

10626 East 14th Street, Oakland, California

PROTECTION

00 NOV 21 PH 4: 03

C.

94603□ (510) 577-8804 FAX□ (510) 577-8859

Mr. Barney Chan

November 17, 2000

Alameda County Health Division Division of Environmental Protection Department of Environmental Health 1131 Harbor Bay Parkway, Second Floor Alameda, CA 94502

Dear Mr. Chan:

Subject: Quarterly Groundwater Monitoring Report

AC Transit. 1100 Seminary Avenue, Oakland, CA

AC Transit hereby submits the enclosed quarterly groundwater monitoring report for the third quarter of 2000 for the AC Transit facility located at 1100 Seminary Avenue in Oakland. The report was prepared by our consultant, Safety-Kleen Consulting. The report contains responses to your August 30, 2000, letter regarding the information needed in order to meet closure requirements.

Groundwater samples were collected from the six on-site monitoring wells on August 22, 2000. Samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline and diesel using EPA Method 8015, benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyltert butyl ether (MTBE) using EPA Method 8260B and nitrate and sulfate using Standard Methods 300.0A. Field parameters collected during sampling included pH, temperature, electrical conductivity, dissolved oxygen, ferrous iron and oxidation reduction potential.

Analytical results of grab water samples showed benzene concentrations above the California maximum contaminant level of 1 ppb in wells MW-1, MW-2 and MW-3 and nondetectable concentrations in wells MW-9, MW-10 and MW11. Chemical concentrations above laboratory reporting limits in the three newly installed wells MW-9, MW-10, and MW-11, were limited to unspecified hydrocarbons, except for 9.3 ppb MTBE detected in MW-11.

If you have any questions regarding this report or other matters pertaining to this site, please call me at (510) 577-8869.

Sincerely,

Suzanne Patton, P.E. Environmental Engineer

SP/sp enclosure

GROUNDWATER MONITORING REPORT FOR THE AC TRANSIT FACILITY LOCATED AT 1100 SEMINARY AVENUE, OAKLAND, CALIFORNIA

November 8, 2000

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792588

GROUNDWATER MONITORING REPORT FOR THE AC TRANSIT FACILITY LOCATED AT 1100 SEMINARY AVENUE, OAKLAND, CALIFORNIA

November 8, 2000

Prepared For:

Ms. Suzanne Patton AC Transit 10626 E. 14th Street Oakland, California 94603

Prepared By:

Safety-Kleen Consulting 2233 Santa Clara Avenue Alameda, California 94501

Project No: 792588

Written by

Brady Hanson

Geologist I

Reviewed :

Brad Wrigh

Senior Geol

Table of Contents

INTRODU	JCTION	1
OBJECTIV	VES AND SCOPE OF WORK	
Gro	oundwater Elevations and Flow Direction	2
	oundwater Sampling Activities	
Gro	oundwater Analytical Results	2
RESPONS	SE TO ACHCS	3
SUMMAR	RY OF RESULTS	4
PROJECTI	ED WORK AND RECOMMENDATIONS	4
APPENDI:	X ACertified Analytical Reports and Chain-of-C X BSamp	Custody Documentation ling Event Data Sheets
	List of Figures	
Figure 1	Site Location Map	
Figure 2	Potentiometric Surface Map	
	List of Tables	
Table 1	Groundwater Level Measurements	
Table 2	Analytical Results of Groundwater Samples	

INTRODUCTION

This report presents the results from the August 2000 sampling event for the AC Transit Facility located at 1100 Seminary Avenue, Oakland, California (Site) (Figure 1). Groundwater sampling of monitor wells MW-1 through MW-3 and MW-9 through MW-11 was performed by Safety-Kleen Consulting, in accordance with directives from the Alameda County Health Care Services Agency (ACHCS).

OBJECTIVES AND SCOPE OF WORK

Work performed during quarterly sampling included measuring depth to water and presence of free phase hydrocarbons in the monitor wells and sample collection. Field parameters collected during sampling included pH, temperature, electric conductivity, dissolved oxygen (DO), ferrous iron (Fe²⁺) and oxygen reduction potential (ORP). Groundwater samples were collected for laboratory analysis using United States Environmental Protection Agency (USEPA) Method 8015 for total petroleum hydrocarbons (TPH) gasoline/diesel, USEPA Method 8260B for benzene, toluene, ethylbenzene, and xylene (BTEX) and methyl-tert butyl ether (MTBE) and methods of chemical analysis for water and waste (MCAWW) 300.0A for nitrate and sulfate.

Chain-of-custody documents and certified analytical reports are presented in Appendix A. Field data sheets are included in Appendix B.

Groundwater Elevations and Flow Direction

Prior to purging and sample collection, all six site monitor wells were inspected and measured for presence of free phase hydrocarbons and depth to groundwater. Measurements of depths to groundwater are presented on Table 1 and were used to construct the groundwater elevation contours shown in Figure 2. A free phase hydrocarbon layer was detected in MW-2 at a measured thickness of 0.23 feet. As shown on Figure 2, groundwater flow is to the west at a gradient of 0.006 feet/foot.

Groundwater Sampling Activities

The monitor wells were purged a minimum of three casing volumes, using a centrifugal pump and samples were collected using disposable polyethylene bailers. During well purging, field parameters for pH, electrical conductivity, DO, ORP and temperature were monitored using calibrated field meters. Due to the very low yield encountered while purging monitoring well MW-11, only two casing volumes were evacuated before it became dry.

Groundwater samples were transferred to appropriate laboratory supplied and preserved containers and placed in an ice-filled cooler for shipment under chain-of-custody to a State of California certified laboratory. A trip blank was submitted for analysis by USEPA Method 8260B

Groundwater Analytical Results

Table 2 presents groundwater historic and third quarter 2000 analytical results. Concentrations of benzene above the State of California maximum contaminant level (MCL) of 1.0 part per billion (ppb) were detected in monitor wells MW-1 through MW-3. Chemical concentrations above laboratory reporting limits detected in newly installed wells MW-9 through MW-11 were limited to unspecified hydrocarbons, with the exception of 9.3 ppb MTBE detected in MW-11. The carbon chain range of the unspecified hydrocarbon suggests that these concentrations represent degraded diesel. No analytes were detected in the trip blanks or method blanks. A lab control spike and lab control spike duplicate passed the USEPA's criteria for acceptance.

RESPONSE TO ACHCS

The ACHCS submitted a letter dated August 30, 2000, to AC Transit detailing requirements necessary to meet site closure. The following presents a response to the ACHCS letter:

- TPH Reporting Results from the second and third quarter 2000 monitoring events reported concentrations of TPH as unknown hydrocarbons. This is typically due to the fact that older fuel plumes degrade over time and the chromatographic pattern produced by the contaminant no longer matches the laboratory standard, which utilizes fresh fuel. There is no explanation why the first quarter 2000 results were reported as gasoline and diesel other than that the contaminants matched the pattern of the laboratory standard sufficiently enough for the laboratory to specify the hydrocarbon type.
- MTBE Detection Limits The elevated concentrations of TPH detected in monitor well MW-2 prevent the laboratory from achieving lower detection limits for MTBE. If concentrations of TPH begin to reduce in monitor well MW-2 lower detection limits can be achieved. The laboratory has been instructed to report the lowest detection limits possible for this well.
- Active Remediation AC Transit is preparing to conduct of evaluation of potential remedial alternatives for concentrations of TPH detected in monitor well MW-2. This evaluation is scheduled to be performed in 2001. The results of the evaluation will be presented in the subsequent quarterly monitoring report.
- Natural Attenuation The August 2000 monitoring event represents the third event in which parameters were measured for the purposes of assessing natural degradation processes that may be occurring at the site. Based on this limited database the following degradation patterns can be seen. Sulfate concentrations are significantly higher at the plume boundaries indicative of ? aerobic degradation of hydrocarbons. Fe 2+ concentrations are higher in the plume interior indicative of anaerobic degradation of hydrocarbons. There is no significant change in concentration for DO, ORP and nitrate observed throughout the plume. Continued monitoring of the natural degradation parameters needs to occur before developing a clear understanding of the degradation processes.
- Analysis of Soil Sample The analytical laboratory discarded the soil sample collected

from soil boring SB-13 prior to the July 1999 request to perform the additional analysis.

SUMMARY OF RESULTS

- A 0.23 foot free phase hydrocarbon layer was measured in monitor well MW-2.
- Groundwater flow direction is towards the west at a gradient of 0.006 feet/foot;
- Chemical concentrations in excess of MCLs were limited to benzene in wells MW-1, MW-2 and MW-3.

PROJECTED WORK AND RECOMMENDATIONS

• Quarterly groundwater monitoring is scheduled for November 2001.

AC TRANSIT - OAKLAND, CALIFORNIA

FIGURE 1
SITE LOCATION MAP
1100 SEMINARY ROAD

NO SCALE

3/22/00

				FIGURE 2								
BA	DATE	AC TRANSIT - OAKLAND, CALIFORNIA										
ONESSES WRB	9/12/00	TI	1100 SEMINARY ROAD-POTENTIOMETRIC SURFACE MAP									
APPROVED				IGUST 22, 2000								
WANTE			70	10001 22, 2000								
WHOLE		safety-kleen consulting	SCALE: 1" = 120"	DWG. NO: 792489-08								

TABLE 1
GROUNDWATER LEVEL MEASUREMENTS
AC Transit Facility
1100 Seminary Avenue, Oakland, California

Well	Date	Top of Casing Elevation (ft-msl)*	Product Thickness (feet)	DTW (feet)	Measured Groundwater Elevation (ft-msl)	Groundwater Elevation Corrected for Product Thickness**
MW-1	7-Jan-99	6.25	None	5.13	1.12	
	7-Feb-00		None	3.75	2.5	
	25-May-00		None	3.69	2.56	
	22-Aug-00		None	4.79	1.46	
MW-2	7 - Jan-99	5.53	2.27	6.91	-1.38	0.44
	8-Jun-99		2.23	5.83	-0.3	1,48
	9-Jun-99		0	3.9	1.63	1.63
	10-Jun-99		0	3,9	1.63	1.63
	15-Jun-99		0.42	3.92	1.61	1.95
	8-Jul-99		0.2	4.3	1.23	1.39
	7-Feb-00		Sheen	3.8	1.73	
	25-May-00		0.12	3.35	2.18	2.28
	22-Aug-00		0.23	4.45	1.08	1.26
MW-3	7-Jan-99	4.76	None	4.11	0.65	
	7-Feb-00		None	3.1	1,66	
	25-May-00		None	2.41	2.35	
	22-Aug-00		None	3.45	1.31	
MW-9	7-Feb-00	5.8	None	4.37	1.43	
	25-May-00	5.0	None	4.95	0.85	
	22-Aug-00		None	5.18	0.62	
			110110	5.10	0.02	
MW-10	7-Feb-00	4.65	None	3.19	1.46	
	25-May-00		None	3.11	1.54	
	22-Aug-00	,	None	4.35	0.3	
MW-11	7-Feb-00	4.19	None	4.97	-0.78	
	25-May-00		None	7.58	-3.39	
	22-Aug-00		None	3.01	1.18	

Notes:

* ft-msl: feet-mean sea level

** used 0.8 specific gravity of product

DTW: Depth to Water

TABLE 2
ANALYTICAL RESULTS OF GROUNDWATER SAMPLES (ppb)
AC Transit Facility
1100 Seminary Avenue, Oakland, California

