

Harris & Lee Environmental Sciences P. O. Box 8369 Santa Rosa, CA 95407

Voice (707) 766-9242 Fax (707) 766-8036

October 25, 2000

Robert S. Harris

(707) 571-8961 Voice (707) 571-8688 Fax

Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-8577

Soil and Groundwater Investigation Report Salle's Paint & Body Shop 1049 9th Avenue Oakland, CA 94606

Dear Mr. Huang:

Mr. Richard Ely, Registered Geologist, has been retained by Mr. Dick Cochran to prepare this Report of a soil and groundwater investigation near the location of a former waste-oil underground storage tank (UST) at 1049 9th Avenue, Oakland, California (site) (Figure 1). The Alameda County Health Care Services Agency (ACHCSA) in a letter to Mr. Cochran dated November 10, 1999 requested this investigation. The work has been done in compliance with the Revised Workplan dated 12/29/99, and with comments in a letter from the ACHCSA dated 3/28/00.

BACKGROUND

The site is owned by C&C Property Management Trust, and has been occupied by Salle's Paint & Body Shop since approximately 1981.

UST Removal Activities

Walker's Hydraulics Inc. of Concord, California removed a 280-gallon UST for waste oil from the site on July 20, 1994. Barney Chan of the ACHCSA witnessed the removal. With the exception of a small parking area on the west, the site is entirely occupied by a large building that fronts on the sidewalks to the east and north, and the property line on the south. The UST was located beneath the sidewalk on the 9th Avenue side of the building. The field activities and analytical results were presented in an Underground Storage Tank Removal Report dated August 3, 1994.

Touchstone Developments of San Francisco, California observed the tank removal and collected two soil samples from the excavation, and a four-fold composite sample from the spoil pile [WSP-1 (A-D)]. The two excavation samples were analyzed for Total Petroleum hydrocarbons as gasoline (TPHg) and TPH as diesel (TPHd) by Method 8015 (Modified); benzene, toluene, ethylbenzene and total-xylenes (BTEX) by Method 8020; Oil & Grease (O&G) by Methods 5520F; Semivolatile Organics (SVOCs) by method 8270; Halogenated Volatile Organics (HVOCs) by Methods 5030/8010; and Cd, Cr, Ni, Pb, and Zn by Method 6010.

Soil sample WO-1-8.5' was collected from 8.5-feet (ft) below ground surface (bgs) at the bottom of the excavation, approximately 2-ft below the former UST bottom. Soil sample RF-3' was collected from 3-ft bgs on the building side of the excavation, approximately 2-ft below the remote-fill piping that extended from inside the building to the UST. The analytical results are compiled in Table 1 (attached).

SCOPE OF WORK

The scope of work was designed to investigate shallow soil and ground water conditions near the former waste-oil UST. On September 8, 2000, three soil borings were constructed and converted into monitoring wells to assess the groundwater gradient and the impact to the shallow ground water. The soil borings were be drilled to approximately 20 feet depth. Figure 2 shows the locations of the soil borings. Prior to beginning the field investigation, a well permit was acquired from the Alameda County Water District, and an encroachment permit was acquired from the City of Oakland Public Works Agency.

Soil Borings & Monitoring Well Construction

Soil Borings

Before drilling commenced, Underground Service Alert was notified so that all buried utilities near the proposed boring locations were located. The soil borings were drilled with a truck mounted drill rig using an 8-inch outside diameter hollow stem auger. Augers and other drill tools had been steam cleaned before drilling to minimize the possibility of cross-contamination. The sampler was decontaminated between each sample drive. Relatively undisturbed soil samples were collected at approximately 5-ft intervals and at the saturated zone with a modified California split tube sampler fitted with three internal 2-inch diameter by 6-inch-long clean brass liners. When a boring reached the desired sampling depth, the sampler was lowered through the augers to the bottom of the hole. A 140-pound, rig-operated hammer was used to drive the sampler 1.5 feet ahead of the auger.

One soil sample from each interval was collected for laboratory analysis, sealed and capped with Teflon and plastic end caps, labeled, logged on a chain-custody form, and placed in a cold ice chest for transport to a state-certified laboratory. Logs were maintained to describe the subsurface conditions encountered during drilling. Subsoil conditions were classified using the Unified Soil Classification System and the Munsell Soil Color Charts.

All drill cuttings from the soil borings were stored onsite in DOT 17H 55-gallon drums and labeled as to content. Equipment decontamination wash/rinse water were stored on site in DOT 17H 55-gallon drums and labeled as to content.

Well Construction

The wells were screened to monitor the first water-bearing zone encountered. Fifteen feet of well screen was used in the wells, with approximately 4.8-ft of blank casing on top. The wells were constructed with flush-threaded, 2-inch diameter Schedule 40 PVC blank casing with 0.010-inch factory-milled screen size. Number #2/12 RMC sand was used in the annular space around the well screen to approximately one foot above the top of the screen. One foot of bentonite pellets was used to separate the sand from the sanitary surface seal (grout).

The grout (Portland cement with approximately three to five percent bentonite powder) was poured into the annular space above the bentonite pellets. The resulting seal was checked for shrinkage during well development.

The monitoring wells were locked with a cap and covered with a traffic-rated vault. The well ID was clearly marked on the cap and vault.

Well Development

The ground water monitoring wells were developed on September 12, four days after placement of the surface seal (grouting). Well development consisted of several cycles of surging (using a vented surge block) and over pumping of the well.

Prior to development, the depth to water and the total depth of the well were measured. Development continued until the turbidity of the water was less than five NTUs, or when ten well volumes had been removed, whichever occurred first.

The groundwater removed from the wells during development was stored on-site in DOT 17H 55-gallon drums. The drums were sealed and labeled with the contents and date.

Well Sampling

The wells were sampled by Environmental Sampling Services on September 29, 2000. Prior to sampling, each well was checked for the presence of free-phase hydrocarbons using an interface probe, clear bailer, or tape with product detection paste. Water level measurements were made using an electronic water level meter and noted on the sampling form (Appendix A).

Prior to sampling, each well was purged of a minimum of five well-casing volumes of water using a pre-cleaned sampling pump. Temperature, pH and electrical conductivity were measured at least three times during purging. Purging continued until these parameters had stabilized (i.e., changes in temperature, pH or conductivity did not exceed ±0.5 F, 0.1 or 5 percent, respectively).

The purge water was stored temporarily on-site in DOT 17H 55-gallon drums pending analytic results. The drums were labeled with the date, contents, and the field personnel initials, and telephone number.

Groundwater samples were collected from the wells with new disposable PVC bailers. For samples to be analyzed for VOCs a bottom emptying device was used to minimize loss of volatile components. The samples were labeled to include sample ID, date, preservative, and the field technician's initials. The samples were placed in polyethylene bags and in a chilled ice chest for transport under chain-of-custody to the laboratory.

Laboratory Analysis

Analytical Sciences, of Petaluma, California, a state-certified laboratory analyzed the samples using methods approved by the California Regional Water Quality Control Board (CRWQCB) and the Environmental Protection Agency (EPA). Soil samples from 5-, 10- and 15-ft bgs in each boring were submitted for analysis. The laboratory analyzed the soil and water samples for TPHg (EPA Method 8015 Modified); TPHd (EPA Method 8015 Modified); Oil & Grease (EPA Method 418.1); BTEX compounds and methyl-tert-butyl-ether (MTBE) (EPA Method 8020); Halogenated Volatile Organic Compounds (EPA Method 8010), and Semi-Volatile Organic Compounds (EPA Method 8270).

Site Survey

On September 22, 2000, Andreas Deak, a licensed land surveyor, surveyed the top-casing elevations and the elevations of the vault rims to Mean Sea Level with an accuracy of 0.001 foot. Nearby cultural features were included in the survey. A copy of the surveyor's report is included in Appendix B.

Disposal of Wastewater & Soil

Soil from the borings and water from equipment decontamination and well sampling was stored in DOT 17-H 55-gallon drums. The soil and water will be disposed of in accordance with State and local regulations.

HYDROGEOLOGY

The site is situated at an elevation of 18-feet (ft) above Mean Sea Level in an area of apartment buildings and small businesses. The Oakland Inner Harbor (part of San Francisco Bay) lies 1100 feet to the south. Late Pleistocene age alluvial fan deposits of the Temescal Formation underlie the site. These materials have moderate permeability and consist primarily of interfingering lenses of clayey gravel, sandy silty clay, and sand-silt-clay mixtures.

Groundwater

On September 29, 2000, the depth to static groundwater ranged from 10.92 to 12.07 ft (Table 2). The water table gradient and flow direction were 0.033 ft/ft and S30°E, respectively (Figure 3).

Subsurface Geology

Subsurface geology of the site is depicted on the logs of the three soil borings drilled to date (Appendix D).

Sandy clay was present in all three borings from the bottom of the fill beneath the sidewalk/road base to about 8.5- to 10.5-ft bgs. In MW-1, grayish-green discoloration from 6.0- to 10.5-ft bgs probably reflects a smear zone within the fluctuation range of the water table in the past when product was present. A faint product odor was observed when the soil samples were collected.

A medium-grained sand bed was present at around 11-ft bgs in all three borings. This bed varied in thickness from about 3 ft in MW-1 and MW-2, to 5-ft in MW-3. This sand bed constitutes a groundwater pathway during times when the water table is high.

Fine grained alluvium (clay, silt, and clayey to silty sand) underlies the medium-grained sand bed in all of the borings.

ANALYTICAL RESULTS

Laboratory analytical data sheets are included in Appendix C.

Soil

No gasoline-range compounds, diesel-range compounds, Oil & Grease, BTEX compounds, MTBE, halogenated volatile organic compounds (Method 8010), or semi-volatile compounds (Method 8270) were detected in the soil samples (Table 3).

Groundwater

No diesel-range compounds, Oil & Grease, MTBE, toluene, or semi-volatile compounds (Method 8270) were detected in the groundwater samples (Table 4).

In monitoring well MW-1, positive detections were reported for chlorobenzene (1.1 µg/l), TPHgasoline (280 μ g/l), benzene (1.4 μ g/l), ethyl benzene (2.5 μ g/l), and xylenes (4.5 μ g/l).

No positive detections were reported from wells MW-2 and MW-3. Well MW-3 is located directly down gradient from the former UST location.

RECOMMENDATION

Because no Method 8270 compounds were detected in any soil or water sample collected for this investigation, we recommend that analyses by this method be discontinued.

SCHEDULE

The next groundwater-monitoring event will take place in January 2001.

Sincerely,

Riam Willy Richard W. Ely RG #4137

2138 Green Hill Rd.

Sebastopol, CA 95472

707-824-4836

The following Figures, Tables and Appendixes are attached:

Figure 1 Figure 2 Figure 3	Site Location Map Site Plan Groundwater Elevation Map
Table 1. Table 2. Table 3. Table 4.	Excavation Soil Sample Analytical Results Groundwater Elevations Monitoring Well Soil Sample Analytical Results Groundwater Sample Analytical Results
Appendix A Appendix B Appendix C Appendix D	Well Sampling Data Sheets Surveyor's Report Laboratory Analytical Data Sheets Logs of Soil Borings

cc: Dick Cochran

RICHARD ELY REGISTERED GEOLOGIST

LOCATION MAP 1049 9th Avenue Oakland, California

1

REVISED DATE DATE **REVIEWED BY** JOB NUMBER December 1999 TRACE 165 R. Ely

Harris & Lee Environmental Sciences

SITE PLAN 1049 9th Avenue Oakland, California FIGURE 2

REVISED DATE

JOB REFERENCE Salle's Paint & Body Shop

REVIEWED BY

Richard Ely

DATE

October 2000

Flarris & Lee Environmental Sciences

29 September 2000 1049 9th Avenue

Oakland, California

3

JOB REFERENCE Salle's Paint & Body Shop REVISED DATE DATE **REVIEWED BY** Richard Ely October 2000

TABLE 1.

EXCAVATION SOIL SAMPLE ANALYTICAL RESULTS

SALLE'S PAINT & BODY SHOP

1049 9TH AVENUE, OAKLAND, CALIFORNIA

ANALYETE	WO-1-8.5' (mg/kg)	RF-3' (mg/kg)	WSP-1 (A-D) (mg/kg)
TPHg	590 ¹	34 ¹	200¹
TPHd	3400 ²	210 ²	NA
O&G	6000	770	NA
TPH	NA	NA	12,000
Benzene	0.91	ND<0.025	0.08
Toluene	2.8	0.16	0.31
Ethylbenzene	3.0	0.093	0.52
Xylenes	26	1.9	3.9
Napthalene	9	ND<3	NA
2-methyl- napthalene	12	ND<3	NA
Trichloroethene	0.016	ND<0.005	NA
Tetrachloroethene	0.058	ND<0.005	NA
Chlorobenzene	0.48	ND<0.005	NA
Cd	ND<0.5	ND<0.5	ND<0.5
Cr	42	54	34
Ni	37	35	31
Pb	13	16	110
Zn	23	31	58

Notes:

Samples collected on July 20, 1994 mg/kg = Milligrams per kilogram

1 = Does not match typical gasoline pattern. Pattern is typical of mineral spirits.

2 = Does not match typical gasoline pattern. Pattern is typical of a mixture of mineral spirits and motor oil.

NA = Not analyzed.

ND = Not detected above the indicated concentration.

TABLE 2
GROUNDWATER ELEVATIONS

SALLE'S PAINT & BODY SHOP,

$1049 \, 9^{\mathrm{TH}}$ AVENUE, OAKLAND, CALIFORNIA

Well ID	Date	Top of Casing Elevation*	Depth to Groundwater	Groundwater Elevation*	Gradient	
MW-1	9/29/00	18.76	11.35	7.41	0.033/\$30°E	
MW-2	9/29/00	17.77	10.92	6.85	0.033/S30°E	
MW-3	9/29/00	18.02	12.09	5.93	0.033/S30°E	

Note: * = Feet, Mean Sea Level

TABLE 3
MONITORING WELL SOIL SAMPLE ANALYTICAL RESULTS
SALLE'S PAINT & BODY SHOP, 1049 9THAVENUE, OAKLAND, CALIFORNIA

Sample ID	Date	Oil & Grease	TPH¹ Diesel	TPH Gasoline	BTEX ² Compounds	MTBE ³	Chlorinated Solvents ⁴	Semi- Volatile Organics ⁵
		<u>I </u>	·					
MW-1-6'	9/8/00	<10 ⁶	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-1-11'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-1-16'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
		<u> </u>	<u> </u>	<u> </u>				
MW-2-6'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-2-11'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-2-16'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
		<u> </u>	 					
MW-3-6'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-3-11'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND
MW-3-16'	9/8/00	<10	<5.0	<1.0	<0.005	<0.025	<1.0	ND

Notes:

- 1 TPH = Total Petroleum Hydrocarbons
- 2 BTEX = benzene, toluene, ethyl-benzene and xylenes; reporting limit for xylenes is 0.015 mg/kg.
- 3 Methyl Tert-Butyl Ether
- 4 EPA Method 8010
- 5 EPA method 8270; reporting limits are 0.33 and 1.6 mg/kg
- 6 All results are in milligrams per kilogram (mg/kg)

TABLE 4

GROUNDWATER SAMPLE ANALYTICAL RESULTS

SALLE'S PAINT & BODY SHOP, 1049 9TH AVENUE, OAKLAND, CALIFORNIA

Sample ID	Date	Oil & Grease	TPH ¹ Diesel	TPH Gasoline	Benzene	Toluene	Ethyl Benzene	Xylenes	MtBE ²	Chloro- benzene ³	Semi-Volatil Organics ⁴
MW-1		3 m3 .1006		200	1.4	ND<0.5	2.5	4,5	ND<2.5	1.1	ND
MW-1	9/29/00	ND ⁵ <100 ⁶	ND<100	280	1.4	110 -0.5					
MW-2	9/29/00	ND<100	ND<100	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<2.5	ND<0.5	ND
101 00 -2	7127100								170 A 5	ND-05	ND
MW-3	9/29/00	ND<100	ND<100	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<2.5	ND<0.5	ND
				İ	<u>i</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	

Notes:

- TPH = Total Petroleum Hydrocarbons 1.
- Methyl tert-Butyl Ether Other EPA Method 8010 Compounds are ND 3.
- EPA method 8270
- ND = Not Detected at or above the reporting limit
 All results in micrograms per liter (µg/l)

APPENDIX A

WATER QUALITY SAMPLE LOG SHEETS

FIELD ACTIVITY REPORT GROUNDWATER MONITORING 1049-9th AVENUE OAKLAND, CALIFORNIA SEPTEMBER 2000

ESS Personnel: Stephen Penman and Jacqueline Lee

Duration of Activities: September 29, 2000

Decontamination Procedures

All downhole equipment was cleaned with a solution of Liqui-Nox® laboratory-grade detergent and potable water, rinsed with potable water, followed by a final rinse with distilled water.

