GETTLER-RYAN INC.

1364 N. McDowell Blvd., Suite B2, Petaluma, CA 94954 Phone (707) 789-3251, Fax (707) 789-3218

TIRANSMIITICAL

TO:

David De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, CA 94583

DATE:

August 16, 2000 PROJECT NO.

140158.03

SUBJECT:

Tosco 4625

Limited Subsurface

Investigation Report

From:

Jed Douglas

WE ARE SENDING YOU:

	DATED	DESCRIPTION
COPIES	DATED	
1	8/16/00	Limited Subsurface Investigation Report
}		

THESE ARE TRANSMITTED as checked below:

[] For review and comment

[] Approved as submitted

[] Resubmit _ copies for approval

[X] As requested

[] Approved as noted

[] Submit _ copies for distribution

[] For approval

[] Return for corrections

[] Return __ corrected prints

[X] For your files

[] For your use

COMMENTS:

Appendix E of this report contains well location and construction details obtained from water well driller's reports filed with DWR. California Water Code Section 13753-states that these reports are confidential and not for public use or inspection. Therefore, this report or its attachments should not be placed in files accessible to the general public.

COPIES TO: Don Hwang - Alameda County Environmental Health Services

00 MUG 17 PM 2:30

TALCHOTTORA

For

Tosco (76) Service Station No. 4625 3070 Fruitvale Avenue, Oakland, California

Report No. 140158.03-2

Prepared for:

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place Suite 400 San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

> Jed A. Douglas Project Geologist

Stephen J. Carter Senior Geologist No. 5577

R.G. 5577

August 16, 2000

TABLE OF CONTENTS

1.0 INTRODUC	:: IUN	1								
2.0 SITE DESC	RIPTION	1								
2.1 GENERAL	AND I INDROGROU OOV	1								
	AND HYDROGEOLOGY ENVIRONMENTAL INVESTIGATION									
3.0 FIELD WO	RK	3								
3.1 DRILLING	3.1 DRILLING ACTIVITIES									
	nitoring, Development, and Sampling D Survey									
	ACE CONDITIONS									
4.2 LABORAT	ORY ANALYSIS	6								
	LYTICAL RESULTS									
	ISPOSAL									
5.0 CONCLUS	IONS AND RECOMMENDATIONS	7								
60 PEFFPENA	CES	5								
	TABLES									
Table 1: Table 2:	Groundwater Monitoring and Chemical Analytical Data Soil Chemical Analytical Data									
	FIGURES									
Figure 1:	Vicinity Map									
Figure 2: Figure 3:	Site Plan Potentiometric Map									
rigule 3.	APPENDICES									
Appendix A: Appendix B:	GR Field Methods and Procedures Permits and Boring Logs									
Appendix C:	Well Development and Groundwater Sampling Field Data Sheets									
Appendix D:	Surveyor's Report									
Appendix E: Appendix F:	Well Search Results Laboratory Analytical Reports and Chain-of-Custody Records									
Appendix G:	Forward Landfill Waste Acceptance Letter									

LIMITED SUBSURFACE INVESTIGATION REPORT

For

Tosco (76) Service Station No. 4625 3070 Fruitvale Avenue, Oakland, California

Report No. 140158.03-2

1.0 INTRODUCTION

At the request of Tosco Marketing Company (Tosco), Gettler-Ryan Inc. (GR), has prepared this report of subsurface investigative work at the subject site. The purpose of this investigation was to evaluate soil and groundwater conditions at the site. This work was originally proposed in GR Report No. 140158.03-1, Work Plan for Limited Subsurface Investigation, dated January 13, 2000. This work was performed to assess soil and groundwater conditions beneath the subject site, and to define and quantify the lateral extent of petroleum hydrocarbon constituents in the first encountered groundwater zone. The scope of work included: preparing a site safety plan; obtaining the required well installation permits; advancing four soil borings and installing a groundwater monitoring well in each of the borings; surveying the wellhead elevations; developing and sampling the wells; collecting and submitting selected soil and groundwater samples to a certified analytical laboratory for chemical analysis; arranging for Tosco's contractor to dispose of the waste materials; performing a ½ mile radius well search; and preparing a report presenting the observations associated with the well installation and the analytical results of the soil and groundwater sampling. The GR workplan was approved by Mr. Don Hwang of the Alameda County Environmental Health Services (ACEHS) in a letter dated May 4, 2000.

2.0 SITE DESCRIPTION

2.1 General

The site is currently an active service station located on the southeast corner of Fruitvale Avenue and School Street in Oakland, California (Figure 1). Local topography is southwestern sloping at an elevation of approximately 136 to 139 feet above mean sea level (U.S. Geological Survey, 1959). The current site facilities include a station building with two automotive service bays equipped with hydraulic lifts, four dispenser islands and two canopies, two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs), and one above ground waste-oil tank. Four groundwater monitoring wells exist at the site (installed during this investigation). Locations of the pertinent site features are shown on Figure 2.

2.2 Geology and Hydrogeology

The site is located on the western flank of the Oakland Hills in an area underlain by Holocene age alluvium. The alluvial deposits are composed of unconsolidated, moderately sorted, permeable silt with coarse sand and gravel. The northwest trending Hayward fault is located approximately 1,500 feet northeast of the site (Helley, 1979). The nearest surface waters are Sausal Creek, located approximately 500 feet west of the site, and Peralta Creek, located 2,300 feet southeast of the site. Additionally, East Bay Municipal Utility District's Central Reservoir is located approximately 1,300 feet west of the site.

Based on observations made during UST replacement activities previously performed at the site, the subsurface materials are composed of clay and silt to a depth of approximately 14 feet below ground surface (bgs), the maximum depth exposed during excavation. Groundwater was encountered at a depth of approximately 9 feet bgs in April of 1998. Based on topography in the site vicinity, it is anticipated that regional groundwater flows toward the south-southwest.

2.3 Previous Environmental Investigation

In April and May of 1998, the gasoline USTs, product piping and dispensers were removed and replaced. Four soil samples were collected from the sidewalls of the former gasoline UST pit at a depth of approximately 8.5 feet bgs. Concentrations of Total Petroleum Hydrocarbons as gasoline (TPHg) in the soil samples ranged from 44 to 1,700 parts per million (ppm), benzene concentrations ranged from 0.16 to 17 ppm, and methyl tertiary butyl ether (MtBE) concentrations ranged from not detected (ND) to 16 ppm. Eight soil samples were collected from the beneath the former product dispensers at a depth of approximately 4 feet bgs. Concentrations of TPHg in the soil samples ranged from ND to 660 ppm, benzene concentrations ranged from ND to 5.1 ppm, and MtBE concentrations ranged from ND to 150 ppm.

A 550-gallon waste oil UST and associated piping was also removed in May 1998. One soil sample was collected from beneath the former waste oil UST at a depth of approximately 8.5 feet bgs. TPHg was detected in the soil sample at 820 ppm, benzene was detected at 2.7 ppm, Total Petroleum Hydrocarbons as diesel (TPHd) was detected at 200 ppm, Total Oil and Grease (TOG) was detected at 56 ppm, elevated concentrations of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals were also reported. One soil sample was also collected from beneath the piping at a depth of approximately 2 feet bgs. The sample was reported as all ND except for TPHd at 1.5 ppm, and background concentrations of metals.

A total of approximately 1,166 tons of soil was overexcavated and transported from the site to the Forward Inc. landfill in Manteca, California. Additionally, 40,000 gallons of groundwater was pumped from the UST pit and transported to the Tosco refinery in Rodeo, California for treatment. A conductor casing was installed in the backfill during installation of the replacement gasoline USTs. The waste oil tank was replaced with an above ground tank.

On November 30, 1999, groundwater was measured in the UST pit conductor casing at approximately 10 feet bgs. A grab groundwater sample was collected from the UST conductor casing, and was reported to contain a concentration of MtBE at 740 parts per billion (ppb) (EPA Method 8260). TPHg and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were reported as ND.

3.0 FIELD WORK

Field work was conducted in accordance with GR's approved workplan dated January 13, 2000, Field Methods and Procedures (Appendix A) and the Site Safety Plan dated April 10, 2000. A drilling permit was required for the four groundwater monitoring wells and was obtained from the ACEHS (Permit Number W00-165). A copy of the drilling permit is included in Appendix B.

Underground Service Alert was notified as required prior to drilling at the site (reference No. 100957). In addition, Cruz Brothers Sub-Surface Locators, Inc., a private utility locating service, visited the site prior to drilling, to check and clear the proposed boring locations.

3.1 Drilling Activities

On April 25 and 26, 2000, a GR geologist observed Cascade Drilling, Inc. (C-57 #717510) advance four onsite well borings (MW-1 through MW-4) at the locations shown on Figure 2. Boring MW-1 was drilled and sampled to a depth of 30 feet bgs, and borings MW-2 through MW-4 were drilled and sampled to a depth of 26.5 feet bgs using 8-inch hollow-stem augers driven by a truck-mounted drill rig. Soil samples were collected from the borings approximately every five feet at a minimum. The GR geologist prepared a log of each boring and field screened the soil samples for the presence of volatile organic compounds utilizing a photoionization detector (PID). Field screening data are presented on the boring logs (Appendix B).

Upon completion of soil sampling, borings MW-1 through MW-4 were converted to groundwater monitoring wells by the installation of 2-inch diameter poly-vinyl chloride (PVC) well casing through the hollow-stem augers. The well casing consisted of 5 feet of blank PVC casing from the ground surface to 5 feet bgs, and 20 feet of 0.020-inch machine slotted PVC casing from 5

feet to 25 feet bgs. Lonestar # 3 sand was installed in the annular space from the bottom of the boring to one foot above the top of the screened interval (4 feet bgs). The well was then sealed with hydrated bentonite followed by neat cement to a depth of 1.5 feet bgs, and the remainder of the annular space was filled with concrete and a steel, water-resistant, traffic-rated well box. An expandable locking well cap was placed on the top of the PVC casing and secured with a lock.

Drill cuttings were placed on, and covered with, plastic sheeting and stored on-site pending analysis and disposal. A four-part composite stockpile soil sample was collected from the drill cuttings and submitted to the laboratory for disposal profiling.

3.2 Well Monitoring, Development, and Sampling

Monitoring, development, and sampling of the four newly installed wells was performed by GR personnel. Copies of the well development and field monitoring data sheets are included in Appendix C. Monitoring data are summarized in Table 1.

Wells MW-1 through MW-4 were developed and sampled on May 3, 2000. Depth to groundwater in the wells were measured and each well checked for the presence of floating product prior to development. Floating product was not observed in the four wells. Wells MW-1 and MW-4 dewatered during development, however, each well yielded a minimum of 10 well volumes. After the wells were properly developed, groundwater samples were collected in appropriate containers supplied by the laboratory. Groundwater samples were submitted for chemical analysis under chain-of-custody documentation to Sequoia Analytical in Walnut Creek, California.

3.3 Wellhead Survey

Following installation of the wells, the well casing elevations were surveyed by Virgil Chavez Land Surveying of Vallejo, California, Licensed California Land Surveyor No. 6323. Top of casing and vault box elevations were measured relative to mean sea level (MSL), and the horizontal locations of the wells measured. Well casing elevation data are presented in Table 1. A copy of the surveyor's report is included in Appendix D.

3.4 Well Search

GR contacted the Alameda County Water Resources Department and requested a ½ mile radius well search be performed in the site vicinity. The well search did not identify any municipal, industrial or domestic water wells in the search area. One irrigation well was identified during the search, located approximately 1,700 feet south-southeast of the site. GR delivered a questionnaire to the property in an attempt to determine if the well still exists or is currently in

use. At the time of this report, no response had been received. The well search report is attached in Appendix E.

Appendix E of this report contains well location and construction details obtained from water well driller's reports filed with DWR. California Water Code Section 13753 states that these reports are confidential and not for public use or inspection. Therefore, this report or its attachments should not be placed in files accessible to the general public.

4.0 RESULTS

4.1 Subsurface Conditions

Soil

Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring logs in Appendix B. In general, subsurface soils were composed of clay to depths of approximately 9 to 15 feet bgs, underlain by gravel with varying amounts of clay and sand to depths of approximately 18 to 20 feet bgs, underlain by clay and clayey sand to the total depth of the borings. The exception was well boring MW-1, which encountered only clay to the total depth of the boring.

Groundwater

Groundwater was typically encountered at approximately 10.5 feet bgs, except for well boring MW-1, where groundwater was not encountered during drilling. Groundwater typically first occurred in a gravel or clayey gravel which ranged in depth from approximately 9 to 15 feet bgs, except in well boring MW-2 where groundwater was encountered in the clay several feet above the gravel zone. Depth to groundwater in the four wells was approximately 6.5 to 12 feet below the top of casing, as measured on May 3, 2000, prior to purging and sampling of the wells. Depth to groundwater measurements were also collected on May 16, and again on May 24, 2000. Groundwater flow direction appears to be toward the southwest at a calculated gradient of approximately 0.016 ft/ft (Figure 3).

5

4.2 Laboratory Analysis

The selected soil and groundwater samples were analyzed by Sequoia Analytical in Walnut Creek, California (ELAP #1271). The soil samples were analyzed for TPHg, BTEX, and MtBE by Environmental Protection Agency (EPA) Methods 5030, 8015 Modified, 8020, and 8260. Additionally, soil samples from MW-3 were analyzed for TPHd, total chromium, total recoverable petroleum hydrocarbons (TRPH) and semi-volatile organic compounds (SVOCs) by EPA Methods 8015 Modified, 200.7, 5520, and 8270. Soil samples from MW-4 were also analyzed for TPHd. The composite soil sample was analyzed for TPHg, BTEX, MtBE, VOCs, SVOCs, TRPH and the metals cadmium, chromium, nickel, lead and zinc by EPA Method 6010.

The groundwater samples were analyzed for TPHg, BTEX, and MtBE. Additionally, groundwater samples from MW-3 were also analyzed for VOCs, SVOCs, TOG and total chromium. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix F.

4.3 Soil Analytical Results

MtBE was not detected in any of the soil samples analyzed from the four well borings. TPHg and BTEX were not detected in any of the soil samples analyzed from well borings MW-1 or MW-4. However, TPHg and BTEX were detected in shallow soil samples collected from well borings MW-2 and MW-3 at the following concentrations: MW-2 (10) contained TPHg at 1,600 ppm and benzene at 5.1 ppm; MW-3 (10) contained TPHg at 79 ppm and benzene at 0.031 ppm. TPHg and benzene were not detected in the 25 foot samples collected from well borings MW-2 or MW-3. TPHd was detected in each of the soil samples analyzed for this constituent at the following concentrations: MW-3 (10) at 8.4 ppm; MW-3 (25) at 1.3 ppm; and MW-4 (10) at 1.3 ppm. MW-3 (10) also contained detectable concentrations of TRPH at 140 ppm and total chromium at 48 ppm.

The composite soil sample from the stockpile (SS-1) contained TPHg at 56 ppm, TPHd at 3.1 ppm, benzene at 0.11 ppm, TRPH at 180 ppm, and lead at 11 ppm. These results, including the other metals detected, were acceptable for landfill disposal. Soil chemical analytical data are summarized in Table 2.

6

4.4 Groundwater Analytical Results

MtBE was not detected in wells MW-2 through MW-4. TPHg and BTEX were not detected in wells MW-1, MW-3 or MW-4. However, in well MW-2, TPHg and BTEX were detected at concentrations of 2,400 ppb and 53 ppb, respectively. MtBE was detected in well MW-1 at a concentration of 14 ppb by EPA Method 8260. Additionally, TPHd was detected in well MW-3 at a concentration of 93 ppb. Groundwater chemical data are summarized in Table 1.

4.5 Waste Disposal

Approximately 240 gallons of waste water generated by cleaning the drilling equipment and well development and sampling procedures are currently stored at the site in properly labeled drums, pending approval for transportation to the Tosco Refinery in Rodeo, California, for treatment. Approximately three tons of soil (drill cuttings) were removed from the site on May 30, 2000, by Manley and Sons Trucking of Sacramento, California and transported to Allied Waste Companies Forward Incorporated facility in Manteca, California for disposal. A copy of the Forward landfill acceptance letter is included in Appendix G.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Soil samples collected from well borings MW-2 and MW-3 contained concentrations of TPHg and benzene in the capillary fringe soil samples. Soil samples from MW-3 also contained low concentrations of TPHd and TRPH. Hydrocarbon concentrations attenuate significantly with depth, as evidenced by the lack of detectable hydrocarbons in the 25 foot bgs samples from well borings MW-2 and MW-3, with the exception of a trace concentration of TPHd (1.3 ppm) in well boring MW-3 at 25 feet bgs.

Results of the groundwater sampling indicate low levels of MtBE (14 ppb) in the downgradient well MW-1. TPHg (2,400 ppb) and benzene (53 ppb) were only detected in one well (MW-2) near the northeastern dispenser islands. TPHd was detected at a low concentration (93 ppb) in well MW-3 adjacent to the former waste oil UST.

This work was performed to assess soil and groundwater conditions at the subject site. The specific goals of this investigation were to define and quantify the lateral extent of hydrocarbon constituents in soil and the first encountered groundwater zone.

The vertical and lateral extent of hydrocarbons in soil appears to be defined. The lateral extent of MtBE in groundwater is defined, and the lateral extent of other hydrocarbon constituents is defined except in the vicinity of monitoring well MW-2. A ½ mile radius well search around the site identified one irrigation well located approximately 1,700 feet southeast of the site.

Groundwater flow conditions at the site are difficult to interpret due to the extremely flat potentiometric surface in the eastern portion of the site. Very slow stabilization of the groundwater table was observed after installation of the wells. Well MW-1 was initially dry during construction, but was observed to contain a small volume of groundwater the following day. Depth to groundwater measurements collected seven days after well installation appear to indicate that well MW-1 had not fully equilibrated with the groundwater surface. Depth to groundwater measurements collected two weeks after well development appeared to indicate that well MW-4 had not fully recovered from purging activities. Based on this information, site topography, and the flow directions of nearby creeks, the groundwater flow direction is presumed to be toward the southwest.

GR recommends that groundwater at the subject site be monitored and sampled during the next four consecutive quarters in order to evaluate groundwater chemical conditions and flow direction over the course of one hydrologic cycle.

6.0 REFERENCES

- Gettler-Ryan Inc., 2000, Work Plan for Limited Subsurface Investigation at Tosco (Unocal) Service Station No. 4625, 3070 Fruitvale Avenue, Oakland, California, dated January 13, 2000.
- Gettler-Ryan Inc., 1998, Underground Storage Tank and Product Line Replacement Report for Tosco (Unocal) Service Station 4625, 3070 Fruitvale Avenue, Oakland, California, dated August 10, 1998.
- Helley, E. J. and K. R. Lajoie, 1979, Flatland Deposits of the San Francisco Bay Region, California Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning: U. S. Geological Survey Professional Paper 943.
- U.S. Geological Survey, 1959, Oakland East Quadrangle, California, 7.5 Minute Series (Topographic): Scale 1:24,000, photorevised 1980.

TABLE 1 - GROUNDWATER MONITORING AND CHEMICAL ANALYTICAL DATA

Tosco (76) Service Station No. 4625 3070 Fruitvale Avenue Oakland, California

		Total Well	Well ¹ Elev.	Depth to	Floating	Ground Water			_		Ethyl-	Total	2500 p.2		T/OC!
Sample No.	Sample Date	Depth (ft.)	(ft. MSL)	Water (ft.)	Product (ft.)	Elevation (ft. MSL)	TPHg (ppb)	TPHd (ppb)	Benzene (ppb)	Toluenc (ppb)	benzene (ppb)	Xylenes (ppb)	MTBE ² (ppb)	MTBE' (ppb)	VOC's (ppb)
MW-1	5/3/00	25.06	136.36	7.335	0.0	129.025	ND	NA	ND	ND	ND	ND	11	14	NA
MW-2	5/3/00	24.28	138.64	7.740	0.0	130.900	2,400	NA	53	ND	ND	240	ND	ND	NA
MW-3 4	5/3/00	24.73	137,68	6.815	0.0	130,865	ND	93 ⁵	ND	ND	ND	ND	ND	ND	ND
MW-4	5/3/00	24,65	136.60	8.685	0.0	127.915	ND	NA	ND	ND	ND	ND	ND	ND	NA
Trip Blank							ND	NA	ND	ND	ND	ND	ND	NA	NA

EXPLANATION:

ANALYTICAL LABORATORY:

Sequoia Analytical Walnut Creek (ELAP #1271)

(see laboratory reports for detection limits)

ft. = feet

ft. MSL = feet relative to Mean Sea Level.

ppb = parts per billion

ND = not detected

--- = not applicable

NA = not analyzed

1 = Well elevations reported as top of casing (TOC) surveyed by Turner & Associates, Licensed California Land Surveyor No. 4029.

2 = MTBE by EPA Method 8020

3 = MTBE by EPA Method 8260

4 = sample also analyzed for SVOCs (ND), Total chromium (ND) and TOG (ND)

5 = laboratory reports unidentified hydrocarbons C9 - C24

ANALYTICAL METHODS:

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified

TPHd = Total Petroleum Hydrocarbons as diesel according to EPA Method 8015 Modified

Benzene, Toluene, Ethylbenzene, and Total Xylenes according to EPA Method 8020

MTBE = Methyl tertiary butyl ether according to EPA Method 8020/8260

VOCs = volatile organic compounds according to EPA Method 8240

SVOCs = semi-volatile organic compounds according to EPA Method 8270

Total chromium according to EPA Method 200.7

TOG = total oil and grease according to EPA Method 5520

TABLE 2 - SOIL CHEMICAL ANALYTICAL DATA

Tosco (76) Service Station No. 4625 3070 Fruitvale Avenue Oakland, California

Sample No.	Sample Depth (feet)	Date Collected	TPHg (ppm)	TPHd (ppm)	Benzene (ppm)	Toluene (ppm)	Ethyl- benzene (ppm)	Total Xylenes (ppm)	MTBE (ppm)	8240 (ppm)	827 0 (ppm)	TRPH (ppm)	Total Chromium (ppm)	Total Lead (ppm)
MW-1-10	10	4/25/00	ND	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
MW-2-10 MW-2-25	10 25	4/25/00 4/25/00	1,600 ND	NA NA	5.1 ND	3.0 0.0061	54 0.012	54 0.038	ND ND	NA NA	NA NA	NA NA	NA NA	NA
MW-3-10 MW-3-25	10 25	4/25/00 4/25/00	79 ND	8.4 ¹ 1.3 ²	0.031 ND	0.24 ND	0.73 ND	0.48 ND	ND ND	ND NA	ND NA	140 NA	48 NA	NA
MW-4-10	10	4/26/00	ND	1.32	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Stockpile SS-1		4/26/00	56	3.1	0.11	0.26	1.1	4.0	ND	ND ³	ND	180	78 ⁴	11

EXPLANATION:

ANALYTICAL LABORATORY:

Sequoia Analytical Walnut Creek (ELAP #1271)

(see laboratory reports for detection limits)

ppm = parts per million

ND = not detected

NA = not analyzed

-- = not applicable

1 = laboratory reports unidentified hydrocarbons < C16

2 = laboratory reports unidentified hydrocarbons > C16

3 = no 8240 compounds detected other than toluene (1.2 ppm), ethylbenzene (4.4 ppm) and total xylenes (17 ppm).

