring
Frequency of Sampling:	Annual (1st quarter): MW-2, MW-11, MW-12, MW-13
	Semi-annual (1st/3rd quarter): MW-9, MW-15
	Quarterly: MW-1, MW-3 through MW-8, MW-10, MW-14
Frequency of Monitoring:	Quarterly (groundwater)
Is Floating Product (FP) Present On-site:	☐ Yes ☑ No
Cumulative FP Recovered to Date :	3.45 gallons, Well MW-1
FP Recovered This Quarter :	None
Bulk Soil Removed to Date:	1,565 cubic yards of TPH impacted soil
Bulk Soil Removed This Quarter:	None
Current Remediation Techniques:	Natural Attenuation
Average Depth to Groundwater:	8.1 feet
Groundwater Flow Direction and Gradient (Average):	0.02 ft/ft toward southeast

ATTACHMENTS:

- Table 1 Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 2 Groundwater Flow Direction and Gradient
- Table 3 Historical Groundwater Analytical Data, Metals
- Table 4 Historical Groundwater Analytical Data,
 Volatile and Semivolatile Organic Compounds
- Table 5 Approximate Cumulative Floating Product Recovered, Monitoring Well MW-1
- Figure 1 Groundwater Analytical Summary Map
- Figure 2 Groundwater Elevation Contour Map
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain-of-Custody Documentation
- Appendix C Field Data Sheets

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

Well Designation	Water Level Field Date	Top of Casing Elevation	e Depth to Water	Groundwater Elevation	Floating Product	TPHG QLUFT Method	Benzene E EPA 8020	Toluene FEPA 8020	Ethylbenzene	Total Xylenes EPA 8020	MTBE © EPA 8020	MTBE P EPA 8240	TRPH © EPA 418.1	TPHD	Bissolved Oxygen	Purged/ Not Purged
							5,300	370	1,500	13,000			48,000	6,200*		
MW-1	03-17-95	22.26	6.57	15.69	ND ND	120,000 250,000	7,100	950	3,500	21,000			•	190,000*		
MW-1	06-01-95	22.26	7.87	14.39		iot sampled:				21,000			40,409			
MW-1	08-31-95	22.26	8.12 8.42	** 14.15 13.84	Sheen	310,000	4,600	770	5,700	21,000						
MW-1	11-27-95	22.26	6.01	** 16.26	0.01	100,000	6,200	320	2,500	12,000	<1,000*					
MW-1	02-22-96	22.26		15.23	ND	340,000	6,600	240	4,500	22,000	<1,000		150	<2.500*		
MW-1	05-20-96	22.26	7.03 8.16	14.10	ND	210,000	7,900	320	3,400	15,000	<1,000			,		
MW-1	08-26-96	22.26		14.10	ND ND	62,000	5,900	77	2,000	7,700	<300					
MW-1	11-20-96	22.26	7.84 8.05	11.14	ND	170,000	6,500	<200	2,400	9,900	<1,000					
MW-1	03-24-97	19.19				,	6,200	84	2,500	9,000	<300					
MW-1	05-23-97	19.19	8.42	10.77	ND	83,000	4,500	<100	2,300	8,100	<600					
MW-1	08-19-97	19.19	8.65	10.54	ND	83,000	4,400	<500	3,800	9,900	<3,000					
MW-1	11-19-97	19.19	8.54	10.65	ND	250,000		120	2,200	4,100	<300	••				
MW-1	02-19-98	19.19	5.57	13.62	ND	74,000	2,500		4,200	8,300	<3.000				1.5	P
MW-1	04-23-98	19.19	6.92	12.27	ND	210,000	2,700	<600 88	2,600	4,600	<300				1.0	F
MW-1	07-27-98	19.19	8.14	11.05	ND	73,000	2,100		•	3,900	<300				1.5	F
MW-1	10-14-9 8	19.19	8.58	10.61	ND	47,000	2,900	<50	2,300	3,900	<300		•		1.0	,
MW-2	03-17-95	21.33	6.12	15.21	ND	10,000	460	77	260	550						
MW-2	06-01-95	21.33	6.56	14.77	NĎ	13,000	400	78	210	410						
MW-2	08-31-95	21.33	7.18	14.15	ND	5,000	280	18	120	140	<50			• •		
MW-2	11-27-95	21.33	7.39	13.94	ND	3,200	230	: 12	77	90						
MW-2	02-22-96	21.33	5.78	15.55	ND	11,000	290	67	190	330	<50					
MW-2	05-20-96	21.33	6.27	15.06	ND I	Not sampled:	well samp	xled annually	, during t	he first quar	ter					
MW-2	08-26-96	21.33	7.30	14.03	ND I	Not sampled:	well samp	pled annually	/, during t	he first quai	ter					
MW-2	11-20-96	21.33	7.28	14.05	ND I	Not sampled:		oled annually	r, during t	he first quai						
MW-2	03-24-97	21.12	7.11	14.01	ND	4,800	570	6	71	32	67			·		
MW-2	05-23-97	21.12	7.44	13.68	ND	Not sampled:	well samp	oled annually	/, during t	he first qua	rter					
MW-2	08-19-97	21.12	7.64	13.48	ND	Not sampled:	well samp	oled annually	y, during t	the first qual	rter .					
MW-2	11-19-97	21.12	7.70	13.42		Not sampled:	well samp	oled annually	y, during t							
MW-2	02-19-98	21,12	5.22	15.90	ND	2,000	160	50	66	230	25		•	• • •		
MW-2	04-23-98	21.12	6.24	14.88		Not sampled:	•			-						
MW-2	07-27-98	21.12	7.02	14.10		Not sampled:										
MW-2	10-14-98	21.12	7.54	13.58	NΩ	Not sampled:	well same	nieu na belo	v durina i	the first qua	rter					

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present****

MW-3 03-17-95 20.11 5.46 14.65 ND 370,000 4.800 12.000 5.000 28,000 4.																		
MW-3		Well Designation	Water Level Field Date			_												Purged/ Not Purged
MW-3				II-MOL	1000	11-111-02												ľ
MW-3 08-01-95	1	1141 0	02.17-95	20.11	5.46	14.65	ND				-				••	•		1
MW-3 08-31-95	41						ND	270,000				28,000		••	• •			
MW-3 01-27-95 20.11 6.76 **13.36 0.01 150,000 4.400 7,600 4.000 4.							0.02 N	ot sampled: v	vell conta		g product							
MW-3 02-22-96 20.11 5.14 **14.98 0.01 150.000 4.700 8.000 6.300 36.000 <3.000	- 11								5,100									
MW-3 05-20-96 20.11 5.17 14.94 ND 410,000 4,700 8,000 6,300 35,000	- 11						0.01	150,000	4,400	7,600						• -		
MW-3 08-26-96 20.11 7.04 13.07 ND 260,000 4.000 6.100 4.200 2.000 1.000	- 18		-					410,000	4,700	8,000								
MW-3 11-20-96 20.11 6.26 13.85 ND 190,000 3,200 5,800 3,300 20,000 -1,000 MW-3 11-20-96 20.11 6.26 13.85 ND 430,000 2,700 7,800 7,000 39,000 <5,000 MW-3 03-24-97 22.99 6.98 16.01 ND 130,000 2,100 4,300 3,500 19,000 <600 MW-3 08-19-97 22.99 7.25 15.74 ND 100,000 2,000 3,200 <100 19,000 <600 MW-3 02-19-98 22.99 7.25 15.74 ND 93,000 1,700 2,400 2,500 18,000 <600 MW-3 02-19-98 22.99 6.60 16.39 ND 130,000 1,500 2,400 18,000 <600 MW-3 07-27-98 22.99 7.04 15.95 ND 300,000 1,200 2,400 13,000 <600 MW-4 03-17-95 20.75 6.65 14.10 ND 16,000 2,800 870 380 2,700 MW-4 08-31-96 20.75 7.25 13.50 ND 16,000 2,800 870 380 2,700 MW-4 08-31-96 20.75 7.87 12.88 ND 3,800 890 130 130 550 MW-4 08-20-96 20.75 7.30 13.45 ND 9,400 150 82 19 130 <20 MW-4 08-20-96 20.75 7.30 13.45 ND 8,700 150 800 870 150 2,100 100 MW-4 08-20-96 20.75 7.89 12.88 ND 3,800 890 130 130 550 MW-4 08-20-96 20.75 7.89 12.86 ND 940 150 82 19 130 <20 MW-4 08-20-96 20.75 7.89 12.86 ND 9,000 1,000 2,400 510 350 2,100 100 MW-4 08-20-96 20.75 7.89 12.86 ND 420 55 17 11 62 <3 MW-4 08-20-96 20.75 7.89 12.86 ND 9,000 1,000 2,400 510 350 2,100 100 MW-4 08-20-96 22.38 7.80 14.58 ND 9,000 1,000 370 110 180 1,300 93 MW-4 08-20-98 22.38 6.90 15.48 ND 9,000 1,000 390 120 1,000 <60 MW-4 08-20-98 22.38 6.90 15.48 ND 9,000 1,000 390 120 1,000 <60 MW-4 02-29-98 22.38 6.90 15.48 ND 9,000 1,000 390 120 1,000 <60 MW-4 02-29-98 22.38 6.97 15.45 ND 1,000 93 120 1,000 400 MW-4 08-20-99 22.38 6.90 15.48 ND 9,000 1,000 390 120 1,000 400 MW-4 08-20-99 22.38 6.97 15.48 ND 9,000 370 110 180 1,300 93 MW-4 08-20-99 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 02-29-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 02-29-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 02-29-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 02-29-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 02-29-98 22.38 7.22 15.16 ND 10,000 1,400 140 290								260,000	4,000	6,100								
MW-3 03-24-97 22.99 6.94 16.05 ND 430,000 2,700 7,600 7,000 39,000 <5,000	\$1						ND	190,000	3,200	5,800					••			ļ
MW-3 03-29-97 22.99 6.98 16.01 ND 130,000 2,100 4,300 3,500 19,000 <700	- 11							430,000	2,700	7,600	7,000	•			• •			
MW-3 08-19-97 22.99 7.25 15.74 ND 100,000 2,000 3,200 16,000 6600	- 11		•						2,100	4,300								
MW-3 11-19-97 22.99 7.25 15.74 ND 93,000 1,700 2,400 2,800 16,000 <600 MW-3 02-19-98 22.99 5.24 17.75 ND 80,000 620 1,200 2,500 13,000 <600 MW-3 04-23-98 22.99 6.60 16.39 ND 130,000 1,500 2,400 3,500 18,000 <600 MW-3 07-27-98 22.99 7.04 15.95 ND 300,000 1,200 2,400 5,700 32,000 970 MW-4 03-17-95 20.75 6.65 14.10 ND 16,000 1,800 970 310 2,500 MW-4 06-01-95 20.75 7.25 13.50 ND 16,000 2,800 870 380 2,700 MW-4 08-31-95 20.75 7.87 12.88 ND 3,800 890 130 130 550 MW-4 11-27-95 20.75 7.87 12.88 ND 3,800 890 130 130 550 MW-4 05-20-96 20.75 7.30 13.46 ND 940 150 82 19 130 <20 MW-4 05-20-96 20.75 7.57 13.18 ND 14,000 2,400 510 350 2,100 <100 MW-4 08-26-96 20.75 7.57 13.18 ND 14,000 2,400 510 350 2,100 <100 MW-4 08-26-96 20.75 7.89 12.86 ND 420 55 17 11 62 3 MW-4 08-26-96 20.75 7.89 12.86 ND 9,000 1,300 240 200 1,600 <60 MW-4 08-29-97 22.38 6.90 15.48 ND 9,000 1,300 240 200 1,600 <60 MW-4 08-29-97 22.38 7.80 14.58 ND 9,000 1,300 240 200 1,600 <60 MW-4 11-19-97 22.38 - NA ND NO sampled: well is dry MW-4 08-29-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 08-29-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 08-29-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 08-29-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 07-27-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 07-27-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 07-27-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 6.47 15.91 ND 6,600 900 63 200 1,200 63	- 11							100,000	2,000	3,200								
MW-3 02-19-98 22.99 5.24 17.75 ND 80,000 620 1,200 2,500 13,000 <600 3.5 P MW-3 04-23-98 22.99 6.60 16.39 ND 130,000 1,500 2,400 13,000 <600 1.0 P MW-3 07-27-98 22.99 7.00 15.99 ND 140,000 920 1,500 2,400 13,000 <600 1.0 P MW-3 10-14-98 22.99 7.04 15.95 ND 300,000 1,200 2,400 5,700 32,000 970 1.0 P MW-4 06-01-95 20.75 6.65 14.10 ND 16,000 2,800 870 380 2,700								93,000	1,700	2,400								
MW-3 04-23-98 22.99 6.60 16.39 ND 130,000 1,500 2,400 3,500 18,000 <600								60,000	620	1,200							3.5	P
MW-3 07-27-98 22.99 7.00 15.99 ND 140,000 920 1,500 2,400 13,000 <600 1.0 P MW-3 07-27-98 22.99 7.04 15.95 ND 300,000 1,200 2,400 5,700 32,000 970 1.0 P MW-4 03-17-95 20.75 6.65 14.10 ND 16,000 2,800 870 380 2,700 MW-4 06-01-95 20.75 7.25 13.50 ND 16,000 2,800 870 380 2,700 MW-4 08-31-95 20.75 7.75 13.00 ND 9,000 2,000 270 270 1,400 <100 MW-4 11-27-95 20.75 7.87 12.88 ND 3,800 890 130 130 550 MW-4 02-22-96 20.75 7.30 13.46 ND 940 150 82 19 130 <20 MW-4 05-20-96 20.75 7.30 13.45 ND 8,700 1,100 330 120 1,100 <100	- 11		-				. –	130,000	1,500	2,400	3,500							
MW-3 10-14-98 22.99 7.04 15.95 ND 300,000 1,200 2,400 5,700 32,000 970	- 11						•		920	1,500	2,400			••				
MW-4 03-17-95 20.75 6.65 14.10 ND 16,000 1,800 970 310 2,500	и								1,200	2,400	5,700	32,000	970		• • •	• •	1.0	г
MW-4 03-17-95 20.75 6.65 14.10 ND 16,000 1,800 970 310 2,500 MW-4 06-01-95 20.75 7.25 13.50 ND 16,000 2,800 870 380 2,700 MW-4 08-31-96 20.75 7.75 13.00 ND 9,000 2,000 270 270 1,400 <100 MW-4 11-27-95 20.75 7.87 12.88 ND 3,800 890 130 130 550 MW-4 02-22-96 20.75 7.29 13.46 ND 940 150 82 19 130 <20 MW-4 02-22-96 20.75 7.30 13.45 ND 8,700 1,100 330 120 1,100 <100 MW-4 08-26-96 20.75 7.57 13.18 ND 14,000 2,400 510 350 2,100 <100 MW-4 08-26-96 20.75 7.89 12.86 ND 420 55 17 11 62 <3 MW-4 11-20-96 20.75 7.89 12.86 ND 420 55 17 11 62 <3 MW-4 03-24-97 22.38 6.90 15.48 ND 6,800 620 150 81 1,300 <50 MW-4 08-19-97 22.38 MW-4 08-19-97 22.38 NA ND Not sampled: well is dry MW-4 08-19-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 02-19-98 22.38 6.78 15.60 ND 1,800 93 51 29 420 110 MW-4 04-23-98 22.38 6.72 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,200 63 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,200 63 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,200 63 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,200 63 MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,200 63	- 11	MW-3	10-14-96	22.33	7.04	10.50												
MW-4 06-01-95 20.75 7.25 13.50 ND 16,000 2,800 870 380 2,700	l)			00.75	e e =	14.10	ND	16.000	1.800	970	310				• •	• •		
MW-4 06-01-95 20.75 7.75 13.00 ND 9,000 2,000 270 270 1,400 <100	111							•		870	380	2,700						
MW-4 11-27-95 20.75 7.87 12.88 ND 3,800 890 130 130 550	- 11									270	270	1,400	<100			• •		
MW-4 11-27-95 20.75 7.87 12.86 ND 940 150 82 19 130 <20	II.		-							130	130	550						
MW-4 02-22-96 20.75 7.30 13.45 ND 6,700 1,100 330 120 1,100 <100	H										19	130	<20					
MW-4 05-20-96 20.75 7.50 13.18 ND 14,000 2,400 510 350 2,100 <100	- 1										120	1,100	<100			• •	<u>i</u>	
MW-4 08-26-96 20.75 7.57 13.18 ND 13.00 150 11 62 <3	- 11	MW-4									350	2,100	<100		• •	• •	•	
MW-4 11-20-96 20.75 7.89 12.86 ND 6,800 620 150 81 1,300 <50	11	MW-4										62	<3				•	
MW-4 03-24-97 22.38 6.90 15.48 ND 0,000 1,300 240 200 1,600 <60	1	MW-4										1,300	<50				•	
MW-4 05-23-97 22.38 7.80 14.58 ND 9,000 1,300 250 250 250 250 250 250 250 250 250 2		MW-4											<60				•	
MW-4 11-19-97 22.38 - NA ND 3700* 600 93 120 710 <60		MW-4			7.80							.,						
MW-4 11-19-97 22.38 - NA ND 3700 500 500 500 500 500 500 500 500 500	-	MW-4	08-19-97		-					·7 02	120	710	< 6 0			. <u>-</u> .	-	
MW-4 02-19-98 22.38 6.78 15.60 ND 1,500 T00 110 180 1,300 93 0.5 P MW-4 04-23-98 22.38 6.47 15.91 ND 6,500 700 110 180 1,300 93 1.5 P MW-4 07-27-98 22.38 7.22 15.16 ND 10,000 1,400 140 290 1,900 <120 1.5 P MW-4 07-27-98 22.38 7.22 15.16 ND 6,500 900 63 200 1,200 63 1.0 P	H	MW-4	11-19-97														-	
MW-4 04-23-98 22.38 6.47 15.91 ND 6,500 700 110 110 110 110 110 110 110 110 1	- 1	MW-4	02-19-98														- 0.	
MW-4 07-27-98 22.38 7.22 15.10 ND 10,000 63 200 1,200 63 1.0 P	H	MW-4	04-23-98															
	H	MW-4	07-27-98							1							- 1.	O F
WAX-4 10-14-20 5F100 1100 1 W.	- 1	MW-4	10-14-98	22.38	7.60	14.78	ND	6,500	900	• •3	200	,,200	-	•				