							Ethyl						
Well/Boring	Date	TPH-G	TPH-D	TPH	Benzene	Toluene	Benzene	Xylenes	MTBE	Nitrate	Sulfate	DO	Fe
	MCL	(ppb)			1.0	150	700	1,750					
MW-1	7-Jan-99	<100	470	NA	17	2	31	18	<50	150	3,400	360	53
	7-Feb-00	390	<60	1,300	13	<10	<10	<10	<20	<50	1,200	1,220	11,800
	25-May-00	<50	<50	1,000	12	<1.0	<1.0	<1.0	<2.0	140	1,500	1,950	1,380
	22-Aug-00	<50	<50	600	6.3	<1.0	2.3	<1.0	<2.0	75	2,100	6,850	2,350
MW-2 (Product)	8-Jun-99	11,000	434,000	117,000	1,000,000	<100,000	260,000	<300,000	<5,000,000	NA	NA	NA	NA
	7-Feb-00	51,000	160,000	<5000	19,000	<500	920	<500	<1000	51	<1000	6,660	7,300
	25-May-00	<1200	<50000	65,000	11,000	<500	670	530	<1000	330	<1000	5,670	0
	22-Aug-00	<2500 42, 000	<2500 ges range	150,000 chese/ /	23,000	<500	1,100	1,100	<1000	379	<1000	4,530	3,680
MW-3	7-Jan-99	199	2,680	NA	450	<10	250	190	<500	170	3,300	880	0
	7-Feb-00	2,000	<150	3,100	26	<2	5	2	<4	<50	47,300	6,480	17,800
	25-May-00	<50	<50	1,000	35	<1.0	6	4	<2.0	<50	21,700	4,640	600
	22-Aug-00	<50	<50	2,400	240	<10	<10	<10	<20	<50	19,300	3,970	20
MW-9	7-Feb-00	<50	<50	240	<1	<1	<1	<1	<2	230	183,000	6,940	9,000
	25-May-00	<50	<50	130	<1.0	<1.0	<1.0	<1.0	<2.0	250	172,000	6,020	1,200
	22-Aug-00	<50	<50	120	<1.0	<1.0	<1.0	<1.0	<2.0	280	157,000	7,250	0
MW-10	7-Feb-00	<50	<50	470	<1	<1	<1	<1	<2	53	114,000	1,200	55,000
	25-May-00	<50	<50	220	<1.0	<1.0	<1.0	<1.0	<2.0	480	136,000	1,940	0
	22-Aug-00	<50	<50	140	<1.0	<1.0	<1.0	<1.0	<2.0	69	126,000	4,350	0
MW-11	7-Feb-00	<50	<50	400	<1	<1	<1	<1	25	800	167,000	7,300	16,200
	25-May-00	<50	<50	200	<1.0	<1.0	<1.0	<1.0	16	480	207,000	6,540	0
	22-Aug-00	<50	<50	170	<1.0	<1.0	<1.0	<1.0	9.3	610	168,000	4,640	20

Notes:

ppb: parts per billion

TPH-G: total petroleum hydrocarbons as gasoline TPH-D: total petroleum hydrocarbons as diesel

TPH: total petroleum hydrocarbons as motor oil or unknow hydrocarbon

MCL: Maximum Contaminant Level

MTBE: Methyl-tert, butylether

DO: Dissolved Oxygen

Fe: Ferrous Iron

APPENDIX A CERTIFIED ANALYTICAL REPORTS CHAIN-OF-CUSTODY DOCUMENTS

September 28, 2000

STL Sacramento 880 Riverside Parkway West Sacramento, CA 95605-1500

STL SACRAMENTO PROJECT NUMBER: G0H230166 PO/CONTRACT: NA

Tet: 916 373 5600 Fax: 916 371 8420 www.stl-inc.com

Brad Wright
Safety Kleen Consulting
2233 Santa Clara Ave
Suite 7
Alameda, CA 94501

Dear Mr. Wright,

This report contains the analytical results for the samples received under chain of custody by STL Sacramento on 8/22/00. These samples are associated with your AC Transit Seminary project.

The case narrative is an integral part of this report.

Preliminary results were sent via facsimile on September 28, 2000.

If you have any questions, please feel free to call me at (916)374-4414.

Sincerely,

Bonnie J. McNeill Project Manager

Sonnie & Mcheill

TABLE OF CONTENTS

STL SACRAMENTO PROJECT NUMBER G0H230166

Case Narrative

STL Sacramento Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

WATER, CA LUFT, TVPH (Gas)

Samples: 1, 2, 3, 4, 5, 6
Sample Data Sheets
Method Blank Reports
Laboratory QC Reports

WATER, 8260B, BTEX + MTBE

Samples: 1, 2, 3, 4, 5, 6, 7

Sample Data Sheets

Method Blank Reports

Laboratory QC Reports

WATER, 8015 MOD, Diesel Samples: 1, 2, 3, 4, 5, 6 Sample Data Sheets Method Blank Reports Laboratory QC Reports

General Chemistry - Various Methods Samples: 1, 2, 3, 4, 5, 6 Sample Data Sheets Method Blank Reports

Laboratory QC Reports

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G0H230166

General Comments

Samples bottles were received at 14 degrees Centigrade. VOA vials were received at 9 degrees Centigrade.

WATER, 8260B, BTEX + MTBE

The benzene level (23000 ug/L) for sample MW-2 exceeded the linear range of 20000 ug/L and is flagged with an "E". There were no additional sample vials for reanalysis. The data should be considered estimated for benzene.

WATER, 8015 MOD, Diesel

The samples were re-extracted outside of holding times due to low recovery on the LCS. Surrogate recoveries were acceptable (except for sample MW-2 which was diluted out). Both sets of data are reported.

There were no other anomalies associated with this project.

STL Sacramento Quality Control Definitions

QC Parameter	Definition				
The street of th	Section (ACC) (Control of the Control of the Contro				
OC Batab	A set of up to 20 field samples plus associated laboratory QC				
QC Batch	samples that are similar in composition (matrix) and that are				
	processed within the same time period with the same reagent and standard lots.				
Doublests Control Consis	Consist of a pair of LCSs analyzed within the same QC batch				
Duplicate Control Sample	to monitor precision and accuracy independent of sample				
(DCS)	matrix effects. This QC is performed only if required by				
	client or when insufficient sample is available to perform MS/MSD.				
	A second aliquot of an environmental sample, taken from the				
Duplicate Sample (DU)	same sample container when possible, that is processed				
	independently with the first sample aliquot. The results are				
	used to assess the effect of the sample matrix on the precision				
	of the analytical process. The precision estimated using this sample is not necessarily representative of the precision for				
	other samples in the batch.				
	A volume of reagent water for aqueous samples or a				
	contaminant-free solid matrix (Ottawa sand) for soil and				
Laboratory Control Sample	sediment samples which is spiked with known amounts of				
(LCS)	representative target analytes and required surrogates. An				
(DCS)	LCS is carried through the entire analytical process and is				
	used to monitor the accuracy of the analytical process				
	independent of potential matrix effects.				
	A field sample fortified with known quantities of target				
	analytes that are also added to the LCS. Matrix spike				
Matrix Spike and Matrix Spike	duplicate is a second matrix spike sample. MSs/MSDs are				
Duplicate (MS/MSD)	carried through the entire analytical process and are used to				
- Cap. 100 (11,000)	determine sample matrix effect on accuracy of the				
	measurement system. The accuracy and precision estimated				
	using MS/MSD is only representative of the precision of the				
!	sample that was spiked.				
	A sample composed of all the reagents (in the same				
	quantities) in reagent water carried through the entire				
Method Blank (MB)	analytical process. The method blank is used to monitor the				
	level of contamination introduced during sample preparation				
	steps.				
	Organic constituents not expected to be detected in				
	environmental media and are added to every sample and QC				
Surrogate Spike	at a known concentration. Surrogates are used to determine				
	the efficiency of the sample preparation and the analytical				
	process.				

Source: STL Sacramento® Quality Control Program, Policy QA-003, Rev. 0, 8/19/96.

Sample Summary G0H230166

WO#	Sample #	Client Sample ID	Sampling Date Received Date
DJ9RD	1	MW-1	8/22/00 10:15 AM 8/22/00 06:10 PM
DJ9TW	2	MW-9	8/22/00 11:15 AM 8/22/00 06:10 PM
DJ9TX	3	MW-10	8/22/00 11:45 AM 8/22/00 06:10 PM
DJ9V0	4	MW-11	8/22/00 12:00 PM 8/22/00 06:10 PM
DJ9V1	5	MW-3	8/22/00 01:15 PM8/22/00 06:10 PM
DJ9V4	6	MW-2	8/22/00 02:15 PM 8/22/00 06:10 PM
DJ9V6	7	TRIP BLANK	8/22/00 02:15 PM8/22/00 06:10 PM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must no be reproduced, except in full, without the written approval of the laboratory. Results for the following parameters are never reported on a dry weight basis: color, corresivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, snot tests, solids, solubility, temperature, viscosity, and weigh

Chain of Custody Record

DUA-4124 0797													-			_	Date						$\neg \tau$	Chai	n of Custody N	imber	
Client		Project Manager Brad Wright Telephone Number (Area Code)/Fax Number								8-22-00					ľ	Ora.	n of Custody N	<u>5</u>	2560								
Safch - Kleen				ЬĢ	sd	<u>.</u>	<i>)</i> ()	1	<u>v</u>								Lab			-0	2_		-				
Address		Telephone I	VUML	er (Al	rea Co	00)/[אוא אוני ריי	INADBI	0		^					1	Lau	(4011)	var					Pag		of	1
2233 SANTA CLARA		20.0	\$10 337 8660 Site Contact Lab Contact					· ·	Analysis (Attach list if							- 25	<u> </u>	. 0,									
Address ZZ 33 Santa Clara Chy Alameda CA 94	sø	Sile Contac	r			1	CON	REPORT				┵	J	ı.	f	nore	spa						一	4	•		
Project Name		Carrier/Wa)	bili M	lumbe	er								1		510	3									Special I	'nstru	ctions/
AC TRANSIT Seminary Contract/Purchase Order/Quote No.	· · · · · · · · · · · · · · · · · · ·			Mat	rix	1		Cont Pres					Ž,	ME	0	8									Condition	s of F	Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Dale	Time	Aquebus	Sed.	Soil	Unpres	H2504	HNGS	HCI	NaOH	Z54c/ NBOH		11-14/5/1/at	6260	6 Ro 8015	080											,, <u>.</u>
MW-1	8-22-00	10:13	X		_ _		<u> </u>				\downarrow	_ 2		<u>X</u>	X	χ.	_	\downarrow	_	_ _	_	\bot	\dashv	4			
M W - 9		11:15	\prod		_	 	╄	_			_		٤	-	Х,		\perp	-	4	+	+	- -	4				
MW-10		11:45			_	_	╄	_				_		_	<i>y</i>	_	- -	+	+	\downarrow	+	+	\dashv	\dashv			
mw - 11		1200	\coprod	Ц	_		┨	lacksquare	_						Х		+	+	+	4	+	-	4	-			
MW-3		1315	Ш						<u> </u>			_	X	X	X.	X L		_ 5	+			, 	ᇓ	ant	D CONDITIO	N T	
mw·Z	Ψ	1415	V					_			Ц		×		X	X	_	_	1			<u> </u>	1110	ÉŘ	COC		
TRIP BLANK								_	<u> </u>			_	_	X	_	_	1	1		_	_			_	1 0000		
			_			_	\downarrow	-	<u> </u>			_	_		_	_	_	_ ['	H	_	4	AUC	5	2 2	2000	-	
		<u> </u>	L				┸	<u> </u>	<u> </u>	<u> </u>			_					\perp	Ц	_	_	-	=	_			
							\perp	1_	_	_							_	_			IN.	_	<u> </u>	<u>L</u>			<u>]</u>
				_						_								\perp	\Box				\Box				
										_								\perp						\sqcup			
Possible Hazard Identification Non-Hazard	Poison B	Unknown			isposa 1 To C		ĸ	Disp	osal	By L	ab		Arch	ilve l	For _			Mont!	hs	(A la long	e ma er th	ay be	ass moi	essenths)	ed if samples ar	e retain	ned
Turn Around Time Required							la	C Re	quire	men	s (Sp	ecity	<u> </u>	A .	al	A-0	\ \ \										
24 Hours 48 Hours 7 Days 14 Day	s LA 21 Days	Date		, T	ime		1.	Rec	elved	Ву			<u>-/ I</u>			<u>, 1 </u>	<u>- 12</u>						-	1	Date	Tim	Ð
Deurand		8-1-	7-=		16	'ග																				1_	
A Howard St.		Dale 8-22	,-0		ime 15:	30	2.	. Rec			iel	-												_	Date 8-72-00	· //:	5:30
3. Helifiquished By		Date			ime	- /	- 3	Rec			<u> </u>														Date 5-22 ()		18/1
Comments				L_							<u> </u>		\leq		5								—				7
- Directing																											