Field Equipment Calibration

All field measurements were performed in accordance with the instruments' calibration and operating procedures. Instrument calibrations were performed on a daily basis. Field measurements included pH, Specific Conductance, Turbidity, and Temperature. Physical characteristics such as Color/Odor were also recorded.

Water Level and Well Depth Measurements

Water level and well depth measurements were performed with a Solinst® electrical water level indicator. All measurements were referenced to a surveyor's mark.

Well Evacuation Procedures

Three monitoring wells were purged using new disposable PVC bailers. After removal of three casing volumes and stabilization of groundwater quality parameters, each monitoring well was sampled for Total Petroleum Hydrocarbon (Gasoline)/BTEX and MTBE (EPA Method 8015/8020 Modified), Halogenated Volatile Organics (EPA 8010), Semi-Volatile Organic Compounds (EPA Method 8270), Total Petroleum Hydrocarbon-Diesel (EPA Method 8015 Modified), and Oil & Grease (EPA Method 418.1).

Sample Handling

Analytical Sciences of Petaluma, California supplied all sample containers and performed required analyses. Samples were relinquished on September 29, 2000.

Five 40-mL clear vials with Hydrochloric Acid were collected for TPH (Gas/BTEX, and MTBE) and Halogenated Volatile Organics.

Four 1-Liter amber glass containers (non-preserved) were collected for Semi-Volatile Organic Compounds, TPH-Diesel, and Oil & Grease.

All samples were placed in bubblewrap protective material, sealed in Ziploc® bags, and stored in a chilled ice chest for shipment.

QA/QC

QA/QC samples were not requested for this project.

Comments

All derived groundwater and decontamination water were composited into an existing 55-gallon drum. Approximately 20 gallons were generated during this sampling event.

Jacqueline Lee

President

Enclosure

Water Sample Log Sheets

Chain of Custody

WA1	ΓER	QUALIT	Y SAMPLE L	OG SH	EET	WELL IDEN	TIFICATI	ON: MW-1	DATE: 9/29/00			
Proje	ct N	ame: <u>104</u>	9 9th Avenue	- Oaklan	<u>ıd</u>	Project Conta	ct: Richar	d Ely				
Wea	ther:	Close 3	from more	Were/								
						Well Type:	Stai	inless Steel	Other:			
		_	Per / No Bolt	Size	124	Type of lock	/ Lock nun	nber: <u>Pol</u>	3)NO			
			mments:				 					
									Pump Other:			
	•	_	_			Bailer Line: N	_					
					-	Tap Water D						
						Tap Water D						
						Baile Grund						
						Spec. Cond. I						
									f Test Other:			
				4					ppm @ Well Head			
						ter Level Prior						
									V) = <u>4,02.</u> (Gals.)			
۲	K"= ().163(2" w	ell)] "K" = 0.6			02(5" well) "K			= 2.01(8" Well)			
 	·				ARTER W	Specific		<u> </u>				
Da	ite	Time	Discharge (gallons)	рН	Temp. (°C)	Conductance mS (uS)	Turbidity (NTU's)	Color	Comments			
07	(gallons) (°C) ms (us) (NTO's) 7/24/00 (1:59 1.0 6.55 22.4 505 762 14 Brown) for souls											
7/29	8	11:59	1.0	6,77	24.9	503	464	Lt December	than Souds			
7/29	90	12:01	2.0	6.50	21.4	398.7	949	Lt. Decusy)	fic suds/clor			
7/29	00	12:01	2.0	6.50	21.4	398.7		T				
7/29		12:03	2.0 3.0	6.50 6.52	21.0	398.7 391.7	949	11	file stude / oter			
7/29		13:01 13:03	2.0 3.0 4.0	6.50 6.53	21.0 20.7	398.7 391.7 399.6	949 1047 1038	1	file stude/ eder			
7/28		12:03	2.0 3.0	6.50 6.52	21.0	398.7 391.7	949	10	file stude/ eder			
7/29		13:01 13:03	2.0 3.0 4.0	6.50 6.53	21.0 20.7	398.7 391.7 399.6	949 1047 1038	10	file stude/ eder			
7/29		13:01 13:03	2.0 3.0 4.0	6.50 6.53	21.0 20.7	398.7 391.7 399.6	949 1047 1038	10	file stude/ eder			
7/29		13:01 13:03	2.0 3.0 4.0	6.50 6.53	21.0 20.7	398.7 391.7 399.6	949 1047 1038	10	file stude/ eder			
7/2*		13:01 13:03	2.0 3.0 4.0	6.50 6.53	21.0 20.7	398.7 391.7 399.6	949 1047 1038	10	file stude/ eder			
	/	13:00 13:04 13:04 13:01	2.0 3.0 4.0 5.0	6.50 6.53 6.55	21.0 20.7	398.7 391.7 399.6 4(0.2	1047 1038 974	10 10 10 10 10 10 10 10 10 10 10 10 10 1	file sands/edor			
Tota	I Dis	(2:0) (2:0% (2:0% (2:0%	2.0 3.0 4.0 5.0	6.50 6.53 6.55	21.4 21.0 20.7 20.7	398.7 391.7 399.6 4(0.2	949 1047 1038 974	11 III III III III III III III III III	file stands/edor			
Tota	I Dis	(2:0) (2:06 (2:06 charge:_of disposa	2.0 3.0 4.0 5.0	6.50 6.53 6.55 allons d water:	21.4 21.0 20.7 20.7	398.7 391.7 399.6 4(0.2 Casing Volum Drum(s) Pol	949 1038 974 nes Remo	ved:	fite sands/eder 11 11 11 11 23 3.73 System Other:			
Tota Meth Date	I Dis	(2:01 (2:03 (2:04 (2:06 charge:_of disposa	2.0 3.0 4.0 5.0 gal of discharge	6.50 6.53 6.55 6.55	21.4 21.0 20.7 20.7 20.7 Analysi	398.7 391.7 399.6 4(0.2 Casing Volum Drum(s) Pol	949 1038 934 enes Remo by Tank Tank Tank Tank Tank Tank Tank Tank	ved:	3.73 system Other: E & Halogenated VOC's			
Tota Meth Date (5 V	I Dis	(2:0) (2:04 (2:06 charge: _ of disposa ie Sample w/Hcl) a	2.0 3.0 4.0 5.0 5.0 gal of discharge ed:121/00 @	6.50 6.53 6.55 6.55 allons d water:	21.4 21.0 20.7 20.7 20.7 Analysi rease, Ser	398.7 391.3 399.6 4(0.2 Casing Volum Drums) Pol s/No. of Bottle	1047 1038 1038 1038 1038 1038 1038 1038 1038	ved:	3.73 system Other: E & Halogenated VOC's			
Tota Meth Date (5 V	I Dis	(2:01 (2:03 (2:04 (2:06 (a:06) charge:_ of disposa ie Sample (w/Hcl) a	2.0 3.0 4.0 5.0 5.0 gal of discharge ed:121/00 @	6.50 6.53 6.55 6.55 6.55 6.55 6.55	21.4 21.0 20,7 20,7 20,7 Analysi rease, Ser Equipmer	398.7 391.3 399.6 4(0.2 Casing Volum Drums) Pol s/No. of Bottle	1047 1038 1038 1038 1038 1038 1038 1038 1038	ved:	it			
Tota Meth Date (5 V	I Dis	(2:01 (2:03 (2:04 (2:06 (a:06) charge:_ of disposa ie Sample (w/Hcl) a	2.0 3.0 4.0 5.0 sl of discharge ed: 12100 @ nd TPH Diese	6.50 6.53 6.55 6.55 6.55 6.55 6.55	21.4 21.0 20,7 20,7 20,7 Analysi rease, Ser Equipmer	398.7 391.3 399.6 4(0.2 Casing Volum Drums) Pol s/No. of Bottle	1047 1038 1038 1038 1038 1038 1038 1038 1038	ved:	it			
Tota Metr Date (5 V QA/0	I Dis	charge: _ of disposa ie Sample w/Hcl) a	2.0 3.0 4.0 5.0 sal of discharge ed:12100 @ nd TPH Diese	6.50 6.53 6.55 6.55 d water:	21.4 21.0 20,7 20,7 20.7 Analysi rease, Ser Equipmen	398.7 391.3 399.6 4(0.2 Casing Volum Drums) Pol s/No. of Bottle	1030 1030 1030 1030 1030 1030 1030 1030	ved:	it			

WA:	TER	QUALIT	TY SAMPLE L	OG SH	IEET	WELL IDEN	TIFICATI	ON: MW-2	DATE:9/29/00
		· ·	19 9th Avenue		_	Project Conta	ct: Richa	rd Ely	
Wea	ther	Clear	Sunny and	worm	^				·
			3" 4" 5"				_		_
			Yes No Bolt	Size	9"	Type of lock	/ Lock nur	nber: Do	4bm
			mments:						
									Pump Other:
			New / Cleaned						Jedicated
			g Pump: NA						
			g Bailer (NA)						Othor
			Disp. Teflon						
			o.: 217254 /						f Test Other:
Meth	od t	o Measur	e Water Level:	 Solinst	Serial No.	Spec.Colid. w	reter Calit PID R	eading:	A_ppm @ Well Head
			art (DTW):						
									V) = <u>1,53</u> (Gals.)
			rell) "K" = 0.65						
				FIELD \	WATER Q	UALITY PARA	METERS	,	•
					_	Specific			
Da	ate	Time	Discharge (gallons)	pH	Temp. (°C)	Conductance mS (uS)	Turbidity (NTU's)	Color	Comments
9/29	60	12:55	1.0	7.46	22.2	583	15(cloud! Ut. Brown	
		(2:57	3.0	7,32	21.4	589		Lt. Bawn	Frac Sads
		(2:59		i i			Ĭ	VI	1
	\vdash		0,2	7,24	اراد	528	708	11	
	⊩	12:01	4.0	7.27	1	529	633		
	V_	13:03	5.0	7,26	20.6	537	५०७	٤١	<u> </u>
			···		! 				
Tota	I Dis	charge:	50 ga	llons		Casing Volum	es Remo	ved: 3	.31
Meth	nod c	of disposa	l of discharged	water:	55 Gallon	Drum(s) Pol	y Tank T	reatment S	ystem Other:
									E & Halogenated VOC's
		•	nd TPH Diesel						
1			_@	as an	Equipmen	t Blank Dupl	icate MS	S/MSD Lab	Split Field Blank
Com	ımen	ıts:							
					7 1.0	······································			
Sam	pled	By: Jack	i Lee and Step	hen Per	ıman Sigi	nature(s):	J-K-V	/2	W/

