#### Richard W. Ely Registered Geologist #4137 2138 Green Hill Rd. Sebastopol, CA 95472 707-824-4836 August 7, 2001 Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-8577 Groundwater Monitoring Report Salle's Paint & Body Shop 1049 9th Avenue Oakland, CA 94606 Dear Mr. Hwang: Mr. Richard Ely, Registered Geologist, has been retained by Mr. Dick Cochran to prepare this Groundwater Monitoring Report for a former waste-oil underground storage tank (UST) located at Salle's Paint & Body Shop, 1049 9<sup>th</sup> Avenue, California (site) (Figure 1). The Alameda County Health Care Services Agency (ACHCSA) requested this investigation, which provides the results of the second of four proposed quarterly monitoring events that the site. #### BACKGROUND The site is owned by C&C Property Management Trust, and has been occupied by Salle's Paint & Body Shop since approximately 1981. With the exception of a small parking area on the west, the site is entirely occupied by a large building that fronts on the sidewalks on the east and north and the property line on the south. #### **UST Removal Activities** Walker's Hydraulics Inc. of Concord, California removed a 280-gallon UST for waste oil from the site on July 20, 1994. Barney Chan of the ACHCSA witnessed the removal. The UST was located beneath the sidewalk on the 9th Avenue side of the building. Touchstone Developments of San Francisco, California observed the tank removal and collected two soil samples from the excavation, and a four-fold composite-sample from the spoil pile. The field activities and analytical results were presented in an Underground Storage Tank Removal Report dated August 3, 1994. #### September 2000 Monitoring Well Installations On September 8, 2000, three soil borings were constructed and converted into monitoring wells to assess the groundwater gradient and the impact to the shallow ground water. The soil borings were drilled to approximately 20 feet depth. Figure 2 shows the locations of wells. The wells were screened to monitor the first water-bearing zone encountered. Fifteen feet of well screen was used in the wells, with approximately 4.8-ft of blank casing on top. The wells were constructed with flush-threaded, 2-inch diameter Schedule 40 PVC blank casing with 0.010-inch factory-milled screen size. Number #2/12 RMC sand was used in the annular space around the well screen to approximately one foot above the top of the screen. One foot of bentonite pellets was used to separate the sand from the sanitary surface seal (grout). #### WELL SAMPLING Water level measurements were made in all wells using an electronic water level meter and noted on the sampling form (Appendix A). Well MW-1 was sampled by Environmental Sampling Services on May 31, 2001. Wells MW-2 and MW-3 were not sampled because they have been non-detect for all analytes. Prior to sampling, well MW-1 was checked for the presence of free-phase hydrocarbons using an interface probe, clear bailer, or tape with product detection paste. The well was purged of a minimum of five well-casing volumes of water using a pre-cleaned sampling pump. Temperature, pH and electrical conductivity were measured at least three times during purging. Purging continued until these parameters had stabilized (i.e., changes in temperature, pH or conductivity did not exceed ±0.5 F, 0.1 or 5 percent, respectively). The purge water was stored temporarily on-site in DOT 17H 55-gallon drums pending analytic results. The drums were labeled with the date, contents, and the field personnel initials, and telephone number. Groundwater samples were collected from the well with new disposable PVC bailers. For the sample to be analyzed for Halogenated Volatile Organic Compounds (HVOCs), a bottom-emptying device was used to minimize loss of volatile components. The samples