WATER, CA LUFT, TVPH (Gas)

Client Sample ID: MW-I

GC Volatiles

Lot-Sample #: G0H230166-001 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0244478	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix:	WATER
Dilution Factor: 1	Method:	DHS CA LUF	T	
PARAMETER TPH (as Gasoline) Unknown Hydrocarbon	RESULT ND 360	REPORTING LIMIT 50 50	UNITS ug/L ug/L	
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 94	RECOVERY LIMITS (70 - 130)		

Client Sample ID: MW-9

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date:	08/22/00	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Prep Batch #:	0244478			
Dilution Factor:	1	Method:	DHS CA LUFT	
			DEDODTING	

		REPORTING	i
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Gasoline)	ND	50	ug/L
Unknown Hydrocarbon	ND	50	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	 -
4-Bromofluorobenzene	89	(70 - 130))

Client Sample ID: MW-10

GC Volatiles

Lot-Sample #: G0H230166-003 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0244478	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 1	Method:	DHS CA LUF	Ţ
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Gasoline)	ND	50	ug/L
Unknown Hydrocarbon	ND	50	ug/L
	PERCENT	RECOVERY	

RECOVERY

SURROGATE

4-Bromofluorobenzene

LIMITS (70 - 130)

Client Sample ID: MW-11

GC Volatiles

Lot-Sample #...: G0H230166-004 Work Order #...: DJ9V0104 Matrix.....: WATER

Prep Batch #...: 0244478

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (as Gasoline) ND 50 ug/L
Unknown Hydrocarbon ND 50 ug/L

SURROGATE PERCENT RECOVERY
LIMITS

4-Bromofluorobenzene 86 (70 - 130)

Client Sample ID: MW-3

GC Volatiles

Lot-Sample #: G0H230166-005	Work Order	#: DJ9V1104	Matrix:	WATER
	42462	# DOD (TTO =	1744	**********

Date Sampled...: 08/22/00 Date Received..: 08/22/00 Prep Date....: 08/28/00 Analysis Date..: 08/29/00

Prep Batch #...: 0244478

Dilution Factor: 1 Method.....: DHS CA LUFT

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Gasoline)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 2400
 50
 ug/L

SURROGATEPERCENTRECOVERYLIMITS

4-Bromofluorobenzene 103 (70 - 130)

Client Sample ID: MW-2

GC Volatiles

Lot-Sample #: G0H230166-006 Date Sampled: 08/22/00 Prep Date: 08/31/00 Prep Batch #: 0250098	Work Order #: Date Received: Analysis Date:	08/22/00
Dilution Factor: 50	Method:	DHS CA LUFT
PARAMETER	RESULT	REPORTING LIMIT UNITS
TPH (as Gasoline)	ND	2500 ug/L
Unknown Hydrocarbon	42009	2500 ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY

LIMITS

(70 - 130)

RECOVERY

109

4-Bromofluorobenzene

QC DATA ASSOCIATION SUMMARY

G0H230166

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
	WATER	DHS CA LUFT		0244478	
002	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	DHS CA LUFT		0244478	
003	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	DHS CA LUFT		0244478	
004	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	
	WATER	DHS CA LUFT		0244478	
005	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B		0249441	
006	WATER	MCAWW 300.0A		0241409	0241209
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	DHS CA LUFT		0250098	
	WATER	SW846 8260B		0249441	
007	WATER	SW846 8260B		0249441	

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: G0H230166

Work Order #...: DJQ2P101

Matrix....: WATER

MB Lot-Sample #: G0H310000-478

Prep Date....: 08/28/00

Prep Batch #...: 0244478

Analysis Date..: 08/28/00

Dilution Factor: 1

4-Bromofluorobenzene

REPORTING

PARAMETER LIMIT UNITS METHOD RESULT TPH (as Gasoline) ND ug/L DHS CA LUFT 50 Unknown Hydrocarbon ND DHS CA LUFT 50 ug/L PERCENT RECOVERY SURROGATE

RECOVERY 90

LIMITS (70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: G0H230166

Work Order #...: D5X07101

Matrix..... WATER

MB Lot-Sample #: G0I060000-098

Prep Date....: 08/31/00

Prep Batch #...: 0250098

Analysis Date..: 08/31/00

Dilution Factor: 1

4-Bromofluorobenzene

REPORTING

		REFURIL.	REFORITING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
TPH (as Gasoline)	ND	50	ug/L	DHS CA LUFT	-
Unknown Hydrocarbon	ND	50	ug/L	DHS CA LUFT	
	PERCENT	RECOVER	Ý		

RECOVERY LIMITS 99 (70 - 130)

NOTE(S):

SURROGATE

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G0H230166 Work Order #...: DJQ2P102-LCS Matrix.....: WATER

LCS Lot-Sample#: G0H310000-478 DJQ2P103-LCSD

Prep Date....: 08/28/00 Analysis Date..: 08/28/00

Prep Batch #...: 0244478

Dilution Factor: 1

PARAMETER TPH (as Gasoline)	SPIKE <u>AMOUNT</u> 1000 1000	MEASURE AMOUNT 986 1080	UNITS UG/L UG/L	PERCENT RECOVERY 99 108	<u>RPD</u>	METHOD DHS CA LUFT DHS CA LUFT
SURROGATE 4-Bromofluorobenzene			PERCENT RECOVERY 105 106	RECOVERY LIMITS (70 - 130 (70 - 130	•	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: G0H230166 Work Order #...: DJX07102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I060000-098 DJX07103-LCSD

Prep Date...: 08/31/00 Analysis Date..: 08/31/00

Prep Batch #...: 0250098

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	D UNITS	PERCENT RECOVERY	RPD	METI	IOD	
TPH (as Gasoline)	1000	1020	ug/L	102		DHS	CA	LUFT
	1000	1070	ug/L	107	4.7	DHS	CA	LUFT
			PERCENT	RECOVERY				
SURROGATE			RECOVERY	LIMITS	_			
4-Bromofluorobenzene			114	(70 - 130	}			
			114	(70 - 130)			
						•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold prim denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #...: G0H230166 Work Order #...: DJQ2P102-LCS Matrix..... WATER

LCS Lot-Sample#: G0H310000-478 DJQ2P103-LCSD

Prep Date....: 08/28/00 Analysis Date..: 08/28/00

Prep Batch #...: 0244478

Dilution Factor: 1

PERCENT RECOVERY RPD PARAMETER RECOVERY LIMITS RPD LIMITS METHOD TPH (as Gasoline) 99 **(70 - 130)** DHS CA LUFT 108 (70 - 130)9.4 (0-35)DHS CA LUFT

 SURROGATE
 PERCENT
 RECOVERY

 4-Bromofluorobenzene
 105
 (70 - 130)

 106
 (70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Matrix....: WATER Work Order #...: DJX07102-LCS Client Lot #...: G0H230166

DJX07103-LCSD LCS Lot-Sample#: G0I060000-098

Analysis Date..: 08/31/00 Prep Date....: 08/31/00

Prep Batch #...: 0250098

Dilution Factor: 1

(70 - 130)	4.7	(0-35)	DHS CA LUFT
RECOVERY	LIMIT	<u> </u>	
֡	PERCENT	70 - 130) 4.7 PERCENT RECOVERY LIMITS	PERCENT RECOVERY LIMITS

4-Bromofluorobenzene (70 - 130) 114

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Client Sample ID: MW-1

GC/MS Volatiles

Lot-Sample #: G0H230166-001 Date Sampled: 08/22/00 Prep Date: 09/01/00 Prep Batch #: 0255461	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix WATE
Dilution Factor: 1	Method:	SW846 8260	DB ·
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	6.3	1.0	ug/L
Toluene	ND	1.0	ug/L
Bthylbenzene	2.3	1.0	ug/L
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	106	(70 - 130)	•
1,2-Dichloroethane-d4	90	(70 - 130)	
m-1 30			

(70 - 130)

105

Toluene-d8

Client Sample ID: MW-9

GC/MS Volatiles

Lot-Sample	#:	G0H230166-002
------------	----	---------------

Date Sampled...: 08/22/00 Prep Date....: 09/01/00

Prep Batch #...: 0255461

Dilution Factor: 1

Work Order #...: DJ9TW105

Date Received.: 08/22/00 Analysis Date.: 09/01/00

Method..... SW846 8260B

Matrix WATER

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	98	(70 - 130)	
1,2-Dichloroethane-d4	90	(70 - 130)	
Toluene-d8	102	(70 - 130)	

Client Sample ID: MW-10

GC/MS Volatiles

Lot-Sample #...: G0H230166-003 Work Order #...: DJ9TX105

Date Sampled...: 08/22/00

Prep Date....: 09/01/00 Prep Batch #...: 0255461

Dilution Factor: 1

Date Received..: 08/22/00

Analysis Date..: 09/01/00

Method.....: SW846 8260B

Matrix..... WATER

PARAMETER	NEATT =	REPORTING	
	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	98	(70 - 130)	•
1,2-Dichloroethane-d4	92	(70 - 130)	
Toluene-d8	102	(70 - 130)	

Client Sample ID: MW-11

GC/MS Volatiles

Lot-Sample #: G0H230166-004	Lot-Sample	#	G0H230166-004	
-----------------------------	------------	---	---------------	--

Date Sampled...: 08/22/00

Prep Date....: 09/01/00

Prep Batch #...: 0255461

Dilution Factor: 1

Toluene-d8

Work Order #...: DJ9V0105 Matrix..... WATER

Date Received..: 08/22/00 Analysis Date..: 09/01/00

Method....: SW846 8260B

RE	PC	R	TT	NG	:
	T ~			T. C	7

(70 - 130)

Benzene ND 1.0 ug/L	
Toluene ND 1.0 ug/L	
Ethylbenzene ND 1.0 ug/L	
Methyl tert-butyl ether 9.3 2.0 ug/L (MTBE)	
Xylenes (total) ND 1.0 ug/L	
PERCENT RECOVERY	
SURROGATE RECOVERY LIMITS	
4-Bromofluorobenzene 102 (70 - 130)	
1,2-Dichloroethane-d4 92 (70 - 130)	

101

Client Sample ID: MW-3

GC/MS Volatiles

Lot-Sample #: G0H230166-005	Work Order #: DJ9V1105	Matrix: WATER
-----------------------------	------------------------	---------------

Prep Batch #...: 0249441

Dilution Factor: 10 Method....: SW846 8260B

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	240 Q	10	ug/L
Toluene	ND	10	ug/L
Ethylbenzene	ND	10	ug/L
Methyl tert-butyl ether (MTBE)	ND	20	ug/L
Xylenes (total)	ND	10	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene	102	(70 - 130)	=
1,2-Dichloroethane-d4	106	(70 - 130)	
Toluene-d8	98	(70 - 130)	

NOTE(S):

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

SAFETY FLESH CONSULT.