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

<u> </u>	O)			47											
Water Level Field Date	Top of Casing	e Depth to Water	Groundwater Groundwater Greation	Floating Product	TPHG LUFT Method	Benzene	Toluene S EPA 8020	Ethylbenzene	Total Xylenes E EPA 8020	표 MTBE (즉 EPA 8020	MTBE 5 EPA 8240	ղներ TRPH Դ/ EPA 418.1	TPHD F LUFT Method	B Dissolved (√) Oxygen	Purged/ Not Purged
									- 400						
5 03-17 -95	20.90	5.51	15.39	ND			•								
5 06-01-95	20.90	6.55	14.35				•								
-5 08-31-95	20.90	6.80	14.10		•			-							
	20.90	7.13	13.77		-										
-5 02-22-96	20.90	5.12	15.78		-			-	•						
	20.90	5.87	15.03	ND		- • -		•							
	20.90	7.15	13.75	ND		.,									
-	20.90	6.88	14.02	ND		•									
•	22.45	7.13	15.32	ND					,						
-	22.45	7.42	15.03	ND											
-	22.45	7.58	14.87	ND											
	22.45	7.58	14.87	ND					•						
-		4.65	17.80	ND	40,000	•								1.5	Р
-	22.45	6.25	16.20	ND	•			-	,						P
	22.45	6.71	15.74	ND	•										Р
		7.19	15.26	ND	33,000	7,400	1,900	550	1,700	<300		••		1.4	•
/-6 03-17-95	22.08	6.66	15.42	ND				,							
	22.08	7.60	14.48	ND	•				-						
		7.92	14.16	ND	26,000			•							
		8.21	13.87	ND	6,700		1								
		6.21	15.87	ND	17,000				•						
		7.07	15.01	ND	16,000			•							
		7.93	14.15	ND	23,000										
		8.02	14.06	ND	11,000	3,300								-	
		7.95	14.82	МĎ	9,700	1,900									
		8.17	14.60	ND	16,000	4,300		1,400	180	<300				•	
			NA					•							
		-	NA	ND N	lot sampled	i; well is dr	У								
		5.78		ND	2,600	540	8								, F
		-		ND	7,600	1,300	13								
				ND	15,000	3,600	<25	1,100					•		
				ND	8,700	2,400	<20	220	36	<120		• •		- 2.0	, ,
	5 03-17-95 5 06-01-95 5 08-31-95 5 11-27-95 5 02-22-96 6 05-20-96 -5 08-26-96 -5 11-20-96 -5 03-24-97 -5 05-23-97 -5 02-19-98 -5 04-23-98 -6 03-17-95 -6 06-01-95 -6 08-31-95 -6 08-31-95 -6 08-31-95 -6 08-31-95 -6 08-22-96 -6 08-22-96 -6 08-22-96 -7 08-23-97 -8 08-28-96 -9 08-28-96 -9 08-28-97 -9 08-28-97 -9 08-28-97 -9 08-28-97 -9 08-28-98 -9 08-28-98	fi-MSL 5 03-17-95 20.90 6 06-01-95 20.90 5 08-31-95 20.90 5 11-27-95 20.90 6 02-22-96 20.90 6 05-20-96 20.90 5 11-20-96 20.90 5 08-26-96 20.90 5 08-26-97 22.45 5 05-23-97 22.45 5 05-23-97 22.45 5 02-19-98 22.45 6 03-17-95 22.45 6 03-17-95 22.45 6 03-17-95 22.08 6 06-01-95 22.08 6 06-01-96 22.08 6 05-20-96 22.08 6 05-20-96 22.08 6 05-20-96 22.08 6 05-20-96 22.08 6 05-20-96 22.08 6 05-20-96 22.08 7 05-23-97 22.77 7 06 08-19-97 22.77 7 06 08-19-97 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 02-19-98 22.77 7 06 04-23-98 22.77 7 06 04-23-98 22.77 7 06 04-23-98 22.77	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##									Think Feet Think Think

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	다. Groundwater S Elevation F	Floating Product	TPHG	Benzene E EPA 8020	Toluene E EPA 8020	Ethylbenzene	Total Xylenes	E EPA 8020	T MTBE 6 EPA 8240	π TRPH ற EPA 418.1	TPHD F LUFT Method	a Dissolved	Purged/ Not Purged
		10-111-02					.0.5	<0.5	<0.5	<0.5						
MW-7	03-17-95	22.89	7.68	15.21	ND	<50	<0.5 <0.5	<0.5	<0.5	<0.5						
MW-7	06-01-95	22.89	8.40	14.49	ND	<50 <50	<0.5 <0.5	<0.5	0.6	<0.5	<3		••			
MW-7	08-31-95	22.89	9.09	13.80	. ND	<50	<0.5	<0.5	0.9	<0.5				- •		
MW-7	11-27-95	22.89	9.15	13.74	ND	110	1.4.		3.8	3.0	<3		• •			
MW-7	02-22-96	22.89	7.44	15.45	ND ND	l IV			ly, during the	e first quarte	er					
MW-7	05-20-96	22.89	8.47	14.42	ND NO	t sampled.	Mail South	decime bel	ly, during the	e first quart	91					
MW-7	08-26-96	22.89	8.81	14.08	ND NO	t sampled.	Man south	ded annual	ly, during th	e first quart	er					
MW-7	11-20-96	22.89	9.17	13.72			<0.5	<0.5	<0.5	<0.5	<3					
MW-7	03-24-97	22.89	8.31	14.58	ND	<50	C.U>		ly, during th							
MW-7	05-23-97	22.89	9.26	13.63					iy, during a	O 111 Ot 4000						
MW-7	08-19-97	22.89	-	NA	ND No	t sampled:	Well is ury	<i>!</i>								
MW-7	11-19-97	22.89	-	NA		t sampled:		, <0.5	<0.5	<0.5	<3					
MW-7	02-19-98	22.89	6.13	16.76	ND	<50	<0.5	<0.5	<0.5	<0.5	<3				0.5	F
MW-7	04-23-98	22.89	7.44	15.45	ND	<50	<0.5	*	<0.5	<0.5	<3				1.5	F
MW-7	07-27-98	22.69	8.75	14.14	ND	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<3				1.5	ı
MW-7	10-14-98	22.89	9.22	13.67	ND	<50	<0.5	<0.5	< U.5	40.5	~•					
Ì	•		* 4 4	14,83	ND	5,400	<5	<5	35	<5						
MW-8	03-17-95	20.97	6.14	14.63	ND	2,600	<2.5	<2.5	15	<2.5		• •		• •		
MW-8	06-01-95	20.97	6.50	13.62	ND	1,400	<3	<3	5	<3	520		900	• •		
MW-8	08-31-95	20.97	7.35	13.37	ND	620	<0.5	<0.5	<0.5	0.5		560	900	510*		
MW-8	11-27-95	20.97	7.60 5.35	15.62	ND	5.800	<5	<5	28	<5	110	• •	1,900	6,800*		
8-WM	02-22-96	20.97	5.92	15.05	ND	6,100	<5	<5	26	<5	240		••			
MW-8	05-20-96	20.97 20.97	7.08	13.89	ND	970	<1	. <1	3	<1	710					
MW-8	08-26-96	20.97	7.01	13.96	ND	3,900	<2.5	<2.5	12	<2.5	930	• -				
8-WM	11-20-96	20.97	7.33		ND	1,400	<10	<10	<10	12	1,300					
MW-8	03-24-97	20.89	7.55		ND	730	<5	<5	<5	<5	630					
MW-8	05-23-97		7.55 7.87		ND	<500		· <5	<5	<5	290					
8-WM	08-19-97	20.89	7.87		ND	<200		<2	<2	<2			· ••	-	•	
MW-8	11-19-97	20.89 20.89	4.46		ND	2,000			9	<2			· ••	. •		_
MW-8	02-19-98		6.35		ND	4,500			<5	11	590			-	- 0.	5
MW-8	04-23-98	20.89	7.43			lot sample										
MW-8	07-27-98 10-14-98	20.89 20.89	7. 4 3 7.79			lot sample										

