

RECEIVED SAN LEANDRO

MAY 3 0 1997

DEVELOPMENT SERVICES DEPT.

May 27, 1997

City of San Leandro Development Services 835 E. 14th Street San Leandro, CA 94577

RE: Former Unocal Service Station #2512

1300 Davis Street

San Leandro, California

Per the request of the Unocal Corporation Project Manager, Mr. Robert A. Boust, enclosed please find our report (MPDS-UN2512-09) dated May 2, 1997, for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2334.

Sincerely,

MPDS Services, Inc.

Jarrel F. Crider

/ifc

Enclosure

cc: Mr. Robert A. Boust

MPDS-UN2512-09 May 2, 1997

Unocal - DBG/AMG 2000 Crow Canyon Place, Suite 470 P.O. Box 5073 San Ramon, California 94583-0973

Attention: Mr. Robert A. Boust

RE: Quarterly Report

Former Unocal Service Station #2512

1300 Davis Street

San Leandro, California

Dear Mr. Boust:

This data report presents the results of the most recent monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on April 16, 1997. Prior to sampling, the wells were each purged of 10 gallons of water. Samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Tosco Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Tables 2 and 3. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline. TPH as diesel, and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN2512-09 May 2, 1997 Page 2

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services Agency, and to the City of San Leandro.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian Senior Staff Geologist

Hagop Kevork, P.E. Senior Staff Engineer

License No. C55734

Exp. Date: December 31, 2000

/aab

Attachments: Tables 1, 2 & 3

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Sarkis A. Soghomonian, Kaprealian Engineering, Inc.

Table 1
Summary of Monitoring Data

	Ground Water Elevation	Depth to Water	Total Well Depth	Product Thickness		Water
Well#	(feet)	(feet) ♦	(feet)+	(feet)	Sheen	Purged (gallons)
		(Monitored a	nd Sampled on A	pril 16, 1997)		
MW3	19.97	12.05	32.18	0	No	10 (100)
MW7	19.59	12.12	29.78	0	No	10
MW8	19.99	12.74	30.04	Ō	No	10
MW9	19.67	12.66	29.98	0	No	10
	ı	(Monitored and	d Sampled on Jar	nuary 28, 1997)		
MW3	20.47	11.55	33.35	0	No	11.5 (100)
MW7	21.30	10.41	29.61	0	No	10
MW8	18.87	13.86	29.86	0	No	8.5
MW9	18.57	13.76	29.99	0	No	8.5
		(Monitored and	d Sampled on Oc	tober 25, 1996)		
MW3	16.69	15.33	33.30	0	No	9.5 (100)
MW7	16.58	15.13	29.89	Ō	No	8
MW8	16.77	15.96	29.95	Ö	No	7.5
MW9	16.67	15.66	30.00	Ö	No	7.5
		(Monitored a	nd Sampled on J	fuly 25, 1996)		
MW3	17.62	14.40	32.28	0	No	12.5 (100)
MW7	17.41	14.30	29.80	Õ	No	11
MW8	17.63	15.10	30.02	ŏ	No	11
MW9	17.28	15.05	30.05	ŏ	No	11

Well#	Well Casing Elevation (feet)*
MW3	32 02
MW7	31.71
MW8	32.73
MW9	32.33

Table 1 Summary of Monitoring Data

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casing are relative to MSL, per East Bay MUD Benchmark DAVIS FREE #2 San Leandro 1952 (Elevation = 32.02 feet MSL).
- (x) Amount of water purged after sampling.
- Sheen determination was not performed.

Table 2Summary of Laboratory Analyses
Water

ng Nagalia		TPH as	TPH as		Madignering	Ethyl-	allingi.	TOG	Îste (n. s.
Well#	Date	Diesel	Gasoline	Benzene	Toluene	Benzene	Xylenes	(mg/L)	MTBE
MW1	4/25/89	100	ND	0.31	ND	ND	ND		
	8/10/89	ND	ND	ND	ND	ND	ND	ND	
	11/21/89	ND	ND	ND	ND	ND	ND	8.9	
	2/23/90	ND	ND	ND	ND	ND	ND	ND	
	5/10/90	ND	ND	ND	ND	ND	ND	ND	
	8/9/90	ND	ND	ND	ND	ND	ND	ND	
	11/6/90	ND	ND	ND	ND	ND	ND	ND	
	2/4/91	ND	ND	ND	0.31	ND	0.62	ND	
	5/24/91		ND	ND	ND	ND	ND	ND	
	8/15/91	NOT SAMP		112	112	112	11,5	110	
	11/19/91	NOT SAMP							
	2/27/92	NOT SAME							
	5/26/92	NOT SAME							
	10/30/92	NOT SAMP							
	6/9/94		580†	ND	ND	ND	ND		
	9/8/94		160††	ND	1.6	ND	3.1		
	1/25/95	WELL WAS	S DESTROY!		1.0	ND	5.1		
AW2	4/25/89	ND	32	0.35	ND	ND	ND		•
11 44 2	8/10/89	ND ND	ND	0.33 ND	0.39			ND.	
	11/21/89	ND ND	48	ND ND	0.59	ND	ND	ND	
	2/23/90	ND	40 44	ND ND	ND	ND ND	ND	1.6	
	5/10/90	ND ND	43	ND ND	1	ND ND	ND ND	ND	
	8/9/90	ND ND	ND	ND ND	ND	ND ND		ND	
	11/6/90	ND	ND ND	ND ND	0.42		ND	ND	
	2/4/91	ND	ND ND	ND ND	0.42	ND	1.4	ND	
	5/24/91		ND ND	1.5	ND	ND	0.87	ND	
	8/15/91		ND	ND	ND	ND	ND	ND	
	11/19/91		220	2.5	8.4	ND 2.4	ND	ND	
	2/27/92		330	12	12	10	14		
	5/26/92		2,900	8.8	9.3	54	93 36		
	10/30/92		1,200†	ND	9.5 ND	ND	ND		
	6/9/94		1,200†	6.7·	ND	66	ND ND		
	9/8/94		3,000†	ND	ND ND	ND	17		
	1/25/95	WELL WAS	S DESTROYE		ND	ND	17		
1W3	4′25′89	5,700	56	ND	ND	0.21	0.40		
	8/10/89	860	3,200	73	ND	0 31	0 49	 \'D	
	11/21/89	110	1,900		140	35 ND	240 ND	ND	
	2/23/90	350	1.900 ND	ND 0 32	ND	ND	ND	3.8	
	5,10/90	850	6,200	94	ND 460	ND 160	ND	13	
	8.9'90	500	1,900		460	160	540	2 8 ND	
	11/6/90	940	16,000	56	140	140	31	ND	
	2/4/91		10,000 LED DUE TO	820	1,500	2,200	770	ND	
	5/24/91	2,000					2.600	1175	
	シームサーフ 1	4,000	23,000	940	3,400	590	2,600	ND	