4 = other metals analyzed include nickel (130 ppm), zinc (56 ppm) and cadmium (ND)

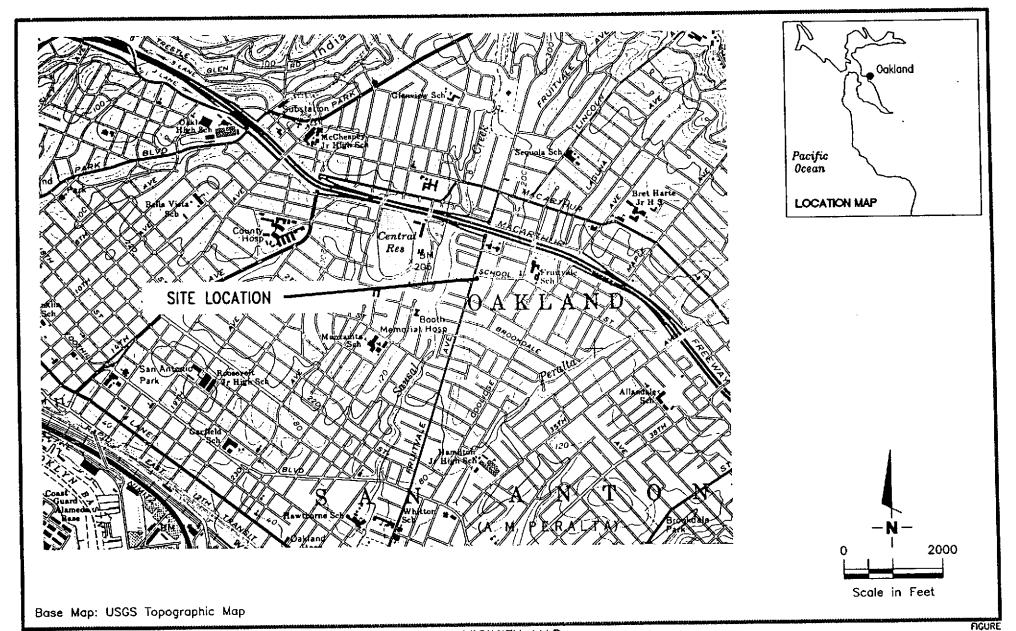
ANALYTICAL METHODS:

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified

TPHd = Total Petroleum Hydrocarbons as diesel according to EPA Method 8015 Modified

Benzene, Toluene, Ethylbenzene, and Total Xylenes according to EPA Method 8020

MTBE = Methyl tertiary butyl ether according to EPA Method 8020


8240 = Volatile Organic Compounds according to EPA Method 8240B

8270 = Semi-Volatile Organic Compounds according to EPA Method 8270B

TRPH = Total recoverable petroleum hydrocarbons according to EPA Method 5520

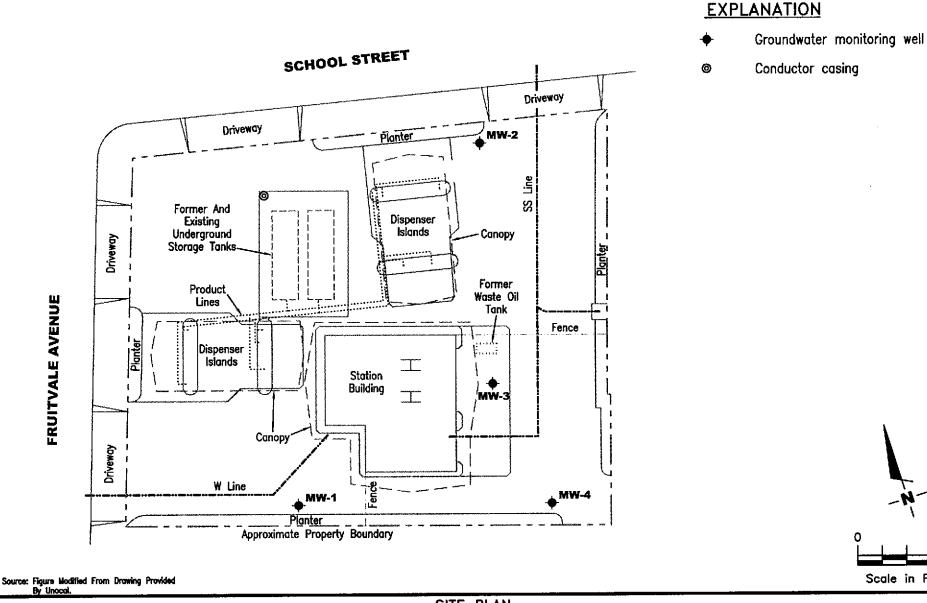
Total Chromium and other metals according to EPA Method 6010

Total Lead according to EPA Method 6010

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555


VICINITY MAP Tosco (Unocal) Service Station No. 4625 3070 Fruitvale Avenue Oakland, California

DATE 01/00

JOB NUMBER 140158

REVIEWED BY

REVISED DATE

Gettler - Ryan Inc.

REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

SITE PLAN

Tosco (Unocal) Service Station No. 4625 3070 Fruitvale Avenue

Oakland, California

DATE

REVISED DATE

JOB NUMBER 140158.03

6/00

FIGURE

Scale in Feet

30

6747 Sierra Ct., Suite J Dublin, CA 94568

REVIEWED BY

(925) 551-7555

Tosco (Unocal) Service Station No. 4625 3070 Fruitvale Avenue Oakland, California

DATE

May 24, 2000

REVISED DATE

JOB NUMBER 140158.03

APPENDIX A GR FIELD METHODS AND PROCEDURES

GETTLER-RYAN INC. FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the of these plans contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the exploratory soil boring with a split-barrel sampler or other appropriate sampling device fitted with clean brass or stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with Teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing ground surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Stockpile Sampling

Stockpile samples consist of four individual sample liners collected from each 100 cubic yards (yd³) of stockpiled soil material. Four arbitrary points on the stockpiled material are chosen, and discrete soil sample is collected at each of these points. Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless steel or brass tube into the stockpiled material with a wooden mallet or hand driven soil sampling device. The sample tubes are then covered on both ends with Teflon sheeting, capped, labeled, placed in the cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory borings with Schedule 40 polyvinyl Chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which generally extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space adjacent to the entire screened interval. A bentonite transition seal is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking cap. A lock is placed on the well cap to prevent vandalism and unintentional introduction of materials into the well.

Storing and Sampling of Drill Cuttings

Drill cuttings are stockpiled on plastic sheeting or stored in drums depending on site conditions and regulatory requirements. Stockpile samples are collected and analyzed on the basis of one composite sample per 50 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 3 to 6 inches of soil, and then driving the stainless or brass sample tube into the stockpiled material with a hand, mallet, or drive sampler. The sample tubes are then covered on both ends with Teflon sheeting, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

Wellhead Survey

The top of the newly-installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL).

Well Development

The purpose of well development is to improve hydraulic communication between the well and surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Groundwater Monitoring and Sampling

Decontamination Procedures

All physical parameter measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

Water-Level Measurements

Prior to sampling each well, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest ± 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest ± 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted. Water-levels are measured in wells with known or suspected lowest dissolved chemical concentrations to the highest dissolved concentrations.

Sample Collection and Labeling

A temporary PVC screen is installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each well or boring using the Teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with Teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

APPENDIX B PERMITS AND BORING LOGS

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD CA. 94544-1395 PHONE (510) 670-5554 MARLUN MAGALLANES/FRANK CODD (510) 670-5783 FAX (510)782-1939

Sources.	
DRILLING PERMIT	TAPPLICATION
FOR APPLICANT TO COMPLETE LOCATION OF PROJECT TOLCO STATION NO. 4625 3070 FRUITWILE AVE	PERMIT NUMBER WOU - 165 WELL NUMBER
Crey ST School STreat Oakland Cali Farmine	PERMIT CONDITIONS Circled Permit Requirements Apply
CLIENT TOSCO Marketing Company Name Tosco Marketing Company Address 2000 Crov Canyon Ph. Phone 925-277-2384 City San Raman Zip 94583 APPLICANT 6 ATTER-Ryan Inc. Name 6 ATTER-Ryan Inc. Pan 415-893-1577 Address 7100 Reduced Block Phone 415-893-1575 City 4704 Noverto Zip 94945	A GENERAL 1 A permit application should be submitted so as to arrive at the ACPWA office five days prior to proposed starting date. 2 Submit to ACPWA within 60 days after completion of permitted work the original Department of Water Resources. Well Completion Report. 3 Permit is void if project no t begun within 90 days of approval date B. WATER SUPPLY WELLS 1. Minimum surface seal thickness is two inches of
TYPE OF PROJECT Well Construction Cathodic Protection Water Supply Monitoring Geotechnical Investigation Openeral Openeral Contamination Upper Supply Well Destruction	cament grout placed by tremio. 2. Minimum seal depth is 50 feet for municipal and Industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE New Domestie (1) Reptacement Domestie (1) Municipal (1) Irrigation (1) Industrial (3) Other (3)	1. Minimum surface stal thickness is two inches of cement grout placed by tremio. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 1. GEOTECHNICAL Backfill bore hole by tremie with cement grout or cement
DRILLING METHOD: Mid Rotary () Air Rotary () Auger (X) Cable () Other ()	groud and mixture. Upper two-three feet replaced to wind or with compacted cuttings?
DRILLER'S LICENSE NO. <u>C57-717510</u>	Fill hole above anode zone with concrete placed by tremie F. WELL DESTRUCTION See attached. G. SPECIAL CONDITIONS
Drill Hole Diameter 5 in. Maximum Casing Diameter in. Depth 25 n. Surface Seal Depth 5 ft. Number 5	G. SPECIAL COMPANY
SEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter In. Depth 1t. ESTIMATED STARTING DATE 4-25-00 ESTIMATED COMPLETION DATE 4-26-00	APPROVED HOWR & COS DATE 4-13-00
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	4-6-00
APPLICANT'S SIGNATURE DATE DATE	

	(Get	tier-R	lyan,	Inc.		Log of Boring MW-1					
PROJ	ECT:	Tos	co (Unoc	al) Servic	e Statio	n No. 4625	LOCATION: 3070 Fruitvale Avenue	e, Oakland, California				
	ROJE					,	CASING ELEVATION:					
	ESTA			/00			WL (ft. bgs): 23.35 DATE: 04/26/00 TIME: 12:00					
	_		D: 04/25	700			WL (ft. bgs): DATE:	TIME:				
			IOD: 8 in		Stem Aug	ner	TOTAL DEPTH: 30 feet					
	LING			scade Di			GEOLOGIST: Jed Douglas					
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM				
5-10-15-20-25-	0 0 0	>100 31 30 36	MW-1-15 MW-1-15		CL	medium stiff, m At 2.5 feet gra Includes occa feet. Color changes Sample refusa Color changes becomes dry, 10% silt, occas chert clasts. Color changes trace of medium Becomes 50% occasional co- clasts.	dark greenish gray (5GY 4/1), dry, ledium plasticity; 80% clay, 20% silt. ades with 50% clay, 30% sand, 20% silt. sional gravel and wood debris. at 3 is to very dark gray (N3) at 4 feet. If at 6 feet, cobble and concrete. If to dark yellowish brown (10YR 4/6), hard, low plasticity; 50% clay, 40% sand, sional coarse gravel to 4 cm, subangular is to strong brown (7,5YR 4/6); includes um to coarse sand grains. Clay, 30% silt, 20% fine sand, no arse gravel to 4 cm, no subangular chert is to dark yellowish brown (10YR 4/4).	cap 2" blank schedule 40 PVC 2" blank schedule 40 PVC 43 Lonestar sand pentonite > ***				
30-							ing at 30 feet bgs. o equivalent standard penetration					
ً ا]		1					-				
35-	1	1	140158.0									

	Gettler-Ryan, Inc.						Log of Boring MW-2					
PROJ	ECT:	Tos	co (Unoca	al) Servic	e Sta	tion No. 4625	LOCATION: 3070 Fruitvale Avenue	, Oakland, California				
GR P	ROJE	T NO).: 14015	8.02			CASING ELEVATION:					
DATE	E STA	RTEC): 04/25/	/00			WL (ft. bgs): 10.5 DATE: 04/25/00 TIME: 12:40					
DATE	DATE FINISHED: 04/25/00						WL (ft. bgs): DATE: TIME:					
DRIL	LING	METH	IOD: <i>8 in.</i>	Hollow S	Stem A	uger	TOTAL DEPTH: 26.5 feet					
DRIL	LING	COMP		scade Di	illing		GEOLOGIST: Jed Douglas					
OEPTH (feet)	(mdd) OId	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	0	SEOLOGIC DESCRIPTION	WELL DIAGRAM				
5-	190	25	MW-2-5		CL	CLAY (CL) - ver medium stiff,	Asphalt and baserock. CLAY (CL) - very dark grayish brown (10YR 3/2), dry, medium stiff, medium plasticity; 60% clay, 25% silt, 15% fine sand with occasional coarse grains. Color changes to dark greenish gray (10Y 3/1) mottled with dark blueish gray (5B 4/1), becomes very stiff; 50% clay, 40% silt, 10% fine sand. Becomes saturated; fine to coarse sand layer approximately 2 inches thick at 10.5 feet. Below layer is saturated clay with occasional fine to coarse sand and strong hydrocarbon odor.					
15	54	34	MW-2-15		GW	yellowish brown fine to coarse g	WELL GRADED GRAVEL WITH SAND (GW) – dark yellowish brown (10YR 4/4), saturated, dense; 50% fine to coarse gravel, 30% fine sand, 20% clay.					
25-	0	46	MW-2-25		CL	CLAY (CL) - de hard: 70% clay,	Cap (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
30-							equivalent standard penetration					

Gettler-Ryan, Inc.						Inc.		Log of Boring MW-3				
PROJ	ECT:	Tos	co (Unoca	al) S	Servic	e Stat	tion No. 4625	LOCATION: 3070 Fruitvale Avenue, Oakland, California				
	ROJEC	TNO).: 14015	8.02	2			CASING ELEVATION:				
DATE	STA	RTED	: 04/25/	00				WL (ft. bgs): 11.0 DATE: 04/25/00 TIME: 16:55				
	DATE FINISHED: 04/25/00							WL (ft. bgs): DATE: TIME:				
			IOD: 8 in.			iem 4	uaer	TOTAL DEPTH: 26.5 feet				
			ANY: Ca:					GEOLOGIST: Jed Douglas				
0.112	21110	30111				iiii ig		020200101. 020 2003.00				
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	WELL DIAGRAM SEOLOGIC DESCRIPTION				
							Concrete slab.	*				
5	3	28	MW-3-5			CL	CLAY (CL) - ver stiff, medium pla: Color changes to	y dark brown (10YR 2/2), dry, medium sticity; 90% clay, 10% silt. Description of the property				
10-	14	30	MW-3-10			GC	4/1), saturated, 30% fine sand, 3	very stiff; 40% fine to coarse gravel, $\frac{6}{5}$				
15—	0	36	MW-3-15				sand, 25% clay,					
20-	0	58	MW-3-20			CL	CLAY (CL) - da hard; 70% clay,					
25-	0	42	MW-3-25			SC	dense; 50% fine	SC) – strong brown (7.5YR 4/6) moist, to medium sand, 30% clay, 20% gravel.				
30-				-				equivalent standard penetration				

JOB NUMBER: 140158.02

Gettler-Ryan, Inc.									Log of Boring MW-4				
PROJ	ECT:	Tos	co (Unoc	al) S	ervic	e Sta	tion N	o. 4625	LOCATION: 3070 Fruitvale Avenue, Oakland, California				
GR PI	ROJEC	T NC),: 14015	8.02	?				CASING ELEVATION:				
DATE	STA	RTEO	: 04/26	/00					WL (ft. bgs): 11.5 DATE: 04/26/00 TIME: 11:05				
DATE FINISHED: 04/26/00									WL (ft. bgs): DATE: TIME:				
DRIL	LING	METH	IOD: 8 in.	. Ho	llow 5	tem A	uger		TOTAL DEPTH: 26 feet				
DRIL	LING	COMP	ANY: <i>Ca</i>	sca	de Dri	illing			GEOLOGIST: Jed Douglas				
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		Gl	WELL DIAGRAM EOLOGIC DESCRIPTION				
]					0 0		1 ~	Asphalt and base	rock.				
5-	0	22	MW-4-5			CL		plasticity; 90% cl. Color changes to Color changes to mottled with gree	strong brown (7.5YR 4/6) at 3 feet. dark yellowish brown (10YR 4/6) nish gray (10Y 5/1), becomes very 0% silt, 10% fine to coarse sand.				
10-	0	46	MW-4-10			GC	1	4/4) wet, hard; 5	(GC) - dark yellowish brown (10YR 0% fine to coarse gravel, 25% fine race of free water.				
15—	0	26	MW-4-15			CL		CLAY (CL) — yell clay, 20% silt, 10%	owish red (5YR 4/6), dry, hard; 70% (0.020 inch) #3 Lonestar sand				
20-	0	49	MW-4-20					Color changes to with gray (N 5/1)	strong brown (7.5YR 4/6) mottled				
25— -	0	>100	MW-4-25			SC		very dense; 50%	and codise sailed grains.				
30-								* Converted to e blows/foot.	equivalent standard penetration				
35													
		1	140158.0	<u></u>	L				Page 1 of				

APPENDIX C

WELL DEVELOPMENT AND GROUNDWATER SAMPLING FIELD DATA SHEETS

	.	
, .		

GETTLER-RYAN INC.

DAILY SAMPLING REPORT	
Site Location: <u>T0500 46 # 4625</u>	Job# 140158.03
3070 FRUITVALE AVE.	
OAKLAND , CA	Date: $\frac{5/3/2000}{}$
DESCRIPTION OF WORK PERFORMED:	CHECK LIST: Transfer Purge Water To: Drums on site: Holding tank: Total Purge Water (gals):
Total # of Wells @ site:	Sampling Truck: MP4
Water levels only: USTOBSERVATION Well	Purge water trailer:
Monitored/Sampled: 4/4 Bailed Product:	Traffic Control: Arrow board/road signs/cones
PURGING EQUIPMENT: Disposal bailer Teflon bailer 3/8" stack pumps 1" double diaphram Grundfo's	SAMPLING EQUIPMENT: Teflon bailer Disposable bailer Grab sample Pressure bailer
OTHER EQUIPMENT: Gloves Bailer cord Well plug size	SPECIAL EQUIPMENT: SOUNDER Turbidity Meter D O Meter Re-Dox Meter Alkalinity test
	ER SAMPLE, LABELED ?
REFINERY ACCEPTANCE,	
Sampled by: HAIG KEVORK	
Assistant: N/A	Time Billed: 5.75 Hrs

daily.frm

MONITORING WELL OBSERVATION SUMMARY SHEET

FACILITY #	Tosco 46	#4625	G-R JOB #: _	140158	2,03	-
LOCATION:	3070 FAUT	TVALE AVE,	DATE: _	5/3/	2000	<u></u>
CITY:	OAKLAN.	D,CA	TIME:			
Well ID	Total Depth	Depth to Water	Product Thickness	TOB or TOC	Comment	
MW-l	25.06	11.81	<u>Ø</u> _	TOC	23	jal.
MW-3	24,28 24,73	8.59° 7.60°				el.
MW-4	24.65	6.48	8			jal.
ันรา <i>๏฿ร</i> ิล	VATION WELL	8.00	A	TOC	Ø	<u> </u>
			·		·	
					· · · · · · · · · · · · · · · · · · ·	
		<u></u>				·
	·					
				_	· · · · · · · · · · · · · · · · · · ·	
						
Comments:	FOUR DI	BUMS FUL			ITE PEL	<u>IDI</u> NG
R	SEWERY !	APPROVAL	FOA DISPO)5AL,		 -
Sampler:	HAIG KE	VORK	Assistant:	N/A		

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/				, O			_
Facility	OSCO!	16#4	625	Job#:	1401	58.03	<u> </u>
Address: 3	orto f	-PULITYF	HE AVE,	Date:	5/3	100	
City:()	AKLA	WD (A	Sampl	er: HAIG	KEVOR	K_
	·						<u></u>
Weil ID	MU	1-1	Well Condit	ion:	NEW		····
Well Diameter	2	<u>in.</u>	Hydrocarbo	n 🦟	Amount	Bailed	\langle
Total Depth	25.	06 ft.	Thickness:	\mathcal{L}	Ft. (product/v		(gal.)
-	11	V 1	Volume Factor (VF)	2* = 0.1	7 3" = 0. 6" = 1.50	12" = 5.80	!" = 0.66
Depth to Water	` `	0 ft		10			<u> </u>
	13.	25 x vi	=017 = 210	X (case v	olume) = Estimated	Purge Volume: _	22 (gal.)
Purge		sable Bailer		Sampling			
Equipment:	Bailer Stack	1	1	quipment:	Disposable Baller		~
	Suction Grund				Pressure Ba Grab Sampl		
	Other:		_	C	ther:		
	<u> </u>	1,29			s: 5UN	114	·
Starting Time: Sampling Time	. <u> </u>	W130		r Condition	EAR		-
Purging Flow F	. *	ACK Va	7/IL		ion:		
Did well de-wa	•	YES		Time:	12:12 vo	lume: 🗻	(gal.)
Time	Volume (gal.)	pН	Conductivity µmhos/cm	Temper •C	ature D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
11137	3	7.46	1514	<u>22.</u>	<u>8</u>	•	
11148 -	15	7.21	1552	<u> ೩೩.</u> ೩1.	<u> </u>		-
13:17	20	7.10	1298	21.0	\		
14:10	23	न. 15	1272	19.	<u> </u>		
				1			
					<u></u>		
<u></u>			· · · · · · · · · · · · · · · · · · ·				- · · · · · · · · · · · · · · · · · · ·
SAMPLE ID	(#) - CC	ONTAINER R	LABORATORY EFRIG. PRESEI	INFORMAT RV. TYPE	TON LABORATORY	ANAL	YSES
MW-I		VOA '	3 — . 1	ce	SEQUOIF	G/BTEX/	MTBE
1	1	l l				1	1
	 					-	
COMMENTS:	1/6	=RY 51	Low RE	COVE	y Y		

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Address: 3040 FRUITHE AVE, Date: 5/3/00 City: OAKLAWD CA Sampler: HAIG KEVORK Well ID MW-2 Well Condition: NEW Well Diameter 2 in. Hydrocarbon Thickness: Ft. (product/water): (gal.) Total Depth Volume 2 = 0.17 3 = 0.38 Factor (VF) 6 = 1.50 12 = 5.80 Purge Equipment: Bailer Stack Suction Grundfos Other: Disposable Bailer Grab Sample Other: Starting Time: 9115 Weather Conditions: SUMMY Sampling Time: 9115 Weather Conditions: SUMMY Well Condition: NEW Amount Bailed (product/water): (gal.) Amount Bailed (product/water): (gal.) Factor (VF) 6 = 1.50 12 = 5.80 Sampling Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample Other: Other: SumMy Water Color: CLOWDY Odor: Sampling Time: Volume: SumMy
Well ID Well Diameter Total Depth Depth to Water Disposable Bailer Equipment: Disposable Bailer Stack Suction Grundfos Other: Starting Time: Sampling Time: Sampling Time: Sampling Time: Starting Time: Sampling Time: Sampling Time: Sampling Time: Sampling Time: Weather Conditions: Weather Conditions: Sampling Time: Weather Conditions: Water Color: Water Color: Weather Conditions: Water Color: CLUNDY Odor:
Well Diameter Total Depth Depth to Water Disposable Bailer Equipment: Bailer Suction Grundfos Other: Starting Time: Sampling Conduct/water): Hydrocarbon Thickness: Ft. (product/water): Pt. (product/water): (gal.) Thickness: Ft. (product/water): (gal.) Amount Bailed Thickness: Ft. (product/water): (gal.) Volume 2" = 0.17 3" = 0.38 4" = 0.66 Factor (VF) Sampling Equipment: Disposable Bailer Equipment: Bailer Stack Suction Grundfos Other: Other: Weather Conditions: Supplied Water Color: Cupudy Odor:
Total Depth Depth to Water Depth to Water Disposable Bailer Equipment: Disposable Bailer Suction Grundfos Other: Starting Time: Sampling Time: Weather Conditions: Suppling Time: Sampling Time:
Total Depth Depth to Water Depth to Water Disposable Bailer Equipment: Disposable Bailer Stack Suction Grundfos Other: Starting Time: Sampling Chall Weather Conditions: Water Color: CLOUDY Odor: S" = 0.38 4" = 0.66 12" = 5.80 Disposable Bailer Sampling Equipment: Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Sampling Chall Weather Conditions: Weather Conditions: Supposable Bailer Disposable Bailer Bailer Other: Odor: Odor:
Depth to Water Disposable Bailer Disposable Bailer Equipment: Disposable Bailer Equipment: Disposable Bailer Equipment: Disposable Bailer Bailer Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample Other: Other: Other: Starting Time: Other: Sampling Time: Other: Odor: Odor:
Purge Disposable Bailer Equipment: Disposable Bailer Equipment: Disposable Bailer Bailer Pressure Bailer Grundfos Grab Sample Other: Other: Weather Conditions: Summer Starting Time: 10125 Weather Color: CLOUDY Odor:
Equipment: Bailer Stack Bailer Bailer Pressure Bailer Grundfos Grab Sample Other: Other: Other: Starting Time: 9:15 Weather Conditions: SUMMY Water Color: CLOUDY Odor:
Sampling Time: 10:25 Water Color: CLOUDY Odor:
Purging Flow Rate: 5 TACK 1/9- 70m. Sediment Description:
Time Volume pH Conductivity Temperature D.O. ORP Alkalinity (gal.) μ mhos/cm \circ C (mg/L) (mV) (ppm)
9:20 3 8:11 529 25:7 9:28 8 7:29 610 25:0 9:46 15 6.96 673 24.6 9:58 22 6.84 694 24:3 10:13 27 6.80 702 24:1
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES
ANALYOPO
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/ Facility	5co 76 # 46	25 Job	#: <u>14019</u>	8.03
Address: 30	10 FAUTVALE	AVE Date	$= \frac{5/3}{1}$	100
City: OA	KLAND , C	San	npler: HAIG	KENOUK
Well ID	MW-3	Well Condition:	NEW	
Well Diameter	in.	Hydrocarbon (Amount B	
Total Depth	24.43.		Ft. {product/wa} 0.17 3" = 0.38 6" = 1.50	3 4" = 0.66
Depth to Water	M,60 m	Factor (VF)	6 = 1.50	12 - 5.80
	1713 x VF	$\frac{1}{2} = \frac{10}{2} \times \frac{10}{2}$	e volume) = Estimated Pt	urge Volume: 2 (gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	Sampling Equipmen	· · · · · · · · · · · · · · · · · · ·	-
Starting Time: Sampling Time: Purging Flow Rat Did well de-wate	r? NO	Water Color:	ions: SUMW LOUD T iption: Volu	Odor:
	olume pH (gal.)	μmhos/cm	•C (mg/L)	(mV) (ppm)
10,54	3 7.62 9 7.41 17 7.37 23 7.25 27 7.16 30 7.11	479 450 438 420 398 438 430	1.2 7.6 7.9 2.1 2.3 3.1	
		ADODATODY INCODA	IATION	
SAMPLE ID		ABORATORY INFORM FRIG. PRESERV. TYPE	LABORATORY	ANALYSES
MW-3	6 VOA Y	ES HCP	SEGUOLA	G/BTEXMTBE/5240
	ZAMBER	NA		TPH-D/8270
COMMENTS	A site of the Auto Anti-			

__9/97-fieldat.fm

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/ Facility TOSCO 176 # Address: 3010 FruitVP City: OAKLAND C	4625 Job# FLE AVE, Date:	- 10 10n
Well ID Well Diameter Total Depth Depth to Water Disposable Bailer	Well Condition: Hydrocarbon Thickness: Volume Factor (VF) 2" = 0 Factor (VF) Sampling	Amount Bailed Ft. (product/water): (gal.) 0.17
Starting Time: Sampling Time: Purging Flow Rate: STACK 12-3	Weather Condition Water Color:	Hailer Pressure Bailer Grab Sample Other: Ons: SUMMY CUEAR Odor:
Did well de-water? Time Volume pH (gal.)	If yes; Time:	erature D.O. ORP Alkalinity
13:00 14 6:17 13:36 22 6:12 14:22 27 6:68 14:34 30 6:11	\$ 35 17 \$ 28 17 \$ 14 17 \$ 21 17	
SAMPLE ID (#) - CONTAINER REI	ABORATORY INFORMA	ATION LABORATORY ANALYSES SEAUOLA G/BTEX/MTBE
COMMENTS: SLOW REC	COVERY	

Virgil Chavez Land Surveying

312 Georgia Street, Suite 200 Vallejo, California 94590-5907 (707) 553-2476 • Fax (707) 553-8698

May 12, 2000 Project No. 1824-08

Jed Douglas Gettler-Ryan Inc. 7100 Rédwood Blvd., Ste. 104 Novato, CA. 94945

Subject: Monitoring Well Survey

Unocal Service Station No. 4625

3070 Fruitvale Avenue

Oakland, Ca.