Project Name: 1049 9th Avenue - Oakland Weather: Light Avenue - Oakland Bailer Centrifugal Pump GrundFos Redi-flow Pump Other: Discretations / Comments: Purge Method: Teffor@PVC Disposable Bailer Centrifugal Pump GrundFos Redi-flow Pump Other: Pump Lines No New / Cleaned / Dedicated Bailer Line: No New / Cleaned / Dedicated Method of Cleaning Pump Akconox Liqui-nox Tap Water DI Rinse Other: Sampling Method: Disp. Teffor Bailer Qisp. PVC Bailey GrundFos Redi-flow Pump Other: Pl Meter Serial No: 21724 / 330089 Spec. Cond. Meter Calibration: Gell Tesp Other: Method to Measure Water Level: Solinst Serial No: 13137 P.I.D. Reading: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 Water Level Prior To Sampling: Mapping Well Head Water Level at Start (DTW): 1249 / 13209 / 13	WATER	QUALIT	Y SAMPLE L	OG SH	EET	WELL IDEN	TIFICATION TO SERVICE STATEMENT OF THE PROPERTY OF THE PROPERT	ON: MW-3	DATE:9/29/00
Weather: Clear Sum And I. Well Description 23 3" 4" 5" 6" Other: Well Type (PVC) Stainless Steel Other: Is Well Secretary (15 of No. Bolt Size 1/9" Type of lock / Lock number: Size 1/9" Type of lock number: Size 1/9" Typ					•	Project Contac	ct: <u>Richar</u>	d Ely	
Is Well Secured? (1) No Bolt Size 1/9" Type of lock / Lock number:	Weather:	Clear.	Summy and	hat.					
Observations / Comments: Purge Method; Teffort VC Disposable Bailer) Centrifugal Purp GrundFos Redi-flow Purp Other: Purp Lines New / Cleaned / Dedicated Bailer Line: NA New) / Cleaned / Dedicated Method of Cleaning Purp Dedicated Method of Cleaning Bailer New Alconox Liqui-nox Tap Water DI Rinse Other: Method of Cleaning Bailer New Alconox Liqui-nox Tap Water DI Rinse Other: Method of Cleaning Bailer New Alconox Liqui-nox Tap Water DI Rinse Other: Sampling Method: Disp. Teffon Bailer Disp. PVC Bailer GrundFos Redi-flow Purp Other: PH Meter Serial No.: 217254 / 330083 Spec. Cond. Meter Serial No.: 26H0203ABV AE Dater/Time Calibrated New Yellow Spec. Spec. Cond. Meter Calibration: Self Tesp Other: Method to Measure Water Level: Solinst Serial No.: 21375 P.I.D. Reading: Ma ppm @ Well Head Water Level at Start (DTW): 2.11 (ft. of water) x "K" = 1.32 (Gals./CV) x 3 (No. of CV) = 2.70 (Gals.) TO = 10.20 163(2" well) "K" = 0.653(4" well) "K" = 1.02(5" well) "K" = 1.46(6" well) "K" = 2.61(6" well) FIELD WATER QUALITY PARAMETERS Date Time Discharge pH Temp. Specific Conductance Turbidity Color Comments (c) ms (ii) (NTU's) 12.72						Well Type P	<u>'VC</u> J Stai	nless Steel	Other:
Purge Method: Teflor PVC Disposable Baile Ocentrifugal Pump Grund Fos Redi-flow Pump Other:			-	Sizel	19."	Type of lock /	Lock nun	uper: <u>1291</u>	אַט
Pump Lines New / Cleaned / Dedicated Method of Cleaning Pump (New Alconox Liqui-nox Tap Water DI Rinse Other: Method of Cleaning Bailer (New Alconox Liqui-nox Tap Water DI Rinse Other: Sampling Method: Disp. Teflon Bailer (New Alconox Liqui-nox Tap Water DI Rinse Other: PH Meter Serial No.: 217254 / 330089 Spec. Cond. Meter Serial No.: 66H0203AP AE Date/Time Calibrated (1952									
Method of Cleaning Pump. Alconox Liqui-nox Tap Water DI Rinse Other: Method of Cleaning Bailer. N. Alconox Liqui-nox Tap Water DI Rinse Other: Sampling Method: Disp. Teflon Bailer (Disp. PVC Baile) GrundFos Redi-flow Pump Other: pH Meter Serial No.: 217254 / 330089	Purge Me	thod: Te	flor PVC Dispo	osable B	ailer Cent	trifugal Pump	GrundFos	Redi-flow i	odicated
Method of Cleaning Bailer. No. Alconox Liqui-nox Tap Water DI Rinse Other: Sampling Method: Disp. Teflon Bailer (155). PVC Baile) GrundFos Redi-flow Pump Other: PH Meter Serial No.: 217254 / 330089 Spec. Cond. Meter Serial No.: 66H0203AD AE Date/Time Calibrated: 676 (155). DVC Dw2 25°C Spec. Cond. Meter Calibration: 62lf Test Other: Method to Measure Water Level: Solinst Serial No.: 21352 P.I.D. Reading: Mapping Well Head Water Level at Start (DTW): 238 12.0 Water Level Prior To Sampling: 18.00 TD 2010 1574 (DTW): 8.11 (ft. of water) x "k" = 1.32 (Gals. /CV) x 3 (No. of CV) = 3.76 (Gals.) K*=0.163(2" well) "K" = 0.653(4" well) "K" = 1.02(5" well) "K" = 1.46(6" well) "k" = 2.61(6" well) FIELD WATER QUALITY PARAMETERS Date Time Discharge (gallons) PH Temp. (Conductance Turbidity (NTU's) (NTU's) [217									
Sampling Method: Disp. Teflon Bailer (Disp. PVC Baller) GrundFos Redi-flow Pump Other: pH Meter Serial No.: 217254 (330089) Spec. Cond. Meter Serial No.: 26H0203AP/ AE Date/Time Calibrated: (1956 Other: Method to Measure Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head Water Level: Solinst Serial No.: 21752 P.I.D. Reading: MA ppm @ Well Head P.I.D. Reading: MA ppm @									
Specific			_						
Date/Time Calibrated Pack									
Method to Measure Water Level: Solinst Serial No.: 21352 P.I.D. Reading: M ppm @ Well Head Water Level at Start (DTW): 2.64 12.0] Water Level Prior To Sampling: 18.00									
Water Level at Start (DTW): 2.0 Water Level Prior To Sampling: 8.00 TD = 20.20 1.1 (ft. of water) x "K" = 1.32 (Gals./CV) x 3 (No. of CV) = 1.70 (Gals.) Telephone Time Conductance Time Discharge (gallons) PH Temp. Conductance Turbidity Color (NTU's) Total Discharge: 5.0 G.81 20.8 G.22 G.80 G.									
Total Discharge:									
Total Discharge G.O. gallons Casing Volumes Removed: 3.78 Comments	TD = 20 26	veral Sig	(DTW) = 8.11	(ft.of w	: "Vvater) x "K"	= 1.32 (Gals./	, o Sampi CV) x 3		
Date Time Discharge (gallons) PH Temp. Conductance ms (us) (NTU's) Color Comments	K"= C	.163(2" w	ell) "K" = 0.65	_ () "K" = 1.	02(5" well) "K	" = 1.46(6"	well) "k" =	= 2.61(8" well)
Date Time Discharge (gallons) PH Temp. (°C) Conductance ms (us) Turbidity (NTU's) Color (NTU's)		· · ·							
(gallons)					_				0
13:25	Date	Time	_	pΗ		ms (us)		Color	Comments
	9/29/00	/3:23		6.91		784	-		
	(6.82			1		
Total Discharge:								61	
Total Discharge:	 				_	,		11	
Total Discharge: gallons	11/								
Method of disposal of discharged water: 55 Gallon Drums) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:	<u> </u>	13:30	50	6.f8	20.1	605	SIA		
Method of disposal of discharged water: 55 Gallon Drum's) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:			· ·				ļ	<u> </u>	
Method of disposal of discharged water: 55 Gallon Drum's) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:									
Method of disposal of discharged water: 55 Gallon Drums) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:				1					
Method of disposal of discharged water: 55 Gallon Drum's) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:		-							
Method of disposal of discharged water: 55 Gallon Drum's) Poly Tank Treatment System Other: Date/Time Sampled: 12100 @ 13.33 Analysis/No. of Bottles: TPHq, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:	Total Dis	chame.	60 na	lions	L	Casino Volum	nes Remo	ved: 3.	7-8
Date/Time Sampled: 12100 @ 13:33 Analysis/No. of Bottles: TPHg, BTEX, MTBE & Halogenated VOC's (5 VOC's w/Hcl) and TPH Diesel/Oil & Grease, Semi-Volitile Organics (4-1 liter glass ambers N/P). QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:					55 Gallon				
QA/QC: @ as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments:	Date/Tim	e Sample	ed: <u>9/29/00_@</u>	/3:33	Analysi	s/No. of Bottle:	s: <u>TPHq, i</u>	BTEX, MTB	E & Halogenated VOC's
Comments:									
					Equipmen	nt Blank Dupl	licate MS	S/MSD Lat	Split Field Blank
Sampled By: Jacki Lee and Stephen Penman Signature(s):	Commen	ts:				·			
Sampled By: Jacki Lee and Stephen Penman Signature(s):	<u> </u>								
	Sampled	Bv: Jack	i Lee and Ster	hen Per	ıman Sio	nature(s)	J. J.	2	Soll

Analytical Sciences
P.O. Box 750336, Peteluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128
Fax (707) 769-8093

CLIENT INFORMATION

COMPANY NAME: HARRIS & LEE ENVIRONMENTAL SCIENCES

SANTA ROSA, CA 95407

ADDRESS: P.O. Box 8369

CONTACT: RICHARD ELY

PHONE#: (707) 571-8961 FAX #: (707) 571-8688

CHAIN OF CUSTODY

1.am	DOA MOT	Maree	De .

	CLIENT'S PROJECT NAME: 10 CLIENT'S PROJECT NUMBER:	149 9th Avenue Oaklers
TURNARO	UND TIME (check one)	COOLER TEMBERATURE
MOBILE LAB		ICED °C
SAME DAY	24 Hours	
48 Hours	72 Houns	COC
5 DAYS	NORMAL X	PAGE OF
		<u></u>

												AN	AL.YS!	3						
ITEM	CLIENT SAMPLE I.D.	DATE SAMPLED	TIME	MATRIX	CONT.	PREBY, YESMO	TPWCAGNTEX A NTME EPA OD DATEMO	TPH CHESSEL EPA BOSEM	CXYGENATED FUEL ADOTHYES EPA ERION	WOLATILE HYDROCARBONS EPA \$260	CHLOPHIATED BELLEGIE EPA SPIES	1787H 404 6850F	SEAL-VOLATALE HYDROCARBONS SPA SETS	TOTAL LEAD	S LUFT NETALS	CAM IT METALS	OIL & GREARE EPA 418.1		COMMENT'S	LAB Sample #
1	mw-i	9/29/60	D.E	Work	9	Yes	X	X			X		X				X			
2	mw-2	9/29/00	13:05	ww	9	40	X	X			X		X				X			
•	mw-3	00/PS	333	سطور	9	yes	X	メ			X		X				X			
4	•																			
5																				
•																				
7								,												
•																				
10																				
11																				
12								A-0-00		****										

		SIGNATU	RES /		
RELINGUENED BY:	9/29/00 BATE	4:26 pm	RECORDO BY LANGOTORY:	9/14 00 DATE	9:26 pm

APPENDIX B

SURVEYOR'S REPORT

APPENDIX C

LABORATORY ANALYTICAL DATA SHEETS

Analytical Sciences

Report Date: September 25, 2000

Harris & Lee Environmental Sciences P.O. Box 8369 Santa Rosa, CA 95407 ATTN: Richard Ely

LABORATORY REPORT

Project Name:

1049 9th Avenue, Oakland

Lab Project Number:

0090807

This 21 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

TPH Gasoline in Soil

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00854	MW-1-6'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/18/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 V
 No

Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00855	MW-1-11'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/18/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00856	MW-1-16'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/18/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00858	MW-2-6'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/19/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00859	MW-2-11	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/19/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 No

Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00860	MW-2-16'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/19/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00862	MW-3-6'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/20/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00863	MW-3-11'	TPH/Gasoline	ND	1.0
		MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/20/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00864	MW-3-16'	TPH/Gasoline	ND	1.0
	2 72	MTBE	ND	0.025
		Benzene	ND	0.005
		Toluene	ND	0.005
		Ethyl Benzene	ND	0.005
		Xylenes	ND	0.015

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/20/00
 QC Batch #:
 1413

 Date Received:
 09/08/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 No

TPH Diesel in Soil

Lab # 00854	Sample ID MW-1-6'	Analysis TPH/Diesel	Result (mg/kg) ND	RDL (mg/kg) 5.0
Date Sampled: Date Received: Holding Time M	09/08/00	Date Extracted: 09/14/00 Date Analyzed: 09/14/00	QC Batch #: 14 Method: EP	02 A 3550/8015M
Lab # 00855	Sample ID MW-1-11'	Analysis	Result (mg/kg) ND	RDL (mg/kg) 5.0

Date Sampled: Date Received: Holding Time Mo	09/08/00	Date Extracted: Date Analyzed: No	09/14/00 09/14/00	QC Batch #: Method:	1402 EPA 3550/8015M

Lab # 00856	Sample ID MW-1-16'	Analysis TPH/Diesel	Result (mg/kg) ND	RDL (mg/kg) 5.0
Date Sampled: Date Received: Holding Time Me	09/08/00 09/08/00 tt: Yes 🗸	Date Extracted: 09/14/00 Date Analyzed: 09/14/00 No		402 PA 3550/8015M

Holding Time Met:

Yes

No

Lab# Sample ID **Analysis** Result (mg/kg) RDL (mg/kg) 00858 MW-2-6' TPH/Diesel ND Date Sampled: 1402 09/08/00 Date Extracted: 09/14/00 QC Batch #: Method: EPA 3550/8015M Date Received: 09/08/00 Date Analyzed: 09/14/00 Holding Time Met: Yes No

Analysis Result (mg/kg) RDL (mg/kg) Lab # Sample ID 5.0 00859 ND MW-2-11' TPH/Diesel Date Extracted: _ QC Batch #: Date Sampled: 09/08/00 09/14/00 1402 Method: EPA 3550/8015M Date Received: Date Analyzed: 09/14/00 09/08/00 Holding Time Met: Yes **✓** No

Result (mg/kg) Lab# Sample ID **Analysis** RDL (mg/kg) 00860 MW-2-16' TPH/Diesel ND QC Batch #: 1402 Date Sampled: 09/08/00 Date Extracted: 09/14/00 Method: EPA 3550/8015M Date Received: 09/08/00 Date Analyzed: 09/14/00

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00862	MW-3-6'	TPH/Diesel	ND	5.0
	09/08/00	Date Extracted: 09/14/00	QC Batch #:140	
Date Received: Holding Time Me	09/08/00 t: Yes ✔ No	Date Analyzed: 09/14/00	Method: EP	A 3550/8015M
notating time we	105 140			
Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00863	MW-3-11'	TPH/Diesel	ND	5.0
Date Sampled:	09/08/00	Date Extracted: 09/14/00	QC Batch #:140	
Date Received: Holding Time Me	09/08/00 t: Yes ✔ No	Date Analyzed: 09/14/00	Method: <u>EP</u>	A 3550/8015M
Holding Time IVIE	nt. Yes <u>*</u> No		······································	
lo				
Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00864	MW-3-16'	TPH/Diesel	ND	5.0
Date Sampled:	09/08/00	Date Extracted: 09/14/00	QC Batch #:140	
Date Received:	09/08/00	Date Analyzed: 09/14/00	Method: EP	A 3550/8015M
Holding Time Me	et: Yes 🔽 No	<u></u>		

Chlorinated Solvents in Soil

Lab #	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00854	MW-1-6'	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
			ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene 1,2-dichlorobenzene	ND	1.0
			00 0 0	1. 1.404

Date Sampled: 09/08/00 Date Received: 09/08/00	Date Analyzed:	09/11/00 EPA 5030/8010	QC Batch #: 1404
Holding Time Met: Yes	No		

Lab #	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00855	MW-1-11'	dichlorodifluoromethane	ND	1.0
		chioromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0
Date Sample Pate Receive	ed: 09/08/00	Date Analyzed: 09/11/00 EPA 5030/8010	QC Batch #	#: <u>1404</u>

Lab #	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00856	MW-1-16'	dichlorodifluoromethane	ND	1.0
	10.00	chloromethane	ND	1.0
		vinyl chloride	NĎ	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachioroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0

 Date Sampled:
 09/08/00
 Date Analyzed:
 09/11/00
 QC Batch #:
 1404

 Date Received:
 09/08/00
 Method:
 EPA 5030/8010

 Holding Time Met:
 Yes
 ✓
 No

Lab#	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00858	MW-2-6'	dichlorodifluoromethane	ND ND	1.0
	11111 2 0	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachioroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0

Date Sampled: _ Date Received:				•	09/11/00 EPA 5030/8010	QC Batch #:	1404
Holding Time Met	: Yes	~	No				

Lab #	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)	
00859	MW-2-11'	dichlorodifluoromethane	ND	1.0	
		chloromethane	ND	1.0	
		vinyl chloride	ND	1.0	
		bromomethane	ND	1.0	
		chloroethane	ND	1.0	
		trichlorofluoromethane	ND	1.0	
		1,1-dichloroethene	ND	1.0	
		methylene chloride	ND	1.0	
		trans-1,2-dichloroethene	ND	1.0	
		1,1-dichloroethane	ND	1.0	
		cis-1,2-dichloroethene	ND	1.0	
		chloroform	ND	1.0	
		1,1,1-trichloroethane	ND	1.0	
		carbon tetrachloride	ND	1.0	
		1,2-dichloroethane	ND	1.0	
		trichloroethene	ND	1.0	
			1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0	
		dibromomethane	ND	1.0	
		trans-1,3-dichloropropene	NĐ	1.0	
		1,1,2-trichloroethane	ND	1.0	
		tetrachloroethene	ND	1.0	
		dibromochloromethane	ND	1.0	
		chlorobenzene	ND	1.0	
		1,1,1,2-tetrachloroethane	ND	1.0	
		bromoform	ND	1.0	
		1,1,2,2-tetrachloroethane	ND	1.0	
		1,2,3-trichloropropane	ND	1.0	
		bromobenzene	ND	1.0	
		chlorotoluene	ND	1.0	
		1,3-dichlorobenzene	ND	1.0	
		1,4-dichlorobenzene	ND	1.0	
		1,2-dichlorobenzene	ND	1.0	
	- J. 00/00/00	Data Analismadis 00(44/00	OC Batah	1404	

Date Sampled:	09/08/00		Date A	nalyzed:	09/11/00	_ QC Batch #: _	1404
Date Received:	09/08/00			Method:	EPA 5030/8010		
Holding Time Me	et: Yes	<u> </u>	No				

Lab#	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg
00860	MW-2-16'	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chioroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	NĎ	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	NĐ	1.0
		1,2-dichloroethane	ND	1.0
	trichloroethene	ND	1.0	
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0
Date Sample	ed: 09/08/00	Date Analyzed: 09/11/00	QC Batch #	±· 1404

Date Sampled:	09/08/00	Date An	alyzed:	09/11/00	QC Batch #:	1404
Date Received:	09/08/00	<u> </u>	Method:	EPA 5030/8010		
Holding Time Me	et: Yes	No				