Client Sample ID: MW-2

GC/MS Volatiles

Lot-Sample #: G0H230166-006	Work Order #:	DJ9V4105	Matrix: WATER
Date Sampled: 08/22/00	Date Received:	08/22/00	
Prep Date: 09/05/00	Analysis Date:	09/05/00	
Prep Batch #: 0249441			
Dilution Factor: 500	Method:	SW846 8260)B
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	23000 E,Q	500	ug/L
Toluene	ND	500	ug/L
Ethylbenzene	1100	500	ug/L
Methyl tert-butyl ether (MTBE)	ND	1000	ug/L
Xylenes (total)	1100	500	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	102	(70 - 130)	
1,2-Dichloroethane-d4	111	(70 - 130)	
Toluene-d8	107	(70 - 130)	

NOTE(S):

E Estimated result. Result concentration exceeds the calibration range.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: G0H230166-007	Work Order #: DJ9V6101	Matrix WATER

Prep Batch #...: 0249441

Toluene-d8

Dilution Factor: 1 Method.....: SW846 8260B

98

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	102	(70 - 130)	
1,2-Dichloroethane-d4	103	(70 - 130))

(70 - 130)

QC DATA ASSOCIATION SUMMARY

G0H230166

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
			<u> </u>	<u> Дата Сат н</u>	THE ALUTTY
001	WATER	SW846 8260B		0255461	
002	WATER	SW846 8260B		0255461	
003	WATER	SW846 8260B		0255461	
004	WATER	SW846 8260B		0255461	
005	WATER	SW846 8260B		0249441	
006	WATER	SW846 8260B		0249441	
007	WATER	SW846 8260B		0249441	

GC/MS Volatiles

Client Lot #...: G0H230166 Work Order #...: DK6JX101

MB Lot-Sample #: G0I110000-461

Prep Date....: 09/01/00

Analysis Date..: 09/01/00

Prep Batch #...: 0255461

Dilution Factor: 1

REPORTING

Matrix....: WATER

		REPORTE	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHO!	0
Benzene	ND	1.0	ug/L	SW846	8260B
Toluene	ND	1.0	ug/L	SW846	8260B
Ethylbenzene	ND	1.0	ug/L	SW846	8260B
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L	SW846	8260B
Xylenes (total)	ND	1.0	ug/L	SW846	8260B
	PERCENT	RECOVERY	χ		
SURROGATE	RECOVERY	LIMITS			
4-Bromofluorobenzene	95	(70 - 13	30)		
1,2-Dichloroethane-d4	85	(70 - 13	30)		
Toluene-d8	97	(70 - 13	10)		

NOTE(S):

GC/MS Volatiles

Client Lot #...: G0H230166

MB Lot-Sample #: G0I050000-441

Work Order #...: DJWN7101

Matrix....: WATER

Prep Date....: 09/05/00

Analysis Date..: 09/05/00

Dilution Factor: 1

Prep Batch #...: 0249441

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHO:	Ď	
Benzene	ND	1.0	ug/L	SW846	8260B	_
Toluene	ND	1.0	ug/L	SW846	8260B	
Ethylbenzene	ND	1.0	ug/L	SW846	8260B	
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L	SW846	8260B	
Xylenes (total)	ND	1.0	ug/L	SW846	8260B	
•	PERCENT	RECOVERY	Y.			
SURROGATE	RECOVERY	LIMITS				
4-Bromofluorobenzene	102	(70 - 13	30)			
1,2-Dichloroethane-d4	103	(70 - 13	30)			
Toluene-d8	105	(70 - 13	30)			
		,	,			

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: G0H230166 Work Order #...: DK6JX102-LCS Matrix...... WATER

LCS Lot-Sample#: G0I110000-461 DK6JX103-LCSD

Prep Date....: 09/01/00 Analysis Date..: 09/01/00

Prep Batch #...: 0255461

Dilution Factor: 1

	SPIKE	MEASURE	ED.	PERCENT			
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHO	D
Benzene	10.0	10.6	ug/L	106		SW846	8260B
	10.0	10.4	ug/L	104	2.3	SW846	8260B
Toluene	10.0	10.6	ug/L	106		SW846	8260B
	10.0	10.3	ug/L	103	2.9	SW846	8260B
Chlorobenzene	10.0	10.2	ug/L	102		SW846	8260B
•	10.0	10.2	ug/L	102	0.36	SW846	8260B
1,1-Dichloroethene	10.0	10.3	ug/L	103		SW846	8260B
	10.0	10.4	ug/L	104	1.4	SW846	8260B
Trichloroethene	10.0	9.89	ug/L	99		SW846	8260B
	10.0	9.95	ug/L	100	0.62	SW846	8260B
			PERCENT	RECOVERY			
SURROGATE		•	RECOVERY	LIMITS			
4-Bromofluorobenzene			102	(70 - 130)		
			103	(70 - 130)		
1,2-Dichloroethane-d4			88	(70 - 130)		
			89	(70 - 130	•		
Toluene-d8			98	(70 - 130	-		
			99	(70 - 130	•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: G0H230166 Work Order #...: DK6JX102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I110000-461 DK6JX103-LCSD

Prep Date....: 09/01/00 Analysis Date..: 09/01/00

Prep Batch #...: 0255461

Dilution Factor: 1

PARAMETER	PERCENT	RECOVERY		RPD		_
Benzene	RECOVERY	LIMITS	RPD	LIMITS	METHO	
benzene	106	(70 - 130)				8260B
_ a	104	(70 - 130)	2.3	(0~35)	SW846	8260B
Toluene	106	(70 - 1 30)			SW846	8260B
	103	(70 - 130)	2.9	(0-35)	SW846	8260B
Chlorobenzene	102	(70 - 130)			SW846	8260B
	102	(70 - 130)	0.36	(0-35)	SW846	8260B
l,l-Dichloroethene	103	(70 - 130)			SW846	8260B
	104	(70 - 130)	1.4	(0-35)	SW846	8260B
Trichloroethene	99	(70 - 130)			SW846	8260B
	100	(70 - 130)	0.62	(0-35)	SW846	8260B
		PERCENT	RECOVE	RY		
SURROGATE		RECOVERY	LIMITS			
-Bromofluorobenzene		102	(70 -			
		103	(70 -	130)		
,2-Dichloroethane-d4		88	(70 -	130}		
		89	(70 ~	130)		
oluene-d8		98	(70 -	130)		
		99	(70 -	•		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: G0H230166 Work Order #...: DJWN7102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I050000-441 DJWN7103-LCSD

Prep Date....: 09/05/00 Analysis Date..: 09/05/00

Prep Batch #...: 0249441

Dilution Factor: 1

	SPIKE	MEASURE	D	PERCENT		
PARAMETER	TRUOMA	AMOUNT	UNITS	RECOVERY	RPD	METHOD
Benzene	10.0	10.7	ug/L	107		SW846 8260B
	10.0	10. 9	ug/L	109	2.0	SW846 8260B
Toluene	10.0	10.3	ug/L	103		SW846 8260B
	10.0	10.6	ug/L	106	3.4	SW846 8260B
Chlorobenzene	10.0	10.1	ug/L	101		SW846 8260B
	10.0	10.4	ug/L	104	2.3	SW846 8260B
1,1-Dichloroethene	10.0	10.3	ug/L	103		SW846 8260B
	10.0	10.5	ug/L	105	2.3	SW846 8260B
Trichloroethene	10.0	9.86	ug/L	99		SW846 8260B
	10.0	10.2	ug/L	102	2.9	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
4-Bromofluorobenzene			108	(70 - 130)	
			108	(70 - 130)	
1,2-Dichloroethane-d4			99	(70 - 130)	
			102	(70 - 130)	
Toluene-d8			103	(70 - 130)	
			103	(70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: G0H230166 Work Order #...: DJWN7102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I050000-441 DJWN7103-LCSD

Prep Date....: 09/05/00 Analysis Date..: 09/05/00

Prep Batch #...: 0249441

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Benzene	107	(70 - 130)		SW846 8260B
	109	(70 - 130)	2.0 (0-35)	SW846 8260B
Toluene	103	(70 - 130)		SW846 8260B
	106	(70 - 130)	3.4 (0-35)	SW846 8260B
Chlorobenzene	101	(70 - 130)		SW846 8260B
	104	(70 - 130)	2.3 (0-35)	SW846 8260B
1,1-Dichloroethene	103	(70 - 130)		SW846 8260B
	105	(70 - 130)	2.3 (0-35)	SW846 8260B
Trichloroethene	99	(70 - 130)		SW846 8260B
	102	(70 - 130)	2.9 (0-35)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
4-Bromofluorobenzene		108	(70 - 130)	
		108	(70 - 130)	
1,2-Dichloroethane-d4		99	(70 - 130)	
		102	(70 - 130)	
Toluene-d8		103	(70 - 130)	
		103	(70 - 130)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

WATER, 8015 MOD, Diesel

SAFETY KLEEN CONCULITIE

Client Sample ID: MW-1

GC Semivolatiles

Lot-Sample #...: G0H230166-001 Work Order #...: DJ9RD203 Matrix....: WATER

Date Sampled...: 08/22/00 Date Received..: 08/22/00 Prep Date....: 09/13/00 Analysis Date..: 09/19/00

Prep Batch #...: 0257434

Dilution Factor: 1 Method..... SW846 8015 MOD

REPORTING

PARAMETER RESULT <u>LIMIT</u> UNITS TPH (as Diesel) ND ug/L 50 Unknown Hydrocarbon 540 ug/L 50

PERCENT RECOVERY SURROGATE RECOVERY LIMITS

o-Terphenyl 134 (66 - 136)

NOTE(S):

The unknown from n-C8 to n-C32 is quantitated based on a dieset reference from n-C10 to n-C24.

Client Sample ID: MW-1

GC Semivolatiles

Lot-Sample #...: G0H230166-001 Work Order #...: DJ9RD103 Matrix....: WATER

Date Sampled...: 08/22/00 Date Received..: 08/22/00 Prep Date....: 08/28/00 Analysis Date..: 09/09/00

Prep Batch #...: 0241499

Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING PARAMETER RESULT

UNITS LIMIT TPH (as Diesel) ND 50 ug/L Unknown Hydrocarbon 600 50 ug/L

PERCENT RECOVERY SURROGATE RECOVERY LIMITS

o-Terphenyl 128 (66 - 136)

The unknown from n-C8 to n-C30 is quantitated based on a diesel reference from n-C10 to n-C24.

NOTE(S):

Client Sample ID: MW-9

GC Semivolatiles

Lot-Sample #: G0H230166-002 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0241499	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 1	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
TPH (as Diesel) Unknown Hydrocarbon	ND 120	50 50	ug/L ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY	

(66 - 136)

NOTE(S):

o-Terphenyl

The unknown from n-C14 to n-C28 is quantitated based on a diesei reference from n-C10 to n-C24.

104

Client Sample ID: MW-9

GC Semivolatiles

Lot-Sample #: G0H230166-002	Work Order #: DJ9TW203	Matrix: WATER
Date Sampled: 08/22/00	Date Received 08/22/00	

Dilution Factor: 1 Method.....: SW846 8015 MOD

REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS

 TPH (as Diesel)
 ND
 50
 ug/L

 Unknown Hydrocarbon
 110
 50
 ug/L

 SURROGATE
 PERCENT
 RECOVERY

 0-Terphenyl
 110
 (66 - 136)

NOTE(S):

The unknown from n-C14 to n-C28 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-10

GC Semivolatiles

Lot-Sample #: G0H230166-003 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0241499	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix:	WATER
Dilution Factor: 1	Method:	SW846 8015	MOD	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
TPH (as Diesel)	ND	50	ug/L	
Unknown Hydrocarbon	130	50	ug/L	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
o-Terphenyl	98	(66 - 136)		

NOTE(S):

The unknown from n-C8 to n-C34 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-10

GC Semivolatiles

Lot-Sample #: G0H230166-003 Date Sampled: 08/22/00 Prep Date: 09/13/00 Prep Batch #: 0257434	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 1	Method:	SW846 8015	MOD
PARAMETER TPH (as Diesel) Unknown Hydrocarbon	RESULT ND 140	REPORTING LIMIT 50 50	UNITS ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 92	RECOVERY LIMITS (66 - 136)	

The unknown from n-C8 to n-C28 is quantitated based on a diesel reference from n-C10 to n-C24.

