

RECEIVED

By Alameda County Environmental Health 8:46 am, Aug 01, 2016

Ms. Karol Detterman, P.G. Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Arcadis U.S., Inc.

101 Creekside Ridge Court

Suite 200
Roseville
California 95678
Tel 916 786 0320
Fax 916 786 0366
www.arcadis.com

ENVIRONMENT

Date:

July 29, 2016

Contact:

Mr. James M. Jacobsen, P.G.

Phone:

916.865.3144

Email:

james.jacobsen@arcadis.com

Our ref:

GP16BPNA.CA02

Subject:

Soil and Groundwater Investigation Report Former Arco Station #402 1450 Fruitvale Avenue Oakland, California ACEH Case No. #RO0000307

Dear Ms. Detterman:

On behalf of Atlantic Richfield, a BP-Affiliated Company, Arcadis U.S., Inc. (Arcadis) is submitting this July 29, 2016 Soil and Groundwater Investigation Report. "I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Sincerely,

Arcadis U.S., Inc.

James M. Jacobsen, P.G.

gher m ranhyw

Project Geologist

Copies: File

Enclosures:

Soil and Groundwater Investigation Report (prepared by Broadbent & Associates, Inc.)

SOIL AND GROUNDWATER INVESTIGATION REPORT Former Atlantic Richfield Company Station No. 402 1450 Fruitvale Avenue Oakland, Alameda County, California

Prepared for:

Mr. James Jacobsen ARCADIS 101 Creekside Ridge Court, Suite 200 Roseville, CA 95678

Prepared by:

Broadbent & Associates, Inc. 1370 Ridgewood Drive, Suite 5 Chico, California 95973 (530) 566-1400

July 29, 2016

No. 08-88-602

July 29, 2016

Project No. 08-88-602

ARCADIS

101 Creekside Ridge Court, Suite 200

Roseville, CA 95678

Attn.: Mr. James Jacobsen

Re: Soil and Groundwater Investigation Report, Former Atlantic Richfield Company Station

No. 402, 1450 Fruitvale Avenue, Oakland, Alameda County, California;

ACEH Case #RO0000307

Dear Mr. Jacobsen:

Attached is a *Soil and Groundwater Investigation Report* for Former Atlantic Richfield Company (a BP affiliated company) Station No. 402 located at 1450 Fruitvale Avenue in Oakland, Alameda County, California (the Site). This report presents results of groundwater monitoring conducted at the Site during the Second Quarter 2016 and additional soil vapor intrusion evaluation activities.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES

Jason Duda

Senior Scientist

Matt Herrick, P.G., C.HG. Associate Hydrogeologist

MATTHEW G.

MATTHEW G.

HERRICK

No. 901

CERTIFIED

HYDROGEOLOGIST

OF CALIFORNIA

Enclosures

cc: Ms. Karol Detterman, Alameda County Environmental Health (Submitted via ACEH ftp site) Electronic copy uploaded to GeoTracker

SOIL AND GROUNDWATER INVESTIGATION REPORT FORMER ATLANTIC RICHFIELD COMPANY STATION No. 402 OAKLAND, CALIFORNIA

Broadbent and Associates, Inc. (Broadbent) is pleased to present this *Soil and Groundwater Investigation Report* on behalf of Atlantic Richfield Company (ARC, a BP affiliated company) for Former Station No. 402 located at 1450 Fruitvale Avenue in Oakland, Alameda County, California (the Site). Monitoring and soil vapor intrusion evaluation activities at the Site were performed in accordance with the May 9, 2016 agency directive issued by Alameda County Environmental Health (ACEH). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	Station No. 402 / 1450 Fruitvale Ave., Oakland, California; Drawing 1
Client Project Manager / Title:	Mr. James Jacobsen / Project Manager
Broadbent Contact:	Mr. Jason Duda, (530) 566-1400
Broadbent Project No.:	08-88-602
Primary Regulatory Agency / ID No.:	ACEH / Case # RO0000307
Current phase of project:	Monitoring / Closure Evaluation
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in
	report.

WORK PERFORMED THIS QUARTER (Second Quarter 2016):

- 1. Submitted First Quarter 2016 Status Report on April 29, 2016.
- 2. Conducted groundwater monitoring/sampling for Second Quarter 2016 on June 8-9, 2016.
- 3. Conducted additional soil vapor intrusion evaluation activities as requested by ACEH.

WORK SCHEDULED FOR NEXT QUARTER (Third Quarter 2016):

- 1. Submit Soil and Groundwater Investigation Report (contained herein).
- 2. No other environmental work activities are scheduled for the Third Quarter 2016.

MONITORING PLAN SUMMARY: Upon Request During Closure Groundwater level gauging: MW-4, MW-5, MW-6, MW-7 Evaluation Groundwater sample collection: MW-4, MW-5, MW-6, MW-7 Upon Request During Closure **Evaluation** Biodegradation indicator parameter monitoring: None **MONITORING RESULTS SUMMARY:** LNAPL (yes\no) LNAPL observed this quarter: No LNAPL recovered this quarter: None (gal) Cumulative LNAPL recovered: None (gal) **Groundwater Elevation and Gradient:** Depth to groundwater: 10.83 ft (MW-5) (ft below TOC) to 12.94 ft (MW-6) Gradient direction: (compass direction) North Gradient magnitude: 0.006 (ft/ft) Average change in elevation: -0.75 (ft since last measurement)

Laboratory Analytical Data

Summary:

Analytical Results are as follows:

- GRO was detected in two wells at a maximum concentration of 1,700 μg/L in well MW-4.
- Benzene was detected in two wells at a maximum concentration of 130 μg/L in well MW-4.
- Toluene was detected in two wells at a maximum concentration of 1.5 µg/L in well MW-4
- Ethylbenzene was detected in two wells at a maximum concentration of 12 μg/L in well MW-4.
- Total Xylenes were detected in two wells at a maximum concentration of 5.5 µg/L in well MW-7.
- MTBE was detected in well MW-6 at a concentration of 12 µg/L.
- DIPE was detected in two wells at a maximum concentration of 2.3 µg/L in MW-4.

ACTIVITIES CONDUCTED & RESULTS:

Groundwater monitoring and sampling activities were conducted between June 8-9, 2016 by Broadbent personnel, as requested by ACEH in their email correspondence dated May 9, 2016. Well MW-4 was inaccessible due to a parked car on June 8, 2016 but was able to be gauged and sampled on the following day, June 9, 2016. No other irregularities were noted during gauging. Light Non-Aqueous Phase Liquid (LNAPL) was not present in the wells monitored during this event. Depth to groundwater ranged from 10.83 ft in MW-5 to 12.94 ft in MW-6. As shown on Drawing 2, groundwater gradient on June 8-9, 2016 was 0.006 ft/ft in a northern direction. Current and historic groundwater elevations and groundwater sample analytical data are provided in Tables 1 and 2. Historical groundwater gradient information is provided in Table 3. Drawing 2 presents a groundwater elevation contour and analytical summary map for June 8-9, 2016. Drawings 3 and 4 present GRO and Benzene Isoconcentration Maps for June 8-9, 2016, respectively. Field procedures used during groundwater monitoring are provided in Appendix A. Field data sheets are included in Appendix B.

Groundwater samples were collected between June 8-9, 2016. As previously mentioned, well MW-4 was found to be inaccessible on June 8, 2016. No other irregularities were reported during sampling. Samples were submitted to Test America Laboratories, Inc. (Test America) of Irvine, California for analyses of GRO, by EPA Method 8015B; for BTEX, MTBE, ETBE, TAME, DIPE, TBA, EDB, 1,2-DCA and Ethanol by EPA Method 8260B. No irregularities were encountered during analysis of the samples. Laboratory analytical report and chain-of-custody record are provided in Appendix C. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

Results of the sampling event are included in the laboratory analytical data summary above. These results indicate that the highest concentrations of petroleum hydrocarbons are present in well MW-4. This is consistent with previous data, but inconsistent with the most recent data collected during First Quarter 2015 which indicated that MW-7 had the highest concentrations of petroleum hydrocarbons. Further discussion of these results is presented below.

Additionally, the presence of an elevator within the onsite three-story building was confirmed during field activities, as requested by ACEH. Discussion pertaining to the bioattenuation zone and potential vapor intrusion to indoor air is provided below.

Soil and Groundwater Investigation Report Former Station No. 402 July 29, 2016 Page 3

DISCUSSION:

Review of historical groundwater elevations indicates that levels were within historical limits for all wells. Groundwater elevations yielded a potentiometric groundwater gradient to the north at 0.006 ft/ft, generally inconsistent with the historic gradient data presented in Table 3. However, the limited gradient data (six events) has been relatively variable.

Review of historical groundwater results indicate that well MW-4 has contained the highest residual petroleum compounds at the Site. Comparison of analytical results over the previous sampling events indicate that monitoring wells MW-5 and MW-6 have maintained consistently low-to-non-detect residual petroleum constituents and additives. However, concentrations in well MW-7 increased to historic maximums during the last sampling event conducted in First Quarter 2015. The concentrations observed during this sampling event returned to values within the historic range for well MW-7, which appears to indicate that the trend is not increasing but relatively stable. Slightly elevated concentrations were observed in well MW-4 during this current sampling event, with GRO, Benzene, and Toluene each reaching historic maximum values. However, these elevated concentrations are still within the general range of historic values observed in MW-4, indicating a relatively stable trend.

Based on the concentrations observed during Second Quarter 2016, the residual petroleum impacts are small, stable, and limited primarily to the former source area. An additional source area does not appear to be present based on these results and the previous elevated concentrations observed in well MW-7 appear to be anomalous.