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

Well Designation	Water Level Field Date	Top of Casing SElevation	Depth to Water	Groundwater	Floating Product Thickness	TPHG LUFT Method	Benzene E EPA 8020	Toluene E EPA 8020	Ethylbenzene E EPA 8020	Total Xylenes E EPA 8020	# MTBE 5 EPA 8020	MTBE 15 EPA 8240	TRPH EPA 418.1	TPHD	∃ Dissolved S Oxygen	Purged/ Not Purged
		THRIOL	1001						٥٠	<0.5						
MW-9	03-17-95	20.89	6.94	13.95	ND	<50	<0.5	<0.5	<0.5 <0.5	<0.5						
MW-9	06-01-95	20.89	8.15	12.74	ND	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<3					
MW-9	08-31-95	20.89	8.10	12.79	ND	<50	<0.5	<0.5	<0.5 <0.5	<0.5						
MW-9	11-27-95	20.89	8.38	12.51	ND .	<50	<0.5	<0.5		<0.5	<3					
MW-9	02-22-96	20.89	7.36	13.53	ND	<50	<0.5	<0.5	<0.5			ouarters				
MW-9	05-20-96	20.89	7.81	13.08		t sampled:	well samp	led semi-a	nnually, our	ing the first <0.5	<3	900010.0				
MW-9	08-26-96	20.89	8.00	12.69	ND	<50	<0.5	<0.5	<0.5			quarters				
MW-9	11-20-96	20.89	7.06	13.83			well samp	Hed semi-8	nnually, dur	ing the first <0.5	<3	4000.000				
MW-9	03-24-97	22.26	7.74	14.52	ND	<50	<0.5	<0.5	<0.5			quarters				
MW-9	05-23-97	22.26	8.28	13.98			well samp	Hed semi-	innuality, dur	ring the first <0.5	<3	4400.00				
MW-9	08-19-97	22.26	8.32	13.94	ND	<50	<0.5	<0.5	<0.5	cu.o cina the firet		quarters				
MW-9	11-19-97	22.26	8.32	13.94			well samp	yed semi-	ινιπαευτή, υπι <0.5	ring the first <0.5	<3			٠.		
MW-9	02-19-98	22.26	7,11	15.15	ND	<50	<0.5	<0.5	<u.s< td=""><td>cina tha first</td><td></td><td>quarters</td><td></td><td></td><td></td><td></td></u.s<>	cina tha first		quarters				
MW-9	04-23-98	22.26	8.18	14.08		ot sampled:	: well sam	Hed semi-	innually, qu	ring the first <0.5	<3	40001010			3.6	i P
MW-9	07-27-98	22.26	7.97	14.29	ND	<50	<0.5	<0.5	<0.5	<0.5	<3			<u>.</u> -	2.5	
MW-9	10-14-98	22.26	8.29	13.97	ND	<50	<0.5	<0.5	<0.5	C.U>	43					
			6.26	14.86	ND	<50	<0.5	<0.5	<0.5	<0.5	• -					
MW-10	03-17-95	21.12	7.63	13.49	ND	<50	<0.5	<0.5	<0.5	<0.5			• •	- •	•	
MW-10	06-01-95	21.12		12.95	ND	<50	<0.5	< 0.5	<0.5	<0.5	<3		- •			
MW-10	08-31-95	21.12	8.17	12.95	ND	<50	<0.5	<0.5	<0.5	<0.5			• •		•	
MW-10	11-27-95	21.12	8.38	**	ND	<50	<0.5	<0.5	<0.5	<0.5	<3				-	
MW-10	02-22-96	21.12	5.41	15.71	ND N	at complex			annually, du	iring the firs	t and thire	quarters				
MW-10	05-20-96	21.12	6.78	14.34	ND N	العادية المارة المار 1909 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908 - 1908		<0.5	<0.5	<0.5	<3				-	
MW-10	08-26-96	21.12	8.00	13.12	NU ND N	vije. Volomno tol	o.∪ H-wall eam	mae bami	annually, du	uring the firs	and thire	d quarters				
MW-10	11-20 -96	21.12	7.81	13.31		امر عمد المحددات 50×		<0.5	<0.5	<0.5	<3				•	
MW-10	03-24-97	21.33	7.87	13.46	ND	COU Seinman del	e	unlari sami	annually di	uring the firs	and thire	d quarters				
MW-10		21.33	8.33	13.00		otsample: 50>		(0.5	<0.5	<0.5	<3				-	
MW-10		21.33	8.39		ND	<50		<0.5	<0.5	<0.5					-	
MW-10		21.33	8.39		ND	<50 <50		<0.5	<0.5	<0.5						
MW-10		21.33	4.65		ND	<50			<0.5	<0.5						
MW-10		21.33	6.28		ND	<50 <50			<0.5	<0.5			-		- 3.	
MW-10	07-27-98	21.33	7.97		ND				<0.5	<0.5					- 1.	.0
II MW-10	10-14-98	21.33	8.41	12.92	ND	<50	<0.5	<u,5< td=""><td>40,0</td><td>~0.0</td><td></td><td>-</td><td></td><td></td><td></td><td></td></u,5<>	40,0	~0.0		-				

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

Well Designation	Water Level Field Date	Top of Casing	Depth to Water	다 Groundwater S Elevation	Floating Product of Thickness	TPHG F LUFT Method	E Benzene	Toluene EPA 8020	Ethylbenzene	Total Xylenes	MTBE © EPA 8020	MTBE S EPA 8240	тврн Ф ЕРА 418.1	TPHD © LUFT Method	B Dissolved	Purged/ Not Purged
				45.44	ND	100	<0.5	<0.5	<0.5	<0.5						
MW-11	03-17-95	22.38	6.94	15.44 14.48	ND	210	<0.5	<0.5	0.9	0.7						
MW-11	06-01-95	22.38	7.90	14,40	ND	680	<0.5	<0.5	4	1.8	<3	• •		••		
MW-11	08-31-95	22.38	8.18	13.90	ND	340	<0.5	<0.5	2.2	1.6	• •					
MW-11	11-27-95	22.38	8.48	15,75	NO	150	<0.5	< 0.5	<0.8	0.8	_<3	• •	• •	• • •		
MW-11	02-22-96	22.38	6.63		NO B	iot sampled:	well sam	pled annual	ly, during th	e first quart	81					
MW-11	05-20-96	22.38	7.25	15.13	NO F	lot sampled:	well sam	pled annual	lly, during th	e first quart	er					
MW-11	08-26-96	22.38	8.22	14.16	NO I	vot sampled:	well sam	pled annua	lly, during th	e first quart	er					
MW-11	11-20-96	22.38	8.37	14.01	NIC)	63	<0.5	<0.5	<0.5	<0.5	<.5					
MW-11	03-24-97	20.97	8.15	12.82	NO I	Not sampled:	well sam	oled annua	ily, during th	e first quart	er					
MW-11	05-23-97	20.97	8.48	12.49	NO I	Not sampled	well sam	pled annua	ily, during th	ne first quart	er					
MW-11	08-19-97	20.97	8.67	12.30	ND I	Not sampled	wall san	oled annua	lly, during th	ne first quart	er					
MW-11	11-19-97	20.97	8.67	12.30	ND:	<50	<0.5	1.6	<0.5	1.8	7				•	
MW-11	02-1 9- 98	20.97	6.25	14.72	ND	Not sampled	· wall san	noted annua	lly, during th	ne first quar	ter					
MW-11	04-23-98	20.97	7.23	13.74	ND	Not sampled	· well san	noled annua	lly, during th	he first quar	ter					
MW-11	07-27-98	20.97	8.05	12.92	ND	Not sampled	· well san	noted annua	dly, during t	he first quar	ter					
MW-11	10-14-98	20.97	8.58	12.39	NO	Tot Stampion			•							
			= 00	15.68	ND	<50	<0.5	<0.5	<0.5	<0.5				-	-	
∥ MW-12	03-17-95	22.77	7.09	14.37	ND.	Not sampled	i: well sar	npled semi-	annually, du	iring the firs	t and third	d quarters	ı			
MW-12	06-01-95	22.77	8.40	14.37	NO	∠6 0	-0.5	<0.5	<0.5	<0.5	<2	• •		-	-	
MW-12	08-31-95	22.77	8.55	13.82	ND	Not sampled	t: well sar	noted semi-	annualty, du	uring the firs	t and third	d quarters	i			
MW-12	11-27-95	22.77	8.95	15.96	ND	<50	<0.5	<0.5	<0.5	<0.5	<3		• • •	•	-	
MW-12	02-22-96	22.77	6.81	15.21	ND	Not cample	t: well se	noled annu	atly, during I	the first qua	rter					
MW-12	05-20-96	22.77	7.56		NO	Not semple:	d well sai	mpled annu	ally, during 1	the first qua	rter					
MW-12	08-26-96	22.77	8.63		מא	Not sample	d: well sa	mpled annu	ally, during	the first qua	ner					
MW-12	11-20-96	22.77	8.38		MD	<50	<0.5	5 <0.5	<0.5	<u.d< td=""><td><.2</td><td>3 -</td><td></td><td></td><td>-</td><td></td></u.d<>	<.2	3 -			-	
MW-12	03-24-97	20.11	8.75		ND	Not sample	d: well sa	mpled annu	ally, during	the first qua	rter					
MW-12	05-23-97	20.11	8.92 9.20		MD	Not sample	d: well sa	mpled annu	ally, during	the first qua	urter					
MW-12		20.11			חמ	Not sample	d: well sa	mpled annu	ally, during	the first qua	uter					
MW-12		20.11	9.20		NE	250) <0.	5 <0.5	<0.5	<0.5	<:	3 -		•	• •	
MW-12		20.11	6.28		NC	Not sample	d: well sa	moled annu	ally, during	the first qua	arter					
MW-12		20.11	7,52		NI	Not sample	id: well sa	impled anni	ually, during	the first qua	arter					
MW-12		20.11	8.52	-	NIC	Not sample	d: well se	impled anni	ually, during	the first qua	arter					
MW-12	10-14-98	20.11	9.06	11.05	141.	, , tut aminhe										

Table 1
Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present***

Well Designation	Water Level Field Date	Top of Casing	a Depth to Water	Groundwater	Floating Product	TPHG S LUFT Method	Benzene E EPA 8020	Toluene E EPA 8020	Ethylbenzene	Total Xylenes EPA 8020	E MTBE Ç EPA 8020	MTBE	TRPH P EPA 418.1	TPHD	∃ Dissolved S Oxygen	Purged/ Not Purged
		IL-MISE	100.						<0.5	<0.5						,
 MW-13	03-17-95	22.45	6.91	15.54	ND	· <50	<0.5	<0.5			ar					ļ
MW-13	06-01-95	22,45	7.72	14.73	ND No	t sampled:	qmas liew	led annual	y, during tr	e first quarte	71 31					,
MW-13	08-31-95	22.45	7.58	14.87	ND No	t sampled:	well samp	led annual	y, during it	ne first quarte	71 2 7					
MW-13	11-27-95	22.45	7.98	14.47			well samp	led annuel	y, auring 11	ne first quarte <0.5	ກ <3					
MW-13	02-22-96	22.45	6.71	15.74	ND	<50	<0.5	<0.5	<0.5		-					
MW-13	05-20-96	22.45	6.98	15.47	ND No	t sampled:	well samp	led annual	ly, during 1	ne first quart	⊅ 1					
MW-13	08-26-96	22.45	7.85	14.60	ND No	t sampled:	well samp	led annual	iy, dunng ti	he first quart	## **					
MW-13	11-20-96	22.45	7.76	14.69	ND No	t sampled:		iled annual	ly, during t	he first quart	er <3	_				
MW-13	03-24-97	20.75	7.85	12.90	ND	<50	<0.5	<0.5	<0.5	<0.5						
MW-13	05-23-97	20.75	8.16	12.59	ND No	ot sampled	: well samt	yled annua	lly, during t	he first quart	er					
MW-13	08-19-97	20.75	8.40	12.35	NE NO	at sampled	: well sams	oled annua	lly, during t	ne first quan	er					
19	11-19-97	20.75	8.40	12.35	ND No	ot sampled	: well samp	oled annua	lly, during t	he first quart	er				_	
MW-13	02-19-98	20.75	6.44	14.31	ND	<50	<0.5	<0.5	<0.5	<0.5	<3			-		
MW-13		20.75	6.80	13,95	ND N	ot sampled	: well sam	oled annua	lly, during 1	the first quar	er .				- 1.5	5 P
MW-13	04-23-98	20.75	7.52	13.23	ND	<50	<0.5	<0.5	<0.5	<0.5	<3				- 2.0	-
MW-13	07-27-98	20.75	8.15	12.60	ND	<50	<0.5	<0.5	<0.5	<0.5	<3	• •		-	- 2,1	, ,
MW-13	10- 14-98	20.75	0.13	12.00												
1 .		00.00	8.17	14.82	ND	<50	<0.5	<0.5	<0.5	<0.5			• •	•	-	
MW-14	03-17-95	22.99 22.99	8.57	14.42	NO N	ot sampled	t well sam	pied annus	lly, during	the first quar	ter					
MW-14	06-01-95		9.05	13.94	ND N	ot sampled	t: well sam	pied annua	My, during	the first quar	ter					
MW-14	08-31-95	22.99	9.19	13.80	NO N	ot sample	i: well sam	pled annui	ally, during	the first qual	ter					
MW-14	11-27-95	22.99	6.52	16.47	ND	<50	<0.5	<0.5	<0.5	<0.5	<3	-		•	•	
MW-14	02-22-96	22.99	7.88	15.11	NO N	lot samole	rt: well sam	pled annua	ally, during	the first qual	ter					
MW-14	05-20-96	22.99	8.83	14.16	NO N	lot sample	d: well sam	pled annu	ally, during	the first qua	ter					
MW-14	08-26-96	22.99	6.65 8.95	14.04	ND N	int sample	d: well sam	pled annu	ally, during	the first qua	rter					
MW-14	11-20-96	22.99	8.98	11.92	ND	<50	<0.5	<0.5	<0.5	<0.5	<3	-			-	
MW-14	03-24-97	20.90	9.61	11.29	NO N	Int sample	d: well за л	npled annu	ally, during	the first qua	rter					
MW-14	05-23-97	20.90			ND N	lot samola	d: well san	noled annu	ally, during	the first qua	ποι					
MW-14	08-19-97	20.90	9.80 9.80		ND .	•or sanp.o <50		<0.5	0.6	3	<3	3				
MW-14		20.90			ND	<50	-		<0.5	<0.5				-		ا خي
MW-14		20.90	6.27 7.75		ND	<50	-		<0.5	<0.5				-).5 I
MW-14		20.90	7.75 9.24		ND	<50	=		<0.5	<0.5				•		.0
MW-14		20.90			ND	<50	-		<0.5	<0.5	<	3 •		•	1	1.0
MW-14	10-14-98	20.90	9.73	11.17	NU	~00	0/0							<u>:</u> -		

Table 1 **Groundwater Elevation and Analytical Data** Petroleum Hydrocarbons and Their Constituents 1995 - Present***