Dear Jed:

This is to confirm that we have proceeded at your request to survey the monitoring wells located at the above referenced location. The survey was performed on May 4, 2000. benchmark for the survey was a cut square on School Street, City of Oakland Benchmark No. 3783. The station and offset data are relative to the existing station building. Measurements were taken at approximate north side of top of box and top of casing.


Benchmark Elevation = 136.99 feet MSL.

No. 6323

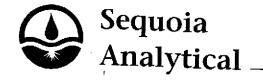
	Rim	TOC		
<u>Well No.</u>	<u>Elevation</u>	<u>Elevation</u>	<u>Station</u>	<u>Offset</u>
MW - 1	136.63'	136.36'	0-05.58	52.89(Rt)
MW - 2	138.94'	138.64'	0+45.51	-58.54(Lt)
MW - 3	137.93'	137.68'	0+50.57	20.60(Rt)
MW - 4	136.92'	136.60'	0+65.97	53.34(Rt)
NW Bldg Cor			0+00	0.00
NE Bldg Cor			0+41.39	0.00

Sincerely,

Chavez,

	Te	Section	Address	Longcity	Owner ,	Update	Xcoord	Ycoord	Matchlevel	Tsrqq	Rec_code
	1S/3W	32P 1	2950 Fruitvale Avenue	Oakland	Harry Beddig	07/03/1990	122,217,498	37,793,944	O	1S/3W 32F	438
	15/3W	32P 2	2964 Fruitvale Ave	Oakland	Frances Beddig MW2	04/08/1993	122,217,438	37,794,066	1	1S/3W 32F	8,377
	1S/3W	32P 3	2964 Fruitvale Ave	Oakland	Frances Beddig MW3	04/0B/1993	122,217,438	37,794,066	7	15/3W 32F	8,378
	15/3W	32P	2964 Fruitvale Ave	Oakland	Frances Beddig	07/16/1993	122,217,438	37,794,067	1	1S/3W 32F	C
95314	1S/3W	32K 1	2504 MacArthur Blvd	Oakland	Michael Marr & Associat	01/04/1999	122,211,657	37,799,428	1	15/3W 32k	-
95314	1S/3W	32K 2	2504 MacArthur Blvd	Oakland	Michael Marr & Associat	01/04/1999	122,211,657	37,799,428	1	15/3W 32k	C
95314	1S/3W	32K 3	2504 MacArthur Blvd	Oakland	Michael Marr & Associat	01/04/1999	122,211,657	37,799,428	1	15/3W 32k	. (
	1\$/3W	32N	25TH AVE & 29TH STR	Oakland	EBMUD CENTRAL RESE	02/23/1988	122,221,609	37,795,056	9	15/3W 32N	2,182
94537	15/3W	32P 4	2964 Fruitvale Av	Oakland	Frances Beddig	02/24/1998	122,217,436	37,794,006	1	15/3W 32F	C
94537	15/3W	32P 5	2958 Fruitvale Av	Oakland	Frances Beddig	07/21/1998	122,217,451	37,793,981	1.	15/3W 32F	Ö

		Drilldate	Elevation	Totaldepth	Waterdepth	Diameter	Use	Log	W.	W	Yield	Dtwcalc	Old_dbase
	OAK	9/89	0	30	16	2	MON	G	0	0	O	0	D
• 0	OAK	1/93	0	22	7	2	MON	D	1	0	.0	0	D
0	OAK	1/93	0	25	7	2	MON	D	1	0	0	0	D
0	OAK	1/93	0	11	6	0	BOR	G	1	0	0	0	D
0	OAK	6/95	0	31	34	2	MON	G	2	1	0	0	Ð
0	OAK	6/95	0	25	34	2	MON	G	2	1	0	0	D
0	OAK	6/95	O	15	0	2	MON	G	2	1	0	0	Đ
0	OAK	2/87	0	27	23	2	BOR	G	0	0	0	0	L
0	OAK	9/94	0	24	16	2	MON	G	2	0	0	0	D
0	OAK	9/94	0	24	0	2	MON	۵	0	0	0	0	D


1		985 800	MUC(585	rouderty	Uwner	Update	Xcoord	Ycoord	Matchievel	Tarqq	Rec_code
	S/3W	32J	2801 MacArthur Bivd.	Oakland	Call France Corporation	06/08/1990	122,208,151	37,798,502	9	15/3W 32J	274
2	25/3W	5C10	2682 Fruitvale Road	Oakland	Chevron USA	08/31/1990	122,218,977	37,791,656	9	2S/3W 5C	837
1	S/3W	32J 1	2801 MacArthur Blvd.	Oakland	Califrance	02/27/1991	122,208,151	37,798,502	9	15/3W 32J	1,036
1	IS13M	32J 2	2801 MacArthur Blvd.	Oskland	Califrance	02/27/1991	122,208,151	37,798,502	9	15/3W 32J	
1	S/3W	32J 3	2801 MacArthur Blvd.	Oakland	Califrance	02/27/1991	122,208,151	37,798,502	9	15/3W 32J	
1	IS/3W	3 2J	2801 MacArthur Blvd.	Oakland	Califrance	03/15/1991	122,208,151	37,798,502	9	1S/3W 32J	
1	S/3W	32J 4	2801 MacArthur Bivd	Oakland	Califrance	06/07/1991	122,208,151	37,798,502	9	15/3W 32J	
1	15/3W	32J 5	2801 MacArthur Blvd	Oakland	Califrance	06/07/1991	122,208,151	37,798,502	9	15/3W 32J	<u> </u>
2	25/3W	5B 1	3112 COOLIDGE	Oakland	TERRY	07/30/1984	122,212,532	37,791,547	9	2S/3W 58	2,892
2	2S/3W	5C 2	2681 2681 FRUITVALE	Oakland	CHEVRON U.S.A. INC.	09/01/1989	122,216,977	37,791,555	9	2S/3W 5C	
1	IS/3W	32E 1	MACARTHUR & WOOD!	Oakland	EBMUD	07/31/1984	122,221,595	37,801,972	9		
1	S/3W	32E 1	MACARTHUR & WOOD!	Oakland	EBMUD	07/31/1984	122,221,595	37,801,972	9	15/3W 32E	

0				Lamachen	- attornepti	Manieret	1000	Lug	A.A.	LAM	rieio	LITWENC	Nig gpase
	OAK	7/89	0	0	30	8	BOR	G	٥	0	0	0	D
0	OAK	07/90	0	25	15	2	MON	D	0	0	0	0	D
0	OAK	11/90	0	23	9	2	MON	G	0	0	0	0	D
0	OAK	10/90	1,000	45	37	2	MON	G	0	0	0	963	D
0	OAK	10/90	1,000	39	38	2	MON	G	0	0	0	962	D
0	OAK	10/84	0	27	5	2	MON	G	0	0	0	0	D
0	OAK	3/91	82	27	9	2	MON	G	0	0	0	73	D
0	OAK	3/91	0	0	18	- 8	BOR	G	0	0	0	0	D
O	OAK	7	0	0	14	8	IRR	7	0	1	0	0	L
C	OAK	02/89	0	22	13	4	MON	D	0	0	0	0	L
0	OAK	2/76	0	65	0	0	CAT	D	0	0	0	0	L

·

APPENDIX F

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

16 May, 2000

GETTLER-RYAN, INC. GENERAL CONTRACTOR

Jed Douglas Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato, CA 94945

RE: Tosco Sequoia Report W005002

Enclosed are the results of analyses for samples received by the laboratory on 26-Apr-00 14:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1-10	W005002-01	Soil	25-Apr-00 10:45	26-Apr-00 14:10
MW1-15	W005002-02	Soil	25-Apr-00 00:00	26-Apr-00 14:10
MW2-10	W005002-03	Soil	25-Apr-00 12:40	26-Apr-00 14:10
MW2-15	W005002-04	Soil	25-Apr-00 00:00	26-Apr-00 14:10
/IW2-25	W005002-05	Soil	25-Apr-00 13:00	26-Apr-00 14:10
/TW3-10	W005002-06	Soil	25-Apr-00 16:55	26-Apr-00 14:10
fW3-25	W005002-07	Soil	25-Apr-00 17:20	26-Apr-00 14:10
I W4-10	W005002-08	Soil	26-Apr-00 11:05	26-Apr-00 14:10

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

	- Sequ	ola Alla	iiyucai -	walnu	it Cree.	k			
Analyte	Result	Reporting Limit	Units	Dilution	ı Batch	Prepared	Analyze	l Method	XT :
MW1-10 (W005002-01) Soil	Sampled: 25-Apr-00 10:4	5 Receive	ad: 26 Ann	Λ0 14 16			111111111111111111111111111111111111111	- Mediod	Notes
Purgeable Hydrocarbons	ND				<u> </u>				
Benzene	ND ND	1.0	mg/kg	20	0E09002	09-May-00	09-May-00	EPA 8015/8020	
Toluene	ND	0.0050	"	11	н	*	ıı .	R	
Ethylbenzene	ND	0.0050	**	"	#	II .	**	h	
Xylenes (total)	ND ND	0.0050	*	11	II	H	ıı	**	
Methyl tert-butyl ether		0.0050	P.	"	**	h	**	п	
Surrogate: a,a,a-Trifluorotolus	ND	0.050		67	11	**	#	π	
		95.7%	40-14	10	"				
MW2-10 (W005002-03) Soil	Sampled: 25-Apr-00 12:40) Receive	d: 26-Apr-	00.14.10				"	
Purgeable Hydrocarbons	1600								P-01
Benzene	5.1	100	mg/kg	2000	0E09002	09-May-00	09-May-00	EPA 8015/8020	
Foluene	3.0	0.50	"	**	31	11	"	**	
Ethylbenzene		0.50	n	"	**	**			
Kylenes (total)	54	0.50	"	**	**	11	n	**	
Methyl tert-butyl ether	54	0.50	**	r:	**	n	"	*	
urrogate: a,a,a-Trifluorotolue	ND ND	5.0	11	II	tt	"	п	,,	
	ne	%	40-14	0	"	"		"	
MW2-25 (W005002-05) Soil	Sampled: 25-Apr-00 13:00	Received	1. 26 Aum 0	A 1 4 4 A			.,	"	S-01
urgeable Hydrocarbons	ND			V 14:1U					
enzene	=	1.0	mg/kg	20	0E09002	09-May-00	09-May-00	EPA 8015/8020	
'oluene	ND	0.0050	"	**	**	н	11	н	
thylbenzene	0.0061	0.0050	"	**	Н	"	н	m	
ylenes (total)	0.012	0.0050	11	n	**	11	**	н	
lethyl tert-butyl ether	0.038	0.0050	Ħ	17	**	**	π	Ħ	
	ND	0.050	H	п	rr .	,,	н	,,	
rrogate: a,a,a-Trifluorotoluen	e	95.3 %	40-140	·	,,				
							7	н	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

			-5 40 044	TT GEELEG	ir Cicei	r.			
Analyte	Result	Reporting Limit		Dilution	n Batch	Prepared	Analyzed	l Method	Note
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	ed: 26-An	r-00 14·10		<u> </u>			
Purgeable Hydrocarbons	79	5.0							P-(
Benzene	0.031	0.025	mg/kg "	100	0E09002		09 - May-00	EPA 8015/8020	
Toluene	0.24	0.025	,,	" "	**	**	D	"	
Ethylbenzene	0.73	0.025	 H		н	"	"	n	
Xylenes (total)	0.48			**		H	Ħ		
Methyl tert-butyl ether		0.025		"	**	н	**	tt	
Surrogate: a,a,a-Trifluorotolu	ND	0.25			"	н	*	11	
		67.0 %	40-	140	"	,,	"	"	
MW3-25 (W005002-07) Soil	Sampled: 25-Apr-00 17:20	Receive	d: 26-Apr	-00 14:10					
rurgeable Hydrocarbons	ND	1.0	mg/kg	20	0E09002	00 14 00	00.14		
Benzene	ND	0.0050	H B	11	# UEU900Z	09-May-00	09-May-00	EPA 8015/8020	
Toluene	ND	0.0050	**	н	**		"	н	
Ethylbenzene	ND	0.0050	tt.	**		,,		**	
Xylenes (total)	ND	0.0050	"	,,)r	"	**	II	
Methyl tert-butyl ether	ND	0.050	"		"		H	n	
Surrogate: a,a,a-Trifluorotolue								"	
		94.0 %	40-1		"	н	rr	#	
	Sampled: 26-Apr-00 11:05	Received	l: 26-Apr-	00 14:10					
Purgeable Hydrocarbons Benzene	ND	1.0	mg/kg	20	0E09002	09-May-00	09.May 00	EPA 8015/8020	
Denzene Toluene	ND	0.0050	71	н	н	"	"	ELW 0013/8020	
	ND	0.0050	н	14	**	п			
Ethylbenzene	ND	0.0050	**			#	"		
Xylenes (total)	ND	0.0050	н	н	h	,,	*		
Methyl tert-butyl ether	ND	0.050	••	**	Ħ	 	11	H	
Surrogate: a,a,a-Trifluorotoluer	ne	98.3 %	40.7					R	
		10.3 70	40-14	ŧU.	"	"	"	n	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Walnut Creek

	<u>-</u> <u>-</u>		•			•			
Analyte	Result	Reporting Limit	Units	Dilution	ı Batch	Prepared	Analyzed	Method	Notes
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	d: 26-Apr-	00 14.10					
Diesel Range Hydrocarbons				50 17.10	,				
	8.4	1.0	mg/kg	1	0E09029	09-May-00	15-May-00	DHS LUFT	D-11
Surrogate: n-Pentacosane		107 %	50-1.	50	"		"		
MW3-25 (W005002-07) Soil	Sampled: 25-Apr-00 17:20	Receive						"	
Diesel Range Hydrocarbons	1.3	1.0	mg/kg	1	0E09029	09-May-00	15-May-00	DHS LUFT	D 10
Surrogate: n-Pentacosane		101 %	50-15	50		"	"	"	D-12
MW4-10 (W005002-08) Soil	Sampled: 26-Apr-00 11:05						.,		
Diesel Range Hydrocarbons	1.3	1.0	mg/kg	1		00.34			
Surrogate: n-Pentacosane			mig/kg	<u>1</u>	0E09029	09-May-00	15-May-00	DHS LUFT	D-12
ourroguie. n-r eniacosane		110 %	50-15	0	п	"	"	"	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco # 4

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Total Metals by EPA 6000/7000 Series Methods

Sequoia Analytical - Walnut Creek

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	d: 26-Ap	r-00 14:10					
Chromium	48	0.50	mg/kg	1	0E02009	02-May-00	09-May-00	EPA 6010A	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	d: 26-Ap	r-00 14:10	-			·	
Chloromethane	ND	0.10	mg/kg	100	0E04024	04-May-00	05) (00	ED 1 00 10D	
Vinyl chloride	ND	0.10	H	n	ULU4024 "	# W.Lay • 00	05-May-00 "	EPA 8240B	
Bromomethane	ND	0.10	н	**	п	**	ir	,,	
Chloroethane	ND	0.10	19			,,	 #	,,	
Trichlorofluoromethane	ND	0.10	**	**	**	11	"	"	
,1-Dichloroethene	ND	0.10	11	11		"	"	"	
Acetone	ND	0.50		#			"	-	
Carbon disulfide	ND	0.10	,,	**		14	" H	**	
Methylene chloride	ND	0.50	н	Ħ				H	
rans-1,2-Dichloroethene	ND	0.10	**	#		" .	н	"	
7inyl acetate	ND	0.10	**		"		19	**	
,1-Dichloroethane	ND	0.10	11	и	"	II.	Ħ	н	
is-1,2-Dichloroethene	ND	0.10		#		**	**	41	
-Butanone	ND			*	**	**	17	**	
hloroform	ND	0.50	74		**	н	#	н	
,1,1-Trichloroethane	ND	0.10	"	13 N		19	н	**	
arbon tetrachloride	ND	0.10			**	n	**	**	
enzene		0.10		n	"	11	**	IT	
2-Dichloroethane	ND ND	0.10	11	**	ŋ	17	II .	**	
richloroethene		0.10	Ħ	"	**	n	**	**	
2-Dichloropropane	ND	0.10	It	II	**	11	"	n	
romodichloromethane	ND	0.10	**	"	71	17	II	H	
s-1,3-Dichloropropene	ND	0.10	**	**	**	"	*	**	
Methyl-2-pentanone	ND	0.10	ш	II .	п	**	**	11	
oluene	ND	0.50	11	#	**	#	11	п	
ins-1,3-Dichloropropene	ND	0.10	**	10	**	и	#	*	
1,2-Trichloroethane	ND	0.10	n	п	D	**	"	**	
trachloroethene	ND	0.10	77	**	**	**	#1	**	
Hexanone	ND	0.10	rt	n	**	II .		rr	
bromochloromethane	ND	0.50	"	и	п	**	н	*1	
oronocmoromenane nlorobenzene	ND	0.10	*	*					
	ND	0.10	IF	**	H	**	"	ш	
hylbenzene	ND	0.10	**	11	n .	η.	п	n	
tal Xylenes	ND	0.10	*	••	77	rr	**	n	
rene	ND	0.10	н	н		"	11	I I	
omoform	ND	0.10	11	••	**	*	11	,,	
,2,2-Tetrachloroethane	ND	0.10	11	••	n	· II	14	n	
-Dichlorobenzene	ND	0.10	19	н	н	**	H		
-Dichlorobenzene	ND	0.10	# .	**		,,	,,	"	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW3-10 (W005002-06) Soil Sai	mpled: 25-Apr-00 16:55	Receive	d: 26-Ap	r-00 14:10				·- · · · · · · · · · · · · · · · · · ·	
1,2-Dichlorobenzene	ND	0.10	mg/kg	100		04-May-00	05-May-00	EPA 8240B	.
Surrogate: Dibromofluoromethane		98.0 %	50-	150		"	"	,,	
Surrogate: 1,2-Dichloroethane-d4		96.0 %		150	"	"	#	"	
Surrogate: Toluene-d8		98.0 %	50-		**	"	n	"	
Surrogate: 4-Bromofluorobenzene		102 %	50-	150	n	n	"	"	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	d: 26-Ap	r-00 14:10			<u> </u>		
Acenaphthene	ND	0.10	mg/kg	1	0E01016	01-May-00	02.36== 00	TD 4 Octob	
Acenaphthylene	ND	0.10	"	"	**	01-141ay-00	03-May-00	EPA 8270B	
Anthracene	ND	0.10	11	**	п		19	,, H	
Aniline	ND	0.10	**	**	11	11	11		
Benzoic acid	ND	0.50	**	II .	10	H	n	11	
Benzo (a) anthracene	ND	0.10	**			rr	"	"	
Benzo (b) fluoranthene	ND	0.10	11	"	*	**	,,	"	
Benzo (k) fluoranthene	ND	0.10	н	н	11	,,	и	"	
Benzo (ghi) perylene	ND	0.10	**	**	H	11	" N	-	
Benzo[a]pyrene	ND	0.10	Ħ	h		**	n n	tt	
Benzyl alcohol	ND	0.10	**	,,	"	 H	"	*	
Bis(2-chloroethoxy)methane	ND	0.10		H			"	**	
lis(2-chloroethyl)ether	ND	0.10	11	"	**	"	19	II	
sis(2-chloroisopropyl)ether	ND	0.10	**			11		*	
is(2-ethylhexyl)phthalate	ND	0.50		н	н	"	**	II	
-Bromophenyl phenyl ether	ND	0.10	**	77	**	"	li	**	
utyl benzyl phthalate	ND	0.10	H	H			H		
-Chloroaniline	ND	0.50	**	"	" "		н	14	
Chloronaphthalene	ND	0.10	**	"	"		"	u	
-Chloro-3-methylphenol	ND	0.10	11	,,	,,	*	"	II .	
Chlorophenol	ND	0.10	n	"	**	H	11	п	
Chlorophenyl phenyl ether	ND	0.10	H	"	11	11	ii	Ħ	
hrysene	ND	0.10	r.	**	**	31	li,	**	
ibenz (a,h) anthracene	ND	0.10		n		н	**	**	
benzofuran	ND	0.10		n H	п	II	U	11	
-n-butyl phthalate	ND	0.10			**	п	**	**	4
2-Dichlorobenzene	ND		"		н	•	**	II.	
3-Dichlorobenzene	ND	0.10		4	•	"	**	11	
l-Dichlorobenzene	ND	0.10	**	"	**	11	"	tr	
3'-Dichlorobenzidine	ND	0.10	II	н	11	**	n	11	
-Dichlorophenol	ND ND	0.50	,	•	**	11	n	19	
ethyl phthalate	ND	0.10	H	Ħ	н	*	11	n	
-Dimethylphenol		0.10	н	н		n	n	**	
methyl phthalate	ND	0.10	H	"	H		"	п	
-Dinitro-2-methylphenol	ND	0.10	11	44	**	n	••	"	
-Dinitrophenol	ND	0.50	10	•	**		**	rt	
-Dinitrotoluene	ND	0.50	n	н	**	H	**	50	
-Dinitrotoluene	ND	0.10	**	**	**	11	"		
~ number of the life	ND	0.10	**	н	н	*	99	11	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite 104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

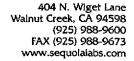
Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Aлаlyzed	Method	Notes
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Receive	d: 26-Apr-	00 14:10					
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0E01016	01-May-00	03-May-00	EPA 8270B	···
Fluoranthene	ND	0.10	,,	"	**	"	»	"	
Fluorene	ND	0.10	rr	H	11	ш	n	**	
Hexachlorobenzene	ND	0.10	п	II .	n	**	11	ii	
Hexachlorobutadiene	ND	0.10	**	17		N		н	
Hexachlorocyclopentadiene	ND	0.10	R	*	**	#	#1	19	
Hexachloroethane	ND	0.10	11	**	••	н	,,	**	
Indeno (1,2,3-cd) pyrene	ND	0.10	н	**	**	"	ш	,,	
Isophorone	ND	0.10	**	ш	n		u u	#	
2-Methylnaphthalene	ND	0.10	#	**	н	"	"		
2-Methylphenol	ND	0.10	u,	17		н	**		
4-Methylphenol	ND	0.10	n	**	**	и	n	14	
Naphthalene	ND	0.10	11	п	н	**	11	,, 10	
2-Nitroaniline	ND	0.50	11	"		,,		n	
3-Nitroaniline	ND	0.50	**		,,	rr	**		
4-Nitroaniline	ND	0.50	**	5 +	11	"	tr	79	
Nitrobenzene	ND	0.10	и .	н	,,		" U	"	
2-Nitrophenol	ND	0.10	11	n	11	11	**	n	
N-Nitrosodimethylamine	ND	0.10	#		"		"		
4-Nitrophenol	ND	0.50	11	#		"	"	11	
N-Nitrosodiphenylamine	ND	0.10	н	rr	**	" "	11	"	
N-Nitrosodi-n-propylamine	ND	0.10	**	н	n	" "	"		
Pentachlorophenol	ND	0.50	"	**	•	"	π	"	
Phenanthrene	ND	0.10	**	**	"	"			
Phenol	ND	0.10	ii .	tt	,. **	"		"	
Pyrene	ND	0.10	11		n	**	n	**	
1,2,4-Trichlorobenzene	ND	0.10	*		.,		11	rt	
2,4,5-Trichlorophenol	ND ND	0.10		,,	"	11	17	п	
2,4,6-Trichlorophenol	ND	0.10		"	"	"	n H	-	
Surrogate: 2-Fluorophenol									
Surrogate: Phenol-d6		54.6%	25-12.		"	"	#	rr	
Surrogate: Nitrobenzene-d5		51.8%	24-11.		"	"	"	H	
Surrogate: 2-Fluorobiphenyl		55.9 %	23-126		"	"	"	*	
Surrogate: 2,4,6-Tribromopheno	_	59.2%	30-11.		"	"	n	ď	
Surrogate: 2,4,0-1 rioromopnend Surrogate: p-Terphenyl-d14	· · · · · · · · · · · · · · · · · · ·	60.4 %	19-12		#	"	*	"	
m. ogate. p-1 erpnenyt-a14		65. 5 %	18-137	7	"	,,	08-May-00	"	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1-15 (W005002-02) Soil	Sampled: 25-Apr-00 11:00	Received	l: 26-Apr	-00 14:10					<u>-</u>
Moisture pH	14 7.8	0.010%	by Weight pH Units		0E02037 0E09007	02-May-00 05-May-00		EPA 160.3 EPA 9045B	
MW2-15 (W005002-04) Soil	Sampled: 25-Apr-00 12:45	Received	l: 26-Apr	-00 14:10		•	,		
Moisture pH	14 7.6	0.010%	by Weight pH Units		0E02037 0E09007	02-May-00 05-May-00	04-May-00 05-May-00	EPA 160.3 EPA 9045B	
MW3-10 (W005002-06) Soil	Sampled: 25-Apr-00 16:55	Received	: 26-Apr-	-00 14:10		j	,		
TRPH	140	50	mg/kg	1	0E11012	11-May-00	11-May-00	SM 5520E/F	<u> </u>