During groundwater monitoring/sampling activities, field staff verified that an elevator is present within the commercial three-story building located onsite. However, the elevator is private and could not be accessed in order to potentially obtain the make and model of elevator. The City of Oakland building department was contacted in an effort to gain additional information related to the elevator's construction. Only one record related to an elevator was on file with the building department, which was an expired electrical permit providing no pertinent information about the elevator itself.

ACEH expressed concern regarding the extent of an adequate bioattenuation zone in their email correspondence dated May 9, 2016 due to the fact that the elevator onsite may have components that extend beneath the building and below ground surface. Although detailed information regarding the elevator's construction could not be obtained, it is presumed that the elevator pit or below ground components do not extend much deeper than five feet below the surface. Minimal petroleum impacts to shallow soil were observed during well installation activities conducted in 2013, with minor concentrations of GRO and BTEX detected above laboratory reporting limits in the sample collected from well MW-4 at 7.5 ft bgs, which were well below LTCP criteria (see Appendix E). No other constituents of concern were detected above laboratory reporting limits in the remaining soil samples collected between 0-10 ft bgs. Additionally, a minor detection of GRO in one of the six soil vapor samples collected onsite in 2013 from soil vapor probe SG-1B at approximately five ft bgs was the only constituent observed above laboratory reporting limits (Appendix E). The GRO concentration of 46,000 micrograms per cubic meter observed in SG-1B was well below the Environmental Screening Level for commercial/industrial exposure and GRO does not have an established limit within the LTCP criteria.

Based on current Site conditions and previous soil and soil vapor analytical data, the Site appears to satisfy the LTCP petroleum vapor intrusion criteria, which includes a minimum of five feet of minimally impacted soil (GRO < 100 mg/kg), Benzene concentrations within groundwater of less than 1,000 µg/L and soil vapor concentrations below the LTCP soil gas criteria. The depth to water at Former Station #402 has ranged from approximately 10-

16 ft bgs, which indicates that an adequate bioattenuation zone of a minimum of five feet between groundwater and the base of the elevator pit or its components is still present onsite even should the underground elevator components extend up to five ft bgs. Although direct soil vapor samples were not collected below approximately five ft bgs, the constituents and concentrations observed in these samples does not indicate a soil vapor issue associated with the Site and increased concentrations between 10 and 16 ft bgs are not anticipated to exceed LTCP criteria.

RECOMMENDATIONS:

Based on the recent groundwater analytical data, soil vapor intrusion research, and previous soil and soil vapor analytical data, the Site appears to be eligible for closure under the LTCP.

LIMITATIONS:

The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by Test America, and our understanding of ACEH guidelines. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARCADIS. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in Site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

Drawing 1: Site Location Map

Drawing 2: Groundwater Elevation Contour and Analytical Summary Map, June 8-9, 2016

Drawing 3: GRO Isoconcentration Contour Map, June 8-9, 2016
Drawing 4: Benzene Isoconcentration Contour Map, June 8-9, 2016

Table 1: Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory

Analyses

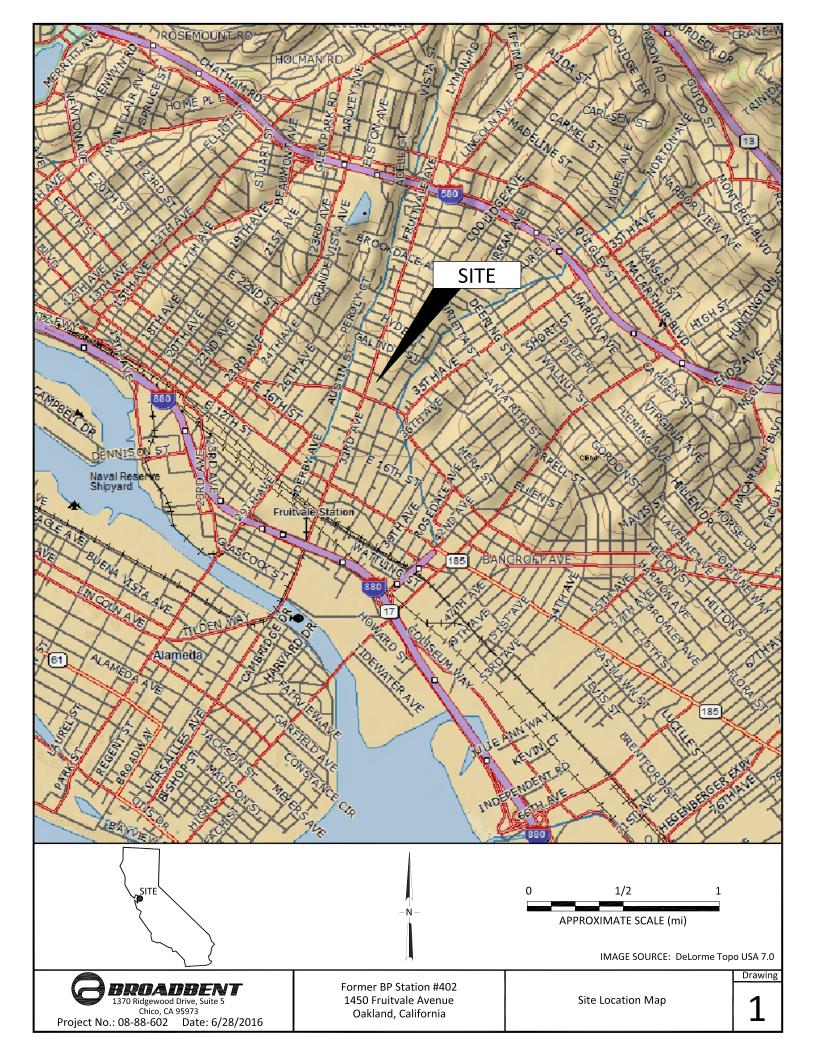
Table 2: Summary of Fuel Additives Analytical Data

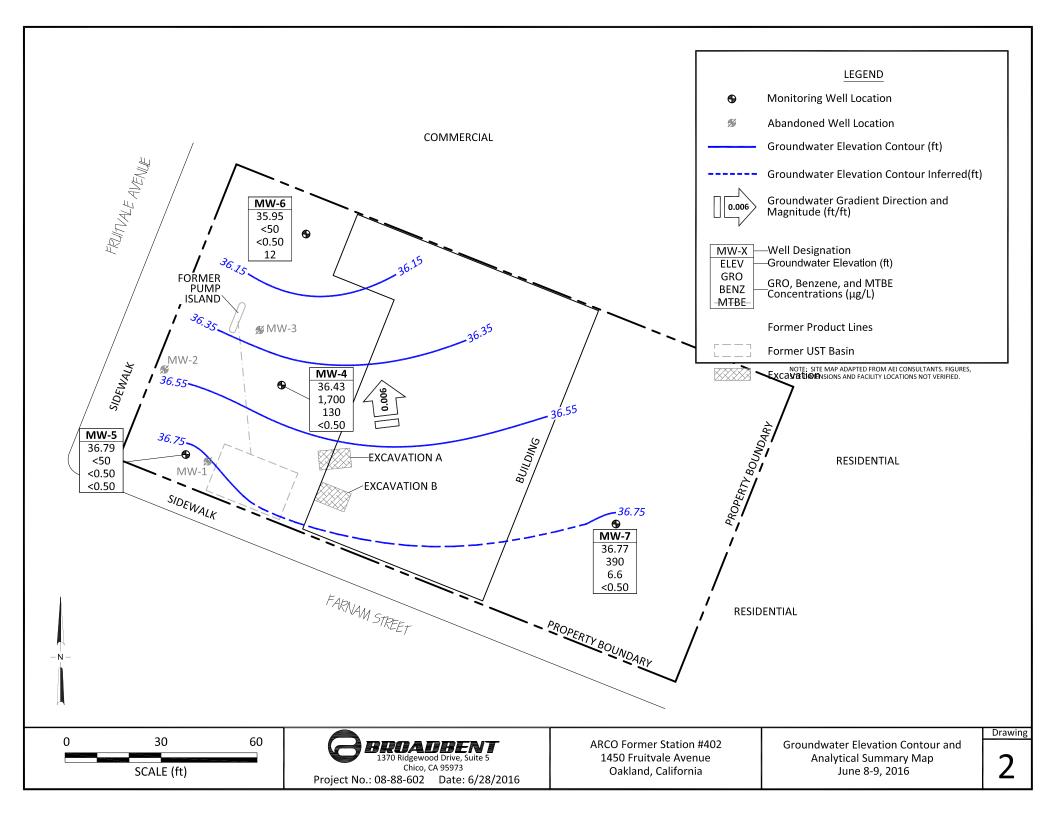
Table 3: Summary of Groundwater Gradient - Direction and Magnitude