Welt Designation	Water Level Field Date	과 Top of Casing S Elevation	e Depth to Water	Groundwater	Floating Product	TPHG © UPT Method	Benzene E EPA 8020	Toluene © EPA 8020	Ethylberzene © EPA 8020	Total Xylenes	MTBE P EPA 8020	E EPA 8240	тврн р ЕРА 418.1	TPHD 5 LUFT Method	Dissolved	Purged/ Not Purged
MW-15	03-17-95	19.19	5.21	13.98	ND	<50	<0.5	<0.5	<0.5	<0.5						ŀ
MW-15	06-01-95	19.19	5.84	13.35	ND No	t sampled:	well samp	iled semi-a	nnually, duri	ing the first	and third	quarters				11
MW-15	08-31-95	19.19	6.18	13.01	ND	-50	<0.5	<0.5	<0.5	<0.5	<3		• •	• •		i
MW-15	11-27-95	19.19	6.42	12.77	ND No	t sampled:	well samp	led semi-a	nnually, duri	ing the first	and third	quarters	•			l l
	02-22-96	19.19	4.84	14.35	MD	<50	< 0.5	< 0.5	<0.5	<0.5	12	• • •				1
MW-15	05-20-96	19.19	5.31	13.88	ND No	ot sampled:	well samp	aled semi-a	innually, dur	ing the first	and third	quarters				
MW-15	08-26-96	19.19	6.05	13.14	NO	<50	< 0.5	<0.5	< 0.5	< 0.5	8					Į.
MW-15 MW-15	11-20-96	19.19	5.46	13.73	ND N	ot sampled:	well samp	oled semi-e	annually, dur	ring the first	and third	quarters				
MW-15	03-24-97	22.08	6.00	16.08	ND	<50	<0.5	<0.5	<0.5	<0.5	15					į.
MW-15	05-23-97	22.08	6.25	15.83	ND N	ot sampled:	well same	pled semi-a	annually, dur	ring the first	and third	quarters				
MW-15	08-19-97	22.08	6.34	15.74	NΩ	99*	<0.5	<0.5	<0.5	0.7	6		••		٠	
MW-15	11-19-97	22.08	6.34	15.74	ND N	ot sampled:	well sam	pied semi-ı	annually, dur	ring the first	and third	quarters				- 1
MW-15	02-19-98	22.08	4.66	17.42	NΠ	<50	<0.5	<0.5	<0.5	<0.5	48					-
MW-15	04-23-98	22.08	5.18	16.90	ND N	ot sampled:	mae ilew :	pled semi-	ennually, du	ring the first	and third	quarters			1.0	Р
MW-15	07-27-98	22.08	6.02	16.06	ND	<50	<0.5	<0.5	<0.5	<0.5	50			• •	1.5	
MW-15	10-14-98	22.08	6.26		ND	<50	<0.5	<0.5	<0.5	<0.5	27	••		• •	1,3	r

ft-M\$L: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L. micrograms per liter mg/L: milligrams per liter

MTBE: Methyl tert-butyl ether

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR: not reported; data not available or not measurable

ND: none detected

DRY: dry well; groundwater was not detected

- - ; not analyzed

* Sample contains a higher boiling point hydrocarbon mixture quantitated as gasoline. The chromatogram did not match the typical gasoline fingerprint.

**: [corrected elevation (Z')] = Z + (h * 0.73) where: Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water

***: For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 601, San Leandro, California, (EMCON, March 14, 1996).

Table 2 Groundwater Flow Direction and Gradient

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
03/17/95	West-Southwest	0.006
06/01/95	Southwest	0.003
08/31/95	South-Southwest	0.005
11/27/95	South-Southwest	0.004
02/22/96	Northwest	0.007
05/20/96	Southwest	0.007
08/26/96	South-Southwest	0.004
11/20/96	South-Southeast	0.004
03/24/97	Southeast	0.013
05/23/97	Southeast	0.014
08/19/97	Southeast	0.04
11/19/97	Southeast	0.016
02/19/98	East	Variable
04/23/98	Variable	Variable
07/27/98	Southeast	0.05
10/14/98	Southeast	0.02

Table 3 Historical Groundwater Analytical Data Metals* 1995 - Present**

ARCO Service Station 601 712 Lewelling Boulevard, San Leandro, California

Cadmium EPA 6010 Chromium EPA 6010 Lead EPA 7421			Zinc 2 EPA 6010
μ g/L μg/L μg/L	μ g/L	μg/L μg/L	μg/L
<5 20 20	MW-1 03-17-95 <5	20 <40	60
<5 20 22	MW-1 06-01-95 <5	22 70	100
sampled: well contained floating product	MW-1 08-31-95 Not sampled: well con		
sampled: well contained floating product	MW-1 11-27-95 Not sampled: well con		
sampled: well contained floating product	MW-1 03-14-96 Not sampled: well con		
0.006 < 0.01 < 0.005	MW-1 05-21-96 0.006	.005 <0.02	<0.02
	MW-1 08-26-96		
	MW-1 11-20-96		
	MW-1 03-24-97		
analyzed: well MW-8 was sampled for additional p	MW-1 05-23-97 Not analyzed: well MV	ional parameters in lieu of	well MW-1
	MW-1 08-19-97		
	MW-1 11-19-97		
<0.01 <0.01 <0.05	MW-1 02-19-98 <0.01	0.05 ~ <0.02 -	<0.02
••	MW-1 04-23-98		• •
	MW-1 07-27-98 · ·	··	
	MW-1 10-14-98		
analyzed; well MW-1 was sampled for additional p	MW-8 03-17-95 Not analyzed: well MV	tional parameters in lieu of	well MW-8
analyzed: well MW-1 was sampled for additional p	MW-8 06-01-95 Not analyzed: well MV	tional parameters in lieu of	Well MW-8
<5 40 16			90
<5 130 77	MW-8 11-27-95 <5	77 170	280
<5 30 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	6 0
analyzed: well MW-1 was sampled for additional p	MW-8 05-21-96 Not analyzed: well MV	tional parameters in lieu of	weti MW-8
	MW-8 08-26-96		
	MW-8 11-20-96		
·- · · · · · · · · · · · · · · · · ·	MW-8 03-24-97		
<0.005 <0.01 <0.005	MW-8 05-23-97 <0.005	.005 <0.02	<0.02
	MW-8 08-19-97	••	• •
	MW-8 02-19-98	••	
	MW-8 04-23-98	•-	
	MW-8 04-23-98 MW-8 07-27-98		

EPA: United States Environmental Protection Agency

mg/L: micrograms per liter

^{--:} not analyzed

^{*:} Historically samples were analyzed for total metals. Since March 14, 1996, the samples were filtered and analyzed for dissolved metals

^{**:} For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 601, San Leandro, California, (EMCON, March 14, 1996).

Table 4
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1995 - Present*

				Volatile Or by EPA Method	ganic Comp 601/8010 o						e Organic Coi Method 3520	-	
Well Designation	Water Sample FieldDate	Methylene Chloride	1,2-Dichloro- cthane	i, l-Dichloro- ethane	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalène	2-Methyl- naphthalene	Bis (2-ethylhexyl) Phthalate	Prenol	2.4-Di-methyl- phenol
		μ g /L	μg/L	μ g/L	μg/L	μg/L	μg/L	μg/L	μ <u>ε</u> /L	μg/L	μg/L	μg/L	μ g/ L.
MW-1	03-17-95								1300	730	<50	ND	150
MW-1	06-01-95						••		2200	1700	<100	240	<100
MW-I	08-31-95	Not sampled: w	eli contained	floating product	;								
MW-1	11-27-95	Not sampled: w	vell contained	floating product	ı		•			•			
MW-I	03-14-96	Not sampled: w	vell contained	floating product	!								
MW-1	05-21-96								1200	860	<50	<50	<50
MW-I	08-26-96								2300	1800	<500	<500	<1000
MW-1	11-20-96				• •				590	250	91	<50^	<100^
MW-I	03-24-97					• •		••	730	610	<50^	<50^	<100^
MW-1	05-23-97	Not analyzed: v	well MW-8 w	as sampled for a	dditional par	ameters in lie	u of well MW-	-1					
MW-1	08-19-97					••		• •	1300	790	<50^	<50^	<100^
MW-1	11-19-97		••	• •					<5	<5	5	<5	<10
MW-1	02-19-98			••	••				870	330	<50	<50	<100
MW-L	04-23-98	Not analyzed											
MW-I	07-27-98	Not analyzed											
MW-L	10-14-98	Not analyzed											

Table 4
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1995 - Present*

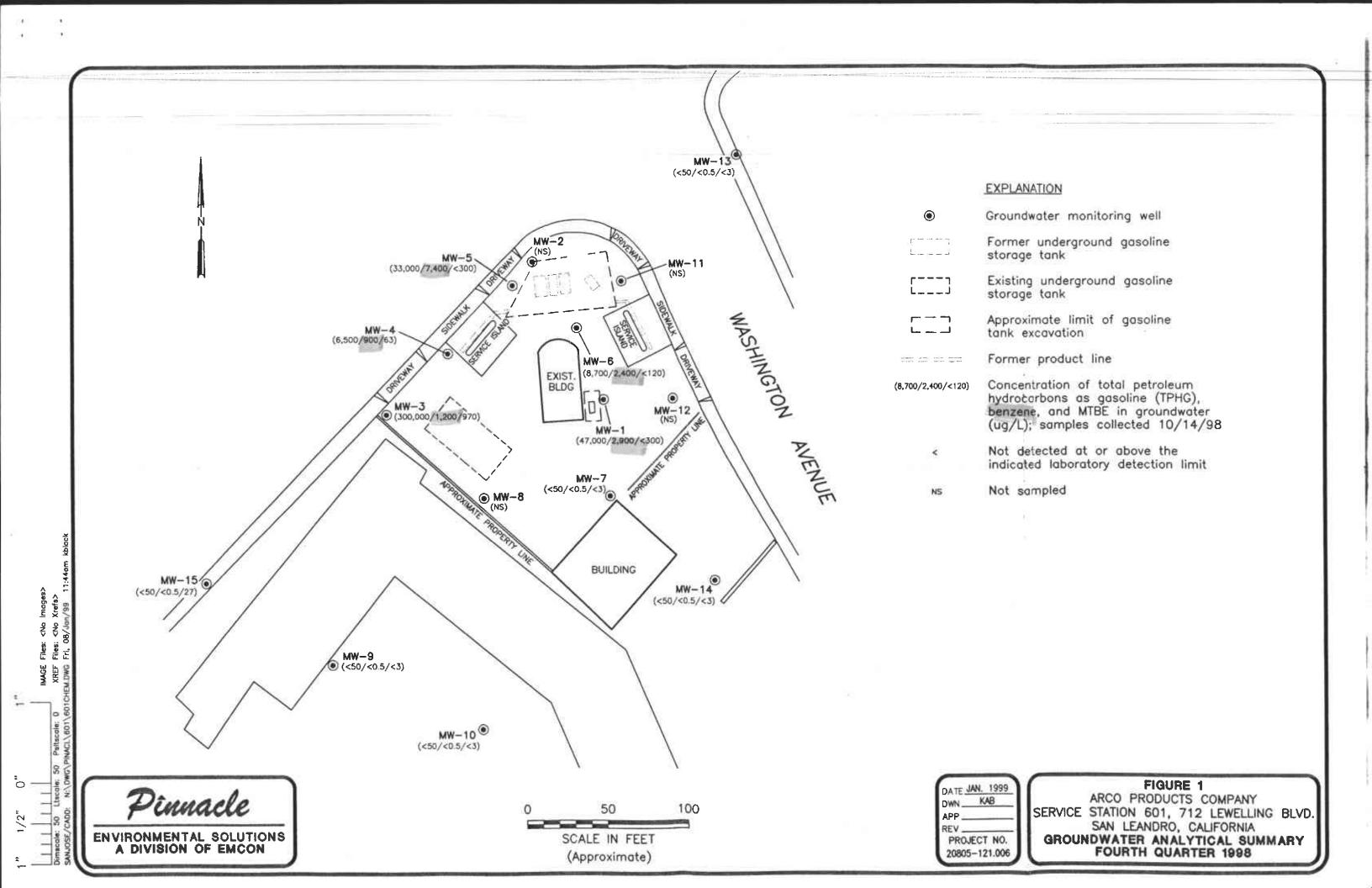
-				Volatile by EPA Met	Organic Co hod 601/801	_)		_		e Organic Cor Method 3520		
Well Designation	Water Sample FieldDate	Methylene	n 1,2-Dichloro- F ethane	हें 1,1-Dichloro ने ethane	कि प्रकारहार	T/84 Toluene	र्के Ethylbenzene	ર્લ્ક Total Xylenes ા	英 Naphthalene ア	2-Methyl- r naphthalene	Bis (2-ethylhexyl) Phihalate	Tepo Jvsu	2,4 Di-methyl-
NAME OF	02.12.06	Nanadanada	U MOV 1	was sampled for	or additional	nerometers is	lieu of well M	w.s		······································			
MW-8 MW-8	03-17-95 06-01-95	Not analyzed:	well MW.1	was sampled to	n additional	parameters in	lies of well M	W-8					
MW-8	08-31-95	Not analyzed.	. WGH 191777 1	waa sampies i	-	,			62	8	<5	<5	ব
MW-8	11-27-95				_					చ	<5	ধ	ర
MW-8	03-14-96				-				400	55	<50	<50	<50
MW-8	05-21-96		well MW.I	was sampled fo	or additional	narameters in	licu of well M	W-8					
MW-8	03-21-96	Not analyzed	· well MW-1	was sampled for	or additional	parameters in	lieu of well M	W-8					
MW-8	11-20-96	Not analyzed	well MW-1	was sampled for	or additional	parameters in	lieu of well M	W-8					
MW-8	03-24-97						licu of well M				•		
MW-8	05-23-97					: .			- 26	<5	<5	<5	<10
MW-8	08-19-97	Not analyzed	: well MW-L	was sampled f	or additional	parameters is	i lieu of well M	W-8					
MW-8	11-19-97						ı licu of well M						
MW-8	02-19-98	Not analyzed	: well MW-I	was sampled f	or additional	parameters is	licu of well M	W-8					
MW-8	04-23-98	Not analyzed		•					•				
		Nice confessed											
MW-8	07-27-98	Not analyzed											