Lab#	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00862 MW-3-6'		dichlorodifluoromethane	ND ND	1.0
	IAI AA -O-O	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0
Date Sampl		Date Analyzed: 09/11/00 Method: EPA 5030/8010	QC Batch	#: 1404

Page 14 of 21

Yes <u>✓</u> No _

Holding Time Met:

Lab #	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00863 MW-3-11'		dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0
Date Sampl		Date Analyzed: 09/11/00	QC Batch	#: <u>1404</u>
Date Receive Holding Tim		Method: <u>EPA 5030/8010</u> No		

Page	15	of	2	1
------	----	----	---	---

Lab#	Sample ID	Compound Name	Result (ug/kg)	RDL (ug/kg)
00864	MW-3-16'	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		bromomethane	ND	1.0
		chloroethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene	ND	1.0
		1,1-dichloroethane	ND	1.0
		cis-1,2-dichloroethene	ND	1.0
		chloroform	ND	1.0
		1,1,1-trichloroethane	ND	1.0
		carbon tetrachloride	ND	1.0
		1,2-dichloroethane	ND	1.0
		trichloroethene	ND	1.0
		1,2-dichloropropane	ND	1.0
		bromodichloromethane	ND	1.0
		dibromomethane	ND	1.0
		trans-1,3-dichloropropene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		tetrachloroethene	ND	1.0
		dibromochloromethane	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		bromoform	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0
		1,2,3-trichloropropane	ND	1.0
		bromobenzene	ND	1.0
		chlorotoluene	ND	1.0
		1,3-dichlorobenzene	ND	1.0
		1,4-dichlorobenzene	ND	1.0
		1,2-dichlorobenzene	ND	1.0
Date Sample	ed: 09/08/00	Date Analyzed: 09/11/00	QC Batch #	#: 1404

Date Sampled:	09/08/00		Date Analyzed:	09/11/00	QC Batch #: 1404
Date Received:	09/08/00		Method:	EPA 5030/8010	
Holding Time Me	et: Yes	~	No		

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 1413 Lab Proje

Lab Project #: 0090807

Sample ID	Compound	Result (mg/kg)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

Sample #	Sample ID	Compound	Result (mg/kg)	Spike Level	% Recv.
00856	CMS	TPH/Gas		NS	
	CMS	Benzene	0.0216	0.0222	97.1
	CMS	Toluene	0.0244	0.0222	110
	CMS	Ethyl Benzene	0.0223	0.0222	100
	CMS	Xylenes	0.0679	0.0667	102

	Sample		Result	Spike	%	
Sample #	ID	Compound	(mg/kg)	Level	Recv.	RPD
00856	CMSD	TPH/Gas		NS		
	CMSD	Benzene	0.0211	0.0222	97.9	2.3
	CMSD	Toluene	0.0220	0.0222	99.1	10
	CMSD	Ethyl Benzene	0.0217	0.0222	97.5	2.8
	CMSD	Xylenes	0.0653	0.0667	97.9	4.0

QC Batch #: 1402

Lab Project #: 0090807

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY

LAB PROJECT NUMBER:

	` '	
	LENT NEGRINATION	
COMPANY NAME:	HARRIS & LEE ENVIRONMENTAL SCIENCES	7 _
Address:	P.O. Box 8369	
	SANTA ROSA, CA 95407	
CONTACT:	JACK LEE! BOD HARRIS - RICHARD ELY	'
Phone#:	(707) 571-8961	
Fax#:	(707) 571-8688	

H	ARRIS & LEE PROJECT NUMBER:	
T TYLENAMOI	JND TIME (check third)	Cooler Temberature
MOBILE LAB		J怰c
SAME DAY	24 Hours	202
48 Hours	72 Hours	COC
E Days	Monus //	Page/ of/

HARRIS & LEE PROJECT NAME: 1049 9th AUS

GAKLAND

									46.		r4.	*	4,00	M. YW.	•			å	- 1 to 10 to	,		
STEM .	CLIENT SAMPLE ID.	DATI SAMPL		TIME	MATRIX	# CONT.	PRESV. YES/NO	TPH/GAS/BTEX & MTBE EPA 8015M/8020	TPH DIESEL EPA 8015M	OXYGENATED FUEL ADDITIVES EPA 8260M	VOLATILE HYDROCARBONS EPA 8260	CHLORINATED SOLVENTS EPA 8010	TRPH SM 5520F	SEMI-VOLATILE HYDROCARBONS EPA 8270	TOTAL LEAD	5 LUFT METALS	CAM 17 METALS				COMMENTS	LAB SAMPLE #
1	MW-1-6'	9/8	?	9:15	5	1	NO	×	Х			Х		×								00854
2	MW-1-11'	9/8	,	9:21	5	1	N=	×	Х		,	×		×					Ì		Product ador	00855
3	MW-1-16'	9/8	7	9:30	5	I	NP	Х	×			×		×								MSo
4	MW-1-19.5'	7/8	?	9:34	5	1	NO	WA													HOLD	00857
5	MW-2-61	4/1	,	10:57	3	1	No	×	×			Х		×								00858
6	MW-2-11'	9/8	3	11:03	5	1	Nu	Х	Х			Х		Х			:					10859
7	MW-2-16'	9/	8	11:07	5	1	Nρ	×	*			Х		×								00860
8	MW-2-19.5'	9/	P	11:12	5	1	ND														HOLD	(886)
9	MW-3-6'	9/8	8	12:14	5		No	×	×			Ж		×								00862
10	MW-3-11'	9/8	3	12:20	⋦	1	No	×	×			X		X								00863
11	MW-3-16'	9/7	8	12:25	5	1	No	×	×			×		×								00864
12	MW-3-19.5'	9/	8	12:28	4	1	NO														HOLD	00865

RELINQUISHED BY: Redul W. Sl.	9/8/10	5:05	RECEIVED BY LABORATORY:	9/00/00	5:05
SIGNATURE	DATE F	TIME	SIGNATURE	DATE	TIME

Analytical Sciences	Client Project ID: #1049 9 TH (0090807)	Date Sampled: 09/08/00		
P.O. Box 750336		Date Received: 09/14/00		
Petaluma, CA 94975-0336	Client Contact: Mark Valentini	Date Extracted: 09/14/00		
	Client P.O:	Date Analyzed: 09/18-09/20/00		
	Semi-Volatile Organics Rv GC/MS	A STATE OF THE STA		

EPA method 625 and 3510 or 8270 and 3550

Lab ID				47525			
Client ID				MW-1-6' (00854)			
Matrix				S	•		
Compound	Concentration*	Reporti	ng Limit	Compound	oncentration	Report	ing Limit
	Concentration	W	S	•	Oncentration	W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene	ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33
Benzo(a)pyrene	ND	10	0.33	Isophorone	ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline	ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6
4-Chloro-3-methylpheno	ND	10	0.33	4-Nitrophenol	ND	50	1.6
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene	ND	10	0.33
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine	ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine	ND	10	0.33
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine	ND	10	0.33
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol	ND	50	1.6
Dibenzofuran	ND	10	0.33	Phenanthrene	ND	10	0.33
Di-n-butyl Phthalate	ND	10	0.33	Phenol	ND	10	0.33
1,2-Dichlorobenzene	ND	10	0.33	Pyrene	ND	10	0.33
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene	ND	10	0.33
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol	ND	10	0.33
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:			
Diethyl Phthalate	ND	10	0.33	Surrogate Recoverie	es (%)		
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol		120	
Dimethyl Phthalate	ND	10	0.33	l '			
4,6-Dinitro-2-methylphenol	ND	50	1.6				
2,4-Dinitrophenol	ND	50	1.6	.6 2-Fluorobiphenyl 105			
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol		72	
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14		123	

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{*} surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

					D 4 C	1 1 00/00/0	^			
Analytical Sciences	Client	Projec	t ID: #	1049 9 TH (0090807)	Date Samp	oled: 09/08/0	<u> </u>			
P.O. Box 750336					Date Recei	ived: 09/14/0	00			
Petaluma, CA 94975-033	Client	Conta	ct: Mai	k Valentini	Date Extra	acted: 09/14/00				
·	Client	P.O:			Date Analy	e Analyzed: 09/148-09/2000				
							•••			
EPA method 625 and 3510 or 8		emi-V	'olatile	Organics By GC/MS						
Lab ID				47526						
Client ID				MW-1-11' (00855)					
Matrix				S	-					
		Reporting Limit						ing Limit		
Compound	Concentration*	W	S	Compound		oncentration	W	S		
Acenaphthene	ND	10	0.33	Di-π-octyl Phthalate		ND	10	0.33		
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND	10	0.33		
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33		
Benzidine	ND	50	1.6	Fluorene		ND	10	0.33		
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33		
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND	10	0.33		
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene		ND	50	1.6		
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33		
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene		ND	10	0.33		
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33		
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33		
Bis(2-chloroethoxy)methane	ND ND	10	0.33	2-Methylphenol (o-Cresol)		ND	10	0.33		
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/	or p-Cresol)	ND	10	0.33		
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene		ND	10	0.33		
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline		ND	50	1.6		
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6		
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6		
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6		
4-Chloro-3-methylpheno	ND	10	0.33	4-Nitrophenol		ND	50	1.6		
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene		ND	10	0.33		
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine		ND	10	0.33		
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine		ND	10	0.33		
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine		ND	10	0.33		
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol		ND	50	1.6		
Dibenzofuran	ND	10	0.33	Phenanthrene		ND	10	0.33		
Di-n-butyl Phthalate	ND	10	0.33	Phenol		ND	10	0.33		
1,2-Dichlorobenzene	ND	10	0.33	Pyrene		ND	10	0.33		
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene		ND	10	0.33		
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33		
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol		ND	10	0.33		
2,4-Dichlorophenol	ND	10	0.33	Comments:						
Diethyl Phthalate	ND	10	0.33	Surro	gate Recoverie	es (%)				
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol		```	80			
Dimethyl Phthalate	ND	10	0.33	Phenol-d5			84			
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5			94			
2,4-Dinitrophenol	ND	50	1.6	2-Fluorobiphenyl			92			
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol			72			
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14			72			
,				,			:			

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

Analytical Sciences	Client	Projec	:t ID: #	1049 9 TH (0090807)	Date Samp	oled: 09/08/0	0	
P.O. Box 750336					Date Recei	ived: 09/14/0	00	
Petaluma, CA 94975-033	Client	Conta	ct: Mai	k Valentini	Date Extra	cted: 09/14/0	00	
	Client	P.O:	, <u>, , , , , , , , , , , , , , , , , , </u>		Date Analy	yzed: 09/18-0	09/20	/00
	S	emi_V	alatile	Organies By GC/MS		· <u> </u>		
EPA method 625 and 3510 or 8			OIMUIE	Organics Dy Gennie				
Lab ID				47527		- • • • • • • • • • • • • • • • • • • •		
Client ID				MW-1-16' (00856	<u>5)</u>			
Matrix				S				
		Reporti	ng Limit				Report	ing Limit
Compound	Concentration*	W	S	Compound	oncen	oncentration	W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene		ND ND	10	0.33
Benzidine	ND ND	50	1.6	Fluorene		ND ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene		ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33
Benzo(g,h,i)perylene	ND ND	10	0.33	Indeno(1,2,3-cd)pyrene		ND ND	10	0.33
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33
Benzyl Alcohol	ND ND	20	0.66	2-Methylnaphthalene		ND ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)		ND ND	10	0.33
Bis(2-chloroethyl) Ether	ND ND	10	0.33	3 &/or 4-Methylphenol (m &/	or n-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	or p-cresory	ND ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND ND	10	0.33	2-Nitroaniline		ND ND	50	1.6
4-Bromophenyl Phenyl Ether	ND ND	10	0.33	3-Nitroaniline		ND ND	50	1.6
Butylbenzyl Phthalate	ND ND	10	0.33	4-Nitroaniline		ND ND	50	1.6
4-Chloroanaline	ND ND	20	0.55	2-Nitrophenol		ND ND	50	1.6
4-Chloro-3-methylphenol	ND ND	10	0.00	4-Nitrophenol		ND ND	50	1.6
2-Chloronaphthalene	ND ND	10	0.33	Nitrobenzene		ND ND	10	0.33
2-Chlorophenol	ND ND	10	0.33	N-Nitrosodimethylamine		ND ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine		ND ND	10	0.33
Chrysene	ND ND	10	0.33	N-Nitrosodi-n-propylamine		ND ND	10	0.33
Dibenzo(a,h)anthracene	ND ND	10	0.33	Pentachlorophenol		ND ND	50	1.6
Dibenzofuran	ND ND	10	0.33	Phenanthrene		ND ND	10	0.33
Di-n-butyl Phthalate	ND ND	10	0.33	Phenol		ND ND	10	0.33
1,2-Dichlorobenzene	ND ND	10	0.33	Pyrene		ND	10	0.33
1,3-Dichlorobenzene	ND ND	10	0.33	1,2,4-Trichlorobenzene		ND	10	0.33
1,4-Dichlorobenzene	ND ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33
3,3-Dichlorobenzidine	ND ND	20	0.66	2,4,6-Trichlorophenol		ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:				L 4.22
Diethyl Phthalate	ND ND		0.33		gate Recoverie	ne (9/.)		
	1	10	_		gate Necoverii	ES (70)	107	
2,4-Dimethylphenol	ND ND	10	0.33	2-Fluorophenol			106	
Dimethyl Phthalate	ND	10	0.33	Phenol-d5			112	
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5			14	
2,4-Dinitrophenol	ND	50	1.6	2-Fluorobiphenyl			110	

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

2,4,6-Tribromophenol

p-Terphenyl-d14

0.33

0.33

10

ND

ND

2,4-Dinitrotoluene

2,6-Dinitrotoluene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

Analytical Sciences	Client	Projec	t ID: #	1049 9 TH (0090807)	Date Samp	led: 09/08/0	0	
P.O. Box 750336					Date Recei	ved: 09/14/0	00	
Petaluma, CA 94975-033	Client	Conta	ct: Mar	k Valentini	Date Extra	cted: 09/14/0	00	
	Client	P.O:			Date Analy	zed: 09/18-0	09/20	/00
	S	emi-V	olatile	Organics By GC/MS		1 11 11 11 11 11 11 11 11 11 11 11 11 1		
EPA method 625 and 3510 or 8				<i>5 v</i>				
Lab ID				47528				
Client ID		••-		MW-2-6' (00858)				
Matrix				S				
C		Reporting Limit					Report	ing Limit
Compound	Concentration*	W	S	Compound		oncentration	W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33
Benzidine	ND	50	1.6	Fluorene		ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	······	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene		ND	10	0.33
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)		ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/o	r p-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	- F/	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline		ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6
4-Chloro-3-methylpheno ^l	ND	10	0.33	4-Nitrophenol		ND	50	1.6
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene		ND	10	0.33
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine		ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine		ND	10	0.33
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine		ND	10	0.33
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol		ND	50	1.6
Dibenzofuran	ND	10	0.33	Phenanthrene		ND	10	0.33
Di-n-butyl Phthalate	ND	10	0.33	Phenol		ND	10	0.33
1,2-Dichlorobenzene	ND	10	0.33	Pyrene		ND	10	0.33
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene		ND	10	0.33
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol		ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:				
Diethyl Phthalate	ND	10	0.33	Surroga	ate Recoverie	rs (%)		
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol	 	<u> </u>	102	
Dimethyl Phthalate	ND	10	0.33	Phenol-d5			110	
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5		- 	100	
2,4-Dinitrophenol	ND	50	1.6	2-Fluorobiphenyl		- 	110	
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol			84	
2.6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14			96	