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Petaluma

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1-15 (W005002-02) Soil	Sampled: 25-Apr-00 00:00	Receive	d: 26-Ap	r-00 14:10				······································	
Total Organic Carbon	ND	200	mg/kg	1	0050288	10-May-00	10-May-00	ASA 90-3	
MW2-15 (W005002-04) Soil	Sampled: 25-Apr-00 00:00	Receive	d: 26-Ap	r-00 14:10					
Total Organic Carbon	794	200	mg/kg	1	0050288	10-May-00	10-May-00	ASA 90-3	"

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 09:55

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E09002 - EPA 5030B [MeOH]										
Blank (0E09002-BLK1)				Prepared	& Analyz	ed: 09-Ma	y-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg	- -	<u> </u>		-			
Benzene	ND	0.0050	**							
Toluene	ND	0.0050	"							
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	#							
Methyl tert-butyl ether	ND	0.050	**							
Surrogate: a,a,a-Trifluorotoluene	0.614		"	0.600		102	40-140			
LCS (0E09002-BS1)				Prepared	& Analyze	ed: 09-Ma	y-00			
Benzene	0.632	0.0050	mg/kg	0.800		79.0	50-150			
Toluene	0.676	0.0050	ч	0.800		84.5	50-150			
Ethylbenzene	0.728	0.0050	n	0.800		91.0	50-150			
Xylenes (total)	2.15	0.0050	**	2.40		89.6	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.710		"	0.600	· · · · · · · · · · · · · · · · · · ·	118	40-140			
LCS Dup (0E09002-BSD1)				Prepared	& Analyze	ed: 09 -M a	y-00			
Benzene	0.732	0.0050	mg/kg	0.800		91,5	50-150	14.7	20	
Toluene .	0.778	0.0050	•	0.800		97.2	50-150	14.0	20	
Ethylbenzene	0.826	0.0050	Ħ	0.800		103	50-150	12.6	20	
Xylenes (total)	2.43	0.0050	n	2.40		101	50-150	12.2	20	
Surrogate: a,a,a-Trifluorotoluene	0.780		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.600		130	40-140			

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported:

16-May-00 09:55

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E09029 - EPA 3510B										
Blank (0E09029-BLK1)				Prepared:	09-May-0	0 Analyz	ed: 12-Ma	y-00		
Diesel Range Hydrocarbons	ND	1.0	mg/kg							
Surrogate: n-Pentacosane	1.16		n	1.11		105	50-150			
LCS (0E09029-BS1)				Prepared:	09-May-0	0 Analyz	ed: 12-Maj	y-00		
Diesel Range Hydrocarbons	11.1	1.0	mg/kg	15.0		74.0	60-140			
Surrogate: n-Pentacosane	1.21		"	1.11		109	50-150			
LCS Dup (0E09029-BSD1)				Prepared:	09-May-0	0 Analyz	ed: 12-Ma	y-00		
Diesel Range Hydrocarbons	11.5	1.0	mg/kg	15.0		76.7	60-140	3.54	40	-
Surrogate: n-Pentacosane	1.13	-7	"	1.11		102	50-150			

Gettler Ryan, Inc. - Novato

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported:

16-May-00 09:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E02009 - EPA 3050B							,			
Blank (0E02009-BLK1)			·	Prepared:	02-May-0	00 Analyz	ed: 09-Ma	y-00	• • • • • • • • • • • • • • • • • • • •	
Chromium	ND	0.50	mg/kg				, . .			
LCS (0E02009-BS1)				Prepared:	02-May-0	00 Analyz	ed: 09-Ma	y-00		
Chromium	51.8	0.50	mg/kg	50.0		104	80-120			
LCS Dup (0E02009-BSD1)				Prepared:	02-May-0	00 Analyz	ed: 09-Ma	y-00		
Chromium	53.3	0.50	mg/kg	50.0	•	107	80-120	2.85	20	

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported:

16-May-00 09:55

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

											1
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
1 mary to	ICODGIL	Dillit	OILLO		2 (40,042	, 0100	,01111100				1

Blank (0E04024-BLK1)				Prepared: 04-May-00 Analyzed: 05-May-00
Chloromethane	ND	0.10	mg/kg	
Vinyl chloride	ND	0.10	11	
Bromomethane	ND	0.10	13	
Chloroethane	ND	0.10	11	
Trichlorofluoromethane	ND	0.10	н	
1,1-Dichloroethene	ND	0.10	11	
Acetone	ND	0.50	11	
Carbon disulfide	ND	0.10	#	
Methylene chloride	ND	0.50	II	
irans-1,2-Dichloroethene	ND	0.10	п	
Vinyl acetate	ND	0.10	n	
1,1-Dichloroethane	ND	0.10	н	
cis-1,2-Dichloroethene	ND	0.10	н .	
2-Butanone	ND	0.50	11	
Chloroform	ND	0.10	п	
1,1,1-Trichloroethane	ND	0.10	II	
Carbon tetrachloride	ND	0.10	п	
Benzene	ND	0.10	II.	
1,2-Dichloroethane	ND	0.10	II	
Trichloroethene	ND	0.10	ıı	
1,2-Dichloropropane	ND	0.10	п	
Bromodichloromethane	ND	0.10	11	
is-1,3-Dichloropropene	ND	0.10	11	
1-Methyl-2-pentanone	ND	0.50	**	
Foluene -	ND	0.10	11	
rans-1,3-Dichloropropene	ND	0.10	11	
,1,2-Trichloroethane	ND	0.10	44	
Tetrachioroethene	ND	0.10	**	
-Hexanone	ND	0.50	**	
Dibromochloromethane	ND	0.10	••	
Chlorobenzene	ND	0.10	"	
Ethylbenzene	ND	0.10	**	
rotal Xylenes	ND	0.10	"	
Styrene	ND	0.10	H	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E04024 - EPA 5030B [MeOH]					<u> </u>					
Blank (0E04024-BLK1)				Prepared:	04-May-0	00 Analyz	ed: 05-Ma	v-00	 -	
Bromoform	ND	0.10	mg/kg					, , , ,		
1,1,2,2-Tetrachloroethane	ND	0.10	*							
1,3-Dichlorobenzene	ND	0.10	n							
1,4-Dichlorobenzene	ND	0.10	**							
1,2-Dichlorobenzene	ND	0.10	IT							
Surrogate: Dibromofluoromethane	2.40		"	2.50		96.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96.0	50-150			
Surrogate: Toluene-d8	2.45		"	2.50		98.0	50-150			
Surrogate: 4-Bromofluorobenzene	2.55		"	2.50		102	50-150			
LCS (0E04024-BS1)				Prepared:	04-May-0	0 Analyz	ed: 05-May	y-00		
I,1-Dichloroethene	2.75	0.10	mg/kg	2.50		110	65-135	·		····
Benzene .	2.66	0.10	*	2.50		106	70-130			
Trichloroethene	2.79	0.10	H	2.50		112	70-130			
Toluene	2.70	0.10	Ħ	2.50		108	70-130			
Chlorobenzene	2.76	0.10	"	2.50		110	70-130			
Surrogate: Dibromofluoromethane	2.40		"	2.50		96.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2,50		96.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	2.55		Ħ	2.50		102	50-150			
Matrix Spike (0E04024-MS1)	Son	urce: W0051;	25-02	Prepared:	04-May-0	0 Analyze	:d: 05-May	-0 0		
,1-Dichloroethene	2.83	0.10	mg/kg	2.50	ND	113	60-140			
Benzene	3.22	0.10	**	2.50	0.37	114	60-140			
Crichloroethene	2.77	0.10	Ħ	2.50	ND	111	60-140			
l'oluene	2.76	0.10		2.50	ND	110	60-140			
Chlorobenzene	13.9	0.10	**	2.50	11	116	60-140			
urrogate: Dibromosluoromethane	2,50	-		2.50		100	50-150			
Gurrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96.0	50-150			
Surrogate: Toluene-d8	2.50		m	2.50		100	50-150			
lurrogate: 4-Bromofluorobenzene	2.80		"	2.50		112	50-150			

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported:

16-May-00 09:55

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spi k e Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E04024 - EPA 5030B [MeOH]										
Matrix Spike Dup (0E04024-MSD1)	So	urce: W0051	25-02	Prepared:	04-May-(00 Analyz	ed: 05-Ma	y-00		
1,1-Dichloroethene	2.79	0.10	mg/kg	2.50	ND	112	60-140	1.42	25	
Benzene	3.12	0.10	11	2.50	0.37	110	60-140	3.15	25	
Trichloroethene	2.80	0.10	II .	2.50	ND	112	60-140	1.08	25	
Toluene	2.77	0.10	п	2.50	ND	111	60-140	0.362	25	
Chlorobenzene	13.5	0.10	II	2.50	11	100	60-140	2.92	25	
Surrogate: Dibromofluoromethane	2.45			2.50		98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96.0	50-150			
Surrogate: Toluene-d8	2.50		rr	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	2.45		PY	2.50		98.0	50-150			

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported:

16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B		<u>,, ,, ,, =====</u>								
Blank (0E01016-BLK1)				Prepared:	01-May-(00 Analyz	ed: 03-Ma	y-00		
Acenaphthene	ND	0.10	mg/kg	 _	· · · · · · · · · · · · · · · · · · ·					
Acenaphthylene	ND	0.10								
Anthracene	ND	0.10	*							
Aniline	ND	0.10	47							
Benzoic acid	ND	0.50)4							
Benzo (a) anthracene	ND	0.10	,,							
Benzo (b) fluoranthene	ND	0.10	**			-				
Benzo (k) fluoranthene	ND	0.10	**							
Benzo (ghi) perylene	ND	0.10	**							
Benzo[a]pyrene	ND	0.10	#							
Benzyl alcohol	ND	0.10	**							
Bis(2-chloroethoxy)methane	ND	0.10	ਜ							
Bis(2-chloroethyl)ether	ND	01.0	π							
Bis(2-chloroisopropyl)ether	ND	0.10	**							
Bis(2-ethylhexyl)phthalate	ND	0.50	**							
4-Bromophenyl phenyl ether	ND	0.10	**							
Butyl benzyl phthalate	ND	0.10	1f							
4-Chloroaniline	ND	0.50	n							
2-Chloronaphthalene	ND	0.10	**							
4-Chloro-3-methylphenol	ND	0.10	11							
2-Chlorophenol	ND	0.10	**							
4-Chlorophenyl phenyl ether	ND	0.10	Ħ							
Chrysene	ND	0.10	**							
Dibenz (a,h) anthracene	ND	0.10	77							
Dibenzofuran	ND	0.10	17							
Di-n-butyl phthalate	ND	0.50	**							
1,2-Dichlorobenzene	ND	0.10	17							
1,3-Dichlorobenzene	ND	0.10	**							
1,4-Dichlorobenzene	ND	0.10	**							
3,3'-Dichlorobenzidine	ND	0.50	**							
2,4-Dichlorophenol	ND	0.10	"							
Diethyl phthalate	ND	0.10	#							
2,4-Dimethylphenol	ND	0.10	11							
Dimethyl phthalate	ND	0.10	•							

Sequoia Analytical - Walnut Creek

Project: Tosco

7100 Redwood Blvd., Suite104 Novato CA, 94945 Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

	_	Reporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch 0E01016 - EPA 3510B													
Blank (0E01016-BLK1)				Prepared: 01-May-00 Analyzed: 03-May-00									
4,6-Dinitro-2-methylphenol	ND	0.50	mg/kg										
2,4-Dinitrophenol	ND	0.50	IF										
2,4-Dinitrotoluene	ND	0.10	п										
2,6-Dinitrotoluene	ND	0.10	ıı										
Di-n-octyl phthalate	ND	0.10	11										
Fluoranthene	ND	0.10	ıı										
Fluorene	ND	0.10	11										
Hexachlorobenzene	ND	0.10	ń										
Hexachlorobutadiene	ND	0.10	11										
Hexachlorocyclopentadiene	ND	0.10	п										
Hexachloroethane	ND	0.10	11										
Indeno (1,2,3-od) pyrene	ND	0.10	11										
sophorone	ND	0.10	11										
2-Methylnaphthalene	ND	0.10	И										
2-Methylphenol	ND	0.10	11										
4-Methylphenol	ND	0.10	41										
Naphthalene	ND	0.10	11										
2-Nitroaniline	ND	0.50	м										
3-Nitroaniline	ND	0.50	"										
4-Nitroaniline	ND	0.50	••										
Vitrobenzene	ND	0.10	**										
2-Nitrophenol	ND	0.10	H										
N-Nitrosodimethylamine	ND	0.10	IT .										
4-Nitrophenol	ND	0.50	**										
N-Nitrosodiphenylamine	ND	0.10	"										
N-Nitrosodi-n-propylamine	ND	0.10											
Pentachlorophenol	ND	0,50	"										
Phenanthrene	ND	0.10	H										
Phenol	ND	0.10	n										
Pyrene	ND	0.10	**										
,2,4-Trichlorobenzene	ND	0.10	н										
2,4,5-Trichlorophenol	ND	0.50	н										
2,4,6-Trichlorophenol	ND	0.10	н										
Surrogate: 2-Fluorophenol	3.70			5.00	·	74.0	25-121						

Sequoia Analytical - Walnut Creek

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported:

16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B							•			
Blank (0E01016-BLK1)			,	Prepared:	01-May-0	0 Analyz	ed: 03-Ma	y-00		
Surrogate: Phenol-d6	3.50	-	mg/kg	5.00		70.0	24-113			
Surrogate: Nitrobenzene-d5	2.49		H	3.33		74.8	23-120			
Surrogate: 2-Fluorobiphenyl	2.53		11	3,33		76.0	30-115			
Surrogate: 2,4,6-Tribromophenol	3.70		**	5.00		74.0	19-122			
Surrogate: p-Terphenyl-d14	2.78		**	3.33		83.5	18-137			
LCS (0E01016-BS1)				Prepared:	01-May-0	0 Analyz	ed: 03-Ma	y-00		
Acenaphthene	2.56	0.10	mg/kg	3.33		76.9	31-137			
4-Chloro-3-methylphenol	3.70	0.10	н	5.00		74.0	26-103			
2-Chlorophenol	3.70	0.10	11	5.00		74.0	25-102			
1,4-Dichlorobenzene	2.53	0.10	11	3.33		76.0	28-104			
2,4-Dinitrotoluene	2.51	0.10	n	3.33		75.4	28-89			
4-Nitrophenol	3.37	0.50	19	5.00		67.4	11-114			
N-Nitrosodi-n-propylamine	2.76	0.10	**	3.33		82.9	41-126			
Pentachlorophenol	3.73	0.50	**	5.00		74.6	17-109			
Phenol	3.60	0.10	11	5.00		72.0	26-90			
Pyrene	2.93	0.10	#	3,33		88.0	35-142			
1,2,4-Trichlorobenzene	2.50	0.10	"	3.33		75.1	38-107			
Surrogate: 2-Fluorophenol	3.93		n	5.00		78.6	25-121			
Surrogate: Phenol-d6	3.80		n	5.00		76.0	24-113			
Surrogate: Nitrobenzene-d5	2.69		"	3.33		80.8	23-120			
Surrogate: 2-Fluorobiphenyl	2.70		"	3.33		81.1	30-115			
Surrogate: 2,4,6-Tribromophenol	4.03		#	5.00		80.6	19-122			
Surrogate: p-Terphenyl-dl 4	2.89		,,	3.33		86.8	<i>18-137</i>			
LCS Dup (0E01016-BSD1)				Prepared:	01-May-0	0 Analyz	ed: 03-Ma	y-00		
Acenaphthene	2.67	0.10	mg/kg	3.33		80.2	31-137	4.21	40	
4-Chloro-3-methylphenol	3.80	0.10	,,	5.00		76.0	26-103	2.67	40	
2-Chlorophenol	3.83	0.10	**	5.00		76.6	25-102	3.45	40	
1,4-Dichlorobenzene	2.64	0.10	n	3.33		79.3	28-104	4.26	40	
2,4-Dinitrotoluene	2.63	0.10	n	3.33		79.0	28-89	4.67	40	
1-Nitrophenol	3.70	0.50	**	5.00		74.0	11-114	9.34	40	
N-Nitrosodi-n-propylamine	2.88	0.10		3.33		86.5	41-126	4.26	40	
Pentachlorophenol	3.80	0.50	**	5.00		76.0	17-109	1.86	40	
Phenol	3.73	0.10	n	5.00		74.6	26-90	3.55	40	
Pyrene	2.87	0.10	n	3.33		86.2	35-142	2.07	40	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

	Reporting			Spike	Source		%REC		RPD	NT .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E01016 - EPA 3510B										
LCS Dup (0E01016-BSD1)				Prepared:	01-May-0	00 Analyz	ed: 03-Ma	y-00		
,2,4-Trichlorobenzene	2,60	0.10	mg/kg	3.33		78.1	38-107	3.92	40	
Surrogate: 2-Fluorophenol	4.03		"	5.00		80.6	25-121			
Surrogate: Phenol-d6	3.83		"	5.00		76.6	24-113			
Surrogate: Nitrobenzene-d5	2.72		"	3.33		81.7	23-120			
Surrogate: 2-Fluorobiphenyl	2.77		ď	3.33		83.2	30-115			
Surrogate: 2,4,6-Tribromophenol	4.17		"	5.00		83.4	19-122			
Surrogate: p-Terphenyl-d14	2.78		"	3.33		<i>83.5</i>	18-137			
Matrix Spike (0E01016-MS1)	Sou	ırce: W0046	01-01	Prepared:	01-May-0	00 Analyz	ed: 04- M a	y-00		
Acenaphthene	2.43	0.10	mg/kg	3.33	ND	73.0	31-137			
-Chloro-3-methylphenol	3.57	0.10	**	5.00	ND	71.4	26-103			
-Chlorophenol	3.07	0.10	"	5.00	ND	61.4	25-102			
,4-Dichlorobenzene	2.06	0.10	**	3.33	ND	61.9	28-104			
2,4-Dinitrotoluene	2.51	0.10	••	3.33	ND	75.4	28-89			
l-Nitrophenol	3.27	0.50	**	5.00	ND	65.4	11-114			
V-Nitrosodi-n-propylamine	2.41	0.10	**	3.33	ND	72.4	41-126			
Pentachlorophenol	3.47	0.50	18	5.00	ND	69.4	17-109			
Phenol	3.05	0.10	**	5.00	ND	61.0	26-90			
Pyrene	2.93	0.10	**	3.33	ND	88.0	35-142			
,2,4-Trichlorobenzene	2.14	0.10	"	3.33	ND	64.3	38-107			
urrogate: 2-Fluorophenol	3,10		"	5.00		62.0	25-121			
urrogate: Phenol-d6	3.14		"	5.00		62.8	24-113			
Surrogate: Nitrobenzene-d5	2.24		"	3.33		67.3	23-120			
Surrogate: 2-Fluorobiphenyl	2.38		"	3.33		71.5	30-115			
Surrogate: 2,4,6-Tribromophenol	3.87		"	5.00		77.4	19-122			
Surrogate: p-Terphenyl-dl 4	2.80		"	3.33		84.1	18-137			
Matrix Spike Dup (0E01016-MSD1)	Sou	ırce: W0046	01-01	Prepared:	01 -M ay-0	00 Analyz	ed: 04-Ma	y-00		
Acenaphthene	2.46	0.10	mg/kg	3.33	ND	73.9	31-137	1.23	40	
-Chloro-3-methylphenol	3.60	0.10	**	5.00	ND	72.0	26-103	0.837	40	
-Chlorophenol	3.17	0.10	It	5.00	ND	63.4	25-102	3.21	40	
,4-Dichlorobenzene	2.10	0.10	**	3,33	ND	63.1	28-104	1.92	40	
,4-Dinitrotoluene	2.53	0.10	**	3.33	ND	76.0	28-89	0.794	40	
-Nitrophenol	3.37	0.50	*	5.00	ND	67.4	11-114	3.01	40	
N-Nitrosodi-n-propylamine	2.48	0.10	**	3.33	ND	74.5	41-126	2.86	40	
Pentachlorophenol	3.43	0.50	**	5.00	ND	68.6	17-109	1.16	40	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104

Novato CA, 94945

Surrogate: p-Terphenyl-d14

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported:

16-May-00 09:55

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek


Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B							<u> </u>	••		
Matrix Spike Dup (0E01016-MSD1)	Sou	rce: W0046	Prepared:							
Phenol	3.14	0.10	mg/kg	5.00	ND	62.8	26-90	2.91	40	
Pyrene	2.83	0.10	**	3.33	ND	85.0	35-142	3.47	40	
1,2,4-Trichlorobenzene	2.15	0.10	**	3.33	ND	64.6	38-107	0.466	40	
Surrogate: 2-Fluorophenol	3.22		"	5.00		64,4	25-121			
Surrogate: Phenol-d6	3.26		"	5.00		65.2	24-113			
Surrogate: Nitrobenzene-d5	2.28		rr r	3.33		68.5	23-120			
Surrogate: 2-Fluorobiphenyl	2.45		"	3.33		73.6	30-115			
Surrogate: 2,4,6-Tribromophenol	3.87		"	5.00		77.4	19-122			

3.33

82.3

18-137

2.74

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E02037 - General Preparation								****		
Duplicate (0E02037-DUP1)	So	urce: W0050	02-04	Prepared:	02-May-(v-00				
Moisture	13	0.010 9	6 by Weigl		14			7.4	30	
Batch 0E09007 - General Preparation										
Duplicate (0E09007-DUP1)	So	Source: W004579-02 I			& Analyze					
pH	7.3	0.10	pH Units	<u>-</u>	7.2			1.4	30	
Batch 0E11012 - EPA 3550A										
Blank (0E11012-BLK1)				Prepared & Analyzed: 11-May-00						
ТРРН	ND	50	mg/kg				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
LCS (0E11012-BS1)				Prepared	& Analyze	ed: 11-Ma	y-00			
IRPH	4920	50	mg/kg	5000		98.4	70-130			
Matrix Spike (0E11012-MS1)	Sor	arce: W0045	43-01	Prepared .	& Analyze	d: 11-Ma				
TRPH	6360	50	mg/kg	5000	78	126	60-140			
Matrix Spike Dup (0E11012-MSD1)	Sou	ırce: W0045	43-01	Prepared a	& Analyze	d: 11- M a	y-00			
ГРРН	5830	50	mg/kg	5000	78	115	60-140	8.70	30	

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported:

16-May-00 09:55

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0050288 - General Preparation	-								•	
Blank (0050288-BLK1)		Prepared & Analyzed: 10-May-00								
Total Organic Carbon	ND	200	mg/kg	, , , , ,			 			
LCS (0050288-BS1)				Prepared	& Analyz	ed: 10 -M a	y-00			
Total Organic Carbon	8660	200	mg/kg	10000		86.6	80.0-120		•	
Matrix Spike (0050288-MS1)	So	urce: W0050	02-02	Prepared	& Analyz	ed: 10-Ma				
Total Organic Carbon	6150	200	mg/kg	5000	ND	123	75.0-125			
Matrix Spike Dup (0050288-MSD1)	Source: W005002-02		Prepared	& Analyz	ed: 10-Ma	y-00				
Total Organic Carbon	6550	200	mg/kg	5000	ND	131	75.0-125	6.30	35.0	QM-

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 09:55

Notes and Definitions

D-11	Chromatogram Pattern: Unidentified Hydrocarbons < C16
D-12	Chromatogram Pattern: Unidentified Hydrocarbons > C16
P-01	Chromatogram Pattern: Gasoline C6-C12

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

13 June, 2000

Jed Douglas Gettler Ryan, Inc. - Petaluma 1364 North McDowell Boulevard, Suite B2 Petaluma, CA 94954-1175 GETTLER-RYAN, INC.