Appendix A: Field Methods
Appendix B: Field Data Sheets

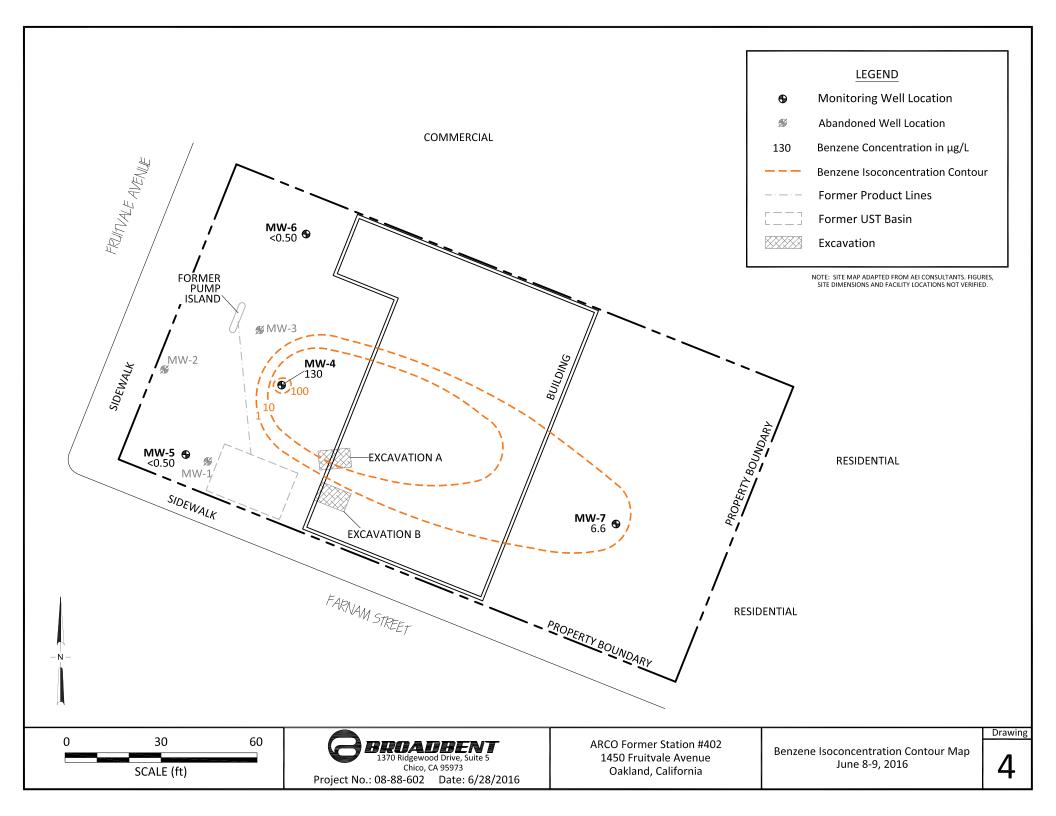
Appendix C: Laboratory Report and Chain-of-Custody Documentation

Appendix D: GeoTracker Upload Confirmation Receipts
Appendix E: 2013 Soil and Soil Vapor Analytical Data


LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:


gallons


gal:


ACEH	Alameda County Environmental Health	GRO:	Gasoline Range Organics (C6-12)
ARC:	Atlantic Richfield Company	LNAPL:	Light Non-Aqueous Phase Liquid
Broadbent	Broadbent & Associates	LTCP:	Low-Threat Closure Policy
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	MTBE:	Methyl Tertiary Butyl Ether
1,2-DCA:	1,2-Dichloroethane	TAME:	Tert-Amyl Methyl Ether
DIPE:	Di-Isopropyl Ether	TBA:	Tert-Butyl Alcohol
EDB:	1,2-Dibromomethane	TOC:	Top of Casing
EPA:	Environmental Protection Agency	μ g/L :	Micrograms Per Liter
ETBE:	Ethyl Tert-Butyl Ether	1Q:	First Quarter
ft:	feet	3Q:	Third Quarter
ft/ft:	foot per foot	ft bgs:	Feet Below Ground Surface

DRAWINGS

TABLES

Table 1. Summary of Groundwater Monitoring Data: Water Elevations and Laboratory Analyses

Former BP Station #402, 1450 Fruitvale Avenue, Oakland, California

		тос	Depth to	Water Level			Concent	rations in µ	ıg/L			
Well ID and		Elevation	Water	Elevation	GRO/			Ethyl-	Total		DO	
Date Monitored	P/NP	(feet)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	Footnote
MW-4												
12/2/2013	Р	48.18	14.06	34.12	810	38	0.71	57	15	<0.50	1.60	a
3/18/2014	Р		10.72	37.46	600	28	<0.50	20	4.8	<0.50	1.64	
6/26/2014	Р		13.54	34.64	1,300	51	0.76	32	1.7	<0.50	1.58	
9/17/2014	Р		15.37	32.81	1,100	41	<0.50	6.6	<1.0	<0.50	0.57	
3/12/2015	Р		10.63	37.55	1,100	85	0.69	2.5	1.6	<0.50	1.78	
6/9/2016	P		11.75	36.43	1,700	130	1.5	12	3.3	<0.50	1.36	
MW-5												
12/2/2013	Р	47.62	13.67	33.95	<50	<0.50	<0.50	<0.50	<1.0	0.69	4.70	а
3/18/2014	Р		10.91	36.71	<50	<0.50	<0.50	<0.50	<1.0	<0.50	3.03	
6/26/2014	Р		12.52	35.10	<50	<0.50	<0.50	<0.50	<1.0	<0.50	0.76	
9/17/2014	Р		14.44	33.18	58	<0.50	<0.50	<0.50	<1.0	<0.50	0.66	
3/12/2015	Р		10.20	37.42	<50	<0.50	<0.50	<0.50	<1.0	0.50	2.00	
6/8/2016	P		10.83	36.79	<50	<0.50	<0.50	<0.50	<1.0	<0.50	0.56	
MW-6												
12/2/2013	Р	48.89	15.07	33.82	<50	<0.50	<0.50	<0.50	<1.0	10	1.25	a
3/18/2014	Р		11.72	37.17	<50	<0.50	<0.50	<0.50	<1.0	14	1.94	
6/26/2014	Р		14.20	34.69	<50	<0.50	<0.50	<0.50	<1.0	13	0.47	
9/17/2014	Р		16.10	32.79	<50	<0.50	<0.50	<0.50	<1.0	7.2	0.71	
3/12/2015	Р		11.86	37.03	<50	<0.50	<0.50	<0.50	<1.0	5.0	1.66	
6/8/2016	P		12.94	35.95	<50	<0.50	<0.50	<0.50	<1.0	12	0.63	
MW-7												
12/2/2013	Р	48.28	15.35	32.93	96	<0.50	<0.50	1.5	<1.0	<0.50	5.35	a
3/18/2014	Р		11.25	37.03	190	2.3	<0.50	2.2	<1.0	<0.50	2.63	
6/26/2014	Р		13.44	34.84	530	5.0	0.63	1.9	<1.0	<0.50	1.14	
9/17/2014	Р		15.75	32.53	360	2.5	<0.50	<0.50	<1.0	<0.50	0.63	
3/12/2015	Р		11.33	36.95	2,200	59	9.8	87	54	<0.50	1.62	
6/8/2016	P		11.51	36.77	390	6.6	1.2	11	5.5	<0.50	1.59	

Symbols & Abbreviations:

-- = Not analyzed/applicable/sampled/measured

< = Not detected at or above specified laboratory reporting limit

TOC = Top of casing measured in ft

NS = Well not surveyed

DO = Dissolved oxygen

GRO = Gasoline range organics

TPHg = Total petroleum hydrocarbons as gasoline

μg/L = Micrograms per liter

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Not purged before sampling

P = Purged before sampling

Footnotes:

a = Well surveyed 12/17/2013

Table 2. Summary of Fuel Additives Analytical Data

Former BP Station #402, 1450 Fruitvale Avenue, Oakland, California

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-4									
12/2/2013		<10	<0.50	1.7	<0.50	<0.50			
3/18/2014	<150	<10	<0.50	1.8	<0.50	<0.50	<0.50	<0.50	
6/26/2014	<150	<10	<0.50	1.9	<0.50	<0.50	<0.50	<0.50	
9/17/2014	<150	<10	<0.50	2.3	<0.50	<0.50	<0.50	<0.50	
3/12/2015	<150	<10	<0.50	2.1	<0.50	<0.50	<0.50	<0.50	
6/9/2016	<150	<10	<0.50	2.3	<0.50	<0.50	<0.50	<0.50	
MW-5									
12/2/2013		<10	0.69	<0.50	<0.50	<0.50			
3/18/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/26/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
9/17/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
3/12/2015	<150	<10	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/8/2016	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-6									
12/2/2013		<10	10	<0.50	<0.50	<0.50			
3/18/2014	<150	<10	14	<0.50	<0.50	<0.50	<0.50	<0.50	
6/26/2014	<150	<10	13	<0.50	<0.50	<0.50	<0.50	<0.50	
9/17/2014	<150	<10	7.2	<0.50	<0.50	<0.50	<0.50	<0.50	
3/12/2015	<150	<10	5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
6/8/2016	<150	<10	12	1.2	<0.50	<0.50	<0.50	<0.50	
MW-7									
12/2/2013		<10	<0.50	<0.50	<0.50	<0.50			
3/18/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/26/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
9/17/2014	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
3/12/2015	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/8/2016	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Symbols & Abbreviations:
TBA = Tert-butyl alcohol
MTBE = Methyl tert-butyl ether
DIPE = Disopropyl ether
ETBE = Ethyl tert-butyl ether
TAME = Tert-amyl methyl ether
1,2-DCA = 1,2-Dichloroethane
EDB = Ethylene dibromide
ug/L = Micrograms per liter
< = Below given laboratory detection limit
-- = Not measured or analyzed

Table 3. Summary of Groundwater Gradient - Direction and Magnitude Former BP Station #402, 1450 Fruitvale Avenue, Oakland, California

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
12/2/2013	East-Southeast	0.01
3/18/2014	Southeast	0.01
6/26/2014	South	0.01
9/17/2014	East-Northeast	0.01
3/12/2015	East	0.006
6/8/2016	North	0.006

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 EQUIPMENT CALIBRATION

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 DEPTH TO GROUNDWATER AND LIGHT NON-AQUEOUS PHASE LIQUID MEASUREMENT