were labeled to include sample ID, date, preservative, and the field technician's initials. The samples were placed in polyethylene bags and in a chilled ice chest for transport under chain-of-custody to the laboratory. #### Laboratory Analysis Analytical Sciences, of Petaluma, California, a state-certified laboratory analyzed the samples using methods approved by the California Regional Water Quality Control Board (CRWQCB) and the Environmental Protection Agency (EPA). The laboratory analyzed the water samples for TPHg (EPA Method 8015 Modified); TPHd (EPA Method 8015 Modified); BTEX compounds and methyl-tert-butyl-ether (MTBE) (EPA Method 8020); and HVOCs (EPA Method 8010). Analyses for Oil & Grease (EPA Method 418.1) and Semi-Volatile Organic Compounds (EPA Method 8270) were discontinued because these methods had yielded non-detect results in the previous sampling event. Don Hwang of the ACHCSA, in a letter dated February 13, 2001, approved the discontinuation of these analyses. #### Disposal of Wastewater Water from equipment decontamination and well sampling was stored in DOT 17-H 55-gallon drums. The water will be disposed of in accordance with State and local regulations. #### HYDROGEOLOGY The site is situated at an elevation of 18-feet (ft) above Mean Sea Level in an area of apartment buildings and small businesses. The Oakland Inner Harbor (part of San Francisco Bay) lies 1100 feet to the south. Late Pleistocene age alluvial fan deposits of the Temescal Formation underlie the site. These materials have moderate permeability and consist primarily of interfingering lenses of clayey gravel, sandy silty clay, and sand-silt-clay mixtures. On May 31 2001 the depth to static groundwater ranged from 9.83 to 10.91 ft (Table 1). The water table gradient and flow direction were 0.031 ft/ft and S24°E, respectively (Figure 3). #### ANALYTICAL RESULTS Laboratory analytical data sheets are included in Appendix B. No MTBE (Method 8020) or chlorinated solvents (Method 8010) were detected in the groundwater samples from MW-1 (Table 2). In monitoring well MW-1, positive detections were reported for TPH-diesel (70 $\mu$ g/l), TPH-gasoline (380 $\mu$ g/l), benzene (1.0 $\mu$ g/l), toluene (4.5 $\mu$ g/l), ethyl benzene (3.5 $\mu$ g/l), and xylenes (9.8 $\mu$ g/l). The laboratory reported the diesel-range compounds to be the high-boiling components of gasoline. #### DISCUSSION After three monitoring episodes, TPH-gasoline, weathered gasoline, and BTEX compounds are the principal contaminants detected to date at the site. Probably some gasoline was disposed of in the waste-oil tank along with oil, and grease. Because gasoline-range compounds and BTEX are more mobile than oil, they have been detected in the monitoring well #### RECOMMENDATIONS One more sampling round should be conducted at the site. Following this round, if the concentrations of contaminants remain low, the site should be considered for closure. #### **SCHEDULE** The next groundwater-monitoring event will take place in September 2001. Sincerely, Richard W. Ely RG #4137 Rund W. Sly 2138 Green Hill Rd. Sebastopol, CA 95472 707-824-4836 The following Figures, Tables and Appendixes are attached: Figure 1 Site Location Map Figure 2 Groundwater Elevation Map Table 1. Excavation Soil Sample Analytical Results Table 2. Groundwater Elevations Table 3. Monitoring Well Soil Sample Analytical Results Table 4. Groundwater Sample Analytical Results Appendix A Well Sampling Data Sheets Appendix B Laboratory Analytical Data Sheets cc: Dick Cochran RICHARD ELY plegisteried geologist LOCATION MAP 1049 9th Avenue Oakland, California FIGURE 1 JOB NUMBER TRACE 165 REVIEWED BY R. Ely December 1999 REVISED DATE RICHARD ELY REGISTERED GEOLOGIST GROUNDWATER ELEVATIONS, 31 May 2001 1049 9th Avenue Oakland, California FIGURE 2 JOB