RE: Tosco

Sequoia Report: W005002

Enclosed are the results of analyses for samples received by the laboratory on 26-Apr-00 14:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Sequoia Analytical - Walnut Creek(TOSCO)

Project:

TOSCO

Sampled: 04/25/00 11:00

404 North Wiget Lane Walnut Creek, CA 94598 Project Number: W005002

Received: 04/26/00

Project Manager:

Alan Kemp

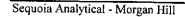
Reported: 5/8/00 18:00

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
W005002-01	МЈЕ0022-01	Soil	04/25/00
W005002-04	MJE0022-02	Soil	04/25/00

Sequoia Analytical - Walnut Creek(TOSCO)

404 North Wiget Lane Wainut Creek, CA 94598 Project: TOSCO
Project Number: W005002


Project Manager: Alan Kemp

Sampled: 04/25/00 11:00

Received: 04/26/00 Reported: 5/8/00 18:00

PSD- Sieve D422 Sequoia Analytical - Morgan Hill

Sample Number :	МЈЕ00	22-01	MJE0	022-02
Sieve #	Weight	% Dist.	Weight	% Dist.
4 (4.75mm)	0.00	0.0	1.91	3.1
6 (3.327mm)	0.00	0.0	0.73	1.2
8 (2.36mm)	0.00	0.0	2.35	3.8
12 (1.651mm)	0.01	0.0	3.36	5.5
16 (1.18mm)	0.01	0.0	1.78	2.9
20 (0.850mm)	0.04	0.1	1.52	2 5
30 (0.589mm)	0.09	0.2	3.41	5.5
40 (0.425mm)	0.29	0.7	3.37	5.5
48 (0.295mm)	2.15	5.2	7.34	11.9
70 (0.212mm)	3.27	7.9	4.39	7.2
Total in Pan	35	85.8	31	50,9
Final Total	41	100	61	100.0

*Refer to end of report for text of notes and definitions.

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Sequoia Analytical - Walnut Creek(TOSCO)

404 North Wiget Lane Walnut Creek, CA 94598 Project: TOSCO

Project Number: W005002

Sampled: 04/25/00 11:00

Received: 04/26/00 Reported: 5/8/00 18:00

Project Manager: Alan Kemp

Notes and Definitions

Note

DFT

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

Recov.

Recovery

RPD

Relative Percent Difference

Nº 002164

TOSCO

☐ 885 Jarvis Drive • Morgan Hill, CA 95037 • (408) 7/6-9600 • FAX (408) 782-6308 ☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100 ☐ 404 N. Wiget Lane • Walnut Creek, CA 94598 • (925) 988-9600 FAX (925) 988-9673 ☐ 1455 McDowell Blvd. North, Suite D • Petaluma, CA 94954 • (707) 792-1865 FAX (707) 792-0342 ☐ 1551 Industrial Road • San Carlos, CA 94070 • (650) 232-9600 FAX (650) 232-9612

								-		` '		• •				
Consultant Company:	GETTLEN	~ Ry	an			Project	Name:	19	015	8.03	{					
Address: 7100	Reduood	Blue	l 7	#10	4	TOSCO) Engin	eer (re	quired)	Day	id.	Del	ンバア			
City: Novate																
	Telephone: 415-893-1575 FAX #: 415-893-15															
Report To: Jeel										rd) 🗀 Lo				- Client		
Turnaround px 10 Wor	Turnaround 💢 10 Work Days 🗀 5 Work Days 🗀 3 Work Days 🗀 Dr										lyses Re	quested	124/2 /	<u>;</u>		
CODE: D Misc. D	Detect. 🗆 Eval.	□ Remed.	☐ Dem	nol. 🗆 Clos	 -	ner		Casa)	/ , /	Med Diese die	ESP SIGNES	ROPE TO	Sign Source			
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's Sample #	- A	LEPH BITS MED	LER BEEL WILDS	EN TOH EINE	Applies Displic	Continuity of	W OF T	Comments			
1.MW1-5	4-25-00/1030	5011	one	6" lines									Hard Copy	, a		
2. MW1-10	1045	1	1		DIA	X	X	X		X			of data			
3. MW1-15	1100				02A						X	$\langle \times \rangle$	bereceive	ي الله		
4. MW1-20	1115												by 5-11-0	velio		
5. MW1-25	1120													۶		
6.MW2-5	1230					- 							Hold oth	4		
7.MW2-10	1240	<u></u>	4		03A	$\perp \!\!\!\! \! \!$	$ \times $	\geq		\perp			Samples			
8.MW2-15	1245			<u> </u>	04A							$\leq \geq$	300			
9.MW2-20	1250			·									J			
10. MW2 - 25	1 1300	<u> </u>	V	· ·	05A			\geq		<u> </u>	<u> </u>			equoia		
Relinquished By:	And g be		Date:	4-26-00	Time: 441	Ø Rec	eived B	y Au	il He	umen	l l		Time: /4/0	White - S		
Relinquished By:	Hack Herry	ner	Date:	4/26/00	Time:/530	Rec	eived B		Erec)		Date	4-160	2 Time: 1458	<u>.</u> \$		
Relinquished By	O LOUN		Date	12600	Time:/(200	Rece	eived B	By:	- No-t	(m)>	Date	e: 4/26	lor Time: 16: z	-0		
Were Samples Received i	n Good Condition?	Yes C			ples on Ice?											
To be completed upon 1) Were the analy 2) Was the report	ses requested or	n the Chair							-			l?		_		

SUBCONTRACT ORDER

Sequoia Analytical - Walnut Creek W005002

SENDING LABORATORY:

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane

Walnut Creek, CA 94598

Phone: (925) 988-9600 Fax: (925) 988-9673

Project Manager: Charlie Westwater

RECEIVING LABORATORY:

Sequoia Analytical - Morgan Hill

885 Jarvis Drive

Morgan Hill, CA 95037

Phone: 408-776-9600

Fax: 408-782-6308

MJEOORA

Received: 26-Apr-00 14:10

Project originally received in PET Subbed Bulk Den/Porosity/Perm. to Core Subbed Grain Size to MH Subbed TOC to PET

Analysis	Due		Expires	Laboratory ID	Comments
Sample ID: W005002-02	Soil	Sampled	: 25-Apr-00 11:00		
PSD-Sieve D422	10-May-(00 12:00	23-May-00 11:00		
Sample ID: W005002-04	Soil	Sampled	25-Apr-00 12:45	7	70
PSD-Sieve D422	10-May-(00 12:00	23-May-00 12:45		

Released By Date Received By Date

Released By Date

Received By Date

SUBCONTRACT ORDER

Sequoia Analytical - Walnut Creek W005002

SENDING LABORATORY:

Sequoia Analytical - Walnut Creek

404 N. Wiget Lane

Walnut Creek, CA 94598

Phone: (925) 988-9600 Fax: (925) 988-9673

Project Manager: Charlie Westwater

RECEIVING LABORATORY:

Core Laboratory 3430 Unicorn Road Bakersfield, CA 93308 Phone: 805-392-8600

Fax: -

661-392 8600

Received: 26-Apr-00 14:10

Project originally received in PET Subbed Bulk Den/Porosity/Perm. to Core Subbed Grain Size to MH Subbed TOC to PET

Analysis	Due		Expires	Laboratory ID	Comments
Sample ID: W005002-02	Soil	Sampled:	25-Apr-00 11:00		
Bulk Density	10-May-00	12:00	22-Sep-00 11:00		
Misc. Subcontract	10-May-00	12:00	22-Oct-00 11:00		Analyze for permeability
Porosity	10-May-00	12:00	22-Sep-00 11:00		
<u>.</u>	_	-	-		·
Sample ID: W005002-04	- Soil -	Sampled:	25-Apr-00 12:45		
Bulk Density	10-May-00	12:00	22-Sep-00 12:45		
Misc. Subcontract	10-May-00	12:00	22-Oct-00 12:45		Analyze for permeability
Porosity	10-May-00	12:00	22-Sep-00 12:45		
			-		

Romanic al	wc <u>msen</u> 5/1/00 Date	UPS	5/1/00
Released By	Date	Received By	Date
<u>UPS</u>	5/2/00		
Released By	Date	Received By	Date

Sequoia Analytical (Walnut Creek) W005002

CL File 57111-00099

Sam	ple	Perm	eability	Porosity	Bulk	Density	Matrix	Description
ID	Desc.	Verti	cal (Kair)	(Total)	Dry	Natural	Density	
		mD	cm/sec	%	g/cc	g/cc	g/cc	
W005002-02 W005002-04	25-Apr-00 25-Apr-00	26* 367	2.2E-05* 3.15E-04	31.5 27.5	1.84 2.00	2.16 2.28	2.69 2.76	Gray clayey silt Gray vsilty gravelly sand

^{*}Sample developed micro-fractures upon drying

Permeability to air, total porosity, grain and pore volumes were determined as per API RP-40.

16 May, 2000

Jed Douglas Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato, CA 94945 MAY 1 8 2000

GETTLER-RYAN, INC.
GENERAL CONTRACTOR

RE: Tosco Sequoia Report: W004601

Enclosed are the results of analyses for samples received by the laboratory on 26-Apr-00 14:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

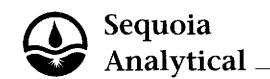
Gettler Ryan, Inc. - Novato

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas **Reported:** 16-May-00 07:45


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS-1	W004601-01	Soil	26-Apr-00 12:30	26-Apr-00 14:10

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported:

16-May-00 07:45

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					P-01
Purgeable Hydrocarbons	56	5.0	mg/kg	100	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	0.11	0.025		н	**		**	и	
Toluene	0.26	0.025	и	u	**	"	**	11	
Ethylbenzene	1.1	0.025	н	n	"	**	Ħ	II .	
Xylenes (total)	4.0	0.025	н	п	**	"	**	11	
Methyl tert-butyl ether	ND	0.25	11	n	μ	*	**	11	
Surrogate: a,a,a-Trifluoroi	toluene	75.7%	40-	140	rr	"	n	"	

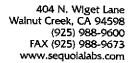
404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Novato

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil S	ampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					
Diesel Range Hydrocarbon	s 3.1	1.0	mg/kg	1	0E09029	09-May-00	15-May-00	DHS LUFT	D-06
Surrogate: n-Pentacosane		102 %	50-1	150	"	"	"	"	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Metals Scan by ICP

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					
Cadmium	ND	0.50	mg/kg	1	0D27017	27-Apr-00	27-Apr-00	ICP Scan	
Chromium	78	1.0	11		n	n	27-Apr-00	"	
Lead	11	2.5	n	н	*1	н	27-Apr-00	17	
Nickel	130	1.0	н	n	**	n	27-Apr-00	**	
Zinc	56	2.5	n ·	и	#	"	27-Apr-00	*	

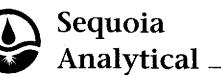
Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 07:45


Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26	5-Apr-00	14:10					
Chloromethane	ND	0.10	mg/kg	100	0D27031	27-Apr-00	28-Apr-00	EPA 8240B	
Vinyl chloride	ND	0.10	11	п	**	17	"	•	
Bromomethane	ND	0.10	11	п	н	77	**	н	
Chloroethane	ND	0.10	11	11	п	+*	11	п	
Trichlorofluoromethane	ND	0.10	**	**	11	n	**	**	
1,1-Dichloroethene	ND	0.10	Ħ	**	"	н	**		
Acetone	ND	0.50	**	17		n	PF	•	
Carbon disulfide	ND	0.10		**	π	**	н	97	
Methylene chloride	ND	0.50	tt	n	10	Ħ	**	H	
trans-1,2-Dichloroethene	ND	0.10	п	II.	IF	Ħ	"	Ħ	
Vinyl acetate	ND	0.10	11	11		**	,,	n .	
1,1-Dichloroethane	ND	0.10	••	*1	п	H	m	#	
cis-1,2-Dichloroethene	ND	0.10	**	,,	ji	11	,,	**	
2-Butanone	ND	0.50	11	•	**	11	rt .	#	
Chloroform	ND	0.10	**	14	#1	11	н	11	
1,1,1-Trichloroethane	ND	0.10	**	ŧŧ		**	II	"	
Carbon tetrachloride	ND	0.10	н	**	**	11	**	u	
Benzene	ND	0.10	n.	п	н	**	n	н	
1,2-Dichloroethane	ND	0.10	10	"	11	H	**	*	
Trichloroethene	ND	0.10	**	**	,,	н	,,	,,	
1,2-Dichloropropane	ND	0.10	**	#	,,	H	n	11	
Bromodichloromethane	ND	0.10	e r		11	**	íl .		
cis-1,3-Dichloropropene	ND	0.10	н	**	(+	π	R	tt	
4-Methyl-2-pentanone	ND	0.50	11		IF	.,	**		
Toluene	1.2	0.10	11	"	n	11	n	11	
trans-1,3-Dichloropropene	ND	0.10	**	11	**	п			
1,1,2-Trichloroethane	ND	0.10	17	**	r*	44			
Tetrachloroethene	ND	0.10	46	**			ii		
2-Hexanone	ND	0.50	n	н	"	11	,,	 P	
Dibromochloromethane	ND	0.10	н	n	н		,,		
Chlorobenzene	ND	0.10	17	,,	,,	ir	 **		
Ethylbenzene	4.4	0.10	**	"	**	- 11	"		
Fotal Xylenes	17	0.10		,,	,,	"	"	**	
Styrene	ND	0.10		" "	#	17	" "	rr Pr	
Bromoform	ND	0.10		" N	"	"		"	
,1,2,2-Tetrachloroethane	ND ND	0.10	19	"		"			
,3-Dichlorobenzene	ND ND	0.10		"	"	n	"	,,	
,4-Dichlorobenzene	ND ND		17	"	# #	"		"	
, , Distinguounding	ND	0.10	.,	"	17	"	11	†1	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil S	ampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					<u>.</u>
1,2-Dichlorobenzene	ND	0.10	mg/kg	100	0D27031	27-Арг-00	28-Apr-00	EPA 8240B	
Surrogate: Dibromofluorome	thane	94.0%	50-1	150	"	- "		"	
Surrogate: 1,2-Dichloroetha	ne-d4	92.0 %	50-1	150	"	,,	"	"	
Surrogate: Toluene-d8		100 %	50-2	50	"	"	"	"	
Surrogate: 4-Bromofluorober	nzene	100 %	50-2	50	,,	"	"	"	

7100 Redwood Blvd., Suite104 Novato CA, 94945 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas **Reported:** 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					
Acenaphthene	ND	0.10	mg/kg	1	0E01016	01-May-00	04-May-00	EPA 8270B	
Acenaphthylene	ND	0.10	п	II .	II .	př	19	H	
Anthracene	ND	0.10	н	II .	H	n	**	r•	
Aniline	ND	0.10	п	11	II	*	11	II .	
Benzoic acid	ND	0.50	**	11	11	**	Ħ	H	
Benzo (a) anthracene	ND	0.10	"	11	я	"	н	II .	
Benzo (b) fluoranthene	ND	0.10	" .	11	**	**	n	н	
Benzo (k) fluoranthene	ND	0.10	**	"	**	H	#1	11	
Benzo (ghi) perylene	ND	0.10	Ħ	Ħ	π	п	"	n	
Benzo[a]pyrene	ND	0.10	w	"	77	ц	**	19	
Benzyl alcohol	ND	0.10	**	**	1+	н	H	,	
Bis(2-chloroethoxy)methan	ie ND	0.10	**	11	11	11	ш		
Bis(2-chloroethyl)ether	ND	0.10	•	•	"	**	н	*	
Bis(2-chloroisopropyl)ethe	r ND	0.10	**		**	**	ш	Ħ	
Bis(2-ethylhexyl)phthalate	ND .	0.50	**	17	**	•	п	п	
4-Bromophenyl phenyl eth	er ND	0.10	**	,,		**	11	**	
Butyl benzyl phthalate	ND	0.10	**	Ħ	н	It	11	**	
4-Chloroaniline	ND	0.50	H	H	н	19	**		
2-Chloronaphthalene	ND	0.10	U	u	H	**	**	*	
4-Chloro-3-methylphenol	ND	0.10	п	μ	н	*	n	n	
2-Chlorophenol	ND	0.10	H	14	10	rr	m	н	
4-Chlorophenyl phenyl eth	er ND	0.10	**	"	"	**	"	н	
Chrysene	ND	0.10	**	**	**	rı	"	· n	
Dibenz (a,h) anthracene	ND	0.10	**	"	R	п	"	п	
Dibenzofuran	ND	0.10	"	· ·	44	n	n	**	
Di-n-butyl phthalate	ND	0.50	н	Ħ	19	11	п	. "	
1,2-Dichlorobenzene	ND	0.10	**		H		п	P	
1,3-Dichlorobenzene	ND	0.10	•		Ħ	n	11	Ħ	
1,4-Dichlorobenzene	ND	0.10	**	**	n	71	11	*	
3,3'-Dichlorobenzidine	ND	0.50	ır	H	п	95	••	•	
2,4-Dichlorophenol	ND	0.10	h	II .	19	**	p	11	
Diethyl phthalate	ND	0.10	п	н	**	H	17	**	
2,4-Dimethylphenol	ND	0.10	**	**	,	it.	**	Ħ	
Dimethyl phthalate	ND	0.10	41	**	"	Ü	**	н	
4,6-Dinitro-2-methylpheno	l ND	0.50	n	-	"	11	H	**	
2,4-Dinitrophenol	ND	0.50	19		**	"	ш	**	
2,4-Dinitrotoluene	ND	0.10	π	"	н	be .	11	#	
2,6-Dinitrotoluene	ND	0.10	**	**	n	10	11	•	

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

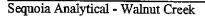
Reported: 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	<u> </u>	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26		4:10		T			110103
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0E01016	01-May-00	04-May-00	ED A COZOD	
Fluoranthene	ND	0.10	" "	1 11	"	01-May-00	04-May-00	EPA 8270B	
Fluorene	ND	0.10	34	,,			,,	.,	
Hexachlorobenzene	ND	0.10	"		**		**	H-	
Hexachlorobutadiene	ND	0.10	ш	Ħ	**	**	· H		
Hexachlorocyclopentadiene	ND	0.10	**	н	н); H	,,	
Hexachloroethane	ND	0.10	**	,	н	**	17	,,	
Indeno (1,2,3-cd) pyrene	ND	0.10	19	**		N	" **		
Isophorone	ND	0.10		"	11		,,	"	
2-Methylnaphthalene	ND	0.10	U	11	**	**	" #	"	
2-Methylphenol	ND	0.10	14	11	H	**	"		
4-Methylphenol	ND	0.10	rr .	•	н	,,	"	**	
Naphthalene	ND	0.10	11	11	,,	" "	"	**	
2-Nitroaniline	ND	0.50	rr	41	10	n	**	"	
3-Nitroaniline	ND	0.50	н	11		" #	11		
4-Nitroaniline	ND	0.50	"		"	,,	"		
Nitrobenzene	ND	0.10	**	++		"	#	**	
2-Nitrophenol	ND	0.10	ft.	,,	 #	"	"		
N-Nitrosodimethylamine	ND	0.10	"		"	*	"	"	
4-Nitrophenol	ND	0.50	19		" U		и	*	
N-Nitrosodiphenylamine	ND	0.10	77	 R	"	"	"		
N-Nitrosodi-n-propylamine	ND	0.10	,,	,,	"	#	" "		
Pentachlorophenol	ND ND	0.10	II.			"	"	11	
Phenanthrene	ND	0.10	14	"	"	"	11	- 11	
Phenol	ND ND	0.10		.,	"	"	11		
Pyrene	ND ND	0.10	•	**	"	и	"	*	
1,2,4-Trichlorobenzene	ND	0.10	н	**	"	"			
2,4,5-Trichlorophenol	ND	0.10	h	"	17	,,	"	N	
2,4,6-Trichlorophenol	ND ND	0.30		**	"	"	"	W **	
Surrogate: 2-Fluorophenol	110								
Surrogate: Phenol-d6		60.6 %	25-12		"	"	*	"	_
Surrogate: Nitrobenzene-d5		58.0 %	24-11		"	"	"	n	
Surrogate: 2-Fluorobiphenyi	ı	64.0 %	23-12		"	"	rr r	"	
Surrogate: 2-1-tuorootphenyi Surrogate: 2,4,6-Tribromoph		69.4 %	30-11		"	"	"	**	
Surrogate: p-Terphenyl-d14	IENOI	71.4 %	19-12		"	"	"	n	
surroguie, p-rerphenyl-al4		81.7%	18-13	7	"	#	"	rr r	

Sequoia Analytical - Walnut Creek


7100 Redwood Blvd., Suite104 Novato CA, 94945 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported:

16-May-00 07:45

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (W004601-01) Soil	Sampled: 26-Apr-00 12:30	Received: 26	-Apr-00	14:10					
TRPH	180	50	mg/kg	1	0E11012	11-May-00	11-May-00	SM 5520E/F	·

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

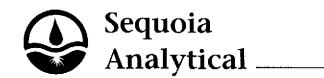
Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E03002 - EPA 5030B [MeOH]										
Blank (0E03002-BLK1)				Prepared	& Analyz	ed: 03-Ma	y-00			
Purgeable Hydrocarbons	ND	20	mg/kg							
Benzene	ND	10	10							
Toluene	ND	10	•							
Ethylbenzene	ND	10	,,							
Xylenes (total)	ND	10	Ħ							
Methyl tert-butyl ether	ND	1.0	н							
Surrogate: a, a, a-Trifluorotoluene	0.682		н	0.600		114	70-130			
LCS (0E03002-BS1)				Prepared	& Analyzo	ed: 03-Ma	y-00			
Benzene	0.778	0.10	mg/kg	0.800		97.2	70-130			
<u> Foluene</u>	0.802	0.10	v	0.800		100	70-130			
Ethylbenzene	0.834	0.10	**	0.800		104	70-130			
Xylenes (total)	2.46	0.10		2.40		102	70-130			
Surrogate: a,a,a-Trifluorotoluene	0.652		н	0.600		109	70-130			·
Matrix Spike (0E03002-MS1)	So	urce: W0046	28-11	Prepared	& Analyze	d: 03-Ma	y-00			
Benzene	0.816	0.10	mg/kg	0.800	ND	102	70-130			
Toluene	0.854	0.10	"	0.800	ND	107	70-130			
Ethylbenzene	0.880	0.10	•	0.800	ND	110	70-130			
Xylenes (totai)	2.60	0.10	ŧτ	2,40	ND	108	70-130			
Surrogate: a,a,a-Trifluorotoluene	0.578		"	0.600		96.3	70-130			
Matrix Spike Dup (0E03002-MSD1)	So	urce: W0046	28-11	Prepared a	& Analyze	d; 03-Ma	y-00			
Benzene	0.844	0.10	mg/kg	0.800	ND	105	70-130	3.37	20 .	
l'oluene	0.882	0.10	11	0.800	ND	110	70-130	3.23	20	
Ethylbenzene	0.906	0.10	•	0.800	ND	113	70-130	2.91	20	
Kylenes (total)	2.64	0.10	**	2.40	ND	110	70-130	1.53	20	
Surrogate: a,a,a-Trifluorotoluene	0.606		n	0.600		101	70-130			

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
1	100011			20,01						
Batch 0E09029 - EPA 3510B										
Blank (0E09029-BLK1)				Prepared:	09-May-(00 Analyz	ed: 12-Ma	y-00		
Diesel Range Hydrocarbons	ND	1.0	mg/kg							
Surrogate: n-Pentacosane	. 1.16		#	1.11		105	50-150			
LCS (0E09029-BS1)				Prepared:	09-May-0	00 Analyz	ed: 12-Ma	y-00		
Diesel Range Hydrocarbons	11.1	1.0	mg/kg	15.0		74.0	60-140			
Surrogate: n-Pentacosane	1.21		#	1.11		109	50-150	,,,,,		
LCS Dup (0E09029-BSD1)				Prepared:	09-May-(00 Analyz	ed: 12-Ma	y-00		
Diesel Range Hydrocarbons	11.5	1.0	mg/kg	15.0		76.7	60-140	3.54	40	
Surrogate: n-Pentacosane	1.13		"	1.11		102	50-150			