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurements were recorded as "apparent." If a bailer was used for LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 WELL PURGING AND GROUNDWATER SAMPLE COLLECTION

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Paramete
--

Parameter	Stabilization Criterion
Temperature	± 0.2ºC (± 0.36ºF)
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	± 10 mV
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to minimize drawdown and mixing of the water column in the well

As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

In accordance with ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

Page 3

² According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 DECONTAMINATION

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 SAMPLE CONTAINERS, LABELING, AND STORAGE

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 CHAIN OF CUSTODY RECORD AND PROCEDURE

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 FIELD RECORDS

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS

GROUNDWATER SAMPLING DATA SHEET

118-88-602 Date: 160609 Project No.: Project: Field Representative: 6-9-16 MW-4 Well ID: Start Time: End Time: Total Time (minutes): PURGE EQUIPMENT Flow Cell 120V Pump Disp. Bailer Disp. Tubing 12V Pump Peristaltic Pump Other/ID#: WELL HEAD INTEGRITY (cap, lock, vault, etc.) Comments: Placec Good Improvement Needed (circle one) Inct PURGING/SAMPLING METHOD Predetermined Well Volume Tow-Flow Other: (circle one) PREDETERMINED WELL VOLUME LOW-FLOW Casing Diameter | Unit Volume (gal/ft) (circle one) Previous Low-Flow Purge Rate: (2"1(0.17) 1" | (0.04) 1.25" | (0.08) 3" | (0.38) Other: Total Well Depth (a): b 4" | (0.66) 6" ((1.50) 8" | (2.60) 12" | (5.81) Initial Depth to Water (b): Total Well Depth (a): (ft) Pump ln-take Depth = b + (a-b)/2: _(ft) Initial Depth to Water (b): Maximum Allowable Drawdown = (a-b)/8: 16.08 Water Column Height (WCH) = (a - b): __(ft) Low-Flow Purge Rate: (gal) Water Column Volume (WCV) = WCH x Unit Volume: Comments: (gal) Three Casing Volumes = $WCV \times 3$: Five Casing Volumes = WCV x 5: (gal) *Low-flow purge rate should be within range of instruments used but should not (ft) Pump Depth (if pump used): exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Drawdown. GROUNDWATER STABILIZATION PARAMETER RECORD Cumulative Vol. Temperature Conductivity Turbidity NOTES μS or nS (24:00)gal or L "C or F) mVNTU Odor, color, sheen or other G12.65 Strong Odor 1321 60 0.25 1323 1325 Previous Stabilized Parameters PURGE COMPLETION RECORD Low Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Depth to Water at Sampling: 12-44 (ft) Parameter Time Measurement Sample Collected Via: ____ Disp. Bailer ____ Dedicated Pump Tubing DO (mg/L) ____Disp. Pump Tubing Other: Ferrous Iron (mg/L) Sample ID: MW-L Sample Collection Time: 133d (24:00) Redox Potential (mV)

Alkalinity (mg/L)

Other:

	Other:	- 2		Ot
Signature:			and the second s	

Other:

Containers (#): VOA (______preserved or _____unpreserved) _____Liter Amber

GROUNDWATER SAMPLING DATA SHEET

402 08-88-602 Project No.: Project: KCG-Field Representative: MW-5 Well ID: Start Time: End Time: Total Time (minutes): **PURGE EQUIPMENT** 120V Pump Disp. Bailer Flow Cell CPeristaltic Pump 12V Pump Disp. Tubing Other/ID#: Lock Added WELL HEAD INTEGRITY (cap, lock, vault, etc.) Comments: Improvement Needed (circle one) PURGING/SAMPLING METHOD Predetermined Well Volume ow-Flow (circle one) PREDETERMINED WELL VOLUME LOW-FLOW Casing Diameter | Unit Volume (gal/ft) (circle one) Previous Low-Flow Purge Rate: 1" | (0.04) 1.25" | (0.08) (0.17) 3" | (0.38) Total Well Depth (a): b 4" | (0.66) 6" | (1.50) 8" | (2.60) 12" ((5.81) Initial Depth to Water (b): Total Well Depth (a): Pump ln-take Depth = b + (a-b)/2: (ft) Initial Depth to Water (b): (ft) Maximum Allowable Drawdown = (a-b)/8: Water Column Height (WCH) = (a - b): 17.01 (ft) Low-Flow Purge Rate: Water Column Volume (WCV) = WCH x Unit Volume: (gal) Comments: Three Casing Volumes = $WCV \times 3$: (gal) Five Casing Volumes = $WCV \times 5$: *Low-flow purge rate should be within range of instruments used but should not Pump Depth (if pump used): exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Drawdown. GROUNDWATER STABILIZATION PARAMETER RECORD Cumulative Vol. ORP Time Temperature Conductivity Turbidity NOTES (24:00)(ga) or L mV NTU Odor, color, sheen or other 0 0,125 0.25 Previous Stabilized Parameters PURGE COMPLETION RECORD Low Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes Other: SAMPLE COLLECTION RECORD **GEOCHEMICAL PARAMETERS** Depth to Water at Sampling: 11.80 (ft) Time Measurement Sample Collected Via: Disp. Bailer Dedicated Pump Tubing DO (mg/L) X Disp. Pump Tubing Other: Ferrous Iron (mg/L) Sample Collection Time: 1145 (24:00) Sample ID: MW-5 Redox Potential (mV)

Alkalinity (mg/L)

Other:

Other:

Signature:	ferin	Cas	Son	£ -
	,		•	

Other:

Other:

Containers (#): 6 VOA (Spreserved or unpreserved) Liter Amber

Signature:

GROUNDWATER SAMPLING DATA SHEET

Revision: 8/20/2013

402 Project: Project No.: 08-88-602 Field Representative: KCO FL MW-6 Well ID: Start Time: End Time: Total Time (minutes): PURGE EQUIPMENT Flow Cell Disp. Bailer 120V Pump Peristaltic Pump ≥Disp. Tubing 12V Pump Other/1D#: WELL HEAD INTEGRITY (cap, lock, vault, etc.) Comments: Improvement Needed (circle one) PURGING/SAMPLING METHOD Predetermined Well Volume NOW-Flow Other: (circle one) PREDETERMINED WELL VOLUME LOW-FLOW Casing Diameter | Unit Volume (gal/ft) (circle one) Previous Low-Flow Purge Rate: $1" \mid (0.04)$ 1.25" (0.08) 3" | (0.38) Total Well Depth (a): b 4" | (0.66) 6" (1.50) 8" (2.60) 12" ((5,81) Initial Depth to Water (b): Total Well Depth (a): Pump In-take Depth = b + (a-b)/2: Initial Depth to Water (b): Maximum Allowable Drawdown = (a-b)/8: Water Column Height (WCH) = (a - b): Low-Flow Purge Rate: Water Column Volume (WCV) = WCH x Unit Volume: Comments: Three Casing Volumes = $WCV \times 3$: Five Casing Volumes = $WCV \times 5$: *Low-flow purge rate should be within range of instruments used but should not Pump Depth (if pump used): exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Drawdown. GROUNDWATER STABILIZATION PARAMETER RECORD Time Cumulative Vol. Temperature ORP Conductivity Turbidity DO NOTES (24:00)🟚 or L °C or F mV μS or mS NTU mg/L Odor, color, sheen or other 63 0-958 1-60 chear 1114 0.63 1116 Previous Stabilized Parameters Low Flow & Parameters Stable ____ 3 Casing Volumes & Parameters Stable ____ 5 Casing Volumes PURGE COMPLETION RECORD Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Depth to Water at Sampling: 13.10 (ft) Parameter Time Measurement Sample Collected Via: Disp. Bailer Dedicated Pump Tubing DO (mg/L) ■ Disp. Pump Tubing Other: Ferrous Iron (mg/L) Sample ID: Sample Collection Time: 120 (24:00) Redox Potential (mV) Containers (#): _____ VOA (_____preserved or _____ unpreserved) _____ Liter Amber Alkalinity (mg/L) Other: Other: Other: Other: Other: Other:

GROUNDWATER SAMPLING DATA SHEET

Page of Project No.: 08 88-662 Date: 6-8-16 402 Project: KCG- FI Field Representative: End Time: _____ Total Time (minutes): _____ Well ID: MW-7 Start Time: PURGE EQUIPMENT ____ Disp. Bailer Flow Cell 120V Pump Peristaltic Pump Other/ID#: Disp. Tubing 12V Pump WELL HEAD INTEGRITY (cap, lock, vault, etc.) lock added Comments: (Good) Improvement Needed (circle one) PURGING/SAMPLING METHOD Predetermined Well Volume (Low-Flow) (circle one) PREDETERMINED WELL VOLUME LOW-FLOW Casing Diameter | Unit Volume (gal/ft) (circle one) Previous Low-Flow Purge Rate: (lpm) (1(0,17) 3(, \$\Y \upartag{(ft)} 1" | (0.04) 1.25" | (0.08) 3" | (0.38) Total Well Depth (a): b 4" | (0.66) 6" | (1.50) 8" (2.60) 12" | (5.81) Initial Depth to Water (b): Total Well Depth (a): (ft) Pump ln-take Depth = b + (a-b)/2: Initial Depth to Water (b): (ft) Maximum Allowable Drawdown = (a-b)/8: (ft) 20.30 **0.0** € ___(gpm)* Water Column Height (WCH) = (a - b): (ft) Low-Flow Purge Rate: Water Column Volume (WCV) = WCH x Unit Volume: (gal) Comments: Three Casing Volumes = $WCV \times 3$: (gal) Five Casing Volumes = $WCV \times 5$: (gal) *Low-flow purge rate should be within range of instruments used but should not Pump Depth (if pump used): exceed 0.25 gpm. Drawdown should not exceed Maximum Allowable Drawdown. GROUNDWATER STABILIZATION PARAMETER RECORD Cumulative Vol. Time NOTES Temperature ORP Conductivity Turbidity (24:00)(S) or mS NTU gal or L °C or °F Odor, color, sheen or other 1.14 1043 7.38 0.0 3.07 olear 1045 0.125 Lilli 1047 0.25 Previous Stabilized Parameters Low Flow & Parameters Stable 3 Casing Volumes & Parameters Stable 5 Casing Volumes PURGE COMPLETION RECORD Other: SAMPLE COLLECTION RECORD GEOCHEMICAL PARAMETERS Depth to Water at Sampling: [2,1] (ft) Parameter Time Measurement Sample Collected Via: Disp. Bailer Dedicated Pump Tubing DO (mg/L) Disp. Pump Tubing Other: Ferrous Iron (mg/L) Sample ID: Sample Collection Time: 1050 (24:00) Redox Potential (mV) Containers (#): 6 VOA (preserved or unpreserved) Liter Amber Alkalinity (mg/L)