REFERENCE Salle's Paint & Body Shop REVIEWED BY DATE REVISED DATE Richard Ely July 2001 April 2001 TABLE 1 GROUNDWATER ELEVATIONS SALLE'S PAINT & BODY SHOP, 1049 9<sup>TH</sup> AVENUE, OAKLAND, CALIFORNIA | Well ID | Date | Top of Casing<br>Elevation* | Depth to<br>Groundwater | Groundwater<br>Elevation* | Gradient | |---------|----------|-----------------------------|-------------------------|---------------------------|----------------------| | | | | | | | | | 09/29/00 | | 11.35 | 7.41 | 0.033/\$30°E | | MW-1 | 03/05/01 | 18.76 | 9,35 | 9.41 | 0.019/ <b>S77</b> °W | | | 05/31/01 | | 10.18 | 8.58 | 0.031/S24°E | | | | | <del></del> | | · · · · · · | | | 09/29/00 | | 10.92 | 6.85 | 0.033/S30°E | | MW-2 | 03/05/01 | 17.77 | 9.13 | 8.64 | 0.019/S77°W | | | 05/31/01 | | 9.83 | 7.94 | 0.031/S24°E | | | т. | <del></del> | Y | , | | | | 09/29/00 | | 12.09 | 5.93 | 0.033/S30°E | | MW-3 | 03/05/01 | 18.02 | 8.54 | 9.48 | 0.019/\$77°W | | | 05/31/01 | | 10.91 | 7.11 | 0.031/S24°E | Note: \* = Feet, Mean Sea Level TABLE 2 GROUNDWATER SAMPLE ANALYTICAL RESULTS SALLE'S PAINT & BODY SHOP, 1049 9<sup>TH</sup> AVENUE, OAKLAND, CALIFORNIA | Sample ID | Date | Oil &<br>Grease | TPH <sup>1</sup><br>Diesel | TPH<br>Gasoline | Benzene | Toluene | Ethyl<br>Benzene | Xylenes | MtBE <sup>2</sup> | Chloro-<br>benzene <sup>3</sup> | Semi-Volatile<br>Organics <sup>4</sup> | |------------|----------|-----------------------------------|----------------------------|-----------------|----------|---------|------------------|---------|-------------------|---------------------------------|----------------------------------------| | MW-1 | 09/29/00 | ND <sup>5</sup> <100 <sup>6</sup> | ND<100 | 280 | 1.4 | ND<0.5 | 2.5 | 4.5 | ND<2.5 | 1.1 | ND | | 1V1 VV - 1 | 03/05/01 | NA <sup>7</sup> | 1708 | 300 | 1.7 | 2.1 | 1.4 | 2.6 | ND<2.5 | ND<0.5 | NA | | | 05/31/01 | NA | 70 <sup>7</sup> | 380 | 1.0 | 4.5 | 3.5 | 9.8 | ND<2.5 | ND<0.5 | NA | | | | L., | <u></u> | | <u> </u> | | | | | | | | MW-2 | 09/29/00 | ND<100 | ND<100 | ND<50 | ND<0.5 | ND<0.5 | ND<0.5 | ND<1.5 | ND<2.5 | ND<0.5 | ND | | | 03/05/01 | NA | ND<50 | ND<50 | ND<0.5 | ND<0.5 | ND<0.5 | ND<1.5 | ND<2.5 | ND<0.5 | NA | | | | | | | | | | | | | | | MW-3 | 09/29/00 | ND<100 | ND<100 | ND<50 | ND<0.5 | ND<0.5 | ND<0.5 | ND<1.5 | ND<2.5 | ND<0.5 | ND | | | 03/05/01 | NA | ND<50 | ND<50 | ND<0,5 | ND<0.5 | ND<0.5 | ND<1.5 | ND<2.5 | ND<0.5 | NA | #### Notes: - 1. TPH = Total Petroleum Hydrocarbons - 2. Methyl tert-Butyl Ether - 3. Other EPA Method 8010 Compounds are ND - 4. EPA method 8270 - 5. ND = Not Detected at or above the reporting limit - 6. All results in micrograms per liter (μg/l) - 7. NA = Not Analyzed - 8. Laboratory reports this to be weathered gasoline ### **APPENDIX A** ## WATER QUALITY SAMPLE LOG SHEETS # FIELD ACTIVITY REPORT QUARTERLY GROUNDWATER MONITORING 1049-9th AVENUE OAKLAND, CALIFORNIA MAY 2001 ESS Personnel: Stephen Penman and Casey Wheable Date of Activities: May 31, 2001 #### Decontamination Procedures All downhole equipment was cleaned with a solution of Liqui-Nox® laboratory-grade detergent and potable water, rinsed with potable water, followed by a final rinse with distilled water. #### Field Equipment Calibration All field measurements were performed in accordance with the instruments' calibration and operating procedures. Instrument calibrations were performed on a daily basis. Field measurements included pH, specific conductance, turbidity, and temperature. #### Water Level Measurements Water level measurements were performed with a Solinst® electrical water level indicator. All measurements were referenced to the surveyor's mark on the well casing. #### Well Evacuation Procedures One monitoring well (MW-1) was purged using a new disposable PVC bailer. After removal of three casing volumes and stabilization