 $[\]hbox{*water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L}$

DHS Certification No. 1644

Edward Hamilton, Lab Director

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

Analytical Sciences	Client	Projec	ct ID: #	1049 9 TH (0090807) Date	Samj	pled: 09/08/0	0				
P.O. Box 750336				Date	Rece	ived: 09/14/0	00				
Petaluma, CA 94975-033	Client	Conta	ict: Mai	k Valentini Date	Extra	ncted: 09/14/0	00				
	Client	P.O:		Date	Anal	lyzed: 09/18-09/20/00					
EPA method 625 and 3510 or 8		Semi-V	olatile	Organics By GC/MS				• • •			
Lab ID		47529									
Client ID			·	MW-2-11' (00859)							
Matrix				S		<u> </u>					
Compound	Concentration*	Report	ing Limit	Compound		oncentration		ting Limit			
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	W	S			
Acenaphthylene	ND ND	10	0.33	1,2-Diphenylhydrazine		ND ND	10	0.33			
Anthracene	ND	10	0.33	Fluoranthene		ND ND	10	0.33			
Benzidine	ND	50	1.6	Fluorene		ND ND	10	0.33			
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33			
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	-	ND ND	10	0.33			
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene		ND	50	1.6			
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33			
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene		ND	10	0.33			
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33			
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33			
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)		ND	10	0.33			
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Cre	sol)	ND	10	0.33			
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene		ND	10	0.33			
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline		ND	50	1.6			
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6			
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6			
4 474 4											

ND

20

10

10

10

10

10

10

10

10

0.66

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

2-Nitrophenol

4-Nitrophenol

Nitrobenzene

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

N-Nitrosodi-n-propylamine

4-Chloroanaline

2-Chlorophenol

Chrysene

Dibenzofuran

4-Chloro-3-methylphenol

4-Chlorophenyl Phenyl Ether

2-Chloronaphthalene

Dibenzo(a,h)anthracene

Di-n-butyl Phthalate

1,2-Dichlorobenzene

ND

ND

ND

ND

ND

ND

ND

ND

ND

50

50

10

10

10

10

50

10

10

1.6

1.6

0.33

0.33

0.33

0.33

1.6

0.33

0.33

¹⁰ 0.33 Pyrene ND 10 0.33 1,3-Dichlorobenzene ND 10 0.33 1,2,4-Trichlorobenzene ND 10 0.33 1,4-Dichlorobenzene ND 2,4,5-Trichlorophenol 10 0.33 ND 10 0.33 3,3-Dichlorobenzidine ND 20 0.66 2,4,6-Trichlorophenol ND 10 0.33 2,4-Dichlorophenol ND 10 0.33 Comments: Diethyl Phthalate ND 10 0.33 Surrogate Recoveries (%) 2,4-Dimethylphenol ND 10 0.33 2-Fluorophenol 114 Dimethyl Phthalate ND 10 0.33 Phenol-d5 116 4,6-Dinitro-2-methylphenol ND 50 Nitrobenzene-d5 1.6 116 2,4-Dinitrophenol ND 50 1.6 2-Fluorobiphenyl 100 2,4-Dinitrotoluene $\overline{\text{ND}}$ 10 0.33 2,4,6-Tribromophenol 78 2,6-Dinitrotoluene ND 10 0.33 p-Terphenyl-d14 96

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[&]quot; surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

Analytical Sciences	Client	Projec	t ID: #	1049 9 TH (0090807)	Date Samp	led: 09/08/0	0		
P.O. Box 750336					Date Recei	ived: 09/14/0	00		
Petaluma, CA 94975-033	6 Client	Contac	ct: Mar	k Valentini	Date Extra	cted: 09/14/00			
	Client	P.O:			Date Analy	nalyzed: 09/18-09/20/00			
EPA method 625 and 3510 or 8		emi-V	olatile	Organics By GC/MS					
Lab ID	1			47530	****				
Client ID			-	MW-2-16' (0086	0)				
Matrix	1			S					
		Perceti	ng Limit				Renort	ing Limit	
Compound	Concentration*	v or at least to be		Compound		oncentration	W	S	
		W	S			NID			
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND ND	10	0.33	
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine			L	0.33	
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33	
Benzidine	ND	50	1.6	Fluorene		ND	10		
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33	
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND	10	0.33	
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene		ND	50	1.6	
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33	
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)рутепе		ND	10	0.33	
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33	
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33	
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)		ND	10	0.33	
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &	k/or p-Cresol)	ND	10	0.33	
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene		ND	10	0.33	
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline		ND	50	1.6	
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6	
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6	
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6	
4-Chloro-3-methylphenol	ND	10	0.33	4-Nitrophenol		ND	50	1.6	
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene		ND	10	0.33	
2-Chlorophenol	ND	1.0	0.33	N-Nitrosodimethylamine		ND	10	0.33	
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine		ND	10	0.33	
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine		ND	10	0.33	
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol		ND	50	1.6	
Dibenzofuran	ND	10	0.33	Phenanthrene		ND	10	0.33	
Di-n-butyl Phthalate	ND	10	0.33	Phenol		ND	10	0.33	
1,2-Dichlorobenzene	ND	10	0.33	Pyrene		ND	10	0.33	
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene		ND	10	0.33	
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33	
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol		ND	10	0.33	
2,4-Dichlorophenol	ND	10	0.33	Comments:		<u>, , , , , , , , , , , , , , , , , , , </u>			
Diethyl Phthalate	ND	10	0.33	<u> </u>	ogate Recoveri	es (%)			
	ND	10	0.33	2-Fluorophenol	-0	******	96		
2,4-Dimethylphenol	ND ND	10	0.33	Phenol-d5	-		104		
Dimethyl Phthalate 4,6-Dinitro-2-methylphenol	ND ND	50	1.6	Nitrobenzene-d5			100		
				2-Fluorobiphenyl		 	88		
2,4-Dinitrophenol	ND	50	1.6	2.4.6-Tribromophenol			64		
2,4-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14			84		
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyi-d14			04		

 $[*]water \ samples \ are \ reported \ in \ ug/L, \ soil \ and \ sludge \ samples \ in \ mg/kg, \ wipes \ in \ ug/wipe \ and \ all \ TCLP / STLC / SPLP \ extracts \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ in \ ug/L \ and \ sludge \ samples \ sampl$

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{*} surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

Client Project ID: #1049 9 TH (0090807)	Date Sampled: 09/08/00			
	Date Received: 09/14/00			
Client Contact: Mark Valentini	Date Extracted: 09/14/00			
Client P.O:	Date Analyzed: 09/18-09/20/00			
Semi-Volatile Organics By GC/MS				
47531				
	Client Contact: Mark Valentini Client P.O: Semi-Volatile Organics By GC/MS d 3550			

EPA method 625 and 3510 or 8	270 and 3550			47521			
Lab ID				47531			
Client ID				MW-3-6' (00862)			
Matrix				S			
Compound	Concentration*	Reporti	ng Limit	Compound	oncentration		ing Limit
Compound	Concentiation	W	S	Compound	oneomination.	W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene	ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33
Benzo(a)pyrene	ND	10	0.33	Isophorone	ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline	ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6
4-Chloro-3-methylphenol	ND	10	0.33	4-Nitrophenol	ND	50	1.6
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene	ND	10	0.33
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine	ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine	ND	10	0.33
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine	ND	10	0.33
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol	ND	50	1.6
Dibenzofuran	ND	10	0.33	Phenanthrene	ND	10	0.33
Di-n-butyl Phthalate	ND	10	0.33	Phenol	ND	10	0.33
1,2-Dichlorobenzene	ND	10	0.33	Pyrene	ND ND	10	0.33
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene		10	0.33
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol	ND ND	10	0.33
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:			
Diethyl Phthalate	ND	10	0.33	Surrogate Recoveri	es (%)		
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol		104	
Dimethyl Phthalate	ND	10	0.33	Phenol-d5		112	
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5		110	_
2,4-Dinitrophenol	ND	50	1.6	2-Fluorobiphenyl		92	
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol		62	
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14		88	

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

Analytical Sciences	Client Project ID: #1049 9 TH (0090807)	Date Sampled: 09/08/00		
P.O. Box 750336		Date Received: 09/14/00		
Petaluma, CA 94975-0336	Client Contact: Mark Valentini	Date Extracted: 09/14/00		
	Client P.O:	Date Analyzed: 09/18-09/20/00		
, mg/y, p ²	Semi-Volatile Organics By GC/MS			

EPA method 625 and 3510 or 8270 and 3550

Lab ID				47532			
Client ID				MW-3-11' (00863)			
Matrix				S			
Commoned	Concentration*	Reporti	ng Limit	Compound	oncentration	Reporting Limit	
Compound	Concentration	W	S			W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene	ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33
Benzo(a)pyrene	NĐ	10	0.33	Isophorone	ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline	ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6
4-Chloro-3-methylpheno ¹	ND	10	0.33	4-Nitrophenol	ND	50	1.6
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene	ND	10	0.33
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine	ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine	ND	10	0.33
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine	ND	10	0.33
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol	ND	50	1.6
Dibenzofuran	ND	10	0.33	Phenanthrene	ND	10	0.33
Di-n-butyl Phthalate	ND	10	0.33	Phenol	ND	10	0.33
1,2-Dichlorobenzene	ND	10	0.33	Pyrene	ND	10	0.33
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene	ND	10	0.33
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol	ND	10	0.33
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:			
Diethyl Phthalate	ND	10	0.33	Surrogate Recoveri	es (%)		
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol		94	
Dimethyl Phthalate	ND	10	0.33	Phenol-d5		106	
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5 104			
2,4-Dinitrophenol	ND	50	1.6				
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol		68	
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14		88	

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

DHS Certification No. 1644

Edward Hamilton, Lab Director

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

	GI: 4	D	. TTS. #1	040 0 TH (0000807) Da	te Samp	led: 09/08/0	0			
Analytical Sciences	Client	Project	(1D:#)	.049 9 TH (0090807)		1 0044 10				
P.O. Box 750336				Da	te Recei	eived: 09/14/00				
Petaluma, CA 94975-033	Client	Contac	t: Mar	k Valentini Da	te Extra	cted: 09/14/0	00			
	Client	P.O:		Da	te Analy	zed: 09/18-)9/24/	00		
TD 4 1/27 1/2510 0		emi-V	olatile	Organics By GC/MS				·		
EPA method 625 and 3510 or 8 Lab ID	270 and 3330			47533		 ···				
Client ID	·			MW-3-16' (00864)						
Matrix				S						
Wiatrix		D an autic	ng Limit				Reporti	ing Limit		
Compound	Concentration*	W	S	Compound		Concentration ^a	W	S		
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	10	0.33		
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND	10	0.33		
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33		
Benzidine	ND	50	1.6	Fluorene		ND	10	0.33		
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33		
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND	10	0.33		
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene		ND	50	1.6		
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33		
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene		ND	10	0.33		
Benzo(a)pyrene	ND	10	0.33	lsophorone		ND	10	0.33		
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33		
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)		ND	10	0.33		
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p	-Cresol)	ND	10	0.33		
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene		ND	10	0.33		
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline		ND	50	1.6		
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6		
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6		
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6		
4-Chloro-3-methylpheno ¹	ND	10	0.33	4-Nitrophenol		ND	50	1.6		
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene		ND	10	0.33		
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine		ND	10	0.33		
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine		ND	10	0.33		
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine		ND	10	0.33		
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol		ND	50	1.6		
Dibenzofuran	ND	10	0.33	Phenanthrene		ND	10	0.33		
Di-n-butyl Phthalate	ND	10	0.33	Phenol		ND	10	0.33		
1,2-Dichlorobenzene	ND	10	0.33	Pyrene		ND	10	0.33		
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene		ND	10	0.33		
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33		
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol		ND	10	0.33		
2,4-Dichlorophenol	ND	10	0.33	Comments:						
	ND	10	0.33	Surrogate	Recover	ies (%)	, v.			
Diethyl Phthalate		1	0.33	2-Fluorophenol			110			
2,4-Dimethylphenol	ND	10	0.33	Phenol-d5			108			
Dimethyl Phthalate	ND	50	1.6	Nitrohenzene-d5		-	104			

50

50

10

10

ND

ND

ND

ND

1.6

1.6

0.33

0.33

4,6-Dinitro-2-methylphenol

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

92

90

90

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[&]quot; surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

QC REPORT

SVOCs (EPA 8270/625/525)

Date:

09/18/00-09/19/00

Matrix:

Soil

Extraction:

N/A

		Concent	tration:	ug/kg	%Red		
Compound	Sample	MS	MSD	Amount Spiked	мѕ	MSD	RPD
SampleID: 33291	•			Instru	ument: G		
Surrogate1	0.000	890.0	850.0	1000.00	89	85	4.6
Pyrene	0.000	770.0	740.0	1000.00	77	74	4.0
Pentachlorophenol	0.000	450.0	430.0	1000.00	45	43	4.5
2,4-Dinitrotoluene	0.000	440.0	420.0	1000.00	44	42	4.7
Acenaphtene	0.000	550.0	510.0	1000.00	55	51	7.5
4-Nitrophenol	0.000	790.0	740.0	1000.00	79	74	6.5
4-Chloro-3-metylphenol	0.000	600.0	570.0	1000.00	60	57	5.1
1,2,4-trichlorobenzene	0.000	830.0	800.0	1000.00	83	80	3.7
N-nitroso-di-n-propyl	0.000	380.0	380.0	1000.00	38	38	0.0
1,4-Dichlorobenzene	0.000	920.0	900.0	1000.00	92	90	2.2
2-Chlorophenol	0.000	730.0	710.0	1000.00	73	71	2.8
Phenol	0.000	710.0	650.0	1000.00	71	65	8.8

$$\% \text{ Re covery} = \frac{(MS - Sample)}{AmountSpiked} \cdot 100$$

Fax (707) 769-8093

TODY

D. Box 750336, Petaluma, CA 94975-0336 10 Liberty Street, Petaluma, CA 94952 (707) 769-3128	ZAS79	CHAIN OF CUST
Fax (707) 769-8093		Lab Project Number:

	CLIENT INFORMATION		CLIENT'S PROJECT NA	ME: 1049	974 (0090807)
COMPANY NAME:	ANALYTICAL SCIENCES		CLIENT'S PROJECT NUM		
Address;	P.O. Box 750336	TURNARO	JND TIME (check one)		COOLER TEMBERATURE
	PETALUMA, CA 94975-0336	MOBILE LAB			BUE ICED °C
CONTACT:	Mark Valentini	SAME DAY	 24 Hours	1	
Phone#:	(707) 769-3128	48 Hours	72 Hours		coc
Fax #:	(707) 769-8093	 ROUTINE 5 DAYS	Normal		Page/_ of/
		AN	IALYSIS	·····	7

												AN	ALYSI:	S						
ITEM	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV. YES/NO	EM 8270													COMMENTS LAB SAMPLE
	Mw-1-L' (00854)	9/8/00	0915	5)	No	V													— 47525
1	, , , , , , , , , , , , , , , , , , , ,	11 5	0921	S	ı	No	X													47526
3	MW-1-16' (00856)	9/8/00	0930	5	l	No	X													47527
	MW-2-6' (00858)		1057	Š	l	No	X				<u> </u>		<u>.</u>							47528
	MW-2-11 (00859)	9/8/00	1103	5	Î.	No	\mathcal{X}					<u> </u>							-	
	MW-2-16'(00860) MW-3-6'(00862)	11111	1107 1214	5	1	No No	2	····			<u> </u>									47529
	47	9/8/00	1220	2	1	No	\								MOSC!	nggli	JETAN SIN	OTHER		47530
	1	9/8/00		S	1	No	Ŷ	ICI	J.(%)			× 3	PRESER		1010	1122	161 - 7			47531
10		77					•			IDITION		L	APPROI	RIATE						47532
11								Hi	AD SP/	CE ADS	ENT	La Carrie	CONTAI	NERS_	,,,,,,					
12										"						vin			- 4	47533