Table 2
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Diesel	TPH as Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes	TOG (mg/L)	MTBE
MW3	8/15/91	NOT SAMP	LED DUE TO	ገል ፕ <u>ዮ</u> ልር	E OE EBEE	₽₽∩⊓≀≀Ст	•		
(Cont.)	11/19/91		LED DUE TO						
(00)	2/27/92		LED DUE TO				-		
	5/26/92●	2,400,000	1,300,000	5,100	66,000	20,000	160,000	880	
	10/30/92		LED DUE TO			•	•	000	
	6/9/94	17,000*	69,000	1,300	7,100	1,900	11,000		
	9/8/94	•	LED DUE TO		•				
	10/21/95	5,900*	50,000	250	4,200	1,700	18,000		§
	1/24/96	5,300*	100,000	950	3,300	2,500	16,000		‡ -
	4/23/96	4,900*	50,000	430	1,700	1,600	7,600		ND
	7/25/96	2,400**	17,000	170	ND	650	3,300		240
	10/25/96	3,700**	26,000	420	1,100	1,800	6,400		340
	1/28/97	3,900*	32,000	230	1,000	1,000	4,500		ND
	4/16/97	3,100*	12,000	<i>7</i> 6	ND	330	1,600		ND
	20, 7.	3,200	x,000	, 0	112	220	1,000		IND
MW4	8/29/89	120	ND	ND	ND	ND	ND	ND	
	11/21/89	ND	ND	ND	ND	ND	ND	ND	
	2/23/90	ND	ND	ND	ND	ND	ND	ND	
	5/10/90	88	54	ND	2	ND	0.37	ND	
	8/9/90	ND	ND	ND	ND	ND	ND	ND	
	11/6/90	ND	ND	ND	0.36	ND	0.98	ND	
	2/4/91	ND	ND	ND	0.72	ND	1.1	ND	
	5/24/91	ND	ND	0.64	ND	ND	ND	ND	
	8/15/91	ND	ND	ND	ND	ND	ND	ND	
	11/19/91	ND	ND	ND	ND	ND	ND		
	2/27/92	ND	43	ND	1	0.37	2.5		
	5/26/92	ND	120	0.59	0.82	ND	1.9		
	10/30/92		INACCESSI		****	112			
	6/9/94	ND	780†	ND	ND	ND	ND		
	9/8/94	ND	300†	ND	ND	ND	ND	·	
	1/25/95		DESTROYE				1,2		
MW5	8/29/89	100	ND	ND	0.94	0.3	ND	ND	_
	11/21/89	70	ND	ND	ND	ND	ND	ND	
	2/23/90	ND	ND	ND	ND	ND	ND	ND	
	5/10/90	83	ND	ND	ND	ND	0.31	ND	~=
	8/9/90	ND	ND	ND	ND	ND	ND	ND	
	11/6/90	ND	ND	ND	ND	ND	ND	ND	
	2/4/91	ND	ND	ND	0.35	ND	ND	ND	
	5-24-91	ND	ND	ND	ND	ND	ND	ND	
	11/19/91	NOT SAMPI					,,,,		
	2, 27/92	NOT SAMPI							
	5 26-92	NOT SAMPI							
	10 30/92	NOT SAMPI							
	6 9/94			BLE					
	9/8/94	WELL WAS							
	1/25/95	WELL WAS							
	5 26·92 10 30/92 6 9/94 9/8/94	NOT SAMPI NOT SAMPI WELL WAS WELL WAS	LED LED INACCESSI INACCESSI	BLE					