Other:

	Julei,	Othe	1.
Signature:	1	A.	A
	8		

Other: _____Other: ____

Revision: 8/20/2013

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-149868-1

Client Project/Site: ARCO 0402, Oakland

For:

Broadbent & Associates, Inc. 4820 Business Center Drive #110 Fairfield, California 94534

Attn: Mr. Jason Duda

Harrien I Lobb

Authorized for release by: 6/21/2016 1:09:09 PM

Kathleen Robb, Project Manager II (949)261-1022

kathleen.robb@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	8
Lab Chronicle	9
QC Sample Results	10
QC Association Summary	16
Definitions/Glossary	17
Certification Summary	18
Chain of Custody	19
Racaint Chacklists	20

3

4

£

0

9

10

12

Sample Summary

Matrix

Water

Water

Water

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Client Sample ID

MW-4

MW-5

MW-6

MW-7

Lab Sample ID

440-149868-1

440-149868-2

440-149868-3

440-149868-4

TestAmerica Job ID: 440-149868-1

Collected	Received
06/09/16 13:30	06/11/16 11:10
06/08/16 11:45	06/11/16 11:10
06/08/16 11:20	06/11/16 11:10

06/08/16 10:50 06/11/16 11:10

3

4

O

7

0

10

11

12

Case Narrative

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

Job ID: 440-149868-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-149868-1

Comments

No additional comments.

Receipt

The samples were received on 6/11/2016 11:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

Receipt Exceptions

For these 3 samples, we received a broken voa for each one: MW-4 (440-149868-1), MW-6 (440-149868-3) and MW-7 (440-149868-4)

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 440-337112 recovered above the upper control limit for BP for Ethanol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-4 (440-149868-1), MW-5 (440-149868-2), MW-6 (440-149868-3) and (CCVIS 440-337112/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

8

9

IU

2

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

Lab Sample ID: 440-149868-1

Matrix: Water

Date Collected: 06/09/16 13:30 Date Received: 06/11/16 11:10

Client Sample ID: MW-4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			06/17/16 15:14	1
1,2-Dichloroethane	ND		0.50	ug/L			06/17/16 15:14	1
Ethanol	ND		150	ug/L			06/17/16 15:14	1
Ethylbenzene	12		0.50	ug/L			06/17/16 15:14	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			06/17/16 15:14	1
Isopropyl Ether (DIPE)	2.3		0.50	ug/L			06/17/16 15:14	1
m,p-Xylene	3.3		1.0	ug/L			06/17/16 15:14	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			06/17/16 15:14	1
o-Xylene	ND		0.50	ug/L			06/17/16 15:14	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			06/17/16 15:14	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			06/17/16 15:14	1
Toluene	1.5		0.50	ug/L			06/17/16 15:14	1
Xylenes, Total	3.3		1.0	ug/L			06/17/16 15:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120				06/17/16 15:14	1
Dibromofluoromethane (Surr)	87		76 - 132				06/17/16 15:14	1
Toluene-d8 (Surr)	104		80 - 128				06/17/16 15:14	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	130		5.0	ug/L			06/18/16 03:43	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120		•		06/18/16 03:43	10
Dibromofluoromethane (Surr)	104		76 - 132				06/18/16 03:43	10
Toluene-d8 (Surr)	109		80 - 128				06/18/16 03:43	10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
GRO (C6-C12)	1700		100	ug/L			06/17/16 23:06	2	
,									
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	120		65 - 140				06/17/16 23:06		
								_	

Client Sample ID: MW-5

Date Collected: 06/08/16 11:45

Lab Sample ID: 440-149868-2

Matrix: Water

Date Received: 06/11/16 11:10

Method: 8015B/5030B - Gasoline Range Organics (GC)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	0.50	ug/L			06/17/16 15:43	1
1,2-Dichloroethane	ND	0.50	ug/L			06/17/16 15:43	1
Benzene	ND	0.50	ug/L			06/17/16 15:43	1
Ethanol	ND	150	ug/L			06/17/16 15:43	1
Ethylbenzene	ND	0.50	ug/L			06/17/16 15:43	1
Ethyl-t-butyl ether (ETBE)	ND	0.50	ug/L			06/17/16 15:43	1
Isopropyl Ether (DIPE)	ND	0.50	ug/L			06/17/16 15:43	1
m,p-Xylene	ND	1.0	ug/L			06/17/16 15:43	1
Methyl-t-Butyl Ether (MTBE)	ND	0.50	ug/L			06/17/16 15:43	1
o-Xylene	ND	0.50	ug/L			06/17/16 15:43	1

TestAmerica Irvine

Page 5 of 20

6/21/2016

ວ

7

ŏ

10

12

Client: Broadbent & Associates, Inc. TestAmerica Job ID: 440-149868-1 Project/Site: ARCO 0402, Oakland

Lab Sample ID: 440-149868-2

Client Sample ID: MW-5 Date Collected: 06/08/16 11:45 **Matrix: Water**

Date Received: 06/11/16 11:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			06/17/16 15:43	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			06/17/16 15:43	1
Toluene	ND		0.50	ug/L			06/17/16 15:43	1
Xylenes, Total	ND		1.0	ug/L			06/17/16 15:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80 - 120				06/17/16 15:43	1
Dibromofluoromethane (Surr)	89		76 - 132				06/17/16 15:43	1
Toluene-d8 (Surr)	104		80 - 128				06/17/16 15:43	1
Method: 8015B/5030B - Gas	oline Range (Organics (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			06/17/16 23:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		65 - 140				06/17/16 23:32	1

Lab Sample ID: 440-149868-3 **Client Sample ID: MW-6 Matrix: Water**

Date Collected: 06/08/16 11:20 Date Received: 06/11/16 11:10

Surrogate

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			06/17/16 16:13	1
1,2-Dichloroethane	ND		0.50	ug/L			06/17/16 16:13	1
Benzene	ND		0.50	ug/L			06/17/16 16:13	1
Ethanol	ND		150	ug/L			06/17/16 16:13	1
Ethylbenzene	ND		0.50	ug/L			06/17/16 16:13	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			06/17/16 16:13	1
Isopropyl Ether (DIPE)	1.2		0.50	ug/L			06/17/16 16:13	1
m,p-Xylene	ND		1.0	ug/L			06/17/16 16:13	1
Methyl-t-Butyl Ether (MTBE)	12		0.50	ug/L			06/17/16 16:13	1
o-Xylene	ND		0.50	ug/L			06/17/16 16:13	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			06/17/16 16:13	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			06/17/16 16:13	1
Toluene	ND		0.50	ug/L			06/17/16 16:13	1
Xylenes, Total	ND		1.0	ug/L			06/17/16 16:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80 - 120		•		06/17/16 16:13	1
Dibromofluoromethane (Surr)	89		76 - 132				06/17/16 16:13	1
Toluene-d8 (Surr)	102		80 - 128				06/17/16 16:13	1
Method: 8015B/5030B - Gas	oline Range (Organics (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L		-	06/17/16 23:59	1

TestAmerica Irvine

Analyzed

06/17/16 23:59

Prepared

Limits

65 - 140

%Recovery Qualifier

102

Dil Fac

Client Sample Results

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Client Sample ID: MW-7

Date Collected: 06/08/16 10:50

Date Received: 06/11/16 11:10

GRO (C6-C12)

4-Bromofluorobenzene (Surr)

Surrogate

TestAmerica Job ID: 440-149868-1

Lab Sample ID: 440-149868-4

Matrix: Water

Analyte	Result C	Qualifier	` RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND -		0.50	ug/L			06/18/16 12:19	1
1,2-Dichloroethane	ND		0.50	ug/L			06/18/16 12:19	1
Benzene	6.6		0.50	ug/L			06/18/16 12:19	1
Ethanol	ND		150	ug/L			06/18/16 12:19	1
Ethylbenzene	11		0.50	ug/L			06/18/16 12:19	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			06/18/16 12:19	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			06/18/16 12:19	1
m,p-Xylene	5.0		1.0	ug/L			06/18/16 12:19	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			06/18/16 12:19	1
o-Xylene	0.50		0.50	ug/L			06/18/16 12:19	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			06/18/16 12:19	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			06/18/16 12:19	1
Toluene	1.2		0.50	ug/L			06/18/16 12:19	1
Xylenes, Total	5.5		1.0	ug/L			06/18/16 12:19	1
Surrogate	%Recovery (Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120		•		06/18/16 12:19	1
Dibromofluoromethane (Surr)	87		76 - 132				06/18/16 12:19	1
Toluene-d8 (Surr)	104		80 - 128				06/18/16 12:19	1
- Method: 8015B/5030B - Gas	soline Range Or	rganics (0	3C)					
Analyte	Result C	•	RL	Unit	D	Prepared	Analyzed	Dil Fac