NOTE(S):

SATETY MADE CONSUL 2...

Client Sample ID: MW-11

GC Semivolatiles

Lot-Sample #: G0H230166-004 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0241499	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix WATER
Dilution Pactor: 1	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	170	50	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	94	(66 - 136)	

NOTE(S):

The unknown from n-C8 to n-C40 is quantitated based on a diesel reference from n-C10 to n-C24.

SAFETY RILEON CONSULTING

Client Sample ID: MW-11

GC Semivolatiles

Lot-Sample #: G0H230166-004 Date Sampled: 08/22/00 Prep Date: 09/13/00 Prep Batch #: 0257434	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Pactor: 1	Method:	SW846 8015	MOD
PARAMETER TPH (as Diesel) Unknown Hydrocarbon	RESULT ND 130	REPORTING LIMIT 50 50	UNITS ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 108	RECOVERY LIMITS (66 - 136)	

NOTE(S):

The unknown from n-C8 to n-C40 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-3

GC Semivolatiles

Lot-Sample #: G0H230166-005 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0241499	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 1	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	680	50	ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 107	RECOVERY LIMITS (66 - 136)	

NOTE(S):

The unknown from n-C8 to n-C36 is quantitated based on a diesel reference from n-C10 to n-C24.

SILTET KLEEN CONSULTING

Client Sample ID: MW-3

GC Semivolatiles

Lot-Sample #: G0H230166-005 Date Sampled: 08/22/00 Prep Date: 09/13/00 Prep Batch #: 0257434	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 1	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
TPH (as Diesel)	ND	50	ug/L
Unknown Hydrocarbon	480	50	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	86	(66 - 136)	

NOTE(S):

The unknown from n-C8 to n-C40 is quantitated based on a diesel reference from n_c10 to n-C24.

Client Sample ID: MW-2

GC Semivolatiles

Lot-Sample #: G0H230166-006 Date Sampled: 08/22/00 Prep Date: 08/28/00 Prep Batch #: 0241499	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 50	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING	UNITS
TPH (as Diesel)	ND	2500	ua/L
Unknown Hydrocarbon	85000	2500	ug/L
	PERCENT	RECOVERY	-
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	0.0 SRD	(66 - 136)	

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

The unknown from n-C8 to n-C28 is quantitated based on a diesel reference from n-C10 to n-C24.

Client Sample ID: MW-2

GC Semivolatiles

Lot-Sample #: G0H230166-006 Date Sampled: 08/22/00 Prep Date: 09/19/00 Prep Batch #: 0263179	Work Order #: Date Received: Analysis Date:	08/22/00	Matrix: WATER
Dilution Factor: 100	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING	UNITS
TPH (as Diesel) Unknown Hydrocarbon	ND 150000	5000 5000	ug/L ug/L
SURROGATE o-Terphenyl	PERCENT RECOVERY 0.0 SRD	RECOVERY LIMITS (66 - 136)	

NOTE(S):

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Elevated reporting limits. The reporting limits are elevated due to matrix interference,

The unknown from n-C8 to n-C26 is quantitated based on a diesel reference from n-C10 to n-C24.

900ATA ADIOCIATO

G0H230166

Sample Preparation and Analysis Control Numbers

SAMPLE#	<u>MATRIX</u>	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0257434	
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B		0255461	
002	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0257434	
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B	•	0255461	
003	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0257434	
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B		0255461	
004	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0257434	
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B		0255461	
005	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0257434	
	WATER	DHS CA LUFT		0244478	
	WATER	SW846 8260B		0249441	
006	WATER	MCAWW 300.0A		0241409	0241209
	WATER	MCAWW 300.0A		0241402	0241207
	WATER	SW846 8015 MOD		0241499	
	WATER	SW846 8015 MOD		0263179	
	WATER	DHS CA LUFT		0250098	
	WATER	SW846 8260B		0249441	

(Continued on next page)

QC DATA ASSOCIATION SULMARY

G0H230166

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
007	WATER	SW846 8260B		0249441	

GC Semivolatiles

Client Lot #...: G0H230166

MB Lot-Sample #: G0H280000-499

Work Order #...: DJJ6X101

Matrix....: WATER

Analysis Date..: 09/09/00

Prep Date....: 08/28/00

Prep Batch #...: 0241499

Dilution Factor: 1

REPORTING

PARAMETER <u>LIMIT</u> RESULT UNITS METHOD TPH (as Diesel) ND50 SW846 8015 MOD ug/LUnknown Hydrocarbon ND50 ug/LSW846 8015 MOD

> PERCENT RECOVERY RECOVERY LIMITS 98 (66 - 136)

NOTE(S):

SURROGATE

o-Terphenyl

GC Semivolatiles

Client Lot #...: G0H230166

MB Lot-Sample #: G0I130000-434

Work Order #...: DK9VN101

Matrix....: WATER

Analysis Date..: 09/19/00

Ò

Prep Date....: 09/13/00

Prep Batch #...: 0257434

Dilution Factor: 1

REPORTING

PARAMETER
TPH (as Diesel)
Unknown Hydrocarbon

RESULT ND ND LIMIT UNITS 50 ug/L 50 ug/L

METHOD SW846 8015 MOD SW846 8015 MOD

SURROGATE o-Terphenyl PERCENT RECOVERY 67 RECOVERY LIMITS (66 - 136)

NOTE(S):

GC Semivolatiles

Client Lot #...: G0H230166

Work Order #...: DKKL5101

Matrix....: WATER

MB Lot-Sample #: G0I190000-179

Prep Date....: 09/19/00

Prep Batch #...: 0263179

Analysis Date..: 09/23/00

Dilution Factor: 1

(66 - 136)

PARAMETER	RESULT	REPORTING LIMIT UNITS		METHOD			
TPH (as Diesel)	ND	50	ug/L	SW846 8015 MOD			
Unknown Hydrocarbon	ND	50	ug/L	SW846 8015 MOD			
	PERCENT	RECOVERY					
SURROGATE	RECOVERY	LIMITS	_	•			
o-Terphenyl	101	(66 - 136)				

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DJJ6X102-LCS Matrix..... WATER

LCS Lot-Sample#: G0H280000-499 DJJ6X103-LCSD

Prep Date....: 08/28/00 Analysis Date..: 09/09/00

Prep Batch #...: 0241499

Dilution Factor: 1

PARAMETER TPH (as Diesel)	SPIKE AMOUNT 300 300	MEASURE AMOUNT 145 a 152	UNITS ug/L ug/L	PERCENT RECOVERY 48 51	RPD 4.6	METHOI SW846 SW846	8015	
SURROGATE o-Terphenyl			PERCENT RECOVERY 94 93	RECOVERY LIMITS (66 ~ 136 (66 - 136	•			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DJJ6X102-LCS Matrix..... WATER

LCS Lot-Sample#: G0H280000-499 DJJ6X103-LCSD

Prep Date....: 08/28/00 Analysis Date..: 09/09/00

Prep Batch #...: 0241499

Dilution Factor: 1

PARAMETER TPH (as Diesel)	PERCENT RECOVERY 48 a 51	RECOVERY LIMITS (50 - 129) (50 - 129)	RPD LIMIT 4.6 (0-23	SW846 8015 MOD
SURROGATE o-Terphenyl		PERCENT RECOVERY 94 93	RECOVERY LIMITS (66 - 136) (66 - 136)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DKKL5102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I190000-179 DKKL5103-LCSD

Prep Date....: 09/19/00 Analysis Date..: 09/23/00

Prep Batch #...: 0263179

Dilution Factor: 1

PARAMETER TPH (as Diesel)	SPIKE AMOUNT 300 300	MEASURE AMOUNT 251 255	UNITS ug/L ug/L	PERCENT RECOVERY 84 85	RPD 1.4	METHOI SW846 SW846	8015	
SURROGATE o-Terphenyl			PERCENT RECOVERY 108 104	RECOVERY LIMITS (66 - 136 (66 - 136				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DKKL5102-LCS Matrix.....: WATER

LCS Lot-Sample#: G0I190000-179 DKKL5103-LCSD

Prep Date....: 09/19/00 Analysis Date..: 09/23/00

Prep Batch #...: 0263179

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMITS	METHOD
TPH (as Diesel)	84	(50 - 129)		SW846 8015 MOD
	85	(50 - 129)	1.4 (0-23)	SW846 8015 MOD
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
o-Terphenyl		108	(66 - 136)	
		104	(66 + 136)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DK9VN102-LCS Matrix.....: WATER

LCS Lot-Sample#: G0I130000-434 DK9VN103-LCSD

Prep Date....: 09/13/00 Analysis Date..: 09/19/00

Prep Batch #...: 0257434

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
TPH (as Diesel)	90	(50 - 129)			SW846 8015 MOD
	82	(50 - 129)	8.3	(0-23)	SW846 8015 MOD
		PERCENT	RECOV	/ERY	
SURROGATE		RECOVERY	LIMIT	rs	

 SURROGATE
 RECOVERY
 LIMITS

 o-Terphenyl
 88
 (66 - 136)

 86
 (66 - 136)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: G0H230166 Work Order #...: DK9VN102-LCS Matrix..... WATER

LCS Lot-Sample#: G0I130000-434 DK9VN103-LCSD

Prep Date....: 09/13/00 Analysis Date..: 09/19/00

Prep Batch #...: 0257434

Dilution Factor: 1

	SPIKE	MEASURE	D.	PERCENT				
FARAMETER	AMOUNT	THUUOMA	UNITS	RECOVERY	RPD	METHOI)	
TPH (as Diesel)	300	269	ug/L	90		SW846	8015	MOD
	300	247	ug/L	82	8.3	SW846	8015	MOD
			PERCENT	RECOVERY				
SURROGATE			RECOVERY	LIMITS	_			
o-Terphenyl			88	(66 - 136	<u>}</u>			
			86	(66 - 136)			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry - Various Methods

SAFER THATM CONSULT

Client Sample ID: MW-1

General Chemistry

Lot-Sample #...: G0H230166-001

Date Sampled...: 08/22/00

Work Order #...: DJ9RD

Matrix..... WATER

PARAMETER Nitrate as N	RESULT 0.075	RL 0.050	UNITS mg/L	METHOD MCAWW 300.0A	PREPARATION- ANALYSIS DATE 08/23/00	PREP BATCH # 0238434
Sulfate	2.1	1.0	mg/L	MCAWW 300.0A	08/23/00	0238438

Client Sample ID: MW-9

General Chemistry

Lot-Sample #...: G0H230166-002

Work Order #...: DJ9TW

Matrix....: WATER

Date Sampled...: 08/22/00

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	0.28	0.050	mg/L	MCAWW 300.0A	08/24/00	0241402
Sulfate	157 Q	10.0	mg/L	MCAWW 300.0A	08/23/00	0238438
NOTE(S):						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-10

General Chemistry

Lot-Sample #...: G0H230166-003

Date Sampled...: 08/22/00

Work Order #...: DJ9TX

Matrix....: WATER

...: 08/22/00 Date Received..: 08/22/00

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	0.069	0.050	mg/L	MCAWW 300.0A	08/24/00	0241402
Sulfate	126 Q	1.0	mg/L	MCAWW 300.0A	08/23/00	0238438
NOTE(S):						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-11

General Chemistry

Lot-Sample #...: G0H230166-004

Date Sampled...: 08/22/00

Work Order #...: DJ9V0

Matrix....: WATER

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	0.61	0.25	mg/L	MCAWW 300.0A	08/23/00	0238434
Sulfate	168 Q	10.0	mg/L	MCAWW 300.0A	08/23/00	0238438
NOTE(S):						