Table 2
Summary of Laboratory Analyses
Water

	r America Right (TPH as	TPH as	eska sárous szárasát.	a edina	Ethyl	postile est co	×#00:	
Well#	Date	Diesel	Gasoline	Benzene	Toluene	Benzene	Xylenes	TOG (mg/L)	MTBE
F. B. A. A. A. A.			,	32741320000		CONTRACTOR.	*3.3 XWELLED	(213, 13)	
MW6	8/29/89	ND	ND	ND	ND	ND	ND	ND	
	11/21/89	ND	ND	ND	ND	ND	ND	ND	
	2/23/90	ND	ND	ND	ND	ND	ND	ND	
	5/10/90	ND	ND	ND	1.2	ND	ND	ND	
	8/9/90	ND	ND	ND	ND	ND	ND	ND	
	11/6/90	ND	ND	1.6	0.35	ND	ND	ND	
	2/4/91	ND	ND	ND	ND	ND	ND	ND	
	5/24/91		ND	ND	ND	ND	ND	ND	
	8/15/91		ND	ND	ND	ND	ND	ND	
	11/19/91		ND	ND	ND	ND	ND		
	2/27/92		ND	3.2	ND	ND	3.8		
	5/26/92		ND	ND	ND	ND	0.65		
	10/30/92		ND	ND	ND	ND	ND		
	6/9/94	WELL WAS	S INACCESS			- 1			
	9/8/94		S INACCESS						
	1/25/95		S DESTROYE	_					
MW7	2/27/92	·	38	ND	0.97	0.69	4		
	5/26/92		ND	· ND	ND	ND	0.6		
	10/30/92		ND	ND	ND	ND	ND		
	6/9/94		610†	ND	ND	ND	ND		
	9/8/94		ND	ND	1.3	ND	1.6		
	10/21/95		ND	ND	ND	ND	ND		
	1/24/96		ND	ND	ND	ND	ND .		
	4/23/96		220	ND	0.62	0.88	5.4		ND
	7/25/96		ND	ND	ND	ND	ND	•	ND
	10/25/96		ND	ND	ND	ND	ND		ND
	1/28/97		ND	ND	ND	ND	ND		ND
	4/16/97		ND	ND	ND	ND	ND		ND
			112	112	ND	ND	ND		ND
MW8	10/21/95	-	ND	ND	ND	ND	ND	•	
	1/24/96		ND	ND	ND	ND	ND		
	4/23/96		ND	ND	ND	ND	ND		ND
	7/25/96		ND	ND	ND	ND	ND		ND
	10/25/96		ND	ND	ND	ND	ND		ND
	1/28/97		ND	ND	ND	ND	ND		ND
	4 ·16/97		ND	ND	ND	ND	ND		ND
417.70									
MW9	10/21/95		ND	ND	ND	ND	ND		Ş
	1/24/96		ND	ND	ND	ND	ND		\$ ‡
	4/23/96		ND	ND	ND	ND	ND		ND
	7/25/96		ND	ND	ND	ND	ND		ND
	10/25/96		ND	ND	ND	ND	ND		180
	1/28/97		ND	ND	ND	ND	ND		75
	4/16/97		ND	ND	ND	ND	ND		ND

Table 2 Summary of Laboratory Analyses Water

TOG = Total Oil & Grease

MTBE = Methyl tert butyl ether

ND = Non-detectable.

mg/L = milligrams per liter.

- * Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- † Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- †† Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- Free product was detected in well MW3; however, a water sample was collected and analyzed to determine if the product was predominantly hydrocarbon based.
- § Sequoia Analytical Laboratory has potentially identified the presence of MTBE at reportable levels in the sample collected from this well.
- ‡ Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μg/L in the sample collected from this well.
- -- Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

Note: The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.

Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 - C12. Since August 1, 1995, the quantificiation range used by Sequoia Analytical Laboratory is C6 - C12.

Monitoring data prior to June 9, 1994, were provided by Kaprealian Engineering, Inc.

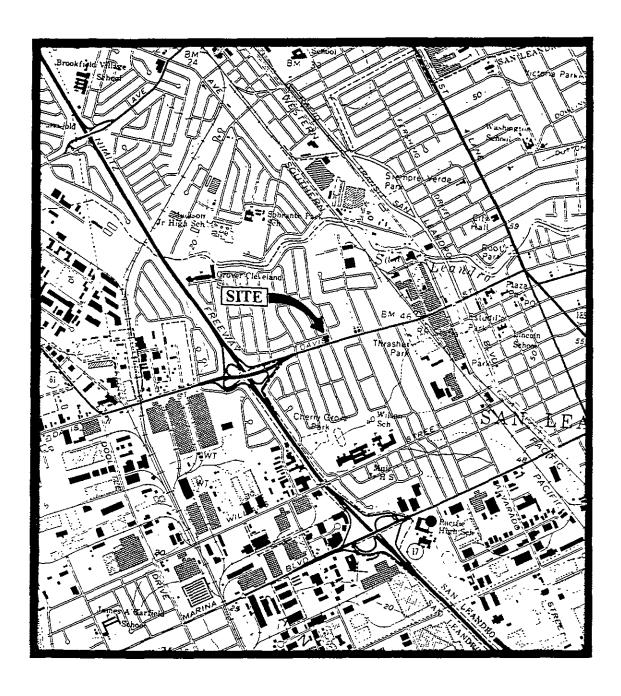
Table 3
Summary of Laboratory Analyses
Water