A	INCUISHED BY:	a-0	Ule	~		9/13/ DATE	100		500 Time			<u> </u>	ECEIVED	-	ABORAT		7.0	\bigcirc		7/10 DATE	4 (10 35 Time
11									The state of the s		VATU						VIII I PROPERTY	e su di esta e e e			47533
10			<i>i i</i>			-		<u> </u>		<u> </u>	IDITION OE ABS	I ENT		APPROL Junia	PLATE NERS	, .	record				47532
9	MW3-16 (00		7/8/00	1225	Š	1	No	X	JC!	11/08			1-3	PRESER	YATION	10110					47531
	Mus-3-11'(00				2	1	No No	1								VOAS!	negli	JETALSI	OTHER		47530
	MW-3-6'(00				C	1	Ng	12	 												47529

Report Date: October 2, 2000

Harris & Lee Environmental Sciences P.O. Box 8369 Santa Rosa, CA 95407 ATTN: Richard Ely

LABORATORY REPORT

Project Name: 1049 9th Avenue, Oakland

Lab Project Number: 0092703

This 5 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

25.00		Maji Olike Grensevisk		
Lab # 00964	Sample ID MW-1-6'	Analysis Oil & Grease	Result (mg/kg) ND	RDL (mg/kg) 10
Date Sampled: _(Date Received: _(Holding Time Met:	09/08/00 Date	Extracted: 09/29/00 Analyzed: 09/29/00	QC Batcl Method: <u>S</u>	n #: <u>1437</u> SM5520
Lab # 00965	Sample ID MW-1-11'	Analysis Oil & Grease	Result (mg/kg) ND	RDL (mg/kg) 10
	09/08/00 Date	Extracted: 09/29/00	QC Batc Method: _S	h #: <u>1437</u> M5520
A a				
Lab # 00966	Sample ID MW-1-16'	Analysis Oil & Grease	Result (mg/kg) ND	RDL (mg/kg)
	09/08/00 Date	Extracted: 09/29/00 Analyzed: 09/29/00	QC Batc Method: S	

Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00967	MW-2-6'	Oil & Grease	ND	10
Date Sampled:	09/08/00 Date	Extracted: 09/29/00		h #: 1437
Date Received:	09/08/00 Date	Analyzed: 09/29/00	Method:	SM5520
Holding Time Met	: Yes <u>/</u> No			
			·	
Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00968	MW-2-11'	Oil & Grease	ND	10
		• • • • • • • • • • • • • • • • • • • •		
			00.0	1. 0. 1.107
Date Sampled:		e Extracted: 09/29/00 e Analyzed: 09/29/00	QC Batc Method: _	sh #: <u>1437</u> SM5520
Holding Time Met				
Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00969	MW-2-16'	Oil & Grease	ND	10
Date Sampled:	09/08/00 Date	Extracted: 09/29/00	QC Bato	h #: 1437
	09/08/00 Date	Extracted: 09/29/00 e Analyzed: 09/29/00	QC Bato Method:	

Lab # 00970	Sample ID MW-3-6'	Analysis Oil & Grease	Result (mg/kg) ND	RDL (mg/kg) 10
	09/08/00 Date	Extracted: 09/29/00 Analyzed: 09/29/00	QC Batch Method: S	#: <u>1437</u> M5520
Lab#	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
00971	MW-3-11'	Oil & Grease	ND ND	10
Date Sampled:(Date Received:(Holding Time Met:	09/08/00 Date	Extracted: 09/29/00 09/29/00	Method: S	ı #:1437 M5520
Lab #	Sample ID	Analysis	Result (mg/kg)	RDL (mg/kg)
	MW-3-16'	Oil & Grease	ND	10
00972	141 14 -0-10			

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 1437 Lab Project #: 0092703

 Sample
 Result

 ID
 Compound
 (mg/kg)

 MB
 TOG
 ND

Spike % Sample Result Sample # ID Compound (mg/kg) Level Recv. 00966 CMS TOG 241 228 106

Sample **Spike** % Result Sample # ID Compound (mg/kg) Level Recv. **RPD** 00966 CMSD 258 90.6 TOG 234

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY

	` '	LAB PROJECT NUMBER.	0092100
and the state of the state of	CLEST MICHILA TICK.	HARRIS & LEE PROJECT NAME: /64	9 9TH AUE. DAKLAN
COMPANY NAME:	HARRIS & LEE ENVIRONMENTAL SCIENCES	HARRIS & LEE PROJECT NUMBER:	<u> </u>
ADDRESS:	P.O. Box 8369	TREMATIONO THE paragrand	COOLER TEMBERATURE
	SANTA ROSA, CA 95407	Mobile Lab	ILED_°C
Contact:	JACK LEE / BUB HARMS RICHARD ELY	SAME DAY 24 Hours	
Phone#:	(707) 571-8961	48 Hours 72 Hours	COC
Fax#:	(707) 571-8688	5 Days Normal	Page/_ of/_

								JT. 46	া ⁵ জ	a .	*	7	f. 1.88		<i>2</i>		A			
ITEM	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV. YES/NO	TPH/GAS/BTEX & MTBE EPA 8015M/8020		OXYGENATED FUEL ADDITIVES EPA 8260M	VOLATILE HYDROCARBONS EPA 8260	CHLORINATED SOLVENTS EPA 8010		SEMI-VOLATILE HYDROCARBONS EPA 8270		5 LUFT METALS	CAM 17 METALS	On+Grense		COMMENTS	LAB SAMPLE #
1	MW-1-6'	9-8-00	0915	5	1	No											Χ			00964
2	MW-1-11'	9-8-00	1921	5	t	No											X			00965
		9-8-00		S	1	No											χ			00966
4	MW2-6'	9800	1057	S	1	N_0											λ'			00967
5	MW-2-11	9-8-00	1103	S	(No											χ			0948
6			1107	5	1	No											X			00969
7	MW-36'	9-8-00	1214	ک	1	No											X			00970
8	MW-3-11'	98.00	1220	S	1	No					i						X			00971
9	MW-3-16'	9-8-00	1225	5	1	No			-				<u> </u>				X			00972
10																				
11	relocat above	Same	las	Lions	Lab	Roser	1 01	1908	07	heo	R. B	les,	m 9	47	07 -	See,	itta	leh	9C	
12	00	/		1	1	7			,			0	7	7						

RELINQUISHED BY: VILLA SEQUEST from Richar	1 El 9/27/00		See attacked Ca		
SIGNATURE	DATE /	TIME	SIGNATURE	DATE	TIME

Report Date: October 11, 2000

Harris & Lee Environmental Sciences P.O. Box 8369 Santa Rosa, CA 95407 ATTN: Richard Ely

LABORATORY REPORT

Project Name:

1049 9th Avenue, Oakland

Lab Project Number:

0092901

This 12 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

TPH Gasoline in Water

Lab#	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
00997	MW-1	TPH/Gasoline	280	50
		MTBE	ND	2.5
		Benzene	1.4	0.5
		Toluene	ND	0.5
		Ethyl Benzene	2.5	0.5
		Xylenes	4.5	1.5

 Date Sampled:
 09/29/00
 Date Analyzed:
 10/02/00
 QC Batch #:
 1435

 Date Received:
 09/29/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab#	Sample ID	Analysis_	Result (ug/L)	RDL (ug/L)
00998	MW-2	TPH/Gasoline	ND	50
		MTBE	ND	2.5
		Benzene	ND	0.5
		Toluene	ND	0.5
		Ethyl Benzene	ND	0.5
		Xylenes	ND	1.5

 Date Sampled:
 09/29/00
 Date Analyzed:
 10/02/00
 QC Batch #:
 1435

 Date Received:
 09/29/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Lab#	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
00999	MW-3	TPH/Gasoline	ND	50
		MTBE	ND	2.5
		Benzene	ND	0.5
		Toluene	ND	0.5
		Ethyl Benzene	ND	0.5
		Xylenes	ND	1.5

 Date Sampled:
 09/29/00
 Date Analyzed:
 10/02/00
 QC Batch #:
 1435

 Date Received:
 09/29/00
 Method:
 EPA 5030/8015M/8020

 Holding Time Met:
 Yes
 ✓
 No

Chlorinated Solvents in Water

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
00997	MW-1	dichlorodifluoromethane	ND	0.5
		chloromethane	ND	0.5
		vinyl chloride	ND	0.5
		bromomethane	ND	0.5
		chloroethane	ND	0.5
		trichlorofluoromethane	ND	0.5
		1,1-dichloroethene	ND	0.5
		methylene chloride	ND	0.5
		trans-1,2-dichloroethene	ND	0.5
		1,1-dichloroethane	ND	0.5
		cis-1,2-dichloroethene	ND	0.5
		chloroform	ND	0.5
		1,1,1-trichloroethane	ND	0.5
		carbon tetrachloride	ND	0.5
		1,2-dichloroethane	ND	0.5
		trichloroethene	ND	0.5
		1,2-dichloropropane	ND	0.5
		bromodichloromethane	ND	0.5
		dibromomethane	ND	0.5
		trans-1,3-dichloropropene	ND	0.5
		1,1,2-trichloroethane	ND	0.5
		tetrachloroethene	NĐ	0.5
		dibromochloromethane	ND	0.5
		chlorobenzene	1.1	0.5
		1,1,1,2-tetrachloroethane	ND	0.5
		bromoform	ND	0.5
		1,1,2,2-tetrachloroethane	ND	0.5
		1,2,3-trichloropropane	ND	0.5
		bromobenzene	ND	0.5
		chlorotoluene	ND	0.5
		1,3-dichlorobenzene	ND	0.5
		1,4-dichlorobenzene	ND	0.5
		1,2-dichlorobenzene	ND	0.5

	09/29/00	 Date Analyzed: Method:	10/01/00 EPA 5030/8010	QC Batch #: 1438
Holding Time Me	et: Yes	 No		

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
00998	MW-2	dichlorodifluoromethane	ND	0.5
		chloromethane	ND	0.5
		vinyl chloride	ND	0.5
		bromomethane	ND	0.5
		chloroethane	ND	0.5
		trichlorofluoromethane	ND	0.5
		1,1-dichloroethene	ND	0.5
		methylene chloride	ND	0.5
		trans-1,2-dichloroethene	ND	0.5
		1,1-dichloroethane	ND	0.5
		cis-1,2-dichloroethene	ND	0.5
		chloroform	ND	0.5
		1,1,1-trichloroethane	ND	0.5
		carbon tetrachloride	ND	0.5
		1,2-dichloroethane	ND	0.5
		trichloroethene	ND	0.5
		1,2-dichloropropane	ND	0.5
		bromodichloromethane	ND	0.5
		dibromomethane	ND	0.5
		trans-1,3-dichloropropene	ND	0.5
		1,1,2-trichloroethane	ND	0.5
		tetrachloroethene	ND	0.5
		dibromochloromethane	ND	0.5
		chlorobenzene	ND	0.5
		1,1,1,2-tetrachloroethane	ND	0.5
		bromoform	ND	0.5
		1,1,2,2-tetrachloroethane	ND	0.5
		1,2,3-trichloropropane	ND	0.5
		bromobenzene	ND	0.5
		chlorotoluene	ND	0.5
		1,3-dichlorobenzene	ND	0.5
		1,4-dichlorobenzene	ND	0.5
		1,2-dichlorobenzene	ND	0.5

 Date Sampled:
 09/29/00
 Date Analyzed:
 09/30/00
 QC Batch #:
 1438

 Date Received:
 09/29/00
 Method:
 EPA 5030/8010

 Holding Time Met:
 Yes
 ✓
 No

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)	
00999	MW-3	dichlorodifluoromethane	ND	0.5	
		chloromethane	ND	0.5	
		vinyl chloride	ND	0.5	
		bromomethane	ND	0.5	
		chloroethane	ND	0.5	
		trichlorofluoromethane	ND	0.5	
		1,1-dichloroethene	ND	0.5	
		methylene chloride	ND	0.5	
		trans-1,2-dichloroethene	ND	0.5	
		1,1-dichloroethane	ND	0.5	
		cis-1,2-dichloroethene	ND	0.5	
		chloroform	ND	0.5	
		1,1,1-trichloroethane	ND	0.5	
		carbon tetrachloride	ND	0.5	
		1,2-dichloroethane	ND	0.5	
		trichloroethene	ND	0.5	
		1,2-dichloropropane	ND	0.5	
		bromodichloromethane	ND	0.5	
		dibromomethane	ND	0.5	
		trans-1,3-dichloropropene	ND	0.5	
		1,1,2-trichloroethane	ND	0.5	
		tetrachloroethene	ND	0.5	
		dibromochloromethane	ND	0.5	
		chlorobenzene	ND	0.5	
		1,1,1,2-tetrachloroethane	ND	0.5	
		bromoform	ND	0.5	
		1,1,2,2-tetrachloroethane	ND	0.5	
		1,2,3-trichloropropane	ND	0.5	
		bromobenzene	ND	0.5	
		chlorotoluene	ND	0.5	
		1,3-dichlorobenzene	ND	0.5	
		1,4-dichlorobenzene	ND	0.5	
		1,2-dichlorobenzene	ND	0.5	
Date Sampleo		Date Analyzed: 09/30/00 Method: EPA 5030/8010	QC Batch #	QC Batch #:1438	

Total Oil & Grease in Water

Lab # 00997	Sample ID MW-1	Analy: Total Oil &		Result (mg/L)	RDL (mg/L) 0.50
Date Sampled: Date Received: Holding Time M	09/29/00 09/29/00 let: Yes ✓	Date Extracted: Date Analyzed: No	10/08/00 10/08/00	QC Batch #: Method:	1449w EPA 418.1M

Lab# 00998	Sample ID MW-2	Analys Total Oil &		Result (mg/L)	RDL (mg/L) 0.50
Date Sampled: Date Received: Holding Time N	09/29/00	Date Extracted: Date Analyzed: No	10/08/00 10/08/00	QC Batch #: Method:	1449w EPA 418.1M

Lab # 00999	Sample ID MW-3	Analys Total Oil &		Result (mg/L) ND	RDL (mg/L) 0.50
Date Sampled: Date Received: Holding Time M	09/29/00 09/29/00 et: Yes ✓	Date Extracted: Date Analyzed: No	10/08/00 10/08/00	QC Batch #: Method:	1449w EPA 418.1M

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 1435

Lab Project #: 0092901

Sample ID	Compound	Result (ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
00990	CMS	TPH/Gas		NS	
	CMS	Benzene	7.04	8.00	88.6
	CMS	Toluene	7.21	8.00	90.1
	CMS	Ethyl Benzene	7.31	8.00	91.4
	CMS	Xylenes	22.0	24.0	91.8

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
00990	CMSD	TPH/Gas		NS		
	CMSD	Benzene	8.01	8.00	100	13
	CMSD	Toluene	8.15	8.00	102	12
	. CMSD	Ethyl Benzene	8.33	8.00	104	13
	CMSD	Xylenes	25.0	24.0	104	13

QC Batch #: 1452

Lab Project #: 0092901

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate
NS = Not Spiked; OR = Over Calibration Range