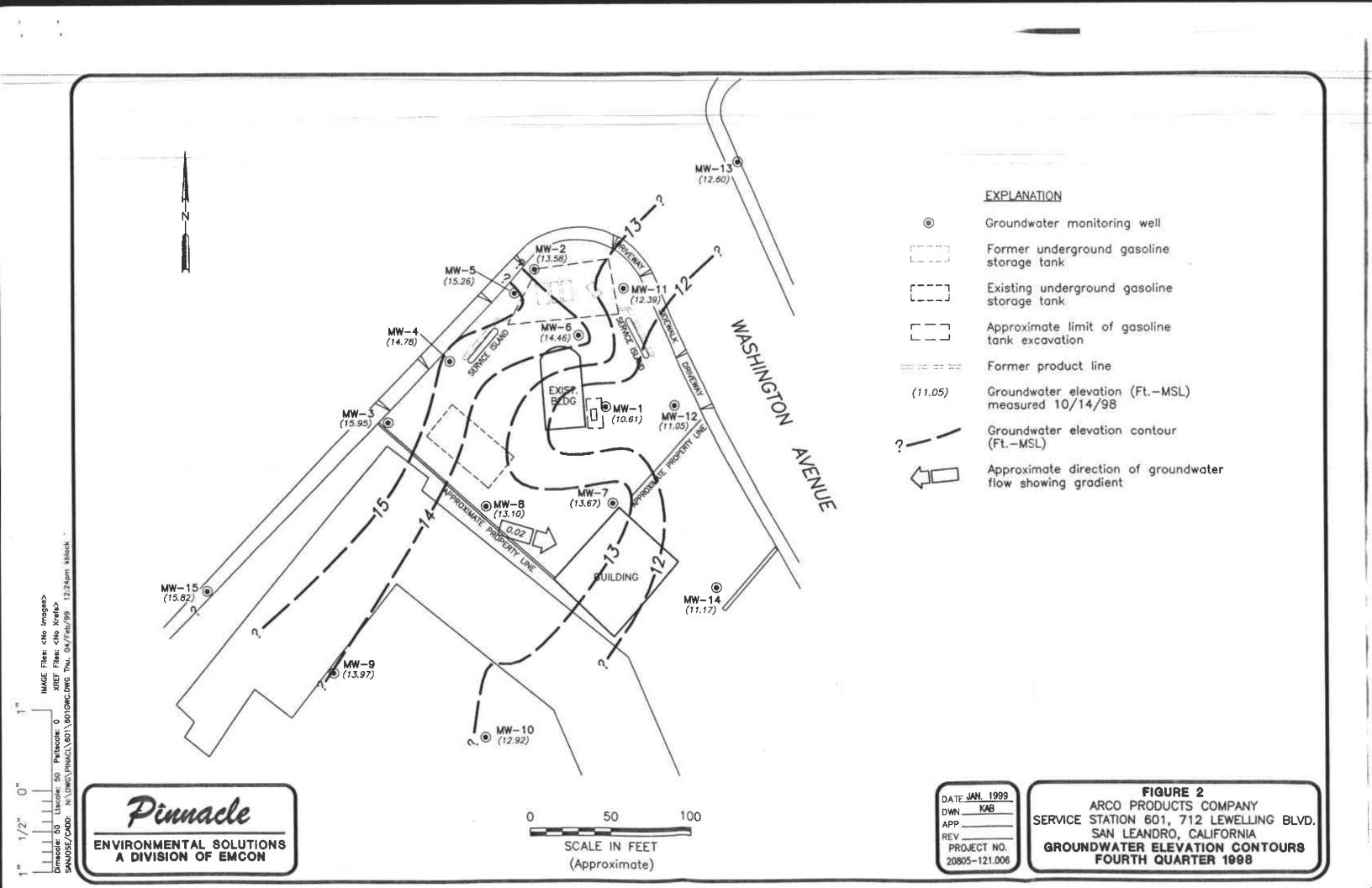
EPA: United Statest Environmental Protection Agency

μg/L: micrograms per liter

^{- - :} not analyzed

^{&#}x27;r method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference


^{*:} For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 601. San Leandro, California, (EMCON, March 14, 1996).


^{**:} The sample was analyzed initially on 8/22/97, within the recommended holding time, and the surrogates were below normal CAS control limits.

The sample was reextracted on 9/2/97, 7 days past the recommedaded holding time, and the QA/QC results for reanalysis are within CAS acceptance criteria.

Table 5 Approximate Cumulative Floating Product Recovered

Well Desig- nation	Date	Floating Product Recovered gallons
MW-1	1991	3.43
MW-1	1992	0.02
MW-1	1993	0.00
MW-1	1994	0.00
MW-1	1995	0.00
- MW-1	1996	0.00
MW-1	1997	0.00
MW-1	1998	0.00
	1991 to 1998 Total:	3.45

APPENDIX A SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to EMCON's San Jose or Sacramento office location for temporary storage. EMCON arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A Teflon bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory.

Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an EMCON employee. A sample/refrigerator log was kept to record the date and time that samples were placed into and removed from the refrigerator.

Samples were transferred from EMCON to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from EMCON to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document sampling activities in the field
- Labels to identify individual samples
- Chain-of-custody record sheets for documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- · Client's name
- Location
- Name of sampler
- · Date and time
- · Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- Calculated and actual purge volumes
- Purging equipment used
- Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

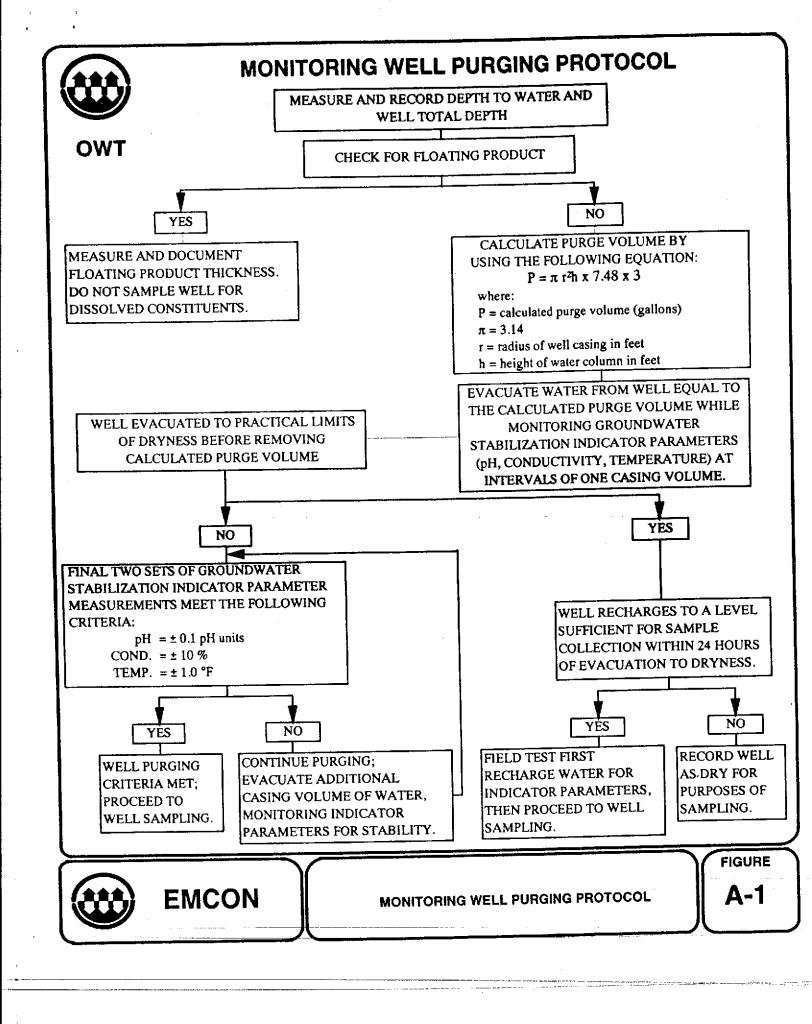
Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record


The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to EMCON with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

- · Date scheduled
- Site-specific instructions
- Specific analytical parameters

- Well number
- Well specifications (expected total depth, depth of water, and product thickness)

WATER SAMPLE FIELD DATA SHEET SAMPLE ID: PROJECT NO: CLIENT NAME: PURGED BY : LOCATION: SAMPLED BY: Leachate Other ____ Groundwater Surface Water ____ TYPE: 4.5 6 Other CASING DIAMETER (inches): 2______3___4____ VOLUME IN CASING (gal.): CASING ELEVATION (feet/MSL): CALCULATED PURGE (gal.): DEPTH OF WELL (feet): ACTUAL PURGE VOL. (gal.): ___ DEPTH OF WATER (feet) : END PURGE: DATE PURGED: SAMPLING TIME: DATE SAMPLED: TEMPERATURE TURBIDITY TIME E.C. pН VOLUME TIME (2400 HR) (visual/NTU) (°F) (units) (µmhos/cm@25°c) (gal.) (2400 HR) ODOR: OTHER: (NTU 0-200) (COBALT 0-100) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT **PURGING EQUIPMENT** Bailer (Teflon) 2" Bladder Pump Bailer (Tellon) 2" Bladder Pump Bailer (Stainless Steel) Bomb Sampler Bailer (PVC) Centrifugal Pump Submersible Pump Dipper Bailer (Stainless Steel) Submersible Pump Dedicated _ Well Wizard™ _____Dedicated Well Wizard™ Other: Other: WELL INTEGRITY: LOCK: REMARKS: Time: Meter Serial No.: pH, E.C., Temp. Meter Calibration: Date: pH 7 / pH 10 / pH 4 / E.C. 1000 Temperature °F SIGNATURE: REVIEWED BY: PAGE OF

WATER SAMPLE FIELD DATA SHEET

ing the second of the second o

FIGURE

Rev. 5/96

EMCON - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM

PROJECT NAME:

SCHEDU	JLED	DATE:	
--------	------	-------	--

SPECIAL INSTI	RUCTIONS / C	ONSIDERAT	IONS:		EMCON Project No.: OWT Project No.: Task Code: Originals To: cc: Well Lock Number (s				
	TO ALITHON	IZE DATA EN	TTDV	Site Contact:					
Well Number or	X TO AUTHOR Casing Diameter	Casing Length	Depth to Water		Name YSES REQUESTED	Phone #			
Source	(inches)	(feet)	(feet)						
Laboratory and	d Lab QC Istruct	ions:							

EMCON

SAMPLING AND ANALYSIS REQUEST FORM

FIGURE

Project

A-3

APPENDIX B

CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION

October 27, 1998

Service Request No.: <u>S9802730</u>

Glen Vanderveen
PINNACLE
144 A Mayhew Wy
Walnut Creek, CA 94596

RECEIVED

OCT 2 9 1998

BY:

RE: 20805-121,005/TO#22312,00/RAT8/601 SAN LEANDRO

Dear Mr. Vanderveen:

The following pages contain analytical results for sample(s) received by the laboratory on October 14, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 18, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
Ducks Duckicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

Trace level. The concentration of an analyte that is less than the PQL but greater than or equal-

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802730

Date Collected: 10/14/98

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-13(12)

Lab Code:

S9802730-003

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730 Date Collected: 10/14/98

Sample Matrix:

Water

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-14(12)

Lab Code:

S9802730-004

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	l	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0,5	l	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	. 1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: \$9802730

Date Collected: 10/14/98

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7(9.5)

Lab Code:

S9802730-005

Test Notes:

 $Units: \ ug/L \ (ppb)$

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	I	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	_
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730 Date Collected: 10/14/98

Sample Matrix:

Water

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-4(8.4)

Lab Code:

S9802730-006

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	20	NA	10/24/98	6500	
Benzene	EPA 5030	8020	0.5	20	NA	10/24/98	900	
Toluene	EPA 5030	8020	0.5	20	NA	10/24/98	63	
Ethylbenzene	EPA 5030	8020	0.5	20	NA	10/24/98	200	
Xylenes, Total	EPA 5030	8020	0.5	20	NA	10/24/98	1200	
Methyl tert -Butyl Ether	EPA 5030	8020	3	20	NA	10/24/98	63	

1822/020597p -

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: 10/14/98

Sample Matrix:

Water

Service Request: S9802730 Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-5(10)

Lab Code:

\$9802730-007

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	100	NA	10/23/98	33000	
Benzene	EPA 5030	8020	0.5	100	NA	10/23/98	7400	
Toluene	EPA 5030	8020	0.5	100	NA	10/23/98	1900	
Ethylbenzene	EPA 5030	8020	0.5	100	NA	10/23/98	550	
Xylenes, Total	EPA 5030	8020	0.5	100	NA	10/23/98	1700	
Methyl tert -Butyl Ether	EPA 5030	8020	3	100	NA	10/23/98	<300	Cl

The MRL was elevated due to high analyte concentration requiring sample dilution.

... 1S22/G2G597p...

C1

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730 Date Collected: 10/14/98

Sample Matrix:

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name: ..