	ferden is 1700	odujej rupi: prakie		44.1	160-18 1 480 740			ings ya isa
		Tetrachioro-	Dichlero-	Trichloro-	Chloro-	Dichloro-	Dichloro-	Trichloro-
Well#	Date	ethene	ethane	chiane	methane	ethene	benzene	ethene
MW1	4/25/89	3.3	ND	ND	ND	ND	ND	0.55
	11/06/90	4.8	ND	ND	ND	ND	ND	ND
	5/24/91	4.6	ND	ND	ND	ND	ND	ND
	6/9/94	1.0	ND	ND	ND	ND	ND	ND
	9/8/94	1.2	ND	ND	ND	ND	ND .	ND
	1/25/95	WELL WAS	DESTROYED	1				
MW2	4/25/89	0.68	ND	ND	ND	ND	ND	ND
	11/06/90	ND	ND	ND	ND	ND	ND	ND
	5/24/91	ND	ND	ND	ND	ND	ND	ND
	8/15/91	ND	ND	ND	ND	ND	ND	ND
	11/19/91	ND	ND	ND	ND	ND	ND	ND
	2/27/92	ND	ND	ND	ND	ND	ND	ND
	5/26/92	ND	ND	ND	ND	ND	ND	ND
	10/30/92	ND	ND	ND	ND	ND	ND	- ND
	6/9/94	ND	ND	ND	ND	ND	ND	ND
	9/8/94	ND	ND	ND	ND	ND	ND	ND
	1/25/95	WELL WAS	DESTROYED					
MW3	4/25/89	1.0	ND	ND	ND	ND	ND	ND
	11/6/90	ND	ND	ND	ND	ND	ND	ND
	5/24/91	ND	ND	ND	ND	ND	ND	ND
	8/15/91		LED DUE TO					
	11/19/91		LED DUE TO					•
	2/27/92		LED DUE TO					
	5/26/92	ND	ND	ND	ND	ND	ND	ND
	10/30/92		LED DUE TO					
	6/9/94	ND	ND	ND	ND	ND	ND	ND
	9/8/94		LED DUE TO					
	10/21/95 1/24/96	ND	ND	ND	ND	ND	ND	ND
	4/23/96	ND ND	ND	ND	ND	ND	ND	ND
	7/25/96	ND ND	ND ND	ND	ND	ND	ND	ND
	10/25/96	ND	ND	ND ND	ND	ND	ND	ND
	1/28/97	ND	ND	ND	ND ND	ND ND	ND	ND
	4/16/97	ND	- ND	ND	ND	ND ND	ND ND	ND ND
		7.0	11,0	110	IND	ND	עא.	ND
MW4	11/6/90	2.9	ND	ND	ND	ND	ND	ND
	5/24/91	4 1	2.5	3.9	ND	ND	ND	ND
	8/15/91	3.6	ND	ND	ND	ND	ND	ND
	11′19′91	3 4	ND	ND	ND	ND	ND	ND
	2/27/92	3.5	6	ND	ND	ND	ND	ND
	5/26/92	2.4	13	3.5	ND	0 83	ND	ND
	10 30 92		INACCESSIBI					
	6/9/94	2 8	8.8	0.83	ND	0.51	ND	0.70
	9/8/94*	1.8	ND	ND	ND	ND	ND	0.60
	1/25/95	WELL WAS	DESTROYED					

Table 3
Summary of Laboratory Analyses
Water

Santa Santa			1,1	3.8 .1.1.			1,2	
		Tetrachiloro-	Dichloro-	Trichloro-	Chloro-	Dichioro-	Dichioro-	Trichloro-
Well#	Date	ethene	ethane	elitane	methane	ethene	benzene	ethene
MW5	11/6/90	0.7	ND	ND	ND	ND	ND	ND
	5/24/91	0.89	ND	ND	ND	ND	ND	ND
	6/9/94	WELL WAS I	NACCESSI	BLE				
	9/8/94	WELL WAS I	NACCESSI	BLE				
	1/25/95	WELL WAS D	ESTROYE	D				•
MW6	11/6/90	1.2	ND	ND	ND	ND	ND	ND
	5/24/91	0.88	ND	ND	5.6	ND	ND	ND
	8/15/91	1.2	ND	ND	ND	ND	ND	ND
	11/19/91	1.3	ND	ND	ND	ND	ND	ND
	2/27/92	1.5	ND	ND	ND	ND	1.6	ND
	5/26/92	1.1	ND	ND	ND	ND	1.7	ND
	10/30/92	1.2	ND	ND	ND	ND	ND	ND
	6/9/94	WELL WAS II	NACCESSI	BLE				
	9/8/94	WELL WAS II	NACCESSI	BLE				
	1/25/95	WELL WAS D	ESTROYE	D				
MW7	2/27/92	2.4	ND	ND	ND	ND	ND	ND
	5/26/92	2.2	ND	ND	ND	ND	ND	ND
	10/30/92	2.2	ND	ND	ND	ND	ND	ND
	6/9/94	0.67	ND	ND	ND	ND	ND	ND
	9/8/94	0.76	ND	ND	ND	ND	ND	ND
	10/21/95	ND	ND	ND	ND	ND	ND	ND
	1/24/96	1.2	ND	ND	ND	ND	ND	ND
	4/23/96	0.84	ND	ND	ND	ND	ND	ND
	7/25/96	1.7	ND	ND	ND	ND	ND	ND
	10/25/96**	1.2	ND	ND	ND	ND	ND	ND
	1/28/97	1.4	ND	ND	ND	ND	ND	ND
	4/19/97	0.75	ND	ND	ND	ND	ND	ND
MW8	10/21/95	ND	ND	ND	ND	ND	ND	ND
	1/24/96	0.74	ND	ND	ND	ND	ND	ND
	4/23/96	1.1	ND	ND	ND	ND	ND	ND
	7/25/96	1.1	ND	ND	ND	ND	. ND	ND
	10/25/96	0.90	ND	ND	ND	ND	ND	ND
	1 '28 '97	0.96	ND	ND	ND	ND	ND	ND
	4 16 97	0.51	ND	ND	ND	ND	ND	ND
MW9	10.′21.′95	17	1.0	ND	ND	ND	ND	ND
	1/24/96	17	2.2	ND	ND	ND	ND	0 64
	4/23/96	71	ND	ND	ND	ND	ND	ND
	7/25/96	1.0	ND	ND	ND	ND	ND	ND
	10′25′96	80	ND	ND	ND	ND	ND	ND
	1/28/97	39	ND	ND	ND	ND	ND	ND
	4/16/97	0.51	ND	ND	ND	ND	ND	ND