of groundwater quality parameters, the monitoring well was sampled for: Halogenated Volatile Organic Compounds (HVOCs-EPA Method 8010), Total Petroleum Hydrocarbon (TPH) as Gasoline/BTEX and MTBE (EPA Method 8015/8020) and TPH as Diesel (EPA Method 8015M). #### Sample Handling Analytical Sciences of Petaluma, California supplied all sample containers and performed required analyses. Analytical Sciences picked samples up the following day. TPH (Gas)/BTEX, MTBE and HVOCs samples were contained in five 40-ml clear glass containers preserved with Hydrochloric Acid. TPH (Diesel) samples were contained in one, non-preserved, 1-Liter amber glass container. All samples were placed in bubblewrap protective material, sealed in Ziploc® bags and stored in a chilled ice chest for storage and shipment. #### QA/QC No QA/QC samples were requested for this project. #### Comments All derived groundwater and decontamination water were placed into a labeled 55-gallon drum. Approximately 10 gallons were generated during this sampling event. Lacqueline Lee President Enclosure Table 1: Summary of Groundwater Level Measurements Water Sample Log Sheet Chain of Custody Quarterly Groundwater Level Measurements Client: Richard Ely Project Name: 1049-9th Avenue Project Location: 1049-9th Avenue, Oakland, California Date of Measurement: May 31, 2001 | Well I.D. | Time of Measurement | Water Level (Ft.,TOC) | |-----------|---------------------|-----------------------| | MW-1 | 9:43 | 10.18 | | MW-2 | 9:47 | 9.83 | | MW-3 | 9:49 | 10.91 | Legend: Ft., TOC = measured in feet, from top of well casing @ north rim | | | | | | | | | 7. | | |--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------|-----------------------|--------------------------------------------------|------------------|---------------------------------------|--| | WATER | QUALIT | Y SAMPLE L | OG SH | EET | WELL IDEN | TIFICATION | ON: MW-1 | DATE: 5/31/01 | | | Project Na | ame: <u>104</u> | 9 9th Avenue - | - Oaklan | <u>d</u> | Project Contac | ct: <u>Richar</u> | d Ely | , , | | | Weather: | SUNT | yè was - | | | | | | | | | Well Des | cription: 🤇 | 2") 3" 4" 5" | 6" Oth | er: | Well Type: P | | | | | | is Well Se | ecured?\\ | es No Bolt | Size <u>/</u> z | <u>"</u> | Type of lock / | Lock nun | nber: <u>də</u> | ghin | | | Observati | ions / Cor | nments: | | | | | | | | | Purge Me | thod: Te | flon PVC Disp | osable E | ailer Cent | trifugal Pump | GrundFos | Redi-flow I | oump Other: | | | Pump Lin | es:(NA) | New / Cleaned | / Dedica | ated | Bailer Line: N | IA (New) | Cleaned / D | edicated | | | Method o | f Cleaning | g Pump(NA) | Alconox | Liqui-nox | Tap Water D | I Rinse Ot | her: | · · · · · · · · · · · · · · · · · · · | | | Method of Cleaning Bailer NA Alconox Liqui-nox Tap Water DI Rinse Other: | | | | | | | | | | | Sampling | Method: | Disp. Teflon I | Bailer 🕻 | isp. PVC | Bailer GrundF | os Redi-f | low Pump | Other: | | | | | | | | Spec. Cond. N | | | <del></del> | | | | | | | | Spec.Cond. M | | | | | | Method to | n Measure | e Water Level: | Solinst | Serial No. | [554] | P.I.D. R | eading: | ppm @ Well Head | | | | | | | | ter Level Prior | | | | | | TD - 10 F | io សាវ | 3 (DTM) = 9 4 | ft of | water) x "K" | = <b>1.53</b> (Gals / | (CV) x 3 | (No. of C | V) = <b>4.6</b> (Gals.) | | | "K"= ( | ) 163(2" w | $ \mathbf{K} = 0.65$ | 3/4" well | ) "K" = 1. | 02(5" well) "K | " = 1.46(6" | (<br>well) "k" = | = 2.61(8" well) | | | | ,,,,,,,, | 5.05 T. 5.05 | | | UALITY PARA | | | | | | | | | | | Specific | | | | | | Date | Time | Discharge | pH <sub>.</sub> | Temp. | Conductance | | Color | Comments | | | | | (gallons) | | (°C) | mS uS | (NTU's) | | | | | 5/31/01 | 9:59 | 1.0 | 6.57 | 21.2 | 694 | 53,1 | cloudy | | | | 1 | 10:04 | 2.0 | 6.58 | 20.9 | 659 | 67.3 | Ti . | | | | | 10:07 | 3.0 | 6.61 | 20.2 | 629 | 140-1 | . 