100

Limits

65 - 140

390

%Recovery Qualifier

•	Oilit	 riepaieu	Allalyzeu	Diriac	
)	ug/L		06/18/16 00:26	2	
		Prepared	Analyzed	Dil Fac	
-			06/18/16 00:26	2	

Method Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

Method	Method Description	Protocol	Laboratory
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

3

4

5

7

9

10

46

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Client Sample ID: MW-4

Date Collected: 06/09/16 13:30 Date Received: 06/11/16 11:10

Lab Sample ID: 440-149868-1

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B	DL	10	10 mL	10 mL	337295	06/18/16 03:43	WC	TAL IRV
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	337112	06/17/16 15:14	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		2	10 mL	10 mL	337286	06/17/16 23:06	JB	TAL IRV

Client Sample ID: MW-5 Lab Sample ID: 440-149868-2

Date Collected: 06/08/16 11:45

Date Received: 06/11/16 11:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	337112	06/17/16 15:43	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	337286	06/17/16 23:32	JB	TAL IRV

Client Sample ID: MW-6 Lab Sample ID: 440-149868-3 **Matrix: Water**

Date Collected: 06/08/16 11:20

Date Received: 06/11/16 11:10

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	337112	06/17/16 16:13	MM1	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	337286	06/17/16 23:59	JB	TAL IRV

Client Sample ID: MW-7 Lab Sample ID: 440-149868-4

Date Collected: 06/08/16 10:50

Date Received: 06/11/16 11:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B	Kuii	1	10 mL	10 mL	337337	06/18/16 12:19		TAL IRV
Total/NA	Analysis	8015B/5030B		2	10 mL	10 mL	337286	06/18/16 00:26	JB	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-337112/4

Matrix: Water

Analysis Batch: 337112

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			06/17/16 07:30	1
1,2-Dichloroethane	ND		0.50	ug/L			06/17/16 07:30	1
Benzene	ND		0.50	ug/L			06/17/16 07:30	1
Ethanol	ND		150	ug/L			06/17/16 07:30	1
Ethylbenzene	ND		0.50	ug/L			06/17/16 07:30	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			06/17/16 07:30	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			06/17/16 07:30	1
m,p-Xylene	ND		1.0	ug/L			06/17/16 07:30	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			06/17/16 07:30	1
o-Xylene	ND		0.50	ug/L			06/17/16 07:30	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			06/17/16 07:30	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			06/17/16 07:30	1
Toluene	ND		0.50	ug/L			06/17/16 07:30	1
Xylenes, Total	ND		1.0	ug/L			06/17/16 07:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120		06/17/16 07:30	1
Dibromofluoromethane (Surr)	87		76 - 132		06/17/16 07:30	1
Toluene-d8 (Surr)	105		80 - 128		06/17/16 07:30	1

Lab Sample ID: LCS 440-337112/5

Matrix: Water

Analysis Batch: 337112

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane (EDB)	25.0	24.5		ug/L		98	70 - 130
1,2-Dichloroethane	25.0	23.0		ug/L		92	57 - 138
Benzene	25.0	23.5		ug/L		94	68 - 130
Ethanol	1000	1130		ug/L		113	50 - 149
Ethylbenzene	25.0	24.5		ug/L		98	70 - 130
Ethyl-t-butyl ether (ETBE)	25.0	24.0		ug/L		96	60 - 136
Isopropyl Ether (DIPE)	25.0	27.2		ug/L		109	58 ₋ 139
m,p-Xylene	25.0	24.3		ug/L		97	70 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	22.2		ug/L		89	63 - 131
o-Xylene	25.0	24.1		ug/L		97	70 - 130
Tert-amyl-methyl ether (TAME)	25.0	22.4		ug/L		90	57 ₋ 139
tert-Butyl alcohol (TBA)	250	258		ug/L		103	70 - 130
Toluene	25.0	24.6		ug/L		98	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	90		76 - 132
Toluene-d8 (Surr)	99		80 - 128

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

3

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-149867-C-1 MS

Matrix: Water

Analysis Batch: 337112

Client Sample ID: Matrix Spike Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		25.0	24.6		ug/L		98	70 - 131	
1,2-Dichloroethane	ND		25.0	22.9		ug/L		91	56 ₋ 146	
Benzene	ND		25.0	23.3		ug/L		92	66 - 130	
Ethanol	ND		1000	1150		ug/L		115	54 ₋ 150	
Ethylbenzene	1.3		25.0	25.7		ug/L		97	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	24.1		ug/L		96	70 - 130	
Isopropyl Ether (DIPE)	ND		25.0	26.9		ug/L		108	64 - 138	
m,p-Xylene	4.8		25.0	29.1		ug/L		97	70 - 133	
Methyl-t-Butyl Ether (MTBE)	12		25.0	35.8		ug/L		94	70 - 130	
o-Xylene	1.1		25.0	25.1		ug/L		96	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	22.4		ug/L		90	68 - 133	
tert-Butyl alcohol (TBA)	ND		250	263		ug/L		105	70 - 130	
Toluene	ND		25.0	24.5		ug/L		98	70 - 130	
	MC	MC								

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	98	80 - 120
Dibromofluoromethane (Surr)	88	76 - 132
Toluene-d8 (Surr)	99	80 - 128

Lab Sample ID: 440-149867-C-1 MSD

Matrix: Water

Analysis Batch: 337112

Client Sample ID: N	latrix Spike Duplicate
	Prep Type: Total/NA

7 maryolo Batom cor 112											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	25.0		ug/L		100	70 - 131	2	25
1,2-Dichloroethane	ND		25.0	23.3		ug/L		93	56 - 146	2	20
Benzene	ND		25.0	23.8		ug/L		94	66 - 130	2	20
Ethanol	ND		1000	1110		ug/L		111	54 - 150	4	30
Ethylbenzene	1.3		25.0	26.0		ug/L		99	70 - 130	1	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	24.7		ug/L		99	70 - 130	2	25
Isopropyl Ether (DIPE)	ND		25.0	27.6		ug/L		110	64 - 138	3	25
m,p-Xylene	4.8		25.0	29.4		ug/L		99	70 - 133	1	25
Methyl-t-Butyl Ether (MTBE)	12		25.0	36.9		ug/L		98	70 - 130	3	25
o-Xylene	1.1		25.0	25.3		ug/L		97	70 - 133	1	20
Tert-amyl-methyl ether (TAME)	ND		25.0	23.1		ug/L		93	68 - 133	3	30
tert-Butyl alcohol (TBA)	ND		250	261		ug/L		104	70 - 130	1	25
Toluene	ND		25.0	24.9		ug/L		100	70 - 130	2	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	90		76 - 132
Toluene-d8 (Surr)	98		80 - 128

TestAmerica Irvine

4

6

8

9

10

12

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-337295/3 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 337295

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	ug/L			06/17/16 17:39	1
	MB	MB						

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120	_		06/17/16 17:39	1
Dibromofluoromethane (Surr)	99		76 - 132			06/17/16 17:39	1
Toluene-d8 (Surr)	110		80 - 128			06/17/16 17:39	1

Lab Sample ID: LCS 440-337295/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 337295

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	24.5		ug/L		98	68 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	101		76 - 132
Toluene-d8 (Surr)	105		80 - 128

Lab Sample ID: 440-150131-D-3 MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 337295

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	24.9		ua/L		100	66 - 130	 -

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	104		76 - 132
Toluene-d8 (Surr)	102		80 - 128

Lab Sample ID: 440-150131-D-3 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 337295

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Renzene	ND		25.0	24.8		ua/l		99	66 - 130		20	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	102		76 - 132
Toluene-d8 (Surr)	105		80 - 128

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-337337/5

Matrix: Water

Analysis Batch: 337337

Client Sample ID: Method Blank

Prep Type: Total/NA

MB	MB						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		150	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		1.0	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		10	ug/L			06/18/16 11:20	1
ND		0.50	ug/L			06/18/16 11:20	1
ND		1.0	ug/L			06/18/16 11:20	1
	Result ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.50 ND 0.50 ND 150 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 10 ND 0.50	ND 0.50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 150 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 10 ug/L ND 0.50 ug/L ND 0.50 ug/L	Result Qualifier RL Unit D ND 0.50 ug/L ug/L ND 0.50 ug/L ND 150 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug/L	Result Qualifier RL Unit D Prepared ND 0.50 ug/L ug/L <t< td=""><td>Result Qualifier RL Unit D Prepared Analyzed ND 0.50 ug/L 06/18/16 11:20 ND 0.50 ug/L 06/18/16 11:20</td></t<>	Result Qualifier RL Unit D Prepared Analyzed ND 0.50 ug/L 06/18/16 11:20 ND 0.50 ug/L 06/18/16 11:20

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	80 - 120		06/18/16 11:20	1
Dibromofluoromethane (Surr)	87	76 - 132		06/18/16 11:20	1
Toluene-d8 (Surr)	106	80 - 128		06/18/16 11:20	1