QC Batch #: 1449w

Lab Project #: 0092901

Sample	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
	CMS	dichlorodifluoromethane	ND		
		chloromethane	ND		
		vinyl chloride	ND		
		bromomethane	ND		
		chloroethane	ND		
		trichlorofluoromethane	ND		
		1,1-dichloroethene	7.30	8.00	91.3
		methylene chloride	ND		
		trans-1,2-dichloroethene	ND		
		1,1-dichloroethane	7.92	8.00	98.9
		cis-1,2-dichloroethene	ND		
		chloroform	ND		
		1,1,1-trichloroethane	7.91	8.00	98.8
		carbon tetrachloride	ND		
		1,2-dichloroethane	ND		
		trichloroethene	7.38	8.00	92.3
		1,2-dichloropropane	ND		
		bromodichloromethane	ND		
		dibromomethane	ND		
		trans-1,3-dichloropropene	ND		
		1,1,2-trichloroethane	7.54	8.00	94.3
		tetrachloroethene	ND		
		dibromochloromethane	ND		
		chlorobenzene	ND		
		1,1,1,2-tetrachloroethane	ND		
		bromoform	ND		
		1,1,2,2-tetrachloroethane	ND		
		1,2,3-trichloropropane	ND		
		bromobenzene	ND		
		chlorotoluene	ND		
		1,3-dichlorobenzene	7.73	8.00	96.6
		1,4-dichlorobenzene	ND		
		1,2-dichlorobenzene	ND		

Sample	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
	CMSD	dichlorodifluoromethane	ND			
		chloromethane	ND			
		vinyl chloride	ND			
		bromomethane	ND			
		chloroethane	ND			
		trichlorofluoromethane	ND			
		1,1-dichloroethene	7.11	8.00	88.9	2.6
		methylene chloride	ND			
		trans-1,2-dichloroethene	ND			
		1,1-dichloroethane	7.34	8.00	91.8	7.6
		cis-1,2-dichloroethene	ND			
		chloroform	ND			
		1,1,1-trichloroethane	7.40	8.00	92.5	6.7
		carbon tetrachloride	ND			
		1,2-dichloroethane	ND			
		trichloroethene	6.63	8.00	82.9	11
		1,2-dichloropropane	ND			
		bromodichloromethane	ND			
		dibromomethane	ND			
		trans-1,3-dichloropropene	ND			
		1,1,2-trichloroethane	6.22	8.00	77.7	19
		tetrachloroethene	ND			
		dibromochloromethane	ND			
		chlorobenzene	ND			
		1,1,1,2-tetrachloroethane	ND			
		bromoform	ND			
		1,1,2,2-tetrachloroethane	ND			
		1,2,3-trichloropropane	ND			
		bromobenzene	ND			
		chlorotoluene	ND			
		1,3-dichlorobenzene	6.34	8.00	79.2	20
		1,4-dichlorobenzene	ND			
		1,2-dichlorobenzene	ND			

P.O. Box 750336 Client Contact: Mark Valentini Date Extracted: 09/29/00	Analytical Sciences	Client	Projec	t ID: #	Date (0092901)	e Samp	led: 09/29/0	0	
Client P.O: Date Analyzed: 10/05/00	P.O. Box 750336				Date	e Recei	ved: 09/29/0	0	
Semi-Volatile Organics By GC/MS	Petaluma, CA 94975-033	6 Client	Contac	ct: Mar	k Valentini Date	Extra	cted: 09/29/0	00	
Lab ID		Client	P.O:		Date	Analy	/zed: 10/05/0	00	
Matrix MWI (00997) Matrix W S Compound Oncentration Mw S S Oncentration Mw S Oncentration W S Oncentration W S Oncentration W W S Oncentration W W S Oncentration W Mw Oncentration W Oncentration W Oncentration W Oncentration Oncentration W Oncentration Oncentration W Oncentration Oncentration W Oncentration Oncentra	EPA method 625 and 3510 or 8		emi-V	olatile	Organics By GC/MS				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lab ID				48989				
$ \begin{array}{ c c c c c c c c } \hline Compound & \hline {Concentration*} & \hline {Reporting Limit} & Compound & oncentration* & \hline {Reporting Limit} & Compound & oncentration* & \hline {Reporting Limit} & Compound & oncentration* & \hline {Reporting Reporting Limit} & \hline {Reporting Limit} & \hline {ND} & 10 & 0.33 & Di-n-octyl Phthalate & ND & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 1$	Client ID				MW1 (00997)		•		
Compound Concentration	Matrix				W				
W S S S S S S S S S			Reporti	ng Limit			4-4:	Report	ing Limit
Acenaphthylene ND 10 0.33 1,2-Diphenylhydrazine ND 10 Anthracene ND 10 0.33 Fluoranthene ND 10 Benzidine ND 50 1.6 Fluorene ND 10 Benzoic Acid ND 50 1.6 Hexachlorobenzene ND 10 Benzo(a)anthracene ND 10 0.33 Hexachlorobutadiene ND 10 Benzo(b)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 10 Benzo(k)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 10 Benzo(k)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 10 Benzo(a)pyrene ND 10 0.33 Indeno(1,2,3-cd)pyrene ND 10 Benzo(a)pyrene ND 10 0.33 Isophorone ND 10 Benzyl Alcohol ND 20 0.66 2-Methylphenol (o-Cresol)<	Compound	Concentration*	W	S	Compound		oncemation	W	S
ND	Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	10	0.33
Benzidine ND 50 1.6 Fluorene ND 10 Benzoic Acid ND 50 1.6 Hexachlorobenzene ND 10 Benzo(a)anthracene ND 10 0.33 Hexachlorobutadiene ND 10 Benzo(b)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 50 Benzo(k)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 10 Benzo(g,h,i)perylene ND 10 0.33 Hexachlorocyclopentadiene ND 10 Benzo(g,h,i)perylene ND 10 0.33 Indeno(1,2,3-cd)pyrene ND 10 Benzo(a)pyrene ND 10 0.33 Isophorone ND 10 Benzyl Alcohol ND 20 0.66 2-Methylnaphthalene ND 10 Bis(2-chloroethoxy)methane ND 10 0.33 2-Methylphenol (o-Cresol) ND 10 Bis(2-chloroethyl) Ether ND 10 0.33<	Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND	10	0.33
Benzoic Acid ND 50 1.6 Hexachlorobenzene ND 10 Benzo(a)anthracene ND 10 0.33 Hexachlorobutadiene ND 10 Benzo(b)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 50 Benzo(k)fluoranthene ND 10 0.33 Hexachlorocthane ND 10 Benzo(g,h,i)perylene ND 10 0.33 Indeno(1,2,3-cd)pyrene ND 10 Benzo(a)pyrene ND 10 0.33 Isophorone ND 10 Benzyl Alcohol ND 20 0.66 2-Methylnaphthalene ND 10 Bis(2-chloroethoxy)methane ND 10 0.33 2-Methylphenol (o-Cresol) ND 10 Bis(2-chloroethyl) Ether ND 10 0.33 3 &/or 4-Methylphenol (m &/or p-Cresol) ND 10 Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 4-Bromophenyl Phenyl Ether ND	Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33
Benzo(a)anthracene ND 10 0.33 Hexachlorobutadiene ND 10 Benzo(b)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 50 Benzo(k)fluoranthene ND 10 0.33 Hexachlorocthane ND 10 Benzo(g,h,i)perylene ND 10 0.33 Indeno(1,2,3-cd)pyrene ND 10 Benzo(a)pyrene ND 10 0.33 Isophorone ND 10 Benzyl Alcohol ND 20 0.66 2-Methylnaphthalene ND 10 Bis(2-chloroethoxy)methane ND 10 0.33 2-Methylphenol (o-Cresol) ND 10 Bis(2-chloroethyl) Ether ND 10 0.33 3 &/or 4-Methylphenol (m &/or p-Cresol) ND 10 Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50 4-Bromophenyl Phenyl Ether <td< td=""><td>Benzidine</td><td>ND</td><td>50</td><td>1.6</td><td>Fluorene</td><td></td><td>ND</td><td>10</td><td>0.33</td></td<>	Benzidine	ND	50	1.6	Fluorene		ND	10	0.33
Benzo(b)fluoranthene ND 10 0.33 Hexachlorocyclopentadiene ND 10 10 10 10 10 10 10 1	Benzoic Acid	ND							0.33
Benzo(k)fluoranthene ND 10 0.33 Hexachloroethane ND 10		ND	10					- •	0.33
Benzo(g,h,i)perylene ND 10 0.33 Indeno(1,2,3-cd)pyrene ND 10 Benzo(a)pyrene ND 10 0.33 Isophorone ND 10 Benzyl Alcohol ND 20 0.66 2-Methylnaphthalene ND 10 Bis(2-chloroethoxy)methane ND 10 0.33 2-Methylphenol (o-Cresol) ND 10 Bis(2-chloroethyl) Ether ND 10 0.33 3 &/or 4-Methylphenol (m &/or p-Cresol) ND 10 Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50 4-Bromophenyl Phenyl Ether ND 10 0.33 3-Nitroaniline ND 50 Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50	Benzo(b)fluoranthene	ND	10	0.33					1.6
Benzo(a)pyrene ND 10 0.33 Isophorone ND 10	Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	·			0.33
Benzyl Alcohol ND 20 0.66 2-Methylnaphthalene ND 10	Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene				0.33
Bis(2-chloroethoxy)methane ND 10 0.33 2-Methylphenol (o-Cresol) ND 10 Bis(2-chloroethyl) Ether ND 10 0.33 3 &/or 4-Methylphenol (m &/or p-Cresol) ND 10 Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50 4-Bromophenyl Phenyl Ether ND 10 0.33 3-Nitroaniline ND 50 Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50					*				0.33
Bis(2-chloroethyl) Ether ND 10 0.33 3 &/or 4-Methylphenol (m &/or p-Cresol) ND 10 Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50 4-Bromophenyl Phenyl Ether ND 10 0.33 3-Nitroaniline ND 50 Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50	•								0.33
Bis(2-chloroisopropyl)Ether ND 10 0.33 Naphthalene ND 10 Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50 4-Bromophenyl Phenyl Ether ND 10 0.33 3-Nitroaniline ND 50 Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50		ND							0.33
Bis(2-ethylhexyl) Phthalate ND 10 0.33 2-Nitroaniline ND 50	· · · · · · · · · · · · · · · · · · ·			1	7 1	Cresol)			0.33
4-Bromophenyl Phenyl Ether ND 10 0.33 3-Nitroaniline ND 50 Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50									0.33
Butylbenzyl Phthalate ND 10 0.33 4-Nitroaniline ND 50				9					1.6
Edit to the state of the state							Ē		1.6
4-Chloroanaline ND 20 0.66 2-Nitrophenol ND 50									1.6
	4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6

4-Chloro-3-methylpheno1

Dibenzo(a,h)anthracene

Di-n-butyl Phthalate

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl Phthalate

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

4,6-Dinitro-2-methylphenol

Diethyl Phthalate

3,3-Dichlorobenzidine

4-Chlorophenyl Phenyl Ether

2-Chloronaphthalene

2-Chlorophenol

Chrysene

Dibenzofuran

ND

10

10

10

10

10

10

10

10

10

10

10

20

10

10

10

10

50

50

10

10

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.66

0.33

0.33

0.33

0.33

1.6

1.6

0.33

0.33

4-Nitrophenol

Nitrobenzene

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Pentachlorophenol

Phenanthrene

Comments:

Phenol-d5

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

Phenol

Pyrene

N-Nitrosodi-n-propylamine

Surrogate Recoveries (%)

50

10

10

10

10

50

10

10

10

10

10

10

45 50

58

56

90

1.6

0.33

0.33

0.33

0.33

1.6

0.33

0.33

0.33

0.33

0.33

ND

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

^{*} surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

Analytical Sciences P.O. Box 750336	Client Project ID: #10	49 AO (0092901)	-	led: 09/29/0 ved: 09/29/0		
Petaluma, CA 94975-0336	Client Contact: Mark	Valentini	Date Extra	cted: 09/29/0)0	
	Client P.O:		Date Analy	zed: 10/05/0	00	
EPA method 625 and 3510 or 82 Lab ID Client ID		Organics By GC/MS 48990 MW2 (00998))			
Matrix Compound	Concentration* Reporting Limit W S	Compound		oncentration	Reporti	ing Limit

Client ID				MW2 (00998)			
Matrix				W			
Compound	Concentration*	Reporti	ng Limit	Compound	oncentration	Report	ing Limit
Compound	Concentiation	W	S	Compound	Oncommanon	W	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene	ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33
Benzo(a)pyrene	, ND	10	0.33	Isophorone	ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Cresol)	ND	10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline	ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6
4-Chloro-3-methylpheno	ND	10	0.33	4-Nitrophenol	ND	50	1.6
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene	ND	10	0.33
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine	ND	10	0.33
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine	ND	10	0.33
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine	ND	10	0.33
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol	ND	50	1.6
Dibenzofuran	ND	10	0.33	Phenanthrene	ND	10	0.33
Di-n-butyl Phthalate	ND	10	0.33	Phenol	ND	10	0.33
1,2-Dichlorobenzene	ND	10	0.33	Pyrene	ND	10	0.33
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene	ND	10	0.33
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol	ND	10	0.33
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33
2,4-Dichlorophenol	ND	10	0.33	Comments:			
Diethyl Phthalate	ND	10	0.33	Surrogate Recoveri	es (%)		
2,4-Dimethylphenol	ND	10	0.33	2-Fluorophenol		70	
Dimethyl Phthalate	ND	10	0.33	Phenol-d5		77	
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5		86	
2,4-Dinitrophenol	ND	50	1.6	2-Fluorobiphenyl		85	
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol		111	
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14		89	

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

ND

10

10

10

10

10

10

10

10

10

10

20

10

10

10

10

50

50

10

10

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.66

0.33

0.33

0.33

0.33

1.6

1.6

0.33

0.33

Nitrobenzene

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Comments:

Phenol-d5

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

N-Nitrosodi-n-propylamine

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Analytical Sciences	Client	Projec	t ID: #	1049 AO (0092901) Date Sa	mpled: 09/29/0	0	
P.O. Box 750336				Date Re	ceived: 09/29/0	00	
Petaluma, CA 94975-033	6 Client	Contac	ct: Mar	k Valentini Date Ex	tracted: 09/29/0	00	
	Client	P.O:		Date Ar	alyzed: 10/05/0	00	
EPA method 625 and 3510 or 8		emi-V	olatile	Organics By GC/MS	· . ·	~ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Lab ID				78991			
Client ID				MW3 (00999)			
Matrix				W			
		Reporti	ng Limit		oncentration	Report	ing Limit
Compound	Concentration*	W	S	Compound	oncentration	w	S
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33
Benzoic Acid	ND	50	1.6	Hexachlorobenzene	ND	10	0.33
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33
Benzo(a)pyrene	ND	10	0.33	Isophorone	ND	10	0.33
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33
Bis(2-chloroethyl) Ether	ND	10	0.33	3 &/or 4-Methylphenol (m &/or p-Creso		10	0.33
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	ND	10	0.33
Bis(2-ethylhexyl) Phthalate	ND	10	0.33	2-Nitroaniline	ND	50	1.6
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6
4-Chloro-3-methylpheno	ND	10	0.33	4-Nitrophenol	ND	50	1.6

2-Chloronaphthalene

Dibenzo(a,h)anthracene

Di-n-butyl Phthalate

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

3,3-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol
Dimethyl Phthalate

4,6-Dinitro-2-methylphenol

Diethyl Phthalate

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

4-Chlorophenyl Phenyl Ether

2-Chlorophenol

Chrysene

Dibenzofuran

Surrogate Recoveries (%)

10

10

10

10

50

10

10

10

10

10

10

41 43

44

65

ND

0.33

0.33

0.33

0.33

1.6

0.33

0.33

0.33

0.33

0.33

0.33

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

[#] surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

QC REPORT

SVOCs (EPA 8270/625/525)

Date:

10/04/00-10/05/00

Matrix:

Water

Extraction:

N/A

		Concent	tration: (ug/L	%Rec	overy	
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 101000				Instru	ment: G	C-8	
Surrogate1	0.000	420.0	450.0	1000.00	42	45	6.9
Pyrene	0.000	360.0	430.0	1000.00	36	43	17.7
Pentachlorophenol	0.000	390.0	460.0	1000.00	39	46	16.5
2,4-Dinitrotoluene	0.000	440.0	530.0	1000.00	44	53	18.6
Acenaphtene	0.000	580.0	640.0	1000.00	58	64	9.8
4-Nitrophenol	0.000	400.0	470.0	1000.00	40	47	16.1
4-Chloro-3-metylphenol	0.000	680.0	720.0	1000.00	68	72	5.7
1,2,4-trichlorobenzene	0.000	530.0	610.0	1000.00	53	61	14.0
N-nitroso-di-n-propyl	0.000	600.0	460.0	1000.00	60	46	26.4
1,4-Dichlorobenzene	0.000	400.0	440.0	1000.00	40	44	9.5
2-Chlorophenol	0.000	380.0	390.0	1000.00	38	39	2.6
Phenol	0.000	410.0	400.0	1000.00	41	40	2.5

% Re covery = $\frac{(MS-Sample)}{AmountSpiked} \cdot 100$ RPD= $\frac{(MS-MSD)}{(MS+MSD)} \cdot 2 \cdot 100$

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

22240 ZAS82

LAB PROJECT NUMBER:

CHAIN OF CUSTODY

L	<u></u>	CLIENT	INFOR	RMATIC	N		•		LAB	FROJE	ECT MO	MBEK.					
	COMPANY NAME;	ANA	lytic	al Si	CIENC	E3		- '	CLIENT	's Pro	OJECT !	NAME:	10	149	AO (00929	101)
	Address:	110	thech	, Stre	er				TURI	VARO	UND TI	ME (c	heck	one)	7	COOLER TE	EMPERATURE
		Peta	LumA	- ; CA	, 9	4952	_	M	OBILE LAB							Tero	°C
	CONTACT:			/ALEW					SAME DAY		2	4 Hour	RS				
	PHONE#:	70	7 76	9-312	8			'	48Hours		7	2 Hour	RS		_	coc	,
	Fax#:								5 DAYS			Norma	WL	*	_	Page/_	_ OF
<u></u>							ſ			ANALY	SIS (circ	le met	hods)		Ļ		
TEM	CLIENT SAMPLE I.D.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV. YES/NO	RR	CASMED TO	HORSEL ER		/ /			San 1821	(5)	COMMENT	LAB SAMPLE TS #
1	MWI (00997)	9/29/00	12:10	w	1	<i>N</i>			<u> </u>				X :		$\overline{}$		<u> </u>
2	mw2 (00998)	9/29/90	13:05	W	/	N					1	·	X				4898
3	mw3 (00999)	9/29/00	13:33	W	/	N							X				4899
5	/	,						3-3-	-								T
6																	4899
7									<u> </u>		<u> </u>						
8									 		-						
9									<u> </u>	<u> </u>							
10																	
		1					SIG	NATUR	ES	*				<u>-</u>			
ر	RELINGUISHED BY: Mark H. Val BIGNATURE	lewfur		9/2.	1/00	5:	18 Dat		RECEIVED	BY LABO	PRATORY:	th	,	,		1 os	
				-:·· -			2 21776	•	- WINT ONE						DATE		TIME

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY

•		(,										L/	AB PR	OJECT	NUM	BER:	\mathcal{L}'	092	701	
(E)				MATK	W.	refer refer	A SA	4: 					CLIE	NT'S	Proji	ECT N	AME: ☐	049	qth.	Avenue C	akland
(COMPANY NAME:	HARRIS &	LEE EN	IVIRONME	NTAL S	CIENCES	1			.:			CLIENT								
	ADDRESS:	P.O. Box	8369								,THE			18 (6		D.	, j	60.		ER TEMBERATU	RE
		SANTA RO	SA, CA	95407					Мо	BILE L	AB							:	Ice	<u>⊅</u> ∘c	
	CONTACT:	RICHARD E	LY					_	s	AME D	AY			24	Hour	s		[
	PHONE#:	(707) 571-	8961					_	4	8 Hou	RS			72	Hour	ıs			COC	i i	
	FAX #:	(707) 571-	8688							5 DA	YS			N	ORMA	L	X	_	PAGE	OF	
							1 2			₹	£ 8 \$										
re m	CLIENT SAMPLE ID	DATE SAMPLED	TIME	MATRIX	CONT.	PRESV. YES/NO	TPH/GAS/BTEX & MTBE EPA 8015M/8020	TPH DIESEL EPA 8015M	OXYGENATED FUEL ADDITIVES EPA 8260M	VOLATILE HYDROCARBONS EPA 8260	CHLORINATED SOLVENTS EPA 8010	TRPH SM 5520F	SEMI-VOLATILE HYDROCARBONS EPA 8270	TOTAL LEAD	5 LUFT METALS	CAM 17 METALS	OIL & GREASE EPA 418.1			COMMENTS	LAB SAMPLE #
1	mw-I	9/29/00	(2.)O	Water	9	yes	Υ	X			Χ		Χ				X			•	00997
2	いら-フ	9/29/00	13:05	الحمحير	9	Ves	X	X			X		χ				X				00998

11EM	CLIENT SAMPLE ID.	SAMPLED					TPH/GA & IN EPA 801	TPH [EPA	OXYGE FUEL AL EPA	VOL HYDROC	CHLOR SOLA EPA	E WS	SEMI-VO HYDROC EPA	TOTAL	5 LUFT	CAM 17	OIL & G		#
1	mw-I	9/29/00	12:10	Water	9	yes	X	Χ			Χ		Χ				χ		00997
2	mw-2	9/29/00	13:05	المحمد	9	Yes	X	X			X		χ				X		00998
3	mw-3	9/29/00	13:33	water	9	yes	X	×			X		X				X		00999
4						•					·								
5															."				
6																			
7																			
8																			
9																			
10																			
11																			
12																			

	SIGNATURE	9/29/00 DATE	4:26 pm	Mars A. Valentin	1/29 00 DATE	4:26 pz
	RELINQUISHED BY:	1 1		RECEIVED BY LABORATORY:	9//	
ı			A. Mark			

APPENDIX D

SOIL BORING LOGS

BORING	LOC	CATIC	N		1049 9th Avenue, Oakland,	CA	 -			ELEVATION/		18.76 ft	BORING NO.	MW-1
DRILLIN	IG AG	SENC	Y		Gregg Drilling	DAILLER		Rich		DATE START	ED	08 Sep 00		08 Sep 00
DRILLIN	iG EC	QUIP	MENT		Rhino D-15					COMPLETIC DEPTH	N	20.0 ft	SAMPLER	Push
DRILLIN	IG MI	ETHO)D		Hollow Stem Auger	DAILL BIT		8 inches		NO. OF SAMPLES	DIST	4	UNDIST	_
SIZE AN	ID TY	PE C	F CA	SING	2.0 inch PVC		FROM	20.0 ft TO	0.2 ft	WATER LEVEL	FIRST	11.0 ft	COLLECTED /MEASURED	None
TYPE O	FPE	RFO	RATIC	DN:	0.01 inch Slotted		FROM	20.0 ft TO	3.5 ft	CORE BARE	REL	2.0 inches	LENGTH	18 inches
SIZEAN	ID TY	/PE C)F PA(ск	RMC #2/12 Sand		FROM	20.0 ft TO	4.0 ft	LOGGED BY	r:	R. Ely	CHECKED B	Υ.
TYPE O	ECE	: 61	NO.	. 1	Bentonite	1	FROM	4.0 ft TO	3.0 ft	COMMENTS	S:			
TIFEO	11 JL	.AL	NO.	2	Portland Cement	1	FROM	3.0 ft ^{TO}	0.2 ft					
DEPTH (feet)	SAMPLES	RUN			-	MATER	IAL DESC	RIPTION					uscs	WELL CONSTRUCTION
-					Concrete Sidewalk.							/= ·		Lock Box
_				`	Sandy Clay – 2 to 3 inch tra	nsitional,	dark gra	y-brown.				_/ -	1 1	
_					SANDY CLAY (CL) - nativ	e soil, str	ong brov	vn (7.3YR 5	5/6).			_	CL	7. PVC
_												-	-	
_														Sentonite
_												-		
5— -		,		₹	Color change to dark brown	(7.5YR 4	4.4), dry (to moist, sti	ff.			-	1	
_		1		7	Color change to grayish-gre	en (10GY	7 5/2), dr	y, hard.				-	_	
-												-	<u> </u>	
		;										- -	1	
													-	
_													-	Mell Screen
10 —				_									<u> </u>	Sand
		2			SAND (SP), grayish-green (5G 4 5/2)	ruet des	aca wall co	rted med	lium araina	d cand	, <u>∑</u> -	SP	0.010
_					subrounded to rounded quar	tz with tr	ace mafic	es; faint pro	duct ode	or.	u sanc	·, -	- 31	
- _													_	100 mg
-				-			——						 	
-					SANDY SILT (ML), grayis	h-brown t	to grayish	n-green (10°	YR 5/2 t	o 10G 4/2)	mottle	ed -	ML	
15 —					brownish-yellow (10YR 6/6	5), damp,	stiff, fine	grained sa	nd with	trace mica.		_	1	
_		3		ı								-]	
_ 			-									-	_	
-												•	4	
-	-											-		
_		4]	SAND (SP) – 6 inch thick be grained sand (same as at 11	ed at 18.7- ft).	-19.2 ft, c	olive-gray, d	amp, loo	se, well-so	rted m	edium-		
20		-					2. 00.00	1			-			
-	1				·	П	D: 20.0 ft	bgs						

		1D. 20.0 N		-				
Harris &	Lee Enviror	nmental Sciences						
REVIEWED BY:	Richard Elv	DATE: September 2000	FIELD LOG OF BORING NO.	MW-1	SHEET NO.	1	OF	1

DAILLIN		ATIO	iN	1049 9th Avenue, Oaklar	nd, CA				ELEVATION/DATE	лм С 17.77 ft	BORING NO.	MW-2
	IG AG	ENC	Υ	Gregg Drilling	DRILLER		Rich		DATE STARTED DATE FINISHED	08 Sep 00	-	08 Sep 00
DRILLIN	IG EQ	UIPN	MENT	Rhino D-15	•				COMPLETION DEPTH	20.0 ft	SAMPLER	Push
DRILLIN	IG ME	THO	OD	Hollow Stem Auger		8 inches		NO. OF DE	^{5τ} 4	UNDIST	_	
SIZE AN	ID TYI	PE O	F CASING	2.0 inch PVC		FROM	20.0 ft TO	0.2 ft		RST None	COLLECTED	None
TYPE O	FPEF	RFO	RATION:	0.01 inch Slotted	1	FROM	20.0 ft TO	5.0 ft	CORE BARREL	2.0 inches	LENGTH	18 inches
SIZE AN	ID TYI	PE O	F PACK	RMC #2/12 Sand	i 1	FROM	20.0 ft το	4.0 ft	LOGGED BY:	R. Ely	CHECKED B	Υ;
]	NO. 1	Bentonite		FROM	4.0 ft ™	3.0 ft	COMMENTS:		•	
TYPE O	il sei	*L [NO. 2	Portland Cement		FROM	3.0 ft TO	0.2 ft				
DEPTH (feet)	SAMPLES	RUN			MATER	IAL DESC	RIPTION				USCS	WELL CONSTRUCTION
-				Concrete Sidewalk.								Lox Bo
				SANDY CLAY (CL), broto coarse-grained sand of	SANDY CLAY (CL), brown (7.5YR 5/6) to dark brown (2.5YR 3/2), dry, stiff, medium-to coarse-grained sand of subangular to subrounded quartz with trace lithics.						CL	2" PVC KKKKKKKK 945 945
5		1								- - - - -		
10-		2		CLAYEY GRAVELLY S medium- to very coarse- mafics and black chert (*	grained sand	, subang	ular to round	ed most	tly quartz with	trace	sc	0.010 Well Screen
_	-			CLAYEY SILT (ML), li (10YR 5/4), moist, stiff,	ght brownish trace mica.		 10YR 6/2) m	ottled y	ellowish-brow	— — — 'n	ML	
- - -	1	1									1	
15 —		3								<u>:</u>	-	
15 —		3		SILTY SAND (SP), light well-sorted fine-grained	. — — — brownish-gr sand.	- — — Tay (2.5Y	 6/3) to olive	yellow	 (2.5Y 6/6), mo	ist, dense,	SP	

ــــــــــــــــــــــــــــــــــــ	Lee Environ	mental Sciences		<u> </u>	1		
REVIEWED BY:	Richard Ely	DATE: September 2000	FIELD LOG OF BORING NO.	MW-2	SHEET NO.	1 OF	1

	G LOC	CATIC)N		1049 9th Avenue, Oaklan	nd, CA				ELEVATION/DATUM TOC 18.02 1	ft	BORING NO.	MW-3
DRILLIN	NG AG	ENC	Y		Gregg Drilling	DRILLER		Rich		DATE STARTED 08 Sep		-	08 Sep 00
ÐRILLIN	NG EC	QUIPI	MENT		Rhino D-15	tu				COMPLETION 20.0 ft	t	SAMPLER	Push
ORILLIN	NG ME	ETHC	D		Hollow Stem Auger	DRILL BIT		8 inches		NO. OF DIST. 4.		UNDIST.	
SIZEAN	VD TY	PE C	F CAS	SING	2.0 inch PVC	1	FROM	20.0 ft TO	0.2 ft	WATER FIRST None		COLLECTED /MEASURED	None
TYPE C)F PE	RFO	RATIO	N:	0.01 inch Slotted	1	FROM	20.0 ft TO	5.0 ft	CORE BARREL 2.0 inc	ches	LENGTH	18 inches
SIZE AN	VD TY	PE C	F PAC	ж	RMC #2/12 Sand	1	FROM	20.0 ft TO	4.0 ft	LOGGED BY: R. Ely	,	CHECKED 8	Y:
		4.	NQ.	1	Bentonite		FROM	4.0 ft TO	3.0 ft	COMMENTS:			
TYPE C)FSE	AL	NO.	2	Portland Cement		FROM	3.0 ft ^{TO}	0.2 ft				
DEPTH (feet)	SAMPLES	RUN				MATER	IAL DESC	RIPTION				USCS	WELL CONSTRUCTION
-				-	Asphalt.							39440	Lock Box
_				-	Road Gravel.						🖠		
				:	SANDY CLAY (CL), lig sand.	ht olive gray	(5Y 6/2)), dry to dam	p, stiff,	well-sorted fine-grained		CL	2" PVC
5— - - - - - - -		1			▼ Same as above.								Well Screen
- - - - -		2			SAND (SP), brown to da grained sand, subangular chert pebbles to 4 mm lo	r to subround	YR 3-5/3 led most	3), moist, loo y quartz with	se, well- h trace 1	sorted fine- to medium- nafics; trace quartz and	 	SP	0.010 We
15—		3			CLAYEY SAND and SA mottled yellowish-brown	ANDY CLAY n (10YR 5/4-	(SC/CI 6), well-	.), light brow sorted fine-g	nish-gr grained :	ay (10YR 6/2) sand.	-	SC/CL	
20 —		4			▼ Same as above, except n sand.	noderate-sort	ed fine-	to medium-g	grained :	sand with trace coarse	-		
²⁰						TI): 20.0 f	t bgs				-	

				-			
Harris &	Lee Environ	mental Sciences					
REVIEWED BY:	Richard Elv	DATE: September 2000	FIELD LOG OF BORING NO.	MW-3	SHEET NO.	l OF	1