RL Reporting Limit

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW-3

General Chemistry

Lot-Sample #...: G0H230166-005

Work Order #...: DJ9V1

Matrix..... WATER

Date Sampled...: 08/22/00

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	ND	0.050	mg/L	MCAWW 300.0A	08/23/00	0238434
Sulfate	19.3	1.0	mg/L	MCAWW 300.0A	08/23/00	0238438

Client Sample ID: MW-2

General Chemistry

Lot-Sample #...: G0H230166-006

Work Order #...: DJ9V4

Matrix....: WATER

Date Sampled...: 08/22/00

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	0.37	0.050	mg/L	MCAWW 300.0A	08/24/00	0241402
Sulfate	ND	1.0	mg/L	MCAWW 300.0A	08/24/00	0241409

QCDATA ASSOCIATE NOTICE I

G0H230166

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
002	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
003	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0241402	0241207
004	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0239434	
005	WATER	MCAWW 300.0A		0238438	0238189
	WATER	MCAWW 300.0A		0238434	0238184
006	WATER	MCAWW 300.0A		0241409	0241209
	WATER	MCAWW 300.0A		0241402	0241207

METHUD BILLION PEFORT

General Chemistry

Matrix..... WATER

Client Lot #...: G0H230166

		REPORTIN	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Nitrate as N		Work Order	#: DJG05101	MB Lot-Sample #:	G0H250000-434	
	ND	0.050	mg/L	MCAWW 300.0A	08/23/00	0238434
Nitrate as N		Work Order	#: DJHWP101	MB Lot-Sample #:	G0H280000-402	
	ND	0.050	mg/L	MCAWW 300.0A	08/24/00	0241402
Sulfate		Work Order	#: DJG0D101	MB Lot-Sample #:	G0H250000-438	
	ND	1.0	mg/L	MCAWW 300.0A	08/23/00	0238438
Sulfate		Work Order	#: DJHXQ101	MB Lot-Sample #:	G0H280000-409	
	ND	1.0	mg/L	MCAWW 300.0A	08/24/00	0241409

NOTE (S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Matrix....: WATER

08/24/00

0241409

Client Lot #...: G0H230166

20.0

SPIKE MEASURED PERCNT PREPARATION-PREP PARAMETER AMOUNT AMOUNT UNITS ANALYSIS DATE BATCH # RECVRY METHOD Nitrate as N Work Order #: DJG05102 LCS Lot-Sample#: G0H250000-434 1.00 0.930 mg/L 93 MCAWW 300.GA 08/23/00 0238434 Nitrate as N Work Order #: DJHWP102 LCS Lot-Sample#: G0H280000-402 1.00 0.956 mg/L 96 MCAWW 300.0A 08/24/00 0241402 Sulfate Work Order #: DJGOD102 LCS Lot-Sample#: G0H250000-438 20.0 19.8 0238438 mg/L 99 MCAWW 300.0A 08/23/00

99

Work Order #: DJHXQ102 LCS Lot-Sample#: G0H280000-409

MCAWW 300.0A

NOTE(S):

Sulfate

Calculations are performed before rounding to avoid round-off errors in calculated results.

19.7

mg/L

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #:	G0H230166	Matrix WATER

	PERCENT	RECOVERY		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	METHOD	ANALYSIS DATE	BATCH #
Nitrate as N		Work Order	#: DJG05102 LCS	Lot-Sample#: G0H250000	-434
	93	(90 - 110)	MCAWW 300.0A	08/23/00	0238434
Nitrate as N		Work Order	#: DJHWP102 LCS	Lot-Sample#: G0H280000	-402
	96	(90 - 110)	MCAWW 300.0A	08/24/00	0241402
Sulfate		Work Order	#: DJG0D102 LCS	Lot-Sample#: G0H250000	-438
	99	(90 - 110)	MCAWW 300.CA	08/23/00	0238438
Sulfate		Work Order	#: DJHXQ102 LCS	Lot-Sample#: G0H280000	- 4 09
	99	(90 - 110)	MCAWW 300.0A	08/24/00	0241409

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: G0H230166
Date Sampled...: 08/09/00

Date Received..: 08/09/00

Matrix..... WATER

	SAMPLE	SPIKE	MEASURED		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	TMA	AMOUNT	UNITS	RECVRY	RPD	METHO	D	ANALYSIS DATE	BATCH #
Nitrate as	N		WO# :	DJDMX11G-MS	/DJDMX1:	LH-MS	D MS	Lot-Sampl	e #: G0H240259-	005
	ND	10.0	9.50	mg/L	95		MCAWW	300.0A	08/24/00	0241402
	ND	10.0	9.36	mg/L	94	1.4	MCAWW	A0.00E	08/24/00	0241402
Nitrate as	N		WO#:	DJ9RD106-MS	/DJ9RD10	7-MSI	MS:	Lot-Sampl	e #: G0H230166-	001
	0.075	20.0	18.0 N	mg/L	89		MCAWW	300.0A	08/23/00	0238434
	0.075	20.0	17.5 N	mg/L	87	2.9	MCAWW	300.0A	08/23/00	0238434
Sulfate			WO#:	DHLJ410W-MS/	DHLJ410	X-MSI	MS 1	Lot-Sampl	e #: G0H090312-	004
	146	300	449	${ t mg/L}$	101		MCAWW	300.0A	08/24/00	0241409
	146	300	450	mg/L	101	0.35	MCAWW	300.0A	08/24/00	0241409
Sulfate			WO# :	DJ9RD108-MS/	/DJ9RD10	9-MSI	MS I	Lot-Sampl	e #: G0H230166-	001
	2.1	300	286	mg/L	95		MCAWW	300.0A	08/23/00	0238438
	2.1	300	272	mg/L	90	5.0	MCAWW	300.0A	08/23/00	0238438

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: G0H230166

Matrix..... WATER

Date Sampled...: 08/09/00

Date Received..: 08/09/00

	PERCENT	RECOVERY	RPD	PREPARATION- PREP
PARAMETER	RECOVERY	LIMITS	RPD LIMITS METHOD	ANALYSIS DATE BATCH #
Nitrate as N		WO#:	DJDMX11G-MS/DJDMX11H-MSD M	S Lot-Sample #: G0H240259-005
	95	(90 - 110)	MCAWW 300.0A	08/24/00 0241402
	94		1.4 (0-10) MCAWW 300.0A	08/24/00 0241402
Nitrate as N		WO#:	DJ9RD106-MS/DJ9RD107-MSD M	S Lot-Sample #: G0H230166-001
	89 N	(90 - 110)	MCAWW 300.0A	08/23/00 0238434
	87 N	(90 - 110)	2.9 (0-10) MCAWW 300.0A	08/23/00 0238434
Sulfate	•	WO#:	DHLJ410W-MS/DHLJ410X-MSD M	S Lot-Sample #: G0H090312-004
	101	(90 - 110)	MCAWW 300.0A	08/24/00 0241409
	101	(90 - 110)	0.35 (0-10) MCAWW 300.0A	08/24/00 0241409
Sulfate		WO#:	DJ9RD108-MS/DJ9RD109-MSD M	S Lot-Sample #: G0H230166-001
	95	(90 - 110)	MCAWW 300.0A	08/23/00 0238438
	90	(90 - 110)	5.0 (0-10) MCAWW 300.0A	08/23/00 0238438

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

APPENDIX B SAMPLING EVENT DATA SHEETS

DEPTH TO WATER

						DATE:	-27-00
PROJEC	T AC Transit Seminary		EVENT	^r Quarterly		TECHNICIA	NBH/GP
NO.	WELL OR LOCATION	DATE	TIME	MEASUREMENT	CODE		COMMENTS
1	MW-1	8-32-0	757	4.79			
2	MW-2		822	4.22	سلةن	4.45	OWI
3	MW-3		809	3.4 <i>5</i>			
4	MW-9		802	5.18			
5	MW-10		807	4,35			
6	MW-11	V	812	3,01			
7							
8	· ·						
9						-,,,	
10							
L1							
12							
13							
14						· · · · ·	
15							
16						 	
17						·	
18			<u> </u>			· -	
19							
20 DES: 5	SWL - Static Water Level						

CODES: SWL - Static Water Level

OIL - Oil Level

OWI - Oil/Water Interface

MTD - Measured Total Depth

oject Name: A sing Diameter (, ,			Weil iD:	MW
tai Weil Depth pth to Water (f	(in): 2" (ft): 15.50	Sar	nject Number: mple Date: 3 mple ID: ,,,	22-00		
velopment Met						
Baild	er:Tef	ion Stain	iess Steel _	PVC	_ ABS Plastic	
<u>× </u>	np: Ded Non	licated Submersib I-Dedicated Subm	ile Pump ersible Pump		_ Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp. (Calsius)	Water Level (to 0.01 ft)	Cum. Vol. (gai)	Pump Rat (GPM)
948	6.36	1229	36.5	5.69	1.5	0.34
954	6.35	1211	76.9	5.80	3-2	
958	6 30	1259	24.4	6.65	4.9	
<u>.</u>						4
			Tat	V21-	7 5.5	
		, wate temoved bi	rior to samplin	g.		
ie Collection N	Method:				ABS Plastic	
ile Collection A	Method: - Teflor - Dedic	n Stainles	ss Steel		ABS Plastic Bladder Pump	
ie Collection M X Bailer Pump C Samples if a	Method: Teffor Dedic Non-E	Stainles ated Submersible Dedicated Submer	Pump Sible Pump	_PVC		
C Samples if a	Method: Teffor Dedic Non-E	n Stainles	Pump Sible Pump Blank, etc.):	PVC		
E Collection N X Bailer Pump C Samples if a	Method: Teffor Dedic Non-E	Stainles ated Submersible Dedicated Submer	Pump Sible Pump Blank, etc.):	_PVC		
E Samples if a	Method: Teffor Dedic Non-E	Stainles ated Submersible Dedicated Submer	Pump Sible Pump Blank, etc.):	PVC		
C Samples if a	Method: Teffor Dedic Non-C	Stainles ated Submersible Dedicated Submer Field Blank, Rinse	Pump Sible Pump Blank, etc.):	PVC	Bladder Pump	
C Samples if a	Method: Teffor Dedic Non-E ATE Reading (ppm)	n Stainles ated Submersible Dedicated Submer Field Blank, Rinse	Pump Sible Pump Blank, etc.):	PVC D.o. 6.85 Fe = 2.35	Bladder Pump	
C Samples if a	Method: Teffor Dedic Non-E	n Stainles ated Submersible Dedicated Submer Field Blank, Rinse	Pump Sible Pump Blank, etc.):	PVC	Bladder Pump	V.
C Samples if a TATE / SULF CO Second Content Collected Appearance OVA F Suspen	Method: Teffor Dedic Non-E Any (Duplicate, I	n Stainles ated Submersible Dedicated Submer Field Blank, Rinse	Pump Sible Pump Blank, etc.):	PVC	Bladder Pump	••
Pump. C Samples if a TATE / SULF CO 15 6 PO/BRO neter Collected: ie Appearance OVA F Suspen	Method: Teffor Dedic Non-E Any (Duplicate, I	n Stainles ated Submersible Dedicated Submer Field Blank, Rinse	Pump Sible Pump Blank, etc.):	PVC	Bladder Pump	Vo
Pump C Samples if a AC Supplementation Per Collection COVA F Suspen Collection COVA F Collection Collection	Method: Teffor Dedic Non-C any (Duplicate, I	Stainles ated Submersible Dedicated Submer Field Blank, Rinse scribe):	Pump Sible Pump Blank, etc.):	PVC	Bladder Pump	
Pump C Samples if a AC Samples if a AC Samples if a AC AC AC IS GROARO THE Collected THE Appearance OVA F Suspen Tramination Per Tramination Per	Method: Teffor Dedic Non-C any (Duplicate,) Reading (ppm) Inded Solids (des	Stainles ated Submersible Dedicated Submer Field Blank, Rinse scribe):	Fump Sible Pump Blank, etc.):	PVC D. C. 6.85 Fe = 2.35 DRP: 123 PUMP TO 1	Bladder Pump	••
Pump. C Samples if a First / SULF Coneter Collected: DIS GRO/DRO D	Method: Teffor Dedic Non-C any (Duplicate, I	Stainles ated Submersible Dedicated Submer Field Blank, Rinse scribe):	Pump sible Pump Blank, etc.): C C C C C C C C C C C C C C C C C C	PVC	Bladder Pump	Vo