Lab Sample ID: LCS 440-337337/7

Matrix: Water

Analysis Batch: 337337

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.
Added			Unit	D	%Rec	Limits
25.0	26.5		ug/L		106	70 - 130
25.0	23.3		ug/L		93	57 - 138
25.0	24.5		ug/L		98	68 - 130
1000	1130		ug/L		113	50 - 149
25.0	26.7		ug/L		107	70 - 130
25.0	24.4		ug/L		98	60 - 136
25.0	27.5		ug/L		110	58 - 139
25.0	26.5		ug/L		106	70 - 130
25.0	23.2		ug/L		93	63 - 131
25.0	25.7		ug/L		103	70 - 130
25.0	23.0		ug/L		92	57 ₋ 139
250	277		ug/L		111	70 - 130
25.0	26.8		ug/L		107	70 - 130
	Added 25.0 25.0 25.0 1000 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 26.5 25.0 23.3 25.0 24.5 1000 1130 25.0 26.7 25.0 24.4 25.0 27.5 25.0 26.5 25.0 23.2 25.0 25.7 25.0 23.0 250 277	Added Result Qualifier 25.0 26.5 25.0 23.3 25.0 24.5 1000 1130 25.0 26.7 25.0 24.4 25.0 27.5 25.0 26.5 25.0 23.2 25.0 25.7 25.0 23.0 250 277	Added Result Qualifier Unit 25.0 26.5 ug/L 25.0 23.3 ug/L 25.0 24.5 ug/L 1000 1130 ug/L 25.0 26.7 ug/L 25.0 24.4 ug/L 25.0 27.5 ug/L 25.0 26.5 ug/L 25.0 23.2 ug/L 25.0 25.7 ug/L 25.0 23.0 ug/L 25.0 277 ug/L	Added Result Qualifier Unit D 25.0 26.5 ug/L ug/L 25.0 23.3 ug/L ug/L 25.0 24.5 ug/L ug/L 25.0 26.7 ug/L ug/L 25.0 24.4 ug/L ug/L 25.0 27.5 ug/L ug/L 25.0 23.2 ug/L 25.0 25.7 ug/L 25.0 23.0 ug/L 25.0 277 ug/L	Added Result Qualifier Unit D %Rec 25.0 26.5 ug/L 106 25.0 23.3 ug/L 93 25.0 24.5 ug/L 98 1000 1130 ug/L 113 25.0 26.7 ug/L 107 25.0 24.4 ug/L 98 25.0 27.5 ug/L 110 25.0 26.5 ug/L 106 25.0 23.2 ug/L 93 25.0 25.7 ug/L 103 25.0 23.0 ug/L 92 250 277 ug/L 111

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	85		76 - 132
Toluene-d8 (Surr)	100		80 - 128

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

2

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-149868-4 MS

Matrix: Water

Analysis Batch: 337337

Client Sample ID: MW-7 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		25.0	25.3		ug/L		101	70 - 131	
1,2-Dichloroethane	ND		25.0	23.2		ug/L		93	56 - 146	
Benzene	6.6		25.0	29.9		ug/L		93	66 - 130	
Ethanol	ND		1000	1140		ug/L		114	54 - 150	
Ethylbenzene	11		25.0	35.0		ug/L		95	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND		25.0	24.8		ug/L		99	70 - 130	
Isopropyl Ether (DIPE)	ND		25.0	27.9		ug/L		112	64 - 138	
m,p-Xylene	5.0		25.0	29.5		ug/L		98	70 - 133	
Methyl-t-Butyl Ether (MTBE)	ND		25.0	23.5		ug/L		94	70 - 130	
o-Xylene	0.50		25.0	25.0		ug/L		98	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	23.6		ug/L		95	68 - 133	
tert-Butyl alcohol (TBA)	ND		250	267		ug/L		107	70 - 130	
Toluene	1.2		25.0	25.9		ug/L		99	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	87		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Lab Sample ID: 440-149868-4 MSD

Matrix: Water

Analysis Batch: 337337

Client Sample ID: MW-7
Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	25.6		ug/L		102	70 - 131	1	25
1,2-Dichloroethane	ND		25.0	23.6		ug/L		94	56 - 146	2	20
Benzene	6.6		25.0	29.7		ug/L		92	66 - 130	1	20
Ethanol	ND		1000	1070		ug/L		107	54 - 150	6	30
Ethylbenzene	11		25.0	34.8		ug/L		94	70 - 130	1	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	25.1		ug/L		100	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		25.0	28.0		ug/L		112	64 - 138	0	25
m,p-Xylene	5.0		25.0	29.6		ug/L		98	70 - 133	0	25
Methyl-t-Butyl Ether (MTBE)	ND		25.0	23.7		ug/L		95	70 - 130	1	25
o-Xylene	0.50		25.0	24.9		ug/L		98	70 - 133	0	20
Tert-amyl-methyl ether (TAME)	ND		25.0	23.9		ug/L		96	68 - 133	1	30
tert-Butyl alcohol (TBA)	ND		250	270		ug/L		108	70 - 130	1	25
Toluene	1.2		25.0	26.0		ug/L		99	70 - 130	0	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	88		76 - 132
Toluene-d8 (Surr)	98		80 - 128

TestAmerica Irvine

Page 14 of 20

2

3

5

7

10

46

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

Method: 8015B/5030B	- Gasoline	Range	Organics	(GC)
---------------------	------------	-------	-----------------	------

Lab Sample ID: MB 440-337286/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 337286** MB MB Analyte Result Qualifier RL Unit Analyzed Dil Fac Prepared 50 GRO (C6-C12) $\overline{\mathsf{ND}}$ ug/L 06/17/16 18:13

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 104 65 - 140 06/17/16 18:13

Lab Sample ID: LCS 440-337286/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 337286** LCS LCS Spike %Rec.

Added Analyte Result Qualifier Unit D %Rec Limits GRO (C4-C12) 800 102 819 ug/L 80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 65 - 140

Client Sample ID: Matrix Spike Lab Sample ID: 440-149867-D-3 MS **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 337286 Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits

800 GRO (C4-C12) ND 787 ug/L 65 - 140 MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 104 65 - 140

Lab Sample ID: 440-149867-D-3 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 337286 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit GRO (C4-C12) ND 800 780 ug/L 97 65 - 140

MSD MSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 65 - 140 97

QC Association Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

GC/MS VOA

Analysis Batch: 337112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-149867-C-1 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-149867-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
440-149868-1	MW-4	Total/NA	Water	8260B/5030B	
440-149868-2	MW-5	Total/NA	Water	8260B/5030B	
440-149868-3	MW-6	Total/NA	Water	8260B/5030B	
LCS 440-337112/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-337112/4	Method Blank	Total/NA	Water	8260B/5030B	

Analysis Batch: 337295

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-149868-1 - DL	MW-4	Total/NA	Water	8260B/5030B	
440-150131-D-3 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-150131-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
LCS 440-337295/4	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-337295/3	Method Blank	Total/NA	Water	8260B/5030B	

Analysis Batch: 337337

Lab Sample ID 440-149868-4	Client Sample ID MW-7	Prep Type Total/NA	Matrix Water	Method Prep Bar 8260B/5030B
440-149868-4 MS	MW-7	Total/NA	Water	8260B/5030B
440-149868-4 MSD	MW-7	Total/NA	Water	8260B/5030B
LCS 440-337337/7	Lab Control Sample	Total/NA	Water	8260B/5030B
MB 440-337337/5	Method Blank	Total/NA	Water	8260B/5030B

GC VOA

Analysis Batch: 337286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-149867-D-3 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-149867-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-149868-1	MW-4	Total/NA	Water	8015B/5030B	
440-149868-2	MW-5	Total/NA	Water	8015B/5030B	
440-149868-3	MW-6	Total/NA	Water	8015B/5030B	
440-149868-4	MW-7	Total/NA	Water	8015B/5030B	
LCS 440-337286/4	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-337286/5	Method Blank	Total/NA	Water	8015B/5030B	

A

5

7

0

10

12

1:

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit

MI Minimum Level (Dioxin)

ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

F

6

9

10

11

12

Certification Summary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0402, Oakland

TestAmerica Job ID: 440-149868-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-16 *
Arizona	State Program	9	AZ0671	10-13-16
California	LA Cty Sanitation Districts	9	10256	01-31-17 *
California	State Program	9	CA ELAP 2706	06-30-16 *
Guam	State Program	9	Cert. No. 12.002r	01-23-17
Hawaii	State Program	9	N/A	01-29-17
Kansas	NELAP Secondary AB	7	E-10420	07-31-16
Nevada	State Program	9	CA015312016-2	07-31-16
New Mexico	State Program	6	N/A	01-29-17
Northern Mariana Islands	State Program	9	MP0002	01-29-17
Oregon	NELAP	10	4028	01-29-17
USDA	Federal		P330-09-00080	07-08-18
Washington	State Program	10	C900	09-03-16

^{*} Certification renewal pending - certification considered valid.