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Metals Scan by ICP - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D27017 - EPA 3050B										
Blank (0D27017-BLK1)	··············			Prepared	& Analyz	ed: 27-Ap	r-00	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Cadmium	ND	0,50	mg/kg						• • •	
Chromium	ND	1.0	*1							
Lead	ND	2.5	**							
Nickel	3.15	1.0	n							
Zine	3.20	2.5	"							
LCS (0D27017-BS1)				Prepared	& Analyz	ed: 27-Ap:	r-00			
Cadmium	51.7	0.50	mg/kg	50.0		103	80-120			·····
Chromium	51.4	1.0	li .	50.0		103	80-120			
Lead	52.0	2.5	n	50.0		104	80-120			
Nickel	52.0	1.0	"	50.0		104	80-120			
Zinc	49.2	2.5	**	50.0		98.4	80-120			
LCS Dup (0D27017-BSD1)	•			Prepared	& Analyze	d: 27-Ap	r-00			
Cadmium	54.6	0.50	mg/kg	50.0		109	80-120	5.46	20	-
Chromium	53.9	1.0	tr	50.0		108	80-120	4.75	20	
Lead	55.0	2.5	Ħ	50.0		110	80-120	5.61	20	
Nickel	55.5	1.0	п	50.0		111	80-120	6.51	20	
Zine	48.8	2.5	н	50,0		97.6	80-120	0.816	20	
Matrix Spike (0D27017-MS1)	So	urce: W0045	96-02	Prepared a	& Anaiyze	:d: 27 -A pr	:-00			
Cadmium	53.3	0.50	mg/kg	50,0	ND	107	80-120	•		
Chromium	78.3	1.0	42	50,0	30	96.6	80-120			
Lead	57.2	2.5	n	50.0	7.4	99.6	80-120			
Nickel	79.9	1.0	н	50.0	35	89.8	80-120			
Zinc	98.8	2.5	н	50.0	49	99.6	80-120			
Matrix Spike Dup (0D27017-MSD1)	So	urce: W00459	96-02	Prepared &	& Analyze	d: 27-Apr	-00			
Cadmium	54.8	0.50	mg/kg	50.0	ND	110	80-120	2.78	20	
Chromium	80.1	1.0	#	50.0	30	100	80-120	2.27	20	
ead	60.0	2.5	71	50.0	7.4	105	80-120	4.78	20	
Nickel	81.9	1.0	**	50.0	35	93.8	80-120	2.47	20	
Zine	103	2.5	н	50,0	49	108	80-120	4.16	20	

7100 Redwood Blvd., Suite104

Batch 0D27031 - EPA 5030B [MeOH]

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

		··								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		···-·								

Blank (0D27031-BLK1)				Prepared & Analyzed: 25-Apr-00
Chloromethane	ND	0.10	mg/kg	
Vinyl chloride	ND	0.10	,,	
Bromomethane	ND	0.10	**	
Chloroethane	ND	0.10	"	
Trichlorofluoromethane	ND	0.10	**	
1,1-Dichloroethene	ND	0.10	"	
Acetone	ND	0.50	**	
Carbon disulfide	ND	0.10	н	
Methylene chloride	ND	0.50	II.	
trans-1,2-Dichloroethene	ND	0.10	*1	
Vinyl acetate	ND	0.10	"	
1,1-Dichloroethane	ND	0.10	**	
cis-1,2-Dichloroethene	ND	0.10	11	
2-Butanone	ND	0.50	**	
Chloroform	ND	0.10	R	
1,1,1-Trichloroethane	ND	0.10	Ħ	
Carbon tetrachloride	ND	0.10	II.	
Велдепе	ND	0.10	11	
1,2-Dichloroethane	ND	0.10	11	
Trichloroethene	ND	0.10	**	
1,2-Dichloropropane	ND	0.10	н	
Bromodichloromethane	ND	0.10	a	
cis-1,3-Dichloropropene	ND	0.10	n	
4-Methyl-2-pentanone	ND	0.50	н	
Toluene	ND	0.10	n	
trans-1,3-Dichloropropene	ND	0.10	**	
1,1,2-Trichloroethane	ND	0.10	π	

ND

ND

ND

ND

ND

ND

ND

0.10

0.50

0.10

0.10

0.10

0.10

0.10

Sequoia Analytical - Walnut Creek

Tetrachloroethene

Dibromochloromethane

2-Hexanone

Chlorobenzene

Ethylbenzene

Total Xylenes

Styrene

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D27031 - EPA 5030B [MeOH]				-						
Blank (0D27031-BLK1)		· · · · · · · · · · · · · · · · · · ·		Prepared	& Analyza	ed: 25-Ap.	r-00			- <u></u>
Bromoform	ND	0.10	mg/kg		-					
1,1,2,2-Tetrachloroethane	ND	0.10	"							
1,3-Dichlorobenzene	ND	0.10	"							
1,4-Dichlorobenzene	ND	0.10	н							
1,2-Dichlorobenzene	ND	0.10	91							
Surrogate: Dibromofluoromethane	2.35	· · · · · · · · · · · · · · · · · · ·	"	2.50		94.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.45		"	2.50		98.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	2.50		"	2.50		100	50-150			
Blank (0D27031-BLK2)				Prepared a	& Analyze	ed: 27-Api	-00			
Chloromethane	ND	0.10	mg/kg	-						
Vinyl chloride	ND	0.10	"							
Bromomethane	ND	0.10	"							
Chloroethane	ND	0.10	п	•						
Frichlorofluoromethane	ND	0.10								
1,1-Dichloroethene	ND	0.10	*							
Acetone	ND	0.50	**							
Carbon disulfide	ND	0.10	**							
Methylene chloride	ND	0.50	**							
rans-1,2-Dichloroethene	ND	0.10	Ħ							
Vinyl acetate	ND	0.10	п							
1,1-Dichloroethane	ND	0.10	II							
is-1,2-Dichloroethene	ND	0.10								
2-Butanone	ND	0.50	77							
Chloroform	ND	0.10	**							
,1,1-Trichloroethane	ND	0.10	P							
Carbon tetrachloride	ND	0.10	n							
3enzene	ND	0.10)1							
,2-Dichloroethane	ND	0.10								
richloroethene	ND	0.10	**						•	
,2-Dichloropropane	ND	0.10								
Bromodichloromethane	ND	0.10	11							
is-1,3-Dichloropropene	ND	0.10	lt.							
-Methyl-2-pentanone	ND	0.50	п							

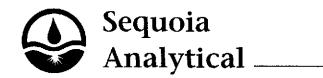
Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas **Reported:** 16-May-00 07:45


Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

	···									
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
· ·										

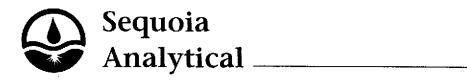
Blank (0D27031-BLK2)				Prepared & Ar	nalvzed: 27-Ar	or-00		
Toluene	ND	0.10	mg/kg					
trans-1,3-Dichloropropene	ND	0.10	"					
1,1,2-Trichloroethane	ND	0.10	п					
Tetrachloroethene	ND	0.10	u .					
2-Hexanone	ND	0.50	н					
Dibromochloromethane	ND	0.10	+7					
Chlorobenzene	ND	0.10	**					
Ethylbenzene	ND	0.10	Ħ					
Total Xylenes	ND	0.10	**					
Styrene	ND	0.10	**					
Bromoform	ND	0.10	**					
1,1,2,2-Tetrachloroethane	ND	0.10	n					
,3-Dichlorobenzene	ND	0.10	n					
,4-Dichlorobenzene	ND	0.10	10					
1,2-Dichlorobenzene	ND	0.10	19					
Surrogate: Dibromofluoromethane	2.30	· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.50	92.0	50-150		_
urrogate: 1,2-Dichloroethane-d4	2.40		"	2.50	96.0	50-150		
urrogate: Toluene-d8	2.45		"	2.50	98.0	50-150		
Surrogate: 4-Bromofluorobenzene	2.45		"	2.50	98.0	50-150	,	
Blank (0D27031-BLK3)				Prepared & Ar	nalyzed: 28-Ap	r-00		
Chloromethane	ND	0.10	mg/kg					
inyl chloride	ND	0.10	**					
Bromomethane	ND	0.10	**					
Chloroethane	ND	0.10	H					
richlorofluoromethane	ND	0.10	19					
,1-Dichloroethene	Ν̈́D	0.10	17					
cetone	ND	0.50	п					
Carbon disulfide	ND	0.10	11					
fethylene chloride	ND	0.50	**					
ans-1,2-Dichloroethene	ND	0.10	**					
inyl acetate	ND	0.10	*					
1-Dichloroethane	ND	0.10	**					
is-1,2-Dichloroethene	ND	0.10	**					
-Butanone	ND	0.10	н					

Sequoia Analytical - Walnut Creek

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D27031 - EPA 5030B [MeOH]										
Blank (0D27031-BLK3)				Prepared	& Analyze	ed: 28-An	r-00			
Chloroform	ND	0.10	mg/kg	· *						
1,1,1-Trichloroethane	ND	0.10	π							
Carbon tetrachloride	ND	0.10	**							
Benzene	ND	0.10	"							
1,2-Dichloroethane	ND	0.10	"							
Trichloroethene	ND	0.10	II.							
1,2-Dichloropropane	ND	0.10	n							
Bromodichloromethane	ND	0.10	**							
cis-1,3-Dichloropropene	ND	0.10	н							
4-Methyl-2-pentanone	ND	0.50	**							
l'oluene	ND	0.10								
rans-1,3-Dichloropropene	ND	0.10	**						-	
1,1,2-Trichloroethane	ND	0.10	*							
Tetrachloroethene	ND	0.10	**							
2-Hexanone	ND	0.50	tt							
Dibromochloromethane	ND	0.10	ш							
Chlorobenzene	ND	0.10	11							
Ethylbenzene	ND	0.10	**							
Total Xylenes	ND	0.10	,,							
Styrene	ND	0.10	H							
Bromoform	ND	0.10	,,							
1,1,2,2-Tetrachloroethane	ND	0.10	*							
,3-Dichlorobenzene	ND	0.10	n							
,4-Dichlorobenzene	ND	0.10	н							
,2-Dichlorobenzene	ND	0.10	41							•
Surrogate: Dibromofluoromethane	2.40		"	2.50		96.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	3.25	-	#	2.50		130	50-150			

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D27031 - EPA 5030B [MeOH]										
LCS (0D27031-BS1)				Prepared	& Analyze	ed: 25-An	r-00			
I,1-Dichloroethene	2.10	0.10	mg/kg	2.50		84.0	65-135			
Benzene	2.57	0.10	"	2.50		103	70-130			
Trichloroethene	2.83	0.10	#	2.50		113	70-130			
Toluene	2.71	0.10	"	2.50		108	70-130			
Chlorobenzene	2.78	0.10	π	2.50		111	70-130			
Surrogate: Dibromofluoromethane	2.40		"	2.50		96.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.35		п	2.50		94.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	2.55		"	2.50		102	50-150			
LCS (0D27031-BS2)				Prepared a	& Analyze	d: 27-Ap	r-00			
1,1-Dichloroethene	2.01	0.10	mg/kg	2.50		80.4	65-135		***************************************	
Benzene	2.46	0.10		2.50		98.4	70-130			
Trichloroethene	2.60	0.10	ш	2.50		104	70-130			
Toluene Toluene	2.62	0.10	#1	2.50		105	70-130			
Chlorobenzene	2.69	0.10	•	2.50		108	70-130			
Surrogate: Dibromofluoromethane	2.35		"	2.50		94.0	50-150			 -
Surrogate: 1,2-Dichloroethane-d4	2.35		"	2.50		94.0	50-150			
Surrogate: Toluene-d8	2.45		п	2.50		98.0	50-150			
Surrogate: 4-Bromofluorobenzene	2.50		**	2,50		100	50-150			
LCS (0D27031-BS3)				Prepared &	& Analyze	d: 28-Apr	-00			
,1-Dichloroethene	1.82	0.10	mg/kg	2.50		72.8	65-135		-	
Benzene	2.22	0.10	**	2.50		88.8	70-130			
Trichloroethene	2.29	0.10	н	2.50		91.6	70-130			
Coluene	2.31	0.10	**	2.50		92.4	70-130			
Chlorobenzene	2.43	0.10	*	2.50		97.2	70-130			
urrogate: Dibromosluoromethane	2.35		"	2.50		94.0	50-150			
urrogate: 1,2-Dichloroethane-d4	2.35		"	2.50		94.0	50-150			
urrogate: Toluene-d8	2.55		,,	2.50		102	50-150			
urrogate: 4-Bromofluorobenzene	3.20		"	2.50		128	50-150			

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D27031 - EPA 5030B [MeOH]										
Matrix Spike (0D27031-MS1)	So	urce: W0044	19-04	Prepared:	25-Apr-00	0 Analyze	ed: 26-Apr	-00		
1,1-Dichloroethene	1.93	0.10	mg/kg	2.50	ND	77.2	60-140			
Benzene	2.37	0.10	"	2.50	ND	94.8	60-140			
Trichloroethene	2.45	0.10		2.50	ND	98.0	60-140			
Toluene	2.41	0.10	11	2.50	ND	96.4	60-140			
Chlorobenzene	2.43	0.10	11	2.50	ND	97.2	60-140			
Surrogate: Dibromofluoromethane	2.50		"	2.50		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.60		**	2.50		104	50-150 50-150			
Surrogate: Toluene-d8	2.60		"	2.50		104	50-150			
Surrogate: 4-Bromofluorobenzene	2.50		"	2.50		100	50-150 50-150			
Matrix Spike Dup (0D27031-MSD1)	So	urce: W0044	19-04	Prepared: 25-Apr-00 Analyzed: 26-Apr-00						
,1-Dichloroethene	2.08	0.10	mg/kg	2.50	ND	83.2	60-140	7.48	25	
Benzene	2.59	0.10	"	2.50	ND	104	60-140	8,87	25	
richloroethene	2.65	0.10		2.50	ND	106	60-140	7.84		
Coluene Coluene	2.68	0.10	**	2.50	ND	107	-		25 25	
Chlorobenzene	2.68	0.10	*	2.50	ND ND	107	60-140	10.6	25	
urrogate: Dibromofluoromethane					עאַן	10/	60-140	9.78	25	
urrogate: 1,2-Dichloroethane-d4	2.55		"	2.50		102	50-150			
urrogate: 1,2-Dicmoroeinane-a4 urrogate: Toluene-d8	2.55		"	2.50		102	50-150			
2	2.60		"	2.50		104	50-150			
urrogate: 4-Bromofluorobenzene	2.55		"	2.50		102	50-150			

7100 Redwood Blvd., Suite104 Novato CA, 94945 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B				=::						
Blank (0E01016-BLK1)				Prepared:	01-May-(0 Analyz	ed: 03-Ma	y-00		
Acenaphthene	ND	0.10	mg/kg							
Acenaphthylene	ND	0.10	,,							
Anthracene	ND	0.10								
Aniline	ND	0.10	11							
Benzoic acid	ND	0.50	"							
Benzo (a) anthracene	ND	0.10	н							
Benzo (b) fluoranthene	ND	0.10	*							
Benzo (k) fluoranthene	ND	0.10	**							
Benzo (ghi) perylene	ND	0.10	"							
Benzo[a]pyrene	ND	0.10	**							
Benzyl alcohol	ND	0.10	ч							
Bis(2-chloroethoxy)methane	ND	0.10	łr							
Bis(2-chloroethyl)ether	ND	0.10	n							
Bis(2-chloroisopropyl)ether	ND	0.10	II .							
Bis(2-ethylhexyl)phthalate	ND	0.50	И							
4-Bromophenyl phenyl ether	ND	0.10	19							
Butyl benzyl phthalate	ND	0.10	•							
4-Chloroaniline	ND	0.50	"							
2-Chloronaphthalene	ND	0.10	**							
4-Chloro-3-methylphenol	ND	0.10	,							
2-Chlorophenol	ND	0.10	n							
4-Chlorophenyl phenyl ether	ND	0.10	**							
Chrysene	ND	0.10	M							
Dibenz (a,h) anthracene	ND	0.10	**							
Dibenzofuran	ND	0.10	n .							
Di-n-butyl phthalate	ND	0.50	н							
1,2-Dichlorobenzene	ND	0.10	п							
1,3-Dichlorobenzene	ND	0.10	H							
1,4-Dichlorobenzene	ND	0.10	**			•				
3,3'-Dichlorobenzidine	ND	0.50	"							

Sequoia Analytical - Walnut Creek

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl phthalate

Diethyl phthalate

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

ND

ND

ND

0.10

0.10

0.10

0.10

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B										
Blank (0E01016-BLK1)				Prepared:	01-May-0	0 Analyz	ed: 03-May	y-00	· · · · · · · · · · · · · · · · · · ·	
4,6-Dinitro-2-methylphenol	ND	0.50	mg/kg				<u> </u>	<u> </u>		
2,4-Dinitrophenol	ND	0.50	н				:			
2,4-Dinitrotoluene	ND	0.10								
2,6-Dinitrotoluene	ND	0.10	**							
Di-n-octyl phthalate	ND	0.10	п							
Fluoranthene	· ND	0.10	и							
Fluorene	ND	0.10	11							
Hexachlorobenzene	ND	0.10	es es							
Hexachlorobutadiene	ND	0.10	"							
Hexachlorocyclopentadiene	ND	0.10	"							
Hexachloroethane	ND	0.10	**							
Indeno (1,2,3-cd) pyrene	ND	0.10	**							
Isophorone	ND	0.10	"							
2-Methylnaphthalene	ND	0.10	(t							
2-Methylphenol	ND	0.10								
4-Methylphenol	ND	0.10	fi .							
Naphthalene	ND	0.10	11							
2-Nitroaniline	ND	0.50								
3-Nitroaniline	ND	0.50	"							
4-Nitroaniline	ND	0.50	**							
Nitrobenzene	ND	0.10	•							
2-Nitrophenol	ND	0.10	Ħ							
N-Nitrosodimethylamine	ND	0.10	n							
4-Nitrophenol	ND	0.50	н							
N-Nitrosodiphenylamine	ND	0.10	"							
N-Nitrosodi-n-propylamine	ND	0.10	4							
Pentachlorophenol	ND	0.50	*							
Phenanthrene	ND	0.10	**							
Phenol	ND	0.10	**							
Pyrene	ND	0.10	Ħ							
1,2,4-Trichlorobenzene	ND	0.10	п							
2,4,5-Trichlorophenol	ND	0.50	н							
2,4,6-Trichlorophenol	ND	0.10	**							
Surrogate: 2-Fluorophenol	3.70		,,	5.00		74.0	25-121			······································

Sequoia Analytical - Walnut Creek

Novato CA, 94945

7100 Redwood Blvd., Suite104

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B										
Blank (0E01016-BLK1)				Prepared:	01-May-0	00 Analyz	ed: 03-Ma	y-00		
Surrogate: Phenol-d6	3.50		mg/kg	5.00	· · · · · · · · · · · · · · · · · · ·	70.0	24-113			
Surrogate: Nitrobenzene-d5	2.49		"	3,33		74.8	23-120			
Surrogate: 2-Fluorobiphenyl	2.53		u	3.33		76.0	30-115			
Surrogate: 2,4,6-Tribromophenol	3.70		"	5.00		74.0	19-122			
Surrogate: p-Terphenyl-d14	2.78		"	3.33		83.5	18-137			
LCS (0E01016-BS1)				Prepared:	01-May-0	0 Analyz	ed: 03 -M a	y-00		
Acenaphthene	2.56	0.10	mg/kg	3.33		76.9	31-137			
4-Chloro-3-methylphenol	3.70	0.10	**	5.00		74.0	26-103			
2-Chlorophenol	3.70	0.10	**	5.00		74.0	25-102			-
1,4-Dichlorobenzene	2.53	0.10	**	3.33		76.0	28-104			
2,4-Dinitrotoluene	2.51	0.10	"	3.33		75.4	28-89			
4-Nitrophenol	3.37	0.50	w	5.00		67.4	11-114			
N-Nitrosodi-n-propylamine	2.76	0.10	п	3.33		82.9	41-126			
Pentachlorophenol	3.73	0.50	п	5.00		74.6	17-109			
henol	3.60	0.10	ji	5.00		72.0	26-90			
yrene	2.93	0.10	n	3.33		88.0	35-142			
1,2,4-Trichlorobenzene	2.50	0.10	и	3.33		75.1	38-107			
lurrogate: 2-Fluorophenol	3.93	·	"	5.00		78.6	25-121			
Surrogate: Phenol-d6	3.80		"	5.00		76.0	24-113			
Surrogate: Nitrobenzene-d5	2.69		"	3.33		80.8	23-120			
lurrogate: 2-Fluorobiphenyl	2.70		"	3.33		81.1	30-115			
Surrogate: 2,4,6-Tribromophenol	4.03		"	5.00		80.6	19-122			
Surrogate: p-Terphenyl-d14	2.89		"	3.33		86.8	18-137			
LCS Dup (0E01016-BSD1)	· ·			Prepared:	01-May-0	0 Analyz	ed: 03 -M a;	y-00		
Acenaphthene	2.67	0.10	mg/kg	3.33		80.2	31-137	4.21	40	
-Chioro-3-methylphenol	3.80	0.10	70	5.00		76.0	26-103	2,67	40	
-Chlorophenol	3.83	0.10	tt	5.00		76.6	25-102	3.45	40	
,4-Dichlorobenzene	2.64	0.10	tt	3.33		79.3	28-104	4.26	40	
,4-Dinitrotoluene	2.63	0.10	u	3.33		79.0	28-89	4.67	40	
-Nitrophenol	3.70	0.50	н	5.00		74.0	11-114	9.34	40	
I-Nitrosodi-n-propylamine	2.88	0.10	. 41	3.33		86.5	41-126	4.26	40	
entachlorophenol	3.80	0.50	**	5.00		76.0	17-109	1.86	40	
Phenol	3.73	0.10	**	5.00		74.6	26-90	3.55	40	
yrene	2.87	• 0.10	,,	3.33		86.2	35-142	2.07	40	

Sequoia Analytical - Walnut Creek

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Reported: Project Manager: Jed Douglas 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Resu <u>l</u> t	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B										
LCS Dup (0E01016-BSD1)				Prepared:	01-May-0	00 Analyz	ed: 03-Ma	y-00		
1,2,4-Trichlorobenzene	2.60	0.10	mg/kg	3.33		78.1	38-107	3.92	40	
Surrogate: 2-Fluorophenol	4.03		"	5.00		80.6	25-121			
Surrogate: Phenol-d6	3,83		"	5.00		76.6	24-113			
Surrogate: Nitrobenzene-d5	2.72		"	3.33		81.7	23-120			
Surrogate: 2-Fluorobiphenyl	2.77		"	3.33		83.2	30-115			
Surrogate: 2,4,6-Tribromophenol	4.17		"	5.00		83.4	19-122			
Surrogate: p-Terphenyl-d14	2.78		n	3.33		83.5	18-137			
Matrix Spike (0E01016-MS1)	So	Source: W004601-01			01-May-0	0 Analyz	ed: 04-Ma	y-00 .		
Acenaphthene	2.43	0.10	mg/kg	3.33	ND	73.0	31-137			
1-Chloro-3-methylphenol	3.57	0.10	11	5.00	ND	71.4	26-103			
2-Chlorophenoi	3.07	0.10	*	5.00	ND	61.4	25-102			
,4-Dichlorobenzene	2.06	0.10		3.33	ND	61.9	28-104			
2,4-Dinitrotoluene	2.51	0.10	,,	3.33	ND	75.4	28-89			
-Nitrophenol	3.27	0.50		5.00	ND	65.4	11-114			
V-Nitrosodi-n-propylamine	2.41	0.10		3.33	ND	72.4	41-126			
Pentachlorophenol	3.47	0.50	*	5.00	ND	69.4	17-109			
henol	3.05	0.10	n	5.00	ND	61.0	26-90			
Pyrene	2.93	0.10	*	3.33	ND	88.0	35-142			
1,2,4-Trichlorobenzene	2.14	0.10		3.33	ND	64.3	38-107			
Surrogate: 2-Fluorophenol	3.10			5.00		62.0	25-121			
Surrogate: Phenol-d6	3.14		"	5.00		62.8	24-113			
Surrogate: Nitrobenzene-d5	2,24		n	3.33		67.3	23-120			
Surrogate: 2-Fluorobiphenyl	2.38		"	3,33		71.5	30-115			
Surrogate: 2,4,6-Tribromophenol	3.87		"	5.00		77.4	19-122			
Surrogate: p-Terphenyl-dl4	2.80		"	3.33		84.1	18-137			
Matrix Spike Dup (0E01016-MSD1)	So	urce: W0046	01-01	Prepared:	01-May-0	0 Analyz	ed: 04 -M ay	y-00		
Acenaphthene	2.46	0.10	mg/kg	3,33	ND	73.9	31-137	1.23	40	
-Chloro-3-methylphenol	3.60	0.10	•	5.00	ND	72.0	26-103	0.837	40	
-Chlorophenol	3.17	0.10	*	5.00	ND	63.4	25-102	3.21	40	
,4-Dichlorobenzene	2.10	0.10	"	3.33	ND	63.1	28-104	1.92	40	
,4-Dinitrotoluene	2,53	0.10	*	3.33	ND	76.0	28-89	0.794	40	
-Nitrophenol	3.37	0.50	•	5.00	ND	67,4	11-114	3.01	40	
J-Nitrosodi-n-propylamine	2.48	0.10	11	3.33	ND	74.5	41-126	2.86	40	
entachlorophenol	4.70	0.10		رد.ر	1475	17.5	71-120	2.00	70	

Sequoia Analytical - Walnut Creek

7100 Redwood Blvd., Suite104

Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Jed Douglas

Reported: 16-May-00 07:45

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E01016 - EPA 3510B										
Matrix Spike Dup (0E01016-MSD1)	Sou	rce: W0046	01-01	Prepared:	01-May-0	00 Analyz	ed: 04-Ma	y-00		
Phenol	3.14	0.10	mg/kg	5.00	ND	62.8	26-90	2.91	40	
Pyrene	2.83	0.10	н	3.33	ND	85.0	35-142	3.47	40	
1,2,4-Trichlorobenzene	2.15	0.10	**	3.33	ND	64.6	38-107	0.466	40	
Surrogate: 2-Fluorophenol	3.22			5.00	 	64.4	25-121			
Surrogate: Phenol-d6	3.26		"	5.00		65.2	24-113			
Surrogate: Nitrobenzene-d5	2.28		*	3.33		68.5	23-120			
Surrogate: 2-Fluorobiphenyl	2.45		"	3.33		73.6	30-115			
Surrogate: 2,4,6-Tribromophenol	3.87		"	5.00		77.4	19-122			
Surrogate: p-Terphenyl-dl4	2.74		"	3.33		82.3	18-137			

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting	TT '4	Spike	Source	A/DEG	%REC	222	RPD	
Analyc	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E11012 - EPA 3550A	•									
Blank (0E11012-BLK1)				Prepared	& Analyz	ed: 11-Ma	y-00			
TRPH	ND	50	mg/kg				<u> </u>		<u>.</u>	
LCS (0E11012-BS1)				Prepared	& Analyz	ed: 11-Ma	y-00			
TRPH	4920	50	mg/kg	5000		98.4	70-130			
Matrix Spike (0E11012-MS1)	Sou	rce: W0045	43-01	Prepared	& Analyze	y-00				
TRPH	6360	50	mg/kg	5000	78	126	60-140			
Matrix Spike Dup (0E11012-MSD1)	Source: W004543-01			Prepared	& Analyze	y-00				
TRPH	5830	50	mg/kg	5000	78	115	60-140	8.70	30	

Gettler Ryan, Inc. - Novato 7100 Redwood Blvd., Suite104 Novato CA, 94945

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Jed Douglas Reported: 16-May-00 07:45

Notes and Definitions

D-06 Discrete peaks.