Table 3 Summary of Laboratory Analyses Water

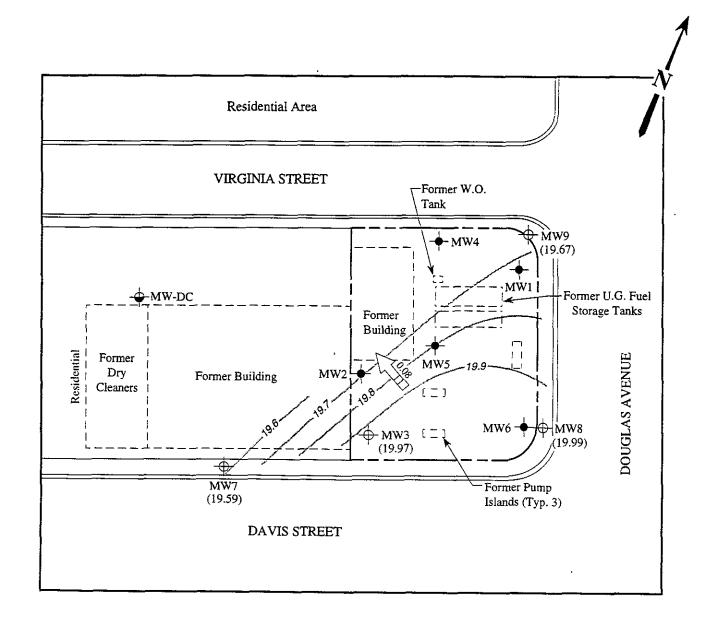

- * 1,2 Dichloroethane was detected at a concentration of 4.8 µg/L.
- ** Chlororform was detected at a concentration of 1.7 μg/L.

ND = Non-detectable.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: All EPA method 8010 constituents were non detectable, except for those shown in this Table.

Laboratory analyses data prior to June 9, 1994, were provided by Kaprealian Engineering, Inc.


Base modified from $\tilde{\ }$ 5 minute U S G S. San Leandro Quadrangle (photorevised 1980)

FORMER UNOCAL S/S #2512 1300 DAVIS STREET SAN LEANDRO, CALIFORNIA

LOCATION MAP

LEGEND

Monitoring well (by KEI-existing)

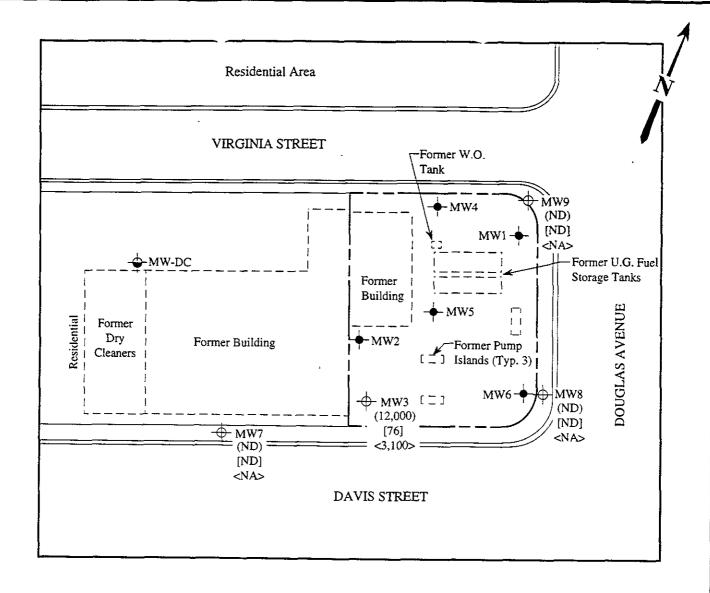
Monitoring well (by KEI-destroyed)

Monitoring well (by others)