11 | | | | | 10:11 | 4.0 | 10101 | 19.7 | 612 | 241 | 11 | | | | | 10:15 | 5.0 | | 19.7 | 597 | 329 | •4 | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ,0.0 | <u> </u> | F 0 | | | | | | | | ļ | | | <del></del> | | | <del> </del> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | _ | | | | | | | | | | - | | | | | | | | | | Total Dis | chorao: | <i>5.0</i> ga | llons | | Casing Volum | nes Remo | ved 3. | 27 | | | | | | | 55 Gallon | Drum(s) Pol | v Tank T | reatment S | ystem Other: | | | Date/Tim | n Gampia | ad \$ 21 kg . A | 10:18 | Analysi | s/No. of Bottles | s TPHa E | BTEX. MTB | E & Halogenated VOC's | | | AVOC'S | :w/Hci) a | nd TPH Diesel | /Oil & G | rease 64-1 | liter glass amb | ers N/P). | | | | | OA/OC | - 101) al | @ <del></del> | as an | Fauipmer | nt Blank Dupl | icate MS | /MSD Lat | Split Field Blank | | | | QA/QC: as an Equipment Blank Duplicate MS/MSD Lab Split Field Blank Comments: as an Equipment Blank | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sampled | C <b>ase</b><br>Bv∵√ <del>laek</del> | i Lee and Ster | hen Per | nman Sia | nature(s): | をして | · | _lanshall_ | | Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 # CHAIN OF CUSTODY | | <b>)</b> | rax (10 | , 100 a | | | | | | | | | | | | OJECT | | 400 | | | | | |-------------|-----------------|----------------|---------|--------------|--------------------------------------------------|------------------|------------------------------------------|-------------------------|-------------------------------------------|--------------------------------------|-------------------------------------|------------------|-------------------------------------------|------------|---------------|---------------|----------------------------|-----|------------|----------------------|----------------| | | | CLIENT | NFOR | MATIC | )N | | | | | | | | | | | | | 104 | 9 4 | th Aware - On | khod, | | ( | COMPANY NAME: | HARRIS & | LEE EN | IVIRONME | NTAL S | CIENCES | | | | | | ( | LIENT | 's PR | OJECT | NUM | BER: | | ., | | | | | ADDRESS: | P.O. Box | 8369 | | | <u> </u> | | <b>-</b> | | | TURN | AROU | IND TII | ME (cl | reck o | ne) | | | C | OOLER TEMPERATUR | <b>E</b> | | | | SANTA RO | SA, CA | 95407 | | | | _ | Mol | BILE L | AB | | | | _ | | | | | °C | | | | CONTACT: | RICHARD | ELY | <u> </u> | | | | _ | S | AME D | AY - | • | | 24 | Hour | \$ | | | | | | | | PHONE#: | (707) 571 | -8961 | <del> </del> | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> | | • | _ | 44 | B Hou | <br>RS | | | 72 | Hour | s | | | COC PAGEOF | | | | | Fax #: | (707) 571 | -8688 | | | | | | | 5 DA | ys | | | N | IORMA | ٠ | <u> </u> | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | ᆜ. | | 1 | | | ··········· | | · | | | T | | <u> </u> | 1 | <del>,</del> | | , | AN | ALYSI | <u> </u> | | | | | 1 | | T | | ITEM | CLIENT SAMPLE I | DATE<br>SAMPLE | TIME | MATRIX | CONT. | PRESV.<br>YES/NO | TPH/GAS/BTEX<br>& MTBE<br>EPA 8015M/8020 | TPH CHESEL<br>EPA 6016M | OXYGENATED<br>FUEL ADOTIVES<br>EPA \$280M | VOLATILE<br>HYDROCARBONS<br>EPA 8260 | CHLOPINATED<br>SOLVENTS<br>EPA 8010 | TRPH<br>SM 5620F | SEMI-VOLATILE<br>HYDROCARBONS<br>EPA 8270 | TOTAL LEAD | S LUFT METALS | CAM 17 WETALS | OIL & GREASE<br>EPA 418.1M | | | COMMENTS | LAB<br>SAMPLE | | 1 | MV-I | 5/31/01 | 10:12 | water | 6 | YES | X | $\times$ | | | $\boxtimes$ | | | | | | | | | Petroleum Odoo | | | 2 | | | | | | | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | | | | | | | | | 6 | | | 1 | | | | | | | | | | <u> </u> | | | | | | | | | | 7 | | | | | | | | | ļ | | [ | | | | | <u> </u> | | | | <u> </u> | | | 8 | | | | | | | | | | | | <u> </u> | <u> </u> | ļ | <u> </u> | | | | Ь | | <u> </u> | | | | | | | | | | | | | | | <u> </u> | | | L | | | | | | | 10 | | | | | | | | | 1 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | | | | | | | Cu | | 12 | | | | | | | V | | | | | | | | | | | | | | | | | | | | | | | | | SIGI | VATU | RES | | | | | | | | | | · · · · · | | REL | INQUISHED BY: | 4/- | U | _ | 5/21/ | / <sub>01</sub> | 1 | #'a' | _ | · | | 0 | ED BY I | | | | | | | 5 31 0 ]<br>DATE | 2 : 29<br>Time | ### APPENDIX B # LABORATORY ANALYTICAL DATA SHEETS June 25, 2001 Richard Ely Harris & Lee Environmental Sciences P.O. Box 8369 Santa Rosa, CA 95407 Dear Richard, Enclosed you will find Analytical Sciences' final report 1053105 for your 1049 9<sup>th</sup> Avenue, Oakland project site. An invoice for this work has been sent to Richard Cochran per your request. Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future. Sincerely, Analytical Sciences Mark A. Valentini #### **TPH Gasoline in Water** | Lab# | Sample ID | Analysis | Result (ug/L) | RDL (ug/L) | |-------|-----------|---------------|---------------|------------| | 03377 | MW-1 | TPH/Gasoline | 380 | 50 | | | | MTBE | ND | 2.5 | | | | Benzene | 1.0 | 0.5 | | | | Toluene | 4.5 | 0.5 | | | | Ethyl Benzene | 3.5 | 0.5 | | | | Xylenes | 9.8 | 1.5 | | Date Sampled: _05/31/01 | Date Analyzed: | 06/04/01 | QC Batch #: _1875 | |-------------------------|----------------|---------------------|-------------------| | Date Received: 05/31/01 | Method: | EPA 5030/8015M/8020 | | #### **TPH Diesel in Water** | <b>Lab#</b> 03377 | Sample ID<br>MW-1 | Analysis TPH/Diesel | Result (ug/L) | RDL (ug/L)<br>50 | | |---------------------------------|----------------------|---------------------------------------------------|---------------|----------------------|--| | Date Sampled:<br>Date Received: | 05/31/01<br>05/31/01 | Date Extracted: 06/04/01 Date Analyzed: 06/05/01 | | 879<br>PA 3510/8015M | | ① The sample chromatogram does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling point components of gasoline are present in the early boiling range for diesel. #### **Chlorinated Solvents in Water** | Lab# | Sample ID | Compound Name | Result<br>(ug/L) | RDŁ<br>(ug/L) | |-------------|--------------|---------------------------|------------------|---------------| | 03377 | MW-1 | dichlorodifluoromethane | ND | 0.5 | | | 18144-1 | chloromethane | ND | 0.5 | | | | vinyl chloride | ND | 0.5 | | | | bromomethane | ND | 0.5 | | | | chloroethane | ND | 0.5 | | | | trichlorofluoromethane | ND | 0.5 | | | | 1,1-dichloroethene | ND | 0.5 | | | | methylene chloride | ND | 0.5 | | | | trans-1,2-dichloroethene | ND | 0.5 | | | | 1,1-dichloroethane | ND | 0.5 | | | | cis-1,2-dichloroethene | ND | 0.5 | | | | chloroform | ND | 0.5 | | | | 1,1,1-trichloroethane | ND | 0.5 | | | | carbon tetrachloride | ND | 0.5 | | | | 1,2-dichloroethane | ND | 0.5 | | | | trichloroethene | ND | 0.5 | | | | 1,2-dichloropropane | ND | 0.5 | | | | bromodichloromethane | ND | 0.5 | | | | dibromomethane | ND | 0.5 | | | | trans-1,3-dichloropropene | ND | 0.5 | | | | 1,1,2-trichloroethane | ND | 0.5 | | | | tetrachloroethene | ND | 0.5 | | | | dibromochloromethane | ND | 0.5 | | | | chlorobenzene | ND | 0.5 | | | | 1,1,1,2-tetrachloroethane | ND | 0.5 | | | | bromoform | ND | 0.5 | | | | 1,1,2,2-tetrachloroethane | ND | 0.5 | | | | 1,2,3-trichloropropane | ND | 0.5 | | | | bromobenzene | ND | 0.5 | | | | chlorotoluene | ND | 0.5 | | | | 1,3-dichlorobenzene | ND | 0.5 | | | | 1,4-dichlorobenzene | ND | 0.5 | | | | 1,2-dichlorobenzene | ND | 0.5 | | Date Sample | ed: 05/31/01 | Date Analyzed: 06/04/01 | QC Batch # | t: 1878 | ### **LABORATORY QUALITY ASSURANCE REPORT** QC Batch #: 1875 Lab Project #: 1053105 | Sample<br>ID | Compound | Result<br>(ug/L) | |--------------|---------------|------------------| | MB | TPH/Gas | ND | | MB | MTBE | ND | | MB | Benzene | ND | | MB | Toluene | ND | | MB | Ethyl Benzene | ND | | MB | Xylenes | ND | | | Sample | | Result | Spike | % | |----------|--------|---------------|--------|-------|-------| | Sample # | ID | Compound | (ug/L) | Level | Recv. | | 03350 | CMS | TPH/Gas | | NS | | | | CMS | Benzene | 10.2 | 10.0 | 102 | | | CMS | Toluene | 10.1 | 10.0 | 101 | | | CMS | Ethyl Benzene | 10.0 | 10.0 | 100 | | | CMS | Xylenes | 30.0 | 30.0 | 100 | | | Sample | | Result | Spike | % | | |----------|--------|---------------|--------|-------|-------|------| | Sample # | ID | Compound | (ug/L) | Level | Recv. | RPD | | 03350 | CMSD | TPH/Gas | | NS | | | | | CMSD | Benzene | 10.2 | 10.0 | 102 | 0.10 | | | CMSD | Toluene | 10.1 | 10.0 | 101 | 0.10 | | | CMSD | Ethyl Benzene | 9.97 | 10.0 | 99.7 | 0.60 | | | CMSD | Xylenes | 29.9 | 30.0 | 99.7 | 0.57 | MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range QC Batch #: 1879 Lab Project #: 1053105 | Sample | | Result | |--------|------------|--------| | ID | Compound | (ug/L) | | MB | TPH/Diesel | ND | MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range QC Batch #: 1878 Lab Project #: 1053105 | Sample ID | Compound Name | Result<br>(ug/L) | |-----------|---------------------------|------------------| | MB | dichlorodifluoromethane | ND | | | chloromethane | ND | | | vinyl chloride | ND | | | bromomethane | ND | | | chloroethane | ND | | | trichlorofluoromethane | ND | | | 1,1-dichloroethene | ND | | | methylene chloride | ND | | | trans-1,2-dichloroethene | ND | | | 1,1-dichloroethane | ND | | | cis-1,2-dichloroethene | ND | | | chloroform | ND | | | 1,1,1-trichloroethane | ND | | | carbon tetrachloride | ND | | | 1,2-dichloroethane | ND | | | trichloroethene | ND | | | 1,2-dichloropropane | ND | | | bromodichloromethane | ND | | | dibromomethane | ND | | | trans-1,3-dichloropropene | ND | | | 1,1,2-trichloroethane | ND | | | tetrachloroethene | ND | | | dibromochloromethane | ND | | | chlorobenzene | ND | | | 1,1,1,2-tetrachloroethane | ND | | | bromoform | ND | | | 1,1,2,2-tetrachloroethane | ND | | | 1,2,3-trichloropropane | ND | | | bromobenzene | ND | | | chlorotoluene | ND | | | 1,3-dichlorobenzene | ND | | | 1,4-dichlorobenzene | ND | | | 1,2-dichlorobenzene | ND | | Sample | Sample ID | Compound Name | Result<br>(ug/L) | Spike<br>Levei | %<br>Recv. | |--------|-----------|---------------------------|------------------|----------------|------------| | 03377 | CMS | dichlorodifluoromethane | ND | | | | | 00 | chloromethane | ND | | | | | | vinyl chloride | ND | | | | | | bromomethane | ND | | | | | | chloroethane | ND | | | | | | trichlorofluoromethane | ND | | | | | | 1,1-dichloroethene | ND | | | | | | methylene chloride | 8.40 | 8.00 | 105 | | | | trans-1,2-dichloroethene | ND | | | | | | 1,1-dichloroethane | ND | | | | | | cis-1,2-dichloroethene | ND | | | | | | chloroform | ND | | | | | | 1,1,1-trichloroethane | ND | | | | | | carbon tetrachloride | ND | | | | | | 1,2-dichloroethane | 7.50 | 8.00 | 93.8 | | | | trichloroethene | 8.33 | 8.00 | 104 | | | | 1,2-dichloropropane | ND | | | | | | bromodichloromethane | ND | | | | | | dibromomethane | ND | | | | | | trans-1,3-dichloropropene | ND | | | | | | 1,1,2-trichloroethane | ND | | | | | | tetrachloroethene | 8.36 | 8.00 | 104 | | | | dibromochloromethane | ND | | | | | | chlorobenzene | ND | | | | | | 1,1,1,2-tetrachloroethane | ND | | | | | | bromoform | ND | | | | | | 1,1,2,2-tetrachloroethane | ND | | | | | | 1,2,3-trichloropropane | ND | | | | | | bromobenzene | ND | | | | | | chlorotoluene | ND | _ | | | | | 1,3-dichlorobenzene | 8.12 | 8.00 | 102 | | | | 1,4-dichlorobenzene | ND | _ | | | | | 1,2-dichlorobenzene | 7.87 | 8.00 | 98.4 | | | | | | | | | Sample | Sample ID | Compound Name | Result<br>(ug/L) | Spike<br>Level | %<br>Recv. | RPD | |--------|-----------|---------------------------|------------------|----------------|------------|------| | 03377 | CMSD | dichlorodifluoromethane | ND ND | | | | | **** | ONIOD | chloromethane | ND | | | | | | | vinyl chloride | ND | | | | | | | bromomethane | ND | | | | | | | chloroethane | ND | | | | | | | trichlorofluoromethane | ND | | | | | | | 1,1-dichloroethene | ND | | | | | | | methylene chloride | 8.25 | 8.00 | 103 | 1.8 | | | | trans-1,2-dichloroethene | ND | | | | | | | 1,1-dichloroethane | ND | | | | | | | cis-1,2-dichloroethene | ND | | | | | | | chloroform | ND | | | | | | | 1,1,1-trichloroethane | ND | | | | | | | carbon tetrachloride | ND | | | | | | | 1,2-dichloroethane | 7.59 | 8.00 | 94.9 | 1.2 | | | | trichloroethene | 7.80 | 8.00 | 97.5 | 6.6 | | | | 1,2-dichloropropane | ND | | | | | | | bromodichloromethane | ND | | | | | | | dibromomethane | ND | | | | | | | trans-1,3-dichloropropene | ND | | | | | | | 1,1,2-trichloroethane | ND | | | | | | | tetrachloroethene | 7.90 | 8.00 | 98.8 | 5.7 | | | | dibromochloromethane | ND | | | | | | | chlorobenzene | ND | | | | | | | 1,1,1,2-tetrachloroethane | ND | | | | | | | bromoform | ND | | | | | | | 1,1,2,2-tetrachloroethane | ND | | | | | | | 1,2,3-trichloropropane | ND | | | | | | | bromobenzene | ND | | | | | | | chlorotoluene | ND | | _ | _ | | | | 1,3-dichlorobenzene | 7.69 | 8.00 | 96.1 | 5.4 | | | | 1,4-dichlorobenzene | ND | _ | _ | _ | | | | 1,2-dichlorobenzene | 7.85 | 8.00 | 98.1 | 0.25 | MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 # CHAIN OF CUSTODY | ` <b>`</b> | Fax (707) 769-8093 | 1 | LAB PROJECT NUMBER: | 1049 9th Aware - Dakhad, CA | |------------|-------------------------------------|------------|--------------------------|-----------------------------| | | HARRIS & LEE ENVIRONMENTAL SCIENCES | | CLIENT'S PROJECT NUMBER: | 10-14 7 Marke - Dafian, Cr | | Address: | P.O. Box 8369 | TURNAR | OCHE THE (NAME ON) | COOLER TEMPERATURE | | | SANTA ROSA, CA 95407 | MOBILE LAB | | ICED °C | | CONTACT: | RICHARD ELY | SAME DAY | 24 Hours | | | PHONE#: | (707) 571-8961 | 48 Hours | 72 Hours | coc | | FAX #: | (707) 571-8688 | 5 Days | NORMAL | PAGE 1 OF 1 | | | | | | | | | | | | | | | 1 | de de | | | | AM | 41.00 | | tse<br>texa | nie , mar. | 5,415 | | | | |------|-------------------|-----------------|-------|--------|------------|------------------|------------------------------------------|-------------------------|-------------------------------------------|--------------------------------------|-------------------------------------|------------------|-------------------------------------------|------------|---------------|---------------|----------------------------|--|----------------|--------------------| | ITEM | CLIENT SAMPLE ID. | DATE<br>SAMPLED | TIME | MATRIX | #<br>CONT. | PRESV.<br>YES/NO | TPH/GAS/BTEX<br>& MTBE<br>EPA 8015M/8020 | TPH DIESEL<br>EPA 8015M | OXYGENATED<br>FUEL ADDITIVES<br>EPA 8260M | VOLATILE<br>HYDROCARBONS<br>EPA 8260 | CHLORINATED<br>SOLVENTS<br>EPA 8010 | TRPH<br>SM 5520F | SEMI-VOLATILE<br>HYDROCARBONS<br>EPA 8270 | TOTAL LEAD | 6 LUFT METALS | CAM 17 METALS | OIL & GREASE<br>EPA 418.1M | | COMMENTS | LAB<br>SAMPLE<br># | | 1 | MW-I | 5/31/01 | 10:12 | water | 6 | yes | X | X | | | X | | | | | | | | Petroleum Odor | 03377 | | 2 | | | | | | • | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | | | | | 4 | | | | ļ | | | | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | | | | | | | 8 | | | | | | | | | , | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | | | | | | | | | 10 | | | | | | | | | | - | : | | | | | | | | | | | 11 | | | | | | | | | | | | | | | | | | | | cu | | 12 | | | | | | | V | | | | | | | | | | | | | | | RELINQUISHED BY: RECEIVED BY LABORATORY: 5/31/01 14:29 Suinda Kadannas 5/31/ | | |--------------------------------------------------------------------------------|---------| | 3/21/A) 14/7 Y | | | | 01 2:29 | | SIGNATURE DATE DATE | TIME |