P-01 Chromatogram Pattern: Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

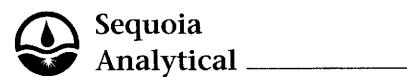
Nº 002165 TOSCO

☐ 885 Jarvis Drive • Morgan Hill, CA 95037 • (408) 776-9500 • FAX (408) 782-6508
☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
☐ 404 N. Wiget Lane • Walnut Creek, CA 94598 • (925) 988-9600 FAX (925) 988-9673
1455 McDowell Blvd. North, Suite D • Petaluma, CA 94954 • (707) 792-1865 FAX (707) 792-0342
☐ 1551 Industrial Road • San Carlos, CA 94070 • (650) 232-9600 FAX (650) 232-9612

Consultant Company: Gettler.	- Ryan			Project N	ame:	1401	58.0	3			
Address: 700 Recluse	d Blud	#104		TOSCO (Engineer (r				Pele	/, ' /\]
City: Novato State:	CA	Zip Code: 94	245		·	· · · · · · · · · · · · · · · · · · ·			W	70 460	
Telephone: 4/5-893-/5/5				Site #, Ci	ty, State:	462	5.00	aK/o	ul	CA	Client
Report To: Teel Douglas					∕ Level	_			□ Leve		
	5 Work Days 1Work Day	☐ 3 Work Days ☐ 2-8 Hours	1	inking Wate aste Water			Ana	llyses Re	quested	1 9: 2:10 72.17	Pir L
CODE: Misc. Detect. Deval.	☐ Remed. ☐ De	emol. 🖸 Closure	Oti	her	S. Med. Caro		is hed Die 2011	S Trailer E	(48)	(1)	_
Client Date/Time Sample I.D. Sampled	Matrix # of Desc. Cont	E 1	Sequoia's Sample #	St. 18	A BIET LEP BEET	St. len egg	A REIS Med DESERVA	Secondary Constitution of the secondary	0/0/	Comments	
1. 55-/ 4-26-00/1230	Soil 4	Holiner C	2/1/1	\times	$\times \times$		\times	\times	$\times \times$	Composite	.00
2.							-			Composite 4 liners to] §
3.										one sample] ×̈,
4.										prior to	Yellow
5.										analyses	_] ۶
6.			·····								
7.						<u> </u>		70		Hard Copy on	e
8.						<u> </u> -		//		data to be	_
9.								<u> </u>		Hord Copy of data to be received by 5-11-00	- is
10.										5-11-00] ğ
Relinquished By:	Da	te: 4-26- ∞ Tir	ne:/ <i>4</i> /	o Recei	ved By	il H	Mmar	→ Da	e:4/4/	Time: /4/0	White - S
Relinquished By:	man Da	te:4/26/00 Tir	me:/5:3	Recei	ved By:/	Eur	<u> </u>	Da	e <i>if <u>26</u></i>	2) Time:/682	\$
Relinquished By:	Da	te:2-2000 Tir	ne:/6. 2	Recei	ved By:	No	(hu)	Da	e: 4/v	5/cv Time: /6:20	
Were Samples Received in Good Condition	? X Yes 🗆 No	Sample	s on Ice?	¥(Yes □	No Meth	od of Shi	pment	ngo of	<u>e</u>	Page of	
To be completed upon receipt of report 1) Were the analyses requested continuous that the report issued within the	on the Chain of C		i? □ Yes	es 🗓 No	If no, w If no, what						-
Approved by:	•	Signature:			Cor	mpany:				Date:	

22 May, 2000

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568


RE: Tosco Sequoia Report: W005115 .

Enclosed are the results of analyses for samples received by the laboratory on 03-May-00 19:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

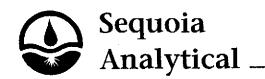
Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco


Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	W005115-01	Water	03-May-00 00:00	03-May-00 19:05
MW-1	W005115-02	Water	03-May-00 14:30	03-May-00 19:05
MW-2	W005115-03	Water	03-May-00 10:25	03-May-00 19:05
MW-3	W005115-04	Water	03-May-00 11:20	03-May-00 19:05
MW-4	W005115-05	Water	03-May-00 14:45	03-May-00 19:05

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

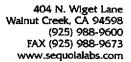
Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W005115-01) Water	Sampled: 03-May-00 00:00	Receiv	ed: 03-M	Iay-00 19:0	5				
Purgeable Hydrocarbons	ND	50	ug/l	1	0E16001	16-May-00	16-May-00	EPA 8015M/8020	·
Benzene	ND	0.50	u	н	*	н	n	11	
Toluene	ND	0.50	**	н	*	n	#	11	
Ethylbenzene	ND	0.50	11	n	**	H	II	q i	
Xylenes (total)	ND	0.50	11	н	**	14	H	H	
Methyl tert-butyl ether	ND	2.5	11 .	n		10	н	π	
- Surrogate: a,a,a-Trifluorotolue	?ne	112 %	70-	-130	*	н	n	"	
MW-1 (W005115-02) Water	Sampled: 03-May-00 14:30	Receive	ed: 03-M	[ay-00 19:0	5				,
Purgeable Hydrocarbons	ND	50	ug/l	1	0E16001	16-May-00	16-May-00	EPA 8015M/8020	
Benzene	ND	0.50	N	H	#	11	II.	н	
Toluene	ND	0.50	н	H	₩	Ħ	Ħ	ħ	
Ethylbenzene	ND	0.50	11	n	11	n	ħ	11	
Xylenes (total)	ND	0.50	11	н .	Ħ	H	41	11	
Methyl tert-butyl ether	11	2.5	11	H	**	H	π	74	
Surrogate: a,a,a-Trifluorotolue	ene	92.3 %	70-	-130	*	11	"	ır	
MW-2 (W005115-03) Water	Sampled: 03-May-00 10:25	Receive	ed: 03-M	ay-00 19:0	5	•			P-01
Purgeable Hydrocarbons	2400	1000	ug/l	20	0E16001	16-May-00	16-May-00	EPA 8015M/8020	
Benzene	53	10	н	Ħ	**	n	**	**	
Toluene	ND	10	H	"	•	n	**	**	
Ethylbenzene	ND	10	H	n	tr.	Ħ	"	11	
Xylenes (total)	240	10	Ħ	n	**	H	"	11	
Methyl tert-butyl ether	ND	50	n		*	**	"		
Surrogate: a,a,a-Trifluorotolue	ene	109 %	70-	-130	"	n	"	"	

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco


Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

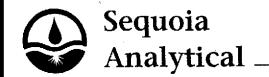
Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	ed: 03-M	ay-00 19:0	5				
Purgeable Hydrocarbons	ND	50	ug/l	1	0E16001	16-May-00	16-May-00	EPA 8015M/8020	
Benzene	ND	0.50	11	п	н	и	H	n	
Toluene	ND	0.50	H	*	11	11	н	*	
Ethylbenzene	ND	0.50	н	11	11	#	"	Ħ	
Xylenes (total)	ND	0.50	и	**	11	n	Ħ	rr	
Methyl tert-butyl ether	ND	2.5	**	•	"	•	"	H	
Surrogate: a,a,a-Trifluorotolue	ene	97.0 %	70-	130	#	#	μ	n	
MW-4 (W005115-05) Water	Sampled: 03-May-00 14:45	Receive	ed: 03-M	ay-00 19:0:	5				
Purgeable Hydrocarbons	ND	50	ug/l	1	0E16001	16-May-00	16-May-00	EPA 8015M/8020	
Benzene	ND	0.50	11		11	es .	11	#	
Toluene	ND	0.50	11	*	**		п	11 .	
Ethylbenzene	ND	0.50	**	*	"	*	W	11	
Xylenes (total)	ND	0.50	11	**	u	**	**	11	
Methyl tert-butyl ether	ND	2.5	***	.,			47	**	
Surrogate: a,a,a-Trifluorotolue	ene	92.7%	70-	130	"	"	*	п	

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625


Project Manager: Deanna L. Harding

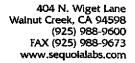
Reported:

22-May-00 10:18

Diesel Hydrocarbons (C9-C24) by DHS LUFT

	R	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	d: 03-Ma	y-00 19:0	5				
Diesel Range Hydrocarbons	93	50	ug/l	1	0E16010	16-May-00	18-May-00	EPA 8015M	D-14
Surrogate: n-Pentacosane		61.0 %	50-1	50	#	#	μ	п	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J


Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

MTBE by EPA Method 8260A

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W005115-02) Water	Sampled: 03-May-00 14:30	Received: 03-May-00 19:05							
Methyl tert-butyl ether	14	2.0	ug/l	1	0E12023	09-May-00	09-May-00	EPA 8260A	
Surrogate: Dibromofluoromethane		104 %	50-150		"	"	n	11	
MW-2 (W005115-03) Water	Sampled: 03-May-00 10:25	Received: 03-May-00 19:05							
Methyl tert-butyl ether	ND	2.0	ug/l	1	0E12023	09-May-00	09-May-00	EPA 8260A	
Surrogate: Dibromofluoromethane		100 %	50-	150	#	#	"	#	
MW-4 (W005115-05) Water Sampled: 03-May-00 14:45 Received: 03-May-00 19:05									
Methyl tert-butyl ether	ND	2.0	ug/l	1	0E12023	09-May-00	10-May-00	EPA 8260A	
Surrogate: Dibromofluoromethane		100 %	50-	150	"	"	"	"	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

Total Metals by EPA 200 Series Methods Sequoia Analytical - Walnut Creek

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	d: 03-M	ay-00 19:05	5				
Chromium	ND	0.010	mg/l	1	0E10023	10-May-00	15-May-00	EPA 200.7	

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Volatile Organic Compounds by EPA Method 8240B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water Sampl	ed: 03-May-00 11:	20 Receive	d: 03-M	ay-00 19:0:	5			•	
Chloromethane	ND	2.0	ug/l	1	0E05016	10-May-00	10-May-00	EPA 8240B	
Vinyl chloride	ND	2.0	#	n		"	,,	ır	
Bromomethane	ND	5.0	•	,,	п	11	#	**	
Chloroethane	ND	2.0		**	**	Ħ	**	u	
Trichlorofluoromethane	ND	2.0		**	77	н	₩	Ħ	
1,1-Dichloroethene	ND	2.0	**	71	#	n	*		
Acetone	ND	10	**	**	**	n	17	n	•
Carbon disulfide	ND	2.0	**	**		Ħ	н	₩	
Methylene chloride	ND	10	n	. 10	"	"	"		
Methyl tert-butyl ether	ND	2.0	11	10		#	**		
trans-1,2-Dichloroethene	ND	2.0	*	U	H		Ħ	н	
Vinyl acetate	ND	5.0	Ħ	,,	H	*	#	"	
1,1-Dichloroethane	ND	2.0	**	,	11	*	н	17	
cis-1,2-Dichloroethene	ND	2.0	•	11	**	11	п	11	
2-Butanone	ND	10	**	**	"		**	11	
Chloroform	ND	2.0	**	**	**			н	
1,1,1-Trichloroethane	ND	2.0	H	31	n	H	ti	п	
Carbon tetrachloride	ND	2.0	**	n		n	II	я	
Benzene	ND	2.0		•		Ħ	10	11	
1,2-Dichloroethane	ND	2.0	H	*		н	"	π	
Trichloroethene	ND	2.0	,,	19 .	.,	Ħ	H	H	
1,2-Dichloropropane	ND	2.0	н .	•	"	11	17	"	
Bromodichloromethane	ND	2.0	n		H	Ħ	Ħ	"	
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	Ħ	n	H	71	n	H	
cis-1,3-Dichloropropene	ND	2.0	**	н	11	41	Ħ	11	
4-Methyl-2-pentanone	ND	10	**	n	11		#	u	
Toluene	ND	2.0	"	11	44	m	n	11	
trans-1,3-Dichloropropene	ND	5.0	•	11	**	n	**	,,	
1,1,2-Trichloroethane	ND	2.0	**	41	**	**			
Tetrachloroethene	ND	2.0			**	Ħ	11	н	
2-Hexanone	ND	10	10	H	17	#	,,	"	
Dibromochloromethane	ND	2.0		•		#	н	17	
Chlorobenzene	ND	2.0	n	P	11		**	117	
Ethylbenzene	ND	2.0	11		H	**	#	**	
Total Xylenes	ND	2.0	11	н	11		*		
Styrene	ND	2.0	11	н	11	n	#	₩	
Bromoform	ND	2.0	**	"		11	11		
1,1,2,2-Tetrachloroethane	ND	2.0		**	**	н	,,	n	

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Volatile Organic Compounds by EPA Method 8240B Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water Samp	led: 03-May-00 11:20	Receive	d: 03-Ma	y-00 19:0	5				
1,3-Dichlorobenzene	ND	2.0	ug/l	1	0E05016	10-May-00	10-May-00	EPA 8240B	
1,4-Dichlorobenzene	ND	2.0	Ħ	*1	Ħ	н	"	#	
1,2-Dichlorobenzene	ND	2.0	11	**	11		"	ii .	
Surrogate: Dibromofluoromethane		98.0 %	50-1	50	"	"	r		_
Surrogate: 1,2-Dichloroethane-d4		106 %	50-1	50	*	"	#	"	
Surrogate: Toluene-d8		100 %	50-1	50	"	r	"	• *	
Surrogate: 4-Bromofluorobenzene		100 %	50-1	50	#	r	*	"	

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

· · · · · · · · · · · · · · · · · · ·	- Sequen					•			
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	d: 03-M	ay-00 19:0:	5		,		
Acenaphthene	ND	5.0	ug/l	1	0E05010	05-May-00	17-May-00	EPA 8270B	
Acenaphthylene	ND	5.0	n	tt	**	71	71	#	•
Aniline	ND	5.0	n	Ħ	**	ta ta	**	#	
Anthracene	ND	5.0	h	Ħ	-		•	,,	
Benzoic acid	ND	10	19	**	**	u u	"	u	
Benzo (a) anthracene	ND	5.0	#	11	u.	H		11	
Benzo (b) fluoranthene	ND	5.0	#		Ħ	"	"	•	
Benzo (k) fluoranthene	ND	5.0	11		**	17	rr	•	
Benzo (ghi) perylene	ND	5.0	**		n	н	11	ø	
Benzo[a]pyrene	ND	5.0	**	**	11	н	n	tr .	
Benzyl alcohol	ND	5.0	**	**	**	#		**	
Bis(2-chloroethoxy)methane	ND	5.0	*			"	-	Ħ	
Bis(2-chloroethyl)ether	ND	5.0	67	"		**		11	
Bis(2-chloroisopropyl)ether	ND	5.0	**	If	**	*	11	11	
Bis(2-ethylhexyl)phthalate	ND	10	**	н		W	n	**	
4-Bromophenyl phenyl ether	ND	5.0)1	11	n	п	п		
Butyl benzyl phthalate	ND	5.0	*	**	н	11	11		
4-Chloroaniline	ND	10	n	11	n	11	н	m	
2-Chloronaphthalene	ND	5.0	#	78	,,,	11			
4-Chloro-3-methylphenol	ND	5.0	*1	*	11		**	n	
2-Chlorophenol	ND	5.0	n		и	n	#	**	
4-Chlorophenyl phenyl ether	ND	5.0	#1	**	Ħ		n n	n	
Chrysene	ND	5.0		a	11	P		11	
Dibenz (a,h) anthracene	ND	5.0	**		11	n	,,	#	
Dibenzofuran	ND	5.0	•	н	*	n	H	er	
Di-n-butyl phthalate	ND	10	•	n	59	11	n	n	
1,2-Dichlorobenzene	ND	5.0		11	*	**		Ħ	
1,3-Dichlorobenzene	ND	5.0		**	н	11	я	"	
1,4-Dichlorobenzene	ND	5.0	н	**	W	**	**	**	
3,3'-Dichlorobenzidine	ND	10	Ħ	n	Ħ	**			
2,4-Dichlorophenol	ND	5.0	#	**	Ħ			Ħ	
Diethyl phthalate	ND	5.0	11	π		**	п	**	
2,4-Dimethylphenol	ND	5.0	#	,,		**		•	
Dimethyl phthalate	ND	5.0	п	n	77		н	n	
4,6-Dinitro-2-methylphenol	ND	10	11	*	te .		11	1*	
2,4-Dinitrophenol	ND	10	**	**		. *		11	
2,4-Dinitrotoluene	ND	5.0		11	н		ļi.	n	
2,6-Dinitrotoluene	ND	5.0	п	**	H		,	Ħ	
-,~ L'ALEVOINGIE	ND	2.0							

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	d: 03-May	/-00 19: 0:	5				·
Di-n-octyl phthalate	ND	5.0	ug/l	1	0E05010	05-May-00	17-May-00	EPA 8270B	***************************************
Fluoranthene	ND	5.0	0	•		n	11	Ħ	
Fluorene	ND	5.0	n	4	**	#	n n	11	
Hexachlorobenzene	ND	5.0	"		**	11	11	"	
Hexachlorobutadiene	ND	5.0	ft	H	*	#	tt		
Hexachlorocyclopentadiene	ND	10	11	"		n	Ħ	•	
Hexachloroethane	ND	5.0	H	tr		11	**	•	
Indeno (1,2,3-cd) pyrene	ND	5.0	11	H	n	н	н	*	
Isophorone	ND	5.0	n	н	н	11	**	w [~]	
2-Methylnaphthalene	ND	5.0		,,	11	и		P	
2-Methylphenol	ND	5.0	If	**	n	u u	n	Ħ	
4-Methylphenol	ND	5.0	,,	#	н		n .	Ħ	
Naphthalene	ND	5.0	P		₩.		H	۹ .	
2-Nitroaniline	ND	10	n	**	t y	H	n	н	
3-Nitroaniline	ND	10	91	N.		п	U	**	
4-Nitroaniline	ND	10	"	Ħ	"	*	n	•	
Nitrobenzene	ND	5.0	n	11	н	π	₩		
2-Nitrophenol	ND	5.0	*	И	п	Ħ	17	"	
4-Nitrophenol	ND	10		11	н	n	11	**	
N-Nitrosodimethylamine	ND	5.0		"		n	"	н	
N-Nitrosodiphenylamine	ND	5.0		*	-	*	Ħ	Ħ	
N-Nitrosodi-n-propylamine	ND	5.0	*	*	#	n	ut .	v	
Pentachlorophenol	ND	10	Ħ		"	rt	Ħ	**	
Phenanthrene	ND	5.0	41	n	. P	#	Ħ		
Phenol .	ND	5.0	11	N	H	n	m	11	
Pyrene	ND	5.0	•	11	Ħ	**	17	11	
1,2,4-Trichlorobenzene	ND	5.0	#	**	11	Ħ .	Ħ	#1	
2,4,5-Trichlorophenol	ND	10	Ħ	11	**		11	11	
2,4,6-Trichlorophenol	ND	5.0	*	*	٠ ٣	**	**	**	
Surrogate: 2-Fluorophenol		40.7 %	21-11	0	7	"	"	н	
Surrogate: Phenol-d6		25.8 %	10-11		"	a	*	*	
Surrogate: Nitrobenzene-d5		67.5 %	35-11		· #	n	*	#	•
Surrogate: 2-Fluorobiphenyl		73.4 %	43-11		#		n	"	
Surrogate: 2,4,6-Tribromophene		76.7 %	10-12		"	*	#	"	
Surrogate: p-Terphenyl-d14		79.3 %	33-14		"	#	,,	n	

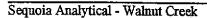
404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Project: Tosco

Project Number: Tosco # 4625

Reported:

Dublin CA, 94568

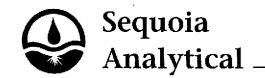

Project Manager: Deanna L. Harding

22-May-00 10:18

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Walnut Creek

	Re	porting			····				<u> </u>
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W005115-04) Water	Sampled: 03-May-00 11:20	Receive	ed: 03-M	ay-00 19:0:	5				
TRPH	ND	5.0	mg/l	1	0E21002	21-May-00	22-May-00	SM 5520B/F	


Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E16001 - EPA 5030B [P/T]		····								
Blank (0E16001-BLK1)				Prepared	& Analyz	ed: 16-Ma	y-00			
Purgeable Hydrocarbons	ND	50	ug/l					····		 - ·- · -
Benzene	ND	0.50	**							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	#							
Xylenes (total)	ND	0.50	#							
Methyl tert-butyl ether	ND	2.5								
Surrogate: a, a, a-Trifluorotoluene	30.6	<u>.</u> .	"	30.0		102	70-130			
LCS (0E16001-BS1)				Prepared	& Analyzo	d: 16-Ma	y-00			
Benzene	18.4	0.50	ug/l	20.0		92.0	70-130			
Toluene	20.1	0.50	Ħ	20.0		101	70-130			
Ethylbenzene	22.1	0.50	#	20.0		111	70-130			
Xylenes (total)	65.1	0.50	**	60.0		108	70-130			
Surrogate: a,a,a-Trifluorotoluene	28.3		#	30.0		94.3	70-130			
LCS Dup (0E16001-BSD1)				Prepared	& Analyze	:d: 16-Ma	y-00			
Benzene	18.5	0.50	ug/l	20.0		92.5	70-130	0.542	20	
Toluene	20.0	0.50	,	20.0		100	70-130	0.499	20	
Ethylbenzene	21.4	0.50	H	20.0		107	70-130	3.22	20	
Xylenes (total)	65.0	0.50	n	60.0		108	70-130	0.154	20	
Surrogate: a,a,a-Trifluorotoluene	27.3		н	30.0		91.0	70-130		 	· · · · · · · · · · · · · · · · · · ·

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E16010 - EPA 3510B										
Blank (0E16010-BLK1)				Prepared:	16-May-0	0 Analyz	ed: 18-Ma	y-00		
Diesel Range Hydrocarbons	ND	50	ug/l					-		,
Surrogate: n-Pentacosane	21.3		п	33.3		64.0	50-150			
LCS (0E16010-BS1)				Prepared:	16-May-0	0 Analyz	ed: 18-Ma	y-00		
Diesel Range Hydrocarbons	423	50	ug/l	500		84.6	60-140	•		
Surrogate: n-Pentacosane	20.3		n	33.3	 -	61.0	50-150			
LCS Dup (0E16010-BSD1)				Prepared:	16-May-0	0 Analyz	ed: 18-Ma	y-00		
Diesel Range Hydrocarbons	437	50	ug/l	500		87.4	60-140	3.26	50	
Surrogate: n-Pentacosane	17.7			33.3		53.2	50-150			·

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

MTBE by EPA Method 8260A - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E12023 - EPA 5030B [P/T]					····					
Blank (0E12023-BLK1)			•	Prepared	& Analyz	ed: 09-Ma	v-00		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
Methyl tert-butyl ether	ND	2.0	ug/l				·			
Surrogate: Dibromofluoromethane	49.0		"	50.0	<u> </u>	98.0	50-150			
Blank (0E12023-BLK3)				Prepared	& Analyz	ed: 15-Ma	v-00			
Methyl tert-butyl ether	ND	2.0	ug/l				·,			
Surrogate: Dibromofluoromethane	49.0		"	50.0	 	98.0	50-150			· · · · · ·
LCS (0E12023-BS1)				Prepared	& Analyz	ed: 09 -M a	y-00			
Methyl tert-butyl ether	54.2	2.0	ug/l	50.0	-	108	70-130		· · · · ·	
Surrogate: Dibromofluoromethane	48.0		<i>n</i>	50.0		96.0	50-150			·
LCS (0E12023-BS3)				Prepared a	& Analyz	ed: 15-Ma	v-00			
Methyl tert-butyl ether	48.9	2.0	ug/l	50.0		97.8	70-130			
Surrogate: Dibromofluoromethane	50.0	, <u> </u>	"	50.0		100	50-150			
Matrix Spike (0E12023-MS1)	So	urce: W0051;	14-02	Prepared a	& Analyza	ed: 09-Ma	v-00			
Methyl tert-butyl ether	51.7	2.0	ug/l	50.0	ND	103	60-150			
Surrogate: Dibromofluoromethane	48.0		"	50.0		96.0	50-150			
Matrix Spike Dup (0E12023-MSD1)	So	urce: W00511	4-02	Prepared a	& Analyze	xl: 09-Ma	v-00			
Aethyl tert-butyl ether	58.0	2.0	ug/l	50.0	ND	116	60-150	11.5	25	·
urrogate: Dibromofluoromethane	49.0		#	50.0		98.0	50-150			