Ground water elevation in feet above Mean Sea Level

Direction of ground water flow with approximate hydraulic gradient

Contours of ground water elevation



POTENTIOMETRIC SURFACE MAP FOR THE APRIL 16, 1997 MONITORING EVENT

FORMER UNOCAL S/S #2512 1300 DAVIS STREET SAN LEANDRO, CALIFORNIA **FIGURE**

1

LEGEND

- → Monitoring well (by KEI-existing)
- Monitoring well (by KEI-destroyed)
- Monitoring well (by others existing)
- () Concentration of TPH as gasoline in µg/L
- [] Concentration of benzene in µg/L
- < > Concentration of TPH as diesel in µg/L
- ND Non-detectable, NA Not analyzed

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON APRIL 16, 1997

FORMER UNOCAL S/S #2512 1300 DAVIS STREET SAN LEANDRO, CALIFORNIA FIGURE

2

unication nel california con escentrations con tenso en composicionistes.

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 940 Walnut Creek, CA 94596 (415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Matrix Descript:

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro Water

Sampled: Apr 16, 1997 Received: Apr 16, 1997

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Reported:

May 1, 1997

704-1025 for well a state of the factor of the

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L	Benzene μg/L	Toluene μg/L	Ethyl Benzene . µg/L	Total Xylenes μg/L
704-1025	MW-3	12,000	76	ND	330	1,600
704-1026	MW-7	ND	ND	ND	NĐ	ND
704-1027	MW-8	ND	ND	ND	ND	ND
704-1028	MW-9	. ND	ND	ND	ND	ND

						
Detection Limits:	50	0.50	0.50	0.50	0.50	
		0.00	0.50	0.50	0.50	

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard Analytes reported as ND were not present above the stated limit of detection

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B Kemp Project Manager

Page 1 of 2

Redwood City, CA 940 Walnut Creek, CA 94590 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Matrix Descript:

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro Water

more than the many to the second

Sampled: Received: Apr 16. 1997 Apr 16, 1997

Attention: Jarrel Crider was on the emission products save by him contacts in product.

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Reported:

May 1, 1997

704-1025

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Samp Numb		sample Cl scription	•)L Mult. Factor	Date Analyzed	Instrument ID	Surrogate Recovery, % QC Limits: 70-130
704-10	25	MW-3	Gasoline	100	4/21/97	HP-2	91
704-10	26	MW-7		1.0	4/21/97	HP-2	92
704-10	27	MW-8		1.0	4/21/97	HP-2	87
704-10	28	MW-9		1.0	4/21/97	HP-2	87

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 940 Walnut Creek, CA 94596 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Sample Descript: Water

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro

Sampled: Apr 16, 1997 Received: Apr 16, 1997

Analysis for: First Sample #:

MTBE (Modified EPA 8020) 704-1025

Analyzed: Apr 21, 1997 Reported: May 1, 1997

LABORATORY ANALYSIS FOR:

É PUI DI DESPO, MERFORMARE SAUGRE PAUGRE PARABETAN ER PRESIDEN AGRICO. EN PROFESOR I EN 1975 PER EL PRESIDENT

MTBE (Modified EPA 8020)

Sample Number	Sample Description	Detection Limit $\mu \mathrm{g/L}$	Sample Result μg/L
704-1025	MW-3	250	N.D.
704-1026	MW-7	5.0	N.D.
704-1027	MW-8	5.0	N.D.
704-1028	MW-9	5.0	N.D.

Analytes reported as N D were not present above the stated limit of detection

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 940 Walnut Creek, CA 9459 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Sample Matrix:

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro Water

Sampled: Received: Apr 16, 1997

Analysis Method:

EPA 3510/8015 Mod.

Apr 16, 1997

First Sample #:

704-1025

Reported: May 1, 1997

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 704-1025 MW-3 ^	
Extractable Hydrocarbons	50	3,100	
Chromatogram Pa	ttern:	Diesel & Unidentified Hydrocarbons <c15< td=""><td></td></c15<>	

Quality Control Data

Report Limit Multiplication Factor:

1.1

Date Extracted:

4/21/97

Date Analyzed:

4/23/97

Instrument Identification:

HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard Analytes reported as N D were not detected above the stated reporting limit

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B Kemp Project Manager

^ This sample appears to contain diesel and non-diesel mixtures. 'Unidentified Hydrocarbons

· C15 are probably gasoline

Redwood City, CA 940 Walnut Creek, CA 9459u 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

. MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider turni san melaki birabasah uktiber bira disabirasa basar bahatiba basar birabir melabir. Peribir birabir birab

Sample Descript: Water, MW-3 Analysis Method: EPA 5030/8010 Lab Number:

Client Project ID: Unocal #2512, 1300 Davis St , San Leandro

704-1025

Sampled: Apr 16, 1997 Received: Apr 16, 1997 Analyzed: Reported:

Apr 23, 1997 May 1, 1997

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	5.0	***************************************	N.D.
Bromoform	5.0	***************************************	N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0	******************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0	***************************************	N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,3-Dichlorobenzene	5.0	***************************************	N.D.
1,4-Dichlorobenzene.	5.0	***************************************	N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	***************************************	N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0	***************************************	N.D.
trans-1,2-Dichloroethene	5.0	***************************************	N.D.
1,2-Dichloropropane	5.0	,	N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0	***************************************	N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0	******************************	N.D.
1,1,1-Trichloroethane	5.0	***************************************	N.D.
1,1,2-Trichloroethane	5.0	***************************************	N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10	***************************************	N.D.