Signature: Frank Hanson

8.22-00

					Weii IC:	MW-9_
Project Name: AC Casing Diameter (in Total Well Depth (ft Depth to Water (ft),): 2°): 1 5,5°0 19.	Sar 50 Sar	riect Number: nple Date: & nple ID: MW	-22-00		
Development Metho Bailer:	od: Teflo	Off Senior	lana Charl	PVC	400 7	
				PVC	_ ABS Plastic	
<u></u> rump:	Dedi Non-	cated Submersib Dedicated Subm	ile Pump ersible Pump		_ Bladder Pump	P
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level (to 0.01 ft)	Cum. Vol. (gai)	Pump Rate (GPM)
(O:47	6-71	1845	28.6	7-93	, Z	,28
1056	6.86	1905	21.7	10.13	4.5	
(103	6.96	1903	29.4	11.94	7.0	
			- ()	- 1	7.0	
						
Vater Volume to be				Tot. 1/31+	-> (10 	
Sample Collection Me Bailer:	Teflon	Stainle	ss Steel	_PVC	ABS Plastic	
Pump:	Dedica	sted Submersible edicated Submer	Pump rsible Pump	_	Bladder Pump	
A/QC Samples if am	y (Duplicate, F		-			
NI TRITE /SULF	Are					
8260				00 = \$ 7.	25	
8015 GRO/020				Fe: 0,00		
rameter Collected:						
ampie Appearance OVA Re	edina (anm)			4 -		
	ied Solids (des			ORP 092		A
econtamination Perfo		tcriba)•				•• •
		scribe):		ORP 092 GAL PUMP TO	PIRGE	.
omments / Calculatio			CENTALOU			•• •
	ormed:		CENTALOU	GAL PUMP TO		••
	ormed:	pinsco/was	CENTEL FUI SHEO SON	BAL PUMP TO		••
	ormed:	p:NSE0/WAS	CENTAL FOR	B:40		•••
	ormed:	p:NSE0/WAS	CENTAL OU START & 11	B:40		••
	ormed:	p:NSE0/WAS	CENTAL FOR	B:40		

Signature: Brand Hawson

8.52.00

•	Y				Weil ID:	10.10
ect Name: fc ng Diameter (in i Well Depth (ft h to Water (ft),	1: 11-40	Sar	oject Number: mpie Date: & mpie ID: MW-	-72-60		 -
lopment Metho		n Stain	iless Steel	PVC	_ ABS Plastic	
Y Pump:	Dedic	cated Submersit Dedicated Subm	olo Du		_ Bladder Pum	p
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level (to 0.01 ft)	Cum. Vol.	Pump Rate (GPM)
136	6.45	2960	29.8	5.44	(4	-50
1139	6.58	3240	32.2	5.52	Ž	1
1142	6,53	3240	30.2	5.83	3	
				TOTAL	VOLUME 3.	5 V
X = 1 Well Vo E: 3 to 5 Well	olume in gal/ft, Casing Volum		: ' 2 in. wells, X r to sample co	5 = 1.16 × 3 = 1.16 ×		65 for 4 in. w
X = 1 Weil Vole: 3 to 5 Weil cast 3 weil case Collection Me	olume in gal/ft, Casing Volumes v using volumes v	X = 0.165 for es required prio	t 2 in. weils, X r to sample co rior to samplin	: = 0.37 for 3 in. Ilection. Ig.	weils, X = 0.0	65 for 4 in. w
X = 1 Weil Vole: 3 to 5 Weil cast 3 weil case Collection Me	olume in gal/ft, Casing Volumes verthod: Teflon Dedicate	X = 0.165 for es required prio	2 in. weils, X r to sample co rior to samplin ss Steel	= 0.37 for 3 in. ig. _ PVC	weils, X = 0.0	65 for 4 in. w
X = 1 Weil Vole: E: 3 to 5 Well st weil ca e Collection Me Bailer: Pump:	olume in gal/ft, Casing Volumes vertical: Teffon Dedicate Non-De	X = 0.165 for es required prio were removed p Stainle ted Submersible	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ig. _ PVC	weils, X = 0.0	65 for 4 in. w
X = 1 Weil Vole: E: 3 to 5 Well st weil ca e Collection Me Bailer: Pump:	olume in gal/ft, Casing Volumes vertical: Teffon Dedicate Non-De	X = 0.165 for es required prio Mere removed p Stainle ted Submersible dicated Submersible	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ig. _ PVC	weils, X = 0.0	55 for 4 in. w
X = 1 Weil Vole: E: 3 to 5 Well st well ca e Collection Me Bailer: Pump:	olume in gal/ft, Casing Volume using volumes v ethod: Teflon Dedicate Non-De	X = 0.165 for es required prio Mere removed p Stainle ted Submersible dicated Submersible	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. illection. ig. _ PVC	weils, X = 0.0 ABS Plastic Bladder Pump	55 for 4 in. w
X = 1 Well Vole: X = 1 Well Vole: X = 1 Well Vole: Well Ca Well ca Collection Me Well ca Bailer: Pump: C Samples if any	olume in gal/ft, Casing Volume using volumes v	X = 0.165 for es required prio Were removed p Stainle ted Submersible dicated Submersible edicated Submersible All And	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. illection. ig. _ PVC	weils, X = 0.0 ABS Plastic Bladder Pump	65 for 4 in. w
X = 1 Weil Vole: X = 1 Weil Vole: X = 1 Weil Vole: Weil Ca Weil ca Collection Me Bailer: Pump: Camples if any Other Collected: Appearance	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De v (Duplicate, Fit N;+ra+c /S 8260 8015 G	X = 0.165 for es required prio Were removed p Stainle ted Submersible dicated Submersible edicated Submersible All And	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. ollection.	wells, X = 0.0 ABS Plastic Bladder Pump	65 for 4 in. w
X = 1 Weil Volle: 3 to 5 Well St weil ca e Collection Me Bailer: Pump: C Samples if any exter Collected: Appearance OVA Res	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De V (Duplicate, Fig. Nitrate /S 8260	X = 0.165 for es required prio Mere removed p Stainle: ted Submersible edicated Submersible	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump	= 0.37 for 3 in. illection. ig. _ PVC	wells, X = 0.0 ABS Plastic Bladder Pump	55 for 4 in. w
X = 1 Weil Vol. E: 3 to 5 Weil at weil ca e Collection Me Bailer: Pump: Camples if any oter Collected: Appearance OVA Recamples of Suspending	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De v (Duplicate, Fic Northods 8260 8015 Ge Bading (ppm) led Solids (descented)	X = 0.165 for es required prio were removed p Stainle ted Submersible edicated Submersible e	2 in. wells, X r to sample corrior to sample corrior to sampling ss Steel Pump rsible Pump Blank, etc.):	= 0.37 for 3 in. ollection.	weils, X = 0.0 ABS Plastic Bladder Pump	65 for 4 in. w
X = 1 Weil Volle: 3 to 5 Well St weil ca e Collection Me Bailer: Pump: C Samples if any exter Collected: Appearance OVA Res	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De v (Duplicate, Fic Northods 8260 8015 Ge Bading (ppm) led Solids (descented)	X = 0.165 for es required prio Mere removed p Stainle: ted Submersible edicated Submersible	2 in. wells, X r to sample corrior to sample corrior to sampling ss Steel Pump rsible Pump Blank, etc.):	= 0.37 for 3 in. ollection.	weils, X = 0.0 ABS Plastic Bladder Pump	65 for 4 in. w
X = 1 Weil Vol. E: 3 to 5 Well at well ca e Collection Me Bailer: Pump: Camples if any exer Collected: Appearance OVA Recamples amination Performance	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De V (Duplicate, Fit Nortate /S 8260 8015 Ge Beding (ppm) led Solids (descentions)	X = 0.165 for es required prio were removed p Stainle ted Submersible edicated Submersible e	2 in. wells, X r to sample corrior to sample corrior to sampling ss Steel Pump rsible Pump Blank, etc.):	= 0.37 for 3 in. ollection.	weils, X = 0.0 ABS Plastic Bladder Pump	65 for 4 in. w
X = 1 Weil Vol. E: 3 to 5 Weil at weil ca e Collection Me Bailer: Pump: Camples if any oter Collected: Appearance OVA Recamples of Suspending	olume in gal/ft, Casing Volume using volumes verthod: Teflon Dedicate Non-De V (Duplicate, Fit Nortate /S 8260 8015 Ge Beding (ppm) led Solids (descentions)	X = 0.165 for es required prio were removed p Stainle ted Submersible edicated Submersible e	2 in. wells, X r to sample co rior to samplin ss Steel Pump rsible Pump Blank, etc.):	= 0.37 for 3 in. ollection.	weils, X = 0.0 ABS Plastic Bladder Pump	55 for 4 in. w

Signature: Brook Hango

SAMPLED @ 1145

8.22.00

Project Name: Ac Casing Diameter (in Total Well Depth (fi Depth to Water (ft),	TRAn≤ st): z'' 1: 13. 5 before purgin	Seminary Pro San San 19: 3, 8 (jact Number: npie Date: g npie ID: h,w	792588 -12-00 -11		- ·
Development Metho	d: NA Tefk	on Stain	less Steel	BN/C	ARS Plastic	
Pump:	Dedi	icated Submersib Dedicated Subm	le Pumo		Bladder Pum	3
Time	pH	Conduct. (umho/cm)	Temp. (Celsius)	Water Level	Cum. Vol. (gai)	Pump Rate (GPM)
917	6.74	1288	25.6	7.72	1.5	.33
923	6.52	1457	26.6	12,24	3. 2	V
					4.9	
-						
		 			· ·	
			- Tot	Mal prod 1	-> 4.0gm	
	ethod: Teflor Dedic	were removed p Stainle ated Submersible Dedicated Submer	ss Steel		ABS Plastic Bladder Pump	
QA/QC Samples if an	y (Duplicate, I	Field Blank, Rinse	Blank, etc.):			
Nitrate Su 8260 8015 GRO Parameter Collected: Sample Appearance OVA Re Suspen	PRO		ank @ c	900	D.O. 4. F.E. O. O ORP 15	7Z
Decontamination Peri	Ormed:	Ce	entrifugal	Purp to P	rge	
Scribe	of he well v	Rivised the Z casm second 80%		Start @ Stop @ Sample @	924	Moders
Signature: Bunk	Hauson			8.22.	0 0	