MW-6(8.5)

Units: ug/L (ppb) Basis: NA

Lab Code:

S9802730-008

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	40	NA	10/24/98	8700	
Benzene	EPA 5030	8020	0.5	40	NA	10/24/98	2400	
Toluene	EPA 5030	8020	0.5	40	NA	10/24/98	<20	Cl
Ethylbenzene	EPA 5030	8020	0.5	40	NA	10/24/98	220	
Xylenes, Total	EPA 5030	8020	0.5	40	NA	10/24/98	36	
Methyl tert -Butyl Ether	EPA 5030	8020	3	40	NA	10/24/98	<120	Cl

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

ARCO Products Company

Project:

Sample Matrix:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730

Date Collected: 10/14/98

Water

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-3(11)

Lab Code:

S9802730-009

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1000	NA	10/23/98	300000	
Benzene	EPA 5030	8020	0.5	200	NA	10/23/98	1200	
Toluene	EPA 5030	8020	0.5	200	NA	10/23/98	2400	
Ethylbenzene	EPA 5030	8020	0.5	200	NA	10/23/98	5700	÷
Xylenes, Total	EPA 5030	8020	0.5	200	NA	10/23/98	32000	
Methyl tert-Butyl Ether	EPA 5030	8020	3	200	NA	10/23/98	970	

1822/020597р

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: 10/14/98

Service Request: \$9802730

Sample Matrix:

Water

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-1(11)

Units: ug/L (ppb)

Lab Code:

S9802730-010

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	100	NA	10/23/98	47000	
Benzene	EPA 5030	8020	0.5	100	NA	10/23/98	2900	
Toluene	EPA 5030	8020	0.5	100	NA	10/23/98	<50	C1
Ethylbenzene	EPA 5030	8020	0.5	100	NA	10/23/98	2300	
Xylenes, Total	EPA 5030	8020	0.5	100	NA	10/23/98	3900	
Methyl tert -Butyl Ether	EPA 5030	8020	3	100	NA	10/23/98	<300	C 1

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

----- 1822/020597p · · · · · ·

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: 10/14/98

Service Request: S9802730 Date Received: 10/14/98

Sample Matrix: Water

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-15(10)

Lab Code:

S9802730-011

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	27	

LS22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: \$9802730

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S981021-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA.	- 10/21/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/21/98	ND	

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730

Sample Matrix:

Water

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S981024-WB2

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/24/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/24/98	ND	
Toluene	EPA 5030	8020	0.5	. 1	NA	10/24/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/24/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/24/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/24/98	ND	

1822/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: NA

Service Request: S9802730

Sample Matrix:

Water

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

S981022-WB2

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

QA/QC Report

Client:

ARCO Products Company

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802730 Date Collected: NA

Project: Sample Matrix:

Water

Date Received: NA

Date Extracted: NA Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Units: PERCENT

Analysis Method: 8020

CA/LUFT

Basis: NA

		Test	Percent	Recovery
Sample Name	Lab Code	Notes	4-Bromofluorobenzene	a,a,a-Trifluorotoluene
MW-13(12)	S9802730-003		95	90
MW-14(12)	S9802730-004		90	90
MW-7(9.5)	S9802730-005		91	90
MW-4(8.4)	S9802730-006		100	94
MW-5(10)	S9802730-007		97	90
MW-6(8.5)	S9802730-008		97	93
MW-3(11)	S9802730-009		110	96
MW-1(11)	S9802730-010		97	87
MW-15(10)	S9802730-011		90	92
BATCH QC	S9802844-001MS		104	89
BATCH QC	S9802844-001DMS		101	94
Method Blank	S981021-WB1		100	99
Method Blank	S981022-WB2		108	92
Method Blank	S981024-WB2		100	92

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802730

Date Collected: NA
Date Received: NA

Date Extracted: NA

Date Analyzed: 10/24/98

Matrix Spike/Duplicate Matrix Spike Summary

BTE

Sample Name:

BATCH QC

Lab Code:

S9802844-001MS,

S9802844-001DMS

Units: ug/L (ppb)

Basis: NA

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•	e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference
Benzene	EPA 5030	8020	0.5	25	25	ND	27	26	108	104	75-135	4
Toluene	EPA 5030	8020	0.5	25	25	ND	27	27	108	108	73-136	<1
Ethylbenzene	EPA 5030	8020	0.5	25	25	ND	28	27	112	108	69-142	4

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: \$9802730

Date Analyzed: 10/24/98

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline

Sample Name:

ICV

Units: ug/L (ppb)

Lab Code:

ICV1

Basis: NA

Test Notes:

ICV Source:

CAS

ic v source.					CAS		
					Percent Recovery		
	Prep	Analysis	True		Acceptance	Percent	Result
Analyte	Method	Method	Value	Result	Limits	Recovery	Notes
TPH as Gasoline	EPA 5030	CA/LUFT	250	270	90-110	108	
Benzene .	EPA 5030	8020	25	27	85-115	108	
Toluene	EPA 5030	8020	25	28	85-115	112	
Ethylbenzene	EPA 5030	8020	25	28	85-115	112	
Xylenes, Total	EPA 5030	8020	75	85	85-115	113	
Methyl tert-Butyl Ether	EPA 5030	8020	25	27	85-115	108	

ICV/032196

ARCO) Pr Divisio	odu i of Atla	cts (antic/Ric	Com chfield C	pany Company	598	2027	30	Task Order	No. 2	2317	2,0	0									Cha	ain	of Custody
ARCO Fa	cility no	.060	21		City (Facility	157n	Lear	ndra		Pro (Co	ject m nsulta	anagei nt)	GL	enl	lar	do	N/	00	n					Laboratory Name -
ARCO en	gineer	Par	1150	pple	,		Tele (AR	phone no. CO)	· · · · · · · · · · · · · · · · · · ·	Tele	phone	no.	100	1403	- 73/		Fax I	no.	111	201/	27	9520		CAS Contract Number
Consultan	t name	EM	CON	[// / 1 Sec				1 4 1	dress onsultant) /								lord	+ Cr	00	k C	1 0			Contract Number
				Matrix		Pres	ervation]′-			l′ ,		1	9	0007/	٦				Method of shipment
.D.		3 . 10		Ι			T		a		SE SE	25 G	8.50 2.50	A 503E				Semi Cy Cy Cy Cy	PA 601	SC 7420/74;				sampler will
Sample I.D	Lab no.	Container no	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	PA M6026	PH Modifier	A and Great	TPH EPA 418.1/SM 503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals© VOA© VOA©	AM Metals (ead Org/DH Lead EPA				Sampler Will deliver
MW-13		12		X		×	1401	10/14/93			V		1			-			0					Special Detection Limit/reporting
MW-146		L		×		×	HCL	1	1105				_										\neg	Lowest
MW-70	~~	ļ		×		×	IHCI.		1120		∇													Possible
MW-4	$\overline{}$			×		×	HCL		114.2		V													Special QA/QC
MW-50	1	2		X		×	HCL		1210		V													A5
MW-60		2		×		×	HCL		1230		×												\neg	Normal
41W-30	11/9	2		\times		×	Hal		1305		X													Remarks
MW-C	()(2		×		×	Hal		1320		×													
HW-15	J)(v))2		×		X	I+CL	V	1340		$\stackrel{\sim}{\times}$													RAT 8
																								2-40m1 HCL VOA5
			ļ																					VOA5
							ļ	<u> </u>																#20905-171.00
			 				<u> </u>						-											Lab Number
		<u> </u>																						_
			<u> </u>				 	-		·											_			Turnaround Time:
							-							-	 -									Priority Rush 1 Business Day
						<u></u>															\dashv			Rush
	<u>. </u>	 			<u> </u>		<u> </u>										<u>, l</u>							2 Business Days
Condition (!	· · · · · ·				Dota	,	T	Temp	erature	e recei	ved:	Due	. 10	3/28	198		R	u/D	3			Expedited 5 Business Days
		7	-22-				0/14/	98	/500	Hece	ved D	*P	epol	L H	ach	ado	C	45	10/1	4/98		1500	.	Standard
Relinguish							Date	·	ime	Hecel	Veci by	I	•											10 Business Days
Relinguish		i	····				Date					labor					ate			Time				ĺ
Distribution:	White	Сору –	Labora	tory: Ca	nary Co	py – ARC	O Environ	mental Eng	ineering: Pi	nk Co	oy – C	onsulte	unt											

October 27, 1998

Service Request No.: <u>S9802771</u>

Glen Vanderveen
PINNACLE
144 A Mayhew Wy.
Walnut Creek, CA 94596

RECEIVED 0CT 2 9 1998 BY: QM.

RE: 20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Dear Mr. Vanderveen:

The following pages contain analytical results for sample(s) received by the laboratory on October 14, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 10, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

Project Chemist

Dernadette V Cox ya Greg Anderson

Regional QA Coordinator

Acronyms

A2LA American Association for Laboratory Accreditation
ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI
ND
National Council of the paper industry for Air and Stream Improvement
Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VÓA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: \$9802771

Sample Matrix:

Water

Date Collected: 10/14/98 Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-9(15)

Lab Code:

S9802771-001

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/23/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/23/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/23/98	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802771

Date Collected: 10/14/98

Date Received: 10/14/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-10(16)

Lab Code:

Test Notes:

S9802771-002

Units: ug/L (ppb) Basis: NA

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert - Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

1822/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Sample Matrix:

Water

Service Request: S9802771

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S981021-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/21/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/21/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/21/98	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: NA Date Received: NA

Service Request: \$9802771

Sample Matrix:

Water

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

S981022-WB2

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	Ī	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: S9802771

Sample Matrix:

Water

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Units: PERCENT

Analysis Method: 8020

CA/LUFT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
MW-9(15)	S9802771-001		97	91
MW-10(16)	S9802771-002		86	90
BATCH QC	S9802704-004MS		115	86
BATCH QC	S9802704-004DMS		112	93
Method Blank	S981021-WB1		100	99
Method Blank	S981022-WB2		108	92

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

ARCO Products Company

Project: Sample Matrix: 20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Date Collected: NA

Service Request: S9802771

Date Received: NA

Date Extracted: NA
Date Analyzed: 10/22/98

Matrix Spike/Duplicate Matrix Spike Summary

BTE

Sample Name:

BATCH QC

Water

S9802704-004MS,

S9802704-004DMS

Units: ug/L (ppb)

Basis: NA

Lab Code: Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	-	e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference
Benzene	EPA 5030	8020	0,5	25	25	ND	25	26	100	104	75-135	4
Toluene	EPA 5030	8020	0.5	25	25	ND	25	26	100	104	73-136	4
Ethylbenzene	EPA 5030	8020	0.5	25	25	1.5	27	28	102	106	69-142	4

QA/QC Report

Client:

ARCO Products Company

Project:

20805-121.005/TO#22312.00/RAT8/601 SAN LEANDRO

Service Request: \$9802771

Date Analyzed: 10/22/98

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline

Sample Name:

ICV

Units: ug/L (ppb)

Lab Code:

ICV1

Basis: NA

Test Notes:

ICV Source:

ic v Source.					CAS		
					Percent Recovery		
	Prep	Analysis	True		Acceptance	Percent	Result
Analyte	Method	Method	Value	Result	Limits	Recovery	Notes
TPH as Gasoline	EPA 5030	CA/LUFT	250	260	90-110	104	
Benzene	EPA 5030	8020	25	28	85-115	112	
Toluene	EPA 5030	8020	25	28	85-115	112	
Ethylbenzene	EPA 5030	8020	25	27	85-115	108	
Xylenes, Total	EPA 5030	8020	75	84	85-115	1 12	
Methyl tert -Butyl Ether	EPA 5030	8020	25	26	85-115	104	

ICV/032196

ARC	O PI	rodu	cts (Com	pany	1598	1027	30 M	it 1958 Task Order I	No. 2	231	2.0	20				•					Ch	ain	of Custody
ARCO I	acility n	°.06	01		City (Facility	Sar	nLea	ndro		Proj (Co	ect ma nsultar	anager nt)	GI	enl	(an	de	(Ve	er	}					Laboratory Name
ARCO (ngineer	Pa	015	ממקבי	<u>e</u>		(AR	phone no. CO) Add (Co	iress nsultanty4	(Co	pnone nsuiter	100	<u>OB)</u>	453	-734	20	(Con	no. Isultani	<u>)(40</u> 20 k	0		-957 9450		Contract Number
				Matrix		Prese	ervation				昂	[′	ĺ		/			Semi 3 VOA	A 6010/7000 CD	C	<u>., </u>			Method of shipment Sampler Will
Sample I.D	Lab no.	Container no	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH incid.	TPH Modified ≀ Gas □ Diesel	Oil and Grease 413.1 🛘 413.	TPH EPA 418.1/SM 503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Metals() VOA	CAM Metals El TTLC⊡ST⊍	Lead Org/DHSCI				deliver Special Detection
HW-9	(19)	12		X		X	HCI	1014/98	-		X													Limit/reporting LOWEST
MW-10	(16)(2	2	-	X		Х.	HCL		1930		X.				:									Possible
						<u></u>																		Special QA/QC
																								As Normal
			-	ļ																		$\vdash \vdash$		Remarks RAT 8
																								2-40m1 1+CL
				ļ																				VOA5
							<u> </u>																	#70805-171.00
																								Lab Number 5980277
	<u> </u>																							Tumaround Time:
	-						<u> </u>				_												-	Priority Rush 1 Business Day
																								Rush 2 Business Days
Condition							16		_						e i i				રાા/					Expedited 5 Business Days
Relingu Relingu	Anna .	K	H e-z				Date/ Date	198		Rece			jeh	Ma	ech	æd.	c	KS	10/1	4/98		1200	>	Standard 10 Business Days
Relingu	}						Date		Time	L	ived b	<u>-</u>	ratory				Date			Time				

APPENDIX C FIELD DATA SHEETS

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: 21775-208.003 STATION ADDRESS: 712 Lewelling Blvd., San Leandro DATE: 10/14/98

ARCO STATION # : 601 FIELD TECHNICIAN : Mike Ross DAY : Wednesday

		Well	Туре			Турв	FIRST	SECOND	DEPTH TO	FLOATING	WELL	
DTW	WELL	Вох	Of Well	Gasket	Lock	Of Well	DEPTH TO	DEPTH TO	FLOATING	PRODUCT	TOTAL	
Order	ID	Seal	Lid	Present	Number	Сар	WATER	WATER	PRODUCT	THICKNESS	DEPTH	COMMENTS
							(feet)	(feet)	(feet)	(feet)	(feet)	
01	MW-9	or-	15/16"	YES	ARCO	LWC	8,29	8.29	NO	NO	16.2	
02	MW-10	0K_	15/16"	YES	ARCO	LWC	8.41	8.41	NO	NP	17.6	
3	MW-12	1 KK	15/16"	YES	ARCO	LWC	9.06	9,06	ND	Nŋ	116	
04	MW-13	oK.	15/16"	YES	ARCO	LWC	8,15	8.15	ND	NO	13.0	,
05	MW-14	or	15/16"	YES	ARCO	LWC	9.73	9,73	NV	NO	/3.0	
96	MW-7	OK	15/16"	YES	ARCO	LWC	9,22	9.22	NO	NO	9.6	
7	MW-11	0/-	15/16"	YES	ARCO	LWC	8,58	2,58	NO	NO	11.9	
0.8	MW-4	01	15/16"	YES	ARCO	LWC	7,60	7.60	NO	NO	P,5	
o g	MW-5	ok_	15/16"	YES	ARCO	LWC	7.19	7.19	M	M	10,4	ORC SOCRES IN well
10م	MW-6		15/16"	YES	ARCO	LWC	8 31	8,31	NO	NO	8,6	
911	MW-3	OR	HEX	YES	ARCO	LWC	7.04	7,04	No	NO	12.0	Skimmer IN wellt
012	MW-1	01-	HEX	YES	ARCO	LWC	8,58	87.58	NV	NO	110	NO DIPORTURES SENEW IN CID
13	MW-2	OK	15/16"	YES	ARCO	LWC	7,54	7.54	NO	NO	12.4	·
গ4	MW-15	or	15/16"	YES	ARCO	LWC	6,26	6.26	NO	NO	18.1	
15	MW-8	OR	15/16"	YES	ARCO	LWC	7,79	7.79	NO	NO	1000	ORC SOCK I'M WILL
					SL	IRVE	POINTS	ARE TOP C	F WELL C	ASINGS		

WATER SAMPLE FIELD DATA SHEET Rev 1/97
PROJECT NO \$\frac{1775-208.003}{\text{PURGED BY } \text{Mi Ross}} \text{SAMPLE ID }\text{MW-1(//)}{\text{CLIENT NAME } \text{ARCO 0(00 /)}{\text{LOCATION } \text{San location } \text{CASING DIAMETER (inches): 2 } 3 4 45 6 \text{Other} \]
CASING ELEVATION (feet/MSL): W/2 VOLUME IN CASING (gal.): 169 DEPTH OF WELL (feet): 111 DEPTH OF WATER (feet): 8,58 ACTUAL PURGE VOL. (gal.): 5,0
DATE PURGED: 10/14/98 END PURGE: 1315 DATE SAMPLED: 10/14/98 SAMPLING TIME: 1320
TIME VOLUME PH E.C. TEMPERATURE COLOR TURBIDITY
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT
PURGING EQUIPMENT
2" Bladder Pump Bailer (Teffon) Bailer (Stainless Steel)
Centrifugal Pump Bailer (PVC) Submersible Pump
Submersible Pump Bailer (Stainless Steet) Well Wizard** Dedicated
Well Wizard ^{1M} Dedicated Other: 1/5/05A/36
WELL INTEGRITY: 9k LOCK: ARCS REMARKS: 40 Avy Shoen
pH, E.C., Temp. Meter Calibration:Date: 10/14/98 Time: 0945 Meter Serial No.: 600232 E.C. 1000 / pH 7 / pH 4 /
SIGNATURE: Mute Roza REVIEWED BY PAGE OF 1

Rev 1/97

PROJECT NO 81775-308-003 PURGED BY M. 1255 OWT SAMPLED BY M. 1255 TYPE Groundwater Surface Water Leachate Other CASING DIAMETER (inches) 2 3 4 4.5 6 Other CASING ELEVATION (feet/MSL) NA VOLUME IN CASING (gal.) 3 34	<u>)</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CASING SLEVATION (Sept/MSL): NYL VOLUME IN CASING (gal.): 324	
DEPTH OF WELL (feet): 120 CALCULATED PURGE (gal.) 4,70 DEPTH OF WATER (feet): 7,04 ACTUAL PURGE VOL. (gal.) 10,0	
DATE PURGED: 10/14/93 END PURGE: 1305 DATE SAMPLED: 10/14/98 SAMPLING TIME: 1305 TIME VOLUME PH E.C. TEMPERATURE COLOR TURBING	DITY
(2400 HR) (gal) (units) (µmhos/cm@25°c) (°F) (visual) (visual) 1244 3,5 7,64 972 79.9 GMzy Md) 1248 7.0 7.45 948 69.0 (1 Mor) 1252 10.0 7.37 948 69.3 U M)	2
OTHER: D.O. 100 Mg/C ODOR: STRONG NR (COBALT 0-100) (NTU 0-	200)
PURGING EQUIPMENT SAMPLING EQUIPMENT	ĺ
2" Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Well Wizard ¹ Dedicated Other: 2" Bladder Pump Bailer (Teflon) Bomb Sampler Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard ¹ Dedicated Other:	
WELL INTEGRITY: <u>OR</u> REMARKS: LEANY Sheen on well.	<u></u>
pH, E.C., Temp. Meter Calibration:Date 10/14/98 Time 945 Meter Serial No. 609037 E.C. 1000 1 pH 7 1 pH 10 1 pH 4 1 Temperature *F SQL MW#9 REVIEWED BY APAGE 7 OF 11	— — — —

WATER SAMPLE FIELD DATA SHEET Rev 1/9"
PROJECT NO 21775-208. 803 PURGED BY M. 12055 OWT SAMPLED BY M. 12055 TYPE Groundwater Surface Water Leachate Other CASING DIAMETER (inches): 2 3 4 45 6 Other
CASING ELEVATION (feet/MSL): DEPTH OF WELL (feet): DEPTH OF WATER (feet): 7 160 VOLUME IN CASING (gal.) CALCULATED PURGE (gal.) ACTUAL PURGE VOL. (gal.) O 160
DATE PURGED: 10 14 93 DATE SAMPLED: 10 14 92 TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 HR) (gal) (units) (pmhos/cm@25°c) (°F) (visual) (visual) 1/30 0.50 7.03 ((56 76) 0.00) 1/31 DAY & 6.60 6.00 6.00 6.00 76.00 THER: 0.0.1.0 Mg/V ODOR: NONE (COBALT 0-100) (NTU 0-200) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1. XDUP-1): PURGING EQUIPMENT 2' Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Stainless Steel) Submersible Pump Bailer (Stainless Steel) Submersible Pump Dedicated Other: 0.5 px. Ph.
WELL INTEGRITY: 0 LOCK: A RED REMARKS: pH, E.C., Temp. Meter Calibration: Date: 0 14 99 Time: 945 Meter Serial No.: 600 232 pH, E.C., 1000 pH 7 1 pH 10 pH 4 1 Temperature "F SIGNATURE: PAGE 3 OF 11

WATER SAMPLE FIELD DATA SHEET Rev 1/9
PROJECT NO 21775 208, 003 PURGED BY M. ROSS CLIENT NAME ARCO 0601 COCATION SEEN LEAVED TO THE Groundwater Surface Water Leachate Other CASING DIAMETER (inches) 2 3 4 4 45 6 Other
CASING ELEVATION (feet/MSL): NP VOLUME IN CASING (gal.): 2,09 DEPTH OF WELL (feet): 10,9 CALCULATED PURGE (gal.): 6,29 DEPTH OF WATER (feet): 7,19 ACTUAL PURGE VOL. (gal.): 2,5
DATE PURGED: 10/4/93 END PURGE: 12/0 DATE SAMPLED: 10/14/93 SAMPLING TIME: 12/0 TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 HR) (gal) (units) (pmhos/cm@25°c) (°F) (visual) (visual) 1201 2/5 7/40 17 7/7 7/14 Chr. 125 024 25 Co. Llons OTHER: D.J. 1/5 Mg/C ODOR: NOVE NEW (COBALT 0-100) (NTU 0-200) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT 2* Bladder Pump Bailer (Teflon) 2* Bladder Pump Bailer (Teflon)
Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steet) Well Wizard** Dedicated Other: Bailer (Stainless Steet) Dipper Submersible Pump Well Wizard** Dedicated Other:
PH. E.C., Temp. Meter Calibration Date: 10/14/98 Time: 0945 Meter Serial No. 1000232 E.C. 1000 1 pH7 1 pH 10 1 pH 4 1 Temperature "F SR MW 9 SIGNATURE: Make 2 REVIEWED BY: MA PAGE 4 OF 11

WATER SAMPLE FIELD DATA SHEET Rev 1/9
PROJECT NO 21775-208:003 PURGED BY M: 2055 CLIENT NAME ARCO 0601 LOCATION Son Lewidro, Co TYPE Groundwater Surface Water Leachate Other CASING DIAMETER (inches) 2 3 4 45 6 Other
CASING ELEVATION (feet/MSL) DEPTH OF WELL (feet): \$16 DEPTH OF WATER (feet): \$137 ACTUAL PURGE VOL. (gal.): 0.20
DATE PURGED: / 0 / 1/9
WELL INTEGRITY: DN LOCK: APCO REMARKS: PH, E.C., Temp. Meter Calibration: Date: MY 98 Time: 0945 Meter Serial No. 620232 E.C. 1000 / pH 7 / pH 10 / pH 4 / Temperature "F SIGNATURE: MACO PM REVIEWED BY MA PAGE 5 OF 11

WATER SAMPLE FIEL	D DATA SHEET Rev 1/9
LASING DIAMETER (IIICHES)	Δ 45 6 Other
CASING ELEVATION (ISSUED) 916 C.	VOLUME IN CASING (gal.): 0,24 ALCULATED PURGE (gal.): 0,74 ACTUAL PURGE VOL. (gal.): 0,25
TIME VOLUME pH E.C. (2400 HR) (gal) (units) (µmhos/cm@25" (25 7.10 1546) (26 12 0 1546) (27 12 0 1546) (28 12 0 1546) (29 12 0 1546) (20	25 Gallers 26,7 dr Dr (COBALT 0-100) (NTU 0-200)
Well INTEGRITY: 0	Well Wizard** Other: Dedicated Other: Dedicated LOCK: NOLO
E.C. 1000 / pH 7 / pH	Meter Serial No.: 600232 10

W	ATER SAMPLE	FIELD DATA SI	HEET Rev 1/9"
OWT SAMPLED	NO 2/775 - 208. (BY M. Ro.55 BY M. Ro.55 Surface Water es) 2 \(\) 3 \(\)	CLIENT NAME LOCATION Leachate 4 4 5	MW-9(15) ARCO 0601 Sav Leanding
CASING ELEVATION (fee DEPTH OF WELL DEPTH OF WATER	(feet): 16.2	VOLUME IN CASING CALCULATED PURGE ACTUAL PURGE VOL	(gal.):
DATE PURGED DATE SAMPLED TIME VOLUM (2400 HR) (921) 0956 /15 0958 2,0 1601 410	10 //4/98 E pH E (units) (unhos) 7:01 /// 7:08 ///	END PURGE: SAMPLING TIME: TEMPERATURE TO 16 TO 16 TO 19 TO	
PURGING EQUIF 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard ^{1M}	LECTED AT THIS WELL (i.e.	FB-1, XDUP-1):	Bailer (Stainless Steel) Submersible Pump Dedicated
WELL INTEGRITY REMARKS:			LOCK: ARCO
oH, E.C., Temp. Meter Calibration E.C. 1000/915 1 (200 Temperature *F 6315 SIGNATURE: MULLO	Date 10/14/98 TH pH7/021700	те: 0945 Meter: pH 10 / 064/000	

	WATE	RSAMPL	E FIELD	DATA S	HEET	Rev 1/97
OWT SA	URGED BY M MPLED BY M Iwater	775-20° , Ross , Ross Surface Water_ \(3_	 	CLIENT NAME LOCATION	Other Other	bandro, Ca
	ON (feet/MSL) : _ OF WELL (feet) : _ WATER (feet) : _		CALC	LUME IN CASING CULATED PURGI JAL PURGE VOL	G (gal.):	50 50 5
	JRGED : 10/1 MPLED : 10/1	4/98		END PURGE : IPLING TIME :	1030	
1	VOLUME (gal.) // 50 7	P 11	E.C. 1 nos/cm@25°c) / 74 / 72	(°F) 70,3 70,5 70,3	COLOR (visual) BRN //	TURBIDITY (visual) HEAVY U
OTHER: D.O.		Ng/L at this Well (1	ODOR:		NN_ (COBALT 0-100) NN_	(NTU 0-200)
	Baimp Bai	iler (Teflon) iler (PVC) iler (Stainless Steel) dicated	Othe	SAMPLING 2" Bladder Pum Bomb Sampler Dipper Well Wizard**	Bailer (Subme	Stainless Steel) rsible Pump
WELL INTEGRITY []					LOCK	ARCO
pH, E.C., Temp. Meter C E.C. 1000 / Temperature *F SIGNATURE:	pH.7_	14 98 	Time: <u>094</u> pH 10 MW- REVIEWE		Serial No. (200 pH 4	232 1 0F

WATER SAMPLE FIEL	D DATA SHEET	/97
PROJECT NO 21775 - 208 . 003 PURGED BY M. ROSS OWT SAMPLED BY M. POSS TYPE Groundwater Surface Water CASING DIAMETER (inches) 2 3 4	LOCATION San Ceandre,	
DEPTH OF WELL (feet): 2 /3 C	VOLUME IN CASING (gal.): 0,79 ALCULATED PURGE (gal.): 2,37 CTUAL PURGE VOL. (gal.): 215	_ _
DATE SAMPLED 76 // //	END PURGE: 1037 SAMPLING TIME: 1045	TV
TIME VOLUME pH E.C. (2400 HR) (gal) (units) (μmhos/cm@25° /033 /.Ο 7.09 /50 / 150 / 150 / 1037 2.5 7.13 1495	109,6 K K	
OTHER: D.O. Q.O. M.7/L. ODOR:	NONE NA NR. (COBALT 0-100) (NTU 0-20)	- 1
,	SAMPLING EQUIPMENT	
PURGING EQUIPMENT 2" Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steet) Well Wizard ¹ Dedicated	2" Bladder Pump Bailer (Teflon) Bomb Sampler Bailer (Stainless Steel Dipper Submersible Pump Well Wizard** Dedicated Other: 0.505AB6	el)
WELL INTEGRITY: 0 PC	LOCK: MRCE	
pH, E.C., Temp. Meter Calibration: Date: 10/14/98 Time: 0° E.C. 1000 / pH 7 / pH Temperature *F SIGNATURE: Multe Property REVIE	, AUA /	- - - -