Analytes reported as N D were not present above the stated limit of detection. Because matrix effects and or other factors required additional sample dilution, detection limits for this sample have been raised

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 940 Redwood City, CA 940 (415) 364-9600 Walnut Creek, CA 94596 (510) 988-9600 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Bastemestavitates to tea sina a lassion and losses to exclude the problems of a tribing out to the problems.

Sample Descript: Water, MW-7 Analysis Method: EPA 5030/8010

Lab Number:

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro

704-1026

Sampled: Apr 16, 1997 Received: Apr 16, 1997 Analyzed: Reported:

Apr 23, 1997 .May 1, 1997

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50	***************************************	N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50		N.D.
Chloroethane	1.0	******	N.D.
2-Chloroethylvinyl ether	1.0		N.D.
Chloroform	0.50	***************************************	N.D.
Chloromethane	1.0		N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50	***************************************	N.D.
1,1-Dichloroethane	0.50	***************************************	N.D.
1,2-Dichloroethane	0.50		N.D.
1,1-Dichloroethene	0.50	***************************************	N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50	***************************************	N.D.
cis-1,3-Dichloropropene	0.50	,	N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.50	***************************************	N.D.
Tetrachloroethene	0.50		0.75
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50	***************************************	N.D.
Trichloroethene	0.50		N.D.
Trichlorofluoromethane	0.50		N.D.
Vinyl chloride	1.0		N.D.

Analytes reported as N D were not present above the stated limit of detection

SEQUOIA ANALYTICAL, #1271

Signature on Fife

Redwood City, CA 940 Walnut Creek, CA 94596 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider u mandyaetura in tuaa kawitha tumorowiatu au khidalilizotew nga sakitilish aan aspirku uu tumorowi aa kun tytt

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro Sample Descript: Water, MW-8 Analysis Method: EPA 5030/8010

Lab Number:

704-1027

Sampled: Apr 16, 1997 Received: Analyzed: Reported:

Apr 16, 1997 Apr 23, 1997 May 1, 1997

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50		N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50		N.D.
Chloroethane	1.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0		N.D.
Chioroform	0.50	*	N.D.
Chloromethane	1.0	***************************************	N.D.
Dibromochloromethane	0.50	***************************************	N.D.
1,3-Dichlorobenzene	0.50	••••••	N.D.
1,4-Dichlorobenzene	0.50	***************************************	N.D.
1,2-Dichlorobenzene	0.50	***************************************	N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0.50		N.D.
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50	***************************************	N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50	***************************************	N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50	***************************************	N.D.
letrachioroethene	0.50	***************************************	. 0.51
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50		N.D.
Trichloroethene	0.50	***************************************	N.D.
Trichlorofluoromethane	0.50		N.D.
Vinyl chloride	1.0	•••••	N.D.

Analytes reported as N D were not present above the stated limit of detection

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 940 Walnut Creek, CA 9459c 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Sample Descript: Water, MW-9 Analysis Method: EPA 5030/8010 Lab Number:

Client Project ID: Unocal #2512, 1300 Davis St., San Leandro

704-1028 il terri Bellite e il Colori ile VIII e Maretee Ran Michellaren 1980 oleh eta eta eta eta eta eta eta eta eta Sampled: Received:

Apr 16, 1997 Apr 16, 1997

Analyzed: Apr 23, 1997 Reported: May 1, 1997

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results μg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50	***************************************	N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50	***************************************	N.D.
Chloroethane	1.0		N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	0.50		N.D.
Chloromethane	1.0		N.D.
Dibromochloromethane	0.50	***************************************	N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1-Dichloroethane	0.50	***************************************	N.D.
1,2-Dichloroethane	0.50	***************************************	N.D.
1,1-Dichloroethene	0.50	***************************************	N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50	***************************************	N.D.
cis-1,3-Dichloropropene	0.50	***************************************	N.D.
trans-1,3-Dichloropropene	0.50	***************************************	N.D.
Methylene chloride	5.0	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.50	***************************************	N.D.
renacmoroemene	0.50	***************************************	0.51
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50		N.D.
Trichloroethene	0.50		N.D.
Trichlorofluoromethane	0.50	***************************************	N.D.
Vinyl chloride	1.0		N.D.

Analytes reported as N D were not present above the stated limit of detection

SEQUOIA ANALYTICAL, #1271

Signature on File

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 940 Walnut Creek, CA 9459. Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

Client Project ID:

Unocal #2512, 1300 Davis St., San Leandro

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Matrix:

Liquid

Attention: Jarrel Crider

QC Sample Group: 7041025-028 DEBLE OF BOXES INDIVIDUE OF FRANKLOWS PROBABLY CAR SOLEN OF FRANKLOS Reported:

May 1, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	Diesel	
			Benzene			
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	D. Sharma	
MS/MSD						
Batch#:	7040985	7040985	7040985	7040985	BLK042197	
Date Prepared:	4/21/97	4/21/97	4/21/97	4/21/97	4/21/97	
Date Analyzed:	4/21/97	4/21/97	4/21/97	4/21/97	4/23/97	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	HP-3A	
Conc. Spiked:	20 μg/L	$20\mu\mathrm{g/L}$	20 μg/L	60 μg/L	300 μg/L	
Matrix Spike						
% Recovery:	85	105	95	98	77 .	
Matrix Spike Duplicate %						
Recovery:	85	100	95	95	77	
Relative %						
Difference:	0.0	4.9	0.0	3.5	0.0	