TestAmerica Irvine

bp			
AMM.	r	M	7
差			

Laboratory Management Program LaMP Chain of Custody Record

	ž	BP Site Node Pat											_	Req Due Date (mm/dd/yy):						Rush TAT: Yes No												
	•		В	P Facility No	:					402					_		Lab	Wor	k Orc	der N	umbeı	r:										
	Lab Na	ame: Test America	Facility Address: 1450 Fruitvale A								venu	9						Con	sultant/	Contr	actor:			Broadbe	ent &	Assoc	iates Inc					
	Lab Ac	ddress: 17461 Derian Avenue, Suite	Iress: 17461 Derian Avenue, Suite 100, Irvine, CA					City, State, ZIP Code: Oakland, California Co							Con	sultant/	Contr	actor Pro	ject No:	:			08	-88-602								
	Lab PN	M: Pat Abe			Lead Regulatory Agency: Alameda County Evironmental Health Ad							Addı	ress:	13	70 Ridge	wood Dr	rive, Sı	uite 5, Ch	nico, (Californ	ia 9597	3		,								
	Lab Phone: 949-261-1022					ornia	Glob	bal IE	No.:		T060	1973	1265				,			Con	sultant/	Contr	actor PM	l:		Jason D	Duda					
	Lab Sh	nipping Accnt: Fed ex#: 11103-6	6633-7		Enfo	s Pro	oposa	al No	/WR#	t:	OC)6L	{ V	- (00	10					Phone	e: 530	0-566-14	00/530-	566-14	01(F)		Email	jduda	@broadbei	ntinc	com.
	Lab Bo	ottle Order No:			Acco	ountir	ng Mo	ode:		Prov	vision	х	OC	C-BL	J	_ 00	C-RM		_	Ema	il EDD	To:		jduda@	@broa	adbentir	nc.c	om	and to	lab.enfosdoc	@bp.	.com
	Other I	Info:			Stag	je:	Exe	cute	(40)	Ac	tivity:	GW	M (4	01)				-		Invo	ice To:				BP	x	x Contractor					
	BP Pro	oject Manager (PM): Chuck Carmel	·			Ma	trix		No	No. Containers / Preserva			tive	ive				Requested Analyses					F	Report	Type & QC	Leve	el e					
	BP PM Phone: 925-275-3803																													standard <u>x</u>	-	
- 1	BP PM Email: charles.carmel@bp.com								Container								, 826(,			Fι	ıll Data I	ackage	-	
Page 19 of 20	Lab No.	Sample Description	Date Tim		Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Con	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO by 8015M	BTEX/5 FO + EDB by	1,2 DCA by 8260	Ethanol by 8260						yough		Sa	ample" i	imple not	comments collected, indic ris and single-s rinted sample d	trike o	out
		MW-4	6/9/2016	1330		х		у	6				х			х	х	х	х			\prod										
		MW-5	6/8/2016	1145		х		у	6				x			х	х	х	x.			╧		اا اا و ا	Ί.							
		MW-6	6/8/2016	1120		х		у	6				x			. х	х	×	х			╛		ම ද්	_			-,				
		MW-7	6/8/2016	1050		x		у	6				×			х	х	x	х			▋▋		886	_							
		TB -402-06092016				х		N	3				x											₹ 5 E				**		ON HOLD		
																								$\equiv 4$								
	Sample	er's Name: Kevin Cook-Gute	eriez				R	Relin	quis	ned E	By / A	ffilja	tion			D	ate	Ti	me				Acc	epted	By / A	ffiliatio	filiation Date		Date		Time	
	Sample	er's Company: Broadbent & Ass	ociates, Inc		K	ei	ب	٤(ak	2	11	L				6-10	2-16	17	W	4	<u></u>	\leq	-							6/11/16	11	:10
	Shipme	ent Method: FedEx	Ship Date:	6/10/2016	3				-											Ľ												
Į	Shipme	ent Tracking No: 8094 599	93 633	9																		. /:							_			
l	Speci	al Instructions:																2-1	8	X	6/14	1/16										
6/2								Tem	p Blar	ık: Ye	s / N C) ·	Co	oler -	Temp	on Re	ceipt:	26	12	_°F/C	:	Trip	Blank:	és / No		MS/MSI	D Sa	ample S				
6/21/2016	BP Rei	THIS LINE - LAB USE ONLY: Custody Seals In Place: 6 / No Temp Blank: Yes / 16 Cooler Temp on Receipt: 26/2 / F/C Trip Blank: 6 / No MS/MSD Sample Submitted: Yes / 16 P Remediation Management COC - Effective Dates: August 23, 2011- June 30, 2012 TRL# 8094 59936339										r. 7, Aı																				

TEL# 8094 5993 6339

Login Sample Receipt Checklist

Client: Broadbent & Associates, Inc.

Job Number: 440-149868-1

Login Number: 149868 List Source: TestAmerica Irvine

List Number: 1

Creator: Chavez, Yonny 1

Answer	Comment
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True True True True True

Q

46

11

12

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Report Title: Second Quarter 2016 Groundwater Monitoring Report

Facility Global ID: T06019734265

Facility Name: ARCO #0402 / PARKING LOT

File Name: geo_well.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 104.6.25.23

Submittal Date/Time: 7/22/2016 2:08:25 PM

Confirmation Number: 9422996222

Copyright © 2016 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: Second Quarter 2016 Groundwater Monitoring Report

Report Type: Monitoring Report - Semi-Annually

Facility Global ID: T06019734265

Facility Name: ARCO #0402 / PARKING LOT

File Name: 440-149868-1_21 Jun 16 1406_EDF.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 104.6.25.23

<u>Submittal Date/Time:</u> 7/22/2016 2:11:50 PM

Confirmation Number: 2152823090

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2016 State of California

APPENDIX E

2013 Soil and Soil Vapor Analytical Data

Table 1 Soil Analytical Results

November 2013

Former ARC Station No. 402

1450 Fruitvale Avenue, Oakland, California

Well Identification	Soil Sample Depth (feet bgs)	Date Collected	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes* (mg/kg)	MTBE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)	Naphthalene (mg/kg)
MW-4	3.5	11/14/2013	ND<0.39	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.051	ND<0.0020	ND<0.0010	ND<0.20	ND<0.0020
MW-4	6.5	11/14/2013	ND<0.40	ND<0.00095	ND<0.00095	ND<0.00095	ND<0.0019	ND<0.0019	ND<0.0019	ND<0.0019	ND<0.047	ND<0.0019	ND<0.00095	ND<0.19	ND<0.0019
MW-4	7.5	11/18/2013	0.99	0.0095	0.0057	0.26	0.06	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.13	ND<0.0052	ND<0.0026	ND<0.52	0.21
MW-4	19.5	11/18/2013	1.8	ND<0.10	ND<0.10	0.66	ND<0.20	ND<0.25	ND<0.25	ND<0.25	ND<5.0	ND<0.25	ND<0.10	ND<15	ND<0.25
MW-5	7.5	11/18/2013	ND<0.37	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0010	ND<0.20	ND<0.0020
MW-5	15.5	11/18/2013	1.3	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020				ND<0.050	ND<0.0020	ND<0.00099	ND<0.20	ND<0.0020
MW-5	19.5	11/18/2013	ND<0.39	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.20	ND<0.0020
MW-6	7.5	11/19/2013	ND<0.38	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00099	ND<0.20	ND<0.0020
MW-6	15.5	11/19/2013	16	ND<0.0010	ND<0.0010	ND<0.0010	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.0020	ND<0.20	ND<0.0020
MW-7	7.5	11/19/2013	ND<0.38	ND<0.00099	ND<0.00099	ND<0.00099	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.049	ND<0.0020	ND<0.00099	ND<0.20	ND<0.0020
MW-7	15.5	11/19/2013	39	ND<0.00099	ND<0.00099	0.0053	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.0020	ND<0.050	ND<0.0020	ND<0.00099	ND<0.20	ND<0.0020
LTCP Criteria - 0 to 5 fee	LTCP Criteria - 0 to 5 feet bgs				NA	89	NA	NA	NA	NA	NA	NA	NA	NA	45
LTCP Criteria - 5 to 10 fe	et bgs		NA	12	NA	134	NA	NA	NA	NA	NA	NA	NA	NA	45
LTCP Criteria - Utiliity Wo	LTCP Criteria -Utiliity Worker				NA	314	NA	NA	NA	NA	NA	NA	NA	NA	219

Notes:

feet bgs = feet below ground surface mg/kg = milligrams per kilogram GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether ETBE = ethyl tert-butyl ether

TAME = tert-amyl methyl ether TBA = tert butyl alcohol DIPE = di isopropyl ether

1,2-DCA = 1,2-dichloroethane EDB = 1,2-dibromomethane ND<X.XX = not detected above reporting limit of X.XX

NA = not analyzed

LTCP = Low Threat UST Closure Policy, California State Water Resources Control Board (SWRCB), August 17, 2012

LTCP Criteria listed in Table 1, page 8 of the LTCP for a commercial/industrial exposure scenario

Table 4

Soil Vapor Analytical Results

December 17, 2013
Former ARC Station No. 402
1450 Fruitvale Avenue, Oakland, California

Soil Vapor Probe Identification	Probe Sample Depth (feet bgs)	Date Collected	GRO (μg/m³)	Benzene (μg/m³)	Toluene (μg/m³)	Ethylbenzene (μg/m3)	Total Xylenes* (μg/m³)	MTBE (μg/m³)	Naphthalene (μg/m³)	Carbon Dioxide (%)	Methane (%)	Oxygen (%)
SG-1A	3-3.5	12/17/2013	ND<8,100	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	1.7	0.00035	18.0
SG-1B	5-5.5	12/17/2013	46,000	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	1.1	0.0042	8.0
SG-2A	3-3.5	12/18/2013	ND<8,000	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	<0.98	0.0038	28.0
SG-2B	5-5.5	12/18/2013	ND<7,800	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	1.1	0.00076	20.0
SG-3A	3-3.5	12/17/2013	ND<8,000	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	1.0	0.00029	19.0
SG-3B	5-5.5	12/17/2013	ND<7,600	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	2.1	0.00027	18.0
ESLs			2,500,000	420.0	1,300,000	4,900	440,000	47,000	360	NA	NA	NA

Notes:

feet bgs = feet below ground surface μg/m³= micrograms per cubic meter GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether ND<X.XX = not detected above reporting limit of X.XX μ g/m³

NA = not analyzed

ESLs - Tier 1 Environmental Screening Levels, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater,
California Regional Water Quality Control Board (CRWQCB), Interim Final, December 2013.
Commercial/Industrical exposure scenario; Table E-2