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E10023 - 200.7										
Blank (0E10023-BLK1)	'			Prepared:	10-May-0	00 Analyz	ed: 15-Ma	y-00		
Chromium	ND	0.010	mg/l					<u>-</u>		
LCS (0E10023-BS1)				Prepared:	10-May-(0 Analyz	ed: 15-Ma	y-00		
Chromium	1.00	0.010	mg/l	1.00		100	80-120	<u></u>		
LCS Dup (0E10023-BSD1)				Prepared:	10-May-0	0 Analyz	ed: 15-Ma	y-00		
Chromium	1.00	0.010	mg/l	1.00		100	80-120	0	20	
Matrix Spike (0E10023-MS1)	So	urce: W0052	17-01	Prepared:	10-May-0	0 Analyz	ed: 15-Ma	y-00		
Chromium	1.00	0.010	mg/l	1.00	ND	100	80-120	-		
Matrix Spike Dup (0E10023-MSD1)	So	urce: W0052	17-01	Prepared:	10-May-0	0 Analyz	ed: 15-Ma	y-00		
Chromium	0.970	0.010	mg/l	1.00	ND	97.0	80-120	3.05	20	

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	D -14	Reporting	T7 '	Spike	Source	******	%REC		RPD	3. .
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E05016 - EPA 5030B [P/T]										
Blank (0E05016-BLK4)				Prepared	& Analyz	ed: 09-Ma	y-00			·
Chloromethane	ND	2.0	ug/l							
Vinyl chloride	ND	2.0	**							
Bromomethane	ND	5.0	H							
Chloroethane	ND	2.0	11							
Trichlorofluoromethane	ND	2.0	н							
1,1-Dichloroethene	ND	2.0	#1							
Acetone	ND	10								
Carbon disulfide	ND	2.0	· w							
Methylene chloride	ND	10	*							
Methyl tert-butyl ether	ND	2.0	*							
trans-1,2-Dichloroethene	ND	2.0								
Vinyl acetate	ND	5.0	*							
I,I-Dichloroethane	ND	2.0	Ħ							
eis-1,2-Dichloroethene	ND	2.0	11							
2-Butanone	ND	10	**							
Chloroform	ND	2.0	**							
,1,1-Trichloroethane	ND	2.0								
Carbon tetrachloride	ND	2.0								
Benzene	ND	2.0	-							
1,2-Dichloroethane	ND	2.0	#							
Trichloroethene	ND	2.0	u							
,2-Dichloropropane	ND	2.0	H							
Bromodichloromethane	ND	2.0	н							
2,2,5,5-Tetramethyltetrahydrofuran	ND	2.0	11							
is-1,3-Dichloropropene	ND	2.0	"							
-Methyl-2-pentanone	ND	10	**							
Coluene	ND	2.0	н							
rans-1,3-Dichloropropene	ND	5.0								
,1,2-Trichloroethane	ND	2.0	н							
etrachloroethene	ND	2.0	11							
-Hexanone	ND	10	#							
Dibromochloromethane	ND	2,0	#							
Chlorobenzene	ND	2.0	**		•					
thylbenzene	ND	2.0	77							

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

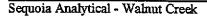
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E05016 - EPA 5030B [P/T]							-			
Blank (0E05016-BLK4)				Prepared	& Analyz	ed: 09-Ma	ıy-00			
Total Xylenes	ND	2.0	ug/l		····		<u> </u>			
Styrene	ND	2.0	*							
Bromoform	ND	2.0	н							
,1,2,2-Tetrachloroethane	ND	2.0	n							
,3-Dichlorobenzene	ND	2.0	Ħ							
,4-Dichlorobenzene	ND	2.0								
,2-Dichlorobenzene	ND	2.0	#							
urrogate: Dibromofluoromethane	48.0		"	50.0		96.0	50-150			
urrogate: 1,2-Dichloroethane-d4	48.0		"	50.0		96.0	50-150			
urrogate: Toluene-d8	48.0		"	50.0		96.0	50-150			
urrogate: 4-Bromofluorobenzene	51.0		"	50.0		102	50-150			
.CS (0E05016-BS4)				Prepared	& Analyza	ed: 09-Ma	y-00			
1-Dichloroethene	54.1	2.0	ug/l	50.0		108	65-135			
fethyl tert-butyl ether	54.2	2.0	н	50.0		108	70-130			
enzene	53.8	2.0	P	50.0		108	70-130			
richloroethene	56.1	2.0	H	50.0		112	70-130			
oluene	54.9	2.0	11	50.0		110	70-130			
hlorobenzene	54.2	2.0	"	50.0		108	70-130			
urrogate: Dibromofluoromethane	48.0	 	"	50.0		96.0	50-150			
urrogate: 1,2-Dichloroethane-d4	48.0		"	50.0		96.0	50-150	-		
urrogate: Toluene-d8	48.0		"	50.0		96.0	50-150			
urrogate: 4-Bromofluorobenzene	51.0		#	50.0		102	50-150			•
Iatrix Spike (0E05016-MS1)	So	urce: W0050	93-01	Prepared a	& Analyze	d: 05-Ma	y-00			
1-Dichloroethene	51.9	2.0	ug/i	50.0	ND	104	60-140		•	
ethyl tert-butyl ether	52.2	2.0	и	50.0	ND	104	60-140			
enzene	52.7	2.0	17	50.0	ND	105	60-140			
richloroethene	53.3	2.0	**	50.0	ND	107	60-140			
bluene	53.0	2.0	#	50.0	ND	106	60-140			
hlorobenzene	52.3	2.0	п	50.0	ND	105	60-140			
rrogate: Dibromofluoromethane	49.0		11	50.0		98.0	50-150			
urrogate: 1,2-Dichloroethane-d4	48.0		"	50.0		96.0	50-150			
urrogate: Toluene-d8	48.0		**	50.0		96.0	50-150			
urrogate: 4-Bromofluorobenzene	50.0		"	50.0		100	50-150			

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625


Project Manager: Deanna L. Harding

Reported:

22-May-00 10:18

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E05016 - EPA 5030B [P/T]										
Matrix Spike Dup (0E05016-MSD1)	So	urce: W0050	93-01	Prepared	& Analyz	y-00				
1,1-Dichloroethene	54.6	2.0	ug/l	50.0	ND	109	60-140	5.07	25	
Methyl tert-butyl ether	57.0	2.0	**	50.0	ND	114	60-140	8.79	25	
Benzene	55.3	2.0	Ħ	50.0	ND	111	60-140	4.81	25	
Trichloroethene	56.1	2.0	н	50.0	ND	112	60-140	5.12	25	
Toluene	54.8	2.0	H	50.0	ND	110	60-140	3.34	25	
Chlorobenzene	54.1	2.0	n	50.0	ND	108	60-140	3.38	25	
Surrogate: Dibromofluoromethane	50.0	a	n	50.0		100	50-150			<u> </u>
Surrogate: 1,2-Dichloroethane-d4	50.0			50.0		100	50-150			
Surrogate: Toluene-d8	48.0		Ħ	50.0		96.0	50-150			
Surrogate: 4-Bromofluorobenzene	52.0		и	50.0		104	50-150			

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

	_	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E05010 - EPA 3510B										,
Blank (0E05010-BLK1)			·····	Prepared:	05-May-0	0 Analyz	ed: 09-Ma	y-00	 	
Acenaphthene	ND	5.0	ug/l				<u> </u>	<u>-</u>		
Acenaphthylene	ND	5.0	11							
Aniline	ND	5.0	n							
Anthracene	ND	5.0	**							
Benzoic acid	ND	10	,,							•
Benzo (a) anthracene	ND	5.0								
Benzo (b) fluoranthene	ND	5.0	"							
Benzo (k) fluoranthene	ND	5.0	N							
Benzo (ghi) perylene	ND	5.0	н							
Benzo[a]pyrene	ND	5.0	H				•			
Benzyl alcohol	ND	5.0	n							
Bis(2-chloroethoxy)methane	ND	5.0	н							
Bis(2-chloroethyl)ether	ND	5.0	Ħ							
Bis(2-chloroisopropyl)ether	ND	5.0	11							
Bis(2-ethylhexyl)phthalate	ND	10	n							
4-Bromophenyl phenyl ether	ND	5,0	•							
Butyl benzyl phthalate	ND	5.0								
4-Chloroaniline	ND	10	"							
2-Chloronaphthalene	ND	5.0	н							
4-Chloro-3-methylphenol	ND	5.0	n							
2-Chlorophenol	ND	5.0	Ħ							
-Chlorophenyl phenyl ether	ND	5,0								
Chrysene	ND	5.0	N						-	
Dibenz (a,h) anthracene	ND	5.0	#							
Dibenzofuran	ND	5.0	•							
Di-n-butyl phthalate	ND	10								
,2-Dichlorobenzene	ND	5.0	IP.							
,3-Dichlorobenzene	ND	5.0	Ħ							
,4-Dichlorobenzene	ND	5.0	*							
,3'-Dichlorobenzidine	ND	10	#							
,4-Dichlorophenol	ND	5.0								
Diethyl phthalate	ND	5.0	#							
,4-Dimethylphenol	ND	5.0	#							
Dimethyl phthalate	ND	5.0	**							

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E05010 - EPA 3510B							•			
Blank (0E05010-BLK1)				Prepared:	05-May-0	0 Analyz	ed: 09-Ma	y-00		
4,6-Dinitro-2-methylphenol	ND	10	ug/l							
2,4-Dinitrophenol	ND	10								
2,4-Dinitrotoluene	ND	5.0	**							
2,6-Dinitrotoluene	ND	5.0	н							
Di-n-octyl phthalate	ND.	5.0	11							
Fluoranthene	ND	5.0	11							
Fluorene	ND	5.0	**							
Hexachlorobenzene	ND	5.0	10							
Hexachlorobutadiene	ND	5.0	**							
Hexachlorocyclopentadione	ND	10	**							
Hexachloroethane	ND	5.0	H							
indeno (1,2,3-cd) pyrene	ND	5.0	n							
sophorone	ND	5.0	"							
-Methylnaphthalene	ND	5.0	н							
-Methylphenol	ND	5.0	"							
-Methylphenol	ND	5.0	"							
Vaphthalene	ND	5.0	н							
2-Nitroaniline	ND	10	*							
-Nitroaniline	ND	10								
-Nitroaniline	ND	10								
Vitrobenzene	ND	5.0	,					•		
-Nitrophenol	ND	5.0	H							
-Nitrophenol	ND	10	н							
V-Nitrosodimethylamine	ND	5.0	n							
I-Nitrosodiphenylamine	ND	5.0	77							
I-Nitrosodi-л-ргоруlamine	ND	5.0								
entachlorophenol	ND	10								
henanthrene	ND	5.0	n							
henol	ND	5.0	. н							
угеле	ND	5.0	**							
,2,4-Trichlorobenzene	ND	5.0	н							
,4,5-Trichlorophenol	ND	10	Ħ							
,4,6-Trichlorophenol	ND	5.0								
urrogate: 2-Fluorophenol	67.1		н	150		44.7	21-110			

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 4625
Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E05010 - EPA 3510B										
Blank (0E05010-BLK1)				Prepared:	05-May-0	0 Analyz	ed: 09-Ma	y-00		
Surrogate: Phenol-d6	39.7		ug/l	150		26.5	10-110		-	
Surrogate: Nitrobenzene-d5	75.1		"	100		75.1	35-114			
Surrogate: 2-Fluorobiphenyl	78.7		n	100		78.7	43-116			
Surrogate: 2,4,6-Tribromophenol	109		"	150		72.7	10-123			
Surrogate: p-Terphenyl-d14	82.1		"	100		82.I	33-141			
LCS (0E05010-BS1)				Prepared:	05-May-0	0 Analyz	ed: 09-Ma	y-00		
Acenaphthene	79,2	5.0	ug/l	100		79.2	46-118			
4-Chloro-3-methylphenol	106	5.0	n	150		70.7	23-97			
2-Chlorophenol	104	5.0	n ·	150		69.3	27-123			
1,4-Dichlorobenzene	74.5	5.0	n	100		74.5	36-97			
2,4-Dinitrotoluene	74.7	5.0	n	100		74.7	24-96			
4-Nitrophenol	28.3	10	Ħ	150		18.9	10-80			
N-Nitrosodi-n-propylamine	77.0	5.0		100		77.0	41-116			
Pentachlorophenol	109	10	•	150		72.7	9-103			
Phenol	36.9	5.0	-	150		24.6	12-110			
Pyrene	84.9	5.0		100		84.9	26-127			
1,2,4-Trichlorobenzene	77,7	5.0		100		77.7	39-98			
Surrogate: 2-Fluorophenol	63.7	• •=	tr	150		42.5	21-110		 .	
Surrogate: Phenol-d6	36.1		#	150		24.1	10-110			
Surrogate: Nitrobenzene-d5	79.2		"	100		79.2	35-114			
Surrogate: 2-Fluorobiphenyl	82.2		,,	100		82.2	43-116			
Surrogate: 2,4,6-Tribromophenol	117		"	150		78.0	10-123			
Surrogate: p-Terphenyl-d14	84.6		#	100		84.6	33-141			
LCS Dup (0E05010-BSD1)				Prepared:	05-May-00) Analyze	:d: 09-May	y-00		
Acenaphthene	78,3	5.0	ug/l	100		78.3	46-118	1.14	30	
-Chloro-3-methylphenol	105	5.0	Ħ	150		70.0	23-97	0.948	30	
-Chlorophenol	105	5.0	Ħ	150		70.0	27-123	0.957	30	
1,4-Dichlorobenzene	76.7	5.0	**	100		76.7	36-97	2.91	30	
2,4-Dinitrotoluene	76.8	5.0	n	100		76.8	24-96	2.77	30	
-Nitrophenol	34.5	10	*	150		23.0	10-80	19.7	30	
I-Nitrosodi-n-propylamine	78.0	5.0	#	100		78.0	41-116	1.29	30	
Pentachlorophenol	113	10	h	150		75.3	9-103	3,60	30	
Phenol	39.9	5.0	,,	150		26.6	12-110	7.81	30	
Pyrene	82.2	5.0	n	100					30	
. J = _ao-	04.2	5.0		100		82.2	26-127	3.23	30	

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 4625

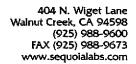
Project Manager: Deanna L. Harding

Reported: 22-May-00 10:18

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E05010 - EPA 3510B						· <u> </u>				
LCS Dup (0E05010-BSD1)				Prepared:	05-May-(0 Analyz	ed: 09-Ma	y-00		
1,2,4-Trichlorobenzene	77.0	5.0	ug/l	100		77.0	39-98	0.905	30	• • • • • • • • • • • • • • • • • • • •
Surrogate: 2-Fluorophenol	65.2		"	150		43.5	21-110			
Surrogate: Phenol-d6	38.7		"	150		25.8	10-110			
Surrogate: Nitrobenzene-d5	78.4		#	100		78.4	35-114			
Surrogate: 2-Fluorobiphenyl	80.1		"	100		80.1	43-116			
Surrogate: 2,4,6-Tribromophenol	119		"	150		79.3	10-123			
Surrogate: p-Terphenyl-d14	<i>79.8</i>		"	100		79.8	33-141			

Dublin CA, 94568


Project: Tosco

Project Number: Tosco # 4625 Project Manager: Deanna L. Harding Reported:

22-May-00 10:18

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E21002 - EPA 3510B					•				•	
Blank (0E21002-BLK1)				Prepared:	21-May-0	0 Analyz	ed: 22-Ma	y-00		
TRPH	ND	5.0	mg/l	·						
LCS (0E21002-BS1)				Prepared:	21-May-0	0 Analyz	ed: 22-Ma	y-00		
TRPH	115	5.0	mg/l	100		115	70-130			
LCS Dup (0E21002-BSD1)				Prepared:	21-May-0	0 Analyz	ed: 22-Ma	y-00		
TRPH	95.3	5.0	mg/l	100		95.3	70-130	18.7	30	

6747 Sierra Court Suite J

Dublin CA, 94568

D-14

Project: Tosco

Project Number: Tosco # 4625

Project Manager: Deanna L. Harding

Reported:

22-May-00 10:18

Notes and Definitions

Chromatogram Pattern: Unidentified Hydrocarbons C9-C24

P-01 Chromatogram Pattem: Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Conlact (Name)
(Phone)
Sequola Analytical
Laboratory Relagae Number
Samples Collected by (Hame) HAIG KEVORK
Collection Date 5/3/2000
Signature 1000000 DOC (4177)
Analyses To Be Performed D

Toogs Marketing	Composi					_CourtS			սիլքո	1,CA	<u>9456</u>	<u>x</u> s	aolqmoi	Collecte	d by (H	ame)	<u> </u>	100		11	
2000 Cary Caryon	: PL, Š4s. 400 prais \$4563		roject C	ontact (N	ome) D	eanna L.	Hardi	ng				_ ٩	collection		200	$\frac{2}{\sqrt{a}}$	717		11 (1)	14	
•				(P)	hone) <u>92</u>	<u>5-551-755</u>	25_(Fax	Humber	1425.	<u> 551-</u>	7888	_ 5	ilgnoturø	<u> (X)</u>	W. C			700	14		
			9			- Anghress To Re Performed											DO NOT BILL				
		Ę	Ar Charced	1 A		e 1		<u> </u>			p g	3		8 .		091	5				TB-LB ANALYSI
	₽ q£	Containen	7 t	Grab Composite Discrete		ratio	<u></u>	E (02)			8 4	Ę	anle	ing.		38	3	/			
Ě	₹ •	3	√υ	ថ្ងៃក		•	8	ង្គ		Ş.,		Ę	ő	ō .•	33	ه	75	/		1	
27.	i di	٦.	10 0	000		ď.	<u>بر</u>	in .	5)	9 (S	30	¥ ₹2	4 €	196	16. P	3E	25	Y			
Sampie Numbe	Lab Sample Number	Number	Matura S = Soll W = Woter	ž.	The	Somple Preservation	load (Yes or No)	TPH Gat BTEX WANTBE	7PH Diesel (8015)	Oil and Greater (5520)	Purpeable Halacarbora (8010)	Purgeable Aramatica (8020)	Purgeable Organica (8240)	Extractable Organica (8270)	Metals C4Cr.Pb.Zn.Ni (ICAP or AA)	E	TOTAL CHROMIUM				Remorke
ν,	٥	2	207					F								≥	· u				
TB-LB	011		W	بی		Hcl	YES	V.	<u> </u>				-		-			· .			
MW-1	orto	3	W	G	14:30	Hcl		$\langle \boldsymbol{\nu} \rangle$								1/	<u> </u>			<u> </u>	
MW-2	03 1	3	W	6	10:95	Hel		V							<u> </u>	V				ļ	
Mw-3	04A-J	10	W	G	11:20	HCECEVOR		V	V	V			1	~)	1	1		<u> </u>		
MW-4	05A-C	3	W.		14:45		1	V					- L. L. 18 ⁴⁴			V	<u> </u>				
1·1·0-7	- N)	- 00.	1	1.1.	1100		<u> </u>	<u> </u>							·					
				 		,							1-			·			-		
			·		· · · · · ·	<u> </u>		}		<u> </u>			-								
						·	<u> </u>		<u> </u>	 			_				 	ļ 	 	 	
						ļ	.[ļ							 		 		
										ļ			-		ļ		ļ	ļ			
						_							<u> </u>			ļ	<u> </u>		 	ļ	
										<u> </u>									<u> </u>	<u> </u>	<u></u>
																		<u> </u>		<u> </u>	
				1			·	1									1				
O Walidahad Bu	991	' ^\	\ \lom	onization	' 	J Dale/Time	Rec	elyed B	y (Sign	oture)		<u> </u>	Organizal	lon	Dal	•/Tim•			Tum Ar	ound Ti	me (Circle Cholee)
"KJOOLKI	XXXX		TAJII	-R Inc		5/3/00 5/3/00									_						Hre.
Relinquished By	(Signature)		/// }	anization		Dale/Ilme		elved E	y (Slgn	olure)		-	Organizal	lion	Del	•/Ilm•					Hre. Doys
		_	1		. }								-,								Dove
Relinquished By	(Signature)		010	nollation		Dale/Time	Red	aleved F	or Labo	rolory i	3y (Signe	ılur•)			Dat	•/Tim•		_		_	ntracted
remineration of Conference of							5/3/00 19:05														

TOSO Toso Shrinding (2000 City Corpor Eas Resett, Collect	:O	Project Contact (Name) JED DOUGLAS (Phone) 925-551-7356ax Number) 925-557-7888 Signature Signature												PIG KEVORK ED DO NOT BILL									
Sample Mumber	Lub Sample Number	Number of Containers	Metric S = Seli A = Air W = Noter C = Charcool	Type G = Grub C = Composite D = Discrete	Ifre	Sample Preservation	load (Yes or No)	THI Gas + BTEX WANTEE BOTEI BOZOI	TPH Ciesed (9015)		Purpeable Halocarbons (8010)	Purgeable Aramatics (8020)	1		WIND CAM 17	RCI	96 hr. FISH	Total Chanide		X MTBE by 8260	TB-LB ANALYSIS Remorks		
W(R-149)		12	W	G	14:25	Her (E AOH)	4	X		<u> </u>			X	<u> </u>	X	×	×	X	<u> </u>	尸	·		
					<u> </u>		<u> </u>			 				<u> </u>			 		-				
				<u> -</u>	 			 		 				٠.		<u> </u>			1				
			 	 	 			 	 				-			-							
				-	 		<u> </u>	┼─	╁──	-					 		 						
			<u> </u>	 	 	 		╂──	+-	 					 		1						
			 		 			┼	┨	 	 												
1			 	-	-	<u> </u>		\dagger	 	1													
		 	 	 	 	 		_	1	1													
		 	 	1	+	-		-	1	1	1				·								
				┼-	+			1	+-	 					1			·					
		-	+	╁──	 		,	1-	+		1	!											
].		 			1	1		1	1									<u> </u>		
Hools			// Jon	genization —R Inc	c.	Date/Time 5 / 3 / 80	Re	Received By (Signature)					Organiza		De	te/Time	•	Turn Around Time (Circle Choice) 24 Hre.					
Relinguished By	(Signature)	e CAT	Or	genization	,	Date/Time	Re	Received By (Signature)					Organiza	tion	Do	lo/Time	, '			5	B Hre. Days		
Retinquished By	(Signature))	Or	ganizatio	n	Date/Time	Realeved For Laboratory By (Signatur					ature)						O Daye Contracted					

APPENDIX G FORWARD LANDFILL WASTE ACCEPTANCE LETTER

NORTHERN CALIFORNIA SALES OFFICE • SPECIAL WASTE

Forward • Keller Canyon • Newby Island • Ox Mountain

GETTLER-RYAN, INC.

GENERAL CONTRACTOR

Gettler-Ryan, Inc. 7100 Redwood Blvd, Ste 104 Novato, CA 94583

Attn: Mr. Douglas

Re:

Approval No. 952200 Gasoline Contaminated Soil Station #4625 3070 Fruitvale Ave

Dear Mr. Douglas:

FORWARD INC. is pleased to inform you that the approximately 5 tons of Gasoline Contaminated Soil from the referenced site has been approved for acceptance at our Manteca, California Landfill as a Class 2 waste. This approval has been based on the information provided in the waste profile and associated materials submitted on behalf of Tosco Marketing Company (Generator). Acceptance of the waste is subject to regulatory requirements, and is also subject to the "Terms and Conditions" agreed to and signed by Generator in the waste profile.

Your approval number for this project will be 952200. This number should be used in all scheduling and correspondence with *FORWARD*, *INC*, regarding this waste profile.

This profile shall remain in effect until May 24, 2001, or until any significant changes in the waste stream occur. At that time, *FORWARD*, *INC*. will re-evaluate the profile, and current analytical data and requirements will be reviewed.

Please schedule all waste shipments with the Landfill (209-982-4298) at least 24 hours in advance. The landfills hours of operation are Monday through Friday 6:00 am to 6:00 pm for soil, 6:00 am to 3:00 pm for asbestos, 6:00 am to 5:00 pm for all other waste types.

Thank you for the opportunity to be of service. Should you have any questions, please do not hesitate to contact me or our Customer Service at (800) 204-4242.

Sincerely,

Allied Waste Industries

Brad J. Bonner

Special Waste Sales Manager

ford formericle

Northern, CA

BJB/dc

F:\FORWARD\MERGE FORMS\ACCEPT.DOC

1145 West Charter Way, Stockton, CA 95206 Phone 800.204.4242 Fax 209.466.1067