LCS Batch#:	2LCS042197	2LCS042197	2LCS042197	2LCS042197	LCS042197	
Date Prepared: Date Analyzed: Instrument I.D.#:	4/21/97 4/21/97 HP-2	4/21/97 4/21/97 HP-2	4/21/97 4/21/97 HP-2	4/21/97 4/21/97 HP-2	4/21/97 4/23/97	
LCS % Recovery:	90	105	100	100	HP-3A 73	
% Recovery Control Limits:	60-140	60-140	60-140	60-140	60-140	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B Kemp Project Manager Please Note.

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents preparation and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch

Redwood City, CA 940 Walnut Creek, CA 9459₀ 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Client Project ID:

Unocal #2512, 1300 Davis St., San Leandro

Matrix:

Attention: Jarrel Crider QC Sample Group: 7041025-028

Reported:

May 1, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro- etheпe	Trichloro- ethene	Chloro- benzene	1,1-Dichloro- ethene	Trichloro- ethene	Chloro- benzene	
Method: Analyst:	EPA 8010 P. Horton	;					
MS/MSD Batch#:	7040823	7040823	7040823	7040823	7040823	7040823	
Date Prepared: Date Analyzed: Instrument I.D.#: Conc. Spiked:	4/21/97 4/21/97 HP-6 10 μg/L	4/21/97 4/21/97 HP-6 10 µg/L	4/21/97 4/21/97 HP-6 10 μg/L	4/21/97 4/21/97 HP-6 10 µg/L	4/21/97 4/21/97 HP-6 10 µg/L	4/21/97 4/21/97 HP-6 10 μg/L	
Matrix Spike % Recovery:	73	97	93	73	97	93	
Matrix Spike Duplicate % Recovery:	72	100	100	72	100	100	
Relative % Difference:	1.4	3.0	7.3	1.4	3.0	7.3	

LCS Batch#:	LCS042297	LCS042297	LCS042297	LCS042397	LCS042397	LCS042397	
Date Prepared: Date Analyzed: Instrument I.D.#:	4/22/97 4/22/97 HP-6	4/21/97 4/21/97 HP-6	4/21/97 4/21/97 HP-6	4/23/97 4/23/97 HP-6	4/23/97 4/23/97 HP-6	4/23/97 4/23/97 HP-6	
LCS % Recovery:	105	104	99	100	97	93	
% Recovery Control Limits:	60-140	60-140	60-140	60-140	60-140	60-140	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B Kemp Project Manager Please Note

The LCS is a control sample of known interferent free matrix that is analyzed using the same reagents preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Let: [610] 602-5120 Fax: (610) 689-1918

CHAIN OF CUSTODY

\$104230

SAMPLEN			UNO S/S	CAL # 25	12	CIIY: Sau	Leandre	ANALYSES REQUESTED							TURN AROUND TIME:
WITHESSING AGENCY	VSIA AJEMI/	\N 	ADDR	ESS:	1300	Davie	st.	TPH-GAS STEX4MT&C	TPH-DIESEL	T0G	010				Regular
OR OF FEMALS	DATE	DMC	WALL IN	CIEMI)	COMP	110, 91 COLL	SAMPLING LOCATION	14. R	- - -	1-	8	1			
MW-3	4-16 97	12:00 P.M	/	_		4(VOA) (Amber	well,	• /			/	704	1025	A-E	MTGE: SPS.
mw.7	,	10:30 Am	/	_		AVOA	,	/				704	11026	A-B	
mw_8	,	11: 20 m	/	/		AVOL	/	/				704	11027	41_	
nw-9	/	11:30 M.M	/	/		4 Vok		/	**************		_	70	11028		
													_	<u> </u>	
														<u> </u>	_
														_	_
									_						
															_
														_	_
				i											
						<u> </u>	PROPERTY OF THE PROPERTY OF TH	THE FOLLOWING MUST HE COMPLETED BY THE LABORATORY ACCEPTING SAMPLES FOR ANALYSES:						SAMPLÉS FOR ANALYSES:	
RELIN	QUISHED BY:		0/	TE/TIN 213	1E 0 ~ ~	HECEIV	ED BY:	1. HAVE ALL SAMPLES RECEIVED FOR ANALYSIS BEEN STORED ON ICET							
SIGNATUIU	<u> </u>		21	16.0		SIGNATURE	4-16-97	30 N							
SIGNATUIEI	J. Ours	<u> </u>		100	<u> </u>	SIGNATURE)	7	3. DIU ANY SAMPLES RECEIVED FOIL ANALYSIS HAVE HEAD SPACES							
an Corde	gras			7-9		SIGN) TUTO	11	1. WEIE SAMPLES IN APPHOPHIATE CONTAINERS AND PROPERLY PACKAGED!							
SIGNATUIE			4-1	<u>'</u>	-	ISIGHA LONG!	<u>u</u>	SIGNATI			·	TITLE:	. +		DATE: 4-16-97