WATER SAMPLE FIELD	DATA SHEET Rev 1/97
OWT SAMPLED BY MI POSS	SAMPLE 10 MN = 14 (12) CLIENT NAME ARCO OCODI LOCATION SAN Leandro Ca Chate Other 45 6 Other
DEPTH OF WELL (feet) 13.0 CALCUL	ME IN CASING (gal.): 0,54 LATED PURGE (gal.): 1,60 L PURGE VOL. (gal.): 2,0
DATE SAMPLED 10 /14 /99 SAMPL	ID PURGE: 1055 ING TIME: 1105
(umhos/cm@25°c)	MPERATURE COLOR TURBIDITY (*F) (visual) (visual) 71,5 (194 ben 140 b 7207 (1 11 11
OTHER: D.O. / O M9 C ODOR: NO	(COBAC) 6/100) (1/10/0/2007)
PURGING EQUIPMENT 2" Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Stanless Steel)	SAMPLING EQUIPMENT 2" Bladder Pump Bailer (Teflon) Bomb Sampler Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard TM Dedicated DIS POSABCE
WELL INTEGRITY: OK REMARKS:	LOCK: NRCO
pH, E.C., Temp. Meter Calibration:Date 10/4/98 Time: 0945 E.C. 1000 1 pH 7 1 pH 10 Temperature "F SSE MW-9 SIGNATURE: Meter Calibration:Date 10/4/98 Time: 0945 REVIEWED B	

WATER SAMPLE FIELD DATA SHEET Rev 1/5
PROJECT NO 21775-208,003 PURGED BY M. Ross CLIENT, NAME APCO 0001 OWT SAMPLED BY M. Ross TYPE Groundwater Surface Water Leachate Other CASING DIAMETER (inches) 2 4 0 45 6 Other
CASING ELEVATION (feet/MSL) DEPTH OF WELL (feet) DEPTH OF WATER (feet) DEPTH OF WATER (feet) OR VOLUME IN CASING (gal.) CALCULATED PURGE (gal.) ACTUAL PURGE VOL. (gal.) 20
DATE PURGED: 10/14/98 END PURGE: 1334 DATE SAMPLED: 10/14/98 SAMPLING TIME: 1340 EC TEMPERATURE COLOR TURBIDIT
TIME VOLUME PH E.C. TEMPERATURE [2400 HR]
OTHER: D.D. 115 Mg/C ODOR: NOVE NR (COBALT 0-700) (NTU 0-200)
PURGING EQUIPMENT
2" Bladder Pump Bailer (Teffon) 2" Bladder Pump Bailer (Stainless Steel
Centrifugal Pump Bailer (PVC) Borno Samplet Buller (Stainless Steel) Dipper Submersible Pump
Well Wizard™ Dedicated Well Wizard™ Dedicated Other: 0.520.55.856
Other:
ELL INTEGRITY: DE LOCK: ARLO
EMARKS
4 E.C. Terro Meter Calibration Date: 10/14/98 Time: 0 248 Meter Serial No.: 600032
1, E.C., Temp. Meter Calibration:Date:
Sa MW-9
SIGNATURE: THE PAGE // OF //

EMCON Associates - Field Services Historical Monitoring We								nitoring Well Data
1921 Ring	wood Avenu	ie		1998				ARCO 601
San Jose.	California							21775-208.003
Well ID	Quarter	Date	Purge Volume (gallons)	Did well dry	Well Contained Product	First Second Third Fourth	Gallons 96.50 47.00 37.00 34.00	2.1.70 250.000
MW-1	First	02/19/98	11.50	NO	NO			
	Second	04/23/98	9.00	YES	NO			
	Third	07/27/98	6.00	YES	NO			
	Fourth	10/14/98	5.00	YES	NO			•
MW-2	First	02/19/98	5.00	YES	NO			244.
	Second	04/23/98	0.00	NA	NO			
	Third	07/27/98	0.00	NA	NO			
	Fourth	10/14/98	0.00	NA NA	NO			
MW-3	First	02/19/98	14.00	NO	NO	·		
,	Second	04/23/98	11.00	NO	NO			
	Third	07/27/98	10.00	NO	NO			
	Fourth	10/14/98	10.00	NO	NO			
MW-4	First	02/19/98	1.50	YES	NO			
	Second	04/23/98	1.50	YES	NO			
	Third	07/27/98	1.00	YES	NO	·		
	Fourth	10/14/98	0.50	YES	NO			
MW-5	First	02/19/98	4.50	YES	NO			
	Second	04/23/98	4.50	YES	NO			-
	Third	07/27/98	3.00	YES	NO			
	Fourth	10/14/98	2.50	YES	NO			
MW-6	First	02/19/98	2.00	YES	NO		· · · · · · · · · · · · · · · · · · ·	
	Second	04/23/98	2.00	YES	NO			
	Third	07/27/98	1.00	YES	NO			
	Fourth	10/14/98	0.50	YES	NO			
MW-7	First	02/19/98	3.00	YES	NO			
	Second	04/23/98	2.00	YES	NO			
	Third	07/27/98	1.00	YES	NO			·
	Fourth	10/14/98	0.50	YES	NO			
MW-8	First	02/19/98	12.00	NO	NO	-		
	Second	04/23/98	8.00	NO	NO			
	Third	07/27/98	0.00	ŇA	NO			
	Fourth	10/14/98	0.00	NA	NO			i
MW-9	First	02/19/98	4.50	NO	NO			
	Second	04/23/98	0.00	NA	NO			
	Third	07/27/98	4.00	NO	NO			
	Fourth	10/14/98	4.00	NO	NO			
MW-10	First	02/19/98	7.00	NO	NO			
	Second	04/23/98	6.00	-NO	NO			
	Third	07/27/98	5.00	NO	NO			ļ
	Fourth	10/14/98	4.50	NO	NO_			

EMCON A	ssociates - l	Field Service	:\$			Hist	orical Mon	itoring Well Data
1921 Ringwood Avenue San Jose, California			1998					ARCO 601
								21775-208.003
Well ID	Quarter	Date	Purge Volume (galions)	Did well dry	Well Contained Product	First Second Third Fourth	Gallons 96.50 47.00 37.00 34.00	
MW-11	First	02/19/98	11.00	NO	NO			
	Second	04/23/98	0.00	NA	NO			
	Third	07/27/98	0.00	NA NA	NO			
	Fourth	10/14/98	0.00	NA	NO			
MW-12	First	02/19/98	10.50	NO	NO			
	Second	04/23/98	0.00	NA	NO			
	Third	07/27/98	0.00	NA NA	NO 1			
	Fourth	10/14/98	0.00	NA	NO			
MW-13	First	02/19/98	3.50	NO	NO			
	Second	04/23/98	0.00	NA	NO			
	Third	07/27/98	3.00	NO	NO			
	Fourth	10/14/98	2.50	NO	NO			
MW-14	First	02/19/98	3.50	NO	NO			
	Second	04/23/98	3.00	NO	NO			
	Third	07/27/98	2.00	NO	NO			
	Fourth	10/14/98	2.00	NO	NO		•	
MW-15	First	02/19/98	3.00	NO	NO 3	team water (gal)		
1	Second	04/23/98	0.00	NO	NO			
ļ	Third	07/27/98	2.00	NO	NO			
<u>L</u>	Fourth	10/14/98	2.00	NO	NO			

ARCO	Pr	odu	cts (om	pany		Е.	-	Task Order	7	23	12	00				1/28		137		Ch	ain	of Custody
ARCO Fa	Division cility no	of Atla	intio/Rio		City (Facility		.10	200				unager nt)	CONTRACTOR AND ADDRESS.		Vo	no	lei	1/10	01	,	1	V 54	Laboratory Name
ARCO engineer Paul Scopple Telephone no. (Consultant) (40%) 453-7:00 Fax no. (Consultant) (40%) 453-7:00 (Consultant) (40%)										0(4	死)	437-95	76	Contract Number									
Consultan	t name	EM	CON	/'	200				(Consultant)	121	RIT	rw	100	dA	ve	5	20.	09	2 (A	95/31	(dilli)	Method of shipments
3	di.		Matrix			Preservation		CAN-	1		発電	3		OC.		16	100	DVOA	MOTO 100	DIAM	1868	200	Samplek
Sample I.D.	Lab no.	Container no	Soil	Water	Other	los	Acid	Sampling data	Sampley fra	ETEX BROVERA BOZO	BTEATPH 14-24	TFH Modified 801 Gat D. Desal D	OR and Grass	TPH EPA 418, USAI 500E	EPA 601/8010	EPA 6248240	EPA 8258270	TOLP Se Metalso VOAO	THICK STICK	Leed CryDHSCI Leed EPA 7420/7421CI			WIII deliver
m-13(1	Charles of	7	1.4	×		×	HCL	987	1325		×			阿拉	80	一提	100	1				25	Lowest's
mu 7/9	0.0000	Z	7.18	X	(2002)	X	201	TO S	1350		X		200			潜			應	蒙书			Possible
mp-14(=55,3502	2	10	X	1	X	375	86	1340		X			鉄			鹽		1	80	ALC:	P IP	Special QA/QC
mw-sli	A TOTAL CO.	2		X		X	强 :		14/18		Y		100	100		-120	100	-27	200	DP)			As
mu41	CO-School Co.	7	- 8	X		X	慰	250	1405	357	X,	13.00			35	-38			199				Normal
mu-61	125,000	2	- 12	X	100	×	100		1430		X	0.6	285	36	10 ×	FRE	183		463	W 14			
mw-151	101	2	- 19	X	B.	X	靈.	200	1525		X			1975	1013 Post-	200	1200		A SHOW	195		1 Mile 6 3 S S	Flemarks D. A. T. C.
mw-3(1	Bon Description	2	-07	X		K	X	4	1450		X		1000	(M)	198	1386	100		E0000	15/11	1985 0.007 2004 35	65A	KAI 6
mw/()	(,)	2	100	X		X	XY	100	15/0		X			製造						01:10			RAT & Z-40ml HCL VCAS
5280		1.7	- 9		2000	Acros de la	24	2983		100	122			100	Story	Sel	IL.	100	48	Sink-	4.00	初藥	
接		V-70			921	ALC:										微							# 20505 -171 COL Lab Number
- 4	1000 - 45	200			Aller-	- 18-3	(48.57	1000	AND DESCRIPTION		HEADER HEADER		The same	9.03		150	- 100	84	188	翼			Turnaround Time:
	1468	100	1/15		鑫	1-140	Phi-							48	7	75 55							Priority Rush 1 Business Day CI
		CONT.	100			100									(Fig.		層						Rush 2 Business Days
Conditio	n of sen	nple:	200	S. North			12/8			Tom	porah	III IBO	elyed:	P					有機				Expedited 5 Business Days
									Rec		by	oratory	P	7		Date		BII)\(\sum_{\text{Time}}\)	7/2 5/1 8	/04	- CAMPANAMAN CONTRACTOR AND CONTRACT	
Relingui	shed by	1			O CENT	7904	Date	17380	IIme		DIVE	7 110	Jacony	TO H			496	Nº A	DAME	1	Allica - By		

ARCO Products Company Division of Atlantic/Richfield Company Task Order No. 77312													of Custody													
	ARCO Facility no. OCCI City Son Lecondro (Consistent) Glen Vander veen														ME.	Laboratory Name										
ARCO engineer Paul Scaple Telephone no. (ARCO)										Tele	Telephone no (Gonsultant) (409) 437-996 (Consultant) (409) 437-996												Contract Number			
Consultant name EMCON (Consultant) /4										W. h. Hr. hew Wow Walnut Creek CA												. 1				
210	100	100	Matrix			Preservation		390	7075413	1 300	世紀				,	1	4	90	10/7000	Dia	3		Method of shipment + Sampler			
	100	Her no.	Soil	Water Othe		los	Acid	date	1	8008	Nu de	TPH Modified Bots Gae Cl. Darsel Cl.	4132 C	J/SIM SOSE	9010	8240	RZ70	Semi VOACT VO	MASSICI VOACI VOACI CAM Matais EPA 6010/7000 TTLCC1 STLCC1	DAN YAZON			will deliver.			
sample I.D	Lab no.	Container		1		1-30		Sarsping date	Sampling time	BTEX BICKERA BICCO	BTEATO EPA NASS	TPH Mox Gas Cl	Ol and C	TPH EPA 418	EPA 601/8010	EPA 6248240	EPA 625/8270	TOLP	10 SE	Land 0			Special Detection			
MV-9(1	5)	7	0	×	202	V	HCL	7-29-98	1255	Total Control	×			1		j je	-360	髓	機	80			Lowest			
HW-100	4	2		X		×	HCI	7-28-11		疆	X						10	100		27			Possible			
	×.	3			100	100	48	200	100		25				_	,	182	7 SE	題	7			Special OA/QC			
	9763		-	131	198		100		F 100	E EXES	Sec.	1000			-	39	1000	NOTE:	100	(4)			As			
	- 23		18	All and	Ship		198	1			ESS.	1000		Sale.		18		182	393	100		Med	Normal			
	160	-	- 9	120.00			1	7	FLAR				100				48	M	櫮	- 100		#	Remarks			
			1	10/1					100	I iii	100			Po-P			3	755	100	- 1		200	RAT 8			
				10.1	Y.				、沿廊		22	100					555		450		_	.000	RAT 8 Z-40m1 HCL			
		10		3/1	334	-		/65°	1000	- 33	100	300	200		\vdash	-	195		368	-	-	- 25	VOAS			
	100	- 67	-	(PA-	1	10	4	APT 19	HOLD THE	\$100 \$100		50	100E	SP::	0.00	100	3056		(内型)	-076	S- 15	142.0				
		100	1	To be	1	1	100	1.8	200		155					18	18	100		257	E 8	福	#20805-171-00 Lab Number			
		1.3		37%		- 10	一個。						200	and a			104		19	機能 7	11 11 11 11 11 11 11 11 11 11 11 11 11					
	776		100		185		100	TO SEE	島優		rio.			862		18	118		-88		11.75		Tumaround Time:			
1/61	123		- 15				107	400	10.15			100	1.0		-	-	1988	0.2		ich	X B		Priority Rush 1 Business Day			
18	103	1				40	100	The same	1000		The second			Sec.	-	1	1/20						Rush			
100	133	1 1	7.5	(0.1	事	2 3		1727-0	7398				相差				100				350	1028	2 Business Days Expedited			
Condition of sample:									Received by 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									7.AH	5 Rusiness Days							
7/2/19/0900									引題	Received by BINS CAS 7/28/98 104								045	Standard 10 Business Days							
Relinguished by Date Time								e Rac	pelved	by labo	cratory	10		53	Date	a Raceived by isboratory Date Time										