10 20 100

evelopment Metho Bailer —— Pump	: Teflo	n Stain		PVC		
<u></u> , <u></u>	Non-	Dedicated Subm	ersible Pump		_ Bladder Pum	Þ
Time	pH	Conduct.	Temp. (Celsius)	Water Level	Cum. Vol. (gai)	Pump Ren (GPM)
1247	6.52	1010	34.1	6.80	2	.32
1254	6.49	820	29.9	8 20	4	
1362	6.40	830	28.6	9.20	12	
						<u>J</u>
	· · · · · ·			701 Val pl 2.20× 3 = 6.		
X_ Baxer:	Tefion	Stainle	es Chaoi	EN/C	APC Blancia	
				_PVC		
Basier: Pump:	Dedica	Stainle sted Submersible edicated Subme	Puma		ABS Plastic Bladder Pump	
Pump:	Dedica Non-D	ited Submersible edicated Subme	Pump rsible Pump		Bladder Pump	
Pump: 2C Samples if an	Dedicate Non-Dedicate From Non	ited Submersible edicated Subme ield Blank, Rinse	Pump rsible Pump		Bladder Pump	
Pump: 2C Samples if an	Dedicate Non-Dedicate From Vigate / Su	nted Submersible edicated Submer ield Blank, Rinse	Pump rsible Pump	<u> </u>	Bladder Pump	
—— Pump: OC Samples if an meter Collected:	Dedicate Non-Dedicate From Non	nted Submersible edicated Submer ield Blank, Rinse	Pump rsible Pump	D.O. = 3	Bladder Pump ,97 02	
Pump: OC Samples if an meter Collected: pie Appearance	Dedicate Non-Dedicate For Mon-Dedicate F	nted Submersible edicated Submer ield Blank, Rinse	Pump rsible Pump	<u> </u>	Bladder Pump ,97 02	
Pump: OC Samples if an meter Collected: pie Appearance OVA Re	Dedicate Non-Dedicate From Vigate / Su	ited Submersible edicated Submer ield Blank, Rinse LFATE / Aft	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe = 0.0 ORP = 12	Bladder Pump ,97 02	\
Pump: OC Samples if an meter Collected: pie Appearance OVA Re	Dedicate Non-Domy (Duplicate, For 8240 8015 640 seading (ppm) edged Solids (des	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 p to purge	Bladder Pump ,97 02	None
Pump: CC Samples if an meter Collected: pie Appearance OVA Re	Dedicate Non-Domy (Duplicate, For 8240 8015 640 seading (ppm) edged Solids (des	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 p to purge	Bladder Pump ,97 02	No.
Pump: CC Samples if an meter Collected: pie Appearance OVA Re	Dedicate Non-Domy (Duplicate, For 8240 8015 640 seading (ppm) edged Solids (des	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe = 0.0 ORP = 12	Bladder Pump ,97 02	••
Pump: CC Samples if an meter Collected: pie Appearance OVA Re Suspen	Dedicate Non-Dony (Duplicate, Find That I so \$2.00 \$2.	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 p to purge Sounder/n	Bladder Pump ,97 02	
Pump: CC Samples if an meter Collected: pie Appearance OVA Re Suspen	Dedicate Non-Dony (Duplicate, Find That I so \$2.00 \$2.	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 p to purge Sounder/n	Bladder Pump ,97 02	
Pump: OC Samples if an meter Collected: pie Appearance OVA Re Suspen	Dedicate Non-Dony (Duplicate, Find That I so \$2.00 \$2.	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 p to purge Sounder/n	Bladder Pump ,97 02	
Pump: QC Samples if an meter Collected: pie Appearance OVA Re	Dedicate Non-Dony (Duplicate, Find That I so \$2.00 \$2.	ited Submersible edicated Subm	Pump rsible Pump Blank, etc.):	D.O. = 3 Fe : 0.1 ORP : 12 P to purge Sounder/n :43	Bladder Pump ,97 02	

Project Number: 7925'88' Sample Date: 3-22-2000

Project Name: AC TRANSIT SEMINARY

Project Name: A< Casing Diameter (••			Yu cii	
Total Well Depth (Depth to Water (fi	(in): Z* (fi): 23. <i>50</i>	Sai	pject Number: mple Date: 9 mple ID: MW	-27-7000		
Development Meti	hod:		ileen Steel	PVC	450 St	-
	p: Dedi		olo Commu	PVC	_ AUS Plastic _ Bladder Pum	p
Time	pH	Conduct.	Temp.	Water Level	Cum. Vol.	Pump Rat
1345	5.82	2730	(Celsius)	(to 0.01 ft)	(gai)	(GPM)
1351	5-81	2680	29.7	11.60	6	1
1400	5.74	2760	24.9	15.27	9	
				13:01		
				Tot Vol +	- in	
ater Volume to b	a Purced (asi) -	17250-47	2):14 20 x 11	(C= 3.18 x 3 =	= 9.54	
/\ 		84	a			
Pump:	Dedica	ted Submersible	. O	_PVC	ABS Plastic Bladder Pump	
Pump:	Dedica	ted Submersible edicated Submer	Pump rsible Pump			
—— Pump: A/QC Samples if a	Dedica Non-Do	ted Submersible Edicated Submer eld Blank, Rinse	Pump rsible Pump		Bladder Pump	
Pump:	Dedica	ted Submersible Edicated Submer eld Blank, Rinse	Pump rsible Pump		Bladder Pump	EP 8 nut
Pump:	Dedica Non-Do ny (Duplicate, FI N'TPATE / SULI 9260 8015 GRO/IS	ted Submersible Edicated Submer eld Blank, Rinse	Pump rsible Pump		Bladder Pump	F.P. 8 nut
Pump: A/QC Samples if a	Dedica Non-Do ny (Duplicate, FI N'TPATE / SULI 9260 8015 GRO/IS	ted Submersible Edicated Submer eld Blank, Rinse	Pump rsible Pump).O.= 4 fe = 3	Bladder Pump . 53	F.P. Enut Nealls
Pump: A/QC Samples if a rameter Collected: mple AppearanceOVA R	Dedica Non-Do ny (Duplicate, FI N'TPATE / SUL) 9260 8015 GRO/S	ted Submersible edicated Submer eld Blank, Rinse CATL CO	Pump rsible Pump		Bladder Pump . 53	
Pump: A/QC Samples if a rameter Collected: mple AppearanceOVA R	Dedica Non-Do ny (Duplicate, FI N'TPATE / SULI 9260 8015 GRO/IS	ted Submersible edicated Submer eld Blank, Rinse CATL CO	Pump rsible Pump Blank, etc.):	D.O. = 2 fe = 3 0.2p = 21	Bladder Pump ↓.53 \(\delta\) .68	F.P. 8 not Neales
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dedica Non-Do No	ted Submersible edicated Submer eld Blank, Rinse CATL CO	Pump rsible Pump Blank, etc.):).O.= 4 fe = 3	Bladder Pump ↓.53 \(\delta\) .68	
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dedica Non-Do No	ted Submersible edicated Submer eld Blank, Rinse CATL CO	Pump rsible Pump Blank, etc.):	D.O. = 2 Fe = 3 O.P. = 21 FUGAL PUMP	Bladder Pump 1.53 W .68 4 The purific	
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dedica Non-Do No	ted Submersible edicated Subme	Pump rsible Pump Blank, etc.):	D.O. = 2 fe = 3 0.2p = 21	Bladder Pump 1.53 W .68 4 The purific	
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dedica Non-Do No	ted Submersible edicated Subme	Pump rsible Pump Blank, etc.):	D.O.= & fe = 3 O.R.P = 21 FUGAL PUMP SOUNDER/ME	Bladder Pump 1.53 W .68 4 The purific	
Pump: A/QC Samples if a rameter Collected: mple Appearance OVA R Susper	Dedica Non-Do No	ted Submersible edicated Subme	Pump rsible Pump Blank, etc.): CENTA:	D.O.= c fe = 3 ORP = 21 FUGAL PUMP SOUNDER/ME	Bladder Pump 1.53 W .68 4 The purific	
A/QC Samples if a rameter Collected: Imple Appearance	Dedica Non-Do No	ted Submersible edicated Subme	Pump rsible Pump Blank, etc.):	D.O.= 2 fe = 3 ORP = 21 FUGAL PUMP SOUNDER/ME 13:37 1407	Bladder Pump 1.53 W .68 4 The purific	

nain of ustody Record

1124 0797				i										٠									r	
Salar - Kin		1									S-77-01)							Chain of Custody Number 5256						
		Telephone	Vumbe	(Area	Code)/Fa	x Nurs	ber .								Lab	p - C Numi	C-	· O (+		<u> </u>
2733 South Clara				10						60						ارسدا	T WEST IN	701			•	1	age	المد
2733 Sports (Arc	de	Site Contac				Lab	Conta	ct		60					Inal	ysis .	(Atta	ch //	st if	<u> </u>		15	19#	. or
TAMERIA CA GL	1501			•							_		_	m	оге	spac	e is	nee	ded)					
AC TRANSIT Seminary		Carrier/Way	bill Nu	nber			•••				١		CALCADIA.		2									
ontract/Purchase Order/Quote No.			٨	Aatrix			C	ontair eserv	ers ative	& &	7		3	4	1015									nstructions/ s of Receipt
Sample I.D. No. and Description Containers for each sample may be combined on one line)	Date	Time	y due one	38		Unpres			_	ZnAc/ NaOH	-1 :		700	3	070								,	
MW-1	8-22-00	10115	X	+					1	145	+;	×	1	╁	┪	╁	十	╁	╁	╫	╁	H		
M W - 9	1	11:15		\top			\dashv	_	\top	††	- ^	\	Τ-	7	~	+	+	\dagger	╁┈	╁	+	H	 -	
M.v. 10		11:15		十	T		+		╁	╁╾┼	+/;	-1-	 	_	+		╁	╁	-	╀	+	╂╌┤		
MW - 1)			┝╫╌	╁	\vdash	-	\dashv	╁	╂╾	╁┿	<u> X</u>	_	┰	╁	-	- -	╀	╀	╀┈	╀	╁	 		
14.0-3		1200	╁╁	╁	H	\vdash	-	╬	╀	╂╼╂	<u> x</u>	十	+-	╁	4		┨	╀	╀	╁	-	 		
mw Z	 	1315	- -	- -	₽			_	╀	╀	4)	<u> </u>	<u> </u>	(12	4	_	1	퇶	丄	\perp	_			
	Y	1415	V		lacksquare			┷		\sqcup	X	X	<u> </u>		<u>(</u>						1			
TRU' BLANK				┸]		_[X												
				1			ļ		Γ					T	Τ	_	1	Τ	╽╴	Τ		П		
				Т				T	Γ	f	丁	\top	十	T	十	+	1-		T	╁╴	╁┈	H		
				1	\Box	\exists	_	1	╀╴		┪	1	╁	十	十	+	╁	╁	┢	├	╁	╂╾┦	<u></u>	
			-	╅	H	ᅱ		╁	\vdash	╂╌╂╴		+	┿	╂╴	+	╫	╁╌	╁╴	┝	╁	\vdash	\vdash		
			\dashv	╁	H	ᅱ		-	╀		- -	-	╁	╀	╂	╬	╀	-	├	-	<u> </u>	⊢┤		<u>. </u>
sible Hazard Identification		1	ample i	Disnos				Щ.		1 1			1_		_	丄					<u>L</u>	\square		
Non-Hazerd 🔲 Flammable 🔲 Skin Irritant 🔲	Poison B 🔲 L	Inknown	•			Ò	☑ Dis	posal	Ву Ц	ab [☐ Arc	hive i	For			Ma	nths	(A i	iee n	nay b han :	e as: 3 moi	sesse	d if samples are	retained
n Around Time Required 24 Hours							OC R	equire	nent	ab [s (Spec	ily)	<u></u>	<u></u>	N 4	Λ.·	<u></u>				:	- 1170		:	
24 Hours	21 Days	Other				-1	1.0-		<u> </u>		<u> </u>	H	V	<u> 11</u>		<u>د</u>						•		
Harrie I.		E T	- 1	ime 16	. o.		1. Red	erved	вy											1			Pate	Time
Felinquished By		Date		ime		\neg	2. Rec													:			Date	Time
Melinguished By	· .	§ 22 - .Date		15 Time	50		3. Rec			مکن ا													8-72-00	15:30
•			Ι,	M CALL		- 1	J. 1180	A1100	oy -													1	Date	Time

TOTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy